
308 Chapter 4 Arithmetic for Computers 

taken on a life of its own. Although Intel firmly stands behind the qual­
ity of the current version of the Pentium processor, we recognize that 
many users have concerns. We want to resolve these concerns. Intel will 
exchange the current version of the Pentium processor for an updated 
version, in which this floating-point divide flaw is corrected, for any 
owner who requests it, free of charge anytime during the life of their 
computer." Analysts estimate that this recall cost Intel $300 million. 

This story brings up a few points for everyone to ponder. How much cheaper 
would it have been to fix the bug in July 1994? What was the cost to repair the 
damage to Intel's reputation? And what is the corporate responsibility in 
disclosing bugs in a product so widely used and relied upon as a micro­
processor? 

In April 1997 another floating-point bug was revealed in the Pentium Pro 
and Pentium II microprocessors. When the floating-point-to-integer store in­
structions (fist, fi stp) encounter a negative floating-point number that is 
too large to fit in a 16- or 32-bit word after being converted to integer, they set 
the wrong bit in the FPO status word (precision exception instead of invalid 
operation exception). To Intel's credit, this time they publicly acknowledged 
the bug and offered a software patch to get around it-quite a different reac­
tion from what they did in 1994. 

II Concluding Remarks 

Computer arithmetic is distinguished from paper-and-pencil arithmetic by 
the constraints of limited precision. This limit may result in invalid operations 
through calculating numbers larger or smaller than the predefined limits. 
Such anomalies, called "overflow" or "underflow," may result in exceptions 
or interrupts, emergency events similar to unplanned subroutine calls. Chap­
ter 5 discusses exceptions in more detail. 

Floating-point arithmetic has the added challenge of being an approxima­
tion of real numbers, and care needs to be taken to ensure that the computer 
number selected is the representation closest to the actual number. The chal­
lenges of imprecision and limited representation are part of the inspiration for 
the field of numerical analysis. 

Over the years, computer arithmetic has become largely standardized, 
greatly enhancing the portability of programs. Two's complement binary inte­
ger arithmetic and IEEE 754 binary floating-point arithmetic are found in the 
vast majority of computers sold today. For example, every desktop computer 
sold since this book was first printed follows these conventions. 

A side effect of the stored-program computer is that bit patterns have no in­
herent meaning. The same bit pattern may represent a signed integer, unsigned 
integer, floating-point number, instruction, and so on. It is the instruction that 
operates on the word that determines its meaning. 
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With the explanation of computer arithmetic in this chapter comes a de­
scription of much more of the MIPS instruction set. One point of confusion is 
the instructions covered in these chapters versus instructions executed by 
MIPS chips versus the instructions accepted by MIPS assemblers. The next two 
figures try to make this clear. 

Figure 4.52 lists the MIPS instructions covered in Chapters 3 and 4. We call 
the set of instructions on the left-hand side of the figure the MIPS core. The in­
structions on the right we call the MIPS arithmetic core. On the left of Figure 4.53 
are the instructions the MIPS processor executes that are not found in 
Figure 4.52. We call the full set of hardware instructions MIPS I. On the right 
of Figure 4.53 are the instructions accepted by the assembler that are not part 
of MIPS I. We call this set of instructions Pseudo MIPS. 

MIPS core instructions NW::IMAH::f\l MIPS arithmetic core IW::IMAH::f\l 
add 

add immediate 

add unsigned 

add immediate unsigned 

subtract 

add R multiply 

addi I multiply unsigned 

addu R divide 

add i u 

sub R 

mul t R 
-----+----

multu R 

di v 

d iv u 

mfhi 
----------t-

divide unsigned 

move from Hi 
----1--­

R 

R 

R 

R 

R 

R 

R 

R 

subtract unsigned 

and 

-+- subu 
_j___ and 

and immediate andi 
-!--

or or 
-+--

or immediate ori 
-
shift left logical s l l 

----- --
shift right logical s r l 
load upper immediate l ui 

---
load word lw 
store word SW 

load byte unsigned l bu 

store byte sb 
branch on equal beq 
branch on not equal bne 
jump j 

jump and link j al 
jump register jr 

set less than slt 
set less than immediate s lt i 

set less than unsigned s ltu 
set less than immediate unsigned s lt i u 

R m o v e from Lo 
---+-­

mflo 

R move from system control (EPC) mfeO 
----1- ----+--

floating-point add single add . s 
--l---

R floating-point add double add . d 
- -l--

I floating-point subtract single sub . s 

R 

R 
i sub . d ----+-------+--f-lo-ating-point subtract double i 

floating-point multiply single mu l . s 

floating-point d1v1de single v : s 

floating-point multiply double ~l d ,• 

---I--

floating-point d1v1de double v . d 
- --1---

1 o ad word to floating-point single l we 1 
--'-s-to- re word to floating-point single ~ wel 

branch on floating-point true be 1 t 
branch on floating-point false 

---+--

R 

R 

floating-point compare single 

(x = eq , neq , l t , le . gt , ge ) 

floating-point compare double 

(x = eq, neq . l t , le , gt . ge ) 
---+--

R 

belf 

e . x . s 

------i--

e . x d 
---+-

R 

R 

R 

R 

R 

R 

R 

FIGURE 4 .52 The MIPS instruction set covered so far. This book concentrates on the instructions in the left column. 

Figure 4.54 gives the popularity of the MIPS instructions for two programs: gee 
and spice. All instructions are listed that were responsible for at least 0.5% of the 
instructions executed. The table following summarizes that information: 
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Remaining MIPS I 

exclusive or ( rs EB rt ) 

exclusive or immediate 

nor ( -,(rs v rt)) 

shift right arithmetic 

shift left logical variable 

shift right logical variable 

shift right arith. variable 

move to Hi 

move to Lo 

load halfword 

load halfword unsigned 

store halfword 

load word left (unaligned) 

load word right (unaligned) 

store word left (unaligned) 

store word right (unaligned) 

branch on less than zero 

branch on less or equal zero 

branch on greater than zero 

branch on 2! zero 

branch on 2! zero and link 

branch on < zero and link 

jump and link register 

return from exception 

system call 

break (cause exception) 

move from FP to integer 

move to FP from integer 

FP move (s or g) 

FP absolute value (s or g) 

FP negate (s or g) 

FP convert (w, s, or g) 

FP compare un (1 or g) 
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Instruction subset &JS&a;.:;sa 
MIPS core 95% 45% 
MIPS arithmetic core 0% 49% 
Remaining MIPS I 5% 6% 

Note _that although programmers and compiler writers may use MIPS I to 
have a n_cher menu of options, MIPS core instructions dominate gee execution, 
and the mteger core plus arithmetic core dominate spice. 

A! • • S:::'ffl i'lt::Pl p seudo MfPS • 1r:::1r• i':1::n• xor R move move rd,rs 
xori I absolute value abs rd,rs 
nor R not (-,rs) not rd,rs 
s ra R negate (signed or unsigned) negs rd,rs 
s l l V R rotate left rol rd,rs ,rt 
s rl v R rotate right ror rd,rs,rt 
s rav R mult. & don 't check oflw (signed or uns.) mul s rd,rs,rt 

multiply & check oflw (signed or uns.) mul OS rd,rs ,rt 
mthi R divide and check overflow div rd,rs,rt 
mtlo R divide and don't check overflow divu rd,rs,rt 
l h I remainder (signed or unsigned) rd,rs,rt rerm· 
lhu I load immediate l i rd ,imm 
sh I load address la rd,addr 
lwl I load double l d rd ,addr 
lwr I store double sd rd,addr 
swl I unaligned load word ulw rd,addr 
swr I unaligned store word usw rd,addr 
bltz I unaligned load halfword (signed or uns.) ul hs rd ,addr 
blez I unaligned store halfword ush rd,addr 
bgtz I branch b Label 
bgez I branch on equal zero beqz rs,L 
bgezal I branch on > (signed or unsigned) bges rs,rt,L 
b ltza l I branch on > (signed or unsigned) bgts rs,rt,L 
j al r R branch on < (signed or unsigned) bl es rs .rt,L 
rfe R branch on < (signed or unsigned) bl t s rs,rt,L 
syscal l R set equal seq rd,rs ,rt 
break R set not equal sne rd,rs,rt 
mfcl R set greater or equal (signed or unsigned) sges rd ,rs ,rt 
mtcl R set greater than (signed or unsigned) sgts rd,rs,rt 
mov .f R set less or equal (signed or unsigned) s l es rd,rs,rt 
abs .f R set less than (signed or unsigned) s l es rd ,rs,rt 
neg .f R load to floating point (s or g) l .f rd ,addr 
cvt .ff R store from floating point (s or g) s .f rd,addr 
c . xn .f R 

FIGUR~ _4.53 Remaining MIPS_l _and "Pseu_do MIPS" Instruction sets. Appendix A describes all these instructions.! 
mea ns smgle (s) and double prec1s10n (d) vers10ns of the floating-point instruction, and s means signed and unsigned (u) 
vers10ns. 
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Core MIPS IM::IIFHMWWI Arithmetic core + MIPS I IMi::ii•HMEWI 
add add 0% 0% FP add double add . d 0% 4% 

add immediate addi 0% 0% FP subtract double sub . d 0% 3% 

add unsigned addu 9% 10% FP multiply double mul . d 0% 5% 

add immediate unsigned addiu 17% 1% FP divide double div . d 0% 2% 

subtract unsigned subu 0% 1% load word to FP single l . s 0% 24% 

and and 1% 0% store word to FP single s . s 0% 9% 

and immediate andi 2% 1% branch on FP true belt 0% 1% 

shift left logical s l l 5% 5% branch on FP false bclf 0% 1% 

shift right logical s r l 0% 1% FP compare double c . x . d 0% 1% 

load upper immediate l ui 2% 6% move to FP mtcl 0% 2% 

load word lw 21% 7% move from FP mfc2 0% 2% 

store word SW 12% 2% convert float integer cut 0% 1% 

load byte lb 1% 0% shift right arithmetic s ra 2% 0% 

store byte sb 1% 0% load half l h 1% 0% 

branch on equal (zero) beq 9% 3% branch less than zero bltz 1% 0% 

branch on not equal (zero) bne 8% 2% branch greater or equal zero bgez 1% 0% 

jump and link j al 1% 1% branch less or equal zero blez 0% 1% 

jump register j r 1% 1% 

set less than s l t 2% 0% 

set less than immediate s l ti 1% 0% 

set less than unsigned sltu 1% 0% 

set less than imm. uns . s lt i u 1% 0% 

FIGURE 4.54 The frequency of the MIPS Instructions for two programs, gee and spice. Calculated from "pixie" 
output of the full MIPS I. (Pixie is an instruction measurement tool from MIPS.) All instructions that accou_nted for at_le_ast 
0.5% of the instructions executed in either gee or spice are included in the table. Thus the integer multiply and d1v1de 
instructions are not listed because they were responsible for less than 0.5% of the instructions executed. Pseudoinstructions 
are converted into MIPS I before execution, and hence do not appear here. 

For the rest of the book, we concentrate on the MIPS core instructions-the 
integer instruction set excluding multiply and divide-to make the explan­
ation of computer design easier. As we can see, the MIPS core includes the 
most popular MIPS instructions, and be assured that understanding a comput­
er that runs the MIPS core will give you sufficient background to understand 
even more ambitious machines. 
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II Historical Perspective and Further Reading 

Gresham's Law ("Bad money drives out Good") for computers would say, "The 
Fast drives out the Slow even if the Fast is wrong." 

W. Kahan, 1992 

At first it may be hard to imagine a subject of less interest than the correctness 
of computer arithmetic or its accuracy, and harder still to understand why a 
subject so old and mathematical should be so controversial. Computer arith­
metic is as old as computing itself, and some of the subject's earliest notions, 
like the economical reuse of registers during serial multiplication and divi­
sion, still command respect today. Maurice Wilkes [1985] recalled a conversa­
tion about that notion during his visit to the United States in 1946, before the 
earliest stored-program machine had been built: 

... a project under von Neumann was to be set up at the Institute of Advanced 
Studies in Princeton . ... Goldstine explained to me the principal features of the 
design , including the device whereby the digits of the multiplier were put into 
the tail of the accumulator and shifted out as the least significant part of the prod­
uct was shifted in. I expressed some admiration at the way registers and shifting 
circuits were arranged ... and Goldstine remarked that things of that nature 
came very easily to von Neumann. 

There is no controversy here; it can hardly arise in the context of exact inte­
ger arithmetic so long as there is general agreement on what integer the correct 
result should be. However, as soon as approximate arithmetic enters the pic­
ture, so does controversy, as if one person's "negligible" must be another 's 
"everything." 

The First Dispute 

Floating-point arithmetic kindled disagreement before it was ever built. John 
von Neumann was aware of Konrad Zuse's proposal for a computer in Ger­
many in 1939 that was never built, probably because the floating point made 
it appear too complicated to finish before the Germans expected World War II 
to end. Hence von Neumann refused to include it in the machine he built at 
Princeton. In an influential report coauthored in 1946 with H. H . Goldstine 
and A. W. Burks, he gave the arguments for and against floating point. In 
favor: 

.. . to retain in a sum or product as many sign ificant digits as possible and . .. to 
free the human operator from the burden of estimating and inserting into a prob­
lem "scale factors" - multiplication constants which serve to keep numbers 
within the limits of the machine. 
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Floating point was excluded for several reasons: 

There is, of co 11rse, 110 denying the fact that human ti111e is co11s11111ed in arrang­
ing for the i11troductio11 of suitable scale factors. We on ly arg11e that the ti111e con­
s11111ed is a very small perce11tage of the total time we will spend in preparing an 
interesting problem for our machine. The first advantage of the floating point is, 
we fee l, somewhat illusory. In order to have such a floating point, one 11111st waste 
memory capacity which could otherwise be 11sed for carrying 111ore digits per 
word. It would therefore seem to us not at all clear whether the modest advan­
tages of a floating binary point offset the loss of memory capacity and the in­
creased complexity of the arithmetic and control circuits. 

The argument seems to be that most bits devoted to exponent fields would be 
bits wasted. Experience has proved otherwise. 

One software approach to accommodate reals without floating-point hard­
ware was called floating vectors; the idea was to compute at runtime one scale 
factor for a whole array of numbers, choosing the scale factor so that the array's 
biggest number would barely fill its field . By 1951, James H. Wilkinson had 
used this scheme extensively for matrix computations. The problem proved to 
be that a program might encounter a very large value, and hence the scale 
factor must accommodate these rare large numbers. The comn10n numbers 
would thus have many leading Os, since all numbers had to use a single scale 
factor. Accuracy was sacrificed because the least significant bits had to be lost 
on the right to accommodate leading Os. This wastage became obvious to prac-

'• titioners on early machines that displayed all their memory bits as dots on 
cathode ray tubes (like TV screens) because the loss of precision was visible. 
Where floating point deserved to be used, no practical alternative existed . 

Thus true floating-point hardware became popular because it was useful. 
By 1957, floating-point hardware was almost ubiquitous. A decimal floating­
point unit was available for the IBM 650; and soon the IBM 704, 709, 7090, 
7094 ... series would offer binary floating-point hardware for double as well 
as single precision . 

As a result, everybody had floa ting point, but every implementation was 
different. 

Diversity versus Portability 

Since roundoff introduces some error into almost all floating-point opera­
tions, to complain about another bit of error seems picayune. So for 20 years 
nobody complained much that those operations behaved a little differently on 
different machines. If software required clever tricks to ci rcum vent those idio­
syncrasies and finally d eliver results correc t in all but the last several bits, 
such tricks were d eemed part of the programmer's art. For a long time, matrix 
computations mystified most people w ho had no noti on of error ana lysis; per­
haps this continues to be tru e. That may be why people are still surprised that 
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numerically stable matrix computations depend upon the quality of arith­
metic in so few places, far fewer than are generally supposed. Books by 
Wilkinson and widely used software packages like Unpack and Eispack 
sustained a false impression, widespread in the early 1970s, that a modicum 
of skill sufficed to produce portable numerical software. 

Portable here means that the software is distributed as source code in some 
standard language to be compiled and executed on practically any commer­
cially significant machine, and that it will then perform its task as well as any 
other program performs that task on that machine. Insofar as numerical soft­
ware has often been thought to consist entirely of machine-independent math­
ematical formulas, its portability has often been taken for granted; the mistake 
in that presumption will become clear shortly. 

Packages like Unpack and Eispack cost so much to develop-over a 
hundred dollars per line of Fortran delivered-that they could not have been 
developed without U.S. government subsidy; their portability was a pre­
condition for that subsidy. But nobody thought to distinguish how various 
components contributed to their cost. One component was algorithmic-de­
vise an algorithm that deserves to work on at least one computer despite its 
roundoff and over/underflow limitations. Another component was the soft­
ware engineering effort required to achieve and confirm portability to the di­
verse computers commercially significant at the time; this component grew 
more onerous as ever more diverse floating-point arithmetics blossomed in the 
1970s. 

And yet scarcely anybody realized how much that diversity inflated the cost 
of such software packages. 

