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the actual data from the disk. The control lines will be used to indicate what 
type of information is contained on the data lines of the bus at each point in the 
transfer. Some buses have two sets of signal lines to separately communicate 
both data and address in a single bus transmission. In either case, the control 
lines are used to indicate what the bus contains and to implement the bus pro­
tocol. And because the bus is shared, we also need a protocol to decide who 
uses it next; we will discuss this problem shortly. 

Let's consider a typical bus transaction. A bus transaction includes two 
parts: sending the address and receiving or sending the data. Bus transactions 
are typically defined by what they do to memory. A read transaction transfers 
data from memory (to either the processor or an I/O device), and a write trans­
action writes data to the memory. Clearly, this terminology is confusing. To 
avoid this, we'll try to use the terms input and output, which are always defined 
from the perspective of the processor: an input operation is inputting data 
from the device to memory, where the processor can read it, and an output op­
eration is outputting data to a device from memory where the processor wrote 
it. Figure 8.7 shows the steps in a typical output operation, in which data will 
be read from memory and sent to the device. Figure 8.8 shows the steps in an 
input operation where data is read from the device and written to memory. In 
both figures, the active portions of the bus and memory are shown in color, and 
a read or write is shown by shading the unit, as we did in Chapter 6. In these 
figures, we focus on how data is transferred between the I/O device and 
memory; in section 8.5, we will see how the I/O operation is initiated. 

Types of Buses 
Buses are traditionally classified as one of three types: processor-memory buses, 
I/0 buses, or backplane buses. Processor-memory buses are short, generally high 
speed, and matched to the memory system so as to maximize memory­
processor bandwidth. I/O buses, by contrast, can be lengthy, can have many 
types of devices connected to them, and often have a wide range in the data 
bandwidth of the devices connected to them. I/O buses do not typically inter­
face directly to the memory but use either a processor-memory or a backplane 
bus to connect to memory. Backplane buses are designed to allow processors, 
memory, and I/O devices to coexist on a single bus; they balance the 
demands of processor-memory communication with the demands of I/O 
device-memory communication. Backplane buses received their name 
because they were often built into the backplane, an interconnection structure 
within the chassis; processor, memory, and I/O boards would then plug into 
the backplane using the bus for communication. 

Processor-memory buses are often design-specific, while both I/O buses 
and backplane buses are frequently reused in different machines. In fact, back­
plane and I/O buses are often standard buses that are used by many different 
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FIGURE 8.7 The three steps of an output operation. In each step, the active participants in the com­
munication are shown in color, with the right sid e shaded if the device is doing a read and the left side 
shad ed if the device is doing a write. Notice that the data lines of the bus can carry both an address (as in 
a_) and_data (as inc). (a) The first step in an output operation initiates a read from memory. The control 
Imes _signal a read request to memory, while the data lines contain the address. (b) During the second 
step man output operation, memory is accessing the data. (c) In the third and final step in an output 
operation, memory transfers the data usi ng the data lines of the bus and signals that the data is available 
to the 1/0 device using the control lines. The device stores the data as it appears on the bus. 

computers manufactured by G.ifferent companies. By comparison, processor­
memory buses are often proprietary, although in many recent machines they 
may be the backplane bus, and the standard or I/O buses plug into the 
processor-memory bus. In many recent machines, the distinction among these 
bus types, especially between backplane buses and processor-memory buses, 
may be very minor. 

During the design phase, the designer of a processor-memory bus knows all 
the types of devices that must connect to the bus, while the I/O or backplane 
bus designer must design the bus to handle unknown devices that vary in la­
tency and bandwidth characteristics. Normally, an I/O bus presents a fairly 
simple and low-level interface to a device, requiring minimal additional elec­
tronics to interface to the bus. A backplane bus usually requires additional 
logic to interface between the bus and a device or between the backplane bus 

--
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FIGURE 8.8 An input operation takes less active time because the device does not need 
to wait for memory to access data. As in the previous figure, the active participants in each 
step in the communication are shown in color, with the right side shaded if the device is doing a 
read and the left side shaded if the device is doing a write. (a) In the first step in an input opera­
tion, the control lines indicate a write request for memory, whi le the data lines contain the 
address. (b) The second step in an input operation occurs when the memory is ready and signa ls 
the device, which then transfers the data. Typically, the memory will store the data as it receives 
it. The device need not wait for the store to be completed. In the steps shown, we assume that the 
device had to wait for memory to indicate its readiness, but this will not be true in some systems 
that use buffering or have a fast memory system. 

and a lower-level I/0 bus. A backplane bus offers the cost advantage of a 
single bus. Figure 8.9 shows a system using a single backplane bus, a system 
using a processor-memory bus with attached I/0 buses, and a system using all 
three types of buses. Machines with a separate processor-memory bus normal­
ly use a bus adapter to connect the I/0 bus to the processor-memory bus. Some 
high-performance, expandable systems use an organization that combines the 
three buses: the processor-memory bus has one or more bus adapters that in­
terface a standard backplane bus to the processor-memory bus. I/0 buses, as 
well as device controllers, can plug into the backplane bus. The IBM RS/6000 
and Silicon Graphics multiprocessors use this type of organization. This orga­
niza tion offers the advantage that the processor-memory bus can be made 
much faster than a backplane or I/0 bus and that the I/0 system can be ex­
panded by plugging many I/0 controllers or buses into the backplane bus, 
which will not affect the speed of the processor-memory bus. 

Synchronous and Asynchronous Buses 

The substantial differences between the circumstances under which a 
processor-memory bus and an I/0 bus or backplane bus are designed lead to 
two different schemes for communication on the bus: synchronous and 

a. 

b. 

c. 
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FIGURE 8.9 Many machines use a single backplane bus for both processor-memory and 1/0 traffic. Some high­
performance machines use a separate processor-memory bus that I/0 buses p lug into. Some systems make use of all 
three types of buses, organized in a hierarchy. (a) A single bus used for processor-to-memory communication, as well as 
communica tion between 1/0 devices and memory. The bus used in older PCs has this structure. (b) A separate bus is 
used for processor-memory traffic. To communicate data between memory and 1/0 devices, the I/0 buses interface to 
the processor-memory bus, usi ng a bus adapter. The bus adapter provides speed matching between the buses. In many 
recent PCs, the processor-memory bus is a PCI bus (a backplane bus) that has 1/0 devices that interface directly as well 
as an I/0 bus that plugs into the PC! bus; the latter is a SCSI bus. (c) A sepa rate bus is used for processor-memory traffic. 
A small number of backplane buses tap into the processor-memory bus. The processor-memory buses interface to the 
backplane bus. This is usually done with a single-chip controller, such as a SCSI bus controller. An advantage of this 
organization is the small number of taps into the high-speed processor-memory bus. 
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nsy11chro11011s. If a bus is synchronous, it includes a clock in the control lines 
and a fixed protocol for communicating that is relative to the clock. For exam­
ple, for a processor-memory bus performing a read from memory, we might 
have a protocol that transmits the address and read command on the first 
clock cycle, using the control lines to indicate the type of request. The memory 
might then be required to respond with the data word on the fifth clock. This 
type of protocol can be implemented easily in a small finite state machine. 
Because the protocol is predetermined and involves little logic, the bus can 
run very fast and the interface logic will be small. Synchronous buses have 
two major disadvantages, however. First, every device on the bus must run at 
the same clock rate. Second, because of clock skew problems, synchronous 
buses cannot be long if they are fast (see Appendix B for a discussion of clock 
skew). Processor-memory buses are often synchronous because the devices 
communicating are close, small in number, and prepared to operate at high 
clock rates. 

An asynchronous bus is not clocked. Because it is not clocked, an asynchro­
nous bus can accommodate a wide variety of devices, and the bus can be 
lengthened without worrying about clock skew or synchronization problems. 
To coordinate the transmission of data between sender and receiver, an asyn­
chronous bus uses a handshaking protocol. A handshaking protocol consists of a 
series of steps in which the sender and receiver proceed to the next step only 
when both parties agree. The protocol is implemented with an additional set 
of control lines. 

A simple example will illustrate how asynchronous buses work. Let' s con­
sider a device requesting a word of data from the memory system. Assume 
that there are three control lines: 

1. ReadReq: Used to indicate a read request for memory. The address is 
put on the data lines at the same time. 

2. DatnRdy: Used to indicate that the data word is now ready on the data 
lines. In an output transaction, the memory will assert this signal since 
it is providing the data . In an input transaction, an 1/ 0 device would 
assert this signal, since it would provide data. In either case, the data is 
placed on the data lines at the same time. 

3. Ack: Used to acknowledge the ReadReq or the DataRdy signal of the 
other party. 

In an asynchronous protocol, the control signals ReadReq and DataRdy are 
asserted until the other party (the memory or the device) indicates that the con­
trol lines have been seen and the data lines have been read; this indication is 
made by asserting the Ack line. This complete process is called handshaking. 
Figure 8.10 shows how such a protocol operates by depicting the steps in the 
communication. 
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The steps in the protocol begin immediately after the device signals a request by raising ReadReq 
and putting the address on the Data lines: 

l. When memory sees the ReadReq line, it reads the address from the data bus and raises Ack to 
indicate it has been seen. 

2. I / 0 device sees the Ack line high and releases the ReadReq and data lines. 
3. Memory sees that ReadReq is low and drops the Ack line to acknowledge the Readreq signal. 
4. This step starts when the memory has the data ready. It places the data from the read req uest 

on the data lines and raises DataRdy. 
5. The I/O device sees DataRdy, reads the data from the bus, and signals that it has the data by 

raising Ack. 
6. The memory sees the Ack signal, drops DataRd y, and releases the data lines. 
7. Finally, the I/O device, seeing DataRdy go low, drops the Ack line, which indicates that the 

transmission is completed. 

A new bus transaction ca n now begin. 

FIGURE 8.10 The asynchronous handshaking protocol consists of seven steps to read a 
word from memory and receive it in an 1/0 device. The signals in color are those asserted bv 
the I/O device, while the memory asserts the signals shown in black. The arrows label the seve~ 
steps and the event that triggers each step. The symbol showing two lines (high and low) at the 
same time on the data lines indicates that the data lines have va lid data at this point. (The symbol 
indicates that the data is valid, but the value is not known. ) 

An asynchronous bus protocol works like a pair of finite state machines that 
are communicating in such a way that a machine does not proceed until it 
knows that another machine has reached a certain state; thus the two machines 
are coordinated. 

The handshaking protocol does not solve all the problems of communicat­
ing between a sender and receiver that have different clocks. An additional 
problem arises when we sample an asynchronous signal (such as ReadReq). 
This problem, called a synchronization failure, can lead to unpredictable 
behavior; it can be overcome with devices called synchronizers, which are de­
scribed in Appendix B. 

INTEL - 1012



662 Chapter 8 Interfacing Processors and Peripherals 

FSM Control for 1/0 

Example Show how the control for an output transaction to an I/0 device from 
memory (as in Figure 8.7) can be implemented as a pair of finite state ma­
chines. 

Answer 

Example 

Answer 

Figure 8.11 shows the two finite state machine controllers that implement 
the handshaking protocol of Figure 8.10. 

If a synchronous bus can be used, it is usually faster than an asynchronous 
bus because of the overhead required to perform the handshaking. An exam­
ple demonstrates this. 

Performance Analysis of Synchronous versus Asynchronous Buses 

We want to compare the maximum bandwidth for a synchronous and an 
asynchronous bus. The synchronous bus has a clock cycle time of 50 ns, 
and each bus transmission takes 1 clock cycle. The asynchronous bus re­
quires 40 ns per handshake. The data portion of both buses is 32 bits wide. 
Find the bandwidth for each bus when performing one-word reads from a 
200-ns memory. 

First, the synchronous bus, which has 50-ns bus cycles. The steps and times 
required for the synchronous bus are as follows: 

1. Send the address to memory: 50 ns 

2. Read the memory: 200 ns 

3. Send the data to the device: 50 ns 

Thus, the total time is 300 ns. This yields a maximum bus bandwidth of 
4 bytes every 300 ns, or 

4 bytes = 
300 ns -0-.3--se_c_o_n_d_s 

4MB = 13.3~ 
second 
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At first glance, it might appear that the asynchronous bus will be much 
slower, since it will take seven steps, each at least 40 ns, and the step cor­
responding to the memory access will take 200 ns. If we look carefully at 
Figure 8.10, we realize that several of the steps can be overlapped with the 
memory access time. In particular, the memory receives the address at the 
end of step 1 and does not need to put the data on the bus until the begin­
ning of step 5; steps 2, 3, and 4 can overlap with the memory access time. 
This leads to the following timing: 

Step 1: 40 ns 

Steps 2, 3, 4: maximum (3 x 40 ns, 200 ns) = 200 ns 

Steps 5, 6, 7: 3 x 40 ns = 120 ns 

Thus, the total time to perform the transfer is 360 ns, and the maximum 
bandwidth is 

4 bytes _ 4 MB = ll.1 MB 
360 ns - 0.36 seconds second 

Accordingly, the synchronous bus is only about 20% faster. Of course, to 
sustain these rates, the device and memory system on the asynchronous 
bus will need to be fairly fast to accomplish each handshaking step in 
40 ns. 

Even though a synchronous bus may be faster, the choice between a 
synchronous and an asynchronous bus has implications not only for data 
bandwidth but also for an I/0 system's capacity in terms of physical distance 
and the number of devices that can be connected to the bus. Asynchronous 
buses scale better with technology changes and can support a wider variety of 
device response speeds. It is for these reasons that I/0 buses are often asyn­
chronous, despite the increased overhead. 

Increasing the Bus Bandwidth 

Although much of the bandwidth of a bus is decided by the choice of a syn­
chronous or asynchronous protocol and the timing characteristics of the bus, 
several other factors affect the bandwidth that can be attained by a single 
transfer. The most important of these are the following: 

l. Data bus width: By increasing the width of the data bus, transfers of 
multiple words require fewer bus cycles. 

2. Separate versus multiplexed address and data lines: Our example in 
Figure 8.8 used the same wires for address and data; including separate 
lines for addresses will make the performance of writes faster because 
the address and data can be transmitted in one bus cycle. 
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New 1/ 0 request 

FIGURE 8.11 These finite state machines implement the control for the handshaking protocol illus­
trated In Figure 8.10. The numbers in each state correspond to the steps shown in Figure 8.10. The first 
state of the 1/0 device (upper-left corner) starts the protocol when a new 1/0 request is generated, just as in 
Figure 8.10. Each state in the finite state machine effectively records the state of both the device and memory. 
This is how they stay synchronized during the transaction. After completing a transaction, the 1/0 side can 
stay in the last state until a new request needs to be processed. 

3. Block transfers: Allowing the bus to transfer multiple words in back-to­
back bus cycles without sending an address or releasing the bus will 
reduce the time needed to transfer a large block. 

Each of these design alternatives will increase the bus performance for a 
single bus transfer. The cost of implementing one of these enhancements is one 
or more of the following: more bus lines, increased complexity, or increased 
response time for requests that may need to wait while a long block transfer 
occurs. 

Example 

Answer 
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Performance Analysis of Two Bus Schemes 

Suppose we have a system with the following characteristics: 

1. A memory and bus system supporting block access of 4 to 16 32-bit 
words. 

2. A 64-bit synchronous bus clocked at 200 MHz, with each 64-bit 
transfer taking 1 clock cycle, and 1 clock cycle required to send an 
address to memory. 

3. Two clock cycles needed between each bus operation. (Assume the 
bus is idle before an access.) 

4. A memory access time for the first four words of 200 ns; each addi­
tional set of four words can be read in 20 ns. Assume that a bus 
transfer of the most recently read data and a read of the next four 
words can be overlapped. 

Find the sustained bandwidth and the latency for a read of 256 words for 
transfers that use 4-word blocks and for transfers that use 16-word blocks. 
Also compute the effective number of bus transactions per second for each 
case. Recall that a single bus transaction consists of an address transmis­
sion followed by data. 

For the 4-word block transfers, each block takes 

1. 1 clock cycle that is required to send the address to memory 

200 ns 
2. 

5 ns/cycle 40 clock cycles to read memory 

3. 2 clock cycles to send the data from the memory 

4. 2 idle clock cycles between this transfer and the next 

This is a total of 45 cycles, and 256/ 4 = 64 transactions are needed, so the 
entire transfer takes 45 x 64 = 2880 clock cycles. Thus the latency is 2880 cy­
cles x 5 ns / cycle= 14,400 ns. The number of bus transactions per second is 

. 1 second 
64 transactions x 

1 
4.44M transactions/ second 

4,400 ns 

The bus bandwidth is 

(256 x 4) b tes x 1 second 
y 14,400 ns 71.11 MB I sec 
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For the 16-word block transfers, the first block requires 

1. 1 clock cycle to send an address to memory 

2. 200 ns or 40 cycles to read the first four words in memory 

3. 2 cycles to send the data of the block, during which time the read of 
the four words in the next block is started 

4. 2 idle cycles between transfers and during which the read of the 

next block is completed 

Each of the three remaining 16-word blocks requires repeating only the 
last two steps. 

Thus, the total number of cycles for each 16-word block is 1 + 40 + ~ x 
(2 + 2) = 57 cycles, and 256/16 = 16 transactions are needed, so the entire 
transfer takes, 57 x 16 = 912 cycles. Thus the latency is 912 cycles x 5 
ns/ cycle = 4560 ns, which is roughly one-third of the latency for the case 
with 4-word blocks. The number of bus transactions per second with 16-

word blocks is 

. 1 second 16 transactions x 
4560 

ns = 3.51M transactions/second 

which is lower than the case with 4-word blocks because each transaction 

takes longer (57 versus 45 cycles). 

The bus bandwidth with 16-word blocks is 

1 second / d (256 x 4) bytes x 
4560 

ns = 224.56 MB secon 

which is 3.16 times higher than for the 4-word blocks. The advantage of us­

ing larger block transfers is clear. 

Elaboration: Another method for increasing the effective bus bandwidth when multi­
ple parties want to communicate on the bus is to release the bus when it is not being 
used for transmitting information. Consider the example of a memory read that we 
examined in Figure 8.10. What happens to the bus while the memory access is occur­
ring? In this simple protocol , the device and memory continue to hold the bus during 
the memory access time when no actual transfer is taking place. An alternative proto­

col, which releases the bus, would operate like this: 

1. The device signals the memory and transmits the request and address. 

2. After the memory acknowledges the request, both the memory and device re­

lease all control lines. 

3. The memory access occurs, and the bus is free for other uses during this period. 
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4. The memory signals the device on the bus to indicate that the data is available . 

5. The device receives the data via the bus and signals that it has the data , so the 
memory system can release the bus. 

For the synchronous bus with 16-word transfers in the example above, such a scheme 
would occupy the bus for only 272 of the 912 cycles required for the complete bus 
transaction. 

This type of protocol is called a split transaction protocol. The advantage of such a 
protocol is that, by freeing the bus during the time data is not being transmitted, the pro­
tocol allows another requestor to use the bus. This can improve the effective bus band­
width for the entire system, if the memory is sophisticated enough to handle multiple 
overlapping transactions. 

