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Abstract

Recently, computer architectures that combine a recon�g-
urable (or retargetable) coprocessor with a general-purpose
microprocessor have been proposed. These architectures
are designed to exploit large amounts of �ne grain par-
allelism in applications. In this paper, we study the per-
formance of the recon�gurable coprocessors on multimedia
applications. We compare a Field Programmable Gate Ar-
ray (FPGA) based recon�gurable coprocessor with the array
processor called REMARC (Recon�gurable Multimedia Ar-
ray Coprocessor). REMARC uses a 16-bit simple processor
that is much larger than a Con�gurable Logic Block (CLB)
of an FPGA. We have developed a simulator, a program-
ming environment, and multimedia application programs to
evaluate the performance of the two coprocessor architec-
tures. The simulation results show that REMARC achieves
speedups ranging from a factor of 2.3 to 7.3 on these ap-
plications. The FPGA coprocessor achieves similar per-
formance improvements. However, the FPGA coprocessor
needs more hardware area to achieve the same performance
improvement as REMARC.

1 Introduction

As the use of multimedia applications increases, it be-
comes important to achieve high performance on algo-
rithms such as video compression, decompression, and im-
age processing with general-purpose microprocessors. This
has motivated the recent addition of multimedia instruc-
tions to most general-purpose microprocessor ISAs [1{3].
These ISA extensions work by segmenting a conventional
64-bit datapath into four 16-bit or eight 8-bit datapaths.
The multimedia instructions exploit �ne grain SIMD par-
allelism by operating on four 16-bit or eight 8-bit data
values. However, a 64-bit datapath limits the speedups
to a factor of four or eight even though many multimedia
applications have much more inherent parallelism.

Computer architectures that connect a recon�gurable
coprocessor to a general-purpose microprocessor have been
proposed [4{9]. The advantage of this approach is that
the coprocessor can be recon�gured to improve the perfor-
mance of a particular application. All of these proposed
architectures use �eld programmable gate arrays (FPGAs)
for the recon�gurable hardware. We refer to this coproces-

sor as an \FPGA coprocessor" in this paper. The FPGA
architecture, which has narrow programmable logic blocks
and programmable interconnection network, provides great

exibility for implementing application speci�c hardware.
However, the rich programmable interconnection comes at
the price of reduced operating frequency and logic density.

Array processors, such as general-purpose systolic ar-
ray processors, wavefront array processors [10], PADDI-
2 [11], and MATRIX [12], are other recon�gurable archi-
tectures. These processors have 8-bit or 16-bit datapaths
and each programmable logic block has an 8 to 32-entry
instruction RAM that makes it easy to support multiple
functions. Because multimedia (or DSP) applications pre-
dominantly manipulate 8-bit or 16-bit data values, these
architectures work very well on these applications. Re-
cently, we proposed a new array processor architecture
called REMARC (Recon�gurable Multimedia Array Co-
processor)[13]. REMARC is a recon�gurable coprocessor
that is tightly coupled to a main RISC processor and con-
sists of a global control unit and 64 16-bit simple processors
called nano processors.

Both the FPGA coprocessor and REMARC are not
limited to SIMD parallelism that can be exploited by mul-
timedia extensions such as the Intel MMX[2]. They can
exploit various kinds of �ne grain parallelism in multime-
dia applications. Using more processing resources, they
can achieve higher performance than the multimedia ex-
tensions. To understand how these two coprocessor archi-
tecture compare, in this paper we evaluate the cost and
performance of these architectures. The architecture of
FPGA coprocessors are still in 
ux, so we evaluate the per-
formance of the FPGA coprocessor with a varying number
of CLBs and vary the cycle time of the FPGA coprocessor
from 1x to 10x that of the main processor. For the perfor-
mance evaluation, we use detailed simulators and two real-
istic application programs, DES encryption and MPEG-2
decoding. We also estimate the chip sizes of processors
with REMARC and the FPGA coprocessor and compare
their performance when the same die size is used for both
architectures.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the recon�gurable coprocessor archi-
tectures, both REMARC (array based) and FPGA based.
In Section 3, we show the results of our performance eval-
uation. In Section 4, we estimate chip sizes of processors
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with REi\.1ARC and the FPGA coprocessor. Finally, we 
conclude in Section 5. 