A Backward Step 

Early evidence that somewhat different arithmetics could engender grossly 
different software development costs was presented in 1964. It happened at a 
meeting of SHARE, the IBM mainframe users' group, at which IBM 
announced System/360, the successor to the 7094 series. One of the speakers 
described the tricks he had been forced to devise to achieve a level of quality 
for the S/360 library that was not quite so high as he had previously achieved 
for the 7094. 

Part of the trouble could have been foretold by von Neumann had he still 
been alive. In 1948 he and Goldstine had published a lengthy error analysis so 
difficult and so pessimistic that hardly anybody paid attention to it. It did pre­
dict correctly, however, that computations with larger arrays of data would 
probably fall prey to roundoff more often. IBM S/360s had bigger memories 
than 7094s, so data arrays could grow bigger, and they did. To make matters 
worse, the S/360s had narrower single precision words (32 bits versus 36) and 
used a cruder arithmetic (hexadecimal or base 16 versus binary or base 2) with 
consequently poorer worst-case precision (21 significant bits versus 27) than 

l 
~( 

I: 

j 
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old 7094s. Consequently, software that had almost always provided (barely) 
satisfactory accuracy on 7094s too often produced inaccurate results when run 
on S/360s. The quickest way to recover adequate accuracy was to replace old 
codes' single precision declarations with double precision before recompila­
tion for the S/360. This practice exercised S/360 double precision far more 
than had been expected. 

The early S/360s' worst troubles were caused by lack of a guard digit in 
double precision. This lack showed up in multiplication as a failure of identi­
ties like 1.0 * x = x because multiplying x by 1.0 dropped x's last hexadecimal 
digit (4 bits). Similarly, if x and y were very close but had different exponents, 
subtraction dropped off the last digit of the smaller operand before computing 
x - y. This last aberration in double precision undermined a precious theorem 
that single precision then (and now) honored: If 1 /2 s x/y s 2, then no 
rounding error can occur when x -y is computed; it must be computed exactly. 

Innumerable computations had benefited from this minor theorem, most of­
ten unwittingly, for several decades before its first formal announcement and 
proof. We had been taking all this stuff for granted. 

The identities and theorems about exact relationships that persisted, despite 
roundoff, with reasonable implementations of approximate arithmetic were 
not appreciated until they were lost. Previously, all that had been thought to 
matter were precision (how many significant digits were carried) and range 
(the spread between over/underflow thresholds). Since the S/360s' double 
precision had more precision and wider range than the 7094s', software was 

, expected to continue to work at least as well as before. But it didn't. 
Programmers who had matured into program managers were appalled at 

the cost of converting 7094 software to run on S/360s. A small subcommittee 
of SHARE proposed improvements to the S/360 floating point. This committee 
was surprised and grateful to get a fair part of what they asked for from IBM, 
including all-important guard digits. By 1968, these had been retrofitted to 
S/360s in the field at considerable expense; worse than that was customers' 
loss of faith in IBM's infallibility (a lesson learned by Intel 30 years later). IBM 
employees who can remember the incident still shudder. 

The People Who Built the Bombs 

Seymour Cray was associated for decades with the CDC and Cray computers 
that were, when he built them, the world's biggest and fastest. He always 
understood what his customers wanted most: speed. And he gave it to them 
even if, in so doing, he also gave them arithmetics more "interesting" than 
anyone else's. Among his customers have been the great government labora­
tories like those at Livermore and Los Alamos, where nuclear weapons were 
designed. The challenges of "interesting" arithmetics were pretty tame to peo­
ple who had to overcome Mother Nature's challenges. 
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Perhaps all of us could learn to live with arithmetic idiosyncrasy if only one 
computer's idiosyncrasies had to be endured. Instead, when accumulating 
different computers' different anomalies, software dies the Death of a Thou­
sand Cuts. Here is an example from Cray's machines: 

if (x == 0.0) y = 17.0 else y = z/x 

Could this statement be stopped by a divide-by-zero error? On a CDC 6600 
it could. The reason was a conflict between the 6600's adder, where x was com­
pared with 0.0, and the multiplier and divider. The adder's comparison exam­
ined x's leading 13 bits, which sufficed to distinguish zero from normal 
nonzero floating-point numbers x. The multiplier and divider examined only 
12 leading bits. Consequently, tiny numbers existed that were nonzero to the 
adder but zero to the multiplier and divider! To avoid disasters with these tiny 
numbers, programmers learned to replace statements like the one above by 

i f ( 1 . 0 * x == 0 . 0 ) y = 1 7 . 0 e l s e y = z I x 

But this statement is unsafe to use in would-be portable software because it 
malfunctions obscurely on other computers designed by Cray, the ones mar­
keted by Cray Research, Inc. If x is so huge that 2.0 * x would overflow, then 
1.0 * x may overflow too! Overflow happens because Cray computers check 
the product's exponent before the product's exponent has been normalized, 
just to save the delay of a single AND gate. 

In case you think the statement above is safe to use now for portable soft­
ware, since computers of the CDC 6600 era are no longer commercially signif­
icant, you should be warned that it can lead to overflow on a Cray computer 
even if z is almost as tiny as x; the trouble here is that the Cray computes not 
z Ix but z * ( 1 / x), and the reciprocal can overflow even though the desired 
quotient is unexceptionable. A similar difficulty troubles the Intel i860s used in 
its massively parallel computers. The would-be programmer of portable code 
faces countless dilemmas like these whenever trying to program for the full 
range of existing computers. 

Rounding error anomalies that are far worse than the over/ underflow 
anomaly just discussed also affect Cray computers. The worst error comes 
from the lack of a guard digit in add/ subtract, an affliction of IBM S / 360s. Fur­
ther bad luck for software is occasioned by the way Cray economized his mul­
tiplier; about one-third of the bits that normal multiplier arrays generate have 
been left out of his multipliers because they would contribute less than a unit 
to the last place of the final Cray-rounded product. Consequently, a Cray's 
multiplier errs by almost a bit more than might have been expected. This error 
is compounded when division takes three multiplications to improve an ap­
proximate reciprocal of the divisor and then multiply the numerator by it. 
Square root compounds a few more multiplication errors. 

The fast way drove out the slow, even though the fast was occasionally 
slightly wrong. 

I .... 
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Making the World Safe for Floating Point, or Vice Versa 

William Kahan was an undergraduate at the University of Toronto in 1953 
when he learned to program its Ferranti-Manchester Mark-I computer. 
Because he entered the field early, Kahan became acquainted with a wide 
range of devices and a large proportion of the personalities active in comput­
ing; the numbers of both were small at that time. He has performed computa­
tions on slide rules, desktop mechanical calculators, tabletop analog 
differential analyzers, and so on; he used all but the earliest electronic com­
puters and calculators mentioned in this book. 

Kahan' s desire to deliver reliable software led to an interest in error analysis 
that intensified during two years of postdoctoral study in England, where he 
became acquainted with Wilkinson. In 1960, he resumed teaching at Toronto, 
where an IBM 7090 had been acquired, and was granted free rein to tinker with 
its operating system, Fortran compiler, and runtime library. (He denies that he 
ever came near the 7090 hardware with a soldering iron but admits asking to 
do so.) One story from that time illuminates how misconceptions and numer­
ical anomalies in computer systems can incur awesome hidden costs. 

A graduate student in aeronautical engineering used the 7090 to simulate 
the wings he was designing for short takeoffs and landings. He knew such a 
wing would be difficult to control if its characteristics included an abrupt onset 
of stall, but he thought he could avoid that. His simulations were telling him 
otherwise. Just to be sure that roundoff was not interfering, he had repeated 
many of his calculations in double precision and gotten results much like those 

'in single; his wings had stalled abruptly in both precisions. Disheartened, the 
student gave up. 

Meanwhile Kahan replaced IBM's logarithm program (ALOG) with one of 
his own, which he hoped would provide better accuracy. While testing it, 
Kahan reran programs using the new version of ALOG. The student's results 
changed significantly; Kahan approached him to find out what had happened. 

The student was puzzled. Much as the student preferred the results pro­
duced with the new ALOG-they predicted a gradual stall-he knew they 
must be wrong because they disagreed with his double precision results. The 
discrepancy between single and double precision results disappeared a few 
days later when a new release of IBM's double precision arithmetic software 
for the 7090 arrived. (The 7090 had no double precision hardware.) He went on 
to write a thesis about it and to build the wings; they performed as predicted. 
But that is not the end of the story. 

In 1963, the 7090 was replaced by a faster 7094 with double precision 
floating-point hardware but with otherwise practically the same instruction set 
as the 7090. Only in double precision and only when using the new hardware 
did the wing stall abruptly again. A lot of time was spent to find out why. The 
7094 hardware turned out, like the superseded 7090 software and the sub­
sequent early S/360s, to lack a guard bit in double precision. Like so many pro­
grammers on those machines and on Cray's, the student discovered a trick to 
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compensate for the lack of a guard digit; he wrote the ex~ression ( 0. 5 - ~) 
+ O. 5 in place of 1. 0 - x. Nowadays we would blush 1f we had to explam 
why such a trick might be necessary, but it solved the student's prob~em. . 

Meanwhile the lure of California was working on Kahan and his family; 
they came to Berkeley and he to the University of California. An opportunity 
presented itself in 1974 when accuracy questions induced Hewlett-Packard'.s 
calculator designers to call in a consultant. The consultant was Kahan, and his 
work dramatically improved the accuracy of HP calculators, but that is a~o_th­
er story. Fruitful collaboration with congenial co-workers, however, fortified 
him for the next and crucial opportunity. 

It came in 1976, when John F. Palmer at Intel was empowered to specify the 
"best possible" floating-point arithmetic for all of Intel's product line. The 8086 
was imminent, and an 8087 floating-point coprocessor for the 8086 was 
contemplated. (A coprocessor is simply an additional chip that accelera_tes a p~r­
tion of the work of a processor; in this case, it accelerated floatmg-pomt 
computation.) 

Palmer had obtained his Ph.D. at Stanford a few years before and knew 
whom to call for counsel of perfection-Kahan. They put together a design that 
obviously would have been impossible only a few years earlier and looked no: 
quite possible at the time. But a new Israeli team of Intel employees led by Rafi 
Nave felt challenged to prove their prowess to Americans and leaped at an 
opportunity to put something impossible on a chip-the 8087. . 

By now, floating-point arithmetics that had been merely d1ver~e am?ng 
mainframes had become chaotic among microprocessors, one of which might 
be host to a dozen varieties of arithmetic in ROM firmware or software. Robert 
G. Stewart, an engineer prominent in IEEE activities, got fed up with this a~­
archy and proposed that the IEEE draft a decent floating-point ~tandard. Si­
multaneously, word leaked out in Silicon Valley that Intel ':as ~omg to p~t on 
one chip some awesome floating point well beyond anything its competitors 
had in mind. The competition had to find a way to slow Intel down, so they 
formed a committee to do what Stewart requested. 

Meetings of this committee began in late 1977 with a plethora of competing 
drafts from innumerable sources and dragged on into 1985 when IEEE Stan­
dard 754 for Binary Floating Point was made official. The winning draft was 
very close to one submitted by Kahan, his student Jerome T. Coonen, and 
Harold S. Stone, a professor visiting Berkeley at the time. Their draft was based 
on the Intel design, with Intel's permission of course, as simplified by Coonen. 
Their harmonious combination of features, almost none of them new, had at 
the outset attracted more support within the committee and from outside ex­
perts like Wilkinson than any other draft, but they had to win nearly unani­
mous support within the committee to win official IEEE endorsement, and that 
took time. 

:t 
.J 
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The First IEEE 754 Chips 

In 1980, Intel became tired of waiting and released the 8087 for use in the IBM 
PC. The floating-point architecture of the companion 8087 had to be retro­
fitted into the 8086 opcode space, making it inconvenient to offer two oper­
ands per instruction as found in the rest of the 8086. Hence the decision for 
one operand per instruction using a stack: "The designer's task was to make a 
Virtue of this Necessity." (Kahan's [1990] history of the stack architecture 
selection for the 8087 is entertaining reading.) 

Rather than the classical stack architecture, which has no provision for 
avoiding common subexpressions from being pushed and popped from mem­
ory into the top of the stack found in registers, Intel tried to combine a flat reg­
ister file with a stack. The reasoning was that the restriction of the top of stack 
as one operand was not so bad since it only required the execution of an F X CH 
instruction (which swapped registers) to get the same result as a two-operand 
instruction, and FXCH was much faster than the floating-point operations of the 
8087. 

Since floating-point expressions are not that complex, Kahan reasoned that 
eight registers meant that the stack would rarely overflow. Hence he urged that 
the 8087 use this hybrid scheme with the provision that stack overflow or stack 
underflow would interrupt the 8086 so that interrupt software could give the 
illusion to the compiler writer of an unlimited stack for floating-point data. 

The Intel 8087 was implemented in Israel, and 7500 miles and 10 time zones 
made communication difficult from California. According to Palmer and 
Morse (The 8087 Primer, J. Wiley, New York, 1984, p. 93): 

Unfortunately, nobody tried to write a software stack manager until after the 8087 
was built, and by then it was too late; what was too complicated to perform in hard­
ware turned out to be even worse in software. One thing found lacking is the ability 
to conveniently determine if an invalid operation is indeed due to a stack overflmu. 
... Also lacking is the ability to restart the instruction that caused the stack 
overflow ... 

The result is that the stack exceptions are too slow to handle in software. As 
Kahan [1990] says: 

Consequently, almost all higher-level languages' compilers emit inefficient code for 
the 80x87 family, degrading the chip's performance by typically 50% with spurious 
stores and loads necessary simply to preclude stack over/underflow . ... 

I still regret that the 8087' s stack implementation was not quite so neat as my orig­
inal intention . ... If the original design had been realized, compilers today would 
use the 80x87 and its descendents more efficiently, and Intel's competitors could 
more easily market faster but compatible 80x87 imitations. 
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In 1982, Motorola announced its 68881, which found a place in Sun 3s and 
Macintosh Ils; Apple had been a supporter of the proposal from the beginning. 
Another Berkeley graduate student, George S. Taylor, had soon designed a 
high-speed implementation of the proposed standard for an early supermini­
computer (ELXSI 6400). The standard was becoming de facto before its final 
draft's ink was dry. 

An early rush of adoptions gave the computing industry the false impres­
sion that IEEE 754, like so many other standards, could be implemented easily 
by following a standard recipe. Not true. Only the enthusiasm and ingenuity 
of its early implementors made it look easy. 

In fact, to implement IEEE 754 correctly demands extraordinarily diligent 
attention to detail; to make it run fast demands extraordinarily competent in­
genuity of design. Had the industry's engineering managers realized this, they 
might not have been so quick to affirm that, as a matter of policy, "We conform 
to all applicable standards." 

IEEE 754 Today 

Today the computing industry is enmeshed in a host of standards that evolve 
continuously as technology changes. The floating-point standards IEEE 
754/854 (they are practically the same) stand in somewhat splendid isolation 
only because nobody wishes to repeat the protracted wrangling that sur­
rounded their birth, when, with unprecedented generosity, the representa­
tives of hardware interests acceded to the demands of those few who 
represented the interests of mathematical and numerical software. 

Unfortunately, the compiler-writing community was not represented ade­
quately in the wrangling, and some of the features didn't balance language 
and compiler issues against other points. That community has been slow to 
make IEEE 754's unusual features available to the applications programmer. 
Humane exception handling is one such unusual feature; directed rounding 
another. Without compiler support, these features have atrophied. 

The successful parts of IEEE 754 are that it is a widely implemented stan­
dard with a common floating-point format, it requires minimum accuracy to 
one-half ulp in the least significant bit, and that operations must be commuta­
tive. 

At present, IEEE 754/854 have been implemented to a considerable degree 
of fidelity in at least part of the product line of every North American computer 
manufacturer. The only significant exceptions are the DEC VAX, IBM S/370 
descendants, and Cray Research vector supercomputers, and all three are be­
ing replaced by compliant machines. Even Cray Research, now a division of 
Silicon Graphics, announced that successors to the T90 vector computer will 
conform "to some degree" to ease the transfer of data files and portable soft­
ware between Crays and the desktop computers through which Cray users 
have come to access their machines nowadays. 

I 
I 

I­
I 
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. In 1989, the Association for Computing Machinery, acknowledging the ben­
efits conferred upon the computing industry by IEEE 754, honored Kahan with 
the Turing Award. On accepting it, he thanked his many associates for their dil­
igent support, and his adversaries for their blunders. 

So ... not all errors are bad. 

To Probe Further 

If you are interested in learning more about floating point, two publications 
by David Goldberg [1991, 1995] are good starting points; they abound with 
pointers to further reading. Several of the stories told above come from Kahan 
[1972, 1983]. The latest word on the state of the art in computer arithmetic is 
often found in the Proceedings of the latest IEEE-sponsored Symposium on 
Computer Arithmetic, held every two years; the 13th was held in 1997. 

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. "Preliminary discussion of the logi­
cal d~s1gn of an electronic computing instrument," Report to the U.S. Army Ordnance Dept., p. 1; 
also m Papers of John van Neumann, W. Aspray and A. Burks, eds., MIT Press, Cambridge, MA, 
and Tomash Publishers, Los Angeles, 97-146, 1987. 

This classic paper includes arguments against floating-point hardware. 

Goldberg, D. [1991]. "What every computer scientist should know about floating-point arith­
metic," ACM Computing Surveys 23(1), 5--48. 