With a split transaction, however, the time to complete one transfer is probably 
increased because the bus must be acquired twice. Split transaction protocols are also 
more expensive to implement, primarily because of the need to keep track of the other 
party in a communication. In a split transaction protocol, the memory system must con­
tact the requestor to initiate the reply portion of the bus transaction, so the identity of 
the requestor must be transmitted and retained by the memory system. 

Obtaining Access to the Bus 

Now that we have reviewed some of the many design options for buses, we 
can deal with one of the most important issues in bus design: How is the bus 
reserved by a device that wishes to use it to communicate? We touched on this 
question in several of the above discussions, and it is crucial in designing 
large I/0 systems that allow 1/0 to occur without the processor's continuous 
and low-level involvement. 

Why is a scheme needed for controlling bus access? Without any control, 
multiple devices desiring to communicate could each try to assert the control 
and data lines for different transfers! Just as chaos reigns in a classroom when 
everyone tries to talk at once, multiple devices trying to use the bus simulta­
neously would result in confusion. 

Chaos is avoided by introducing one or more bus masters into the system. A 
bus master controls access to the bus: it must initiate and control all bus re­
quests. The processor must be able to initiate a bus request for memory and 
thus is always a bus master. The memory is usually a slave-since it will re­
spond to read and write requests but never generate its own requests. 

The simplest system possible has a single bus master: the processor. Having 
a single bus master is similar to what normally happens in a classroom-all 
communication requires the permission of the instructor. In a single-master 
system, all bus requests must be controlled by the processor. The steps in­
volved in a bus transaction with a single-master bus are shown in Figure 8.12. 
The major drawback of this approach is that the processor must be involved in 
every bus transaction. A single sector read from a disk may require the proces­
sor to get involved hundreds to thousands of times, depending on the size of 
each transfer. Because devices have become faster and capable of transferring 
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FIGURE 8.12 The initial steps In a bus transaction with a single master (the processor). 
A set of bus request Jines is used by the device to commu111cate_ with the processor, which then 
initiates the bus cycle on behalf of the requesting device. The active !mes and u111ts are shown m 
color in each step. Shading is used to indicate the source of a read (memory) or_destmation of a 
write (the disk). After step c, the bus cycle continues like a normal read transact10n, as m Figure 
8 7 (a) First the device generates a bus request to indicate to the processor that the device wants 
t~ ~se the b~s. (b) The processor responds and generates appropriate bus control signals. For 
example if the device wants to perform output from memory,_ the processor asserts the read 
request lines to memory. (c) The processor also notifies the device that its bus request 1s bemg 
processed; as a result, the device knows it can use the bus and places the address for the request 
on the bus. 

at much higher bandwidths, involving the processor in every bus transaction 
has become less and less attractive. . 

The alternative scheme is to have multiple bus masters, each of whJCh can 
initiate a transfer. If we want to allow several people in a classroom to talk 
without the instructor having to recognize each one, we must have a protocol 
for deciding who gets to talk next. Similarly, with multiple bus 1:1~sters, ~e 
must provide a mechanism for arbitrating access to the bus so that 1t 1s used m 
a cooperative rather than a chaotic way. 
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Bus Arbitration 

Deciding which bus master gets to use the bus next is called bus nrbitmtio11. 
There are a wide variety of schemes for bus arbitration; these may involve 
special hardware or extremely sophisticated bus protocols. In a bus arbitra­
tion scheme, a device (or the processor) wanting to use the bus signals a bus 
request and is later granted the bus. After a grant, the device can use the bus, 
later signaling to the arbiter that the bus is no longer required . The arbiter can 
then grant the bus to another device. Most multiple-master buses have a set of 
bus lines for performing requests and grants. A bus release line is also needed 
if each device does not have its own request line. Sometimes the signals used 
for bus arbitration have physically separate lines, while in other systems the 
data lines of the bus are used for this function (though this prevents overlap­
ping of arbitration with transfer). 

Arbitration schemes usually try to balance two factors in choosing which 
device to grant the bus. First, each device has a bus priority, and the highest­
priority device should be serviced first. Second, we would prefer that any 
device, even one with low priority, never be completely locked out from the 
bus. This property, called fairness, ensures that every device that wants to use 
the bus is guaranteed to get it eventually. In addition to these factors, more so­
phisticated schemes aim at reducing the time needed to arbitrate for the bus. 
Because arbitration time is overhead, which increases the bus access time, it 
should be reduced and overlapped with bus transfers whenever possible. 

Bus arbitration schemes can be divided into four broad classes: 

• Daisy chain arbitration: In this scheme, the bus grant line is run through 
the devices from highest priority to lowest (the priorities are deter­
mined by the position on the bus). A high-priority device that desires 
bus access simply intercepts the bus grant signal, not allowing a lower­
priority device to see the signal. Figure 8.13 shows how a daisy chain 
bus is organized. The advantage of a daisy chain bus is simplicity; the 
disadvantages are that it cannot assure fairness-a low-priority request 
may be locked out indefinitely-and the use of the daisy chain grant 
signal also limits the bus speed. 

• Centralized, pnrallel arbitration: These schemes use multiple request 
lines, and the devices independently request the bus. A centralized ar­
biter chooses from among the devices requesting bus access and notifies 
the selected device that it is now bus master. The disadvantage of this 
scheme is that it requires a central arbiter, which may become the bot­
tleneck for bus usage. PCI, a standard backplane bus, uses a central ar­
bitration scheme. 

INTEL - 1012



670 Chapter 8 Interfacing Processors and Peripherals 

Bus 
arbiter 

Highest priority 

Device 1 

Grant 

Grant 

Device 2 

Lowest priority 

Device n 

Grant 

Release 

Request 

FIGURE 8.13 A daisy chain bus uses a bus grant line that chains through each device 
from highest to lowest priority. If the device has requested bus access, it uses the grant line to 
determine access has been given to it. Because the grant line is passed on only if a device does not 
want access, priority is built into the scheme. The name "daisy chain" arises from the structure of 
the grant line that chains from device to device. The detailed protocol used by a daisy cham 1s 
described in the elaboration below. 

• Distributed arbitration by self-selection: These schemes also use multiple 
request lines, but the devices requesting bus access determine who will 
be granted access. Each device wanting bus access places a code indicat­
ing its identity on the bus. By examining the bus, the devices can deter­
mine the highest-priority device that has made a request. There is no 
need for a central arbiter; each device determines independently wheth­
er it is the high-priority requestor. This scheme, however, does require 
more lines for request signals. The NuBus, which is the backplane bus 
in Apple Macintosh Ils, uses this scheme. 

• Distributed arbitration by collision detection: In this scheme, each device 
independently requests the bus. Multiple simultaneous requests result 
in a collision. The collision is detected and a scheme for selecting among 
the colliding parties is used. Ethernets, which use this scheme, are fur­
ther described in Exercise 8.28 on page 708. 

The suitability of different arbitration schemes is determined by a variety of 
factors, including how expandable the bus must be both in terms of the num­
ber of 1/0 devices and the bus length, how fast the arbitration should be, and 
what degree of fairness is needed. 

Elaboration: The protocol followed by a device on a daisy chain bus is the following: 

1. Signal the request li ne. 
2. Wait for a transition on the grant line from low to high, indicating that the bus is 

being reassigned. 
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3. Intercept the grant signal, and do not allow lower-priority devices to see it. Stop 
asserting the request line. 

4. Use the bus . 

5. Signal that the bus is no longer required by asserting the release line. 

By watching for a transition on the grant line, rather than just a level, we prevent the 
device from taking the bus away from a lower-priority device that believes it has been 
granted bus access. To improve fairness in a daisy chain scheme, we can simply make 
the rule that a device that has just used the bus cannot reacquire the bus until it sees 
the bus request line go low. Since a device will not release the request line until its 
request is satisfied, all devices will have an opportunity to use the bus before any sin­
gle device uses it twice. Some bus systems-VME, for example-use multiple daisy 
chains with a separate set of request and grant lines for each daisy chain and a priority 
encoder to select from among the multiple requests . 

Ill 
The different bus characteristics allow the creation of 
buses optimized for a wide range of different devices, 
number of devices, and bandwidth demands. Figure 
8.14 shows some of the design alternatives we have 
discussed and what choices might be made in low­
cost versus high-performance systems. In general, 

higher-cost systems use wider and faster buses with more sophisti­
cated protocols-typically a synchronous bus for the reasons we saw 
in the example on page 662. In contrast, a low-cost system favors a 
bus that is narrow er and does not require intelligence among the 
devices (hence a single master), and is asynchronous so that low­
speed devices can interface inexpensively. 

- High performance Low cost 

Bus width separate address and data lines multiplex address and data lines 
Data width wider is faster (e.g., 32 bits) narrower is cheaper (e .g., 8 bits) 
Transfer size multiple words require less bus overhead single-word transfer is simpler 
Bus masters multiple masters (requires arbitration) single master (no arbitration) 
Clocking synchronous asynchronous 

FIGURE 8 .14 The 1/0 bus characteristics determine the performance of 1/0 transfers, 
the number of 1/0 devices that can be connected, and the cost of connecting devices. 
Shorter buses can be faster but will not be as expandable. Similarly, wider buses can have higher 
bandwidth but will be more expensive. Split transaction buses are another way to increase band­
width at the expense of cost (see the elaboration on page 666). 

--
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Bus Standards 

Most computers allow users to add additional and even new types of periph­
erals. The I/0 bus serves as a way of expanding the machine and connecting 
new peripherals. To make this easier, the computer industry has developed 
several bus standards. The standards serve as a specification for the computer 
manufacturer and for the peripheral manufacturer. A bus standard ensures 
the computer designer that peripherals will be available for a new machine, 
and it ensures the peripheral builder that users will be able to hook up their 
new equipment. 

Machines sometimes become so popular that their I/ 0 buses become de fac­
to standards, as is the case with the IBM PC-AT bus. Once a bus standard is 
heavily used by peripheral designers, other computer manufacturers incorpo­
rate that bus and offer a wide range of peripherals. Sometimes standards are 
created by groups that are trying to address a common problem. The small 
computer systems interface (SCSI) and Ethernet are examples of standards that 
arose from the cooperation of manufacturers. Sanctioning bodies like ANSI or 
IEEE also create and approve standards. The PCI standard was initiated by In­
tel and later developed by an industry committee. 

Figure 8.15 summarizes the key characteristics of the two dominant bus 
standards: PCI (a general-purpose backplane bus) and SCSI (an I/0 bus). A 
SCSI bus typically interfaces to a backplane bus or to a processor-memory bus. 
A SCSI controller coordinates transfers from a device on the I/0 bus to the 
memory via the processor-memory bus. One emerging bus standard is Fibre 
Channel, proposed as a follow-on to SCSI and based on high-speed point-to­
point links, which would be organized as a loop for multiple devices. 

Bus bandwidth for a general-purpose bus is not simply a single number. Be­
cause of bus overhead, the size of the transfer affects bandwidth significantly. 
Since the bus usually transfers to or from memory, the speed of the memory 
also affects the bandwidth. 

Buses provide the electrical interconnect among I/0 devices, processors, 
and memory, and also define the lowest-level protocol for communication. 
Above this basic level, we must define hardware and software protocols for 
controlling data transfers between I/0 devices and memory, and for the pro­
cessor to specify commands to the I/0 devices. These topics are covered in the 
next section. 
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Characteristic SCSI 

Bus type backplane 1/ 0 
Basic data bus width (s ignals) 32-64 8-32 

Address/data multiplexed? 

Number of bus masters 

multiplexed 

multiple 

multiplexed 

multiple 

Arbitration centralized, parallel arbitration self-selection 
Clocking synchronous 33-66 MHz asynchronous or synchronous (5-10 MHz) 

Theoretical peak bandwidth 133-512 MB/sec 5-40 MB/ sec 
Estimated typical achievable bandwidth 
for basic bus 

80 MB/ sec 2.5-40.0 MB/ sec (synchronous) or 
1.5 MB/ sec (asynchronous) 

Maximum number of devices 1024 (with multiple bus segments; at 
most 32 devices/bus segment) 

7-31 (bus width -1) 

Maximum bus length 0.5 meter 2.5 meters 

Standard name PCI ANSI X3.131 

FIGURE 8.15 Key characteristics of two dominant bus standards. Both PCI and SCSI bus standards 
have been significantly extended. PCI has a double-width version (64 bits vs. 32 bits) and a fast version 
(66 MHz vs. 33 MHz). The original SCSI bus was asynchronous. Faster, synchronous versions were devel­
oped, followed by extensions for a wider bus (16 and 32 bits versus 8, called wide SCSI) and a faster clock 
(10 MHz, ca lled fast SCSI, vs. 5 MHz for the origina l synchronous SCSI). Fast, wide SCSI combines the 
higher clock rate and wider bus. In addition, a 20-MHz version of the SCSI bus (called Ultra) was devel-
oped and released in late 1996. The specifications for these standard buses become extremely complex. 
For example, the PCI standard is 282 pages long, while the SCSI-2 specification, which includes both the 
faster and wider versions, is over 600 pages long! The SCSI-2 specification, a good overview of SCSI and 
its development, and the PCJ specification are avai lable via links at www.mkp.com/books_catalog/ 
cod/links.him. 

• Interfacing 1/0 Devices to the Memory, 
Processor, and Operating System 
A bus protocol defines how a word or block of data should be communicated 
on a set of wires. This still leaves several other tasks that must be performed 
to actually cause data to be transferred from a device and into the memory 
address space of some user program. This section focuses on these tasks and 
will answer such questions as the following: 

• How is a user I/0 request transformed into a device command and 
communicated to the device? 

• How is data actually transferred to or from a memory location? 

• What is the role of the operating system? 

As we will see when we answer these questions, the operating system plays 
a major role in handling I/0, acting as the interface between the hardware and 
the program that requests 1/0. 

The responsibilities of the operating system arise from three characteristics 
of 1/0 systems: 

1. The 1/0 system is shared by multiple programs using the processor. 
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2. l/0 systems often use interrupts (externally genera
8
ted except:ons) :o 

communicate information about l/0 operations. ecause m errup s 
cause a transfer to kernel or supervisor mode, they must be handled by 
the operating system (OS). 

3. The low-level control of an l/0 device is complex because it requires 
managing a set of concurrent events an~ because the requirements for 
correct device control are often very detailed. 

Hardware 

Software 

Interface 

The three characteristics of l/0 systems above lead to sev­
eral different functions the OS must provide: 

• The OS guarantees that a user's program accesses only the 
portions of an 1/ 0 device to which the user has nghts. For 
example, the OS must not allow a program to read or write 
a file on disk if the owner of the file has not granted access 
to this program. In a system with shared l/0 devices, pro­
tection could not be provided if user programs could per­
form l/0 directly. 

• The OS provides abstractions for accessing devices by supplying routines 
that handle low-level device operations. 

• The OS handles the interrupts generated by l/0 devices, just as it han­
dles the exceptions generated by a program. 

• The OS tries to provide equitable access to the shared l/0 resources, as 
well as schedule accesses in order to enhance system throughput. 

To perform these functions on behalf of user prog~ams, the operating sys­
tem must be able to communicate with the l/0 de~1ces ~nd to prevent the 
user program from communicating with the l/0 devices directly. Three types 
of communication are required: 

1. The OS must be able to give commands to the 1/ 0 devices. These com­
mands include not only operations like read and write, but other oper­
ations to be done on the device, such as a disk seek. 

2. The device must be able to notify the OS when the 1/ 0 device has 
completed an operation or has encountered an error. For example, 
when a disk has completed a seek, it will notify the OS. 

3. Data must be transferred between memory and an l/0 device. For 
example, the block being read on a disk read must be moved from 
disk to memory. 

In the next few sections, we will see how these communications are performed. 

-+ 
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Giving Commands to 1/0 Devices 

To give a command to an l/0 device, the processor must be able to address 
the device and to supply one or more command words. Two methods are 
used to address the device: memory-mapped l/0 and special l/0 instruc­
tions. In memory-mapped l/0, portions of the address space are assigned to 
l/0 devices. Reads and writes to those addresses are interpreted as com­
mands to the l/0 device. 

For example, a write operation can be used to send da ta to an l/0 device 
where the data will be interpreted as a command. When the processor places 
the address and data on the memory bus, the memory sys tem ignores the op­
eration because the address indicates a portion of the memory space used for 
l/0. The device controller, however, sees the operation, records the data, and 
transmits it to the device as a command. User p rograms are prevented from is­
suing l/0 operations directly because the OS does not provide access to the 
address space assigned to the l/0 devices and thus the addresses are protected 
by the address translation. Memory-mapped l/0 can also be used to transmit 
data by writing or reading to select addresses. The device uses the address to 
determine the type of command, and the data may be provided by a write or 
obtained by a read. In any event, the address encodes both the device identity 
and the type of transmission between processor and device. 

Actually performing a read or write of data to fulfill a progra m request usu­
ally requires several separate l/0 opera tions. Furthermore, the processor may 
have to interrogate the status of the device between individ ual commands to 
determine whether the command completed successfully. For example, the 
DEC LP11 line printer has two l/0 device registers- one for status in forma­
tion and one for data to be printed. The Status register conta ins a done bit, set 
by the printer when it has printed a character, and an error bit, ind icating that 
the printer is jammed or out of paper. Each byte of da ta to be p rinted is p u t into 
the Data register. The processor must then wait until the p rinter sets the done 
bit before it can place another character in the buffer. The processor must also 
check the error bit to determine if a problem has occurred . Each of these oper­
ations requires a separate l/0 device access. 

Elaboration: The alternative to memory-mapped 1/0 is to use dedicated 1/ 0 instruc­
tions in the processor. These 1/ 0 instructions can specify both the device number and 
the command word (or the location of the command word in memory). The processor 
communicates the device address via a set of wires normally included as part of the 
1/ 0 bus. The actual command can be transmitted over the data lines in the bus. Exam­
ples of computers with 1/ 0 instructions are the Intel 80x86 and the IBM 370 comput­
ers. By making the 1/ 0 instructions illegal to execute when not in kernel or supervisor 
mode, user programs can be prevented from accessing the devices directly. 
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Example 

Chapter 8 Interfacing Processors and Peripherals 

Communicating with the Processor 

The process of periodically checking status bits to see if it is time for the next 
I/0 operation, as in the previous example, is called polling. Polling is the sim­
plest way for an I/0 device to communicate with the processor. The I/0 
device simply puts the information in a Status register, and the processor 
must come and get the information. The processor is totally in control and 
does all the work. 

The disadvantage of polling is that it can waste a lot of processor time be­
cause processors are so much faster than I/0 devices. The processor may read 
the Status register many times, only to find that the device has not yet com­
pleted a comparatively slow I/0 operation, or that the mouse has not budged 
since the last time it was polled. When the device has completed an operation, 
we must still read the status to determine whether it was successful. 

