308

Chapter 4 Arithmetic for Computers

taken on a life of its own. Although Intel firmly stands behind the qual-
ity of the current version of the Pentium processor, we recognize that
many users have concerns. We want to resolve these concerns. Intel will
exchange the current version of the Pentium processor for an updated
version, in which this floating-point divide flaw is corrected, for any
owner who requests it, free of charge anytime during the life of their
computer.” Analysts estimate that this recall cost Intel $300 million.

This story brings up a few points for everyone to ponder. How much cheaper
would it have been to fix the bug in July 19942 What was the cost to repair the
damage to Intel’s reputation? And what is the corporate responsibility in
disclosing bugs in a product so widely used and relied upon as a micro-
processor?

In April 1997 another floating-point bug was revealed in the Pentium Pro
and Pentium II microprocessors. When the floating-point-to-integer store in-
structions (fist, fistp) encounter a negative floating-point number that is
too large to fit in a 16- or 32-bit word after being converted to integer, they set
the wrong bit in the FPO status word (precision exception instead of invalid
operation exception). To Intel’s credit, this time they publicly acknowledged
the bug and offered a software patch to get around it—quite a different reac-
tion from what they did in 1994.

Concluding Remarks

Computer arithmetic is distinguished from paper-and-pencil arithmetic by
the constraints of limited precision. This limit may result in invalid operations
through calculating numbers larger or smaller than the predefined limits.
Such anomalies, called “overflow” or “underflow,” may result in exceptions
or interrupts, emergency events similar to unplanned subroutine calls. Chap-
ter 5 discusses exceptions in more detail.

Floating-point arithmetic has the added challenge of being an approxima-
tion of real numbers, and care needs to be taken to ensure that the computer
number selected is the representation closest to the actual number. The chal-
lenges of imprecision and limited representation are part of the inspiration for
the field of numerical analysis.

Over the years, computer arithmetic has become largely standardized,
greatly enhancing the portability of programs. Two’s complement binary inte-
ger arithmetic and IEEE 754 binary floating-point arithmetic are found in the
vast majority of computers sold today. For example, every desktop computer
sold since this book was first printed follows these conventions.

Asside effect of the stored-program computer is that bit patterns have no in-
herent meaning. The same bit pattern may represent a signed integer, unsigned
integer, floating-point number, instruction, and so on. It is the instruction that
operates on the word that determines its meaning.

4.11 Concluding Remarks 309

With the explanation of computer arithmetic in this chapter comes a de-
scription of much more of the MIPS instruction set. One point of confusion is
the instructions covered in these chapters versus instructions executed by
MIPS chips versus the instructions accepted by MIPS assemblers. The next two
figures try to make this clear.

Figure 4.52 lists the MIPS instructions covered in Chapters 3 and 4. We call
the set of instructions on the left-hand side of the figure the MIPS core. The in-
structions on the right we call the MIPS arithmetic core. On the left of Figure 4.53
are the instructions the MIPS processor executes that are not found in
Figure 4.52. We call the full set of hardware instructions MIPS I. On the right
of Figure 4.53 are the instructions accepted by the assembler that are not part
of MIPS I. We call this set of instructions Pseudo MIPS.

BPS cove bstrvcticns. | Mot | Foimat |, . MIPE affmatic ooy |, Hams | Forint |

add | add R multiply “»”mu] t | R
'add immediate [ addi ‘ | multiply unﬁigned g mu]tﬁu | R
| add unsigned [ addu :l; R |divide B - 7‘7 div. R
| add immediate ur;signed - J;ﬂdd iu e I:M@ﬁgd - j divu R

subtract | sub R move from Hi | mfhi R
subtract u};igngd - [ subu - 'R | move from Lo mflo R
‘and - I and i R | move from s;/stem control (EPC) ] mf&(? R

and immediate [ andi B I 7ﬁoatir17g:boi7nt add single o add.s R
| or - [ or "R |floating-point add double [ add.d R
7c;immediate - i ori | 7Vaatin;g-pointrsiubtract sTngIe 4 sub.s R
‘shift left logical B ‘ sl TR 4%étir;g-poirgéubtract double ﬁ sub.d R

shift right logical " sr1 TR |[floatingpoint multiply single | mul.s R
| load upr?eﬁmediategi ‘ Tui 4 o 7Watinﬁin71 multipl);goﬁble : ' Md | R ‘
load word - Tw B r %ating—point divide single div.s ‘ R

storeword LSW | I 77?05t5r1§5()7int divide double | d Tg R
load byte Fsighed - Tbu 1 |load word to floatinrg-poﬂuisingle o HLCI |
| store bytei o sb ﬁ I |store worﬁﬁloating-poﬁt singleri swcl |

branch on éqaél - 7 beq T Iizréﬁchﬁfloating~point true bclrti |
 branch onﬁequa!ii [ bne B I |branch Bniﬂgating-pointifalse ' [ belf |

jurﬁp - . ’ J | Ji 7%ating-pc>i7m compafe single i C X S R
jumpandlink 7E7 jal ﬁi 1 7:7(>‘< =eq, neq, 1t, le, gt, ge) B ]
jump regist? - jr R floating-point compare double ) Gy X .d | R

set less than - [ s1t ; R ;7(}7: eq, ngd, 1t, le, gt, ge) - .

set less than immediate slti | o | ]

Fet less than unsigné& s1tu r 7R7 |
set less than immediate unsigned | s 1tiu 7L | ]

FIGURE 4.52 The MIPS instruction set covered so far. This book concentrates on the instructions in the left column.

Figure 4.54 gives the popularity of the MIPS instructions for two programs: gcc
and spice. All instructions are listed that were responsible for at least 0.5% of the
instructions executed. The table following summarizes that information:

INTEL - 1012



. 311
310 Chapter 4 Arithmetic for Computers 4.11 Concluding Remarks

" Instruction subset m | .
. Arithmetic core + MIPS | m

0
S 7 o | % | FP add double add.d 0% 4% ‘
MIPS arithmetic core 0% | a9% F add | add | 0% [ o% 0% 3%
o IHEOHCI ’ ; — - Taddi [ 0% | 0% |FP subtract double sub.d a
Remaining MIPS | | 5% 6% | & add immediate addi b a = 5
g : 0% 5%
—_— 7" | % | 1 A uns ened addu 9% 10% | FP multiply double \ﬂ‘” -d
Note that although d iler writ MIPS I t ; s : 3 Y 3 div.d 0% | 2%
ote that although programmers and compiler writers may use 0 3 add immediate unsigned | addiu 17% 1% | FP divide double
have a richer menu of options, MIPS core instructions dominate gcc execution, L subtract unsigned p— 0% 1% |load word to FP single 1.5 | 0% 24%
. . . . . 4 — . %
and the integer core plus arithmetic core dominate spice. g - ) ard 1% 0% | store word to FP single ot 0% o5
i 1 i — 0, | 0,
5 "and immediate andi 2% 1% | branch on FP true bclt | 0% 10/“
SPsaing MIPS | mm Fosude NS mm i | shift left Ioéical s11 [ 5% 5% | branch on FP false bclf | 0% 1%
TR | 5 8|15 T o 0% 1%
exclusive or (rs @ rt) | xor R move move rd,rs i shift right logical srl 0% 1% | FP compare double c.x.d 00/2 20/:
exclusive or immediate | absolute value rd,rs load upper immediate Tui 2% 6% | move to FP m;c; = =
— ————— (3 0
nor ( —(rsv rt)) R not (—rs) not rd,rs load word Tw 21% 7% | move from FP ) : 0% 1%
Rk S il = i cu b
shift right arithmetic R negate (signed or unsigned) rd,rs store word SW 12% 2% | convert float |nteg§r > =
- - - — b 1% 0% | shift right arithmetic sra 2% o
shift left logical variable R rotate left rd,rs,rt ! | load byte T 1% 0%
shift right logical variable R rotate right rd,rs,rt 3 [store byte sh 1% 0% | load hha:f - - e = o
e e e I 9 ess than zer
shift right arith. variable srav R mult. & don't check oflw (signed or uns.) m | | branch on equal (zero) beq 9% 3:/u Zranch T — = T
e — -_— 0 ranc reater
multiply & check oflw (signed or uns.) branch on not equal (zero) | bne 8% 2% g o STz % 1%
O - e e Aol nd bk - : 3 Tink jal 1% 1% | branch less or equal zero
move to Hi R divide and check overflow rd,rs,rt ) Jump and lin He - —
move to Lo R divide and don't check overflow divu rd,rs,rt ‘ jump register !YJ g 20; O;
load halfword 1h | remainder (signed or unsigned) rems rd,rs,rt | & set less thﬁan st . - = ;
load halfword unsigned I load immediate 14 rd,imm 1‘, set less than immediate St 10/0 0«;
store halfword | load address la rd,addr ! 5 b L £ te 1; O‘;
load word left (unaligned) | load double 1d rd,addr H set less than imm. uns. sltiu b o |
load word right (unaligned) Twr I store double sd rd,addr { § FIGURE 4.54 The frequency of the MIPS instructions for two programs, gec and s‘plce.hCalculateiefdﬂ;(I:’; afi::;
store word left (unaligned) Swi unaligned load word ulw rd,addr : -l output of the full MIPS I. (Pixie is an instruction measurement tool fré)m MhIP?.)bllkll ?}ft?f}t\f?;t; gf;tr a;f:;ll:ir;ly dor'y e
BaasREstiiisea e inionil [ — — -+ 3 . : . 1 i the table. u
store word right (unaligned) | swr unaligned store word usw rd,addr 3 0.5% of the instructions executed 1;11 either gcc or SI'Jtilcefarrel ;:;1;‘:2 i g‘% b themabaiplings s tod. Peadotistrucions
_— — - OO — = . : 3 Te responsiple fo: s
branch on less than zero bltz | unaligned load halfword (signed or uns.) ulhs rd,addr 1 1nstruct10nts grg TOtI\AhISIt’;dI l;inerlsz )t( eii’ﬂ‘{\(’; andphence desosappoariens
[ e - ] e — — — & rtea mto J
branch on less or equal zero blez | unaligned store halfword ush rd,addr ' 1 RS
branch on greater than zero | batz | branch - 7 Label : : iONS—
- -1 e | For the rest of the book, we concentrate on the MIPS core instructions—the
s U | e ' e e ‘ i instruction set excluding multiply and divide—to make the explan-
T —— — - : integer instruction .
> >
s e L ‘ Dutegl = (BN = LR ation of computer design easier. As we can see, the MIPS core includes the
branch on < zero and link | b1tzal | branch on > (signed or unsigned) rs,rt,L

jump and link registgr

= PE—— s most popular MIPS instructions, and be assur'ec.i that understanding a comput-
- _ < (signed or unsigned) rs,rt,L er that runs the MIPS core will give you sufficient background to understand
return from exception R branch on < (signed or unsigned) rs,rt,L . )
'systemcal R 'setequal e even more ambitious machines.
E’e;(zaus‘eexception) R set no?éqTal ) rd,rs,rt
7m§éfr‘om FP to integer\_ mfcl i ‘/ R 7seTgreater or equal (signedio@ned) rd,rs,rt

move to FP from integér mtcl liiR set greater than (signed or unsigned) rd,rs,rt
FPimove (sord) - N FR‘ set Iegsiyequal (signediorznsigned) rd,rs,rt
7FP7absiqute value (s or. QT N R set less than (signed or unsigned) rd,rs,rt
En\egéte (s orz_i)_Wi* N N R | tho?loating point (s or d) rd,addr

fPionver‘( (w, s, ord) )

FP compare un (s or d) | c.xn.f R
EEER e . bl .

FIGURE 4.53 Remaining MIPS | and “Pseudo MIPS” instruction sets. Appendix A describes all these instructions. f

means single (s) and double precision (d) versions of the floating-point instruction, and s means signed and unsigned (u)
versions.

- | cvt.ff store from floating point (s or d) rd,addr

INTEL - 1012




312

Chapter 4 Arithmetic for Computers

Historical Perspective and Further Reading

Gresham's Law (“Bad money drives out Good”) for computers would say, “The

’,

Fast drives out the Slow even if the Fast is wrong.”

W. Kahan, 1992

At first it may be hard to imagine a subject of less interest than the correctness
of computer arithmetic or its accuracy, and harder still to understand why a
subject so old and mathematical should be so controversial. Computer arith-
metic is as old as computing itself, and some of the subject’s earliest notions,
like the economical reuse of registers during serial multiplication and divi-
sion, still command respect today. Maurice Wilkes [1985] recalled a conversa-
tion about that notion during his visit to the United States in 1946, before the
earliest stored-program machine had been built:

...a project under von Neumann was to be set up at the Institute of Advanced
Studies in Princeton. . .. Goldstine explained to me the principal features of the
design, including the device whereby the digits of the multiplier were put into
the tail of the accumulator and shifted out as the least significant part of the prod-
uct was shifted in. I expressed some admiration at the way registers and shifting
circuits were arranged . . . and Goldstine remarked that things of that nature
came very easily to von Neumann.

There is no controversy here; it can hardly arise in the context of exact inte-
ger arithmetic so long as there is general agreement on what integer the correct
result should be. However, as soon as approximate arithmetic enters the pic-
ture, so does controversy, as if one person’s “negligible” must be another’s
“everything.”

The First Dispute

Floating-point arithmetic kindled disagreement before it was ever built. John
von Neumann was aware of Konrad Zuse’s proposal for a computer in Ger-
many in 1939 that was never built, probably because the floating point made
it appear too complicated to finish before the Germans expected World War Il
to end. Hence von Neumann refused to include it in the machine he built at
Princeton. In an influential report coauthored in 1946 with H. H. Goldstine
and A. W. Burks, he gave the arguments for and against floating point. In
favor:

... toretain in a sum or product as many significant digits as possibleand . . . to
free the human operator from the burden of estimating and inserting into a prob-
lem “scale factors”—multiplication constants which serve to keep numbers
within the limits of the machine.

4.12 Historical Perspective and Further Reading 313

Floating point was excluded for several reasons:

There is, of course, no denying the fact that human time is consumed in arrang-
ing for the introduction of suitable scale factors. We only argue that the time con-
sumed is a very small percentage of the total time we will spend in preparing an
interesting problem for our machine. The first advantage of the floating point is,
we feel, somewhat illusory. In order to have such a floating point, one must waste
memory capacity which could otherwise be used for carrying more digits per
word. It would therefore seem to us not at all clear whether the modest advan-
tages of a floating binary point offset the loss of memory capacity and the in-
creased complexity of the arithmetic and control circuits.

The argument seems to be that most bits devoted to exponent fields would be
bits wasted. Experience has proved otherwise.

One software approach to accommodate reals without floating-point hard-
ware was called floating vectors; the idea was to compute at runtime one scale
factor for a whole array of numbers, choosing the scale factor so that the array’s
biggest number would barely fill its field. By 1951, James H. Wilkinson had
used this scheme extensively for matrix computations. The problem proved to
be that a program might encounter a very large value, and hence the scale
factor must accommodate these rare large numbers. The common numbers
would thus have many leading 0s, since all numbers had to use a single scale
factor. Accuracy was sacrificed because the least significant bits had to be lost
on the right to accommodate leading 0s. This wastage became obvious to prac-

__titioners on early machines that displayed all their memory bits as dots on

cathode ray tubes (like TV screens) because the loss of precision was visible.
Where floating point deserved to be used, no practical alternative existed.

Thus true floating-point hardware became popular because it was useful.
By 1957, floating-point hardware was almost ubiquitous. A decimal floating-
point unit was available for the IBM 650; and soon the IBM 704, 709, 7090,
7094 . . . series would offer binary floating-point hardware for double as well
as single precision.

As a result, everybody had floating point, but every implementation was
different.

Diversity versus Portability

Since roundoff introduces some error into almost all floating-point opera-
tions, to complain about another bit of error seems picayune. So for 20 years
nobody complained much that those operations behaved a little differently on
different machines. If software required clever tricks to circumvent those idio-
syncrasies and finally deliver results correct in all but the last several bits,
such tricks were deemed part of the programmer’s art. For a long time, matrix
computations mystified most people who had no notion of error analysis; per-
haps this continues to be true. That may be why people are still surprised that

INTEL - 1012



314

Chapter 4 Arithmetic for Computers

numerically stable matrix computations depend upon the quality of arith-
metic in so few places, far fewer than are generally supposed. Books by
Wilkinson and widely used software packages like Linpack and Eispack
sustained a false impression, widespread in the early 1970s, that a modicum
of skill sufficed to produce portable numerical software.

Portable here means that the software is distributed as source code in some
standard language to be compiled and executed on practically any commer-
cially significant machine, and that it will then perform its task as well as any
other program performs that task on that machine. Insofar as numerical soft-
ware has often been thought to consist entirely of machine-independent math-
ematical formulas, its portability has often been taken for granted; the mistake
in that presumption will become clear shortly.

Packages like Linpack and Eispack cost so much to develop—over a
hundred dollars per line of Fortran delivered—that they could not have been
developed without U.S. government subsidy; their portability was a pre-
condition for that subsidy. But nobody thought to distinguish how various
components contributed to their cost. One component was algorithmic—de-
vise an algorithm that deserves to work on at least one computer despite its
roundoff and over/underflow limitations. Another component was the soft-
ware engineering effort required to achieve and confirm portability to the di-
verse computers commercially significant at the time; this component grew
more onerous as ever more diverse floating-point arithmetics blossomed in the
1970s.

And yet scarcely anybody realized how much that diversity inflated the cost
of such software packages.

A Backward Step

Early evidence that somewhat different arithmetics could engender grossly
different software development costs was presented in 1964. It happened at a
meeting of SHARE, the IBM mainframe users’ group, at which IBM
announced System/360, the successor to the 7094 series. One of the speakers
described the tricks he had been forced to devise to achieve a level of quality
for the 5/360 library that was not quite so high as he had previously achieved
for the 7094.

Part of the trouble could have been foretold by von Neumann had he still
been alive. In 1948 he and Goldstine had published a lengthy error analysis so
difficult and so pessimistic that hardly anybody paid attention to it. It did pre-
dict correctly, however, that computations with larger arrays of data would
probably fall prey to roundoff more often. IBM S/360s had bigger memories
than 7094s, so data arrays could grow bigger, and they did. To make matters
worse, the 5/360s had narrower single precision words (32 bits versus 36) and
used a cruder arithmetic (hexadecimal or base 16 versus binary or base 2) with
consequently poorer worst-case precision (21 significant bits versus 27) than

4.12 Historical Perspective and Further Reading 315

old 7094s. Consequently, software that had almost always provided (barely)
satisfactory accuracy on 7094s too often produced inaccurate results when run
on 5/360s. The quickest way to recover adequate accuracy was to replace old
codes’ single precision declarations with double precision before recompila-
tion for the 5/360. This practice exercised S/360 double precision far more
than had been expected.

