
168 Chapter 3 Instructions: Language of the Machine

add $tl. $tl,$tl # reg $tl j * 4

add HZ. $a0 . $tl # reg HZ V + (j * 4)

lw $t3 . 0(HZ) # reg H3 v[j]

lw H4 . 4(HZ) # reg $t4 v[j + 1]

s lt H O, H4. $t3 # reg $t0 = 0 if $t4 ~ $t3

beq HO, $zero. ex it2 ff go to exit2 if $t4 ~ $t3

(body of second for loop)

ff j = j - 1 addi
j

exit2:

$sl . $sl . -1
for2tst ff jump to test of inner loop

The Procedure Call in sort

The next step is the body of the second for loop:

swap(v,j);

Calling s wap is easy enough:

jal swap

Passing Parameters in sort
The problem comes when we want to pass parameters because the s ort pro­
cedure needs the values in registers $a0 and $al, ~et the swap pr~ce~ure
needs to have its parameters placed in those same reg1st~rs. _One solution 1s to

the parameters for sort into other registers earlier m the procedure,
:r:ing registers $ a 0 and $ a 1 available for the call of swap . (This copy_is faster
than saving and restoring on the stack.) We first copy $ a 0 and $ a 1 mto $ s 2

and $s3 during the procedure:

move $s2. $a0 ff copy parameter $a0 into $s2
move $s3. $al ff copy parameter $a l into $s3

Then we pass the parameters to swap with these two instructions:

move $a0 $s2 ff first swap parameter is v
move $al: $sl ff second swap parameter is j

Preserving Registers in sort
The only remaining code is the saving and re~toring of registers. Clearly w_e
must save the return address in register $r a, smce sort 1s a procedure and 1s

3.10 An Example to Put It All Together 169

called itself. The so rt procedure also uses the saved registers $s 0, $s 1, $s 2,
and $s3, so they must be saved . The prologue of the s ort procedure is then

addi $sp , $sp , - 20 ff make r oom on stack fo r 5 r egs
sw $r a , 16 ($s p) ff s ave $ ra on s tack
sw $s 3 , 12 ($sp) ff s av e $s 3 on s t ack
sw $s 2 . 8 ($sp) ff s ave $s 2 on stac k
sw $sl , 4($sp) ff s av e $sl on s t ac k
sw $s0, 0($sp) ff save $s0 on s t ac k

The tail of the procedure simply reverses all these instructions, then adds a j r
to return.

The Full Procedure sort

Now we put all the pieces together in Figure 3.26, being careful to replace ref­
erences to registers $ a 0 and $ a 1 in the for loops with re ferences to registers
$ s 2 and $ s 3. Once again to make the code easier to follow, we identify each
block of code with its purpose in the procedure. In this example, 9 lines of th e
sort procedure in C became the 35 lines in the MIPS assembly language.

Elaboration: One optimization that would work we ll in this example is procedure
inlining. Instead of passing arguments in parameters and invoking the code with a j a l
instruction , the compiler would copy the code from the body of the s wap procedure
where the call to s wap appears in the code. lnlining would avoid four instructions in
this example. The downside of the inlining optimization is that the compi led code would
be bigger, assuming that the inlined procedure is cal led from several locations . Such a
code expansion might turn into lower performance if it increased the cache miss rate;
see Chapter 7.

The MIPS compilers always save room on the stack for the arguments in case they
need to be stored, so in reality they always decrement $ s p by 16 to make room for all
4 argument registers (16 bytes) . One reason is that C provides a v a r a rg option that
allows a pointer to pick, say, the third argument to a procedure. When the com piler
encounters the rare va r a r g, it copies the registers onto the stack into the reserved
locations.

INTEL - 1012

170 Chapter 3 Instructions: Language of the Machine

sort : addi

SW

SW

SW

SW

SW

Move parameters I move

move

move

Outer loop forltst : slt

be q

ad di

I for2tst : s lt i
bne

add

add
Inner loop

add

lw

lw

slt

beq

mo ve
Pass parameters

move
and call

jal

addi
Inner loop

j

exit2 : addi
Outer loop

j

exi tl : lw

l w

lw

lw

lw

addi

jr

Saving registers

$sp , $sp . -20 It
$ ra , 16($spl It
$s3 , 12($sp) It
$s2 , 8($sp) It
$s 1. 4($sp) It
$s0 , 0($sp) It

Procedure body

$s2, $a0 It
$s3 , $al It
$s0 , $zero It
HO , $s0 , $s3 It
H O. $ze r o . exitl It
$s 1. $s0 . -1 It
H O, $s 1. 0 It
$t0 , $zero , exit2 It
Hl , $s 1. $sl It
$tl' $tl, Hl It
$t2 , $s2 , Hl It
$t3 , 0($t2) It
$t4 , 4($t2) It
$t0 , $t 4 , H3 It
H O, $zero , exit2 It
$a0 , $s2 It
$a 1. $s1 It

make room on stack for 5 registers

save $ ra on stack

save $s3 on stack

save $s2 on stack

save $sl on stack

save $s0 on stack

copy parameter $a0 into $

copy parameter $al into $

i = 0

reg $t0 = 0 if $s0 2 $s3

go to e xi tl if $s0 2 $s3

j = i - 1

reg HO = 1 i f $sl < 0 (j

go to exit2 if $sl < 0 (j

reg Hl = j * 2
reg Hl j * 4

reg $t2 V + (j * 4)

reg $t3 V [j]

reg $t4 v[j + 1]

reg HO= 0 if H4 2 H3

go t o exit2 if $t4 2 $t3

1st pa r ameter of s wap is

2nd parameter of swap is

s2 (save $a0)

s3 (save $al)

V

j

(i 2 n)

(i 2 n)

< 0)

< 0)

(old $a0)

swap It swap code shown in Figure 3 . 24

$s 1. $5 l. - 1 It j = j - 1

for2tst It jump to test of inner loop

$s0 , $s0 , It i = i + 1

fo r ltst It jump to test of outer loop

Restoring registers
-

7
$s0 . 0($sp) It restore $s0 from stack

$s 1. 4 ($s p) j/ restore $s1 from stac k

$s2, 8($sp) It restore $s2 from stack

$s3 , 12($sp) j/ restore $s3 from stack

$r a , 16($sp) j/ restore $ ra from stack

$sp , $sp , 20 It restore stack pointer

Procedure return

$ra It return to calling routine

FIGURE 3.26 MIPS assembly version of procedure sort in Figure 3 .25 on page 166.

II
3.11 Arrays versus Pointers 171

Arrays versus Pointers

A challenging topic for any new programmer is understanding pointers.
Comparing assembly code that uses arrays and array indices to the assembly
code that uses pointers offers insight into that difference. This section shows
C and MIPS assembly versions of two procedures to clear a sequence of
words in memory: one using array indices and one using pointers.
Figure 3.27 shows the two C procedures.

Hardware

Software

Interface

People used to be taught to use pointers in C to get greater effi­
ciency than available with arrays: "Use pointers, even if you
can't understand the code." The procedure cl ea r 2 in
Figure 3.27 is such an example. Modern optimizing compilers
can produce just as good code for the array version of the code.
The purpose of this section is to show how pointers map into
MIPS instructions, and not to endorse a questionable style.

clea r l(i nt array[] . int size)
I

i nt i;
for (i = O; i < size : i

array[i) = 0 ;

clear2(int *array , int size)
I

int *P ;

i + 1)

for (p = &array[0J ; p < &array[size]; p
*P = 0 ;

p + 1)

FIGURE 3.27 Two C procedures for setting an array to all zeros. Cl ear 1 uses indices,
while cl ear 2 uses pointers. The second procedure needs some explanation for those unfamiliar
with C. The address of a variable is indicated by & and referring to the object pointed to by a
pointer is indicated by *. The declarations declare that array and p are pointers to integers. The
first part of the for loop in cl ea r2 assigns the address of the first element of array to the pointer
p. The second part of the for loop tests to see if the pointer is pointing beyond the last element of
array. Incrementing a pointer by one, in the last part of the for loop, means moving the pointer
to the next sequential object of its declared size. Since p is a pointer to integers, the compiler will
generate MIPS instructions to increment p by four, the number of bytes in a MIPS integer. The
assignment in the loop places 0 in the object pointed to by p.

INTEL - 1012

,I'

Ii'
:,1,
,,

11 I,

I

,I•
, I

172 Chapter 3 Instructions: Language of the Machine

Array Version of Clear

Let's start with the array version, clear 1, focusing on the body of the loop
and ignoring the procedure linkage code. We assume that the two parameters
array and s i z e are found in the registers $ a O and $ a 1, and that i is allocated
to register $t0.

The initialization of i, the first part of the for loop, is straightforward:

move HO, $zero ff i = 0 (register HO = 0)

To set array [i J to O we must first get its address. Start by multiplying i by 4
to get the byte address:

loopl: add $tl,$t0,$t0
add $tl,$tl,$tl

11 $ t 1 = i * 2
$tl = i * 4

Since the starting address of the array is in a register, we must add it to the
index to get the address of a r ray [i J using an add instruction:

add $t2,$a0,$tl # $t2 = address of array[i]

(This example is an ideal situation for indexed addressing; see page 175.)
Finally we can store O in that address:

s w $zero , 0 ($t 2) fl array [i J = 0

This instruction is the end of the body of the loop, so the next step is to incre­
ment i:

addi $t0,$t0,l 11 i i + 1

The loop test checks if i is less than size:

slt $t3,$t0,$al fl $t3 = (i < size)
bne $t3,$zero,loopl # if (i < size) go to loopl

We have now seen all the pieces of the procedure. Here is the MIPS code for
clearing an array using indices:

move $t0. $zero ff i 0
loopl: add $tl,$t0,$t0 if $ t 1 i * 2

add $tl,$tl,$tl # $tl i * 4
add $t2,$a0,$tl # $t2 address of array[i]
sw $zero, 0($t2) fl array[i J = 0
addi $t0,$t0,l # i = i + 1
slt $t3,$t0,$al # $t3 = (i < size)
bne $t3. $zero, l oopl fl if (i < size) go to loopl

(This code works as long as size is greater than 0.)

F
3.11 Arrays versus Pointers 173

Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array
and size to the registers $ a O and $ a 1 and allocates p to register $t 0. The code
for the second procedure starts with assigning the pointer p to the address of
the first element of the array:

move $t0,$a0 # p = address of array[OJ

The next code is the body of the for loop, which simply stores O into p:

loop2: sw $zero,0($t0) # Memory[p] = 0

This instruction implements the body of the loop, so the next code is the itera­
tion increment, which changes p to point to the next word:

addi $t0,$t0,4 # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which use 4 bytes, the com­
piler increments p by 4.

The loop test is next. The first step is calculating the address of the last ele­
ment of array. Start with multiplying size by 4 to get its byte address:

add $ tl . $ a 1 , $ a 1 I/ $t 1 = s i z e * 2
add $tl,$tl,$tl # $tl =size* 4

and then we add the product to the starting address of the array to get the
address of the first word after the array:

add $t2,$a0,$tl # $t2 = address of array[size]

The loop test is simply to see if p is less than the last element of a r ray:

slt $t3,$t0,$t2 fl $t3 = (p<&array[size]l
b n e $ t3 . $zero , l o op 211 i f (p < & array [s i z e J) go to I o op 2

With all the pieces completed, we can show a pointer version of the code to
zero an array:

move $t0, $a0 # p = address of array[OJ
loop2: SW $zero,0($t(J) fl Memory[p] = 0

addi $t(J,$t0,4 # p = p + 4
add $tl,$al,$al fl $tl size* 2
add $tl,$tl,$tl 11 $tl size* 4
add $t2. $a0, $tl # $t2 address of array[size]
s lL $t3,$t0,$t? 11 $t3 (p<&arrayCsizeJ)
bne $t3. $zero. l oop2# if (p<&array[size]) go to loop?

As in the first example, this code assumes size is greater than 0.

INTEL - 1012

174

move
loopl : add

add
add
SW

addi
slt
bne

Chapter 3 Instructions: Language of the Machine

Note that this program calculates the address of the end of the array every
iteration of the loop, even though it does not change. A faster version of the
code moves this calculation outside the loop:

move $t0 ,$ a0 # p = address of array[•]
add $tl , $al,$al # $tl - s i ze* 2
add $tl,$tl . $Ll # $tl - size* 4
3cirj HZ . ian . $tl it $1 = addrPss t ar-riJy[sizc

loop2 : sw $zero , 0($t0) # Memory[p] = 0
addi $t0 , $t0 , 4 # p = p + 4
slt $t3 , $t0 , $t2 # $t3 = (p< &array[size])
bne $t3 ,$ zero , loo p2 # if (p< &ar r ay [size]l go to loop2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference
between array indices and pointers (the changes introduced by the pointer
version are highlighted):

HO , $zero # i = 0 move HO, f.J ii r & JI 1· a 'y [

$tl,$t0 , $t0 # $tl i * z add $tl , ;"l,Sal II $tl ize ~ z
$tl , $tl , $tl II $tl = i * 4 add $tl , $tl , Hl II $tl ze * 4

II &array[s i Zl'] HZ , $a0 , $tl II HZ= &array[i J add HZ , $a0 , Hl HZ
loopZ : $zero , 0($ t0)# Mrmo rylp] = 0

$zero , 0 (H Z) II array [i J = 0 SW

addi $t0 , $t0, 4 II 1 p + 4
HO , HO , 1 II i = i + 1

s lt H3 . HO,H2 II $t3=Cr<&ar,ay[
H3,HO , $al II H3 = (i < size) bne $t3 . $zero , loopZ# if () go to loopZ
$t3,$zero , loopl# if () go to loopl

The version on the left must have the "multiply" and add inside the loop
because i is incremented and each address must be recalculated from the new
index; the memory pointer version on the right increments the pointer p
directly. The pointer version reduces the instructions executed per iteration
from 7 to 4. Many modern compilers will optimize the C code in cl earl to
produce code similar to the assembly code above on the right-hand side.

Elaboration: The C compiler would add a test to be sure that size is greater than 0.
One way would be to add a jump just before the first instruction of the loop to the s l t
instruction.

II
3.12 Real Stuff: PowerPC and 80x86 Instructions

Real Stuff: PowerPC and 80x86
Instructions

Ben11ty is nltogether in the eye of the beholder.

175

Margaret Wolfe Hungerford , Molly 811w 11 , 1877

Designers of instruction sets sometimes provide more powerful operations
than those found in MIPS. The goal is generally to reduce the number of
instructions executed by a program. The danger is that this reduction can
occur at the cost of simplicity, increasing the time a program takes to execute
because the instructions are slower. This slowness may be the result of a
slower clock cycle time or of requiring more clock cycles than a simpler
sequence (see section 2.8 on page 82).

The path toward operation complexity is thus fraught with peril. To avoid
these problems, designers have moved toward simpler instructions. Section
3.13 demonstrates the pitfalls of complexity.

The IBM/ Motorola PowerPC

The PowerPC, made by IBM and Motorola and used in the Apple Macintosh,
shares many similarities to MIPS: both have 32 integer registers, instructions
are all 32 bits long, and data transfer is possible only with loads and stores.
The primary difference is two more addressing modes plus a few operations.

Indexed Addressing

In the examples above we saw cases where we needed one register to hold the
base of the array and the other to hold the index of the array. PowerPC pro­
vides an addressing mode, often called indexed nddressing, that allows two reg­
isters to be added together. The MIPS code

add St0 , $a0 , Ss3 # Sao has base of an array , Ss3 is index
lw Stl , 0($t0) # reg Stl gets Memory[$a0+$s3]

could be replaced by the following single instruction in PowerPC:

lw Stl , $a0+$s3 # reg Stl gets Memory[$a0+$s3J

Using the same notation as Figure 3.17, Figure 3.28 shows indexed address­
ing. It is available with both loads and stores.

