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Binvert Operation 

Carryln 

a-+-----+--.--i 

Carryout 
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FIGURE 4.16 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By 
selecting b (Binvert = 1) and setting Carry In to 1 in the _least significant bit of the ALU, we get 
two's complement subtraction of b from a instead of add1t1on of b to a. 

The adder will then calculate a + b + l. By selecting the inverted version of b, 
we get exactly what we want: 

a+b + I= a+(b+ I)= a+(- b) = a-b 

The simplicity of the hardware design of a two's complement adder helps 
explain why two's complement representation has become the universal stan
dard for integer computer arithmetic. 

Tailoring the 32-Bit ALU to MIPS 

This set of operations-add, subtract, AND, OR-is found in the ALU of 
almost every computer. If we look at Figure 4.7 on page 228, we see that the 
operations of most MIPS instructions can be performed by this ALU. But the 
design of the ALU is incomplete. . . 

One instruction that still needs support is the set on less than mstruct10n 
(s l t ). Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse
quently, s l t will set all but the least significant bit to 0, with the least signifi
cant bit set according to the comparison. For the ALU to perform s l t , we first 
need to expand the three-input multiplexor in Figure 4.16 to add an input for 
the s l t result. We call that new input Less, and use it only for s l t . 
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The top drawing of Figure 4.17 shows the new I-bit ALU with the expanded 
multiplexor. From the description of s l t above, we must connect Oto the Less 
input for the upper 31 bits of the ALU, since those bits are always set to 0. What 
remains to consider is how to compare and set the least significant bit for set on 
less than instructions. 

What happens if we subtract b from a? If the difference is negative, then a < 
b since 

(a - b) < 0 • ((a - b) + b) < (0 + b) 

• a<b 

We want the least significant bit of a set on less than operation to be a 1 if a < 
b; that is, a 1 if a - b is negative and a 0 if it's positive. This desired result cor
responds exactly to the sign-bit values: 1 means negative and 0 means posi
tive. Following this line of argument, we need only connect the sign bit from 
the adder output to the least significant bit to get set on less than . 

Unfortunately, the Result output from the most significant ALU bit in the 
top of Figure 4.17 for the s l t operation is not the output of the adder; the ALU 
output for the s l t operation is obviously the input value Less. 

Thus, we need a new I-bit ALU for the most significant bit that has an ex tra 
output bit: the adder output. The bottom drawing of Figure 4.17 shows the de
sign, with this new adder output line called Set, and used only for s l t. As long 
as we need a special ALU for the most significant bit, we added the overflow 
detection logic since it is also associated with that bit. 

Alas, the test of less than is a little more complicated than just described be
cause of overflow; Exercise 4.23 on page 326 explores what must be done. 
Figure 4.18 shows the 32-bit ALU. 

Notice that every time we want the ALU to subtract, we set both Carryin 
and Binvert to l. For adds or logical operations, we want both control lines to 
be 0. We can therefore simplify control of the ALU by combining the Carryln 
and Binvert to a single control line called Bnegate. 

To further tailor the ALU to the MIPS instruction set, we must support con
ditional branch instructions. These instructions branch either if two registers 
are equa l or if they are unequal. The easiest way to test equality with the ALU 
is to subtract b from a and then test to see if the result is 0 since 

(a - b = 0) • a = b 

Thus, if we add hardware to test if the result is 0, we can test for equality. 
The simplest way is to OR all the outputs together and then send that signal 
through an inverter: 

Zero = (Result31 + Result30 + ... + Result2 + Resultl + Result0) 

Figure 4.19 shows the revised 32-bit ALU. We can think of the combination 
of the I-bit Bnegate line and the 2-bit Operation lines as 3-bit control lines for 
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FIGURE 4.17 (Top) A 1-blt ALU that performs AND, OR, and addition on a and b orb, and 
(bottom) a 1-blt ALU for the most significant bit. The top drawing includes a direct input that 
is connected to perform the set on less than operation (see Figure 4.18); the bottom has a direct out
put from the adder for the less than comparison called Set. (Refer to Exercise 4.42 to see how to cal
culate overflow with fewer inputs.) 
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FIGURE 4.18 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of 
Figure 4.17 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected to 
0 except for the least significant bit, and that is connected to the Set output of the most significant 
bit. If the ALU performs a - band w e select the input 3 in the multiplexor in Figure 4.17, then 
Result = 0 . .. 001 if a < b, and Result = 0 ... 000 otherwise. 

the ALU, telling it to perform add, subtract, AND, OR, or set on less than. 
Figure 4.20 shows the ALU control lines and the corresponding ALU opera
tion. 

Finally, now that we have seen what is inside a 32-bit ALU, we will use the 
universal symbol for a complete ALU, as shown in Figure 4.21. 
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FIGURE 4.19 The final 32-bit ALU. This adds a Zero detector to Figure 4.18. 

ALU control lines Function 

000 and 

001 or 

010 add 

110 subtract 

111 set on less than 

FIGURE 4.20 The values of the three ALU control lines Bnegate and Operation and the 
corresponding ALU operations. 
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FIGURE 4.21 The symbol commonly used to represent an ALU, as shown in Figure 4.19. 
This symbol is also used to represent an adder, so it is normally labeled either with ALU or 
Adder. 

Carry Lookahead 

The next question is, How quickly can this ALU add two 32-bit operands? We 
can determine the a and b inputs, but the Carry In input depends on the oper
ation in the adjacent 1-bit adder. If we trace all the way through the chain of 
dependencies, we connect the most significant bit to the least significant bit, 
so the most significant bit of the sum must wait for the sequential evaluation of 
all 32 1-bit adders. This sequential chain reaction is too slow to be used in 
time-critical hardware. 

There are a variety of schemes to anticipate the carry so that the worst-case 
scenario is a function of the log2 of the number of bits in the adder. These an
ticipatory signals are faster because they go through fewer gates in sequence, 
but it takes many more ga tes to anticipate the proper carry. 

A key to understanding fast carry schemes is to remember that, unlike soft
ware, hardware executes in parallel whenever inputs change. 

Fast Carry Using "Infinite" Hardware 

Appendix B mentions that any equation can be represented in two levels of 
logic. Since the only external inputs are the two operands and the Carryln to 
the least significant bit of the adder, in theory we could calculate the Carryln 
values to all the remaining bits of the adder in just two levels of logic. 

For example, the Carry In for bit 2 of the adder is exactly the CarryOut of bit 
1, so the formula is 

Carryln2 = (b I · Carry In I)+ (a I · Carrylnl) + (a I· b I) 

Similarly, Carrylnl is defined as 

Carrylnl = (b0 · Carryln0) + (a0 · Carryln0) + (a0 · 60) 
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Using the shorter and more traditional abbreviation of ci for Carrylni we can 
rewrite the formulas as ' 

c2 = ( b 1 · c 1 ) + ( a 1 · c 1) + ( a 1 · b 1 ) 

cl= (b0-c0)+(a0-c0)+(aO-bO) 

Substituting the definition of cl for the first equation results in this formula: 

c2 = (al ·a0-b0)+(al-a0-c0)+(al -b0-cO) 

+(bl -a0-b0)+(bl ·a0-cO)+(bl -b0-cO)+(al -bl) 

You ca~ imagine how the equation expands as we get to higher bits in the 
adder; rt _grows exponentially with the number of bits. This complexity is 
refle~t~~ m the cost of the hardware for fast carry, making this simple scheme 
proh1b1hvely expensive for wide adders. 

Fast Carry Using the First Level of Abstraction: Propagate and 
Generate 

Most fast carr~ sch~mes li~it the complexity of the equations to simplify the 
hardware, while still makmg substantial speed improvements over ripple 
carry. One such scheme is a carry-lookahead adder. In Chapter 1, we said com
puter systems cope _with complexity by using levels of abstraction. A carry
lookahead adder relies on levels of abstraction in its implementation. 

Let's factor our original equation as a first step: 

ci+l = (bi· ci) + (ai • ci) + (ai. bi) 

= (ai ·bi)+ (ai +bi)· ci 

If we were to rewrite the equation for c2 using this formula, we would see 
some repeated patterns: 

c2= (al -bl)+(al +bl)·((a0-b0)+(aO+bO)-cO) 

Note the repeated appearance of (ai • bi) and (ai + bi) in the formula above. 
T~ese two important factors are traditionally called generate (gi) and propagate 
(pz): 

gi = ai · bi 

pi = ai + bi 

Using them to define ci+ 1, we get 

ci+ 1 = gi + pi • ci 

To see where the signals get their names, suppose gi is 1. Then 

ci+l = gi +pi· ci = I+ pi• ci = 1 

4.5 Constructing an Arithmetic Logic Unit 243 

That is, the adder generates a CarryOut (ci+ 1) independent of the value of Car
ry In (ci). Now suppose that gi is O and pi is 1. Then 

ci+l = gi +pi· ci = 0 + I · ci = ci 

That is, the adder propagates Carryln to a CarryOut. Putting the two together, 
Carrylni+l is a 1 if either gi is 1 or both pi is 1 and Carrylni is 1. 

As an analogy, imagine a row of dominoes set on edge. The end domino can 
be tipped over by pushing one far away provided there are no gaps between 
the two. Similarly, a carry out can be made true by a generate far away provid
ed all the propagates between them are true. 

Relying on the definitions of propagate and generate as our first level of ab
straction, we can express the Carryln signals more economically. Let's show it 
for 4 bits: 

cl = go+ (pO • cO) 

c2 = gl + (pl · gO) + (pl · pO · cO) 

c3 = g2 + (p2 · gl) + (p2 · pl · gO) + (p2 · pl · pO · c0) 

c4 = g3 + (p3 · g2) + (p3 · p2 · gl) + (p3 · p2 · pl · g0) 

+ (p3 · p2 · pl · pO · cO) 

These equations just represent common sense: Carrylni is a 1 if some earlier 
adder generates a carry and all intermediary adders propagate a carry. Figure 
4.22 uses plumbing to try to explain carry lookahead. 

Even this simplified form leads to large equations and, hence, considerable 
logic even for a 16-bit adder. Let's try moving to two levels of abstraction. 

Fast Carry Using the Second Level of Abstraction 

First we consider this 4-bit adder with its carry-lookahead logic as a single 
building block. If we connect them in ripple carry fashion to form a 16-bit 
adder, the add will be faster than the original with a little more hardware. 

To go faster, we'll need carry lookahead at a higher level. To perform carry 
lookahead for 4-bit adders, we need propagate and generate signals at this 
higher level. Here they are for the four 4-bit adder blocks: 

PO = p3 · p2 · p 1 · pO 

Pl = p7 · p6 · pS · p4 

P2 = p 11 · p 10 · p9 · p8 

P3 = p15 · p14 · p13 · p12 

That is, the "super" propagate signal for the 4-bit abstraction (Pi) is true only 
if each of the bits in the group will propagate a carry. 
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c4 

FIGURE 4.22 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using 
water, pipes, and valves. The wrenches are turned to open and close valves. Water is shown in 
color. The output of the pipe (ci+l) will be full if either the nearest generate value (gi) is turned on 
or if the i propagate value (pi) is on and there is water further upstream, either from an earlier 
generate, or propagate with water behind it. Carryln (cO) can result in a carry out without the 
help of any generates, but with the help of nil propagates. 

For the "super" generate signal (Gi), we care only if there is a carry out of 
the most significant bit of the 4-bit group. This obviously occurs if generate is 
true for that most significant bit; it also occurs if an earlier generate is true and 
all the intermediate propagates, including that of the most significant bit, are 
also true: 

4.5 Constructing an Arithmetic Logic Unit 

CO = g3 + (p3 · g2) + (p3 · p2 · gl) + (p3 · p2 · p1 · gO) 

GI = g7 + (p7 · g6) + (p7 · p6 · g5) + (p7 · p6 · p5 · g4) 

C2 = gll + (p11 · glO) + (pll · p10 · g9) + (pll · p10 · p9 · g8) 

C3 = g15 + (p15 · g14) + (p15 · p14 · g13) + (p15 · p14 · p13 · g12) 

Figure 4.23 updates our plumbing analogy to show PO and GO. 

GO 

245 

FIGURE 4.23 A plumbing analogy for the next-level carry-lookahead signals PO and GO. 
PO i, open only if all four propagates (pi) are open, while water flows in GO only if at least one 
generate (gi) is open and all the propagates downstream from that generate arc open. 
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FIGURE 4.24 Four 4-blt ALUs using carry lookahead to form a 16-blt adder. Note that the 
carries come from the carry-lookahead unit, not from the 4-bit AL Us. 

Then the equations at this higher level of abstraction for the carry in for each 
4-bit group of the 16-bit adder (Cl, C2, C3, C4 in Figure 4.24) are very similar 
to the carry out equations for each bit of the 4-bit adder (cl, c2, c3, c4) on page 
243: 
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Example 

Answer 

Cl = GO+ (PO · c0 ) 

C2 = Gl + (Pl · GO ) + (Pl · PO· c0 ) 

C3 = G2 + (P2 · Gl) + (P2 · Pl · GO)+ (P2 · Pl · PO· c0) 

C4 = G3 + (P3 · G2) + (P3 · P2 · Gl) + (P3 · P2 ·Pl · GO) 

+ (P3 · P2 · Pl · PO · c0 ) 

Figure 4.24 shows 4-bit adders connected with such a carry lookahead unit. 
Exercises 4.44 through 4.48 explore the speed differences between these carry 
schemes, different notations for multibit propagate and generate signals, and 
the design of a 64-bit adder. 

Both Levels of the Propagate and Generate 

Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers: 

a : 0001 1010 0011 OOlltwo 
b: 1110 0101 1110 lOlltwo 

Also, what is CarryOutlS (C4)? 

Aligning the bits makes it easy to see the values of generate gi (ai · bi) and 
propagate pi (ai +bi) : 

a : 0001 1010 0011 0011 
b: 1110 0101 1110 1011 
gi : 0000 0000 0010 0011 
pi : 1111 1111 1111 1011 

where the bits are numbered 15 to 0 from left to right. Next, the "super" 
propagates (P3, P2, Pl , PO) are simply the AND of the lower-level propa
gates: 

P3 = 1 . I. I. I = 
P2 = 1 . I I I = 
Pl = I I I I = 
PO = l · 0 · I I = 0 
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The "super" generates are more complex, so use the following equations: 

GO = g3 + (p3 · g2) + (p3 · p2 · gl) + (p3 · p2 · pl · g0) 
= 0 + (1 · 0) + (1 · 0 · 1) + (1 · 0 · 1 · 1) = 0 + 0 + 0 + 0 = 0 

GI = g7 + (p7 · g6) + (p7 · p6 · g5) + (p7 · p6 · p5 · g4) 
= 0 + (1 · 0) + (1 · 1 · 1) + (1 · 1 · 1 · 0) = 0 + 0 + 1 + 0 = 1 

G2 = gll + (pll · glO) + (pll · plO · g9) + (pll · plO · p9 · g8) 
0 + (1 · 0) + (1 · 1 · 0) + (1 · 1 · 1 · 0) = 0 + 0 + 0 + 0 = 0 

G3 = g15 + (p15 · g14) + (p15 · p14 · g13) + (p15 · p14 · p13· g12) 
= 0 + (1 · 0) + (1 · 1 · 0) + (1 · 1 · 1 · 0) = 0 + 0 + 0 + 0 = 0 

Finally, CarryOut15 is 

C4 = G3 + (P3 · G2) + (P3 · P2 · Gl) + (P3 · P2 · Pl · GO) 
+ (P3 · P2 · Pl ·PO· c0) 

= 0 + (1 · 0) + (1 · 1 · 1) + (1 · 1 · 1 · 0) + (1 · 1 · 1 · 0 · 0) 
= 0+0+1+0+0=1 

Hence there is a carry out when adding these two 16-bit numbers. 