The early S/360s” worst troubles were caused by lack of a guard digit in
double precision. This lack showed up in multiplication as a failure of identi-
ties like 1.0 = x = x because multiplying x by 1.0 dropped x’s last hexadecimal
digit (4 bits). Similarly, if x and v were very close but had different exponents,
subtraction dropped off the last digit of the smaller operand before computing
x —y. This last aberration in double precision undermined a precious theorem
that single precision then (and now) honored: If 1/2 < x/y < 2, then no
rounding error can occur when x — i is computed; it must be computed exactly.

Innumerable computations had benefited from this minor theorem, most of-
ten unwittingly, for several decades before its first formal announcement and
proof. We had been taking all this stuff for granted.

The identities and theorems about exact relationships that persisted, despite
roundoff, with reasonable implementations of approximate arithmetic were
not appreciated until they were lost. Previously, all that had been thought to
matter were precision (how many significant digits were carried) and range
(the spread between over/underflow thresholds). Since the 5/360s” double
precision had more precision and wider range than the 7094s’, software was

.. expected to continue to work at least as well as before. But it didn't.

Programmers who had matured into program managers were appalled at
the cost of converting 7094 software to run on S/360s. A small subcommittee
of SHARE proposed improvements to the S/360 floating point. This committee
was surprised and grateful to get a fair part of what they asked for from IBM,
including all-important guard digits. By 1968, these had been retrofitted to
S/360s in the field at considerable expense; worse than that was customers’
loss of faith in IBM’s infallibility (a lesson learned by Intel 30 years later). IBM
employees who can remember the incident still shudder.

The People Who Built the Bombs

Seymour Cray was associated for decades with the CDC and Cray computers
that were, when he built them, the world's biggest and fastest. He always
understood what his customers wanted most: speed. And he gave it to them
even if, in so doing, he also gave them arithmetics more “interesting” than
anyone else’s. Among his customers have been the great government labora-
tories like those at Livermore and Los Alamos, where nuclear weapons were
designed. The challenges of “interesting” arithmetics were pretty tame to peo-
ple who had to overcome Mother Nature’s challenges.

INTEL - 1012



316

Chapter 4 Arithmetic for Computers

Perhaps all of us could learn to live with arithmetic idiosyncrasy if only one
computer’s idiosyncrasies had to be endured. Instead, when accumulating
different computers’ different anomalies, software dies the Death of a Thou-
sand Cuts. Here is an example from Cray’s machines:

if (x == 0.0) y = 17.0 else y = z2/x

Could this statement be stopped by a divide-by-zero error? On a CDC 6600
it could. The reason was a conflict between the 6600’s adder, where x was com-
pared with 0.0, and the multiplier and divider. The adder’s comparison exam-
ined x’s leading 13 bits, which sufficed to distinguish zero from normal
nonzero floating-point numbers x. The multiplier and divider examined only
12 leading bits. Consequently, tiny numbers existed that were nonzero to the
adder but zero to the multiplier and divider! To avoid disasters with these tiny
numbers, programmers learned to replace statements like the one above by

if (1.0xx == 0.0) y = 17.0 else y = z/x

But this statement is unsafe to use in would-be portable software because it
malfunctions obscurely on other computers designed by Cray, the ones mar-
keted by Cray Research, Inc. If x is so huge that 2.0 » x would overflow, then
1.0 » x may overflow too! Overflow happens because Cray computers check
the product’s exponent before the product’s exponent has been normalized,
just to save the delay of a single AND gate.

In case you think the statement above is safe to use now for portable soft-
ware, since computers of the CDC 6600 era are no longer commercially signif-
icant, you should be warned that it can lead to overflow on a Cray computer
even if 7 is almost as tiny as x; the trouble here is that the Cray computes not
z/xbut z + (1/x), and the reciprocal can overflow even though the desired
quotient is unexceptionable. A similar difficulty troubles the Intel i860s used in
its massively parallel computers. The would-be programmer of portable code
faces countless dilemmas like these whenever trying to program for the full
range of existing computers.

Rounding error anomalies that are far worse than the over/underflow
anomaly just discussed also affect Cray computers. The worst error comes
from the lack of a guard digit in add/subtract, an affliction of IBM 5/360s. Fur-
ther bad luck for software is occasioned by the way Cray economized his mul-
tiplier; about one-third of the bits that normal multiplier arrays generate have
been left out of his multipliers because they would contribute less than a unit
to the last place of the final Cray-rounded product. Consequently, a Cray’s
multiplier errs by almost a bit more than might have been expected. This error
is compounded when division takes three multiplications to improve an ap-
proximate reciprocal of the divisor and then multiply the numerator by it.
Square root compounds a few more multiplication errors.

The fast way drove out the slow, even though the fast was occasionally
slightly wrong.

'

R e g ey R

4.12 Historical Perspective and Further Reading 317

Making the World Safe for Floating Point, or Vice Versa

William Kahan was an undergraduate at the University of Toronto in 1953
when he learned to program its Ferranti-Manchester Mark-1 computer.
Because he entered the field early, Kahan became acquainted with a wide
range of devices and a large proportion of the personalities active in comput-
ing; the numbers of both were small at that time. He has performed computa-
tions on slide rules, desktop mechanical calculators, tabletop analog
differential analyzers, and so on; he used all but the earliest electronic com-
puters and calculators mentioned in this book.

Kahan's desire to deliver reliable software led to an interest in error analysis
that intensified during two years of postdoctoral study in England, where he
became acquainted with Wilkinson. In 1960, he resumed teaching at Toronto,
where an IBM 7090 had been acquired, and was granted free rein to tinker with
its operating system, Fortran compiler, and runtime library. (He denies that he
ever came near the 7090 hardware with a soldering iron but admits asking to
do so.) One story from that time illuminates how misconceptions and numer-
ical anomalies in computer systems can incur awesome hidden costs.

A graduate student in aeronautical engineering used the 7090 to simulate
the wings he was designing for short takeoffs and landings. He knew such a
wing would be difficult to control if its characteristics included an abrupt onset
of stall, but he thought he could avoid that. His simulations were telling him
otherwise. Just to be sure that roundoff was not interfering, he had repeated
many of his calculations in double precision and gotten results much like those

“in single; his wings had stalled abruptly in both precisions. Disheartened, the

student gave up.

Meanwhile Kahan replaced IBM’s logarithm program (ALOG) with one of
his own, which he hoped would provide better accuracy. While testing it,
Kahan reran programs using the new version of ALOG. The student’s results
changed significantly; Kahan approached him to find out what had happened.

The student was puzzled. Much as the student preferred the results pro-
duced with the new ALOG—they predicted a gradual stall—he knew they
must be wrong because they disagreed with his double precision results. The
discrepancy between single and double precision results disappeared a few
days later when a new release of IBM’s double precision arithmetic software
for the 7090 arrived. (The 7090 had no double precision hardware.) He went on
to write a thesis about it and to build the wings; they performed as predicted.
But that is not the end of the story.

In 1963, the 7090 was replaced by a faster 7094 with double precision
floating-point hardware but with otherwise practically the same instruction set
as the 7090. Only in double precision and only when using the new hardware
did the wing stall abruptly again. A lot of time was spent to find out why. The
7094 hardware turned out, like the superseded 7090 software and the sub-
sequent early S/360s, to lack a guard bit in double precision. Like so many pro-
grammers on those machines and on Cray’s, the student discovered a trick to

INTEL - 1012



318

Chapter 4 Arithmetic for Computers

compensate for the lack of a guard digit; he wrote the expression (0.5 - x)
+ 0.5in place of 1.0 - x. Nowadays we would blush if we had to explain
why such a trick might be necessary, but it solved the student’s problem.

Meanwhile the lure of California was working on Kahan and his family;
they came to Berkeley and he to the University of California. An opportunity
presented itself in 1974 when accuracy questions induced Hewlett-Packard’s
calculator designers to call in a consultant. The consultant was Kahan, and his
work dramatically improved the accuracy of HP calculators, but that is anoth-
er story. Fruitful collaboration with congenial co-workers, however, fortified
him for the next and crucial opportunity.

It came in 1976, when John F. Palmer at Intel was empowered to specify the
“best possible” floating-point arithmetic for all of Intel’s product line. The 8086
was imminent, and an 8087 floating-point coprocessor for the 8086 was
contemplated. (A coprocessor is simply an additional chip that accelerates a por-
tion of the work of a processor; in this case, it accelerated floating-point
computation.)

Palmer had obtained his Ph.D. at Stanford a few years before and knew
whom to call for counsel of perfection—Kahan. They put together a design that
obviously would have been impossible only a few years earlier and looked not
quite possible at the time. But a new Israeli team of Intel employees led by Rafi
Navé felt challenged to prove their prowess to Americans and leaped at an
opportunity to put something impossible on a chip—the 8087.

By now, floating-point arithmetics that had been merely diverse among
mainframes had become chaotic among microprocessors, one of which might
be host to a dozen varieties of arithmetic in ROM firmware or software. Robert
G. Stewart, an engineer prominent in IEEE activities, got fed up with this an-
archy and proposed that the IEEE draft a decent floating-point standard. Si-
multaneously, word leaked out in Silicon Valley that Intel was going to put on
one chip some awesome floating point well beyond anything its competitors
had in mind. The competition had to find a way to slow Intel down, so they
formed a committee to do what Stewart requested.

Meetings of this committee began in late 1977 with a plethora of competing
drafts from innumerable sources and dragged on into 1985 when IEEE Stan-
dard 754 for Binary Floating Point was made official. The winning draft was
very close to one submitted by Kahan, his student Jerome T. Coonen, and
Harold S. Stone, a professor visiting Berkeley at the time. Their draft was based
on the Intel design, with Intel’s permission of course, as simplified by Coonen.
Their harmonious combination of features, almost none of them new, had at
the outset attracted more support within the committee and from outside ex-
perts like Wilkinson than any other draft, but they had to win nearly unani-
mous support within the committee to win official IEEE endorsement, and that
took time.

v

4.12 Historical Perspective and Further Reading 319

The First IEEE 754 Chips

In 1980, Intel became tired of waiting and released the 8087 for use in the IBM
PC. The floating-point architecture of the companion 8087 had to be retro-
fitted into the 8086 opcode space, making it inconvenient to offer two oper-
ands per instruction as found in the rest of the 8086. Hence the decision for
one operand per instruction using a stack: “The designer’s task was to make a
Virtue of this Necessity.” (Kahan’s [1990] history of the stack architecture
selection for the 8087 is entertaining reading.)

Rather than the classical stack architecture, which has no provision for
avoiding common subexpressions from being pushed and popped from mem-
ory into the top of the stack found in registers, Intel tried to combine a flat reg-
ister file with a stack. The reasoning was that the restriction of the top of stack
as one operand was not so bad since it only required the execution of an FXCH
instruction (which swapped registers) to get the same result as a two-operand
instruction, and FXCH was much faster than the floating-point operations of the
8087.

Since floating-point expressions are not that complex, Kahan reasoned that
eight registers meant that the stack would rarely overflow. Hence he urged that
the 8087 use this hybrid scheme with the provision that stack overflow or stack
underflow would interrupt the 8086 so that interrupt software could give the
illusion to the compiler writer of an unlimited stack for floating-point data.

The Intel 8087 was implemented in Israel, and 7500 miles and 10 time zones
made communication difficult from California. According to Palmer and

+ Morse (The 8087 Primer, ]. Wiley, New York, 1984, p. 93):

Unfortunately, nobody tried to write a software stack manager until after the 8087
was built, and by then it was too late; what was too complicated to perform in hard-
ware turned out to be even worse in software. One thing found lacking is the ability
to conveniently determine if an invalid operation is indeed due to a stack overflow.
... Also lacking is the ability to restart the instruction that caused the stack
overflow . . .

The result is that the stack exceptions are too slow to handle in software. As
Kahan [1990] says:

Consequently, almost all higher-level languages” compilers emit inefficient code for
the 80x87 family, degrading the chip’s performance by typically 50% with spurious
stores and loads necessary simply to preclude stack over/underflow. . ..

I still regret that the 8087's stack implementation was not quite so neat as my orig-
inal intention. ... If the original design had been realized, compilers today would
use the 80x87 and its descendents more efficiently, and Intel’s competitors could
more easily market faster but compatible 80x87 imitations.

INTEL - 1012



320

Chapter 4 Arithmetic for Computers

In 1982, Motorola announced its 68881, which found a place in Sun 3s and
Macintosh IIs; Apple had been a supporter of the proposal from the beginning.
Another Berkeley graduate student, George S. Taylor, had soon designed a
high-speed implementation of the proposed standard for an early supermini-
computer (ELXSI 6400). The standard was becoming de facto before its final
draft’s ink was dry.

An early rush of adoptions gave the computing industry the false impres-
sion that IEEE 754, like so many other standards, could be implemented easily
by following a standard recipe. Not true. Only the enthusiasm and ingenuity
of its early implementors made it look easy.

In fact, to implement IEEE 754 correctly demands extraordinarily diligent
attention to detail; to make it run fast demands extraordinarily competent in-
genuity of design. Had the industry’s engineering managers realized this, they
might not have been so quick to affirm that, as a matter of policy, “We conform
to all applicable standards.”

IEEE 754 Today

Today the computing industry is enmeshed in a host of standards that evolve
continuously as technology changes. The floating-point standards IEEE
754/854 (they are practically the same) stand in somewhat splendid isolation
only because nobody wishes to repeat the protracted wrangling that sur-
rounded their birth, when, with unprecedented generosity, the representa-
tives of hardware interests acceded to the demands of those few who
represented the interests of mathematical and numerical software.

Unfortunately, the compiler-writing community was not represented ade-
quately in the wrangling, and some of the features didn’t balance language
and compiler issues against other points. That community has been slow to
make IEEE 754’s unusual features available to the applications programmer.
Humane exception handling is one such unusual feature; directed rounding
another. Without compiler support, these features have atrophied.

The successful parts of IEEE 754 are that it is a widely implemented stan-
dard with a common floating-point format, it requires minimum accuracy to
one-half ulp in the least significant bit, and that operations must be commuta-
tive.

At present, IEEE 754/854 have been implemented to a considerable degree
of fidelity in at least part of the product line of every North American computer
manufacturer. The only significant exceptions are the DEC VAX, IBM 5/370
descendants, and Cray Research vector supercomputers, and all three are be-
ing replaced by compliant machines. Even Cray Research, now a division of
Silicon Graphics, announced that successors to the T90 vector computer will
conform “to some degree” to ease the transfer of data files and portable soft-
ware between Crays and the desktop computers through which Cray users
have come to access their machines nowadays.

4.12 Historical Perspective and Further Reading 321

In 1989, the Association for Computing Machinery, acknowledging the ben-
efits conferred upon the computing industry by IEEE 754, honored Kahan with
.the Turing Award. On accepting it, he thanked his many associates for their dil-
igent support, and his adversaries for their blunders.

So ... not all errors are bad.

To Probe Further

If you are interested in learning more about floating point, two publications
by David Goldberg [1991, 1995] are good starting points; they abound with
pointers to further reading. Several of the stories told above come from Kahan
[1972, 1983]. The latest word on the state of the art in computer arithmetic is
often found in the Proceedings of the latest IEEE-sponsored Symposium on
Computer Arithmetic, held every two years; the 13th was held in 1997.

Burks, A. W, H. H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of the logi-
cal design of an electronic computing instrument,” Report to the U.S. Army Ordnance Dept., p. 1;
also in Papers of John von Neumann, W. Aspray and A. Burks, eds., MIT Press, Cambridge, MA
and Tomash Publishers, Los Angeles, 97-146, 1987. '

This classic paper includes arguments against floating-point hardware.

Gol@berg, D. [1991]. “What every computer scientist should know about floating-point arith-
metic,” ACM Computing Surveys 23(1), 5-48.

Another good introduction to floating-point arithmetic by the same author, this time with emphasis on

software.

Goldberg, D. [1995]._ ‘jComputer arithmetic,” Appendix A of Computer Architecture: A Quantitative
?pproqch, second edition, J. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, San
rancisco.

A more advanced introduction to integer and floating-point arithmetic, with emphasis on hardware. It cov-

ers sections 4.6-4.8 of this book in just 10 pages, leaving another 45 pages for advanced topics.

K.ahap, W. [1972]. “A survey of error-analysis,” in Info. Processing 71 (Proc. IFIP Congress 71 in
Ljubljana), vol. 2, pp. 1214-39, North-Holland Publishing, Amsterdam.

This survey is a source of stories on the importance of accurate arithmetic.

Kahan, W. [1983]. “Mathematics written in sand,” Proc. Amer. Stat. Assoc. Joint Summer Meetings of
1983, Statistical Computing Section, pp. 12-26. )

The title refers to silicon and is another source of stories illustrating the importance of accurate arithmetic.

Ka'han, W. [1990]. “On the advantage of the 8087’s stack,” unpublished course notes, Computer
Science Division, University of California at Berkeley.

What the 8087 floating-point architecture could have been.

INTEL - 1012

e e



322

Chapter 4 Arithmetic for Computers

Kahan, W. [1997]. Available via a link to Kahan’s homepage at www.mkp.com/books_catalog/
cod|/links.htm.

A collection of memos related to floating point, including “Beastly Numbers” (another less famous Pen-
tium bug),”Notes on the IEEE Floating Point Arithmetic” (including comments on how some featu_res are
atrophying), and “The Baleful Effects of Computing Benchmarks” (on the unhealthy preoccupation on
speed versus correctness, accuracy, ease of use, flexibility, .. .).

Koren, 1. [1993]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, NJ.

A textbook aimed at seniors and first-year graduate students that explains fur1¢amentgl principles of basic
arithmetic, as well as complex operations such as logarithmic and trigonometric functions.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA.

This computer pioneer’s recollections include the derivation of the standard hardware for multiply and
divide developed by von Neumann.

Key Terms

These terms reflect the key ideas in the chapter. Check the Glossary for defini-
tions of the terms you are unsure of.

AND gate floating point round '

AND operation guard scientific notation
arithmetic logic unit (ALU) hexadecimal s%gmﬁcand' .

biased notation least significant bit smgle precision

Booth'’s algorithm most significant bit sticky bit

divisor normalized unf:ler‘ﬂow

double precision overflow units in the last place (ulp)
exclusive OR gate quotient

exponent remainder

Exercises

Never give in, never give in, never, never, never—in nothing, great or small, large
or petty—never give in.

Winston Churchill, address at Harrow School, 1941

4.1 [3] <§4.2> Convert 512, into a 32-bit two’s complement binary number.
4.2 [3] <§4.2> Convert —1,023,,,, into a 32-bit two’s complement binary num-
ber.

4.3 [5] <§4.2> Convert —4,000,000;, into a 32-bit two’s complement binary
number.

[y i

et

A N g G A

4.14 Exercises 323

4.4 [5] <§4.2> What decimal number does this two’s complement binary
number represent: 1111111111111111111111100000 1100457

4.5 [5] <84.2> What decimal number does this two’s complement binary
number represent: 111111111111111111111111111111114,,?