Update Addressing

Imagine the case of a code sequence marching through an array of words in
memory, such as in the array version of cl ear 1 on page 172. A frequent pair

INTEL - 1012

176 Chapter 3 Instructions: Language of the Machine

a. Indexed addressing

op rs rt rd

Memory

Register l I
L--':_-:._-:._-:._-_-_-_-_-_-_-_- -- -- ,- ------~, __ &---~; 1--------w_o_rd ______

7
Register _

b. Update addressing

op rs rt Address Memory

I
[I Register

l

· I 0 Word

r

FIGURE 3 .28 Illustration of indexed and update addressing mode. The operand is shaded in color.

of operations would be loading a word and then incrementi1:g the base regis­
ter to point to the next word. The idea of update address,_ng is t_o have a new
version of data transfer instructions that will automatically increment the
base register to point to the next word each time data is transferr~d. Since the
MIPS architecture uses byte addresses and words are 4 bytes, this new form
would be equivalent to this pair of MIPS instructions:

lw $t0 , 4($s3) # reg $t0 gets Memory[$s3+4J
addi $s3 ,$ s3 ,4 # $s3 = $s3 + 4

The PowerPC includes an instruction like this:

lwu H0 , 4($s3) fl reg HO=Memory[$s3+4] ; $s3 = $s3+4

That is, the register is updated with the address calculated as part of the lo~d.
Figure 3.28 also shows update addressing. PowerPC has update addressing
options for both base and indexed addressing, and for both loads and stores.

Unique PowerPC Instructions

The PowerPC instructions follow the same architecture style as MIPS, largely
relying on fast execution of simple instructions for performance. Here are a
few exceptions.

3.12 Real Stuff: PowerPC and 80x86 Instructions 177

The first is load multiple and store multiple. These can transfer up to 32
words of data in a single instruction and are intended to make fast copies of
locations in memory by using load multiple and store multiple back to back.
They also save code size when saving or restoring registers .

A second example is loops. The Power PC has a special counter register, sep­
arate from the other 32 registers, to try to improve performance of a for loop.

Suppose we wanted to execute the following C code:

for (i = n ; i != O; i = i - 1)
/ ... I ;

If we want to decrement a register, compare to 0, and then branch as long as
the register is not 0, we could use the following MIPS instructions:

Loop :
addi
bne

$t0,$t0,-l # $t0 = $t0 1
$t0,$zero, Loop # if HO != 0 go to Loop

In Power PC we could use a single instruction instead:

be Loop , $ctr!=O #$ctr= $ctr - l;

Hardware

Software
Interface

if $ctr != 0 go to Loop

In addition to going against the advice of simplicity, such
sophisticated operations may not exactly match what the
compiler needs to produce. For example, suppose that
instead of decrementing by one, the compiler wanted to
increment by four, or instead of branching on not equal
zero, the compiler wanted to branch if the index was less
than or equal to the limit. Then the instruction just

described would be a mismatch . When faced with such objections, the
instruction set designer might then generalize the operation, adding another
operand to specify the increment and perhaps an option on which branch
condition to use. Then the danger is that a common case, say, incrementing by
one, will be slower than a sequence of simple operations.

The Intel 80x86

MIPS was the vision of a single small group in 1985; the pieces of this archi­
tecture fit nicely together, and the whole architecture can be described suc­
cinctly. Such is not the case for the 80x86; it is the product of several
independent groups who evolved the architecture over almost 20 years, add­
ing new features to the original instruction set as someone might add clothing
to a packed bag. Here are important 80x86 milestones:

••
INTEL - 1012

178 Chapter 3 Instructions: Language of the Machine

• 1978: The Intel 8086 architecture was announced as an assembly­
language-compatible extension of the then-successful Intel 8080, an 8-bit
microprocessor. The 8086 is a 16-bit architecture, with all internal registers
16 bits wide. Unlike MIPS, the registers have dedicated uses, and hence
the 8086 is not considered a general-purpose register architecture.

• 1980: The Intel 8087 floating-point coprocessor is announced. This ar­
chitecture extends the 8086 with about 60 floating-point instructions. In­
stead of using registers, it relies on a stack (see section 3.15 and section
4.9).

• 1982: The 80286 extended the 8086 architecture by increasing the ad­
dress space to 24 bits, by creating an elaborate memory-mapping and
protection model (see Chapter 7), and by adding a few instructions to
round out the instruction set and to manipulate the protection model.

• 1985: The 80386 extended the 80286 architecture to 32 bits. In addition
to a 32-bit architecture with 32-bit registers and a 32-bit address space,
the 80386 added new addressing modes and additional operations. The
added instructions make the 80386 nearly a general-purpose register
machine. The 80386 also added paging support in addition to segment­
ed addressing (see Chapter 7). Like the 80286, the 80386 has a mode to
execute 8086 programs without change.

• 1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium
Pro in 1995 were aimed at higher performance, with only four instruc­
tions added to the user-visible instruction set: three to help with multi­
processing (Chapter 9) and a conditional move instruction.

• 1997: After the Pentium and Pentium Pro were shipping, Intel an­
nounced that it would expand the Pentium and the Pentium Pro archi­
tectures with MMX. This new set of 57 instructions uses the floating­
point stack to accelerate multimedia and communication applications.
MMX instructions typically operate on multiple short data elements at
a time, in the tradition of single instruction, multiple data (SIMD) archi­
tectures (see Chapter 9).

This history illustrates the impact of the "golden handcuffs" of compatibility
on the 80x86, as the existing software base at each step was too important to
jeopardize with significant architectural changes.

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other in the world, perhaps
300 million in 1997. Nevertheless, this checkered ancestry has led to an archi­
tecture that is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section
with the care you would need to write 80x86 programs; the goal instead is to
give you familiarity with the strengths and weaknesses of the world's most
popular architecture.

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

EIP

EFLAGS

3.12 Real Stuff: PowerPC and 80x86 Instructions 179

Rather than show the entire 16-bit and 32-bit instruction set, in this section
we concentrate on the 32-bit subset that originated with the 80386, as this por­
tion of the architecture will be increasingly dominant over time. We start our
explanation with the registers and addressing modes, move on to the integer
operations, and conclude with an examination of instruction encoding.

80x86 Registers and Data Addressing Modes

The evolution of the instruction set can be seen in the registers of the 80386
(Figure 3.29). The 80386 basically extended all 16-bit registers (except the seg­
ment registers) to 32 bits, prefixing an E to their name to indicate the 32-bit
version. We'll refer to them generically as GPRs (general-purpose registers).
The 80386 contains only eight GPRs. This means MIPS programs can use four
times as many.

31 0

cs

ss

DS

ES

FS

GS

Use

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer O

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

FIGURE 3.29 The 80386 register set. Starting with the 80386, the top eight registers were extended to 32
bits and could also be used as general-purpose registers.

,

INTEL - 1012

180 Chapter 3 Instructions: Language of the Machine

Source/destination operand type Second source operand

Register Register
- - -- - -------- ---------------

Register Immediate

Register Memory
- - - ~-------- ---------- - - -

Memory Register

Memory Immediate

FIGURE 3.30 Instruction types for the arithmetic, logical, and data transfer instructions.
The 80x86 ;illows the combinations shown. The only restriction is the absence of a memory­
memory mode. lmmediates may be 8, 16, or 32 bits in length; a register is any one of the 14 m;ijor
registers in Figure 3.29 (not EIP or EFLAGS).

The arithmetic, logical, and data transfer instructions are two-operand in­
structions that allow the combinations shown in Figure 3.30. There are two
important differences here. The 80x86 arithmetic and logical instructions must
have one operand act as both a source and a destination; MIPS allows separate
registers for source and destination. This restriction puts more pressure on the
limited registers, since one source register must be modified. The second im­
portant difference is that one of the operands can be in memory. Thus virtually
any instruction may have one operand in memory, unlike MIPS and PowerPC.

The seven data memory-addressing modes, described in detail below, offer
two sizes of addresses within the instruction. These so-called displnce111ents can
be 8 bits or 32 bits.

Although a memory operand can use any addressing mode, there are re­
strictions on which registers can be used in a mode. Figure 3.31 shows the 80x86
addressing modes and which GPRs cannot be used with that mode, plus how
you would get the same effect using MIPS instructions.

80x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types.
The 80386 adds 32-bit addresses and data (double words) in the 80x86. The data
type distinctions apply to register operations as well as memory accesses.
Almost every opera tion works on both 8-bit data and on one longer data size.
That size is determined by the mode, and is either 16 bits or 32 bits.

Clearly some programs want to operate on data of all three sizes, so the
80386 architects provide a convenient way to specify each version without ex­
panding code size significantly. They decided that most programs would be
dominated by either 16-bit or 32-bit data, and so it made sense to be able to set
a default large size. This default data size is set by a bit in the code segment
register. To override the default data size, an 8-bit prefix is attached to the in­
struction to tell the machine to use the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple pre­
fixes to modify instruction behavior. The three original prefixes override the

Mode

I Register indirect

I Based mode
I with 8- or 32-bit
displacement

Base plus
scaled index

I
Base plus scaled
index with
8- or 32-bit
displacement

3.12 Real Stuff: PowerPC and 80x86 Instructions

Description
Register

restrictions

181

MIPS equivalent
- - -

not ESP or EBP l w $ s O , 0 ($ s l) 1 Address is in a register.

Address is contents of base register
plus displacement.

not ESP or EBP l w $s0 , 10()($51)// <;] 6- bit 7
II d is p laceme nt

---r---=:T----- -------- ------1------- --- __j_ ------
he address is Base:anyGPR mul $t0 ,$ s2.4

Base + (2Scale x Index) Index: not ESP ~ add $ t O, $t O, $ s 1
where Scale has the value 0, 1, 2, or 3 . l w $ s0 . O (HO)

The address is Base: any GPR mu l $t O, $ s z. 4
Base + (2scale x Index) + displacement Index: not ESP a dd HO . $t O, $ s 1
where Scale has the value 0, 1, 2, or 3. l w $s0 . 100(HO) fl <; 16-bi t

_ _ ________ _ _J_ __ _ ~ _ __J II displacement

FIGURE 3.31 80x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base
plus Scaled Index add_ressing mode'. not found in MIPS or the PowerPC, is included to avoid the multiplies by four (scale
factor of 2) to turn an mdex ma register mto a byte address (see Figures 3.24 and 3.26). A scale factor of 1 is used for 16-bit
data, and_a scale factor of 3 for 64-bit data. Scale factor of O means the address is not scaled. If the displacement is longer
than 16 bits Ill the second or fourth modes, then the MIPS equivalent mode would need two more instructions: a L, i to
load the upper 16 bits of the displacement and an add to sum the upper address with the base register $ J. (Intel gi,·es t\\'O
different names to what 1s called Based addressing mode-Based and Indexed- but they are essenti;illv kkntical ,rnd we
combme them here.) -

default segment register, lock the bus to support a semaphore (see Chapter 9),
or repeat the following instruction until the register ECX counts down to 0.
This last prefix was intended to be paired with a byte move instruction to move
a variable number of bytes. The 80386 also added a prefix to override the de­
fault address size.

The 80x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test and integer and deci­
mal arithmetic operations

3. Control flow, including conditional branches, unconditional Jumps,
calls, and returns

4. String instructions, including string move and string compare

The first two categories are unremarkable, except that the arithmetic and
logic instruction operations allow the destination to either be a register or a
memory location. Figure 3.32 shows some typical 80x86 instructions and their
functions.

Conditional branches on the PowerPC and the 80x86 are based on co11ditio11
codes or flngs . Condition codes are set as a side effect of an operation; most Me
used to compare the value of a result to 0. Branches then test the conditiun
codes. The argument for condition codes is that they occur as part of normal
opera tions and are faster to test than it is to compare registers as MIPS does for

,

l

INTEL - 1012

182 Chapter 3 Instructions: Language of the Machine

Instruction Function

J E name if equal(condition code) {EIP=name) ;
EIP - 128 ~ name< EIP+l28

JMP name EIP=name

CALL name SP=SP - 4 ; M[SPJ=EIP+5; EIP=name ;

MOVW EBX,[ED l+45] EB X=M[ED I +45 J

PUSH ES! SP=SP- 4 ; M[SP]= ES I

POP EDI EDl=M[SPJ ; SP=SP+4

ADD EAX , #6765 EAX= EAX + 6765

TEST EDX,#4 2 Set condition code (flags) with EDX and 42hex

MOVSL M [EDI J =M [ES I J ;
EDI=EDI+4 ; ESI=E SI+4

FIGURE 3.32 Some typical 80x86 instructions and their functions. A list of frequent oper­
ations appears in Figure 3.33. The CALL saves the EIP of the next instruction on the stack. (EIP is
the Intel PC.)

beq and bne. The argument against condition codes is that the compare to 0 ex­
tends the time of the operation, since it uses extra hardware after the operation,
and that often the programmer must use compare instructions to test a value
that is not the result of an operation. Also, PC-relative branch addresses must
be specified in the number of bytes, since unlike MIPS, 80386 instructions are
not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs. They are often slower than equivalent
software routines (see the fallacy on page 185).

Figure 3.33 lists some of the integer 80x86 instructions. Many of the instruc­
tions are available in both byte and word formats.

80x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 8086 is complex,
with many different instruction formats. Instructions for the 80386 may vary
from 1 byte, when there are no operands, up to 17 bytes.

Figure 3.34 shows the instruction format for several of the example instruc­
tions in Figure 3.32. The opcode byte usually contains a bit saying whether the
operand is 8 bits or 32 bits. For some instructions the opcode may include the
addressing mode and the register; this is true in many instructions that have
the form "register= register op immediate." Other instructions use a "post­
byte" or extra opcode byte, labeled "mod, reg, r/m," which contains the ad­
dressing mode information. This postbyte is used for many of the instructions
that address memory. The base plus scaled index mode uses a second postbyte,
labeled "sc, index, base."

3.12 Real Stuff: PowerPC and 80x86 Instructions 183

Instruction Meaning

Control Conditional and unconditional branches I

JNZ , JZ Jump if condition to EIP + 8-bit offset; J NE (for J NZ). J E (for J Z) are alternative names

JMP Unconditional jump-8-bit or 16-bit offset

CALL Subroutine call-16-bit offset; return address pushed onto stack

RE T Pops return address from stack and jumps to it

LOOP Loop branch-decrement ECX; jump to EIP + 8-bit displacement if ECX etc 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH , POP Push source operand on stack; pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

ADD , SUB Add source to destination; subtract source from destination; register-memory format

CMP Compare source and destination ; register-memory format

SHL. SHR , RCR Shift left; shift logical right; rotate right with carry condition code as fill

CBW Convert byte in 8 rightmost bits of EAX to 16-bit word in right of EAX

TEST Logical AND of source and destination sets condition codes

I NC . DEC Increment destination , decrement destination ; register-memory format

OR , XOR Logical OR ; exclusive OR ; register-memory format

String Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination by incrementing ESI and EDI; may be repeated

LOOS Loads a byte, word , or double word of a string into the EAX register

FIGURE 3.33 Some typical operations on the 80x86. Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand .

Figure 3.35 shows the encoding of the two postbyte address specifiers for
both 16-bit and 32-bit mode. Unfortunately, to fully understand which regis­
ters and which addressing modes are available, you need to see the encoding
of all addressing modes and sometimes even the encoding of the instructions.

80x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors' more ele­
gant architectures, such as the Motorola 68000, and this head start led to the
selection of the 8086 as the CPU for the IBM PC. Intel engineers generally
acknowledge that the 80x86 is more difficult to build than machines like
MIPS, but the much larger market means Intel can afford more resources to
help overcome the added complexity. What the 80x86 lacks in style is made
up in quantity, making it beautiful from the right perspective.

The saving grace is that the most frequently used 80x86 architectural com­
ponents are not too difficult to implement, as Intel has demonstrated by rapid­
ly improving performance of integer programs since 1978. To get that
performance, compilers must avoid the portions of the architecture that are
hard to implement fast.

INTEL - 1012

184 Chapter 3 Instructions: Language of the Machine

a. JE EIP + displacement

4 4 8

J E I Condition I Displacement

b . CALL

8

CALL

c. MOV EBX , [EDI + 45)

6 1 1

d .PUSH ESI

5 3

PUSH Reg

e. ADD EAX, #6765

4 3 1

ADD f Reg H
f. TEST EDX, #42

7

TEST

1

H

8
r/m

postbyte

8

Postbyte

32

Offset

8

Displacement

32

Immediate

32

Immediate

FIGURE 3.34 Typical 80x86 instruction formats. The encoding of the postbyte is shown in Figure 3.35. Many instruc­
tions contain the 1-bit field w, which says whether the operation is a byte or double word. The d field in MDV is used in
instructions that may move to or from memory and shows the direction of the move. The ADD instruction requires 32 bits
for the immediate field because in 32-bit mode the immed iates are either 8 bits or 32 bits. The immediate field in the TEST
is 32 bits long because there is no 8-bit immediate for test in 32-bit mode. Overall, instructions may vary from 1 to 17 bytes
in length. The long length comes from extra 1-byte prefixes, havi ng both a 4-byte immediate and a 4-byte displacement
address, using an opcode of 2 bytes, and using the scaled index mode specifier, which adds another byte.