Another good introduction to floating-point arithmetic by the same author, this time with emphasis on 
software. 

Goldberg, D. (1995]. "Computer arithmetic," Appendix A of Computer Architecture: A Quantitative 
Approach, second edition, J. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, San 
Francisco. 

A more advanced introduction to integer and floating-point arithmetic, with emphasis on hardware. It cov­
ers sections 4.6-4.8 of this book in just 10 pages, leaving another 45 pages for advanced topics. 

Kahan, W. [1972]. "A survey of error-analysis," in Info. Processing 71 (Proc. IFIP Congress 71 in 
Ljubljana), vol. 2, pp. 1214-39, North-Holland Publishing, Amsterdam. 

This survey is a source of stories on the importance of acrnrate arithmetic. 

Kahan, W: (1983]. "Mathematics written in sand," Proc. Amer. Stat. Assoc. Joint Summer Meetings of 
1983, Statist1ca/ Computmg Section, pp. 12-26. 

The title refers to silicon and is another source of stories illustrating the importance of acrnrate arith111etic. 

Kahan, W. (1990]. "On the advantage of the 8087's stack," unpublished course notes, Computer 
Science Division, University of California at Berkeley. 

What the 8087 floating-point architecture could have been. 
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Kahan, W. [1997]. Available via a link to Kahan's homepage at www.mkp.co111/books_catalog/ 
cod/links.him . 

A collection of memos related to floating point, including "Beastly Numbers" (another less famous Pen­
tium bug),"Notes on the IEEE Floating Point Arithmetic" (including comments on how some features are 
atrophying), and "The Baleful Effects of Computing Benchmarks" (on the unhealthy preoccupat1011 on 
speed versus correctness, accuracy, ease of use, flexibility, .. .). 

Koren, I. [1 993]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, NJ. 

A textbook aimed al seniors and first-year graduate students that explains fundamental principles of basic 
arithmetic, as well as complex operations such as logarithmic and trigonometric functions. 

Wilkes, M. V. [1985] . Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA. 

This computer pioneer's recollections include the derivation of the standard hardware for multiply and 
divide developed by van Neumann. 

Key Terms 

These terms reflect the key ideas in the chapter. Check the Glossary for defini­
tions of the terms you are unsure of. 

AND gate 
AND operation 
arithmetic logic unit (ALU) 
biased notation 
Booth's algorithm 
divisor 
double precision 
exclusive OR gate 
exponent 

Exercises 

floating point 
guard 
hexadecimal 
least significant bit 
most significant bit 
normalized 
overflow 
quotient 
remainder 

round 
scientific notation 
significand 
single precision 
sticky bit 
underflow 
units in the last place (ulp) 

Never give in, never give in, never, never, never-in nothing, great or small, large 
or petty-never give in. 

Winston Churchill, address at Harrow School, 1941 

4.1 [3] <§4.2> Convert 512ten into a 32-bit two's complement binary number. 

4.2 [3] <§4.2> Convert -1 ,023ten into a 32-bit two's complement binary num­
ber. 

4.3 [5] <§4.2> Convert -4,000,000ten into a 32-bit two's complement binary 
number. 
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4.4 [5] <§4.2> What decimal number does this two's complement binary 
number represent: 11111111 1111111111111110 0000 11 OD t wo? 

4.5 [5] <§4.2> What decimal number does this two's complement binary 
number represent: 111111111111111 l ll ll ll ll l ll l ll ll tw o? 

4.6 [5] <§4.2> What decimal number does this two's complement binary 
number represent: 0111 1111 1111 1111 1111 1111 1111 1111 t wo? 

4.7 [5] <§4.2> What binary number does this hexadecimal number represent: 
7fff fffahex? What decimal number does it represent? 

4.8 [5] <§4.2> What hexadecimal number does this binary number represent: 
1100101011111110111110101100 lllD two? 

4.9 [5] <§4.2> Why doesn't MIPS have a subtract immediate instruction? 

4.10 [10] <§4.2> Find the shortest sequence of MIPS instructions to deterrn.ine 
the absolute value of a two's complement integer. Convert this instruction (ac­
cepted by the MIPS assembler): 

abs $t2 , $t3 

This instruction means that register $t 2 has a copy of register $t3 if register 
$t3 is positive, and the two's complement of register $t 3 if $t 3 is negative. 
(Hint: It can be done with three instructions.) 

4.11 [10] <§4.2> Two friends, Harry and David, are arguing. Harry says, "All 
·~ integers greater than zero and exactly divisible by six have exactly two ls in 

their binary representation." David disagrees. He says, "No, but all such num­
bers have an even number of ls in their representation." Do you agree with 
Harry or with David, or with neither? (Hint: Look for counterexamples.) 

4.12 [15] <§4.4> Consider the following code used to implement the instruc­
tion 

sllv $s0, $sl, $s2 

which uses the least significant 5 bits of the value in register $ s 2 to specify the 
amount register $ s 1 should be shifted left: 

.data 
mask : .word Oxfffff83f 

. text 
start : lw HO, mask 

lw $s0, shifter 
and $s0,$s0,$t0 
andi $s2,$s2,0xlf 
s l l $s2,$s2,6 
or $s0,$s0,$s2 
SW $s0, shifter 

shifter: s l l $s0,$sl,O 
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Add comments to the code and write a paragraph describing how it works. 
Note that the two l w instructions are pseudoinstructions that use a label to 
specify a memory address that contains the word of data to be loaded. Why 
do you suppose that writing "self-modifying code" such as this is a bad idea 
(and oftentimes not actually allowed)? 

4.13 [10] <§4.2> If A is a 32-bit address, typically an instruction sequence such 
as 

lui $t0, A_upper 
ori $t0, $t0, A_l ower 
lw $s0, 0($t0) 

can be used to load the word at A into a register (in this case, $s0). Consider 
the following alternative, which is more efficient: 

l u i $t O , A_ up p e r _ a d j u s t e d 
lw $s0, A lower($t0l 

Describe how A_upper is adjusted to allow this simpler code to work. (Hint: 
A_upper needs to be adjusted because A_ lower will be sign-extended.) 

4.14 [15] <§§3.4, 4.2, 4.8> The Big Picture on page 299 mentions that bits have 
no inherent meaning. Given the bit pattern: 

10001111111011111100 0000 0000 0000 

what does it represent, assuming that it is 

a. a two's complement integer? 

b. an unsigned integer? 

c. a single precision floating-point number? 

d. a MIPS instruction? 

You may find Figures 3.18 (page 153), 4.48 (page 292), and A.19 (page A-54) 
useful. 

4.15 [10] <§§4.2, 4.4, 4.8> This exercise is similar to Exercise 4.14, but this time 
use the bit pattern 

0000 0000 0000 0000 0000 0000 0000 0000 

4.16 [10] <§4.3> One of the differences between Sun's SP ARC architecture 
and the MIPS architecture we've been studying is that the load word instruc­
tion on the SP ARC can specify the address either as the sum of two registers' 

., 
I 

! I 
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contents or as one register's contents plus a constant offset (i.e., the way MIPS 
does). The paper "An analysis of MIPS and SPARC instruction set utilization 
on the SPEC benchmarks" (R. F. Cmelik, S. I. Kong, D.R. Ditzel, and E. J. Kelly, 
Fourth International Conference on Architectural Support for Programming Lan­
guages and Operating Systems, Santa Clara, CA, April 1991) reports that on the 
SPARC, the gee benchmark has 15% of its loads use the register+ register ver­
sion (with neither register being $zero). Assume that the same would be true 
on the MIPS, if it were modified to have this extra addressing option for l w in­
structions. Using the data from Figure 4.54, what percentage of gee's instruc­
tions could be eliminated with this architectural modification? Why? 

4.17 [10] <§4.3> Find the shortest sequence of MIPS instructions to determine 
if there is a carry out from the addition of two registers, say, registers$ t 3 and 
$t4. Place a O or 1 in register $t2 if the carry out is O or 1, respectively. (Hint: 
It can be done in two instructions.) 

4.18 [15] <§4.3> {Ex. 4.17} Find the shortest sequence of MIPS instructions to 
perform double precision integer addition. Assume that one 64-bit, two's com­
plement integer is in registers $ t 4 and $t 5 and another is in registers $t 6 and 
$ t 7. The sum is to be placed in registers $ t 2 and $ t 3. In this example, the most 
significant word of the 64-bit integer is found in the even-numbered registers, 
and the least significant word is found in the odd-numbered registers. (Hint: 
It can be done in four instructions.) 

4.19 [15] <§4.3> Suppose that all of the conditional branch instructions except 
·, be q and b n e were removed from the MIPS instruction set along with s l t and 

all of its variants (s l ti , s l tu, s l tu i ). Show how to perform 

slt $t0, $s0, $sl 

using the modified instruction set in which s l t is not available. (Hint: It 
requires more than two instructions.) 

4.20 [10] <§4.4> The following MIPS instruction sequence could be used to 
implement a new instruction that has two register operands. Give the instruc­
tion a name and describe what it does. Note that register $t0 is being used as 
a temporary. 

srl $sl, $sl, 1 
sll $t0, $s0, 31 
srl $s0, $s0, 1 
or $sl, $sl, $t0 

# 
# These 4 instructions accomplish 
# "new $s0 $sl" 
# 

4.21 [5] <§4.4> Instead of using a special hardware multiplier, it is possible to 
multiply using shift and add instructions. This is particularly attractive when 
multiplying by small constants. Suppose we want to put five times the value 
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of $ s O into $ s 1, ignoring any overflow that may occur. Show a minimal se­
quence of MIPS instructions for doing this without using a multiply instruc­
tion. 

4.22 [15] <§4.4> Some computers have explicit instructions to extract an arbi­
trary field from a 32-bit register and to place it in the least significant bits of a 
register. The figure below shows the desired operation: 

31 j 0 

field 

31- j bits j- i bits i + 1 bits 

31 0 

I 
0 0000 

I 
field . . . 

32 - U - i) bits j- i bits 

Find the shortest sequence of MIPS instructions that extracts a field for the 
constant values i = 7 and j = 19 from register $ s O and places it in register $ s 1. 
(Hint: It can be done in two instructions.) 

4.23 [15] <§4.5> The ALU supported set on less than (s l t) using just the sign 
bit of the adder. Let's try a set on less than operation using the values -7ten and 
6ten· To make it simpler to follow the example, let's limit the binary represen­
tations to 4 bits: lOOltwo and 01 lOtwo· 

lOOltwo - 01 lOtwo = lOOltwo + 1010two = 001 ltwo 

This result would suggest that -7 > 6, which is clearly wrong. Hence we must 
factor in overflow in the decision. Modify the 1-bit ALU in Figure 4.17 on 
page 238 to handle s l t correctly. Make your changes on a photocopy of this 
figure to save time. 

4.24 [20] <§4.6> Find the shortest sequence of MIPS instructions to perform 
double precision integer multiplication. Try to do it in 35 instructions or less. 
Assume that one 64-bit, unsigned integer is in registers $ t4 and $ t 5 and another 
is in registers $t6 and $t 7. The 128-bit product is to be placed in registers HO, 
$tl, $t2, and $t 3. In this example, the most significant word is found in the 
lower-numbered registers, and the least significant word is found in the higher­
numbered registers. (Hint: Write out the formula for (ax 232 + b) x (c x 232 + d) .) 

4.25 [5] <§4.8> Show the IEEE 754 binary representation for the floating-point 
number lOten in single and double precision. 

4.26 [5] <§4.8> This exercise is similar to Exercise 4.25, but this time replace 
the number lOten with 10.5ten· 
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4.27 [10] <§4.8> This exercise is similar to Exercise 4.25, but this time replace 
the number lOten with O.lten· 

4.28 [10] <§4.8> This exercise is similar to Exercise 4.25, but this time replace 
the number lOten with the decimal fraction -2/3. 

4.29 [10] <§4.8> Write a simple C program that inputs a floating-point num­
ber and shows its bit representation in hexadecimal. 

4.30 [10] <§4.8> Write a simple C++ program that inputs a floating-point 
number and shows its bit representation in hexadecimal. 

4.31 [10] <§4.8> A single precision IEEE number is stored in memory at ad­
dress X. Write a sequence of MIPS instructions to multiply the number at X by 
2 and store the result back at X. Accomplish this without using any floating­
point instructions (don't worry about overflow) . 

4.32 [10] <§4.11> For the program gee (Figure 4.54 on page 311), find the 10 
most frequently executed MIPS instructions. List them in order of popularity, 
from most used to least used. Show the rank, name, and percentage of instruc­
tions executed for each instruction. If there is a tie for a given rank, list all in­
structions that tie with the same rank, even if this results in more than 10 
instructions. 

4.33 [1 O] <§4.11 > This exercise is similar to Exercise 4.32, but this time replace 
the program gee with the program spice. 

.,.,4.34 <§4.11> !Ex. 4.32, 4.33} These questions examine the relative frequency 
of instructions in different programs. 

a. [5] Which instructions are found both in the answer to Exercise 4.32 and 
in the answer to Exercise 4.33? 

b. [5] What percentage of gee instructions executed is due to the instruc­
tions identified in Exercise 4.34a? 

c. [5] What percentage of gee instructions executed is due to the instruc­
tions identified in Exercise 4.32? 

d. [5] What percentage of spice instructions executed is due to the instruc­
tions identified in Exercise 4.34a? 

e. [5] What percentage of spice instructions executed is due to the instruc-
tions identified in Exercise 4.33? 

4.35 [1 O] <§4.11> {Ex. 4.32-4.34) If you were designing a machine to execute 
the MIPS instruction set, what are the five instructions that you would try to 
make as fast as possible, based on the answers to Exercises 4.32 through 4.34? 
Give your rationale. 
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4.36 [15] <§§2.3, 4.11> Using Figure 4.54 on page 311, calculate the average 
clock cycles per instruction (CPI) for the program gee. Figure 4.55 gives the av­
erage CPI per instruction category, taking into account cache misses and other 
effects. Assume that instructions omitted from the table have a CPI of 1.0. 

Instruction category Average CPI 

Loads and stores 1.4 

Conditional branch 1.8 

Jumps 1.2 

Integer multiply 10.0 

Integer divide 30.0 

Floating-point add and subtract 2.0 

Floating-point multiply, single precision 4.0 

Floating-point multiply, double precision 5.0 

Floating-point divide, single precision 12.0 

Floating-point divide, double precision 19.0 

AGURE 4.55 CPI for MIPS Instruction categories. 

4.37 [15] <§§2.3, 4.11> This exercise is similar to Exercise 4.36, but this time 
replace the program gee with the program spice. 

4.38 [2 weeks] Write a simulator for a subset of the MIPS instruction set using 
MIPS instructions and the SPIM simulator described in Appendix A. Your sim­
ulator should execute hand-assembled programs that are located in the data 
segment of the SPIM simulator and should use $ v O and $ v 1 for input and out­
put. Other portions of the data segment can be used for storing the memory 
contents and register values of your virtual machine. Your implementation can 
use any of the MIPS instructions, but your simulator need only support a 
smaller subset of the instruction set (e.g., the instructions appearing in Chap­
ters 5 and 6). (Additional details regarding this assignment are available at 
www.mkp.com/cod2e.htm.) 

4.39 [1 week] !Ex. 4.38) Add an exception handler to the simulator you de­
veloped for Exercise 4.38. Your simulator should generate a simulated excep­
tion if a misaligned word is accessed via an l w, sw, or j r instruction. The 
exception handler should print out an error message identifying the offending 
address (within the simulation) and then realign the access, perform the in­
struction, and resume executing the simulated program. (Additional details 
regarding this assignment are available at www.mkp.com/cod2e.htm.) 
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In More Depth 

Logical Instructions 

The full MIPS instruction set has two more logical operations not men­
tioned thus far: xor and nor. The operation xor stands for exclusive OR, 
and nor stands for not OR. The table that follows defines these operations 
on a bit-by-bit basis. These instructions will be useful in the following two 
exercises. 

- •• 11i·IFIMl·I 
0 

0 

1 

1 I I I I I I I 
4.40 [15] <§4.4> Show the minimal MIPS instruction sequence for a new in­
struction called swap that exchanges two registers. After the sequence com­
pletes, the Destination register has the original value of the Source register, 
and the Source register has the original value of the Destination register. 
Convert this instruction: 

swap $s0,$sl 

The hard part is that this sequence must use only these two registers' (Hint: It 
can be done in three instructions if you use the new logical 
instructions. What is the value of ( A xo r B xor A) ?) 

4.41 [5] <§4.4> Show the minimal MIPS instruction sequence for a new in­
struction called not that takes the one's complement of a Source register 
and places it in a Destination register. Convert this instruction (accepted by 
the MIPS assembler): 

not $s0 ,$ sl 

(Hint: It can be done in one instruction if you use the new logical instruc­
tions.) 

4.42 [20] <§4.5> A simple check for overflow during addition is to see if the 
Carry In to the most significant bit is not the same as the CarryOut of the most 
significant bit. Prove that this check is the same as in Figure 4.4 on page 222. 