4.6 [5] <§4.2> What decimal number does this two’s complement binary
number represent: 011111111111111111111111111111114,,,?

4.7 [5] <§4.2> What binary number does this hexadecimal number represent:
71ff fffayo.? What decimal number does it represent?

4.8 [5] <§4.2> What hexadecimal number does this binary number represent:
110010101111111011111010110011104,,,?

4.9 [5] <§4.2> Why doesn’t MIPS have a subtract immediate instruction?

4.10 [10] <§4.2> Find the shortest sequence of MIPS instructions to determine
the absolute value of a two’s complement integer. Convert this instruction (ac-
cepted by the MIPS assembler):

abs $t2,8$t3
This instruction means that register $t2 has a copy of register $t 3 if register

$t3 is positive, and the two’s complement of register $t3 if $t3 is negative.
(Hint: It can be done with three instructions.)

4.11 [10] <§4.2> Two friends, Harry and David, are arguing. Harry says, “All

" integers greater than zero and exactly divisible by six have exactly two 1s in

their binary representation.” David disagrees. He says, “No, but all such num-
bers have an even number of 1s in their representation.” Do you agree with
Harry or with David, or with neither? (Hint: Look for counterexamples.)

4.12 [15] <§4.4> Consider the following code used to implement the instruc-
tion

s1lv $s0, $s1, $s2

which uses the least significant 5 bits of the value in register $52 to specify the
amount register $s1 should be shifted left:

.data
mask: .word Oxfffff83f
.text
stapt: Tw $t0, mask
Tw $s0, shifter
and $s0,%$s0,$t0
andi  $s2,%$s2,0x1f
s11 $s2,%$s2,6
or $50,9%$50,$s2
SW $s0, shifter
shifter: s11 $s0,%s1,0

INTEL - 1012



324

Chapter 4 Arithmetic for Computers

Add comments to the code and write a paragraph describing how it works.
Note that the two 1w instructions are pseudoinstructions that use a label to
specify a memory address that contains the word of data to bg l-oaded. Why
do you suppose that writing “self-modifying code” such as this is a bad idea
(and oftentimes not actually allowed)?

4.13 [10] <§4.2> If A is a 32-bit address, typically an instruction sequence such
as ’

Tui $t0, A_upper
ori $t0, $t0, A_lower
Tw $s0, 0($t0)

can be used to load the word at A into a register (in this case, $s0). Consider
the following alternative, which is more efficient:

Tui $t0, A_upper_adjusted

Tw $s0, A_Tower($t0)
Describe how A_upper is adjusted to allow this simpler code to work. (Hint:
A_upper needs to be adjusted because A_lower will be sign-extended.)

4.14 [15] <§§3.4, 4.2, 4.8> The Big Picture on page 299 mentions that bits have
no inherent meaning. Given the bit pattern:

10001111111011111100000000600000
what does it represent, assuming that it is

a. atwo’s complement integer?

b. an unsigned integer?

c. asingle precision floating-point number?

d. a MIPS instruction?

You may find Figures 3.18 (page 153), 4.48 (page 292), and A.19 (page A-54)
useful.

4.15 [10] <§§4.2, 4.4, 4.8> This exercise is similar to Exercise 4.14, but this time
use the bit pattern
000000000000 00000000000000000000

4.16 [10] <§4.3> One of the differences between Sun’s SPARC architecture
and the MIPS architecture we’ve been studying is that the load word instruc-
tion on the SPARC can specify the address either as the sum of two registers’

4.14 Exercises 325

contents or as one register’s contents plus a constant offset (i.e., the way MIPS
does). The paper “An analysis of MIPS and SPARC instruction set utilization
on the SPEC benchmarks” (R. F. Cmelik, S. L. Kong, D. R. Ditzel, and E. ]. Kelly,
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Santa Clara, CA, April 1991) reports that on the
SPARC, the gce benchmark has 15% of its loads use the register + register ver-
sion (with neither register being $zero). Assume that the same would be true
on the MIPS, if it were modified to have this extra addressing option for 1w in-
structions. Using the data from Figure 4.54, what percentage of gcc’s instruc-
tions could be eliminated with this architectural modification? Why?

4.17 [10] <§4.3> Find the shortest sequence of MIPS instructions to determine
if there is a carry out from the addition of two registers, say, registers $t3 and
$t4. Place a 0 or 1 in register $t2 if the carry out is 0 or 1, respectively. (Hint:
It can be done in two instructions.)

4.18 [15] <§4.3> {Ex. 4.17) Find the shortest sequence of MIPS instructions to
perform double precision integer addition. Assume that one 64-bit, two’s com-
plement integer is in registers $t4 and $t5 and another is in registers $t6 and
$17. The sum is to be placed in registers $ 2 and $t 3. In this example, the most
significant word of the 64-bit integer is found in the even-numbered registers,
and the least significant word is found in the odd-numbered registers. (Hint:
It can be done in four instructions.)

4.19 [15] <§4.3> Suppose that all of the conditional branch instructions except

«begand bne were removed from the MIPS instruction set along with s1t and

all of its variants (s1ti, s1tu, s1tui). Show how to perform

st $t0, $s0, $sl

using the modified instruction set in which s1t is not available. (Hint: It
requires more than two instructions.)

4.20 [10] <84.4> The following MIPS instruction sequence could be used to
implement a new instruction that has two register operands. Give the instruc-
tion a name and describe what it does. Note that register $t0 is being used as
a temporary.

srl $s1, $s1, 1 #

s11 $t0, $s0, 31  # These 4 instructions accomplish
srl $s0, $s0, 1 # “new $s50 $s1”

or $sl, $s1, $t0 #

4.21 [5] <§4.4> Instead of using a special hardware multiplier, it is possible to
multiply using shift and add instructions. This is particularly attractive when
multiplying by small constants. Suppose we want to put five times the value

INTEL - 1012



326

Chapter 4 Arithmetic for Computers

of $s0 into $s1, ignoring any overflow that may occur. Show a minimal se-
quence of MIPS instructions for doing this without using a multiply instruc-
tion.

4.22 [15] <§4.4> Some computers have explicit instructions to extract an arbi-

trary field from a 32-bit register and to place it in the least significant bits of a
register. The figure below shows the desired operation:

31 j i 0
l field | \
31— bits j— ibits i+ 1 bits
) \ o
i o 0000\ field '
32 - (j- i) bits j— ibits

Find the shortest sequence of MIPS instructions that extracts a field for the
constant values i = 7 and j = 19 from register $s0 and places it in register $s1.
(Hint: It can be done in two instructions.)

4.23 [15] <§4.5> The ALU supported set on less than (s1t) using just the sign
bit of the adder. Let’s try a set on less than operation using the values —7;, and
6ten- To make it simpler to follow the example, let’s limit the binary represen-
tations to 4 bits: 10014y, and 01104,

1001y = 0110430 = 1001430 + 1010440 = 0011y

This result would suggest that -7 > 6, which is clearly wrong. Hence we must
factor in overflow in the decision. Modify the 1-bit ALU in Figure 4.17 on
page 238 to handle s1t correctly. Make your changes on a photocopy of this
figure to save time.

4.24 [20] <§4.6> Find the shortest sequence of MIPS instructions to perform
double precision integer multiplication. Try to do it in 35 instructions or less.
Assume that one 64-bit, unsigned integer is in registers $ t4 and $t5 and another
is in registers $t6 and $t7. The 128-bit product is to be placed in registers $t0,
$t1, $t2, and $t3. In this example, the most significant word is found in the
lower-numbered registers, and the least significant word is found in the higher-
numbered registers. (Hint: Write out the formula for (a x 22 1) x (cx2¥ +4d).)

4.25 [5] <§4.8> Show the IEEE 754 binary representation for the floating-point
number 10, in single and double precision.

4.26 [5] <§4.8> This exercise is similar to Exercise 4.25, but this time replace
the number 10, with 10.5,.

4.14 Exercises 327

4.27 [10] <§4.8> This exercise is similar to Exercise 4.25, but this time replace
the number 10;., with 0.1;4,.

4.28 [10] <§4.8> This exercise is similar to Exercise 4.25, but this time replace
the number 10,.,, with the decimal fraction -2/3.

4.29 [10] <§4.8> Write a simple C program that inputs a floating-point num-
ber and shows its bit representation in hexadecimal.

4.30 [10] <§4.8> Write a simple C++ program that inputs a floating-point
number and shows its bit representation in hexadecimal.

4.31 [10] <§4.8> A single precision IEEE number is stored in memory at ad-
dress X. Write a sequence of MIPS instructions to multiply the number at X by
2 and store the result back at X. Accomplish this without using any floating-
point instructions (don’t worry about overflow).

4.32 [10] <§4.11> For the program gcc (Figure 4.54 on page 311), find the 10
most frequently executed MIPS instructions. List them in order of popularity,
from most used to least used. Show the rank, name, and percentage of instruc-
tions executed for each instruction. If there is a tie for a given rank, list all in-
structions that tie with the same rank, even if this results in more than 10
instructions.

4.33 [10] <84.11> This exercise is similar to Exercise 4.32, but this time replace
the program gcc with the program spice.

~.4-34 <§4.11> {Ex. 4.32, 4.33} These questions examine the relative frequency
of instructions in different programs.

a. [5] Which instructions are found both in the answer to Exercise 4.32 and
in the answer to Exercise 4.33?

b. [5] What percentage of gcc instructions executed is due to the instruc-
tions identified in Exercise 4.34a?

c. [5] What percentage of gcc instructions executed is due to the instruc-
tions identified in Exercise 4.32?

d. [5] What percentage of spice instructions executed is due to the instruc-
tions identified in Exercise 4.34a?

e. [5] What percentage of spice instructions executed is due to the instruc-
tions identified in Exercise 4.33?

4.35 [10] <§4.11> {Ex. 4.32—4.34} If you were designing a machine to execute
the MIPS instruction set, what are the five instructions that you would try to
make as fast as possible, based on the answers to Exercises 4.32 through 4.34?
Give your rationale.

INTEL - 1012



328

Chapter 4 Arithmetic for Computers

4.36 [15] <§8§2.3, 4.11> Using Figure 4.54 on page 311, calculate the average
clock cycles per instruction (CPI) for the program gcc. Figure 4.55 gives the av-
erage CPI per instruction category, taking into account cache misses and other
effects. Assume that instructions omitted from the table have a CPI of 1.0.

Instruction category Average CPI

Loads and stores 1.4
Conditional branch 1.8
Jumps 1.2
Integer multiply 10.0
Integer divide 30.0
Floating-point add and subtract 2.0
Floating-point multiply, single precision 4.0
Floating-point multiply, double precision 5.0
Floating-point divide, single precision 12.0
Floating-point divide, double precision 19.0

FIGURE 4.55 CPI for MIPS Instruction categories.

4.37 [15] <§82.3, 4.11> This exercise is similar to Exercise 4.36, but this time
replace the program gcc with the program spice.

4.38 [2 weeks] Write a simulator for a subset of the MIPS instruction set using
MIPS instructions and the SPIM simulator described in Appendix A. Your sim-
ulator should execute hand-assembled programs that are located in the data
segment of the SPIM simulator and should use $v0 and $v1 for input and out-
put. Other portions of the data segment can be used for storing the memory
contents and register values of your virtual machine. Your implementation can
use any of the MIPS instructions, but your simulator need only support a
smaller subset of the instruction set (e.g., the instructions appearing in Chap-
ters 5 and 6). (Additional details regarding this assignment are available at
www.mkp.com/cod2e.htm.)

4.39 [1 week] {Ex. 4.38} Add an exception handler to the simulator you de-
veloped for Exercise 4.38. Your simulator should generate a simulated excep-
tion if a misaligned word is accessed via an 1w, sw, or jr instruction. The
exception handler should print out an error message identifying the offending
address (within the simulation) and then realign the access, perform the in-
struction, and resume executing the simulated program. (Additional details
regarding this assignment are available at www.mkp.com/cod2e.htm.)

4.14 Exercises 329

in More Depth

Logical Instructions

The full MIPS instruction set has two more logical operations not men-
tioned thus far: xor and nor. The operation xor stands for exclusive OR,
and nor stands for not OR. The table that follows defines these operations
on a bit-by-bit basis. These instructions will be useful in the following two
exercises.

H

(5 [ hors | Anors]
A R

[ 0 0 1|

0 1 1 0 7:1
1 0 A o0

! ! o "o |

4.40 [15] <§4.4> Show the minimal MIPS instruction sequence for a new in-
struction called swap that exchanges two registers. After the sequence com-
pletes, the Destination register has the original value of the Source register,
and the Source register has the original value of the Destination register.
Convert this instruction:

swap $s0,$s1

The hard part is that this sequence must use only these two registers! (Hint: It
can be done in three instructions if you use the new logical
instructions. What is the value of (A xor B xor A)?)

4.41 [5] <§4.4> Show the minimal MIPS instruction sequence for a new in-
struction called not that takes the one’s complement of a Source register

and places it in a Destination register. Convert this instruction (accepted by
the MIPS assembler):

not $s0,$sl

(Hint: It can be done in one instruction if you use the new logical instruc-
tions.)

4.42 [20] <§4.5> A simple check for overflow during addition is to see if the
Carryln to the most significant bit is 10t the same as the CarryOut of the most
significant bit. Prove that this check is the same as in Figure 4.4 on page 222.

4.43 [10] <§4.5> Draw the gates for the Sum bit of an adder, given the equa-
tion on page 234.

INTEL - 1012



330

Chapter 4 Arithmetic for Computers

4.44 [5] <§4.5> Rewrite the equations on page 247 for a carry-lookahead logic
for a 16-bit adder using a new notation. First use the names for the CarryIn sig-
nals of the individual bits of the adder. That is, use c4, ¢8, c12, ... instead of
C1, C2, C3,.... Also, let P;; mean a propagate signal for bits i to joand G;;
mean a generate signal for bits i to j. For example, the equation

C2 = Gl +(P1-GO)+ (P1-P0O-c0)
can be rewritten as
8 = Gy 4+ (P74 G 0) + (P4 Py - ¢0)
This more general notation is useful in creating wider adders.

4.45 [15] <§4.5> {Ex. 4.44) Write the equations for the carry-lookahead logic
for a 64-bit adder using the new notation from Exercise 4.44 and using 16-bit
adders as building blocks. Include a drawing similiar to Figure 4.24 in your so-
lution.

4.46 [10] <84.5> Now calculate the relative performance of adders. Assume
that hardware corresponding to any equation containing only OR or AND
terms, such as the equations for pi and gi on page 242, takes one time unit T.
Equations that consist of the OR of several AND terms, such as the equations
for c1, €2, 3, and c4 on page 243, would thus take two time units, 2T, because
it would take T to produce the AND terms and then an additional T to produce
the result of the OR. Calculate the numbers and performance ratio for 4-bit
adders for both ripple carry and carry lookahead. If the terms in equations are
further defined by other equations, then add the appropriate delays for those
intermediate equations, and continue recursively until the actual input bits of
the adder are used in an equation. Include a drawing of each adder labeled
with the calculated delays and the path of the worst-case delay highlighted.

4.47 [15] <84.5> This exercise is similar to Exercise 4.46, but this time calculate
the relative speeds of a 16-bit adder using ripple carry only, ripple carry of
4-bit groups that use carry lookahead, and the carry-lookahead scheme on
page 242.

4.48 [15] <8§4.5> {Ex. 4.45} This exercise is similar to Exercises 4.46 and 4.47,
but this time calculate the relative speeds of a 64-bit adder using ripple carry
only, ripple carry of 4-bit groups that use carry lookahead, ripple carry of
16-bit groups that use carry lookahead, and the carry-lookahead scheme from
Exercise 4.45.

4.49 [10] <§4.5> There are times when we want to add a collection of numbers
together. Suppose you wanted to add four 4-bit numbers (A,B, E, F) using 1-bit
full adders. Let’s ignore carry lookahead for now. You would likely connect
the 1-bit adders in the organization in the top of Figure 4.56. Below the tradi-
tional organization is a novel organization of full adders. Try adding four num-
bers using both organizations to convince yourself that you get the same
answer.

4.14 Exercises 331

a3 b3 a2 b2 al b1l a0 bO

|| |
L v A 3 A B E F
- | |
Traditi
e3 e2 el ) raditional adder
| 1 i ’
v v v v F
A
i ) T b + + R
Traditional adder
f3 2 1 f0
| 1 1 ) J ‘
2R v_ v v v L T ¥

I + |e + |e + e 4 Traditional adder
/ v v v v v S

s5 s4 s3 s2 sl sO

b3 e3 f3 b2 e2 f2 bl el f1I bO e0 fO A B E F

|- I || ‘
+ ,_I + J + J/— + r Clarry saJ\'/e addfler i
a3| /a2| /all /aoi 71 v ‘

Carry save adder }

c' S
v v

s'4(c'3 s'3 c'2/ s'2 C'l/ s'1 c'O/ s'0
b ¥ b v Traditional adder

— + e + | + | + 1
/V ¥ v v 3

55 s4 s3 s2 sl sO

FIGURF 4.56' T_rgdltlonal ripple carry and carry save addition of four 4-bit numbers. The details are shown on the
l?ft, th.h the individual signals in lowercase, and the corresponding higher-level blocks are on the right, with collective
signals in uppercase. Note that the sum of four n-bit numbers can take 1+2 bits. )

4.50 [5] <§4.5> {Ex. 4.49} Assume that the time delay through each 1-bit adder
is 2T. Calculate the time of adding four 4-bit numbers to the organization at the
top versus the organization in the bottom in Figure 4.56.

INTEL - 1012



332

Chapter 4 Arithmetic for Computers

In More Depth

Carry Save Adders

Exercises 4.49 and 4.50 motivate an organization that uses the 1-bit adder
in Figure 4.10 on page 232 in a way it was not intended. Although this
piece of hardware is simple and fast, the problem comes from trying to get
the Carryln signal calculated in a timely fashion across several adders.

We can think of the adder instead as a hardware device that can add
three inputs together (ai, bi, ci) and produce two outputs (s, ci+1). When
we are just adding two numbers together, there is little we can do with this
observation, but when we are adding more than two operands, it is possi-
ble to reduce the cost of the carry. The idea is to form two independent
sums, called S” (sum bits) and C’ (carry bits). At the end of the process, we
need to add C" and S’ together using a normal adder. This technique of
delaying carry propagation until the end of a sum of numbers is called
carry save addition. The block drawing on the lower right of Figure 4.56
shows the organization, with two levels of carry save adders connected by
a single normal adder.

4.51 [10] <84.5> {Ex. 4.47, 4.50} Calculate the delays to add four 16-bit
numbers using full carry-lookahead adders versus carry save with a carry-
lookahead adder forming the final sum. (The time unit T in Exercises 4.46
and 4.50 is the same.)

