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add $t1, $t1,$tl ff reg $t1 = J * 4' .
add $t2, $a0,%tl # reg $t2 = v + QJ 4)
Tw $t3, 0($t2) # reg $t3 = v[q]
Tw $td, 4($t2) # reg $t4 = vﬁj + 1]
s1t $t0, $t4, $t3 # reg $t0 = O.wf $t4 > $t3
beq $t0, $zero,exit? # go to exit2 if $t4 = $t3
&dey of second for 1oop)
ddi  $sl, $sl, -1 Fi=3-1 |
? forz2tst # jump to test of inner loop
exite

The Procedure Call in sort
The next step is the body of the second for loop:

swap(v,Jj);
Calling swap is easy enough:
jal swap

Passing Parameters in sort
The problem comes when we want to pass parameters because the sort pro-
cedure needs the values in registers $a0 and $al, yet the swap prc.)cec%ure
needs to have its parameters placed in those same registers. Qne solutlondls to
copy the parameters for sort into other registers earlier in 'the pro'cef u:e,
making registers $a0 and $al available for the'call of swap. (This copy is a; e;
than saving and restoring on the stack.) We first copy $a0 and $al into $s
and $53 during the procedure:

move $s2. $a0 {#f copy parameter $a0 into $s2

move $s3, $al 4 copy parameter $al into $s3

Then we pass the parameters to swap with these two instructions:

move $a0, $s2 { first swap parameter is.v .
move $al, $s1 i second swap parameter 1s ]

Preserving Registers in sort .
The only remaining code is the saving and restoring of Feglsters. Clearly we
must save the return address in register $ra, since sortisa procedure and is
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called itself. The sort procedure also uses the saved registers $s0, $s1, $s7,
and $53, so they must be saved. The prologue of the sort procedure is then

addi  $sp,$sp,-20 # make room on stack for 5 regs
Sw $ra,l6($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
Sw $s2, 8(%sp) # save $s2 on stack
Sw $s1, 4($sp) 4 save $sl on stack
SW $s0, 0($sp) 4 save $s0 on stack

The tail of the procedure simply reverses all these instructions, then adds a ir
to return.

The Full Procedure sort

Now we put all the pieces together in Figure 3.26, being careful to replace ref-
erences to registers $a0 and $al in the for loops with references to registers
$52 and $53. Once again to make the code easier to follow, we identify each
block of code with its purpose in the procedure. In this example, 9 lines of the
sort procedure in C became the 35 lines in the MIPS assembly language.

Elaboration: One optimization that would work well in this example is procedure
inlining. Instead of passing arguments in parameters and invoking the code with a ja |
instruction, the compiler would copy the code from the body of the swap procedure
where the call to swap appears in the code. Inlining would avoid four instructions in
this example. The downside of the inlining optimization is that the compiled code would
be bigger, assuming that the inlined procedure is called from several locations. Such a
code expansion might turn into lower performance if it increased the cache miss rate:
see Chapter 7.

The MIPS compilers always save room on the stack for the arguments in case they
need to be stored, so in reality they always decrement $sp by 16 to make room for all
4 argument registers (16 bytes). One reason is that C provides a vararg option that
allows a pointer to pick, say, the third argument to a procedure. When the compiler

encounters the rare vararg, it copies the registers onto the stack into the reserved
locations.
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Saving registers

Procedure body

#

make room on stack for 5 registers

save $r
save $s
save $s
save $s
save $s

a on
3 on
2 on
L o

0 on

stack
stack
stack
stack
stack

sort: addi $sp,$sp, 20
SwW $ra, 16(3$sp)
SW $s3,12(%sp)
SwW $s2, 8(%$sp)
SwW $s1, 4(%$sp)
| sw $50, 0($sp)
 move $s2, $al
Move parameters - $s3. $al
o ‘  move $s0, $zero 7
Outer loop | forltst:sTt $t0, $s0, $s3
| beq $t0, $zero, exitl
I [ addi  §s1, $s0, -1
far2tst s) ti $t0, $s1, O
‘ bne $t0, $zero, exit?
add $El,. $8l, %1
add $t1. $tl. $t1
e add  $t2, $s2, $tl
Tw $t3, 0(%t2)
; Tw $td, 4($t2)
sTE $t0, $t4, $t3
beq $t0, $zero, exit2
) move $a0, $s2
PN RIS move  $al, $sl
jal swap
B o ’ addi  $sl, $sl, -1
Inner loop 3 P—
exit2: addi  $s0, $s0, 1
QOuter loop | 3 Bl g
exitl: 1w $s0, 0($sp)
Tw $s1, 4($sp)
Tw $s2, 8($sp)
Tw $s3,12(%sp)
Tw $ra,16(%sp)
addi $sp,$sp, 20

## copy paﬁéh@%er $a0 into $s2 (save $a0)

## copy parame

#
#

#

i =0

reg $t0 =0 if $s0 > $s3
# go to exitl if $s0 = $s§4

j=i-

1

# reg $t0 = 1
# go to exit2

#
#
#
i
i
#

reg $ti
reg $til
reg $t2
reg $t3
reg $t4
reg $t0

Il
< e T

# go to exit?

# 1st parameter of swap is v (old $a0)
# 2nd parameter of swap is J

ter $al into $s3 (save $al)

F %51 € O (J

if $s1 €0 (j
* 2

x 4

4 [ * &)
vljl

vij + 1]

0 if $t4 = $t3

if $t4 > $t3

(1
(i

v

< 0)
< 0)

# swap code shown in Figure 3.24

Fg=4d =1
# jump to test of inner loop
#Fi=19+1

Restoring registers

#
#
#
#
#
#

restore
rastore
restore
restore
restore
restore

Procedure return

# return to calling routine

$ra

from stack
from stack
from stack
from stack
from stack

stack pointer

FIGURE 3.26 MIPS assembly version of procedure sort in Figure 3.25 on page 166.

|
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Arrays versus Pointers

A challenging topic for any new programmer is understanding pointers.
Comparing assembly code that uses arrays and array indices to the assembly
code that uses pointers offers insight into that difference. This section shows
C and MIPS assembly versions of two procedures to clear a sequence of
words in memory: one using array indices and one using pointers.
Figure 3.27 shows the two C procedures.

People used to be taught to use pointers in C to get greater effi-
ciency than available with arrays: “Use pointers, even if you
can’'t understand the code.” The procedure clear? in
Figure 3.27 is such an example. Modern optimizing compilers
can produce just as good code for the array version of the code.
The purpose of this section is to show how pointers map into
MIPS instructions, and not to endorse a questionable style.

Hardware
Software

Interface

R e PR

clearl(int arrayl[], int size)
{
int 12
far (i =03 1 < size; i =1 + 1)
array[il = 0;

clear2(int =%array, int size)
{

int £
for (p = &array[0]; p < &array[sizel; p=p + 1)
= 0

FIGURE 3.27 Two C procedures for setting an array to all zeros. C1carl uses indices,
while clear? uses pointers. The second procedure needs some explanation for those unfamiliar
with C. The address of a variable is indicated by & and referring to the object pointed to by a
pointer is indicated by *. The declarations declare that array and p are pointers to integers. The
first part of the for loop in c1ear?2 assigns the address of the first element of array to the pointer
p. The second part of the for loop tests to see if the pointer is pointing beyond the last element of
array. Incrementing a pointer by one, in the last part of the for loop, means moving the pointer
to the next sequential object of its declared size. Since p is a pointer to integers, the compiler will
generate MIPS instructions to increment p by four, the number of bytes in a MIPS integer. The
assignment in the loop places 0 in the object pointed to by p.
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Array Version of Clear

Let’s start with the array version, clearl, focusing on the body of the loop
and ignoring the procedure linkage code. We assume that the two parameters
array and size are found in the registers $a0 and $al, and that i is allocated
to register $10.
The initialization of 1, the first part of the for loop, is straightforward:
move $t0,$zero # i =0 (register $t0 = 0)

Toset array[i] to 0 we must first get its address. Start by multiplying i by 4
to get the byte address:

Toopl: add  $t1,$t0,$t0 5t =14 * 2

add  $tl,$tl1,8tl #8tl =1 * 4
Since the starting address of the array is in a register, we must add it to the
index to get the address of array[ 1] using an add instruction:

add  $t2,$a0,3t1 # $t2 = address of array(i]
(This example is an ideal situation for indexed addressing; see page 175.)
Finally we can store 0 in that address:

sw o $zero, 0($t2) # arrayli] =0

This instruction is the end of the body of the loop, so the next step is to incre-
ment 1:

addi  $t0,$t0,1 #1=1+1
The loop test checks if i is less than size:
sTt $t3.$t0,%al 313 = (1 < size)

bne  $t3,%zero,loopl # if (i < size) go to loopl

We have now seen all the pieces of the procedure. Here is the MIPS code for
clearing an array using indices:

move  $t0,$zero #1=20
Toopl: add $t1,%t0,%$t0 #ostl =14 * 2
add $tl,$t1,8t1 # 3t =1 * 4
add $t2,%a0,%t1 # $t? = address of array[i]
SW $zero, 0($t2) # array[i]l =0
addi $t0,$t0,1 #1i=9+1
st $t3,5t0,%al #$t3 = (1 < size)

bne $t3,%zero,loopl # if (i < size) go to loopl

(This code works as long as s1ize is greater than 0.)
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Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array
and size to the registers $a0 and $al and allocates p to register $t0. The code
for the second procedure starts with assigning the pointer p to the address of
the first element of the array:

move $t0,%a0 # p = address of array[0]
The next code is the body of the for loop, which simply stores 0 into p:
Toop?2: sw $zero,0($t0) # Memory(p]l = O

This instruction implements the body of the loop, so the next code is the itera-
tion increment, which changes p to point to the next word:

addi $t0,$t0,4 Fp=p+4
Incrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which use 4 bytes, the com-
piler increments p by 4.

The loop test is next. The first step is calculating the address of the last ele-
ment of array. Start with multiplying size by 4 to get its byte address:

add  $tl1,%al,%al #$tl = size * 2
add  $tl1,$t1,3tl #f$tl = size = 4
and then we add the product to the starting address of the array to get the
address of the first word after the array:
add $t2,%a0,%tl ## $t2 = address of arrayl[size]
The loop test is simply to see if p is less than the last element of array:
sTt  $t3,%t0,8t2 ## $t3 = (p<Rarraylsize])
bne  $t3,%zero, loop2# if (p<&arraylsizel) go to loop?

With all the pieces completed, we can show a pointer version of the code to
Zero an array:

move $t0,$a0 # p = address of array[0]
Toop?2: sw  $zero,0($t0) #f Memory[p] = 0
addi $t0,$t0,4 #p=p+4

add $tl1,%al,s%al ## 511 = size * 2

add $t1,$t1,%t1 # $tl = size » 4

add $t2,%$a0,3$t1 # $t2 = address of array[size]
sTt $t3,%t0,3t2 ## $t3 = (p<&arraylsize])

bne $t3,%zero, loop2# if (p<&arrayl[sizel) go to loop?

As in the first example, this code assumes size is greater than 0.
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Note that this program calculates the address of the end of the array every
iteration of the loop, even though it does not change. A faster version of the
code moves this calculation outside the loop:
move $t0,$a0 # p = address of array[0]
add $tl,%al,sal I $t1 = size * 2
add $tl,$tl,stl #f $t1 = size * 4
add $t2,%a0,%tl # $t2 = address of arraylsiz
Toop2: sw  $zero,0($t0) # Memory[p] = 0
addi $t0,%$t0,4 #p=p+4
st $t3,%t0,%8t2 # $t3 = (p<Rarraylsizel)
bne $t3,$zero,loop2 # if (p<&arraylsize]) go to lToop2
Comparing the Two Versions of Clear
Comparing the two code sequences side by side illustrates the difference
between array indices and pointers (the changes introduced by the pointer
version are highlighted):
move $t0,$zero #i=20 move $t0,%al # 1 & array[0]
Toopl: add $t1,$t0,$t0 # $tl =1 * 2 add $tl,%al,%al # $t1 = lze * 2
add  $t1.$t1,$t1 # $t1 =i = 4 add $tl1,$tl,$tl # $tl1 = ize 4“
add $t2,$a0,$t1 # $t2 = array[i] ) add $t2,%a0,$tl # $t2 = &arrayl[size]
ey B loop2: sw $zero,0($t0)# Memorylpl = 0
sw o $zero, 0($t2)# array[i] =0 2ddi $£0.$10.4 #p-p+ 4
adiﬁ SR 1 =1 +.l . s1t  $t3,3t0.$t2 # $t3=(p<&arraylsizel)
slt $t3,9t0,881 # $t3 = (1 < size) bne $t3,%zero,loop2i# if () go to loop2
bne $t3,$zero,loopl# if () go to loopl

The version on the left must have the “multiply” and add inside the loop
because i is incremented and each address must be recalculated from the new
index; the memory pointer version on the right increments the pointer p
directly. The pointer version reduces the instructions executed per iteration
from 7 to 4. Many modern compilers will optimize the C code in clearl to
produce code similar to the assembly code above on the right-hand side.

Elaboration: The C compiler would add a test to be sure that size is greater than O.
One way would be to add a jump just before the first instruction of the loop to the s 1t
instruction.
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Real Stuff: PowerPC and 80x86
Instructions

Beauty is altogether in the eye of the beholder.

Margaret Wolfe Hungerford, Molly Bawn, 1877

Designers of instruction sets sometimes provide more powerful operations
than those found in MIPS. The goal is generally to reduce the number of
instructions executed by a program. The danger is that this reduction can
occur at the cost of simplicity, increasing the time a program takes to execute
because the instructions are slower. This slowness may be the result of a
slower clock cycle time or of requiring more clock cycles than a simpler
sequence (see section 2.8 on page 82).

The path toward operation complexity is thus fraught with peril. To avoid
these problems, designers have moved toward simpler instructions. Section
3.13 demonstrates the pitfalls of complexity.

The IBM/Motorola PowerPC

The PowerPC, made by IBM and Motorola and used in the Apple Macintosh,
shares many similarities to MIPS: both have 32 integer registers, instructions
are all 32 bits long, and data transfer is possible only with loads and stores.
The primary difference is two more addressing modes plus a few operations.

Indexed Addressing

In the examples above we saw cases where we needed one register to hold the
base of the array and the other to hold the index of the array. PowerPC pro-
vides an addressing mode, often called indexed addressing, that allows two reg-
isters to be added together. The MIPS code

add $t0,$a0,$s3 # $a0 has base of an array, $s3 is index
Tw $t1,0($t0)  # reg $tl1 gets Memory[$a0+$s3]

could be replaced by the following single instruction in PowerPC:
Tw $t1,%a0+$s3 # reg $tl gets Memory[$a0+$s3]

Using the same notation as Figure 3.17, Figure 3.28 shows indexed address-
ing. It is available with both loads and stores.