Polling can be used in several different ways, depending on the I/0 device 
and whether the I/0 device can initiate I/0 independently. For example, a 
mouse is an input-only device that initiates I/0 independently, when a user 
moves the mouse or clicks a button. Because a mouse has a low I/0 rate, poll­
ing is often used to interface to a mouse. Many other I/0 devices, such as a 
floppy disk or a printer, initiate I/0 only under control of the operating sys­
tem. Thus we need only poll such devices when the OS knows that the device 
is active. As we will see, this allows polling to be used even when the I/0 rate 
is somewhat higher. 

Overhead of Polling in an 1/0 System 

Let's determine the impact of polling overhead for three different devices. 
Assume that the number of clock cycles for a polling operation-including 
transferring to the polling routine, accessing the device, and restarting the 
user program-is 400 and that the processor executes with a 500-MHz 
clock. 

Determine the fraction of CPU time consumed for the following three 
cases, assuming that you poll often enough so that no data is ever lost and 
assuming that the devices are potentially always busy: 

l. The mouse must be polled 30 times per second to ensure that we do 
not miss any movement made by the user. 

2. The floppy disk transfers data to the processor in 16-bit units and 
has a data rate of 50 KB/ sec. No data transfer can be missed. 

3. The hard disk transfers data in four-word chunks and can transfer 
at 4 MB /sec. Again, no transfer can be missed . 
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First the mouse: 

Clock cycles per second for polling= 30 x 400 = 12,000 cycles per second 

. 12 X 103 
Fract10n of the processor clock cycles consumed = ---- = 0.002 % 

500 X 106 

Polling can clearly be used for the mouse without much performance im­
pact on the processor. 

For the floppy disk, the rate at which we must poll is 

so~ 
second 

2 bytes 
polling access 

polling accesses 
= 25K----­

second 

Thus, we can compute the number of cycles (ignoring the base 2 versus 
base 10 discrepancy): 

Cycles per second for polling= 25K x 400 

. 10 X 106 
Fract10n of the processor consumed = ----, = 2 % 

500 X 106 

This amount of overhead is significant, but might be tolerable in a low-end 
system with only a few I/0 devices like this floppy disk. 

In the case of the hard disk, we must poll at a rate equal to the data rate 
in four-word chunks, which is 250K times per second (4 MB per second/16 
bytes per transfer) . Thus, 

Cycles per second for polling = 250K x 400 

Ignoring the discrepancy in bases, 

Fraction of the processor consumed = 100 X 106 = 20 % 
500 X 106 

Thus one-fifth of the processor would be used in just polling the disk. 
Clearly, polling will probably be unacceptable for a hard disk on this ma­
chine. 

If we knew that the floppy disk and hard disk were active only 25% of 
the time and we poll only when the device is active, then the average over­
head for polling would be reduced to 0.5% and 5%, respectively. Although 
this reduces the overhead, notice that once the OS initiates an operation on 
the device, it must poll continuously since the OS does not know when the 
device will actually respond and want to initiate a transfer. 
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The overhead in a polling interface was recognized long ago, leading to the 
invention of interrupts to notify the processor when an I/O device requires at­
tention from the processor. Interrupt-driven I/O, which is used by almost all sys­
tems for at least some devices, employs I/O interrupts to indicate to the 
processor that an I/O device needs attention. When a device wants to notify 
the processor that it has completed some operation or needs attention, it causes 

the processor to be interrupted. 
An I/O interrupt is just like the exceptions we saw in Chapters 5, 6, and 7, 

with two important exceptions: 

1. An I/O interrupt is asynchronous with respect to the instruction execu­
tion. That is, the interrupt is not associated with any instruction and 
does not prevent the instruction completion. This is very different from 
either page fault exceptions or exceptions such as arithmetic overflow. 
Our control unit need only check for a pending I/O interrupt at the 

time it starts a new instruction. 

2. In addition to the fact that an I/ O interrupt has occurred, we would like 
to convey further information such as the identity of the device generat­
ing the interrupt. Furthermore, the interrupts represent devices. that 
may have different priorities and whose interrupt requests have differ­
ent urgencies associated with them. 

To communicate information to the processor, such as the identity of the 
device raising the interrupt, a system can use either vectored interrupts or an 
exception Cause register. When the interrupt is recognized by the processor, 
the device can send either the vector address or a status field to place in the 
Cause register. As a result, when the OS gets control, it knows the identity of 
the device that caused the interrupt and can immediately interrogate the de­
vice. An interrupt mechanism eliminates the need for the processor to poll the 
device and instead allows the processor to focus on executing programs. 

Elaboration: To deal with the different priorities of the 1/ 0 devices, most interrupt 
mechanisms have several levels of priority. These priorities indicate the order in which 
the processor should process interrupts. Both internally generated exceptions and 1/ 0 
interrupts have priorities; typically, 1/0 interrupts have lower priority than internal excep­
tions. There may be multiple 1/ 0 interrupt priorities, with high-speed devices associated 
with the higher priorities. If the exception mechanism is vectored (see section 5.6), the 
vector address for a fast device will correspond to the higher-priority interrupt. If a 
Cause register is used, then the register contents for a faster device are set for the 
higher-priority interrupt. 

Example 

Answer 
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Transferring the Data between a Device and Memory 

We have seen two different methods that enable a device to communicate 
with th_e processor. These two techniques, polling and I/O interrupts, form 
the basis for two methods of implementing the transfer of data between the 
I/O device and memory. Both these techniques work best with lower­
bandwidth devices, where we are more interested in reducing the cost of the 
device controller and interface than in providing a high-bandwidth transfer. 
Both polling and interrupt-driven transfers put the burden of moving data 
and managing the transfer on the processor. After looking at these two 
schemes, we will examine a scheme more suitable for higher-performance 
devices or collections of devices. 

We can use the processor to transfer data between a device and memory 
based on polling. Consider our mouse example. The processor can periodically 
read the mouse counter values and the position of the mouse buttons. If the po­
siti~n of the mouse or one of its buttons has changed, the operating system can 
notify the program associated with interpreting the mouse changes. 

A~1 alternative mechanism is to make the transfer of data interrupt driven. 
In this case, the OS would still transfer data in small numbers of bytes from or 
to the device. But because the I/O operation is interrupt driven, the OS simply 
works on other tasks while data is being read from or written to the device. 
When the OS recognizes an interrupt from the device, it reads the slatus to 
check for errors. If there are none, the OS can supply the next piece of data, for 
example, by a sequence of memory-mapped writes. When the last byte of an 
I/O request has been transmitted and the I/O operation is completed, the OS 
can inform the program. The processor and OS do all the work in this process, 
accessing the device and memory for each data item transferred. Let's see how 
an interrupt-driven I/O interface might work for the floppy disk. 

Overhead of Interrupt-Driven 1/0 

Suppose we have the same hard disk and processor we used in the exam­
ple on page 676, but we use interrupt-driven I/O. The overhead for each 
transfer, including the interrupt, is 500 clock cycles. Find the fraction of the 
processor consumed if the hard disk is only transferring data 5% of the 
time. 

The interrupt rate when the disk is busy is the same as the polling rate. 
Hence, 

Cycles per second for disk = 250K x 500 
6 

= 125 x 10 cycles per second 

--
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Fraction of the processor consumed during a transfer = 125 x 
106 

= 25% 
500 X 106 

Assuming that the disk is only transferring data 5% of the time, 

Fraction of the processor consumed on average= 25 % x 5% = 1.25% 

As we can see, the absence of overhead when an I/0 device is not actually 
transferring is the major advantage of an interrupt-driven interface versus 
polling. 

Interrupt-driven I/0 relieves the processor from having to wait for every 
I/0 event, although if we used this method for transferring data from or to a 
hard disk, the overhead could still be intolerable, since it would consume 25% 
of the processor when the disk was transferring. For high-bandwidth devices 
like hard disks, the transfers consist primarily of relatively large blocks of data 
(hundreds to thousands of bytes) . So computer designers invented a mecha­
nism for off-loading the processor and having the device controller transfer 
data directly to or from the memory without involving the processor. This 
mechanism is called direct memory access (OMA). The interrupt mechanism is 
still used by the device to communicate with the processor, but only on com­
pletion of the I/0 transfer or when an error occurs. 

OMA is implemented with a specialized controller that transfers data be­
tween an I/0 device and memory independent of the processor. The OMA 
controller becomes the bus master and directs the reads or writes between it­
self and memory. There are three steps in a OMA transfer: 

1. The processor sets up the OMA by supplying the identity of the device, 
the operation to perform on the device, the memory address that is the 
source or destination of the data to be transferred, and the number of 
bytes to transfer. 

2. The OMA starts the operation on the device and arbitrates for the bus. 
When the data is available (from the device or memory), it transfers the 
data . The OMA device supplies the memory address for the read or 
write. If the request requires more than one transfer on the bus, the 
OMA unit generates the next memory address and initiates the next 
transfer. Using this mechanism, a OMA unit can complete an entire 
transfer, which may be thousands of bytes in length, without bothering 
the processor. Many OMA controllers contain some memory to allow 
them to deal flexibly with delays either in transfer or those incurred 
while waiting to become bus master. 

Example 

Answer 
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3. Once th~ OMA transfer is complete, the controller interrupts the proces­
sor, ':~1ch can then determine by interrogating the OMA device or 
exammmg memory whether the entire operation completed success­
fully. 

There may be multiple OMA devices in a computer system. For example in 
a system with a sin~le processor-memory bus and multiple I/0 buses, e~ch 
I/0 bus controller will often contain a OMA processor that handles any trans­
fers between~ device on the I/0 bus and the memory. Let's see how much of 
the processor rs consumed using OMA to handle our hard-disk example. 

Overhead of 1/0 Using DMA 

Suppose we have the same processor and hard disk as our earlier example 
on page 676. Assume that the initial setup of a OMA transfer takes 1000 
clock cycles for the processor, and assume the handling of the interrupt at 
OMA completion requires 500 clock cycles for the processor. The hard disk 
has a_tra~sfer rate of 4 MB /sec and uses OMA. If the average transfer from 
t~e d~sk 1s_8 KB, what fraction of the 500-MHz processor is consumed if the 
disk 1s ~ctrvely transferring 100% of the time? Ignore any impact from bus 
contention between the processor and OMA controller. 

Each OMA transfer takes 

8KB 
--=--=--- = 2 x 10-3 seconds 
4~ 

second 

So if the disk is constantly transferring, it requires 

1000 + 500 cycles 
_____ t_ra_n_s_f_e_r = 750 x 103 clock cycles 

2 x 10-3 seconds second 
transfer 

Since the processor runs at 500 MHz, 

Fraction of processor consumed = 750 x 10
3 

500 X 106 

= 1.5 X 10-3 = 0.2% 

-

INTEL - 1012



682 Chapter 8 Interfacing Processors and Peripherals 

Unlike either polling or interrupt-driven I/O, DMA can be used to interface 
a hard disk without consuming all the processor cycles for a single I/O. In ad­
dition, the disk will not be actively transferring data most of the time, and this 
number will be considerably lower. Of course, if the processor is also contend­
ing for memory, it will be delayed when the memory is busy doing a DMA 
transfer. By using caches, the processor can avoid having to access memory 
most of the time, thereby leaving most of the memory bandwidth free for use 

by I/O devices. 

Elaboration: To further reduce the need to interrupt the processor and occupy it in 
handling an 1/0 request that may involve doing several actual operations, the 1/ 0 con­
troller can be made more intelligent. Intelligent controllers are often called //0 proces­
sors (as well as //0 controllers or channel controllers) . These specialized processors 
basically execute a series of 1/0 operations, called an //0 program. The program may 
be stored in the 1/0 processor, or it may be stored in memory and fetched by the 1/ 0 
processor. When using an 1/0 processor, the operating system typically sets up an 
1/0 program that indicates the 1/0 operations to be done as well as the size and 
transfer address for any reads or writes. The 1/0 processor then takes the operations 
from the 1/0 program and interrupts the processor only when the entire program is 
completed . OMA processors are essentially special-purpose processors (usually single­
chip and nonprogrammable) , while 1/0 processors are often implemented with general­
purpose microprocessors, which run a specialized 1/0 program. 

Direct Memory Access and the Memory System 

When DMA is incorporated into an I/O system, the relationship between the 
memory system and processor changes. Without DMA, all accesses to the mem­
ory system come from the processor and thus proceed through address trans­
lation and cache access as if the processor generated the references. With DMA, 
there is another path to the memory system-one that does not go through the 
address translation mechanism or the cache hierarchy. This difference generates 
some problems in both virtual memory systems and systems with caches. 
These problems are usually solved with a combination of hardware techniques 

and software support. 
The difficulties in having DMA in a virtual memory system arise because 

pages have both a physical and a virtual address. DMA also creates problems 
for systems with caches because there can be two copies of a data item: one in 
the cache and one in memory. Because the DMA processor issues memory re­
quests directly to the memory rather than through the cache, the value of a 
memory location seen by the DMA unit and the processor may differ. Consider 
a read from disk that the DMA unit places directly into memory. If some of the 
locations into which the DMA writes are in the cache, the processor will receive 
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Hardware 

Software 

Interface 

In a system with virtual memory, should DMA work with 
virtua~ ad~resses or physical addresses? The obvious prob­
lem with virtual addresses is that the DMA unit will need to 
translate the virtual addresses to physical addresses. The 
major problem with the use of a physical address in a DMA 
transfer is that the transfer cannot easily cross a page 
~oundary. If an I/O request crossed a page boundary, then 

the n_1emory loca~10ns to which it was being transferred would not be contigu­
ous ~n the_ physical memory-the memory locations would correspond to 
multiple virtu~l pages, each ~f which could be mapped to any physical page. 
Consequently, if we use physical addresses, we must constrain all DMA trans­
fers to stay within one page. 

One _me~hod to allow the system to initiate DMA transfers that cross page 
boundaries IS_ to make the DMA work on virtual addresses. In such a system, 
the J?MA umt. has a small number of map entries that provide virtual-to­
physical mappi~g-f~r. a transfer. The operating system provides the mapping 
when the I/O is mitiated. By using this mapping, the DMA unit need not 
worry about the location of the virtual pages involved in the transfer. 
. Anot~er technique is for the operating system to break the DMA transfer 
mto a senes of transfers, each confined within a single physical page. The 
transfers are t~en chained together and handed to an I/O processor or intelli­
gent DM~ umt that executes the entire sequence of transfers; alternatively, 
the operatmg system can individually request the transfers. 

Whiche~er method i~ used, the operating system must still cooperate by 
not remappmg pages while a DMA transfer involving that page is in progress. 

the old value when i_t does a read. Similarly, if the cache is write-back, the DMA 
may read a value directly from memory when a newer value is in the cache, 
and the value has not been written back. This is called the stale data problem or 
coherency problem. 

We ha_ve looked at three different methods for transferring data between an 
I/O d~vice and mem~ry. In moving from polling to an interrupt-driven to a 
DMA mterface, we shift the burden for managing an I/O operation from the 
processor to a progressively more intelligent I/O controller. These methods 
have _the advantage of freeing up processor cycles. Their disadvantage is that 
they mcrease the cost. of th~ I/ 0 system. Because of this, a given computer 
syst:m can choose which pomt along this spectrum is appropriate for the I/ O 
devices connected to it. 
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Hardware 

Software 

Interface 

The coherency problem for I/0 data is avoided by using 
one of three major techniques. One approach is to route the 
I/0 activity through the cache. This ensures that reads see 
the latest value while writes update any data in the cache. 
Routing all I/0 through the cache is expensive and poten-
tially has a large negative performance impact on the pro­
cessor, since the I/0 data is rarely used immediately and 

may displace useful data that a running program needs. A second choice is to 
have the OS selectively invalidate the cache for an I/0 read or force write­
backs to occur for an I/0 write (often called cache flushing). This approach 
requires some small amount of hardware support and is probably more effi­
cient if the software can perform the function easily and efficiently. Because 
this flushing of large parts of the cache need only happen on OMA block 
accesses, it will be relatively infrequent. The third approach is to provide a 
hardware mechanism for selectively flushing (or invalidating) cache entries. 
Hardware invalidation to ensure cache coherence is typical in multiprocessor 
systems, and the same technique can be used for I/0; we discuss this topic in 
detail in Chapter 9. 

• Designing an 1/0 System 

There are two primary types of specifications that designers encounter in I/0 
systems: latency constraints and bandwidth constraints. In both cases, knowl­
edge of the traffic pattern affects the design and analysis. 

Latency constraints involve ensuring that the latency to complete an I/0 
operation is bounded by a certain amount. In the simple case, the system may 
be unloaded, and the designer must ensure that some latency bound is met ei­
ther because it is critical to the application or because the device must receive 
certain guaranteed service to prevent errors. Examples of the latter are similar 
to the analysis we looked at in the previous section. Likewise, determining the 
latency on an unloaded system is relatively easy, since it involves tracing the 
path of the I/0 operation and summing the individual latencies. 

Finding the average latency (or distribution of latency) under a load is a 
much more complex problem. Such problems are tackled either by queuing 
theory (when the behavior of the workload requests and I/0 service times can 
be approximated by simple distributions) or by simulation (when the behavior 
of I/0 events is complex). Both topics are beyond the limits of this text. 

Example 

- - - - ------ ---------------

8.6 Designing an 1/0 System 
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Designi~g an I/0 system to meet a set of bandwidth constraints given a 
wo~kload 1s the other typical problem designers face. Alternatively, the 
designer may be given a partially configured I/0 system and be asked to bal­
ance the system to maintain the maximum bandwidth achievable as dictated 
b~ t_he prec~nfigured portion of the system. This latter design problem is a sim­
phf1ed vers10n of the first. 

The general approach to designing such a system is as follows: 

1. Find the weakest_ link in th~ I/0 system, which is the component in the 
II? path that will constram the design. Depending on the workload, 
this component can be anywhere, including the CPU, the memory sys­
tem, the backplane bus, the I/0 controllers, or the devices. Both the 
:-vorkload and configuration limits may dictate where the weakest link 
rs located. 

2. Configure this component to sustain the required bandwidth. 

3. Determine the requirements for the rest of the system and configure 
them to support this bandwidth. 

The easiest way to understand this methodology is with an example. 

1/0 System Design 

Consider the following computer system: 

• A CPU_ that sustain~ 300 million instructions per second and averages 
50,000 mstruct10ns m the operating system per I/0 operation 

• A memory backplane bus capable of sustaining a transfer rate of 100 
MB/sec 

• SCSI-2 con trollers with a transfer rate of 20 MB / sec and accommodc1t­
ing up to seven disks 

• Disk drives with a read/write bandwidth of 5 MB / sec and an average 
seek plus rotational latency of 10 ms 

If the workload consists of 64-KB reads (where the block is sequential on a 
t~ack) and the user program needs 100,000 instructions per I / 0 operation, 
fmd the maximum sustainable I/0 rate and the number of disks and SCSI 
c~nt~ollers required. Assume that the reads can always be done on an idle 
disk 1f one exists (i.e., ignore disk conflicts). 

