
INTEL - 1006

es
N

=

EP007

Europaisches Patentamt

O) European PatentOffice _
Office européen des brevets

Application number: 82105491.3

Date offiling: 23.06.82

Priority: 24.07.81 US 286426
24.07.81 US 286424
24.07.81 US 286425

Dateof publication of application: 16.02.83
Bulletin 83/7

Designated Contracting States: DE FR GB NL

@

) Arestructurable integrated circuit, including four 16-bit
processors PRO, PR1, PR2, PR3, data and control memories
66 and 78, and external interfaces 72, 73, 74, 75, 76 all
mounted on a chip. The processors include reconfigurable
connections through a status bus 52, microprogramming
capability with dynamic logic array interpretation, and a
multi-level flexible interrupt management system, so that
the processors PRO-PR3 may be reconfigured program-
mably to operate independently, in lockstep, or as pipelined
processors. All processors PRO-PR3 are connected to data,
control, and status busses 56, 14, and 52. In addition, exter-
nal control, data, and status interfaces 72-76 are also
provided, connected through the respective corresponding
busses 56, 14, and 52 to each of the processors PRO-PR3.
These external interfaces are connectedto all of the inter-

connections which permit reconfigurability among the
processors on a chip, and these external interfaces permit
coordination of the processors on more than one RIC chip.

Restructurable integrated circuit.

@) Publication number:

.

0071 727
Al

EUROPEAN PATENT APPLICATION

@ incoi: @O6F 15/06

@ Applicant: TEXAS INSTRUMENTS INCORPORATED,
13500 North Central Expressway,Dallas
Texas 75265 (US)

Inventor: Budzinski, Robert L., 1106 EdgewoodDrive,
Richardson Texas 75081 (US)
Inventor: Thatte, Satish M., 1304 Eik Grove, Richardson
Texas 75081 (US)

Representative: Leiser, Gottfried, Dipl.-Ing. et al,
Patentanwaite Prinz, Bunke & Pariner Ernsberger
Strasse 19, D-8000 Miinchen 60 (DE)

” CONTROL STORE MAHAGER

EXTERMALINTERRUPT

INTERRUPTMANAGERSCHEOULER

Ora 22
REGISTERS

ALU, DECODER

 EXTERRALSTATUSPORT

EXTERNAL
DATAPORT

EXTERWAL
DATA PORT

RAW MEMORY

ACTORUM AG

INTEL - 1006

INTEL - 1006

eo

»

LO

15

20

25

30

35

0071727

RESTRUCTURABLE INTEGRATED CIRCUIT

SPECIFICATION

Background of the Invention

This invention relates to a restructurable integrated

circuit which includes multiple 16-bit processors all

accessing a common memory, with the interconnections

between the processors being alterable in software so that

the restructurable IC may be operated in a variety of

different computing configurations.

A major difficulty in taking advantage of the

possible economies offered by VLSI technology is that few

prospective VLSI parts can be produced in sufficient

quantity to bring the price down to an attractive level.

In particular, since many applications impose their own

particular constraints on processor function, special

processors for such applications have been custom-

designed, at a necessarily high cost.

It is a particular object of the present invention to

satisfy the peculiar processing requirements of many

different applications by one common IC chip design, which

can therefore be manufactured in large quantities

economically.

En addition to a main processor, it is often

advantageous to use a dedicated processor for controlling

I/O functions (Such as CRT display), for memory
Management, or for specialized arithmetic processing.
However, as noted above, the high cost of custom VLSI

design has prevented optimal exploitation of the

advantages provided by such dedicated processors.

It is a further object of the present invention to

provide means for easily configuring a dedicated special-

purpose processor by means of a unspecialized common IC.

Et is often particularly advantageous, in

implementing such dedicated processors, to integrate them

on a single chip with a general-purpose processor.

- However, such structures require further specialization of

the design, and are therefore subject to cost

disadvantages as discussed above.
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

It is a further object of the present invention to
permit integration of a general-purpose processor with one
Or more special-purpose processors on a single chip, by
means of a general-purpose reconfigurable IC which can

easily be manufactured in quantity. .
A further disadvantage of custom VLSI design is that,

together with cost, yield, and reliability of the finished

part normally improve as the manufacturing history of the

part proceeds along the "learning curve". However, custom

special-purpose designs are normally not manufactured in

large enough numbers over a large enough period of time to

permit exploitation of the progressive improvement of

cost and reliability.

A further object of the present invention is

therefore to provide a general purpose part which can be

manufactured in large quantity over a long period of time,
to permit exploitation of cost yield, and reliability

improvements obtained by progress along the "learning
curve". .

Expensive as custom VLSI designs are, they often have

the further disadvantage that the gate density is

relatively low. This is because, for a part which will be

produced in small quantities, it is not economical to

spend the additional time and money to optimize the

packing density.

Thus, it is a further object of the present invention

to provide an integrated circuit which can satisfy the

requirements of a custom integrated circuit while
retaining a high gate density.