4.43 [10] <§4.5> Draw the gates for the Sum bit of an adder, given the equa­
tion on page 234. 
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4.44 [5] <§4.5> Rewrite the equations on page 247 for a carry-lookahead logic 
for a 16-bit adder using a new notation. First use the names for the Carry In sig­
nals of the individual bits of the adder. That is, use c4, c8, c12, .. . instead of 
Cl, C2, C3, .. .. Also, let Pi,j mean a propagate signal for bits i to j, and Gi,/ 

mean a generate signal for bits i to j. For example, the equation 

C2 = G I + (PI · GO) + (PI · PO · c O) 

can be rewritten as 

c8 = G 7, 4 + (P7, 4 · G 3, 0 ) + (P7.4 · P3, 0 · cO) 

This more general notation is useful in creating wider adders. 

4.45 [15] <§4.5> {Ex. 4.44l Write the equations for the carry-lookahead logic 
for a 64-bit adder using the new notation from Exercise 4.44 and using 16-bit 
adders as building blocks. Include a drawing similiar to Figure 4.24 in your so­
lution. 

4.46 [10] <§4.5> Now calculate the relative performance of adders. Assume 
that hardware corresponding to any equation containing only OR or AND 
terms, such as the equations for pi and gi on page 242, takes one time unit T. 
Equations that consist of the OR of several AND terms, such as the equations 
for cl, c2, c3, and c4 on page 243, would thus take two time units, 2T, because 
it would take T to produce the AND terms and then an additional T to produce 
the result of the OR. Calculate the numbers and performance ratio for 4-bit 
adders for both ripple carry and carry lookahead. If the terms in equations are 
further defined by other equations, then add the appropriate delays for those 
intermediate equations, and continue recursively until the actual input bits of 
the adder are used in an equation. Include a drawing of each adder labeled 
with the calculated delays and the path of the worst-case delay highlighted. 

4.47 [15] <§4.5> This exercise is similar to Exercise 4.46, but this time calculate 
the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 
4-bit groups that use carry lookahead, and the carry-lookahead scheme on 
page 242. 

4.48 [15] <§4.5> (Ex. 4.45l This exercise is similar to Exercises 4.46 and 4.47, 
but this time calculate the relative speeds of a 64-bit adder using ripple carry 
only, ripple carry of 4-bit groups that use carry lookahead, ripple carry of 
16-bit groups that use carry lookahead, and the carry-lookahead scheme from 
Exercise 4.45 . 

4 .49 [10] <§4.5> There are times when we want to add a collection of numbers 
together. Suppose you wanted to add four 4-bit numbers (A,B, E, F) using 1-bit 
full adders. Let's ignore carry lookahead for now. You would likely connect 
the 1-bit adders in the organization in the top of Figure 4.56. Below the tradi­
tional organization is a novel organization of full adders. Try adding four num­
bers using both organizations to convince yourself that you get the same 
answer. 
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FIGURE 4.56 Traditional ripple carry and carry save addition of four 4-blt numbers. The details are shown on the 
left, wHh the individual signals in lowercase, and the correspond ing higher-level blocks are on the right, with collective 
signals m uppercase. Note that the sum of four n-bit numbers can take n+2 bits. 

4.50 [5] <§4.5> {Ex. 4.49l Assume tha t the time delay through each 1-bit adder 
is 2T. Calculate the time of adding four 4-bit numbers to the organiza tion at the 
top versus the organization in the bottom in Figure 4.56. 
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In More Depth 

Carry Save Adders 

Exercises 4.49 and 4.50 motivate an organization that uses the 1-bit adder 
in Figure 4.10 on page 232 in a way it was not intended. Although this 
piece of hardware is simple and fast, the problem comes from trying to get 
the Carry In signal calculated in a timely fashion across several adders. 

We can think of the adder instead as a hardware device that can add 
three inputs together (ai, bi, ci) and produce two outputs (s, ci+ 1). When 
we are just adding two numbers together, there is little we can do with this 
observation, but when we are adding more than two operands, it is possi­
ble to reduce the cost of the carry. The idea is to form two independent 
sums, called S' (sum bits) and C' (carry bits). At the end of the process, we 
need to add C' and S' together using a normal adder. This technique of 
delaying carry propagation until the end of a sum of numbers is called 
carry save addition. The block drawing on the lower right of Figure 4.56 
shows the organization, with two levels of carry save adders connected by 
a single normal adder. 

4.51 [10] <§4.5> !Ex. 4.47, 4.50) Calculate the delays to add four 16-bit 
numbers using full carry-lookahead adders versus carry save with a carry­
lookahead adder forming the final sum. (The time unit T in Exercises 4.46 
and 4.50 is the same.) 

4.52 [20] <§4.5, 4.6> {Ex. 4.47) Perhaps the most likely case of adding many 
numbers at once in a computer would be when trying to multiply more 
quickly by using many adders to add many numbers in a single clock cycle. 
Compared to the multiply algorithm in Figure 4.32 on page 258, a carry save 
scheme with many adders could multiply more than 10 times faster. 

This exercise estimates the cost and speed of a combinational multiplier to 
multiply two positive 16-bit numbers. Assume that you have 16 intermedi­
ate terms MIS, M14, ... , MO, called partial products, that contain the multi­
plicand ANDed with multiplier bits mlS, ml 4, . .. , mO. 

The idea is to use carry save adders to reduce then operands into 2n / 3 in 
parallel groups of three, and do this repeatedly until you get two large 
numbers to add together with a traditional adder. 

First show the block organization of the 16-bit carry save adders to add 
these 16 terms, as shown on the right in Figure 4.56. Then calculate the 
delays to add these 16 numbers. Compare this time to the iterative multi­
plication scheme in Figure 4.32 on page 258 but only assume 16 iterations 
using a 16-bit adder that has full carry lookahead whose speed was calcu­
lated in Exercise 4.47. 
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4.53 [30] <§4.6> The original reason for Booth 's a lgorithm was to reduce the 
number of operations by avoiding opera tions when there were strings of Os 
and l s. Revise the algorithm on page 260 to look at 3 bits at a time and compute 
the product 2 bits at a time. Fill in the fo llowing table to determ ine the 2-bit 
Booth encoding: 

Current bits Previous bit Operation Reason 

ai+1 ai 

l 
ai-1 __l______ 

0 0 0 =1~ 0 0 1 
0 1 0 

0 1 1 
_J__ 

J 
1 0 0 

1 0 1 j 
1 1 0 L 1 1 1 l 

Assume that you have both the multipli cand and 2 x multiplicand already in 
registers. Explain the reason fo r the opera tion on each line, and shovv a 6-bit 
example that runs fa ster using this algorithm. (Hint: Try di viding to conquer; 
see what the operations would be in each of the eight cases in the tab le using a 
2-bit Booth algorithm, and then optimize the pair of operations.) 

--.4.54 [30] <§4.6, 4.7> The division algorithm in Figure 4.40 on page 270 is 
called res toring division, since each time the resul t of subtracting the d ivisor 
from the dividend is nega tive you must ad d the div isor back in to the d ividend 
to res tore the original va lue. Recall that shift left is the sa me as mul ti pl ying by 
two. Let's look at the va lue of the left ha lf of the Remainder aga in, sta rting with 
step 3b of the divide algorithm and then going to step 2: 

(Rem.ainder + Di visor) x 2 - Di visor 

This value is created from restoring the Remainder by add ing the Divisor, 
shifting the sum left, and then subtracting the Di visor. Simpli fy ing the resul t 
we get 

Rem ainder x 2 + Divisor x 2 - Divisor = Remainder x 2 + Divisor 

Based on this observa tion, write a no11 rcs tori11g division algorithm using the 
notation of Figure 4.40 that does not add the Di visor to the Remainder in step 
3b. Show that your algorithm works by dividing 0000 0111 two by 001011\'(,. 
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4 .55 [5] <§4.8> Add 6.42ten x 101 to 9.Slten x 102
, assuming that you have only 

three significant digits, first with guard and round digits and then without 
them. 

4.56 [5] <§4.8> This exercise is similar to Exercise 4.55, but this time use the 
numbers 8.76ten x 101 and 1.47ten x 102. 

4.57 [25] <§4.8> Derive the floating-point algorithm for division as we did for 
addition and multiplication on pages 280 through 288. First divide l.ll0ten x 
1010 by 1.lO0ten x 10-5, showing the same steps that we did in the example 
starting on page 282. Then derive the floating-point division algorithm using 
a format similar to the multiplication algorithm in Figure 4.46 on page 289. 

4.58 [30] <§4.8> The elaboration on page 300 explains the four rounding 
modes of IEEE 754 and the extra bit, called the sticky bit, needed in addition to 
the 2 bits called guard and round. Guard is the first bit, round is the second bit, 
and sticky represents whether the remaining bits are 0 or not. Fill in the follow­
ing table with logical equations that are functions of guard (g), round (r), and 
sticky (s) for the result of a floating-point addition that creates Sum. Let p be 
the proper number of bits in the significand for a given precision and SuIIv be 
the pth most significant bit of Sum. A blank box means that the p most signifi­
cant bits of the sum are correctly rounded. If you place an equation in a box, a 
false equation means that the p bits are correctly rounded; a true equation 
means add 1 to the pth most significant bit of Sum. 

Rounding mode Sum>> O Sum<O 

Toward - ~ 

Toward +~ 

I Truncate 
Nearest even 

4.59 [30] <§4.8> The elaboration on page 300 mentions that IEEE 754 has two 
special symbols that are floating-point operands: infinity and Not a Number 
(NaN). There are also small numbers called denorms, which are not normal­
ized. Because these special symbols and numbers are not used very frequently, 
implementations that employ a mix of both hardware and software techniques 
are sometimes used. For example, instead of using complicated hardware to 
handle these special cases, an exception is generated and they are handled in 
software. Many implementation options exist, each of which has unique per­
formance characteristics. Your task is to benchmark several different machines 
for floating-point operations as the operands vary from normal numbers to 
these special cases. Be sure to state your conclusions by comparing the perfor­
mance of different machines with one another and describing their similarities 
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and differences. What impact are your results likely to have on software de­
signers who must choose whether or not to make use of the special features in 
the IEEE 754 standard? 

4 .60 [30] <§4.5> If you have access to a computer containing a MIPS proces­
sor, write a loop in assembly language that sets registers $k0 ($26) and $kl 
($ 27 ) to an initial value, and then loop for severa l seconds, checking the con­
tents of these registers. Print the values if they change. See the elaboration on 
page 225 for an explanation of why they change. Can you find a reason for the 
particular values you observe? 

.., 
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Chapter 5 The Processor: Datapath and Control 

Introduction 

In Chapter 2, we saw that the performance of a machine was determined by 
three key factors: instruction count, clock cycle time, and clock cycles per 
instruction (CPI). The compiler and the instruction set architecture, which we 
examined in Chapters 3 and 4, determine the instruction count required for a 
given program. However, both the clock cycle time and the number of clock 
cycles per instruction are determined by the implementation of the processor. 
In this chapter, we construct the datapath and control unit for two different 
implementations of the MIPS instruction set. 

We will be designing an implementation that includes a subset of the core 
MIPS instruction set: 

• The memory-reference instructions load word (l w) and store word (sw) 

• The arithmetic-logical instructions add, sub, and, or, and s l t 

• The instructions branch equal (b eq) and jump (j ), which we add last 

This subset does not include all the integer instructions (for example, mul­
tiply and divide are missing), nor does it include any floating-point instruc­
tions. However, the key principles used in creating a datapath and designing 
the control will be illustrated. The implementation of the remaining instruc­
tions is similar. 

In examining the implementation, we will have the opportunity to see how 
the instruction set architecture determines many aspects of the implementa­
tion, and how the choice of various implementation strategies affects the clock 
rate and CPI for the machine. Many of the key design principles introduced in 
Chapter 3 can be illustrated by looking at the implementation, such as the 
guidelines Make the common case fast and Simplicity favors regularity. In addition, 
most concepts used to implement the MIPS subset in this chapter and the next 
are the same basic ideas that are used to construct a broad spectrum of com­
puters, from high-performance machines to general-purpose microprocessors 
to special-purpose processors, which are used increasingly in products rang­
ing from VCRs to automobiles. 

An Overview of the Implementation 

In Chapters 3 and 4, we looked at the core MIPS instructions, including the 
integer arithmetic-logical instructions, the memory-reference instructions, 
and the branch instructions. Much of what needs to be done to implement 
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these instructions is the same, independent of the exact class of instruction. 
For every instruction, the first two steps are identical: 

l. Send the program counter (PC) to the memory that contains the code 
and fetch the instruction from that memory. 

2. Read one or two registers, using fields of the instruction to select the 
registers to read. For the load word instruction we need to read only 
one register, but most other instructions require that we read two regis­
ters. 

After these two steps, the actions required to complete the instruction depend 
on the instruction class. Fortunately, for each of the three instruction classes 
(memory-reference, arithmetic-logical, and branches), the actions are largely 
the same, independent of the exact opcode. 

Even across different instruction classes there are some similarities. For ex­
ample, all instruction classes use the arithmetic-logical unit (ALU) after read­
ing the registers. The memory-reference instructions use the ALU for an 
address calculation, the arithmetic-logical instructions for the operation execu­
tion, and branches for comparison. As we can see, the simplicity and regularity 
of the instruction set simplifies the implementation by making the execution of 
many of the instruction classes similar. 

After using the ALU, the actions required to complete the different instruc­
tion classes differ. A memory-reference instruction will need to access the 
memory either to write data for a store or read data for a load. An arithmetic­

.,., logical instruction must write the data from the ALU back into a register. Last­
ly, for a branch instruction, we may need to change the next instruction address 
based on the comparison. 

Figure 5.1 shows the high-level view of a MIPS implementation. In the re­
mainder of the chapter, we refine this view to fill in the details, which requires 
that we add further functional units, increase the number of connections be­
tween units, and, of course, add a control unit to control what actions are taken 
for different instruction classes. Before we begin to create a more complete 
implementation, we need to discuss a few principles of logic design. 

A Word about Logic Conventions and Clocking 

To discuss the design of a machine, we must decide how the logic implement­
ing the machine will operate and how the machine is clocked. This section 
reviews a few key ideas in digital logic that we will use extensively in this 
chapter. If you have little or no background in digital logic, you will find it 
helpful to read through Appendix B before continuing. Section B.9 presents 
the key terms introduced in Appendix B and is useful as a quick check-up if 
you want to review your logic design background. 
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Wh_en designing logi~, it is often convenient for the designer to change the 
mapping be:w:en a logically tru~ or fal~e signal and the high or low voltage 
level. Thus, in so~e parts of~ design, a signal that is logically asserted may ac­
tually be an elec_tnc~lly low signal, while in others an electrically high signal is 
a:serted. To maintain consistency, we will use the word asserted to indicate a 
s1g~al that_is logically high and assert to specify that a signal should be driven 
logically high. 

The functional units in the MIPS implementation consist of two different 
types of logic elements: elements that operate on data values and elements 
t~at contain state. The elements that operate on data values are all combina­
tz~nal, which m_eans that their outputs depend only on the current inputs. 
Given the same input, a combinational element always produces the same out­
put. ~he ~LU shown in ~igure 5.1 and discussed in detail in Chapter 4 is a 
combinational element. Given a set of inputs, it always produces the same out­
put because it has no internal storage. 

Other elements in the design are not combinational, but instead contain 
state. An element contains state if it has some internal storage. We call these el­
ements_state elements because, if we pulled the plug on the machine, we could 
restart it by loading the state elements with the values they contained before 

Address 

Instruction 
memory 

Instruction 

Data 

Register# 

Registers 

Register# 

Register# 

Address 

'"-1------t Data 

Data 
memory 

---------....J 
:~GURE 5.1 An ab~tract view of the implementation of the MIPS subset showing the major functional units and 

e major connections between them. All mstruct10ns start by using the program counter to su I the · •t f 
~-d~r;ss/~~he t~trnction m_emory. After the instruction is fetched, the register operands used by an i;ft/uctio~:sr;~~~~: 
ie Y Ie s O t at mstruct10n. Once the register operands have been fetched, they can be operated on to com ute a mem­

ory address (for a ~oad or store), to compute an arithmetic result (for an integer arithmetic-logical inst!ction), or a 
comp~re (for a bramh). ff the mstruct10n IS an anthmetic-logical instruction, the result from the ALU must be written to a 
~eg;ttr. I; thef operat10111s a load or store, the ALU result is used as an address to either store a value from the registers or 
oa a va ue rom memory into the registers. The result from the ALU or memory is written back into the re is~er file 
Branches

11
reqmre the use of the ALU output to determine the next instruction address, which requires some con~rol logic. 

as we WI see. ' 
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we pulled the plug. Furthermore, if we saved and restored the state elements, 
it would be as if the machine had never lost power. Thus, these state elements 
completely characterize the machine. In Figure 5.1, the instruction and data 
memories as well as the registers are all examples of state elements. 

A state element has at least two inputs and one output. The required inputs 
are the data value to be written into the element, and the clock, which deter­
mines when the data value is written. The output from a state element pro­
vides the value that was written in an earlier clock cycle. For example, one of 
the logically simplest state elements is a 0-type flip-flop (see Appendix B), 
which has exactly these two inputs (a value and a clock) and one output. In ad­
dition to flip-flops, our MIPS implementation also uses two other types of state 
elements: memories and registers, both of which appear in Figure 5.1. The 
clock is used to determine when the state element should be written; a state 

element can be read at any time. 
Logic components that contain state are also called sequential because their 

outputs depend on both their inputs and the contents of t_he internal :tate. For 
example, the output from the functional unit representing the :eg1s~ers de­
pends both on the register numbers supplied and on what was written into t~e 
registers previously. The operation of both the combinatio~~l and seq~enhal 
elements and their construction are discussed in more detail in Appendix B. 

