
388 Chapter s The Processor: Datapath and Control

4. Memory access or R-type instruction completion step

During this step, a load or store instruction accesses memo~y and an
arithmetic-logical instruction writes its result. When a value is retn~ved from
memory it is stored into the memory data register (MDR), where it must be
used on the next clock cycle.

Memory reference:

MOR= Mem ory [ALUOut] ;

or

Memory [ALUOutJ = B;
Operation: If the instruction is a load, a data word is retrieved from ~emo~y
and is written into the MDR. If the instruction is a store, then the data is w~it
ten into memory. In either case, the address used is the one computed durm_g
the previous step and stored in ALUOut. For a store, the s?urce operand is
saved in B. (B is actually read twice, once in step 2 and once m stef 3. _Luckily,
the same value is read both times, since the register number-which is s~ored
in IR and used to read from the register file-does not change.) The signal
MemRead (for a load) or Mem Write (for store) will need to be asserted. In
addition, for loads and stores, the signal IorD is set to 1 to force. the ~emory
address to come from the ALU, rather than the PC. Since MDR is wntten on
every clock cycle, no explicit control signal need be asserted.

Arithmetic-logical instruction (R-type):

Reg[IR[15 - ll]J = ALUOut ;

Operation: Place the contents of ALUOut, ':"hich corresponds _to the outp_ut of
the ALU operation in the previous cycle, mto the Result register. The signal
RegDst must be set to 1 (to force the rd (bits 15-11) field to be used to select
the register file entry to write). RegWrite must be asserted, and MemtoReg
must be set to O (so that the output of the ALU is written, as opposed to the
memory data output).

s. Memory read completion step
During this step, loads complete by writing back the value from memory.

Load:

Reg[IR[Z0 -16]] = MDR ;

Operation: Write the load data, which was stored into MDR in t_he previous
cycle, into the register file . To do this, we set M_emtoReg = 1 (to wnte the ~esult
from memory), assert RegWrite (to cause a wnte), and we make RegDst - 0 to
choose the rt (bits 20-16) field as the register number.

5.4 A Multicycle Implementation 389

Action for R•type Action for memory• Action for Action for Step name instructions reference instructions branches jumps
Instruction fetch IR = Memory(PC]

I PC = PC+4
Instruction A= Reg [IR[25-21]] -
decode/ register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) « 2)
Execution , address ALUOut = A op B ALUOut = A + sign-exte nd - --

if (A == B) then PC= PC [31- 28] II computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]« 2) I jump completion

I ~ - -Memory access or R-type Reg [IR[15-11]] = Load: MOR = Memory[ALUOut]
completion ALU Out or I

Store: Memory [ALUOut] = B
Memory read completion Load: Reg(IR[20- 16]] = MDR

~

7
- - -~

FIGURE 5.35 Summary of the steps taken to execute any inst ruction class. Instructions ta ke from three to five exe
cution steps. The first two steps are independent of the instruction class. After these steps, an instruction ta kes from one to
three more cycles to complete, d epending on the instruction class . The empty entries for the Memory access step or the
Memory read completion step indicate that the particular instruction class ta kes fewer cycles. In a multicycle im plemen ta
tion, a new instruction will be started as soon as the current ins truction completes, so these cycles are not id le or wasted.
As mentioned earlier, the register fil e actually reads every cycle, but as long as the IR does not cha nge, the va lues read from
the register fil e are identical. In particular, the value read into register B during the Instruction decode stage, for a branch or
R-type instruction, is the same as the value stored into B during the Execution stage a nd then used in the Memory access
stage for a store word instruction.

..
This five-step sequence is summarized in Figure 5.35. From this sequence

we can determine what the control must do on each clock cycle.

Defining the Control

Now that we have determined what the control signals are and when they
must be asserted, we can implement the control unit. To design the control
unit for the single-cycle datapath, we used a set of truth tables that specified
the setting of the control signals based on the instruction class. For the multi
cycle datapath, the control is more complex because the instruction is exe
cuted in a series of steps. The control for the multicycle da ta path must specify
both the signals to be set in any step and the next step in the sequence.

In this subsection and in section 5.5, we will look a t two different techniques
to specify the control. The first technique is based on finite state machines that
are usually represented graphically. The second technique, called J11icropro
gramming, uses a programming representation for control. Both of these
techniques represent the control in a form that allows the detailed implemen
tation-using gates, ROMs, or PLAs-to be synthesized by a CAD sys tem. In
this chapter, we will focus on the design of the control and its representation in
these two forms. If you are interested in how these control specifica tions are

INTEL - 1012

390
Chapter 5 The Processor: Datapath and Control

translated into actual hardware, Appendix C continues the development of
this chapter, translating the multicycle control unit to a detailed hardware im
plementation. The key ideas of control can be grasped from this chapter with
out examining the material in Appendix C. However, if you want to get down
to the bits, Appendix C can show you how to do it!

The first method we use to specify the multicycle control is a finite state ma-
chine. A finite state machine consists of a set of states and directions on how to
change states. The directions are defined by a next-state function, which maps
the current state and the inputs to a new state. When we use a finite state ma
chine for control, each state also specifies a set of outputs that are asserted
when the machine is in that state. The implementation of a finite state machine
usually assumes that all outputs that are not explicitly asserted are deasserted.
The correct operation of the datapath depends on the fact that a signal that is
not explicitly asserted is deasserted, rather than acting as a don't care. For ex
ample, the RegWrite signal should be asserted only when a register file entry
is to be written; when it is not explicitly asserted, it must be deasserted.

Multiplexor controls are slightly different, since they select one of the inputs
whether they are O or 1. Thus, in the finite state machine, we always specify the
setting of all the multiplexor controls that we care about. When we implement
the finite state machine with logic, setting a control to O may be the default and
thus may not require any gates. A simple example of a finite state machine ap
pears in Appendix B, and if you are unfamiliar with the concept of a finite state
machine, you may want to examine Appendix B before proceeding.

The finite state control essentially corresponds to the five steps of execution
shown on pages 385 through 388; each state in the finite state machine will take
1 clock cycle. The finite state machine will consist of several parts. Since the
first two steps of execution are identical for every instruction, the initial two
states of the finite state machine will be common for all instructions. Steps 3
through 5 differ, depending on the opcode. After the execution of the last step
for a particular instruction class, the finite state machine will return to the
initial state to begin fetching the next instruction.

Figure 5.36 shows this abstracted representation of the finite state machine.
To fill in the details of the finite state machine, we will first expand the instruc
tion fetch and decode portion, then we will show the states (and actions) for

the different instruction classes.
We show the first two states of the finite state machine in Figure 5.37 using

a traditional graphic representation. We number the states to simplify the ex
planation, though the numbers are arbitrary. State 0, corresponding to step 1,

is the starting state of the machine.
The signals that are asserted in each state are shown within the circle repre-

senting the state. The arcs between states define the next state and are labeled

5.4 A Multicycle Implementation 391

Start

! !
Instruction fetch/decode and register fetch

(Figure 5.37)

l l l l
Memory access

R-type instructions
instructions

Branch instruction Jump instruction

(Figure 5.38)
(Figure 5.39) (Figure 5.40) (Figure 5.41)

I I I I

FIGURE 5.36 The hi . .. gh level view of the fm1te state ma hi t ·
dent of the instruction class· then a series of se c ne con rol. The first steps are indepen-
complete each instruction class After com _quences that depend on the instruction opcode are used to
returns to fetch a new instruc;ion Each J~etm~~~e ;.chons needed for that instruction class, the control
labeled Start marks the state in which to beg~:n his th1gufi~e m_ay represent one to several states. The arc

1 w en e rst mstruchon 1s to be fetched.

0

'Start----

Memory-reference FSM
(Figure 5.38)

R-type FSM
(Figure 5.39)

Branch FSM
(Figure 5.40)

Instruction decode/
Register fetch

Jump FSM
(Figure 5.41)

FIGURE 5.37 The Instruction fetch and decode portion of ever in ·
the top box in the abstract finite state machine in Fig 5 36 I h i structlon Is identic~I. These states correspond to
read an instruction and write it into the Instruction ur~ t. ·~t t ; rst state we assert two signals to cause the memory to
as the address source. The signals ALUSrcA ALU~eg~s ~{uim ;~~a~d IRWrite), and we set lorD to Oto choose the PC
store it into the PC. (It will also be stored i 't AL~; ' b P, nte, and PCSource are set to compute PC+ 4 and
branch target address by setting ALUSrcB ton1~ (causinu\heu:hn~v~r u:d. from there.). In the nex_t state, we compute the
the ALU), setting ALUSrcA to 0 and ALUO t 00· g I e an . sign-extended lower 16 bits of the IR to be sent to

1
P o , we store the result m the ALUOut · t h. h · ·

eye e. There are four next states that depend on the I f th reg1s er, w ic is wntten on every
unit input, called Op, is used to determine which of ~h::: :res ;01~i:;::,10n, which is known during this state. The control

INTEL - 1012

392 Chapter 5 The Processor: Datapath and Control

with conditions that select a specific next state when multiple next states are
possible. After state 1, the signals asserted depend on the class of instruction.
Thus, the finite state machine has four arcs exiting state 1, corresponding to the
four instruction classes: memory reference, R-type, branch on equal, and
jump. This process of branching to different states depending on the instruc
tion is called decoding, since the choice of the next state, and hence the actions
that follow, depend on the instruction class.

Figure 5.38 shows the portion of the finite state machine needed to imple
ment the memory-reference instructions. For the memory-reference instruc
tions, the first state after fetching the instruction and registers computes the
memory address (state 2). To compute the memory address, the ALU input
multiplexors must be set so that the first input is the A register, while the sec
ond input is the sign-extended displacement field; the result is written into the
ALUOut register. After the memory address calculation, the memory should
be read or written; this requires two different states. If the instruction opcode
is l w, then state 3 (corresponding to the step Memory access) does the memory
read (MemRead is asserted). The output of the memory is always written into
MOR. If it is sw, state 5 does a memory write (MemWrite is asserted). In states
3 and 5, the signal IorD is set to 1 to force the memory address to come from
the ALU. After performing a write, the instruction s w has completed execution,
and the next state is state 0. If the instruction is a load, however, another state
(state 4) is needed to write the result from the memory into the register file.
Setting the multiplexor controls MemtoReg = 1 and RegDst = 0 will send the
loaded value in the MOR to be written into the register file, using rt as the reg
ister number. After this state, corresponding to the Memory read completion
step, the next state is state 0.

To implement the R-type instructions requires two states corresponding to
steps 3 (Execute) and 4 (R-type completion). Figure 5.39 shows this two-state
portion of the finite state machine. State 6 asserts ALUSrcA and sets the ALUS
rcB signals to 00; this forces the two registers that were read from the register
file to be used as inputs to the ALU. Setting ALUOp to 10 causes the ALU con
trol unit to use the function field to set the ALU control signals. In state 7, Reg
Write is asserted to cause the register file to write, RegDst is asserted to cause
the rd field to be used as the register number of the destination, and MemtoReg
is deasserted to select ALUOut as the source of the value to write into the reg
ister file.

For branches, only a single additional state is necessary, because they com
plete execution during the third step of instruction execution. During this
state, the control signals that cause the ALU to compare the contents of regis
ters A and B must be set, and the signals that cause the PC to be written condi
tionally with the address in the ALUOut register are also set. To perform the

i .,

~
I'

' '

I,
I

I

5.4 A Multicycle lmplementatlon

From state 1

(Op= 'LW') or (Op= 'SW')

Memory address computation ----2

MemWrite
lorD = 1

4
--~Memory read completion step

RegWrite
MemtoReg = 1

RegDst = o

To state O
(Figure 5.37)

393

FIGURE 5.38 The finite state machine for controlling memory-reference Instructions has
four states. These states correspond to the box labeled "Memory access instructions" in
Figure 5.36. After performing a memory address calculation, a separate sequence is needl•d for
load and for store. The setting of the control signals ALUSrcA, ALUSrcB, and ALUOp is used to
cause the memory address computation in state 2. Loads require an extra state to write the result
from the MOR (where the result is written in state 3) into the register file.

comparison requires that we assert ALUSrcA and set ALUSrcB to 00, and set
the ALUOp value to 01 (forcing a subtract). (We use only the Zero output of the
ALU, not the result of the subtraction.) To control the writing of the PC, we as
sert PCWriteCond and set PCSource = 01, which will cause the value in the

INTEL - 1012

394 Chapter 5 The Processor: Datapath and Control

From state 1

(Op= R-type)

Execution

To state 0
(Figure 5.37)

FIGURE 5.39 R-type instructions can be Implemented with a simple two-state finite
state machine. These states correspond to the box labeled "R-type instructions" in Figure 5.36.
The first state causes the ALU operation to occur, while the second state causes the ALU result
(which is in ALUOut) to be written in the register file. The three signals asserted during state 7
cause the contents of ALUOut to be written into the register file in the entry specified by the rd
field of the Instruction register.

ALUOut register (containing the branch address calculated in state 1, Figure
5.37 on page 391) to be written into the PC if the Zero bit out of the ALU is as
serted. Figure 5.40 shows this single state.

The last instruction class is jump; like branch, it requires only a single state
(shown in Figure 5.41) to complete its execution. In this state, the signal
PCWrite is asserted to cause the PC to be written. By setting PCSource to 10,
the value supplied for writing will be the lower 26 bits of the Instruction
register with 00two added as the low-order bits concatenated with the upper 4
bits of the PC.

We can now put these pieces of the finite state machine together to form a
specification for the control unit, as shown in Figure 5.42. In each state, the sig
nals that are asserted are shown. The next state depends on the opcode bits of
the instruction, so we label the arcs with a comparison for the corresponding
instruction opcodes.

T

I
'

I

'.
I

1

5.4 A Multlcycle Implementation

From state 1

(Op= 'BEQ')

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

To state o
(Figure 5.37)

395

FIGURE 5.40 The branch Instruction requires a slngle state. The first three outputs that
are asserted cause the ALU to c~mpare the registers (ALUSrcA, ALUSrcB, and ALUOp), while
'.he signals _PCSource and PCWnteCond perform the conditional write if the branch condition
1s true. Notice that we do not use the value written into ALUOut; instead, we use only the Zero
output of the ALU. The branch target address is read from ALUOut, where it was saved at the
end of state 1.

From state 1

To state 0
(Figure 5.37)

FIGURE 5.41 The Jump Instruction requires a single state that asserts two control sig
nals to write the PC with the lower 26 bits of the Instruction register shifted left 2 bits
and concatenated to the upper 4 bits of the PC of this instruction.

Given this implei:nentation, and the knowledge that each state requires 1
clock cycle, we can fmd the CPI for a typical instruction mix.

INTEL - 1012

396 Chapter 5 The Processor: Datapath and Control

2

Start

Memory address

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

r~
3: ~

=-' '5'~
_)

C. Meinory s access

MemRead
lorD = 1

Meinory read
___ c_ornpletion step

RegDst=0
RegWrite

MemtoReg=1

Instruction fetch
0

MemRead
ALUSrcA = 0

lorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite

R-type coinpletion
7

RegDst = 1
RegWrite

MemtoReg = 0

Instruction decode/
register fetch

=-'

C. s Jump
completion

FIGURE 5.42 The complete finite state machine control for the datapath shown In Figure 5.33. The labels on the
arcs are conditions that are tested to determine which state is the next state; when the next state is unconditional, no label is
given. The labels inside the nodes indicate the output signals asserted during that state; we always specify the setting of a
multiplexor control signal if the correct operation requires it. Hence, in some states a multiplexor control will be set to 0. In
Appendix C, we examine how to turn this finite state machine into logic equations and look at how to implement those
logic equations.