3.13 Fallacies and Pitfalls 185

IIHIDN:P•m:I mod=O mod= 1 mod= 2 l::P.41
16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

I½-- CL ex I ECX 1 addr=BX+DI I =ECX addr as addr as addr as addr as as
DL DX EDX 2 addr=BP+SI =EDX mod=O mod=O mod=O mod=O reg

--
3 BL BX EBX 3 addr=BP+SI =EBX + dispB + dispB + disp16 + disp32 field

I:
AH SP ESP 4 addr=SI =(Sib) Sl+disp8 ~b)+disp8 Sl+disp8 (sib)+d1sp32

CH BP I EBP 5 addr=DI I =disp32 Dl+disp8 P+disp8 Dl+disp16 I EBP+disp32
DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESl+disp8 BP+disp16 ESl+disp32

-

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDl+disp8 BX+disp16 EDl+disp32

FIGURE 3.35 The encoding of the first address specifier of the 80x86, "mod, reg, r/m." The fir,t four columns
show the encod ing of the 3-bit reg field, which depends on thew bit from the opcode and whether the milchine is in I fl-bit
mod e (8086) or 32-bit mode (80386). The remaining columns exp loin the mod ilnd r / m fields. The meaning of the 3-bit r / m
field depends on the va lue in the 2-bit mod field and the address size. Basic,1lly, the rL'gisters used in the ,1ddress c,1lcub­
tion are listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod= 2
adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are r / m = f, when mod = I or
mod = 2 in 16-bit mode selects BP plus the displacement; r / m = 5 when mod = 1 or mod = 2 in 32-bit mode selects EBP plus
displacement; and r / m = 4 in 32-bit mode when mod ~ 3, w hL•re (sib) means use the sca led inde, mode sho\\'n in
Figure 3.31 on page 181. When mod = 3, the r / m field indicates a register, using the ,,1me encoding as the reg fiL•ld com­
bined with thew bit.

II Fallacies and Pitfalls

Fn llncy: More powerf11/ i11structio11s 111en11 higher pcrfon11n11cc.

Part of the power of the Intel 80x86 is the prefixes that can modify the execu­
tion of the following instruction. One prefix can repeat the fo llowing instruc­
tion until a counter counts down to 0. Thus, to move data in memory, it
would seem that the natural instruction sequence is to use move with the
repeat prefix to perform 32-bit memory-to-memory moves. On a 133-MHz
Pentium (with the Triton chip set, 60-ns EDO DRAM, 256-KB cache), this
user-level program can move data a t about 40 MB /sec.

An alternative method, which uses the stand ard instructions found in all
computers, is to load the data into the registers and then store the registers
back to memory. This second version of this program, with the code replicated
so as to reduce loop overhead, copies at about 60 MB /sec on the same ma­
chine, or 1.5 times faster. A third version, which used the larger floating-point
registers instead of the integer registers of the 80x86, copies at about 80
MB /sec, or 2.0 times faster than the complex instruction.

•
INTEL - 1012

186 Chapter 3 Instructions: Language of the Machine

F11 //11cy: Wri te in assembly /11 11g1111gc to obtain tlie /1igliest pcrfor1111111ce.

At one time compilers for programming languages produced naive instruc­
tion sequences; the increasing sophistica tion of con,pilers mea ns the gap
between compiled code and code produced by hand is closing fas t. In fa ct, to
compete with current compilers, the assembly language programmer need s to
thoroughly understand the concepts in Chapters 6 and 7 on processor pipelin­
ing and memory hierarchy.

This battle between compilers and assembly language cod ers is one situa­
tion in which humans are losing ground. For exa mple, C offers the program­
mer a chance to give a hint to the compiler about which variables should be
kept in registers versus spilled to memory. When compilers were poor at reg­
ister allocation, such hints were vital to performance. In fact, some C tex tbooks
spent a fair amount of time giving examples that effectively use register hints.
Today' s C compilers generally ignore such hints because the compiler does a
better job at allocation than the programmer.

As a specific counterexample, w e ran the MIPS assembly language pro­
grams in Figures 3.24 and 3.26 to compare performance to the C programs in
Figures 3.23 and 3.25. Figure 3.36 shows the results . As you ca n see, the com­
piled program is 1.5 times faster than the assembled program . The compiler
generally was able to crea te assembly language cod e that was ta ilored exactly
to these conditions, while the assembly language program was w ritten in a
slightly more general fashion to make it easier to modify and understand. The
specific improvements of the C compiler were a more strea mlined procedure
linkage convention and changing the address ca lcula tions to m ove the multi­
ply outside the inner loop .

Even if writing by hand resulted in fa ster code, the dangers of w riting in as­
sembly language are longer time spent coding and debugging, the loss in port­
ability, and the difficulty of maintaining such code. One of the few widely
accepted axioms of software engineering is that coding takes longer if you
write more lines, and it clea rly takes many more lines to w rite a p rogram in as­
sembly language than in C. And once it is coded, the next danger is that it w ill
become a popular program . Such programs always live longer than expected ,
mea ning that someone will have to update the cod e ov er several years and
make it work with new releases of operating systems and new models of ma-

Language

Assembly

C

Time

37.9 seconds

25.3 seconds

FIGURE 3 .36 Performance comparison of the C and assembly language versions of t he
sort and swap procedures in section 3 .10. The si7e of the array to be sorted "'"' increa~ed lu
10,000 elements. The programs were run on ,1 DEC,y,tt:111 'i9()() \\·ith 121'1 \ 1ll " t 111Jin mem Pn­
a nd a 40-M Hz R3000 processor using vcr,ion -l.2<1 (Re\'ision -li') of the l,ltri, "f'L'r,1ti11g ,1·, tc,111
The C compiler was run with the -0 opti on.

3.14 Concluding Remarks 187

chines. Writing in higher-level language instead of assembly language not only
allows future compilers to tailor the code to future machines, it also m,1ke" the
software eas ier to ma in tain and allows the program to run on more bri1nd" of
computers.

Pitfn /1 : Forgett ing tli11t seq11enti11 / word addresses in 11111c/1i11cs wit!, byte 11ddre,s­
i11g do not differ by one.

Ma ny an assembly language p rogrammer has toi led over errors made by
assuming that the address of the next word can be found by incrementing the
address in a register by one instead of by the word size in bytes. Forcw,1rncd
is forea rmed!

Pitfn /1 : Using 11 pointer to 11111111to11111tic rnri11ble outside its defining procedure.

A common mistake in dea ling with poin ters is to pass a result from a
p rocedure that incl ud es a poin ter to an array that is declared local to th,1t pro­
cedu re. Following the stack discipline, in Figure 3.12 on page 139, the memory
that contains the loca l c1rray will be reused as soon as the procedure returns.
Pointers to automatic va riables ca n lead to chaos.

Ill Concluding Remarks

Less is more.

Robert Browning, A11dr,:n dcl Sarto, 1855

The two principles of the storcd-progrn111 computer arc the use of instructions
that arc indistinguishable fro m numbers c1nd the use of alterable memory for
prog rams. These principles a llow a single machine to c1id cnvironmcnlc1I "ci­
entists, financial advisers, and novelists in their specic1ltics. The selection of a
set of ins tructions that the machine can understand demands c1 delicate b,11-
ance among the number of instructions needed to e:-.ecute a progr,1111 , the
nu mber of clock cycles needed by an instruction, ,1nd the speed of the clock.
Four d esign principles gu ide the au thors of instruct ion sets in making that
d elica te balance:

1. Si111plicity fnuors reg11/11rity. Regularity motivate-; many feature" nt th e
MTPS ins tructi on set: keeping c1 ll instructions c1 single si/e, ,1l\\',1y,­
req uiring th ree register oper,111ds in arithmetic in-;truction-; , ,111d k.L'l'F'­
ing the register fi eld s in the sa me p lace in each instruction formal.

INTEL - 1012

188 Chapter 3 Instructions: Language of the Machine

2. Smnller is fnster. The desire for speed is the reason that MIPS has 32 reg­
isters rather than many more.

3. Good design de,nnnds good compromises . One MIPS example was the com­
promise between providing for larger addresses and constants in
instructions and keeping all instructions the same length.

4. Mnke the common cnse fns t. Examples of making the com.man MIPS case
fast include PC-relative addressing for conditional branches and imme­
diate addressing for constant operands.

Above this machine level is assembly language, a language that humans ca n
read. The assembler translates it into the binary numbers that machines ca n
understand, and it even "extends" the instruction set by creating symbolic in­
structions that aren' t in the hardware. For instance, constants or addresses that
are too big are broken into properly sized pieces, common variations of in­
structions are given their own name, and so on. The MIPS instructions we have
covered so far (both real and pseudo) are listed in Figure 3.37.

These instructions are not born equal; the popularity of the few dominates
the man y. For example, Figure 3.38 shows the popularity of each class of in­
structions for two programs, gee and spice. The varying popularity of instruc­
tions plays an important role in the chapters on performance, datapath,
control, and pipelining.

Each category of MIPS instructions is associated with constru cts that appear
in programming languages:

• The arithmetic instructions correspond to the operations found in as­
signment statements.

• Data transfer instructions are most likely to occur when d ealing with
data structures like arrays or structures.

• The conditional branches are used in if statements and in loops.

• The unconditional jumps are used in procedure calls and returns and
also for cnse/switch statements.

More of the MIPS instruction set is revealed in Chapter 4, after we explain
computer arithmetic.

3.15 Historical Perspective and Further Reading 189

MIPS instructions Nfr1::l• li-ii::lii Pseudo MIPS llh::i,Nli·1i::M•
add

cubtract

~ add R move

multiply

mo ve R

add immediate

load word

Lstore wo_rcJ___

load byte

store byte

_ -1----- sub -1- _R_
addi I

-11-;---
~' _S"'!._ __J_

lb
lsb - r-

--- --
I

L oad upri:_r___immediate ___ l u i I

branch on equal +-beq I
bra_n_c_h o-n-not equal bn"e - t-- l

15et- le-ss than - - -------=- =- s lt -- -I - R
~se~ss than imme~ _ I s l ti
jump j J

~mp register - ---- - - 1-j r --JR
J'.1m_ p_ an_d l_ink __ _ =----_ -_- ~-1_-_j _a_l

multiply immediate

load immediate
-- - ---

branch less than

branch less than or equal
- -- --

branch greater than

branch greater than or equal
--- --

- I ITI~
rnul ti
l i

~blt
ble

bgt

I bge

R

--t

FIGURE 3.37 The MIPS instruction set covered so far, with the real MIPS instructions on the left and the
pseudoinstructions on the right. Appendix A (section A.10 on page A-49) describes the full Ml PS arch itecture. Figure
3. 18 o n page 153 shows more details of the MlPS a rchitecture revea led in thi s chapter.

Instruction class MIPS examples HLL correspondence
--- --- - ~- - - -

Arithmetic add , sub , addi operations in assignment statements

' Data transf-;- --j l ~lt), s b, l u i I - references to data structures. such as arrays - I
l Conditional ~anch · beq, bn e , sh, slt i-= - if statements and loops

Jump _ -1 J_._ j r , j al _ L procedure ca ll s. return_:_-_ and case/ switch statements

l,/Hh:14•
Ellmml

48%

33%

17%

2%

50%

41%

8%

1%

FIGURE 3.38 MIPS instruction classes, examples, correspondence to high-level program language constructs,
and percentage of MIPS instructions executed by category for two programs, gee and spice. Figure .J.5-1 un pa ge
311 shows the percentage of the indi vidual MIPS instructions executed.

• Historical Perspective and Further Reading

accumulator: Archnic ter111 for register. 011-li11e use of it as 11 s_1;IIou1;11I tr1r
"register" is n fn irly relinhle i11dicntio11 tlint the 11scr /in s been nro1111d quite 11 ,l'hilc.

E ri c R<1ymond , The New Hacker', Dictio1111n1, 1991

INTEL - 1012

190 Chapter 3 Instructions: Language of the Machine

Accumulator Architectures
Hardware was precious in the earliest stored-program computers. As a conse­
quence, computer pioneers could not afford the number of registers found in
today's 1T1achines. In fact, these machines had a single register for arithmetic
instructions. Since all operations would accumulate in a single register, it was
called the accumulator, and this style of instruction set is given the same name.
For example, EDSAC in 1949 had a single accumulator.

The three-operand format of MIPS suggests that a single register is at least
two registers shy of our needs. Having the accumulator as both a source oper­
and and as the destination of the operation fills part of the shortfall, but it still
leaves us one operand short. That final operand is found in memory. Accumu­
lator machines have the memory-based operand-addressing mode suggested
earlier. It follows that the add instruction of an accumulator instruction set

would look like this:

add 200

This instruction means add the accumulator to the word in memory at
address 200 and place the sum back into the accumulator. No registers are
specified because the accumulator is known to be both a source and a d estina­

tion of the operation.

Example

Compiling an Assignment Statement into Accumulator Instructions

What is the accumulator-style assembly code for this C code?

Answer

A= B + C;

It would be translated into the following instructions in an accumulator in­

struction set:
load AddressB # Ace = Memory[AddressBJ, or Ace = B
add Address(ff Ace= B + Memory[Addre ssCJ ,or Ace= B + C
store AddressA # Memory[AddressAJ = Ace , or A = B + C

All variables in a program are allocated to memory in accumulator ma­
chines, instead of normally to registers as we saw for MIPS. One way to
think about this is that variables are always spilled to memory in this style
of machine. As you may imagine, it takes many more instructions to exe­
cute a program with a single-accumulator architecture. (See Exercise 3.19

for another example.)

3.15 Historical Perspective and Further Reading 191

The next step in the _evolution of instruction sets was the addition of regis­
ters dedicated to speofic operat10ns. Hence, registers might be included to act
as 111d1ces fo~ array references i~ data_ transfer instructions, to act as separate
accumulators for multiply or d1v1de mstructions, and to serve as the top-of­
stack pomter. Perhaps the best-known example of this style of instruction set
1s found m the Intel 8086, the computer at the core of the IBM Personal Com­
puter. This s tyle of instruction set is labeled extended accumulator, derficntcrf
rc~1stcr, or specinl-purpose register. Like the single-register accumulator ma­
chmes, one operand may be in memory for arithmetic instructions. Like the
MIPS a_rch1tecture, however, there are also instructions where all the operands
are registers .

General-Purpose Register Architectures

The generalization of the dedicated-register machine allows all the registers to
be used for any purpose, hence the name gcnernl-purposc register. MIPS is an
example of a general-purpose register machine. This style of instruction set
may be_ further divided into those that allow one operand to be in memory as
found 111 accumulator machmes, called a register-111e111ory architecture, and
those that demand that operands always be in registers, called either a food­
store or a re~1ster-reg1ster machine. Figure 3.39 shows a history of the number
of registers 111 some popular computers.

Machine
Number of

general-purpose registers

LEDSAC

I 18~01_
CDC 6600

[1BM 36()_

I DEC PDP-8

DEC PDP-11

T

_ lntel8008 _ r­
f---Mo_!_oro~68~ __L

DEC VAX .

f lnt~8086 i=-
~ Motorola 68000 J_
Intel 80386

LMIPS - l_
~p PA-RISC _ 1

SPARC

LPowerPC 1
L DEC Alpha J_

1

1

8

16

1

8

1

2

16

1

16

8

32

32

32

32

32

Architectural style

l accumulator

~ccumulator

~ad-store

j register-memory

accumulator

I register-memory

accumulator

~cc_umulator

register-memory. memory-memory

extended accumulator

I register-memory

register-memory

Gad-store

~ad-store

load-store

fi;ad-store

j load-store_

II
j 1949

1953

1963

1964

1965

1970

1972

1974

1977

1978

1980

1985

1985

1986

1987

1992

1992

FIGURE 3.39 Number of general-purpose registers in popular machines over the years.