4.52 [20] <§4.5,4.6> {Ex. 4.47} Perhaps the most likely case of adding many
numbers at once in a computer would be when trying to multiply more
quickly by using many adders to add many numbers in a single clock cycle.
Compared to the multiply algorithm in Figure 4.32 on page 258, a carry save
scheme with many adders could multiply more than 10 times faster.

This exercise estimates the cost and speed of a combinational multiplier to
multiply two positive 16-bit numbers. Assume that you have 16 intermedi-
ate terms M15, M14, . . ., MO, called partial products, that contain the multi-
plicand ANDed with multiplier bits m15, m14, .. ., m0.

The idea is to use carry save adders to reduce the n operands into 21/3 in
parallel groups of three, and do this repeatedly until you get two large
numbers to add together with a traditional adder.

First show the block organization of the 16-bit carry save adders to add
these 16 terms, as shown on the right in Figure 4.56. Then calculate the
delays to add these 16 numbers. Compare this time to the iterative multi-
plication scheme in Figure 4.32 on page 258 but only assume 16 iterations
using a 16-bit adder that has full carry lookahead whose speed was calcu-
lated in Exercise 4.47.

4.14 Exercises 333

4.53 [30] <§4.6> The original reason for Booth’s algorithm was to reduce the
number of operations by avoiding operations when there were strings of 0s
and 1s. Revise the algorithm on page 260 to look at 3 bits at a time and compute
the product 2 bits at a time. Fill in the following table to determine the 2-bit
Booth encoding:

Current bits Previous bit Operation

. ait ai | ai-1 [
0o [ o | 0
0 0 1
t 0 tT 0 L Jﬁ
O I 1 1
T 0 B T
1 e “ R
|2 | a 0
| 1 B 1

Assume that you have both the multiplicand and 2 x multiplicand already in
registers. Explain the reason for the operation on each line, and show a 6-bit
example that runs faster using this algorithm. (Hint: Try dividing to conquer;
see what the operations would be in each of the eight cases in the table using a
2-bit Booth algorithm, and then optimize the pair of operations.)

~4.54 [30] <§4.6, 4.7> The division algorithm in Figure 4.40 on page 270 is

called restoring division, since each time the result of subtracting the divisor
from the dividend is negative you must add the divisor back into the dividend
to restore the original value. Recall that shift left is the same as multiplying by
two. Let’s look at the value of the left half of the Remainder again, starting with
step 3b of the divide algorithm and then going to step 2:

(Remainder + Divisor) x 2 — Divisor

This value is created from restoring the Remainder by adding the Divisor,
shifting the sum left, and then subtracting the Divisor. Simplifying the result
we get

Remainder x 2 + Divisor x 2 — Divisor = Remainder x 2 + Divisor

Based on this observation, write a nonrestoring division algorithm using the
notation of Figure 4.40 that does not add the Divisor to the Remainder in step
3b. Show that your algorithm works by dividing 0000 0111, by 0010

twor-

INTEL - 1012



334

Chapter 4 Arithmetic for Computers

4.55 [5] <§4.8> Add 642, x 10" t0 9.51;, x 10%, assuming that you have only
three significant digits, first with guard and round digits and then without
them.

4.56 [5] <84.8> This exercise is similar to Exercise 4.55, but this time use the
numbers 8.76,.,, x 10 and 1.47,,,, x 10°.

4.57 [25] <§4.8> Derive the floating-point algorithm for division as we did for
addition and multiplication on pages 280 through 288. First divide 1.110,,,, x
10!% by 1.100,,, x 107, showing the same steps that we did in the example
starting on page 282. Then derive the floating-point division algorithm using
a format similar to the multiplication algorithm in Figure 4.46 on page 289.

4.58 [30] <§4.8> The elaboration on page 300 explains the four rounding
modes of IEEE 754 and the extra bit, called the sticky bit, needed in addition to
the 2 bits called guard and round. Guard is the first bit, round is the second bit,
and sticky represents whether the remaining bits are 0 or not. Fill in the follow-
ing table with logical equations that are functions of guard (g), round (r), and
sticky (s) for the result of a floating-point addition that creates Sum. Let p be
the proper number of bits in the significand for a given precision and Sum, be
the pth most significant bit of Sum. A blank box means that the p most signifi-
cant bits of the sum are correctly rounded. If you place an equation in a box, a
false equation means that the p bits are correctly rounded; a true equation
means add 1 to the pth most significant bit of Sum.

Toward —eo

Toward +eo

| Truncate
Nearest even

4.59 [30] <§4.8> The elaboration on page 300 mentions that IEEE 754 has two
special symbols that are floating-point operands: infinity and Not a Number
(NaN). There are also small numbers called denorms, which are not normal-
ized. Because these special symbols and numbers are not used very frequently,
implementations that employ a mix of both hardware and software techniques
are sometimes used. For example, instead of using complicated hardware to
handle these special cases, an exception is generated and they are handled in
software. Many implementation options exist, each of which has unique per-
formance characteristics. Your task is to benchmark several different machines
for floating-point operations as the operands vary from normal numbers to
these special cases. Be sure to state your conclusions by comparing the perfor-
mance of different machines with one another and describing their similarities

4.14 Exercises 335

and differences. What impact are your results likely to have on software de-
signers who must choose whether or not to make use of the special features in
the IEEE 754 standard?

4.60 [30] <§4.5> If you have access to a computer containing a MIPS proces-
sor, write a loop in assembly language that sets registers $k0 ($26) and $k1
($27) to an initial value, and then loop for several seconds, checking the con-
tents of these registers. Print the values if they change. See the elaboration on
page 225 for an explanation of why they change. Can you find a reason for the
particular values you observe?

INTEL - 1012



In a major matter,

no details are small.

French Proverb

The Processor:
Datapath
and Control

5.1 Introduction 338

5.2 Building a Datapath 343

5.3 A Simple Implementation Scheme 351

5.4 A Multicycle Implementation 377

5.5 Microprogramming: Simplifying Control Design 399
5.6 Exceptions 410

5.7 Real Stuff: The Pentium Pro Implementation 416
5.8 Fallacies and Pitfalls 419

! ] 59  Concluding Remarks 421

5.10 Historical Perspective and Further Reading 423
511 Key Terms 426
5.12 Exercises 427

| The Five Classic Components of a Computer

Compiler

- Evaluating
performance

INTEL - 1012



338

Chapter 5 The Processor: Datapath and Control

Introduction

In Chapter 2, we saw that the performance of a machine was determined by
three key factors: instruction count, clock cycle time, and clock cycles per
instruction (CPI). The compiler and the instruction set architecture, which we
examined in Chapters 3 and 4, determine the instruction count required for a
given program. However, both the clock cycle time and the number of clock
cycles per instruction are determined by the implementation of the processor.
In this chapter, we construct the datapath and control unit for two different
implementations of the MIPS instruction set.

We will be designing an implementation that includes a subset of the core
MIPS instruction set:

® The memory-reference instructions load word (1w) and store word (sw)
m The arithmetic-logical instructions add, sub, and, or,and st
®m The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example, mul-
tiply and divide are missing), nor does it include any floating-point instruc-
tions. However, the key principles used in creating a datapath and designing
the control will be illustrated. The implementation of the remaining instruc-
tions is similar.

In examining the implementation, we will have the opportunity to see how
the instruction set architecture determines many aspects of the implementa-
tion, and how the choice of various implementation strategies affects the clock
rate and CPI for the machine. Many of the key design principles introduced in
Chapter 3 can be illustrated by looking at the implementation, such as the
guidelines Make the common case fast and Simplicity favors regularity. In addition,
most concepts used to implement the MIPS subset in this chapter and the next
are the same basic ideas that are used to construct a broad spectrum of com-
puters, from high-performance machines to general-purpose microprocessors
to special-purpose processors, which are used increasingly in products rang-
ing from VCRs to automobiles.

An Overview of the Implementation

In Chapters 3 and 4, we looked at the core MIPS instructions, including the
integer arithmetic-logical instructions, the memory-reference instructions,
and the branch instructions. Much of what needs to be done to implement

5.1 Introduction 339

these instructions is the same, independent of the exact class of instruction.
For every instruction, the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code
and fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the
registers to read. For the load word instruction we need to read only
one register, but most other instructions require that we read two regis-
ters.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
(memory-reference, arithmetic-logical, and branches), the actions are largely
the same, independent of the exact opcode.

Even across different instruction classes there are some similarities. For ex-
ample, all instruction classes use the arithmetic-logical unit (ALU) after read-
ing the registers. The memory-reference instructions use the ALU for an
address calculation, the arithmetic-logical instructions for the operation execu-
tion, and branches for comparison. As we can see, the simplicity and regularity
of the instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

After using the ALU, the actions required to complete the different instruc-
tion classes differ. A memory-reference instruction will need to access the
memory either to write data for a store or read data for a load. An arithmetic-

- logical instruction must write the data from the ALU back into a register. Last-

ly, for a branch instruction, we may need to change the next instruction address
based on the comparison.

Figure 5.1 shows the high-level view of a MIPS implementation. In the re-
mainder of the chapter, we refine this view to fill in the details, which requires
that we add further functional units, increase the number of connections be-
tween units, and, of course, add a control unit to control what actions are taken
for different instruction classes. Before we begin to create a more complete
implementation, we need to discuss a few principles of logic design.

A Word about Logic Conventions and Clocking

To discuss the design of a machine, we must decide how the logic implement-
ing the machine will operate and how the machine is clocked. This section
reviews a few key ideas in digital logic that we will use extensively in this
chapter. If you have little or no background in digital logic, you will find it
helpful to read through Appendix B before continuing. Section B.9 presents
the key terms introduced in Appendix B and is useful as a quick check-up if
you want to review your logic design background.

INTEL - 1012



340

Chapter 5 The Processor: Datapath and Control

Whgn designing logic, it is often convenient for the designer to change th
Inappmg be.tween a logically true or false signal and the high or low Vglta E
tevs;l. Thus, in some parts ofg design, a signal that is logically asserted may ag;—
ually be an electrically low signal, while in others an electrically high signal i
zissertletd}{ TQ maiptain cgnsistency, we will use the word asserted togindigcaf:e Ij
102?;11},&};1; hl.oglcally high and assert to specify that a signal should be driven

The functllonal units in the MIPS implementation consist of two different

types of lqglc elements: elements that operate on data values and element
that contain state. The elements that operate on data values are all combi as
tzqnal, which means that their outputs depend only on the current in nt _
Given the same input, a combinational element always produces the samepc:luf—.
put. The ALU shown in Figure 5.1 and discussed in detail in Chapter 4 is
combinational element. Given a set of inputs, it always produces th ¢ ;
put because it has no internal storage. soameont
Other elements in the design are not combinational, but instead contai
state. An element contains state if it has some internal sto/rage We call the: ln
ements.state elements because, if we pulled the plug on the m;achine we csoe ?d_
restart it by loading the state elements with the values they Contair;ed beflcl)re

—J Data

—>| Register #
Address Instruction = Registers ALY Address
Instruction Register #

memory b
. ata
Register # memory ma—
Data

FIGURE 5.1 An abstract view of the implementation
o ME .1 A ab: ; ' of the MIPS subset showing the major functional
addres:jm Lo inst(r;:l;;losn b,::;::n /:'f':m.hAl'] mstru;tlops start by using the program counter to supply thea 1:::111:3:
Fod by ielde of that mmstruction Oy. ﬁr the instruction is fetched, the register operands used by an instruction are speci-
ory adress (for o lond. or sto.r e)ncte) the register oper.ands h.ave been fetched, they can be operated on to computea nr:em-
el instr,uc(t'cor_npute an arlthmeh'c re§ult (for an integer arithmetic-logical instruction), or a
register. If the operation is a load or stl(())rI; 1i}?;z:f[tjhgf:liilsilsceacll 1: Stru‘:tcil(c)in/ o resu}it e ol rom W“'“e,n oo
register. 1 ' e s an address to either store a value fro is
branchen o éli';)err;ht:i@or}f/ t1[111t0 the registers. The resglt from the ALU or memory is written backeirﬁi(?t}tll;erzeg‘{iter?-lo y
se of the ALU output to determine the next instruction address, which requires some Conilri)lefoglii

as we will see.

5.1 Introduction 341

we pulled the plug. Furthermore, if we saved and restored the state elements,
it would be as if the machine had never lost power. Thus, these state elements
completely characterize the machine. In Figure 5.1, the instruction and data
memories as well as the registers are all examples of state elements.

A state element has at least two inputs and one output. The required inputs
are the data value to be written into the element, and the clock, which deter-
mines when the data value is written. The output from a state element pro-
vides the value that was written in an earlier clock cycle. For example, one of
the logically simplest state elements is a D-type flip-flop (see Appendix B),
which has exactly these two inputs (a value and a clock) and one output. In ad-
dition to flip-flops, our MIPS implementation also uses two other types of state
elements: memories and registers, both of which appear in Figure 5.1. The
clock is used to determine when the state element should be written; a state
element can be read at any time.

Logic components that contain state are also called sequential because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers de-
pends both on the register numbers supplied and on what was written into the
registers previously. The operation of both the combinational and sequential
elements and their construction are discussed in more detail in Appendix B.

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be
written. It is important to specify the timing of reads and writes because, if a
signal is written at the same time it is read, the value of the read could corre-
spond to the old value, the newly written value, or even some mix of the two!
Needless to say, computer designs cannot tolerate such unpredictability. A
clocking methodology is designed to prevent this circumstance.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in the ma-
chine are updated only on a clock edge. Thus, the state elements all update
their internal storage on the clock edge. Because only state elements can store
a data value, any collection of combinational logic must have its inputs coming
from a set of state elements and its outputs written into a set of state elements.
The inputs are values that were written in a previous clock cycle, while the out-
puts are values that can be used in a following clock cycle.

Figure 5.2 shows the two state elements surrounding a block of combina-
tional logic, which operates ina single clock cycle: All signals must propagate
from state element 1, through the combinational logic, and to state element 2
in the time of one clock cycle. The time necessary for the signals to reach state
element 2 defines the length of the clock cycle.

INTEL - 1012



Chapter 5 The Processor: Datapath and Control

State State
element Combinational logic element
1 2

Clock cycle —J

FIGURE 5.2 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into
internal storage. Any inputs to a state element must reach a stable value (that is, have reached a
value from which they will not change until after the clock edge) before the active clock edge
causes the state to be updated. All state elements, including memory, are assumed to be edge-
triggered.

For simplicity, we do not show a write control signal when a state element
is written on every active clock edge. In contrast, if a state element is not up-
dated on every clock, then an explicit write control signal is required. Both the
clock signal and the write control signal are inputs, and the state element is
changed only when the write control signal is asserted and a clock edge occurs.

An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write that register in the
same clock cycle, as shown in Figure 5.3. It doesn’t matter whether we assume
that all writes take place on the rising clock edge or on the falling clock edge,
since the inputs to the combinational logic block cannot change except on the
chosen clock edge. With an edge-triggered timing methodology, there is no
feedback within a single clock cycle, and the logic in Figure 5.3 works correctly.
In Appendix B we briefly discuss additional timing constraints (such as set-up
and hold times) as well as other timing methodologies.

Nearly all of these state and logic elements will have inputs and outputs
that are 32 bits wide, since that is the width of most of the data handled by the
processor. We will make it clear whenever a unit has an input or output that is
other than 32 bits in width. The figures will indicate buses, which are signals
wider than 1 bit, with thicker lines. At times we will want to combine several
buses to form a wider bus; for example, we may want to obtain a 32-bit bus by
combining two 16-bit buses. In such cases, labels on the bus lines will make it
clear that we are concatenating buses to form a wider bus. Arrows are also
added to help clarify the direction of the flow of data between elements. Final-
ly, color indicates a control signal as opposed to a signal that carries data; this
distinction will become clearer as we proceed through this chapter.

5.2 Building a Datapath 343

State

Combinational logic
element

FIGURE 5.3 An edge-triggered methodology allows a state element to be read and writ-
ten in the same clock cycle without creating a race that could lead to indeterminate data
values. Of course, the clock cycle still must be long enough so that the input values are stable
when the active clock edge occurs. Feedback cannot occur within 1 clock cycle because of the
edge-triggered update of the state element. If feedback were possible, this design could not work
properly. Our designs in this chapter and the next rely on the edge-triggered timing methodol-
ogy and structures like the one shown in this figure.

The MIPS Subset Implementation

We will start with a simple implementation that uses a single long clock cycle
for every instruction and follows the general form of Figure 5.1. In this first
design, every instruction begins execution on one clock edge and completes
execution on the next clock edge.

While easier to understand, this approach is not practical, since it would be
slower than an implementation that allows different instruction classes to take
different numbers of clock cycles, each of which could be much shorter. After
designing the control for this simple machine, we will look at an implementa-
tion that uses multiple clock cycles for each instruction. This implementation
is more realistic but also requires more complex control.

In this chapter, we will take the specification of the control to the level of
logic equations or finite state machine specifications. From either representa-
tion, a modern computer-aided design (CAD) system can synthesize a hard-
ware implementation; Appendix C shows how this is done. Before closing the
chapter, we will discuss how exceptions, mentioned in Chapter 4, are imple-
mented.

Building a Datapath

A reasonable way to start a datapath design is to examine the major compo-
nents required to execute each class of MIPS instruction. Let’s start by looking
at which datapath elements each instruction needs and build up the sections
of the datapath for each instruction class from these elements. When we show
the datapath elements, we will also show their control signals.

INTEL - 1012



344

Chapter 5 The Processor: Datapath and Control

The first element we will need is a place to store the instructions of a pro-
gram. A memory unit, which is a state element, is used to hold and supply in-
structions given an address, as shown in Figure 5.4. The address of the
instruction must also be kept in a state element, which we call the program
counter (PC), also shown in Figure 5.4. Lastly, we will need an adder to incre-
ment the PC to the address of the next instruction. This adder, which is combi-
national, can be built from the ALU we designed in the last chapter simply by
wiring the control lines so that the control always specifies an add operation.
We will draw such an ALU with the label Add, as in Figure 5.4, to indicate that
it has been permanently made an adder and cannot perform the other ALU
functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment
the program counter so that it points at the next instruction, 4 bytes later. The
datapath for this step, shown in Figure 5.5, uses the three elements from
Figure 5.4.

Now let’s consider the R-format instructions (see Figure 3.19 on page 154).
They all read two registers, perform an ALU operation on the contents of the
registers, and write the result. We call these instructions either R-type instruc-
tions or arithmetic-logical instructions (since they perform arithmetic or logical

»| INstruction
address —)
Instruction [ Add Sum
Instruction
memory —
a. Instruction memory b. Program counter ¢. Adder

FIGURE 5.4 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next Instruction address. The state elements are the
instruction memory and the program counter. The instruction memory need only provide read
access because the datapath does not write instructions. Since the instruction memory is only
reads, we treat it as combinational logic: the output at any time reflects the contents of the loca-
tion specified by the address input, and no read control signal is needed. (We will need to write
the instruction memory when we load the program; this is not hard to add, and we ignore it for
simplicity.) Since the instruction memory unit can only be read, we do not include a read control
signal; this simplifies the design. The program counter is a 32-bit register that will be written at
the end of every clock cycle and thus does not need a write control signal. The adder is an ALU
wired to always perform an add of its two 32-bit inputs and place the result on its output.