Example

Answer

5.4 A Multicycle Implementation 397

CPI In a Multicycle CPU

Using the control shown in Figure 5.42 and the gee instruction mix shown
in Figure 4.54 on page 311, what is the CPI, assuming that each state re
quires 1 clock cycle?

The mix is 23% loads (1 % load byte+ 1 % load halfword+ 21 % load word),
13% stores (1 % store byte+ 12% store word), 19% branches (9% BEQ, 8%
BNE, 1 % BLTZ, 1 % BGEZ), 2% jumps (1 % jal + 1 % jr), and 43% ALU (all
the rest of the mix) . From Figure 5.42, the number of clock cycles for each
instruction class is the following:

• Loads: 5

• Stores: 4

• ALU instructions: 4

• Branches: 3

• Jumps: 3

The CPI is given by the following:

The ratio

CPU clock cycles _ "Instruction count; x CPI,
CPI=----~-'--- £..,;

Instruction count - Instruction count

I Instruction count;
= . x CPI

Instruction count '

Instruction count;
Instruction count

is simply the instruction frequency for the instruction class i. We can there
fore substitute to obtain

CPI= 0.23 x 5 + 0.13 x 4 + 0.43 x 4 + 0.19 x 3 + 0.02 x 3 = 4.02

This CPI is better than the worst-case CPI would have been if all the in
structions took the same number of clock cycles (5).

INTEL - 1012

398 Chapter 5 The Processor: Datapath and Control

Combinational
control logic

Inputs

Outputs

Inputs from instruction State register
register opcode field

Datapath control outputs

Next state

FIGURE 5.43 Finite state machine controllers are typically Implemented using a block
of comblnatlonal loglc and a register to hold the current state. The outputs of the combina
tional logic are the next-state number and the control signals to be asserted for the curren_t state.
The inputs to the combinational logic are the current state and any inputs used to determm~ the
next state. In this case, the inputs are the instruction register opcode bits. NotICe that m the firute
state machine used in this chapter, the outputs depend only on the current state, not on the
inputs. The following elaboration explains this in more detail.

A finite state machine can be implemented with a temporary register that
holds the current state and a block of combinational logic that determines both
the datapath signals to be asserted as well as the next state. Figure 5.43 shows
how such an implementation might look. Appendix C describes in detail how
the finite state machine is implemented using this structure. In section C.3, the
combinational control logic for the finite state machine of Figure 5.42 is imple
mented both with a ROM (read-only memory) and a PLA (programmable log
ic array). (Also see Appendix B for a description of these logic elements.) In the
next section of this chapter, we consider another way to represent control. Both
of these techniques are simply different representations of the same control in
formation.

Elaboration: The style of finite state machine in Figure 5.43 is called a Moore
machine, after Edward Moore. Its ident ifying characteristic is that the output depends
only on the current state. For a Moore machine, the box labeled combinational control
logic can be split into two pieces. One piece has the control output and only the state
input, wh ile the other has on ly the next-state output.

•

5.5 Microprogramming: Simplifying Control Design 399

An alternative style of machine is a Mealy machine, named after George Mealy. The
Mealy machine allows both the input and the current state to be used to determine the
output. Moore machines have potential implementation advantages in speed and size
of the control unit . The speed advantages arise because the control outputs, which are
needed early in the clock cycle, do not depend on the inputs , but only on the current
state. In Appendix C, when the implementation of this finite state machine is taken
down to logic gates, the size advantage can be clearly seen.The potential disadvantage
of a Moore machine is that it may require additional states. For example, in situations
where there is a one-state difference between two sequences of states, the Mealy
machine may unify the states by making the outputs depend on the inputs.

Microprogramming:
Simplifying Control Design
For the control of our simple MIPS subset, a graphical representation of the
finite state machine, as in Figure 5.42, is certainly adequate. We can draw such
a diagram on a single page and translate it into equations (see Appendix C)

without generating too many errors. Consider instead an implementation of
the full MIPS instruction set, which contains over 100 instructions (see
Appendix A). In one implementation, instructions take from 1 clock cycle to
over 20 clock cycles. Clearly, the control function will be much more complex.
Or consider an instruction set with more instructions of widely varying
classes: The control unit could easily require thousands of states with hun
dreds of different sequences. For example, the Intel 80x86 instruction set has
many more addressing mode combinations, as well as a much larger set of
opcodes.

In such cases, specifying the control unit with a graphical representation
will be cumbersome, since the finite state machine can contain hundreds to
thousands of states, and even more arcs! The graphical representation-al
though useful for a small finite state machine-will not fit on a page, let alone
be understandable, when it becomes very large. Programmers know this phe
nomenon quite well: As programs become large, additional structuring tech
niques (for example, procedures and modules) are needed to keep the
programs comprehensible. Of course, specifying complex control function s di
rectly as equations, without making any mistakes, becomes essentially impos
sible.

Can we use some of the ideas from programming to help create a method of
specifying the control that will make it easier to understand as well as to de
sign? Suppose we think of the set of control signals that must be asserted in a
state as an instruction to be executed by the datapath. To avoid confusing the
instructions of the MIPS instruction set with these low-level control instruc
tions, the latter are called microinstructions. Each microinstruction defines the

INTEL - 1012

400 Chapter 5 The Processor: Datapath and Control

set of data path control signals that must be asserted in a given state. Executing
a microinstruction has the effect of asserting the control signals specified by the
microinstruction.

In addition to defining which control signals must be asserted, we must
also specify the sequencing-what microinstruction should be executed next?
In the finite state machine shown in Figure 5.42 on page 396, the next state is
determined in one of two different ways. Sometimes a single next state follows
the current state unconditionally. For example, state 1 always follows state 0,
and the only way to reach state 1 is via state 0. In other cases, the choice of the
next state depends on the input. This is true in state 1, which has four different
successor states.

When we write programs, we also have an analogous situation. Sometimes
a group of instructions should be executed sequentially, and sometimes we
need to branch. In programming, the default is sequential execution, while
branching must be indicated explicitly. In describing the control as a program,
we also assume that microinstructions written sequentially are executed in se
quence, while branching must be indicated explicitly. The default sequencing
mechanism can still be implemented using a structure like the one in
Figure 5.43 on page 398; however, it is often more efficient to implement the
default sequential state using a counter. We will see how such an implementa
tion looks at the end of this section.

Designing the control as a program that implements the machine instruc
tions in terms of simpler microinstructions is called microprogramming. The key
idea is to represent the asserted values on the control lines symbolically, so that
the microprogram is a representation of the microinstructions, just as assembly
language is a representation of the machine instructions. In choosing a syntax
for an assembly language, we usually represent the machine instructions as a
series of fields (opcode, registers, and offset or immediate field); likewise, we
will represent a microinstruction syntactically as a sequence of fields whose
functions are related.

Defining a Microinstruction Format

The microprogram is a symbolic representation of the control that will be
translated by a program to control logic. In this way, we can choose how
many fields a microinstruction should have and what control signals are
affected by each field . The format of the microinstruction should be chosen so
as to simplify the representation, making it easier to write and understand the
microprogram. For example, it is useful to have one field that controls the
ALU and a set of three fields that determine the two sources for the ALU
operation as well as the destination of the ALU result. In addition to read
ability, we would also like the microprogram format to make it difficult or
impossible to write inconsistent microinstructions. A microinstruction is
inconsistent if it requires that a given control signal be set to two different val
ues. We will see an example of how this could happen shortly.

--

5.5 Microprogramming: Simplifying Control Design 401

To avoid a format that allows inconsistent microinstructions, we can make
each field of the microinstruction responsible for specifying a nonoverlapping
set of control signals. To choose how to make this partition of the control
signals for this implementation into microinstruction fields, it is useful to re
examine two previous figures:

• Figure 5.33, on page 383, which shows all the control signals and how
they affect the data path

• Figure 5.34, on page 384, which shows the function of each data path
control signal

Signals that are never asserted simultaneously may share the same field.
Figure 5.44 shows how the microinstruction can be broken into seven fields
and defines the general function of each field. The first six fields of the micro
instruction control the data path, while the Sequencing field (the seventh field)
specifies how to select the next microinstruction.

Microinstructions are usually placed in a ROM or a PLA (both described in
Appendix Band used to implement control in Appendix C), so we can assign
addresses to the microinstructions. The addresses are usually given out se
quentially, in the same way that we chose sequential numbers for the states in
the finite state machine. Three different methods are available to choose the
next microinstruction to be executed:

1. Increment the address of the current microinstruction to obtain the
address of the next microinstruction. This sequential behavior is indi
cated in the microprogram by putting Seq in the Sequencing field . Since
sequential execution of instructions is encountered often, many micro
programming systems make this the default.

Field name Function of field

ALU control Specify the operation being done by the ALU during this clock; the result is
always written in ALUOut.

SRCl Specify the source for the first ALU operand.

SRC2 Specify the source for the second ALU operand.

Register control Specify read or write for the register file , and the source of the value for a write.

Memory Specify read or write, and the source for the memory. For a read , specify the
destination register.

PCWrite control Specify the writing of the PC.

Sequencing Specify how to choose the next microinstruction to be executed.

FIGURE 5.44 Each microinstruction cont ains these seven fields. The valu es for each field
are shown in Figure 5.45.

.....

INTEL - 1012

402 Chapter 5 The Processor: Datapath and Control

2. Branch to the microinstruction that begins execution of the next MIPS
instruction. We will label this initial microinstruction (corresponding to
state 0) as Fetch and place the indicator Fetch in the Sequencing field
to indicate this action.

3. Choose the next microinstruction based on the control unit input.
Choosing the next microinstruction on the basis of some input is called
a dispatch. Dispatch operations are usually implemented by creating a
table containing the addresses of the target microinstructions. This table
is indexed by the control unit input and may be implemented in a ROM
or in a PLA. There are often multiple dispatch tables; for this implemen
tation, we will need two dispatch tables, one to dispatch from state 1
and one to dispatch from state 2. We indicate that the next microinstruc
tion should be chosen by a dispatch operation by placing Dispatch i,
where i is the dispatch table number, in the Sequencing field.

Figure 5.45 gives a description of the values allowed for each field of the
microinstruction and the effect of the different field values. Remember that
the microprogram is a symbolic representation. This microinstruction format
is just one example of many potential formats.

Elaboration: The basic microinstruction format may allow combinations that cannot
be supported within the datapath. Typica lly, a microassembler will perform checks on
the microinstruction fields to ensure that such inconsistencies are flagged as errors
and corrected . An alternative is to structure the microinstruction format to avoid this,
but this might make the microinstruction harder to read. Most microprogramming
systems choose readability and require the microcode assembler to detect incon
sistencies.

Creating the Microprogram

Now let's create the microprogram for the control unit. We will label the
instructions in the microprogram with symbolic labels, which can be used to
specify the contents of the dispatch tables (see section C.5 in Appendix C for a
discussion of how the dispatch tables are defined and assembled). In writing
the microprogram, there are two situations in which we may want to leave a
field of the microinstruction blank. When a field that controls a functional unit
or tha t causes state to be written (such as the Memory field or the ALU dest
field) is blank, no control signals should be asserted. When a field only speci
fies the control of a multiplexor that determines the input to a functional unit,
such as the SRCl field, leaving it blank means that we do not care about the
input to the functional unit (or the output of the multiplexor).

5.5 Microprogramming: Simplifying Control Design 403

Field name Values for field Function of field with specific value

Used to specify labels to control microcode sequencing. Labels that end in a 1 or

Label Any string
2 are used for dispatching with a jump table that is indexed based on the opcode.
Other labels are used as direct targets in the microinstruction sequencing. Labels
do not generate control signals directly but are used to define the contents of
dispatch tables and generate control for the Sequencing field.

Add Cause the ALU to add.
ALU control Subt Cause the ALU to subtract; this implements the compare for branches.

Fune code Use the instruction 's funct field to determine ALU control .

SRC1
PC Use the PC as the first ALU input.

A Register A is the first ALU input.

B Register B is the second ALU input.

SRC2
4 Use 4 for the second ALU input.

Extend Use output of the sign extension unit as the second ALU input.
Extshft Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register numbers,

putting the data into registers A and 8.

Register control Wr ite ALU Write the register file using the rd field of the IR as the register number and the
contents of ALUOut as the data.

Write MOR Write the register file using the rt field of the IR as the register number and the
contents of the MDR as the data.

Read PC Read memory using the PC as address; write result into IR (and the MOR).
Memory Read ALU Read memory using ALUOut as address ; write result into MOR.

-

Wr ite ALU Write memory using the ALUOut as address; contents of B as the data.

ALU Write the output of the ALU into the PC._ =-~
PCWrite control "'ALUOut -co nd If the Zero output of the ALU 1s active, write the PC with the contents of the register j

ALUOut.

Jump address Write the PC with the jump address from the instruction.
- i

Seq Choose the next microinstruction sequentially.
-

Sequencing Fetch Go to the first microinstruction to begin a new instruction.
-- - -I

Dispatch i Dispatch using the ROM specified by i (1 or 2).
-- ----

I
- - -

FIGURE 5.45 . Each field of the microinstruction has a number of values that it can take on. The second column
gives the possible values that are legal for the field, and the third column defines the effect of that va lue. Each field v,i lue,
other than the label field , 1s mapped to a particular setting of the datapath control lines; this mapping is described in
Appendix C, sect10n C.5. That section also shows how the label field is used to generate the dispatch tables. As w e will see,
the microcode implementation will differ slightly from the finite state machine control, but only in ways that d o not affect
mstruction semantics.

The easiest way to understand the microprogram is to break it into pieces
that deal with each component of instruction execution, just as we did when
we designed the finite state machine.

INTEL - 1012

404 Chapter 5 The Processor: Datapath and Control

The first component of every instruction execution is to fetch the instruc
tions, decode them, and compute both the sequential PC and branch target PC.
These actions correspond directly to the first two steps of execution described
on pages 385 through 388. The two microinstructions needed for these first two
steps are shown below:

--------Fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch

To understand what each microinstruction does, it is easiest to look at the
effect of a group of fields. In the first microinstruction, the fields asserted and
their effects are the following:

Fields

ALU control, SRC1, SRC2

Memory

PCWrite control

Sequencing

Effect

Compute PC + 4. (The value is also written into ALUOut,
though it will never be read from there.)

Fetch instruction into IR .

Causes the output of the ALU to be written into the PC.

Go to the next microinstruction.

The label field, containing the label Fetc h, will be used in the Sequencing field
when the microprogram wants to start the execution of the next instruction.

For the second microinstruction, the operations controlled by the microin
struction are the following:

Fields Effect

ALU control , SRC1, SRC2 Store PC + sign extension (IR[15-0]) « 2 into ALUOut.