Update Addressing

Imagine the case of a code sequence marching through an array of words in
memory, such as in the array version of clearl on page 172. A frequent pair
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a. Indexed addressing
| op l rs I rt | rd | I

l Memory
I Register '—l

1 @—» Word

I Register l—T
b. Update addressing
| op I rs I rt | Address I Memory

l

Register J @———> Word
I t

FIGURE 3.28 lllustration of indexed and update addressing mode. The operand is shaded in color.

of operations would be loading a word and then incremeptirg the base regis-
ter to point to the next word. The idea of update addressing is to have a new
version of data transfer instructions that will automatically increment the
base register to point to the next word each time data is transferrgd. Since the
MIPS architecture uses byte addresses and words are 4 bytes, this new form
would be equivalent to this pair of MIPS instructions:

Tw $t0,4(%$s3)  # reg $t0 gets Memory[$s3+4]
addi $s3,%$s3,4 ## $s3 = $s3 + 4

The PowerPC includes an instruction like this:
Twu $t0,4($s3)  # reg $t0O=Memory[$s3+4]; $s3 = $s3+4

That is, the register is updated with the address calculated as part of the lo:cld.
Figure 3.28 also shows update addressing. PowerPC has update addressing
options for both base and indexed addressing, and for both loads and stores.

Unique PowerPC Instructions

The PowerPC instructions follow the same architecture style as MIPS, largely
relying on fast execution of simple instructions for performance. Here are a
few exceptions.
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The first is load multiple and store multiple. These can transfer up to 32
words of data in a single instruction and are intended to make fast copies of
locations in memory by using load multiple and store multiple back to back.
They also save code size when saving or restoring registers.

A second example is loops. The PowerPC has a special counter register, sep-
arate from the other 32 registers, to try to improve performance of a for loop.

Suppose we wanted to execute the following C code:

for (1 =mn; 1 I=0; i =1 - 1)
b« 5 )3

If we want to decrement a register, compare to 0, and then branch as long as
the register is not 0, we could use the following MIPS instructions:
Loop:

addi  $t0,%t0,-1 # $t0 = $t0 - 1

bne $t0,$zero, Loop # if $t0 != 0 go to Loop
In PowerPC we could use a single instruction instead:
bc Loop, $ctr!=0

# $ctr = $ctr - 1:
f# if $ctr =0 go to Loop

In addition to going against the advice of simplicity, such
Hardware sophisticated operations may not exactly match what the
Software compiler needs to produce. For example, suppose that
instead of decrementing by one, the compiler wanted to
increment by four, or instead of branching on not equal
zero, the compiler wanted to branch if the index was less
than or equal to the limit. Then the instruction just
described would be a mismatch. When faced with such objections, the
instruction set designer might then generalize the operation, adding another
operand to specify the increment and perhaps an option on which branch
condition to use. Then the danger is that a common case, say, incrementing by
one, will be slower than a sequence of simple operations.

Interface

The Intel 80x86

MIPS was the vision of a single small group in 1985; the pieces of this archi-
tecture fit nicely together, and the whole architecture can be described suc-
cinctly. Such is not the case for the 80x86; it is the product of several
independent groups who evolved the architecture over almost 20 years, add-
ing new features to the original instruction set as someone might add clothing
to a packed bag. Here are important 80x86 milestones:
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m 1978: The Intel 8086 architecture was announced as an assembly-
language-compatible extension of the then-successful Intel 8080, an 8-bit
microprocessor. The 8086 is a 16-bit architecture, with all internal registers
16 bits wide. Unlike MIPS, the registers have dedicated uses, and hence
the 8086 is not considered a general-purpose register architecture.

m 1980: The Intel 8087 floating-point coprocessor is announced. This ar-
chitecture extends the 8086 with about 60 floating-point instructions. In-
stead of using registers, it relies on a stack (see section 3.15 and section
4.9).

B 1982: The 80286 extended the 8086 architecture by increasing the ad-
dress space to 24 bits, by creating an elaborate memory-mapping and
protection model (see Chapter 7), and by adding a few instructions to
round out the instruction set and to manipulate the protection model.

B 1985: The 80386 extended the 80286 architecture to 32 bits. In addition
to a 32-bit architecture with 32-bit registers and a 32-bit address space,
the 80386 added new addressing modes and additional operations. The
added instructions make the 80386 nearly a general-purpose register
machine. The 80386 also added paging support in addition to segment-
ed addressing (see Chapter 7). Like the 80286, the 80386 has a mode to
execute 8086 programs without change.

B 1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium
Pro in 1995 were aimed at higher performance, with only four instruc-
tions added to the user-visible instruction set: three to help with multi-
processing (Chapter 9) and a conditional move instruction.

B 1997: After the Pentium and Pentium Pro were shipping, Intel an-
nounced that it would expand the Pentium and the Pentium Pro archi-
tectures with MMX. This new set of 57 instructions uses the floating-
point stack to accelerate multimedia and communication applications.
MMX instructions typically operate on multiple short data elements at
a time, in the tradition of single instruction, multiple data (SIMD) archi-
tectures (see Chapter 9).

This history illustrates the impact of the “golden handcuffs” of compatibility
on the 80x86, as the existing software base at each step was too important to
jeopardize with significant architectural changes.

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other in the world, perhaps
300 million in 1997. Nevertheless, this checkered ancestry has led to an archi-
tecture that is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section
with the care you would need to write 80x86 programs; the goal instead is to
give you familiarity with the strengths and weaknesses of the world’s most
popular architecture.
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Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

EIP

EFLAGS

Rather than show the entire 16-bit and 32-bit instruction set, in this section
we concentrate on the 32-bit subset that originated with the 80386, as this por-
tion of the architecture will be increasingly dominant over time. We start our
explanation with the registers and addressing modes, move on to the integer
operations, and conclude with an examination of instruction encoding.

80x86 Registers and Data Addressing Modes

The evolution of the instruction set can be seen in the registers of the 80386
(Figure 3.29). The 80386 basically extended all 16-bit registers (except the seg-
ment registers) to 32 bits, prefixing an E to their name to indicate the 32-bit
version. We'll refer to them generically as GPRs (general-purpose registers).
The 80386 contains only eight GPRs. This means MIPS programs can use four
times as many.

31 o Use

GPR O

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

CS Code segment pointer

8S Stack segment pointer (top of stack)

DS Data segment pointer O

ES Data segment pointer 1

FS Data segment pointer 2

GS Data segment pointer 3

Instruction pointer (PC)

Condition codes

FIGURE 3.29 The 80386 register set. Starting with the 80386, the top eight registers were extlended to 32

|
|
L bits and could also be used as genera l-purpose registers.
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Source/destination operand type Second source operand

Register Register
-~ Register Immediate
N - REgistér - ' Memo}y -
- Memory ~ Registe
R - %mory - Immediaste

FIGURE 3.30 Instruction types for the arithmetic, logical, and data transfer instructions.
The 80x86 allows the combinations shown. The only restriction is the absence of a memory-
memory mode. Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major
registers in Figure 3.29 (not EIP or EFLAGS).

The arithmetic, logical, and data transfer instructions are two-operand in-
structions that allow the combinations shown in Figure 3.30. There are two
important differences here. The 80x86 arithmetic and logical instructions must
have one operand act as both a source and a destination; MIPS allows separate
registers for source and destination. This restriction puts more pressure on the
limited registers, since one source register must be modified. The second im-
portant difference is that one of the operands can be in memory. Thus virtually
any instruction may have one operand in memory, unlike MIPS and PowerPC.

The seven data memory-addressing modes, described in detail below, offer
two sizes of addresses within the instruction. These so-called displacements can
be 8 bits or 32 bits.

Although a memory operand can use any addressing mode, there are re-
strictions on which registers can be used in a mode. Figure 3.31 shows the 80x86
addressing modes and which GPRs cannot be used with that mode, plus how
you would get the same effect using MIPS instructions.

80x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types.
The 80386 adds 32-bit addresses and data (double words) in the 80x86. The data
type distinctions apply to register operations as well as memory accesses.
Almost every operation works on both 8-bit data and on one longer data size.
That size is determined by the mode, and is either 16 bits or 32 bits.

Clearly some programs want to operate on data of all three sizes, so the
80386 architects provide a convenient way to specify each version without ex-
panding code size significantly. They decided that most programs would be
dominated by either 16-bit or 32-bit data, and so it made sense to be able to set
a default large size. This default data size is set by a bit in the code segment
register. To override the default data size, an 8-bit prefix is attached to the in-
struction to tell the machine to use the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple pre-
fixes to modify instruction behavior. The three original prefixes override the
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Register
Mode Description restrictions MIPS equivalent
- T b — -

[ Register indirect | Address is in a register. not ESP or EBP | TN ég(ﬁ) (}%T B

[Based mode | Address is contents of base register | nOtESPOrEBP | 1w $50,100(8s1) # <16-bit |

| with 8 or 32-bit | plus displacement. \ ‘ # displacement
displacement

F**f*«**f%**”**‘k** T i el D
Base plus The address is Base: any GPR mul $t0,$s2.4

| scaled index \ Base + (25°@ x |ndex) | Index: not ESP ‘ add $t0,$t0,%$s1

‘ 1 where Scale has the value 0, 1, 2, or 3. | Tw $s0,0(3t0) |

'Base ﬁs scaled The address is Base: an?G};R [ $tT), §s 51
index with Base + (2°°9'¢ x Index) + displacement Index: not ESP add $t0,$t0, $s1
‘ 8- or 32-bit | where Scale has the value 0, 1, 2, or 3. ‘ [ 1w $s0,100($t0)# <16-bit

Dﬂgaeemﬁiti B 7# dmp\ acement

1 S S —

FIGURE 3.31 80x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base
plus Scaled Index addressing mode, not found in MIPS or the PowerPC, is included to avoid the multiplies by four (scale
factor of 2) to turn an index in a register into a byte address (see Figures 3.24 and 3.26). A scale factor of 1 is used for 16-bit
data, and a scale factor of 3 for 64-bit data. Scale factor of 0 means the address is not scaled. If the displacement is longer
than 16 bits in the second or fourth modes, then the MIPS equivalent mode would need two more instructions: a Ui to
load the upper 16 bits of the displacement and an add to sum the upper address with the base register $< 1. (Intel gives two
different names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we
combine them here.)

default segment register, lock the bus to support a semaphore (see Chapter 9),
or repeat the following instruction until the register ECX counts down to 0.
This last prefix was intended to be paired with a byte move instruction to move
a variable number of bytes. The 80386 also added a prefix to override the de-
fault address size.

The 80x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test and integer and deci-
mal arithmetic operations

w

Control flow, including conditional branches, unconditional jumps,
calls, and returns

4. String instructions, including string move and string compare

The first two categories are unremarkable, except that the arithmetic and
logic instruction operations allow the destination to either be a register or a
memory location. Figure 3.32 shows some typical 80x86 instructions and their
functions.

Conditional branches on the PowerPC and the 80x86 are based on condition
codes or flags. Condition codes are set as a side effect of an operation; most are
used to compare the value of a result to 0. Branches then test the condition
codes. The argument for condition codes is that they occur as part of normal
operations and are faster to test than it is to compare registers as MIPS does for
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JE name if equal(condition code) {EIP=namel;
EIP-128 < name < EIP+128
JMP name i EIP=name o
CALL name SP=SP-4; M[SP]=EIP+5; EIP=name;
MOVW EBX,[EDI+45] |EBX=M[EDI+45]
| PUSH ESI SP=SP-4; M[SP]=ESI
POP EDI EDI=M[SP]; SP=SP+4
ADD EAX,#6765 EAX= EAX+6765
TEST EDX,{#42 Set condition code (flags) with EDX and 42y,
| MOVSL MLEDIJ=M[ESI];
EDI=EDI+4; ESI=ESI+4

FIGURE 3.32 Some typical 80x86 instructions and their functions. A list of frequent oper-
ations appears in Figure 3.33. The CALL saves the EIP of the next instruction on the stack. (EIP is
the Inte] PC.)

begand bne. The argument against condition codes is that the compare to 0 ex-
tends the time of the operation, since it uses extra hardware after the operation,
and that often the programmer must use compare instructions to test a value
that is not the result of an operation. Also, PC-relative branch addresses must
be specified in the number of bytes, since unlike MIPS, 80386 instructions are
not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs. They are often slower than equivalent
software routines (see the fallacy on page 185).

Figure 3.33 lists some of the integer 80x86 instructions. Many of the instruc-
tions are available in both byte and word formats.

80x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 8086 is complex,
with many different instruction formats. Instructions for the 80386 may vary
from 1 byte, when there are no operands, up to 17 bytes.

Figure 3.34 shows the instruction format for several of the example instruc-
tions in Figure 3.32. The opcode byte usually contains a bit saying whether the
operand is 8 bits or 32 bits. For some instructions the opcode may include the
addressing mode and the register; this is true in many instructions that have
the form “register = register op immediate.” Other instructions use a “post-
byte” or extra opcode byte, labeled “mod, reg, r/m,” which contains the ad-
dressing mode information. This postbyte is used for many of the instructions
that address memory. The base plus scaled index mode uses a second postbyte,
labeled “sc, index, base.”

)
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N R R R

Control Conditional and unconditional branches

JINZ, JZ Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative names
JMP Unconditional jump—=8-bit or 16-bit offset

CALL Subroutine call—16-bit offset; return address pushed onto stack

RET Pops return address from stack and jumps to it

LOOP Loa:) branch—decrement ECX; jump to EIP + 8-bit displacement if ECX # 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory
m, POP Push source operand on stack; pop operand from stack top to a register

LES o Load ES and one of the GPRs from memory o

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

ADD, SUB Add source to destination; subtract source from destination; register-memory format
CMP o Compare source and destination; register-memory format
@ L, SHR, RCR Shift left; shift logical right; rotate right with carry condition code as fill

CBW Convert byte in 8 rightmost bits of EAX to 16-bit word in right of EAX
TSTi Logical AND of source and destination sets condition codes

INC, DEC Increment destination, decrement destination; register-memory format

OR, XOR L(;gEal OR; exclusive OR; registerr-memory format

String Move between strln? o;o;ands; length given by a repeat prefix

MOVS Copies from string source to destination by incrementing ESI and EDI; may be repeated
LODS Loads a byte, word, or double word of a string into the EAX register

FIGURE 3.33 Some typical operations on the 80x86. Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand.

Figure 3.35 shows the encoding of the two postbyte address specifiers for
both 16-bit and 32-bit mode. Unfortunately, to fully understand which regis-
ters and which addressing modes are available, you need to see the encoding
of all addressing modes and sometimes even the encoding of the instructions.

80x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors” more ele-
gant architectures, such as the Motorola 68000, and this head start led to the
selection of the 8086 as the CPU for the IBM PC. Intel engineers generally
acknowledge that the 80x86 is more difficult to build than machines like
MIPS, but the much larger market means Intel can afford more resources to
help overcome the added complexity. What the 80x86 lacks in style is made
up in quantity, making it beautiful from the right perspective.