Clocking Methodology 
A clocking methodology defines when signals can be read and "".hen they can_ be 
written. It is important to specify the timing of reads and wntes because, if a 
signal is written at the same time it is read, the value of the read could corre­
spond to the old value, the newly written value, or even some mix_ oft~~ two! 
Needless to say, computer designs cannot tolerate such unpredictability. A 
clocking methodology is designed to prevent this circumstance. 

For simplicity, we will assume an edge-triggered clocking method_ology. An 
edge-triggered clocking methodology means that any values stored in the ma­
chine are updated only on a clock edge. Thus, the state elements all update 
their internal storage on the clock edge. Because only state ele~ents can st?re 
a data value, any collection of combinational logic must have its inputs coming 
from a set of state elements and its outputs written into a set of state elements. 
The inputs are values that were written in a previous clock cycle, while the out-
puts are values that can be used in a following clock cycle. . 

Figure 5.2 shows the two state elements surroundin_g a block of combina­
tional logic, which operates in a single clock cycle: All signals must propagate 
from state element 1, through the combinational logic, and to state element 2 
in the time of one clock cycle. The time necessary for the signals to reach state 

element 2 defines the length of the clock cycle. 
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State 
element 1-----+1 

1 

Clock cycle J 

State 
1-----i element 

2 

._____I 
FIGURE 5.2 Combinational logic, state elements, and the clock are closely related. In a 
synchronous digital system, the clock determines when elements wi th s tate will write va lues into 
internal storage. Any inputs to a state element must reach a stable value (that is, have reached a 
value from which they will not change until after the clock edge) before the active clock edge 
causes the state to be updated. All state elements, including memory, are assumed to be edge­
triggered. 

For simplicity, we do not show a write control signal when a state element 
is written on every active clock edge. In contrast, if a state element is not up­
dated on every clock, then an explicit write control signal is required. Both the 
clock signal and the write control signal are inputs, and the state element is 
changed only when the write control signal is asserted and a clock edge occurs. 

An edge-triggered methodology allows us to read the contents of a register, 
send the value through some combinational logic, and write that register in the 
same clock cycle, as shown in Figure 5.3. It doesn't matter whether we assume 
that all writes take place on the rising clock edge or on the falling clock edge, 
since the inputs to the combinational logic block cannot change except on the 
chosen clock edge. With an edge-triggered timing methodology, there is no 
feedback within a single clock cycle, and the logic in Figure 5.3 works correctly. 
In Appendix B we briefly discuss additional timing constraints (such as set-up 
and hold times) as well as other timing methodologies. 

Nearly all of these state and logic elements will have inputs and outputs 
that are 32 bits wide, since that is the width of most of the data handled by the 
processor. We will make it clear whenever a unit has an input or output that is 
other than 32 bits in width. The figures will indicate buses, which are signals 
wider than 1 bit, with thicker lines. At times we will want to combine several 
buses to form a wider bus; for example, we may want to obtain a 32-bit bus by 
combining two 16-bit buses. In such cases, labels on the bus lines will make it 
clear that we are concatenating buses to form a wider bus. Arrows are also 
added to help clarify the direction of the flow of data between elements. Final­
ly, color indicates a control signal as opposed to a signal that carries data; this 
distinction will become clearer as we proceed through this chapter. 
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FIGURE 5.3 An edge-triggered methodology allows a state element to be read and writ­
ten In the same clock cycle without creating a race that could lead to Indeterminate data 
values. Of course, the clock cycle still must be long enough so that the input va lues are stable 
when the active clock edge occurs. Feedback cannot occur wi thin 1 clock cycle because of the 
edge-triggered update of the state element. If feedback were possible, this design could not work 
properly. Our designs in this chapter and the next rely on the edge-triggered timing methodol­
ogy and structures like the one shown in this figure. 

The MIPS Subset Implementation 

We will start with a simple implementation that uses a single long clock cycle 
for every instruction and follows the general form of Figure 5.1. In this first 
design, every instruction begins execution on one clock edge and completes 
execution on the next clock edge. 

While easier to understand, this approach is not practical, since it would be 
slower than an implementation that allows different instruction classes to take 
different numbers of clock cycles, each of which could be much shorter. After 

.... designing the control for this simple machine, we will look at an implementa­
tion that uses multiple clock cycles for each instruction. This implementation 
is more realistic but also requires more complex control. 

II 

In this chapter, we will take the specification of the control to the level of 
logic equations or finite state machine specifications. From either representa­
tion, a modern computer-aided design (CAD) system can synthesize a hard­
ware implementation; Appendix C shows how this is done. Before closing the 
chapter, we will discuss how exceptions, mentioned in Chapter 4, are imple­
mented. 

Building a Datapath 

A reasonable way to start a datapath design is to examine the major compo­
nents required to execute each class of MIPS instruction. Let's start by looking 
at which datapath elements each instruction needs and build up the sections 
of the datapath for each instruction class from these elements. When we show 
the datapath elements, we will also show their control signals. 
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The first element we will need is a place to store the instructions of a pro­
gram. A memory unit, which is a state element, is used to hold and supply in­
structions given an address, as shown in Figure 5.4. The address of the 
instruction must also be kept in a state element, which we call the program 
counter (PC), also shown in Figure 5.4. Lastly, we will need an adder to incre­
ment the PC to the address of the next instruction. This adder, which is combi­
national, can be built from the ALU we designed in the last chapter simply by 
wiring the control lines so that the control always specifies an add operation. 
We will draw such an ALU with the label Add, as in Figure 5.4, to indicate that 
it has been permanently made an adder and cannot perform the other ALU 
functions. 

To execute any instruction, we must start by fetching the instruction from 
memory. To prepare for executing the next instruction, we must also increment 
the program counter so that it points at the next instruction, 4 bytes later. The 
datapath for this step, shown in Figure 5.5, uses the three elements from 
Figure 5.4. 

Now let's consider the R-format instructions (see Figure 3.19 on page 154). 
They all read two registers, perform an ALU operation on the contents of the 
registers, and write the result. We call these instructions either R-type instruc­
tions or arithmetic-logical instructions (since they perform arithmetic or logical 

Instruction 
address 

Instruction 
memory 

Instruction 

a. Instruction memory 

-B- Add Sum 

b. Program counter c. Adder 

FIGURE 5.4 Two state elements are needed to store and acceu Instructions, and an 
adder Is needed to compute the next Instruction addreu. The state elements are the 
instruction memory and the program counter. The instruction memory need only provide read 
access because the datapath does not write instructions. Since the instruction memory is only 
reads, we treat it as combinational logic: the output at any time reflects the contents of the loca­
tion specified by the address input, and no read control signal is needed. (We will need to write 
the instruction memory when we load the program; this is not hard to add, and we ignore it for 
simplicity.) Since the instruction memory unit can only be read, we do not include a read control 
signal; this simplifies the design. The program counter is a 32-bit register that will be written at 
the end of every clock cycle and thus does not need a write control signal. The adder is an ALU 
wired to always perform an add of its two 32-bit inputs and place the result on its output. 
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operations). This instruction class includes add, sub, and s l t, which were in­
troduced in Chapter 3, as well as and and or, which were introduced in Chap­
ter 4. Recall that a typical instance of such an instruction is add $ t 1 . $ t 2 . $ t 3, 
which reads $ t 2 and $ t 3 and writes $ t 1. 

The processor's 32 registers are stored in a structure called a register file. A 
register file is a collection of registers in which any register can be read or writ­
ten by specifying the number of the register in the file. The register file contains 
the register state of the machine. In addition, we will need an ALU to operate 
on the values read from the registers. 

Because the R-format instructions have three register operands, we will 
need to read two data words from the register file and write one data word into 
the register file for each instruction. For each data word to be read from the reg­
isters, we need an input to the register file that specifies the register number to 
be read and an output from the register file that will carry the value that has 
been read from the registers. To write a data word, we will need two 
inputs: one to specify the register number to be written and one to supply the 
data to be written into the register. The register file always outputs the contents 
of whatever register numbers are on the Read register inputs. Writes, however, 
are controlled by the write control signal, which must be asserted for a write to 
occur at the clock edge. Thus, we need a total of four inputs (three for register 

Read 
address 

Instruction 
memory 

4 

Instruction 1----

FIGURE 5.5 A portion of the datapath used for fetching instructions and Incrementing 
the program counter. The fetched instruction is used by other parts of the datapath. 
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numbers and one fo r data) and two outputs (both for d ata), as show n in 
Figu re 5.6. The register number inputs are 5 bits wide to specify one of 32 reg­
isters (32 = 25), w hereas the data input and two data output buses are each 32 

bits w ide. 
The ALU, show n in Figure 5.6, is controlled by the 3-bit signal described in 

Chapter 4. The ALU takes two 32-bit inputs and produces a 32-bit resu~t. 
The datapath for these R-type instructions, which uses the register file and 

the ALU of Figure 5.6, is shown in Figure 5.7. Since the register numbers come 
from fields of the instruction, we show the instruction, w hich comes from 
Figure 5.5, as connected to the register number inputs_ of the ~egister f~le. 

Next, consider the MIPS load word and store word mstructions, which have 
thegeneral form: l w $tl,offset_value(H2lor sw $tl,_offset_ value 
( $ t 2). These instructions compute a memory address by add mg the base reg-

Register 
numbers 

Data { 

Read 
register 1 

Read 
register 2 

Registers 
Write 
register 

Write 
data 

Read 
data 1 

Read 
data 2 

RegWrite 

a. Registers 

Data 

Zero 
ALU ALU 

result 

b. ALU 

FIGURE 5.6 The two elements needed to Implement R•format ALU operations are the 
register file and the ALU. The register file contains all the registers and has two read ports and 
one write port. The design of multiported register files i_s d iscussed in section B.5 of Appendix B. 
The register fi le always outputs the contents of the registers correspondmg to the Read register 
inputs on the outputs; no other control inputs are needed. In contrast, a register _wnte must be 
explicitly indicated by asserting the write control signal. Remember that wntes are edge­
triggered , so that all the write inputs (i.e., the value to be wntten, the register number, and the 
write control signal) must be valid at the clock edge. Smee wntes to the register file are edge­
triggered, our design can legally read and write the same register within a dock cycle_: the read 
will get the value written in an earlier clock cycle, while the value wntten will be available to a 
read in a subsequent clock cycle. The inputs carrying the register number to the register file are 
all 5 bits wide, whereas the lines carrying data values are 32 bits wide. The operation to be per­
fo rmed by the ALU is controlled with the ALU operation signal, which will be 3 bits wide, using 
the ALU designed in the previous chapter (see Figure 4.19 on page 237). We will use_the Zero 
detection output of the ALU shortly to implement branches. The overflow output will not be 
needed unti l section 5.6, when we discuss exceptions; we omit it until then. 

5.2 Building a Datapath 

Instruction 

Read 
register 1 

Read 
register 2 

Registers 
Write 
register 

Write 
data 

Read .,_ __ ,.i 
data 1 

Read 
data 2 1---.i 

I RegWrite 

347 

ALU operation 

ALU 

FIGURE 5.7 The datapath for R-type instructions. The ALU discussed in Chapter 4 ca n be 
controlled to provide all the basic ALU functions required for R-type instructions. 

ister, w hich is$ t 2, to the 16-bit signed offset field contained in the instruction . 
If the instruction is a store, the value to be stored must also be read from the 
register file w here it resid es in $ tl . If the instruction is a load, the va lue read 
from memory m us t be written in to the register fi le in the specified register, 
which is $ t 1. Thus, we will need both the register fi le and the ALU shown in 
Figure 5.6. 

In addition, we will need a unit to sign-ex tend the 16-bit offset fi eld in the 
instruction to a 32-bit signed va lue, and a da ta memory unit to read from or 

··, w rite to. The da ta memory m us t be written on store instructions; hence, it has 
both rea d and write control signals, an address input, as well as an inpu t for 
the da ta to be written into m em ory. Figure 5.8 shows these two elements. 

Figu re 5.9 shows how to combine these elements to build the d ata pa th for a 
load word or a store word instruction, assuming that the instruction has al­
ready been fetched . The register number inputs for the regis ter fi le come from 
field s of the instru ction, as does the offse t value, w hich after sign ex tension be­
comes the second ALU input. 

The be q instruction has three opera nds, two registers that are compared for 
equality, and a 16-bit offset used to compute the bra nch target address relative 
to the branch instruction address. Its form is beq $t 1 , $t2 , off set . To imple­
ment this instruction, we must compute the bra nch ta rget address by adding 
the sign-extended offset field of the inst ruction to the PC. There are two d etails 
in the definition of branch instructions (see Chapter 3) to which we mu st pay 
a ttention: 

• The instruction set architectu re specifi es that the base fo r the branch ad­
d ress calcula tion is the address of the instruction fo llowing the branch. 
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Address 

MemWrite 

Read 
data 

Wri te Data 
data memory 

I MemRead 

a. Data memory unit 

32 

b. Sign-extension unit 

FIGURE 5.8 The two units needed to implement loads and stores, in addition to the reg­
ister file and ALU of Figure 5.6, are the data memory unit and the sign extension unit. The 
memory unit is a state element with inputs for the address and the write data, and a single out­
put for the read resu lt. There are separate read and write controls, although only one of these 
may be asserted on any given clock. The sign extension unit has a 16-bit input that is sign­
extended in to a 32-bit result appearing on the output (see Chapter 4, page 216). We assume the 
data memory is edge-triggered for writes. Standard memory chips actually have a write enable 
signal that is used for writes. Although the write enable is not edge-triggered, our edge-triggered 
design could easily be adapted to work with rea l memory chips. See section B.5 of Appendix B 
for a further discussion of how real memory chips work. 

Read 
register 1 

Read 
register 2 

Registers 
Write 
register 

Wri te 
data 

RegWrite I 
16 

Read 
data 1 i----~ 

Read 
data 2 

ALU 
1-----1 Address 

1...11------------i Write 
data 

32 

MemWrite 

Read 
data 

Data 
memory 

MemRead 

FIGURE 5.9 The datapath for a load or store does a register access, followed by a memory address calculation, 
then a read or write from memory, and a write into the register file If the Instruction is a load. 
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Since we compute PC + 4 (the address of the next instruction) in the in­
struction fe tch datapath, it is easy to use this va lue as the base for com­
puting the branch target address. 

• The architecture also states that the offset field is shifted left 2 bits so 
that it is a word offset; this shift increases the effective range of the offset 
field by a factor of four. 

To dea l with the latter complication, we will need to shift the offset field by 
two. 

In addition to computing the branch target address, we must also determine 
whether the next instruction is the ins truction that follows sequentially or the 
instruction at the branch target address. When the condition is true (i.e., the 
operands are equal), the branch target address becomes the new PC, and we 
say that the branch is taken. If the operands are not equal, the incremented PC 
should replace the current PC (just as for any other normal instruction); in this 
case, we say that the branch is not taken. 

Thus, the branch datapath must do two operations: compute the branch 
target address and compare the register contents. (Branches also require that 
we modify the instruction fetch portion of the datapath, which we will deal 
with shortly.) Figure 5.10 shows the branch datapath. To compute the branch 
target address, the branch data path includes a sign ex tension unit, just like that 
in Figure 5.8, and an adder. To perfom1 the compare, we need to use the regi s­
ter file shown in Figure 5.6 to supply the two register operands (a lth ough we 

.• will not need to wri te into the register fil e). In addition, the comparison ca n be 
done using the ALU we designed in Chapter 4. Since that ALU provides an 
output signal that indicates whether the result was 0, we can send the two reg­
ister operands to the ALU with the control set to do a subtract. If the Zero 
signal out of the ALU unit is asserted, we know that the two values are equal. 
Although the Zero output always signals if the resu lt is 0, we will be using it 
only to implement the equal test of branches. Later, we will show exactl v how 
to connect the control signals of the ALU for use in the data path. , 

The jump ins truction operates by replacing the lower 28 bits of the PC \-vith 
the lower 26 bits of the instruction shifted left by 2 bits. This shift is accom­
plished simply by concatenating 00 to the jump offset (as d escribed in the elab­
ora tion in Chapter 3, page 150). 

Now that we have examined the datapaths needed for the individual in­
struction classes, we can combine them into a single datapath and i1dd th e con­
trol to complete the implementation, The datapaths shown in Figures 55, :i.7, 
5.9, and SJ0 will be the bui lding blocks for two different implementations, In 
the next section, we w ill create an implementa tion that uses a single long clock 
cycle for every instruction. In section SA, we will look at an implementation 
that uses multiple shorter clock cycles for every instruction. 
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Instruction 

PC + 4 from instruction datapath 

Read 
register 1 

Read 
register 2 

Registers 
Write 
register 

Write 
data 

RegWrite 

16 

Read 
data 1 1--+----~ 

Read 
data 2 1-+----+I 

32 

ALU Zero 

Branch target 

To branch 
control logic 

FIGURE 5.10 The datapath for a branch uses the ALU to evaluate the ~ranch condit ion 
and a separate adder to compute the branch target as the sum of the m~remented PC 
and the sign-extended, lower 16 bits of the instruction (the branch d1splacem_ent ), 
shifted left 2 bits. The unit labeled Shift left 2 is simply a routmg of the signals between mput 
and output that adds OOtwo to the low-order end of the sign-extended offset field; no actual sluft 
hardware is needed, since the amount of the "shift" is constant. Smee we know that the offset was 
sign-extended from 16 bits, the shift will throw away only "sign bits." Control logic 1s used to 
decide whether the incremented PC or branch target should replace the PC, based on the Zero 

output of the ALU. 