The reason carry lookahead can make carries faster is that all logic begins 
evaluating the moment the clock cycle begins, and the result will not change 
once the output of each gate stops changing. By taking a shortcut of going 
through fewer gates to send the carry in signal, the output of the gates will 
stop changing sooner, and hence the time for the adder can be less. 

To appreciate the importance of carry lookahead, we need to calculate the 
relative performance between it and ripple carry adders. 

Speed of Ripple Carry versus Carry Lookahead 

One simple way to model time for logic is to assume each AND or OR gate 
takes the same time for a signal to pass through it. Time is estimated by 
simply counting the number of gates along the longest path through a 
piece of logic. Compare the number of gate delays for the critical paths of 
two 16-bit adders, one using ripple carry and one using two-level carry 
lookahead. 

Figure 4.13 on page 233 shows that the carry out signal takes two gate de
lays per bit. Then the number of gate delays between a carry in to the least 
significant bit and the carry out of the most significant is 16 x 2 = 32. 

4.5 Constructing an Arithmetic Logic Unit 249 

For carry lookahead, the carry out of the most significant bit is just C4, 
defined in the example. It takes two levels of logic to specify C4 in terms 
of Pi and Gi (the OR of several AND terms) . Pi is specified in one level of 
logic (AND) using pi, and Gi is specified in two levels using pi and gi, so 
the worst case for this next level of abstraction is two levels of logic. pi and 
gi are each one level of logic, defined in terms of ai and bi. If we assume 
one gate delay for each level of logic in these equations, the worst case is 
2 + 2 + I = 5 gate delays. 

Hence for 16-bit addition a carry-lookahead adder is six times faster, 
using this simple estimate of hardware speed. 

Summary 

The primary point of this section is that the traditional ALU can be con
structed from a multiplexor and a few gates that are replicated 32 times. To 
make it more useful to the MIPS architecture, we expand the traditional ALU 
with hardware to test if the result is 0, detect overflow, and perform the basic 
operation for set on less than. 

Carry lookahead offers a faster path than waiting for the carries to ripple 
through all 32 1-bit adders. This faster path is paved by two signals, generate 
and propagate. The former creates a carry regardless of the carry input, and the 
other passes a carry along. Carry lookahead also gives another example of how 
abstraction is important in computer design to cope with complexity. 

Elaboration: We have now accounted for all but one of the arithmetic and logical 
operations for the core MIPS instruction set: the ALU in Figure 4 .21 omits support of 
shift instructions. It would be possible to widen the ALU multiplexor to include a left 
shift by 1 bit or right shift by 1 bit. But hardware designers have created a circuit called 
a barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to add 
two 32-bit numbers, so shifting is normally done outside the ALU. 

Elaboration: The logic equation for the Sum output of the full adder on page 234 can 
be expressed more simply by using a more powerful gate than AND and OR. An exclu
sive OR gate is true if the two operands disagree; that is, 

x ic- y • 1 and x == y • 0 

In some technologies , exclusive OR is more efficient than two levels of AND and OR 
gates. Using the symbol EB to represent exclusive OR, here is the new equation: 

Sum= a EB b EB Carryln 

Also, we have drawn the ALU the traditional way, using gates. Computers are 
designed today in CMOS transistors , which are basically switches. CMOS ALU and bar
rel shifters take advantage of these switches and have many fewer multiplexors than 
shown in our designs, but the design principles are similar. 
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II Multiplication 

Multiplication is vexation, 
Division is as bad; 
The rule of three doth puzzle me, 
And practice drives me mad. 

Anonymous, Elizabethan manuscript, 1570 

With the construction of the ALU and explanation of addition, subtraction, 
and shifts, we are ready to build the more vexing operation of multiply. 

But first let's review the multiplication of decimal numbers in longhand to 
remind ourselves of the steps and the names of the operands. For reasons that 
will become clear shortly, we limit this decimal example to using only the dig
its O and 1. Multiplying lOOOten by lOOlten: 

Multiplicand 
Multiplier 

l000ten 

X l00lten 

1000 
0000 

0000 
1000 

Product 1001 000ten 

The first operand is called the multiplicand and the second the multiplier. The 
final result is called the product. As you may recall, the algorithm learned in 
grammar school is to take the digits of the multiplier one at a time from right 
to left, multiplying the multiplicand by the single digit of the multiplier and 
shifting the intermediate product one digit to the left of the earlier inter
mediate products. 

The first observation is that the number of digits in the product is consider
ably larger than the number in either the multiplicand or the multiplier. In fact, 
if we ignore the sign bits, the length of the multiplication of an n-bit multipli
cand and an m-bit multiplier is a product that is n + m bits long. That is, n + m 
bits are required to represent all possible products. Hence, like add, multiply 
must cope with overflow because we frequently want a 32-bit product as the 
result of multiplying two 32-bit numbers. 

In this example we restricted the decimal digits to O and 1. With only two 
choices, each step of the multiplication is simple: 

1. Just place a copy of the multiplicand (1 x multiplicand) in the proper 
place if the multiplier digit is a 1, or 

2. Place O (0 x multiplicand) in the proper place if the digit is 0. 
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Although the decimal example above happened to use only O and 1, multipli
cation of binary numbers must always use O and 1, and thus always offers 
only these two choices. 

Now that we have reviewed the basics of multiplication, the traditional next 
step is to provide the highly optimized multiply hardware. We break with tra
dition in the belief that you will gain a better understanding by seeing the evo
lution of the multiply hardware and algorithm through three generations. The 
rest of this section presents successive refinements of the hardware and the 
algorithm until we have a version used in some computers. For now, let's 
assume that we are multiplying only positive numbers. 

First Version of the Multiplication Algorithm and Hardware 

The initial design mimics the algorithm we learned in grammar school; the 
hardware is shown in Figure 4.25. We have drawn the hardware so that data 
flows from top to bottom to more closely resemble the paper-and-pencil 
method. 

Let's assume that the multiplier is in the 32-bit Multiplier register and that 
the 64-bit Product register is initialized to 0. From the paper-and-pencil exam
ple above, it's clear that we will need to move the multiplicand left one digit 
each step as it may be added to the intermediate products. Over 32 steps a 

-
Multiplicand 

Shift left 

64-bit ALU 

Product 
Write,__ ..... 

64 bits 

Control test 

-
Multiplier 

Shift right 

32 bits 

FIGURE 4.25 First version of the multiplication hardware. The Multiplicand register, ALU, 
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. The 
32-bit multiplicand starts in the right half of the Multiplicand register, and is shifted left 1 bit on 
each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts 
with the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier 
registers and when to write new values into the Product register. 
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32-bit multiplicand would move 32 bits to the left. Hence we need a 64-bit Mul
tiplicand register, initialized with the 32-bit multiplicand in the right half and 
0 in the left half. This register is then shifted left 1 bit each step to align the mul
tiplicand with the sum being accumulated in the 64-bit Pro~uct register. . . 

Figure 4.26 shows the three basic steps needed for each bit. The l~ast s1gm~
icant bit of the multiplier (Multiplier0) determines whether the multiplicand 1s 

MultiplierO = 1 

la. Add multiplicand to product and 
place the result in Product register 

Start 

MultiplierO = 0 

2 . Shift the Multiplicand register left 1 bit 

3 . Shift the Multiplier register right 1 bit 

No: < 32 repetitions 

32 repetitions 

(_oo_ne ) 

FIGURE 4.26 The first multiplication algorithm, using the hardware shown in Figure 4.25. 
If the least sign ificant bit of the multiplier is 1, add the multiplicand to the product. If not, go to 
the next step. Shift the multiplicand left and the multiplier right in the next two steps. These three 
steps are repeated 32 times. 
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added to the Product register. The left shift in step 2 has the effect of moving 
the intermediate operands to the left, just as when multiplying by hand. The 
shift right in step 3 gives us the next bit of the multiplier to examine in the fol
lowing iteration. These three steps are repeated 32 times to obtain the 
product. 

First Multiply Algorithm 

Using 4-bit numbers to save space, multiply 2ten x 3tew or 0010two 
X 0011two· 

Figure 4.27 shows the value of each register for each of the steps labeled 
according to Figure 4.26, with the final value of 0000 0110two or 6ten· Color 
is used to indicate the register values that change on that step, and the bit 
circled is the one examined to determine the operation of the next step. 

~•~1~M~- ~a~. 1~.•~~~~~~~~~~~~~~~~~~~~~~~•~x~M~1~™~·~1m~•~~~~~~~-MMM 
1----o __ t--ln_it_ia_l v_a_lu_e_s ______ --+ __ 0_0_1_(JJ _+--_0_0_0_0_0_0_1_0~

1

j 0000 0~ 

Step 

1 la: 1 • Prod = Prod + Mcand 0011 0000 0010 j 0000 0010 
f-2- :_S_h-ift- le_ft_M_u-lt-ip-lic_a_n_d _ ____ 0_0_1_1_-+-~00~0~0- 0~1~0~0--+-' 0000 0010 

3: Shift right Multiplier OOLQJ 0000 0100 0000 0010 
~ ---t---------------t------+-- ----~ 

2 la: 1 • Prod = Prod + Mcand 0001 0000 0100 00000110~ 

0000 0110 J 

0000 0110 I 

0000 0110 

0000 0110 

0000 0110 

0000 0110 

0000 0110 

0000 0110 

-
3 

4 

2: Shift left Multiplicand 0001 _ 0000 1000 / 

3: Shift right Multiplier 00~ 0000 ~~~~ ~-

1: 0 • no operation 0000 0000 ~ 

2: Shift left Multiplicand 0001 0000 0000 

3: Shift right Multiplier OOl\;) 

1: O • no operation 0000 

2: Shift left Multiplicand 0000 

3: Shift right Multiplier 0000 
-~ 

I 

I 

1 

0001 0000 

00010~~ 
001000~ I 
0010 0000 

--- I 

FIGURE 4.27 Multiply example using first algorithm in Figure 4.26. The bit exilmined to 
determine the next step is circled in color. 

If each step took a clock cycle, this algorithm would require almost 100 clock 
cycles to multiply two 32-bit numbers. The relative importance of arithmetic 
operations like multiply varies with the program, but addition and subtraction 
may be anywhere from 5 to 100 times more popular than multiply. According
ly, in many applications, multiply can take multiple clock cycles without sig
nificantly affecting performance. Yet Amdahl's law (see Chapter 2, page 75) 
reminds us that even a moderate frequency for a slow operation can limit 
performance. 

INTEL - 1012



254 Chapter 4 Arithmetic for Computers 

Multiplicand 

Product 

64 bits 

Shift right ,_ _ _ 

Write ..---... 

-
Multiplier 

Shift right 

32 bits 

FIGURE 4.28 Second version of the multiplication hardware. Compare with the first ver
sion in Figure 4.25. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, 
with only the Product register left at 64 bits. Now the product is shifted right. These changes are 
highlighted in color. 

Second Version of the Multiplication Algorithm 
and Hardware 

Computer pioneers recognized that half of the bits of the multiplicand in the 
first algorithm were always 0, so only half could contain useful bit values. A 
full 64-bit ALU thus seemed wasteful and slow since half of the adder bits 
were adding Oto the intermediate sum. 

The original algorithm shifts the multiplicand left with Os inserted in the 
new positions, so the multiplicand cannot affect the least significant bits of the 
product after they settle down. Instead of shifting the multiplicand left, they 
wondered, what if we shift the product right? Now the multiplicand would be 
fixed relative to the product, and since we are adding only 32 bits, the adder 
need be only 32 bits wide. Figure 4.28 shows how this change halves the 
widths of both the ALU and the multiplicand. 

Figure 4.29 shows the multiply algorithm inspired by this observation. This 
algorithm starts with the 32-bit Multiplicand and 32-bit Multiplier registers set 
to their named values and the 64-bit Product register set to 0. This algorithm 
only forms a 32-bit sum, so only the left half of the 64-bit Product register is 
changed by the addition. 

4.6 Multiplication 

MultiplierO = 1 

1a. Add multiplicand to the left half of 
the product and place the result in 
the left half of the Product register 

Start 

MultiplierO = 0 

2. Shift the Product register right 1 bit 

3. Shift the Multiplier register right 1 bit 

Done 
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FIGURE 4.29 The second multiplication algorithm, using the hardware In Figure 4.28. Jn 
this vers10n, the Product register is shifted right instead of shifting the multiplicand. Color type 
shows the changes from Figure 4.26. 
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Second Multiply Algorithm 

Multiply 0010two X 001ltwousing the algorithm in Figure 4.29. 

Figure 4.30 shows the revised 4-bit example, again giving a product of 
0000 0110two· 

• i~li'il• St ep ~I ' • 'MIMI ii• Multiplicand WM/MW . '' 

0 Initial values ool(D 0010 0000 0000 

1 la: 1 => Prod = Prod + Mcand 0011 0010 0010 0000 

2: Shift right Product 0011 0010 0001 0000 

3: Shift right Multiplier 00(@ 0010 0001 0000 

2 la: 1 => Prod = Prod + Mcand 0001 0010 0011 0000 

2: Shift right Product 0001 0010 0001 1000 

3: Shift right Multiplier ooOQ) 0010 
--- L- --

00011000 

3 1: 0 => no operation 
I--

0000 0010 00011000 

~ 
2: Shift right Product 0000 0010 

3: Shift right Multiplier 00OQ) 0010 
-

1: 0 => no operation 0000 0010 
~ 

2: Shift right Product 0000 0010 

00001100 

00001100 

00001100 
-

0000 0110 
- ~ 

L__ 3: Shift right Multiplier 0000 0010 
-~ 

0000 0110 

FIGURE 4.30 Multiply example using second algorithm in Figure 4.29. The bit examined to 
determine the next step is circled in color. 

Final Version of the Multiplication Algorithm and 
Hardware 

The final observation of the frugal computer pioneers was that the Product 
register had wasted space that matched exactly the size of the multiplier: As 
the wasted space in the product disappears, so do the bits of the multiplier. In 
response, the third version of the multiplication algorithm combines the right
most half of the product with the multiplier. Figure 4.31 shows the hardware. 
The least significant bit of the 64-bit Product register (Product0) now is the bit 
to be tested. 

The algorithm starts by assigning the multiplier to the right half of the Prod
uct register, placing 0 in the upper half. Figure 4.32 shows the new steps. 

4.6 Multiplication 

Multiplicand 

32 bits 

-
Product 

64 bits 

Shift right .._ _ _, 

Write ---
Control 

test 

257 

FIGURE 4.31 Third version of the multiplication hardware. Comparing with the second ver
sion in Figure 4.28 on page 254, the separate Multiplier register has disappeared. The multiplier 
is placed instead in the right half of the Product register. 

Third Multiply Algorithm 

Multiply 0010two x 0011two using the algorithm in Figure 4.32. 

Figure 4.33 shows the revised 4-bit example for the final algorithm. 

Signed Multiplication 

Sofar we have dealt with positive numbers. The easiest way to understand 
how to deal with signed numbers is to first convert the multiplier and multi
plicand to positive numbers and then remember the original signs. The algo
rithms should then be run for 31 iterations, leaving the signs out of the 
calculation. As we learned in grammar school, we need negate the product 
only if the original signs disagree. 