The saving grace is that the most frequently used 80x86 architectural com-
ponents are not too difficult to implement, as Intel has demonstrated by rapid-
ly improving performance of integer programs since 1978. To get that
performance, compilers must avoid the portions of the architecture that are
hard to implement fast.
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a. JE EIP + displacement

4 4 8
L JE ’Conditionl Displacement—]
b. CALL
8 32
‘ CALL | Offset —‘

c. MOV EBX, [EDI + 45]

6 13 8 8
’ MOV [ dl WT po's/tg’yte Displacement
d.PUSH ESI
5 3

e. ADD EAX, #6765
4 3 1 32
‘ ADD ‘ Reg lw| Immediate

f. TEST EDX, #42
7 1 8 32
‘ TEST lw Postbyte Immediate

FIGURE 3.34 Typical 80x86 instruction formats. The encoding of the postbyte is shown in Figure 3.35. Many instruc-
tions contain the 1-bit field w, which says whether the operation is a byte or double word. The d field in MOV is used in
instructions that may move to or from memory and shows the direction of the move. The ADD instruction requires 32 bits
for the immediate field because in 32-bit mode the immediates are either 8 bits or 32 bits. The immediate field in the TEST
is 32 bits long because there is no 8-bit immediate for test in 32-bit mode. Overall, instructions may vary from 1 to 17 bytes
in length. The long length comes from extra 1-byte prefixes, having both a 4-byte immediate and a 4-byte displacement
address, using an opcode of 2 bytes, and using the scaled index mode specifier, which adds another byte.
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reg|w=0] w=1 |i/m| mod=0 | mod=1 [  mod=2 [mod=3|
32 16b  |32p

16b | 32b 6b 320 16b | 320
0 AL AX . EA& 0 addr=BX+SI ‘ =EAX same ‘ same same ' same same
‘1 |cL |cx Ecx |1 |addr=Bx+DI | =ECX |addras  addras addr as addr as as
2 |oL DX |EDX |2 |addr=BP+SI | =EDX |mod=0 | mod=0 mod=0 mod=0 reg
'3 |BL |BX |EBX |3 |addr=BP+SI  =EBX |+disp8  + disp8 +displ6  + disp32 field
4 |AH SP ESP |4 |addr=sI =(sib) |Sl+disp8 | (sibj+disp8 |Sl+disp8 | (sibjdisp32 | -
‘5 len |Bp ’EgP 5 |addr=DI =disp32 |Di+disp8 | EBP+disp8 |Dl+displ6 |EBP+disp32 | -
6 |DH |sl |ESI |6 |addr=dispi6 | =ESI BP+disp8 | ESI+disp8 | BP+displ6 | ESl+disp32 |
7 |BH DI EDI |7 |addr=BX =EDI BX+disp8 | EDi+disp8 |BX+displ6  EDI+disp32

FIGURE 3.35 The encoding of the first address specifier of the 80x86, “mod, reg, r/m.” The first four columns
show the encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit
mode (8086) or 32-bit mode (80386). The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m
field depends on the value in the 2-bit mod field and the address size. Basically, the registers used in the address calcula-
tion are listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod = 2
adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects EBP plus
displacement; and r/m = 4 in 32-bit mode when mod # 3, where (sib) means use the scaled index mode shown in
Figure 3.31 on page 181. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field com-
bined with the w bit.

Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.

Part of the power of the Intel 80x86 is the prefixes that can modify the execu-
tion of the following instruction. One prefix can repeat the following instruc-
tion until a counter counts down to 0. Thus, to move data in memory, it
would seem that the natural instruction sequence is to use move with the
repeat prefix to perform 32-bit memory-to-memory moves. On a 133-MHz
Pentium (with the Triton chip set, 60-ns EDO DRAM, 256-KB cache), this
user-level program can move data at about 40 MB/sec.

An alternative method, which uses the standard instructions found in all
computers, is to load the data into the registers and then store the registers
back to memory. This second version of this program, with the code replicated
so0 as to reduce loop overhead, copies at about 60 MB/sec on the same ma-
chine, or 1.5 times faster. A third version, which used the larger floating-point
registers instead of the integer registers of the 80x86, copies at about 80
MB/sec, or 2.0 times faster than the complex instruction.
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Fallacy: Write in assembly language to obtain the highest performance.

At one time compilers for programming languages produced naive instruc-
tion sequences; the increasing sophistication of compilers means the gap
between compiled code and code produced by hand is closing fast. In fact, to
compete with current compilers, the assembly language programmer needs to
thoroughly understand the concepts in Chapters 6 and 7 on processor pipelin-
ing and memory hierarchy.

This battle between compilers and assembly language coders is one situa-
tion in which humans are losing ground. For example, C offers the program-
mer a chance to give a hint to the compiler about which variables should be
kept in registers versus spilled to memory. When compilers were poor at reg-
ister allocation, such hints were vital to performance. In fact, some C textbooks
spent a fair amount of time giving examples that effectively use register hints.
Today’s C compilers generally ignore such hints because the compiler does a
better job at allocation than the programmer.

As a specific counterexample, we ran the MIPS assembly language pro-
grams in Figures 3.24 and 3.26 to compare performance to the C programs in
Figures 3.23 and 3.25. Figure 3.36 shows the results. As you can see, the com-
piled program is 1.5 times faster than the assembled program. The compiler
generally was able to create assembly language code that was tailored exactly
to these conditions, while the assembly language program was written in a
slightly more general fashion to make it easier to modify and understand. The
specific improvements of the C compiler were a more streamlined procedure
linkage convention and changing the address calculations to move the multi-
ply outside the inner loop.

Even if writing by hand resulted in faster code, the dangers of writing in as-
sembly language are longer time spent coding and debugging, the loss in port-
ability, and the difficulty of maintaining such code. One of the few widely
accepted axioms of software engineering is that coding takes longer if you
write more lines, and it clearly takes many more lines to write a program in as-
sembly language than in C. And once it is coded, the next danger is that it will
become a popular program. Such programs always live longer than expected,
meaning that someone will have to update the code over several years and
make it work with new releases of operating systems and new models of ma-

e e e —

Assembly 37.9 seconds
c J 25.3 seconds |

FIGURE 3.36 Performance comparison of the C and assembly language versions of the
sort and swap procedures in section 3.10. The size of the array to be sorted was increased to
10,000 elements. The programs were run on a DECsystem 5900 with 128 MB of main memory
and a 40-MHz R3000 processor using version 4.2a (Revision 47) of the Ultrix operating svstem
The C compiler was run with the —-O option.
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chines. Writing in higher-level language instead of assembly language not only
allows future compilers to tailor the code to future machines, it also makes the
software easier to maintain and allows the program to run on more brands of
computers.

Pitfall: Forgetting that sequential word addresses in machines with byte address-
ing do not differ by one.

Many an assembly language programmer has toiled over errors made by
assuming that the address of the next word can be found by incrementing the
address in a register by one instead of by the word size in bytes. Forewarned
is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a
procedure that includes a pointer to an array that is declared local to that pro-
cedure. Following the stack discipline, in Figure 3.12 on page 139, the memory
that contains the local array will be reused as soon as the procedure returns.
Pointers to automatic variables can lead to chaos.

Concluding Remarks

Less is more.

Robert Browning, Andrea del Sarto, 1855

The two principles of the stored-program computer are the use of instructions
that are indistinguishable from numbers and the use of alterable memory for
programs. These principles allow a single machine to aid environmental sci-
entists, financial advisers, and novelists in their specialties. The selection of a
set of instructions that the machine can understand demands a delicate bal-
ance among the number of instructions needed to execute a program, the
number of clock cycles needed by an instruction, and the speed of the clock.
Four design principles guide the authors of instruction sets in making that
delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the
MIPS instruction set: keeping all instructions a single size, alwavs
requiring three register operands in arithmetic instructions, and keep-
ing the register fields in the same place in each instruction format.
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2. Smaller is faster. The desire for speed is the reason that MIPS has 32 reg-
isters rather than many more.

3. Good design demands good compromises. One MIPS example was the com-
promise between providing for larger addresses and constants in
instructions and keeping all instructions the same length.

4. Make the common case fast. Examples of making the common MIPS case
fast include PC-relative addressing for conditional branches and imme-
diate addressing for constant operands.

Above this machine level is assembly language, a language that humans can
read. The assembler translates it into the binary numbers that machines can
understand, and it even “extends” the instruction set by creating symbolic in-
structions that aren’t in the hardware. For instance, constants or addresses that
are too big are broken into properly sized pieces, common variations of in-
structions are given their own name, and so on. The MIPS instructions we have
covered so far (both real and pseudo) are listed in Figure 3.37.

These instructions are not born equal; the popularity of the few dominates
the many. For example, Figure 3.38 shows the popularity of each class of in-
structions for two programs, gce and spice. The varying popularity of instruc-
tions plays an important role in the chapters on performance, datapath,
control, and pipelining.

Each category of MIPS instructions is associated with constructs that appear
in programming languages:

m The arithmetic instructions correspond to the operations found in as-
signment statements.

m Data transfer instructions are most likely to occur when dealing with
data structures like arrays or structures.

® The conditional branches are used in if statements and in loops.

m The unconditional jumps are used in procedure calls and returns and
also for case/switch statements.

More of the MIPS instruction set is revealed in Chapter 4, after we explain
computer arithmetic.
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Laddi - add R move move R
‘subﬁact i - I SL[D - ‘7 E ] muﬁiplyf S }iimuﬂ B R -
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}etlﬁéss@n Emed:iate: 77 L ﬂjw 7;? :
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FIGURE 3.37 The MIPS instruction set covered so far, with the real MIPS instructions on the left and the
pseudoinstructions on the right. Appendix A (section A.10 on page A-49) describes the full MIPS architecture. Figure
3.18 on page 153 shows more details of the MIPS architecture revealed in this chapter.

| Froquenes _

Instruction class MIPS examples HLL correspondence mm
; Aﬁmegc ] 7iaddi, fxb gddiir T 7opegtions iniaissig%entistatgmeng N 28% Bb%
Data transfer MT. J 16, SD,TLH‘ - references toidataistructuresi, such as ;rrayé ] 33% ‘ 41%
L Conditional branch | beq, bne, sit, slti| ~ ifstatements and loops N | 17% | 8%
L Jump ] 17 jF, Jjal - r procedure cems, returns,an&case/switch statements 2% 1%

FIGURE 3.38 MIPS instruction classes, examples, correspondence to high-level program language constructs,
and percentage of MIPS instructions executed by category for two programs, gcc and spice. Figure 4.54 on page
311 shows the percentage of the individual MIPS instructions executed.

Historical Perspective and Further Reading

accumulator: Archaic term for register. On-line use of it as a synonym for
“register” is a fairly reliable indication that the user has been around quite a while,

Eric Raymond, The New Hacker's Dictionary, 1991
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Accumulator Architectures

Hardware was precious in the earliest stored-program computers. Asa conse-
quence, computer pioneers could not afford the n.umber of registers f‘ound in
today’s machines. In fact, these machines had a 51ngle reglster for- arlth‘metxc
instructions. Since all operations would accumulate in a single register, it was
called the accumulator, and this style of instruction set is given the same name.
For example, EDSAC in 1949 had a single accumulator‘. . -

The three-operand format of MIPS suggests that a single register is at least
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The next step in the evolution of instruction sets was the addition of regis-
ters dedicated to specific operations. Hence, registers might be included to act
as indices for array references in data transfer instructions, to act as separate
accumulators for multiply or divide instructions, and to serve as the top-of-
stack pointer. Perhaps the best-known example of this style of instruction set
is found in the Intel 8086, the computer at the core of the IBM Personal Com-
puter. This style of instruction set is labeled extended accumulator, dedicated
register, or special-purpose register. Like the single-register accumulator ma-
chines, one operand may be in memory for arithmetic instructions. Like the

i

| two registers shy of our needs. Having thes oot 10 58 Both.2 pos e MIPS architecture, however, there are also instructions where all the operands
| and and as the destination of the operation fills part of thfs shortfall, but it still are registers.

l Jeaves us one operand short. That final operand is found in memory. Accumu-
| lator machines have the memory-based operand-addressing mgde sug.gested
| earlier. It follows that the add instruction of an accumulator instruction set
would look like this:

| add 200

‘ This instruction means add the accumulator to the word in memory at

i address 200 and place the sum back into the accumulator. No reglsterslare found in accumulator machines, called a register-memory architecture, and

J specified because the accumulator is known to be both a source and a destina- those that demand that operands always be in registers, called either a load-

tion of the operation. | store or a register-register machine. Figure 3.39 shows a history of the number
of registers in some popular computers.

General-Purpose Register Architectures

The generalization of the dedicated-register machine allows all the registers to
be used for any purpose, hence the name general-purpose register. MIPS is an
example of a general-purpose register machine. This style of instruction set
may be further divided into those that allow one operand to be in memory as

& Number of

iy Compiling an Assignment Statement into Accumulator Instructions m géteralninnose rexlsers Architectural style
1 . EDSAC 1 |accumulator - 11949
! . . ? — e — | = S \
1 Example What is the accumulator-style assembly code for this C code ‘ 1BM 701 D acoumulator . T
, A =8 + C: CDC6600 8 - load»store 7 1963
| IBM 360 16 | register-memory | 1964
‘;‘,'  DEC PDP-8 | accumulator 1965
fif . . . : : I e o - . = N 1
i Answer It would be translated into the following instructions in an accumulator in- DEC PDP-11 | N register-memory 7 1970
fi ‘ . Intel 8008 1 | accumulator 1972

Apuohen Motorola 6800 | B P lat - 1974

- otorola accumulator
= ory[AddressB], or Acc = B e =——— = e —

| Toad AddressB # Acc Memo ‘y[ A =R+ C DEC VAX 16 hegister—memory, memory-memory 1977
x dd  AddressC # Acc = B + Memory[AddressC],or Acc R — : f
il a ' [Addres sA] = Acc, or A=B+C | Intel 808§ \ - 1 B | extended accumulator 1978
‘; store AddressA # Memory - Y Motorola 68000 | 16  registermemory 1980
\ All variables in a program are allocated to memory in accumulator ma- Intel 80386 8 ' register-memory 1985
“. chines, instead of normally to registers as we saw for MIPS. Qne b ] to mps 2 | load-store 7 1985
i think about this is that variables are always spilled to memory in this style HPPARISC | 32 loadstore - 1986
it of machine. As you may imagine, it takes many more instructions to exe- SPARC 32 ~loadstore - 1987
“‘“‘ cute a program with a single-accumulator architecture. (See Exercise 3.19  PowerPC I 32 load-store 1992
i K
i for another example.) | DEC Alpha | 32 | load-store 1992

I
‘H FIGURE 3.39 Number of general-purpose registers in popular machines over the years.
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The first load-store machine was the CDC 6600 in 1963, considered by many
to be the first supercomputer. MIPS is a more recent example of a load-store
machine.

The 80386 is Intel’s attempt to transform the 80x86 into a general-purpose
register-memory instruction set. Perhaps the best-known register-memory
instruction set is the IBM 360 architecture, first announced in 1964. This in-
struction set is still at the core of IBM’s mainframe computers—responsible for
a large part of the business of the largest computer company in the world.
Register-memory architectures were the most popular in the 1960s and the first
half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands
one step further in 1977. It allowed any combination of registers and memory
operands to be used in an instruction. A style of machine in which all operands
can be in memory is called memory-memory. (In truth the VAX instruction set,
like almost all other instruction sets since the IBM 360, is a hybrid since it also

has general-purpose registers.)