INTEL - 1012

192 Chapter 3 Instructions: Language of the Machine

The first load-store machine was the CDC 6600 in 1963, considered by many
to be the first supercomputer. MIPS is a more recent example of a load-store

machine.
The 80386 is Intel's attempt to transform the 80x86 into a general-purpose

register-memory instruction set. Perhaps the best-known :egister-mem~ry
instruction set is the IBM 360 architecture, first announced m 1964. This in­
struction set is still at the core of IBM's mainframe computers-responsible for
a large part of the business of the largest computer ~ompany in the wo:ld.
Register-memory architectures were the most popular m the 1960s and the first
half of the 1970s.

Digital Equipment Corporation's VAX arc~itec_ture took _memory operands
one step further in 1977. It allowed any combination _of r_eg1ste_rs and memory
operands to be used in an instruction. A style of machine m wh1~h all o~erands
can be in memory is called memory-memory. (In truth the VAX 1~str:1ction set,
like almost all other instruction sets since the IBM 360, is a hybnd smce it also
has general-purpose registers.)

Compiling an Assignment Statement into Memory-Memory
Instructions

Example What is the memory-memory style assembly code for this C code?

Answer

A= B + C;

It would be translated into the following instructions in a memory­
memory instruction set:

add AddressA ,AddressB ,AddressC

(See Exercise 3.19 for another example.)

Although MIPS has a single add instruction with 32-bit operands, the ~ntel
80x86 has many versions of a 32-bit add to specify whether an operand 1s m
memory or is in a register. In addition, the memory operand can be accessed
with more than seven addressing modes. This combination of address modes
and register/ memory operands means that there are dozens _of variants o_f an
80x86 add instruction. Clearly this variability makes 80x86 1mplementat1ons
more challenging.

Compact Code and Stack Architectures

When memory is scarce, it is also important to keep programs s~all, so
machines like the Intel 80x86, IBM 360, and VAX had vanable-length instruc­
tions, both to match the varying operand specifications and to minimize code

3.15 Historical Perspective and Further Reading 193

size. Intel 80x86 instructions are from 1 to 17 bytes long; IBM 360 instructions
are 2, 4, or 6 bytes long; and VAX instruction lengths are anywhere from 1 to
5~ bytes. If instruction memory space becomes precious once again, such tech­
mques could return to popularity.

In the 1960s, a few companies followed a radical approach to instruction
s_ets. In the belief that it was too hard for compilers to utilize registers effec­
tively, these companies abandoned registers altogether! Instruction sets were
based on a stack model of execution, like that found in the older Hewlett­
Packard handheld calculators. Operands are pushed on the stack from mem­
ory or popped off the stack into memory. Operations take their operands from
~he stack ~nd then place the result back onto the stack. In addition to simplify­
mg compilers by eliminating register allocation, stack machines lent them­
selves to compact instruction encoding, thereby removing memory size as an
excuse not to program in high-level languages.

Example

Compiling an Assignment Statement into Stack Instructions

What is the stack-style assembly code for this C code?

Answer

A= B + C;

It would be translated into the following instructions in a stack instruction
set:

push Address(
push AddressB
add

pop AddressA

Top=Top+4 ;Stac k[Top]=Memory[AddressCJ
Top=Top+4; Stac k[Top]=Memo ry[Add ressBJ
Stack[Top-4J=Stack[Top]
+ Stack[Top-4J ;Top=Top-4 ;
Memory[AddressAJ =Stack[Top] ;
Top=Top-4 ;

To get the proper byte address, we adjust the stack by 4. The downside
of stacks as compared to registers is that it is hard to reuse data that has
been fetched or calculated without repeatedly going to memory. (See
Exercise 3.19 for another example.)

Memory space may be precious again for the heralded Network Computer
(NC), both because memory space is limited to keep costs low and because
programs must be downloaded over the Internet, and smaller programs take
less time to transmit. Hence compactness in instruction set encoding is desired
for the NC. Such arguments have been used to justify building a hardware in­
terpreter for the Java intermediate language, which is based on a stack. Time
will tell whether these arguments have technical versus marketing merit.

•
INTEL - 1012

194 Chapter 3 Instructions: Language of the Machine

High-Level-Language Computer Architectures

In the 1960s, systems software was rarely written in high-level languages. For
example, virtually every commercial operating system before Unix was pro­
grammed in assembly language, and more recently even OS/2 was originally
programmed at that same low level. Some people blamed the code density of
the instruction sets rather than the programming languages and the compiler
technology.

Hence a machine-design philosophy called lzigh-level-lnng11nge co111p11ter
nrchitect11re was advocated, with the goal of making the hardware more like the
programming languages. More efficient programming languages and compil­
ers, plus expanding memory, doomed this movement to a historical footnote.
The Burroughs B5000 was the commercial fountainhead of this philosophy, but
today there is no significant commercial descendent of this 1960s radical.

Reduced Instruction Set Computer Architectures

This language-oriented design philosophy was replaced in the 1980s by RISC
(red11ced instruction set computer). Improvements in programming languages,
compiler technology, and memory cost meant that less programming was
being done at the assembly level, so instruction sets could be measured by
how well compilers used them as opposed to how well assembly language
programmers used them.

Virtually all new instruction sets since 1982 have followed this RISC philos­
ophy of fixed instruction lengths, load-store instruction sets, limited address­
ing modes, and limited operations. MIPS, Sun SPARC, Hewlett-Packard
PA-RISC, IBM PowerPC, and DEC Alpha are all examples of RISC architec­
tures.

A Brief History of the 80x86

The ancestors of the 80x86 were the first microprocessors, produced late in the
first half of the 1970s. The Intel 4004 and 8008 were extremely simple 4-bit and
8-bit accumulator-style machines. Morse et al. [1980] describe the evolution of
the 8086 from the 8080 in the late 1970s in an attempt to provide a 16-bit
machine with better throughput. At that time, almost all programming for
microprocessors was done in assembly language-both memory and compil­
ers were in short supply. Intel wanted to keep its base of 8080 users, so the
8086 was designed to be "compatible" with the 8080. The 8086 was never
object-code compatible with the 8080, but the machines were close enough
that translation of assembly language programs could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce
the cost of the machine. This choice, together with the tremendous success of
the IBM PC, has made the 8086 architecture ubiquitous. The success of the IBM

EN

3.15 Historical Perspective and Further Reading 195

PC was due in part because IBM opened the c1rchitec ture of th e J)C ,rnd en,iblcd
the PC-clone industry to flourish. As discussed in secti on 3. 12, the 8()286,
80386, 80486, Pentium, and Pentium Pro have extend ed the a rchitec ture a nd
provided a series of performance enhc1ncements.

Although the 68000 wc1s chosen for the Macintosh, the Mac was ncwr ,b

pervasive as the PC, partly because Apple did no t allow Mac clones b,ised on
the 68000, and the 68000 did not acqui re the sc1rne software lcver,ige thot the
8086 enjoys. The Motorola 68000 ma y have been morL' s ignific,rnl tcc/111irnl! 11
than the 8086, but the impc1ct of the selection by IBM and IBM'" open Mchite~­
ture strategy dominated the technicc1 I advantages of the 68000 in the market.

Some argue thc1t the inelegance of th e 80x86 instru cti on se t is unavoi Lfable
the price that must be pc1id for rampc1nt success by any architec ture. We rcjL'C;
that notion. Obv10usly no success ful c1 rchitecture cc1 n jetti son ft:.,atures that
were added in_ previous implementc1tions, and over time some fe,1t u res m,1y Lw
seen as undesirable. The awkwardness of the 80>-.86 beg ins c1t its cure with the
8086 instruction set, c1nd was exc1 cerbated bv the architec turall v inconsisknl
expansions found in the 8087, 80286, 80386, ; nd MMX. · . ·

A counterexample is the IBM 360/370 a rchitecture, w hi ch is mu ch ulder
than the 80x86. It dominates the mainframe ma rket just os the 8(h86 dominates
the PC market. Due undoubtedly to a better bc1se and more compatible en­
hancements, this instruction set makes mu ch more sense than the 80x86 more
than 30 years after its first iIT1plementation .

Hewlett-Packard and Intel will announce a new, comm on in"tru ction set ,n­
chitecture in about 1998. It will be upwa rd s compa tibl e w ith the 80x86, and
thus the 80x86 instruction will be availabl e in some form in computers uf the
next century.

Instruction set anthropologists of the 21 s t century \\'ill pee l off layer ,ifter
layer fr01:1 such machines until they uncover artifacts from the iir~t mi cropro­
cessor. Given such a fmd , how will they judge 20th-centurv computer archi tec-
~~ .

To Probe Further

B;i yko, J. 11996] . "Great Microprocessors of the Pas t and Present," available a t
www.111kp.co111 /books _er, tnlog/cod /Ii II ks. I, t 111 .

A pcrso1,nl ,,icw of t!,c l1i,tory of rcpn·s,·11tati,•,· or 11 111ts 11,1/ 111icn>pn>c,·"•'r,. fr,,111 ti,,· /ntd ./UII./ t,, ti,,·
Patriot Scil'llt ific S!, B00111 1

K;inc, G., and J. Heinrich 11992]. MIPS RISC Arc/1ilcd11rc, l'rentice I l,111, l·ngic"'lll'd Cliff..,, , I.

TI,is book describes t!,e MIPS nrc/1itccl11 re i11 grcall'r detail t!,a ,, Appmdix A.

Levy, H. , and R. Eckhousc 11989]. Co1111 111 /1T Progrn111111i11g 111/i/ Arc/111<'c/11r,·: r,,, . \'.· \.\ , Digit.ii J' rL'" ,
Boston.

TI, is book co11cc11 trntcs 011 t!,c VAX, bu t also i11c/11dcs description, of t!,c Jn td 80x86, /RM 360 n11d enc
6600. '

1
I

INTEL - 1012

196

II

II

Chapter 3 Instructions: Language of the Machine

Morse, S., B. Ravena!, S. Mazor, and W. Pohlman [1980]. " Intel Microprocessors- 8080 to 8086,"
Co111puter 13:10 (October).

Tire nrc/1itecture /1istory of tire /11tel fro111 tire 4004 to tire 8086 , nccordi11g to tire people who pnrticipated i11
tire designs.

Wakerly, J. [1989]. Microco111p11ter Architecture n11d Progrn111111i11g, Wiley, New York.

Tlze Motorola 680x0 is t/ze 111ni11 forn s of the L,ook, but it covers the 111/el 8086, Motorola 6809, Tl 9900 ,
n11d Zilos Z8000.

Key Terms

The terms listed below reflect the key ideas discussed in this chapter. If you're
unsure of the meaning of any of these terms, refer to the Glossary for a full
definition.

activation record
address
addressing mode
base or displacement

addressing
basic block
ca llee
ca lle r
conditiona l branch
data transfer instruction
executable file
frame pointer

Exercises

genera l-purpose register
(GPR)

globa l pointer
immediate addressing
instruction format
instruction set
jump address table
jump-and-link instruction
linker or link editor
load-store or register-register

machine
loader
object progrnm

opcode
PC-relative addressing
procedure
procedure frame
program counter (PC)
pseudoinstruction
reg ister addressing
return address
stack
stack pointer
stored-program computer
stored-program concept
word

Appendix A describes the MIPS simulator, which is helpful for these exer­
cises. Although the simulator accepts pseudoinstructions, try not to use
pseudoinstructions for any exercises that ask y_ou to produ~e MIPS code. Your
goal should be to learn the real MIPS instruction set, and if you are asked to
count instructions, your count should reflect the actual mstructions that will
be executed and not the pseudoinstructions.

There are some cases where pseudoinstructions must be used (for example,
the la ins truction when an actual value is not known at assembly time). In
many cases they are quite convenient and result in more readable cod e (for

3.17 Exercises 197

example, the l i and mov e instructions). If you choose to use pseud oins truc­
tions for these reasons, please add a sentence or two to your soluti on stating
which pseudoinstructions you have used and why.

3.1 [5] <§§3.3, 3.5, 3.8> Add comments to the following MIPS code and de­
scribe in one sentence what it computes. Assume that $a0 is used for the input
and initially contains n, a positive integer. Assume that $ vO is used for the out­
put.

begin : addi HO , $zero , 0
add i H l, $zero , 1

loop : s lt H2 , $a0 , Hl
bne H2 , $zero , finish
add HO , HO , $tl
addi Hl, $tl ' 2
j loop

finish : add $v 0, HO , $zero

3.2 (12] <§§3.3, 3.5, 3.8> The following code fragment processes an array and
produces two important values in registers $v0 and $vl. Assume that th e ar­
ray consists of 5000 words indexed 0 through 4999, and its base address is
stored in $ a 0 and its size (5000) in $ a 1. Describe in one sentence what this cod e
does. Specifically, what wil l be returned in $v0 and $vl?

add $a 1. $al , $al
add $a 1. $ a 1. $al
add $v0 , $zero , $zero
add HO , $zero , $zero

outer : add H4 , $a0 , HO
l w H4 ' 0(H4)
add H5 , $zero , $z e ro
add Hl , $zero , $zero

inner : add H3 , $a0 , $tl
lw H3 , O(H3)
bne H3 ' H4 , skip
addi H5 , H5 , l

c; kip : addi Hl , Hl , 1
bne $tl ' $a 1. inner
s lt H2 , H5 , $v0
bne H2, $zero , next
add $v0 , H5, $zer o
add $v l , H4 , $zero

next : add i HO , HO , 4
bne HO . $al . cut.C'r

INTEL - 1012

198 Chapter 3 Instructions: Language of the Machine

3.3 [10] <§§3.3, 3.5, 3.8> Assume that the code from Exercise 3.2 is run on a
machine with a 500-MHz clock that requires the following number of cycles for
each instruction:

Instruction -I add. addi , s lt

rrw=:-bne I ~ I

In the worst case, how many seconds will it take to execute this code?

3.4 [5] <§3.8> Show the single MIPS instruction or minimal sequence of in­
structions for this C statement:

a = b + 100 :

Assume that a corresponds to register $t 0 and b corresponds to register $t l.

3.5 [10] <§3.8> Show the single MIPS instruction or minimal sequence of in­
structions for this C statement:

x[l0J = x[ll] + c :

Assume that c corresponds to register $t0 and the array x has a base address
of 4,000,000ten·

3.6 [10] <§§ 3.3, 3.5, 3.8> The following program tries to copy words from the
address in register $ a 0 to the address in register $ a 1, counting the number of
words copied in register $ v 0. The program stops copying when it finds a word
equal to 0. You do not have to preserve the contents of registers $vl , $a0, and
$ a 1. This terminating word should be copied but not counted .

loop : lw $vl . 0($a0) ff Read next word from source
addi $v0 , $v0 . l ff Increment count words copied
SW $vl,0($al) ff Write to destination
addi $a0 ,$ a0,l ff Advance pointer to next sour ce
addi $al , $al,l ff Advance pointer to next dest
bne $vl,$zero. loop ff Loop if word copied ~ zero

There are multiple bugs in this MIPS program; fix them and turn in a bug-free
version . Like many of the exercises in this chapter, the easiest way to write
MIPS programs is to use the simulator described in Appendix A. (Go to
www.111kp.com/cod2e.ht111 to get a copy of this program.)

3.7 [15] <§3.4> Using the MIPS program in Exercise 3.6 (with bugs intact), de­
termine the instruction format for each instruction and the decimal values of
each instruction field.

3.17 Exercises 199

3 .8 [10] <§§3.2, 3.3, 3.5, 3.8> (Ex. 3.6) Starting with the corrected program in
the answer to Exercise 3.6, write the C code segment that might have produced
this code. Assume that variable source corresponds to register $a0, variable
desti nation corresponds to register $a 1, and variable count corresponds to
register $v0 . Show variable declarations, but assume that source and dest i
nation ha ve been initialized to the proper addresses.

3 .9 (10] <§3.5> The C segment

while (sav e [i] == k)
i = i + j :

on page 127 uses both a conditional branch and an unconditional jump each
time through the loop. Only poor compilers would produce code with this
loop overhead. Rewrite the assembly code so that it uses at most one branch
or jump each time through the loop. How many instructions are executed
before and after the optimiza tion if the number of iterations of the loop is 10
(i.e., s ave[i + 10 * j] donotequal k and s ave [i] sa ve[i + 9 *
j J equal k)?

3.10 [25] <§3.9> As discussed on page 157 and summarized in Figure 3.37,
pseudoinstructions are not part of the MIPS instruction set but often appear in
MIPS programs. For each pseudoinstruction in the following table, produce a
minimal sequence of actual MIPS instructions to accomplish the same thing.
You may need to use $a t for some of the sequences. In the following table, big
refers to a specific number that requires 32 bits to represent and small to a
number that can be expressed using 16 bits.

