
S E C O N D EDITION

Computer Organization and Design
THE HARDWARE/SOFTWARE INTERFACE

INTEL - 1012

T R A D E M A R K S

The following trademarks are the property of the following organizations:

TeX is a trademark of America! Mathematical Society.

Apple ll and Macintosh are trademarks of Apple Computers, Inc.

CDC 6600, CDC 7600, CDC STAR-100, CYBER-180, CYBER-
180/990, and CYBER-205 are trademarks of Control Data Corpora­
tion .

The Cosmic Cube is a trademark of California Institute of Technol­
ogy.

CP3100 is a trademark of Conner Peripherals.

Cray, CRAY-1, CRAY)90, CRAY T90, CRAY X-MP/416, and
CRAY Y-MI' are trademarks of Cray Research.

Alpha, AlphaServer, AlphaStation, DEC, DECsystem, DECsystem
3100, DECstation, PDP-8, PDP-11, Unibus, VAX, VAX 8700, and
VAXl 1 / 780 are trademarks of Digital Equipment Corporation.

MP2361 A, Super Eagle, VPlOO, VP200, and VPP300 are trademarks
of Fujitsu Corporation.

Gnu C Compiler is a trademark of Free Software Foundation.

Goodyear MP!' is a trademark of Goodyear Tire and Rubber Co.,
Inc.

Apollo ON 300, Apollo ON 10000, Convex, HP, HP Precision
Architectu re, HPl'A, HP850, HP 3000, HP 300/70, PA-RISC, and
Precision are registered trademarks of Hew let-Packard Company.

432, 960 CA, 4004, 8008, 8080, 8086, 8087, 8088, 80186, 80286, 80386,
80486, Delta , iAPX 432, i860, Intel, lntel486, Intel Hypercube, iP­
SC/2, MMX, Multibus, Multibus II, Paragon, and Pentium are
trademarks of Intel Corporation. Intel Inside is a registered trade­
mark of Intel Corporation.

360, 360/30, 360/40, 360/50, 360/65, 360/85, 360/91, 370, 370/158,
370/165, 370/168, 370-XA, ESA /370, 701,704,709,801, 3033, 3080,
3080 series, 3080 VF, 3081, 3090, 3090/100, 3090/200, 3090/400,
3090/ 600, 3090/600S, 3090 VF, 3330, 3380, 3380D, 3380 Disk Model
AK4, 3380), 3390, 3880-23, 3990, 7090, 7094, IBM, IBM PC, IBM PC­
AT, IBM SYS, ISAM, MYS, l'L.8, Powerl'C, l'OWERstation, RT-PC,
RAMAC, RS / 6000, Sage, Stretch, System/360, Vector Faility, and
VM are trademarks of Internationa l Business Machines Corpora­
tion. l'OWERserver, RISC System /6000, and SP2 are registered
trademarks of International Business Machines Corporation.

!CL OAP is a trad emark of Internationa l Computers Limited.

lnmos and Transputer arc trademarks of lnmos.

FutureBus is a trademark of the Institute of Electrical and Electron­
ic Engineers.

KSR-1 is a trademark of Kendall Square Resea rch.

MASl'AR MP-1 and MASPAR MP-2 are trademarks of MasPar
Corpora lion.

MIPS, R2000, R3000, and RlOOOO are registered trademarks of
MIPS Technology, Inc.

Windows is a trademark of Microsoft Corporation.

Nu Bus is a trademark of Massachusetts Institute of Technology.

Delta Series 8608, System V /88 R32Vl, VME bus, 6809, 68000,
68010, 68020, 68030, 68881, 68882, 88000, 88000 1.8.4m 14, 88100,
and 88200 are trademarks of Motorola Corporation.

Ncube and nCube / ten are trademarks of cube Corporation.

NEC is a registered trademark of NEC Corporation.

Network Computer is a trademark of Oracle Corporation.

Parsytec CC is a trademark of Parsytec, Inc.

lmprimis, JPl-2, Sabre, Sabre 97209, Seagate, and Wren IV are
trademarks of Seagate Technology, Inc.

NUMA-Q, Sequent, and Symmetry are trademarks of Sequent
Computers.

Power Cha llenge, Silicon Graphics, Silicon Graphics 43 / 240,
Silicon Graphics 4D/60, Silicon Graphics 4D/240, and Silicon
Graphics 4D Series are trademarks of Silicon Graphics. Origin2000
is a registered trademark of Silicon Graphics.

SPEC is a registered trademark of the Standard Performance Eval­
uation Corporation.

Spice is a trademark of University of California at Berkeley.

Enterprise, Java, Sun, Sun Ultra, Sun Microsystems, and Ultra are
trademarks of Sun Microsystems, Inc. SPARC and UltraSPARC
are registered trademarks of SPARC International, Inc., licensed to
Sun Microsystems, Inc.

Connection Machine, CM-2, and CM-5 are trademarks of Thinking
Ma chines.

Burroughts 6500, 85000, 85500, D-machine, UN IV AC, UNIVAC I,
and UNIVAC 1103 are trademarks of UN ISYS.

Alto, I' ARC, Palo Alto Research Center, and Xerox are trademarks
of Xerox Corporation.

The UNIX trademark is licensed exclusively through X/Open
Company Ltd.

All other product names are trademarks or registered trademarks
of their respective companies. Where trademarks appear in this
book and Morgan Kaufmann Publishers was aware of a trademark
claim, the trademarks have been printed in initia l caps or all caps.

S E C O N D E D T 0 N

Computer Organization and Design
T H E HARDWARE /SOFTWARE

John L. Hennessy

Stanford University

David A. Patterson

University of California, Berkeley

With a contribution by
James R. Larus

University of Wisconsin

M::•
Morgan Kaufmann Publishers, Inc.

San Francisco, California

I N T E R F A C E

INTEL - 1012

Sponsoring Editor Denise Penrose
Production Manager Y,mie Overton
Production Editor Julie Pabst
Editorial Coordinator Jane Elliott
Text and Cover Design Ross Carron Design
Illustration Alexander Teshin Associates, with second edition modifications by Dartmouth

Publishing, Inc.
Chapter Opener Illustrations Canary Studios
Copyeditor Ken DellaPenta
Composition Nancy Logan
Proofreader Jennifer McClain
Indexer Steve Rath
Printer Courier Corporation

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office:
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205

USA

Telephone 415/392-2665
Facsimile 415/982-2665
Email mkp@mkp.com
WWW http://www.mkp.com
Order toll free 800/745-7323

© 1998 by Morgan Kaufmann Publishers, Inc.

All rights reserved
Printed in the United States of America

02 01 10 9 8 7

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means-electronic, mechanical, photocopying, recording, or otherwise-without the prior

written permission of the publisher.

Advice, Praise, and Errors: Any correspondence related to this publication or intended for the authors
should be sent electronically to cod2bugs@mkp.com. Information regarding error sightings is encouraged.
Any error sightings that are accepted for correction in subsequent printings will be rewarded by the
authors with a payment of $1.00 (U.S.) per correction at the time of their implementation in a reprint.

Library of Congress Cataloging-in-Publication Data

Patterson, David A.
Computer organization and design: the hardware/software interface
/ David A. Patterson, John L. Hennessy.-2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 1-55860-428-6 (cloth).-ISBN 1-55860-491-X (paper)
l. Computer organization. 2. Computers-Design and construction.

3. Computer interfaces. I. Hennessy, John L. II. Title
QA76.9.C643H46 1997
004.2'2-dc21 97-16050

~--···-···· •••• --;"·™™-•'l'lailiiii:=i=·•il!Na"··=• =--~•~-'""'---"'IW=:l·::!l'=•m•==--·=·-'AlfXt'lli®

T 0 L I N D A A N D A N D R E A

INTEL - 1012

I speak Spanish to God,
Italian to women,
French to men,
and German to my horse.

Charles V, King of France
1337-1380

Instructions:
Language of
the Machine

r
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Introduction 106

Operations of the Computer Hardware 107

Operands of the Computer Hardware 109

Representing Instructions in the Computer 116

Instructions for Making Decisions 122

Supporting Procedures in Computer Hardware 132

Beyond Numbers 142

Other Styles of MIPS Addressing 145

Starting a Program 156

An Example to Put It All Together 163

Arrays versus Pointers 171

Real Stuff: PowerPC and 80x86 Instructions 175

Fallacies and Pitfalls 185

Concluding Remarks 187

Historical Perspective and Further Reading 189

Key Terms 196

Exercises 196

The Five Classic Components of a Computer

Evaluating
performance

INTEL - 1012

106

•

Chapter 3 Instructions: Language of the Machine

Introduction

To command a computer's hardware, you must speak its language. The
words of a machine's language are called instructions, and its vocabulary 1s
called an instruction set. In this chapter you will see the instruction set of a real
computer, both in the form written by human~ and in tl:e form read by ~he
machine. Starting from a notation that looks hke a restricted programmmg
language, we refine it step-by-step until you see the real language of a real

computer. .
You might think that the languages of machines wo~ld ?e _as diverse_ as

those of humans, but in reality machine languages are quite s1m1lar, more hke
regional dialects than like independent languages. Hence once you learn one,
it is easy to pick up others. This similarity occurs because all com_puter~ ar_e
constructed from hardware technologies based on similar underlymg prmc1-
ples and because there are a few basic operations that all mach_ines must pro­
vide. Moreover, computer designers have a common goal: to fmd a language
that makes it easy to build the hardware and the compiler while maximiz!ng
performance and minimizing cost. This goal is time-honored; the followmg
quote was written before you could buy a computer, and it 1s as true today as
it was in 1947.

It is easy to see by fonnnl-logical methods that there exist certain [instruction sets]
that are in abstract adequate to control nnd cause tire executwn of nn_y sequence of
operations The really decisive considerations from the present point_ of view, in

selecting an [instruction set], are more of n practical nature: s11npl1nty of the
equipment demanded by the {instru ction set], and the clnnty of its ap_pl1cat1on to
the actually important problems together with tire speed of its lrn11dl111g of those
problems.

Burks, Goldstine, and von Neumann, 1947

The "simplicity of the equipment" is as valuable a considerati~n for the
machines of the 2000s as it was for those of the 1950s. The goal of this chapter
is to teach an instruction set that follows this advice, showing both how it is
represented in the hardware and the relationship between high-level progrnm­
ming languages and this more primitive one. We are using the C programmmg
language. (If you are familiar with Pascal, you may wish to refer _to Web Ext~n­
sion III, available at www.mkp.com/cod2e.htm, for a short comparison of C with

Pascal.)
By learning how instructions are represented, you will abo disc~ver the

secret of computing: the stored-program concept. And you will exercise your
"foreign language" skills by writing programs in the language of the machme

3.2 Operations of the Computer Hardware 107

and running them on the simulator that comes with this book. We conclude
with a look at the historical evolution of instruction sets and an overview of
other machine dialects.

The chosen instruction set comes from MIPS, used by NEC, Nintendo,
Silicon Graphics, and Sony, among others, and is typical of instruction sets de­
signed since the ea rly 1980s. We reveal the MIPS instruction set a piece at a
time, giving the rationale along with the machine structures. This step-by-step
tutorial weaves the components with their explanations, making assembly lan­
guage more palatable. To keep the overall picture in mind, each section ends
with a figure summarizing the MIPS instruction set revealed thus far, high­
lighting the portions presented in that section.

• Operations of the Computer Hardware

There must certainly be instructions for performing the f11ndn111entn l nrit/1111ctic
operations.

Burks, Goldstine, c1nd von Neumann, 1947

Every computer must be able to perform c1rithmetic. The MIPS assembly lan­
guage notation

adda , b,c

instructs a computer to add the two variables b and c and to put their sum
in a.

This notation is rigid in that each MIPS arithmetic instruction performs only
one operation and m.ust always have exactly three variables. For example, sup­
pose we want to place the sum of variables b, c, d, and e into variable a. (In this
section we are being deliberately vague about what a "variable" is; in the next
section we'll give a more detailed and realistic picture.)

The following sequence of instructions adds the variables:

add a , b , c # The sum of b and c is pl ac ed in a .
add a, a , d # The sum of b , c , and d is now i n a .
add a , a , e # The sum of b . c , d , and e is no1v in a .

Thus it takes three instructions to take the sum of four variables.
The words to the right of the sharp symbol (ii) on each line above cire t'o111 -

111ents for the human reader, and they are ignored by the computer. Note th,1t
unlike other programming languages, each line of this language can contain at
most one instruction. Another difference is that comments alwc1ys termi nate ,1t
the end of a line.

INTEL - 1012

108

Example

Answer
I

Chapter 3 Instructions: Language of the Machine

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring ev­
ery instruction to have exactly three operands, no more and no less, conforms
to the philosophy of keeping the hardware simple: hardware for a variable
number of operands is more complicated than hardware for a fixed number.
This situation illustrates the first of four underlying principles of hardware
design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of pro­
grams written in higher-level programming languages to programs in this
more primitive notation. Figure 3.1 summarizes the portions of MIPS assembly
language described in this section.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, c, d, and e:

a b + c ;
d = a - e ;

The translation from C to MIPS assembly language instructions is per­
formed by the compiler. Show the MIPS code produced by a C compiler.

A MIPS instruction operates on two source operands and places the result
in one destination operand. Hence the two simple C statements above
compile directly into these two MIPS assembly language instructions:

add a , b, c
subd,a , e

MIPS assembly language

Category i@@ii·i:INifi::HFM:Jifi:ii:iW Comments

Arithmetic add add a • b . c a b + c Always three operands

subtract sub a • b . c a = b - c Always three operands

FIGURE 3.1 MIPS architecture revealed in section 3.2. The real machine operands will be
unveiled in the next section. Highlighted portions in such summaries show MIPS assembly
language structures introduced in this section; for this first figure, all is new.

3.3 Operands of the Computer Hardware 109

Compiling a Complex C Assignment into MIPS

Example A somewhat complex C statement contains the five variables f, g, h, i , and
j :

Answer

f = (g + h) - (i + j);

What would a C compiler produce?

The compiler must break this C statement into several assembly instruc­
tions since only one operation is performed per MIPS instruction. The first
MIPS instruction calculates the sum of g and h. We must place the result
somewhere, so the compiler creates a temporary variable, called tO:

add tO , g,h # temporary variab le tO contains g + h

Although the next C operation is subtract, we need to calculate the sum of
i and j before we can subtract. Thus the second instruction places the sum
i and j in another temporary variable created by the compiler, called tl:

add tl.i , j # temporary variable tl contains i + j

Finally, the subtract instruction subtracts the second sum from the first and
places the result in the variable f, completing the compiled code:

sub f,tO,tl # f get s to - tl . which is (g + h)-(i + j)

These instructions are symbolic representa tions of what the MIPS processor
actually understands. In the next few sections we will evolve this symbolic
representation into the real language of MIPS, with each step making the sym­
bolic representation more concrete.