5.2 Building a Datapath 345

operations). This instruction class includes add, sub, and s1t, which were in-
troduced in Chapter 3, as well as and and or, which were introduced in Chap-
ter 4. Recall that a typical instance of such an instructionis add $t1,$t2,$t3,
which reads $t2 and $t3 and writes $t1.

The processor’s 32 registers are stored in a structure called a register file. A
register file is a collection of registers in which any register can be read or writ-
ten by specifying the number of the register in the file. The register file contains
the register state of the machine. In addition, we will need an ALU to operate
on the values read from the registers.

Because the R-format instructions have three register operands, we will
need to read two data words from the register file and write one data word into
the register file for each instruction. For each data word to be read from the reg-
isters, we need an input to the register file that specifies the register number to
be read and an output from the register file that will carry the value that has
been read from the registers. To write a data word, we will need two
inputs: one to specify the register number to be written and one to supply the
data to be written into the register. The register file always outputs the contents
of whatever register numbers are on the Read register inputs. Writes, however,
are controlled by the write control signal, which must be asserted for a write to
occur at the clock edge. Thus, we need a total of four inputs (three for register

> Add

4 e ]
Read
PC address
INSTrUCTLION [re—
Instruction
memory

FIGURE 5.5 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

INTEL - 1012



346

Chapter 5 The Processor: Datapath and Control

numbers and one for data) and two outputs (both for data), as shown in
Figure 5.6. The register number inputs are 5 bits wide to specify one of 32 reg-
isters (32 = 29), whereas the data input and two data output buses are each 32
bits wide.

The ALU, shown in Figure 5.6, is controlled by the 3-bit signal described in
Chapter 4. The ALU takes two 32-bit inputs and produces a 32-bit result.

The datapath for these R-type instructions, which uses the register file and
the ALU of Figure 5.6, is shown in Figure 5.7. Since the register numbers come
from fields of the instruction, we show the instruction, which comes from
Figure 5.5, as connected to the register number inputs of the register file.

Next, consider the MIPS load word and store word instructions, which have
the general form: 1w $t1,0ffset_valuel $t2) orsw $tl,offset_value
($12). These instructions compute a memory address by adding the base reg-

ALU operation

;5| Read
register 1
Read |__
. data 1
Register O | Read
numbers register 2
5 . Registers Data
5 \r/ggfter
Read |_
Write data 2
Data | data
RegWrite
a. Registers b. ALU

FIGURE 5.6 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and
one write port. The design of multiported register files is discussed in section B.5 of Appendix B.
The register file always outputs the contents of the registers corresponding to the Read register
inputs on the outputs; no other control inputs are needed. In contrast, a register write must be
explicitly indicated by asserting the write control signal. Remember that writes are edge-
triggered, so that all the write inputs (i.e., the value to be written, the register number, and the
write control signal) must be valid at the clock edge. Since writes to the register file are edge-
triggered, our design can legally read and write the same register within a clock cycle: the read
will get the value written in an earlier clock cycle, while the value written will be available to a
read in a subsequent clock cycle. The inputs carrying the register number to the register file are
all 5 bits wide, whereas the lines carrying data values are 32 bits wide. The operation to be per-
formed by the ALU is controlled with the ALU operation signal, which will be 3 bits wide, using
the ALU designed in the previous chapter (see Figure 419 on page 237). We will use the Zero
detection output of the ALU shortly to implement branches. The overflow output will not be
needed until section 5.6, when we discuss exceptions; we omit it until then.

5.2 Building a Datapath 347

Read ALU operation
regist
gister 1 Read
Read data 1 i
Instruction register 2 Zero
) Registers > ALU
Wri ALU
reg(ster result
Read
Write data 2
data
RegWrite

FIGURE 5.7 Thel datapath for R-type instructions. The ALU discussed in Chapter 4 can be
controlled to provide all the basic ALU functions required for R-type instructions.

ister, Wllich is $t2, to the 16-bit signed offset field contained in the instruction.
If the instruction is a store, the value to be stored must also be read from the
register file where it resides in $t1. If the instruction is a load, the value read
from memory must be written into the register file in the specified register,
which is $t1. Thus, we will need both the register file and the ALU shown in/
Figure 5.6.
. In addition, we will need a unit to sign-extend the 16-bit offset field in the
ms.truction to a 32-bit signed value, and a data memory unit to read from or
~ write to. The data memory must be written on store insEructions,' hence, it has
both read and write control signals, an address input, as well as an inp;ut for
the Qata to be written into memory. Figure 5.8 shows these two elements.

Figure 5.9 shows how to combine these elements to build the datapath for a
load word or a store word instruction, assuming that the instruction has al-
ready been fetched. The register number inputs for the register file come from
fields of the instruction, as does the offset value, which after sign extension be-
comes the second ALU input.

The begq instruction has three operands, two registers that are compared for
equality, and a 16-bit offset used to compute the branch target address relative
to the branch instruction address. Its formis beq $t1,$t2,0ffset. To imple-
ment this instruction, we must compute the branch target address by adding
the sign-extended offset field of the instruction to the PC. There are two details
in the definition of branch instructions (see Chapter 3) to which we must pay
attention:

B The instruction set architecture specifies that the base for the branch ad-
dress calculation is the address of the instruction following the branch.

INTEL - 1012



348 Chapter 5 The Processor: Datapath and Control
MemWrite
—>| Address Read
data 16 32
\ Sign \
it N lextend|
Write ata
data memory
MemRead
a. Data memory unit b. Sign-extension unit
FIGURE 5.8 The two units needed to implement loads and stores, in addition to the reg-
ister file and ALU of Figure 5.6, are the data memory unit and the sign extension unit. The
memory unit is a state element with inputs for the address and the write data, and a single out-
put for the read result. There are separate read and write controls, although only one of these
may be asserted on any given clock. The sign extension unit has a 16-bit input that is sign-
extended into a 32-bit result appearing on the output (see Chapter 4, page 216). We assume the
data memory is edge-triggered for writes. Standard memory chips actually have a write_ enable
signal that is used for writes. Although the write enable is not edge-triggered, our edge-trlgge.red
design could easily be adapted to work with real memory chips. See section B.5 of Appendix B
for a further discussion of how real memory chips work.
ALU operation
Read 3 . .
register 1 Read MemWrite
data 1
Read
- —
Instruction register 2 Z8re
-_— _ Registers ALU ALy —
s result Address e
register Read
\éVrtite e Data
ata
memo
‘ Write v
RegWrite daits
16 32
\ Sign MemRead
N | extend

v

5.2 Building a Datapath 349

Since we compute PC + 4 (the address of the next instruction) in the in-
struction fetch datapath, it is easy to use this value as the base for com-
puting the branch target address.

B The architecture also states that the offset field is shifted left 2 bits so
that it is a word offset; this shift increases the effective range of the offset
field by a factor of four.

To deal with the latter complication, we will need to shift the offset field by
two.

In addition to computing the branch target address, we must also determine
whether the next instruction is the instruction that follows sequentially or the
instruction at the branch target address. When the condition is true (i.e., the
operands are equal), the branch target address becomes the new PC, and we
say that the branch is taken. If the operands are not equal, the incremented PC
should replace the current PC (just as for any other normal instruction); in this
case, we say that the branch is not taken.

Thus, the branch datapath must do two operations: compute the branch
target address and compare the register contents. (Branches also require that
we modify the instruction fetch portion of the datapath, which we will deal
with shortly.) Figure 5.10 shows the branch datapath. To compute the branch
target address, the branch datapath includes a sign extension unit, just like that
in Figure 5.8, and an adder. To perform the compare, we need to use the regis-
ter file shown in Figure 5.6 to supply the two register operands (although we
will not need to write into the register file). In addition, the comparison can be
done using the ALU we designed in Chapter 4. Since that ALU provides an
output signal that indicates whether the result was 0, we can send the two reg-
ister operands to the ALU with the control set to do a subtract. If the Zero
signal out of the ALU unit is asserted, we know that the two values are equal.
Although the Zero output always signals if the result is 0, we will be using it
only to implement the equal test of branches. Later, we will show exactly how
to connect the control signals of the ALU for use in the datapath.

The jump instruction operates by replacing the lower 28 bits of the PC with
the lower 26 bits of the instruction shifted left by 2 bits. This shift is accom-
plished simply by concatenating 00 to the jump offset (as described in the elab-
oration in Chapter 3, page 150).

Now that we have examined the datapaths needed for the individual in-
struction classes, we can combine them into a single datapath and add the con-
trol to complete the implementation. The datapaths shown in Figures 5.5, 5.7,
5.9, and 5.10 will be the building blocks for two different implementations. In
the next section, we will create an implementation that uses a single long clock
cycle for every instruction. In section 5.4, we will look at an implementation

FIGURE 5.9 The datapath for a load or store does a register access, followed by a memory address calculation,

then a read or write from memory, and a write into the register file if the instruction is a load. that uses multiple shorter clock cycles for every instruction.

INTEL - 1012




Chapter 5 The Processor: Datapath and Control

PC + 4 from instruction datapath ==

gAdd Sum Branch target
ALU operation
Read
Instruction register 1 Read
Bead data 1 h
register 2 To branc
Registers 5ALU Zero control logic
Write
register Read
Write data 2
data
RegWrite|
16 32
\ Sign
N lextend

FIGURE 5.10 The datapath for a branch uses the ALU to evaluate the b_ranch condition
and a separate adder to compute the branch target as the sum of the mc_remented PC
and the sign-extended, lower 16 bits of the instructior! (the bral_lch dlsplacemgnt),
shifted left 2 bits. The unit labeled Shift left 2 is simply a routing of the sxgpals between input
and output that adds 00y, to the Jow-order end of the sign-extended offset field; no actual shift
hardware is needed, since the amount of the “shift” is constant. Sincg we know that the foset was
sign-extended from 16 bits, the shift will throw away only “sign bits.” Control logic is used to
decide whether the incremented PC or branch target should replace the PC, based on the Zero

output of the ALU.

Elaboration: |n the MIPS instruction set, branches are delayed, meaning that the
instruction immediately following the branch is always executed, independent . of
whether the branch condition is true or false. When the condition is false, the execution
looks like a normal branch. When the condition is true, a delayed branch first executes
the instruction immediately following the branch in sequential instruction order before
jumping to the specified branch target address. The motivation for. delgyed brapches
arises from how pipelining affects branches (see section 6.6). For 5|mpI|C|ty, we ignore
delayed branches in this chapter and implement a nondelayed be( instruction.

5.3 A Simple Implementation Scheme 351

A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible
implementation of our MIPS subset. We build this simple datapath and its
control by assembling the datapath segments of the last section and adding
control lines as needed. This simple implementation covers load word (1w),
store word (sw), branch equal (beq), and the arithmetic-logical instructions
add, sub, and, or,and set on Tess than. We will later enhance the design to
include a jump instruction (j).

Creating a Single Datapath

Suppose we were going to build a datapath from the pieces we looked at in
Figures 5.5, 5.7, 5.9, and 5.10. The simplest datapath might attempt to execute
all instructions in 1 clock cycle. This means that no datapath resource can be
used more than once per instruction, so any element needed more than once
must be duplicated. We therefore need a memory for instructions separate
from one for data. Although some of the functional units will need to be
duplicated when the individual datapaths of the previous section are com-
bined, many of the elements can be shared by different instruction flows.

To share a datapath element between two different instruction classes, we
may need to allow multiple connections to the input of an element and have a
control signal select among the inputs. This selection is commonly done with
a device called a multiplexor, although this device might better be called a data
selector. The multiplexor, which was introduced in the last chapter (Figure 4.8
on page 231), selects from among several inputs based on the setting of its con-
trol lines.

Composing Datapaths

m The arithmetic-logical (or R-type) instruction datapath of Figure 5.7 on

page 347 and the memory instruction datapath of Figure 5.9 on page 348
are quite similar. The key differences are the following:

®m The second input to the ALU unit is either a register (if it's an R-type
instruction) or the sign-extended lower half of the instruction (if it's a
memory instruction).

B The value stored into a destination register comes from the ALU (for
an R-type instruction) or the memory (for a load).

INTEL - 1012



352 Chapter 5 The Processor: Datapath and Control 5.3 A Simple Implementation Scheme 353
Show how to combine the two datapaths using multiplexors, without
duplicating the functional units that are in common in Figures 5.7 and 5.9.
Ignore the control of the multiplexors.
4 —p
m To combine the two datapaths and use only a single register file and an
ALU, we must support two different sources for the second ALU input, as Reaq  Registers E—
well as two different sources for the data stored into the register file. Thus pclds| Read register 1 3 ' MemWrite
‘ one multiplexor is placed at the ALU input and another at the data input address Read d;‘;ai : MemtoReg
‘ to the register file. Figure 5.11 shows the combined datapath. Instruction egsiar2 b Zero
Vi R ALU AL Address ~ Read
| register data 2 M result data .
‘ The instruction fetch portion of the datapath, shown in Figure 5.5 on page '";::g‘h“ e Write X i u
‘ 345, can easily be added to the datapath in Figure 5.11. Figure 5.12 shows the Y date Write memory g
| result. The combined datapath includes a memory for instructions and a sepa- Regwrite| data
rate memory for data. This combined datapath requires both an adder and an i 16 [ sign \32 ‘
‘ ALU, since the adder is used to increment the PC while the other ALU is used Se=>| extend MemRead
|

for executing the instruction in the same clock cycle.

Now we can combine all the pieces to make a simple datapath for the MIPS
architecture by adding the datapath for branches from Figure 5.10 on page 350.
Figure 5.13 on page 354 shows the datapath we obtain by composing the ‘ FIGURE 5.12 The instruction fetch portion of the datapath from Figure 5.5 is appended to the datapath of
separate pieces. The branch instruction uses the main ALU for comparison of H;':S':n;l10“:;::;::"::;4";1‘:2 "t'd ALU Instructions. The addition is highlighted. The result is a datapath that sup-
the register operands, so we must keep the adder in Figure 5.10 for comput- ; ¥ e e etruction set—branches and fumps axe the major missing pieces.
ing the branch target address. An additional multiplexor is required to select
either the sequentially following instruction address (PC + 4) or the branch
target address to be written into the PC.

Now that we have completed this simple datapath, we can add the control
unit. The control unit must be able to take inputs and generate a write signal
for each state element, the selector control for each multiplexor, and the ALU
control. The ALU control is different in a number of ways, and it will be useful

ALU operation : o .
— p to design it first before we design the rest of the control unit.
register 1 Read MemWrite |
data 1 MemtoReg Th
Read > | e ALU Control
Instruction registerRQ ik ALSs - 50 :
i TSRS J 5&"3 reétﬁ . Read Recall from Chapter 4 that the ALU has three control inputs. Only five of the
register l:l data ‘ possible eight input combinations are used. Figure 4.20 on page 240 showed
Wiie x Butta the five following combinations:
45 Wit memory |
RegWrite | Vi
16 o 32 ‘ —
\ A\ [
N lextend| MemRead s &y
001 OR
010 add
110 subtract
111 set on less than

FIGURE 5.11 Combining the datapaths for the memory instructions and the R-type instructions. This example \
shows how a single datapath can be assembled from the pieces in Figures 5.7 and 5.9 by adding multiplexors. The added |
multiplexors and connections have been highlighted. The control lines for the multiplexors are also shown. ’
l
!

b

INTEL - 1012




354 Chapter 5 The Processor: Datapath and Control

PCSrc
\ b
u
Add -
ALU
— >Addresult
Registers 3 ALU operation MemWrite
Read 5eeg?gter ; ! ALU|5rC
ea Read
L MemtoRe
address Read data 1 ’
register 2
e Read
INSTrUCTION fremmd Writet theag M result Address data W
register ata
Instruction Write g Data
memory | data Write memory
RegWrite| data
B o 32
N S::gnd MemRead
exten

FIGURE 5.13 The simple datapath for the MIPS architecture combines the ele{}nents r.equlreddbby dlf;eel"s?lil; I::;gl‘:
’ i ic i i load/store word, ALU operations, and branc
tion classes. This datapath can execute the basic instructions ( . ‘ y o’
iti i i ighli d to implement branches. The datapath compo!
le. The additions to Figure 5.12, which are all highlighted, are use : . . :
?&I)(;Ctl;;izlfes come from FiguregS‘l(). A multiplexor is also needed, since the value written into the PC can be either the sequen

tially incremented PC or the branch target PC. The support for jumps will be added later.

Depending on the instruction class, the ALU will need. to perform one of these
five functions. For load word and store word instructions, wg use the. ALU to
compute the memory address by addition. For the R-type instructions, the
ALU needs to perform one of the five actions (AND, OR, subtractf add,. or s_et
on less than), depending on the value of the 6-bit funct (or function) field in
the low-order bits of the instruction (see Chapter 3, page 118). For branch
equal, the ALU must perform a subtraction. . '

We can generate the 3-bit ALU control input using a small cpntrol unit .that
has as inputs the function field of the instruction and a 2-b1t. control field,
which we call ALUOp. ALUOp indicates whether the operation to be per-
formed should be add (00) for loads and stores, subtract (01) for beq, or deter-
mined by the operation encoded in the funct field (10). The output of the ALU
control unit is a 3-bit signal that directly controls the ALU by generating one of

the five 3-bit combinations shown previously.

5.3 A Simple Implementation Scheme 355

In Figure 5.14, we show how to set the ALU control inputs based on the 2-bit
ALUOp control and the 6-bit function code. For completeness, the relationship
between the ALUOp bits and the instruction opcode is also shown. Later in
this chapter we will see how the ALUOPp bits are generated from the main con-
trol unit.

This style of using multiple levels of decoding (i.e., the main control unit
generates the ALUOp bits, which then are used as input to the ALU control
that generates the actual signals to control the ALU unit) is a common imple-
mentation technique. Using multiple levels of control can reduce the size of the
main control unit. Using several smaller control units may also potentially in-
crease the speed of the control unit. Such optimizations are important, since
the control unit is often performance-critical.