Pseudoinstruction What It accomplishes

~ave H5~t3 .t~5 $l3
$t5 $t5 0

~ i H 5 . sma 11 ~ f H5 = sma 11
~liH5 . bi g $t5=big

~l w H 5 , ~g($t3)_ I HS= Memcry[H3 + b qJ
add1 $t5 . $t3 , big $t 5 = H'3 + big I

~

eq H 5 . small , L ~

1
1t (H5 = small) go_l_:, <

beq $t 5 , big . L lf ($t5 = big) go Lo L

ble H 5 . $t3 , L ~lf ($t5 <= $l3) qo to l

bgt $t5 . $l3 . L 7 lf ($t5 > $ t1l go to L I
~ ge H 5 . H 3 ._ L_~f ($t5 >= HJ) go _l.9 L

1

INTEL - 1012

200 Chapter 3 Instructions: Language of the Machine

3.11 [30] <§3.5> Consider the following fragment of C code:

for (i=O ; i<=lOO; i=i+l) (a[i] = b[i] + c ; l

Assume that a and b are arrays of words and the base address of a is in $a0
and the base address of b is in $ a 1. Register HO is associated with variable i
and register $s0 with c. Write the code for MIPS. How many instructions are
executed during the running of this code? How many memory data refer­
ences will be made during execution?

3 .12 [5] <§§3.8, 3.9> Given your understanding of PC-relative address~ng, ex­
plain why an assembler might have problems directly implementmg the
branch instruction in the following code sequence:

here :

there:

beq $tl, HZ . there

add Hl. $tl, $tl

Show how the assembler might rewrite this code sequence to solve these

problems.

3.13 [10] <§3.12> Consider an architecture that is similar to MIPS except that
it supports update addressing (like the PowerPC) for data transfer instruc­
tions. If we run gee using this architecture, some percentage of the data trans­
fer instructions shown in Figure 3.38 on page 189 will be able to make use of
the new instructions, and for each instruction changed, one arithmetic instruc­
tion can be eliminated. If 25% of the data transfer instructions can be changed,
which will be faster for gee, the modified MIPS architecture or the unmodified
architecture? How much faster? (You can assume that both architectures have
CPI values as given in Exercise 3.16 and that the modified architecture_has its
cycle time increased by 10% in order to accommodate the new mstructlons.)

3.14 [10] <§3.14> When designing memory systems, it becomes useful to
know the frequency of memory reads versus writes as well as the frequency of
accesses for instructions versus data. Using the average mstruct1on-m1x mfor­
mation for MIPS for the program gee in Figure 3.38 on page 189, find the fol-

lowing:

a. The percentage of n/1 memory accesses that are for data (vs. instruc­
tions) .

b. The percentage of nil memory accesses that are reads (vs. writes).
Assume that two-thirds of data transfers are loads.

3.15 [10] <§3.14> Perform the same calculations as for Exercise 3.14, but re­

place the program gee with spice.

3.17 Exercises 201

3.16 [15] <§3.14> Suppose we have made the following measurements of
average CPI for instructions:

Instruction AverqeCPI
-

I ~ithmeti<:__ _ L 1.0 clock cycles

Data transfer 1.4 clock cycles

Conditional branch 1. 7 clock cycles

[Jump
I~

1.2 clock cycles

Compute the effective CPI for MIPS. Average the instruction frequencies for
gee and spice in Figure 3.38 on page 189 to obtain the instruction mi x.

3.17 [20] <§3.10> In this exercise, we'll examine quantitatively the pros and
cons of adding an addressing mode to MIPS that allows arithmetic instructions
to directly access memory, as is found on the 80x86. The primary benefit is that
fewer instructions will be executed because we won't have to first load a reg­
ister. The primary disadvantage is that the cycle time will have to increase to
account for the additional time to read memory. Consider adding a new in­
struction:

addm HZ , 100($t3) #HZ= HZ+ Memory[$t3+100]

Assume that the new instruction will cause the cycle time to increase by 10 c1i .
Use the instruction frequencies for the gee benchmark from Figure 3.38 on
page 189, and assume that two-thirds of the data transfers are loads and the
rest are stores. Assume that the new instruction affects only the clock speed ,
not the CPI. What percentage of loc1ds must be elimimted for the machine
with the new instruction to have at least the same performance?

3.18 [10] <§3.10> Using the information in Exercise 3.17, write a nrnltiple­
instruction sequence in which a load of HO followed immediately by the use
of HO-in, say, an add-could not be replaced by c1 single instruction of the
form proposed.

Comparing Instruction Sets of Different Styles

For the next two exercises, your task is to compare the memory efficiency
of four different styles of instruction sets for two code sequences. The
architecture styles are the following:

• Accumulntor.

• Me111ory-111e111ory: All three operands of each instruction are in mem­
ory.

7

INTEL - 1012

202
Chapter 3 Instructions: Language of the Machine

• Stack: All operations occur on top of the stack. Only push and pop ac­
cess memory, and all other instructions remove their operan_ds from
the stack and replace them with the result. The implementatio~ 1:1ses
a stack for the top two entries; accesses that use other stack positions

are memory references.
• Load-store: All operations occur in registers, and register-to-register

instructions have three operands per instruction. T_here are 16
general-purpose registers, and register specifiers are 4 bits long.

Consider the following C code:
a= b + c; 4t a . b . and care variables in memory

Section 3.15 contains the equivalent assembly language code for the differ­
ent st les of instruction sets. For a given code sequence, we can calcul~te
the in~truction bytes fetched and the memory da~a bytes transferred usmg
the following assumptions about all four instruction sets:

• The opcode is always 1 byte (8 bits).

• All memory addresses are 2 bytes (16 bits).

• All data operands are 4 bytes (32 bits) .

• All instructions are an integral number of bytes in length.

• There are no optimizations to reduce memory traffic.

For example, a register load will require four instruction bytes (one for the
opcode, one for the register destination, and two for a memory address) to
be fetched from memory along with four data bytes. A memory-memory
add instruction will require seven instruction bytes (one for the opcode and
two for each of the three memory addresses) to b_e fetched from memory
and will result in 12 data bytes being transferred (eight from memory to ~he
processor and four from the processor back to memory) . The f~llowmg
table displays a summary of this infor~ation ~or each_ of the architectural
styles for the code appearing above and m section 3.15.

--Instructions for

Style a:b+c '' . '

Accumulator 3 3+3+3 4+4+4

1 7 12
Memory-memory

4 3+3+1+3 4+4+0+4
Stack

4 4+4+3+4 4+4+0+4
Load-store

3.17 Exercises 203

3.19 [20] <§3.15> For the following C code, write an equivalent assembly
language program in each architectural style (assume all variables are ini­
tially in memory) :

a b + c;
b =a+ c ;
d = a - b;

For each code sequence, calculate the instruction bytes fetched and the
memory data bytes transferred (read or written). Which architecture is
most efficient as measured by code size? Which architecture is most effi­
cient as measured by total memory bandwidth required (code + data)? If
the answers are not the same, why are they different?

3.20 [5] <§3.15> Sometimes archi tectures are characterized according to
the typical number of memory addresses per instruction. Commonly used
terms are 0, 1, 2, and 3 addresses per instruction. Associate the nan1es above
with each category.

3.21 [10] <§3.7> Compute the decimal byte values that form the null­
terminated ASCII representation of the following string:

A byte is 8 bits

3.22 [30] <§§3.6, 3.7> Write a program in MIPS assembly language to convert
an ASCII decimal string to an integer. Your program should expect register
$a0 to hold the address of a null-terminated string containing some combina­
tion of the digits 0 through 9. Your program should compute the integer value
equivalent to this string of digits, then place the number in register $v 0. Your
program need not handle negative numbers. If a nondigit character appears
anywhere in the string, your program should stop with the value-1 in register
$ v0 . For example, if register$ a 0 points to a sequence of three bytes sot 52t CIV e1v

Oten (the null-terminated string "24"), then when the program stops, register
$v0 should contain the va lue 24ten · (The subscript "ten" means base 10.)

3.23 [20] <§§3.6, 3.7> Write a procedure, bf i nd, in MIPS assembly language.
The procedure should take a single argument that is a pointer to a null­
terminated string in register $a0 . The bfi nd procedure should locate the first
b character in the string and return its address in register $v 0. If there are no
b's in the string, then bfi nd should return a pointer to the nul1 character at the
end of the string. For example, if the argument to bf i nd points to the string
"imbibe," then the return value will be a pointer to the third character of the
string.

INTEL - 1012

204 Chapter 3 Instructions: Language of the Machine

3.24 [20] <§§3.6, 3.7> !Ex. 3.231 Write a procedure, bcount, in MIPS assembly
l,rngw1ge. The bcount procedure takes a single argument, which i~ a pllinkr
to a string in register $a0 , crnd it returns,, count nf the tut,11 numbL'r ot ch,.r­
acters in the string in register $v0 . You must use your 01; 1,u procedure in E"\­
ercise 3.23 in your implernenlatiun of :::.~.:.;.:~:.

3.25 [30] <§§3.6, 3.7> Write a procedure, i tua , in MIPS assembly language
that will convert an integer argument into an ASCII decimal string. The proce­
dure should take two arguments: the first is an integer in register $a0; the sec­
ond is the address at which to write a result string in register $ a 1. Then i toa
should convert its first argument to a null-terminated decimal ASCII string
and store that string at the given result location. The return value from i toa ,
in register $v 0, should be a count of the number of non-null characters stored
at the destination.

In More Depth

Tail Recursion

Some recursive procedures can be implemented iteratively without using
recursion. Iteration can significantly improve performance by removing
the overhead associated with procedure calls. For example, consider a
procedure used to accumulate a sum:

int sum (int n , int ace) !
if (n > 0)

return sum(n - 1 , ace+ n) ;
else

return ace ;

Consider the procedure call sum (3 , 0) . This will result in recursive calls to
sum(2 , 3) , sum(1 , 5), and sum(0 , 6), and then the result 6 will be
returned four times. This recursive call of sum is referred to as a tnil en /I,
and this example use of tail recursion can be implemented very efficiently
(assume $a0 = n and $al = ace) :

sum : beq $a0 , $zero , sum_exit H go to sum_exit if n is 0
add $a 1. $a 1. $a0 H add n to ace
addi $a0 , $a0 , - 1 ff subtract 1 from n
j sum ff go to sum

sum exit :
move $v0 , $al ff return value ace
j r $ ra ff return to caller

3.17 Exercises
205

3.26 l30J <~3.6> Write a MIPS prncedurt· to mm pule the 11th f1btln,H u
nurnbL'r 11 lwr('

~c1se your algorithm on the s trc1ightforward but hopclcsslv ineffici ent pro­
cedure below, which generates a recubi\ e proLe~y

;..,+ +;hf;..-,+ ..-,\ I

if(n~-0)
return O;

else if (n 1)

return l ·
else

return fib(n-1) + fib(n-2) ;

3.27 [30] <§3.6> Write a program as in Exercise 3.26, except this time base
your progrnm on the following procedure and optimize the tc1il ca ll so ac. to
make your 1mplementcltion efficient:

int fib_iter (int a , int b , int count) I
if (count== 0)

return b :
else

return fib _ iter(a + b , a . count l) ;

Here, the first two pc1rarne ters keep trc1 ck of the pre\' iou s t\\'o Fibonacci
numbers computed . To compute F(n l you have to make the procedure call
f 1 b_ 1 t er (1 . 0 , n) .

3.28 (20] <§3.6> Estimate the difference in performc1ncc between vour so-
lution to Exercise 3.26 c1nd your solution to Exercise 3.27. ·

-
INTEL - 1012

206 Chapter 3 Instructions: Language of the Machine

In More Depth

The Single Instruction Computer

The computer architecture used in this book, MIPS, has one of the simpler
instruction sets in existence. However, it is possible to imagine even sim­
pler instruction sets. In this assignment, you are to consider a hypotheti­
cal machine called SIC, for Single Instruction Computer. As its name
implies, SIC has only one instruction: subtract and branch if negative, or
s b n for short. The s b n instruction has three operands, each consisting of
the address of a word in memory:

sbn a , b , c # Mem[a] = Mem[a] - Mem[b] ; if (Mem[a] <Ol go to c

The instruction will subtract the number in memory location b from the
number in location a and place the result back in a, overwriting the previ­
ous value. If the result is greater than or equal to 0, the computer will take
its next instruction from the memory location just after the current instruc­
tion. If the result is less than 0, the next instruction is taken from memory
location c. SIC has no registers and no instructions other than s bn .

Although it has only one instruction, SIC can imitate many of the opera­
tions of more complex instruction sets by using clever sequences of s b n
instructions. For example, here is a program to copy a number from loca­
tion a to location b:

start : sbn temp , temp, .+l
sbn temp , a,.+l
sbn b , b .. +l
sbn b . temp ,. +l

Sets temp to zero
Sets temp to -a
Sets b to zero
Sets b to -temp . which is a

In the program above, the notation .+ 1 means "the address after this
one," so that each instruction in this program goes on to the next in
sequence whether or not the result is negative. We assume temp to be the
address of a spare memory word that can be used for temporary results .

3.29 [10] <§3.15> Write a SIC program to add a and b, leaving the result in
a and leaving b unmodified.

3.30 [20] <§3.15> Write a SIC program to multiply a by b, putting the result
in c. Assume that memory location one contains the number 1. Assume that
a and b are greater than O and that it's OK to modify a or b. (Hint: What
does this program compute?)

c = 0 ; while (b > 0) (b b - 1 ; c c + a ; l

INTEL - 1012

Numerical precision
is the very soul
of science.
Sir D'arcy Wentworth Thompson
011 Growth nnrl Fom1, 1917

Arithmetic for
Computers

4.1 Introduction 210

4.2 Signed and Unsigned Numbers 210

4.3 Addition and Subtraction 220

4.4 Logical Operations 225

4.5 Constructing an Arithmetic Logic Unit 230

4.6 Multiplication 250

4. 7 Division 265

4.8 Floating Point 275

4.9 Real Stuff: Floating Point in the PowerPC and 80x86 301

4.10 Fallacies and Pitfalls 304

4.11 Concluding Remarks 308

4.12 Historical Perspective and Further Reading 312

4.13 Key Terms 322

4.14 Exercises 322

The Five Classic Components of a Computer

Evaluating
performance

Interface

Computer

Memory

INTEL - 1012

210 Chapter 4 Arithmetic for Computers

• Introduction

•

Computer words are composed of bits; thus words can be represented as
binary numbers. Although the natural numbers 0, 1, 2, and so on can be repre­
sented either in decimal or binary form, what about the other numbers that
commonly occur? For example:

• How are negative numbers represented?

• What is the largest number that can be represented in a computer word?

• What happens if an operation creates a number bigger than can be rep­
resented?

• What about fractions and real numbers?

We could also ask, What is the inside story about the infamous bug in the Pen­
tium? And underlying all these questions is a mystery: How does hardware
really add, subtract, multiply, or divide numbers?

The goal of this chapter is to unravel this mystery, including representation
of numbers, arithmetic algorithms, hardware that follows these algorithms,
and the implications of all this for instruction sets. These insights may even ex­
plain quirks that you have already encountered with computers. (If you are fa­
miliar with signed binary numbers, you may wish to skip the next section and
go to section 4.3 on page 220.)

Signed and Unsigned Numbers

Numbers can be represented in any base; humans prefer base 10 and, as we
examined in Chapter 3, base 2 is best for computers. Because we will fre­
quently be dealing with both decimal and binary numbers, to avoid confusion
we will subscript decimal numbers with ten and binary numbers with two.

In any number base, the value of ith digit dis

d x Basei

where i starts at O and increases from right to left. This leads to an obvious
way to number the bits in the word: Simply use the power of the base for that
bit. For example,

l0lltwo

4.2 Signed and Unsigned Numbers 211

represents

(1 X 23) + (0 X 22) + (1 X 21) + (1 X 2olten
(1 X 8) + (0 X 4) + (1 X 2) + (1 x 1) ten

8 + 0 + 2 + 1 ten
11 ten

Hence the bits are numbered 0, 1, 2, 3, ... from right to left in a word. The
drawing below shows the numbering of bits within a MIPS word and the
placement of the number lOlltwo:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

loo o o lo o oo'oooo'oo oo~o- o 0 0 0 0 00000 0101 1

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and right­
most may be unclear. Hence, the phrase least significant bit is used to refer
to the rightmost bit (bit O above) and most sig11ifica11t bit to the leftmost bit
(bit31).