• Operands of the Computer Hardware

Unlike programs in high-level languages, the opera nd s of ari thmetic instruc­
tions cannot be any variables; they must be from a limited number of specia l
locations called registers. Registers are the bricks of computer construction, for
registers are primitives used in hardware design tha t are also visible to the
programmer when the computer is completed . The size of a regis ter in the
MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are
given the name word in the MIPS architecture.

One major difference between the variables of a programming language
and registers is the limited number of registers, typically 32 on current com­
puters. MIPS has 32 registers. (See section 3.15 for the his tory of the number of

INTEL - 1012

110

Example

Answer

Chapter 3 Instructions: Language of the Machine

registers.) Thus, continuing in our stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restric­
tion that the three operands of MIPS arithmetic instructions must each be cho­
sen from one of the 32 32-bit registers.

The reason for the limit to 32 registers may be found in the second of our
four underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers would increase the clock cycle time simply
because it takes electronic signals longer when they must travel farther.

Guidelines such as "smaller is faster" are not absolutes; 31 registers may not
be faster than 32. Yet the truth behind such observations causes computer de­
signers to take them seriously. In this case, the designer must balance the crav­
ing of programs for more registers with the designer's desire to keep the clock
cycle fast.

Chapters 5 and 6 show the central role that registers play in hardware con­
struction; as we shall see in this chapter, effective use of registers is key to pro­
gram performance.

Although we could simply write instructions using numbers for registers,
from Oto 31, the MIPS convention is to use two character names following a
dollar sign to represent a register. Section 3.6 will explain the reasons behind
these names. For now we will use $s0, $sl , ... for registers that correspond
to variables in C programs and HO, Hl, ... for temporary registers needed
to compile the program into MIPS instructions.

Compiling a C Assignment Using Registers

It is the compiler's job to associate program variables with registers. Take,
for instance, the C assignment statement from our earlier example:

f= (g+h) - (i +j);

The variables f, g, h, i, and j can be assigned to the registers $ s O, $ s 1, $ s 2,
$ s 3, and $ s 4, respectively. What is the compiled MIPS assembly code?

The compiled program is very similar to the prior example, except we re­
place the variables with the registers mentioned above plus two tempo­
rary registers, HO and Hl, which correspond to the temporary variables
above:

add HO,$sl,$s2
add Hl , $s3 , $s4
sub $s0 . HO ,$ tl

register $t0 conta i ns g + h
register $tl contains i + j
fl f gets HO - Hl, which is (g + h)-(i + j)

3.3 Operands of the Computer Hardware 111

Programming languages have simple variables that contain single data ele­
ments as in these examples, but they also have more complex data structures
such as arrays. These complex data structures can contain many more data
elements than there are registers in a machine. How can a computer represent
and access such large structures?

Recall the five components of a computer introduced in Chapter 1 and de­
picted on page 105. The processor can keep only a small amount of data in reg­
isters, but computer memory contains millions of data elements. Hence data
structures, such as arrays, are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions. To
access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 3.2, the address of the
third data element is 2, and the value of Memory[2] is 10.

The data transfer instruction that moves data from memory to a register is
traditionally called load. The format of the load instruction is the name of the
operation followed by the register to be loaded, then a constant and register
used to access memory. The memory address is formed by the sum of the con­
stant portion of the instruction and the contents of the second register. The
actual MIPS name for this instruction is l w, standing for load word.

Processor

3

2

1

0

Address

Memory

100

10

101

1

Data

FIGURE 3 .2 Memory addresses and contents of memory at t hose locations. This is a sim­
plification of the MIPS addressing; Figure 3.3 shows MIPS addressing for sequential words in
memory.

INTEL - 1012

112 Chapter 3 Instructions: Language of the Machine

Compiling an Assignment When an Operand Is in Memory

Example Let's assume that A is an array of 100 words and that the compiler has
associated the variables g and h with the registers $ s 1 and $ s 2 as before.
Let's also assume that the starting address, or base address, of the array is in
$s3. Translate this C assignment statement:

Answer

g = h + A[8] ;

Although there is a single operation in this C assignment statement, one of
the operands is in memory, so we must first transfer A [8] to a register. The
address of this array element is the sum of the base of the array A, found
in register $ s 3, plus the number to select element 8. The data should be
placed in a temporary register for use in the next instruction. Based on
Figure 3.2, the first compiled instruction is

lw $t0,8($s 3) H Tem porary reg $t0 gets A[8]

(On the next page we'll make a slight adjustment to this instruction, but
we'll use this simplified version for now.) The following instruction can
operate on the value in $ tO (which equals A [8]) since it is in a register. The
instruction must add h (contained in $s2) to A[8] (H O) and put the sum
in the register corresponding to g (associated with $ s 1):

add $sl,$s2,$t0 # g = h + A[8J

The constant in a data transfer instruction is called the offset, and the reg­
ister added to form the address is called the base register.

In addition to associating variables with registers, the com­
piler allocates data structures like arrays and structures to
locations in memory. The compiler can then place the
proper starting address into the data transfer instructions.

Hardware

Software

Interface Since 8-bit bytes are useful in many programs, most ar­
chitectures address individual bytes. Therefore the address
of a word matches the address of one of the 4 bytes within

the word. Hence, addresses of sequential words differ by 4. For example,
Figure 3.3 shows the actual MIPS addresses for Figure 3.2; the byte address of
the third word is 8.

Words must always start at addresses that are multiples of 4 in MIPS. This
requirement is called an alignment res triction, and many architectures have it.
(Chapter 5 suggests why alignment leads to faster data transfers.)

Example

3.3 Operands of the Computer Hardware

Processor

12

8

4

0

Address

Memory

113

100

10

101

1

Data

FIGURE 3 .3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast with Figure 3.2. Since MIPS addresse;, each
byte, word addresses are multiples of four (there are four bytes in a word).

Machines with byte addresses are split into those that use the address of
the leftmost or "big end" byte as the word address versus those that use the
rightmost or "little end" byte. MIPS is in the Big Endinn camp. (Appendix A,
page A-48, shows the two options to number bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address
in the code above, the offset to be added to the base register $s3 must be
4 x 8, or 32, so that the load address will select A [8 J and not A [8 / 4 J.

The instruction complementary to load is traditionally called store; it trans­
fers data from a register to memory. The format of a store is similar to that of a
load: the name of the operation, followed by the register to be stored, then off­
set to select the array element, and finally the base register. Once again, the
MIPS address is specified in part by a constant and in part by the contents of a
register. The actual MIPS name is sw, standing for store word.

Compiling Using Load and Store

Assume variable his associated with register $s2 and the base address of
the array A is in $s3. What is the MIPS assembly code for the C assignment
statement below?

A[12] = h + A[8];

INTEL - 1012

114

Example

Answer
I

Chapter 3 Instructions: Language of the Machine

Although there is a single operation in the C statement, now two of the op­
erands are in memory, so we need even more MIPS instructions. The first
two instructions are the same as the prior example, except this time we use
the proper offset for byte addressing in the load word instruction to select
A[8] , and the add instruction places the sum in $t0:

lw $t 0 , 32($s3) # Temporary reg St0 gets A[8J
add St 0 , Ss2 , $t0 # Temporary reg St0 gets h + A[8J

The final instruction stores the sum into A [12 J, using 48 as the offset
and register $ s 3 as the base register.

sw St0,48($s3) # Stores h + A[8J back into A[12J

Arrays are often accessed with variables instead of constants, so that the ar­
ray element being selected can change while the program is running.

Compiling Using a Variab.le Array Index

Here is an example of an array with a variable index:

g=h+A[i] ;

Assume A is an array of 100 elements whose base is in register $ s3 and that
the compiler associates the variables g, h, and i with the registers $ s 1, $ s 2,
and $s4. What is the MIPS assembly code corresponding to this C
segment?

Before we can load A [i J into a temporary register, we need to have its ad­
dress. Before we can add i to the base of array A to form the address, we
must multiply the index i by 4 due to the byte addressing problem. We
will see a multiply instruction in the next chapter; for now we will get the
effect of multiplying i by 4 by first adding i to itself (i + i = 2 i) and then
adding that sum to itself (2i + 2 i = 4 i):

add Stl,$s4,Ss4 # Temp reg Stl = 2 * i
add Stl,$tl,$tl # Temp reg Stl = 4 * i

To get the address of A[i], we need to add $ tl and the base of A in $ s 3:

add Stl , $tl , $s3 # Stl = address of A[i] (4 * i + Ss 3)

3.3 Operands of the Computer Hardware 115

Now we can use that address to load A [i J into a temporary register:

lw $t0 , 0($tl) # Temporary reg HO= A[i]

The final instruction adds A [i J and h, and places the sum in g:

add Ssl , $s2,$t0 # g = h + A[i]

Hardware

Software

Interface

Many programs have more variables than machines have
registers. Consequently, the compiler tries to keep the most
frequently used variables in registers and places the rest in
memory, using loads and stores to move variables between
registers and memory. The process of putting less com-
monly used variables (or those needed later) into memory is
called spilling registers.

The hardware principle relating size and speed suggests that memory must
be slower than registers since registers are smaller. This is indeed the case;
data accesses are faster if data is kept in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic
instruction can read two registers, operate on them, and write the result. A
MIPS data transfer instruction only reads one operand or writes one operand,
without operating on it.

Thus MIPS registers take both less time to access and have higher through­
put than memory-a rare combination-making data in registers both faster
to access and simpler to use. To achieve highest performance, MIPS compilers
must use registers efficiently.

Figure 3.4 summarizes the portions of the symbolic representation of the
MIPS instruction set described in this section. Load word and store word are
the instructions that transfer words between memory and registers in the MIPS
architecture. Other brands of computers use instructions in addition to load
and store to transfer data. An architecture with such alternatives is the Intel
80x86, described in section 3.12.

Elaboration: The offset plus base register addressing is an excellent match to struc­
tures as well, since the register can point to the beginning of the structure and the off­
set can select the desired element. We'll see such an example in section 3.10.

The register in the data transfer instructions was originally invented to hold an index
of an array with the offset used for the starting address of an array. Thus the base reg­
ister is also called the index register. Today's memories are much larger and the soft­
ware model of data allocation is more sophisticated, so the base address of the array
is normally passed in a register since it won 't fit in the offset, as we shall see .

INTEL - 1012

116 Chapter 3 Instructions: Language of the Machine

MIPS operands

W:ti .. l& Example Comments

32 registers
$s0 , $51. Fast locations for data. In MIPS, data must be in registers to perform arithmetic.

I HO . $tl.

230 memory
Memory[O]. Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so

words
Memory[4] sequential words differ by 4. Memory holds data structures, such as arrays, and spilled
Memory[4294967292] registers.

MIPS assembly language

• !MUMCJHfOM!!ll.LL - Example Meaning Comments

add add $sl, $s2 ,$ s3 $sl = $s2 + $s3 three operands; data in registers I Arithmetic
sub $sl , $s2 . $s3 $sl = $s2 - $s3 three operands; data in registers subtract

I

load word l w $s1 , 100($s2) $s1 = Memory[$ s2 + 100] Data from memory to register I Data transfer
$s1. 100($s2) Memory[$ s2 + 100] = $s1 Data from register to memory I store word SW

FIGURE 3.4 MIPS architecture revealed through section 3.3. Highlighted portions show MIPS assembly language
structures introduced in section 3.3.

II Representing Instructions in the Computer

We are now ready to explain the difference between the way humans instruct
machines and the way machines see instructions. But first, let's quickly
review how a machine represents numbers.

Humans are taught to think in base 10, but numbers may be represented in
any base. For example, 123 base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low elec­
tronic signals, and so they are considered base 2 numbers. (Just as base 10 num­
bers are called decimal numbers, base 2 numbers are called binary numbers.) A
single digit of a binary number is thus the "atom" of computing, since all in­
formation is composed of binary digits or bits. This fundamental building
block can be one of two values, which can be thought of as several alternatives:
high or low, on or off, true or false, or 1 or 0.

Instructions are also kept in the computer as a series of high and low elec­
tronic signals and may be represented as numbers. In fact, each piece of an in­
struction can be considered as an individual number, and placing these
numbers side by side forms the instruction.

Since registers are part of almost all instructions, there must be a convention
to map register names into numbers. In MIPS assembly language, registers $ s 0
to $ s 7 map onto registers 16 to 23, and registers HO to H 7 map onto registers
8 to 15. Hence $ s O means register 16, $ s 1 means register 17, $ s 2 means regis­
ter 18, .. . , $ t O means register 8, $ t 1 means register 9, and so on. We'll describe
the convention for the rest of the 32 registers in the following sections.

F

3.4 Representing Instructions in the Computer 117

Example

Translating a MIPS Assembly Instruction into a Machine Instruction

Let's do the next step in the refinement of the MIPS language as an exam­
ple. We'll show the real MIPS language version of the instruction repre­
sented symbolically as

Answer

add HO , $s1,$s2

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

0 17 18 8 0 32 ~

Each of these segments of an instruction is called a field . The first and last
fields (containing O and 32 in this case) in combination tell the MIPS com­
puter that this instruction performs addition. The second field gives the
number of the register that is the first source operand of the addition oper­
ation (17 = $ s 1) and the third field gives the other source operand for the
addition (18 = $ s 2).The fourth field contains the number of the register
that is to receive the sum (8 = $ tO). The fifth field is unused in this instruc­
tion, so it is set to 0. Thus this instruction adds register $ s 1 to register $ s 2
and places the sum in register HO.

This instruction can also be represented as fields of binary numbers as
opposed to decimal:

000000 10001 10010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

To distinguish it from assembly language, we call the numeric version of in­
structions machine language and a sequence of such instructions machine code.

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits­
the same size as a data word. In keeping with our design principle that sim­
plicity favors regularity, all MIPS instructions are 32 bits long.

INTEL - 1012

118 Chapter 3 Instructions: Language of the Machine

MIPS Fields

MIPS fields are given names to make them easier to discuss:

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Here is the meaning of each name of the fields in MIPS instructions:

• op: Basic operation of the instruction, traditionally called the opcode.

• rs: The first register source operand.

• rt: The second register source operand.

• rd: The register destination operand, it gets the result of the operation.

• shamt: Shift amount. (This term is explained in Chapter 4 when we see
the shift instructions; it will not be used until then, and hence the field
contains zero.)