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit funct field to the three ALU operation control bits.
Because only a small number of the 64 possible values of the function field are
of interest and the function field is used only when the ALUOp bits equal 10,
we can use a small piece of logic that recognizes the subset of possible values
and causes the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the in-
teresting combinations of the function code field and the ALUOp bits, as we've
done in Figure 5.15; this truth table shows how the 3-bit ALU control is set de-
pending on these two input fields. Since the full truth table is very large (28 =
256 entries) and we don't care about the value of the ALU control for many of
these input combinations, we show only the truth table entries for which the

" ALU control must have a specific value. Throughout this chapter, we will use

Instruction Instruction Desired ALU control
opcode operation ALU action input
[w XXXXXX ['add ] 010 ¥j
XXXXXX add 010 l
XXXXXX | subtract - ) 110 |

100000 Jadd | o0
100010 subtract 110 \
10000  fand | 000 |
100101 lor ‘ 001

set on less thanj 101610 set on ieés i?\an T . 111 ]

FIGURE 5.14 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first col-
umn, determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice
that when the ALUOp code is 00 or 01, the desired ALU action does not depend on the function
code field; in this case, we say that we “don’t care” about the value of the function code, and the
funct field is shown as XXXXXX. When the ALUOp value is 10, then the function code is used to
set the ALU control input.

INTEL - 1012



356

Chapter 5 The Processor: Datapath and Control

o Nwae e T e e
[ Awopi | Awopo | Fs [Fa[F ][R |F]R|
0 0 X | X X | X | X X | 010 )
X 1 X X X [ x [ x X 110 1
1 X X X o | o | 0 0 010
1 X % | X o | o | 1 o | o 110
1 X X | x| o 1] 0] o0 000 B
1 1;‘7 ‘ R x [ o [ 1 o | 1 001
& [ x [x[x[tlolalo] s |

FIGURE 5.15 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code field. Only the entries for which the ALU control is asserted
are shown. Some don’t-care entries have been added. For example, the ALUOp does not use the
encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. Also, when
the function field is used, the first two bits (F5 and F4) of these instructions are always 10, so they
are don't-care terms and are replaced with XX in the truth table.

this practice of showing only the truth table entries that must be asserted and
not showing those that are all zero or don’t care. (This practice has a disadvan-
tage, which we discuss in section C.2 of Appendix C.)

Because in many instances we do not care about the values of some of the
inputs and to keep the tables compact, we also include “don’t-care” terms. A
don’t-care term in this truth table (represented by an X in an input column) in-
dicates that the output does not depend on the value of the input correspond-
ing to that column. For example, when the ALUOp bits are 00, as in the first
line of the table in Figure 5.15, we always set the ALU control to 010, indepen-
dent of the function code. In this case, then, the function code inputs will be
don’t cares in this line of the truth table. Later, we will see examples of another
type of don’t-care term. If you are unfamiliar with the concept of don’t-care
terms, see Appendix B for more information.

Once the truth table has been constructed, it can be optimized and then
turned into gates. This process is completely mechanical. Thus, rather than
show the final steps here, we describe the process and the result in section C.2
of Appendix C.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function
code and a 2-bit signal as its control inputs, we can return to looking at the
rest of the control. To start this process, let’s identify the fields of an instruc-
tion and the control lines that are needed for the datapath we constructed in
Figure 5.13 on page 354. To understand how to connect the fields of an
instruction to the datapath, it is useful to review the formats of the three
instruction classes: the R-type, branch, and load/store instructions. These
formats are shown in Figure 5.16.

R

- 4..,..,1-' L

5.3 A Simple Implementation Scheme 357

Field 07 - rs - rt rd ' shamt funct
Bit positions 31-26 25-21 20-16 15-11 10-6 5-0
a. R-type instruction

Field 350r43 | s rt ' address
Bit positions 31-26 25-21 20-16 15-0
b. Load or store instruction

Field ‘ 4 ‘ rs } rt I address
Bit positions 31-26 25-21 20-16 15-0
c. Branch instruction

FIGURE 5.16 The three instruction classes (R-type, load and store, and branch) use two different instruction
formats. The jump instructions use another format, which we will discuss shortly. (a) Instruction format for R-format
instructions, which all have an opcode of 0. These instructions have three register operands: rs, rt, and rd. Fields rs and rt
are sources, and rd is the destination. The ALU function is in the funct field and is decoded by the ALU control design in
the previous section. The R-type instructions that we implement are add, sub, and, or, and 5 1t. The shamt field is used
only for shifts; we will ignore it in this chapter. (b) Instruction format for load (opcode = 35, and store (opcode = 43,,,))
instructions. The register rs is the base register that is added to the 16-bit address field to form the memory address. For
loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value should be stored
into memory. (c) Instruction format for branch equal (opcode = 4). The registers rs and rt are the source registers that are
compared for equality. The 16-bit address field is sign-extended, shifted, and added to the PC to compute the branch target
address.

There are several major observations about this instruction format that we
will rely on:

»

m The op field, also called the opcode, is always contained in bits 31-26. We
will refer to this field as Op[5-0].

B The two registers to be read are always specified by the rs and rt fields,
at positions 25-21 and 20-16. This is true for the R-type instructions,
branch equal, and for store.

B The base register for load and store instructions is always in bit posi-
tions 25-21 (rs).

® The 16-bit offset for branch equal, load, and store is always in positions
15-0.

® The destination register is in one of two places. For a load it is in bit
positions 20-16 (rt), while for an R-type instruction it is in bit positions
15-11 (rd). Thus we will need to add a multiplexor to select which field
of the instruction is used to indicate the register number to be written.

Using this information, we can add the instruction labels and extra multi-
plexor (for the Write register number input of the register file) to the simple
datapath. Figure 5.17 shows these additions plus the ALU control block, the
write signals for state elements, the read signal for the data memory, and the

INTEL - 1012



; ‘ 5.3 A Simple Implementation Scheme 359

55
" ek f
& s .
.g — =23x O = 2 f Effect when deasserted Effect when asserted
2T ‘ — _— == —
% g 9 I RegDst The register destination number for the Write The register destination number for the Write register
= [
—~= : & register comes from the rt field (bits 20-16). comes from the rd field (bits 15-11).
— b o === m— S I rees————l == e e RN |
S 8 s E - = 35 RegWrite | None { The register on the Write register input is written with the |
2 = 8 g © g = ] B ) value on the Write data input. |
- = 9 EL % ; E ALUSrc The second ALU operand comes from the second [ The second ALU operand is the sign-extended, lower 16 ‘
g o S3x o %EJ g s g ‘E z : ‘ register file output (Read data 2). - | bits of the instruction.
a ° S ® g ! | PCSrc The PC is replaced by the output of the adder that | The PC is replaced by the output of the adder that ‘
< =o o o
1 E -;::; computes tpe value of PC + 4. computes the branch target. |
“_ 3 19 | MemRead None | Data memory contents designated by the address input are \
=T 3= [\ | put on the Read data output.
< g E kS ’ MemWrite \ None Data memory contents designated by the address input arﬂ
- g g e | replaced by the value on the Write data input.
2 2 2 ] \ MemtoReg | The value fed to the register Write data input The value fed to the register Write data input comes from
=, 3 i) | comes from the ALU. the data memory.
o £E . - ———
S — wn -
% 3 = s i g b FIGURE 5.18 The effect of each of the seven control signals. When the 1-bit control to a two-way multiplexor is
32 =3x E yafas | asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor
< 8yl 1 selects the 0 input. Remember that the state elements all have the clock as an implicit input and that the clock is used in
A == :é_’o i controlling writes. The clock is never gated externally to a state element, since this can create timing problems. (See Appen-
™ .: — 8 |4 dix B for further discussion of this problem.)
£ 2. 1
© E© b
g < DA ) & c o == ' 2
o8 08 3 K] 5 gog % 3 : . . .
cm® o ¢ »n % 6 °=58 h control signals for the multiplexors. Since all the multiplexors have two in uts,
2 © © \% i 0 X Uy |
= L2 Q= i s )
=4 . Ly » < 2E% b the}{ each require a single C01.1trol lm'e. . .
g 5 55 w = £-° | ¥ Figure 5.17 shows seven single-bit control lines plus the 2-bit ALUOp con-
B2 2o 2 _?ﬂ 2w = E % s 8 trol signal. We have already defined how the ALUOp control signal works, and
CTWEG 17) - i § .
el =033 < E g s ~ it is useful to define what the seven other control signals do informally before
1 t @z Z we determine how to set these control signals during instruction execution.
7 = . . f .
é) 825 Figure 5.18 describes the function of these seven control lines.
s . .
a1 © q L. = g Now that we have looked at the function of each of the control signals, we
o - [} .
&1 & b j, i i can look at how to set them. The control unit can set all but one of the control
) L o= . ; < :
% % % =~ S é g signals based solely on the opcode field of the instruction. The PCSrc control
8] S 2 % b P line is the exception. That control line should be set if the instruction is branch
[S] o Q . - . . .
2l 2 2 2 = é z on equal (a decision that the control unit can make) and the Zero output of the
2l 2 E 2 g = ALU, which is used for equality comparison, is true. To generate the PCSrc
T g signal, we will need to AND together a signal from the control unit, which we
= L | § :
§% 28= « call Branch, with the Zero signal out of the ALU.
k) 8% § > - These nine control signals (seven from Figure 5.18 and two for ALUOp) can
k- 5E— B 5 ac . & g 3 v h h h
< 5 % £< 4 now be set on the basis of six input signals to the control unit, which are the
- 2= g2 o g5 opcode bits. The datapath with the control unit and the control signals are
gg = g = % ? shown in Figure 5.19
< E T g R ; ;
=2 NET Before we try to write a set of equations or a truth table for the control unit,
s ;c it will be useful to try to define the control function informally. Because the set-
Q w E = ting of the control lines depends only on the opcode, we define whether each
[} 3¢ £ control signal should be 0, 1, or don’t care (X), for each of the opcode values.
EE S
{
|
|
(page 358) '

INTEL - 1012




5.3 A Simple Implementation Scheme 361

Figure 5.20 defines how the control signals should be set for each opcode; this
information follows directly from Figures 5.14, 5.18, and 5.19.

“23% o

B el >E >
- 2D =
3 & e &5
(o= =]
=S S =
3% 885 o=
Ot S o
VoA = OO
S g 29 8
= N “Z :
— =8 g o § Operation of the Datapath
[ -3 [} N+ ':E, ]
| g3 -5 gl With the information contained in Figures 5.18 and 5.20, we can design the
o} E 9 e "§ —g =1 g f‘)
1 o g E = 2 0 8 e control unit logic, but before we do that, let’'s look at how each instruction
& e 22 R : .
= g g 9.8 :Ec;f uses the datapath. In the next few figures, we show the flow of three different
ER U = .= . ) i
T T 8 SESE®E instruction classes through the datapath. The asserted control signals and
5 Ls 58 s X i . 5 ;
2 =8 § WE EE active datapath elements are highlighted in each of these. Note that a multi-
bl i = I = -~ . . . . . . . .
= S plexor whose control is 0 has a definite action, even if its control line is not
o} = 5D | . . . o 3 - . . x N g
& §§ 5 3 highlighted. Multiple-bit control signals are highlighted if any constituent
2% 3 E SEE signal is asserted.
< = >
= REEwE Let’s begin with an R-type instruction, such as add $t1,$t2,$t3. Rather
2 o TS5 9
, = 282 e than looking at the entire datapath as one piece of combinational logic, it is eas-
3 t2E5g ier to think of an instruction executing in a series of steps, focusing our atten-
v B 3 » . . .
£<s s & | tion on the portion of the datapath associated with each step. There are four
e ' .
cR2eg steps to execute an R-type instruction:
= bbg o} (-O
59 O é < i . . ‘
ZEEES 1. An instruction is fetched from the instruction memory and the PC is
S84 Punl o w® 5 ¥ . . : ’ .
1 S E8=22% ' incremented. Figure 5.21 shows this first step. The active units and
S x5 & . 55 . ;
gs &8s G‘D o2 g s g asserted control lines are highlighted. The same format is followed for
° ° ) = 4
2 _ SEgpz . . the next three steps.
£ o} 5 8EsSZ ¢ i
h) o = E o7 <0 5 +
ol ] o NE . c 23 £ = & 2 L
olx E Pl o} ] o o a2 <5 oo
Z5|2(2|8lE|5|5| |32 3L &8 &= 3 €S8 Memto— Reg
W T =% c (o] =
B5|2|2(3|2(z(2 (28 28 =¥ =8 g 23 q;gj:f g RegDst Write Read ALUOpO
= s = = '
- [ g5535¢ R-format o | o o [ o ‘ L
3 S Eax o) §§§$g§ ‘ Tw 0 1 1 1 J 1 | o o | o 0
ges3%= | sw . X 1 X o | o | 1 o | o | o
€ g ¢ 3 4 ig?<%§ | beq | X o0 | x o | o 0 ‘ 1 | e | 1
; ) | ) T 0T o wn |
B e} [=] n o o.:E,_c:wra - L - 1 — 1 S
fac) N N = = g s
= = = Q s o s = )
s sl s s = s i :§ o FIGURE 5.20 The setting of the control lines is completely determined by the opcode fields of the instruction.
3 é é § § £ go T = g L0 The first row of the table corresponds to the R-format instructions (add, sub, and, or, and s1t). For all these instructions,
2 £] 2 2 2 e E scb 5 qna the source register fields are rs and rt and the destination register field is rd; this defines how the signals ALUSrc and
£2 52 - = RegDst are set. Furthermore, an R-type instruction writes a register (RegWrite = 1), but neither reads nor writes data mem-
8~ & g3 & ory. When the Branch control signal is 0, the PC is unconditionally replaced with PC + 4; otherwise, the PC is replaced b
8 9—=589 Ty. & y I€p . ¥ ) o A
g5 8 B £ 2% the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set to 10 to indicate
gé 3 = _% ; @3 that thg ALU control should be generated from the func.t field. The second and third rows of this table give the control sig-
@ - 5T nal settings for |w ana Sw. ese TC anc 1elas are set to pertorm the address calculation. [he MemKkead anc
g ::39;‘: 5 3 1 settings for | d These ALUS 1 ALUOp field t to perfi ‘tl dd lculat The MemRead and
E N EZ ; i ;f‘ MemWrite are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be
. % g ® 5 = Z <Zt = stored into the rt register. The branch instruction is similar to an R-format operation, since it sends the rs and rt registers to
- Ef 2o8G E 5 the ALU. The ALUOp field for branch is set for a subtract (ALU control = 01), which is used to test for equality. Notice that
< o8 2t a8 = ™3 the MemtoReg field is irrelevant when the RegWrite signal is 0—since the register is not being written, the value of the data
[t = 2 s B | 8 ) 8 <! : i X
3 2 E g 3 = on the register data write port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for
weso < S ‘ don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. This type of don’t care must be added by the
© w 252 % _5“: designer, since it depends on knowledge of how the datapath works.
V wn
3ESEEE |
EsfEEE ‘
(page 360)

INTEL - 1012




5.3 A Simple Implementation Scheme 363

2. Two registers, $t2 and $t3, are read from the register file as shown in
Figure 5.22 on page 364. The main control unit computes the setting of
the control lines during this step also.

32 3. The ALU operates on the data read from the register file, using the func-
‘ =h s E tion code (bits 5-0, which is the funct field, of the instruction) to gener-
°t H ate the ALU function. Figure 5.23 on page 365 shows the operation of

J —men o 3 this step.
| § §§ 4. The result from the ALU is written into the register file using bits 15-11

of the instruction to select the destination register ($t1). Figure 5.24 on
page 366 shows the final step added to the previous three.

Remember that this implementation is combinational. That is, it is not really
a series of four distinct steps. The datapath really operates in a single clock cy-
cle, and the signals within the datapath can vary unpredictably during the
clock cycle. The signals stabilize roughly in the order of the steps given above
because the flow of information follows this order. Thus, Figure 5.24 shows not
only the action of the last step, but essentially the operation of the entire data-
path when the clock cycle actually ends.

We can illustrate the execution of a load word, such as

16 /\32
N Sign |\

83 &3 Tw $t1, offset($t2)
$ 2 =) in a style similar to Figure 5.24. Figure 5.25 on page 368 shows the active func-
ol |e - NE‘ . = tional units and asserted control lines for a load. We can think of a load
slz| E| o[ 2 g 3 B 2 y i : i e p
Z5lzlg g 2|5(2| (32 3% 2% g£¢ 2 Instruction as operating in five steps (similar to the R-type executed in four):
gole|g|2|g|2|2] [&¢ &¢ ¢ =3 3 > . . .
=l : kal 1 - 1. An instruction is fetched from the instruction memory and the PC is
£ 3 i ted.
g . sa_ mcremen
] _I ] 2. Aregister ($t2) value is read from the register file.
@ d = 2 e
3 al 8 8 = 3. The ALU computes the sum of the value read from the register file and
5 s| 5 s l the sign-extended, lower 16 bits of the instruction (0f fset).
2 3| 3 2 E ;
z 2| E £ E l 4. The sum from the ALU is used as the address for the data memory.
! 4 5. The data from the memory unit is written into the register file; the regis-
55 | ter destination is given by bits 20-16 of the instruction ($t1) .
/ S
g B ‘
35 ie
< &8 = I )

FIGURE 5.21 The first step of an R-type instruction performs a fetch from instruction memory and increments the PC. The portions

active in this step are highlighted; the light portions are not active at this step, though some will be active later in the cycle.

1]

(page 362) INTEL - 1012




(v9¢ o5ed)

(s9¢ oa3ed)

PC

Add

Read

address

Instruction
[31-0]
Instruction
memory

Instruction [31-26]

= xeZ O

Control

ALU ALy

resuit

Instruction [5-0]

Instruction [25-21] Read
register 1 Read
Instruction [20-16] Read datal
L register 2
0 Registers Read
M Write data 2
it register
Instruction [15-11] X Write
L T
L) ] data
Instruction [15-0] {6 Sign :3
N lextend|

N

/ ALU
kcontml

L/

= |
|
o Read |
Address data
Data i
memory i
Write i
data {

FIGURE 5.22 The second phase in the execution of R-type instructions reads the two source registers from the register file. The main

control unit also uses the opcode field to determine the control line setting. These units become active in addition to the units active during the
instruction fetch portion, shown in Figure 5.21.

PC

Instruction [31-26]

Control

ALU
result

>

dd

= xg® ©

Add
4

Read
address

Instruction

[31-0]
Instruction
memory

Instruction [25-21] Read
register 1 Read
Instruction [20-16] Read data 1
‘ register 2
Registers Read
Write data 2
register
Instruction [15-11] Write
1 data
Instruction [15-0] %6 Sign %2
N lextend|

Instruction [5-0]

j .\.
R =]
| |
|
|

8
e Read . |
Address data {1 |

M

u

Data X

memor

Write ¥ g
data ‘
: !
e

FIGURE 5.23 The third phase of execution for R-type instructions involves the ALU operating on the register data operands. The control
line values are all set, and the ALU control has been computed. The ALU operates on the data.