Compiling an Assignment Statement into Memory-Memory
Instructions

What is the memory-memory style assembly code for this C code?

A=B+ C;

It would be translated into the following instructions in a memory-
memory instruction set:
add AddressA,AddressB,AddressC

(See Exercise 3.19 for another example.)

Although MIPS has a single add instruction with 32-bit operands, the Intel
80x86 has many versions of a 32-bit add to specify whether an operand is in
memory or is in a register. In addition, the memory operand can be accessed
with more than seven addressing modes. This combination of address modes
and register/memory operands means that there are dozens of variants of an
80x86 add instruction. Clearly this variability makes 80x86 implementations

more challenging.

Compact Code and Stack Architectures

When memory is scarce, it is also important to keep programs small, so
machines like the Intel 80x86, IBM 360, and VAX had variable-length instruc-
tions, both to match the varying operand specifications and to minimize code
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size. Intel 80x86 instructions are from 1 to 17 bytes long; IBM 360 instructions
are 2, 4, or 6 bytes long; and VAX instruction lengths are anywhere from 1 to
54-1 bytes. If instruction memory space becomes precious once again, such tech-
niques could return to popularity. ,

In the 1960s, a few companies followed a radical approach to instruction
sets. In the belief that it was too hard for compilers to utilize registers effec-
tively, these companies abandoned registers altogether! Instruction sets were
based on a stack model of execution, like that found in the older Hewlett-
Packard handheld calculators. Operands are pushed on the stack from mem-
ory or popped off the stack into memory. Operations take their operands from
Fhe stack a.nd then place the result back onto the stack. In addition to simplify-
ing compilers by eliminating register allocation, stack machines lent t}}jlen}i-
selves to compact instruction encoding, thereby removing memory size as an
excuse not to program in high-level languages.

Compiling an Assignment Statement into Stack Instructions

What is the stack-style assembly code for this C code?
A=B+ C;

It :vould be translated into the following instructions in a stack instruction
set:

push AddressC # Top=Top+4;Stack[Topl=Memory[Ad
push AddressB # Top=Top+4;Stack[ToE]=Memor§EAdS£§§§g%
add # Stack[Top-4]1=Stack[Top]
# + Stack[Top-4];Top=Top-4;
pop  AddressA 4 Memory[AddressA]=Stack[Top];
#  Top=Top-4; ,

jl"o get the proper byte address, we adjust the stack by 4. The downside

gf 5ta(;kts lis Ciompared to registers is that it is hard to reuse data that has
een fetched or calculated without repeatedly going t

Exercise 3.19 for another example.) ’ e e

Memory space may be precious again for the heralded Network Computer
(NC), both because memory space is limited to keep costs low and because
programs must be downloaded over the Internet, and smaller programs take
less time to transmit. Hence compactness in instruction set encoding is desired
for the NC. Such arguments have been used to justify building a hardware in-
terpreter for the Java intermediate language, which is based on a stack. Time
will tell whether these arguments have technical versus marketing meri.t.
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High-Level-Language Computer Architectures

In the 1960s, systems software was rarely written in high-level languages. For
example, virtually every commercial operating system before Unix was pro-
grammed in assembly language, and more recently even OS/2 was (>r1g1pa11y
programmed at that same low level. Some people blamed the code density of
the instruction sets rather than the programming languages and the compiler
technology.

Hence a machine-design philosophy called high-level-language computer
architecture was advocated, with the goal of making the hardware more like the
programming languages. More efficient programming languages. and‘ compil-
ers, plus expanding memory, doomed this movement to a historical footnote.
The Burroughs B5000 was the commercial fountainhead of this philosophy, but
today there is no significant commercial descendent of this 1960s radical.

Reduced Instruction Set Computer Architectures

This language-oriented design philosophy was replaced in the 1980s by RISC
(reduced instruction set computer). Improvements in programming languages,
compiler technology, and memory cost meant that less programming was
being done at the assembly level, so instruction sets could be measured by
how well compilers used them as opposed to how well assembly language
programmers used them. _

Virtually all new instruction sets since 1982 have followed this RISC philos-
ophy of fixed instruction lengths, load-store instruction sets, limited address-
ing modes, and limited operations. MIPS, Sun SPARC, Hewlett-Packard
PA-RISC, IBM PowerPC, and DEC Alpha are all examples of RISC architec-
tures.

A Brief History of the 80x86

The ancestors of the 80x86 were the first microprocessors, produced late in the
first half of the 1970s. The Intel 4004 and 8008 were extremely simple 4-bit and
8-bit accumulator-style machines. Morse et al. [1980] describe the evolution of
the 8086 from the 8080 in the late 1970s in an attempt to provide a 16-bit
machine with better throughput. At that time, almost all programming for
microprocessors was done in assembly language—both memory and compil-
ers were in short supply. Intel wanted to keep its base of 8080 users, so the
8086 was designed to be “compatible” with the 8080. The 8086 was never
object-code compatible with the 8080, but the machines were close enough
that translation of assembly language programs could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce
the cost of the machine. This choice, together with the tremendous success of
the IBM PC, has made the 8086 architecture ubiquitous. The success of the IBM
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PC was due in part because IBM opened the architecture of the PC and enabled
the PC-clone industry to flourish. As discussed in section 3.12, the 80286,
80386, 80486, Pentium, and Pentium Pro have extended the a rchitecture and
provided a series of performance enhancements.

Although the 68000 was chosen for the Macintosh, the Mac was never as
pervasive as the PC, partly because Apple did not allow Mac clones based on
the 68000, and the 68000 did not acquire the same software leverage that the
8086 enjoys. The Motorola 68000 may have been more significant technically
than the 8086, but the impact of the selection by IBM and IBM’s open architec-
ture strategy dominated the technical advantages of the 63000 in the market.

Some argue that the inelegance of the 80x86 instruction set is unavoidable,
the price that must be paid for rampant success by any architecture. We reject
that notion. Obviously no successful architecture can jettison features that
were added in previous implementations, and over time some features may be
seen as undesirable. The awkwardness of the 80x86 begins at its core with the
8086 instruction set, and was exacerbated by the architecturally inconsistent
expansions found in the 8087, 80286, 80386, and MMX.

A counterexample is the IBM 360/370 architecture, which is much older
than the 80x86. It dominates the mainframe market just as the 80x86 dominates
the PC market. Due undoubtedly to a better base and more compatible en-
hancements, this instruction set makes much more sense than the 80x86 more
than 30 years after its first implementation.

Hewlett-Packard and Intel will announce a new, common instruction set ar-
chitecture in about 1998. It will be upwards compatible with the 80x86, and
thus the 80x86 instruction will be available in some form in computers of the
next century.

Instruction set anthropologists of the 21st century will peel off layer after
layer from such machines until they uncover artifacts from the first micropro-
cessor. Given such a find, how will they judge 20th-century computer architec-
ture?

To Probe Further

Bayko, ]. [1996]. “Great Microprocessors of the DPast and Present” available at
www.mkp.com/books_catalog/cod/links.itm.

A personal view of the history of representative or wiisial microprocessors, from the Intel 4004 to th
Patriot Scientific ShBoom!

Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ.
This book describes the MIPS architecture in greater detail than Appendix A.

Levy, H., and R. Eckhouse [1989]. Computer Programming and Architecture; The VAX, Digital Press,
Boston.

This book concentrates on the VAX, but also includes descriptions of the Intel 80x86, IBM 360, and CDC
6600.
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Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel Microprocessors—8080 to 8086,”
Computer 13:10 (October).

The architecture history of the Intel from the 4004 to the 8086, according to the people who participated in
the designs.
Wakerly, J. [1989]. Microcompriter Architecture and Programming, Wiley, New York.

The Motorola 680x0 is the main focus of the book, but it covers the Intel 8086, Motorola 6809, T1 9900,
and Zilog Z8000.

Key Terms

The terms listed below reflect the key ideas discussed in this chapter. If you're
unsure of the meaning of any of these terms, refer to the Glossary for a full

definition.
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gxample, the 17 and move instructions). If you choose to use pseudoinstruc-
thI.ls for these reasons, please add a sentence or two to vour solution stating
which pseudoinstructions you have used and why. (

3'; [5] <8§§3.3, 3.5, 3.8> Add comments to the following MIPS code and de-
scnbg In one sentence what it computes. Assume that a0 is used for the input
and initially contains n, a positive integer. Assume that $v0 is used for the out-
put.

begin: addi $t0, $zero, O
addi $tl, $zero, 1
loop: slt  $t2, $al0, $tl
bne $t2, $zero, finish
add $t0, $t0, $t1
addi $t1, $t1, 2
J Toop
finish: add $v0, $t0, $zero

activation record general-purpose register opcode

address (GPR) PC-relative addressing 3.2 .

sefiremsinig ronds global pointer oo o . d[12] <§§3.?>, 3.5,3.8> The fouowmg code fragment processes an array and

g Ermediiste s fvisiing procedure frame produces two important values in registers $v0 and $v1. Assume that the ar-

. "adl;ilresiing %nstruc?on fozmat prog:iarp Ctoun?er (PC) ray Cé)nSlStS of 5000 words indexed 0 through 4999, and its base address is

basic bloc nstruction se pseudoinstruction stored in $a0 and its size (5000) in $a1 Describe i N : )
. - . . : . ; e In one sentence what this cod

callee jump address table register addressing o . - code

caller jump-and-link instruction return address does. Specifically, what will be returned in $v0 and $v1?

conditional branch

data transfer instruction
executable file

frame pointer

linker or link editor

load-store or register-register
machine

loader

object program

stack

stack pointer
stored-program computer
stored-program concept
word

add $al, $al, $al

add $al, %$al, $al

add $v0, $zero, $zero

add $t0, $zero, $zero
outer: add $td, $a0, $tO

Tw $td, 0($t4)

add $t5, $zero, $zero

add $tl, $zero, $zero
inner: add $t3, $a0, $tI

Tw $t3, 0($t3)

Exercises
bne $t3, $t4, skip

Appendix A describes the MIPS simulator, which is helpful for these exer- - :’::: ::]5 :E? 1
cises. Although the simulator accepts pseudoinstructions, try not to use e Gl Stieg Wiy ”
pseudoinstructions for any exercises that ask you to produce MIPS code. Your bne $tl, $al, inner
goal should be to learn the real MIPS instruction set, and if you are asked to sit $te, $t5, $v0
count instructions, your count should reflect the actual instructions that will bne  $t2, $zero, next
be executed and not the pseudoinstructions. add  $v0, $t5, $zero

There are some cases where pseudoinstructions must be used (for example, add ' Svl, $t4, szero
the 1a instruction when an actual value is not known at assembly time). In Ll 2§§1 i}g itgj, 4 +

many cases they are quite convenient and result in more readable code (for
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3.3 [10] <883.3, 3.5, 3.8> Assume that the code from Exercise 3.2 is run on a
machine with a 500-MHz clock that requires the following number of cycles for
each instruction:

(add,addi.sit | 1 ]

[z |

Q]W' bne

In the worst case, how many seconds will it take to execute this code?

3.4 [5] <§83.8> Show the single MIPS instruction or minimal sequence of in-
structions for this C statement:

g = b+ 100
Assume that a corresponds to register $t0 and b corresponds to register $t1.

3.5 [10] <§3.8> Show the single MIPS instruction or minimal sequence of in-
structions for this C statement:

XL100 = x[11] + &3

Assume that ¢ corresponds to register $t0 and the array x has a base address
of 4,000,000y,

3.6 [10] <§§ 3.3, 3.5, 3.8> The following program tries to copy words from the
address in register $a0 to the address in register $al, counting the number of
words copied in register $v0. The program stops copying when it finds a word
equal to 0. You do not have to preserve the contents of registers $v1, $a0, and
$al. This terminating word should be copied but not counted.

Toop: 1w $v1,0(%a0) ## Read next word from source
addi  $v0,$v0,1 # Increment count words copied
SwW $v1,0(%al) ## Write to destination
addi  $a0,%$a0,1 # Advance pointer to next source
addi  $al,$al,l # Advance pointer to next dest

bne $vl,$zero,loop # Loop if word copied # zero

There are multiple bugs in this MIPS program; fix them and turn in a bug-free
version. Like many of the exercises in this chapter, the easiest way to write
MIPS programs is to use the simulator described in Appendix A. (Go to
www.mkp.com/cod2e.htm to get a copy of this program.)

3.7 [15] <§3.4> Using the MIPS program in Exercise 3.6 (with bugs intact), de-
termine the instruction format for each instruction and the decimal values of
each instruction field.
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3.8 [10] <883.2, 3.3, 3.5, 3.8> {Ex. 3.6} Starting with the corrected program in
the answer to Exercise 3.6, write the C code segment that might have produced
this code. Assume that variable source corresponds to register $a0, variable
destination corresponds to register $al, and variable count corresponds to
register $v0. Show variable declarations, but assume that source and dest i
nation have been initialized to the proper addresses.

3.9 [10] <83.5> The C segment

while (savel[i] == k)
=73+ j;

on page 127 uses both a conditional branch and an unconditional jump each
time through the loop. Only poor compilers would produce code with this
loop overhead. Rewrite the assembly code so that it uses at most one branch
or jump each time through the loop. How many instructions are executed
before and after the optimization if the number of iterations of the loop is 10
(ie,saveli + 10 * j] donotequal kand save[i], . .., save[i + 9 *
J1 equal k)?

3.10 [25] <§3.9> As discussed on page 157 and summarized in Figure 3.37,
pseudoinstructions are not part of the MIPS instruction set but often appear in
MIPS programs. For each pseudoinstruction in the following table, produce a
minimal sequence of actual MIPS instructions to accomplish the same thing.
You may need to use $at for some of the sequences. In the following table, b1 g
refers to a specific number that requires 32 bits to represent and small to a
number that can be expressed using 16 bits.

Pseudoinstruction What it accomplishes

7mov€:§i5.7$13‘7 i@iu = $t3

|clear $t5 ~ [$t5 =0 -
11 $t5, small $t5 = small

77 st5, big | $t5 = big -
[Tw %E% big\iatgr »;t - :"h;i‘n;r‘y;i»if + big]
addi $t5, $t3, big|$ts = $t3 + big
|beq $t5, small, Ilﬁf ($t5 = small) go to L
beq $t5, big, L [if ($t5 = big) go to |
th{}ta,ﬁts.[’ ii}r$15<}7mxi:w 0 \;
bgt $t5, $t3, L |if ($t5 > $t3) go to |
[bge $t5, $t3, L [if ($t5 >= $t3) go to |
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3.11 [30] <§3.5> Consider the following fragment of C code:
for (i=0; i<=100; i=i+1) {alil = b[il + c;|

Assume that a and b are arrays of words and the base address of a is in $a0
and the base address of b is in $al. Register $t0 is associated with variable i
and register $50 with c. Write the code for MIPS. How many instructions are
executed during the running of this code? How many memory data refer-
ences will be made during execution?