-
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The two fixed components of the system are the memory bus and the CPU. 
Let's first find the I /O rate that these two components can sustain and de­
termine which of these is the bottleneck. Each I/O takes 100,000 user in­
structions and 50,000 OS instructions, so 

Maximum I/O rate of CPU= 

Instruction execution rate 
Instructions per I/O 

Each I/O transfers 64 KB, so 

300 X 106 
=-_:_ ___ _ 

(50 + 100) X 103 
2000 I/Os 

second 

Bus bandwidth = 100 x 10
6 

= 1562 I/Os 
Maximum I/O rate of bus= Bytes per I/O 64 x 103 second 

The bus is the bottleneck, so we can now configure the rest of the system 
to perform at the level dictated by the bus, 1562 I/Os per second. 

Now, let's determine how many disks we need to be able to accommo-
date 1562 I/Os per second. To find the number of disks, we first find the 
time per I/ 0 operation at the disk: 

Time per I/ O at disk = Seek/rotational time+ Transfer time 

= 10 ms + 64 KB = 22.8 ms 
5 MB /sec 

This means each disk can complete 43.9 I/Os per second. To satura te the 
bus requires 1562 I/Os per second, or 1562/ 43.9 = 36 disks. 

To compute the number of SCSI buses, we need to know the average 
transfer rate per disk, which is given by 

Transfer rate = ;;:::::; !!: = 2~f!s = 2.74 MB /sec 

Assuming the disk accesses are not clustered so that we can use all the.bus 
bandwidth, we can place seven disks per SCSI bus and controller. This 
means we will need 36/7, or six buses and controllers. 

Notice the significant number of simplifying assumptions that are needed 
to do this example. In practice, many of these simplifications might not hold 
for critical I/O-intensive applications (such as databases). For this reason, 
simulation is often the only realistic way to predict the I/O performance of a 
realistic workload. 

8. 7 Real Stuff: A Typical Desktop 1/0 System 687 

• Real Stuff: A Typical Desktop 1/0 System 

Main 

The emergence of two dominant standards in the desktop personal comput­
er market has led to an enormous degree of commonality among I/O systems. 
These two standards are PCI, as a backplane bus, and SCSI or SCSI-2, as an I/O 
bus. Although systems with older buses (ISA or IDE) continue to ship, such 
systems have rapidly been replaced on all but the least-expensive, lowest­
performance machines. Interestingly, the benefits of a single bus standard, in 
terms of greater availability of devices and lower cost, have led to the adoption 
of backplane and I/O bus standards across both the IBM-compatible and Mac­
intosh platforms, and a larger fraction of workstation vendors are also adher­
ing to these standards. 

Figure 8.16 shows the I/O system of the Macintosh 7200 series, which is typ­
ical of the I/ 0 system of midrange to high-end desktop machines in 1997. PCI 
is used as the backplane bus, with slower devices sharing a lower-performance 
bus, such as SCSI. 

Processor 

PCI 
interface/ 

Stereo 
in put output 

Serial 
ports 

Apple 
desktop bus 

memo~ memo~ 

CDR0M 

controller 

SCSI 
bus 

1/ 0 
controller 

PCI 

1/ 0 
controller 

1/ 0 
controller 

Graphics 
output r 

1/ 0 
controller 

1/0 
controller 

Ethernet / 

FIGURE 8.16 Organization of the 1/0 system on the Apple Macintosh 7200 series. The PCJ backpl,rne bus is used 
to interface all devices and interfaces to the processor and memory system. Serial ports provide for connections such as 
low-speed Appletalk network. The desktop bus provides support for keyboards and mice. In reality, several of the slow 
1/0 devices (a udio 1/ 0, serial ports, and the desktop bus) share a single port onto the PC! bus, but we show them sepa­
rately for simplicity. 
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Fallacies and Pitfalls 

Fallacy: A 100-MB/sec bus can transfer 100 MB of data in 1 second. 

Of course, this is only a fallacy when the definition of a megabyte of storage 
and a megabyte per second of bandwidth do not agree. As we discussed on 
page 642, I/0 bandwidth measures are usually quoted in base 10 (i.e., 1 
MB/ sec= 106 bytes/ sec), while 1 MB of data is typically a base 2 measure (i.e., 
1 MB= 220 bytes). How significant is this distinction? The time to transfer 100 
MB of data on a 100-MB/sec bus is actually 

100 x 220 = 1,048,576 = 1.048576 "' 1 second 
100 X 106 1,000,000 

A similar, but smaller, error is introduced when we treat a kilobyte, meaning 
either 103 or 210 bytes, as equivalent, while a larger error is introduced when 
we treat a gigabyte, meaning either 109 or 230 bytes, as equivalent. 

Pitfall: Using the peak transfer rate of a portion of the I /0 system to make perfor­
mance projections or performance comparisons. 

Many of the components of an I/0 system, from the devices to the controllers 
to the buses, are specified using their peak bandwidths. In practice, these 
peak bandwidth measurements are often based on unrealistic assumptions 
about the system or are unattainable because of other system limitations. For 
example, in quoting bus performance, the peak transfer rate is often specified 
using a memory system that is impossible to build. 

A PCI bus has a peak bandwidth of about 133 MB/sec. In practice, even for 
long transfers, it is difficult to sustain more than about 80 MB/sec for realistic 
memory systems. 

Amdahl's law also reminds us that the throughput of an I/0 system will be 
limited by the lowest-performance component in the I/0 path. 

Fallacy: Magnetic storage is on its last legs and will be replaced shortly. 

This is both a fallacy and a pitfall. Such claims have been made constantly for 
the past 20 years, though the string of failed alternatives in recent years seems 
to have reduced the level of claims for the death of magnetic storage. Among 
the unsuccessful candidates proposed to replace magnetic storage have been 
magnetic bubble memories, optical storage, and photographic storage. None 
of these systems has matched the combination of characteristics that favor 
magnetic disks: nonvolatility, low cost, reasonable access time, and high reli­
ability. Magnetic storage technology continues to improve at the same or 
faster pace it has sustained over the past 25 years. In fact, the rate of density 
improvement has increased in the last 10 years, and rotational speeds and 
seek times have also improved significantly in the past few years. 
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Pitfall: Moving functions from the CPU to the I /0 processor, expecting to improve 
performance without a careful analysis. 

There are many examples of this pitfall trapping people, although I/0 proces­
sors, when properly used, can certainly enhance performance. A frequent 
instance of this fallacy is the use of intelligent I/0 interfaces, which, because 
of the higher overhead to set up an 1/ 0, can turn out to have worse latency 
tha1~ ~ processor-directed I/0 activity (although if the processor is freed up 
suff1c1ently, system throughput may still increase). Frequently, performance 
falls when the I/0 processor has much lower performance than the main pro­
cessor. Consequently, a small amount of main processor time is replaced with 
a larger amount of I/0 processor time. Workstation designers have seen both 
these phenomena repeatedly. 

A more serious problem can occur when the migration of an I/0 feature 
changes the instruction set architecture or system architecture in a programmer­
visible way. This forces all future machines to have to live with a decision that 
made sense in the past. If CPUs improve in cost / performance more rapidly 
than the I/0 processor (and this will likely be the case), then moving the func­
tion may result in a slower machine in the next computer. 

The most telling example comes from the IBM 360. It was decided that the 
performance of the ISAM system, an early database system, would improve if 
some of the record searching occurred in the disk controller itself. A key field 
was associated with each record, and the device searched each key as the disk 
rotated until it found a match. It would then transfer the desired record. This 
technique requires an extra large gap between records when a key is present. 

The speed at which a track can be searched is limited by the speed of the 
disk and by the number of keys that can be packed on a track. On an IBM 3330 
disk, the key is typically 10 characters; the gap is equivalent to 191 characters 
if there is a key, and 135 characters when no key is present. If we assume that 
the data is also 10 characters and that the track has nothing else on it, a 13,165-
byte track can contain 

13,165 
-
19

-
1
-+-

10
-+-

1
-
0 

= 62 key-data records 

The time per key search is 

16.7 ms (1 revolution) 
62 

= 0.27 ms / key search 

In place of this scheme, we could put several key-data pairs in a single block 
and have smaller interrecord gaps. Assuming that there are 15 key-data pairs 
per block and that the track has nothing else on it, then 

13,165 13,165 . 
135 + 15 x (10 + lO) = 135 + 300 = 30 blocks of key-data pairs 
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The revised performance is then 

16.7 ms (1 revolution) 0 04 / k 1 
30 

x 
15 

"" . ms ey searc 1 

Of course, the disk-based search would look better if the keys were much 
longer. 

As processors got faster, the CPU time for a search became trivial, w hile the 
time for a search using the hardware facility improved very little. While the 
strategy made early machines fas ter, programs that use the key search opera­
tion in the I/O processor run up to six times slower on today's machines! 

Concluding Remarks 

I/O systems are evaluated on several different characteristics: the variety of 
I/O devices supported; the maximum number of I/O devices; cost; and per­
formance, measured both in latency and in throughput. These goals lead to 
widely varying schemes for interfacing I/O devices. In the low end, schemes 
like buffering and even OMA can be avoided to minimize cost. In midrange 
systems, buffered OMA is likely to be the dominant transfer mechanism. In 
the high end, la tency and bandwidth may both be important, and cost may be 
secondary. Multiple paths to I/O devices with limited buffering often charac­
terize high-end I/O systems. Increasing the bandwidth with both more and 
wider connections eliminates the need for buffering at an increase in cos t. 
Typically, being able to access the data on an I/O device at any time (high 
availability) becomes more important as systems grow. As a result, redun­
dancy and error correction mechanisms become more and more prevalent as 
we enlarge the system. 

The design of I/O systems is complicated because the limiting factor in I/O 
system perfo rmance can be any of several critical resources in the I/O path, 
from the opera ting system to the device. Furthermore, independent requests 
from different programs interact in the I/O system, making the performance 
of an I/O reques t dependent on other activity that occurs a t the same time. 
Las tly, design techniques that improve bandwidth often negatively impact la­
tency, and vice versa. For example, adding buffering usually increases the sys­
tem cos t and also the system bandwid th. But it also increases latency by 
placing additional hardware between the device and memory. It is this combi­
nation of fac tors, including some that are unpredictable, that makes designing 
I/O systems and improving their performance challenging not only for archi­
tects bu t also for OS designers and even programmers building I/O-in tensive 
appl ica tions. 

8.9 Concluding Remarks 

II 
The performance of an I/O system, whether mea­
sured by bandwidth or latency, depends on all the 
~leme~ts in the path between the device and memory, 
rncludmg the operating system that generates the I/O 
commands. The bandwidth of the buses, the memory, 
and the device determine the maximum transfer rate 

from or to the device. Similarly, the latency depends on the device 
latency, together with any latency imposed by the memory system or 
buses. The effective bandwidth and response latency also depend on 
other I/O requests that may cause contention for some resource in the 
path. Finally, the operating system is a bottleneck. In some cases, the 
OS takes a l?ng tim~ to deliver an I/O request from a user program to 
an I/0 dev1~e, lea~m? to high latency. In other cases, the operating 
system effectively hm1ts the I/O bandwidth because of limitations in 
the number of concurrent I/O operations it can support. 

Future Directions in 1/0 Systems 

691 

What does the future h~ld for I/O systems? The rapidly increasing perfor­
~ance of processors strains I/O systems, whose physical components cannot 
improve in performance as fast as processors. To hide the growing gap 
bet~ee~ the. speed of processors and the access time to secondary storage 
(pnmanly d isks), °:ain memory is used as a cache for secondary storage. 
These fi le caches, whICh rely on spatial and temporal locality in access to sec­
ondary storage, are maintained by the operating system. The use of fil e caches 
allows many fi le accesses to be handled from memory rather than from disk. 
. Magnetic disks are increasing in capacity quickly, but access time is improv­
ing only ~lowly. One reason for this is that the opportunities for magnetic disks 
are grow~ng fas ter 1~ the low end of the market than in the high end, and the 
low end 1s dnven pnmarily by the demand for lower cost per megabyte. This 
market has h~lped shrink the size of the disk from the 14-inch platters of the 
mainframe d isk to the 1.3-inch disks developed for laptop and palmtop com­
puters. In fac t, the d ramatic demand for small disks has led to an accelerated 
ra te of im~rovement !n disk density, so that the density of magnetic disks has 
be_en growmg fas ter since about 1990 than it ever did! What is surprising is that 
this pen od of growth ca me at a _time when a number of people were predicting 
the end (or at least a reduct10n in the use) of magnetic disks! 

. In addition to_ increas_es in density, transfer rates have grown rapidly as 
disks mcreased in rotat10nal speed and interfaces improved . In addition, 
virtually every high-performance disk manufactured today includes a track or 
sector buffer that caches sectors as the read head passes over them. 
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One major new disk organization that has emerged in the last few years is 
an array of small and inexpensive disks. The argument for arrays is that since 
price per megabyte is independent of disk size, potential throughput can be in­
creased by having many disk drives and, hence, many disk heads. Simply 
spreading data over multiple disks automatically forces accesses to several 
disks. (While arrays improve throughput, latency is not necessarily reduced.) 
Adding redundant disks to the array offers the opportunity for the array to dis­
cover a failed disk and automatically recover the lost information. Arrays may 
thus enhance the reliability of a computer system as well as performance. This 
redundancy has inspired the acronym RAID for these arrays: redundant arrays 
of inexpensive disks. A number of computer companies offer RAIDs for their 
disk subsystems. For example, IBM has both a RAID offering (see the IBM link 
at www.mkp.com/books_catalog/cod//inks.htm), as well as a disk subsystem built 
from the largest disks they manufacture. Ironically, RAID controllers turned 
out to be quite expensive, so the original meaning of the RAID acronym 
seemed inappropriate. The acronym was recast as "Redundant Arrays of Intel­
ligent Disks." 

The next level of the storage hierarchy below magnetic disks has also 
yielded extraordinary increases in capacity in the last several years. This in­
crease has come partly from improvements in magnetic recording that also 
helped disks, but also from a different recording technology, the helical scan 
tape. Found in VCRs, camcorders, and digital audio tapes, helical scan tape 
records at an angle to the tape rather than parallel, as in longitudinally 
recorded tapes. The tape still moves at the same speed, but the fast-spinning 
tape head records bits much more densely-a factor of about 50 to 100 denser 
than longitudinally recorded tapes. And because the medium was created for 
consumer products, the improvement in cost per bit over time has been even 
greater than for traditional magnetic tapes used solely by the computer industry. 

Advances in tape capacity are being enhanced by advances on two other 
fronts: compression and robots. Faster processors have enabled systems to be­
gin using compression to multiply storage capacity. Factors of two to three _a re 
common, with compression of 20:1 possible for certain types of data such as im­
ages. The second enhancement that is changing the cost-effectiveness of very 
large online storage is the emergence of inexpensive robots to automatically 
load and store tapes, offering a new level in the hierarchy between online mag­
netic disks and offline magnetic disks on shelves. This "robo-line" storage means 
access to terabytes of information at the delay of tens of seconds, without the 
intervention of a human operator. Figure 8.17 is a photograph of a tape robot. 

Computer networks are also making great strides. Both 100-Mbit Ethernet 
and switched Ethernet solutions are being used in new networks and in up­
grading networks that cannot handle the tremendous explosion in bandwidth 
created by the use of multimedia and the growing importance of the World 
Wide Web. ATM represents another potential technology for expanding even 
further. To support the growth in traffic, the Internet backbones are being 
switched to optical fiber, which allows a significant increase in bandwidth for 
long-haul networks. 
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FIGURE 8.17 The Exabyte EXB-120 holds 116 8-mm helical scan tapes. Each tape holds 
10 GB, yielding a total capacity of over a terabyte. Photo courtesy of the Exabyte Corpora­
tion. 

One of the most interesting storage technologies being explored is holo­
graphy. One research project under way hopes to demonstrate a storage device 
with terabyte capacity and with transfer rates of 1 Gbit/sec. This would rep­
resent about an order of magnitude improvement in both storage size and 
transfer rate versus the largest disks in 1997. See the pertinent IBM link at 
www.mkp.com/books_catalog/cod/links.htm for a description of this joint academic­
industry research activity. 

Such advances offer "computing science fiction" scenarios that would have 
seemed absurd just a few years ago. For example, if all the books in the Library 
of Congress were converted to ASCII, they would occupy just 10 terabytes 
(although the pictures might take even more, depending on their number and 
resolution). Helical scan tapes, tape robots, compression, and high-speed net­
works could be the building blocks of an electronic library. All the information 
on all the books in the world would be available at your fingertips for the cost 
of a large minicomputer. And parallel processing, discussed in the next chap­
ter, will allow this information to be indexed so that all books could be 
searched by content rather than by title. Electronic libraries would change the 
lives of anyone with a library card, and the technology to create them is within 
our grasp. 
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Historical Perspective and Further Reading 

The history of I/0 systems is a fascinating one. Many of the most interesting 
artifacts of early computers are their I/0 devices. Magnetic tape was the first 
low-cost magnetic storage and today persists as the lowest-cost storage 
medium. Early tape drives used reel-to-reel technologies and linear recording, 
which were eventually replaced by tape cartridges and helical recording. As 
disks became cheaper, tapes were relegated primarily to archival purposes, 
causing additional focus on density, as opposed to speed, and on large-scale 
archival technologies such as tape robots. 

The earliest random access storage devices were drums and fixed-head 
disks. A drum had a cylindrical surface coated with a magnetic film. It used a 
large number of read /write heads positioned over each track on the drum (see 
Figure 8.18). Drums were relatively high-speed I/0 devices often used for vir­
tual memory paging or for creating a file cache to slower-speed devices. 
Drums, which had no seek time, survived into the 1970s in higher-speed appli­
cations, such as paging or use in high-end machines. Eventually improve­
ments in disk speed and the significant cost advantage of disks eliminated 
drum technology. Large (2 to 3 feet in diameter) single-platter, fixed-head disks 
were also in use in the 1950s. 

In 1956, IBM developed the first disk storage system with both moving 
heads and multiple disk surfaces in San Jose, helping to seed the development 
of the magnetic storage industry in the southern end of Silicon Valley. The IBM 
305 RAMAC (Random Access Method of Accounting and Control) could store 
5 million characters (5 MB) of data on 50 disks, each 24 inches in diameter. The 
RAMAC is shown in Figure 8.19. 

Moving-head disks quickly became the dominant high-speed magnetic 
storage, though their high cost meant that magnetic tape continued to be used 
extensively until the 1970s. The next key development for hard disks was the 
removable hard disk drive developed by IBM in 1962; this made it possible to 
share the expensive drive electronics and helped disks overtake tapes as the 
preferred storage medium. Figure 8.20 shows a removable disk drive and the 
multi platter disk used in the drive. IBM also invented the floppy disk drive in 
1970, originally to hold microcode for the IBM 370 series. Floppy disks became 
popular with the PC about 10 years later. 

The sealed Winchester disk, which was developed by IBM in 1973, com­
pletely dominates disk technology today. (All the disks shown in Figure 8.5 on 
page 649 are Winchester disks.) Winchester disks benefited from two related 
properties. First, reductions in the cost of the disk electronics made it unneces­
sary to share the electronics and thus made nonremovable disks economical. 