2 Reconfigurable Coprocessor Ar­
chitecture 

2 .1 Architecture Overv iew 

Main Processor 

Instruction Data 
Cache Cache 

Figure 1: Block Diagram of a Microprocessor w;th Reconfig­
urable Coprocessor 

Figure 1 shows a block diagram of a microprocessor 
which includes a reconfigurable coprocessor . The recon­
figurable coprocessor consists of a global control unit, co­
processor data registers, and a reconfigurable logic array. 
Recently, we proposed the REMARC architectur e which 
includes an 8x8 16-bit processor (nano processor) array as 
its reconfigurable logic array(13]. The other reconfigurable 
coprocessor that we consider in this paper, the FPGA co­
processor, uses FPGAs for the reconfigurable logic array. 
The global control unit controls the execution of the recon­
figurable logic array and the transfer of data between the 
main processor and the reconfigurable logic array through 
the coprocessor data registers. 

We use the i\.flPS-II ISA (14] as the base architecture 
of the main processor. The MIPS ISA is extended for the 
RE MARC and the FPG A coprocessor using the instruc­
tions listed in Table 1. The main processor issues these 
instructions to the reconfigurable coprocessor which exe­
cutes them in a manner similar to a floating point copro­
cessor. Unlike a floating point coprocessor, the functions 
of reconfigurable coprocessor instructions ar e configur able 
( or programmable) so that they can be specialized for spe­
cific applications. 

The configuration instructions, rcon, rgcon, or rncon, 
download the configuration data from memory and store 
them in the reconfigur able coprocessor. The start address 
of the configuration data is specified by the value of the 
sour ce register (src). The rex instruction starts execution 
of a reconfigurable coprocessor instruction. The sum of 

rcon 
rex 
lduc2 
sduc2 
mtc2 
mfc2 
ctc2 
cfc2 

src (rncon or rgcon) 
cov~reg, offset{base) 
cov~reg, offset{base) 
cov~reg, offset{base) 
cov~reg, src 
cov~reg, dst 
cov~reg, src 
cov~reg, dst 

Table 1: New Instructions Used in Reconfigurable Coproces­
sors 

the offset field and the base register specifies one of the op­
erations to execute. The lduc2 and sduc2 instructions are 
load and store coprocessor instructions which t ransfer dou­
ble word (64-bit) data between memory and the reconfig­
urable coprocessor data registers. The mfc2 and mtc2 in­
structions transfer word (32-bit) data between the general­
purpose registers (integer registers) in the main processor 
and the reconfigurable coprocessor data registers. The cfc2 
and ctc2 instructions transfer data between the integer reg­
isters and the reconfigurable coprocessor control registers. 

The reconfigurable coprocessors do not have a direct 
interface to the data cache or memory. The main proces­
sor has to set the input data to the coprocessor data reg­
isters using lduc2 and mtc2 instructions before execution 
of rex instructions. Then, the reconfigurable coprocessor 
reads the input data, executes the operations, and stores 
the results into the coprocessor data registers. Finally, the 
main processor reads the results using sduc2 and mfc2 in­
structions. 

2 .2 Pipeline Organization 

Main Processor Pipeline ! F ! D ! E I M I W I 
REMARC Pipeline RF RR RL ! RI ! RE !RW! 

Main Processor Pipeline ! F ! D ! E I M I W I 
FPGA Coprocessor Pipeline RF RR RE !RW! 

Figure 2: P ipeline Organization of Reconfigurable Coproces­
sor 

The pipeline for REMARC, the FPGA coprocessor, 
and the main processor are shown in Figure 2. The main 
processor pipeline is similar to the MIPS R3000 and the 
MIPS R5000 and consists of five stages: Instruction Fetch 
(F), Instruction Decode (D), Execution (E), Memory Ac­
cess (M), Register Write-back (W) . The reconfigurable co­
processor pipelines ar e independent of the main processor 
pipeline; therefore, the main processor can execute concur ­
rently with the reconfigurable coprocessors . 