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the 
instruction immediately fol lowing the branch is always executed, independent . of 
whether the branch condition is true or fa lse. When the condition is false , t_he execution 
looks like a normal branch . When the cond ition is true, a delayed branch first executes 
the instruction immediately fol lowing the branch in sequential instruction order before 
jumping to the specified branch target address. The motivation for_ delayed branches 
ari ses from how pipelining affects branches (see section 6 .6). For s1mpl1c1ty, we ignore 
delayed branches in this chapter and implement a nondelayed beq instruction. 

• 
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• A Simple Implementation Scheme 

In this section, we look at what might be thought of as the simplest possible 
implementation of our MIPS subset. We build this simple datapath and its 
control by assembling the datapath segments of the last section and adding 
control lines as needed. This simple implementation covers load word (l w), 
store word (sw), branch equal (beq), and the arithmetic-logical instructions 
add, sub, and, or, and set on less than . We will later enhance the design to 
include a jump instruction (j). 

Creating a Single Datapath 

Suppose we were going to build a datapath from the pieces we looked at in 
Figures 5.5, 5.7, 5.9, and 5.10. The simplest datapath might attempt to execute 
all instructions in 1 clock cycle. This means that no datapath resource can be 
used more than once per instruction, so any element needed more than once 
must be duplicated. We therefore need a memory for instructions separate 
from one for data. Although some of the functional units will need to be 
duplicated when the individual datapaths of the previous section are com­
bined, many of the elements can be shared by different instruction flows. 

To share a datapath element between two different instruction classes, we 
~.. may need to allow multiple connections to the input of an element and have a 

control signal select among the inputs. This selection is commonly done with 
a device called a multiplexor, although this device might better be called a data 
selector. The multiplexor, which was introduced in the last chapter (Figure 4.8 
on page 231), selects from among several inputs based on the setting of its con­
trol lines. 

Example 

Composing Datapaths 

The arithmetic-logical (or R-type) instruction data path of Figure 5.7 on 
page 347 and the memory instruction data path of Figure 5.9 on page 348 
are quite similar. The key differences are the following: 

• The second input to the ALU unit is either a register (if it's an R-type 
instruction) or the sign-extended lower half of the instruction (if it's a 
memory instruction). 

• The value stored into a destination register comes from the ALU (for 
an R-type instruction) or the memory (for a load). 
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Show how to combine the two datapaths using multiplexors, without 
duplicating the functional units that are in common in Figures 5.7 and 5.9. 
Ignore the control of the multiplexors. 

Answer To combine the two datapaths and use only a single register file and an 
ALU, we must support two different sources for the second ALU input, as 
well as two different sources for the data stored into the register file . Thus 
one multiplexor is placed at the ALU input and another at the data input 
to the register file. Figure 5.11 shows the combined datapath. 

Instruction 

The instruction fetch portion of the datapath, shown in Figure 5.5 on page 
345, can easily be added to the datapath in Figure 5.11. Figure 5.12 shows the 
result. The combined datapath includes a memory for instructions and a sepa­
rate memory for data. This combined datapath requires both an adder and an 
ALU, since the adder is used to increment the PC while the other ALU is used 
for executing the instruction in the same clock cycle. 

Now we can combine all the pieces to make a simple datapath for the MIPS 
architecture by adding the data path for branches from Figure 5.10 on page 350. 
Figure 5.13 on page 354 shows the datapath we obtain by composing the 
separate pieces. The branch instruction uses the main ALU for comparison of 
the register operands, so we must keep the adder in Figure 5.10 for comput­
ing the branch target address. An additional multiplexor is required to select 
either the sequentially following instruction address (PC + 4) or the branch 
target address to be written into the PC. 
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register 1 Read MemWrite 
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data 1 1--------+1 

ALUSrc 
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data 2 i--,---, Write 
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data 

RegWrite 
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FIGURE 5.11 Combining the datapaths for the memory Instructions and the R-type Instructions. This example 
shows how a single datapath can be assembled from the pieces in Figures 5.7 and 5.9 by adding multiplexors. The added 
multiplexors and connections have been highlighted. The control lines for the multiplexors are also shown. 
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Write Read 
register data 2 

Write 
data 

RegWrite 

16 

MemWnte 

MemtoReg 
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data 

Data 
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FIGURE 5.12 The Instruction fetch portion of the datapath from Figure 5.5 Is appended to the datapath of 
Figure 5.11 that handles memory and ALU Instructions. The a_ddition is highlighted. The result is a datapath that sup­
ports many operat10ns of the MIPS mstruct10n set-branches and Jumps are the major missing pieces. 

Now that we have completed this simple datapath, we can add the control 
unit. The control unit must be able to take inputs and generate a write signal 
for each state element, the selector control for each multiplexor, and the ALU 
control. The ALU control is different in a number of ways, and it will be useful 
to design it first before we design the rest of the control unit. 

The ALU Control 

Recall from Chapter 4 that the ALU has three control inputs. Only five of the 
possible eight input combinations are used. Figure 4.20 on page 240 showed 
the five following combinations: 

ALU control input Function 

000 AND 

001 OR 

010 add 

110 subtract 

111 set on less than 
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FIGURE 5 13 The simple datapath for the MIPS architecture combines the elements required by different instruc­

t ion clas~es. This datapath can execute the basic instructions 0oad / storde word/LU ~hera~~;:,;;:d~::1p1:~~s~;;;:~:~~: 
1 The additions to Figure 5.12 which are all lughhghted, are use to imp emen ran • . 

clock cyche. f F' 5 10 Am' ultiplexor is also needed since the value written into the PC can be either the sequen-for branc es come rom 1gure . . , 
tially incremented PC or the branch target PC. The support for jumps will be added later. 

Depending on the instruction class, the ALU will need to perform one of these 
five functions. For load word and store word instructions, we use th~ ALU to 
compute the memory address by addition. For the R-type mstruct1ons, the 
ALU needs to perform one of the five actions (AND, OR, subtract'. add,_ or s~t 
on less than), depending on the value of the 6-bit funct (or function) field m 
the low-order bits of the instruction (see Chapter 3, page 118). For branch 
equal, the ALU must perform a subtraction. . 

We can generate the 3-bit ALU contro~ input ~sing a small c?ntrol umt _that 
has as inputs the function field of the instruction and a 2-bit_ control field, 
which we call ALUOp. ALUOp indicates whether the operation to be per­
formed should be add (00) for loads and stores, subtract (01) for beq, or deter­
mined by the operation encoded in the funct field (10). The output ot the ALU 
control unit is a 3-bit signal that directly controls the ALU by generating one of 
the five 3-bit combinations shown previously. 

5.3 A Simple lmplementatlon Scheme 
355 

In Figure 5.14, we show how to set the ALU control inputs based on the 2-bit 
ALUOp control and the 6-bit function code. For completeness, the relationship 
between the ALUOp bits and the instruction opcode is also shown. Later in 
this chapter we will see how the ALUOp bits are generated from the main con­
trol unit. 

This style of using multiple levels of decoding (i.e., the main control unit 
generates the ALUOp bits, which then are used as input to the ALU control 
that generates the actual signals to control the ALU unit) is a common imple­
mentation technique. Using multiple levels of control can reduce the size of the 
main control unit. Using several smaller control units may also potentially in­
crease the speed of the control unit. Such optimizations are important, since 
the control unit is often performance-critical. 

There are several different ways to implement the mapping from the 2-bit 
ALUOp field and the 6-bit funct field to the three ALU operation control bits. 
Because only a small number of the 64 possible values of the function field are 
of interest and the function field is used only when the ALUOp bits equal 10, 
we can use a small piece of logic that recognizes the subset of possible values 
and causes the correct setting of the ALU control bits. 

As a step in designing this logic, it is useful to create a truth table for the in­
teresting combinations of the function code field and the ALUOp bits, as we've 
done in Figure 5.15; this truth table shows how the 3-bit ALU control is set de­
pending on these two input fields. Since the full truth table is very large (28 = 
256 entries) and we don't care about the value of the ALU control for many of 
these input combinations, we show only the truth table entries for which the 

·~ ALU control must have a specific value. Throughout this chapter, we will use 

Functfield 

LW 00 load word xxxxxx add 010 
SW 00 store word xxxxxx add 010 
Branch equal 01 branch equal xxxxxx subtract 110 
R-type 10 add 100000 add 

010 ~ R-type 10 subtract 100010 subtract 110 
R-type 10 AND 100100 and 000 
R-type 10 OR 100101 or 

001 ~ R-type 10 set on less than 101010 set on less than 111 

---• lili!I --. ' ' 

FIGURE 5.14 How the ALU control bits are set depends on the ALUOp control bits and 
the different function codes for the R-type instruction. The opcod e, listed in the first col­
umn, determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice 
that when the ALUOp code is 00 or 01 , the desired ALU action does not depend on the function 
code field; in this case, we say that we "don ' t care" about the value of the function code, and the 
funct field is shown as XXXXXX. When the ALUOp value is 10, then the fun ction code is used to 
set the ALU control input. 
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ALUOp Funct field 
Operation & .\(lf,m&&.,llf,f!i,WIIIIIIZllilmlilm 

0 0 X X X X X X 010 

X 1 X X X X X X 110 

1 X X X 0 0 0 0 010 

1 X X X 0 0 1 0 110 

1 X X X 0 1 0 0 000 

1 X X X 0 1 0 1 001 

1 X X X 1 0 1 0 111 

FIGURE 5.15 The truth table for the three ALU control bits (called Operation). The inputs 
are the ALUOp and function code field. Only the entries for which the ALU control is asserted 
are shown. Some don't-care entries have been added. For exa mple, the ALUOp does not use the 
encoding 11, so the truth table can contain entries 1X and Xl , rather than 10 and 01. Also, when 
the function field is used, the first two bits (FS and F4) of these instructions are always 10, so they 
are don' t-care terms and are replaced with XX in the truth table. 

this practice of showing only the truth table entries that must be asserted and 
not showing those that are all zero or don't care. (This practice has a disadvan­
tage, which we discuss in section C.2 of Appendix C.) 

Because in many instances we do not care about the values of some of the 
inputs and to keep the tables compact, we also include "don't-care" terms. A 
don' t-care term in this truth table (represented by an X in an input column) in­
dicates that the output does not depend on the value of the input correspond­
ing to that column. For example, when the ALUOp bits are 00, as in the first 
line of the table in Figure 5.15, we always set the ALU control to 010, indepen­
dent of the function code. In this case, then, the function code inputs will be 
don't cares in this line of the truth table. Later, we will see examples of another 
type of don't-care term. If you are unfamiliar with the concept of don't-care 
terms, see Appendix B for more information . 

Once the truth table has been constructed, it can be optimized and then 
turned into gates. This process is completely mechanical. Thus, rather than 
show the final steps here, we describe the process and the result in section C.2 
of Appendix C. 

Designing the Main Control Unit 

Now that we have described how to design an ALU that uses the function 
code and a 2-bit signal as its control inputs, we can return to looking at the 
rest of the control. To start this process, let's identify the fields of an instruc­
tion and the control lines that are needed for the datapa th we constructed in 
Figure 5.13 on page 354. To understand how to connect the fields of an 
instruction to the datapath, it is useful to review the formats of the three 
instruction classes: the R-type, branch, and load /store instructions. These 
forma ts are shown in Figure 5.16. 

5.3 A Simple Implementation Scheme 

Field 0 rs rt 
Bit positions 31-26 25-21 20-16 

a. R-type instruction 

Field 35 or 43 rs rt 
Bit positions 31- 26 25-21 20-16 

--, 
rd 

15-11 
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b. Load or store instruction 

Field 4 
Bit positions 31-26 

C. Branch instruction 

rs 

25- 21 
rt 

20-16 
address 

15-0 

FIGURE 5.16 The three instruction classes (R-type, load and store, and branch) use two different instruction 
formats. The jump instructions use another format, which we will discuss shortl y. (a) Instruction format for R-format 
instructions, which all have an opcode of 0. These instructions have three register opera nds: rs, rt, and rd. Fields rs and rt 
are sources, and rd is the destination . The ALU function is in the funct field and is decoded by the ALU con tro l design in 
the previous section. The R-type mstruct10ns that we implement are add, s ub, a nd, o r, and s l t . The shamt field is used 
?nly fm shifts; we will ignore it in this chapter. (b) Instruction format for load (opcode = 35,cnl and store (opcode = 43tenl 
mstruct10ns. The register rs is the base register that is added to the 16-bit address field to form the memory address. For 
loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value should be stored 
into memory. (c) Instruction format for branch equal (opcode = 4). The registers rs and rt are the source registers that are 
compared for equality. The 16-bit address fi eld is sign-extended, shifted, and added to the PC to compute the branch target 
address. 

'~ 

There are several major observations about this instruction format that we 
will rely on: 

• The op field, also ca lled the opcode, is always conta ined in bits 31-26. We 
will refer to this field as Op[5-0]. 

• The two registers to be read are a lways specified by the rs and rt fi elds, 
at positions 25-21 and 20-16. This is true for the R-type instructions, 
branch equal, and for store. 

• The base register for load and store instructions is always in bit posi­
tions 25-21 (rs). 

• The 16-bit offset for branch equa l, load, and store is always in positions 
15-0. 

• The destination register is in one of two places. For a load it is in bit 
positions 20- 16 (rt), while for an R-type instruction it is in bit positions 
15-11 (rd). Thus we will need to add a multiplexor to select which field 
of the instruction is used to indicate the register number to be written. 

Using this information, we ca n add the instruction labels and ex tra multi­
plexor (for the Write register number input of the register file) to the simple 
datapath. Figure 5.17 shows these addi tions plus the ALU control block, the 
write signals for state elements, the read signal for the data memory, and the 
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Signal name Effect when deasserted Effect when asserted 

I RegDst I The register destination number for the Write I The register destination number for the Write register 
register comes from the rt field (bits 20-16). comes from the rd field (bits 15-11). 

RegWrite None The register on the Write register input is written with the 
va lue on the Write data input. 

ALUSrc The second ALU operand comes from the second The second ALU operand is the sign-extended, lower 16 
register file output (Read data 2). bits of the instruction. 

PCSrc The PC is replaced by the output of the adder that The PC is replaced by the output of the adder that 
computes the value of PC + 4. computes the branch target. 

MemRead None Data memory contents designated by the address input are 
put on the Read data output. 

MemWrite None Data memory contents designated by the address input are 
replaced by the value on the Write data input. 

MemtoReg The va lue fed to the register Write data input The value fed to the register Write data input comes from 
comes from the ALU. the data memory. 

FIGURE 5.18 The effect of each of the seven control signals. When the 1-bit control to a two-way multiplexor is 
asserted, the multiplexor selects the input corresponding to l. Otherwise, if the control is deasserted, the multiplexor 
selects the O input. Remember that the state elements a ll have the clock as an implicit input and that the clock is used in 
controlling writes. The clock is never ga ted externa lly to a state element, since this can create timing problems. (See Appen­
dix B for further discussion of this problem.) 

control signals for the multiplexors. Since all the multiplexors have two inputs, 
they each require a single control line. 

Figure 5.17 shows seven single-bit control lines plus the 2-bit ALUOp con­
trol signal. We have already defined how the ALUOp control signal works, and 

.... it is useful to define what the seven other control signals do informally before 
we determine how to set these control signals during instruction execution. 
Figure 5.18 describes the function of these seven control lines. 

Now that we have looked at the function of each of the control signals, we 
can look at how to set them. The control unit can set all but one of the control 
signals based solely on the opcode field of the instruction. The PCSrc control 
line is the exception . That control line should be set if the instruction is branch 
on equal (a decision that the control unit can make) and the Zero output of the 
ALU, which is used for equality comparison, is true. To generate the PCSrc 
signal, we will need to AND together a signal from the control unit, which we 
call Branch, with the Zero signal out of the ALU. 

These nine control signals (seven from Figure 5.18 and two for ALUOp) can 
now be set on the basis of six input signals to the control unit, which are the 
opcode bits. The datapath with the control unit and the control signals are 
shown in Figure 5.19. 

Before we try to write a set of equations or a truth table for the control unit, 
it will be useful to try to define the control func tion informally. Because the set­
ting of the con trol lines depends only on the opcode, we define whether each 
control signal should be 0, 1, or don' t care (X), for each of the opcode values. 
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Figure 5.20 defines how the control signals should be set for each opcode; this 
information follows directly from Figures 5.14, 5.18, and 5.19. 