• funct: Function. This field selects the specific variant of the operation in
the op field, and is sometimes called the function code.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and
a constant. If the address were to use one of the 5-bit fields in the format
above, the constant within the load word instruction would be limited to only
25 or 32. This constant is used to select elements from large arrays or data
structures, and it often needs to be much larger than 32. This 5-bit field is too
small to be useful.

Hence we have a conflict between the desire to keep all instructions the
same length and the desire to have a single instruction format. This leads us to
the third hardware design principle:

Design Principle 3: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for differ­
ent kinds of instructions. For example, the format above is called R-type (for
register) or R-format. A second type of instruction format is called I-type or I­
format and is used by the data transfer instructions. The fields of I-format are

op rs rt address ___J

6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load any word within a
region of ± 215 or 32,768 bytes (213 or 8192 words) of the address in the base
register rs.

Let's take a look at the load word instruction from page 114:

lw $t0,32($s3) # Temporary reg St• gets A[BJ

Example

3.4 Representing Instructions in the Computer 119

Here, 19 (for $s3) is placed in the rs field, 8 (for HO) is placed in the rt field,
and 32 is placed in the address field. Note that the meaning of the rt field has
changed for this instruction: in a load word instruction, the rt field specifies
the destination register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the
complexity by keeping the formats similar. For example, the first three fields
of the R-type and I-type formats are the same size and have the same names;
the fourth field in I-type is equal to the length of the last three fields of R-type.

In case you were wondering, the formats are distinguished by the values in
the first field : each format is assigned a distinct set of values in the first field
(op) so that the hardware knows whether to treat the last half of the instruction
as three fields (R-type) or as a single field (I-type). Figure 3.5 shows the num­
bers used in each field for the MIPS instructions covered through section 3.3.

Instruction

add

sub (subtract)

l w (load word)

s w (store word)

ii-ii::fihiiillllll-• fflli@IF/·viiii•
: 3~ 1 ::: I ;: ~= ~ -f:: F,,::ss

43 [r:: 1 ;e~ R~- R~ n~.a.] n.a: E ddre~

FIGURE 3.5 MIPS instruction encoding. In the table above, "reg" means a register number
between O and 31, "address" means a 16-bit address, and "n.a." (not applicable) means this field
does not appear in this format. Note that add and s ub instructions have the same value in the op
fi eld; the hardware uses the funct field to decid e the variant of the operation: add (32) or subtract
(34)

Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer
writes to what the machine executes. Assuming that $t1 has the base of the
array A and that $ s 2 corresponds to h, the C assignment statement

A[300] = h + A[300] ;

is compiled into

lw $t 0 ,1 200($tl) # Temporary reg St• gets A[300]
add $t0,$s2,$ t0 # Temporary reg St• gets h + A[300]
SW $t0 .1200($tl) # Stores h + A[300] back i nt o A[300]

What is the MIPS machine language code for these three instructions?

I

INTEL - 1012

120 Chapter 3 Instructions: Language of the Machine

For convenience, let's first represent the machine language instructions us­
ing decimal numbers. From Figure 3.5 we can determine the three machine
language instructions:

• Ill
I

35

I

9 8 1200

I
0 18 8 8 0 32

43 9 8 1200

The l w instruction is identified by 35 (see Figure 3.5) in the first field
(op). The base register 9 ($tl) is specified in the second field (rs), and the
destination register 8 ($t0) is specified in the third field (rt). The offset to
select A [300] (1200 = 300 x 4) is found in the final field (address).

The add instruction that follows is specified with O in the first field (op)
and 32 in the last field (funct). The three register operands (18, 8, and 8) are
found in the second, third, and fourth fields and correspond to $ s 2, $t 0,
and $t 0.

The s w instruction is identified with 43 in the first field. The rest of this
final instruction is identical to the l w instruction.

The binary equivalent to the decimal form is the following (1200 in base
10 is 0000 0100 1011 0000 base 2):

100011 01001 01000 0000 0100 1011 0000

000000 10010 01000 01000 I 00000 I 100000

101 011 01001 01000 0000 0100 1011 0000

Note the similarity of the binary representations of the first and last in­
structions. The only difference is found in the third bit from the left.

Figure 3.6 summarizes the portions of MIPS assembly language described
in this section. As we shall see in Chapters 5 and 6, the similarity of the binary
representations of related instructions simplifies hardware design. These in­
structions are another example of regularity in the MIPS architecture.

Elaboration: Representing decimal numbers in base 2 gives an easy way to repre­
sent positive integers in computer words. Chapter 4 explains how negative numbers
can be represented , but for now take it on faith that a 32-bit word can represent inte­
gers between -231 and +231 -1 or - 2,14 7,483,648 to +2,14 7,483,647. Such integers
are called two 's complement numbers .

3.4 Representing Instructions in the Computer 121

MIPS operands

IW::IM Example Comments

gisters $_t_(l_,~ . _· _· ,_$_t_7 __ _

~

2 $s0 , $sl , ... , $s7 Fast locations for data. In MIPS, data must be in registers to perfo rm arithmetic.
Registers $ s 0-$ s 7 map to 16-23 and $t0-$t 7 map to 8-15.

30 Memory[O],
emory Memory[4],
ords Memory[4294967292]

iiMN¾i Instruction

Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so
sequential words differ by 4. Memory holds data structures, such as arrays, and
spilled registers.

MIPS assembly language

Example Meaning Comments

~
__ ! __ _ add

rithmetic -
subtract

Data load word

ransfer_ store ~ rd

~ rdd lsLlsT1s3 w -=- W _::: __ $_s_3 ----1-Th-re~eran_d_s_; _da_t_a _in_r_eg_is_t_er_s~

sub $sl,$s2 , $s3 $sl = $s2 - $s3 Th reeoperands ; datain registers

l w $sl,100($s2) $sl = Mem;;i$s2 +100]- Data frommemory toregister

- s-.;_; $sl, 100($s2) Memory[$s2 -:;_-100] ~$sl - D~tahom_r:egist;;-io ~emory -

MIPS machine language

em+• -rn::fia Example Comments

add R 0 18 19 17 adrJ $sl, $s Z. $c1

sub

lw

SW

R 0 18 19 17 T o-t 32
0 34 sub i 1, $c 2 , j \ l

-

J 35 18 17 100 lw lsl . 100($ ()

Field size

R-format

I-format

R

43

6 bits

op

op

18

5 bits

rs

rs

17

5 bits 5 bits

rt rd

rt

100 SW $sl . 100(t z'

1
5 bits 6 bits All MIPS instructions 32 bits

shamt funct Arithmetic instruction format

address I ~ta tran~er_.!ormat ___

FIGURE 3.6 MIPS architecture revealed through section 3.4. Highlighted portions show MIPS machine language
structures introduced in section 3.4. The two MIPS instruction fo rmats so far are Ra nd l. The first 16 bits are the same: both
contain an op fi eld, giving the base opera tion; an rs fi eld, giving one of the sources; and the rt fie ld , w hich speci fies the other
source operand, except for load word , where it specifies the destina tion register. R-format d ivides the last 16 bi ts into an rd
fi eld, specifying the destination register; shm11 / field, which is unused in Chapter 3 and hence always is 0; and the f1111cl fi eld ,
which specifies the specific opera tion of R-format instructions. I- format keeps the last 16 bits as a single address fi eld.

•
Today's computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs can be stored in memory to be read
or written just like numbers.

These principles lead to the stored-program concept; its
invention let the computing genie out of its bottle. Figure 3.7 shows
the power of the concept; specifically, memory can contain the source
code for an editor program, the corresponding compiled machine
code, the text that the compiled program is using, and even the com­
piler that generated the machine code.

I

INTEL - 1012

122 Chapter 3 Instructions: Language of the Machine

Memory

r- Accounting program :
: (machine code) 1 ____ ____ _____ ____ J

; - Editor program :
: (machine code) 1 ___ ______ ___ _____ J

Processor

' I 1 c compiler 1
: (machine code) I ___ __ ________ __ __ J

,--------- I

: Payroll data :
I ________________ J

r---------- I

: Book text :
I ________________ J

,---- -- I

1 Source code in C 1
I . I
1 ___ for editor program __ J

FIGURE 3.7 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The
switch happens simply by loading memory with programs and data and then telling the com­
puter to begin executing at a given location in memory. Treating instructions in the sa me way as
data greatly simplifies both the memory hardware and the software of computer systems. Spec1f­
ically, the memory technology needed for da ta can also be used for programs, and programs hke
compilers, for instance, can translate code written in a notation far more convenient for humans
into code that the machine can understand.

• Instructions for Making Decisions

The utility of an automatic computer lies in the possibility of using a given sequence
of instructions repeatedly, the number of times it is iterated being dependent upon the
results of the computation. When the iteration is completed a different sequence of [in­
structions] is to be followed, so we must, in most cases, give two parallel trains of [in­
structions] preceded by an instruction as to which routine is to be followed. This choice
can be made to depend upon the sign of a number (zero being reckoned as plus for ma­
chine purposes) . Consequently, we introduce an [instruction] (the conditional transfer
[instruction]) which will, depending on the sign of a given number, cause the proper
one of two routines to be executed.

Burks, Goldstine, and von Neumann, 1947

Example

Answer

3.5 Instructions for Making Decisions 123

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during the com­
putation, different instructions are executed. Decision making is commonly
represented in programming languages using the if statement, sometimes
combined with go to statements and labels. MIPS assembly language includes
two decision-making instructions, similar to an if statement with a go to. The
first instruction is

beq regi sterl . regi ster2 . Ll

This instruction means go to the statement labeled L 1 if the value in
regi sterl equals the value in reg i ster2. The mnemonic beq stands for
branch if equal. The second instruction is

bn e regi sterl . reg i ster2. Ll

It means go to the statement labeled Ll if the value in regi sterl does not
equal the value in regi ster2 . The mnemonic bne stands for branch if not
equal. These two instructions are traditionally called conditional branches.

Compiling an If Statement into a Conditional Branch

In the following C code segment, f , g, h, i , and j are variables:

if (i == j) go to Ll ;
f = g + h;

Ll : f = f - i ;

Assuming that the five variables f through j correspond to the five regis­
ters $s0 through $s4, what is the compiled MIPS code?

The first C statement compares for equality and then branches to the sub­
tract operation. Since both the operands are in registers, this maps exactly
to a branch if equal instruction (we'll define the label Ll later):

beq $s3,$s4. Ll ii go to Ll if i equals j

The following C assignment statement performs a single operation, and if
all the operands are allocated to registers, it is just one instruction:

add $s0 , $sl , $s2 ii f = g + h (skipped if i equals j)

The final statement can again be compiled into a single instruction . The
problem is how to specify its address so that the conditional branch can
skip the add instruction above.

INTEL - 1012

124 Chapter 3 Instructions: Language of the Machine

Example

Answer

Instructions are stored in memory in stored-program computers; hence
instructions must have memory addresses just like other words in memo­
ry. The last instruction simply appends the label Ll that was forward­
referenced by the beq instruction .

Ll : sub $s0 ,$ s0 ,$ s3 If f = f - i (al ways executed)

The label L 1 thus corresponds to the address of the subtract instruction.

Notice that the assembler relieves the compiler or the assembly language
programmer from the tedium of calculating addresses for branches, just as it
does for calculating data addresses for loads and stores (see section 3.9).

Hardware
Software

Interface

Compilers frequently create branches and labels where they
do not appear in the programming language. Avoiding the
burden of writing explicit labels and branches is one benefit
of writing in high-level programming languages and is a
reason coding is faster at that level.

Compiling if-then-else into Conditional Branches

Using the same variables and registers from the previous example, com­
pile this C if statement:

i f (i == j) f = g + h ; e l s e f = g - h ;

Figure 3.8 is a flowchart of what the MIPS code should do. The first C ex­
pression compares for equality, so it would seem that we would want the
beq as before. In general the code will be more efficient if we test for the
opposite condition to branch over the code that performs the subsequen t
then part of the if (the label Else is defined below):

bne $s3,$s4 . Else If go to Else if i * j

The next C assignment statement performs a single operation, and if all the
operands are allocated to registers, it is just one instruction:

add $s0,$ sl , $s2 If f = g + h (skipped if i * J)

3.5 Instructions for Making Decisions 125

We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruc­
tion says that the machine always follows the branch. To distinguish be­
tween conditional and unconditional branches, the MIPS name for this
type of instruction is jump, abbreviated as j (the label Exit is defined be­
low).

j Exit If go to Exit

The assignment statement in the else portion of the if statement can again
be compiled into a single instruction. We just need to append the label
El s e to this instruction. We also show the label Exit that is after this in­
struction, showing the end of the if-then-else compiled code:

Else: sub $s0 , $sl,$s2 If f = g - h (skipped if i = j)
Exit :

Loops

Decisions are important both for choosing between two alternatives-found
in if statements-and for iterating a computation-found in loops. The same
assembly instructions are the building blocks for both cases.

i =j i at j

Else :

f=g+h f=g-h

Exit :

FIGURE 3.8 Illustration of the options in the if statement above. The left box corresponds
to the then part of the if statement, and the right box corresponds to the else part.

INTEL - 1012

126

Example

Answer

Chapter 3 Instructions: Language of the Machine

Compiling a Loop with Variable Array Index

Here is a loop in C:

Loop : g = g + A[iJ;
i=i+j;
if (i != h) goto Loop ;

Assume that A is an array of 100 elements and that the compiler associates
the variables g, h, i, and j with the registers $sl, $s2, $s3, and $s4, re­
spectively. Let's assume that the base of the array A is in $ s 5. What is the
MIPS assembly code corresponding to this C loop?

The first step is to load A [i J into a temporary register. We borrow the code
from the similar example that starts on page 114. We need only add the la­
bel Loop to the first instruction so that we can branch back to that instruc­
tion at the end of the loop:

Loop : add $tl,$s3 , $s3
add $tl , $tl , $tl
add $tl , $tl , $s5
lw $t0 , 0($tl)

Temp reg $tl = 2 * i
Temp reg $tl = 4 * i
$tl = address of A[i]
Temporary reg $t0 = A[i]

The next two instructions add A [i] to g and then j to i :

add $sl,$sl,$t0
add $s3 , $s3 , $s4

g = g + A[i]
Ni=i+j

The final instruction branches back to Loop if i -:t h:

bne $s3 ,$ s2, Loop #goto Loop if i -:t h

Since the body of the loop modifies i , we must multiply its value by 4
each time through the loop. (Section 3.11 shows how to avoid these "mul­
tiplies" when writing loops like this one.)