The REMARC pipeline starts from the M stage of the 
main processor and has the following six stages: 

RF : An instruction of the global control unit is fetched. 
RR : The REMARC data registers are read. 
RL : The data are aligned or "unpacked" . 
RI : The instructions of the nano processors are fetched. 
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RE : The nano processors execute the instructions.

RW : The executed results are packed and stored into
the REMARC data registers.

The FPGA coprocessor pipeline has four stages as fol-
lows:

RF : The sequencer of the global control unit starts its
execution.

RR : The coprocessor data registers are read.

RE : The recon�gurable logic array starts execution.

RW : The execution results are stored into the coproces-
sor data registers.

The RL and RI stages are unnecessary in the FPGA
coprocessor because load alignment or unpack operations
are realized directly in the FPGA array and FPGAs do
not have instructions to fetch and execute.

2.3 REMARC Architecture
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Figure 3: Block Diagram of REMARC

In this section, we brie
y describe the REMARC archi-
tecture; more information can be found in [13]. Figure 3
shows a block diagram of REMARC. REMARC's recon-
�gurable logic is composed of an 8x8 array of the 16-bit
processors, called nano processors. The execution of each
nano processor is controlled by the instructions stored in
the local instruction RAM (nano instruction RAM). How-
ever, each nano processor does not directly control the
instructions it executes. Every cycle the nano processor
receives a PC value, \nano PC", from the global control
unit. All nano processors use the same nano PC and exe-
cute the instructions indexed by the nano PC in their nano
instruction RAM.

Figure 4 shows the architecture of the nano processor.
The nano processor contains a 32-entry nano instruction
RAM, a 16-bit ALU, a 16-entry data RAM, an instruction

16-bit ALU & Data RAM

nano PC
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Nano Instruction
 RAM

(32 x 32 bits)

IR

DR

DOUT

DINU
DIND
DINL
DINR

D R

32

32

32

16

16

DOR

5

16

16

7

0
1 0

2

Imm

DINU
DIND
DINL
DINR

DINU
DIND
DINL
DINR

16

16

1616

Figure 4: Nano Processor Architecture

register (IR), eight 16-bit data registers (DR), four 16-
bit data input registers (DIR), and a 16-bit data output
register (DOR).

Each nano processor can use the DR registers, the DIR
registers, and immediate data as the source data of ALU
operations. Moreover, it can directly use the DOR regis-
ters of the four adjacent nano processors (DINU, DIND,
DINL, and DINR) as the source.

The nano processors are also connected by the 32-bit
Horizontal Buses (HBUSs) and the 32-bit Vertical Buses
(VBUSs). Each bus operates as two 16-bit data buses. The
16-bit data in the DOR register can be sent to the upper
or lower 16 bits of the VBUS or the HBUS. The HBUSs
and the VBUSs allow data to be broadcast to the other
nano processors in the same row or column. These buses
can reduce the communication overhead between proces-
sors separated by long distances.

The DIR registers accept inputs from the HBUS, the
VBUS, the DOR, or the four adjacent nano processors.
Because the width of the HBUS and the VBUS is 32 bits,
data on the HBUS or the VBUS are stored into a DIR
register pair, DIR0 and DIR1, or DIR2 and DIR3. Using
the DIR registers, data can be transfered between nano
processors during ALU operations.

It takes a half cycle to transfer data using the VBUSs
or HBUSs. It should not be a critical path of the de-
sign. Other operations, except for data inputs from near-
est neighbors, are done within the nano processor. Because
the width of a nano processor's datapath is only 16 bits,
which is a quarter of those of the general purpose micro-
processors, this careful design does not make REMARC a
critical path of the chip.