8.10 Historical Perspective and Further Reading 695 

FIGURE 8.18 A magnetic drum made by Digital Development Corporation in the 1960s 
and used on a CDC machine. The electronics supporting the read / write heads can be seen on 
the outside of the drum. Photo courtesy of the Computer Museum of America . 

Since the disk was fixed and could be in a sealed enclosure, both the environ­
mental and control problems were greatly reduced, allowing significant gains 
in density. The first disk that IBM shipped had two spindles, each with a 30-
MB disk; the moniker "30-30" for the disk led to the name Winchester. Win­
chester disks grew rapidly in popularity in the 1980s, completely replacing 
removable disks by the middle of that decade. 

Recently, low-cost removable drives have been resurrected for use in back­
up and portable locations. These drives typically are available both in floppy 
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FIGURE 8.19 The RAMAC disk drive from IBM, made in 1956, was the first disk drive with a mov­
ing head and the first with multiple platters. The IBM storage teclmology Web si te has a discussion of 
IBM's major contributions to storage technology. Find the link at www.111kp.co111/books_catalog/cod/li11ks.ht111. 
Photo courtesy of IBM. 

media, storing about 100 MB in 1997, and a removable hard disk format, stor­
ing 1-2 GB. These removable disks have lower density and are slower than 
nonremovable disks, but the removable media are attractive for certain envi­
ronments. 

The 1970s saw the invention of a number of remarkable I/0 devices. Per­
haps one of the most unusual was a film storage device that stored data opti­
cally on small strips of photographic film. These film storage devices could not 
only read and write film, but actually kept the filmstrips stored in the device 
(which was about 5 feet by 4 feet by 3 feet), retrieving them mechanically. 

The early IBM 360s pioneered many of the ideas that we use in I/0 systems 
today. The 360 was the first machine to make heavy use of OMA, and it intro­
duced the notion of I/0 programs that could be interpreted by the device. 
Chaining of I/0 programs was a key feature. The concept of channels intro­
duced in the 360 corresponds to the I/0 bus of today. 

The trend for high-end machines has been toward use of programmable I/0 
processors. The original machine to use this concept was the CDC 6600, which 
used 1/ 0 processors called peripheral processors. 
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FIGURE 8.20 This is a DEC disk drive and the removable pack. These disks became popular 
starting in the mid-1960s and dominated disk technology until Winchester drives in the late 
1970s. This drive was made in the mid-1970s; each disk pack in this drive could hold 80 MB. 
Photo courtesy of the Commercial Computing Museum. 

The forerunner of today's workstations and personal computers was the Al­
to, developed at Xerox Palo Alto Research Center in 1973 [Thacker et al. 1982], 
shown in Figure 8.21. This machine integrated the needs of the I/0 functions 
into the microcode of the processor. This included support for the bit-mapped 
graphics display, the disk, and the network. The network for the Alto was the 
first Ethernet [Metcalfe and Boggs 1976]. The Alto also supported the first laser 
printer, configured as a print server accessible over the Ethernet. Similarly, disk 
servers were also built. The mouse, invented earlier by Doug Engelbart of SRI, 
was a key part of the Alto. The 16-bit processor used a writable control store, 
which enabled researchers to program in support for the I/0 devices. The sin­
gle microprogrammed engine drove the graphics display, mouse, disks, net­
work, and, when there was nothing else to do, ran the user's program. 

While today we associate microprocessors with the personal computer 
revolution, they were originally developed to meet the demand for special­
purpose controllers. Since the invention of the microprocessor, designers have 
developed many 1/0 controllers that adapt a microprocessor to a specific task. 
These include everything from OMA controllers to SCSI controllers to com­
plete Ethernet controllers on a single chip. 
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FHHJRE 8.21 The Xerox Alto. Although never sold as a product, Xerox donated a number of 
these machines to several major uni\·ersities as well as using them heavily internally. The use of a 
mouse, a local area network, and a personal graphics display with a window svstem were key 
characteristics of the Alto later broadly adopted by workstation and PC companies. Photo cour­
tesy of the Computer History Center. 

The first multivendor bus may have been the PDP-11 Unibus in 1970. DEC 
encouraged other companies to build devices that would plug into its bus, and 
many companies did. A more recent example is SCSI (small computer systems 
interface). This bus, originally called SASI, was invented by Shugart and was 
later standardized by the IEEE. This open system approach to buses contrasts 
with proprietary buses using patented interfaces, which companies adopt to 
forestall competition from plug-compatible vendors. The use of proprietary 
buses also raises the costs and lowers the availability of I/0 devices that plug 
into proprietary buses because such devices must have an interface designed 
exclusively for that bus. 

Ongoing development in the areas of tape robots (see Figure 8.17 on page 
693), head-mounted displays, gloves for complete tactile feedback, and com­
puter screens that you write on with pens are indications that the incredible de­
velopments in 1/0 technology are likely to continue in the future. 

8.10 Historlcal Perspective and further Readl11g 699 

To Probe Further 

Bashe, CJ., L. R. Johnson, J. H. Palmer, and E.W. Pugh [1986]. IBM's Early Computers, MIT Press, 
Cambridge, MA. 

Describes the l/O system architecture and devices in IBM's early computers. 

Borrill, P. L. [1986]. "32-bit buses: An objective comparison," Proc. Buscon 1986 West, San Jose, 
CA, 138-45. 

A comparis@ of various 32-bit bus standards. 

Chen, P. M., E. K. Lee, G. A. Gibson, R H. Katz, and D. A. Patterson [1994]. "RAID: High­
performance, reliable secondary storage," ACM Computing Surveys 26:2 (June) 145--88. 

A tut,Jrial C0I'ering disk arrays and the advantages of such an organization. 

Gray, J., and A. Reuter [1993]. Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 
San Francisco. 

A description of transaction processing, including discussions of benchmarking and perfonnance evalua­
tion. 

Hennessy, J., and D. Patterson [1995]. Computer Architecture: A Quantitative Approach, Second edi­
tion, Morgan Kaufmann Publishers, San Francisco, Chapters 6 and 7. 

Chapter 6 fornses 011 i/0 del'ices, including an extensive discussion of RAID technologies and more accu­
rate 110 performance modeling. Chapter-; fornses on interconnection technologies, including buses and an 
extensive discus5ion on net;.uorking. 

Kahn, R. E. [1972]. "Resource-sharing computer communication networks," Proc. IEEE 60:11 
(November) 1397-1407. 

A classic paper that describes the ARPANET. 

Levy, J. V. [1978]. "Buses: The skeleton of computer structures,'' in Computer Engineering: A DEC 
Vino of Hard,mre Systems Design, C. G. Bell, J. C. Mudge, and J. E. McNamara, eds., Digital Press, 
Bedford, MA. 

This is a good o;;erc1ieu.1 ol key concepts in bus design u.·ith some examples from DEC machines. 

Metcalfe, R. M., and D.R. Boggs [1976]. "Ethernet: Distributed packet switching for local com­
puter networks,'' Comm. ACM 19:7 (Julvl 395--404. 

Describes the Ethernet network. 

Smotherman, M. [1989]. "A sequencing-based taxonomy of I/O systems and review of historical 
machines," Comp11ter Architecture NCT.l'S 17:5 (September) 5-15. 

De;:cri/ie, the de,•elopment of important idras in I/O. 

Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D.R. Boggs [1982]. "Alto: A 
personal computer," in Computer Structures: Principles and Examples, D. P. Siewiorek, C. G. Bell, 
and A. Newell, eds., McGraw-Hill, New York, 549-72. 

De,cribes the Alto--forerimner of workstations as well as the Apple Macintosh. 
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Key Terms 

The wide variety of characteristics present in different 1/0 devices and the 
corresponding system techniques for adapting to those devices have intro­
duced a number of new terms, summarized below. 

asynchronous bus 
backplane bus 
bus arbitration 
bus master 
bus request 
bus transaction 
centralized, parallel 

arbitration 
daisy chain arbitration 
direct memory access (OMA) 
distributed arbitration by 

collision detection 

distributed arbitration by self-
selection 

Ethernet 
fairness 
handshaking protocol 
1/ 0 instruction 
interrupt-driven 1/0 
memory-mapped I/0 
polling 
processor-memory buses 
redundant arrays of 

inexpensive disks (RAID) 

rotation latency or delay 
sector 
seek 
slave 
small computer systems 

interface (SCSI) 
split transaction protocol 
synchronous bus 
track 
transaction processing 
transfer time 

II Exercises 

8.1 [10] <§§8.1-8.2> Here are two different 1/0 systems intended for use in 
transaction processing: 

• System A can support 10001/0 operations per second. 

• System B can support 7501/0 operations per second. 

The systems use the same processor that executes 50 million instructions per 
second. Assume that each transaction requires 51/0 operations and that each 
1/0 operation requires 10,000 instructions. Ignoring response time and 
assuming that transactions may be arbitrarily overlapped, what is the maxi­
mum transaction-per-second rate that each machine can sustain? 

8.2 [15] <§§8.1-8.2> {Ex. 8.1} The latency of an 1/0 operation for the two sys­
tems in Exercise 8.1 differs. The latency for an 1/0 on system A is equal to 20 
ms, while for system B the latency is 18 ms for the first 500 I/Os per second and 
25 ms per 1/0 for each 1/0 between 500 and 750 I/Os per second. In the work­
load, every 10th transaction depends on the immediately preceding transac­
tion and must wait for its completion. What is the maximum transaction rate 
that still allows every transaction to complete in 1 second and that does not ex-
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ceed the 1/0 bandwidth of the machine? (For simplicity, assume that all trans­
action requests arrive at the beginning of a I-second interval.) 

8 .3 [5] <§8.3> The following simplified diagram shows two potential ways of 
numbering the sectors of data on a disk (only two tracks are shown and each 
track has eight sectors). Assuming that typical reads are contiguous (e.g., all 16 
sectors are read in order), which way of numbering the sectors will be likely to 
result in higher performance? Why? 

0 0 

6 2 6 2 

4 4 

8.4 [5] <§8.3> What size messages would result in ATM outperforming Ether­
net by a factor of two, assuming latencies and bandwidths equivalent to those 
reported in the example on page 654? 

8.5 [5] <§8.3> The speed of light is approximately 3 x 108 meters per second, 
and electrical signals travel at about 50% of this speed in a conductor. When 
the term high speed is applied to a network, it is the bandwidth that is higher, 
not necessarily the velocity of the electrical signals. How much of a factor is the 
actual "flight time" for the electrical signals? Consider two computers that are 
100 meters apart and two computers that are 5000 kilometers apart. Compare 
your results to the latencies reported in the example on page 654. 

8.6 [5] <§8.3> The number of bytes in transit on a network is defined as the 
flight time (described in Exercise 8.5) multiplied by the delivered bandwidth. 
Calculate the number of bytes in transit for the two networks described in Ex­
ercise 8.5, assuming a delivered bandwidth of 5 MB/sec. 

8. 7 [5] <§8.3> A secret government agency simultaneously monitors 100 cel­
lular phone conversations and multiplexes the data onto a network with a 
bandwidth of 1 MB/sec and an overhead latency of 350 µs per 1-KB message. 
Calculate the transmission time per message and determine whether there is 
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sufficient bandwidth to support this application. Assume that the phone con­
versation data consists of 2 bytes sampled at a rate of 4 KHz. 

8.8 [10] <§8.3> A program repeatedly performs a three-step process: It reads 
in a 4-KB block of data from disk, does some processing on that data, and then 
writes out the result as another 4-KB block elsewhere on the disk. Each block 
is contiguous and randomly located on a single track on the disk. The disk 
drive rotates at 7200 RPM, has an average seek time of 8 ms, and has a transfer 
rate of 20 MB/sec. The controller overhead is 2 ms. No other program is using 
the disk or processor, and there is no overlapping of disk operation with pro­
cessing. The processing step takes 20 million clock cycles, and the clock rate is 
400 MHz. What is the overall speed of the system in blocks processed per sec­
ond? 

8.9 [10] <§8.3> A transaction processing system utilizes a network and two 
different message sizes. The transaction request is quite small and consists of 
a 10-byte message. The transaction response is larger and consists of a 150-byte 
message. Assume that every transaction consists of a request and a response. 
Determine which of the two networks described in the example on page 654 
would be better for this system. 

8.10 [5] <§§8.3, 8.4> Assume that the bus and memory systems described in 
the example on page 665 are used to handle disk accesses from disks like the 
one described in the example on page 648. If the 1/0 is allowed to consume 
100% of the bus and memory bandwidth, what is the maximum number of si­
multaneous disk transfers that can be sustained for the two block sizes? 

8.11 [5] <§8.4> The example on page 665 assumed that the memory system 
took 200 ns to read the first four words, and each additional four words re­
quired 20 ns. Redo the example with the assumption that the memory system 
takes 150 ns to read the first four words and 30 ns to read each additional four 
words. 

8.12 [5] <§8.4> The example on page 665 demonstrates that using larger block 
sizes results in an increase in the maximum sustained bandwidth that can be 
achieved. Under what conditions might a designer tend to favor smaller block 
sizes? Specifically, why would a designer choose a block size of 4 instead of 16 
(assuming all of the characteristics are as identified in the example)? 

8.13 [15] <§8.4> This question examines in more detail how increasing the 
block size for bus transactions decreases the total latency required and increas­
es the maximum sustainable bandwidth. In the example on page 665, two dif­
ferent block sizes are considered (4 words and 16 words). Compute the total 
latency and the maximum bandwidth for all of the possible block sizes 
(between 4 and 16) and plot your results. Summarize what you learn by look­
ing at your graph. 
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8.14 [15] <§8.4> This exercise is similar to Exercise 8.13. This time fix the block 
size at 4 and 16 (as in the example on page 665), but compute latencies and 
bandwidths for reads of different sizes. Specifically, consider reads of from 4 
to 256 words, and use as many data points as you need to construct a mean­
ingful graph. Use your graph to help determine at what point block sizes of 16 
result in a reduced latency when compared with block sizes of 4. 

8.15 [10] <§8.4> This exercise examines a design alternative to the example on 
page 665 that may improve the performance of writes. For writes, assume all 
of the characteristics reported in the example as well as the following: 

5. The first four words are written 200 ns after the address is available, 
and each new write takes 20 ns. Assume a bus transfer of the most 
recent data to write, and a write of the previous four words can be over­
lapped. 

The performance analysis reported in the example would thus remain 
unchanged for writes (in actuality, some minor changes might exist due to the 
need to compute error correction codes, etc., but we'll ignore this). An alterna­
tive bus scheme relies on separate 32-bit address and data lines. This will per­
mit an address and data to be transmitted in the same cycle. For this bus 
alternative, what will the latency of the entire 256-word transfer be? What is 
the sustained bandwidth? Consider block sizes of four and eight words. 
When do you think the alternative scheme would be heavily favored? 

8.16 <20> <§8.4> Consider an asynchronous bus used to interface an 1/0 
device to the memory system described in the example on page 665. Each 
1/0 request asks for 16 words of data from the memory, which, along with 
the I/ 0 device, has a 4-word bus. Assume the same type of handshaking pro­
tocol as appears in Figure 8.10 on page 661 except that it is extended so that 
the memory can continue the transaction by sending additional blocks of 
data until the transaction is complete. Modify Figure 8.10 (both the steps and 
diagram) to indicate how such a transfer might take place. Assuming that 
each handshaking step takes 20 ns and memory access takes 60 ns, how long 
does it take to complete a transfer? What is the maximum sustained band­
width for this asynchronous bus, and how does it compare to the synchro­
nous bus in the example? 

8.17 [15] <§§8.3-8.6> Redo the example on page 685, but instead assume that 
the reads are random 4-KB reads. You can assume that the reads are always to 
an idle disk, if one is available. 

8.18 [20] <§§8.3-8.6> Here are a variety of building blocks used in an 1/0 
system that has a synchronous processor-memory bus running at 200 MHz 
and one or more 1/0 adapters that interface 1/0 buses to the processor­
memory bus. 
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• Memory system: The memory system has a 32-bit interface and handles 
four-word transfers. The memory system has separate address and data 
lines and, for writes to memory, accepts a word every clock cycle for 4 
clock cycles and then takes an additional 4 clock cycles before the words 
have been stored and it can accept another transaction. 

• OMA interfaces: The I/0 adapters use DMA to transfer the data be­
tween the I/0 buses and the processor-memory bus. The DMA unit ar­
bitrates for the processor-memory bus and sends/receives four-word 
blocks from/ to the memory system. The DMA controller can accommo­
date up to eight disks. Initiating a new I/0 operation (including the seek 
and access) takes 1 ms, during which another 1/0 cannot be initiated by 
this controller (but outstanding operations can be handled). 

• I/O bus: The 1/0 bus is a synchronous bus with a sustainable band­
width of 10 MB/sec; each transfer is one word long. 

• Disks: The disks have a measured average seek plus rotational latency 
of 12 ms. The disks have a read/write bandwidth of 5 MB/sec, when 
they are transferring. 

Find the time required to read a 16-KB sector from a disk to memory, assum­
ing that this is the only activity on the bus. 

8.19 [15] <§§8.3-8.5> {Ex. 8.18} For the 1/0 system described in Exercise 8.18, 
find the maximum instantaneous bandwidth at which data can be transferred 
from disk to memory using as many disks as needed; how many disks and I/0 
buses (the minimum of each) do you need to achieve the bandwidth? Since you 
need only achieve this bandwidth for an instant, latencies need not be consid­
ered. 

8.20 [20] <§§8.3-8.5> {Ex. 8.18, 8.19} Assume all accesses in the 1/0 system 
described in Exercise 8.18 are 4-KB block reads. If there are a total of six 1/0 
buses, six DMA controllers, and 48 disks, find the maximum number of I/Os 
the system can sustain in steady state assuming that the reads are uniformly 
distributed to the disks. What is the sustained 1/0 bandwidth? 

8.21 [15] <§§8.3-8.5> {Ex. 8.18, 8.19, 8.20} With the organization in Exercise 
8.20, clearly it is possible to saturate the 1/0 buses because you have six of 
them at 10 MB/sec and 48 disks at 5 MB/sec. Compute the minimum block 
size (which should be a power of two) that will saturate the I/0 buses. For this 
block size, how many 1/0 operations per second can the system perform and 
what is the 1/0 bandwidth? · 

8.22 [15] <§§7.3, 7.5, 8.4, 8.5> Consider a write-back cache used for a proces­
sor with a bus and memory system as described in the example on page 665 
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(assume that writes require the same amount of time as reads). The following 
performance measurements have been made: 

• The cache miss rate is .05 misses per instruction for block sizes of 8 
words. 

• The cache miss rate is .03 misses per instruction for block sizes of 16 
words. 

• For either block size, 40% of the misses require a write-back operation, 
while the other 60% require only a read. 

Assuming that the processor is stalled for the duration of a miss (including 
the write-back time if a write-back is needed), find the number of cycles per 
instruction that are spent handling cache misses for each block size. (Hint: 
First compute the miss penalty.) 