Hardware

Software

Interface

Such sequences of instructions that end in a branch are so
fundamental to compiling that they are given their own
buzzword: a basic block is a sequence of instructions without
branches, except possibly at the end, and without branch
targets or branch labels, except possibly at the beginning.
One of the first early phases of compilation is breaking the
program into basic blocks.

3.5 Instructions for Making Decisions 127

Compiling a while Loop

Example Of course, programmers don't normally write loops with go to statements,
so it is up to the compiler to translate traditional loops into MIPS language.
Here is a traditional loop in C:

Answer

while (save[i] == k)

i = i + j ;

Assume that i, j , and k correspond to registers $ s 3, $ s 4, and $ s 5 and the
base of the array save is in $s6 . What is the MIPS assembly code corre­
sponding to this C segment?

The first step is to load save [i J into a temporary register. It starts with
code similar to the prior example:

Loop : add $tl,$s 3 ,$ s3 # Temp reg $tl = 2 * i
add $tl,$tl,$tl # Temp reg $tl = 4 * i
add $tl,$tl,$ s6 # $tl = addres s of save[i]
lw $t0 , 0($tl) N Temp reg $t0 = save[i]

The next instruction performs the loop test, exiting ifs ave [i J 1c- k:

bne $t0,$s5, Exit #g o to Exit if save[i] "' k

The next instruction adds j to i :

add $s3,$s3,$s4 # + j

The end of the loop branches back to the while test at the top of the loop.
We just add the Ex it label after it, and we're done:

j Loop #goto Loo p
Ex it:

(See Exercise 3.9 for an optimization of this sequence.)

The test for equality or inequality is probably the most popular test, but
sometimes it is useful to see if a variable is less than another variable. For ex­
ample, a for loop may want to test to see if the index variable is less than O. Such
comparisons are accomplished in MIPS assembly language with an instruction

INTEL - 1012

128 Chapter 3 Instructions: Language of the Machine

tha t compares two registers and sets a third register to 1 if the first is less than
the second; otherwise, it is set to 0. The MIPS instruction is called set on less
than , or s l t. For example,

s lt HO, $s3 , $s 4

means that register $t0 is set to 1 if the va lue in register $ s 3 is less than the
value in register $s 4; otherwise, register $t 0 is set to 0.

Hardware

Software

Interface

MIPS compilers use the s l t, beq, bne, and the fixed value of
0 always available by reading register $zer o to crea te all
relative conditions: equal, not equal, less than, less than or
equal, grea ter than, grea ter than or equal. (As you might
expect, register $zero maps to register 0.)

Compiling a Less Than Test

Example What is the code to tes t if variable a (corresponding to register $ s O) is less
than variable b (register $ s 1) and then branch to label Less if the cond ition
holds?

Answer The first step is to use the set on less than instruction and a temporary reg­
ister:

slt $t0 , $s 0 , $sl # $t0 get s 1 if $s0 < $s l (a< b)

Register $t0 is set to 1 if a is less than b. Hence, a branch to see if register
$t0 is not equal to O will give us the effect of branching if a is less than b.
Register $zer o always contains 0, so this final test is accomplished using
the bne instruction and comparing register $t 0 to register $ze r o:

bne $t0 . $z e ro . Less # go to Less i f $t0 cf. 0
(t hat i s , i f a < b)

This pair of instructions, s l t and bn e, implements branch on less than .

Heeding von N eumann's warning about the simplicity of the "equipment,"
the MIPS architecture doesn't include branch on less than because it is too com­
plicated; either it would stretch the clock cycle time or this instruction would
take extra clock cycles per instruction. Two faster instructions are more useful.

Example

Answer

3.5 Instructions for Making Decisions 129

Case/ Switch Statement

Most programming languages have a case or switch sta tement that allows the
programmer to select one of many alterna tives depending on a single value.
One way to implement switch is via a sequence of conditional tests, turning
the switch statement into a chain of if-then-else statements. But sometimes the
alternatives may be efficiently encod ed as a table of addresses of alternative
instruction sequences, called a jump address table, and the program needs only
to index in to the table and then jump to the appropria te sequence. The jump
table is then just an array of words containing addresses that correspond to
labels in the cod e.

To support such situations, computers like MIPS include a jump register in­
struction (j r), meaning an unconditional jump to the address specified in a
register. The p rogram loads the appropriate entry from the jump table into a
register, and then it jumps to the proper address using a jump register.

Compiling a switch Statement by Using a Jump Address Table

This C version of a case statement is called a switch s tatement. The follow­
ing C code chooses among four alternatives d epending on whether k has
the va lue 0, 1, 2, or 3.

swit ch (k) {
case 0 :
case 1 :
case 2 :
ca se 3 :

f
f
f
f

+ j ; brea k;
g + h ; break ;
g h; bre a k ;

j ; break ;

/ * k 0 *I
I* k 1 */
I* k 2 *I
I* k 3 *I

Assume the six variables f through k correspond to six regis ters $ s O
through $s5 and that register $t2 contains 4. Wha t is the corresponding
MIPS code?

We use the switch variable k to index a jump address table, and then jump
via the value loaded. We firs t tes t k to be sure it matches one of the cases (0
:s; k :s; 3); if not, the code exits the switch statement.

slt $t3 , $s5 , $zero
bn e $t 3 , $zero . Exit
s lt $t 3 , $s5 , $t 2
beq $t3 ,$ ze r o , Ex i t

If Test i f k < 0
If i f k < 0 , go to Exi t
Test i f k < 4
If if k >= 4 , go to Exit

•
INTEL - 1012

130 Chapter 3 Instructions: Language of the Machine

Since we are using the variable k to index into this table of words, we must
first multiply by 4 to turn k into its byte address:

add $tl , Ss5 , $s5 # Temp reg Stl = 2 * k
add $tl , $tl , $tl # Temp reg Stl = 4 * k

Assume that four sequential words in memory, starting at an address con­
tained in st4, have addresses corresponding to the labels LO, Ll , L2, and
L3 . We can now load the proper jump address this way:

add $tl ,Stl , St4 # Stl = address of JumpTable[k]
l w StO ,O($tll # Temp reg StO = JumpTable[kJ

A jump register instruction jumps via the register to the address from the
jump table.

j r StO # jump based on reg i ster St•
The first three switch cases in this example are the same: a label, a single in­
struction performing the case statement, and then a jump to exit the switch
statement:

LO : add
j

Ll : add
j

L2: sub
j

SsO , Ss3 , $s4
Ex i t
SsO , Ssl,Ss2
Exit
SsO , Ss l. Ss2
Exit

k = O so f gets i + j
end of this case so go t o Ex i t
k = 1 so f gets g + h
end of th i s case so go t o Exit
k = 2 so f gets g - h
end of this case so go to Exit

A more complex example might have several instructions for each case.
For the final case we drop the jump to exit (since this is the last instruc­

tion of the switch code) and append an Exit label afterwards to mark the
end of the switch statement:

L3 : sub SsO . Ss3 . Ss4
Exit :

k = 3 so f gets i - j
end of switch statement

Figure 3.9 summarizes the portions of MIPS assembly language described
in this section. This step along the evolution of the MIPS language has added
branches and jumps to our symbolic representation, and fixes the useful value
0 permanently in a register.

Elaboration: If you have heard about delayed branches, covered in Chapter 6, don't
worry: The MIPS assembler makes them invisible to the assembly language program­
mer. Also, for C programmers not fami liar with the infinitely abusable go to statement,
it transfers control from wherever it appears to the label.

3.5 Instructions for Making Decisions 131

MIPS operands - Example Comments

$s0 . $sl. .. . , $s7 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
32 registers HO , Hl , . . . ,$t7 , $zero Registers $ s 0- $ s 7 map to 16-23 and $t 0-$t 7 map to 8-15. MIPS register

$zero always equals 0.

230 memory
Memory[O]. Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses ,
Memory[4]. .. . , so sequential words differ by 4. Memory holds data structures , such as arrays,

words
Memory[4294967292] and spilled registers .

MIPS assembly language • !f.iBZU& Instruction Example Meaning Comments

add add $sl , $s2 , $s3 $sl = $s2 + $s3 Three operands; data in registers
Arithmetic

sub $sl , $s2 ,$ s3 $sl = $s2 - $s3 Three operands; data in registers subtract

load word lw $sl.100 ($s2) $sl = Memory[$s2 + 100] Data from memory to register
Data transfer

$sl,100 ($s2) Memory[$s2 + 100] = $sl Data from register to memory store word SW

branch on equal beq $sl ,$ s2 ,L if ($ s 1 == $ s 2) go to L Equal test and branch

Conditional branch on not equal bne $sl,$s2 , L if ($ s 1 ! = $ s 2) go to L Not equal test and branch
branch set on less than slt $sl .$ s2 ,$ s3 if ($ s2 < $s3) $sl = 1; Compare less than ; used with

else $ s 1 = O beq, bne

Unconditional jump j 2500 go to 10000 Jump to target address
jump jump register jr Hl go to Hl For switch statements

MIPS machine language

-=:a.crn .. 2:1 Example Comments

add R 0 18 19 17 0 32 add $sl, $s2 , $s3

sub R 0 18 19 17 0 34 sub $sl. $s2 . $s3

lw I 35 18 17 100 lw $sl. 100($s2)

SW I 43 18 17 100 SW $sl. 100($s2)

beq I 4 17 18 25 beq $sl , $s2.100

bne I 5 17 18 25 bne $sl , $s2.100

slt R 0 18 19 17 0 42 s lt $sl . $s2,$s3
-

j J 2 2500 j 10000 (see section 3.8)

jr R 0 9 0 0 0 8 j r Hl
~

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits
-

R-format R op rs rt rd shamt funct Arithmetic instruction format
-- -

I-format I op rs rt address Data transfer, branch format
-- -

FIGURE 3.9 MIPS architecture revealed through section 3.5. Highlighted portions show MlPS structures introduced in
section 3.5. The J-format, used for jump instructions, is explained in section 3.8. Section 3.8 also explains the proper va lues in
address field s of branch instructions.

INTEL - 1012

132

•

Chapter 3 Instructions: Language of the Machine

Supporting Procedures in Computer Hardware

A procedure or subroutine is one tool programmers use to structure pro­
grams, both to make them easier to understand and to allow code to be
reused. Procedures allow the programmer to concentra te on just one portion
of the task at a time, with parameters acting as a barrier between the proce­
dure and the rest of the p rogram and data, allowing it to be passed values and
return results.

You can think of a procedure like a spy who leaves with a secret plan, ac­
quires resources, performs the task, covers his tracks, and then returns to the
point of origin wi th the desired result. Nothing else should be perturbed once
the mission is complete. Moreover, a spy operates on only a "need to know"
basis, so the spy can' t make assump tions about his employer.

Similarl y, in the execution of a procedure, the program must follow these six
steps:

1. Place parameters in a place w here the procedure can access them .

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Place the result va lue in a place where the calling program can access it.

6. Return control to the point of origin.

As mentioned above, registers are the fas test place to hold da ta in a comput­
er, so we want to use them as much as possible. Hence MIPS software allocates
the following of its 32 registers for procedure calling:

• $a0- $a3 : four argument registers in which to pass parameters

• $ v 0- $ v 1 : two value registers in which to return values

• $ r a : one return address register to return to the point of origin

In addition to alloca ting these registers, MIPS assembly language includes
an instruction just for the procedures: it jumps to an address and simulta­
neously saves the add ress of the following instruction in register $ ra. The
jump-and-link instruction (j al) is simply written

j al ProcedureAddress

The link portion of the name means that an address or link is formed that
points to the calling site to allow the procedure to return to the proper
address. This "link," s tored in register $ r a, is called the return address. The

3.6 Supporting Procedures in Computer Hardware 133

return address is needed because the same procedure could be called from
several parts of the program.

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For his torical reasons this
register is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction
address register. The j al instruction saves PC + 4 in register $ ra to link to the
following instruction to set up the procedure retu rn.

We already have an instruction to do the return jump:
j r $ ra

The jump regis ter instruction, which we used above in the switch statement
jumps to th~ add ress stored in register $ ra-which is just what we want'.
Thus the callmg program, or caller, puts the parameter values in $ a 0- $ a 3 and
uses j al X to jump to proced ure X (sometimes named the callee). The ; allee
then performs the calculations, places the results in $ v0- $ v 1, and returns con­
trol to the caller using j r $ r a.

Using More Registers

Suppose a compiler needs more registers for a procedure than the four argu­
ment and two return value registers. Since we are supposed to cover our
tracks after our mission is complete, any registers needed by the caller must
?e restored . to. the . val~es that they contained before the procedure was
mvoked. This s1tu~t10n 1s _an example in which we need to spill regis ters to
memory, as mentioned m the Hardware Software Interfa ce section on
page 115.

The ideal data structure for spilling registers is a stack- a last-in-firs t-out
queue. A stack needs a pointer to the most recently allocated address in the
stack to show wl:ere the next procedure should place the registers to be spilled
or where old register values can be found . The stack pointer is adjusted by one
word for_ each regis ter that is saved or restored . Stacks are so popular that they
have the1r own buz~words for transferring data to and from the s tack: placing
da ta onto the s tack 1s called a push, and removing data from the stack is ca lled
a pop.

MIPS software alloca tes another register just for the s tack: the stack pointer
($s p), used to save the registers needed by the ca llee. By historical precedent
stacks "grow" from higher addresses to lower addresses. This conventio1~
means that ~ou push values onto the stack by subtra cting from the stack
pomter. Addmg to the stack pointer shrinks the stack, thereby popping va lues
off the s tack.

INTEL - 1012

134

Example

Answer

Chapter 3 Instructions: Language of the Machine

Compiling a Procedure that Doesn't Call Another Procedure

Let's turn the example on page 109 into a procedure:

int leaf_exampl e (int g, int h, int i , int j)
(

int f ·

f=(g+h)-(i+j);
return f ·

For the rest of this section we assume we can add or subtract constants like 4, 8,
or 12. (Section 3.8 reveals how constants are handled in MIPS assembly
language.) What is the compiled MIPS assembly code?