It turns out that the last algorithm will work for signed numbers provided 
that we remember that the numbers we are dealing with have infinite digits, 
and that we are only representing them with 32 bits. Hence the shifting steps 
would need to extend the sign of the product for signed numbers. When the 
algorithm completes, the lower word would have the 32-bit product. 
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Sta rt 

ProductO = 1 ProductO = 0 

la. Add multiplicand to the left half of 
the product and place the result in 
the left half of the Product register 

2. Sh ift the Product register right 1 bit 

No: < 32 repetitions 

Done 

FIGURE 4.32 The third multlpllcatlon algorithm. It needs only two steps because the Product 
and Multiplier registers have been combined. Color type shows changes from Figure 4.29. 

WIM'll!.LL Step Multiplicand Product 

0 Initial values 0010 0000 oo:JQ) 

1 1a: 1 => Prod = Prod + Mcand 0010 0010 0011 

2: Shift right Product 0010 0001 OOQ!} 

2 1a: 1 => Prod = Prod + Mcand 0010 0011 0001 

2: Shift right Product 0010 00011oa,Q) 

3 1: O => no operation 0010 00011000 

2 : Shift right Product 0010 0000 11c@ 

4 1: O => no operation 0010 00001100 

2 : Shift right Product 0010 0000 0110 

FIGURE 4.33 Multiply example using third algorithm In Figure 4.32. The bit examined to 
determine the next step is circled in color. 
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Booth's Algorithm 

A more elegant approach to multiplying signed numbers than above is called 
Booth's algorithm. It starts with the observation that with the ability to both 
add and subtract there are multiple ways to compute a product. Suppose we 
want to multiply 2ten by 6ten, or OOlOtwo by 0110two: 

00l0 t wo 

X 0ll0two 

+ 0000 shift (0 i n mult i pl i er) 
+ 0 01 0 add (1 in mult ipli e r ) 
+ 00 1 0 add ( 1 in mult i plier) 
+ 0000 shift (0 in mult i plier) 

0000 ll 00two 

Booth observed that an ALU that could add or subtract could get the same 
result in more than one way. For example, since 

= - 2ten + Bt en 

or 

0 ll 0two = - 00 l 0two + l000two 

we could replace a string of ls in the multiplier with an initial subtract when 
we first see a 1 and then later add when we see the bit after the last 1. For 
example, 

X 
00lOtwo 

0 11 0two 

+ 0000 

0010 

+ 0000 

+ 0010 
-----

shift (0 in multiplier) 
sub (first 1 in multiplier) 
shift (mid dl e of string of ls) 
add (prior step had last 1) 

0000 ll 00two 

Booth invented this approach in a ques t for speed because in machines of 
his era shifting was fas ter than addition. Indeed, for some patterns his algo
rithm would be fas ter; it's our good fortune that it handles signed numbers as 
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well, and we'll prove this later. The key to Booth's insight is in his classifying 
groups of bits into the beginning, the middle, or the end of a run of ls: 

Middle of run 

End of run ~ \ 1 
1 

\ Qi] Beginning of run 

Of course, a string of Os already avoids arithmetic, so we can leave these 

alone. 
If we are limited to looking at just 2 bits, we can then try to match the situ-

ation in the preceding drawing, according to the value of these 2 bits: 

Current bit Bit to the right Explanation Example 

1 0 Beginning of a run of ls 00001111000two 

1 1 Middle of a run of ls 00001111oootwo 

0 1 End of a run of ls 00001111oootwo 

0 0 Middle of a run of Os o0001111oootwo 

Booth's algorithm changes the first step of the algorithm in Figure 4.32-
looking at 1 bit of the multiplier and then deciding whether to add the multi
plicand-to looking at 2 bits of the multiplier. The new first step, then, has four 
cases, depending on the values of the 2 bits. Let's assume that the pair of bits 
examined consists of the current bit and the bit to the right-which was the 
current bit in the previous step. The second step is still to shift the product 

right. The new algorithm is then the following: 

1. Depending on the current and previous bits, do one of the following: 

00: Middle of a string of Os, so no arithmetic operation. 

01: End of a string of ls, so add the multiplicand to the left half of the 

product. 
10: Beginning of a string of ls, so subtract the multiplicand from the left 

half of the product. 

11: Middle of a string of ls, so no arithmetic operation. 

2. As in the previous algorithm, shift the Product register right 1 bit. 

Now we are ready to begin the operation, shown in Figure 4.34. It starts 
with a 0 for the mythical bit to the right of the rightmost bit for the first stage. 
Figure 4.34 compares the two algorithms, with Booth's on the right. Note that 

• 0 

1 

2 

3 

4 

Multi• 
plicand 

0010 

0010 

0010 

0010 

0010 

0010 

0010 

0010 

4.6 Multiplication 

Original algorithm 

Initial values 

1: 0 • no operation 

2: Shift right Product 

la: 1 • Prod = Prod + Mcand 

2: Shift right Product 

la: 1 • Prod = Prod + Mcand 

2: Shift right Product 

1: 0 • no operation 

2: Shift right Product 

Product 

..... 

... 111 
00011000 

00001100 

Booth's algorithm 

Step 

Initial values 

la: 00 • no operation 

2: Shift right Product 

le: 10 • Prod = Prod - Mcand 

2: Shift right Product 

1d: 11 • no operation 

2: Shift right Product 

261 

Product 

0000011@ 

0000 0110 0 

0000001@ 

1110 0011 0 

1111000 

111100011 

1111 100'.Q]) 

lb: 01 • Prod = Prod + Mcand 0001 1000 1 

2: Shift right Product 0000 1100 0 

FIGURE 4.34 Comparing algorithm in Figure 4 32 and Booth' . 
to determine the next step is circled in color. . s algorithm for positive numbers. The bit(s) examined 

Booth's Algorithm 

Let's try Booth's algorithm with negative numbers· 2 x -3 - 6 
0010two X 1101t = 1111 1010 . ten ten - - ten, or 

wo two· 

Figure 4.35 shows the steps. 

Our example multiplies one bit at a time but it is ossible t . 
!.~~;h's algo,ithm to genmte multiple bits f~, faste, !,,ltiplies ie!e~;:~:: 

......, 
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IIM\11 I.I ' Step Multiplicand Product 

0 Initial values 0010 0000 110[:Q) 

1 le: 10 • Prod Prod Mcand 0010 1110 11010 

2: Shift right Product 0010 1111 011Q]) 

2 lb: 01 • Prod Prod+ Mcand 0010 0001 0110 1 

2: Shift right Product 0010 0000100 

3 le: 10 • Prod Prod Mcand 0010 1110 1011 0 

2: Shift right Product 0010 1111 01CJQ;}) 

4 1d: 11 • no operation 0010 1111 01011 

2: Shift right Product 0010 11111010 1 

FIGURE 4.35 Booth's algorithm with negative multlpller example. The bits examined to 
determine the next step are circled in color. 

Hardware 

Software 

Interface 

Replacing arithmetic by shifts can also occur whe_n ~ulti
plying by constants. Some compilers replace multiplies by 
short constants with a series of shifts, adds, and subtracts. 
Because one bit to the left represents a number twice as 
large in base 2, shifting the bits left has the same effect ~s 
multiplying by a power of 2, so almost every compiler will 
substitute a left shift for a multiply by a power of 2. 

Multiply by 21 via Shift 

Let's multiply Sten by 2ten using a left shift by 1. 

Given that 

lOltwo= (lx2
2
)+( 0 x 2

1
)+(1 x 2°)ten =4+0+1ten=5ten 

if we shift left 1 bit, we get 

1010two = (1 X 2
3

) + (0 X 2
2) + (1 X 2

1
) + (0 X 2°\en 

= 8 + 0 + 2 + Oten = 1 Oten 

and 

5 X 2\en = lOten 

Hence the MIPS s l l instruction can be used for multiplies by powers of 2. 

4.6 Multiplication 
263 

Now that we have seen Booth's algorithm work, we are ready to see why it 
works for two's complement signed integers. Let a be the multiplier and b be 
the multiplicand and we'll use ai to refer to bit i of a. Recasting Booth's algo
rithm in terms of the bit values of the multiplier yields this table: 

Operation 

0 Do nothing 
0 1 Add b 

1 0 Subtract b 

1 1 Do nothing 

Instead of representing Booth's algorithm in tabular form, we can represent it 
as the expression 

(ai-1 - a;) 

where the value of the expression means the following actions: 

0 : do nothing 
+1: add b 
-1: subtract b 

Since we know that shifting of the multiplicand left with respect to the Prod
uct register can be considered multiplying by a power of 2, Booth's algorithm 
can be written as the sum 

(a_1 - a0) x b x 2° 

+ (a0 - a1) x b x 21 

+ (a1 - a2) x b x 22 

+ 

+ 
(a29 - a30) x b x 230 

(a30 - a31 ) x b x 231 

We can simplify this sum by noting that 

- ai xi+ ai x i + 1 = (-ai + 2a;) xi= (2a; - a;) x i= a; x 2; 

recalling that a_1 = 0 and by factoring out b from eilch term: 

b X ((a31 X -2
31

) + (a30 X 2
30

) + (a29 x 2 29) + ... + (n1 X 2 1) + (no x 2°)) 

The long formula in parentheses to the right of the first multiply operiltion is 
simply the two's complement representation ofa (see page 213.) Thus the sum 
is further simplified to 

b x a 

Hence Booth's algorithm does in fact perform two's complement multiplica
tion of a and b. 
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Multiply in MIPS 

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product, 
called Hi and Lo. To produce a properly signed or unsigned product, MIPS 
has two instructions: multiply (mu l t) and multiply unsigned (mu l tu). To 
fetch the integer 32-bit product, the programmer uses move from lo (mfl o). The 
MIPS assembler generates a pseudoinstruction for multiply that specifies 
three general-purpose registers, generating mfl o and mfh i instructions to 
place the product into registers. 

Hardware 

Software 

Interface 

Summary 

Both MIPS multiply instructions ignore overflow, so it is up 
to the software to check to see if the product is too big to fit 
in 32 bits. To avoid overflow, Hi must be 0 for mul tu or 
must be the replicated sign of Lo for mul t. The instruction 
move from hi (mf h i) can be used to transfer Hi to a general
purpose register to test for overflow. 

Multiplication is accomplished by simple shift and add hardware, derived 
from the paper-and-pencil method learned in grammar school. Compilers 
even use shift instructions for multiplications by powers of two. Signed mul
tiplication is more challenging, with Booth's algorithm rising to the challenge 
with essentially a clever factorization of the two's complement number repre
sentation of the multiplier. 

Elaboration: The original reason for Booth's algorithm was speed because early 
machines could shift faster than they could add . The hope was that this encoding 
scheme would increase the number of shifts. This algorithm is sensitive to particular 
bit patterns, however, and may actually increase the number of adds or subtracts. For 
example, bit patterns that alternate O and 1, called isolated ls, will cause the hard
ware to add or subtract at each step. Looking at more bits to carefully avoid isolated 1s 
can reduce the number of adds in the worst case. Greater advantage comes from per
forming multiple bits per step, which we explore in Exercise 4.53. 

Even faster multiplications are possible by essentially providing one 32-bit adder for 
each bit of the multiplier: one input is the multiplicand ANDed with a multiplier bit and 
the other is the output of a prior adder. When adding such a large column of numbers, 
a carry save adder is useful (see Exercises 4.49 to 4.52). 

Elaboration: The replacement of a multiply by a shift, as in the example on page 
262, is an instance of a general compiler optimization strategy called strength reduc
tion. 

• 
4. 7 Division 

• Division 

Divide et impera. 

265 

Latin for "Divide and rule," ancient political maxim cited by Machiavelli, 1532 

The reciprocal operation of multiply is divide, an operation that is even less 
frequent a.nd ev.en m.ore quirky. It even offers the opportunity to perform a 
mathematically mvahd operation: dividing by 0. 

Let's start with an example of long division using decimal numbers to recall 
the names of the operands and the grammar school division algorithm. For 
:easons similar to those in the previous section, we limit the decimal digits to 
Just 0 or 1. The example is dividing 1,001,0lOten by lO00ten: 

lO0lten 
Divisor lO00ten I 1001010ten 

-1000 
10 
1,01 
1010 

-1000 

lOten 

Quotient 

Dividend 

Remainder 

The two operands (dividend and divisor) and the result (quotient) of divide 
are accompanied by a second result called the remainder. Here is another way 
to express the relationship between the components: 

Dividend = Quotient x Divisor + Remainder 

where the remainder is smaller than the divisor. Infrequently, programs use 
the divide instruction just to get the remainder, ignoring the quotient. 

The basic grammar school division algorithm tries to see how big a number 
can be subtracted, creating a digit of the quotient on each attempt. Our care
~lly selected decimal example uses only the numbers 0 and 1, so it's easy to 
figure out how many times the divisor goes into the portion of the 
dividend: it's either 0 times or 1 time. Binary numbers contain only 0 or 1, so 
b~n~r_Y division is restricted to these two choices, thereby simplifying binary 
d1v1s10n. 

Let's assume that both the dividend and divisor are positive and hence the 
quotient and the remainder are nonnegative. The division operands and both 
results are 32-bit values, and we will ignore the sign for now. Rather than make 
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-
Divisor 

64-bit ALU 

Remainder 

64 bits 

Sh ift right 

Control 
test 

-
Quotient 

Shift left 

32 bits 

FIGURE 4.36 First version of the division hardware. The Divisor register, ALU, and Remain
der register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor 
starts in the left half of the Divisor register and is shifted right 1 bit on each iteration. The remain
der is initialized with the dividend . Control decides when to shift the Divisor and Quotient regis
ters and when to write the new value into the Remainder register. 

each of the three evolutionary versions explicit with drawings and examples, 
as we did for multiply, we will save space by giving a sketch for the two inter
mediate steps and then give the final algorithm in detail. 

First Version of the Division Algorithm and Hardware 

Figure 4.36 shows hardware to mimic our grammar school algorithm. We 
start with the 32-bit Quotient register set to 0. Each iteration of the algorithm 
needs to move the pivisor to the right one digit, so we start with the divisor 
placed in the left half of the 64-bit Divisor register and shift it right 1 bit each 
step to align it with the dividend. The Remainder register is initialized with 
the dividend. 

Figure 4.37 shows three steps of the first division algorithm. Unlike a hu
man, the computer isn' t smart enough to know in advance whether the divisor 
is smaller than the dividend. It must first subtract the divisor in step l ; remem
ber that this is how we performed the comparison in the set on less than in
struction. If the result is positive, the divisor was smaller or equal to the 
dividend, so we generate a 1 in the quotient (step 2a). If the result is negative, 
the next step is to restore the original value by adding the divisor back to the 
remainder and generate a O in the quotient (step 2b). The divisor is shifted right 
and then we iterate again. The remainder and quotient will be found in their 
namesake registers after the iterations are complete. 