8.23 [10] <§8.6> Write a paragraph identifying some of the simplifying as­
sumptions that were made in the analysis described in the example on page 
681. 

8.24 [2 days-1 week] <§8.5, Appendix A> This assignment uses SPIM to build 
a simple set of I/ 0 routines that will perform I/ 0 to the terminal using polling. 
First, you need to build two 1/0 routines, whose C declarations and descrip­
tions are shown below: 

void print (char *string); 

The procedure print takes a single argument, which is the address of a null­
terminated ASCII string. All of the characters of the string except the null­
terminating character should be output by print. It should print the charac­
ters one at a time, waiting for each character to be output before sending the 
next one. It should not return until all the characters have been output. The 
procedure print should work for strings of any length. This version of print 
should not use interrupts; just test the ready bit of the transmitter control reg­
ister continuously until the device is ready. 

char getchar(); 

The procedure getcha r takes no arguments and returns a character result. If 
getcha r waits until a character has been typed on the terminal, then it should 
return the character's value in $ vO (the result register). Do not use interrupts; 
simply test the ready bit continuously until a character has arrived. 

Write a main program that uses these two procedures to read a line from the 
terminal, which will be terminated by a carriage return. Then print the entire 
line to the terminal, including a carriage return and line feed. All your code 
should obey the conventions in Appendix A for procedure calling, stack 
usage, and register usage. 
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8.25 [3 days-1 week] <§8.5, Appendix A> Your assignment is to build an 
interrupt-driven mechanism for buffered I/O to and from the terminal. (This 
exercise handles output only; Exercise 8.26 handles input.) 

For the output-only portion, there are three parts to the program: 

1. A main program, which repeatedly calls procedure print to print the 
string"I know what I am doing." 

2. The procedure print, which stores the output characters in a buffer 
shared by it and the interrupt routine. 

3. The interrupt routine, which copies characters from the output buffer to 
the transmitter. 

You need to write all three routines. _The routine print and the interrupt rou­
tine should communicate by using a shared circular buffer with space for 32 
characters. The print procedure should take a string as argument and add 
the characters of the string to the output buffer one at a time, advancing as 
soon as there is space in the buffer. Keep in mind that pr i n t should not 
manipulate the terminal device registers directly, except to make sure that 
transmitter interrupts are enabled. Furthermore, pr i n t should contain addi­
tional code to deal with a full output buffer. The main program generates 
characters much faster than they can be output, so the buffer will quickly fill 
up. In a real system, if the output buffer fills up, the operating system will 
stop running the current user's process and switch to a different process. Your 
program doesn't need to support multiple users, so print can take a simpler 
approach: it just checks the buffer over and over again until eventually it isn't 
full anymore. The buffer is full when the next position in which print wants 
to insert a character has not been emptied by the interrupt routine. 

After writing print, write the interrupt routine called by pr i n t. Here is a list 
of things the interrupt routine must do: 

1. If the transmitter is not ready, then the interrupt routine should not do 
anything. (You shouldn't have received an interrupt in the first place if 
the transmitter isn't ready, but it's a good idea to check anyway.) 

2. If the output buffer isn't empty, copy the next character from the output 
buffer to the Transmitter data register and adjust the buffer pointers. 

3. If the output buffer is empty, turn off the interrupt-enable bit in the 
Transmitter control register. Otherwise, continuous interrupts will 
occur. Each time it deposits a character in the buffer, print will need to 
turn this bit on. 

4. Don't forget that you must save and restore any registers that you use in 
the interrupt routine, even temporary registers such as register $ t 0 and 
register $t 1. This is necessary because interrupts can occur at any time 
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and those registers may be in use at the time of the interrupt. You must 
save the registers on the stack. The only exceptions to this rule are regis­
ter~ $ k0 and $ k 1, which are reserved for use by interrupt routines; these 
registers need not be saved and restored. One of these registers can be 
used to return from the interrupt routine back to the code that was 
interrupted. 

Test your code by writing the main routine that calls print to print the string. 
It should output lines continuously, with each line containing the characters 
"I know what I am doing." 

8.26 [3 da~s-1 week] <§8.5, Appendix A> {Ex. 8.25} Extend the code you've 
already w~1tten ~o be able to handle interrupt-driven input. This program 
~hould do mput m the same way as the previous program did output: by us­
mg ~ buffer to communicate between the routine getcha rand the interrupt 
routme: Be aware that getcha r returns a character from the buffer, waiting in 
a loop if no characters are present. Similarly, the interrupt routine will add 
characters as they are typed, discarding characters if the buffer is full when 
they arrive. For this, an eight-entry buffer should work well. 

Use these two routines to read characters from the terminal and to output 
them to the terminal. Try typing characters rapidly to make sure your pro­
gram can handle the output or the input buffer filling up. For example, if you 
type two or three characters rapidly, the output buffer may fill up. However, 
no output should be lost: the print procedure will simply have to spin for a 
bit, during which time additional input characters will be buffered in the 
input buffer. If you type eight or ten characters very rapidly, then the input 
buffer will probably fill up. When this happens, your interrupt routine will 
have to discard characters: the program should continue to function, but 
there won't be any output of the discarded input characters you typed. Once 
~he output c~tches up with the input, your program should accept input again 
Just as 1f the mput buffer had never filled up. 

8.27 [1 day-1 week] <§§8.2-8.4> Take your favorite computer and write pro­
grams that achieve the following: 

1. Maximum bandwidth from and to a single disk 

2. Maximum bandwidth from and to multiple disks 

3. The maximum number of 512-byte transactions from and to a single 
disk 

4. The maximum number of 512-byte transactions from and to multiple disks 

What is the ~ercentage of the bandwidth that you achieve compared to what 
the I/O device manufacturer claims? Also, record processor utilization in 
each case for the programs that are running separately. Next, run all four 
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together and see what percentage of the maximum rates you can achieve. 
From this, can you determine where the system bottlenecks lie? 

In More Depth 

Ethernet 

An Ethernet is essentially a standard bus with multiple masters (each com­
puter can be a master) and a distributed arbitration scheme using collision 
detection. Most Ethernets are implemented using coaxial cable as the 
medium. When a particular node wants to use the bus, it first checks to see 
whether some other node is using the bus; if not, it places a carrier signal 
on the bus, and then proceeds to transmit. A complication can arise 
because the control is distributed and the devices may be physically far 
apart. As a result, two nodes can both check the Ethernet, find it idle, and 
begin transmitting at once; this is called a collision. A node detects collisions 
by listening to the network when transmitting to see whether a collision 
has occurred. A collision is detected when the node finds that what it hears 
on the Ethernet differs from what it transmitted. When collisions occur, 
both nodes stop transmitting and delay a random time interval before try­
ing to resume using the network-just as two polite people do when they 
both start talking at the same time. Consequently, the number of nodes on 
the network is limited-if too many collisions occur, the performance will 
be poor. In addition, constraints imposed by the requirement that collisions 
be detected by all nodes limit the length of the Ethernet and the number of 
connections to the network. Although this idea sounds like it might not 
work, it actually works amazingly well and has been central to the enor­
mous growth in the use of local area networks. 

8.28 [3 days-1 week] <§§8.3-8.4> Write a program that simulates an Ether­
net. Assume the following network system characteristics: 

• A transmission bandwidth of 10 Mbits/sec. 

• A latency for a signal to travel the entire length of the network and re­
turn to its origin of 15 µs. This is also the time required to detect a col­
lision. 

Make the following assumptions about the 100 hosts on the network: 

• The packet size is 1000 bytes. 

• Each host tries to send a packet after T seconds of computation, 
where Tis exponentially distributed with mean M. Note that the host 
begins its T seconds of computation only after successfully transmit­
ting a packet. 

• If a collision is detected, the host waits a random amount of time cho­
sen from an exponential distribution with a mean of 60 µs. 
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Simulate and plot the sustained bandwidth of the network compared to the 
mean time between transmission attempts (M). Also, plot the average wait 
time between trying to initiate a transmission and succeeding in initiating 
it (compared to M). 

Ethernets actually use an exponential back-off algorithm that increases the 
mean of the back-off time after successive collisions. Assume that the mean of 
the distribution from which the host chooses how much to delay is doubled on 
successive collisions. How well does this work? Is the bandwidth higher than 
when a single distribution is used? Can the initial mean be lower? 

In More Depth 

Disk Arrays 

As mentioned in section 8.9, one method of organizing disk systems is to 
use arrays of smaller disks that provide more bandwidth through parallel 
access. In most disk arrays, all the spindles are synchronized-sector O in 
every disk rotates under the head at the exact same time-and the arms on 
all the disks are always over the same track. Furthermore, the data are 
"striped" across the disks in the array, so that consecutive sectors can be 
read in parallel. Let's explore how such a system might work. 

8.29 [20] <§§8.3-8.5> Assume that we have the following two magnetic disk 
configurations: a single disk and an array of four disks. Each disk has 64 sec­
tors per track, each sector holds 1000 bytes, and the disk revolves at 7200 
RPM. Assume that the seek time is 6 ms. The delay of the disk controller is 1 
ms per transaction, either for a single disk or for the array. Assume that the 
performance of the 1/0 system is limited only by the disks and the controller. 
Remember that the consecutive sectors on the single disk system will be 
spread one sector per disk in the array. Compare the performance in I/ Os per 
second of these two disk organizations, assuming that the requests are ran­
dom reads, half of which are 4 KB and half of which are 16 KB of data from 
sequential sectors. 111e sectors may be read in any order; for simplicity, as­
sume that the rotational latency is one-half the revolution time for the single 
disk read of 16 sectors and the disk array read of 4 sectors. Challenge: Can 
you work out the actual average rotational latency in these two cases? 

8.30 [10] <§§8.3-8.5> !Ex. 8.29) Using the same disk systems as in Exercise 
8.29, with the same access patterns, determine the performance in mega­
bytes per second for each system. 
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Glossary 

absolute address A variable's or routine's actual 
address in memory. 

abstraction A model that renders lower-level details of 
computer systems temporarily invisible in order to 
facilitate design of sophisticated systems. 

activation record See procedure frame. 
address A value used to delineate the location of a 

specific data element within a memory array. 
address mapping See address translation. 
address translation Also called address mapping. The 

process by which a ,·irtual address is mappcJ tu an 
address used to access memory. 

addressing mode One of several addressing regimes 
delimited by their varied use of operands and/ or 
addresses. 

aliasing A situation in which the same object is accessed 
by two addresses; can occur in virtual memory when 
there are two virtual addresses for the same physical 
page. 

ALU See arithmetic logic unit (ALU). 
Amdahl's law A rule stating that the performance 

enhancement possible with a given improvement is 
limited by the amount that the improved feature is 
used. 

AND gate Hardware that performs the AND operation 
on input signals yielding a single signal result. 

AND operation An operation that leaves a 1 in the result 
only if both bits of the operands are 1. 

architecture See instruction set architecture. 
arithmetic logic unit (ALU) Hardware that performs 

arithmetic and logical operations. 
arithmetic mean The average of the execution times that 

is directly proportional to total execution time. 
assembler A program that translates a symbolic version 

of an instruction into the binary version. 
assembler directive An operation that tells the assem­

bler how to translate a program but does not produce 
machine instructions; always begins with a period. 

assembly language A symbolic language that can be 
translated into binary. 

asserted signal A signal that is (logically) true, or 1. 
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asynchronous bus A bus that uses a handshaking proto­
col for coordinating usage rather than a clock; can 
accommodate a wide variety of de,·ices of differing 
speeds. 

atomic operation An operation in which the processur 
can both read a location and write it in the same bus 
operation, preventing any other processor or 1/0 
device from reading or writing memory until it 
completes. 

backpatching A method for translating from ,io,,•mbi\ 
language to mc1dune instructions in winch the 
assembler builds d (possibly incomplete! bmc1ry 
representation of every instruction in one pass over 
a program and then returns to fill in previously 
undefined labels. 

backplane bus A bus that is designed to allow proces­
sors, memory, and l/0 devices to coexist on ,1 singll' 
bus. 

barrier synchronization A synchronization scheme in 
which processors wait at the barrier and do not 
proceed until every processor has reached it. 

base addressing Also called displacement addressing. 
An addressing regime in which the operand is at the 
memory location whose address is the sum of a 
register and an address in the instruction. 

basic block A sequence of instructions without branches 
(except possibly at the end) and without branch 
targets or branch labels (except possibly at the 
beginning). 

biased notation A notation that represents the most 
negative value by 00 ... 000two and the most positive 
value by 11 ... 11two, with 0 typically having the 
value 10 ... 00two, thereby biasing the number such 
that the number plus the bias has a nonnegative 
representation. 

binary bit See binary digit. 
binary digit Also called binary bit. One of the two 

numbers in base 2, 0 or 1, that are the components of 
information. 

block The minimum unit of information that can be 
either present or not present in the two-level 
hierarchy. 
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Booth's algorithm An algorithm based on the observa­
tion that the ability to both add and subtract allows 
for multiple ways to compute a product, so that by 
looking at multiple bits we potentially save arith­
metic operations. 

branch delay slot The slot directly after a delayed 
branch instruction, which in the MIPS architecture is 
filled by an instruction that does not affect the 
branch. 

branch hazard Also called control hazard. An occur­
rence in which the proper instruction cannot execute 
in the proper clock cycle because the instruction that 
was fetched is not the one that is needed; that is, the 
flow of instruction addresses is not what the pipeline 
expected. 

branch history table See branch prediction buffer. 
branch not taken A branch where the branch condition 

is false and the program counter (PC) becomes the 
address of the instruction that sequentially follows 
the branch. 

branch prediction A method of resolving a branch 
hazard that assumes a given outcome for the branch 
and proceeds from that assumption rather than 
waiting to ascertain the actual outcome. 

branch prediction buffer Also called branch history 
table. A small memory that is indexed by the lower 
portion of the address of the branch instruction and 
that contains one or more bits indicating whether the 
branch was recently taken or not. 

branch taken A branch where the branch condition is 
satisfied and the program counter (PC) becomes the 
branch target. All unconditional branches are taken 
branches. 

branch target address The address specified in a branch, 
which becomes the new program counter (PC) if the 
branch is taken. In the MIPS architecture the branch 
target is given by the sum of the offset field of the in­
struction and the address of the instruction following 
the branch. 

bubble See pipeline stall. 
bus In logic design, a collection of data lines that is 

treated together as a single logical signal; also, a 
shared collection of lines with multiple sources and 
uses. 

bus arbitration The process of deciding which bus 
master gets to use a bus next. 

bus master A unit on the bus that can initiate bus 
requests. 

bus request A signal on the bus requesting access to a 
bus. 

Glossary 

bus transaction A sequence of bus operations that 
includes a request and may include a response, either 
of which may carry data. A transaction is initiated by 
a single request and may take many individual bus 
operations. 

bypassing See forwarding. 
cache coherency Consistency in the value of data 

between the versions in the caches of several proces­
sors. 

cache memory A small, fast memory that acts as a buffer 
for a slower, larger memory. 

cache miss A request for data from the cache that cannot 
be filled because the data is not present in the cache. 

callee A procedure that executes a series of stored 
instructions based on parameters provided by the 
caller and then returns control to the caller. 

callee-saved register A register saved by the routine 
making a procedure call. 

caller The program that instigates a procedure and 
provides the necessary parameter values. 

caller-saved register A register saved by the routine 
being called. 

capacity miss A cache miss that occurs because the 
cache, even with full associativity, cannot contain all 
the block needed to satisfy the request. 

central processor unit (CPU) Also called processor. The 
active part of the computer, which contains the data­
path and control and which adds numbers, tests 
numbers, signals I/0 devices to activate, and so on. 

centralized, parallel arbitration A bus arbitration 
scheme that employs multiple request lines by which 
the devices independently request the bus and that 
uses a centralized arbiter to choose from the devices 
requesting bus access and to notify the selected 
device that it is now bus master. 

chip See integrated circuit. 
clock See clock cycle. 
clock cycle Also called tick, clock tick, clock period, 

clock, cycle. The time for one clock period, usually of 
the processor clock, which runs at a constant rate. 
The clock cycle is often used to measure the speed at 
which hardware can perform basic functions. 

clock cycles per instruction (CPI) Average number of 
clock cycles per instruction for a program or program 
fragment. 

clock period See clock cycle. 