The parameter variables g, h, i, and j correspond to the argume~t regis­
ters $ a O, $a 1, $ a 2, and $ a3, and f corresponds to $ sO. The compiled pro­
gram starts with the label of the procedure:

leaf_example:

The next step is to save the registers used by the procedure. The C assign­
ment statement in the procedure body is identical to the example on page
109, which uses two temporary registers . Thus we need to save three
registers: $SO, $t0, and $tl. We create space for three words on the stack
and then store the old values:

sub $sp ,$ sp , 12 # adjust stack to make room for 3 items
sw $tl, 8($sp) # save register $tl for use afterwards
sw $t0 , 4($sp) # save register $t0 for use afterwards
sw $s0, O($sp) # save register $s 0 for use afterwards

Figure 3.10 shows the stack before, during, and after the procedure call.
The next three statements correspond to the body of the procedure, which
follows the example on page 109:

add $t0,$a0,$al # register $t0 contains g + h
add $tl , $a2 , $a3 # register $tl contains i + j .
sub $s0,$t0,$tl # f = $t0 - $tl, which is (g + h)-(1 + j)

To return the value of f, we copy it into a return value register:

add $v0 , $s0 ,$ zer o # returns f ($v0 = $s0 + 0)

High address

$sp-

Low address

3.6 Supporting Procedures in Computer Hardware 135

Before returning, we restore the old values of the registers we saved and
then "pop" the stack to its original value:

lw $s0, 0($sp) # r est ore r egist e r $s0 f or caller
lw $t 0 , 4($sp) # restore register $t0 for caller
lw $tl, 8($sp) # rest ore r egi st er $tl fo r caller
add $sp,$ s p,1 2 # adj ust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr $ra # j ump bac k to calling routine

In the example above we used temporary registers and assumed their old
values must be saved and restored. To avoid saving and restoring a register
whose value is never used, which might happen with a temporary register,
MIPS software offers two classes of registers:

• $t O- $t 9: 10 temporary registers that are not preserved by the callee
(called procedure) on a procedure call

• $ s 0-$ s 7: 8 saved registers that must be preserved on a procedure call
(if used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since
the caller (procedure doing the calling) does not expect registers $t O and $t 1
to be preserved across a procedure call, we can drop two stores and two loads
from the code. We still must save and restore $ s 0, since the callee must
assume that the caller needs its value.

1----------j $sp

Contents of register $ t 1

Contents of register $t 0

$sp - Contentsofregister $s0

a. b. C.

FIGURE 3.10 The values of the stack pointer and the stack (a) before, (b) during, and (c) after the procedure
call. The stack pointer always points to the "top" of the stack, or the las t word in the stack in this drawing.

INTEL - 1012

136 Chapter 3 Instructions: Language of the Machine

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be
simple if all procedures were leaf procedures, but they aren't. Just as a spy
might employ other spies as part of a mission, who in turn might use even
more spies, so do procedures invoke other procedures. Moreover, recursive
procedures even invoke "clones" of themselves. Just as we need to be careful
when using registers in procedures, more care must also be taken when
invoking non-leaf procedures.

For example, suppose that the main program calls procedure A with an ar­
gument of 3, by placing the value 3 into register $ a 0 and then using j al A.
Then suppose that procedure A calls procedure B via j al B with an argument
of 7, also placed in $ a 0. Since A hasn't finished its task yet, there is a conflict
over the use of register $ a 0. Similarly, there is a conflict over the return address
in register $ r a, since it now has the return address for B. Unless we take steps
to prevent the problem, this conflict will eliminate procedure A:.s ability to re­
turn to its caller.

Example

One solution is to push all the other registers that must be preserved onto
the stack, just as we did with the saved registers. The caller pushes any argu­
ment registers ($a 0- $ a 3) or temporary registers ($t0- $t 9) that are needed af­
ter the call. The callee pushes the return address register $ ra and any saved
registers ($ s 0- $ s 7) used by the callee. The stack pointer $ s p is adjusted to ac­
count for the number of registers placed on the stack. Upon the return, the reg­
isters are restored from memory and the stack pointer is readjusted.

Compiling a Recursive Procedure, Showing Nested Procedure
Linking

Let's tackle a recursive procedure that calculates factorial:

int fact (in t n)
{

if (n < 1) return (l) ;
else return (n * fact(n-1));

Assume that you can add or subtract constants like 1 or 8, as we will show
in section 3.8. What is the MIPS assembly code?

3.6 Supporting Procedures in Computer Hardware 137

The p_arameter variable n corresponds to the argument register $a0. The
compiled program starts with the label of the procedure and then saves
two registers on the stack, the return address and $ a 0:

fact :
sub
SW
SW

$sp,$sp , 8
$ra . 4($sp)
$a0, 0($sp)

adjust stack for 2 items
save the return address
save the argument n

The first time fa c t is called, sw saves an address in the program that called
fact . The next two instructions test if n is less than 1, going to Ll if n ::c: 1.

slt $t0,$a0 , l # test for n < 1
beq $t0,$zero ,Ll # if n >= 1, go to Ll

If n is less than 1, fa ct returns 1 by putting 1 into a value register: it adds
1 to O and places that sum in$ v0. It then pops the two saved values off the
stack and jumps to the return address:

add $v0,$zer o ,1 # return 1
add $sp,$sp, 8 # pop 2 items off stack
j r $ r a I I re t u r n t o a ft e r j a l

Before popping two items off the stack, we could have loaded $ a 0 and
_$ r a. Si~ce $ a 0 and $ r a don't change when n is less than 1, we skip those
mstruct10ns.

If n is not less than 1, the argument n is decremented and then fa ct is
called again with the decremented value:

Ll : sub $a0,$a0,l # n >= 1 : argument gets (n - 1)
jal fact II call fact with (n - 1)

The next instruction is where fa ct returns. Now the old return address
and old argument are restored, along with the stack pointer:

lw $a0, 0($sp) II return from jal : restore argument n
lw $ra. 4($sp) # restore the return address
add $sp, $sp,8 II adjust stack pointe r to pop 2 items

Next, the value register $v 0 gets the product of old argument $a0 and the
cur~ent value of the value register. We assume a multiply instruction is
available, even though it is not covered until Chapter 4:

mul $v0,$a0,$v0 # return n * fact (n - ll

Finally, fa ct jumps again to the return address:

jr $ra # return to the caller

INTEL - 1012

138 Chapter 3 Instructions: Language of the Machine

Preserved Not preserved

Saved registers: $ s 0-$ s 7 Temporary registers: $t 0-H 9

~ck pointer register: $ s p Argument registers: $ a 0-$ a 3

Return address register: $ r a Return value registers: $ v 0-$ v 1

Stack above the stack pointer Stack below the stack pointer

FIGURE 3.11 What is and what Is not preserved across a procedure call. If the software
relies on the frame pointer register or on the global pointer register, discussed in the following
sections, they are also preserved.

Figure 3.11 summarizes what is preserved across a procedure call. Note that
several schemes are used to preserve the stack. The stack above $ s p is pre­
served simply by making sure the callee does not write above$ s p; $ s p is itself
preserved by the callee adding exactly the same amount that was subtracted
from it, and the other registers are preserved by saving them on the stack (if
they are used) and restoring them from there. These actions also guarantee that
the caller will get the same data back on a load from the stack as it put into the
stack on a store: because the callee promises to preserve $ s p and because the
callee also promises not to modify the caller's portion of the stack, that is, the
area above the $ s p at the time of the call.

Allocating Space for New Data

The final complexity is that the stack is also used to store variables that are
local to the procedure that do not fit in registers, such as local arrays or struc­
tures. The segment of the stack containing a procedure's saved registers and
local variables is called a procedure frame or activation record. Figure 3.12 shows
the state of the stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer (H p) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure,
and so references to a local variable in memory might have different offsets de­
pending on where they are in the procedure, making the procedure harder to
understand. Alternatively, a frame pointer offers a stable base register within a
procedure for local memory references. Note that an activation record appears
on the stack whether or not an explicit frame pointer is used. We've been
avoiding$ fp by avoiding changes to$ s p within a procedure: in our examples,
the stack is adjusted only on entry and exit of the procedure.

3.6 Supporting Procedures in Computer Hardware 139

High address

Hp _1----------1
$·p -

$sp - i------~
Hp - Saved argument

$sp - 1-------~
registers (i f any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

$sp -

Low address
a. b. c.

F~~~t:: \ ,12 lllustratlon_of the stack allocation (a) before, (b) during, and (c) after the procedure call. The frame
fop of ti~! s~~fkm;~eto/h1 first ;ord ~f the fr:me, often a saved argument register, and the stack pointer ($ s p) points to the
Since the stack . oint:r :a l\~ JUSte to ma e room for all _the s~ved registers and any memory-resident loca l variables.
stable frame pofnter altho~gh ~tn~; ~~r~ngdprogrn1~ ex~cu~10n, it s easier for programmers to reference variables via the
local variables on th~ stack wit . u e one JUS wit . t e stack pomter and a little address arithmetic. lf there are no

When a frame pointer is used, i~~: ~nh~~~:~~r:~i~; ~~ei:~
1!:::\~ 5;1;; :\~ae co/il:;~~e;t~~~sa;:~t~::~r~~!t: :~ame pointer.

Figure 3.13 s_ummarizes the register conventions for the MIPS assembly
lan_guage, and Figure 3.14 summarizes the parts of the MIPS instruction set de­
scnbed so far.

Elaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers $ a O through $ a 3 and the rest
1n memory, addressable via the frame pointer.

As mentioned in the caption of Figure 3.12, the frame pointer is convenient because
al l references to variables in the stack within a procedure will have the same offset.
The frame pointer 1s not necessary, however. The GNU MIPS C compiler uses a frame
pointer, but the C compiler from MIPS/Silicon Graphics does not; it uses register 30 as
another save register ($s8).

Elaboration: j al actually saves the address of the instruction that follows j al into
register $ ra , thereby allowing a procedure return to be simply j r $ ra .

INTEL - 1012

140 Chapter 3 Instructions: Language of the Machine

Hardware

Software

Interface

AC variable is a location in storage, and its interp reta tion
depends both on its type and storage class. Types are d is­
cussed in detail in Chapter 4, but examples include integers
and characters. C has two storage classes: automatic and
static. Automatic variables are local to a procedure and are
discarded when the procedure exits. Static variables exist
across exits from and entries to procedures. C variables de­

clared outside all procedures are considered static, as are any variables
declared using the keyword static . The rest are automatic. To simplify
access to static data, MIPS software reserves another register, called the global
pointer, or $gp .

We will see where in memory the static data is allocated in section 3.9.

Preserved on

Register number Usage call? -$zero 0 the constant value 0 n.a.

$v0-$vl 2-3 values for results and expression evaluation no

$a0- $a3 4- 7 arguments no
f-

$t0-$t7 8- 15 temporaries no

$s0-$s7 16-23 saved yes

$t8- $t9 24-25 more temporaries no

$gp 28 global pointer yes

$Sp 29 stack pointer yes

_!fp 30 frame pointer t yes

$ra 31 return address yes
~

I
FIGURE 3.13 MIPS register convention. Register 1, ca lled $at, is reserved for the assembler
(see section 3.9), and registers 26-27, called $ kO- $ k 1, are reserved for the opera ting system .

Name

32 registers

230 memory words

Category

Arithmetic

Data transfer

Conditional branch

Unconditional jump

Name

3.6 Supporting Procedures in Computer Hardware 141

MIPS operands

Example Comments

$s0-$s7. HO-H9,
$z ero ,$ a0-$ a3 , $v0-
$vl. $gp, Hp, $sp. $ra £,

st locations for data. In MIPS, data must be in registers to perform
ithmetic. MIPS register $zero always equals 0. $gp (28) is the global

ointer, $ s p (29) is the stack pointer, $ f p (30) is the frame pointer, and $ r a
1) is the return address.

------- -----
Memory(O], Accessed only by data transfer instructions. MIPS uses byte addresses. so
Memory[4]. . . . , sequential words differ by 4. Memory holds data structures. such as arrays.

I Memory[4294967292] and spi lled registers , such as those saved on procedure calls.

MIPS assembly language

Instruction Example Meaning Comments

add add $sl. $s2. $s3 $sl = $s2 + $s3
I
Three operands; data in registers

subtract sub $s 1. $s2. $s3 $sl = $s2 - $s3
I

Three operands; data in registers

load word lw $sl,100($ s2) $sl = Memory[$ s2 + 100] I Data from memory to register

store word sw $sl ,1 00($s2) Memory[$ s2 + 100] = $sl

1

Data from register to memory

branch on equal beq $sl.$s2,L if ($ s 1 == $s2) go to L Equal test and branch

branch on not bne $sl.$ s2 . L if ($s 1 != $s2) go to L Not equal test and branch
equal

set onlessthan slt $sl,$s2 , $s3.if ($s2<$s3)$sl =1;else Comparelessthan:for t,7 , ;,rP
$sl=O

jump j 2500 ~to 10000 I Jump to target address

j ump register j r $ r a to $ r a For switch, procedure return

j ump and link · j al 2500 a =PC+ 4; go to 10000 For procedure call

MIPS machine language

lh::fi• Example Comments

add

sub --r: l 0 j 18

~
35 , 18

19

19

17

17

17

0 32 Jadd $sl. $s2 , $s3

0 34 sub $s1 , $s2 , $s3

lw

SW

beq

bne

s lt
j

j r
jal

Field size

R-format

I-fo rmat

I

R

R

J

R

43 18

4 17

5 17

0 18

2

0 31

3

6 bi ts 5 bits

op

1
rs

op rs

17

18

18

19 17

2500

0 0

2500

5 bits 5 bits

rt rd

rt

100 lw $s 1. 100($s2

100 SW $s1. lJIJ, $s2

25 beq $sl.$s2,lv'

25 lllle $sl,$s2 . 100

0 42 I s l L $sl ,$ s2 , $s3

J l 0000 (see sect ion 3.8)

0 8 jr $ra

j al 10000 (see section 3.8)

5 bits 6 bits All MIPS instructions 32 bits

shamt funct Arit11metic instruction format

address Data transfer. branch format

FIGURE 3.14 MIPS architecture revealed through section 3.6. H igh l ighted portion, ,hm,· M IPS asscmblv language
structures introduced in sec tion 3.6. The }- forma t, used for jump and jump-and-link in,lructions, is explainl'd in '-l'Ction
3.8. This sec tion also exp lains w hy pu tting 25 in the address field of heq and bre mach ine l,1ngu,1ge instrucliun~ i~ l'qui,·a­
lent to 100 in assembly language.

INTEL - 1012

142

'

•

Chapter 3 Instructions: Language of the Machine

Beyond Numbers

Computers were invented to crunch numbers, but as soon as they became
commercially viable they were used to process text. Most computers today
use 8-bit bytes to represent characters, with the Ameri~an Standard Code for
Information Interchange (ASCII) being the representation that nearly every­
one follows. Figure 3.15 summarizes ASCII.