Register control Use the rs and rt fields to read the registers placing the data in A and B.

Sequencing Use dispatch table 1 to choose the next microinstruction address.

We can think of the dispatch operation as a case or switch statement with the
opcode field and the dispatch table 1 used to select one of four different
microinstruction sequences with one of four different labels (all ending in
"1"):

• Meml for memory-reference instructions

• Rformatl for R-type instructions

• BE Ol for the branch equal instruction

• JU MP l for the jump instruction

5.5 Microprogramming: Simplifying Control Design 405

The microprogram for memory-reference instructions has four microin
structions, as shown below. The first instruction does the memory address cal
culation. A two-instruction sequence is needed to complete a load (memory
read followed by register file write), while the store requires only one microin
struction after the memory address calculation:

···-- PCWrite
Memory control Sequencing

Meml Add A Extend
- --- - - ---

LW2 Read ALU j
Dispatch 2

~~Seq I
i----,-----t---- --t------+----- -+----- t----- - --- ~

i-------::-:--:-::--t-----j------j-----+-w_r_1_t_e_M_D_R-+----- 1-- j F~h __j
SWZ Wri te ALU Fetch j

Let's look at the fields of the first microinstruction in this sequence:

Fields

ALU control ,
SRC1,SRC2

Sequencing

Effect
- -- ~

Compute the memory address : Register (rs)+ sign-extend (IR[15- 0)) . writing
the result into ALUOut. I
Use the second dispatch table to jump to the microinstruction labeled either
LW2 or SWZ . _J

The first microinstruction in the sequence specific to l w is labeled LW 2, since it
is reached by a dispatch through table 2. This microinstruction has the follow
ing effect:

Fields

Memory

Sequencing

Effect
-- - -- - -

Read memory using the ALUOut as the address and writing the data
into the MDR.

Go to the next microinstruction.

The next microinstruction completes execution with a microinstruction that
has the following effects:

Fields

Register control

Sequencing

Effect

Write the contents of the MDR into the register fil e entry specified by rt .

Go to the microinstruction labeled Fetc h.
~-------~------ ------- - - - -

7

INTEL - 1012

406 Chapter 5 The Processor: Datapath and Control

The store microinstruction, labeled SWZ, operates similarly to the load micro
instruction labeled LW2:

Fields

Memory

Sequencing

Effect

Write memory using contents of ALUOut as the address and the
contents of B as the value.

Go to the microinstruction labeled Fetch .

The microprogram sequence for R-type instructions consists of two
microinstructions: the first does the ALU operation (and is labeled Rf o rma t1
for dispatch purposes), while the second writes the result into the register file:

Rformatl Fune code A B

Write ALU Fetch

You might think that because the fields of these two microinstructions do
not conflict (i.e., each uses different fields), you could combine them into one.
Indeed, microcode optimizers perform such operations when compiling mi
crocode. In this case, however, the result of the ALU instruction is written into
the register ALUOut, and the written value cannot be read until the next clock
cycle; hence we cannot combine them into one microinstruction. (If you did
combine them, you'd end up writing the wrong thing into the register file!) You
could try to remove the ALUOut register to allow the two microinstructions to
be combined, but this would require lengthening the clock cycle to allow the
register file write to occur in the same clock cycle as the ALU operation.

The first microinstruction initiates the ALU operation:

Fields

ALU control ,
SRC1, SRC2

Sequencing

Effect

The ALU operates on the contents of the A and B registers , using the function field
to specify the ALU operation .

Go to the next microinstruction.

The second microinstruction causes the ALU output to be written in the regis
ter file:

Fields Effect

Register control The value in ALUOut is written into the register file entry specified by the rd field.

Sequencing Go to the microinstruction labeled Fetch .

5.5 Microprogramming: Simplifying Control Design 407

Because the immediately previously executed microinstruction computed
the branch target address, the microprogram sequence for branch, labeled with
B EO, requires just one microinstruction:

•----- PCWrite
control

I BEQl I Subt I A I B I I I ALUOut-cond

The asserted fields of this microinstruction are the following:

Fields Effect

1111
I Fetch I

ALU control , The ALU subtracts the operands in A and B to generate the Zero output.
SRC1, SRC2

PCWrite control Causes the PC to be written using the value already in ALUOut, if the Zero
output of the ALU is true.

Sequencing Go to the microinstruction labeled Fetch .

The jump microcode sequence also consists of one microinstruction:

------ PCWrite
control

.• I JUMPl I I I I I I Jump address

Only two fields of this microinstruction are asserted:

Fields Effect

PCWrite control Causes the PC to be written using the jump target address.

Sequencing Go to the microinstruction labeled Fet c h.

-I Fetch I

The entire microprogram appears in Figure 5.46. It consists of the 10 micro
instructions appearing above. This microprogram matches the IO-state finite
state machine we designed earlier, since they were both derived from the same
five-step execution sequence for the instructions. In more complex machines,
the microprogram sequence might consist of hundreds or thousands of micro
instructions and would be the representation of choice for the control. Data
paths of more complex machines typically require additional scratch registers
used for holding intermediate results when implementing complex multicycle
instructions. Registers A and Bare like such scratch registers, but datapaths for
more complex instruction sets often have a larger number of such registers

INTEL - 1012

408 Chapter 5 The Processor: Datapath and Control

PCWrite

. '. ' ' ' ' control -Fetch Add PC 4 Read PC ALU Seq

Add PC Exts hf Read Di spatc h 1

t
Meml Add A Extend Dispat ch 2

LW2 Read ALU Se q

Write MDR Fetch

SW2 Write ALU Fetch

Rformat Fune code A B Seq

1
Wr ite ALU Fetc h

BEOl Su bt A B ALUOut - co nd Fe tc h

JUMP l J ump address Fe t ch

FIGURE 5.46 The microprogram for the control unit. Recall that the labels are used to determine the
targets for the dispatch operations. Di spatch 1 does a jump_ based on the IR to a label ending with a 1,
while Dispatch 2 does a jump based on the IR toa label endmg with 2.

with a richer set of interconnections to other datapath elements. These regis
ters are available to the microprogrammer and make the analogy of imple
menting the control as a programming task even stronger.

Implementing the Microprogram

Translating a microprogram into hardware involves two aspects: decid~ng
how to implement the sequencing function and choosing a method of stonng
the main control function . The microprogram can be thought of as a text rep
resentation of a finite state machine, and implemented in exactly the same
way we would implement a finite state machine: using a PLA to encode both
the sequencing function as well as the main control (see Figure 5.43 on
page 398). Often, however, both the implementation of the ~equencing fun_c
tion, as well as the implementation of the main control function, are done dif
ferently, especially for large microprograms.

The alternative form of implementation involves storing the control func
tion in a read-only memory (ROM) and implementing the sequencing function
separately. Figure 5.47 shows this different way to implement the sequencing
function: using an incrementer to choose the next microinstruction. In this
type of implementation, the microcode storage would determine the values of
the datapath control lines, as well as how to select the next state (as opposed to
specifying the next state, as in our finite state machine implementation). The ad
dress select logic would contain the dispatch tables, implemented in ROMs or
PLAs, and would, under the control of the address select outputs, determine
the next microinstruction to execute. The advantage of this implementation of
the sequencing function is that it removes the logic to implement normal

5.5 Microprogramming: Simplifying Control Design

1

j 1
~ Adder/

Microcode
storage

Outputs

Input

t
T

j Microprogram counter j

I Address select logic

t

Inputs from instruction
register opcode field

l
I

-

'-

....

Sequencing
control

409

Data path
contro l
outputs

FIGURE 5.47 A typical implementation of a microcode controller would use an explicit
lncrementer to compute the default sequential next state and would place the micro
code in a read-only memory. The microinstructions, used to set the data path control, a re assem
bled directly from the microprogram. The microprogram counter, which replaces the state
register of a finite state machine controller, determines how the next microinstruction is chosen.
The address select logic contains the dispatch tables as well as the logic to selec t from among the
alternative next states; the selection of the next microinstruction is controlled by the sequencing
control outputs from the control logic. The combination of the current microprogram counter,
incrementer, dispatch tables, and address select logic forms a sequencer that selects the next
microinstruction. The microcode storage may consist either of read-only memory (ROM) or may
be implemented by a PLA. PLAs may be more efficient in VLSI implementa tions, while ROMs
may be easier to change. Further discussions of the advantages of these two alternatives can be
found in section 5.9 and in Appendix C.

sequencing of microinstructions, implementing such sequencing with a
counter. Thus, in cases where there are long sequences of microinstructions,
the explicit sequencer can result in less logic in the microcode controller.

In Figure 5.47, the main control function could be implemented in ROM,
rather than implemented in a PLA. With a ROM implementation, the micro
program is assembled and stored in microcode storage and is addressed by the
microprogram counter, in much the same way as a normal program is stored
in program memory and the next instruction is chosen by the program counter.

INTEL - 1012

410

•

Chapter 5 The Processor: Datapath and Control

This analogy with programming is both the origin of the terminology (micro
code, microprogramming, etc.) and the initial method by which micropro
grams were implemented (see section 5.10).

Although the type of sequencer shown in Figure 5.47 is typically used to im
plement a microprogram control specification, it can also be used to implement
a finite state specification. Section C.4 of Appendix C describes how to gener
ate such a sequencer in more detail. Section C.5 describes how a microprogram
can be translated to such an implementation. Similarly, Appendix C shows
how the control function can be implemented in either a ROM or a PLA and
discusses the trade-offs. In total, Appendix C shows how to go from the sym
bolic representations of finite state machines or microprograms shown in this
chapter to either bits in a memory or entries in a PLA. If you are interested in
detailed implementation or the translation process, you may want to proceed
to Appendix C.

The choice of which way to represent the control (finite state diagram versus
microprogram) and how to implement control (PLA versus ROM and encoded
state versus explicit sequencer) are independent decisions, affected by both the
structure of the control function and the technology used to implement the
control. We return to these issues briefly in section 5.9, but before we do that
we need to look at one of the hardest aspects of control: exceptions.

Exceptions

Control is the most challenging aspect of processor design: it is both the hard
est part to get right and the hardest part to make fast. One of the hardest parts
of control is implementing exceptions and interrupts-events other than
branches or jumps that change the normal flow of instruction execution. An
exception is an unexpected event from within the processor; arithmetic over
flow is an example of an exception. An interrupt is an event that also causes
an unexpected change in control flow but comes from outside of the proces
sor. Interrupts are used by 1/0 devices to communicate with the processor, as
we will see in Chapter 8.

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
We follow the MIPS convention, using the term exception to refer to any unex
pected change in control flow without distinguishing whether the cause is in
ternal or external; we use the term interrupt only when the event is externally
caused. The Intel 80x86 architecture uses the word interrupt for all these events,
while the PowerPC architecture uses the word exception to indicate that an un
usual event has occurred and interrupt to indicate the change in control flow.

5.6 Exceptions 411

Interrupts were initially created to handle unexpected events like arithmetic
overflow and to signal requests for service from I /0 devices. The same basic
mechanism was extended to handle internally generated exceptions as well.
Here are some examples showing whether the situation is generated internally
by the processor or externally generated:

Type of event
~

~ -- ~

1/0 device request T

Invoke the operating system from user program

Arithmetic overflow

Using an undefined instruction

Hardware malfunctions
I

From where? MIPS terminology
--

External

Internal

Internal

Internal

Either

----1- Interrupt

Exception

Exception

Exception

Exception or interrupt

Many of the requirements to support exceptions come from the specific sit
uation that causes an exception to occur. Accordingly, we will return to this
topic in Chapter 7, when we discuss memory hierarchies, and in Chapter 8,
when we discuss 1/0, and we better understand the motivation for additional
capabilities in the exception mechanism. In this section, we deal with the con
trol implementation for detecting two types of exceptions that arise from the
portions of the instruction set and implementation that we have already dis
cussed.

Detecting exceptional conditions and taking the appropriate action is often
... on the critical timing path of a machine, which determines the clock cycle time

and thus performance. Without proper attention to exceptions during design
of the control unit, attempts to add exceptions to a complicated implementa
tion can significantly reduce performance, as well as complicate the task of get
ting the design correct.

How Exceptions Are Handled

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. The basic
action that the machine must perform when an exception occurs is to save the
address of the offending instruction in the exception program counter (EPC)
and then transfer control to the operating system at some specified address.

The operating system can then take the appropriate action, which may in
volve providing some service to the user program, taking son1e predefined ac
tion in response to an overflow, or stopping the execution of the program and
reporting an error. After performing whatever action is required because of the
exception, the operating system can terminate the program or may continue its
execution, using the EPC to determine where to restart the execution of the
program. In Chapter 7, we will look more closely at the issue of restarting the
execution.

INTEL - 1012

412 Chapter 5 The Processor: Datapath and Control

For the operating system to handle the exception, it must know the reason
for the exception, in addition to the instruction that caused it. There are two
main methods used to communicate the reason for an exception. The method
used in the MIPS architecture is to include a status register (called the Cause
register), which holds a field that indicates the reason for the exception.

A second method is to use vectored interrupts. In a vectored interrupt, the ad
dress to which control is transferred is determined by the cause of the excep
tion. For example, to accommodate the two exception types listed above, we
might define the following:

Exception type Exception vector address (in hex)

Undefined instruction CO 00 00 OOhex

Arithmetic overflow CO 00 00 20hex

The operating system knows the reason for the exception by the address at
which it is initiated. The addresses are separated by 32 bytes or 8 instructions,
and the operating system must record the reason for the exception and may
perform some limited processing in this sequence. When the exception is not
vectored, a single entry point for all exceptions can be used, and the operating
system decodes the status register to find the cause.

We can perform the processing required for exceptions by adding a few ex
tra registers and control signals to our basic implementation and by slightly ex
tending the finite state machine. Let's assume that we are implementing the
exception system used in the MIPS architecture. (Implementing vectored ex
ceptions is no more difficult.) We will need to add two additional registers to
the datapath:

• EPC: A 32-bit register used to hold the address of the affected instruc
tion. (Such a register is needed even when exceptions are vectored.)

• Cause: A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although some bits are currently un
used. Assume that the low-order bit of this register encodes the two
possible exception sources mentioned above: undefined instruction= 0
and arithmetic overflow= 1.

We will need to add two control signals to cause the EPC and Cause registers
to be written; call these EPCWrite and Cause Write. In addition, we will need a
1-bit control signal to set the low-order bit of the Cause register appropriately;
call this signal IntCause. Finally, we will need to be able to write the exception
address, which is the operating system entry point for exception handling, into
the PC; let's assume that this address is C0000000hex· Currently, the PC is fed
from the output of a three-way multiplexor, which is controlled by the signal

5.6 Exceptions 413

PCS~urce (see _Figure 5:33 on page 383). We can change this to a four-way
multiplexor, with additional mput wired to the constant value C000000Oi

1
ex·

Then PCSource can be set to 11two to select this value to be written into the
PC.

Because the PC is incremented during the first cycle of every instruction, we
cannot JUSt write the value of the PC into the EPC, since the value in the PC will
be the instruction address plus four. However, we can use the ALU to subtract
four fron_1 the PC and write the output into the EPC. This requires no additional
control signals or paths, since we can use the ALU to subtract, and the constant
~ is already a selectable ALU input. The data write port of the EPC, therefore,
1s _connected t~ the ALU output. Figure 5.48 shows the multicycle data path
with these add1t10ns needed for implementing exceptions.