INTEL - 1012




5.3 A Simple Implementation Scheme 367

‘ Finally, we can show the operation of the branch-on-equal instruction, such
| T as beq $tl1,$t2,offset, in the same fashion. It operates much like an
' R-format instruction, but the ALU output is used to determine whether the PC
= is written with PC + 4 or the branch target address. Figure 5.26 shows the four
i &% steps in execution:

£ 2 '

- i 1. An instruction is fetched from the instruction memory and the PC is
o E3x o o incremented.
£ Ew ‘
g 53 2. Two registers, $t1 and $t2, are read from the register file.

3. The ALU performs a subtract on the data values read from the register

file. The value of PC + 4 is added to the sign-extended, lower 16 bits of
1 the instruction (of fset) shifted left by two; the result is the branch tar-
| get address.

ALU

Add

4. The Zero result from the ALU is used to decide which adder result to
store into the PC.

. | In the next section, we will examine machines that are truly sequential,
I namely, those in which each of these steps is a distinct clock cycle.
L L o s ‘
§§ §§ @9 i Finalizing the Control
g . . = ‘ Now that we have seen how the instructions operate in steps, let’s continue
o oF o S | with the control implementation. The control function can be precisely
: s . ggzgg -~ g : defined using the contents of Figure 5.20 on page 361. The outputs are the
g =l B ey ¢ s¢ £ g | * control lines, the input is the 6-bit opcode field, Op [5-0]. Thus we can create
3 | = | a truth table for each of the outputs. Before doing so, let's write down the
lg TIPS encoding for each of the opcodes of interest in Figure 5.20, both as a decimal
% number and as a series of bits that are input to the control unit:
b &l 8 = &
- g o ——— L ———
: e - - | T ™ g | @ o [ o T o |
‘ [ Tw 35¢en 1 0 0 o | 1 | 1
— , sw | 43, i o | 1 o | 1 | t |
s | 4w | © | 0 | o [t | o | o

Add
Read
address
Instruction
memory

7]

add R1,RI,RI1) it works correctly: the value read from the registers is the value of R1 written at the end of some earlier clock cycle, while the value
to be written into the registers by the instruction is not actually written into the register until the clock edge at the end of the current clock cycle.

control lines when they are stable. Observe that if the instruction is one that uses the same register as both an input and output (such as

FIGURE 5.24 The final step in an R-type instruction, writing the result, is added to the active units shown for the previous three steps in
Figure 5.23. The PC is also updated at the end of this phase. Because the datapath is combinational, this step shows all the active units and asserted

366
ez 368) INTEL - 1012




Add

(89¢ o5ed)

Read
P address

Instruction
memory

Instruction

[31-0]

Instruction [31-26]

RegDst
Branch

ALU

Add result

xe3 ©

MemRead

MemtoReg

Instruction [25-21]

Control

ALUOp

MemWrite

| ALusrc

RegWrite

Read

Instruction [20-16]

register 1

Read

Instruction [15-11]

register 2

Write
register

Write
data

Read
data 1

Registers ¢
data 2

Instruction [15-0]

16
A\ Sign |\

Write

Instruction [5-0]

N “lextend|

data

Address

Read
data

Data
memory

Cxez ™

The operation of a load instruction with the simple datapath control scheme. A store instruction would operate very similarly.

The main difference would be that the memory control would indicate a write rather than a read, the second register value read would be used for
the data to store, and the operation of writing the data memory value to the register file would not occur.

? Add
®
4
@
3
&
Read
e address
Instruction
[ a4l
Instruction
memory

Instruction [31-26]

Instruction [25-21]

RegDst
Branch

ALU
Add result

MemRead

R xg@ ©

MemtoReg
Control

ALUOp

MemWrite

| ALUSKc

RegWrite

Read

Instruction [20-16]

register 1

Read

Read data 1

Instruction [15-11]

L.

register 2
Registers Reoaq

Write data 2

register

Write
data

Instruction [15-0]

=
o

Sign

32
A

N | extend

Instruction [5-0]

Address

Write
data

Read
data

Data
memory

Oxezm*

FIGUR§ 5.26 The datapath in operation for a branch equal instruction. After using the register file and ALU to perform the compare, the Zero
output is used to select the next program counter from between the two candidates.

INTEL - 1012



370

Chapter 5 The Processor: Datapath and Control

lop5 I \
|

Op4
Op3
Op2
op1
| opo
RegDst
ALUSrc
ﬁMemtoReg
RegWrite
Outputs MemRead
MemWrite
Branch
ALUOp1

‘ ALUOpO \

Inputs

o|r|o|o|o|r|o|lo|lr|o|o|o|lo|o|o
o|lo|o|o|r|kr|kr|lr|lo|r|r|o|lo|o|r
o|lo|o|r|o|lo|x|kr|x|r|r|o|r|lo|r
rlo|lr|lo|o|lo|x|o|x|o|o|r|o|lo|lo

FIGURE 5.27 The control function for the simple single-cycle implementation is com-
pletely specified by this truth table. The top half of the table gives the combinations of input
signals that correspond to the four opcodes that determine the control output settings. (Remem-
ber that Op [5-0] corresponds to bits 31-26 of the instruction, which is the op field.) The bottom
portion of the table gives the outputs. Thus, the output RegWrite is asserted for two different
combinations of the inputs. If we consider only the four opcodes shown in this table, then we can
simplify the truth table by using don’t cares in the input portion. For example, we can detect an
R-format instruction with the expression Op5 * Op2, since this is sufficient to distinguish the R-
format instructions from 1w, sw, and beq. We do not take advantage of this simplification, since
the rest of the MIPS opcodes are used in a full implementation.

Using this information, we can now describe the logic in the control unit in
one large truth table that combines all the outputs, as in Figure 5.27. It com-
pletely specifies the control function, and we can implement it directly in gates
in an automated fashion. We show this final step in section C.2 in Appendix C.

Now, let’s add the jump instruction to show how the basic datapath and
control can be extended to handle other instructions in the instruction set.

Implementing Jumps

Figure 5.19 on page 360 shows the implementation of many of the instruc-
tions we looked at in Chapter 3. One class of instructions missing is that of
the jump instruction. Extend the datapath and control of Figure 5.19 to in-
clude the jump instruction. Describe how to set any new control lines.

i

5.3 A Simple Implementation Scheme 371
Field ‘ 2 address
Bit positions 31-26 25-0

FIGURE 5.28 Instruction format for the jump instruction (opcode = 2). The destination
address for a jump instruction is formed by concatenating the upper 4 bits of the current
PC + 4 to the 26-bit address field in the jump instruction and adding 00 as the 2 low-order
bits.

The jump instruction looks somewhat like a branch instruction but com-
putes the target PC differently and is not conditional. Like a branch, the
low-order 2 bits of a jump address are always 004, The next lower 26 bits
of this 32-bit address come from the 26-bit immediate field in the instruc-
tion, as shown in Figure 5.28. The upper 4 bits of the address that should
replace the PC come from the PC of the jump instruction plus four. Thus,
we can implement a jump by storing into the PC the concatenation of

m the upper 4 bits of the current PC + 4 (these are bits 31-28 of the se-
quentially following instruction address)

m the 26-bit immediate field of the jump instruction
B the bits 00,

Figure 529 shows the addition of the control for jump added to
Figure 5.19. An additional multiplexor is used to select the source for the
new PC value, which is either the incremented PC (PC + 4), the branch tar-
get PC, or the jump target PC. One additional control signal is needed for
the additional multiplexor. This control signal, called Jump, is asserted
only when the instruction is a jump—that is, when the opcode is 2.

Why a Single-Cycle Implementation Is Not Used

Although the single-cycle design will work correctly, it would not be used in
modern designs because it is inefficient. To see why this is so notice that the
clock cycle must have the same length for every instruction in this single-cycle
design, and the CPI (see Chapter 2) will therefore be 1. Of course, the clock
cycle is determined by the longest possible path in the machine. This path is
almost certainly a load instruction, which uses five functional units in
series: the instruction memory, the register file, the ALU, the data memory,
and the register file. Although the CPI is 1, the overall performance of a
single-cycle implementation is not likely to be very good, since several of the
instruction classes could fit in a shorter clock cycle.

INTEL - 1012



5.3 A Simple Implementation Scheme 373

“EBR o

Performance of Single-Cycle Machines

&

FIGURE 5.29 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor (at the upper right) is

- 3% o 2 %
= g8 m Assume that the operation times for the major functional units in this im-
Sg Ll plementation are the following:
Rl « 3 ) ® Memory units: 2 nanoseconds (ns)
2 =t m ALU and adders: 2 ns
m Register file (read or write): 1ns

Assuming that the multiplexors, control unit, PC accesses, sign extension
unit, and wires have no delay, which of the following implementations
would be faster and by how much?

1. An implementation in which every instruction operates in 1 clock
cycle of a fixed length.

2. An implementation where every instruction executes in 1 clock
(- cycle using a variable-length clock, which for each instruction is

used to choose between the jump target and either the branch target or the sequential instruction following this one. This multiplexor is controlled by
the jump control signal. The jump target address is obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively adding 00 as the

2
S
e
z
3
o
o
]
&0
A=
g2
e
>
5
=
o b )
[oltg =
£Q
T E | : ; ;
&z EE 6"9 g id only as long as it needs to be. (Such an approach is not terribly
3 a5 = : . . . . .
=3 e = @ ractical, but it will allow us to see what is being sacrificed when all
3 5 £
8 & a4 2 2 the instructions must execute in a single clock of the same length.)
@ o @ =)
73 = ol < Y . & g s
£ S 2k oo g = To compare the performance, assume the following instruction mix: 24%
5 E® Ex E o . . -
é ¥ =0 518 % . loads, 12% stores, 44% ALU instructions, 18% branches, and 2% jumps.
E E
2 + |
U !
/"g o E3 % ) & | . .
@9 - = i m Let’s start by comparing the CPU execution times. Recall from Chapter 2
g o o o - 2 |
22 8 | S g 5 5 } that
b 2 5 5| § 5 5 = CPU execution time = Instruction count x CPI x Clock cycle time
-4 g = & = = = o
) gl B g g = ; : ; .
g % 5 7 5 2 E Since CPI must be 1, we can simplify this to
° £ £ £ .2 = o]
=4
b= 50 | 3 P . .
E 5 . CPU execution time = Instruction count x Clock cycle time
<
=
cs )
g2 g 1
=0 £
3 - S
< - e 5 ‘
=]
@ 5 3 = [
I o g £ E o |
< &3 E g \
]
r
B \
[
g =
?
2
2
(page 372)

INTEL - 1012




Chapter 5 The Processor: Datapath and Control

We need only find the clock cycle time for the two implementations, since
the instruction count and CPI are the same for both implementations. The
critical path for the different instruction classes is as follows:

Instruction
class Functional units used by the instruction class

ALU type Instruction fetch { Register access ['ALU | Register access | ]
Load word | Instruction fetch | Register access | ALU | Memory access | Register access

; Store word [ Instruction fetch Register access | ALU | Memory access

} Branch | Instruction fetch Register access | ALU

lJump B | Instruction fetch

Using these critical paths, we can compute the required length for each
instruction class:

Instruction | Register ALU Data Register
memory read operation memory write
2 [ 1] 2 [ o 1 r

|ALU type 6 ns

| Load word 2 1 2 2 1 8 ns
Storeword | 2 1 2 2 h 7ns
Branch 2 1 2 5ns

iJump 2 L 1 2n57

The clock cycle for a machine with a single clock for all instructions will be
determined by the longest instruction, which is 8 ns. (This timing is ap-
proximate, since our timing model is quite simplistic. In reality, the timing
of modern digital systems is complex, often allowing time to be borrowed
from one clock cycle for use in the next.)

A machine with a variable clock will have a clock cycle that varies be-
tween 2 ns and 8 ns. We can find the average clock cycle length for a ma-
chine with a variable-length clock using the information above and the
instruction frequency distribution.

Thus, the average time per instruction with a variable clock is

CPU clock cycle = 8x24% +7x12% +6x44% +5x 18% +2%x2%
= 6.3 ns

i:

i gripepes paae italie et

5.3 A Simple Implementation Scheme 375

Since the variable clock implementation has a shorter average clock
cycle, it is clearly faster. Let’s find the performance ratio:

CPU performance,, i.ple clock - CPU execution timeSingle lock

CPU performance ~ CPU execution time

single clock variable clock

IC x CPU clock cycle
~ IC x CPU clock cycle

single clock

variable clock

CPU clock cyclesmgle clock
- CPU clock Cydevariable clock

8
= — = 127
6.3

The variable clock implementation would be 1.27 times faster. Unfortu-
nately, implementing a variable-speed clock for each instruction class is
extremely difficult, and the overhead for such an approach could be larger
than any advantage gained. As we will see in the next section, an alterna-
tive is to use a shorter clock cycle that does less work and then vary the
number of clock cycles for the different instruction classes.

The penalty for using the single-cycle design with a fixed clock cycle is sig-
nificant, but might be considered acceptable for this small instruction set.
However, if we tried to implement the floating-point unit or an instruction set
with more complex instructions, this single-cycle design wouldn’t work well
at all. Let’s look at an example with floating point.

—

Performance of a Single-Cycle CPU with Floating-Point Instructions

m Suppose we have a floating-point unit that requires 8 ns for a floating-

point add and 16 ns for a floating-point multiply. All the other functional
unit times are as in the previous example, and a floating-point instruction
is like an arithmetic-logical instruction, except that it uses the floating-
point ALU rather than the main ALU. Find the performance ratio between
an implementation in which the clock cycle is different for each instruction
class and an implementation in which all instructions have the same clock
cycle time. Assume the following:

INTEL - 1012



376

Chapter 5 The Processor: Datapath and Control

All loads take the same time and comprise 31% of the instructions.
All stores take the same time and comprise 21% of the instructions.
R-format instructions comprise 27% of the mix.

Branches comprise 5% of the instructions, while jumps comprise 2%.

FP add and subtract take the same time and together total 7% of the
instructions.

FP multiply and divide take the same time and together total 7% of the
instructions.

m From the previous example, we know that

variable clock _ CPU clock cycle
CPU clock cycle

CPU performance single clock

CPU performance

single clock variable clock
The cycle time for the single-cycle machine will be equal to the longest in-
struction time, which is floating-point multiply. The time for a floating-
point multiply, and thus the clock cycle,is 2 + 1 + 16 + 1 =20 ns.
Consider a machine whose instructions have different cycle times. The
time for a floating-point add instructionis 2 + 1 + 8 + 1 = 12 ns. Multiplying
the cycle times by the instruction frequencies tells us that the average clock
length will be

CPU clock cycle = 8 x31% +7x21% +6Xx27% +5x%x5%
+2X2% +12X7% +20%x7% = 8.0ns
The improvement in performance is

CPU clock cycle

CPU performancevariable clock _ single clock
CPU performancesingle clock CPU clock cycle, . bie cock
20
== =29
7

A variable clock would allow us to improve performance by 2.9 times.

b Sk

Sy

\
i
|
|
1 v
|
|

5.4 A Multicycle Implementation 377

Similarly, if we had a machine with more powerful operations and address-
ing modes, instructions could vary from three or four functional unit delays to
tens or even hundreds of functional unit delays. In addition, because we must
assume that the clock cycle is equal to the worst-case delay for all instructions,
we can’t use implementation techniques that reduce the delay of the common
case but do not improve the worst-case cycle time. A single-cycle implementa-
tion thus violates our key design principle of making the common case fast.

In addition, with this single-cycle implementation, each functional unit can
be used only once per clock; therefore, some functional units must be duplicat-
ed, raising the cost of the implementation. A single-cycle design is inefficient
both in its performance and in its hardware cost!

We can avoid these difficulties by using implementation techniques that
have a shorter clock cycle—derived from the basic functional unit delays—and
that require multiple clock cycles for each instruction. The next section ex-
plores this alternative implementation scheme. In Chapter 6, we’ll look at an-
other implementation technique, called pipelining, that uses a datapath very
similar to the single-cycle datapath, but is much more efficient. Pipelining
gains efficiency by overlapping the execution of multiple instructions, increas-
ing hardware utilization and improving performance.

A Multicycle Implementation

In an earlier example, we broke each instruction into a series of steps corre-
sponding to the functional unit operations that were needed. We can use these
steps to create a multicycle implementation. In a multicycle implementation, each
step in the execution will take 1 clock cycle. The multicycle implementation al-
lows a functional unit to be used more than once per instruction, as long as it
is used on different clock cycles. This sharing can help reduce the amount of
hardware required. The ability to allow instructions to take different numbers
of clock cycles and the ability to share functional units within the execution of
a single instruction are the major advantages of a multicycle design.
Figure 5.30 shows the abstract version of the multicycle datapath. Comparing
this to the datapath for the single-cycle version shown in Figure 5.13 on page
354, we can see the following differences:

m A single memory unit is used for both instructions and data.
m There is a single ALU, rather than an ALU and two adders.

m One or more registers are added after every major functional unit to
hold the output of that unit until the value is used in a subsequent clock
cycle.

INTEL - 1012



378

Chapter 5 The Processor: Datapath and Control

PC

Instruction
rddress register Data ——E
. Register #
Memory Inmg,“g;g m Registers >ALU ALUOut |~

Memory Register #
-»| data — _‘E
register Register #

FIGURE 5.30 The high-level view of the multicycle datapath. This picture shows the key elements of the datapath: a
shared memory unit, a single ALU shared among instructions, and the connections among these shared units. The use of
shared functional units requires the addition or widening of multiplexors as well as new temporary registers that hold
data between clock cycles of the same instruction. The additional registers are the Instruction register (IR), the Memory
data register (MDR), A, B, and ALUOut.

At the end of a clock cycle, all data that are used in subsequent clock cycles
must be stored in a state element. Data used by subsequent instructions in a later
clock cycle is stored into one of the programmer-visible state elements (i.e., the
register file, the PC, or the memory). In contrast, data used by the same instruc-
tion in a later cycle must be stored into one of these additional registers.

Thus the position of the additional registers is determined by the two fac-
tors: what combinational units will fit in a clock cycle and what data are need-
ed in later cycles implementing the instruction. In this multicycle design, we
assume that the clock cycle can accommodate at most one of the following
operations: a memory access, a register file access (two reads or one write), or
an ALU operation. Thus any data produced by one of these three functional
units (the memory, the register file, or the ALU) must be saved into a tempo-
rary register for use on a later cycle.

The following temporary registers are added to meet these requirements:

® The Instruction register (IR) and the Memory data register (MDR) are
added to save the output of the memory for an instruction read and a
data read, respectively. Two separate registers are used, since, as will be
clear shortly, both values are needed during the same clock cycle.

5.4 A Multicycle Implementation 379

B The A and B registers are used to hold the register operand values read
from the register file.

m The ALUOut register holds the output of the ALU.

All the registers except the IR hold data only between a pair of adjacent clock
cycles and will thus not need a write control signal. The IR needs to hold the
instruction until the end of execution of that instruction, and thus will require
a write control signal. This distinction will become more clear when we show
the individual clock cycles for each instruction.