3.12 [5] <§§3.8, 3.9> Given your understanding of PC-relative addressing, ex-
plain why an assembler might have problems directly implementing the
branch instruction in the following code sequence:

here: beq $t1, $t2, there

there: add $t1, $tl, $tl

Show how the assembler might rewrite this code sequence to solve these
problems.

3.13 [10] <§3.12> Consider an architecture that is similar to MIPS except that
it supports update addressing (like the PowerPC) for data transfer instruc-
tions. If we run gec using this architecture, some percentage of the data trans-
fer instructions shown in Figure 3.38 on page 189 will be able to make use of
the new instructions, and for each instruction changed, one arithmetic instruc-
tion can be eliminated. If 25% of the data transfer instructions can be changed,
which will be faster for gec, the modified MIPS architecture or the unmodified
architecture? How much faster? (You can assume that both architectures have
CPI values as given in Exercise 3.16 and that the modified architecture has its
cycle time increased by 10% in order to accommodate the new instructions.)

3.14 [10] <§3.14> When designing memory systems, it becomes useful to
know the frequency of memory reads versus writes as well as the frequency of
accesses for instructions versus data. Using the average instruction-mix infor-
mation for MIPS for the program gcc in Figure 3.38 on page 189, find the fol-

lowing;:
a. The percentage of all memory accesses that are for data (vs. instruc-

tions).

b. The percentage of all memory accesses that are reads (vs. writes).
Assume that two-thirds of data transfers are loads.

3.15 [10] <§83.14> Perform the same calculations as for Exercise 3.14, but re-
place the program gcc with spice.

3.17 Exercises 201

3.16 [15] <§3.14> Suppose we have made the following measurements of
average CPI for instructions:

\_ A;ritﬁmgtig N

| 1.0 clock Eyclés

| Data transfer 1.4 clock Eycles

| Conditional branch 1.7 clock Eycres

l Jump B : 771.2 clock gycles

Compute t.he .effe.ctive CPI for MIPS. Average the instruction frequencies for
gce and spice in Figure 3.38 on page 189 to obtain the instruction mix.

3.17 [20] <§3.10> In this exercise, we'll examine quantitatively the pros and
cons of adding an addressing mode to MIPS that allows arithmetic instructions
to direFtly access memory, as is found on the 80x86. The primary benefit is that
'fewer instructions will be executed because we won't have to first load a reg-
ister. The primary disadvantage is that the cycle time will have to increase ?0
account for the additional time to read memory. Consider adding a new in-
struction:

addm $t2, 100($t3) # $t2 = $t2 + Memory[$t3+100]

Assume that the new instruction will cause the cycle time to increase by 10%.
Use the instruction frequencies for the gec benchmark from Figure 3.38 on
page 189, and assume that two-thirds of the data transfers are loads and the
rest are stores. Assume that the new instruction affects only the clock speed
not the CPI. What percentage of loads must be eliminated for the machim:
with the new instruction to have at least the same performance?

?.18 [19] <§3.10> Using the information in Exercise 3.17, write a multiple-
instruction sequence in which a load of $t0 followed immediately by the use
of $t0—in, say, an add—could not be replaced by a single instruction of the
form proposed. -

In More Depth

Comparing Instruction Sets of Different Styles

For the next two exercises, your task is to compare the memory efficiency
of f(?ur different styles of instruction sets for two code sequences. The
architecture styles are the following;:

m  Accumulator.

m Memory-memory: All three operands of each instruction are in mem-
ory.
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p of the stack. Only push and pop ac-
tions remove their operands from
e result. The implementation uses
that use other stack positions

m Stack: All operations occur on to
cess memory, and all other instruc
the stack and replace them with th
a stack for the top two entries; accesses
are memory references.

m Load-store: All operations occur

instructions have three operand:
general-purpose registers, and register s

in registers, and register-to-register
ds per instruction. There are 16
pecifiers are 4 bits long.

Consider the following C code: .
# a, b, and c are variables in memory

a=b+¢C; .
sembly language code for the differ-

i i ivalent as
Section 3.15 contains the equiva ‘ il
ent styles of instruction sets. For a given code sequence, we can calcu

the instruction bytes fetched and the memory da'ta bytes. transferred using
the following assumptions about all four instruction sets:

The opcode is always 1 byte (8 bits).

All memory addresses are 2 bytes (16 bits).

All data operands are 4 bytes (32 bits).

All instructions are an integral number of bytes in length.

There are no optimizations to reduce memory traffic.

four instruction bytes (one for the

; d will require
For example, a register loa q and two for a memory address) to

i ination
opcode, one for the register destina . .
bIe3 fetched from memory along with four data bytes. A memory-memory

add instruction will require seven instruction bytels; (ofnte f}:)r dtl}e opcrc;i; aonr(}i]
5) to be fetched from
for each of the three memory addresses :
2:3 V\(f)ill result in 12 data bytes being transferred (eight fror)n I?Em;)rl}lf cf‘c:, IL\;
e fo
.sor and four from the processor back to memory). .
Fearl())lcee&éisi(:;lays a summary of this information for each of the architectural

styles for the code appearing above and in section 3.15:

Instructions for

— = =
Accumu@tor 3 3+3+3 J‘% 4 + 4) o
Memory- T B J

;i ¢ .
memor | N
Stack L 4¥+1+3 4+4+0+4 |
tac - — S,

s 4 +4 |4+4+0+4
Load-store”—l[ A A4A+3HA |SEETH ,j
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3.19 [20] <§3.15> For the following C code, write an equivalent assembly
language program in each architectural style (assume all variables are ini-
tially in memory):

a=b+c:
= & %
d=g - b

For each code sequence, calculate the instruction bytes fetched and the
memory data bytes transferred (read or written). Which architecture is
most efficient as measured by code size? Which architecture is most effi-
cient as measured by total memory bandwidth required (code + data)? If
the answers are not the same, why are they different?

3.20 [5] <§3.15> Sometimes architectures are characterized according to
the typical number of memory addresses per instruction. Commonly used
terms are 0, 1, 2, and 3 addresses per instruction. Associate the names above
with each category.

3.21 [10] <§3.7> Compute the decimal byte values that form the null-
terminated ASCII representation of the following string:

A byte is 8 bits

3.22 [30] <§§3.6, 3.7> Write a program in MIPS assembly language to convert
an ASCII decimal string to an integer. Your program should expect register
$a0 to hold the address of a null-terminated string containing some combina-
tion of the digits 0 through 9. Your program should compute the integer value
equivalent to this string of digits, then place the number in register $v0. Your
program need not handle negative numbers. If a nondigit character appears
anywhere in the string, your program should stop with the value -1 in register
$v0. For example, if register $a0 points to a sequence of three bytes 50,4, 5201,
Oten (the null-terminated string “24”), then when the program stops, register
$v0 should contain the value 24;,. (The subscript “ten” means base 10.)

3.23 [20] <§83.6, 3.7> Write a procedure, bfind, in MIPS assembly language.
The procedure should take a single argument that is a pointer to a null-
terminated string in register $a0. The bfind procedure should locate the first
b character in the string and return its address in register $v0. If there are no
b’s in the string, then bf ind should return a pointer to the null character at the
end of the string. For example, if the argument to bfind points to the string
“imbibe,” then the return value will be a pointer to the third character of the
string.
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3.24 [20] <§§3.6, 3.7> {Ex. 3.23} Write a procedure, bcount, in MIPS assembly
language. The bcount procedure takes a single argument, which is a pointer
to a string in register $a0, and it returns a count of the total number of © char-
acters in the string in register $v0. You must use your b1 111d procedure in Ex-

b on ooy

ercise 3.23 in your implementation of bcount,

3.25 [30] <883.6, 3.7> Write a procedure, itoa, in MIPS assembly language
that will convert an integer argument into an ASCII decimal string. The proce-
dure should take two arguments: the first is an integer in register $a0; the sec-
ond is the address at which to write a result string in register $al. Then itoa
should convert its first argument to a null-terminated decimal ASCII string
and store that string at the given result location. The return value from itoa,
in register $v0, should be a count of the number of non-null characters stored
at the destination.

Iin More Depth

Tail Recursion

Some recursive procedures can be implemented iteratively without using
recursion. Iteration can significantly improve performance by removing
the overhead associated with procedure calls. For example, consider a
procedure used to accumulate a sum:

int sum (int n, int acc) {
if (n > 0)
return sum(n - 1, acc + n);
else
return acc;

Consider the procedure call sum(3,0). This will result in recursive calls to
sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be
returned four times. This recursive call of sum is referred to as a tail call,
and this example use of tail recursion can be implemented very efficiently
(assume $a0 = nand $al = acc):

sum: beq $a0, $zero, sum_exit # go to sum_exit ifn is 0
add $al, $al, $a0 # add n to acc
addi $a0, $a0, -1 # subtract 1 from n
j sum # go to sum
sum_exit:
move $v0, $al # return value acc
jr  $ra # return to caller
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3.26 [30] <§3.6> Write a MIPS procedure to compute the nth F
number where '

ibonacci

Baseyoureﬂgorﬂhnlonthestnﬁghﬁonwanibuthopokﬂsh/nufﬁuentpnv
cedure below, which generates a recursive process: 7
iat Fibklint B
if (n==20)
return 0;
else if (0 = 1)
return 1;
else
return fib(n-1) + fib(n-2):

3.27 [30] <§3.6> Write a program as in Exercise 3.26, except this time base
your program on the following procedure and optimize the tail call so as to
make your implementation efficient:

int fib_iter (int a, int b, int count) |
if (count == Q)
return b:
else
return fib_iter(a + b, a, count

L)
Here, the first two parameters keep track of the previous two Fibonacci

ngmbers computed. To compute F (1) you have to make the procedure call
fib_iter{l, @, nd.

3.?8 [20] <83.6> Estimate the difference in performance between vour so-
lution to Exercise 3.26 and your solution to Exercise 3.27. '
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In More Depth

The Single Instruction Computer

The computer architecture used in this book, MIPS, has one of the simpler
instruction sets in existence. However, it is possible to imagine even sim-
pler instruction sets. In this assignment, you are to consider a hypotheti-
cal machine called SIC, for Single Instruction Computer. As its name
implies, SIC has only one instruction: subtract and branch if negative, or
sbn for short. The sbn instruction has three operands, each consisting of
the address of a word in memory:

sbn a,b,c # Mem[a] = Mem[a] - Mem[b];if (Mem[a]<0) go to ¢

The instruction will subtract the number in memory location b from the
number in location a and place the result back in a, overwriting the previ-
ous value. If the result is greater than or equal to 0, the computer will take
its next instruction from the memory location just after the current instruc-
tion. If the result is less than 0, the next instruction is taken from memory
location c. SIC has no registers and no instructions other than sbn.

Although it has only one instruction, SIC can imitate many of the opera-
tions of more complex instruction sets by using clever sequences of sbn
instructions. For example, here is a program to copy a number from loca-
tion a to location b:

start: sbn temp,temp,.+1 # Sets temp to zero

sbn temp,a,.+1 # Sets temp to -a
sbn b,b,.+1 # Sets b to zero
shn b, temp,.+1 # Sets b to -temp, which is a

In the program above, the notation .+1 means “the address after this
one,” so that each instruction in this program goes on to the next in
sequence whether or not the result is negative. We assume temp to be the
address of a spare memory word that can be used for temporary results.

3.29 [10] <83.15> Write a SIC program to add a and b, leaving the result in
a and leaving b unmodified.

3.30 [20] <§3.15> Write a SIC program to multiply a by b, putting the result
in c. Assume that memory location one contains the number 1. Assume that
a and b are greater than 0 and that it's OK to modify a or b. (Hint: What
does this program compute?)

¢ =20; while (b > 0) {b=Db-1; ¢c=c¢c+ a;!
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Numerical precision
is the very soul
of science.

Sir D’arcy Wentworth Thompson
On Growth and Form, 1917
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Introduction

Computer words are composed of bits; thus words can be represented as
binary numbers. Although the natural numbers 0, 1, 2, and so on can be repre-
sented either in decimal or binary form, what about the other numbers that
commonly occur? For example:

® How are negative numbers represented?
® What is the largest number that can be represented in a computer word?

® What happens if an operation creates a number bigger than can be rep-
resented?

®m What about fractions and real numbers?

We could also ask, What is the inside story about the infamous bug in the Pen-
tium? And underlying all these questions is a mystery: How does hardware
really add, subtract, multiply, or divide numbers?

The goal of this chapter is to unravel this mystery, including representation
of numbers, arithmetic algorithms, hardware that follows these algorithms,
and the implications of all this for instruction sets. These insights may even ex-
plain quirks that you have already encountered with computers. (If you are fa-
miliar with signed binary numbers, you may wish to skip the next section and
go to section 4.3 on page 220.)

Signed and Unsigned Numbers

Numbers can be represented in any base; humans prefer base 10 and, as we
examined in Chapter 3, base 2 is best for computers. Because we will fre-
quently be dealing with both decimal and binary numbers, to avoid confusion
we will subscript decimal numbers with ten and binary numbers with two.

In any number base, the value of ith digit d is

d x Base!

where i starts at 0 and increases from right to left. This leads to an obvious
way to number the bits in the word: Simply use the power of the base for that
bit. For example,

101 Vs
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represents
(1x2%) +(0x2Y) +(1x2h) +(1x2%,,,
= (1 % B) + {0 % 4) + (1 % 2) + {1 3% 1)en
= 8 4 0 % 2 + Tt
= 1liep
Hence the bits are numbered 0, 1, 2, 3,... from right to left in a word. The

drawing below shows the numbering of bits within a MIPS word and the
placement of the number 1011,,,,,:

313029282726252423222120191817161514131211109876543210

iO,EO, 0/o o 0 0/o oo o0loooo0/0oo0o0o0loo0o0000001011

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and right-
most may be unclear. Hence, the phrase least significant bit is used to refer
to the rightmost bit (bit 0 above) and most significant bit to the leftmost bit
(bit 31).

The MIPS word is 32 bits long, so we can represent 22 different 32-bit pat-
terns. It is natural to let these combinations represent the numbers from 0 to 2*2
-1(4,294,967,295,,,,):

0000 0000 0000 0000 0000 0000 0000 00004, = Oter

0000 0000 0000 0000 0000 0000 0000 0001, = 1o
0000 0000 0000 0000 0000 0000 0000 0010y, =
1111 1111 1111 1111 1111 1111 1111 11014, = 4,294 967,293,
1111 1111 1111 1111 1111 1111 1111 1110, = 4,294 967294

1111 1111 1111 1111 1111 1111 1111 11114, = 4.294,967.295,..

Base 2 is not natural to human beings; we have 10 fingers
GETCVETC  and so find base 10 natural. Why didn’t computers use deci-
mal? In fact, the first commercial computer did offer decimal
arithmetic. The problem was that the computer still used on
LU LLCED  and off signals, so a decimal digit was simply represented
by several binary digits. Decimal proved so inefficient that
subsequent machines reverted to all binary, converting to
base 10 only for the infrequent input/output events.