Using the datapath of Figure 5.48, the action to be taken for each different
type of exception can be handled in one state apiece. In each case, the state sets
the_ Cause register, computes and saves the original PC into the EPC, and
wntes the exception address into the PC. Thus, to handle the two exception
types we are considering, we will need to add only the two states shown in
Figure 5.49.

To connect this finite state machine to the finite state machine of the main
control unit, we must determine how to detect exceptions and add arcs that
transfer control from the main execution machine to this exception-handling fi
nite state machine.

... How Control Checks for Exceptions

Now we have to design a method to detect these exceptions and to transfer
control to the appropriate state in the exception states shown in Figure 5.49.
Each of the two possible exceptions is detected differently:

• Undefined instruction: This is detected when no next state is defined
from state 1 for the op value. We handle this exception by defining the
next-state value for all op values other than l w, sw, 0 (R-type), j , and beq
as state 10. We show this by symbolically using ot/1cr to indicate that the
op field does not match any of the opcodes that label arcs out of state 1.
A modified finite state diagram is shown in Figure 5.50.

• Arithmetic overflow: Chapter 4 included logic in the ALU to detect over
flow, and a signal ca lled Overflow is provided as an output from the
ALU. ~his signal is used in the modified finite state machine to specify
an add1t10nal possible next state for state 7, as shown in Figure 5.50.

Figure 5.50 represents a complete specification of the control for this MIPS
subset with two types of exceptions. Remember that the challenge in designing
the control of a real machine is to handle the variety of different interactions
between instructions and other exception-causing events in such a way that

INTEL - 1012

qJ I <.) ,
~ ~ ,cN M) 11.

w
' 0 0 ~ ::i)(.-i)

t • •
9 0

©
I I

rl 0
0 rl ~ 0

~ 0
~ 0 a.~ 0 E-o ~,, 0 ~m u

I

___L
:::, e
~§

u

I •)1
:i;:,~ ' (:i;:, ~

0 't"'i j O ..-I NM 7
! t.___

I

ch>
~-r i ,::,

C C C
in 1c 0

" I '

'"' rl ' -"

~1

t
I
I

l!l
<t)

0

~
E

" 0 ::;;
E

"' " "' :E
~
-0
-0 .,
t t

L-------t---;(o ~ ::i >< .-i) ---.. •. .._ ____________ _.

I ~ I

(page 414)

5.6 Exceptions

10
lntCause = O
CauseWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

lntCause = 1
CauseWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

To state O to begin next instruction

415

FIGURE 5.49 This pair of states handles the necessary actions for the two different
exceptions we are considering. Each state provides control fo r three actions: setting the Cause
register, getting the address of the offend ing instruction into the EPC, and setting the PC to the
exception vector add ress. Both state 10 and state 11 represent the starting point for an exception.
Control is transferred to one of these two states when an exception occurs. After either s tate 10 or
state 11 is completed, control is transferred to state 0, and a new instruction is fetched.

the control logic remains both small and fas t. The complex interactions that are
'" possible are what make the control unit the most challenging aspect of hard

ware design.

Elaboration: If you examine the finite state machine in Figure 5.50 closely, you can
see that some problems could occur in the way the exceptions are handled . For exam
ple , in the case of arithmetic overflow, the instruction causing the overflow completes
writ ing its resu lt because the overflow branch is in the state when the write completes .
However, it 's possible that the architecture defines the instruction as having no effect
if the instruction causes an exception; this is what the MIPS instruction set architec
ture specifies . In Chapter 7, we will see that certain classes of exceptions requ ire us to
prevent the instruction from changing the machine state, and that this aspect of han
dling exceptions becomes complex and potentially limits performance.

INTEL - 1012

416

Memory address
computation

Chapter 5 The Processor: Datapath and Control

11

Overflow

lntCause = 1
CauseWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

10
lntCause = 0
CauseWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWri te

FIGURE 5.50 This shows the finite state machine with the additions to handle exception detection. Sta tes 10 and
11 come from Figure 5.49 on page 415. The branch out of state 1 labeled (Op= other) indica tes the next sta te w hen _t he input
does not ma tch the opcode of any of l w, sw, O (R-type), j, or beq. The branch out of state 7 labeled Overflow md1cates the
action to be taken when the ALU signa ls an overflow.

• Real Stuff: The Pentium Pro
Implementation
The techniques described in this chapter for building datapaths and control
units are at the heart of every computer. All recent computers, however, go
beyond the techniques of this chapter and use pipelining. Pipelining, which is

5. 7 Real Stuff: The Pentium Pro Implementation 417

the subject of the next chapter, improves performance by overlapping the exe
cution of multiple instructions, achieving throughput close to one instruction
per clock cycle (l ike our single-cycle implementation) with a clock cycle time
determined by the delay of individual functional units rather than the entire
execution path of an instruction (like our multicycle design). The last Intel
80x86 p rocessor without pipelining was the 80386 introduced in 1985; the
very firs t MIPS processor, the R2000, also introduced in 1985, was pipelined.

Recent Intel 80x86 processors (the 80486, Pentium, and Pentium Pro) em
ploy successively more sophis ticated pipelining approaches. These processors,
however, are still faced with the challenge of implementing control for the
complex 80x86 ins truction set, described in Chapter 3. The basic functional
units and datapaths in use in modern processors, while significantly more
complex than those described in this chapter, have the same basic functionality
and similar types of control signals. Thus the task of designing a control unit
builds on the same principles used in this chap ter.

Challenges Implementing More Complex Architectures

Unlike the MIPS architecture, the 80x86 architecture contains instructions that
are very complex and can take tens, if not hundreds, of cycles to execute. For
example, the string move instruction (M OVS) requires calculating and updat
ing two d ifferent memory addresses as well as loading and storing a byte of
the s tring. The larger number and greater complexity of addressing modes in
the 80x86 architecture complicates implementation of even simple instruc-

-. tions similar to those on MIPS. Fortunately, a mu lticycle datapath is well
structured to adapt to varia tions in the amount of work required per instruc
tion that are inherent in 80x86 instructions. This adaptability comes from two
capabilities:

1. A multicycle da tapa th allows instructions to take varying numbers of
clock cycles. Simple 80x86 instructions that are similar to those in the
MIPS architecture can execute in three or four clock cycles, while more
complex instructions can take tens of cycles.

2. A multicycle da tapath can use the datapa th components more than
once per instruction. This is cri tical to hand ling more complex address
ing modes, as well as implementing more complex operations, both of
which are present in the 80x86 architecture. Without this capability the
datapath would need to be extended to handle the demands of the
more complex instructions without reusing components, which would
be completely impractica l. For example, a single-cycle datapath, which
doesn' t reuse components, for the 80x86 would require several data
memories and a very large number of ALUs.

INTEL - 1012

418 Chapter S The Processor: Datapath and Control

Using the multicycle data path and a microprogrammed controller provides
a framework for implementing the 80x86 instruction s_et. The challen~mg task,
however, is creating a high-performance implementat10n, :"'hich r~quires deal
ing with the diversity of the requirements ari_sing from different mstruch~ns.
Simply put, a high-performance implementat10n needs to ensure th~t-the sim
ple instructions execute quickly, and that the burden of the complexih~s of th~
instruction set penalize primarily the complex, less frequently used, mstruc

tions. 80 86 h · t
To accomplish this goal, every Intel implementa_tion of the x arc i _ec-

ture since the 486 has used a combination of hardwired control to handle sim
ple instructions, and microcoded control to handle the_ mor~ complex
instructions. For those instructions that can be executed m a smg_le pass
through the datapath (i.e., those with complexity similar to a MIPS mstruc
tion), the hardwired control generates the control information and executes the
instruction in one pass through the data path that takes a small number of clock
cycles. Those instructions that require multiple datapath passes and complex
sequencing are handled by the microcoded controller that takes a larger num:
ber of cycles and multiple passes through the data path t? comp~ete the execu
tion of the instruction. The benefit of this approach is t~at it ~nables the
designer to achieve low cycle counts for the simple instruct10ns w_ithout hav
ing to build the enormously complex datap_ath that_ would be reqmred to han
dle the full generality of the most complex mstruchons.

The Structure of the Pentium Pro Implementation

Both the Pentium and Pentium Pro processors are capable of exec~ting more
than one instruction per clock, using an advanced pipelining ~echmque, called
superscalar. We describe how a superscalar pr?cessor work~ m the next chap
ter. The important thing to understand here is that executmg more than ~ne
instruction per clock requires duplicating the datapath resources. The sim
plest way to think about this is that the process_or has :1'ultiple datapaths,
though these are tailored to handle one class of mstruct10ns: s~y, loads and
stores, ALU operations, or branches. In this way, the processor i~ able to exe
cute a load or store in the same clock cycle that it is also ex_ecutmg_ a branch
and an ALU operation. The Pentium allows up to two such mstruct10ns to be
executed in a clock cycle, while the Pentium Pro allow_s up to four._ .

The data paths of the Pentium Pro actually e~ecute simpl~ microi~struchons
(or microoperations in Intel terminology), simila~ to MIPS mst:u~~10ns. The_se
microinstructions are fully self-contained operations ~hat_ are mi~ially _72 bits
wide. The control of datapath to implement these micromstrucho~s i~ co~
pletely hardwired . This last level of control expands up to four 72-bit microm
structions into 120 control lines for the integer datapaths and 285 c?nt~ol lmes
for the floating-point datapath. This last step of expanding the micromstruc-

5.8 Fallacies and Pitfalls 419

tions into control lines is very similar to the control generation for the single
cycle data path or for the ALU control.

These microinstructions are generated from the 80x86 instructions either by
hardwired control or by microprogrammed control. For 80x86 instructions that
require less than four microinstructions to implement the 80x86 instruction,
the 80x86 instruction is directly decoded into one to four microinstructions by
a set of PLAs. These PLAs can generate a total of 1200 different microinstruc
tions. If an 80x86 instruction requires more than four microinstructions, the
control dispatches to a microcode control store and uses a traditional micro
code sequencer to generate a sequence of five or more microinstructions. The
microcode ROM provides a total of about 8000 microinstructions, with a num
ber of sequences being shared among 80x86 instructions.

The use of simple low-level hardwired control and simple datapaths for
handling the microinstructions allows the Pentium Pro to achieve impressive
clock rates, similar to those for microprocessors implementing simpler instruc
tion set architectures. Furthermore, the translation process, which combines
direct hardwired control for simple instructions with microcoded control for
complex instructions, allows the Pentium Pro to execute the simple, high
frequency instructions in the 80x86 instruction set at a high rate, yielding a low,
and very competitive, CPI for integer instructions.

II Fallacies and Pitfalls

Pitfall: Implementing a complex instruction with microcode may not be faster
than a sequence using simpler instructions.

Most machines with a large and complex instruction set are implemented, at
least in part, using a microcode stored in ROM. Surprisingly, on such
machines, sequences of individual simpler instructions are sometimes as fast
as or even faster than the custom microcode sequence for a particular instruc
tion.

How can this possibly be true? At one time, microcode had the advantage
of being fetched from a much faster memory than instructions in the program.
Since caches came into use in 1968, microcode no longer has such a consistent
edge in fetch time. Microcode does, however, still have the advantage of using
internal temporary registers in the computation, which can be helpful on ma
chines with few general-purpose registers. The disadvantage of microcode is
that the algorithms must be selected before the machine is announced and
can't be changed until the next model of the architecture. The instructions in a
program, on the other hand, can utilize improvements in its algorithms at any

....

INTEL - 1012

420 Chapter 5 The Processor: Datapath and Control

time during the life of the machine. Along the same lines, the microcode se
quence is probably not optimal for all possible combin_at10ns of ope_rand~.

One example of such an instruction in the 80x86 implementat_10ns is t~e
move string instruction (MOVS) used with a repeat prefix that we discussed in
Chapter 3. This instruction is often slower than a loop that moves words at a
time as we saw earlier in the Fallacies and Pitfalls (see page 185).

A~other example involves the LOOP instruction, which decrements a regis
ter and branches to the specified label if the decremented register is not equ~l
to zero. This instruction is similar to the PowerPC instruction "branch condi
tional to count register" (beet r) discussed in Chapter 3. These instr~ctions are
designed to be used as the branch at the botto~ of loop~ th~t have_a_ fixed num
ber of iterations (e.g., many for loops). Such an instruction, in addition to pack
ing in some extra work, has benefits in minimizing the pot~ntial losses fro~
the branch in pipelined machines (as we will see when we discuss branches in
the next chapter). .

Unfortunately, on all recent Intel 80x86 implementations, the L?OP ins~ru~
tion is always slower than the macrocode sequence consisti~g of simp!er indi
vidual instructions (assuming that the small code size difference is not a
factor). Thus, optimizing compilers focusing on speed n~ver generate ~he LOOP
instruction. This, in turn, makes it hard to motivate making LOOP fast in future
implementations, since it is so rarely used!

Fallacy: If there is space in the control store, new instructions are free of cost.

One of the benefits of a microprogrammed approach is that control store
implemented in ROM is not very expensive, and a_s transistor ~u~gets grew,
extra ROM was practically free. The analogy here is that of building a ho~se
and discovering, near completion, that you have enough land and materials
left to add a room. This room wouldn't be free, however, since there would be
the costs of labor and maintenance for the life of the home. The temptation to
add "free" instructions can occur only when the instruction set is not fixed, as
is likely to be the case in the first model of a computer. Because upward com
patibility of binary programs is a highly desirable feature, ~11 futu~e models ~f
this machine will be forced to include these so-called free instructions, even if
space is later at a premium. .

During the design of the 80286, many instructions were added t~ the in
struction set. The availability of more silicon resource and the use of micropro
grammed implementation made such additions seem ~ainless. _Po~sibly the
largest addition was a sophisticated protection mechamsm, >:7hich is _largelr
unused, but still must be implemented in newer implementations. This ad~i
tion was motivated by a perceived need for such a mechanism and the desire
to enhance microprocessor architectures to provide functionality equal to that
of larger computers. Likewise, a number of decimal instructions were added
to provide decimal arithmetic on bytes. Such instructions are rarely used today

5.9 Concluding Remarks
421

because using binary arithmetic on 32 bits and converting back and forth to
decima~ representation is considerably faster. Like the protection mechanisms,
the decimal instructions must be implemented in newer processors even if
only rarely used.

• Concluding Remarks

As we hav~ seen in th~s chapter, both the data path and control for a processor
can be designed starting with the instruction set architecture and an under
standing of the basic characteristics of the technology. In section 5.2, we saw
how the datapath for a MIPS processor could be constructed based on the
architecture and the decision to build a single-cycle implementation. Of
co~rse, the underlying technology also affects many design decisions by dic
t~ting what ~omponents can be used in the datapath, as well as whether a
s_ingle-cy~le implementation even makes sense. Along the same lines, in the
tirst porti_on of section 5.4, we saw how the decision to break the clock cycle
into a senes of steps led to the revised multicycle datapath. In both cases, the
top-_level o~ganization-a single-cycle or multicyc!e machine-together with
the ~ns_truct10n set, presc~ibed many characteristics of the data path design.