2.4 FPGA Coprocessor Architecture

The recon�gurable logic array of the FPGA coprocessor is
composed of con�gurable logic blocks (CLBs). Each CLB
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REMARC FPGA Coprocessor

Processor Size Large (16-bit datapath) Small (two 4-1 LUTs)
Num. of Procs. Small (64 processors) Large (500 { 5000 CLBs)
Execution control Instruction Hardwired
Communication Controlled by instruction Con�gured by switch matrix
Interconnection 4 neighbors, VBUS, and HBUS Short wires and long wires
Cycle Time Tcpu 1x, 2x, 5x, 10xTcpu

Table 2: Coprocessor Architecture Comparison

is equal to a CLB of the Xilinx 4000 series. The CLB
includes two 4-1 lookup tables (LUTs) and two 
ip-
ops.

We do not �x the number of the CLBs in the FPGA
coprocessor. Instead, we evaluate the performance of the
FPGA coprocessor using a varying number of CLBs. The
cycle time of the FPGA coprocessor is also parameter-
ized. Cycle times of current FPGA systems are longer
than those of the microprocessors by factors of �ve to
ten. For instance, FPGA systems usually operate at 30
to 100 MHz while state-of-the-art microprocessors operate
at more than 400 MHz. However, the recently proposed
recon�gurable coprocessor Garp [8] aims to operate at the
same operating frequency as its main processor. Therefore,
we assumed the cycle time of the FPGA coprocessor could
be 5x or 10x that of the main processor for current FPGA
architectures and 1x or 2x for future FPGA architectures.

2.5 Coprocessor Architecture Compar-

ison

Table 2 summarizes the comparison of the two recon�g-
urable coprocessor architectures. REMARC has larger
processing elements, the nano processors, than the FPGA
coprocessor. However, the number of nano processors is
less than that of CLBs in the FPGA coprocessor. In
REMARC, both the execution and data transfer are con-
trolled by instructions, while these are controlled by hard-
wired logic in the FPGA coprocessor. REMARC has lim-
ited hardware interconnections. Each nano processor has
direct inputs from the four nearest neighbors and it is con-
nected by two 32-bit data buses. The FPGA coprocessor
has more 
exible hardware interconnections which are con-
�gured in a bit-wise fashion.

We assume that REMARC will operate at the same
frequency as the main processor. The cycle times of the
FPGA coprocessor (Tfpga) are varied. We evaluate the
FPGA coprocessor performance, assuming Tfpga values
that are 1x, 2x, 5x, and 10x the CPU cycle time (Tcpu).

3 Performance Evaluation

3.1 Simulation Methodology

We developed the recon�gurable coprocessor simulator us-
ing the SimOS simulation environment [15] . SimOS mod-
els the CPUs, memory systems, and I/O devices in su�-
cient detail to boot and run a commercial operating sys-
tem. As a base CPU simulation model, we used the

\MIPSY " which models a simple single issue RISC pro-
cessor similar to the MIPS R3000.

REMARC functions are added to the MIPSY model.
The latency of a recon�gurable execution (rex) instruction
is the sum of the number of the executed global instruc-
tions and the pipeline latency (5 cycles). If a following in-
struction attempts to read the result of a rex instruction,
the pipeline will stall for the cycles of the rex instruction's
latency (Data Dependency). Furthermore, a following rex
instruction will stall if a previous rex instruction is still
executing (Resource Con
ict).

We evaluate the execution time of the FPGA coproces-
sor by changing the latencies of the rex instructions. First,
we estimate the number of execution cycles of the rex in-
structions based on the FPGA delay model. In this model,
two sequences can be executed within one FPGA cycle:

{ One stage of interconnection by long or short wire
and one stage of function not using the carry chain

{ One stage of interconnection by short wire and any
one stage of function

This model is almost the same as the Garp's delay
model [8] and the XC4000's medium frequency design which
will operate at about 70 MHz [16]. Then, we normalize the
number of execution cycles based on the CPU cycle time,
assuming the FPGA cycle time is 1x, 2x, 5x, or 10x the
CPU cycle time. Finally, we use this estimated cycle count
of the rex instruction in the simulator.

We also developed simulators which can execute mul-
timedia instructions similar to the Intel MMX instruction
set extensions [2].