Software
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ASCII versus Binary Numbers

m We could represent numbers as strings of ASCII digits instead of as two’s

complement integers (see Figure 3.15 on page 142). What is the expansion
in storage if the number 1 billion is represented in ASCII versus a 32-bit in-

teger?

m One billion is 1 000 000 000, so it would take 10 ASCII digits, each 8 bits

long. Thus the storage expansion would be (10 x 8)/32 or 2.5. In addition
to the expansion in storage, the hardware to add, subtract, multiply, and
divide such numbers is also difficult. Such difficulties explain why com-
puting professionals are raised to believe that binary is natural and that
the occasional decimal machine is bizarre.

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all be-
ing 0 except for a few of the rightmost digits. We just don’t normally show
leading Os.

As we shall see in sections 4.5 through 4.7, hardware can be designed to add,
subtract, multiply, and divide these binary bit patterns. If the number that is
the proper result of such operations cannot be represented by these rightmost
hardware bits, overflow is said to have occurred. It’s up to the operating system
and program to determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we
need a representation that distinguishes the positive from the negative. The
most obvious solution is to add a separate sign, which conveniently can be rep-
resented in a single bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First,
it’s not obvious where to put the sign bit. To the right? To the left? Early ma-
chines tried both. Second, adders for sign and magnitude may need an extra
step to set the sign because we can’t know in advance what the proper sign will
be. Finally, a separate sign bit means that sign and magnitude has both a posi-
tive and negative zero, which can lead to problems for inattentive program-
mers. As a result of these shortcomings, sign and magnitude was soon
abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large num-
ber from a small one. The answer is that it would try to borrow from a string
of leading 0s, so the result would have a string of leading 1s.
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Given that there was no obvious better alternative, the final solution was to
pick the representation that made the hardware simple: leading Os mean posi-
tive, and leading 1s mean negative. This convention for representing signed bi-
nary numbers is called two's complement representation:

000000000000 00000000 00000000 GO0y = 0

000000000000 00000000 00000000 0001¢ye = 1;?:

000000000000 000000000000 0000 00104y = Zean

0111111111111111111111111111 11014, = 2,147,483, 645,,,
011111111111111111111111111111104,, = 2,147,483, 646, .,
011111111111 111111111111 1111 11114 = 2,147,483,647 10
100000000000 0000 0000 0000 00000000, =-2,147,483, 648, ..,
10000000 0000 0000 0000 0000 00000001, =-2,147, 483,647, .,
10000000 0000 0000 0000 0000 0000 00104, =-2, 147,483,646,

11111111111111111111 111111111101, = “3yon
111111111111111111111111111111104,,, = ~Zton
11111111111111111111 11111111 11114, = Loy

The positive half of the numbers, from 0 to 2,147 483,647, (2¥1-1), use the
same representation as before. The following bit pattern (1000 . . . 00004y0) Tep-
resents the most negative number -2,147,483,648,,, (-2°1). 1t is followed by a
declining set of negative numbers: -2,147 483,647\, (1000 . .. 0001,,,,,) down
10 =1gep (1111 . . . T1114,,0).

Two’s complement does have one negative number, -2,147,483,648,.,,,, that
has no corresponding positive number. Such imbalance was a worry to the in-
attentive programmer, but sign and magnitude had problems for both the pro-
grammer and the hardware designer. Consequently, every computer today
uses two’s complement binary representations for signed numbers. '

Two’s complement representation has the advantage that all negative num-
bers have a 1 in the most significant bit. Consequently, hardware 1(1ecds to test
only this bit to see if a number is positive or negative’(with 0 considered posi-
tive). This particular bit is often called the sign bit. By recognizing the role of
the sign bit, we can represent positive and negative numbers in terms of the bit
value times a power of 2 (here xi means the ith bit of v):

(31 x =231 + (x30 x 23%) + (x29 x 22%) + .. + (x1 x 21) + (x0x 2")

The sigr} bit is multiplied by ~2%!, and the rest of the bits are then multiplied
by positive versions of their respective base values.
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Binary to Decimal Conversion

Unlike the numbers discussed above, memory addresses
naturally start at 0 and continue to the largest address. ut
another way, negative addresses make no sense. Thus, pro-
grams want to deal sometimes with numbers that can be
positive or negative and sometimes with numbers that can
be only positive. Programming languages reflect this dis-
L tinction. C, for example, names the former integers (declared
as int in the program) and the latter unsigned integers (unsigned int).

Comparison instructions must deal with this dichotomy. Sometimes a bit
pattern with a 1 in the most significant bit represents a negative number and,
of course, is less than any positive number, which must have a 0 in the most
significant bit. With unsigned integers, on the other hand, a 1 in the most sig-
nificant bit represents a number that is larger than any that begins with a 0.

MIPS offers two versions of the set on less than comparison to handle
these alternatives. Set on less than (s1t) and set on less than immediate (s1t1)
work with signed integers. Unsigned integers are compared using set o1 less
than unsigned (s1tu) and set on less than immediate unsigned (5117 u).

T ¢

What is the decimal value of this 32-bit two’s complement number? =
LTI 1100 1011 3011 1170 T0T 1371 11004

j m Substituting the number’s bit values into the formula above:

Ax-2)+1x22) + Ax22) +. ..+ 1 x2)+(Ox2Y) + (0x2%
=231 4+ 2% 4 2P 4+ 22 4+ 0 + 0

=-2,147 483,648, + 2,147,483,644.,,
=—4yen

B |

We'll see a shortcut to simplify conversion soon.

T O .

e

Signed versus unsigned applies to loads as well as to arith- ‘ TR IR S o
LETGAVETC  metic. The function of a signed load is to copy the sign '
repeatedly to fill the rest of the register—called sign exten-

Software . . ; :
sion—but its purpose is to place a correct representation of : e R
LLET EL  the number within that register. Unsigned loads simply fill
with Os to the left of the data, since the number represented . Signed versus Unsigned Comparison
by the bit pattern is unsigned.
When loading a 32-bit word into a 32-bit register, the point is moot; m Suppose register $5s0 has the binary number
signed and unsigned loads are identical. MIPS does offer two flavors of byte 1111 1111 1111 1111 1111 1111 1111 11114,
loads: load byte (1D) treats the byte as a signed number and thus sign extends . . '
to fill the 24 leftmost bits of the register, while load byte unsigned (1bu) works andl At patar 461 he the lolnary o
with unsigned integers. Since programs almost always use bytes to represent 0000 0000 0000 0000 0000 0000 0000 0001,
characters rather than consider bytes as short signed integers, 1bu is used What are the values of registers $10 and $11 after these two instructions?
practically exclusively for byte loads. 1t $10, $sD, 851 # signed comparison
sltu $t1, $s0, $sl # unsigned comparison

Just as an operation on unsigned numbers can overflow the capacity of
hardware to represent the result, so can an operation on two’s complement m
numbers. Overflow occurs when the leftmost retained bit of the binary bit pat-
tern is not the same as the infinite number of digits to the left (the sign bit is

incorrect): a 0 on the left of the bit pattern when the number is negative ora 1
when the number is positive.

The value in register $s0 represents —1 if it is an integer and
4,294,967,295,,, if it is an unsigned integer. The value in register ! rep-
resents 1 in either case. Then register $t0 has the value 1, since —Tioy < Tion,
and register $t1 has the value 0, since 4,294,967,295,,, > 1

g ten:

Before going on to addition and subtraction, let’s examine a few useful
shortcuts when working with two’s complement numbers.
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The first shortcut is a quick way to negate a two’s complement binary num-
ber. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This
shortcut is based on the observation that the sum of a number and its inverted
representation must be 111 ... 111, which represents —1. Since x + x=-1,
therefore x+X¥+1 = 0 orx+1 = —x.

Negation Shortcut

&1 Negate 2,,,,, and then check the result by negating 2o,

Answer 2ten = 0000 0000 0000 0000 0000 0000 0000 00104,

Negating this number by inverting the bits and adding one,

111111111111111211111111111111014,
1two

1111111111111111 111111111111 11104,
- 72ten

Going the other direction,

40 s 1 0 N 0 8 65 0 1 PO

is first inverted and then incremented:

00000000 000000000000000000000001 4,
1two

- 0000 0000 0000 0000 0000 0000 0000 0010,

]
Cten

The second shortcut tells us how to convert a binary number represented in
n bits to a number represented with more than n bits. For example, the imme-
diate field in the load, store, branch, add, and set on less than instructions
contains a two’s complement 16-bit number, representing —32,768,,,, (21 to
32,767,6n(2'°-1). To add the immediate field to a 32-bit register, the machine
must convert that 16-bit number to its 32-bit equivalent. The shortcut is to take
the most significant bit from the smaller quantity—the sign bit—and replicate
it to fill the new bits of the larger quantity. The old bits are simply copied into
the right portion of the new word. This shortcut is commonly called sign
extension.
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Example

Sign Extension Shortcut

Convert 16-bit binary versions of 2;.,, and =2, to 32-bit binary numbers.

The 16-bit binary version of the number 2 is
0000000000000010¢y4 = 2ten
It is converted to a 32-bit number by making 16 copies of the value in the
most significant bit (0) and placing that in the left-hand half of the word.
The right half gets the old value:
0000 000000000000 00000000000000104,5 = 2te
Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,
0000000000000010,

becomes

1111 1111 10101300
. (2

= 111111111111 111040

Creating a 32-bit version of the negative number means copying the
sign bit 16 times and placing it on the left:

1 0 A 0 T A S B PR i

This trick works because positive two’s complement numbers really have
an infinite number of 0s on the left and those that are negative two’s comple-
ment numbers have an infinite number of 1s. The binary bit pattern represent-
ing a number hides leading bits to fit the width of the hardware; sign extension
simply restores some of them.

A final shortcut, which we previewed in Chapter 3, is that we can save read-
ing and writing long binary numbers by using a higher base than binary that
converts easily into binary. Since almost all computer data sizes are multiples
of 4, hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2,
we can trivially convert by replacing each group of four binary digits by a sin-
gle hexadecimal digit, and vice versa. Figure 4.1 shows the hexadecimal
Rosetta stone. We will use either the subscript iex or the C notation, which uses
Oxnnnn, for hexadecimal numbers.
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Hexadecimal m Hexadecimal m Hexadecimal m Hexadecimal m
T— . I I TR ., . e —— R

Ohex 0000y | oy 010w |  Bnex 1000, |  on 1100,
| Thex  O00Lwo | Snex  010lwo Ohex  100lwo | dhe  110no |
Zrex 00100 | Ghex  O01%0wo | Bhex  1010wo Chex 110w |
Shex O08%wo | Trex  0lwo  Bnex  1011wo hex e
FIGURE 4.1 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four

binary digits, and vice versa. If the length of the binary number is not a multiple of four, go from right to left.

Binary-to-Hexadecimal Shortcut

Convert the following hexadecimal and binary numbers into the other

base:
eca8 6420hex

0001 0011 0101 0111 1001 1011

m Just a table lookup one way:

eca8 6420pey

ZADNS

1110 1100 1010 1000 0110 0100 0010 0000ty,

(1 R iy

And then the other direction:
0001 0011 0101 0111 1001 1011 1101 11114,

The main point of this section is that we need to represent both positive and
negative integers within a computer word, and although there are pros and
cons to any option, the overwhelming choice since 1965 has been two’s com-
plement. Figure 4.2 shows the additions to the MIPS assembly language
revealed in this section. (The MIPS machine language is also illustrated on the
back endpapers of this book.)

Summary

Y
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MIPS operands

B B A

[$s0-857, $t0-$t 5 %gip, ’HEJ, Fast locations for data. In MIPS, data must be in reigisters'to pgrform

32 i 5 . ; )
, $zero, $sp, %ra, %at arithmetic. MIPS register $zero always equals 0. Register $ it is reserved
registers
) for the assembler to handle large constants.
230 Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
‘ memory ‘ Memory(4], . . ., | sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

[ ladd $s1,$s2, $52+$s3 -

add 5\2 $s3 $51 =9$s2 + $s3 Threeiopera7nd5
‘Arithmetic ‘subtract [sub $51,%s2,9%s3 | %51 = $62 - $53 [ Three operands
‘ add immediate addi $s1,%$s2,100 $s1=9%s2+ 100 | + constant
L | © il e e sty e e -l W = =
load word Tw $s1,100(%s2) | $s1 = Memory[$52 + 100] TWord from memory to register
store word Sw $51,100(%s2) emory[$sZ + 100] = $51 ' Word from register to memory
Data load byte unsigned " bu $s51,100¢(% $51 = Memory[$ + 100] | Byte from I;*.ommy to register
| Hranster | store byte |sb $s1,100($52) Memory[$52 +100] = $51 Byte from register to memory
load upper immediate Tui  $s1,100 $51 =100 * 216 [ Loads constant in upper 16
i L B B - B | B ) | bits -
branch on equal beq $s1,%$s2,25 if ($s1 == $s52)goto Equal test; PC-relative branch
|PC+4+100
branch on not equal bne $s1,%s2,25 if ($s1 1= $s52)goto Not equal test; PC-relative
PC + 4 + 100
set on less than [s1t $s1,$52,$s3 |if($s2<$s3) $sl=1; Compare less than;
Conditional else $s1 =0 two's complement
branch | set less than immediate | slti  $s1,$s52,100 |if($s2 <100) $sl =1; ‘ Compare < constant;
else $s1 =0 two’s complement
set less than unsigned | tu  $s1,%s if (9 = 'y ) =5 i Compare less than;
else $51 = unsigned numbers
set less than immediate 1§ g i if (9 100) s § Compare < constant;
‘ unsigned | else $sl = | unsigned numbers
jump j 2500 go to 10000 Jump to target address
| Uncon_di- ‘jump régist(;r ’ 71"\ 7% ra ‘ go to $?d B ] For switch, procedure return
tional jump e - JL& : - = . I J
jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call
{00 B s L . ke e ‘

FIGURE 4.2 MIPS architecture revealed thus far. Color indicates portions from this section added to the MIPS archi-
tecture revealed in Chapter 3 (Figure 3.20 on page 155). MIPS machine language is listed in the back endpapers of this
book.

Elaboration: Two's complement gets its name from the rule that the unsigned sum
of an nbit number and its negative is 2", hence the complement or negation of a two's
complement number x is 2" - x.

A third alternative representation is called one's complement. The negative of a
one’'s complement is found by inverting each bit, from O to 1 and from 1 to O, which
helps explain its name since the complement of x is 27 — x — 1. It was also an attempt
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to be a better solution than sign and magnitude, and several scientific computgrs did
use the notation. This representation is similar to two's cpmplemgnt except that it also
has two 0s: 00 . . . 00y, is positive 0 and 11 . .. 11y, is negative O. The nqut nega-
tive number 10 . .. 000;,, represents —2,147,483,_647“9”, and so the positives and
negatives are balanced. One’s complement adders d(;d need an extra step to subtract a
e two's complement dominates today.
numAbf‘ianr;alar?gtgggf\, which we wFi)ll look at when we discuss floe.lt‘ing point, is to represent
the most negative value by 00 . . . 000, and the most positive ‘val‘ue reprssent)tgd bz
11. .. 114, With O typically having the value 10 ... 0Qy,. This is galle a biase _
notation, for it biases the number such that the number plus the bias has a non

negative representation.