Similarly, the control is largely defined by the instruction set architecture
the organization, and the datapath design. In the single-cycle organization'.
thes~ three asp~cts essentially define how the control signals must be set. In the

.. multicycle design, the exact decomposition of the instruction execution into
cycles, which is based on the instruction set architecture, together with the
data path, define the requirements on the control.

Con~rol is one of t~e most challenging aspects of computer design. A major
reason is tha~ designing the control requires an understanding of how all the
~omponents in the processor operate. To help meet this challenge, we exam
med two t~chniques for specifying control: finite state diagrams and micro
programming. These control representations allow us to abstract the
speci~icat_ion ~f the control from the details of how to implement it. Using ab
~tract10n in this fashion is the major method we have to cope with the complex
ity of computer designs.

Once the control has been specified, we can map it to detailed hardware.
The exact details of the control implementation will depend on both the struc
ture o_f the control_a_nd on the underlying technology used to implement it. Ab
stracting the spenficat10n of control is also valuable because the decisions of
how t~ implement the control are technology-dependent and likely to change
over time.

-

INTEL - 1012

422 Chapter 5 The Processor: Datapath and Control

Trade-offs in Control Approaches

Much has changed since Wilkes [1953] wrote the first paper on micropro
gramming. The most important changes are the following:

• Control units are implemented as integral parts of the processor, often
on the same silicon die. They cannot be changed independent of the rest
of the processor. Furthermore, given the right computer-aided design
tools, the difficulty of implementing a ROM or a PLA is the same.

• ROM, which was used to hold the microinstructions, is no longer faster
than RAM, which holds the machine language program. A PLA imple
mentation of a control function is often much smaller than the ROM im
plementation, which may have many duplicate or unused entries. If the
PLA is smaller, it is usually faster.

• Instruction sets have become much simpler than they were in the 1960s
and 1970s, leading to reduced complexity in the control.

• Computer-aided design tools have improved so that control can be
specified symbolically and, by using much fas ter computers, thorough
ly simulated before hardware is constructed . This improvement makes
it plausible to get the control logic correct without the need for fixes
la ter.

These changes have blurred the d istinctions among different implementa
tion choices. Certainly, using an abstract specifica tion of control is helpful.
How that control is then implemented depends on its size, the underlying
technology, and the available CAD tools.

II .

Control may be designed using one of several initial
representations. The choice of sequence control, and
how logic is represented, can then be determined
independently; the control can then be implemented
with one of several methods using a structured logic
technique. Figure 5.51 shows the variety of methods

for specifying the control and moving from the specification to an
implementation using some form of structured logic.

5.10 Historical Perspective and Further Reading

Initial
representation

Sequencing
contro l

Logic
representation

Implementation
techn ique

Finite state
diagram

Explicit next
state function

Logic
equations

Programmable
logic array

Microprogram

Microprogram counter
+ dispatch ROMS

Truth
tables

Read-only
memory

423

FIGURE 5.51_ Alternative methods for specifying and Implementing control. The arrows
indicate possible_ design paths: _any path from the initial representa tion to the final implementa
tion technology is viable. T~~d1t10nally, "hardwired control" means that the techniques on the

h
left-hand side are used, and microprogrammed control" means that the techniques on the right

and side are used.

II-Hlstorical Perspective and Further Reading

Maurice Wilkes learned computer design in a summer workshop from Eckert
and Mauchly and then went on to build the first full-scale, operational,
st_o~ed-program computer-the EDSAC. From that experience he realized the
diffic_ulty of contr~l..J:Ie thought_of ~ more centralized con trol using a diode
matnx and, after v1s1tmg the Whirlwind computer in the United States w t
[Wilkes 1985]: ' roe

I found that it did indeed have a centralized control based on the use of n matrix of
dzo1es. It was, however, only_capable ~f producing a fixed sequence of eight pulses
~ different sequence for each mstructzon, but nevertheless fixed as far as a particulnr
mst:uctzon was conce:ned. It was not, I think, until I got back to Cnmbridge thnt J
realzze1 tha t the solutzon_was to turn the control unit into a computer in miniature
by addmg a second_matrzx to determine the flow of control at the microlevel and b1/
provzdzng for condztzonal micro-instructions. ·

Wilkes [1 953] _was ahead of his time in recognizing that problem. Unfortu-
nately, the_ soluti?n was also ahead of its time: To provide control, micro
pr?gra~~mg rehes_ on fas t_ me~ory that was no t available in the 1950s. Thus
Wilkes s ideas remained pnmanly academic conjecture for a decade, although

-

INTEL - 1012

424 Chapter 5 The Processor: Datapath and Control

he did construct the EDSAC 2 using microprogrammed control in 1958 with
ROM made from magnetic cores.

IBM brought microprogramming into the spotlight in 1964 with the IBM 360
family. Before this event, IBM saw itself as a cluster of many small businesses
selling different machines with their own price and performance levels, but
also with their own instruction sets. (Recall that little programming was done
in high-level languages, so that programs written for one IBM machine would
not run on another.) Gene Amdahl, one of the chief architects of the IBM 360,
said that managers of each subsidiary agreed to the 360 family of computers
only because they were convinced that microprogramming made it feasible. To
be sure of the viability of microprogramming, the IBM vice president of engi
neering even visited Wilkes surreptitiously and had a "theoretical" discussion
of the pros and cons of microcode. IBM believed that the idea was so important
to its plans that it pushed the memory technology inside the company to make
microprogramming feasible.

Stewart Tucker of IBM was saddled with the responsibility of porting soft
ware from the IBM 7090 to the new IBM 360. Thinking about the possibilities
of microcode, he suggested expanding the control store to include simulators,
or interpreters, for older machines. Tucker [1967] coined the term emulation for
this, meaning full simulation at the microprogrammed level. Occasionally, em
ulation on the 360 was actually faster than on the original hardware.

Once the giant of the industry began using microcode, the rest soon fol
lowed. (IBM was over half of the computer industry in 1964, measured in rev
enue.) One difficulty in adopting microcode was that the necessary memory
technology was not widely available, but that was soon solved by semicond~c
tor ROM and later RAM. The microprocessor industry followed the same his
tory, with the limited resources of the earliest chips forcing hardwired control.
But as the resources increased, the advantages of simpler design, ease of
change, and the ability to use a wide variety of underlying implementations
persuaded many to use microprogramming.

In the 1960s and 1970s, microprogramming was one of the most important
techniques used in implementing machines. Through most of that period, ma
chines were implemented with discrete components or MSI (medium-scale in
tegration-fewer than 1000 gates per chip), and designers had to choose
between two types of implementations: hardwired control or microprogrammed
control. Hardwired control was characterized by finite state machines using an
explicit next state and implemented primarily with random logic. In this ~ra,
microprogrammed control used microcode to specify control that was then im
plemented with a microprogram sequencer (a counter) and ROMs. Hardwired
control received its name because the control was implemented in hardware
and could not be easily changed. Microprograms implemented in ROM were

5.10 Historical Perspective and Further Reading 425

also called firmware because they could be changed somewhat more easily than
hardware, but not nearly as easily as software.

The reliance on standard parts of low- to medium-level integration made
these two design styles radically different. Microprogrammed approaches
were attractive because implementing the control with a large collection of
low-density gates was extremely costly. Furthermore, the popularity of rela
tively complex instruction sets demanded a large control unit, making a ROM
based implementation much more efficient. The hardwired implementations
were faster, but too costly for most machines. Furthermore, it was very difficult
to get the control correct, and changing ROMs was easier than replacing a ran
dom logic control unit. Eventually, microprogrammed control was implement
ed in RAM, to allow changes late in the design cycle, and even in the field after
a machine shipped.

With the increasing popularity of microprogramming came more sophisti
cated instruction sets. Over the years, most microarchitectures became more
and more dedicated to support the intended instruction set, so that reprogram
ming for a different instruction set failed to offer satisfactory performance.
With the passage of time came much larger control stores, and it became pos
sible to consider a machine as elaborate as the VAX with more than 300 differ
ent instruction opcodes and more than a dozen memory-addressing modes.
The use of RAM to store the microcode also made it possible to debug the mi
crocode and even fix some bugs once machines were in the field. The VAX ar
chitecture represented the high-water mark for instruction set architectures
based on microcode implementations. Typical implementations of the full
VAX instruction set required 400 to 500 Kbits of control store.

The VAX architecture has been laid to rest and replaced by the Alpha archi
tecture. This new architecture is based on the same principles of design used
in other RISC architectures, including the MIPS, SPARC, IBM PowerPC, and
the HP Precision architecture. With the disappearance of the VAX, traditional
microprogramming, in which the control is implemented with one major
control store, will largely disappear from conventional microprocessor
designs. Even processors such as the Intel Pentium and Pentium Pro are em
ploying large amounts of hardwired control, at least for the central core of the
processor.

Of course, control unit design will continue to be a major aspect of all com
puters, and the best way to specify and implement the control will vary, just as
computers will vary, from streamlined RISC architectures with simple control,
to special-purpose processors with potentially large amounts of more complex
and specialized control. One recent movement in this direction is an announce
ment by Sun that they will build processors designed to interpret Java. Wheth
er such an approach is competitive with compilation, whether there is a
significant market for more specialized processors, and what role microcode
will play are questions that will be answered in the next few years.

INTEL - 1012

426

II

Chapter s The Processor: Datapath and Control

To Probe Further

Kidder, T. [1981]. Soul of a New Machine, Little, Brown, and Co., New York.

Describes the desi n of the Data General Eclipse series that replaced the first DG machines such as the
Nova . Kidder recfrds the intimate interactions among architects, hardware designers, m1crocoders, and

project management.

d R H E kh J [1989] Computer Programming and Architecture: The VAX, Sec-Levy, H. M., an . . c ouse, r. •
ond ed., Digital Press, Bedford, MA.

Good description of the VAX architecture and several different microprogrammed implementations.

Patterson, o. A. [1983]. "Microprogramming," Scientific American 248:3 (March) 36-43.

Overview of microprogramming concepts.

Tucker, s. G. [1967]. "Microprogram control for the System/360," IBM Systems J. 6:4, 222-41.

Describes the microprogrammed con trol for the 360, the first microprogrammed commercial machine.

Wilkes, M. v. [1985] . Memoirs of a Compu ter Pioneer, MIT Press, Cambridge, MA.

Intriguing biography with many stories about industry pioneers and the trials and successes in building

early machines.

Wilkes M. V. and J.B. Stringer [1953]. "Microprogramming and the_ design of the control cirrnits
in an ;lectro~ic digital computer," Proc. Cambridge Philosophical Society 49:230-:-3

1
8. Als; ~epnn~ed

• 0 p 5· · k c G Bell and A. Newell Computer Structures: Pnnc1p es an xamp es,
111 1ew10re , · · ' ' · · " ·n Annals of
McG~a~-Hill, New York, 158--63, 1982, and in "The Genesis of M1croprograrnmmg, 1

the History of Computing 8:116.

These two classic papers describe Wilkes 's proposal for microcode.

Key Terms

This section lists the variety of major new terms introduced in this cl:apter,
which range from elements of the datapath, to clocking methodologies, to
control mechanisms, to logic structures used for control. These terms are

defined in the Glossary.

branch not taken
branch taken
branch target address
control signal
datapath element
delayed branch
dispatch
don't-care term

exception or interrupt
firmware
hardwired control
rnacroinstruction
microcode
microinstruction
microprogram
microprogrammed control

multicycle or multiple clock
cycle implementation

sign-extend
single-cycle implementation
superscalar
vectored interrupt

5.12 Exercises 427

• Exercises

~

5.1 [5] <§5.3> Describe the effect that a single stuck-at-0 fault (i.e., regardless
of what it should be, the signal is always 0) would have on the multiplexors in
the single-cycle datapath in Figure 5.19 on page 360. Which instructions, if
any, would still work? Consider each of the following faults separately:
RegDst = 0, ALUSrc = 0, MemtoReg = 0, Zero = 0.

5.2 [5] <§5.3> This exercise is similar to Exercise 5.1, but this time consider
stuck-at-1 faults (the signal is always 1).

5.3 [5] <§5.4> This exercise is similar to Exercise 5.1, but this time consider the
effect that the stuck-at-0 faults would have on the multiplexors in the multiple
cycle data path in Figure 5.32 on page 381. Consider each of the following
faults: RegDst = 0, MemtoReg = 0, IorD = 0, ALUSrcA = 0.

5.4 [5] <§5.4> This exercise is similar to Exercise 5.3, but this time consider
stuck-at-1 faults (the signal is always 1).

5.5 [15] <§5.3> We wish to add the instruction addi (add immediate) to the
single-cycle datapath described in this chapter. Add any necessary datapaths
and control signals to the single-cycle data path of Figure 5.19 on page 360 and
show the necessary additions to Figure 5.20 on page 361. You can photocopy
these figures or download them from www.mkp.com/cod2e.htm to make it faster
to show the additions.

5.6 [15] <§5.3> This question is similar to Exercise 5.5 except that we wish to
add the instruction j al (jump and link), which is described in Chapter 3 on
page 132. You may find it easier to modify the datapath in Figure 5.29 on
page 372.

5. 7 [8] <§5.3> This question is similar to Exercise 5.5 except that we wish to
add the instruction bne (branch if not equal), which is described in Chapter 3.

5.8 [15] <§5.3> This question is similar to Exercise 5.5 except that we wish to
add a variant of the l w (load word) instruction, which sums two registers to
obtain the address of the data to be loaded (see Exercise 4.16) and uses the R
format.

5.9 [5] <§5.3> Explain why it is not possible to modify the single-cycle imple
mentation to implement the swap instruction described in Exercise 4.40 with
out modifying the register file.

INTEL - 1012

428 Chapter 5 The Processor: Datapath and Control

5.10 [5] <§§5.3, 5.4> A friend is proposing that the control signal MemtoReg
be eliminated. The multiplexor that has MemtoReg as an input will instead use
the control signal MemRead. Will your friend's modification work? Consider
both datapaths.

5.11 [10] <§5.3> This exercise is similar to Exercise 5.10 but more general. De
termine whether any of the control signals (other than MemtoReg) in the
single-cycle implementation can be eliminated and replaced by another exist
ing control signal. Why or why not?

5.12 [15] <§5.3> Consider the following idea: Let's modify the instruction set
architecture and remove the ability to specify an offset for memory access in
structions. Specifically, all load-store instructions with nonzero offsets would
become pseudoinstructions and would be implemented using two instruc
tions. For example:

addi
l w

$at , $tl , 104
$t0 , $at

add the offset to a tempora ry
new way of doing l w $t0 , 104 ($tll

What changes would you make to the single-cycle data path and control if this
simplified architecture were to be used?

5.13 [10] <§5.3> !Ex. 5.121 If the modifications described in Exercise 5.12 are
implemented, there are some definite trade-offs with regard to performance.
Specifically, the cycle time may be affected, and all load-store instructions with
nonzero offsets would now require an extra add i instruction (a good compiler
might find ways to reduce the need for extra addi instructions, but you can
ignore this) . If there are too many load-store instructions with nonzero offsets,
it is likely that the modification would not improve performance. Assuming
delays as specified on page 373, what is the highest percentage of load-store
instructions with offsets that could be tolerated (i.e., that would still result in
the modification having a positive impact on performance)?