The MIPS word is 32 bits long, so we can represent 232 different 32-bit pat­
terns. It is natural to let these combinations represent the numbers from Oto il2

-1 (4,294,967,295te,J

0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

0000two
000 l two
00l0two

1111 1111 1111 1111 1111 1111 1111 ll0ltwo
1111 1111 1111 1111 11 11 1111 1111 lll0two
1111 1111 1111 1111 1111 1111 1111 lllltwo

4 , 294,967 , 29Jl,'I
4 . 294 . 967 , 2941,.,
4,294 , 967 , 2951,11

Hardware
Software

Interface

Base 2 is not natura l to human beings; we ht1ve 10 fingers
and so find base 10 natural. Why didn't computers use deci­
mal? In fact, the first commercial computer did offer decimal
arithmetic. The problem was that the computer still used on
and off signals, so a decimal digit was sin,ply represented
by several binary digits. Decimal proved so inefficient that
subsequen t machines reverted to all binary, com·crting to

base 10 only for the infrequent input /output events.

INTEL - 1012

212

Example

Answer

Chapter 4 Arithmetic for Computers

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as two's
complement integers (see Figure 3.15 on page 142). What is the expansion
in storage if the number 1 billion is represented in ASCII versus a 32-bit in­
teger?

One billion is 1 000 000 000, so it would take 10 ASCII digits, each 8 bits
long. Thus the storage expansion would be (10 x 8)/32 or 2.5. In addition
to the expansion in storage, the hardware to add, subtract, multiply, and
divide such numbers is also difficult. Such difficulties explain why com­
puting professionals are raised to believe that binary is natural and that
the occasional decimal machine is bizarre.

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all be­
ing O except for a few of the rightmost digits. We just don't normally show
leading Os.

As we shall see in sections 4.5 through 4.7, hardware can be designed to add,
subtract, multiply, and divide these binary bit patterns. If the number that is
the proper result of such operations cannot be represented by these rightmost
hardware bits, overflow is said to have occurred. It's up to the operating system
and program to determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we
need a representation that distinguishes the positive from the negative. The
most obvious solution is to add a separate sign, which conveniently can be rep­
resented in a single bit; the name for this representation is sign and 111ag11it11de.

Alas, sign and magnitude representation has several shortcomings. First,
it's not obvious where to put the sign bit. To the right? To the left? Early ma­
chines tried both. Second, adders for sign and magnitud e may need an extra
step to set the sign because we can't know in advance what the proper sign will
be. Finally, a separate sign bit means that sign and magnitude has both a posi­
tive and nega tive zero, which can lead to problems for inatten tive program­
mers. As a result of these shortcomings, sign and magnitude was soon
abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large num­
ber from a small one. The answer is that it would try to borrow from a string
of leading Os, so the result would have a string of leading Is.

4.2 Signed and Unsigned Numbers 213

Given that there was no obvious better alternative, the final solution was to
pick the representation that made the hardware simple: leading Os mean posi­
tive, and lead mg ls mean n;gative. This convention for representing signed bi­
nary numbers rs called two s co111ple111e11t representation:

0000 0000 0000 0000 0000 0000 0000 0000t
0000 0000 0000 0000 0000 0000 0000 000lt
0000 0000 0000 0000 0000 0000 0000 00lOt

WO

WO

WO

0ten
1 ten
2 ten

0lll llll llll llll llll llll llll ll0ltwo 2 . 147 , 483,645ten
0lll llll llll llll llll llll llll lll0two 2 , 147 , 483 , 646ten
0111111111111111 llll llll llll lllltwo 2 , 147 , 483 , 647,en
1000 0000 0000 0000 0000 0000 0000 oooot =-2 147 483 648

WO • • • Le11
1000 0000 0000 0000 0000 0000 0000 000ltwo =-2 , 147 . 483,647 ien
1000 0000 0000 0000 0000 0000 0000 00l0t =-2 147 483 646 WO • • ' Len

llll llll llll llll llll llll llll ll0lt WO
llll llll llll llll llll llll llll lll0t WO
llll llll llll 11111111 llll llll llllt WO

- 3t,0 11

- 2 lPI'

-1 tpn

The positive half of the numbers, from Oto 2,1 47,483,647tcn (231 -1), use the
same representation as before. The following bit pattern (1000 . . . 00O0two> rep­
resent~ the most negative number -2,147,483,648ten (-231) . It is followed by a
decbnmg set of negative numbers: -2,147,483,647ten (1000 ... OOOltwo> down
to -lten (1111 ... lllltwo>-

Two's complement does have one negative number -2 147 481 648 that
I I I ~ I ten, (

has no corresponding positive number. Such imbalance was a worry to the in-
attentive programmer, but sign and magnitude had problems for both the pro­
grammer and the hardware designer. Consequently, every compu ter today
uses two's complement binary representations for signed numbers. -

Two's complement representation has the advantage that all negative num­
bers have a 1 m the most significant bit. Consequently, hardware needs to test
only this_ bit to see if a number is positive or negative (with 0 considered posi­
ti ve): This particular bit is often called the sign bit. By recognizing the role of
the sign bit, we can represent positive and negative numbers in terms of the bit
value times a power of 2 (here xi means the ith bit of x):

(x3l x -231
) + (x30 x 230) + (x29 x 229) + ... + (xl x 21) + (xO x 2°)

The si~~ bit is n_1ultiplied by -231
, and the rest of the bits are then multiplied

by positive vers10ns of their respective base values.

•
INTEL - 1012

214

Example

Answer

Chapter 4 Arithmetic for Computers

Binary to Decimal Conversion

What is the decimal value of this 32-bit two's complement number?

1111 1111 1111 1111 1111 1111 1111 ll00two

Substituting the number's bit values into the formula above:

(1 X -231) + (1 X 230) + (1 X 229) + ... + (1 X 22) + (0 X 21) + (0 X 20)
= - 231 + 230 + 229 + ... + 22 + 0 + 0

= -2,147,483,648ten + 2,147,483,644ten
= -4ten

We' ll see a shortcut to simplify conversion soon.

Hardware

Software

Interface

Signed versus unsigned applies to loads as w ell as to arith­
metic. The function of a signed load is to copy the sign
repeatedly to fill the rest of the register-called sign exten­
sion-but its purpose is to place a correct representation of
the number within that register. Unsigned loads simply fill
with Os to the left of the data, since the number represented
by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot;
signed and unsigned loads are identical. MIPS does offer two flavors of byte
loads: load byte (lb) treats the byte as a signed number and thus sign extends
to fill the 24 leftmost bits of the register, while load byte unsigned (l bu) works
with unsigned integers. Since programs almost always use bytes to represent
characters rather than consider bytes as short signed integers, l bu is used
practically exclusively for byte loads.

Just as an operation on unsigned numbers can overflow the capacity of
hardware to represent the result, so can an operation on two's complement
numbers. Overflow occurs when the leftmost retained bit of the binary bit pat­
tern is not the same as the infinite number of digits to the left (the sign bit is
incorrect): a 0 on the left of the bit pattern when the number is negative or a 1
when the number is positive.

Example

4.2 Signed and Unsigned Numbers 215

linlike the numbl'r-. dic.l ll"'-l'd ,1b,1, L', nwmun ,1ddrl'-.-,L'"
nr1turc1lly -, tcirl ,it(\ ,rnd u,ntrnul' to tlw Lirgl'-.t c1ddrl'-.-.. l'ul
ilnother w:iy, ncgati,·c ,,ddrcsc;cc; rnaKL' 11ll -,L'11"L'. Thu::-.. prL>

gr,1111:, ll'c1nt tu dl'c1I ::-.umL'l1me::-. ,\·ith numbnc, th-it lc111 bl'
~ positive or negative and sometimes with numbers that cc1n
--- be only positive. Programming lc1ng1lilges reflect this dis-

tinction. C, for example, names the former integers (declared
as int in the program) and the la tter unsigned integers (unsigned int).

Comparison instructions must deal with this dichotomy. Sometimes a bit
pattern with a 1 in the most significant bit represents a negative number and,
of course, is less than any positive number, which must have a 0 in the most
significant bit. With unsigned integers, on the other hand, a 1 in the most sig­
nificant bit represents a number that is larger than any that begins with a 0.

MIPS offers two versions of the set on less than comparison to handle
these alternatives. Set 011 less thn11 (s l t) and set 011 less tl1nn i111111edinfl' (s l t ·)
work with signed integers. Unsigned integers are compared using set 011 less
than unsigned (s l tu) and set 011 less thn II i111111cd in tc 1111sig11ed (s l ti u).

Signed versus Unsigned Comparison

Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 1111 tv-c

and that register $ s 1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001 ~.,

What are the values of regis ters :i, t 0 and :i, ti after these two instructions '

slt HO , $s0 , $sl # signed compar i son
sltu Hl. $s0 , $sl # unsigned compari son

The value in register $s0 represents -1 if it is cm integer ,rnd
4,294,967,295ten if it is an unsigned integer. The v.:iluc in register : rep­
resents 1 in either case. Then register $tr, h,1s the \·a Jue 1, since -1 tl'n <. I tcw

and register it 1 has the ,·Jluc !l, si1KL' -1-,2lJ-l,LJo7,2LJ\,. 11 " I 1,, 11 •

Before going on to addition and subtraction, let's examine a few useful
shortcuts when working with two's complement numbers.

INTEL - 1012

216 Chapter 4 Arithmetic for Computers

The first shortcut is a quick way to negate a two's complement binary num­
ber. Simply invert every Oto 1 and every 1 to 0, then add one to the result. This
shortcut is based on the observation that the sum of a number and its inverted
representation must be 111 ... llltwo, which represents -1. Since x + x = - I ,
therefore x + x + I = 0 or i + I = -x.

Negation Shortcut

Negate 2teiv and then check the result by negating -2ten·

2t en = 0000 0000 0000 0000 0000 0000 0000 00l0two

Negating this number by inverting the bits and adding one,

llll llll llll llll llll llll llll ll0l two
+

llll llll llll llll llll llll llll lll0two
-2 ten

Going the other direction,

1111 1111 1111 1111 1111 1111 1111 1110 two

is first inverted and then incremented:

0000 0000 0000 0000 0000 0000 0000 000ltwo
+ l two

0000 0000 0000 0000 0000 0000 0000 00l0two
2ten

The second shortcut tells us how to convert a binary number represented in
n bits to a number represented with more than 11 bits. For example, the imme­
diate field in the load, store, branch, add, and set on less than instructions
contains a two's complement 16-bit number, representing -32,768ten (-i15) to
32,767ten(215-1). To add the immediate field to a 32-bit register, the machine
must convert that 16-bit number to its 32-bit equivalent. The shortcut is to take
the most significant bit from the smaller quantity-the sign bit-and replicate
it to fill the new bits of the larger quantity. The old bits are simply copied into
the right portion of the new word. This shortcut is commonly called sign
extension.

4.2 Signed and Unsigned Numbers 217

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and -2tcn to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000 0000 0000 00l0two = Zten

It is converted to a 32-bit number by making 1/i copies of the ,·aim' in the
most significant bit (0) and placing that in the left-hand h,1lf of the word.
The right half gets the old value:

0000 0000 0000 0000 0000 0000 0000 001 0t1,, = 2 t e'

Let's negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000 0000 0000 00l0two

becomes

+
1111 1111 1111 l] 01 \ Wll

1 t \·!

llll llll llll lll01wo

Creating a 32-bit version of the negati\'e number means copying the
sign bit 16 times and placing it on the left:

lllllllllllllllllllllllllllllll0tw,, = -2,,,

This trick works because positive two's complement numbers really haYe
an infinite number of Os on the left and those that arc ncgc1tive two's comple­
ment numbers have an infinite number of ls. The binary bit pattern represent­
ing a number hides leading bits to fit the width of the hardware; s ign extension
simply restores some of them.

A final shortcut, w hich we previewed in Chapter 3, is thc1t we can SclH' rc,1d­
ing and writing long binary numbers by using a higher base than binary thc1t
converts easily into binary. Since almost all compu ter data sizes are multiples
of 4, /iexndcci111nl (base 16) numbers are popular. Since base 16 is a power of 2,
we can trivially convert by replacing each group of four binary digits by a sin­
gle hexadecimal digit, and vice ve rsa. Figure 4.1 shows the hexadecimal
Rosetta stone. We will use either the subscript /,ex or the C notation , which uses
0x11n1111 , for hexadecimal numbers.

INTEL - 1012

218 Chapter 4 Arithmetic for Computers

liiiil1•i'i/iillll11il• :ill11i&a iiil1•i'iiillll11i :ill.it• iiil•i'i/iillll11I ·111m• . ' . I . I! I• I! I• - i!iSti iJSMfli• -11 Alfi•
I

Ohex OOOOtwo 4hex 0100two 8hex 1000two Chex 1100t~

I lhex 0001two 5hex 0101two 9hex 1001two
~

dhex 1101two
- ~ ------- - ----,

2hex 0010two 6hex 0110two a hex 1010two ehex 1110tw~ I ----

I 3hex 0011two 7 hex 0111two bhex 1011two fhex 1111t~
------- ----

FIGURE 4.1 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four
binary digits, and vice versa. If the length of the binary number is not a multiple of four, go from right to left.

Example

Answer

Binary-to-Hexadecimal Shortcut

Convert the following hexadecimal and binary numbers into the other
base:

eca8 6420hex

0001 0011 0101 0111 1001 1011 1101 llll t wo

Just a table lookup one way:

Al~
1110 1100 1010 1000 0110 0100 0010 OOOO t wo

And then the other direction:

00~~ /Pllltwc
Summary

The main point of this section is that we need to represent both positive and
nega tive integers within a computer word, and although there are pros and
cons to any option, the overwhelming choice since 1965 has been two's com­
plement. Figure 4.2 shows the additions to the MIPS assembly language
revealed in this section. (The MIPS machine language is also illustrated on the
back endpapers of this book.)

4.2 Signed and Unsigned Numbers 219

MIPS operands

NfrHM Example Comments

32
registers

230

/ memory
words

$s0-$ s7 . HO- lt9 . $gp . Hp .
$zero , $sp , $ra , $at

I Memory[O] .
Memory[4], ...
Memory[4294967292]

Fast locations for data. In MIPS, data must be in registers to perform
arithmetic. MIPS register $zero always equals 0. Register $ J t is reserved
for the assembler to handle large constants.

Accessed only by data transfer instructions. MIPS uses byte addresses. so
sequential word s differ by 4. Memory holds data structures, such as arrays,
and spilled registers, such as those saved on procedure calls.

MIPS assembly language

l®MWI Instruction Example Meaning Comments

I Arithmetic

Data
I transfer

Conditional
branch

add

rsubtract

~d immediate

load word

store word
I- - -,­
load byte unsigned

add $51,$s2 , $s3 ·$51 = $S2 + $s3 Threeoperands

I sub $s1 . $s2 , $s3 I $s 1 = $s2 - $53 7 Three operands -

1
addi $s1 ,$~100

1
·~ =$ s2 +100 -~constant

l w $ s 1 , 100 ($ s 2) $ s 1 = Memory[$ s 2 + 100] Word from memory to register

sw $ s 1 , 100 ($52) ' Memory[$ s 2 + 100] = $51-r Word from register to memory

j, 1 $ [$ = Memory[l +100] T Byte fro111 me111oryto registe r
- -

~ tore byte_ _ j~ $s1 . 100($s2 l
I

Memory[$s2 + 100] = $s 1 Byte from register to memory

I Loads constant in upper 16
bits

load upper immediate l ui $s1,100

j
branch on equal lbeq $s 1.$ s2 . 25

r-
branch on not equal bne $s1 . $s2 , 25

r;;et on less than s lt $s 1. $s2 . $s3

r set less than immediate 157 t i - $ s 1 , $ S 2 , 100

set less than unsigned t 1

f-- -I
set less than immediate I
unsigned

I . f

$ s 1 = 100 * 216

t if($ s 1 == $ s 2) go to
PC+ 4 + 100

/ if(l sl != $s2)go to ­
PC + 4 + 100

i if($ s2 < $s3) $s1 = 1:
else $s 1 = O

I

if ($ s2 < 100) $s 1 = 1;
else $s 1 = O

1f (l < : 1;
else i ~ = 0

rf (, < 100) 1 .
else 1 : = 0

.j-

j Equal test~C-relative branch

Not equal test; PC-relative

Compare less than;
two·s complement

I Compare < constant:
two's complement

Compare less than :
unsigned numbers

Compare < constant.
unsigned numbers

jump
I Uncondi- f- -
t
.