4. 7 Division 

Start 

1. Subtract the Divisor register from the 
Remainder register and place the 
result in the Remainder register 

Remainder :: O Remainder < o 

2a. Shift the Quotient register to the left, 
setting the new rightmost bit to 1 

2b. Restore the original value by adding 
the Divisor register to the Remainder 

register and place the sum in the 
Remainder register. Also shift the 

Quotient register to the left, setting the 
new least significant bit to O 

3. Shift the Divisor register right 1 bit 

33 repetitions 

( Done . ) 
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FIGURE 4.37 The first division algorithm, using the hardware in Figure 4.36. ff the 
Remainder is _positive, _the d ivisor d id go into the d ividend , so step 2a generates a 1 in the quo
tient. A negative Rema111der after step 1 means that the divisor d id not go into the dividend, so 
step 2b generates a Om the quoti~nt _a nd adds the d ivisor to the rema inder, thereby reversing the 
subtraction of step 1. The fmal shi ft, 111 step 3, a ligns the divisor properl y, rela ti ve to the di vidend 
fo r the next itera tion. These steps are repea ted 33 times; the reason for the apparent e, tr,1 ,tcp wil l 
become clea r 111 the next vers10n of the algorithm. 
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First Divide Algorithm 

Using a 4-bit version of the algorithm to save pages, let's try dividing 7ten 
by 2ten, or 0000 011 ltwo by 00lOtwo· 

Figure 4.38 shows the value of each register for each of the steps, with the 
quotient being 3ten and the remainder lten· Notice that the test in step 2 of 
whether the remainder is positive or negative simply tests whether the 
sign bit of the Remainder register is a 0 or 1. The surprising requirement of 
this algorithm is that it takes n + l steps to get the proper quotient and 
remainder. 

iltiiH:F Step fiiiiNNfriEIM::H:HI 
0 Initial values 0000 0010 0000 0000 0111 

1: Rem = Rem - Div 0000 0010 0000 Q;Jl.10 0111 

1 2b: Rem < 0 • +Div, sll Q, QO = 0 0000 0010 0000 0000 0111 

3: Shift Div right 0000 0001 0000 0000 0111 

1: Rem = Rem - Div 0000 00010000 ~ 110111 

2 2b: Rem < 0 • +Div, sll Q, QO = 0 0000 00010000 0000 0111 

3: Shift Div right 0000 0000 1000 0000 0111 

1 : Rem = Rem - Div 0000 0000 1000 ~111111 

3 2b: Rem < 0 • +Div, sll Q, QO = 0 0000 0000 1000 0000 0111 

3: Shift Div right 0000 0000 0100 0000 0111 

1: Rem = Rem - Div 0000 0000 0100 @ooo 0011 

4 2a: Rem ~ O • sll Q, QO = 1 0001 00000100 0000 0011 

3: Shift Div right 0001 0000 0010 0000 0011 

1: Rem = Rem - Div 0001 0000 0010 «}loo 0001 

5 2a: Rem ~ O • sll Q, QO = 1 0011 0000 0010 0000 0001 

3: Shift Div right 0011 0000 0001 0000 0001 

FIGURE 4.38 Division example using first algorithm in Figure 4.37. The bit examined to 
determine the next step is circled in color. 

Second Version of the Division Algorithm and 
Hardware 

Once again the frugal computer pioneers recognized that, at most, half of the 
divisor has useful information, and so both the divisor and ALU could poten
tially be cut in half. Shifting the remainder to the left instead of shifting the 
divisor to the right produces the same alignment and accomplishes the goal of 
simplifying the hardware necessary for the ALU and the divisor. Figure 4.39 
shows the simplified hardware for the second version of the algorithm. 

4. 7 Division 

Divisor 

Remainder 

64 bits 

Shift left .....__ _ _, 

Write - --, 
Contro l 

test 

-
Quotient 

Shift left 

32 bits 
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FIGURE 4.39 Second version of the division hardware. The Divisor register, ALU, and Quo
tient register are all 32 bits wide, with only the Remainder register left at 64 bit_s. Compared to 
Figure 4.36, the ALU and Divisor registers are halved and the rema111der 1s shifted left. These 
changes are highlighted. 

Another change comes from noticing that the first step of the current algo
rithm cannot produce a 1 in the quotient bit; if it did, then the quotient would 
be too large for the register. By switching the order of the operations to shift 
and then subtract, one iteration of the algorithm can be removed. When the al
gorithm terminates, the remainder will be found in the left half of the Remain
der register. 

Final Version of Division Algorithm and Hardware 

With the same insight and motivation as in the third version of the multiplica
tion algorithm, computer pioneers saw that the Quotient register could be 
eliminated by shifting the bits of the quotient into the Remainder instead of 
shifting in Os as in the preceding algorithm. Figure 4.40 shows the third ver
sion of the algorithm. 

We start the algorithm by shifting the Remainder left as before. Thereafter, 
the loop contains only two steps because the shifting of the Ren,aind er register 
shifts both the remainder in the left half and the quotient in the right half (see 
Figure 4.41). The consequence of combining the two registers and the nevv or
der of the operations in the loop is that the remainder will be shifted left one 
time too many. Thus the final correction step must shift back only the rema111-
der in the left half of the register. 
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Start 

1. Shift the Remainder register left 1 bit 

2. Subtract the Divisor register from the 
left half of the Remainder register and 
place the result in the left half of the 

Remainder register 

Remainder ~ O 

3a. Shift the Remainder register to the 
left, setting the new rightmost bit to 1 

Remainder < 0 

3b. Restore the original value by adding 
the Divisor register to the left half of the 
Remainder register and place the sum 

in the left half of the Remainder register. 
Also shift the Remainder register to the 
left, setting the new rightmost bit to O 

No: < 32 repetitions 

Done. Shift left half of Remainder right 1 bit 

FIGURE 4.40 The third division algorithm has just two steps. The Remainder register shifts 
left. 
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Divisor 

64 bits 

FIGURE 4 .41 Third version of the division hardware. This version combines the Quotient 
register with the right half of the Remainder register. 

Third Divide Algorithm 

Use the third version of the algorithm to divide 0000 011 ltwo by 0010two· 

Figure 4.42 shows how the quotient is created in the bottom of the Remain
der register and how both are shifted left in a single operation. 

Nlrtthi:F 
0 

Initial va lues 

Sh ift Rem left 1 

Step 

2: Rem = Rem - Div 
1 

2 

3 

4 

3b: Rem < 0 • + Div, sll R, RO= 0 

2: Rem = Rem - Div 

3b: Rem < 0 • + Div, sll R, RO = 0 

2: Rem= Rem - Div 

3a: Rem <! 0 • s11 R, RO = 1 

2: Rem= Rem - Div 

3a: Rem<! 0 • s11 R, RO = 1 

Shift left half of Rem right 1 

l'®frji Remainder 

0010 0000 011l 
0010 0000 1110 

0010 @110 1110 

0010 0001 1100 

0010 @111 1~ 

0010 00 11 1000 

0010 (g:)01 1000 

0010 0011 0001 

0010_ -+-_ @)01 0001 

0010 0010 0011 __ ___, 

0010 0001 0011 

FIGURE 4.42 Division example using third algorithm in Figure 4.40. The bit examined to 
determine the next step is ci rcled in color. 

INTEL - 1012



272 Chapter 4 Arithmetic for Computers 

Signed Division 

So far we have ignored signed numbers in division. The simplest solution is 
to remember the signs of the divisor and dividend and then negate the quo
tient if the signs disagree. 

The one complication is that we must also set the sign of the remainder. 
Remember that the following equation must always hold: 

Dividend = Quotient x Divisor + Remainder 

To understand how to set the sign of the remainder, let's look at the example 
of dividing all the combinations of ±7ten by ±2ten· The first case is easy: 

+7 + +2: Quotient= +3, Remainder= +1 

Checking the results: 

7=3x2+(+1)=6+1 

If we change the sign of the dividend, the quotient must change as well: 

-7 + +2: Quotient= -3 

Rewriting our basic formula to calculate the remainder: 
Remainder = (Dividend - Quotient x Divisor) 

= -7 -(-3 X +2) = - 7-(- 6) = - 1 
So, 

-7 + +2: Quotient= -3, Remainder= -1 

Checking the results again: 

-7 = -3 X 2 + (-1) = -6 -1 

The reason the answer isn' t a quotient of -4 and a remainder of+ 1, which 
would also fit this formula, is that the absolute value of the quotient would 
then change depending on the sign of the dividend and the divisor! Clearly if 

-(x + yh (-x ) + y 

programming would be an even greater challenge. This anomalous behavior 
is avoided by following the rule that the dividend and remainder must have 
the same signs, no matter what the signs of the divisor and quotient. 

We calculate the other combinations by following the same rule: 

+7 + -2: Quotient= -3, Remainder= + 1 

-7 + -2: Quotient= +3, Remainder= -1 

Thus the correctly signed division algorithm negates the quotient if the 
signs of the operands are opposite and makes the sign of the nonzero remain
der match the dividend. 
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Divide in MIPS 

You may have already observed that the same hardware can be used for both 
multiply and divide. The only requirement is a 64-bit register that can shift 
left or right and a 32-bit ALU that adds or subtracts. For example, MIPS uses 
the 32-bit Hi and 32-bit Lo registers for both multiply and divide. As we 
might expect from the algorithm above, Hi contains the remainder, and Lo 
contains the quotient after the divide instruction completes. 

To handle both signed integers and unsigned integers, MIPS has two 
instructions: divide (div) and divide unsigned (div u). The MIPS assembler al
lows divide instructions to specify three registers, generating the mflo or mfh i 
instructions to place the desired result into a general-purpose register. 

Hardware 

Software 

Interface 

Summary 

MIPS divide instructions ignore overflow, so software must 
determine if the quotient is too large. In addition to over
flow, division can also result in an improper 
calculation: division by 0. Some machines distinguish these 
two anomalous events. MIPS software must check the divi
sor to discover division by Oas well as overflow. 

The common hardware support for multiply and divide allows MIPS to pro
vide a single pair of 32-bit registers that are used both for multiply and 
divide. Figure 4.43 summarizes the additions to the MIPS architecture for the 
last two sections. 

Elaboration: The reason for needing an extra iteration for the first algorithm and the 
early shift in the second and third algorithms involves the placement of the dividend in 
the Remainder register. We expect to have a 32-bit quotient and a 32-bit divisor, but 
each is really a 31-bit integer plus a sign bit. The product would be 31 +31, or 62 bits 
plus a single sign bit; the hardware can then support only a 63-bit dividend. Given that 
registers are normally powers of 2, this means we must place the 63-bit dividend prop
erly in the 64-bit Remainder register. If we place the 63 bits to the right, we need to run 
the algorithm for an extra step to get to that last bit. A better solution is to shift early, 
thereby saving a step of the algorithm. 

An even faster algorithm does not immediately add the divisor back if the remainder 
is negative . It simply adds the dividend to the shifted remainder in the fol lowing step 
since (r + d) x 2 - d = r x 2 + d x 2 - d = r x 2 + d. This nonrestoring division algorithm, 
which takes 1 clock per step, is explored further in Exercise 4.54; the algorithm here is 
ca lled restoring division . 
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MIPS operands 
•~At naa · II - Example Comments 

32 $s0- $s7 . $t0-$t9 , $gp , $fp , Fast locations for data. In MIPS, data must be in registers to perform arithmetic. 
registers $zero . $sp . $ra , $at. Hi . Lo MIPS register $zer o always equals 0. Register $at is reserved for the assembler 

to handle large constants. Hi and Lo contain the results of multiply and divide. 
230 Memory[O], Accessed only by data transfer instructions. MIPS uses byte addresses, so 
memory Memory[4].. ... sequential words differ by 4. Memory holds data structures, such as arrays, and 
words Memory[ 4294967292] spilled registers, such as those saved on procedure calls. 

MIPS assembly language 
i.f\U@i Instruction Example Meaning Comments 

add add $s1 , $s2 , $s3 $s1 = $s2 + $s3 Three operands; overflow detected 

subtract sub $s 1. $s2 , $s3 $s1 = $s2 - $s3 Three operands; overflow detected 

add immediate addi $s 1. $s2 , 100 $s1 = $s2 + 100 + constant; overflow detected 

add unsigned addu $s1 ,$ s2 , $s3 $s1 = $s2 + $s 3 Three operands; overflow undetected 

subtract unsigned subu $s1 ,$ s2 ,$ s3 $s1 = $s2 - $s3 Three operands; overflow undetected 

add immediate addiu $s1,$s2 , 100 $s1 = $s2 + 100 + constant; overflow undetected 
unsigned 

move from mfcO $sl , $epc $s1 = $epc Used to copy Exception PC plus 
Arithmetic coprocessor register other special registers 

multiply mult $s2,$s3 Hi, Lo= $s2 x $s3 64-bit signed product in Hi, Lo 

multiply unsigned multu $s2 , $s3 Hi, Lo= $s2 x $s3 64-bit unsigned product in Hi, Lo 

divide div $s2,$s3 Lo= $s2 / $s3, Lo = quotient, Hi = remainder 
Hi= $s2 mod $s3 

divide unsigned divu $s2 . $s3 Lo= $s2/$s3 , Unsigned quotient and remainder 
Hi= $s2 mod $s3 

move from Hi mfhi $s1 $51 = Hi Used to get copy of Hi 

move from Lo mflo $s1 $ s 1 = Lo Used to get copy of Lo 

and and $s1. $s2 , $s3 $s 1 = $s2 & $s3 Three reg. operands; logical AND 

or or $s1. $s2 , $s3 $s1 = $s2 1 $s3 Three reg. operands; logical OR 

and immediate andi $s1, $s2 . 100 $ s 1 = $ s 2 & 100 Logical AND reg, constant 
Logical 

or immediate ori $s 1,$s2 , 100 $ S 1 = $ S 2 I 100 Logical OR reg, constant 

shift left logical s l l $s1,$s2 , 10 $s1 = $s2 « 10 Shift left by constant 

shift right logical s rl $s1,$s2 , 10 $s 1 = $s2 » 10 Shift right by constant 

load word l w $s1, 100( $s2) $s1 = Memory[$ s2+100] Word from memory to register 

store word SW $s 1, 100( $s2 l Memory[ $s2 + 100] = $s1 Word from register to memory 
Data 

load byte unsigned l bu $s1 , 100($s2) $s 1 = Memory[ $s2 + 100] Byte from memory to register 
transfer 

store byte sb $s1 . 100( $s2 ) Memory[ $s2 + 100] = $s1 Byte from register to memory 

load upper immediate l ui $s1. 100 $s1 = 100 * 216 Loads constant in upper 16 bits 

branch on equal beq $s1,$s2 , 25 if ( $ s 1 == $ s 2) go to Equal test; PC-relative branch 
PC+ 4 + 100 

branch on not equal bne $s1, $s2 , 25 if ( $ s 1 ! = $ s 2) go to Not equal test; PC-relative 
PC+ 4 + 100 

Condi- set on less than slt $s1 ,$s2 , $s 3 if ($ s2 < $s3 ) $ s 1 = 1; Compare less than; two's 
else $s 1 = O complement 

tional 
set less than slt i $s1, $s 2 , 100 if ($ s2 < 100) $ s 1 = 1; Compare < constant; two's 

branch immediate else $sl =O complement 

set less than sltu $s1. $s2, $s3 if ($s2 < $s3) $ s 1 = 1; Compare less than; natural 
unsigned else $ s l =O numbers 
set less than slti u $s1. $s2, 100 if ($s2 < 100) $51 = 1; Compare < constant; natural 
immediate unsigned else $ s 1 = O numbers 

Uncondi- jump j 2500 go to 10000 Jump to target address 

tional jump register jr $ ra go to $ ra For switch, procedure return 

jump jump and link jal 2500 $ra =PC+ 4; go to 10000 For procedure call 

FIGURE 4.43 MIPS architecture revealed thus far. Color indicates the portions revealed since Figure 4.7 on page 228. 
MIPS machine language is listed on the back endpapers of this book. (page 274) 
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• Roating Point 

Speed gets you nowhere if you're headed the wrong way. 

American proverb 

In addition to signed and unsigned integers, programming languages sup
port numbers with fractions, which are called reals in mathematics. Here are 
some examples of reals: 

3.14159265 . . ·ten (n) 

2.71828 .. ·ten (e) 

0.00000000lten or l.0ten x 10-9 (seconds in a nanosecond) 

3,155,760,000ten or 3.15576ten x 109 (seconds in a typical century) 

Notice that in the last case, the number didn't represent a small fraction, but 
it was bigger than we could represent with a 32-bit signed integer. The alter
native notation for the last two numbers is called scientific notation, which has 
a single digit to the left of the decimal point. A number in scientific notation 
that has no leading Os is called a normalized number, which is the usual way to 
write it. For example, 1.0ten x 10-9 is in normalized scientific notation, but 
0.lten x 10-8 and 10.0ten x 10-IO are not. 