5.14 [10] <§5.3> In estimating the performance of the single-cycle implemen
tation, we assumed that only the major functional units had any delay (i.e., the
delay of the multiplexors, control unit, PC access, sign extension unit, and
wires was considered to be negligible). Assume that we change the delays
specified on page 373 such that we use a different type of adder for simple ad
dition:

• ALU: 2 ns

• adder for PC + 4: X ns

• adder for branch address computation: Y ns

a. What would the cycle time be if X = 3 and Y = 3?

b. What would the cycle time be if X = 5 and Y = 5?

c. What would the cycle time be if X = 1 and Y = 8 ?

E N ED

5.12 Exercises 429

5.15 [15] <§5.4> We wish to add the instruction add i (add immediate) to the
multicycle datapath described in this chapter. This instruction is described in
Chapter 3 on page 145. Add any necessary data paths and control signals to the
multicycle datapath of Figure 5.33 on page 383 and show the necessary modi
fications to the finite state machine of Figure 5.42 on page 396. You may find it
helpful to examine the execution steps shown on pages 385 through 388 and
consider the steps that will need to be performed to execute the new instruc
tion. You can photocopy existing figures or download figures from
www.mkp.com/cod2e.htm to make it easier to show your modifications. Try to
find a solution that minimizes the number of clock cycles required for the new
instruction. Please explicitly state how many cycles it takes to execute the new
instruction on your modified datapath and finite state machine.

5.16 [5] <§§5.5, 5.8> !Ex. 5.15 } Write the microcode sequences for the add i in
struction. If you need to make any changes to the microinstruction format or
field contents, indicate how the new format and fields will set the control out
puts.

5.17 [15] <§5.4> This question is similar to Exercise 5.15 except that we wish
to add the instruction j a 1 (jump and link), which is described in Chapter 3.

5.18 [15] <§5.4> This question is similar to Exercise 5.15 except that we wish
to add the swap instruction described in Exercise 4.40. Do not modify the reg
ister file. Since the instruction format for swap has not yet been defined, you
are free to define it however you wish.

5.19 [15] <§5.4> This question is similar to Exercise 5.15 except that we wish
to add a new instruction, wa i (where am I), which puts the instruction's loca
tion (the value of the PC when the instruction was fetched) into a register spec
ified by the rt field of the machine language instruction. Assume that the
data path hasn' t changed and that, as usual, the clock cycle is too short to allow
an ALU operation and a register file access in a single clock cycle if one of them
is dependent on the results of the other.

5.20 [15] <§5.4> This question is similar to Exercise 5.15 except that we wish
to add a new instruction, j m (jump memory). Its instruction format is similar
to that of 1 oad word except that the rt field is not used because the data loaded
from memory is put in the PC instead of the target register.

5.21 [20] <§5.4> This question is similar to Exercise 5.15 except that we wish
to add support for four-operand arithmetic instructions such as add3, which
adds three numbers together instead of two:

add3 $t5 , H6 , $t7 , $t8 II $t5 = $t6 + H7 + H8

INTEL - 1012

430 Chapter 5 The Processor: Datapath and Control

Assume that the instruction set is modified by introducing a new instruction
format similar to the R-format except that bits [0-4] are used to specify the
additional register (we still use rs, rt, and rd) and of course a new opcode is
used. Your solution should not rely on adding additional read ports to the
register file, nor should a new ALU be used .

5.22 [10] <§5.4> Show how the jump register instruction (described on pages
129 and A-65) can be implemented simply by making changes to the finite
state machine of Figure 5.42 on page 396. (It may help you to remember that
$0 =$z ero = 0.)

5.23 [15] <§5.4> Consider a change to the multiple-cycle implementation that
alters the register file so that it has only one read port. Describe (via a diagram)
any additional changes that will need to be made to the datapath in order to
support this modification. Modify the finite state machine to indicate how the
instructions will work, given your new datapath.

5.24 [15] <§§5.1-5.4> For this problem, use the gee data from Figure 4.54 on
page 309. Assume that there are three machines:

• Ml: The multicycle data path of Chapter 5 with a 500-MHz clock.

• M2: A machine like the multicycle datapath of Chapter 5, except that
register updates are done in the same clock cycle as a memory read or
ALU operation. Thus, in Figure 5.42 on page 396, states 6 and 7 and
states 3 and 4 are combined. This machine has a 400-MHz clock, since
the register update increases the length of the critical path.

• M3: A machine like M2, except that effective address calculations are
done in the same clock cycle as a memory access. Thus, states 2, 3, and
4 can be combined, as can 2 and 5, as well as 6 and 7. This machine has
a 250-MHz clock because of the long cycle created by combining ad
dress calculation and memory access.

Find out which machine is fastest. Are there instruction mixes that would
make another machine faster, and if so, what are they?

5.25 [20] <§5.4> Your friends at C3 (Creative Computer Corporation) have
determined that the critical path that sets the clock cycle length of the multicy
cle datapath is memory access for loads and stores (not for instructions). This
has caused their newest implementation of the MIPS 30000 to run at a clock
rate of 500 MHz rather than the target clock rate of 750 MHz. However, Clara
at C3 has a solution. If all the cycles that access memory are broken into two
clock cycles, then the machine can run at its target clock rate. Using the gee
mixes shown in Chapter 4 (Figure 4.54 on page 309), determine how much
faster the machine with the two-cycle memory accesses is compared with the
500-MHz machine with single-cycle memory access. Assume that all jumps

E N

5.12 Exercises 431

and branches take the same number of cycles and that the set instructions and
arithmetic immediate instructions are implemented as R-type instructions.

5.26 [20] <§5.4> Suppose there were a MIPS instruction, called bcp, that cop
ied a block of words from one address to another. Assume that this instruction
requires that the starting address of the source block is in register $ t 1 and the
destination address is in $t 2, and that the number of words to copy is in $ t3
(which is 2 0). Furthermore, assume that the values of these registers as well as
register $ t4 can be destroyed in executing this instruction (so that the registers
can be used as temporaries to execute the instruction).

Write the MIPS assembly language program to implement block copy. How
many instructions will be executed to perform a 100-word block copy? Using
the CPI of the instructions in the multicycle implementation, how many
cycles are needed for the 100-word block copy?

5.27 [30] <§5.5> !Ex 5.26) Microcode has been used to add more powerful in
structions to an instruction set; let's explore the potential benefits of this ap
proach. Devise a strategy for implementing the be p instruction described in
Exercise 5.26 using the multicycle datapath and microcode. You will probably
need to make some changes to the datapath in order to efficiently implement
the_ bcp instruction. Provide a description of your proposed changes and de
scnbe how the bcp instruction will work. Are there any advantages that can be
obtained by adding internal registers to the datapath to help support the bcp
instruction? Estimate the improvement in performance that you can achieve
by implementing the instruction in hardware (as opposed to the software so
lution you obtained in Exercise 5.26) and explain where the performance in
crease comes from.

5.28 [30] <§5.5> !Ex. 5.271 Using the strategy you developed in Exercise 5.27,
modify the MIPS microinstruction format described in Figure 5.45 on page 403
and provide the complete microprogram for the bcp instruction. Describe in
detail how you extended the microcode so as to support the creation of more
complex control structures (such as a loop) within the microcode. Has support
for the bcp instruction changed the size of the microcode? Will other instru c
tions besides bcp be affected by the change in the microinstruction format?

5.29 [15] <§5.6> We wish to add the instruction rfe (return from exception)
to the multicycle data path described in this chapter. A primary task of the rf e
instruction is to copy the contents of the EPC to the PC (the exception mecha
nisms require several additional capabilities that we will discuss in Chapter 7).
Add any necessary datapaths and control signals to the multicycle data path of
Figure 5.48 on page 414 and show the necessary modifications to the finite
state machine of Figures 5.49 and 5.50 on pages 415 and 416. You can photo
copy the figures or download them from www.mkp.co111/cod2e./1f,n to make it
easier to show your modifications.

INTEL - 1012

432 Chapter 5 The Processor: Datapath and Control

5.30 [1 week] <§§5.2, 5.3> Using a hardware simulation language such as
Verilog, implement a functional simulator for the single-cycle version. Build
your simulator using an existing library of parts, if such a library is available.
If the parts contain timing information, determine what the cycle time of your
implementation will be.

5.31 [1 week] <§§5.2, 5.4, 5.5> Using a hardware simulation language such as
Verilog, implement a functional simulator for the multicycle version of the de
sign. Build your simulator using an existing library of parts, if such a library is
available. If the parts contain timing information, determine what the cycle
time of your implementation will be.

5.32 [2-3 months] <§§5.1-5.3> Using standard parts, build a machine that im
plements the single-cycle machine in this chapter.

5.33 [2-3 months] <§§5.1-5.8> Using standard parts, build a machine that im
plements the multicycle machine in this chapter.

5.34 [Discussion] <§§5.5, 5.8, 5.9> Hypothesis: If the first implementation of
an architecture uses microprogramming, it affects the instruction set architec
ture. Why might this be true? Can you find an architecture that will probably
always use microcode? Why? Which machines will never use microcode?
Why? What control implementation do you think the architect had in mind
when designing the instruction set architecture?

5.35 [Discussion] <§§5.5, 5.10> Wilkes invented microprogramming in large
part to simplify construction of control. Since 1980, there has been an explosion
of computer-aided design software whose goal is also to simplify construction
of control. This has made control design much easier. Can you find evidence,
based either on the tools or on real designs, that supports or refutes this hy
pothesis?

5.36 [Discussion] <§5.10> The MIPS instructions and the MIPS microinstruc
tions have many similarities. What would make it difficult for a compiler to
produce MIPS microcode rather than macrocode? What changes to the mi
croarchitecture would make the microcode more useful for this application?

INTEL - 1012

•

I/O certainly has been lagging
in the last decade.
Seymour Cray
Public lecture, 1976

Interfacing
Processors
and Peripherals

8.1 Introduction 638

8.2 1/0 Performance Measures: Some Examples from Disk and File

Systems 641

8.3

8.4
Types and Characteristics of 1/0 Devices 644

Buses: Connecting 1/0 Devices to Processor and Memory 655

8.5 Interfacing 1/0 Devices to the Memory, Processor, and Operating

System 673

8.6

8.7

8.8

8.9

8.10

8.11

8.12

Designing an 1/0 System 684

Real Stuff: A Typical Desktop 1/0 System 687

Fallacies and Pitfalls 688

Concluding Remarks 690

Historical Perspective and Further Reading 694

Key Terms 700

Exercises 700

The Five Classic Components of a Computer

Evaluating
performance

INTEL - 1012

638

•

Chapter 8 Interfacing Processors and Peripherals

Introduction

As in processors, many of the characteristics of input/output (I/~) systems
are driven by technology. For example, the properties of disk dnves affect
how the disks should be connected to the processor, as well as how the oper
ating system interacts with the disks. I/0 systems, however, differ from pro
cessors in several important ways. Although processor designers ?ften_focus
primarily on performance, designers of I/0 syste_ms must consider issues
such as expandability and resilience in the face of failure as much as they con
sider performance. Second, performance in an I/0 system is a more complex
characteristic than for a processor. For example, with some device~ we n~ay
care primarily about access latency, while with others throughput is cruoal.
Furthermore, performance depends on many aspec~s of the system: the
device characteristics, the connection between the device and the rest of the
system, the memory hierarchy, and the operating system. Figure 8.1 show_s
the structure of a system with its I/0. All of the component~, from the mdi
vidual I/0 devices to the processor to the system software, will affect the per
formance of tasks that include I/0.

Processor

Main
memory

Interrupts

Memory-1/0 bus

1/0 1/0
controller controller

Graphics
output

1/0
controller

Network ~ r

FIGURE 8.1 Typical collection of 1/0 devices. The connections between the 1/0 devices, proces
sor, and memory are usually called buses. Communication among the devICes and the processor use
both protocols on the bus and interrupts, as we will see 111 this chapter.

Example

Answer

8.1 Introduction
639

The difficulties in assessing and designing I/0 systems have often relegated
I/0 to second-class s tatus. Research focuses on processor design; companies
present performance using primarily processor-oriented measures; courses in
every aspect of computing, from programming to computer architecture, often
ignore I/0 or give it scanty coverage; and textbooks leave the subject to near
the end, making it easier for students and instructors to skip it!

This situation doesn't make sense: imagine how you 'd like to use a com
puter without I/0! Furthermore, in an era when machines, from low-end PCs
to the fastest mainframes, and even supercomputers, are being built from the
same basic microprocessor technology, I/0 capability is often one of the most
distinctive features of the machines. Lastly, as the importance of networking
and the information infrastructure grows, I/0 will play an increasingly impor
tant role. Remember that machines interact with people through I/0.

If these concerns are still not convincing, our discussion of Amdahl's law in
Chapter 2 should remind us that ignoring 1/0 is dangerous. A simple example
demonstrates this.

Impact of 1/0 on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed
time, where 90 seconds is CPU time and the rest is 1/0 time. If CPU time
improves by 50% per year for the next five years but I/0 time doesn't im
prove, how much faster will our program run at the end of five years?

We know that

Elapsed time = CPU time+ 1/0 time

100 = 90 + 1/0 time

I/ 0 time = 10 seconds

INTEL - 1012

640 Chapter 8 Interfacing Processors and Peripherals

The new CPU times and the resulting elapsed times are computed in the

following table:

After n years CPU time @·iii::IM Elapsed time

0 90 seconds 10 seconds 100 seconds

1 ;~ = 60 seconds 10 seconds 70 seconds

2 f.~ = 40 seconds 10 seconds 50 seconds

3 AO.= 27 seconds
1.5

10 seconds 37 seconds

4
27 = 18 seconds
1.5

10 seconds 28 seconds

5
1~ = 12 seconds
1.

10 seconds 22 seconds

The improvement in CPU performance over five years is

90 = 7.5
12

However, the improvement in elapsed time is only

100 = 4.5
22

IINfi::ii
10%

14%

20%

27%

36%

45%

and the 1/ 0 time has increased from 10% to 45% of the elapsed time.

How we should assess 1/0 performance often depends on the application.
In some environments, we may care primarily about system throughput. In
these cases, 1/0 bandwidth will be most important. Even 1/0 bandwidth can

be measured in two different ways:

l. How much data can we move through the system in a certain time?

2. How many 1/0 operations can we do per unit of time?

Which measurement is best may depend on the environment. For example,
in many supercomputer applications, most 1/0 requests are for long streams
of data, and transfer bandwidth is the important characteristic. In another
environment, we may wish to process a large number of small, unrelated ac
cesses to an I/0 device. An example of such an environment might be a tax
processing office of the National Income Tax Service (NITS) . NITS mostly car~s
about processing a large number of forms in a given time; each tax form 1s
stored separately and is fairly small. A system oriented toward large file trans
fer may be satisfactory, but an 1/ 0 system that can support the si~ulta~~ous
transfer of many small files may be cheaper and faster for processing millions

of tax forms.