1
. I jump register

2500

$ ra

2500

go to 10000 Jump to target address

I go to $ra 1ona Jump
_J jump and Ii~ $ r a = PC + 4; go to 10000

For switch, procedure return

For procedure call

FIGURE 4.2 MIPS architecture revealed thus far. Color indicdtcs portion, from thi, sect ion added to the M 11'5 .irchi­
tec ture revealed in Chapter 3 (Figu re 3.20 on page 155). Mll'S machine language is li,ted in the back cndpapcrs of this
book.

Elaboration: Two's complement gets its name from the rule that the unsigned sum
of an n-bit number and its negative is 2n, hence the complement or negation of a two·s
complement number xis 2n - x.

A third alternative representation is ca lled one's complement. The negative of a
one's com plement is found by inverting each bit, from O to 1 and from 1 to 0, which
helps explain its name since the complement of xis 2n - x - 1. It was also an attempt

l

INTEL - 1012

220

•

Chapter 4 Arithmetic for Computers

to be a better solution than sign and magnitude, and several scientific compute_rs did
use the notation. This representation is similar to two's complement except that It also
has two Os: 00 ... OOtwo is positive O and 11 ... 11two is negative 0. The most nega-
tive number 10 .. . OOOtwo represents -2,147,483,6471en, and so the posItIves and
negatives are balanced. One 's complement_ adders did need an extra step to subtract a
number, and hence two 's complement dominates today. . . .

A final notation, which we will look at when we discuss floatmg point, is to represent

t . 1 e b oo oon and the most posItIve value represented by the most nega Ive va u Y · · · '-'two . . · d
11 _ . . 11 w , with o typically having the value 10 ... OOtwo · This Is called a b1ase
notation, }0; it biases the number such that the number plus the bias has a non­

negative representation.

Addition and Subtraction

S11btrnctio11. Addition's Tricky Pnl

No. 10, Top Ten Courses for Athletes at a FootbaUFactory,
David Letterman et al., Book of Top Ten Lists, 1990

Addition is just what you would expect in computer~. Digits are ad_ded bit by
bit from right to left, with carries passed to the next d1g1t to the_left, iust as yo_u
would do by hand. Subtraction uses addition: The appropnate operand 1s
simply negated before being added.

Binary Addition and Subtraction

Let's try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in
binary.

+
0000 0000 0000 0000 0000 0000 0000 011 ltwo
0000 0000 0000 000 0 0000 0000 0000 01 l 0two

7 ten
6ten

0000 0000 0000 0000 0000 0000 0000 l lO l tw o = 13t en

The 4 bits to the right have all the action; Figure_4.3 shows the sums and
carries. The carries are shown in parentheses, with the arrows showmg
how they are passed.

4.3 Addition and Subtraction

(0) /0) (1)

0 0 0

0 0 0

(0) 0 (0) 0 (0) 1

/1) /0)

1 1

1 1

(1) 1 (1) 0

/Carries)

1

0

(0) 1

221

FIGURE 4.3 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the
operation for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a
carry out of 1. The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit
of 1. The fourth bit is 1 + 0 + 0, yielding a 1 sum and no carry.

Subtracting 6ten from 7ten can be done directly:

0000 0000 0000 0000 0000 0000 0000 011 ltwo 7 ten
00 00 0000 00 00 0000 0000 0000 0000 0ll Otwo 6ten

00 00 00 00 0000 0000 0000 0000 0000 0001 two 1 Len

or via addition using the two's complement representation of -6:

0000 0000 0000 0000 0000 0000 0000 0l l lt 1" 0
7 t et

+ llll lll l llll llll llll llll llll 1010two - 6ten

0000 0000 0000 0000 0000 0000 0000 000ltwo lte,
1

We said earlier that overflow occurs when the result from an operation can­
not be represented with the available hardware, in this case a 32-bit word.
When can overflow occur in add ition? When adding operands with different
signs, overflow cannot occur. The reason is the sum must be no larger than one
of the operands. For example, -10 + 4 = -6. Since the operands fit in 32 bits and
the sum is no larger than an operand, the sum must fit in 32 bits as well. There­
fore no overflow can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract,
but it's just the opposite principle: When the signs of the operands are the s11111c,

overflow cannot occur. To see this, remember that x - y = x + (-y) bec;iuse we
subtract by negating the second operand and then add. So, when we subtr,1ct
operands of the same sign we end up by nddi11g operands of different signs.
From the prior paragraph, we know that overflow cannot occur in this case
either.

Having examined when overflow cannot occur in addition and subtraction,
we still haven't answered how to detect when it does occur. Overflow occurs
when adding two positive numbers and the sum is negative, or vice vers,1.
Clearly, adding or subtracting two 32-bit numbers can yield a result that needs

INTEL - 1012

222 Chapter 4 Arithmetic for Computers

33 bits to be fully expressed. The lack of a 33rd bit means that when overflow
occurs the sign bit is being set with the vn lue of the result instead of the proper
sign of the result. Since we need just one extra bit, only the sign bit can be
wrong. This means a carry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from
a positive number and get a negative result, or when we subtract a positive
number from a negative number and get a positive result. This means a borrow
occurred from the sign bit. Figure 4.4 shows the combination of operations, op­
erands, and results that indicate an overflow. (Exercise 4.42 gives a shortcut for
detecting overflow more simply in hardware.)

We have just seen how to detect overflow for two's complement numbers in
a machine. What about unsigned integers? Unsigned integers are commonly
used for memory addresses where overflows are ignored.

The machine designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two
kinds of arithmetic instructions to recognize the two choices:

• Add (add), add immediate (addi), and subtract (s ub) cause exceptions
on overflow.

• Add unsigned (addu), add immediate unsigned (addi u), and subtract
unsigned (s ub u) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate
the unsigned versions of the arithmetic instructions a ddu, add i u, and s ubu no
matter what the type of the variables. The MIPS Fortran compilers, however,
pick the appropriate arithmetic instructions, depending on the type of the op­
erands.

Operation
Result

indicating overflow
~--~-

~ <O

2'. 0

<O ~
2'. 0

FIGURE 4.4 Overflow conditions for addition and subtraction.

Hardware

Software

Interface

The machine designer must decide how to handle arith­
metic overflows. Although some languages like C leave the
decision up to the machine designer, languages like Ada
and Fortran require that the program be notified. The pro­
grammer or the programming environment must then
decide what to do when overflow occurs.

4.3 Addition and Subtraction
223

MIPS detects overflow with an exception, also called an interrupt on
many computers. An exception or interrupt is essentially an unscheduled
procedure call. The address of the instruction that overflowed is saved in
a register, and the computer jumps to a predefined address to invoke the
appropriate routine for that exception. The interrupted address is saved
so that in some situations the program can continue after correcti\'e code
is executed_- (Section _5 .6 covers exceptions in more detail; Chapters 7
and 8 describe other situations where exceptions and interrupts occur.)

MIPS mcludes a register ca lled the exception progrn111 co1111ter (£PC) to
~ontam. the address of the instruction that caused the exception. The
mstruct10n move from system control (mfcO) is used to copy EPC into a
general-purpose register so that MIPS software has the option of return­
mg to the offending instruction via a jump register instruction.

Summary

~h~ main poi~t of this section is that, independent of the representation, the
fimte word size of computers means that arithmetic operations can create
results that_are too large to fit in this fixed word size. It's easy to detect over­
flow m unsigned numbers, although these are almost always ignored because
programs don't want to detect overflow for address arithmetic, the most com­
mon use of natural numbers. Two's complement presents a greater challenge,
yet some software systems require detection of overflow, so today all
machmes have a way to detect it. Figure 4.5 shows the additions to the MIPS
architecture from this section.

Elaboration: MIPS can trap on overflow, but unlike many other machines there is no
conditional branch to test overflow. A sequence of MIPS instructions can discover over­
flow. For signed addition, the sequence is the following (see the In More Depth section
on page 329 for the definition of the xo r and nor instructions):

add u H O, Hl, H 2 If HO= sum , but don ' t trap
xo r H 3 , H l , H 2 If Check if signs differ
s lt H 3 . H 3 , $ze r o If H3 = 1 if s i gns differ
bne H3 , $zero , No_overfl ow ti Hl , H2 signs "#, so no over•fl JW xor H3 , H O, Hl If signs= ; sign of sum match too?

tf $t3 negati ve i f sum sign different
slt H 3 , H 3 , $zero ti H3 = 1 if sum sign different
bne H 3 , $ze ro , Ove r flow If All three signs "F; go to overflow

l

INTEL - 1012

224 Chapter 4 Arithmetic for Computers

MIPS operands

MfrHM Example Comments

32
T $ sO- $ s 7 . $ t 0-$ l 9 , $ g p . Fast locations for data. In MIPS, data must be in registers to perform arithmetic.

registers
Hp . $zero . $sp , $ra , $at MIPSregister $zero alwaysequalsO.Register $atisreservedforthe

I :230
memory
words

I Memory[O].
Memory[4]. .
Memory[4294967292]

8¥1&441 Instruction

-] add ~dd
sub

lacid i

lacJdu
Arithmetic

Data
transfer

r

I Conditional
branch

Uncondi­
tional jump

subtract

I add immediate

[add unsigned -

subtract unsigned

1
add immediate

[unsig~d

move from
coprocessor register

1--
add i .1

j_
nrcO

[load word _ ~
store word s w

I l;;;d byte unsigned flb u

store byte

load upper
immediate

branch on equal

.
l~b

l LI i

I beq

1 branchon not equal bne

set on less than f's It
I - l
set less than s lt i
immediate

I set less than s ltu
unsigned I
set less than s l till
immediate unsigned

\ jump _J_
jump register j r

i -
j j al jump and link

J...:

assembler to. for example, handle large constants.

Accessed only by data transfer instructions. MIPS uses byte addresses, so
sequential words differ by 4. Memory holds data structures. such as arrays. and
spilled registers , such as those saved on procedure calls.

.J

MIPS assembly language

Example Meaning Comments

$s1,$s2,$s3 I$~=$s2~s3 _ - 1:1:_hree operand~overflow detected--,

Three operands; overflow detected 1
~ constant; overflow detected 7
I Thr~ operands; overflo;:;- 7

undetected

$s1 , $s2 . $s3 $s1 = $s2 - $s3

W . $s2 ,100 I $s1 = $s2 ~ oo­
W . l s2 Tsl T $sl = $s2 + $,3

!Three operands; overflow­
undetected

I
I

$s 1 ,$ ~2 ~ s3 l l s l = $s2 -l sl

$s1 . $s2 . 1(0 $sl = $s2 + 100 '-:;. constant: overflow undetected 7
_j

$sl = $epr ~ + used to copy Exception PC plus $sl , $epc
other special registers

$~ , 100 (.!_s 2)--+ $ s 1 = Memory[$ s 2 + 100) -+-Word from memory to register

$s 1 . 100 ($s 2) Memory[$s2 + 100] = $s 1 t word from register to memory

J

~
$sl , 100 Os 2) -~ $ s 1 = Memory[$ s~+ 100] I Byte from memory to register J
~l . 100($s 2)__J Memory[$s2 + 100] = $s1 LByte from register to memory ~

$ s 1 . l 00 $ s 1 = 100 * 216 Loads constant in upper 16 bits

$sl.$s2,25

$s1 . $s2 . 25

$sl , $s2 . $s3

$s1 , $s2 . 100

$s1 . $s2 , $s3

$s1 . $s2 , 100

2500

$ra

2500

1

1·f($sl ---- $s2) goto L I

I
Equal test; PC-relative branch 7

PC+ 4 + 100 [

• if ($ s l != $ s ?) go to I Not equ_a_l test; PC- -r-elative ~I
PC + 4 + 100 _ .

if ($ s2 < $s3) $s1 = 1: Compare less than; I
I else $~= 0

if ($S2< 100) $s]= l;
else $ s l = 0

if ($s2 < $s3) $s 1 = 1;
I else $ s l = 0

if ($S?< 100) $S1= 1;
else $s1 = O

two's complement

i Compar~ constant:

1
two's complemen~

Compare less than:
1 unsigne~_numbers

Compare < constant;
1 unsigned numbers

- -
go to 10000 Jump to target address

. -
I go to $ r a For switch. procedure return

$ra = PC+ 4; go to 100001 For procedure call

7

J
I

FIGURE 4.5 MIPS architecture revealed thus far. Color indi ca tes the portions revealed since Figure 4.2 on page 219.
MIPS machine language is also li s ted on the back endpapers of this book.

II

4.4 Logical Operations 225

For unsigned addition (H O== $tl + $t2), the test is

addu HO , $tl, $t2 ff HO = sum
nor $t3 , $tl . $zero ff $t3 = NOT $tl

ft (2 ' s comp - 1 : 232 - $tl -1)
s ltu $t3. $t3 , $t2 ff (232 - $tl - 1 J < $t2

ff • 232 - 1 < $tl + $t2
bne $t3, $zero . Overflow ft if (232 - 1 < $tl + $t2) go to over fl ow

Elaboration: In the preceding text , we said that you copy EPC into a register via
mf cO and then return to the interrupted code via jump register. This leads to an inter­
esting quest1_on: Since you must first transfer EPC to a register to use with jump regis­
ter, how can Jump reg1_ster return to the interrupted code and restore the original values
of all registers? You either restore the old registers first, thereby destroying your return
address from EPC that you placed in a register for use in jump register, or you restore
all registers but the one with the return address so that you can jump-meaning an
exception would result in changing that one register at any time during program execu­
t ion! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve
reg1ste_rs $ k O and $ k 1 for the operating system; these registers are not restored on
exceptions . Just as the MIPS compilers avoid using register$ at so that the assembler
can use it as a temporary register (see the Hardware Software Interface section on
page 14 7 in Chapter 3), compilers also abstain from using registers $ kO and $ k 1 to
make them available for the operating system. Exception routines place the return
address in one of these registers and then use jump register to restore the instruction
address.

Logical Operations

'.'Contrariwise," co11 tinued Tweedledee, "if it was ::;o, it 111ight be; n11d if it were ~o .
1t would be; but as it isn't, it ain't. That's logic."

Lewis Carroll , Alice's Adventures in Wo11derln11d, 1865

Although the first computers concentrated on fu ll words, it soon became clear
that it was useful to operate on fi eld s of bits w ithin a word or even on individ ­
ual bits. Examining characters wi thin a word, each of which are stored as 8
bits, is one example of such an opera tion. ft follows that instructions were
added to simplify, among other things, the packing a nd unpacking of bits into
words.

INTEL - 1012

,_

226 Chapter 4 Arithmetic for Computers

One class of such operations is called shifts. They move all the ~its i~ a word
to the left or right, filling the emptied bits with Os. For example, if register $ s 0

contained
0000 0000 0000 00000 000 0000 0000 0000 l l0ltwo

and the instruction to shift left by eight was executed, the new value would

look like this:
0000 0000 0000 0000 0000 00001101 0000 0000two

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (s l l) and shift right logical (s r l). The fol­
lowing instruction performs the operation above, assuming that the result

should go in register $t2:
sll $t2,$s0,8 # reg $t2 = reg $s0 << 8 bits

We delayed explaining the shamt field in the R-format in Chapt~r 3. It stands
for shift amount and is used in shift instructions. Hence, the machme language

version of the instruction above is
shamt funct

op rs rt rd

0 0 16 10 8 0

The encoding of s l l is O in both the op and funct fields, rd contai~s $t2, rt
contains $ s 0 and shamt contains 8. The rs field is unused, and thus is set to 0.