Just as we can show decimal numbers in scientific notation, we can also 
show binary numbers in scientific notation: 

l.0two X r1 

To keep a binary number in normalized form, we need a base that we can 
increase or decrease by exactly the number of bits the number must be shifted 
to have one nonzero digit to the left of the decimal point. Only a base of 2 ful
fills our need. Since the base is not 10, we also need a new name for decimal 
point; binary point will do fine. 

Computer arithmetic that supports such numbers is called floating point be
cause it represents numbers in which the binary point is not fixed, as it is for 
integers. The programming language C uses the name float for such numbers. 
Just as in scientific notation, numbers are represented as a single nonzero digit 
to the left of the binary point. In binary, the form is 

1.XXXXXXXXXtwo X 2YYYY 
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(Although the computer represents the exponent in base 2 as well as the rest 
of the number, to simplify the notation we'll show the exponent in decimal.) 

A standard scientific notation for reals in normalized form offers three ad
vantages. It simplifies exchange of data that includes floating-point numbers; 
it simplifies the floating-point arithmetic algorithms to know that numbers 
will always be in this form; and it increases the accuracy of the numbers that 
can be stored in a word, since the unnecessary leading Os are replaced by real 
digits to the right of the binary point. 

Floating-Point Representation 

The designer of a floating-point representation must find a compromise 
between the size of the significand and the size of the exponent because a 
fixed word size means you must take a bit from one to add a bit to the other. 
This trade-off is between accuracy and range: Increasing the size of the signif
icand enhances the accuracy of the significand, while increasing the size of the 
exponent increases the range of numbers that can be represented. As our 
design guideline from Chapter 3 reminds us, good design demands good 
compromises. 

Floating-point numbers are usually a multiple of the size of a word. The rep
resentation of a MIPS floating-point number is shown below, where s is the 
sign of the floating-point number (1 meaning negative), exponent is the value 
of the 8-bit exponent field (including the sign of the exponent), and significand 
is the 23-bit number in the fraction. This representation is called sign and mag
nitude, since the sign has a separate bit from the rest of the number. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

s 

1 bit 
exponent significand 
8 bits 23 bits 

In general, floating-point numbers are of the form 

(-l)SxFx2E 

F involves the value in the significand field and E involves the value in the 
exponent field; the exact relationship to these fields will be spelled out soon. 

These chosen sizes of exponent and significand give MIPS computer arith
metic an extraordinary range. Fractions as small as 2.0ten x 10-38 and numbers 
as large as 2.0ten x 1038 can be represented in a computer. Alas, extraordinary 
differs from infinite, so it is still possible for numbers to be too large. Thus, 
overflow interrupts can occur in floating-point arithmetic as well as in integer 
arithmetic. Notice that overflow here means that the exponent is too large to be 
represented in the exponent field. 
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Floating point offers a new kind of exceptional event as well. Just as pro
grammers will want to know when they have calculated a number that is too 
large to be represented, they will want to know if the nonzero fraction they are 
calculating has become so small that it cannot be represented; either event 
could result in a program giving incorrect answers. This situation occurs when 
the negative exponent is too large to fit in the exponent field. To distinguish it 
from overflow, people call this event underflow. 

One way to reduce chances of underflow or overflow is to use a notation 
that has a larger exponent. In C this is called double, and operations on doubles 
are called double precision floating-point arithmetic; single precision floating 
point is the name of the earlier format. 

The representation of a double precision floating-point number takes two 
MIPS words, as shown below, wheres is still the sign of the number, exponent 
is the value of the 11-bit exponent field, and significand is the 52-bit number in 
the fraction. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 ~~ 
s 

1 bit 

exponent significand 

11 bits 20 bits 

significand (continued) 

32 bits 

MIPS double precision allows numbers almost as small as 2.0ten x 10-308 and 
almost as large as 2.0ten x 10308. Although double precision does increase the 
exponent range, its primary advantage is its greater accuracy because of the 
large significand. 

These formats go beyond MIPS. They are part of the IEEE 754 floating-point 
standard, found in virtually every computer invented since 1980. This standard 
has greatly improved both the ease of porting floating-point programs and the 
quality of computer arithmetic. 

To pack even more bits into the significand, IEEE 754 makes the leading 1 
bit of normalized binary numbers implicit. Hence, the significand is actually 
24 bits long in single precision (implied 1 and a 23-bit fraction), and 53 bits long 
in double precision (1 +52). Since 0 has no leading 1, it is given the reserved ex
ponent value 0 so that the hardware won't attach a leading 1 to it. 

Thus 00 ... 00two represents 0; the representation of the rest of the numbers 
uses the form from before with the hidden 1 added: 

(-l)s x (1 + Significand) x 2E 

where the bits of the significand represent the fraction between 0 and 1 and E 
specifies the value in the exponent field, to be given in detail shortly. If we 
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number the bits of the significand from left to right sl, s2, s3, ... , then the 
value is 

(-1) 5 X (1 + (sl X 2-1) + (s2 X 2-2) + (s3 X 2-3 ) + (s4 X 2-4 ) + ... ) X 2E 

The designers of IEEE 754 also wanted a floating-point representation that 
could be easily processed by integer comparisons, especially for sorting. This 
desire is why the sign is in the most significant bit, allowing a test of less than, 
greater than, or equal to O to be performed quickly. 

Placing the exponent before the significand also simplifies sorting of 
floating-point numbers using integer comparison instructions, since numbers 
with bigger exponents look larger than numbers with smaller exponents, as 
long as both exponents have the same sign. (It's a little more complicated than 
a simple integer sort, since this notation is essentially sign and magnitude 
rather than two's complement.) 

Negative exponents pose a challenge to simplified sorting. If we use two's 
complement or any other notation in which negative exponents have a 1 in the 
most significant bit of the exponent field, a negative exponent will look like a 
big number. For example, l.Otwo x T 1 would be represented as 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Remember that the leading 1 is implicit in the significand.) The value l.Otwo 
x 2+1 would look like the smaller binary number 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The desirable notation must therefore represent the most negative exponent 
as 00 ... OOtwo and the most positive as 11 ... lltwo· This convention is called 
biased notation, with the bias being the number subtracted from the normal, un
signed representation to determine the real value. 

IEEE 754 uses a bias of 127 for single precision, so -1 is represented by the 
bit pattern of thevalue-1 + 127ten, or 126ten = Olll lllOtwo, and +1 is represent
ed by 1 + 127, or 128ten = 1000 OOOOtwo· Biased exponent means that the value 
represented by a floating-point number is really 

(-1)5 x (1 + Significand) x 2(Exponent-Bias) 

The exponent bias for double precision is 1023. 
Thus IEEE 754 notation can be processed by integer compares to accelerate 

sorting of floating-point numbers. Let's show the representation. 
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Floating-Point Representation 

Show the IEEE 754 binary representation of the number -O.75ten in single 
and double precision. 

The number -O.75ten is also 

-3/4ten or -3/22ten 

It is also represented by the binary fraction: 

-lltwof 22ten or -O.lltwo 

In scientific notation, the value is 

-O.lltwo X 20 

and in normalized scientific notation, it is 

-1.ltwo X rl 

The general representation for a single precision number is 

(-1)5 x (1 + Significand) x 2<Exponent - 127) 

and so when we add the bias 127 to the exponent of-1. ltwo x T 1, the result 
is 

(-1)1X(1+.10000000 0000 0000 0000 OOOtwo) X 2°26 - 127) 

The single precision binary representation of -O.75ten is then 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 bit 8 bits 23 bits 

The double precision representation is 

(-1)1 x (1+.1000000000000000000000000000000000000000000000000000tw0 ) X 200Z2- 1023) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 bit 11 bits 20 bits 

jo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 
32 bits 
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Now let's try going the other direction. 

Example 

Converting Binary to Decimal Floating Point 

What decimal number is represented by this word? 

Answer 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The sign bit is 1, the exponent field contains 129, and the significand field 
contains 1 x r 2 = 1 / 4, or O .25. Using the basic equation, 

(-1)5 x (1 + Significand) x 2<Exponent - Bias) = (-1)1 x (1 + 0.25) x 2029-127) 

= - 1 X 1.25 X 22 

= -1.25 X 4 
=-5.0 

In the next sections we will give the algorithms for floating-point addition 
and multiplication. At their core, they use the corresponding integer opera
tions on the significands, but extra bookkeeping is necessary to handle the ex
ponents and normalize the result. We first give an intuitive derivation of the 
algorithms in decimal, and then give a more detailed, binary version in the 
figures. 

Elaboration: In an attempt to increase range without removing bits from the signifi
cand, some computers before the IEEE 754 standard used a base other than 2. For 
example, the IBM 360 and 370 mainframe computers use base 16. Since changing the 
IBM exponent by one means shifting the significand by 4 bits, "normalized " base 16 
numbers can have up to 3 leading bits of Os! Hence hexadecimal digits mean that up to 
3 bits must be dropped from the significand, which leads to surprising problems in the 
accuracy of float ing-point arithmetic, as noted in sect ion 4.12. 

Floating-Point Addition 

Let's add numbers in scientific notation by hand to illustrate the problems in 
floating-point addition: 9.999ten x 101 + l.610ten x 10- 1. Assume that we can 
store only four decimal digits of the significand and two decimal digits of the 
exponent. 
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Step l. To be able to add these numbers properly, we must align the decimal 
point of the number that has the smaller exponent. Hence, we need a 
form of the smaller number, l.610ten x 10-1, that matches the larger ex
ponent. We obtain this by observing that there are multiple represen
tations of an unnormalized floating-point number in scientific 
notation: 

l.610ten X 10-l = 0.1610ten X 10° = 0.01610ten X 101 

The number on the right is the version we desire, since its exponent 
matches the exponent of the larger number, 9.999ten x 101. Thus the 
first step shifts the significand of the smaller number to the right until 
its corrected exponent matches that of the larger number. But we can 
represent only four decimal digits so, after shifting, the number is 
really: 

0.016ten X 101 

Step 2. Next comes the addition of the significands: 

9.999ten 
+ 0.016ten 

10.015ten 

The sum is 10.015ten x 101. 

Step 3. This sum is not in normalized scientific notation, so we need to correct 
it. Again, there are multiple representations of this number; we pick 
the normalized form: 

10.015ten X 101 = l.0015ten X 102 

Thus, after the addition we may have to shift the sum to put it into 
normalized form , adjusting the exponent appropriately. This example 
shows shifting to the right, but if one number were positive and the 
other were negative, it would be possible for the sum to have many 
leading Os, requiring left shifts. Whenever the exponent is increased 
or decreased, we must check for overflow or underflow-that is, we 
must make sure that the exponent still fits in its field. 

Step 4. Since we assumed that the significand can be only four digits long (ex
cluding the sign), we must round the number. In our grammar school 
algorithm, the rules truncate the number if the digit to the right of the 
desired point is between O and 4 and add 1 to the digit if the number 
to the right is between 5 and 9. The number 

l.0015ten X 102 

is rounded to four digits in the significand to 

l.002ten X 102 
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since the fourth digit to the right of the decimal point was between 5 
and 9. Notice that if we have bad luck on rounding, such as adding 1 
to a string of 9s, the sum may no longer be normalized and we would 
need to perform step 3 again. 

Figure 4.44 shows the algorithm for binary floating-point addition that fol
lows this decimal example. Steps 1 and 2 are similar to the example just 
discussed: adjust the significand of the number with the smaller exponent and 
then add the two significands. Step 3 normalizes the results, forcing a check for 
overflow or underflow. The test for overflow and underflow in step 3 depends 
on the precision of the operands. Recall that the pattern of all zero bits in the 
exponent is reserved and used for the floating-point representation of zero. Al
so, the pattern of all one bits in the exponent is reserved for indicating values 
and situations outside the scope of normal floating-point numbers (see the 
elaboration on page 300). Thus, for single precision, the maximum exponent is 
127 and the minimum exponent is -126. The limits for double precision are 
1023 and -1022. 

For simplicity, we assume truncation in step 4, one of four rounding options 
in IEEE 754 floating point. The accuracy of floating-point calculations depends 
a great deal on the accuracy of rounding, so although it is easy to follow, trun
cation leads away from accuracy. 

Decimal Floating-Point Addition 

Try adding the numbers 0.5ten and -0.4375ten in binary using the algo
rithm in Figure 4.44. 

Let's first look at the binary version of the two numbers in normalized sci
entific notation, assuming that we keep 4 bits of precision: 

0.Sten = 1/2ten = 1/ 21ten 
= 0.ltwo = 0.ltwo X 2° = l.000two x r 1 

-0.4375ten = -7 /16ten = -7 /2\en 
= -0.0llltwo = -0.0llltwox2° =-1.110twoxr2 

Now we follow the algorithm: 

Step 1. The significand of the number with the lesser exponent (-1.1 ltwo 
x r 2

) is shifted right until its exponent matches the larger number: 

-1. ll0two X r 2 = -0.11 ltwo X r 1 

4.8 Floating Point 

Step 2. Add the significands: 

l.000two x r 1 + (-0.llltwo x r 1) = 0.00ltwo x r 1 

Step 3. Normalize the sum, checking for overflow or underflow: 

0.00ltwo X r 1 = 0.0lOtwo X r 2 = 0.lO0two X r 3 

= l .000two X 2-4 
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Since 127 ~ -4 ~ -126, there is no overflow or underflow. (The bi
ased exponent would be -4 + 127, or 123, which is between 1 and 
254, the smallest and largest unreserved biased exponents.) 

Step 4. Round the sum: 

1.000two X 2-4 

The sum already fits exactly in 4 bits, so there is no change to the 
bits due to rounding. 

This sum is then 

1.000two X 2-4 = 0.000lO00two = 0.000ltwo 
1/2\en = 1/16ten = 0.0625ten 

This sum is what we would expect from adding 0.5ten to -0.4375ten· 

Many machines dedicate hardware to run floating-point operations as fast 
as possible. Figure 4.45 sketches the basic organization of hardware for floating

.• point addition. 

Floating-Point Multiplication 

Now that we have explained floating-point addition, let's try floating-point 
multiplication. We start by multiplying decimal numbers in scientific notation 
by hand: 1.ll0ten x 1010 x 9.200ten x 10-5_ Assume that we can store only four 
digits of the significand and two digits of the exponent. 

Step 1. Unlike addition, we calculate the exponent of the product by simply 
adding the exponents of the operands together: 

New exponent= 10 + (-5) = 5 

Let's do this with the biased exponents as well to make sure we 
obtain the same result: 10 + 127 = 137, and -5 + 127 = 122, so 

New exponent= 137 + 122 = 259 

This result is too large for the 8-bit exponent field, so something is 
amiss! The problem is with the bias because we are adding the biases 
as well as the exponents: 

New exponent= (10 + 127) + (-5 + 127) = (5 + 2 x 127) = 259 
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Start 

1. Compare the exponents of the two numbers. 
Shift the smaller number to the right unti l its 
exponent would match the larger exponent 

2. Add the significands 

3 . Normalize the sum, either shifting right and 
incrementing the exponent or shifting left 

and decrementing the exponent 

Yes 

( Exception ) ,........ ______ __. _______ --, 
4 . Round the significand to the appropriate 

number of bits 

No 

Done 

FIGURE 4.44 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3. 
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Sign Exponent Significand Sign Exponent 

0 1 0 1 0 1 

Shift right 

Shift left or right 

Rounding hardware 

Sign Exponent Significand 

Significand 

Compare 
exponents 

Shift smal ler 
number right 

Add 

Normalize 

Round 

FIGURE 4.45 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 4.44 
correspond to each block, from top to bottom. First the exponent of one operand is subtracted from the other using the 
sma ll ALU to determine which is larger and by how much. This difference controls the three multiplexors; from left to 
right, they select the larger exponent, the significand of the smaller number, and the significand of the larger number. 
The smaller significand is shifted right and then the significands are added together using the big ALU. The normaliza
tion step then shifts the sum left or right and increments or decrements the exponent. Rounding then creates the final 
result, which may require normalizing aga in to produce the fina l resul t. 