II

8.2 1/0 Performance Measures: Some Examples from Disk and FIie Systems 641

_ In other_ applications, we care primarily about response time, which you
will recall is the total elapsed time to accomplish a particular task. If the 1/0
requ_ests are extre~ely large, response time will depend heavily on bandwidth,
but m many environments most accesses will be small, and the 1/0 system
with the lowest ~atency per access will deliver the best response time. On
singl~-user machines such as workstations and personal computers, response
time 1s the key performance characteristic.

A large number of applications, especially in the vast commercial market for
~omputing, require both high t_hroughput and short response times. Examples
include automatic teller machines (ATMs), airline reservation systems, order
entry and inventory tracking systems, file servers, and machines for timeshar
ing. In such environments, we care about both how long each task takes and

how many tasks we can process in a second. The number of ATM requests you
can process per hour doesn't matter if each one takes 15 minutes-you won't
have any customers left! Similarly, if you can process each ATM request quick
ly but can only handle a small number of requests at once, you won't be able
to support many ATMs, or the cost of the computer per ATM will be very high.

If 1/0 is truly important, how should we compare 1/0 systems? This is a
complex question because 1/0 performance depends on many aspects of the
system and differe~t applications stress different aspects of the 1/0 system.
Furthermore, a design can make complex trade-offs between response time
and throughput, making it impossible to measure just one aspect in isolation.
For example'. respon~e time is generally minimized by handling a request as
early as possible, while greater throughput can be achieved if we try to handle
related r~quests together. Accordingly, we may increase throughput on a disk
b~ g~ouping requests that access locations that are close together. Such a policy
wil~ 1~cre~se the respo~se time for some requests, probably leading to a larger
vanat10n in response time. Although throughput will be higher, some bench
~a~ks ~onstrain the maximum response time to any request, making such op
timizations potentially problematic.

Before discussing the aspects of I/ 0 devices and how they are connected
let's look briefly at some performance measures for 1/0 systems. '

1/0 Performance Measures: Some
Examples from Disk and File Systems
Assessment ~f an 1/0 system must take into account a variety of factors.
Performance 1s one of these, and in this section, we give some examples of
measurements proposed for determining the performance of disk systems.
T~ese benchmarks are affected by a variety of system features, including the
disk tech~ology, how dis~s are connected, the memory system, the processor,
and the file system provided by the operating system. Overall, the state of

INTEL - 1012

642 Chapter 8 Interfacing Processors and Peripherals

benchmarking on the I/0 side of computer systems remains quite primitive
compared with the extensive activity lately seen in _benchmar~ing pr~cessor
systems. Perhaps this situation will change as designers realize the impor
tance of I/0 and the inadequacy of our techniques to evaluate it.

Before we discuss these benchmarks, we need to address a confusing point
about terminology and units. The performance of I/0 systems depends on the
rate at which the system transfers data. The transfer rate depends on the clock
rate, which is typically given in MHz =106 cycles per second. The transfer rate
is usually quoted in MB/ sec. In I/ 0 systems, MBs are measured using ~ase 10
(i.e., 1 MB= 106 = 1,000,000 bytes), unlike main memory where base 2 is used
(i.e., 1 MB = 220 = 1,048,576). In addition to adding confusion, this difference
introduces the need to convert between base 10 OK= 1000) and base 2 OK=
1024) because many 1/0 accesses are for data blocks that have a size that is a
power of two. Rather than complicate all our exampl~s b_y ~cc~rately convert
ing one of the two measurements, we make note of this distmction and the fact
that treating the two measures as if the units were identical introduces a small
error. We illustrate this error in section 8.8.

Supercomputer 1/0 Benchmarks
Supercomputer I/0 is dominated by accesses to large files on magnetic disks.
Many supercomputer installations run batch jobs, each of which may l~st for
hours. In these situations, 1/ 0 consists of one large read followed by wntes to
snapshot the state of the computation should the computer crash. ~s a result,
supercomputer 1/0 in many cases consists more of output than mput. The
overriding supercomputer I/0 measure is data throughput: the nu~ber ?f
bytes per second that can be transferred between a supercomputers mam
memory and disks during large transfers.

Transaction Processing 1/0 Benchmarks
Transaction processing (TP) applications involve both a response time require
ment and a performance measurement based on through_put_- Further~ore,
most of the 1/0 accesses are small. Because of this, TP applications are chiefly
concerned with I/O rate, measured as the number of disk accesses per second,
as opposed to data rate, measured as bytes of data per sec~md. TP apl:lications
generally involve changes to a large database, with the s~stem me~tmg some
response time requirements as well as grace~ll_y handlmg certai1: ~ypes of
failures. These applications are extremely cntical and cost-sensitive. For
example, banks normally use TP systems because they are concerned about a
range of characteristics. These include making sure transactions ar~n't lost,
handling transactions quickly, and minimizing the cost of processmg e~ch
transaction. Although reliability in the face of failure is an absolute reqmre-

EN

8.2 1/0 Performance Measures: Some Examples from Disk and File Systems 643

ment in such systems, both response time and throughput are critical to build
ing cost-effective systems.

A number of transaction processing benchmarks have been developed. The
best-known set of benchmarks is a series developed by the Transaction Process
ing Council (TPC). The most recent versions of these benchmarks are TPC-C
and TPC-D, both of which involve processing of queries against a database.
TP~-C involves light- an~ medium-weight queries based on an order-entry
environment, but also typical of the type of transactions needed in a reserva
tion sys~em or online ba1:king system. TPC-D involves complex queries typical
of decision support applications.
TPC-C is significantly more sophisticated than the earlier TPC-A and TPC-B
benchmarks. It involves nine different types of database records, five different
types of transactions, and a model of transaction requests meant to simulate
real users generating transactions at terminals. The benchmark specification,
including the reporting rules, is 128 pages long! Performance on TPC-C is mea
sured in transactions per minute or second (TPM or TPS) and encompasses a
coi:nplete system measurement including disk I/0, terminal 1/ 0, and compu
tation. An extensive description of the TPC organization and benchmarks is

-/
0 available via the TPC link at www.mkp.com/books_catalog/cod/links.htm.

File System 1/0 Benchmarks

File systems, which are stored on disks, have a different access pattern. For
example, measurements of Unix file systems in an engineering environment
have found that 80% of accesses are to files of less than 10 KB and that 90% of
all file accesses are to data with sequential addresses on the disk. Further
more, 67% of the accesses were reads, 27% were writes, and 6% were read
modify-write accesses, which read data, modify it, and then rewrite the same
location. Such measurements have led to the creation of synthetic file system
benchmarks. One of the most popular of such benchmarks has five phases,
using 70 files with a total size of 200 KB:

• MakeDir: Constructs a directory subtree that is identical in structure to
the given directory subtree

• Copy: Copies every file from the source subtree to the target subtree

• ScanDir: Recursively traverses a directory subtree and examines the
status of every file in it

• ReadAII: Scans every byte of every file in a subtree once

• Make: Compiles and links all the files in a subtree

As we will see in section 8.6, the design of an I/0 system involves knowing
what the workload is.

INTEL - 1012

644

II
Chapter 8 Interfacing Processors and Peripherals

Types and Characteristics of 1/0 Devices

I/0 devices are incredibly diverse. Three characteristics are useful in organiz

ing this wide variety:
• Behavior: Input (read once), output (write only, cannot be read), or

storage (can be reread and usually rewritten) .

• Partner: Either a human or a machine is at the other end of the I/0 de
vice, either feeding data on input or reading data on output.

• Data rate: The peak rate at which data can be transferred between the
I/0 device and the main memory or processor. It is useful to know what
maximum demand the device may generate.

For example, a keyboard is an input device used by a human with a peak data
rate of about 10 bytes per second. Figure 8.2 shows some of the I/0 devices
connected to computers.

In Chapter 1, we briefly discussed four important and characteristic I/0
devices: mice, graphics displays, disks, and networks. We use mice, disks, and
networks as examples to illustrate how I/0 devices interface to processors and
memories, but before we do that it will be useful to discuss these devices in
more detail than in Chapter 1.

Device Behavior WJ.fll!SL I Data rate (KB/sec)

Keyboard input human 0.01

Mouse input human 0.02

Voice input input human 0.02

Scanner input human 400.00

Voice output output human 0 .60

Line printer output human 1.00

Laser printer output human 200.00

Graphics display output human 60,000.00

Modem input or output machine 2.00-8.00

Network/LAN input or output machine 500.00-6000.00

Floppy disk storage machine 100.00

Optical disk storage machine 1000.00

Magnetic tape storage machine 2000.00

Magnetic disk storage machine 2000.00-10,000.00

FIGURE 8.2 The diversity of 1/0 devices. I/O devices can be distinguished by whether they
serve as input, output, or storage devices; their communication partner (people or other comput
ers); and their peak communication rates. The data rates span six orders of magnitude. Note that
a network can be an input or an output device, but cannot be used for storage. Disk sizes, as well
as transfer ra tes for devices, are always quoted in base 10, so that 1 MB= 1,000,000 bytes, and 10

Mbit/sec = 10,000,000 bits/sec.

8.3 Types and Characteristics of 1/0 Devices 645

Mouse

The interface between a mouse and a system can take one of two forms: the
mouse either gene~ates _a series of pulses when it is moved (using the LED
and detector described m Chapter 1 to generate the pulses), or it increments
and decren:ients counters. Figure 8.3 shows how the counters change when
the mouse is ~oved and describes how the interface would operate if it gen
erated pulses instead. The processor can periodically read these counters, or
count up the pulses, and determine how far the mouse has moved since it
was last ~xami~ed. The system then moves the cursor on the screen appropri
ately. This _motion appears smooth because the rate at which you can move
the mouse is slow compared with the rate at which the processor can read the
mouse status and move the cursor on the screen.

Most mice also include one or more buttons, and the system must be able to
detect when a button is depressed. By monitoring the status of the button, the
system can also differentiate between clicking the button and holding it down.
Of course, the mapping between the counters and the button position and
what happens on the screen is totally controlled by software. That's why, for
example, the rate at which the mouse moves across the screen and the rate at
"".hi~h single and double clicks are recognized can usually be set by the user.
Similarly, software interpretation of the mouse position means that the cursor
doesn'.t jump ~ompletely off the screen when the mouse is moved a long dis
tance m one direction. This method of having the system monitor the status of

+20 in Y E] +20 in Y
-20 in X +20 in X

B Initial E] position
of mouse

-20 in Y E] -20 in Y
-20 in X +20 in X

FIGURE 8.3 Moving the mouse In the horizontal direction or vertical direction causes
the X or Y counter, respectively, to Increment or decrement. Moving it along a diagonal
causes both counters to change. Smee the ball doesn't move when the mouse is not contacting the
surface, 1t may be picked up and moved without changing the counters. When the mouse uses
pulses to communicate its movement, there are four types of pulses: +X, -X, +Y, and -Y. Rather
than generate a change in the counter value, the mouse genera tes the appropriate number of
pulses on each of the four pulse signal lines. The value 20 is an arbitrary count that measures how
far the mouse has moved.

INTEL - 1012

646 Chapter 8 Interfacing Processors and Peripherals

the mouse by reading signals_ from_ it_ is a commo:1 way to in,terfac~ ~o:-ve_r
performance devices to machines; 1t 1s called pol/mg, and we 11 rev1s1t 1t in
section 8.5.

Magnetic Disks

As mentioned in Chapter 1, there are two major types of magnetic
disks: floppy disks and hard disks. Both types of disks rely on a ro~ating plat
ter coated with a magnetic surface and use a moveable read/wnte _head to
access the disk. Disk storage is nonvolatile, meaning that the data remains even
when power is removed. Because the platters in a hard disk are m~tal (or,
recently, glass), they have several significant advantages over floppy disks:

• The hard disk can be larger because it is rigid.

• The hard disk has higher density because it can be controlled more pre
cisely.

• The hard disk has a higher data rate because it spins faster.

• Hard disks can incorporate more than one platter.

For the rest of this section, we will focus on hard disks, and we use the term
magnetic disk to mean hard disk. .

A magnetic disk consists of a collection of platters (1-15), each of wh1c~ has
two recordable disk surfaces, as shown in Figure 8.4. The stack of platters 1s ro
tated at 3600 to 7200 RPM and has a diameter from just over an inch to just over
8 inches. Each disk surface is divided into concentric circles, called tracks. There
are typically 1000 to 5000 tracks per surface. Each track is in turn divided ~to
sectors that contain the information; each track may have 64 to 200 sectors. Ong
inally, the sector was the smallest unit that could be read or written. With the
introduction of Logical Block Access (LBA), disk drives became addressed by
blocks, and a block became the minimum accessible unit. In 1997, blocks were
typically 512 bytes in size. The sequence recorded o~ the ~agnetic media ~s a
sector number, a gap, the information for that sector includrng error correct10n
code (see Appendix B, page B-34), a gap, the sector number of the next sector,
and so on. Originally, all tracks had the same number of sectors a~d hence t~e
same number of bits, but with the introduction of Zone Bit Recording, (ZBR) in
the early 1990s, disk drives changed to a varying number of sectors (an~ hence
bits) per track, instead keeping the spacing between bits constant. ~BR incr~as
es the number of bits on the outer tracks and thus increases the dnve capacity.

As we saw in Chapter 1, to read and write information the read /write heads
must be moved so that they are over the correct location. The disk heads for
each surface are connected together and move in conjunction, so that every
head is over the same track of every surface. The term cylinder is used to refer
to all the tracks under the heads at a given point on all surfaces.

To access data, the operating system must direct the disk through a thre~
stage process. The first step is to position the head over the prope~ track. This
operation is called a seek, and the time to move the head to the desired track 1s
called the seek time.

8.3 Types and Characteristics of 1/0 Devices 647

~Plattern

Tracks

Platter

Sectors

Q

FIGURE 8.4 Disks are organized into platters, tracks, and sectors. Both sides of a platter
are coated so that information can be stored on both surfaces. Floppy disks have the same organi
zation, but consist of only one platter.

Disk manufacturers report minimum seek time, maximum seek time, and
average seek time in their manuals. The first two are easy to measure, but the
average is open to wide interpretation because it depends on the seek distance.
The industry has decided to calculate average seek time as the sum of the time
for all possible seeks divided by the number of possible seeks. Average seek
times are usually advertised as 8 ms to 20 ms, but, depending on the applica
tion and scheduling of disk requests, the actual average seek time may be only
25% to 33% of the advertised number, because of locality of disk references.
This locality arises both because of successive access to the same file and be
cause the operating system tries to schedule such access together.

Once the head has reached the correct track, we must wait for the desired
sector to rotate under the read/write head. This time is called the rotational la
tency or rotational delay. The average latency to the desired information is half
way around the disk. Because the disks rotate at 3600 RPM to 7200 RPM, the
average rotational latency is between

. 0.5 rotation Average rotat10nal latency =
3600

RPM = 0.5 rotation

3600 RPM/ (60 se~onds)
minute

= 0.0083 seconds = 8.3 ms

INTEL - 1012

648

Example

Answer

Chapter 8 Interfacing Processors and Peripherals

and

0.5 rotation
Average rotational latency=

7200
RPM =

0.5 rotation

7200 RPM/(60 se~0nds)
mmute

= 0.0042 seconds = 4.2 ms

Smaller diameter disks are attractive because they can spin at higher rates
without excessive power consumption, thereby reducing rotational latency.