Glossary 

clock rate The speed of the processor or system clock 
measured as the number of clock cycles per second 
and usually stated in megahertz or millions of clock 
cycles per second. The clock rate is the inverse of the 
clock period. Designers refer to the clock cycle time 
both as the duration of one clock period, measured as 
seconds per clock cycle (e.g., 2 ns) and as the clock 
rate, measured as clock cycles per second (e.g., 500 
MHz). 

clock skew The difference in absolute time between the 
times when two state elements see a clock edge. 

clock tick See clock cycle. 
clocking methodology The approach used to determine 

when data is valid and stable relative to the clock. 
cluster A set of computers connected over a local area 

network (LAN) that function as a single large multi­
processor. 

cold start miss See compulsory miss. 
collision miss See conflict miss. 
combinational logic A logic system whose blocks do not 

contain memory and hence compute the same output 
given the same input. 

commit unit The unit in a dym1mic or out-of-order 
execution pipeline that decides when it is safe to 
release the result of an operation to programmer­
visible registers and memory. 

compiler A program that translates high-level language 
statements into assembly language ,tdtements. 

compulsory miss Also called cold start miss. A cache 
miss caused by the first access to a block that has 
never been in the cache. 

computer generation A classification of computers often 
based on the implementation technology used in 
each generation, originally lasting eight tu ten years. 

conditional branch An instruction that requires the 
comparison of two ,·alues and that allow, fur d sub­
sequent transfer of control to a new address in the 
program based on the outcome of the comparison. 

conflict miss Also called collision miss. A cache miss 
that occurs in a set-associative or direct-mapped 
cache when multiple blocks compete for the same set 
and that are eliminated in a fully associative cache of 
the san1c size. 

context switch A ch,rnging of the internal state of the 
processor to allow a different process to use the pro­
cessor that inclm!es sa\·ing the state needed tu relurn 
to the currently executing prun"s-

control The component of the processor that commands 
the datapath, memory, and 1/0 devices according to 
the instructions of the program. 

control hazard See branch hazard. 
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control signal A signal used for multiplexor selection or 
for directing the operation of a functional unit;_con­
trasts with a data signal, which contains information 
that is operated on by a functional unit. 

control value See selector value. 
CPI See clock cycles per instruction (CPD. 
CPU See central processor unit (CPU). 
CPU execution time Also called CPU time. The actual 

time the CPU spends computing for a specific task. 
CPU time See CPU execution time. 
crossbar network A network that allows any node to 

communicate with any other node in one pass 
through the network. 

cycle See clock cycle. 
D flip-flop A flip-flop with one data input that stores the 

value of that input signal in the internal memorv 
when the clock edge occurs. , 

daisy chain arbitration A bus arbitration scheme in 
which the bus grant line is run through the devices 
from highest priority to lowest (the priorities are 
determined by the position on the bus) so that \\"hen 
the bus is requested the highest priori[,' de\icc secs 
the bus grant sign,il fir,t. 

data dependencies The need for specific dat,1 at a gin'n 
point in a pipeline. 

data hazard Also called pipeline dc1lc1 ha/,Hd. ;\n ,,c,ur­
rence in which a planned instruction c,mnot c'xe,·utc­
in the proper clock cycle becJusc datJ that is 1wecicd 
to execute the instruction 1s not yet avail,,blt>. 

data parallelism Parallelism achieved by having 
massive data. 

data segment The segment of ,1 Unix object or exccut,1hlc, 
file that contoins a binary representation uf the 
irnticilized data used by the program. 

data transfer instruction A command that mun,s cl,1t,1 
between memory ,md registers. 

datapath The component of the processor that performs 
arithmetic operations. 

datapath element A functional unit used to operate 
on or hold data within a processor. In the MIPS 
implementation the data path elements include the 
instruction and d,1ta memories, the rcg1skr tik, tlw 
anthmetic logic unit (ALL), and ,1ddcrs. 

deasserted signal A sign,11 that is (logicallvl t,1lsc', or ii. 
decoder A logic block th,1t h,1s ,rn 11-bit input ,rnd 21! ()llt· 

puts where only one output is ilsscrkd tur c•,ich input 
combmation. 

defect A microscopic flaw in a \\·,1fer or in pc1tlt'rni11g 
steps that can result in the t,1ilure ot the die co11t,11n­
ing that defect. 

delay See rotation latency. 
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delayed branch A type of branch where the instruction 
immediately following the branch is always exe­
cuted, independent of whether the branch condition 
is true or false. 

delayed load A software format that requires load 
instructions to be followed by an instruction 
independent of the load. 

die The individual rectangular sections that are cut from 
a wafer, more informally known as chips. 

die area The size of a die. 
direct-mapped cache A cache structure in which each 

memory location is mapped to exactly one location in 
the cache. 

direct memory access (OMA) A mechanism that pro­
vides a device controller the ability to transfer data 
directly to or from the memory without involving the 
processor. 

directory A repository for information on the state of 
every block in main memory, including which caches 
have copies of the block, whether it is dirty, and so 
on. 

dispatch An operation in a microprogrammed control 
unit in which the next microinstruction is selected on 
the basis of one or more fields of a macroinstruction, 
usually by creating a table containing the addresses 
of the target microinstructions and indexing the table 
using a field of the macroinstruction. The dispatch 
tables are typically implemented in ROM or pro­
grammable logic array (PLA). The term dispatch is 
also used in dynamically scheduled processors to 
refer to the process of sending an instruction to a 
queue. 

displacement addressing See base addressing. 
distributed arbitration by collision detection A bus 

arbitration scheme that allows each device to inde­
pendently request the bus and that uses a scheme for 
retrying the arbitration when multiple simultaneous 
requests occur. 

distributed arbitration by self-selection A bus arbitra­
tion scheme that gives the devices requesting the bus 
the ability to determine which device gets the bus by 
having each requester detect whether it should 
receive the bus allocation. 

distributed memory Physical memory that is divided 
into modules, with some placed near each processor 
in a multiprocessor. 

distributed shared memory (DSM) A memory scheme 
that uses addresses to access remote data when 
demanded rather than retrieving the data in case it 
might be used. 

divisor A number that the dividend is divided by; 
produces the dividend when multiplied by the 
quotient and added to the remainder. 

Glossary 

OMA See direct memory access (DMA). 
don't-care term An element of a logical function in 

which the output does not depend on the values of 
all the inputs. Don't-care terms may be specified in 
different ways. 

double precision A floating-point value represented in 
two 32-bit words. 

DRAM See dynamic random access memory (DRAM). 
DSM See distributed shared memory (DSM). 
dynamic pipeline scheduling A form of scheduling that 

goes past stalls in order to find later instructions to 
execute while waiting for the stalls to be resolved. 

dynamic random access memory (DRAM) Memory 
that contains the instructions and data of a program 
while it is running, which allows faster access than 
accessing a magnetic disk. 

edge-triggered clocking A clocking scheme in which all 
state changes occur on a clock edge. 

Ethernet A computer network whose length is limited to 
about a kilometer. Originally capable of transferring 
up to 10 million bits per second, newer versions can 
run up to 100 million bits per second and even 1000 
million bits per second. It treats the wire like a bus 
with multiple masters and uses collision detection 
and a back-off scheme for handling simultaneous 
accesses. 

exception Also called interrupt. An unscheduled event 
that disrupts program execution; used to detect over­
flow. 

exception enable Also called interrupt enable. A signal 
or action that controls whether the process responds 
to an exception or not; necessary for preventing the 
occurrence of exceptions during intervals before the 
processor has safely saved the state needed to restart. 

exclusive OR gate Hardware that performs the exclu­
sive OR operation on input signals yielding a single 
signal result exclusive OR operation; also, an opera­
tion that leaves a 1 in the result only if two bits of the 
operands are unequal. 

executable file A functional program in the format of an 
object file that contains no unresolved references, 
relocation information, symbol table, or debugging 
information. 

execution time See response time. 
exponent In the numerical representation system of 

floating-point arithmetic, the value that is placed in 
the exponent field. 

external label Also called global label. A label referring 
to an object that can be referenced from files other 
than the one in which it is defined. -,-

Glossary 

fairness A property of an allocation scheme, such as a 
bus arbitration protocol, that ensures that no device, 
even one with low priority, ever be completely 
locked out from the bus. 

false sharing A sharing situation in which two unre­
lated shared variables are located in the same cache 
block and the full block is exchanged between 
processors even though the processors are accessing 
different variables. 

finite state machine A sequential logic function con­
sisting of a set of inputs and outputs, a next-state 
function that maps the current state and the inputs to 
a new state, and an output function that maps the 
current state and possibly the inputs to a set of assert­
ed outputs. 

firmware Microcode implemented in a memory struc­
ture, typically ROM or RAM. 

flip-flop A memory element for which the output is 
equal to the value of the stored state inside the 
element and for which the internal state is changed 
only on a clock edge. 

floating point Computer arithmetic that represents 
numbers in which the binary point is not fixed. 

floppy disk A portable form of secondary memory 
composed of a rotating mylar platter coated with a 
magnetic recording material. 

flush (instructions) To discard instructions in a pipeline, 
usually due to an unexpected event. 

formal parameter A variable that is the argument to a 
procedure or macro; replaced by that argument once 
the macro is expanded. 

forward reference A label that is used before it is 
defined. 

forwarding Also called bypassing. A method of resolv­
ing a data hazard by retrieving the missing data 
element from internal buffers rather than waiting for 
it to arrive from programmer-visible registers or 
lll<=mury. 

frame pointer A value denoting the location of the saved 
registers and local variables for a given procedure. 

fully associative cache A cache structure in which a 
block can be placed in any location in the cache. 

fully connected network A netwurk lhat connects 
processor-memory nodes by supplying a dedicated 
communication link between every node. 

gate A device that implements basic logic functions, 
such as AND or OK 

general-purpose electronic computer A computer that 
has not been constructed fur une specitic !unction. 
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general-purpose register (GPR) A register that can be 
used for addresses or for data with virtually any 
instruction. 

11 

11 IT Execution time ratio; 
geometric mean ; = 1 A formula 

useful for summarizing execution times that have 
been normalized. 

gigabyte Traditionally 1,073,741,824 (230) bytes, 
although some communications and secondary 
storage systems have redefined it to mean 
1,000,000,000 (109) bytes. 

global label See external label. 
global miss rate The fraction of references that miss in 

all levels of a multilevel cache. 
global pointer The register that is reserved for static 

data. 
GPR See general-purpose register (GPR). 
guard The first of two extra bits kept on the right during 

intermediate calculations of floating-point numbers; 
used to improve rounding accuracy. 

handshaking protocol A series of steps used to coordi­
nate asynchronous bus transfers in which the sender 
and receiver proceed to the next step only when both 
parties agree that the current step has been com­
pleted. 

hard disk A form of secondary memory composed of 
rotating metal platters coated with a magnetic 
recording material. 

hardwired control An implement,1tion of finite st,1te 
machine control typically using progr,1m111.1ble logic 
arrays (PLAs) or collections of PLAs and random 
logic. 

HM= 11 

iRa~e, 
harmonic mean of rates , = 1 A .sumniM1· 

that tracks execution time when the data is gin·n ,1, 
rates rather than as a times. 

hexadecimal Numbers in base 16. 
high-level programming language A portable language 

such as C, Fortran, or J,1va composed of Fn,~lish 
words and algebraic notation that c.rn b,, tr,rn,Lilc<d 
by a compiler into assemblv language. 

hit rate The fraction of memory accessl's tound 111 ,1 
cache. 

hit time The time required to ,Kcess a il'vel of the 
memory hierarchy, including the time needl'd to 
determine whether the ,iccess is a hit or ,1 miss 
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hold time The minimum time during which the input 
must be valid after the clock edge. 

horizontal microcode Use of microinstructions contain­
ing many fields that can control the data path units in 
parallel and require little additional decoding. The 
use of many fields makes the microinstructions 
wider or more horizontal. 

immediate addressing An addressing regime in which 
the operand is a constant within the instruction itself. 

implementation Hardware that obeys the architecture 
abstraction. 

imprecise exception See imprecise interrupt. 
imprecise interrupt Also called imprecise exception. 

Interrupts or exceptions in pipelined computers that 
are not associated with the exact instruction that was 
the cause of the interrupt or exception. 

in-order commit A commit in which the results of pipe­
lined execution are written to the programmer­
visible state in the same order that instructions are 
fetched. 

in-order execution A conventional pipelined execution, 
in which all following instructions must wait when 
an instruction is blocked from executing. 

input device A mechanism through which the computer 
is fed information, such as the keyboard or mouse. 

instruction format A form of representation of an in­
struction composed of fields of binary numbers. 

instruction latency The inherent execution time for an 
instruction. 

instruction mix A measure of the dynamic frequency of 
instructions across one or many programs. 

instruction set The vocabulary of commands under­
stood by a given architecture. 

instruction set architecture Also called architecture. An 
abstract interface between the hardware and the 
lowest level software of a machine that encompasses 
all the information necessary to write a machine 
language program that will run correctly, including 
instructions, registers, memory size, and so on. 

integrated circuit Also called chip. A device combining 
dozens to millions of transistors. 

interrupt An exception that comes from outside of the 
processor. (Some architectures use the term interrupt 
for all exceptions.) 

interrupt-driven 1/0 An I/0 scheme that employs inter­
rupts to indicate to the processor that an I/0 device 
needs attention. 

interrupt enable See exception enable. 
interrupt handler A piece of code that is run as a result 

of an exception or an interrupt. 
1/0 instruction A dedicated instruction that is used to 

give a command to an I/0 device and that specifies 
both the device number and the command word (or 
the location of the command word in memory). 

Glossary 

jump address table Also called jump table. A table of 
addresses of alternative instruction sequences. 

jump-and-link instruction An instruction that jumps to 
an address and simultaneously saves the address of 
the following instruction in a register($ ra in MIPS). 

jump table See jump address table. 
kernel benchmark A small, time-intensive code 

fragment from a real program that is used for per­
formance evaluation. 

kernel mode Also called supervisor mode. A mode 
indicating that a running process is an operating 
system process. 

kilobyte 1024 (210) bytes. 
LAN See local area network (LAN). 
latch A memory element in which the output is equal to 

the value of the stored state inside the element and 
the state is changed whenever the appropriate inputs 
change and the clock is asserted. 

latency (pipeline) The number of stages in a pipeline or 
the number of stages between two instructions 
during execution. 

least recently used (LRU) A replacement scheme in 
which the block replaced is the one that has been 
unused for the longest time. 

least significant bit The rightmost bit in a MIPS word. 
level-sensitive clocking A timing methodology in 

which state changes occur at either high or low clock 
levels but are not instantaneous, as such changes are 
in edge-triggered designs. 

link editor See linker. 
linker Also called link editor. A systems program that 

combines independently assembled machine 
language programs and resolves all undefined labels 
into an executable file. 

load-store machine Also called register-register 
machine. An instruction set architecture in which all 
operations are between registers and data memory 
may only be accessed via loads or stores. 

load-use data hazard A specific form of data hazard in 
which the data requested by a load instruction has 
not yet become available when it is requested. 

loader A systems program that places an object program 
in main memory so that it is ready to execute. 

local area network (LAN) A network designed to carry 
data within a geographically confined area, typically 
within a single building. 

local label A label referring to an object that can be used 
only within the file in which it is defined. 

local miss rate The fraction of references to one level of 
a cache that miss; used in multilevel hierarchies. 

lock A synchronization device that allows access to data 
to only one processor at a time. 

Glossary 

logic minimization A technique for reducing the 
number of gates needed to implement a set of 
logic functions. 

loop unrolling A technique to get more performance 
from loops that access arrays, in which multiple 
copies of the loop body are made and instructions 
from different iterations are scheduled together. 

LRU See least recently used (LRU). 
machine language Binary representation used for com­

munication within a computer system. 
macro A pattern-matching and replacement facility that 

provides a simple mechanism to name a frequently 
used sequence of instructions. 

macroinstruction An instruction in the instruction set 
architecture being implemented, used to distinguish 
the instructions visible to the programmer from the 
microinstructions of a microprogrammed control 
unit. 

magnetic disk A form of nonvolatile secondary memory 
composed of rotating platters coated with a magnetic 
recording material. 

main memory See primary memory. 
main-memory coherence Consistency in the value 

of data in memory in a network-connected multi­
processor. 

massively parallel A computer with at least 100 
processors. 

maximally encoded Use of encoded forms of control 
that require multiple levels of decode; vertical micro­
code is maximally encoded. 

megabyte Traditionally 1,048,576 (220) bytes, although 
some communications and secondary storage sys­
tems have redefined it to mean 1,000,000 (106) bytes. 

megaFL0PS Sec million floating-point operations per 
second (MFLOPS). 

memory The storage area in which programs are kept 
when they are running and that contains the data 
needed by the runnmg programs. 

memory hierarchy A structure that uses multiple levels 
of memories; as the distance from the CPU increases 
the size of the memories and the access time both ' 
increase. 

memory-mapped 1/0 An I/0 ,cheme m which purtions 
of address space are assigned to T/0 devices and 
reads and writes to those addresses are interpreted as 
commands lo the I/0 device. 

MESI cache coherency protocol A write-invalidate pro­
tocol whose name is an acronym for the four states ot 
the protocol: Modified, Exclusive, Shared, Invalid. 

message passing CcJ1nmunicc1ling between multiple 
proces,ors by explicitly sl'nding ,rnd rc,cei, ing 
inform,1liun. 
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metastability A situation that occurs if a signal is sam­
pled when it is not stable for the required set-up and 
hold times, possibly causing the sampled value to fall 
in the indeterminate region between a high and low 
value. 

MFL0PS See million floating-point operations per 
second (MFLOPS). 

microcode The set of microinstructions that control a 
processor. 

microcode assembler A program that translates micro­
programs into microinstructions that can be imple­
mented in a ROM or PLA. 

microinstruction A representation of control using low­
level instructions, each of which asserts a set of con­
trol signals that are active on a given clock cycle as 
well as specifies what microinstruction to execute 
next. 

microprogram A symbolic representation of control in 
the form of instructions, called microinstructions, 
that are executed on a simple micromachine. 

microprogrammed control A method of specifying 
control that uses microcode rilther than a finite state 
representation. 

million floating-point operations per second 
(MFL0PS) Also called megaFLOPS. A measure­
ment of program execution speed based on the num­
ber of millions of floating-point operations executed 
per second. MFLOPS is computed as the number oi 
floating-point operations in ,1 progrnm di\'ided b\· 
the product of the execution time and 106 

million instructions per second (MIPS) A nwasun•­
rnent of program execution speed Lx1sed on tlw num­
ber of millions of instructions. MIPS is computed as 
the instruction count divided by the product of the 
execution time and I (i 

MIMD See multiple instruction streams, multi pk ,ic1t,1 
stneams ("·1L'-.'1Dl. 

minimally encoded Use ot an uncncodcd control form,1 t 
that can directly control a datapath; horizontal micro­
code is minimally encoded. 

minterms Also called product terms. A set of logic 
inputs joined by conjunction (A1\JO operation,); llw 

pruduct terms torm the iirst logic st,1gc of tlw prtl­
gr,1mmable logic Mr,1\' (PTA) 

MIPS See million instructions per second (\111'5) 

miss penalty The time required to fetch ,1 block into,; 
level ot the memory hicrarchv from the lo\\'er lc·\·cl, 
including the time to access the block, transmit it 
from une level to the other, and insert it in tlw k\"l·l 
th,1t e,pc•ri,•1;ccd tlw 1111ss 

miss rate r!w traction of mernury accesses not found in 
i1 lc\·el of the mc•nwn· hier,;rchy 
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most significant bit The leftmost bit in a MIPS word. 
motherboard A plastic board containing packages of 

integrated circuits or chips, including processor, 
cache, memory, and connectors for I/O devices such 
as networks and disks. 

multicomputer Parallel processors with multiple 
private addresses. 

multicycle implementation Also called multiple clock 
cycle implementation. An implementation in which 
an instruction is executed in multiple clock cycles. 

multilevel cache A memory hierarchy with multiple 
levels of caches, rather than just a cache and main 
memory. 

multiple clock cycle implementation See multicycle 
implementation. 

multiple-instruction issue A procedure in which the 
instruction fetch unit can send multiple instructions 
to the next pipeline stage in a single clock cycle. 

multiple instruction streams, multiple data streams 
(MIMD) A computer classification in Flynn's tax­
onomy referring to computers that use multiple 
instruction streams and multiple data streams. 

multiprocessor Parallel processors with a single shared 
address. 

multistage network A network that supplies a small 
switch at each node. 

NANO gate An inverted AND gate. 
network bandwidth Informally, the peak transfer rate of 

a network; can refer to the speed of a single link or the 
collective transfer rate of all links in the network. 

next-state counter A counter that supplies the sequen-
tial next state. 

next-state function A combinational function that, 
given the inputs and the current state, determines the 
next state of a finite state machine. 

next-state output An output of the combinational logic 
that specifies the next-state number. 

nonblocking cache A cache that allows the processor to 
make references to the cache while the cache is 
handling an earlier miss. 

nonuniform memory access (NUMA) A type of single­
address space multiprocessor in which some mem­
ory accesses are faster than others depending which 
processor asks for which word. 

nonvolatile memory A form of memory that retains 
data even in the absence of a power source and that 
is used to store programs between runs. Magnetic 
disk is nonvolatile and DRAM is not. 

nop An instruction that does no operation to change 
state. 