Operation of the Datapath 

With the information contained in Figures 5.18 and 5.20, we can design the 
control unit logic, but before we do that, let's look at how each instruction 
uses the datapath. In the next few figures, we show the flow of three different 
instruction classes through the datapath. The asserted control signals and 
active datapath elements are highlighted in each of these. Note that a multi­
plexor whose control is O has a definite action, even if its control line is not 
highlighted. Multiple-bit control signals are highlighted if any constituent 
signal is asserted. 

Let's begin with an R-type instruction, such as add $tl , $t2 , $t 3. Rather 
than looking at the entire data path as one piece of combinational logic, it is eas­
ier to think of an instruction executing in a series of steps, focusing our atten­
tion on the portion of the datapath associated with each step. There are four 
steps to execute an R-type instruction: 

1. An instruction is fetched from the instruction memory and the PC is 
incremented. Figure 5.21 shows this first step . The active units and 
asserted control lines are highlighted . The sa me format is followed for 
the next three steps. 

----··••111111 R-format 1 0 

lw 0 1 

SW X 1 
-~ - ~ 

beq X 0 

0 

1 

X 

X 
lffi . M 0 

0 

0 

1 

1 0 

0 0 

0 0 

0 1 

FIGURE 5.20 The setting of the control lines Is completely determined by the opcode fields of the instruction. 
The first row of the table corresponds to the R-format instructions (add, sub, and, or, and s l t ). For a ll these instructions, 
the source register fields are rs and rt and the des tination regis ter fi eld is rd; this defines how the signa ls ALUSrc and 
RegDst are set. Furthermore, an R-type instruction writes a register (RegWrite = 1), but neither reads nor writes data mem­
ory. When the Branch control signa l is 0, the PC is unconditionally replaced with PC + 4; otherwise, the PC is replaced by 
the branch target if the Zero outpu t of the ALU is also high. The ALUOp field for R-type ins tructions is set to 10 to indicate 
that the ALU control should be generated from the fun ct fi eld. The second and third rows of this table give the control sig­
nal settings for l wa nd sw. These ALUSrc and ALUOp fi elds are set to perform the address calcu lation. The MemRead and 
MemWrite are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be 
stored into the rt register. The branch instruction is similar to an R-forrna t opera tion, since it sends the rs and rt registers to 
the ALU. The ALUOp field for branch is set for a subtract (ALU control = 01 ), which is used to test for equa li ty. Notice that 
the MemtoReg field is irrelevant when the RegWrite s ignal is 0-since the register is not being written, the va lue of the data 
on the register data write port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for 
don' t care. Don' t ca res can also be added to RegDst when RegWrite is 0. This type of don't care must be added by the 
designer, since it depends on knowledge of how the data path works. 
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2. Two registers, $t2 and $t3, are read from the register file as shown in 
Figure 5.22 on page 364. The main control unit computes the setting of 
the control lines during this step also. 

3. The ALU operates on the data read from the register file, using the func­
tion code (bits 5-0, which is the funct field, of the instruction) to gener­
ate the ALU function . Figure 5.23 on page 365 shows the operation of 
this step. 

4. The result from the ALU is written into the register file using bits 15-11 
of the instruction to select the destination register ($t 1). Figure 5.24 on 
page 366 shows the final step added to the previous three. 

Remember that this implementation is combinational. That is, it is not really 
a series of four distinct steps. The datapath really operates in a single clock cy­
cle, and the signals within the datapath can vary unpredictably during the 
clock cycle. The signals stabilize roughly in the order of the steps given above 
because the flow of information follows this order. Thus, Figure 5.24 shows not 
only the action of the last step, but essentially the operation of the entire data­
path when the clock cycle actually ends. 

We can illustrate the execution of a load word, such as 

l w $tl, offset($t2) 

in a style similar to Figure 5.24. Figure 5.25 on page 368 shows the active func­
tional units and asserted control lines for a load. We can think of a load 
instruction as operating in five steps (similar to the R-type executed in four): 

1. An instruction is fetched from the instruction memory and the PC is 
incremented . 

2. A register ($t2) value is read from the register file. 

3. The ALU computes the sum of the value read from the register file and 
the sign-extended, lower 16 bits of the instruction (offset ). 

4. The sum from the ALU is used as the address for the data memory. 

5. The data from the memory unit is written into the register file; the regis­
ter destination is given by bits 20-16 of the instruction ($t 1) . 
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FIGURE 5.22 The second phase in the execution of R-type instructions reads the two source registers from the register file. The main 
control unit also uses the opcode fi e ld to determine the control line setting. These units become acti ve in addition to the units active during the 
instruction fetch portion, shown in Figure 5.21 . 
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FIGURE 5.23 The third phase of execution for R-type instructions involves the ALU operating on the register data operands. The control 
line values are a ll set, and the ALU control has been computed. The ALU operates on the data. 
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Finally, we can show the operation of the branch-on-equal instruction, such 
as beq $tl , $t2 , offset, in the same fashion. It operates much like an 
R-format instruction, but the ALU output is used to determine whether the PC 
is written with PC + 4 or the branch target address. Figure 5.26 shows the four 
steps in execution: 

1. An instruction is fetched from the instruction memory and the PC is 
incremented. 

2. Two registers, $ t 1 and $ t 2, are read from the register file. 

3. The ALU performs a subtract on the data values read from the register 
file . The value of PC + 4 is added to the sign-extended, lower 16 bits of 
the instruction (offset) shifted left by two; the result is the branch tar­
get address. 

4. The Zero result from the ALU is used to decide which adder result to 
store into the PC. 

In the next section, we will examine machines that are truly sequential, 
namely, those in which each of these steps is a distinct clock cycle. 

Finalizing the Control 
Now that we have seen how the instructions operate in steps, let's continue 
with the control implementation. The control function can be precisely 
defined using the contents of Figure 5.20 on page 361. The outputs are the 

-~ control lines, the input is the 6-bit opcode field, Op [5-0]. Thus we can create 
a truth table for each of the outputs. Before doing so, let's write down the 
encoding for each of the opcodes of interest in Figure 5.20, both as a decimal 
number and as a series of bits that are input to the control unit: 

llllllla,Htwa.maa.saa.wwwa.saa,1+1,a 
Opcode in binary 

' . ' ' . ' ' ' . 
R-format Oien 0 0 0 0 0 0 

-
lw 351en 1 0 0 0 1 1 I 
SW 431en 1 0 1 0 1 1 I 

1--

beq 41en 0 0 0 1 0 0 
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FIGURE 5.25 The operation of a load instruction with the simple datapath control scheme. A store instruction would operate very s imilarly. 
The main difference would be that the memo ry control would indicate a write rather than a read, the second register va lue read would be used for 
the data to store, and the operation of writing the data memory va lue to the register fi le would not occur. 
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FIGURE 5.26 The datapath in operation for a branch equal instruction. After using the register file and ALU to perform the compare, the Zero 
output is used to select the next program counter from between the two cand id ates. 
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Input or output Signal name 1-Jl.,J,, tii __ _ 
I 

Op5 0 1 1 0 

Op4 0 0 0 0 

Op3 0 0 1 0 
Inputs 

Op2 0 0 0 1 

Opl 0 1 1 0 

OpO 0 1 1 0 

RegDst 1 0 X X 

ALUSrc 0 1 1 0 

MemtoReg 0 1 X X 

RegWrite 1 1 0 0 

Outputs MemRead 0 1 0 0 

MemWrite 0 0 1 0 

Branch 0 0 0 1 

ALUOpl 1 0 0 0 

ALUOpO 0 0 0 1 

FIGURE 5.27 The control function for the simple single-cycle Implementation is com• 
pletely specified by this truth table. The top half of the table gives the combinations of input 
signals that correspond to the four opcodes that determine the control output settings. (Remem­
ber that Op [5-0] corresponds to bits 31-26 of the mstruchon, which 1s the op field .) The bottom 
portion of the table gives the outputs. Thus, the output RegWrite is asserted for two different 
combinations of the inputs. If we consider only the four opcodes shown m this table, then we can 
simplify the truth table by using don't cares in the input portion. For example, we can detect an 
R-format instruction with the expression OpS • Op2, since this is sufficient to distinguish the R­
format instructions from l w, sw, and beq . We do not take advantage of this simplification, since 
the rest of the MIPS opcodes are used in a full implementation. 

Using this information, we can now describe the logic in the control unit in 
one large truth table that combines all the outputs, as in Figure 5.27. It com­
pletely specifies the control function, and we can implement it directly in gates 
in an automated fashion. We show this final step in section C.2 in Appendix C. 

Now, let's add the jump ins truction to show how the basic datapath and 
control can be extended to handle other instructions in the instruction set. 

Implementing Jumps 

Figure 5.19 on page 360 shows the implementation of many of the instruc­
tions we looked at in Chapter 3. One class of instructions missing is that of 
the jump instruction. Extend the datapath and control of Figure 5.19 to in­
clude the jump instruction. Describe how to set any new control lines. 

Answer 

-. 
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Field 2 address 
Bit positions 31-26 25-0 

FIGURE 5.28 Instruction format for the jump instruction (opcode= 2). The destination 
address for a jump instruction is formed by concatenating the upper 4 bits of the current 
PC + 4 to the 26-bit address field in the jump instruction and adding 00 as the 2 low-order 
bits. 

The jump instruction looks somewhat like a branch instruction but com­
putes the target PC differently and is not conditional. Like a branch, the 
low-order 2 bits of a jump address are always OOtwo· The next lower 26 bits 
of this 32-bit address come from the 26-bit immediate field in the instruc­
tion, as shown in Figure 5.28. The upper 4 bits of the address that should 
replace the PC come from the PC of the jump instruction plus four. Thus, 
we can implement a jump by storing into the PC the concatenation of 

• the upper 4 bits of the current PC+ 4 (these are bits 31-28 of these­
quentially following instruction address) 

• the 26-bit immediate field of the jump instruction 

• the bits OOtwo 

Figure 5.29 shows the addition of the control for jump added to 
Figure 5.19. An additional multiplexor is used to select the source for the 
new PC value, which is either the incremented PC (PC+ 4), the branch tar­
get PC, or the jump target PC. One additional control signal is needed for 
the additional multiplexor. This control signal, called Jump, is asserted 
only when the instruction is a jump-that is, when the opcode is 2. 

Why a Single-Cycle Implementation Is Not Used 

Although the single-cycle design will work correctly, it would not be used in 
modern designs because it is inefficient. To see why this is so notice that the 
clock cycle must have the same length for every instruction in this single-cycle 
design, and the CPI (see Chapter 2) will therefore be 1. Of course, the clock 
cycle is determined by the longest possible path in the machine. This path is 
almost certainly a load instruction, which uses five functional units in 
series: the instruction memory, the regis ter file, the ALU, the data memory, 
and the register file. Although the CPI is 1, the overall performance of a 
single-cycle implementation is not likely to be very good, since several of the 
instruction classes could fit in a shorter clock cycle. 
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Performance of Single-Cycle Machines 

Assume that the operation times for the major functional units in this im­
plementation are the following: 

• Memory units: 2 nanoseconds (ns) 

• ALU and adders: 2 ns 

• Register file (read or write): 1 ns 

Assuming that the multiplexors, control unit, PC accesses, sign extension 
unit, and wires have no delay, which of the following implementations 
would be faster and by how much? 

l. An implementation in which every instruction operates in 1 clock 
cycle of a fixed length. 

2. An implementation where every instruction executes in 1 clock 
cycle using a variable-length clock, which for each instruction is 
only as long as it needs to be. (Such an approach is not terribly 
practical, but it will allow us to see what is being sacrificed when all 
the instructions must execute in a single clock of the same length.) 

To compare the performance, assume the following instruction mix: 24% 
loads, 12% stores, 44% ALU instructions, 18% branches, and 2% jumps. 

Let's start by comparing the CPU execution times. Recall from Chapter 2 
that 

CPU execution time = Instruction count x CPI x Clock cycle time 

Since CPI must be 1, we can simplify this to 

CPU execution time = Instruction count x Clock cycle time 
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We need only find the clock cycle time for the two implementations, since 
the instruction count and CPI are the same for both implementations. The 
critical path for the different instruction classes is as follows: 

- Functional units used by the instruction class 

ALU type Instruction fetch Register access ALU Register access 

Load word Instruction fetch Register access ALU Memory access Register access 

Store word Instruction fetch Register access ALU Memory access 

Branch Instruction fetch Register access ALU 

Jump Instruction fetch 

Using these critical paths, we can compute the required length for each 
instruction class: 

. . . . . 
- -

[ · ., .. . .. . . . 
ALU type 2 1 2 0 1 6 ns 

Load word 2 1 2 2 1 8 ns 

Store word 2 1 2 2 7 ns 

Branch 2 1 2 5 ns 

Jump 2 2 ns 

The clock cycle for a machine with a single clock for all instructions will be 
determined by the longest instruction, which is 8 ns. (This timing is ap­
proximate, since our timing model is quite simplistic. In reality, the timing 
of modern digital systems is complex, often allowing time to be borrowed 
from one clock cycle for use in the next.) 

A machine with a variable clock will have a clock cycle that varies be­
tween 2 ns and 8 ns. We can find the average clock cycle length for a ma­
chine with a variable-length clock using the information above and the 
instruction frequency distribution. 

Thus, the average time per instruction with a variable clock is 

CPU clock cycle = 8 x 24 % +7 x12 % +6x44 % +5 x 18 % +2 x 2% 

= 6.3 ns 
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Example 

Since the variable clock implementation has a shorter average clock 
cycle, it is clearly faster. Let's find the performance ratio: 

CPU performancevariable clock = CPU execution timesingle clock 

CPU performancesingle clock CPU execution timevariable clock 

= IC x CPU clock cyclesingle clock 

IC X CPU clock cycle variable clock 

= CPU clock cyclesingle clock 

CPU clock cyclevariable clock 

8 
= 6.3 = 1.27 

The variable clock implementation would be 1.27 times faster. Unfortu­
nately, implementing a variable-speed clock for each instruction class is 
extremely difficult, and the overhead for such an approach could be larger 
than any advantage gained. As we will see in the next section, an alterna­
tive is to use a shorter clock cycle that does less work and then vary the 
number of clock cycles for the different instruction classes. 

The penalty for using the single-cycle design with a fixed clock cycle is sig­
nificant, but might be considered acceptable for this small instruction set. 
However, if we tried to implement the floating-point unit or an instruction set 
with more complex instructions, this single-cycle design wouldn't work well 
at all. Let's look at an example with floating point. 

Performance of a Single-Cycle CPU with Floating-Point Instructions 

Suppose we have a floating-point unit that requires 8 ns for a floating­
point add and 16 ns for a floating-point multiply. All the other functional 
unit times are as in the previous example, and a floating-point instruction 
is like an arithmetic-logical instruction, except that it uses the floating­
point ALU rather than the main ALU. Find the performance ratio between 
an implementation in which the clock cycle is different for each instruction 
class and an implementation in which all instructions have the same clock 
cycle time. Assume the following: 
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• All loads take the same time and com.prise 31 % of the instructions. 

• All stores take the same time and comprise 21 % of the instructions. 

• R-format instructions comprise 27% of the mix. 

• Branches comprise 5% of the instructions, while jumps comprise 2%. 

• FP add and subtract take the same time and together total 7% of the 
instructions. 

• FP multiply and divide take the same time and together total 7% of the 
instructions. 

From the previous example, we know that 

CPU performance variable clock _ CPU clock cyclesingle clock 

CPU performancesingle clock - CPU clock cyclevariable clock 

The cycle time for the single-cycle machine will be equal to the longest in­
struction time, which is floating-point multiply. The time for a floating­
point multiply, and thus the clock cycle, is 2 + 1 + 16 + 1 = 20 ns. 

Consider a machine whose instructions have different cycle times. The 
time for a floating-point add instruction is 2 + 1 + 8 + 1 = 12 ns. Multiplying 
the cycle times by the instruction frequencies tells us that the average clock 
length will be 

CPU clock cycle = 8 x 3 l % + 7 x 2 I % + 6 x 27 % + 5 x 5 % 

+2 x 2% + 12 x7% +20 x7% = 8.0ns 

The improvement in performance is 

CPU performancevariable clock = CPU clock cyclesingle clock 

CPU performancesingle clock CPU clock cyclevariable clock 

= 20 = 2 9 7 . 

A variable clock would allow us to improve performance by 2.9 times. 

• 
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Similarly, if we had a machine with more powerful operations and address­
ing modes, instructions could vary from three or four functional unit delays to 
tens or even hundreds of functional unit delays. In addition, because we must 
assume that the clock cycle is equal to the worst-case delay for all instructions, 
we can't use implementation techniques that reduce the delay of the common 
case but do not improve the worst-case cycle time. A single-cycle implementa­
tion thus violates our key design principle of making the common case fast. 

In addition, with this single-cycle implementation, each functional unit can 
be used only once per clock; therefore, some functional units must be duplicat­
ed, raising the cost of the implementation. A single-cycle design is inefficient 
both in its performance and in its hardware cost! 

We can avoid these difficulties by using implementation techniques that 
have a shorter clock cycle-derived from the basic functional unit delays-and 
that require multiple clock cycles for each instruction. The next section ex­
plores this alternative implementation scheme. In Chapter 6, we'll look at an­
other implementation technique, called pipelining, that uses a datapath very 
similar to the single-cycle datapath, but is much more efficient. Pipelining 
gains efficiency by overlapping the execution of multiple instructions, increas­
ing hardware utilization and improving performance. 