Another ~seful operation that isolates fields is AND. (w_e capi~alize_ the
word to avoid confusion between the operation and the English coniunchon.)
AND is a bit-by-bit operation that leaves a 1 in the result only if both bits of the
operands are 1. For example, if register $ t 2 still contains

0000 0000 0000 0000 0000 1101 0000 0000two

and register $ t 1 contains

0000 0000 0000 0000 00111100 0000 0000two

then, after executing the MIPS instruction
and $t0,$tl,$t2 # reg $t0 = reg $tl & reg $t2

the value of register $t0 would be

0000 0000 0000 0000 0000 1100 0000 0000two

As you can see, AND can be used to apply a bit pattern to _a set o_f bits_ to fo~ce
Os where there is a O in the bit pattern. Such a bit pattern m con1unct10n with
AND is traditionally called a mask, since the mask "conceals" some bits.

4.4 Logical Operations 227

To place a value into one of these seas of Os, there is the dual to AND, called
?R. It is a bit-by-bit operation that places a 1 in the result if either operand bit
~s a 1. To elaborate, if the registers $ t 1 and $t2 are unchanged from the preced­
mg example, the result of the MIPS instruction

or $t0,$tl,$t2 # reg $t0 = reg $tl I reg $t2

is this value in register $t0:

0000 0000 0000 0000 00111101 0000 0000two

Fig:1re 4.6 shows the logical C operations and the corresponding MIPS in­
structions. Constants are useful in logical operations as well as in arithmetic
operations, so MIPS also provides the instructions and immediate (and i) and or
immediate (ori). This section describes the logical operations AND, OR, and
~hif~ found in ev~ry computer today. The logical instructions are highlighted
m Figure 4.7, which summarizes the MIPS instructions seen thus far.

Logical operations C operators MIPS instructions

Shift left « s l l
Shift right » s r l
Bit-by-bit AND & and, andi
Bit-by-bit OR I or , ori

FIGURE 4.6 Logical operations and their corresponding operations In C and MIPS.

Hardware

Software

Interface

C allows bit fields or fields to be defined within words, both
allowing objects to be packed within a word and to match an
externally enforced interface such as an 1/0 device. All
fields must fit within a single word. Fields are unsigned
integers that can be as short as 1 bit. C compilers insert and
extract fields using logical instructions in MIPS: and, or,
s l l , and s r l .

INTEL - 1012

228 Chapter 4 Arithmetic for Computers

MIPS operands

IW::IW Example Comments

132 1 $ s 0- $ S 7 , $t 0- tt9, $ g p ~ Fast locations for data . In MIPS, data must be in registers to perform arithmeliZ7
registers $f p , $zer o , $ s p , $ r a . $at MIPS register $ze r o always equals 0. Register $at is reserved for the assembler

~ ~emory[O].
I memory Memory[4].. _ .

to handle large constants. -----,-I Accessed only by_d_a-ta- transfer instructions. MIPS uses byte addres-se_s_, s- o 7
sequential words differ by 4. Memory holds data structures, such as arrays, and
spilled registers, such as those saved on procedure calls . words Memory[4294967292]

MIPS assembly language

l½i&Wi Instruction Example Meaning • Comments

Arithmetic

add

subtract

add immediate

add unsigned

subtract unsigned

add immediate
~ igned

add $sl,$s2 , $s3

sub $sl . $s2 . $s3

addi $sl,$s2.100

addu $sl,$ s2 ,$ s3

subu $sl, $s2 . $s3

addiu $sl ,$ s2 ,100

$s l = $s2 + $s3

$sl = $s2 - $s3

$s1 = $s2 + 100

$s l = $s2 + $s3

$Sl = $S2 - $S3

+ constant; overflow detected

Three operands; overflow undetected

Three operands; overflow undetected
--- ---+-- ---~

$ s 1 = $ s 2 + 100 + constant; overflow undetected

--{

ove from :ifcO $s1, $epc $s1 = $epc

L oprocessor register -------1
I nd a11 d ~ . $~ i sl = $s2 & ~

or • $ c, 1 . S s . $' '< i . = $ s I i '"l

Used to copy Exception PC plus other
special registers

T11ree reg. operands; bit-by-bit AND

Three reg. operands: bit-by-bit OR

I Logical
~ nd 1mmed1ate

~or immediate

sl1ift left logical

cJI J' $ _ , $S . : v -for i ~ . is?-. -1 o_o _ _,__ __ _

1s11 $,l , Ssl , lC
-+-- --- ----+----

Bit-by-bit AND reg with constant

!BiU>Y·bi~g with constant

!Shift left by constant

~ hift right logical

I D~a

r $ $ - 1 . $ • l --- Shift right by constant

toad word

store word

transfer
toad byte unsigned 1 bu

$sl, 100($s2) $sl = Memory[$s2 + 100]

$sl, 100($s2) Memory[$s2 + 100] = $sl

$s l , 100($s2) $sl = Memory[$s 2 +100]
--+--

~ ~ ore byte ~;s b
~ . 100 ($si._2j Memory[$s2 + 100] = $s 1

$ s 1 , 100 j $ s 1 = 100 * 216 Load s constant in upper 16 bits j

I

Condi-

I

tional
branch

~load upper immediate 1 u i
branch on equal beq

L--

1 branch on not equal

set on less than

~ less than -is lt i
I immediate

set less than unsigned s 1 tu

1

set less than ---r--s-1 ti u
immediate unsigned 1 ·
jump j

Uncondi- ~ .

~ I .] ump register j r
ona Jump

jump and link j_J al

$ s 1, $ s 2 , 2 5 if ($ s 1 == $ s 2) go to
PC+ 4 + 100

Equal test: PC-re lative branch

$ S 1. $ S 2 ~ 1i f ($ S 1 != $ s 2) ~ r ot equal test; PC-relative
PC+ 4 + 100

. --- ---
$s l, $s2 , $s 3 if ($ s 2 < $s3) $s l = 1: Compare less than:

---+-e_l_se $s l = o___ two·s complement

$sl,$ s2,100 if($s2< 100) $sl =1;~ pare < constant;]
else $ s 1 = O ~ wo·s complement

$s 1, $s2 , $s3 if ($ s2 < $s3) $s 1 = 1: Compare less than ; natural numbers
else $s l = o

$sl,$ s2 , 100 l if($s2< 100) $sl =1:
else $sl = 0

2500 go to 10000
lCompare < constant: natural

numbers

Jump to target address

$ra

2500

go to $ r a For switch, procedure return

[$ r a = PC + 4; go to 10000 ~ procedure ca ll -- j
FIGURE 4.7 MIPS architecture revealed thus far. Color indicates the portions introduced since Figure 4.5 on page 224.
MIPS machine language is also listed on the back endpapers of this book.

Example

Answer

4.4 Logical Operations 229

C Bit Fields

The following C code allocates three fields with a word labeled receiver :
a 1-bit field named ready, a 1-bit field named enable, and an 8-bit field
named rec e i v ed Byte. It copies received Byte into data, sets ready too,
and sets enable to 1.

int data ;
struct
!

unsigned int ready : l ·
unsigned int enable : l ·
unsigned int receivedByte:8;

)receiver ;

data= receiver . receivedByte ;
receiver . ready= O;
receiver . enable= l ;

What is the compiled MIPS code? Assume data and receiver are allocat­
ed to $s0 and $sl.

The fields look like this in a word (C typically right-aligns fields):

31 10 9 2

i receivedByte r 1

enable

0

ready

The first step is to isola~e the 8-bit field (recei vedByt e) by first shifting it
as far to the left as possible and then as far to the right as possible:

sll $s0, $sl , 22 ft move 8-bit f i e l d to left end
srl $s0, $s0 , 24 # move 8 - bit field to right end

The third instruction clears the least significant bit with the mask r ffe
d th I . . hex

an e ast mstruct1on sets its neighbor bit to 1:

andi $sl. $sl , fffeh ex # bit O se t t o O
ori $sl . $sl, 0002hex # bit 1 set to l

Elaboration: In the example this alternative sequence works as well:

srl $s0 , $sl, 2
andi $s0 , $s0, OxOOff

INTEL - 1012

230 Chapter 4 Arithmetic for Computers

The field is in the lower 16 bits of the word and we want Os in the upper bits of the
result of the andi. In general , a shift left of 32 - (n + m) followed by a shift right by
32 - n will isolate any n-bit field whose least significant bit is in bit m.

Since add i and s l ti are intended for signed numbers , it is not surprising that their
immediate fields are sign-extended before use. Branch and data transfer address fields
are sign-extended as well.

Perhaps it is surprising that add i u and s l ti u also sign-extend their immediates, but
they do. The u stands for unsigned, but in reality addi u is often used simply as an add
instruction that cannot overflow, and hence we often want to add negative numbers. It's
much harder to come up with an excuse for why s l ti u sign extends its immediate field.

Since and i and or i normally work with unsigned integers, the immediates are
treated as unsigned integers as well , meaning that they are expanded to 32 bits by
padding with leading Os instead of sign extension. Thus if the bit fields in the third line
of the example above extended beyond the 16 least significant bits, the andi instruc­
tion would need a 32-bit constant to avoid clearing the upper portion of the fields.

The MIPS assembler creates 32-bit constants with the pair of instructions l u i and
or i; see Chapter 3 , page 14 7 for an example of creating 32-bit constants using l u i
and addi.

• Constructing an Arithmetic Logic Unit

ALU 11 . [Arthritic Logic Uni t or (rare) Arithmetic Logic Unit] A random-number
generator supplied as standard with all computer systems.

Stan Kelly-Bootle, The Devil's OP Dictionary, 1981

The arithmetic logic unit or ALU is the brawn of the computer, the device that
performs the arithmetic operations like addition and subtraction or logical
operations like AND and OR. This section constructs an ALU from the four
hardware building blocks shown in Figure 4.8 (see Appendix B for more
details on these building blocks). Cases 1, 2, and 4 in Figure 4.8 all have two
inputs. We will sometimes use versions of these components with more than
two inputs, confident that you can generalize from this simple example. In
any case, Appendix B provides examples with more inputs. (You may wish to
review sections B.1 through B.3 before proceeding further.)

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let's
assume that we will connect 32 1-bit ALUs to create the desired ALU. We'll
therefore start by constructing a 1-bit ALU.

A 1-Bit ALU

The logical opera tions are easiest, because they map directly onto the hard­
ware components in Figure 4.8.

4.5 Constructing an Arithmetic Logic Unit

1. AND gate (c = a . b)

2. OR gate (c = a+ b)

3 . Inverter (c = a)

4. Multiplexor
(if d = = 0, c = a;

else c = b)

a--.1\.
b--.~ c

231

.... CW&?&
0 0 0
0 1 0
1 0 0
1 1 1

----•WHii
0 0 0
0 1 1
1 0 1
1 1 1

I ~ I ~ I
I ~ I : I

FIGURE 4.8 Four hardware building blocks used to • . .
The name of the operation and an . . . construct an arithmetic logic unit.
symbol for the block we will use\n ;1{~1~~~J:i~e:c~bmf it appear on the left. In the middle is the
In terms of the inputs. Us ing the not•t1·01 f gA. n td1er1Bght are tables that describe the outputs
,, " 1 rom ppen 1x a • b means " A D b " ,.
a OR b," and a line over the top (e g -) . ' ' a , a + o me,1ns . ., a means mvert.

Operation

l
Result

FIGURE 4.9 The 1-bit logical unit for AND and OR.

INTEL - 1012

232 Chapter 4 Arithmetic for Computers

The 1-bit logical unit for AND and OR looks like Figure 4.9. The multiplexor
on the right then selects a AND b or a OR b, depending on whether the value
of Operation is O or 1. The line that controls the multiplexor is shown in color to
dis tinguish it from the lines containing data . Notice that we have renamed the
control and output lines of the multiplexor to give them names that reflect the

function of the ALU.
The next func tion to include is addition. From Figure 4.3 on page 221 we can

deduce the inputs and outputs of a single-bit adder. First, an adder must have
two inputs for the operands and a single-bit output for the su m . There must be
a second output to pass on the carry, called Carryout . Since the CarryOut from
the neighbor adder must be included as an input, we need a third input. Th~s
input is called Carryln. Figure 4.10 shows the inputs and the outpu~s of a 1-bit
adder. Since we know what addition is supposed to do, we can specify the out­
puts of this "black box" based on its inputs, as Figure 4.11 demonstrates.

Carryln

a

+ Sum

b

Carryout

FIGURE 4.10 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder
because it has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2)

adder or half adder.

Inputs Outputs

--• %ihi:• ;%ifrM•- Comments

0 0 0 0 0 0 + 0 + 0 = OOtwo

0 0 1 0 1 0 + 0 + 1 = 01two

0 1 0 0 1 0 + 1 + 0 = 01two

0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two
~ ~-~ -

1 0 1 1 0 1 + 0 + 1 = 10two
~

-~~

1 + 1 + 0 = 10two 1 1 0 1 0
--·-~~

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE 4.11 Input and output specification for a 1-bit adder.

4.5 Constructing an Arithmetic Logic Unit 233

From Appendix B, we know that we can express the output functions
CarryOut and Sum as logical equations, and these equations can in turn be im­
plemented with the building blocks in Figure 4.8. Let's do CarryOut. Figure
4.12 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation, as explained in
Appendix B. (Recall that a+ b means "a OR b" and that a• b means "a AND
b.")

CarryOut = (b · Carryln) +(a· Carryln) +(a• b) +(a• b • Carryln)

If a· b · Carryln is true, then all of the other three terms must also be true, so
we can leave out this last term corresponding to the fourth line of the table.
We can thus simplify the equation to

CarryOut = (b · Carryln) +(a· Carryln) +(a• b)

Figure 4.13 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates corre­
spond exactly to the three parenthesized terms of the formula above for Car­
ryOut, and the OR gate sums the three terms.

Inputs

--• iiihi:F

I ~ I ~ I 1 I

FIGURE 4.12 Values of the inputs when Carryout is a 1.

Carryln

Carryout

FIGURE 4 .13 Adder hardware for the carry out signal. The rest of the adder hardware is the
logic for the Sum output given in the equation on page 234.

INTEL - 1012

234 Chapter 4 Arithmetic for Computers

The Sum bit is set when exactly one input is 1 or when all _three inputs are 1.
The Sum results in a complex Boolean equation (recall that a means NOT a):

Sum = (a· 5 · Carry In)+ (a· b · Carry In)+ (a· b · Carry In)+ (a· b · Carry In)

The drawing of the logic for the Sum bit in the adder black box is left as an
exercise (see Exercise 4.43).

Figure 4.14 shows a 1-bit ALU derived by combining the adder with the ear­
lier components. Sometimes designers also want the ALU to perform a few
more simple operations, such as generating 0. The easiest way to add an oper­
ation is to expand the multiplexor controlled by the Operation line and, for this
example, to connect O directly to the new input of that expanded multiplexor.

A 32-Bit ALU

Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by
connecting adjacent "black boxes." Using xi to mean the ith bit of x, Figure 4.15
shows a 32-bit ALU. Just as a single stone can cause ripples to radiate to the
shores of a quiet lake, a single carry out of the least significant bit (ResultO)
can ripple all the way through the adder, causing a carry out of the most sig­
nificant bit (Result31) . Hence, the adder created by directly linking the carries
of 1-bit adders is called a ripple carry adder. We'll see a faster way to connect
the 1-bit adders starting on page 241.

Operation

Carryln

a
0

1
Result

2
b

Carryout

FIGURE 4.14 A 1-bit ALU that performs AND, OR, and addition (see Figure 4.13).

4.5 Constructing an Arithmetic Logic Unit

aO

bO

al

bl

a2

b2

a31

b31

Carryln

Carryln

ALUO

Carryln

ALUl

Carryout

Carryln

ALU2

Carryout

l
Carryln

ALU31

Operation

1------1-- ResultO

Resultl

Result2

1------- Result31

235

FIG.URE 4.15 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant
bit 1s connected to the Carry ln of the more significant bit. This organization is called ripple carry.

.Subtraction is the same as adding the negative version of an operand, and
this 1s how adders perform subtraction. Recall that the shortcut for negating a
two's complement number is to invert each bit (sometimes called the one's com­
plement as explained in the elaboration on page 219) and then add 1. To invert
each bit, we simply add a 2:1 multiplexor that chooses between b and 5, as
Figure 4.16 shows.

Suppose we connect 32 of these 1-bit ALUs, ilS we did in Figure 4.15. The
a~ded multipl~x.or gives the option of b or its inverted value, depending on
Bmvert, but this 1s only one step in negating a two's complement number. No­
tice that the least significant bit still has a Carryln signal, even though it's un­
necessary for addition. What happens if we set this Carryln to 1 instead of O?

INTEL - 1012

	96