Because several functional units are shared for different purposes, we need
both to add multiplexors and to expand existing multiplexors. For example,
since one memory is used for both instructions and data, we need a multiplex-
or to select between the two sources for a memory address, namely the PC (for
instruction access) and ALUOut (for data access).

Replacing the three ALUs of the single-cycle datapath by a single ALU
means that the single ALU must accommodate all the inputs that used to go to
the three different ALUs. Handling the additional inputs requires two changes
to the datapath:

1. An additional multiplexor is added for the first ALU input. The multi-
plexor chooses between the A register and the PC.

2. The multiplexor on the second ALU input is changed from a two-way
to a four-way multiplexor. The two additional inputs to the multiplexor
are the constant 4 (used to increment the PC) and the sign-extended and
shifted offset field (used in the branch address computation).

Figure 5.31 shows the details of the datapath with these additional multi-
plexors. By introducing a few registers and multiplexors, we are able to reduce
the number of memory units from two to one and eliminate two adders. Since
registers and multiplexors are fairly small compared to a memory unit or ALU,
this could yield a substantial reduction in the hardware cost.

Because the datapath shown in Figure 5.31 takes multiple clock cycles per
Instruction, it will require a different set of control signals. The programmer-
visible state units (the PC, the memory, and the registers) as well as the IR will
need write control signals. The memory will also need a read signal. We can
use the ALU control unit from the single-cycle datapath (see Figures 5.15 and
Appendix C) to control the ALU here as well. Finally, each of the two-input
multiplexors requires a single control line, while the four-input multiplexor re-
quires two control lines. Figure 5.32 shows the datapath of Figure 5.31 with
these control lines added.

INTEL - 1012




380 Chapter 5 The Processor: Datapath and Control

=
o
=
0 L 0 <
™M Instruction Read ™M
u Address [25-21] register 1 4
X ~ Read -Gi‘ x
Instruction Read
4 Memoty, [20-16] 1 register 2 data 1 1 4l Zero
MemDatal o) Registers ALU ALUOut
Instruction M Write Read result
[15'017 Instruction| U register  gata 2 B 0
Write 15-11 X M
. ke Instruction [ ] 7 Write 4 wp|1 "
register data 2 5 0
S
Instruction 0 | 3 —
[15-0] M =
u (— o
Memory I ; =
ledg'.::ﬂf " Sign b= Shift =
V7 |extend left 2 |
(=]
GD
=
S
T o
‘ S Se
i | o) =3 g8 sS4
FIGURE 5.31 Multicycle datapath for MIPS handles the basic instructions. Although this datapath supports normal e L. 2
3 " ; . ¢ P . < k7 =
incrementing of the PC, a few more connections and a multiplexor will be needed for branches and jumps; we will add £ 5 5 ;g:? 5 5% 2
these shortly. The additions versus the single-clock datapath include several registers (IR, MDR, A, B, ALUOut), a multi- = 5a B 29 gg "% =
P f =28 =g 2
@
£

plexor for the memory address, a multiplexor for the top ALU input, and expanding the multiplexor on the bottom ALU |
input into a four-way selector. These small additions allow us to remove two adders and a memory unit.

RegDst
0
uction| U
11]

X

MemtoReg

©

=
o E3IX o
ﬁ¢/

The multicycle datapath still requires additions to support branches and
jumps; after these additions, we will see how the instructions are sequenced

and then generate the datapath control.
With the jump instruction and branch instruction, there are three possible

sources for the value to be written into the PC:

1. The output of the ALU, which is the value PC + 4 during instruction
fetch. This value should be stored directly into the PC.

Instr
[15-

[15-0]
[15-0]

[20-16]
Instruction

Instruction
[25-21]

Instruction

Instruction |
Instruction

register
Memory
data

IRWrite

MemWrite

2. The register ALUOut, which is where we will store the address of the
branch target after it is computed.

MembData

Memory

3. The lower 26 bits of the Instruction register (IR) shifted left by two and
concatenated with the upper 4 bits of the incremented PC, which is the

source when the instruction is a jump. ‘
—

MemRead

Write
data

rep> |

u | Address

lorD
0
M

As we observed when we implemented the single-cycle control, the PCis i‘

written both unconditionally and conditionally. During a normal increment |
| “

|

|

\

|

and jumps, the PC is written unconditionally. If the instruction is a conditional
branch, the incremented PC is replaced with the value in ALUOut only if the
two designated registers are equal. Thus the control needs two PC write sig-
nals, which we will call PCWrite and PCWriteCond.

c rlwtrol >;gnal;., while ‘.‘“ the other control lines are 1-bit signals. Neither register A nor B requires a write signal, since their contents are
7 Te, s cevele ~di Dcr = El T + . b = =
only read on the cycle immediately after it is written. The memory data register has been added to hold the data from a load when the data
Th 3 8 ata

b o _ ' .A . . . .

eturns mdm m;mo_r(\. Data from a load returning from memory cannot be written directly into the register file since the clock cycle cannot
) ¢ > e ire CESS i i i Th "

accommodate the time required for both the memory access and the register file write. The MemRead signal has been moved to the top of

the memory unit to simplify the figures. The full set of datapaths and control lines for branches will be added shortly.

FIGURE 5.32 The multicycle datapath from Figure 5.31 with the control lines shown. The signals ALUOp and ALUSrcB are 2-bit

l (page 381)
INTEL - 1012




R

382 Chapter 5 The Processor: Datapath and Control

| 1

‘ We need to connect these two control signals to the PC write control. Just as
we did in the single-cycle datapath, we will use a few gates to derive the PC f
write control signal from PCWrite, PCWriteCond, and the Zero signal of the
ALU, which is used to detect if the two register operands of abeq are equal. To
\ determine whether the PC should be written during a conditional branch, we
‘ AND together the Zero signal of the ALU with the PCWriteCond. The output

of this AND gate is then ORed with PCWrite, which is the unconditional PC
!\ write signal. The output of this OR gate is connected to the write control signal
' for the PC.

Figure 5.33 shows the complete multicycle datapath and control unit, in-
cluding the additional control signals and multiplexor for implementing the
i PC updating.

Before examining the steps to execute each instruction, let us informally ex-
amine the effect of all the control signals (just as we did for the single-cycle de-
sign in Figure 5.18 on page 359). Figure 5.34 shows what each control signal

does when asserted and deasserted. . G
=
0

address [31-0]

Jump

ALUOut

e AL IR Al

s =
26
Shift | 3
Ay
PC [31-28]

mad ) o e Ay

Read
data 1
Registers

Write

Read
data 2

Elaboration: To reduce the number of signal lines interconnecting the functional
units, designers can use shared buses. A shared bus is a set of lines that connect mul-
tiple units; in most cases, they include multiple sources that can place data on the bus
and multiple readers of the value. Just as we reduced the number of functional units for
the datapath, we can reduce the number of buses interconnecting these units by shar-
ing the buses. For example, there are six sources coming to the ALU; however, only two
of them are needed at any one time. Thus, a pair of buses can be used to hold values
that are being sent to the ALU. Rather than placing a large multiplexor in front of the
ALU, a designer can use a shared bus and then ensure that only one of the sources is
driving the bus at any point. Although this saves signal lines, the same number of con-
trol lines will be needed to control what goes on the bus. The major drawback to using
such bus structures is a potential performance penalty, since a bus is unlikely to be as

fast as a point-to-point connection.

Read
register 1
Read
register 2
register
Write
data

ALUSrcA

ALUSrcB
RegWrite
RegDst

[ﬂgn\
\ @ ‘ w
Instruction [5-0]

Outputs \ALUOp
Control
Op
[5-0]
o)
u
x s
1
0
M
u
x
1
Y 16
N

0
ruction

PCWrite /
lorD

IRWrite
Inst
[15-11]

PCWriteCond /\ PCSource

MemRead
MemWrite

MemtoRe;

Instruction [25-0]

[15-0]

[15-0]

Instruction

[31-26]

[25-21]

[20-16)
Instruction

Instruction
Instruction
Instruction
Instruction Lg
register
Memory
djta

Breaking the Instruction Execution into Clock Cycles )

Given the datapath in Figure 5.33, we now need to look at what should hap-
pen in each clock cycle of the multicycle execution, since this will determine
what additional control signals may be needed, as well as the setting of the
control signals. Our goal in breaking the execution into clock cycles should be

to balance the amount of work done in each cycle, so that we minimize the (=

clock cycle time. We can begin by breaking the execution of any instruction
e

MemData

Memory

Write
data

| Address

into a series of steps, each taking 1 clock cycle, which will be roughly bal-
anced in length. For example, we will restrict each step to contain at most one

f:g;r;éiiea;% ;tltscc#(i;i t:; the ci)tx}tiol unit, adnd thei control and datapath elements needed to effect changes to the PC are included. The major additions
5.32 include the multiplexor used to select the source of a new PC value (at the top right); two gates used to combi . ite si
A ' . ! 2 ine the PC tes
l:\e/f}:)e,t }?nd tge COTUE] saﬁn;ls PkCS()ulrlce, PCWrite, and PCWriteCond. The PCWriteCond signal is ANDe%i with the Zero output of thve:r‘;il&_‘llgtgaésef:tigz
er a branch should be taken; the resulting signal is ORed with the control signal PCWrite t te th i i
addition, the output of the IR is rearranged to send the lower 26 bits (th . i o iy oo )l
. : : e jump address) to the logic used to select the next PC. These 26 bit h
the left by two, adding 2 low-order 0 bits; these 28 bits are then concatenated with the high-order 4 bits of the PC, which has already beenli?ua‘:eerrslelrf:g .

FIGURE 5.33 The complete datapath for the multicycie implementation together with the necessary control lines. The control lines of

; (page 383)
" INTEL -1012




384

Chapter 5 The Processor: Datapath and Control

Effect when deasserted Effect when asserted ]

The gg]éier file destination number for the

Actions of the 1-bit control signals

[ The register file destination number for the Write register

' RegDs{ :
‘ Write register comes from the rt field. - ‘ conjeg.jrom the rd fleﬂq. i - . - |
IR N - - i he Write register
i ‘ The general-purpose register selected by t :
i s Hone number is written with the value of}he Write data input. .
PAiLUSrcA The first ALU operand is the7F‘0. 1 The first ALU operand comes from the Airegistrer. o |
WMi mRead None ) | Content of memory at the location specified by the Address
‘ input is put on Memory data output. |
[ Write None - 7Memory contents at the location specified by the Address
e .. -
Hemie o input is replaced by value on Write data input.
%MemtoReg The value fed to the register-file Write data inputi The value fed to the register file Write data input comes from
comes from ALUOut. ) o the MDR. - ) .
lorD The PC is used to supply the address to the ALUOut is used to supply the address to the memory unit.
memory unit. - ] S
[ IRWrite None The output of the memory is writterj |pto the 1R.
PCWrite None The PC is written; the source is controlled by PCSource.
PCWriteCond None The PC is written if the Zero output from the ALU is also activev_

Actions of the 2-bit control signals

00 The ALU performs an add operation. ) ) - |
ALUOp 01 The ALU performs a subtract operation. )
B 10 The funct field of the instruction determines the ALUﬁoperatiog.f o
[ 00 The second input to the ALU comes from the B rgg[sicen‘ -
o1 The second input to the ALU is the constant 4.
ALUSrcB [ 10 The second input to the ALU is the sign-extended, lower 16 bits of the IR.
’ 11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left
2 bits. B
00 Output of the ALU-(P_C + 4)§sent to the Pg) for writing. B B -
01 The contents of ALUOutﬁ(the branch target addﬁsi) are sent to trE Pp for writing. B
PUBREES B 10 The jump target address (IR[25-0] shifted left 2 bits and concatenated with

S |

LPC + 4[31-28]) is sent to the PC for writing. -

FIGURE 5.34 The action caused by the setting of each control slgna! Iq Figure 5.33 on page 383 The htop' tfz;blfi
describes the 1-bit control signals, while the bottom table describes.the. 2-l?1t .51gnals. Or}ly Fhose control lines 3t5;tf a t(;ce
multiplexors have an action when they are deasserted. This informahon is similar to that in Figure 5.1138 ondpgggo (;rmd
single-cycle datapath, but adds several new control lines (IRWrite, PCWrite, PCWriteCond, ALUSrcB, an urce) a
removes control lines that are no longer used or have been replaced (PCSrc, Branch, and Jump).

ALU operation, or one register file access, or one memory access. With this
restriction, the clock cycle could be as short as the longest of these operations.

Recall that at the end of every clock cycle any data values thgt will be
needed on a subsequent cycle must be stored into a registe.r, wlu.ch can be
either one of the major state elements (e.g., the PC, the register file, or the

AR e A e e

4

5.4 A Multicycle Implementation 385

memory), a temporary register written on every clock cycle (e.g., A, B, MDR,
or ALUOut), or a temporary register with write control (e.g., IR). Also remem-
ber that because our design is edge-triggered, we can continue to read the cur-
rent value of a register; the new value does not appear until the next clock
cycle.

In the single-cycle datapath, each instruction uses a set of datapath
elements to carry out its execution. Many of the datapath elements operate in
series, using the output of another element as an input. Some datapath ele-
ments operate in parallel; for example, the PC is incremented and the instruc-
tion is read at the same time. A similar situation exists in the multicycle
datapath. All the operations listed in one step occur in parallel within 1 clock
cycle, while successive steps operate in series in different clock cycles. The lim-
itation of one ALU operation, one memory access, and one register file access
determines what can fit in one step.

Notice that we distinguish between reading from or writing into the PC or
one of the stand-alone registers and reading from or writing into the register
file. In the former case, the read or write is part of a clock cycle, while reading
or writing a result into the register file takes an additional clock cycle. The rea-
son for this distinction is that the register file has additional control and access
overhead compared to the single stand-alone registers. Thus keeping the clock
cycle short motivates dedica ting separate clock cycles for register file accesses.

The potential execution steps and their actions are given below. Each in-
struction needs from three to five of these steps:

" 4. Instruction fetch step

Fetch the instruction from memory and compute the address of the next
sequential instruction:

IR = Memory[PC]:
PC = PC + 4:

Operation: Send the PC to the memory as the address, perform a read, and
write the instruction into the Instruction register (IR), where it will be stored.
Also, increment the PC by four. To implement this step, we will need to assert
the control signals MemRead and IRWrite, and set TorD to 0 to select the PC as
the source of the address. We also increment the PC by four in this stage,
which requires setting the ALUSrcA signal to 0 (sending the PC to the ALU),
the ALUSrcB signal to 01 (sending 4 to the ALU), and ALUOp to 00 (to make
the ALU add). Finally, we will also want to store the incremented instruction
address back into the PC, which requires setting PC source to 00 and setting
PCWrite. The increment of the PC and the instruction memory access can
occur in parallel. The new value of the PC is not visible until the next clock
cycle. (The incremented PC will also be stored into ALUOut, but this action is
benign.)

INTEL - 1012



386

Chapter 5 The Processor: Datapath and Control

2. Instruction decode and register fetch step

In the previous step and in this one, we do not yet know what the instruction
is, so we can perform only actions that are either applicable to all instructions
(such as fetching the instruction in step 1) or are not harmful, in case the
instruction isn’t what we think it might be. Thus, in this step we can read the
two registers indicated by the rs and rt instruction fields, since it isn’t harmful
to read them even if it isn’t necessary. The values read from the register file
may be needed in later stages, so we read them from the register file and store
the values into the temporary registers A and B.

We will also compute the branch target address with the ALU, which also is
not harmful because we can ignore the value if the instruction turns out not to
be a branch. The potential branch target is saved in ALUOut.

Performing these “optimistic” actions early has the benefit of decreasing the
number of clock cycles needed to execute an instruction. We can do these op-
timistic actions early because of the regularity of the instruction formats. For
instance, if the instruction has two register inputs, they are always in the rs
and rt fields; and if the instruction is a branch, the offset is always the low-
order 16 bits:

A = Reg[IR[25-2111;
B = Reg[IR[20-16]7;
ALUOut = PC + (sign-extend (IR[15-0]) << 2);

Operation: Access the register file to read registers rs and rt and store the
results into the registers A and B. Since A and B are overwritten on every
cycle, the register file can be read on every cycle with the values stored into A
and B. This step also computes the branch target address and stores the
address in ALUOut, where it will be used on the next clock cycle if the
instruction is a branch. This requires setting ALUSrcA to 0 (so that the PC is
sent to the ALU), ALUSrcB to the value 11 (so that the sign-extended and
shifted offset field is sent to the ALU), and ALUOp to 00 (so the ALU adds).
The register file accesses and computation of branch target occur in parallel.
After this clock cycle, determining the action to take can depend on the in-

struction contents.

3. Execution, memory address computation, or branch completion
This is the first cycle during which the datapath operation is determined by
the instruction class. In all cases, the ALU is operating on the operands pre-
pared in the previous step, performing one of four functions, depending on
the instruction class. We specify the action to be taken depending on the
instruction class:

5.4 A Multicycle Implementation 387

Memory reference:
ALUOut = A + sign-extend (IR[15-0]):

Opferation:. The ALU is adding the operands to form the memory address.
This requires setting ALUSrcA to 1 (so that the first ALU Input is register A)
anddsfettm}ig ALUSrcB to 10 (so that the output of the sign extension unit is
used for the second ALU input). The ALUOp signals will need

(causing the ALU to add). P Hineediobesetio 0

Arithmetic-logical instruction (R-type):
ALUOut = A op B;

Operation: The ALU is performing the operation specified by the function
Code' on the two values read from the register file in the previous cycle. This
requires setting ALUSrcA = 1 and setting ALUSrcB = 00 (together causing the
registers A and B to be used as the ALU inputs). The ALUOp signals will need
to be set to 10 (so that the funct field is used to determine the ALU control sig-
nal settings). i

Branch:

if (A ==8) PC = ALUOUL;

Qperation: The ALU is used to do the equal comparison between the two reg-
isters rgad in the previous step. The Zero signal out of the ALU is used to
determine whether or not to branch. This requires setting ALUSrcA = 1 and

* setting ALUSrcB = 00 (so that the register file outputs are the ALU inputs).

The ALUOp signals will need to be set to 01 (causing the ALU to subtract) for
equality testing. The PCWriteCond signal will need to be asserted to update
the PC if the Zero output of the ALU is asserted. By setting PCSource to 01
the value written into the PC will come from ALUOut, which holds th(;
branch target address computed in the previous cycle. For conditional
branches that are taken, we actually write the PC twice: once from the output
of the ALU (during the Instruction decode/ register fetch) and once from
ALUOut (during the Branch completion step). The value written into the PC
last is the one used for the next instruction fetch.

Jump:
PC = PC [31-281 || (IR[25-0]<<2);
Operation: The PC is replaced by the jump address. PCSource is set to direct

the jump address to the PC, and PCWrite is asserted to write the jump
address into the PC.

INTEL - 1012




	97