Glossary 

NOR gate An inverted OR gate. 
normalized A number in floating-point notation that 

has no leading Os. 
NUMA See nonuniform memory access (NUMA). 
object program A combination of machine language 

instructions, data, and information needed to place 
them properly in memory. 

opcode The field that denotes the operation and format 
of an instruction. 

operating system Supervising program that manages 
the resources of a computer for the benefit of the 
programs that run on that machine. 

out-of-order commit A commit in which the results 
of pipelined execution need not be written to the 
programmer visible state in the same order that 
instructions are fetched. 

out-of-order execution A situation in pipelined execu­
tion when an instruction blocked from executing 
does not cause the following instructions to wait. 

output device A mechanism that conveys the result of a 
computation to the user. 

overflow (floating-point) A situation in which a positive 
exponent becomes too large to fit in the exponent 
field. 

page fault An event that occurs when an accessed page 
is not present in main memory. 

page mode A mechanism in DRAM that provides the 
ability to access multiple bits of a row by changing 
the column address only and, hence, is faster than a 
normal access cycle that changes row and column 
addresses. 

page table The table containing the virtual to physical 
address translations in a virtual memory system. The 
table, which is stored in memory, is typically indexed 
by the virtual page number; each entry in the table 
contains the physical page number for that virtual 
page if the page is currently in memory. 

parallel processing program A single program that runs 
on multiple processors simultaneously. 

PC See program counter (PC). 
PC-relative addressing An addressing regime in which 

the address is the sum of the program counter (PC) 
and a constant in the instruction. 

personal computer A general-purpose computer 
designed to be manufactured in high volume and at 
a cost affordable enough to allow for use in the home. 

physical address An address in main memory. 
physically addressed cache A cache that is addressed by 

a physical address. 
pipeline data hazard See data hazard. 

Glossary 

pipeline stall Also called bubble. A stall initiated in 
order to resolve a hazard. 

pipelining An implementation technique in which mul­
tiple instructions are overlapped in execution, much 
like to an assembly line. 

pipelining stage A step in executing an instruction that 
occurs simultaneously with other steps in other 
instructions and typically lasts one clock cycle. 

pixel The smallest individual picture element. Screen 
are composed of hundreds of thousands to millions 
of pixels, organized in a matrix. 

PLA See programmable logic array (PLA). 
polling The process of periodically checking the status 

of an I/O device to determine the need to service the 
device. 

precise exception See precise interrupt. 
precise interrupt Also called precise exception. An inter­

rupt or exception that is always associated with the 
correct instruction in pipelined computers. 

prefetching A technique in which data blocks needed in 
the future are brought into the cache early by the use 
of special instructions that specify the address of the 
block. 

primary memory Also called main memory. Volatile 
memory used to hold programs while they are 
running; typically consists of DRAM in today's 
computers. 

procedure A stored subroutine that performs a specific 
task based on the parameters with which it is 
provided. 

procedure call convention See register-use convention. 
procedure call frame A block of memory that is used to 

hold values passed to a procedure as arguments, to 
save registers that a procedure may modify but that 
the procedure's caller does not want changed, and to 
provide space for variables local to a procedure. 

procedure frame Also called activation record. The 
segment of the stack containing a procedure's saved 
registers and local variables. 

processor-memory bus A bus that connects processor 
and memory and that is short, generally high speed, 
and matched to the memory system so as to maxi­
mize memory-processor bandwidth. 

product terms See minterms. 
program counter (PC) The register containing the 

address of the instruction in the program being 
executed 

programmable logic array (PLA) A structured-logic 
element composed of a set of inputs and correspond­
ing input complements and two stages of logic: the 
first generating product terms of the inputs and input 
complements and the second generating sum terms 
of the product terms. Hence, PLAs implement logic 
functions as a sum of products. 
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programmable ROM (PROM) A form of read-only 
memory that can be programmed when a designer 
knows its contents. 

PROM See programmable ROM (PROM). 
propagation time The time required for an input to a 

flip-flop to propagate to the outputs of the flip-flop. 
protection A set of mechanisms for ensuring that multi­

ple processes sharing the processor, memory, or l/0 
devices cannot interfere, intentionally or uninten­
tionally, with one another by reading or writing each 
other's data. These mechanisms also isolate the oper­
ating system from a user process. 

pseudoinstruction A common variation of assembly 
language instructions often treated as if it were an 
instruction in its own right. 

quotient The primary result of a division; a number that 
when multiplied by the divisor and added to the 
remainder produces the dividend. 

RAID See redundant arrays of inexpensive disks 
(RAID). 

raster cathode ray tube (CRT) display A display, such as 
a television set, that scans an image one line at a time, 
30 to 75 times per second. 

read-only memory (ROM) A memory whose contents 
are designated at creation time, after which the con­
tents can only be read. ROM is used as structured 
logic to implement a set of logic functions by using 
the terms in the logic functions as address inputs and 
the outputs as bits in each word of the memory. 

receive message routine A routine used by a processor 
in machines with private memories to accept a mes­
sage from another processor. 

recursive procedures Procedures that call themselves 
either directly or indirectly through a chain of calls. 

redundant arrays of inexpensive disks (RAID) An 
organization of disks that uses an array of small and 
inexpensive disks so as to increase both performance 
and reliability. 

reference bit Also called use bit. A field that is set when­
ever a page is accessed and that is used to implement 
LRU or other replacement schemes. 

register addressing A mode of addressing in which the 
operand is a register. 

register file A state element that consists of a set of 
registers that can be read and written by supplying a 
register number to be accessed. 

register-register machine See load-store machine. 
register use See register-use convention. 
register-use convention Also called procedure call 

convention. A software protocol governing the use of 
registers by procedures. 

relocation information The segment of a Unix object file 
that identifies instructions and data words that 
depend on absolute addresses. 
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remainder The secondary result of a division; a number 
that when added to the product of the quotient and 
the divisor produces the dividend. 

rename buffer Also called rename register. An extra 
internal register within processors that is used to 
hold results while waiting for the commit unit to 
commit the result to one of the real registers. 

rename register See rename buffer. 
reorder buffer A register that holds instructions in a 

dynamic pipelined machine whose results have not 
yet been committed to programmer-visible registers 
or memory; machines with out-of-order execution 
and in-order commit will retire an instruction from 
the reorder buffer only when the instruction has 
finished execution and all instructions ahead of it 
have been completed. 

reservation station A buffer within a functional unit that 
holds the operands and the operation. 

response time Also called execution time. The total time 
required for the computer to complete a task, 
including disk accesses, memory accesses, I/O 
activities, operating system overhead, CPU 
execution time, and so on. 

restartable instruction An instruction that can resume 
execution after an exception is resolved without the 
exception's affecting the result of the instruction. 

return address A link to the calling site that allows a pro­
cedure to return to the proper address; in MIPS it is 
stored in register$ ra. 

ROM See read-only memory (ROM). 
rotation latency Also called delay. The time required for 

the desired sector of a disk to rotate under the 
read/write head; usually assumed to be half the 
rotation time. 

round Method to make the intermediate floating-point 
result fit the floating-point format; the goal is typi­
cally to find the nearest number that can be repre­
sented in the format. 

scientific notation A notation that renders numbers 
with a single digit to the left of the decimal point. 

SCSI See small computer systems interface (SCSI). 
secondary memory Nonvolatile memory used to store 

programs and data between runs; typically consists 
of magnetic disks in today's computers. 

sector One of the segments that make up a track on a 
magnetic disk; a sector is the smallest amount of 
information that is read or written on a disk. 

seek The process of positioning a read/write head over 
the proper track on a disk. 

segmentation A variable-size address mapping scheme 
in which an address consists of two parts: a segment 
number, which is mapped to a physical address, and 
a segment offset. 

Glossary 

selector value Also called control value. The control 
signal that is used to select one of the input values of 
a multiplexor as the output of the multiplexor. 

semiconductor A substance that does not conduct 
electricity well. 

send message routine A routine used by a processor in 
machines with private memories to pass to another 
processor. 

separate compilation Splitting a program across many 
files, each of which can be compiled without knowl­
edge of what is in the other files. 

sequential access memory Memory whose access time 
differs depending on the location of the data being 
retrieved because data is stored sequentially so that 
all data must be passed over to access the final bit of 
information; contrasts with random access memory, 
in which any bit may be accessed in the same time. 

sequential logic A group of logic elements that contain 
memory and hence whose value depends on the in­
puts as well as the current contents of the memory. 

set-associative cache A cache that has a fixed number of 
locations (at least two) where each block can be 
placed. 

set-up time The minimum time that the input to a 
memory device must be valid before the clock edge. 

shared memory A memory for a parallel processor with 
a single address space, implying implicit communi­
cation with loads and stores. 

sign-extend To increase the size of a data item by repli­
cating the high-order sign bit of the original data item 
in the high-order bits of the larger, destination data 
item. 

significand In the numerical representation system of 
floating-point arithmetic, the value in that is placed 
in the significand field. 

silicon A substance found in sand that does not conduct 
electricity well. 

silicon crystal ingot A rod composed of silicon crystal 
that is between 6 and 12 inches in diameter and about 
12 to 24 inches long. 

SIMD See single instruction stream, multiple data 
streams (SIMD). 

SIMM Sec single in-line memory module (SIMM). 
single clock cycle implementation See single-cycle 

implementation. . 
single-cycle implementation Also called single clock 

cycle implementation. An implementation in which 
an instruction is executed in one clock cycle. 

single in-line memory module (SIMM) A small printed 
circuit board containing 4 to 24 DRAM integrated 
circuits. Today's computers use SIMMs to allow main 
memory to be upgraded and expanded over time by 
the customer. 

J_ 

Glossary 

single instruction stream, multiple data streams 
(SIMD) A computer classification in Flynn's taxon­
omy that refers to computers with single instruction 
streams but multiple data streams and in which a 
single instruction operates on many data elements at 
the same time. 

single instruction stream, single data stream (SISD) 
A computer classification in Flynn's taxonomy that 
refers to computers with single instruction streams 
and single data streams. (SISD is the conventional 
processor covered in the first eight chapters.) 

single precision A floating-point value represented in a 
single 32-bit word. 

SISD See single instruction stream, single data stream 
(SISD). 

slave A device that responds to read and write requests 
but does not generate them and hence cannot be a 
bus master. 

small computer systems interface (SCSI) A bus used as 
a standard for I/O devices. 

SMP See symmetric multiprocessor (SMP). 
snooping cache coherency A method for maintaining 

cache coherency in which all cache controllers moni­
tor or snoop on the bus to determine whether or not 
they have a copy of the desired block. 

source language The high-level language in which a 
program is originally written. 

spatial locality The locality principle stating that if a 
data location is referenced, data locations with 
nearby addresses will tend to be referenced soon. 

SPEC benchmark See system performance evaluation 
cooperative (SPEC) benchmark. 

speculative execution A pipelining technique that com­
bines dynamic scheduling with branch prediction. 

speedup The measure of how a machine performs 
relative to how it previously performed before an 
enhancement was implemented. Speedup is equal to 
the ratio of execution time before the enhancement to 
execution time after the enhancement. 

split cache A scheme in which a level of the memory 
hierarchy is composed of two independent caches 
that operate in parallel with each other with one 
handling instructions and one handling data. 

split transaction protocol A protocol in which the bus is 
released during a bus transaction while the requester 
is waiting for the data to be transmitted, which frees 

the bus for access by another requester. 
SRAM Sec static random access memory (SRAM). 
stack A data structure for spilling registers organiLed as 

a last-in-first-out queue. 
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stack frame See procedure call frame. 
stack pointer A value denoting the most recently allo­

cated address in a stack that shows where registers 
should be spilled or where old register values can be 
found. 

stack segment The portion of memory used by a 
program to hold procedure call frames. 

state assignment A control optimization that works by 
attempting to choose the state numbers such that the 
resulting logic equations contain more redundancy 
and can thus be simplified. 

state element A memory element. 
state input An input to the combinational logic that 

specifies the current state. 
static data The portion of memory that contains data 

whose size is known to the compiler and whose life­
time is the program's entire execution. 

static random access memory (SRAM) A memory 
where data is stored statically (as in flip-flops) rather 
than dynamically (as in DRAM). SRAMs are faster 
than DRAMs, but less dense and more expensive per 
bit. 

sticky bit A bit used in rounding in addition to guard 
and round that is set whenever there are nonzero bits 
to the right of the round bit. 

stored-program computer A computer whose instruc­
tions are represented as numbers, allowing the same 
memory to contain instructions and data and thus 
allowing programs to produce programs. 

stored-program concept The idea that instructions and 
data of many types can be stored in memory as num­
bers, leading to the stored program computer. 

structural hazard An occurrence in which a planned 
instruction cannot execute in the proper clock cycle 
because the hardware cannot support the combina­
tion of instructions that are set to execute in the given 
clock cycle. 

subroutine library A collection of commonly used 
programs. 

sum of products A form of logical representation that 
employs a logical sum (OR) of products (terms joined 
using thl' AND oper,1lor). 

supercomputer The f,istest and most expensiH' com­
puter, typically used for scientific rnmput,1tion. 
Supercomputers generally cost lwtwec'n SI ,ind 
$JO millil'n. 

superpipelining A technique that increases processor 
speed by lengthening pipelines. 

superscalar An advanced pipelining technique that en­
ables the processor to execute more than one instruc­
tion per clock cycle. 
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superscalar pipelining A technique that replicates inter­
nal components of the computer in order to launch 
and execute multiple instructions in every pipeline 

stage. 
supervisor mode See kernel mode. 
symbol table A table that matches names of labels to the 

addresses of the memory words that instructions 

occupy. 
symmetric multiprocessor (SMP) Also called UMA 

machine. A multiprocessor in which accesses to main 
memory take the same amount of time no matter 
which processor requests the access and no matter 
which word is asked. 

synchronization The process of coordinating the behav­
ior of two or more processes, which may be running 
on different processors. 

synchronizer failure A situation in which a flip-flop 
enters a metastable state and where some logic 
blocks reading the output of the flip-flop see a O while 
others see a 1. 

synchronous bus A bus that includes a clock in the con­
trol lines and a fixed protocol for communicating that 
is relative to the clock. 

synchronous system A memory system that employs 
clocks and where data signals are read only when the 
clock indicates that the signal values are stable. 

system call A special instruction that transfers control 
from user mode to a dedicated location in supervisor 
code space, invoking the exception mechanism in the 
process. 

system CPU time The CPU time spent in the operating 
system performing tasks on behalf of the program. 

system performance evaluation cooperative (SPEC) 
benchmark A set of standard CPU-intensive, 
integer and floating point benchmarks based on real 
programs. 

systems software Software that provides services that 
are commonly useful, including operating systems, 
compilers, and assemblers. 

tag A field in a table used for a memory hierarchy that 
contains the address information required to identify 
whether the associated block in the hierarchy corre­
sponds to a requested word. 

temporal locality The principle stating that if a data 
location is referenced then it will tend to be refer­
enced again soon. 

terabyte Originally l,099,511,627,776 (240
) bytes, 

although some communications and secondary 
storage systems have redefined it to mean 
1,000,000,000,000 (1012) bytes. 

Glossary 

text segment The segment of a Unix object file that 
contains the machine language code for routines in 
the source file. 

three Cs model A cache model in which all cache misses 
are classified into one of three categories: compulsory 
misses, capacity misses, and conflict misses. 

tick See clock cycle. 
TLB See translation-lookaside buffer (TLB). 
track One of 1000 to 5000 concentric circles that makes 

up the surface of a magnetic disk. 
transaction processing A type of application that 

involves handling small short operations (called 
transactions) that typically require both I/O and 
computation. Transaction processing applications 
typically have both response time requirements and 
a performance measurement based on the through­
put of transactions. 

transfer time The time required to transfer a block of 
bits, typically a sector, during disk access. 

transistor An on/ off switch controlled by electricity. 
translation-lookaside buffer (TLB) A cache that keeps 

track of recently used address mappings to avoid an 
access to the page table. 

ulp See units in the last place (ulp). 
UMA See uniform memory access (UMA). 
UMA machine See symmetric multiprocessor (SMP). 
underflow (floating-point) A situation in which a nega-

tive exponent becomes too large to fit in the exponent 
field. 

uniform memory access (UMA) Memory access that 
takes the same amount of time no matter which pro­
cessor requests the access and no matter which word 
is asked for. 

units in the last place (ulp) The number of bits in error 
in the least significant bits of the significand between 
the actual number and the number that can be prep­
resented. 

unresolved reference A reference that requires more 
information from an outside source in order to be 
complete. 

use bit See reference bit. 
user CPU time The CPU time spent in a program itself. 
vacuum tube An electronic component, predecessor of 

the transistor, that consists of a hollow glass tube 
about 5 to 10 cm long from which as much air has 
been removed as possible. 

valid bit A field in the tables of a memory hierarchy that 
indicates that the associated block in the hierarchy 
contains valid data. 
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Glossary 

vector processor An architecture and compiler model 
that was popularized by supercomputers in which 
high-level operations work on linear arrays of 
numbers. 

vector supercomputer A supercomputer whose instruc­
tions operate on vectors of numbers, typically 64 
floating-point numbers at a time. 

vectored interrupt An interrupt for which the address to 
which control is transferred is determined by the 
cause of the exception. 

vertical microcode Use of microinstructions containing 
many fewer fields that require additional decoding 
before being used to control the datapath units. The 
use of fewer fields makes the microinstructions 
narrower or more vertical. 

very large scale integrated (VLSI) circuit A device con­
taining tens of thousands to millions of transistors. 

virtual address An address that corresponds to a 
location in virtual space and is translated by address 
mapping to a physical address when memory is 
accessed. 

virtual machine A virtual computer that appears to 
have nondelayed branches and loads and a richer 
instruction set than the actual hardware. 

virtual memory A technique that uses main memory as 
a "cache" for secondary storage. 

virtually addressed cache A cache that is accessed with 
a virtual address rather than a physical address. 

VLSI circuit See very large scale integrated (VLSI) 
circuit. 

volatile memory Storage, such as DRAM, that only 
retains data if it is receiving power. 

wafer A slice from a silicon ingot no more than 0.1 inch 
thick, used to create chips. 

weighted arithmetic mean A summary that tracks the 
execution time of a workload with weighting factors 
designed to reflect the presence of the programs in a 
workload; computed as the sum of the products of 
weighting factors and execution times. 

wide area network A network extended over hundreds 
of kilometers which can span a continent. 

word The natural unit of access in a computer, usually a 
group of 32 bits; corresponds to the size of a register 
in the MIP'.:> architecture 

workload A set of programs run on a computer that is 
either the actual collection of applications run by a 
user or is constructed from real programs to approx­
imate such a mix. A typical workload specifies both 
the programs ,is well as the retiti\'e trequencie,. 
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write-back A scheme that handles writes by updating 
values only to the block in the cache, then writing the 
modified block to the lower level of the hierarchy 
when the block is replaced. 

write-broadcast A snooping protocol scheme in which 
the writing processor disseminates the new data over 
the bus, allowing all copies to be updated with the 
new value. 

write buffer A queue that holds data while the data are 
waiting to be written to memory. 

write-invalidate A type of snooping protocol in which 
the writing processor causes all copies in other 
caches to be invalidated before changing its local 
copy, which allows it to update the local data until 
another processor asks for it. 

write-through A scheme in which writes always update 
both the cache and the memory, ensuring that data is 
always consistent between the two. 

yield The percentage of good dies from the total number 
of dies on the wafer. 
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