To make the comparison fair, the same application
source codes are used for the evaluation except for the
use of the multimedia instructions or the augmented co-
processor instructions. The memory system parameters
used commonly through the performance evaluations are
found in Table 3. We used the \gcc" compiler with the \-
O2" optimization option. This option executes most global
compiler optimizations except for loop unrolling and func-
tion inlining.

I-cache 32 K bytes, 2-way set.
D-cache 32 K bytes, 2-way set.
L2 cache 256 K bytes, 2-way set.
L1 miss penalty 5 cycles
L2 miss penalty 50 cycles

Table 3: Memory System Parameters
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3.2 DES Encryption

The Data Encryption Standard (DES) is one of the most
important encryption algorithms and has been a worldwide
standard for over 20 years. It is widely used to provide se-
cure communication over the Internet. DES is also a good
application for recon�gurable processors because it has a
lot of �ne-grained parallelism in the form of bit-level irreg-
ular data movements which make software implementation
on conventional microprocessors di�cult and ine�cient.

Plaintext (64 bits)

Initial Permutation

f+ K1

f+ K2

f+ K16

Final Permutation

Ciphertext (64 bits)

L0 R0

L1 R1

L2 R2

L15 R15

L16 R16

Round 1

Round 2

Round 16

f-box

f-box

f-box

Figure 5: DES Encryption Algorithm
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Figure 6: DES f-box Algorithm

Figure 5 shows an outline of the DES algorithm. DES
takes as input 64-bit plaintext. After the initial permuta-
tion, there are 16 rounds of \f-box" operations, as shown
in Figure 6, including expansion permutation, XOR with
the key, S-box table lookup, P-box permutation, and XOR
with the result of the previous round. The �nal permu-
tation is performed on the 64-bit result of the sixteenth
round.

We used the DES encryption program [17] based on
the Electronic Codebook (ECB) mode. Although the ECB
mode is less secure than the Cipher Block Chaining (CBC)
mode, it is more commonly used and its operation can be
pipelined.

3.2.1 DES Implementation on REMARC

We decided to divide the algorithm between the main pro-
cessor and REMARC. The initial permutation and the �-
nal permutation are executed by the main processor and
the 16 rounds of f-box operations are executed by RE-
MARC. Each row of nano processors executes two f-box
operations. For instance, eight nano processors in the row
0 execute the �rst and second rounds, the row 1 execute
the third and fourth rounds, and so on.

Operation CPU Cycles

Data Load 2
Exp. Permutation 6 ( 3 x 2 iter.)

Key XOR 2 ( 1 x 2 iter.)
S-box 12 ( 6 x 2 iter.)

P-box Permutation 22 ( 11 x 2 iter.)
Left XOR 4 (2 x 2 iter.)

Data Transfer 3

Total 51

Table 4: Execution Cycle Breakdown of Two f-box Operations

on REMARC

Table 4 is the execution cycle breakdown of the two f-
box operations implemented by the eight nano processors
in each row. The 16 f-box operations are pipelined into
8 stages by the eight rows of the nano processor array.
REMARC can generate a result of the 16 f-box operations
every 51 cycles. As Table 4 shows, because of the limited
interconnection of REMARC, more than half (28 cycles) of
the execution time are used for the expansion permutation
and the P-box permutation.

3.2.2 DES Implementation on the FPGA Co-

processor

First, we estimate the latency and the throughput of one
f-box operation. The expansion permutation and the XOR
operation with the keys can be executed in one cycle be-
cause it can be implemented by long wire and simple logic.
The S-box table lookup requires two cycles to execute be-
cause it consists of LUTs and MUXs. The P-box permu-
tation and the XOR operation can be executed in one cy-
cle. The total latency of the f-box operation is four cycles,
and it can be fully pipelined. Therefore, the maximum
throughput of the f-box operation is one FPGA cycle.

We assume three distinct cases, implementing one f-
box, 16 f-boxes, and all of the DES encryption algorithm
including 16 f-boxes, the initial permutation, and the �nal
permutation.

In the case of one f-box implementation, because each
f-box operation takes as input the result of the previous
f-box operation, the f-box operations cannot be pipelined.
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