Addition and Subtraction

Subtraction: Addition’s Tricky Pal

No. 10, Top Ten Courses for Athletes at a FootballlFactory,
David Letterman et al., Book of Top Ten Lists, 1990

Addition is just what you would expect in computers. Digits are ad.ded bit by
bit from right to left, with carries passed to the next digit to the.left, just as you
would do by hand. Subtraction uses addition: The appropriate operand is
simply negated before being added.

e

Binary Addition and Subtraction

3ET MM [et's try adding 6y to 7, in binary and then subtracting 6ye, from 7, in

binary.

0000 0000 0000 0000 0000 0000000001111y = 7ten
+ 00000000 0000000000000000000001104,5 = Bien

= 00000000000000000000000000001101+, = 13ten

The 4 bits to the right have all the action; Figure 4.3 shows the sums ayd
carries. The carries are shown in parentheses, with the arrows showing

how they are passed.
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(0) () (1) 14 (0) (Carries)
. 0 0 0 1 1 1
. 0 0 0 1 1 0
cee (OO0 (©O0 ©1 M1 (Lo (o1

FIGURE 4.3 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the
operation for the second digit to the rightis 0 + 1 + 1. This generates a 0 for this sum bit
carry out of 1. The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and
of 1. The fourth bitis 1 + 0+ 0, yielding a 1 sum and no carry.

and a
a sum bit

Subtracting 6., from 7,,,, can be done directly:

00000000 0000 0000 0000 0000000001114,y = 7o
= 000000000000 00000000 0000 0000 01104, = 64,
= 000000000000 0000 0000 00000000 00011,y = 1,4

or via addition using the two’s complement representation of —6:

0000 0000 00000000 0000 0000000001114y, = 7o,
+ 111111111111111111111111 11111010, =

~Bten

= 00000000 0000 0000 0000 0000 0000 0001 ,,, -

We said earlier that overflow occurs when the result from an operation can-
not be represented with the available hardware, in this case a 32-bit word.
When can overflow occur in addition? When adding operands with different
signs, overflow cannot occur. The reason is the sum must be no larger than one
of the operands. For example, -10 + 4 = —6. Since the operands fit in 32 bits and
the sum is no larger than an operand, the sum must fit in 32 bits as well. There-
fore no overflow can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract,
butit's just the opposite principle: When the signs of the operands are the sane,
overflow cannot occur. To see this, remember that v — Y = X+ (-y) because we
subtract by negating the second operand and then add. So, when we subtract
operands of the same sign we end up by adding operands of different signs.
From the prior paragraph, we know that overflow cannot occur in this case
either.

Having examined when overflow cannot occur in addition and subtraction,
we still haven’t answered how to detect when it does occur. Overflow occurs
when adding two positive numbers and the sum is negative, or vice versa.

Clearly, adding or subtracting two 32-bit numbers can yield a result that needs
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33 bits to be fully expressed. The lack of a 33rd bit means that when overflow
occurs the sign bit is being set with the value of the 'result msteaq of thg propsr
sign of the result. Since we need just one extra blt, oply the sign bit can be
wrong. This means a carry out occurred into the sign bit. .
Overflow occurs in subtraction when we subtract a negative number f}'ﬁ)m
a positive number and get a negative result, or when we S}Jbtract a positive
number from a negative number and get a positive res'ult..Thls means a borrow
occurred from the sign bit. Figure 4.4 shows the com.bmatlon .of operations, op-
erands, and results that indicate an overflow. ()Exerase 4.42 gives a shortcut for
i verflow more simply in hardware. .
CleteWCet llr\lagv(e)z just seen how to d}::t)elzct overflow for two’s cpmplement numbers in
a machine. What about unsigned integers? Unsigned integers are commonly
used for memory addresses where overflows are ignored. . .
The machine designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two
kinds of arithmetic instructions to recognize the two choices:

m Add (add), add immediate (addi), and subtract (sub) cause exceptions
on overflow.

® Add unsigned (addu), add immediate unsigned (addiu), and subtract
unsigned (subu) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will ahlways generate
the unsigned versions of the arithmetic instructions addu, add y, and subuno
matter what the type of the variables. The MIPS Fortran compilers, however,
pick the appropriate arithmetic instructions, depending on the type of the op-
erands.

; A+B | 20 | o

IEY: =0 | 0 20
[ A-B 20 | <o <0 77J
#7 A-B <0 | 20 >0 |

FIGURE 4.4 Overflow conditions for addition and subtraction.

The machine designer must decide how to handle arith-
GETCAVVETCI  metic overflows. Although some languages like C lgave the
decision up to the machine designer, langu.ages like Ada
and Fortran require that the program be notified. The pro-
LICLELLM  orammer or the programming environment must then
decide what to do when overflow occurs.

Software
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MIPS detects overflow with an exception, also called an interrupt on
many computers. An exception or interrupt is essentially an unscheduled
procedure call. The address of the instruction that overflowed is saved in
a register, and the computer jumps to a predefined address to invoke the
appropriate routine for that exception. The interrupted address is saved
so that in some situations the program can continue after corrective code
is executed. (Section 5.6 covers exceptions in more detail; Chapters 7
and 8 describe other situations where exceptions and interrupts occur.)

MIPS includes a register called the exception program counter (EPC) to
contain the address of the instruction that caused the exception. The
instruction move from system control (mf c0) is used to copy EPC into a
general-purpose register so that MIPS software has the option of return-
ing to the offending instruction via a jump register instruction.

\

Summary

The main point of this section is that, independent of the representation, the
finite word size of computers means that arithmetic operations can create
results that are too large to fit in this fixed word size. It’s easy to detect over-
flow in unsigned numbers, although these are almost always ignored because
programs don’t want to detect overflow for address arithmetic, the most com-
mon use of natural numbers. Two's complement presents a greater challenge,
yet some software systems require detection of overflow, so today all
machines have a way to detect it. Figure 4.5 shows the additions to the MIPS
architecture from this section.

Elaboration: M|pS can trap on overflow, but unlike many other machines there is no
conditional branch to test overflow. A sequence of MIPS instructions can discover over-
flow. For signed addition, the sequence is the following (see the In More Depth section
on page 329 for the definition of the xor and nor instructions):

addu $t0, $t1, $t2 # $t0 = sum, but don't trap
xor $t3, $tl, $t2 # Check if signs differ
st $t3, $t3, $zero # $t3 =1 if signs differ
bne $t3, $zero, No_overflow # $t1. $t2 signs #, so no overflow
xor $t3, $t0, $tl # signs =; sign of sum match too?

#f $t3 negative if sum sign different
st $t3, $t3, $zero # $t3 =1 if sum sign different

bne $t3, $zero, Overflow # A1l three signs #; go to overf]ow
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MIPS operands

B R S T

[ $s0-$s7, $t0-$t9 ,7$qp i | Fast locations for data. In MIPS, data must be in registers to perform arithmetic. |

& $fp, $zero, $sp, $ra, $at MIPS register $zero always equals O. Register $at is reserved for the
egraa: . o , ’ assembler to, for example, handle Iargg C(Estaan. B - |
p30 T ry a o ] AcEesged oay by data transfer instructions. MIPS uses byte addresses, so

|2 ‘ Memory(0], : : » ‘
memory Memory[4], . . ., sequential words differ by 4. Memory holds data structures, such as arrays, a
words Memory[4294967292] | spilled registers, such as those Eved on @cedgre (Ells‘

MIPS assembly language

nts
S - =

' dd $s1.8$52,953 | $s1 =952+ 853 1 perands; overflow detected
| add |add  $s1,$s2,$s3 J$s}—$ﬁs£ +7$sii~7 ) Hhreec’pira”dsg?@owieef |
‘subtract sub $s51,8%52,8s3 $s1 =%$s2-9s3 Threfz op(irand;: oveﬁrflovvideteictedg
' add immediate [7addi $s1 . $52 ,TOO ] $s1=$52 + 100 + coDstTt; ovirflowideticted 7 J
‘ add uingugneidi N \‘EMLT $s1 i $52 Ts 3 T$;] =$s2 + $s3 ‘Three operands; overflow ;
undetected B - |
Arithmetic | gupbtract unsigned | subu  $51,%$52, 853 T $s1=$s2 - $53 | Three operands; overflow \

undetected

l 5s1.852.100 1$s1=3852+100

[+ constar?t; overflow undetected

'add immediate | addiu $s1,§s2,100
unsigned | . B ) B I B . -
lmove from ‘mfc0 $sl,$ epc $s1 = $epc FUsed to copy Exception PC plus B
| coprocessor register ' other special registers |
| ~ loadword ‘ Tw $51,100¢( $52) |$sl= Memory[$52 + 100] | Word from memory to regiﬁsteﬁrﬁ |
Sp—— ) - hia . = ‘ L — e
| | store word Sw $51,100(%s2) Memory[$s2 +100] = $s1 Worq frin reglsterrto memory
| Data lload by?e unsign;d by $s1 ,100 ($s2) [$sl= Memiw[$ SE + 100] ;Byte froE memorLto regﬁis}gr |
| transfer s{oregﬂe a ‘ sb $sl ,10008$s2) | Memory£$52 4 1QO] =$sl | Byte frorI\ register to memory 4
load upper Ui $51,100 1451 =100 * 216 Loads constant in upper 16 bits
‘ | immediate L B ] S | - e |
[ | branch on equal | beq $sl,8s2,25 ‘ if ($51 == $s2)goto Equal test; PC-relative branc |
PC + 4 + 100 L - - - |
branch on not eauai Tbne $s1,$s2,25 ‘ if ($s1 1= $s2)goto | Not equal test; PC-relative
PC+ 4 + 1OQ 7 1 - - |
| set on less than TSH, $s1,$52,%53  |if($s2 < $s3) $s1=1; Compare less than;
else $s1 =0 two's complement
| Conditional ‘ B ) | o Seligdt 4 - i - B .
branch set less than slti  $s1,%$s52,100 if ($s2 <100) $sl =1; Compare < constant;
immediate else $s1 =0 ‘two's complement ]
' set less than sTtu $s1,$52,$s3  |if($52 < $53) $s1=1; Compare less than;
‘ unsigned ‘ ) \ else $s1 =0 ﬂ\ynygnedﬁnumbersﬁ - B
set less than |sTtiu $s1,%$s2,100 if ($s2 <100) $s1=1; ‘Compare<constant;
immediate unsigned else $s1=0 |unsigned numbers |
‘ N ‘jump7 7 | j 2500 | go to 10000 N Jump toﬁtarget adfj[ess ]
CHEGR jump;egistér o 7] r $ra N ‘gg to $ra Forrswitcih. prcr)rcediure reEurni |
PR umpandink | Jal 2500 "$ra = PC + 4; go to 10000 | For procedure call
I . a 1 . L . . I 1 . —

FIGURE 4.5 MIPS architecture revealed thus far. Color indicates the portions revealed since Figure 4.2 on page 219.
MIPS machine language is also listed on the back endpapers of this book.
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For unsigned addition ($t0 = $t1 + $t2), the test is

addu $t0, $t1, $t?2 # $t0 = sum
nor $t3, $tl, $zero # $t3 = NOT $t1
¥ (2's comp = 1s %2 - $1 - 13
sTtu $t3, $t3, $t2 # (2% - gt1 - 1) ¢ $52
#= 232 - 1 ¢ $t1 + $t2
bne  $t3,$zero, Overflow# if (232 -1 < $t1 + $t2) go to overflow

Elaboration: In the preceding text, we said that you copy EPC into a register via
mfc0 and then return to the interrupted code via jump register. This leads to an inter-
esting question: Since you must first transfer EPC to a register to use with jump regis-
ter, how can jump register return to the interrupted code and restore the original values
of all registers? You either restore the old registers first, thereby destroying your return
address from EPC that you placed in a register for use in jump register, or you restore
all registers but the one with the return address so that you can jump—meaning an
exception would result in changing that one register at any time during program execu-
tion! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve
registers $k0 and $k1 for the operating system; these registers are not restored on
exceptions. Just as the MIPS compilers avoid using register $at so that the assembler
can use it as a temporary register (see the Hardware Software Interface section on
page 147 in Chapter 3), compilers also abstain from using registers $k0 and $k1 to
make them available for the operating system. Exception routines place the return

address in one of these registers and then use jump register to restore the instruction
address.

Logical Operations

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so,
it would be; but as it isn't, it ain’t. That's logic.”

Lewis Carroll, Alice’s Adventures in Wonderland, 1865

Although the first computers concentrated on full words, it soon became clear
that it was useful to operate on fields of bits within a word or even on individ-
ual bits. Examining characters within a word, each of which are stored as 8
bits, is one example of such an operation. It follows that instructions were

added to simplify, among other things, the packing and unpacking of bits into
words.

INTEL - 1012



226

Chapter 4 Arithmetic for Computers

One class of such operations is called shifts. They move all the bits in a word
to the left or right, filling the emptied bits with 0s. For example, if register $50
contained

0000 0000 0000 00000 000 0000 00000000 1101 ¢yo

and the instruction to shift left by eight was executed, the new value would
look like this:
0000 0000 0000 0000 0000 00001101 0000 0000¢0
The dual of a shift left is a shift right. The actual name of the two MIPS shift

instructions are called shift left logical (s11) and shift right logical (sr1). The fol-
lowing instruction performs the operation above, assuming that the result

should go in register $t2:
s11 $t2.$50,8 # reg $t2 = reg $s0 << 8 bits
We delayed explaining the shant field in the R-format in Chapter 3. It stands
for shift amount and is used in shift instructions. Hence, the machine language
version of the instruction above is

op rs rt rd shamt funct

The encoding of s11 is 0 in both the op and funct fields, rd contains $t2, rt
contains $s0, and shamt contains 8. The rs field is unused, and thus is set to 0.