A series of instructions can be used to extract a byte from a word, so load
word and store word are sufficient for transferring bytes as well as words. Be­
cause of the popularity of text in some programs, however, MIPS provides spe­
cial instructions to move bytes. Load byte (lb) loads a byte from memory,
placing it in the rightmost 8 bits of a re~ister. Store byte (s b) takes a byte from
the rightmost 8 bits of a register and wntes 1t to memory. Thus we copy a byte
with the sequence

lb StO , O(Ssp) # Read byte from source
sb StO , O(Sgp) # Write byte to destination

•••••••••••• 32 space 48 0 64 @ 80 p 96 I 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ,. 50 2 66 B 82 I R 98 b 114 r

35 # 51 3 67 C 83 s 99 C 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 u 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 V

39 55 7 71 I G 87 I w 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 X

41) 57 I 9 73 I 89 y 105 i 121 y

42 * 58 74 J 90 z 106 j 122 z

43 + 59 75 K 91 [107 k 123 {

60 I 76 ' L 92 \ 108 I 124 I 44 <

45 61 - 77 M 93 l 109 m 125 }

46 62 > 78 I N 94 A 110 n 126 I ~ i
47 I 63 ? 79 0 95 I 111 0 127 DEL

FIGURE 3.15 ASCII representation of characters. ote that upper- and lowercase letters differ by exactly 32;
this observation can lead to shortcuts in checking or changing upper- and lowercase.Values not shown rnclude for­
matting characters. For example, 9 represents a tab character and 13 represents a carriage return. Other useful ASCII
values are 8 for backspace and O for Null, the value the programming language C uses to mark the end of a stnng.

Example

Answer

3. 7 Beyond Numbers 143

Characters are normally combined into strings, which have a variable num­
ber of characters. There are three choices for representing a string: (1) the first
position of the string is reserved to give the length of a string, (2) an accompa­
nying variable has the length of the string (as in a structure), or (3) the last po­
si tion of a string is indicated by a character used to mark the end of a string. C
uses the third choice, terminating a string with a byte whose value is O (named
null in ASCII). Thus the string "Cal" is represented in C by the following 4
bytes, shown as decimal numbers: 67, 97, 108, 0.

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure st rcpy copies string y to string x using the null byte
termination convention of C:

vo i d strcpy (char x[J , char y[Jl
!

inti ;

i = O;
while ((x[i] = y[i]) 1= OJ /* co py and test byte*/

i = i + 1 ;

What is the MIPS assembly code?

Below is the basic MIPS assembly code segment. We again assume we can
add or subtract constants like 1 or 4, which we cover in section 3.8. Assume
that base addresses for arrays x and y are found in $a0 and $a 1, while i is
in $s0. strcpy adjusts the stack pointer and then saves the saved register
SsO on the stack:

strcpy :
sub
SW

Ssp , Ssp , 4
SsO , O(Sspl

adjust stack for 1 more item
save SsO

To initialize i to 0, the next instruction sets $ s O to O by adding O to O and
placing that sum in SsO:

add SsO , Szero , Szero # i = 0 + 0

This is the beginning of the loop. The address of y [i J is first formed by
adding i to y []:

Ll: add Stl , Sal . SsO # address of y[i] in Stl

Note that we don't have to multiply i by 4 since y is an array of bytes and
not of words, as in prior examples.

INTEL - 1012

I

II

I'

I

I
I

Ii I

1;

144 Chapter 3 Instructions: Language of the Machine

To load the character in y [i], we use load byte, which puts the charac­
ter into $t2 :

lb $t2 , 0($tl) #HZ= y[i]

A similar address calculation puts the address of x [i] in $ t3, and then the
character in $t2 is stored at that address.

add $t3,$a0 , $s0 # address of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]

Next we exit the loop if the character was O; that is, if it is the last character
of the string.

be q $t 2 , $ z e r o , L 2 # i f y [i J == 0 , g o t o L 2

If not, we increment i and loop back.

add $s0,$s0,l #i=i+l
j Ll # go to Ll

If we don't loop back, it was the last character of the string; we restore $ s 0
and the stack pointer, and then return.

L 2 : l w $ s O , O ($ s p) # y [i J == 0 : e n d o f s t r i n g ;

add
j r

$sp,$sp,4
$ ra

restore old $s0
pop 1 word off stack
return

String copies are usually done with pointers instead of arrays in C to
avoid the operations on i in the code above. See section 3.11 for an expla­
nation of arrays versus pointers.

Since the procedure st rcpy above is a leaf procedure, the compiler could
allocate i to a temporary register and avoid saving and restoring $ s 0. Hence,
instead of thinking of the $ t registers as being just for temporaries, we_ can
think of them as registers that the callee should use whenever convement.
When a compiler finds a leaf procedure, it exhausts all temporary registers be­
fore using the registers it must save.

Elaboration: There is a universal encoding of the characters of most human lan­
guages called Unicode, which needs 16 bits to represent a character. The programming
language Java , for example, uses Unicode. The full MIPS instruction set has expl1c1t
instructions to load and store 16-bit quantities , called halfwords. We skip halfword
instructions in this book to keep the instruction set as easy to understand as possible ,
although section A.10 starting on page A-49 includes the full instruction set.

Also, MIPS software tries to keep the stack aligned to word addresses, allowing the
program to always use l w and sw (which must be aligned) to access the stack. This
convention means that a ch a r variable allocated on the stack will be allocated 4 bytes,
even though it needs just 1 byte. A string variable or an array of bytes will pack 4 bytes

per word, however.

3.8 other Styles of MIPS Addressing 145

• Other Styles of MIPS Addressing

Example

Designers of the MIPS architecture provided two more ways of accessing
operands. The first is to make it faster to access small constants, and the sec­
ond is to make branches more efficient.

Constant or Immediate Operands

Many times a program will use a constant in an operation-for example,
incrementing an index to point to the next element of an array, counting itera­
tions of a loop, or adjusting the stack in a nested procedure call. In fact, in two
programs, more than half of the arithmetic instructions have a constant as an
operand: in the C compiler gee, 52% of arithmetic operations involve con­
stants; in the circuit simulation program spice, it is 69%.

Using only the instructions in Figure 3.14, we would have to load a constant
from memory to use it. (The constants would have been placed in memory
when the program was loaded.) For example, to add the constant 4 to register
$ s p, we could use the code

lw $t0 , AddrConstant4($zero) # $t0 = constant 4
add $sp , $sp,$t0 # $sp = $sp + $t0 ($t0 == 4)

assuming that Add rCon s ta nt4 is the memory address of the constant 4.
An alternative that avoids memory accesses is to offer versions of the arith­

metic instructions in which one operand is a constant, with the novel con­
straint that this constant is kept inside the instruction itself. Following the
recommendation urging regularity, we use the same format for these instruc­
tions as for the data transfer and branch instructions. In fact, the J in the name
of the I-type format is for immediate, the traditional name for this type of oper­
and. The MIPS field containing the constant is 16 bits long.

Translating Assembly Constants into Machine Language

The add instruction that has one constant operand is called add immediate
or add i. To add 4 to register $ s p, we just write

addi $sp , $sp , 4 # $sp = $sp + 4

The op field value for add i is 8. Try to guess the rest of the corresponding
MIPS machine instruction.

INTEL - 1012

146 Chapter 3 Instructions: Language of the Machine

This instruction is the following machine code (using decimal numbers) :

op rs rt immediate

8 29 29 4

(Figure 3.13 on page 140 shows that register 29 corresponds to $s p.) In bi­
nary add i is

001000 11101 11101 0000 0000 0000 0100

Immediate or constant operands are also popular in comparisons. Since reg­
ister $ zero always has 0, we can already compare to 0. To compare to other val­
ues, there is an immediate version of the set on less than instruction. To test if
register $ s 2 is less than the constant 10, we can just write

slti HO , $s2,10 if HO= 1 if $s2 < 10

Similar to the earlier example on page 128 (Hardware Software Interface), this
instruction can be followed by b n e $t O , $zero to branch if register $ s 2 is less
than the constant 10.

Immediate addressing illustrates the final hardware design principle, first
mentioned in Chapter 2:

Design Principle 4: Make the common case fast.

Constant operands occur frequently, and by making constants part of arith­
metic instructions, they are much faster than if they were loaded from mem-

ory.
Although constants are frequently short and fit mto the _16-bit field, some-

times they are bigger. The MIPS instruction set includes the mstruc~10n loa1 up­
per immediate (1 u i) specifically to set the upper 16 bits of a co~1stant ma register,
allowing a subsequent instruction to specify the lower 16 bits of the constant.
Figure 3.16 shows the operation of 1 u i.

The machine language version of l ui st0 . 255 # St0 is register 8:

001111 00000 01000 0000 0000 1111 1111

Contents of register st0 after executing l ui st0. 255:

0000 0000 1111 1111 0000 0000 0000 0000

FIGURE 3.16 The effect of the l u i instruction. The instruction l u i transfers the 16-bit immediate constant
field value into the leftmost 16 bits of the register, filling the lower 16 bits with Os. As we shall see in Chapter 4,
this instruction is like multiplying the constant by 216 before loading it into the register.

3.8 other Styles of MIPS Addressing 147

Loading a 32-Bit Constant

Example What is the MIPS assembly code to load this 32-bit constant into register
$s0?

Answer

0000 0000 0011 1101 0000 1001 0000 0000

First we would load the upper 16 bits, which is 61 in decimal, using 1 u i :

lui $s0, 61 if 61 decimal= 0000 0000 0011 1101 binary

The value of register $ s O afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to add the lower 16 bits, whose decimal value is 2304:

addi $s0, $s0, 2304 if 2304 decimal = 0000 1001 0000 0000

The final value in register $ s O is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

Hardware

Software

Interface

Either the compiler or the assembler must break large con­
stants into pieces and then reassemble them into a register.
As you might expect, the immediate field's size restriction
may be a problem for memory addresses in loads and stores
as well as for constants in immediate instructions. If this job
falls to the assembler, as it does for MIPS software, then the
assembler must have a temporary register available in

which to create the long values. This is a reason for the register $at, which is
reserved for the assembler.

Hence the symbolic representation of the MIPS machine language is no
longer limited by the hardware, but to whatever the creator of an assembler
chooses to include (see section 3.9) . We stick close to the hardware to ex plain
the architecture of the machine, noting when we use the enhanced language
of the assembler that is not found in the machine.

Elaboration: We need to be careful about creating 32-bit constants. The instruction
addi will copy the leftmost bit of the 16-bit immediate field of the instruction into the
upper 16 bits of a word. An instruction we will see in the next chapter, or i, for logical
or immediate, loads Os into the upper 16 bits and hence is used by the assembler in
conjunction with l u i to create 32-bit constants.

INTEL - 1012

148 Chapter 3 Instructions: Language of the Machine

Addressing in Branches and Jumps

The simplest addressing is found in the MIPS jump instructions. They use the
final MIPS instruction format, called the J-type, which consists of 6 bits for the
operation field and the rest of the bits for the address field. Thus,

j 10000 #goto location 10000

is assembled into this format:

2 10000

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000 .
Unlike the jump instruction, the conditional branch instruction must specify

two operands in addition to the branch address. Thus,

bne $s0 , $sl . Exit #goto Exit if $s0 # $sl

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that
no program could be bigger than 216, which is far too small to be a realistic
option today. An alternative would be to specify a register that would always
be added to the branch address, so that a branch instruction would calculate
the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 232 and still be able to use con­
ditional branches, solving the branch address size problem. The question is
then, w hich register?

The answer comes from seeing how conditional branches are used. Condi­
tional branches are found in loops and in if statements, so they tend to branch
to a nearby instruction. For example, almost half of all conditional branches in
gee and spice go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch
within± 215 words of the current instruction if we use the PC as the register to
be added to the address. Almost all loops and if statements are much smaller
than 216 words, so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall
see in Chapter 5, it is convenient for the hardware to increment the PC early to
point to the next instruction. Hence the MIPS address is actually relative to the
address of the following instruction (PC+ 4) as opposed to the current instruc­
tion (PC).

Example

Answer

3.8 other Styles of MIPS Addressing 149

Like most recent machines, MIPS uses PC-relative addressing for all condi­
tional branches because the destination of these instructions is likely to be
close to the branch. On the other hand, jump-and-link instructions invoke pro­
cedures that have no reason to be near the call, and so they normally use other
forms of addressing. Hence the MIPS architecture offers long addresses for
procedure calls by using the J-type format for both jump and jump-and-link in­
structions.

Showing Branch Offset in Machine Language

The while loop on page 127 was compiled into this MIPS assembler code:

Loop : add $tl , $s3 , $s3 # Temp reg $tl = 2 * i
add $tl ,$tl,$ tl # Temp reg $tl = 4 * i
ad d $t l,$ t l,$ s6 # $t l = add r ess of save[i]
l w $t0 . 0($tl l # Temp reg $t0 = save[iJ
bne $t0 ,$ s5 . Exit #goto Exit if save[i] # k
add $s3 , $s3 , $s4 # i = i + j
j Loop #goto Loop

Exit :

If we assume that the loop is placed starting at location 80000 in memory,
what is the MIPS machine code for this loop?

The assembled instructions and their addresses would look like this:

80000 0 19 19 9 0 32

80004 0 9 9 9 0 32

80008 0 9 22 9

0~

80012 35 9 8

: I "

80016 5 8 21

80020 0 19 20 19

80024 2 80000

80028

80012 L__i5 9 8-~---~ 0 J

Remember that MIPS instructions use byte addresses, so addresses of
sequential words differ by four, the number of bytes in a word. The bne
instruction on the fifth line adds 8 bytes to the address of the following in­
struction (80020), specifying the branch destination relative to that instruc­
tion (8) instead of the current instruction (16) or using the full destination
address (80028). The jump instruction on the last line does use the full ad­
dress (80000), corresponding to the label Loop .

INTEL - 1012

150 Chapter 3 Instructions: Language of the Machine

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of
the branch by having PC-relative addressing refer to the number of words to
the next instruction instead of the number of bytes. Thus the 16-bit field can
branch four times as far by interpreting the field as a relative word address
rather than as a relative byte address. Hence the address field in the bne in­
struction at location 80016 in the example above should have 2 instead of 8.
(Relative word addressing is the reason that the machine language versions of
beq and bne in Figures 3.9 and 3.14 have 25 in their address fields instead of
100, as in the assembly language versions.)

Hardware

Software

Interface

Nearly every conditional branch is to a nearby location, but
occasionally it branches far away, farther than can be repre­
sented in the 16 bits of the conditional branch instruction.
The assembler comes to the rescue just as it did with large
addresses or constants: it inserts an unconditional jump to
the branch target, and the condition is inverted so that the
branch decides whether to skip the jump.

Branching Far Away

Example Given a branch on register $ s O being equal to register $ s 1,

Answer

beq $s0,$s1, L1

replace it by a pair of instructions that offers a much greater branching dis­
tance.