Accordingly, to get the correct biased sum when we add biased numbers, we 
must subtract the bias from the sum: 

New exponent = 137 + 122 - 127 = 259 - 127 = 132 = (5 + 127) 

and 5 is indeed the exponent we calculated initia lly. 

INTEL - 1012



286 Chapter 4 Arithmetic for Computers 

Step 2. Next comes the multiplication of the significands: 
l.ll0ten 

X 9.200ten 
0000 

0000 
2220 

9990 

10212000ten 

There are three digits to the right of the decimal for each operand, so 
the decimal point is placed six digits from the right in the product sig
nificand: 

10.212000ten 

Assuming that we can keep only three digits to the right of the deci
mal point, the product is 10.212 x 105. 

Step 3. This product is unnormalized, so we need to correct it. Again, there 
are multiple representations of this number, so we must pick the nor
malized form: 

10.212ten X 105 = l.0212ten X 106 

Thus, after the multiplication, the product can be shifted right one 
digit to put it in normalized form, adding 1 to the exponent. At this 
point, we can check for overflow and underflow. Underflow may 
occur if both operands are small-that is, if both have large negative 
exponents. 

Step 4. We assumed that the significand is only four digits long (excluding the 
sign), so we must round the number. The number 

l.0212ten X 106 

is rounded to four digits in the significand to 

l.021ten X 106 

Step 5. The sign of the product depends on the signs of the original operands. 
If they are both the same, the sign is positive; otherwise it's negative. 
Hence the product is 

+l.021ten X 106 

The sign of the sum in the addition algorithm was determined by 
addition of the significands, but in multiplication the sign of the prod
uct is determined by the signs of the operands. 
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Once ~gain: as. Fi?ure 4.46 shows, multiplication of binary floating-point 
numbers 1s quite s1m1lar to the steps we have just completed. We start with cal
~ulatmg the new exponent of the product by adding the biased exponents, be
mg SL~re to subtract one bias to get the proper result. Next is multiplication of 
s1g111~1cands, followed by an optional normalization step. The size of the expo
nent is_ checked for overflow or underflow, and then the product is rounded. If 
roundmg leads to further normalization, we once again check for exponent 
size. Fmally, set the sign bit to 1 if the signs of the operands were different (neg
ative product) or to 0 if they were the same (positive product). 

Decimal Floating-Point Multiplication 

Let's try multiplying the numbers 0.Sten and -0.4375ten using the steps in 
Figure 4.46. 

In binary, the task is multiplying l.000two x r 1 by-1.ll0two x r 2. 

Step 1. Adding the exponents without bias: 

-l+(-2)=-3 

or, using the biased representation: 

(-1 + 127) + (-2 + 127) -127 = (-1 - 2)+(127 + 127 -127) 
= -3 + 127 = 124 

Step 2. Multiplying the significands: 
l.00Otwo 

X l.ll0two 
0000 

1000 
1000 

1000 

lll0000two 

The product is l.ll0000two x r 3, but we need to keep it to 4 bits, so 
it is l.ll0two x r 3. 

Step 3. Now we check the product to make sure it is normalized, and then 
check the exponent for overflow or underflow. The product is al
ready normalized and, since 127 2 -3 2-126, there is no overflow 
or underflow. (Using the biased representation, 254 2 124 2 1, so 
the exponent fits.) 
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Step 4. Rounding the product makes no change: 

1.110two X T 3 

Step 5. Since the signs of the original operands differ, make the sign of the 
product negative. Hence the product is 

-1.1 lOtwo x r 3 

Converting to decimal to check our results: 

-1 .110two x T 3 = -0.001110two = -0.00llltwo 

= -7 /25ten = -7 /32ten = -0.21875ten 

The product of O.Sten and -0.4375ten is indeed -0.21875ten· 

Floating-Point Instructions in MIPS 
MIPS supports the IEEE 754 single-precision and double-precision formats 
with these instructions: 

• Floating-point addition , single (add . s ) and addition, double (add . d) 

• Floating-point subtraction, single (sub. s ) and subtraction, double (sub. d) 

• Floating-point multiplication, single (m u l . s) and multiplication, double 
(mu l . d) 

• Floating-point division , single (di v . s) and division, double (div. d) 

• Floating-point comparison, single (c. x . s ) and comparison, double (c . x . d), 
where x may be equal (eq ), not equal (neq ), less than (l t ), less than or equal 
(le), greater than (gt ), or greater than or equal (ge) 

• Floating-point branch, true (be 1 t ) and branch, false (be 1 f) 

Floating-point comparison sets a bit to true or false, depending on the com
parison condition, and a floating-point branch then decides whether or not to 
branch, depending on the condition. 

The MIPS designers decided to add separate floating-point registers
called $f0, $ fl, $f2, ... -used either for single precision or double precision. 
Hence they included separate loads and stores for floating-point registers: l we 1 
and swcl. The base registers for floating-point data transfers remain integer 
registers. The MIPS code to load two single precision numbers from memory, 
add them, and then store the sum might look like this: 

lwcl $f4 ,x ($sp) # Load 32 - bit F.P. number into F4 
lwcl $f6,y($spl # Load 32 - bit F.P. number into F6 
add . s $f2,$f4,$f6 # F2 = F4 + F6 single precision 
swcl $f2,z($sp) # Store 32 -bit F.P . number from F2 

A double precision register is really an even-odd pair of single precision regis
ters, using the even register number as its name. 

4.8 Floating Point 

Start 

1. Add the biased exponents of the two 
numbers, subtracting the bias from the sum 

to get the new biased exponent 

2. Mult iply the significands 

3 . Normalize the product if necessary, shifting 
it right and incrementing the exponent 

Yes 

4 . Round the significand to the appropriate 
number of bits 

No 

5. Set the sign of the product to positive if the 
signs of the original operands are the same; 

if they differ make the sign negative 

Done 

289 

Exception 

FIGURE 4.46 Floating-point multlpllcatlon. The normal path is to execute steps 3 and 4 once, 
but if roundmg causes the sum to be unnorma lized, we must repeat step 3. 

-
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Hardware 

Software 

Interface 

One issue that computer designers face in supporting 
floating-point arithmetic is whether to use the same regis
ters used by the integer instructions or to add a special set 
for floating point. Because programs normally perform inte
ger operations and floating-point operations on different 
data, separating the registers will only slightly increase the 
number of instructions needed to execute a program. The 

major impact is to create a separate set of data transfer instructions to move 
data between floating-point registers and memory. 

The benefits of separate floating-point registers are having twice as many 
registers without using up more bits in the instruction for~at, ha_ving t~ice 
the register bandwidth by having separate integer and floating-pomt register 
sets, and being able to customize registers to floating point; fo~ example, some 
machines convert all sized operands in registers into a single internal format. 

Figure 4.47 summarizes the floating-point portion of th~ MIPS_ architecture 
revealed in Chapter 4, with the additions to support floating pomt show~ m 
color. Similar to Figure 3.18 on page 153 in Chapter 3, we show the encoding 
of these instructions in Figure 4.48. 
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MIPS floating-point operands 

am",a Example Comments 

32 floating- H O, $fl, $f 2 ' .. . $f 31 MIPS floating-point registers are used in pairs for double precision numbers. 
point 
registers 
230 Memory[O]. Accessed only by data transfer instructions. MIPS uses byte addresses , so 
memory Memory(4]. . .. , sequential words differ by 4. Memory holds data structures, such as arrays , and 
words Memory[ 4294967292] spilled registers, such as those saved on procedure calls . 

MIPS floating-point assembly language 

1$\&@I 
I 

Instruction Example Meaning Comments 

FP add single add.s $f2 , $f4. $f6 $f2 = $f4 + $f6 FP add (single precision) 

FP subtract single sub . s H Z , $f4 , H6 HZ=H4 - H6 FP sub (s ingle precision) 

FP multiply single mul . s $f2 , $f4 , $f6 HZ = $f4 x $f6 FP. multiply (single precision) 

FP divide single div . s HZ, $f4, H6 HZ = $f4 / H6 FP divide (single precision) 
Arithmetic 

add . d HZ. $f4, H6 HZ = $f4 + H6 FP add (double precision) FP add double 

FP subtract double sub . d $f2, $f4, $f6 $f2 = $f4 - $f6 FP sub (double precision) 

FP multiply double mul . d $fZ,$f4 , $f6 $f2 = $f4 X $f6 FP multiply (double prec ision) 

FP divide double di v . d H Z , H4 , H6 H2 = H4 / H 6 FP divide (double precis ion) 

Data load word copr. 1 l wel $fl, 100( $s2 l $ fl = Memory($ s 2 + 100] 32-bit data to FP register 

transfer store word copr. 1 swe l $fl,l 00( $s2 ) Memory[ $s2 + 100] = $fl 32-bit data to memory 

branch on FP true be lt 25 if (cond == 1) go to PC + 4 + 100 PC-relative branch if FP cond. 

branch on FP fa lse belf 25 if (cond == 0) go to PC + 4 + 100 PC-relative branch if not cond. 
Condi-
tional FP compare single e . lt . 5 H2 , $f4 if ($f2 < $f4) FP compare less than 

branch ( eq ,ne ,It.le ,gt,ge)._ cond = 1; else cond = O single precision 

FP compare double e . lt . d $f2 , $f4 if ($f2 < $f4 ) FP compare less than 
(eq,ne,lt,le,gt,ge) cond = 1; else cond = O double precision 

MIPS floating-point machine language 

· 11 · ' am ;a:; 11 "t.11 Example Comments 

add . s R 17 16 6 4 2 0 ad d . s $f 2 , $f4 , $fb 

sub . s R 17 16 6 4 2 1 sub . s $f 2 , $f4 , $fb 

mu l . s R 17 16 6 4 2 2 mul . _ $f2 , $f4 , $ft, 

di v . s R 17 16 6 4 2 3 di V . > $f2 , $"4 , l,rr 
-

add . d R 17 17 6 4 2 0 add . d $f2 . H4 . $tu 

s ub . d R 17 17 6 4 2 1 sub . d $f 2 , $f4 , $f l 
-

mu l . d R 17 17 6 4 2 2 mul . d $f2 , it<i , $•,, 

div . d R 17 17 6 4 2 3 d iv . d $fZ . $f4 , $tb 
-

l wel I 49 20 2 100 l w 1 HZ , lOC1 isl 
-- -

swc l I 57 20 2 100 s1-1el $ t" , 1 oc $ -1 
- -

belt I 17 8 1 25 bell 25 

belf I 17 8 0 25 belf 25 
-

C. lt . S R 17 16 4 2 0 60 e . lt . ~ H2 . $t4 
-

C. lt. d R 17 17 4 2 0 60 e . lt . d $f2 . $f4 

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits 
-~ -

FIGURE 4.47 MIPS floating-point architecture revealed thus far. See Appendix A, section A.10, on page A-49, for more 
detail. 
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op(31:26): 

~ 
0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111) 

9 

0(000) Rfmt Blt z /gez j j al beq bne blez bg tz 

1(001) ad di add iu s lt i slt i u and i or i xor i l ui 

2(010) TLB Fl Pt - --
3(011) 

4(100) lb l h lwl lw lbu l hu lwr 
5(101) sb s h swl SW swr 
6(110) l we0 l we l 
7(111) swe0 s we l 

op(31:26) = 010001 (FIPt), (rt(16:16) = 0 => c = f, rt(16:16) = 1 => c = t), rs(25:21): 
' 

~ 
0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111) 

4 

0(00) mf e l ef e l mt e l e t e l 

1(01) be l. c 

2(10) f = single f = double 

3(11) 

' op(31:26) = 010001 (FIPt), (fabove: 10000 => f= s, 10001 => f= d), funct(S:0): 

X 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111) 

3 

0(000) add .f sub .f mul .f div .f abs .f mov .f neg .f 
1(001) 

2(010) 

3(011) 

4(100) evt . s .f evt . d .f evt. w .f 
5(101) 

6(110) e . f .j e . un .f e . eq .j e . ueq .f e . olt .f e . ult .f e . ole .f e . ule .f 

7(111) e. sf .j e . ng l e .f e . seq .f e . ng l .f e . lt .f e . nge .f e . l e .f e . ngt .f 

FIGURE 4.48 MIPS floating-point Instruction encoding. This notation gives the value of a field by row and by column. 
For example, in the top portion of the figure l w is found in row number 4 (100two for bits 31-29 of the instruction) and col
umn number 3 (011two for bits 28-26 of the instruction), so the corresponding value of the op field (bits 31-26) is 100011two· 
Underscore means the field is used elsewhere. For example, FlPt in row 2 and column 1 (op= 010001twol is defined in the 
bottom part of the figure. Hence s ub . f in row 0 and column 1 of the bottom section means that the funct field (bits 5--0) of 
the instruction) is 00000ltwo and the op field (bits 31-26) is 010001 two· Note that the 5-bit rs field, specified in the middle 
portion of the figure, determines whether the opera tion is single precision (f = s so rs= 10000) or double precision (f = d so 
rs= 10001). Similarly, bit 16 of the instruction determines if the be 1 . e instruction tests for true (bit 16 = 1 => be 1 . t ) or false 
(bit 16 = 0 =>bel. fl. Rfmt and TLB instruction encodings are found in Figure 3.18 on page 153. Instructions in color are 
described in Chapters 3 or 4, with Appendix A covering all instructions. 
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Example 

Compiling a Floating-Point C Program into MIPS Assembly Code 

Let's convert a temperature in Fahrenheit to Celsius: 

Answer 

float f2c (float fahr) 
I 

return ((5 . 0/9 . 0) * (fahr - 32 . 0)) ; 

Assume that the floating-point argument fa hr is passed in $ fl 2 and the 
result sho_uld go in HO. (Unlike integer registers, floating-point register O 
can contam a number.) What is the MIPS assembly code? 

We assume that the compiler places the three floating-point constants in 
memory within easy reach of the global pointer $gp . The first two instruc
tions load the constants 5.0 and 9.0 into floating-point registers: 

f2c : 
lwcl $fl6 , const5($gp) 
l wcl $fl8 . const9 ( $gp) 

If $fl6 = 5 . 0 (5 . 0 in memory) 
If $fl8 = 9 . 0 (9 . 0 in memory) 

They are then divided to get the fraction 5.0/9.0: 

div . s $fl6 , $fl6 , $fl8 If Hl6 = 5 . 0 / 9 . 0 

( Many compilers would divide 5.0 by 9.0 at compile time and save the sin
gle constant 5.0 / 9.0 in memory, thereby avoiding the divide at runtime. ) 
Next we load the constant 32.0 and then subtract it from fa hr ($ fl 2): 

lwcl $fl8 , const32($gp)/f $fl8 = 32 . 0 
sub . s $fl8 , $fl2 , $fl8 If $fl8 = fahr - 32 . 0 

Finally, we multiply the two intermediate results, placing the product in 
HO as the return result, and then return: 

mul . s HO , $fl6 , $fl8 If HO= (5/9)*(fahr - 32 . 0) 
j r $ ra If return 

Now let's perform floating-point operations on matrices, code commonly 
found in scientific programs. 
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Compiling Floating-Point C Procedure with Two-Dimensional 
Matrices into MIPS 

Most floating-point calculations are performed in double precision. Let's 
perform matrix multiply of X = Y * Z. Let's assume X, Y, and z are all 
square matrices with 32 elements in each dimension. 

void mm (double x[J[J . double y[J[J . double z[J[]l 
{ 

int i, j , k; 

for ( i = O; i ! = 32 ; i = i + l l 
for ( j = 0 ; j ! = 32 ; j = j + 1 ) 

fo r ( k = O; k! = 32 ; k = k + 1 ) 
x[i][j] = x[i][j] + y[i][k] * z [k][j]; 

The array starting addresses are parameters, so they are in $a 0, $a l, and 
$ a 2. Assume that the integer variables are in$ s 0, $ s 1, and$ s 2 respective
ly. What is the MIPS assembly code for the body of the procedure? 