The last component of a disk access, transfer time, is the time to transfer a
block of bits. The transfer time is a function of the sector size, the rotation
speed, and the recording density of a track. Transfer rates in 1997 are between
2 and 15 MB/sec. The one complication is that most midrange and high-end
disks have a built-in cache that stores sectors as they are passed over; transfer
rates from the cache are typically higher, and may be up to 40 MB/sec in 1997.
Today, most disk transfers are multiple sectors in length.

The detailed control of the disk and the transfer between the disk and the
memory is usually handled by a disk controller. The controller adds the final
component of disk access time, controller time, which is the overhead the con
troller imposes in performing an 1/0 access. The average time to perform an
1/0 operation will consist of these four times plus any wait time incurred be
cause other processes are using the disk.

Disk Read Time

What is the average time to read or write a 512-byte sector for a typical disk
rotating at 5400 RPM? The advertised average seek time is 12 ms, the trans
fer rate is 5 MB /sec, and the controller overhead is 2 ms. Assume that the
disk is idle so that there is no waiting time.

Average disk access time is equal to average seek time+ average rotational
delay+ transfer time+ controller overhead. Using the advertised average
seek time, the answer is

0.5 KB
12 ms+ 5.6 ms+ 5 MB /sec+ 2 ms = 12+5.6+0.1+2 = 19.7ms

8.3 Types and Characteristics of 1/0 Devices 649

If the measured average seek time is 25% of the advertised average
time, the answer is

3 ms+ 5.6 ms+ 0.1 ms+ 2 ms = 10.7 ms

Notice that when we consider average measured seek time, as opposed to
average advertised seek time, the rotational latency can be the largest com
ponent of the access time.

Disk densities have continued to increase for more than 40 years. The im
pact of this compounded improvement in density and the reduction in physi
cal size of a disk drive has been amazing, as Figure 8.5 shows. The aims of
different disk designers have led to a wide variety of drives being available at
any particular time. Figure 8.6 shows the characteristics of three different

FIGURE 8.5 Six magnetic disks, varying in diameter from 14 inches down to 1.8 inches.
These disks were introduced over more than a decade ago and hence are not intended to be rep
resentative of the best 1998 capacity of disks of these diameters. This photograph does, however,
accurately portray their relative physical sizes. The widest disk is the DEC RSI , containing four
14-inch diameter platters and storing 456 MB. It was manufactured in 1985. The 8-inch diameter
disk comes from Fujitsu, and this 1984 disk stores 130 MB on six platters. The Micropolis RD53
has five 5.25-inch platters and stores 85 MB. The IBM 0361 also has five platters, but these are just
3.5 inches in diameter. This 1988 disk holds 320 MB. ln 1997, the most dense 3.5-inch disk has 10
platters and holds 9.1 GB in the same space, yielding an increase in density of about 30 times! The
Conner CP 2045 has two 2.5-inch platters containing 40 MB, and was made in 1990. The smallest
disk in this photograph is the Integral 1820. This single 1.8-inch platter contains 20 MB and was
made in 1992. Photo by Peg Skorpinski.

INTEL - 1012

650 Chapter 8 Interfacing Processors and Peripherals

magnetic disks from a single manufacturer. Large-diameter drives have many
more megabytes to amortize the cost of electronics, so the traditional wisdom
was that they had the lowest cost per megabyte. But this advantage is offset for
the small drives by the much higher sales volume, which lowers manufactur
ing costs: in 1997, disks cost between $0.10 and $0.20 per megabyte, almost
independent of width. The smaller drives also have advantages in power and
volume per byte, as Figure 8.6 shows.

Elaboration: Many recent disks have included caches directly in the disk. Such
caches allow for fast access to data that was recently read between transfers
requested by the CPU. Of course , such capabilities complicate the measurement of
disk performance and increase the importance of workload choice. The 5.25-inch
Seagate drive shown in Figure 8.6 comes with an integrated cache.

Elaboration: Each track has the same number of bits, and the outer tracks are
longer. The outer tracks thus record information at a lower density per inch of track than
do tracks closer to the center of the disk. Recording more sectors on the outer tracks
than on the inner tracks, called constant bit density, is becoming more widespread with

Characteristics Seagate ST423451 Seagate ST19171 Seagate ST92255

Disk diameter (inches) 5.25 3.50 2.50

Formatted data capacity (MB) 23,200 9100 2250

MTBF (hours) 500,000 1,000,000 300,000

Number of disk surfaces 28 20 10
~

~Rotation speed (RPM) 5400 7200 4500

Internal transfer rate (Mbits/sec) 86-124 80-124 up to 60.8

External interface Fast SCSl-2 (8-16 bit) Fast SCSl-2 (8-16 bit) Fast ATA
~

External transfer rate (MB/sec) 20-40 20-40 up to 16.6

Minimum seek (track to track) (ms) 0.9 0.6 4

Average seek + rotational delay (ms) 11 9 14

Power /box (watts) 26 13 2.6

MB/ watt

Volutne (cu . in.)

MB/cu. in.

892 700 865

322 37 8

72 246 273

FIGURE 8.6 Characteristics of three magnetic disks by a single manufacturer. These disks
represent the maximum density of the 1997 Seagate product family at each size. The disks shown here
ei ther interface to SCSI, a standard 1/0 bus that we discuss on page 672, or ATA, a standard disk interface
for PCs. Compared to the disks shown in the table that appeared in the first edition of this book in 1994,
the disks shown above have 25-40 times the MB/watt and 90-450 times the MB/cu. ft.' MTBF stands for
mean time before failures-a standard measurement of reliability. The two larger disks contain sector
caches that store the contents of sectors as they are passed over. The internal tra nsfer rate is that rate at
which bits are read from the disk surface, while the external transfer rate includes that rate at which a
sector in the cache that is requested can be transferred. See the link to Seagate at www.mkp.com/
books_catnlog/cod/links.hlm for more information on these drives, as well as some information on modern
disk technology.

8.3 Types and Characteristics of 1/0 Devices 651

the advent of intelligent interface standards such as SCSI (see section 8.4). The rate at
which an inch of track moves under the head varies: it is faster on the outer tracks.
Accordingly, if the number of bits per inch is constant, the rate at which bits must be
read or written varies, and the electronics must accommodate this factor when con
stant bit density is used.

Networks

Networks are the major medium used to communicate between computers.
Key characteristics of typical networks include the following:

• Distance: 0.01 to 10,000 kilometers

• Speed: 0.001 MB/sec to 100 MB/sec

• Topology: Bus, ring, star, tree

• Shared lines: None (point-to-point) or shared (multidrop)

We'll illustrate these characteristics with three examples.
The RS232 standard provides a 0.3- to 19.2-Kbit /sec terminal network. A cen

tral computer connects to many terminals over slow but cheap dedicated
wires. These point-to-point connections form a star from the central computer,
with each terminal ranging from 10 to 100 meters in distance from the comput
er.

The local area network (LAN) is what is commonly meant today when people
mention a network, and Ethernet is what most people mean when they men
tion a LAN. (Ethernet has in fact become such a common term that it is often
used as a generic term for LAN.) The basic Ethernet is essentially a 10-
Mbit/sec, one-wire bus that has no central control. Messages, or packets, are
sent over the Ethernet in blocks that vary from 64 bytes to 1518 bytes. Recently,
several companies have developed a faster version (usually called Fast Ether
net) that offers rates that are 10 times higher (i.e., 100 Mbit /sec), and a Gigabit
Ethernet has been proposed for delivery in 1998.

An Ethernet is essentially a bus with multiple masters and a scheme for de
termining who gets bus control; we'll discuss how the distributed control is
implemented in the exercises. Because the Ethernet is a bus, only one sender
can be transmitting at any time; this limits the bandwidth. In practice, this is
not usually a problem because the utilization is fairly low. Of course, some
LANs become overloaded through poor capacity planning, and response time
and throughput can degrade rapidly at higher utilization.

One way in which the limits of the original bus-oriented Ethernet have been
overcome is through switched networks. A switched network is one in which
switches are introduced to reduce the number of hosts per Ethernet segment.
In the limit, there is only one host per segment and that host is directly connect
ed to a switch. Switched networks are common in long-haul networks, the next

INTEL - 1012

652 Chapter 8 Interfacing Processors and Peripherals

topic, but such networks have recently been popular in local area applications
as the use of higher-performance machines and multimedia data has put sig
nificant strains on shared Ethernets.

Long-haul networks cover distances of 10 to 10,000 kilometers. The first and
most famous long-haul network was the ARPANET (named after its funding
agency, the Advanced Research Projects Agency of the U.S. government). It
transferred data at 56 Kbits /sec and used point-to-point dedicated lines leased
from telephone companies. The host computer talked to an interface message
processor (IMP), which communicated over the telephone lines. The IMP took
information and broke it into 1-Kbit packets, which could take separate paths
to the destination node. At each hop, a packet was stored (for recovery in case
of failure) and then forwarded to the proper IMP according to the address in
the packet. The destination IMP reassembled the packets into a message and
then gave it to the host. Most networks today use this packet-switched approach,
in which packets are individually routed from source to destination.

The ARPANET was the precursor of the Internet. The key to interconnecting
different networks was standardizing on a single protocol family, TCP / IP
(Transmission Control Protocol/Internet Protocol). The IP portion of the pro
tocol provides for addressing between two hosts on the Internet, but does not
guarantee reliable delivery. TCP provides a protocol that can guarantee that all
packets are received and that the packets have no transmission errors. These
two protocols work together to form a protocol stack, where TCP packets are en
capsulated in IP packets. The standardization of the TCP / IP packet format is
what allows the different hosts and network to communicate.

The bandwidths of networks are probably growing faster than the band
width of any other type of device at present. High-speed networks using cop
per and coaxial cable offer 100 Mbit/sec bandwidths, while optical fiber offers
bandwidths up to 1 Gbit /sec. In the future, it appears that Internet-like tech
nologies may be extended up to the 1-Gbit/sec range. These super high-speed
networks are likely to be switched rather than using shared links.

Another leader among the emerging network technologies is ATM (Asyn
chronous Transfer Method). ATM is a scalable network technology (from 155
Mbits /sec to 2.5 Gbits/sec) that originated in long-haul networks switching
both voice and data . It is already being deployed in backbone switching appli
cations and, together with Fast Ethernet approaches, is a contender for future
desktop connectivity.

The challenge in putting these networks into use lies primarily in building
systems that can efficiently interface to these media and sustain these band
widths between two programs that want to communicate. Meeting this chal
lenge requires that all the pieces of the 1/0 system, from the operating system
to the memory system to the bus to the device interface, be able to accommo
date these bandwidths. This is truly a top-to-bottom systems challenge.

8.3 Types and Characteristics of 1/0 Devices 653

Hardware

Software
Interface

To allow communication across multiple networks with dif
ferent characteristics, TCP / IP defines a standard packet for
mat. An IP packet, which contains Internet addressing
information, encapsulates a TCP packet that contains both
address information interpreted by the host and the data
being communicated. The IP header specifies that the
length of the IP data (from 1 to 65,536 bytes). Since the TCP

header uses 20 bytes of the IP data, the maximum size of the TCP data packet
is 65, 536 - 20 = 65,516 bytes.

IP header

I I Length

I
Source

Destination
~

Source Destination IP data

Sequence number (length)

> TCP header

I
--

>- TCP data
(0-65,516 bytes)

32 bits

INTEL - 1012

654 Chapter 8 Interfacing Processors and Peripherals

Example

Answer

To see the importance of looking at performance from top to bottom, includ
ing both hardware and software, consider the following example.

Performance of Two Networks

Consider the following measurements made on a pair of SPARCstation 10s
running Solaris 2.3, connected to two different types of networks, and us
ing TCP / IP for communication:

Characteristic Ethernet
'

Bandwidth from node to network 1.125 MB/sec 10 MB/sec

Interconnect latency 15 µs 50 µs

HW latency to/from network 6 µs 6 µs

SW overhead sending to network 200 µs 207 µs

SW overhead receiving from network 241 µs 360 µs

Find the host-to-host latency for a 250-byte message using each network.

We can estimate the time required as the sum of the fixed latencies plus the
time to transmit the message. The time to transmit the message is simply
the message length divided by the bandwidth of the network.

The transmission times are
250 bytes 222 Transmission time Ethernet = 6 = µs

1.125 x 10 bytes /sec

250 bytes
Transmission timeATM =

6
= 25 µs

10 x 10 bytes / sec
So the transmission time for the ATM network is about a factor of nine
lower.

The total latency to send and receive the packet is the sum of the trans
mission time and the hardware and software overheads:

Total timeEtl,ernet = 15 + 6 + 200 + 241 + 222 = 684 µs

Total timeATM = 50 + 6 + 207 + 360 + 25 = 648 µs

The end-to-end latency of the Ethrnet is only about 1.06 times higher, even
though the transmission time is almost 9 times higher!

•

8.4 Buses: Connecting 1/0 Devices to Processor and Memory

Buses: Connecting 1/0 Devices to
Processor and Memory

655

In a computer system, the various subsystems must have interfaces to one
another. For example, the memory and processor need to communicate, as do
the processor and the I/0 devices. This is commonly done with a bus. A bus is
a shared communication link, which uses one set of wires to connect multiple
subsystems. The two major advantages of the bus organization are versatility
and low cost. By defining a single connection scheme, new devices can easily
be added, and peripherals can even be moved between computer systems
that use the same kind of bus. Furthermore, buses are cost-effective because a
single set of wires is shared in multiple ways.

The major disadvantage of a bus is that it creates a communication bottle
neck, possibly limiting the maximum I/0 throughput. When I/0 must pass
through a single bus, the bandwidth of that bus limits the maximum I/0
throughput. In commercial systems, where I/0 is very frequent, and in super
computers, where the I/0 rates must be very high because the processor per
formance is high, designing a bus system capable of meeting the demands of
the processor as well as connecting large numbers of I/0 devices to the ma
chine presents a major challenge.

One reason bus design is so difficult is that the maximum bus speed is large
ly limited by physical factors: the length of the bus and the number of devices.
These physical limits prevent us from running the bus arbitrarily fast. Within
these limits, there are a variety of techniques we can use to increase the per
formance of the bus; however, these techniques may adversely affect other
performance metrics. For example, to obtain fast response time for 1/0 opera
tions, we must minimize the time to perform a bus access by streamlining the
communication path. On the other hand, to sustain high I/0 data rates, we
must maximize the bus bandwidth. The bus bandwidth can be increased by
using more buffering and by communicating larger blocks of data, both of
which increase the delay to complete the bus access! Clearly, these two goals,
fast bus accesses and high bandwidth, can lead to conflicting design require
ments. Finally, the need to support a range of devices with widely varying
latencies and data transfer rates also makes bus design challenging.

A bus generally contains a set of control lines and a set of data lines. The
control lines are used to signal requests and acknowledgments, and to indicate
what type of information is on the data lines. The data lines of the bus carry
information between the source and the destination. This information may
consist of data, complex commands, or addresses. For example, if a disk wants
to write some data into memory from a disk sector, the data lines will be used
to indicate the address in memory in which to place the data as well as to carry

INTEL - 1012

	98