It can be replaced by these instructions:

bne $s0 ,$s1, L2
j L1

L2:

Elaboration: The 26-bit fie ld in jump instructions is also a word address, meaning
that it represents a 28-bit byte address. Since the PC is 32 bits, 4 bits must come from
someplace else. The MIPS jump instruction replaces only the lower 28 bits of the PC ,
leaving the upper 4 bits of the PC unchanged . The loader and linker (section 3.9) must
be careful to avoid placing a program across an address boundary of 256 MB (64 mil­
lion instructions), for otherwise a jump must be replaced by a jump register instruction
preceded by other instructions to load the full 32-bit address into a register.

3.8 Other Styles of MIPS Addressing 151

MIPS Addressing Mode Summary

We have seen two new forms of addressing in this section. Multiple forms of
addressing are generically called addressing modes. The MIPS addressing
modes are the following:

1. Register addressing, where the operand is a register

2. Base or displacement addressing, where the operand is at the memory
location whose address is the sum of a register and a constant in the
instruction

3. Immediate addressing, where the operand is a constant within the instruc­
tion itself

4. PC-relative addressing, where the address is the sum of the PC and a con­
stant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the
instruction concatenated with the upper bits of the PC

Note that a single operation can use more than one addressing mode. Add,
for example, uses both immediate (add i) and register (add) addressing. Figure
3.17 shows how operands are identified for each addressing mode. Section 3.12
expands this list to show addressing modes found in other styles of computers.

Hardware

Software

· E · Interface

Although we show the MIPS architecture as having 32-bit
addresses, nearly all microprocessors (including MIPS)
have 64-bit address extensions. (See Web Extension I at
www.mkp.com/cod2e.htm.) These extensions were in response
to the needs of software for larger programs. The process of
instruction set extension allows architectures to be
expanded in a way that lets software move compatibly

upward to the next generation of architecture.

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the
original assembly language. One example is when looking at a core dump.
Figure 3.18 shows the MIPS encoding of the fields for the MIPS machine lan­
guage. This figure can be used to translate by hand between assembly lan­
guage and machine language.

INTEL - 1012

152 Chapter 3 Instructions: Language of the Machine

1. Immediate addressing

op rs rt Immediate

2. Register addressing

op rs rt rd funct Registers

•LI ________ R_e_g_is_te_r _______ ___.

3 . Base addressing

I op I rs I rt I Address I Memory

$ lf« .Q@ Ai j Halfword I I Register I Word

I

4. PC-relative addressing

op rs rt Address Memory

PC Word

5 . Pseudodirect addressing

I op I Address I Memory

cp I PC I Word

I

FIGURE 3.17 Illustration of the five MIPS addressing modes. The operands are shaded in color. The operand of
mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load and store access_ bytes, half­
words, or words. For mode 1 the operand is 16 bi ts of the instruction itsel f. Modes 4 and 5 are used to address mstruct10ns
in memory, with mode 4 adding a 16-bit address to the PC and mode 5 concatenating a 26-bit address w i th the upper bits
of the PC.

3.8 Other Styles of MIPS Addressing 153

~
0(000)

3

0(000) R· format

1(001) add
immediate

2(010) TLB -
3(011)

4(100) load byte

5(101) store byte

6(110) lwcO

7(111) swcO

)~

0(000)

25

0(00) mfcO

1(01)

2(10)

3(11)

-
2-0 0(000)

5-3 .'--...._

0(000) sll

1(001) jump reg.

2(010) mfhi

3(011) mult

4(100) add

5(101)

6(110)

7(111)

op(31:26)
1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

Bl tz/gez jump jump & link branch eq branch ne b l ez bgtz

addiu set less sltiu andi ori xo r i load upper
than imm. imm

Fl Pt

-

l h lwl --load word lbu l hu l wr
s h swl store word swr
lwc1

swc1 -
I

op(31:26)=010000 (TLB), rs(25:21)

1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

c f cO mtcO
-----+--­

c co

- ~' -
l- - (__

-

op(31:26)=000000 CR-format), funct(S:0)

1(001) 2(010) 3(011)

srl s ra

jalr

mthi mflo mtlo

multu div divu
-

addu subtract subu

set l.t. situ

I
I

S 11 V

101) T 6(110)

tsrlv

7(111)

s ra v

ea k

4(10~{:'
syscal l -~

--i
and I or

7
I

l
nor
t-

-1~
- f

FIGURE 3.18 MIPS Instruction encoding. This notation gives the value of a field by row and by column. For c, ampl e,
in the top portion of the figure load word is found in row number 4 (1001wo for bits 31- 29 of the instruction) and column
number 3 (011 1w0 for bits 28-26 of the instruction), so the corresponding value of the op fi eld (bits 31-26) is 1000 11 two·
Underscore means the field is used elsewhere. For example, R ·format in row 0 and column 0 (op = 000000

1
""

0
) is defined

in the bottom part of the figure. Hence subtract in row 4 and column 2 of the bottom section means that the funct ii eld
(bits 5--0) of the instruction is 100010two and the op field (bits 31-26) is 0000001wo· The Fl Pt value in row 2, column I b
defined in Figure 4.48 on page 292 in Chapter 4. Bl t z/gez is the opcode for four instructions found in Appendi x A:
bl tz , bgez , bl tza l , and bgez al . Instructions given in full name using co lor arc described in Chapter 3, while in;,truc­
tions given in mnemonics using color are described in Chapter 4. Appendix A covers all instructions.

<

j
I

I

INTEL - 1012

154 Chapter 3 Instructions: Language of the Machine

Example

Answer

Mfoi::i•
Field size

R-format

I-format

J-format

Decoding Machine Code

What is the assembly language corresponding to this machine instruction?

(Bits: 31 28 26 5 2 0)
0000 0000 1010 1111 1000 0000 0010 0000

The first step is to look at the op field to determine the operation. _R~ferring
to Figure 3.18, when bits 31-29 are 000 a~d bit~ 28-26 ~re ~00, it is an R­
format instruction. Let's reformat the bmary mstruchon mto R-format
fields, listed in Figure 3.19:

op
000000

rs
00101

rt
01111

rd
10000

shamt
00000

funct
100000

The bottom portion of Figure 3.18 determines the operation of a~ R-format
instruction. In this case, bits 5-3 are 100 and bits 2-0 are 000, which means
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the field values. The
decimal values are 5 for the rs field, 15 for rt, 16 for rd (shamt is unused).
Figure 3.13 on page 140 says these numbe_rs repr~sent registers $al, $t7,
and $s0. Now we can show the assembly mstruct10n:

add $s0,$al,$t7

Figure 3.20 shows the MIPS assembly la~guage revea~ed in ~hap~er 3; t~e
remaining hidden portion of MIPS instruct10ns deals mamly with anthmetic,
covered in the next chapter.

Fields Comments

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

op rs rt rd shamt funct Arithmetic instruction format

op rs rt address/ immediate Transfer, branch, imm. format

op target address Jump instruction format

FIGURE 3.19 MIPS instruction formats In Chapter 3. Highlighted portions show instruction formats intro­

duced in this section.

•
3.8 other Styles of MIPS Addressing 155

MIPS operands
am,,,& Example Comments

$s0- $s7 , $t0- $t9 , $zero , Fast locations for data. In MIPS, data must be in registers to perform
32 registers $a0-$ a3 , $v0- $vl , $gp , arithmetic. MIPS register $zero always equals o. Register $at is reserved

Hp , $sp, $ ra , $at for the assembler to handle large constants.

230 memory
Memory[O], Accessed only by data transfer instructions. MIPS uses byte addresses, so

words
Memory[4], . .. , sequential words differ by 4. Memory holds data structures, such as arrays,
Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

• £UM& Instruction Example Meaning Comments

add add $sl, $s2 , $s3 $sl - $s2 + $s3 Three operands; data in
registers

Arithmetic subtract sub $s 1, $s2 . $s3 $s1 - $s2 - $s3 Three operands; data in
registers

add immediate addi $s1, $s2 , 100 $ s 1 = $ s 2 + 100 Used to add constants

load word lw $sl,100($s2) $s 1 = Memory[$ s2 + 100] Word from memory to register

store word SW $s1,100($s2) Memory[$ s2 + 100] = $s1 Word from register to memory

Data transfer
load byte lb $s 1, 100($s2) $sl = Memory[$s2 + 100] Byte from memory to register

store byte Sb $sl , 100($s2) Memory[$ s 2 + 100] = $s1 Byte from register to memory

load upper l ui $sl, 100 $sl = 100 * 216 Loads constant in upper 16 bits
immediate

branch on equal beq $s1,$s2 , 25 if ($s 1 == $s2) go to Equal test; PC-re lative branch
PC+ 4 + 100

branch on not equal bne $sl,$s2 , 25 if ($ s 1 != $ s 2) go to Not equal test; PC-relative

Conditional PC+ 4 + 100

branch set on less than slt $s1 ,$ s2 , $s3 if($S2<$S3) $sl =1; Compare less than; for beq , bne
else $ s 1 = O

set less than s lti $s1 , $s2 , 100 if ($s2 < 100) $s1 = 1 ; Compare less than constant
immed iate else $ s 1 = O

jump j 2500 go to 10000 Jump to target address
Uncondi-

jump register j r $ra go to $ ra For switch, procedure return
tional jump

jump and link ja l 2500 $ r a = PC + 4; go to 10000 For procedure cal I

FIGURE 3.20 MIPS assembly language revealed in Chapter 3. Highlighted portions show portions from sections 3.7
and 3.8.

INTEL - 1012

156

•

Chapter 3 Instructions: Language of the Machine

Starting a Program

This section describes the four steps in transforming a C program in a file_on
disk into a program running on a computer. Figure 3.21 shows tl'.e tra_nslahon
hierarchy. Some systems combine these steps to reduce translation _time, ?ut
these are the logical four phases that all programs go through. This section
follows this translation hierarchy.

C program

Assembly language program

Executable : Machine language program

Loader

Memory

FIGURE 3.21 A translation hierarchy. A high-level-langua ge program is first compiled into an asse~1bly
n ua e ro ram and then assembled into an object module in machme language. The lmker com mes

:;uftipt Jod~les with library routines to resolve all references. The loader then places the machme code ;nto
the ro er memory locations for execution by the processor. To speed up the translat10n process, some s eps
re ;ki:ped or combined together. Some compilers produce object modules directly, and some systems use

~inking loaders that perform the last two steps. To identify the ty_pe of file, Unix follows a su;fix co;:v:~:~:
for files: C source files are named x . c, assembly files are x . s, obiect files are named x . O, an anf e t c
file by default is called a . out. MS-DOS uses the suffixes .C, .ASM, . OBJ, and . EXE to the same ef ec •

3.9 Starting a Program
157

Compiler

The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High-level-language pro­
grams take many fewer lines of code than assembly language, so programmer
productivity is much higher.

In 1975 many operating systems and assemblers were written in assembly
language because memories were small and compilers were inefficient. The
16,000-fold increase in memory capacity per DRAM chip has reduced program
size concerns, and optimizing compilers today can produce assembly lan­
guage programs nearly as good as an assembly language expert, and some­
times even better for large programs.

Assembler

As mentioned on page 147, since assembly language is the interface to higher­
level software, the assembler can also treat common variations of machine
language instructions as if they were instructions in their own right. These
instructions need not be implemented in hardware; however, their appear­
ance in assembly language simplifies translation and programming. Such
instructions are called pseudoinstructions.

For example, the MIPS hardware makes sure that register $zero always has
the value 0. That is, whenever register $zero is used, it supplies a 0, and the
programmer cannot change the value ofregister $zero. Register $ zero is used
to create the assembly language instruction move that copies the contents of
one register to another. Thus the MIPS assembler accepts this instruction even
though it is not found in the MIPS architecture:

move $t0,$tl # register $t0 gets register $tl

The assembler converts this assembly language instruction into the machine
language equivalent of the following instruction:

add $t0,$zero,$tl # register $t0 gets O + register $tl

The MIPS assembler also converts b l t (branch on less than) into the two in­
structions s l t and b n e mentioned in the example on page 128. Other examples
include bgt, bge, and bl e. It also converts branches to faraway locations into
a branch and jump. As mentioned above, the MIPS assembler can even allow
32-bit constants to be loaded into a register despite the 16-bit limit of the im­
mediate instructions.

In summary, pseudoinstructions give MIPS a richer set of assembly lan­
guage instructions than those implemented by the hardware. The only cost is
reserving one register, $at, for use by the assembler. If you are going to write
assembly programs, use pseudoinstructions to simplify your task. To under­
stand the MIPS architecture and to be sure to get best performance, however,
study the real MIPS instructions found in Figures 3.18 and 3.20.

INTEL - 1012

158

. I

i.:1 I
111

!1'

!

Chapter 3 Instructions: Language of the Machine

Assemblers will also accept numbers in a variety of bases. In addition to bi­
nary and decimal, they usually accept a base that is more succinct than binary
yet can easily be converted to a bit pattern. MIPS assemblers ~se base 16, called
hexadecimal; we use the subscript "hex" to indicate a hexadecimal number. The
hexadecimal digits are O to 9 for the first 10 digits and then the letters a to f f~r
the last 6 digits. For example, the bit pattern from the example on page 154 1s
shown as both binary and hexadecimal numbers:

0000 0000 1010 1111 1000 0000 0010 0000two = 00af 8020hex

Such features are convenient, but the primary task of an assembler is assem­
bly into machine code. The assembler turns the_ assembly l~nguag~ program
into an object file, which is a combination of machine language mstruchons, data,
and information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly ~anguage
program, the assembler must determine the addresses corresponding to _all
labels. Assemblers keep track of labels used in branches and data transfer in­
structions in a symbol table. As you might expect, the table contains pairs of

symbol and address.
The object file for Unix systems typically contams six d1stmct pieces:

• The object file header describes the size and position of the other pieces of
the object file.

• The text segment contains the machine language code.

• The data segment contains whatever data that comes with the progra~:
either static data, which is allocated throughout the program, or dynamic
data, which can grow or shrink as needed by the program.

• The relocation information identifies instructions and data words that de­
pend on absolute addresses when the program is loaded into memory.

• The symbol table contains the remaining labels that are not defined, such
as external references.