A Multicycle Implementation 

In an earlier example, we broke each instruction into a series of steps corre­
sponding to the functional unit operations that were needed. We can use these 
steps to create a multicycle implemen tation. In a multicycle implementation, each 
step in the execution will take 1 clock cycle. The multicycle implementation al­
lows a functional unit to be used more than once per instruction, as long as it 
is used on different clock cycles. This sharing can help reduce the amount of 
hardware required . The ability to allow instructions to take different numbers 
of clock cycles and the ability to share functional units within the execution of 
a single instruction are the major advantages of a multicycle design. 
Figure 5.30 shows the abstract version of the multicycle datapath. Comparing 
this to the datapath for the single-cycle version shown in Figure 5.13 on page 
354, we can see the following differences: 

• A single memory unit is used for both instructions and data. 

• There is a single ALU, rather than an ALU and two adders. 

• One or more registers are added after every major functional unit to 
hold the output of that unit until the value is used in a subsequent clock 
cycle. 
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Instruction 
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FIGURE 5.30 The high-level view of the multlcycle datapath. This picture shows the key elements of the data path: a 
shared memory unit, a single ALU shared among instructions, and the connections among these shared units. The _use of 
shared functional units requires the addition or widening of multiplexors as well as new temporary registers that hold 
data between clock cycles of the same instruction. The additional registers are the Instruction register (IR), the Memory 
data register (MOR), A, B, and ALUOut. 

At the end of a clock cycle, all data that are used in subsequent clock cycles 
must be stored in a state element. Data used by subsequent instructions in a later 
clock cycle is stored into one of the programmer-visible state elements (i.e., the 
register file, the PC, or the memory). In contrast, data used by the same instruc­
tion in a later cycle must be stored into one of these additional registers. 

Thus the position of the additional registers is determined by the two fac­
tors: what combinational units will fit in a clock cycle and what data are need­
ed in later cycles implementing the instruction. In this multicycle design, we 
assume that the clock cycle can accommodate at most one of the following 
operations: a memory access, a register file access (two reads or one write), or 
an ALU operation. Thus any data produced by one of these three functional 
units (the memory, the register file, or the ALU) must be saved into a tempo­
rary register for use on a later cycle. 

The following temporary registers are added to meet these requirements: 

• The Instruction register (IR) and the Memory data register (MOR) are 
added to save the output of the memory for an instruction read and a 
data read, respectively. Two separate registers are used, since, as will be 
clear shortly, both values are needed during the same clock cycle. 

T 
' 
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• The A and B registers are used to hold the register operand values read 
from the register file. 

• The ALUOut register holds the output of the ALU. 

All the registers except the IR hold data only between a pair of adjacent clock 
cycles and will thus not need a write control signal. The IR needs to hold the 
instruction until the end of execution of that instruction, and thus will require 
a write control signal. This distinction will become more clear when we show 
the individual clock cycles for each instruction. 

Because several functional units are shared for different purposes, we need 
both to add multiplexors and to expand existing multiplexors. For example, 
since one memory is used for both instructions and data, we need a multiplex­
or to select between the two sources for a memory address, namely the PC (for 
instruction access) and ALUOut (for data access). 

Replacing the three ALUs of the single-cycle datapath by a single ALU 
means that the single ALU must accommodate all the inputs that used to go to 
the three different ALUs. Handling the additional inputs requires two changes 
to the datapath: 

l. An additional multiplexor is added for the first ALU input. The multi­
plexor chooses between the A register and the PC. 

2. The multiplexor on the second ALU input is changed from a two-way 
to a four-way multiplexor. The two additional inputs to the multiplexor 
are the constant 4 (used to increment the PC) and the sign-extended and 
shifted offset field (used in the branch address computation). 

Figure 5.31 shows the details of the datapath with these additional multi­
plexors. By introducing a few registers and multiplexors, we are able to reduce 
the number of memory units from two to one and eliminate two adders. Since 
registers and multiplexors are fairly small compared to a memory unit or ALU, 
this could yield a substantial reduction in the hardware cost. 

Because the datapath shown in Figure 5.31 takes multiple clock cycles per 
instruction, it will require a different set of control signals. The programmer­
visible state units (the PC, the memory, and the registers) as well as the IR will 
need write control signals. The memory will also need a read signal. We can 
use the ALU control unit from the single-cycle datapath (see Figures 5.15 and 
Appendix C) to control the ALU here as well. Finally, each of the two-input 
multiplexors requires a single control line, while the four-input multiplexor re­
quires two control lines. Figure 5.32 shows the datapath of Figure 5.31 with 
these control lines added. 
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FIGURE 5.31 Multicycle datapath for MIPS handles the basic instructions. Although this data path supports normal 
incrementing of the PC, a few more connections and a multiplexor will be needed for branches and jumps; we will add 
these shortly. The additions versus the single-clock data path include several registers (IR, MOR, A, B, ALUOut), a multi­
plexor for the memory address, a multiplexor for the top ALU input, and expanding the multiplexor on the bottom ALU 
input into a four-way selector. These small additions allow us to remove two adders and a memory unit. 

The multicycle datapath still requires additions to support branches and 
jumps; after these additions, we will see how the instructions are sequenced 
and then generate the datapath con trol. 

With the jump instruction and branch instruction, there are three possible 
sources for the value to be written into the PC: 

l. The output of the ALU, which is the value PC + 4 during instruction 
fetch . This value should be stored directly into the PC. 

2. The register ALUOut, which is where we will store the address of the 
branch target after it is computed. 

3. The lower 26 bits of the Instruction register (IR) shifted left by two and 
concatenated with the upper 4 bits of the incremented PC, which is the 
source when the instruction is a jump. 

As we observed when we implemented the single-cycle control, the PC is 
written both unconditionally and conditionally. During a normal increment 
and jumps, the PC is written unconditionally. If the instruction is a conditional 
branch, the incremented PC is replaced with the value in ALUOut only if the 
two designated registers are equal. Thus the control needs two PC write sig­
nals, which we will call PCWrite and PCWriteCond. 
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We need to connect these two control signals to the PC write control. Just as 
we did in the single-cycle datapath, we will use a few gates to derive the PC 
write control signal from PCWrite, PCWriteCond, and the Zero signal of the 
ALU, which is used to detect if the two register operands of a beq are equal. To 
determine whether the PC should be written during a conditional branch, we 
AND together the Zero signal of the ALU with the PCWriteCond. The output 
of this AND gate is then ORed with PCWrite, which is the unconditional PC 
write signal. The output of this OR gate is connected to the write control signal 

for the PC. 
Figure 5.33 shows the complete multicycle datapath and control unit, in-

cluding the additional control signals and multiplexor for implementing the 

PC updating. 
Before examining the steps to execute each instruction, let us informally ex-

amine the effect of all the control signals (just as we did for the single-cycle de­
sign in Figure 5.18 on page 359). Figure 5.34 shows what each control signal 
does when asserted and deasserted. 

Elaboration: To reduce the number of signal lines interconnecting the functional 
units, designers can use shared buses. A shared bus is a set of lines that connect mul­
tiple units; in most cases, they include multiple sources that can place data on the bus 
and mu ltiple readers of the value. Just as we reduced the number of functional units for 
the datapath, we can reduce the number of buses interconnecting these units by shar­
ing the buses. For example, there are six sources coming to the ALU ; however, only two 
of them are needed at any one time. Thus, a pair of buses can be used to hold values 
that are being sent to the ALU . Rather than placing a large multiplexor in front of the 
ALU, a designer can use a shared bus and then ensure that only one of the sources is 
driving the bus at any point. Although this saves signal lines , the same number of con­
tro l lines wi ll be needed to control what goes on the bus. The major drawback to using 
such bus structures is a potential performance penalty, since a bus is unlikely to be as 

fast as a point-to-point connection . 

Breaking the Instruction Execution into Clock Cycles 

Given the datapath in Figure 5.33, we now need to look at what should hap­
pen in each clock cycle of the multicycle execution, since this will determine 
what additional control signals may be needed, as well as the setting of the 
control signals. Our goal in breaking the execution into clock cycles should be 
to balance the amount of work done in each cycle, so that we minimize the 
clock cycle time. We can begin by breaking the execution of any instruction 
into a series of steps, each taking 1 clock cycle, which will be roughly bal­
anced in length. For example, we will restrict each step to contain at most one 
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Actions of the 1-bit control signals 

Signal name Effect when deasserted Effect when asserted 

RegDst The register file destination number for the The register file destination number for the Write register 
Write register comes from the rt field . comes from the rd field. 

RegWrite None The general-purpose register selected by the Write register 
number is written with the va lue of the Write data input. 

ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register. 

MemRead None Content of memory at the location specified by the Address 
input is put on Memory data output. 

MemWrite None Memory contents at the location specified by the Address 
input is replaced by value on Write data input. 

MemtoReg The value fed to the register file Write data input The value fed to the register file Write data input comes from 
comes from ALUOut. the MDR. 

lorD The PC is used to supply the address to the ALUOut is used to supply the address to the memory unit. 
memory unit. 

IRWrite None The output of the memory is written into the IR. 

PCWrite None The PC is written; the source is controlled by PCSource. 

PCWriteCond None The PC is written if the Zero output from the ALU is also active. 

Actions of the 2-bit control signals 

Signal name Value Effect 

00 The ALU performs an add operation. 

ALUOp 01 The ALU performs a subtract operation. 

10 The funct field of the instruction determines the ALU operation. 

00 The second input to the ALU comes from the B register. 

01 The second input to the ALU is the constant 4. 
ALUSrcB 10 The second input to the ALU is the sign-extended, lower 16 bits of the IR . 

11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left 
2 bits. 

00 Output of the ALU (PC + 4) is sent to the PC for writing. 

PCSource 
01 The contents of ALUOut (the branch target address) are sent to the PC for writing. 

10 The jump target address (IR[25--0] shifted left 2 bits and concatenated with 

I PC+ 4(31-28]) is sent to the PC for writing. 

FIGURE 5.34 The action caused by the setting of each control signal in Figure 5.33 on page 383. The top table 
describes the 1-bit control signals, while the bottom table describes the 2-bit signals. Only those control lines that affect 
multiplexors have an action when they are deasserted . This information is similar to that in Figure 5.18 on page 359 for the 
single-cycle datapath, but adds several new control lines (IRWrite, PCWrite, PCWnteCond, ALUSrcB, and PCSource) and 
removes control lines that are no longer used or have been replaced (PCSrc, Branch, and Jump). 

ALU operation, or one register file access, or one memory access. With this 
restriction, the clock cycle could be as short as the longest of these operations. 

Recall that at the end of every clock cycle any data values that will be 
needed on a subsequent cycle must be stored into a register, which can be 
either one of the major state elements (e.g., the PC, the register file, or the 
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memory), a temporary register written on every clock cycle (e.g., A, B, MDR, 
or ALUOut), or a temporary register with write control (e.g., IR). Also remem­
ber that because our design is edge-triggered, we can continue to read the cur­
rent value of a register; the new value does not appear until the next clock 
cycle. 

In the single-cycle datapath, each instruction uses a set of datapath 
ele?"'ents _to carry out its execution. Many of the data path elements operate in 
senes, usmg the output of another element as an input. Some datapath ele­
ments operate in parallel; for example, the PC is incremented and the instruc­
tion is read at the same time. A similar situation exists in the multicycle 
data path. All the operations listed in one step occur in parallel within J clock 
cyc!e, while successive steps operate in series in different clock cycles. The lim-
1tat10n of one ALU operation, one memory access, and one register file access 
determines what can fit in one step. 

Notice that we distinguish between reading from or writing into the PC or 
~ne of the stand-alone registers and reading from or writing into the register 
file. I~ ~he former ~ase, the read or write is part of a clock cycle, while reading 
or wntmg a result mto the register file takes an additional clock cycle. The rea­
son for this distinction is that the register file has additional control and access 
overhead compared to the single stand-alone registers. Thus keeping the clock 
cycle short motivates dedicating separate clock cycles for register file accesses. 

The potential execution steps and their actions are given below. Each in­
struction needs from three to five of these steps: 

1. Instruction fetch step 

Fetch the instruction from memory and compute the address of the next 
sequential instruction: 

IR 

PC= 
Memory[PCJ; 
PC+ 4: 

Operation: Send the PC to the memory as the address, perform a read , and 
write the instruction into the Instruction register (IR), where it will be stored . 
Also, increment the PC by four. To implement this step, we will need to assert 
the control signals MemRead and IRWrite, and set IorD to O to select the PC as 
the source of the address. We also increment the PC by four in this stage, 
which requires setting the ALUSrcA signal to O (sending the PC to the ALU), 
the ALUSrcB signal to 01 (sending 4 to the ALU), and ALUOp to 00 (to make 
the ALU add). Finally, we will also want to s tore the incremented instruction 
address back into the PC, which requires setting PC source to 00 and setting 
PCWrite. The increment of the PC and the instruction memory access can 
occur in parallel. The new value of the PC is not visible until the next clock 
cycle. (The incremented PC will also be stored into ALUOut, but this action is 
benign.) 
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2. Instruction decode and register fetch step 
In the previous step and in this one, we do not yet know what th~ instruc:ion 
is, so we can perform only actions that are either applicable to all i~struchons 
(such as fetching the instruction in step 1) or are not harmful, m case the 
instruction isn't what we think it might be. Thus, in this step we can read the 
two registers indicated by the rs and rt instruction fields, since it isn't ~arm~l 
to read them even if it isn't necessary. The values read from the register file 
may be needed in later stages, so we read them from the register file and store 
the values into the temporary registers A and B. . . 

We will also compute the branch target address with the ALU, which also is 
not harmful because we can ignore the value if the instruction turns out not to 
be a branch. The potential branch target is saved in ALUOut. 

Performing these "optimistic" actions early has the benefit of decreasing the 
number of clock cycles needed to execute an instruction. We can do these op­
timistic actions early because of the regularity of the instruction formats. For 
instance, if the instruction has two register inputs, they are always in the rs 
and rt fields; and if the instruction is a branch, the offset is always the low­
order 16 bits: 

A Reg[IR[25-21JJ; 

B = Reg[IR[20-16JJ; 

ALUOut =PC+ (sign-extend (IR[15-0J) << 2); 

Operation: Access the register file to read registers rs and rt. and store the 
results into the registers A and B. Since A and B are overwritten on _every 
cycle, the register file can be read on every cycle with the values stored mto A 
and B. This step also computes the branch target address and stor~s the 
address in ALUOut, where it will be used on the next clock cycle if the 
instruction is a branch. This requires setting ALUSrcA to O (so that the PC is 
sent to the ALU), ALUSrcB to the value 11 (so that the sign-extended and 
shifted offset field is sent to the ALU), and ALUOp to 00 (so the ALU adds). 
The register file accesses and computation of branch target occur in paralle~. 

After this clock cycle, determining the action to take can depend on the in­
struction contents. 

3. Execution, memory address computation, or branch completion 
This is the first cycle during which the datapath operation is determined by 
the instruction class. In all cases, the ALU is operating on the operands pre­
pared in the previous step, performing one of four functions, de~ending on 
the instruction class. We specify the action to be taken depending on the 
instruction class: 
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Memory reference: 

ALUOut =A+ sign-extend (IR[15-0J); 

Operation: The ALU is adding the operands to form the memory address. 
This requires setting ALUSrcA to 1 (so that the first ALU input is register A) 
and setting ALUSrcB to 10 (so that the output of the sign extension unit is 
used for the second ALU input). The ALUOp signals will need to be set to 00 
(causing the ALU to add). 

Arithmetic-logical instruction (R-type): 

ALUOut = A op B; 

Operation: The ALU is performing the operation specified by the function 
code on the two values read from the register file in the previous cycle. This 
requires setting ALUSrcA = 1 and setting ALUSrcB = 00 (together causing the 
registers A and B to be used as the ALU inputs). The ALUOp signals will need 
to be set to 10 (so that the funct field is used to determine the ALU control sig­
nal settings). 

Branch: 

if (A== B) PC= ALUOut; 

Operation: The ALU is used to do the equal comparison between the two reg­
isters read in the previous step. The Zero signal out of the ALU is used to 
determine whether or not to branch. This requires setting ALUSrcA = 1 and 
setting ALUSrcB = 00 (so that the register file outputs are the ALU inputs). 
The ALUOp signals will need to be set to 01 (causing the ALU to subtract) for 
equality testing. The PCWriteCond signal will need to be asserted to update 
the PC if the Zero output of the ALU is asserted. By setting PCSource to 01, 
the value written into the PC will come from ALUOut, which holds the 
branch target address computed in the previous cycle. For conditional 
branches that are taken, we actually write the PC twice: once from the output 
of the ALU (during the Instruction decode/register fetch) and once from 
ALUOut (during the Branch completion step). The value written into the PC 
last is the one used for the next instruction fetch. 

Jump: 

PC= PC [31-28] I I (IR[25-0J<<2); 

Operation: The PC is replaced by the jump address. PCSource is set to direct 
the jump address to the PC, and PCWrite is asserted to write the jump 
address into the PC. 
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