Noh~ that X [ i J [ j J is used in the innermost loop above. Since the loop in
dex _is k, t~e m?ex doe~ not _affect x [ i J [ j J, so we can avoid loading and 
stormg X [ 7 J [ J J each itera tion. Instead, the compiler loads x [ i J [ j J into 
a r_egister outside t~e ~oop, accumulates the sum of the products of 
Y [: J [ ~ J and z [ k J [ J J m that same register, and then stores the sum into 
x [ 7 J [ J] upon termination of the innermost loop. 

W~ keep _the code simpler by using the assembly language pseudoin
stru~hons l 1 (which loads a constant into a register), and l . d and s . d 
(which the assembler turns into a pair of da ta transfer instructions, l we 1 
or s wcl , to a pair of floating-point registers). 

The ~ody of the procedure starts with saving the loop termina tion val
ue of 32 ma temporary register and then initializing the three for loop vari
ables: 

mm: ... 
l i H l, 32 II H l = 32 (row si ze/loop end) 
l i $s0 , 0 II O· in iti a li ze 1s t fo r l oo p 

Ll : l i $s 1. 0 II j O; r estart 2nd fo r l oop 
L2 : l i $s2 . 0 II k O; res ta r t 3rd for loop 
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To calculate the address of x [ i J [ j], we need to know how a 32 x 32, 
two-dimensional array is stored in memory. As you might expect, its lay
out is the same as if there were 32 single-dimension arrays, each with 32 
elements. So the first step is to skip over the i "single-dimensional arrays," 
or rows, to get the one we want. Thus we multiply the index in the first di
mension by the size of the row, 32. Since 32 is a power of 2, we can use a 
shift instead (see page 262): 

sll H2 . $s0 , 5 II H2 = i * 25 (size of row of x) 

Now we add the second index to select the j th element of the d esired 
row: 

addu $t2, H2 , $sl II H2 = i * size(row) + j 

To turn this sum into a byte index, we multiply it by the size of a matrix 
element in bytes. Since each element is 8 bytes for double precision, we can 
instead shift left by 3: 

sll H2 , H2 . 3 II $t2 = byte of fset of [i][j] 

Next we add this sum to the base address of x , giving the address of 
x [ i ] [ j ] , and then load the double precision number x [ i J [ j J into $ f 4: 

addu $t2 , $a0 , $t2 II $t2 = byte address of x[iJ[jJ 
l . d $f4 , O(H2) II $f4 = 8 bytes of x[i][j] 

The following five instructions are virtually identical to the last five: 
calculate the address and then load the double precision number z [ k] [ j ] . 

L3 : s l l HO , $s2 . 5 II HO= k * 25 (s i ze of row of z) 
addu HO , HO . $sl II HO k * size(row) + j 
sll HO, HO , 3 II HO= byte offset of [k][jJ 
addu HO , $a2 , HO II HO = byte ad dr ess of z[ k][j J 
l . d $fl6 , O(HO) II $fl6 = 8 bytes of z[k][jJ 

Similarly, the next five instructions are like the last five: calculate the 
address and then load the double precision number y [ i ] [ k J. 

sll H2, $s0 . 5 II HO= i * 25 (s i ze of row of y) 

addu HO , HO , $s2 II HO i * size(row) + k 
sll $t0 , $t 0 , 3 II $t0 = byte offset of [i][k] 
addu $t0 , $al, $t0 II $t0 = byte address of y[i][k] 
l . d $fl8 , O(HO) II $fl8 = 8 bytes of y [ i ][kJ 

Now that we have loaded all the data, we are finally ready to do some 
floating-point operations! We multiply elements of y and z located in reg
isters $fl8 and $fl 6, and then accumulate the sum in $f4. 

mul . d $fl6 , $f l 8 , $fl6II $fl6 = y[i][k] * z[k][j] 
add . d $f4 , $f4 , $fl6 II f4 = x[ i ][ j ] + y[i][k] * z[k][j] 
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The final block increments the index k and loops back if the index is not 
32. If it is 32, and thus the end of the innermost loop, we need to store the 
sum accumulated in $f 4 into x [ i J [ j J . 

addiu $s2 , $s2 , 1 # $k k + 1 
bne $s2, Hl. L3 # if (k != 32) go to L3 
s . d $f4 , 0($t2) # x[i][j] = $f4 

Similarly, these final four instructions increment the index variable of 
the middle and outermost loops, looping back if the index is not 32 and ex
iting if the index is 32. 

addiu $s1 , $s1 , 1 
bne $s1 , $tl , L2 
addi u $s0 , $s0 , 1 
bne $s0 , H l, Ll 

# $j = j + 
# if (j != 
# 
# 

$i = i + 
i f ( i != 

1 
32) 
1 
32) 

go to L2 

go to Ll 

Elaboration: The array layout discussed in the example, called row major order, is 
used by C and many other programming languages . Fortran instead uses column major 
order, whereby the array is stored column by column . 

Only 16 of the 32 MIPS floating-point registers can be used for single precision 
operations: $f0 , $f 2, $f4 , . .. , $f30 . Double precision is computed using 
pairs of these registers. The odd-numbered floating-point registers are used only to load 
and store the right half of 64-bit floating-point numbers. A later version of the MIPS 
instruction set, MIPS 11 , added l . d and s . d to the hardware instruction set. An even 
later version, MIPS IV, added indexed addressing for floating-point data transfers, 
removing the need for the fourth instruction of the five-instruction load sequences 
above. 

Another reason for separate integers and floating-point registers is that microproces
sors in the 198Os didn't have enough transistors to put the floating-point unit on the 
same chip as the integer unit. Hence the floating-point unit, including the floating-point 
registers , were optionally available as a second chip. Such optional accelerator chips 
are called coprocessors, and explain the acronym for floating-point loads in MIPS: l we 1 
means load word to coprocessor 1, the floating-point unit. (Coprocessor O deals with 
virtual memory, described in Chapter 7 .) Since the early 199Os, microprocessors have 
integrated floating point (and just about everything else) on chip, and hence the term 
"coprocessor" joins "accumu lator" and "core memory" as quaint terms that date the 
speaker. 

Elaboration: Although there are many ways to throw hardware at floating-point multi
ply to make it go fast, floating-point division is considerably more challenging to make 
fast and accurate. Slow divides in early computers led to removal of divides from many 
algorithms, but parallel computers have inspired rediscovery of divide-intensive algo
rithms that work better on these machines . Hence we may need faster divides. 

One technique to leverage a fast multiplier is Newton 's iteration, where division is 
recast as finding the zero of a function to find the reciprocal 1/x, which is then multi
plied by the other operand. Iteration techniques cannot be rounded properly without cal
culating many extra bits. A Tl chip solves this problem by calculating an extra-precise 
reciprocal , and IBM relies on fused multiply-add to so lve it (see section 4.9). 
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The SRT division technique instead tries to guess several quotient bits per step, 
using a table lookup based on the upper bits of the dividend and remainder, relying on 
subsequent steps to correct wrong guesses . A Cyrix chip uses this technique to gener
ate 16 bits per step! 

Accurate Arithmetic 

Unlike integers, which can represent exactly every number between the 
smallest and largest number, floating-point numbers are normally approxi
mations for a number they can't really represent. The reason is that an infinite 
variety of real numbers exists between, say, 0 and 1, but no more than 253 can 
be represented exactly in double precision floating point. The best we can do 
is get the floating-point representation close to the actual number. Thus, IEEE 
754 offers several modes of rounding to let the programmer pick the desired 
approximation. 

Rounding sounds simple enough, but to round accurately requires the hard
ware to include extra bits in the calculation. In the preceding examples, we 
were vague on the number of bits that an intermediate representation can oc
cupy, but clearly if every intermediate result had to be truncated to the exact 
number of digits, there would be no opportunity to round. IEEE 754, therefore, 
always keeps 2 extra bits on the right during intermediate calculations, called 
guard and round, respectively. Let's do a decimal example to illustrate the value 
of these extra digits. 

·~,....-------------------
Example 

Answer 

Rounding with Guard Digits 

Add 2.56ten x 10° to 2.34ten x 102
, assuming that we have three significant 

decimal digits. Round to the nearest decimal number with three signifi
cant decimal digits, first with guard and round digits, and then without 
them. 

First we must shift the smaller number to the right to align the exponents, 
so 2.56ten x 10° becomes 0.0256ten x 102. Since we have guard and round 
digits, we are able to represent the two least significant digits when we 
align exponents. The guard digit holds 5 and the round digit holds 6. The 
sum is 

+ 
2.3400ten 
0.0256ten 

2.3656ten 
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Thus the sum is 2.3656ten x 102. Since we have two digits to round, we 
want values Oto 49 to round down and 51 to 99 to round up, with 50 being 
the tiebreaker. Rounding the sum up with three significant digits yields 
2.37ten X 102

. 

Doing this without guard and round digits drops two digits from the 
calculation. The new sum is then 

2.34ten 
+ 0.02ten 

2.36ten 

The answer is 2.36ten x 102, off by 1 in the last digit from the sum obtained 
above. 

Since the worst case for rounding would be when the actual number is half
way between two floating-point representations, accuracy in floating point is 
normally measured in terms of the number of bits in error in the least signifi
cant bits of the significand; the measure is called the number of units in the last 
place, or ulp. If a number was off by 2 in the least significant bits, it would be 
called off by 2 ulps. Provided there is no overflow, underflow, or invalid oper
ation exceptions, IEEE 754 guarantees that the computer uses the number that 
is within one-half ulp. 

Elaboration: Although the example above really needed just one extra bit, multiply 
can need two . A binary product may have one leading 0 bit, hence the normalizing step 
must shift the product 1 bit left. This shifts the guard digit into the least significant bit 
of the product, leaving the round bit to help accurately round the product. 

The goal of the extra rounding bits is to allow the machine to get the same results 
as if the intermediate results were calculated to infinite precision and then rounded. 
Thus the standard has a third bit in addition to guard and round; it is set whenever 
there are nonzero bits to the right of the round bit. This sticky bit allows the computer to 
see the difference between 0.50 . . . Ooten and 0.50 . . . Olten when rounding. The 
sticky bit may be set , for example, during addition, when the smaller number is shifted 
to the right. 

Summary 

The Big Picture below reinforces the stored-program concept from Chapter 3; 
the meaning of the information cannot be determined just by looking at the 
bits, for the same bits can represent a variety of objects. This section shows 
that computer arithmetic is finite and thus can disagree with natural arith
metic. For example, the IEEE 754 standard floating-point representation 

(-1 )S x (1 +Significand) x 2<Exponent - bias) 
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is almost always an approximation of the real number. Computer systems 
must take care to minimize this gap between computer arithmetic and arith
metic in the real world, and programmers at times need to be aware of the 
implications of this approximation. 

- Bit patterns have no inherent meaning. They may 
represent signed integers, unsigned integers, floating
point numbers, instructions, and so on. What is repre
sented depends on the instruction that operates on 
the bits in the word. - The major difference between computer numbers 

and numbers in the real world is that computer numbers have limited 
size, hence limited precision; it's possible to calculate a number too big 
or too small to be represented in a word. Programmers must remem
ber these limits and write programs accordingly. 

Hardware 

Software 

Interface 

Ctype 

int 

unsigned int 

char 

bit field 
fl oat 

double 

In the last chapter we presented the storage classes of the 
programming language C (see the Hardware Software 
Interface section on page 140). The following table shows 
some of the C data types together with the MIPS data trans
fer instructions and instructions that operate on those types 
that appear in Chapters 3 and 4. 

URHit\WM . I Operations 

lw, SW , l ui addu , addiu, subu, mult, div , 

and, andi, or, ori . slt, slti 

lw , SW, l ui addu, addiu, subu, multu , divu, 

and, and i , or, ori , s ltu , slti u 

lb, sb, l ui addu, addiu , subu , multu, divu, 

and , andi , or, ori. sltu . slt i u 

lw, SW, l u i and, and i . or . ori . s l l , s rl 

lwcl , swcl add.s , sub.s, mult . s, di V. s, 
c . eq . s , C . lt. S, c. le. s 

l wcl. swcl add.ct, sub . ct , mu lt. d, div . ct , 
c . eq.d, c. lt . d, c. le . d 

INTEL - 1012



300 Chapter 4 Arithmetic for Computers 

Elaboration: The IEEE 754 floating-point standard is filled with little widgets to help 
the programmer try to maintain accuracy. We'll cover a few here, but take a look at the 
references at the end of section 4.12 to learn more . 

There are four rounding modes: always round up (toward +oo), always round down 
(toward - oo), truncate, and round to nearest even . The final mode determines what to 
do if the number is exactly halfway in between. The Internal Revenue Service always 
rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way would 
be to round up this case half the time and round down the other half. IEEE 754 says 
that if the least significant bit retained in a halfway case would be odd, add one; if it's 
even, truncate. This method always creates a O in the least significant bit, giving the 
round ing mode its name. This mode is the most commonly used. 

Other features of IEEE 754 are specia l symbols to represent unusual events. For ex
ample, instead of interrupting on a divide by 0, software can set the result to a bit pattern 
representing + oo or -oo; the largest exponent is reserved for these specia l symbols . 
When the programmer prints the results, the program will print an infinity symbol. (For 
the mathematically trained, the purpose of infinity is to form topological closure of the 
reals.) 

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0 or sub
tracting infinity from infinity. This symbol is NaN, for Not a Number. The purpose of NaNs 
is to al low programmers to postpone some tests and decisions to a later time in the pro
gram when it is convenient. To accommodate comparisons that may include NaNs, the 
standard includes ordered and unordered as options for compares. Hence the full MIPS 
instruction set has many flavors of compares to support NaNs. 

Finally, in an attempt to squeeze every last bit of precision from a floating-point op
eration, the standard al lows some numbers to be represented in unnormalized form. 
Rather than having a gap between O and the smallest normalized number, IEEE al lows 
denormalized numbers (also known as denorms or subnormals). They have the same ex
ponent as zero but a nonzero significand. They allow a number to degrade in significance 
until it becomes 0, called gradual underflow. For example, the smallest positive single 
precision normalized number is 

1.0000 0000 0000 0000 0000 OOOtwo x T 126 

but the smallest single precision denormalized number is 

Q.QQQQ QQQQ QQQQ QQQQ QQQQ QQ1two X T 126, Or 1.QtWO X T 149 

For double precision, the denorm gap goes from 1.0 x r 1022 to 1.0 x r 1074. 