• The debugging information contains a concise description of how the
modules were compiled so that a debugger can associate machine in­
structions with C source files and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker
What we have presented so far suggests that a single change to one line of one
procedure requires compiling and assembling the whole program. Complete

'!,

3.9 Starting a Program 159

retranslation is a terrible waste of computing resources. This repetition is par­
ticularly wasteful for standard library routines because programmers would
be compiling and assembling routines that by definition almost never change .
An alternative is to compile and assemble each procedure independently, so
that a change to one line would require compiling and assembling only one
procedure. This alternative requires a new systems program, called a link
editor or linker, that takes all the independently assembled machine language
programs and "stitches" them together.

There are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch in­
structions, jump instructions, and data addresses, so the job of this program is
much like that of an editor: It finds the old addresses and replaces them with
the new addresses. Editing is the origin of the name "link editor," or linker for
short. The reason a linker makes sense is that it is much faster to patch code
than it is to recompile and reassemble.

If all external references are resolved, the linker next determines the memo­
ry locations each module will occupy. Figure 3.22 shows the MIPS convention
for allocation of program and data to memory. Since the files were assembled
in isolation, the assembler could not know where a module's instructions and
data will be placed relative to other modules. When the linker places a module
in memory, all absolute references, that is, memory addresses that are not rela­
tive to a register, must be relocated to reflect its true location.

The linker produces an executable file that can be run on a computer. Typical­
ly, this file has the same format as an object file, except that it contains no un­
resolved references, relocation information, symbol table, or debugging
information. It is possible to have partially linked files, such as library routines,
which still have unresolved addresses and hence result in object files.

INTEL - 1012

160

Example

Chapter 3 Instructions: Language of the Machine

$Sp - 7fff fffChex Stack

l

l
Dynamic data

$gp - 1000 8000hex

1000 0000 hex

pc - 0040 0000hex

0

Static data

Text

Reserved

FIGURE 3.22 The MIPS memory allocation for program and data. Starting top down, the
stack pointer is initialized to 7fff fffchex and grows down toward the data segment. At the
other end, the program code ("text") starts at 0040 OOOOhex· The static data starts at
100 0 OOOOh ex · Dynamic data, allocated by ma ll oc in C, is next and grows up towa rd the stack.
The global pointer, $gp, is set to an address to make it easy to access data. It is initialized to
1000 8000hex so that it can access from 1000 OOOOhex to 1000 ffffhex using the positive and
nega tive 16-bit offsets from $gp (see two's complement addressing in Chapter 4).

Linking Object Files

Link the two object files below. Show updated addresses of the first few in­
structions of the completed executable file. We show the instructions in as­
sembly language just to make the example understandable; in reality, the
instructions would be numbers.

Note that in the object files we have highlighted the addresses and sym­
bols that must be updated in the link process: the instructions that refer to
the addresses of procedures A and B and the instructions that refer to the
addresses of data words X and Y.

3.9 Starting a Program

[Object file header _c_

/-------- I N;~~~. i
Text segment -1 Address __

Data segment

Relocation information

Symbol table

Object file header

Text segment

Data segment

Relocation information

Symbol table

0 ____J
4 __j

0 7
Address~!

0

4

Lar ~

Name

Text size

Data size

Addr~s~

4

0

Address

0

4

Label
y

A -=t

Procedure A

100hex

20hex

Instruction

lw $a 0 . ($gp)

j al 0

(X)

Instruction type

lw

j al
Address

Procedure B

200hex

30hex

Instruction

s w $al. ($gp)
--

j al 0

(y)

Instruction type

SW

j al

Address

161

I~
Dependency

l
X

B

I

r

I Dependency
y

j
A

-

INTEL - 1012

162 Chapter 3 Instructions: Language of the Machine

Procedure A needs to find the address for the variable labeled X to put in
the load instruction and to find the address of procedure B to place in the
j al instruction. Procedure B needs the address of the variable labeled Y for
the store instruction and the address of procedure A for its j al instruction.

Executable file header

Text size 300hex

Data size 50hex

Text segment Address Instruction

0040 OOOOhex lw $a0 , BOOOhex ($gp l

0040 0004hex jal 40 OlOOhex

..

0040 OlOOhex SW $a 1. 8020hex ($gp)

0040 0104hex jal 40 OOOOhex

... .. .

Data segment Address

1000 OOOOhex (X)

..
1000 0020hex (y)

... ...

From Figure 3.22 we know that the text segment starts at address
40 OOOOhex and the data segment at 1000 OOOOhex· The text of procedure A
is placed at the first address and its data at the second. The object file head­
er for procedure A says that its text is lOOhex bytes and its data is 20hex
bytes, so the starting address for procedure B text is 40 OlOOhex, and its
data starts at 1000 0020hex·

Now the linker updates the address fields of the instructions. It uses the
instruction type field to know the format of the address to be edited. We
have two types here:

1. The j al s are easy because they use pseudodirect addressing. The
jal at address 40 0004hex gets 40 OlOOhex (the address of proce­
dure B) in its address field, and the jal at 40 0104hex gets
40 OOOOhex (the address of procedure A) in its address field.

2. The load and store addresses are harder because they are relative to
a base register. In this example, the global pointer is used as the
base register. Figure 3.22 shows that $gp is initialized to
1000 8000hex· To get the address 1000 OOOOhex (the address of
word X), we place 8000hex in the address field of l w at address
40 OOOOhex· Chapter 4 explains 16-bit two's complement computer
arithmetic, which is why 8000hex in the address field yields
1000 OOOOhex as the address. Similarly, we place 8020hex in the
address field of sw at address 40 OlOOhex to get the address
1000 0020hex (the address of word Y).

3.10 An Example to Put It All Together 163

Loader

Now that the executable file is on disk, the operating system reads it to mem­
ory and starts it. It follows these steps in Unix systems:

1. Reads the executable file header to determine size of the text and data
segments.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable file into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the first
free location.

6. Jumps to a start-up routine that copies the parameters into the argu­
ment registers and calls the main routine of the program. When the
main routine returns, the start-up routine terminates the program with
an ex i t system call.

Sections A.3 and A.4 in Appendix A describe linkers and loaders in more
detail.

II An Example to Put It All Together

One danger of showing assembly language code in snippets is that you will
have no idea what a full assembly language program looks like. In this section
and the next, we derive the MIPS code from two procedures written in C: one
to swap array elements and one to sort them.

The Procedure swap

Let's start with the code for the procedure swap in Figure 3.23. This procedure
simply swaps two locations in memory. When translating from C to assembly
language, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by
putting all the pieces together.

INTEL - 1012

164
Chapter 3 Instructions: Language of the Machine

swap(int v[] . int k)
{

l

int temp ;
temp= v[k];
v[k] = v[k+l];
v[k+l] = temp ;

FIGURE 3.23 Ac procedure that swaps two locations In memory. This procedure will be
used in the sorting example in the next section. Web_ Extens10n II at www.mkp.com/cod2e.htm shows

the C and Pascal versions of this procedure side by side.

Register Allocation for swap . .
As mentioned on page 132, the MIPS convention on ~arameter passing is to
use registers $ a O, $ a 1, $ a 2, and $ a 3. Since swap has iust two param~ters, _v
and k, they will be found in registers $ a O an~ $al. Th~ only other variable is
temp, which we associate with register $t0 smce swap is~ leaf procedu_re (s~e
page 136). This register allocation c?rre~ponds to the vanable declarations m
the first part of the swap procedure m Figure 3.23.

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp= v[k] :
v[k] = v[k+l];
v[k+lJ = temp ;
Recall that the memory address for MIPS refers to the byte address, and so

words are really 4 bytes apart. Hence we need to multiply the index k ?Y 4 be­
fore adding it to the address. Forgetting that sequential word addr~sses differ by 4
instead of by 1 is a common mistake in assembly l~ng~age programming. Hence the
first step is to get the address of v [k J by multiplying k by 4:

add $tl, $al,$al # reg $tl k * 2
add $tl, $tl, $tl # reg $tl = k * 4
add $tl, $a0, $tl # reg $tl = v + (k * 4)

reg $tl ha s the address of v[k]

Now we load v [k] using $tl, and then v [k+ 1 J by adding 4 to $tl:

l w $t0, 0($tl) H reg $t0 (temp)= v[k]
lw $t2, 4($tl) # reg $t2 = v[k + lJ

refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

sw $t2, 0($tl) # v[k] = reg $t 2
s w $t0, 4($tl) # v[k+l] = reg $t0 (temp)

•
3.10 An Example to Put It All Together 165

Procedure body

swap: add $tl, $a 1. $al ti reg $tl = k * 2
add $tl, $tl. $tl ti reg $tl = k * 4
add $tl, $a0, $tl ti reg $tl = v + (k * 4)

ti reg $tl has the address of v[k]
lw $t0, 0($tl) ti reg $t0 (temp)= v[k]
lw $t2, 4($tl) ti reg $t2 = v [k + 1]

ti refers to next element of v
SW $t2, 0($tl) ti v[k] = reg $t2
SW $t0, 4($tl) ti v[k+l] = reg $t0 (temp)

Procedure return

j r $ra ti return to calling routine

FIGURE 3.24 MIPS assembly code of the procedure swap in Figure 3.23.

. Now we have allocated registers and written the code to perform the oper­
ations of the procedure. The only missing code is the code that preserves for
the caller ~he sa:ed ~egisters that are used within swap. Since we are not using
saved registers m this leaf procedure, there is nothing to preserve.

The Full swap Procedure

We are now rea~y for the whole routine, which includes the procedure label
and the return iump. To make it easier to follow, we identify in Figure 3.24
each block of code with its purpose in the procedure.

The Procedure sort

To ensure that you appreciate the rigor of programming in assembly lan­
guage, we'll try a second, longer example. In this case, we'll build a routine
that calls the swap pro~edure. This program sorts an array of integers. Figure
3.25 s_hows the C version of the program. Once again we present this proce­
dure m several steps, concluding with the full procedure.

Register Allocation for sort

!he two parameters of the procedure sort, v and n, are in the parameter reg­
isters $ a O and $ a 1, and we assign register $ s O to i and register $ s 1 to j.

Code for the Body of the Procedure sort

!he procedure body consists of two nested for loops and a call to swap that
includes parameters. Let's unwrap the code from the outside to the middle.

The first translation step is the first for loop:

for (i = O; i < n; i = i + 1) !

INTEL - 1012

166 Chapter 3 Instructions: Language of the Machine

sort (i nt v[J . i nt n)
{

int i . j :
for Ci = 0 : i < n: i = i + 1) I

for (j = i - l; j >= 0 && v [j J > v [j + 1 J : j = j - 1) { swap (v. j l ;
I

FIGURE 3.25 AC procedure that performs a sort on the array v. In case you are unfa miliar
with C, the three parts of the first fo r statement are the initialization that happens before the first
iteration (i = 0), the test if the loop should iterate again (i < n), and the operation that hap­
pens at the end of each iteration (i = i + 1). Web Extension II at www.mkp. com/cod2e.htm shows
the C and Pascal versions of this procedure side by side.

Recall that the C fo r statement has three parts: initialization, loop test, and
iteration increment. It takes just one instruction to initialize i to 0, the first
part of the for statement:

mov e $s0 , $zer o II i = o
(Remember that move is a pseudoinstruction provided by the assembler for
the convenience of the assembly language programmer; see page 157.) It also
takes just one instruction to increment i , the last part of the for statement:

add i $s0 , $s0 , 1 II i = i + 1

The loop should be exited if i < n is not true, or, said another way, should be
exited if i ~ n. The set on less than instruction sets register $t 0 to 1 if $ s 0 <
$ a 1 and 0 otherwise. Since we want to test if $ s 0 ~ $ a 1, we branch if register
$t 0 is 0. This test takes two instructions:

fo r ltst : slt $t 0 , $s 0 , $a l II r eg H O= 0 i f $s0 ~ $al (i ~n)
beq $t 0 , $zer o , exi tl II go t o ex itl if $s0~$al (i ~n)

The bottom of the loop just jumps back to the loop test:

j fo rl tst II j ump t o test of out e r loop
ex i tl :

The skeleton code of the first for loop is then

mo ve $s0 , $z ero II i = 0
for lt st : s lt H O, $s0 , $a l II reg HO= 0 if $s0 ~ $a l (i ~n)

beq $t 0 , $ze r o , exit l II go to ex i tl i f $s0~$ al (i ~n)

(body of fir s t f or lo op)

addi $s0 , $s0 , 1 ll i =i+l
j f orl ts t II jump to te s t of out er l oo p

exi tl :

3.10 An Example to Put It All Together
167

Voila! Exercise 3.9 explores writing fas ter code fo r similar]oops.
The second for loop looks like this in C:

fo r (j = i - l; j >= 0 && v[j] > v[j + l]; j j - 1) (

The initialization portion of this loop is again one instruction:

a dd i $sl , $s0, -1 II j = i - l

The decrement of j a t the end of the loop is also one instruction:

addi $sl, $s l , -1 II j = j - l

The loop test has two parts. We exit the loop if either condition fails, so the
first test must exit the loop if it fails (j < 0):

for2tst : slti HO , $sl, 0 II reg $t0 = 1 i f $sl < o (j < OJ
bne HO, $zero, exit2 II go to exit2 if $sl <O (j < O)

This branch will skip over the second condition test. If it doesn' t skip, j ~ 0.
The second test exits if v [j J > v [j + 1 J is not true, or exits if v [j J ::;

v [j + 1 J. First we create the address by multiplying j by 4 (since we need a
byte address) and add it to the base address of v:

a d d $t l , $ s 1 , $ s 1 II reg $ t1
add $tl , $tl , $tl II reg $tl

j * 2
j * 4

a d d $t 2 , $ a O , $ tl II r e g $t 2 V + (j * 4)

Now we load v [j] :

lw $t3 , 0($t2) II reg $t3 = v[j]

Since we know that the second element is just the follow ing word, we add 4
to the address in register $ t 2 to get v [j + 1 J:

l w $t 4 , 4 ($t 2 l II re g $t 4 = v [j + 1 J

Thetest of v[j]::; v[j + l] is thesameas v[j + l] ~ v[j] ,so the two
instructions of the exit test are

s lt
beq

$t 0 , $t4 , $t 3
$t0 , $z e ro , ex i t2

II reg $t0 = 0 if $t4
II go to ex i t2 if $t4

~ $t 3
~ $t3

The bottom of the loop jumps back to the inner loop test:

j for2tst II j ump to test of inn e r loop

Combining the pieces together, the skeleton of the second for loop looks like
this:

addi $s l, $s0 , -1
for2tst : slti HO , $sl, O

bne $t0, $zer o , ex i t2
a dd $t l, $s l,$ sl

llj= i -1
II reg $t0 = 1 if $sl < O (j<O)
II go to ex i t2 if $sl < O (j<O)
II reg $tl = j * 2

INTEL - 1012

	94
	95