Another useful operation that isolates fields is AND. (We capitalize the
word to avoid confusion between the operation and the English conjunction.)
AND is a bit-by-bit operation that leaves a 1in the result only if both bits of the
operands are 1. For example, if register $ 2 still contains

0000 0000 0000 0000 00001101 0000 0000+y0
and register $t1 contains
00000000 000000000011 11000000 0000¢y0
then, after executing the MIPS instruction
and $t0,$t1,$t2 # reg $t0 = reg $t1 & reg $t2
the value of register $£0 would be
00000000 000000000000 11000000 0000¢y0

As you can see, AND can be used to apply a bit pattern to a set of bits to force
0s where there is a 0 in the bit pattern. Such a bit pattern in conjunction with
AND is traditionally called a mask, since the mask “conceals” some bits.
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To Rlace ;? value into one of these seas of 0s, there is the dual to AND, called
QR. It is a bit-by-bit operation that places a 1 in the result if either operz,ind bit
%s a 1. To elaborate, if the registers $t 1 and $t2 are unchanged from the preced-
ing example, the result of the MIPS instruction b

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2
is this value in register $t0:
000000000000000000111101 00000000+,

Flg}lre 4.6 shows the logical C operations and the corresponding MIPS in-
struct19ns. Constants are useful in logical operations as well as in arithmetic
operations, so MIPS also provides the instructions and immediate (andi) and or
zmmedzate (O‘M ). This section describes the logical operations AND, OR, and
.ShlfF found in every computer today. The logical instructions are hi,ghli Ihted
in Figure 4.7, which summarizes the MIPS instructions seen thus far. ¢

Shift left
L <« S11
oot S
it-by-bit AND
e & and, andi
| Bit-by-bit OR ] :
§ . - or, ori

FIGURE 4.6 Logical operations and their corresponding operations in C and MIPS.

C allows bit fields or fields to be defined within words, both
GETLUETCH  allowing objects to be packed within a word and to mat’ch an
Software e.xternally enforced interface such as an I/O device. All
flelds must fit within a single word. Fields are unsigned
integers that can be as short as 1 bit. C compilers insert and
extract fields using logical instructions in MIPS: and, or
s11,and sr1. o

Interface
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MIPS operands

e O P T T P

[32 [$s0-$s7 y $t0-$t¥9,7$79 p ,' | Fast locations for data. In MIPS, data must be in régisteaoiperform arithmetic. |
registers $fp, $zero, $sp, $ra, $at | MIPSregister $zero always equals O. Register $at is reserved for the assembler
to handle large constants.

C Bit Fields

[2%0 | Me?nory[O], 7A‘/icéessed only by data transfer instructions. MIPS usesibyte addrésses, so 71
‘ memory Memory[4], . . ., se_quential_words differ by 4. Memory holds data structures, such as arrays, and ‘
words  Memory[4294967292] ) spilled registers, such as those saved on procedure calls. | The fOHOWing C code allocates three fields with a word labeled receiver:
PR —— ! a 1-bit field Il'lamed ready, a ll-bit field named enable, and an 8-bit field
named receivedByte. It copies receivedByte into data, sets ready to0
- _idd - ] add " $s1 .7$ 52375137 [$s 1_=$T2 :gi [ Three operands; overflow detec{ei int data:
‘ ‘ jubtract - ‘Sub . $s1,$52,%s3 | $s1 = $s2 - $s3 Three operands; overflow detecte struct
add immediate laddi $s1,$52,100 |$si=$52+100 + constant; overflow detected j {
- _ Ed@ﬁnsigneﬁ 7 addu le,$r§27,$s3  $7$'1=$52 +$53 B #Threeogérands;ove&lwietectéi‘ unsigned int ready: 1:
‘ }Anthmetlc subtract unsigned | subu  $s1,$s2,$s3 | $s1=9$s52-9s3 | Three operands; overflow undetected unsigned int enable: e
‘ add immediate ‘addiu $s1,$s2,100 ‘$Sl=$52+100 + constant; overflow undetected unsigned int receivedByte:8;
unsigned : o receiver;
| move from mfcO $s1,$epc | $s1 = $epc ‘ Useqto copy Exception PC plus other L
% coprocessor register | - | | special registers B T IR T ea— i
and - 7¥[d_wl lgli‘lw,;’,'ggj $s1 :$75'¢’&$‘;377 o Three reg. operands; bit-by-bitANDrg receWer,ready : o = :
|or B $51,$s2. $53 $s1=$52|9$s3 N Threereg.operanfisﬁ:bn—by-bitORﬁ receiver.enable = i
Logical and tmmedlatei ‘ ?; =$s? & 100)»7 N Bit-by-bit Aﬂwfg withﬁconstanﬁti B What i ) ! .
e \ §51=$57 100 *7| T T — at is the compiled MIPS code? Assume data and receiver are allocat-
shift left logical $51 = $52 << 10 | shift left by constant R ed to $s0 and $s1.
shift right Iogicél srl $§sl s2,10 $51=$52 >> 10 . Shift righ{ by constant 1
B ' load word _‘ Tw  $s1,100($s2) \ $s1 :Memory[$ST+ 100] Word from memory to register | ] )
store word 7 sw $51,100($s2) JFMemory[$32 +100] = $51 Mord from register to memory | The fields look like this in a word (C typically right-aligns fields):
?rztwasfer ;Tqaarbﬁeiungigngd | Tbu $75177002$7572) | $Si7=7M7§n{6r§[$§27 +'16O]7 Byte frgmin;em(;y torfegiisterri 7' ;
store byte sb $s51,100(%s2) lMemory[$52+100]= $s1 lByte from register to memory ‘31\ 10 ) 97 o i 1 - 0
t(;ad upper immediate | 1ui  $s1,100 [$s1 =100 * 216 o [ Loads constant in upper 16 bits e | receivedByte | enable | ready
branch on equal beq  $s1,$52,25 | if(3sl == §s2) go to | Equal test; PC-relative branch B !
PC + 4 + 100 .
| branch on not equal ‘ bne  $s1,$s2,25  |if(5sl!= $s2)goto | Not equal test; PCrelative B The first step is to isolate the 8-bit field (rece vedByte) by first shifting it
t 7 | o 7 ‘ PC+4+100 7 L ] as far to the left as possible and then as far to the right as possible:
Sogg:_ set on less than 1t  $51,%52,953 ;fl(sisfs? iso3) $sl=1; ?ﬁ?:iﬁ:ii;}ggp | 21% isg isé gi # move 8-b7:t ﬁe]d 5a 1§ft il
‘er)anch set less than sTti  $s1,%$s2,100 ‘if($52<100) $sl=1; ‘Compare<constant; o oy RS f move 8-bit field to right end
‘ | Iotiene.  |elsed$sl=0 |8 Smpiement . The third instruction clears the least significant bit with the mask  f .
setless thanunsigned sltu $s1,%$s2,%s3 gl(:esfsl $S§) 18l =158 Compare less than; natural numbers and the last instruction sets its neighbor bit to 1: o
| set less than iuiiﬁ’ﬁ,u?,ioo 'if($52;100) $571=1; Hargpare<constant;7natural T am.j] $s1, $sl1, fffehex # bit 0 set to 0
‘immediateunsigned else $s1 =0 numbers ‘l or $s1, $s1, 0002y # bit 1 set to 1
'W dijump - - ﬂj 2500 go to 10000 Jump to tageetiaddreési -
::Qﬁgrﬂmp jump register  jr  $ra goto$ra o For switch, procedure return j Elaboration: |n the example this alternative sequence works as well:
} Jrjruimp amﬁi Ja,], :ZBOO 77“ $ra =j’Cj 4; go tEOOOO WFﬂrocedgreicaill S J srl $50, $s1, 2
FIGURE 4.7 MIPS architecture revealed thus far. Color indicates the portions introduced since Figure 4.5 on page 224. andi  $s0, $s0, O0x00ff
MIPS machine language is also listed on the back endpapers of this book.
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The field is in the lower 16 bits of the word and we want Os in the upper bits of the
result of the andi. In general, a shift left of 32 — (n + m) followed by a shift right by
32 - nwill isolate any n-bit field whose least significant bit is in bit m.

Since addi and s1ti are intended for signed numbers, it is not surprising that their
immediate fields are sign-extended before use. Branch and data transfer address fields
are sign-extended as well.

Perhaps it is surprising that addiu and s 1t iu also sign-extend their immediates, but
they do. The u stands for unsigned, but in reality addiu is often used simply as an add
instruction that cannot overflow, and hence we often want to add negative numbers. It's
much harder to come up with an excuse for why s1t1iu sign extends its immediate field.

Since andi and ori normally work with unsigned integers, the immediates are
treated as unsigned integers as well, meaning that they are expanded to 32 bits by
padding with leading Os instead of sign extension. Thus if the bit fields in the third line
of the example above extended beyond the 16 least significant bits, the andi instruc-
tion would need a 32-bit constant to avoid clearing the upper portion of the fields.

The MIPS assembler creates 32-bit constants with the pair of instructions Tui and
ori; see Chapter 3, page 147 for an example of creating 32-bit constants using 1ui
and addi.

Constructing an Arithmetic Logic Unit

ALU n. [Arthritic Logic Unit or (rare) Arithmetic Logic Unit] A random-number
generator supplied as standard with all computer systems.

Stan Kelly-Bootle, The Devil’s DP Dictionary, 1981

The arithmetic logic unit or ALU is the brawn of the computer, the device that
performs the arithmetic operations like addition and subtraction or logical
operations like AND and OR. This section constructs an ALU from the four
hardware building blocks shown in Figure 4.8 (see Appendix B for more
details on these building blocks). Cases 1, 2, and 4 in Figure 4.8 all have two
inputs. We will sometimes use versions of these components with more than
two inputs, confident that you can generalize from this simple example. In
any case, Appendix B provides examples with more inputs. (You may wish to
review sections B.1 through B.3 before proceeding further.)

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s
assume that we will connect 32 1-bit ALUs to create the desired ALU. We'll
therefore start by constructing a 1-bit ALU.

A 1-Bit ALU

The logical operations are easiest, because they map directly onto the hard-
ware components in Figure 4.8.

4.5 Constructing an Arithmetic Logic Unit

1. AND gate (c=a- b)

2. ORgate (c = a +b)

3. Inverter (c = a)

4. Multiplexor

(ifd==0,c=a;
else ¢ = b)
0
¢
b==»1

231

FIGURE 4.8 Four hardware build

The na f the operati i i

SV;&:In;e o; th; operahoni and an equation describing it appear on the left. In the middle is the
\ or the block we will use in the drawings. On the right are tables that describe the uut‘puts‘

in terms i 5. Usi ion f
L ms:)f the inputs. Using the notation from Appendix B, a * b means “a AND b ” a + b means
a OR b,” and a line over the top (e.g., a) means invert e

Operation

FIGURE 4.9 The 1-bit logical unit for AND and OR.
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The 1-bit logical unit for AND and OR looks like Figure 4.9. The multiplexor
on the right then selects a AND b or a OR b, depending on whether the value
of Operation is 0 or 1. The line that controls the multiplexor is shown in color to
distinguish it from the lines containing data. Notice that we have renamed the
control and output lines of the multiplexor to give them names that reflect the
function of the ALU.

The next function to include is addition. From Figure 4.3 on page 221 we can
deduce the inputs and outputs of a single-bit adder. First, an adder must have
two inputs for the operands and a single-bit output for the sum. There must be
a second output to pass on the carry, called CarryOut. Since the CarryOut from
the neighbor adder must be included as an input, we need a third input. This
input is called Carryln. Figure 4.10 shows the inputs and the outputs of a 1-bit
adder. Since we know what addition is supposed to do, we can specify the out-
puts of this “black box” based on its inputs, as Figure 4.11 demonstrates.

Carryln

CarryOut

FIGURE 4.10 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder
because it has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2)

adder or half adder.

~ o | o0 | o | 0o | 0 | 0r0v0=00 |
o o e b5 ] 0r0eithe
L 0 | 1 ‘ 0 0 1 %o+1+0=01m #
’7 o |1 }7,71 | ?774 0+1+1=10y
1 0 0 0 1 140+ 0= 0Ly,
I S T N W SRR S 2 o
1 | 0 | i+i-0-10m |
[ Y I S S S S WO M SN NE TTTTCYT

FIGURE 4.11 Input and output specification for a 1-bit adder.
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From Appendix B, we know that we can express the output functions
CarryOut and Sum as logical equations, and these equations can in turn be im-
plemented with the building blocks in Figure 4.8. Let’s do CarryOut. Figure
4.12 shows the values of the inputs when CarryOutisa 1.

We can turn this truth table into a logical equation, as explained in

Appendix B. (Recall that a + b means “a OR b” and that a - b means “a AND
b‘lf)

CarryOut = (b- Carryln) + (a - Carryln) + (a - b) + (a - b - Carryln)

If a-b- Carryln is true, then all of the other three terms must also be true, so
we can leave out this last term corresponding to the fourth line of the table.
We can thus simplify the equation to

CarryOut = (b - Carryln) + (a - Carryln) + (a - b)

Figure 4.13 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates corre-
spond exactly to the three parenthesized terms of the formula above for Car-
ryOut, and the OR gate sums the three terms.

FIGURE 4.12 Values of the inputs when CarryOut is a 1.

Carryln

=

'

CarryOut

FIG.URE 4.13 Adder hardware for the carry out signal. The rest of the adder hardware is the
logic for the Sum output given in the equation on page 234.
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The Sum bit is set when exactly one input is 1 or when all three inputs are 1.

The Sum results in a complex Boolean equation (recall that a means NOT a): | Eain Spttion
Sum = (a-b- Carryln) + (a:b- Carryln) + (a-b- Carryln) + (a-b-Carryln) 1
; x - ; 0 —>
The drawing of the logic for the Sum bit in the adder black box is left as an 3 : Caftyln
g ) : : ALUO > ResultO
exercise (see Exercise 4.43). b0 —»]
Figure 4.14 shows a 1-bit ALU derived by combining the adder with the ear- CarryOut
lier components. Sometimes designers also want the ALU to perform a few
more simple operations, such as generating 0. The easiest way to add an oper- 'y
\ ation is to expand the multiplexor controlled by the Operation line and, for this a1l —[ Carryin
} example, to connect 0 directly to the new input of that expanded multiplexor. ALUL — Resultl
b1l —
- CarryOut
A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by ¢
connecting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure 4.15 a2 —| Carryin
shows a 32-bit ALU. Just as a single stone can cause ripples to radiate to the oo ALU2 — Resuit2
shores of a quiet lake, a single carry out of the least significant bit (Result0) CaryOut
can ripple all the way through the adder, causing a carry out of the most sig- l
nificant bit (Result31). Hence, the adder created by directly linking the carries |
of 1-bit adders is called a ripple carry adder. We'll see a faster way to connect I : :
the 1-bit adders starting on page 241. lj 1
i
a3l — Carryin
Operation Result31
ALU31
Carryin b31 —
a =—\ p F!G_URE 4.15 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant
. / bit is connected to the Carryln of the more significant bit. This organization is called ripple carry.

V

e

—> Result

Subtraction is the same as adding the negative version of an operand, and
this is how adders perform subtraction. Recall that the shortcut for negating a
) i 5_/ two’s Complemgnt nqmber is to invert each bit (sometimes called the one’s com-

plement as explained in the elaboration on page 219) and then add 1. To invert
e:fich bit, we simply add a 2:1 multiplexor that chooses between b and b , as
Car:yOut Figure 4.16 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure 4.15. The
added multiplexor gives the option of b or its inverted value, depending on
Binvert, but this is only one step in negating a two’s complement number. No-
tice that the least significant bit still has a Carryln signal, even though it's un-
necessary for addition. What happens if we set this CarrylIn to 1 instead of 0?

v

FIGURE 4.14 A 1-bit ALU that performs AND, OR, and addition (see Figure 4.13).
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