The possibility of an occasional unnormalized operand has given headaches to floating
point designers who are trying to build fast floating-point units. Hence many computers 
cause an exception if an operand is denormalized, letting software complete the opera
tion. Although software implementations are perfectly valid , their lower performance 
has lessened the popularity of denorms in portable floating-point software. Also, if pro
grammers do not expect denorms, their programs may be surprised. 

Here are the encodings of IEEE 754 floating-point numbers, with the sign bit deter
mining the sign: 

II 
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Single precision Double precision Object represented 

r 
Exponent 

1 

Signi~can1 Exp~nent 
0 

Signi~ca:__j 
0 

1---:_~54 

nonzero t 0 

anything 1-2046 
~ 

255 0 1 
2047 

----
255 nonzero 2047 

nonzero ± denormalized number ~ 

-----+--anything !-± floating-point number 

0 I ± infinity 

nonzero -r NaN (Not a Number) 
~---

Real Stuff: Floating Point in the 
PowerPC and 80x86 
Both the PowerPC and 80x86 have regular multiply and divide instructions 
that operate entirely on registers, unlike the reliance on Hi and Lo in MIPS. (In 
fact, later versions of the MIPS instruction set have added similar instruc
tions.) 

The main differences are found in floating-point instructions. PowerPC is 
like MIPS except for one novel instruction and twice as many registers: Power
PC offers 32 single precision and 32 double precision floating-point registers. 
The 80x86 floating-point architecture, on the other hand, is completely differ
ent from all other computers in the world. 

••, The Multiply-Add Instruction of the PowerPC 

The matrix multiply on page 294 relied on a multiply operation and an add 
operation, w hich is typical of many matrix and vector operations. Hence the 
PowerPC has a "fused" multiply-add instruction: a single instruction reads 
three operands, multiplies two operands and adds the third to the product, 
and writes the sum in the result operand. Hence the two MIPS floating-point 
instructions in the matrix multiply example would be replaced by one in 
PowerPC. This instruction can increase peak floating-point performance. 

Fused multiply-add also performs the two operations and t/ie11 rounds, un
like separate multiply and add instructions, which would round after each op
eration. The instructions also calculate extra bits for intermediate results to 
improve accuracy. Besides being potentially faster, the extra accuracy of fused 
multiply-add can also be helpful for calculating divide and square root, and in 
software libraries that calculate at higher precision than 64 bits. In fact, Power
PC hardware uses fused nrnltiply-add hardware to calculate divide, and accu
rate division was the motivation for skipping the round between the two 
operations. 
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The 80x86 Floating-Point Architecture 

The Intel 8087 floating-point coprocessor was announced in 1980. This archi
tecture extended the 8086 with about 60 floating-point instructions. 

Intel provided a stack architecture with its floating-point instructions: loads 
push numbers onto the stack, operations find operands in the two top ele
ments of the stacks, and stores can pop elements off the stack. Intel supple
mented this stack architecture with instructions and addressing modes that 
allow the architecture to have some of the benefits of a register-memory model. 
In addition to finding operands in the top two elements of the stack, one oper
and can be in memory or in one of the seven registers on-chip below the top of 
the stack. Thus a complete stack instruction set is supplemented by a limited 
set of register-memory instructions. 

This hybrid is still a restricted register-memory model, however, in that 
loads always move data to the top of the stack while incrementing the top-of
stack pointer and stores can only move the top of stack to memory. Intel uses 
the notation ST to indicate the top of stack, and ST ( i ) to represent the ith reg
ister below the top of stack. 

Another novel feature of this architecture is that the operands are wider in 
the register stack than they are stored in memory, and all operations are per
formed at this wide internal precision . Unlike the maximum of 64 bits on the 
MIPS and Power PC, the 80x86 floating-point operands on the stack are 80 bits 
wide. Numbers are automatically converted to the internal 80-bit format on a 
load and converted back to the appropriate size on a store. This double extended 
precision is not supported by programming languages, although it has been 
useful to programmers of mathematical software. 

Memory data can be 32-bit (single precision) or 64-bit (double precision) 
floating-point numbers. The register-memory version of these instructions will 
then convert the memory operand to this Intel 80-bit format before performing 
the operation. The data transfer instructions also will automatically convert 16-
and 32-bit integers to floating point, and vice versa, for integer loads and 
stores. 

The 80x86 floating-point operations can be divided into four major classes: 

1. Data movement instructions, including load, load constant, and store 

2. Arithmetic instructions, including add, subtract, multiply, divide, 
square root, and absolute value 

3. Comparison, including instructions to send the result to the integer pro
cessor so that it can branch 

4. Transcendental instructions, including sine, cosine, log, and exponen
tiation 

( 
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Figure 4.49 shows some of the 60 floating-point operations. We use the curly 
brackets { } to show optional variations of the basic operations: { I } means 
there is an integer version of the instruction, { P} means this variation will 
pop one operand off the stack after the operation, and ( R} means reverse the 
order of the operands in this operation. 

Not all combinations suggested by the notation are provided. Hence 

F( I }SUB{R} {Pl 

represents these instructions found in the 80x86: 

FSUB , FISUB , FSUBR , FISUBR , FSUBP, FSUBRP 

For the integer subtract instructions, there is no pop (FISUBP) or reverse pop 
(FI SUB RP). 

Note that we get even more combinations when including the operand 
modes for these operations. Figure 4.50 shows the many options for floating
point add, even ignoring the integer and pop versions of the instruction. 

The floating-point instructions are encoded using the ESC opcode of the 
8086 and the postbyte address specifier (see Figure 3.35 on page 185). The 
memory operations reserve 2 bits to decide whether the operand is a 32- or 64-
bit floating point or a 16- or 32-bit integer. Those same 2 bits are used in ver
sions that do not access memory to decide whether the stack should be popped 
after the opera tion and whether the top of stack or a lower register should get 
the result. 

Data transfer 

~ILD mem/ST(i) 

FI I I ST {PI mem/ST(i) 

FLOP! 
~ 

FLDl 

FLDZ 
-

- -- ~~ 

- ----- -

Arithmetic Compare Transcendental 

Fll)ADD{P ) mem/ST(i) F{]}COMIP){Pl FPATAN 
--- t- -- --- ---

FII)SUB{R 

F{I)MUL{P 
__ ) { P) mem/ST(i) j F{IIUCOM{~F2XM_l __ 

) mem/ST( i) FSTSW AX/mem FCOS 

F {II DIV { R 

FSQRT 

FABS 
--

FRNDINT 

)(Pl mem/ST(i) FPTA_N __ 
+------

FPREM 

FSIN 

FY LZ X 

FIGURE 4.49 The floating-point instructions of the 80x86. The first column shows the data 
transfer instructions, which move data to memory or to one of the registers below the top of the 
stack. The last three operations in the first column push constants on the stack: pi, 1.0, and Q_O_ 
The second column contains the arithmetic operations described above. Note that the last three 
operate only on the top of stack. The third column is the compare instru ctions. Since there are no 
special floating-point branch instructions, the result of the compare must be transferred to the 
integer CPU via the FSTSW instruction, either into the AX register or into memory, followed by an 
SAH F instruction to set the condition codes. The floating-point comparison ca n then be tested 
using integer branch instructions. The final column gives the higher- level floating-point opera
tions. 

INTEL - 1012



304 Chapter 4 Arithmetic for Computers 

IIMMtW.I.IRJ,13tl,l,N Comment 
-

FADD Both operands in stack; result replaces top of stack. 

FADD ST( i) One source operand is ith register below the top of stack; result 
replaces the top of stack. 

FADD ST( i), ST One source operand is the top of stack; result replaces ith register 
below the top of stack. 

FADD mem32 One source operand is a 32-bit location in memory; result replaces the 
top of stack. 

FADD mem64 One source operand is a 64-bit location in memory; result replaces the 
top of stack. 

FIGURE 4.50 The variations of operands for floating-point add in the 80x86. 

Floating-point performance of the 80x86 family has traditionally lagged far 
behind other computers. It is hard to tell whether it is simply a lack of attention 
by Intel engineers, a disinterest by customers of PCs, if the fault lies with its ar
chitecture, or most likely some combination. We can say that many new archi
tectures have been announced since 1980, and none have followed in Intel's 
footsteps. 

II Fallacies and Pitfalls 

Thus mathematics may be defined as the subject in which we never know what we 
are talking about, nor whether what we are saying is true. 

Bertrand Russell, Recent Words on the Principles of Mathematics, 1901 

Arithmetic fallacies and pitfalls generally stem from the difference between 
the limited precision of computer arithmetic and the unlimited precision of 
natural arithmetic. 

Fallacy: Floating-point addition is associative; that is, x + (y + z) = (x + y) + z. 

Given the great range of numbers that can be represented in floating point, 
problems occur when adding two large numbers of opposite signs plus a small 
number. For example, suppose x = - I.Sten x 10

38
, y = I.Sten x 10

38
, and z = 1.0, 

and that these are all single precision numbers. Then 

x + (y + z) = - I .Sten x 1038 + (I .Sten X 1038 + 1.0) 

= -I.Sten X 1038 + (I.Sten X 1038) = 0.0 

(x + y) + Z = (- I.Sten X 10
38 + I.Sten X 10

38
) + 1.0 

= (O.Oten) + 1.0 
= 1.0 
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Since floating-point numbers have limited precision and result in approxima
tions of real results, I.Sten x 1038 is so much larger than I.Qt that I.St x 
0

38 . . 38 en en 
I + 1.0 1s still I.Sten x 10 . That is why the sum of x, y, and z is 0.0 or 1.0, 
depending on the order of the floating-point additions, and hence floating
point add is not associative. 

Fallacy: Just as a left shift instruction can replace an integer multiply by a power 
of 2, a right shift is the same as an integer division by a power of 2. 

Recall that a binary number x, where xi means the ith bit, represents the num
ber 

. .. + (x3 x 23) + (x2 x 22) + (xI x 21) + (xO x 2°) 

Shifting the bits of x right by n bits would seem to be the same as dividing by 
211

• And this is true for unsigned integers. The problem is with signed integers. 
For example, suppose we want to divide -Sten by 4ten; the quotient should be 
-1 ten· The two's complement representation of -Sten is 

llll llll llll llll llll llll llll lOll two 

According to this fallacy, shifting right by two should divide by 4ten (22): 

0011 llll llll llll llll llll llll lllO two 

With a O in the sign bit, this result is clearly wrong. The value created by the 
shift right is actually I,073,74I,822ten instead of-Iten· 

A solution would be to have an arithmetic right shift (see page 261) that ex
··· tends the sign bit instead of shifting in Os. A 2-bit arithmetic shift right of -Sten 
· produces 

llll llll llll llll llll llll llll lllO t wo 

The result is -2ten instead of - I ten; close, but no cigar. 
The PowerPC, however, does have a fast shift instruction (shift right alge

braic) that in conjunction with a special add (add with carry) gives the same 
answer as dividing by a power of 2. 

Pitfall: The MIPS instruction add immediate unsigned add i u sign-extends its 16-
bit immediate field. 

Despite its name, addi u is used to add constants to signed integers when we 
don't care about overflow. MIPS has no subtract immediate instruction and 
negative numbers need sign extension, so the MIPS architects decided to sign
extend the immediate field. 

Fallacy: Only theoretical mathematicians care about floating-point accuracy. 

Newspaper headlines of November 1994 prove this statement is a fallacy (see 
Figure 4.SI). The following is the inside story behind the headlines. 

The Pentium uses a standard floating-point divide algorithm that generates 
multiple quotient bits per step, using the most significant bits of divisor and 
dividend to guess the next 2 bits of the quotient. The guess is taken from a look-
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,~~~~::~ '. ~:.~:-= 
Flawed Chip 
Bruises Intel 
inv<,,•H.or-:. react :>tock plunges 

(A$. ON.AL tECMNOLOQY l \ 
.. ••-'-.-·.· .' ,,..,;.. .,..,. -.,._ '}• --

FIGURE 4.51 A sampling of newspaper and magazine articles from November 1994, 
including the New York Times, San Jose Mercury News, San Francisco Chronicle, and 
lnfoworld. The Pentium floating-point divide bug even made the "Top 10 List" of the David 
Letterman Late Show on television. Intel eventually took a $300 million write-off to replace the 
buggy chips. 

up table containing-2, -1, 0, +1, or +2. The guess is multiplied by the divisor 
and subtracted from the remainder to generate a new remainder. Like nonre
storing division (see Exercise 4.54), if a previous guess gets too large a remain
der, the partial remainder is adjusted in a subsequent pass. 

Evidently there were five elements of the table from the 80486 that Intel 
thought could never be accessed, and they optimized the PLA to return O in
stead of 2 in these situations on the Pentium. Intel was wrong: while the first 
11 bits were always correct, errors would show up occasionally in bits 12 to 52, 
or the 4th to 15th decimal digits. 

The following is a time line of the Pentium bug morality play: 

• July 1994: Intel discovers the bug in the Pentium. The actual cost to fix 
the bug was several hundred thousand dollars. Following normal bug 
fix procedures, it will take months to make the change, reverify, and put 
the corrected chip into production. Intel planned to put good chips into 
production in January 1995, estimating that 3 to 5 million Pentiums 
would be produced with the bug. 

EN 
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• September 1994: A math professor at Lynchburg College in Virginia, 
Thomas Nicely, discovers the bug. After calling Intel technical support 
and getting no official reaction, he posts his discovery on the Internet. It 
quickly gained a following, and some pointed out that even small errors 
become big when multiplying by big numbers: the fraction of people 
with a rare disease times the population of Europe, for example, might 
lead to the wrong estimate of the number of sick people. 

• November 7, 1994: Electronic Engineering Times puts the story on its front 
page, which is soon picked up by other newspapers. 

• November 22, 1994: Intel issues a press release, calling it a "glitch." The 
Pentium "can make errors in the ninth digit. ... Even most engineers 
and financial analysts require accuracy only to the fourth or fifth deci
mal point. Spreadsheet and word processor users need not 
worry. . . . There are maybe several dozen people that this would affect. 
So far, we've only heard from one . ... [Only] theoretical mathemati
cians (with Pentium machines purchased before the summer) should be 
concerned." What irked many was that customers were told to describe 
their application to Intel, and then Intel would decide whether or not 
their application merited a new Pentium without the divide bug. 

• December 5, 1994: Intel claims the flaw happens once in 27,000 years for 
the typical spreadsheet user. Intel assumes a user does 1000 divides per 
day and multiplies the error rate assuming floating-point numbers are 
random, which is one in 9 billion, and then gets 9 million days, or 27,000 
years. Things begin to calm down, despite Intel neglecting to explain 
why a typical customer would access floating-point numbers randomly. 

• December 12, 1994: IBM Research Division disputes Intel's calculation of 
the rate of errors (you can access this article by visiting 
www.mkp.com/books_catalog/cod/links.htm). IBM claims that common 

, , 0 spreadsheet programs, recalculating for 15 minutes a day, could 
produce Pentium-related errors as often as once every 24 days. IBM 
assumes 5000 divides per second, 15 minutes, yielding 4.2 million di
vides per day, and does not assume random distribution of numbers, in
stead calculating the chances as one in 100 million. As a result, IBM 
immediately stops shipment of all IBM personal computers based on 
the Pentium. Things heat up again for Intel. 

• December 21, 1994: Intel releases the following, signed by Intel's presi
dent, chief executive officer, chief operating officer, and chairman of the 
board: "We at Intel wish to sincerely apologize for our handling of the 
recently publicized Pentium processor flaw. The Intel Inside symbol 
means that your computer has a microprocessor second to none in qual
ity and performance. Thousands of Intel employees work very hard to 
ensure that this is true. But no microprocessor is ever perfect. What Intel 
continues to believe is technically an extremely minor problem has 
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