Gate arrays provide an extremely flexible LSI or VLSI

part, and gate arrays do satisfy some special functions

(such as a high speed multiplier or a cross bar switch)

efficiently. However, gate arrays are not very well

adapted to supporting programmable systems, and the gate

density of a gate array is normally not as high as that of

a processor.

Thus, it is a Further object of the present invention
to provide -a restructurable integrated circuit which has a

higher gate density than a gate array, and is better

INTEL - 1006

; 9071727
‘A;

rn

en

ta

INTEL - 1006

a

10

15

20

25

30

35

3 0071727
adapted to supporting a programmable system.

Where relatively large and complicated systems must

be mathematically modelled, it is frequently desirable to
have a large array processor, where, even though the data

throughput capacity of each processor is relatively low,

the total data throughput is extremely high, due to the

large degree of parallelism. However, such array

processors have to date been relatively expensive, since
they were usually constructed as special-purpose systems.

Similarly, it is sometimes desirable to perform a

long series of computations on an extremely wide
multiple-precision word (e.g., where a complex orbital
System must be modeled over a very long period of time.)

In this case also, adaptation of existing systems has

normally imposed disadvantages of high cost, low speed, or
both.

Thus, it is a further object of the present invention

to provide a processor in an integrated circuit, such that
a number of these integrated circuits can be combined to

provide array processing and/or multiple-precision

processing cheaply, without custom hardware design.

A further crucial disadvantage of custom VLSI designs

is that the design cycle time is unavoidably long, since

redesign and testing of hardware is required.

Thus, it is a further object of the present invention

to provide an integrated circuit which can be reconfigured

for custom applications solely by changes to software

and/or firmware.

Additional background references on multiple
processing systems, dynamic architecture, and micro-

processor architecture generally, include the following:
Multiprocessors and Parallel Processing (ed.P. Enslow,

Jr. 1974); A. Abd-Alla & A. Meltzer, Principles of Digital
Computer Design (1976); C. Mead & L. Conway, Introduction

to VESI Systems (1980); R. Krutz, Microprocessors and

Logic Design (1980); G. Myers, Advances in Computer

Architecture (1978); Baer, Multiprocessing Systems,

25 IEEE Transactions on Computers 1271 (1976); Thurber &
Wald, Associative and Parallel Processors, 7 Computing

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
. 4

Surveys 215 (1975); Kartashev & Kartashev, Dynamic

Architectures: Problems and Solutions, Computer Magazine,
July '78, 26; Kartashev & Kartashev, A Multicomputer

System with Dynamic Architecture, 28 IEEE Transactions on

Computers’ 704 (1979); Kartashev & Kartashev, Super Systems
for the 80's, Computer Magazine, November 1980, at 11; and

vick, Adaptable Architectures for Super Systems, Computer

Magazine, November 1980 at 17; all of which are hereby

incorporated by reference.
It is often advantageous, particularly where

unsophisticated users are involved, to design a very high

level application language which is tailored to a specific

job. However, such application languages, if embodied in

software, are normally very slow, and if embodied in

hardware, are normally very expensive.

It is thus a further object of the present invention

to provide means for economically providing VLSI

processors which are adapted to interpret any desired

application language. .
The many advantages of multi-processor systems have

seldom been efficiently exploited, partly because it has
always been difficult to train programmers to adapt their

programming so as to be optimal on a muiti-processor.

rather than a uniprocessor system. Thus, it is a further

object of the present invention to provide a system which

is easily reconfigurable between a multiprocessing and a

uniprocessing system, so that programmers may gradually

accustom themselves to the advantages and requirements of

multiprocessor programming.

A further difficulty with the exploitation of

multiprocessing systems has been the problem of inflexible

hardware structures. Since much of the behavor of a

multiprocessor system is determined by its hardware
structure, and since alli hardware structures yet suggested

appear to be optimized for one type of problem but not for
another, no multiprocessor hardware structure has yet been

achieved which appears to be a truly general-purpose

system. :

Thus it is a further object of the present invention
INTEL - 1006

aenlllt

wo

am

INTEL - 1006

10

15

20

25

30

35

. 0071727
to provide a multi-processor hardware structure which is

reconfigurable, and which thereby provides a truly

general-purpose multiprocessor hardware structure.

A further difficulty which has arisen in many

multiprocessor systems is the problem of interprocessor

interference, which occurs when more than one processor

attempts to access the same area of memory. Et is

possible to restrict the area of memory which may be

accessed by any one processor, but, while this avoids the
problems of interprocessor interference, it sacrifices

much of the advantage of a multiprocessor system.

Thus, it is a further object of the present invention

to provide a multiprocessor architecture which, while

permitting every processor to access any area of MeMOLrY,
protects data integrity.

Emulation of microprocessor languages and

architectures, and of micro- and minicomputer systems, is

at present relatively expensive. If emulation could be

made cheaper, e.g. based on a single processing chip, then

the cheaper development and testing possible would permit

wider use of custom designed application systems, and

faster adoption of new innovations.

A further object of the present invention is to
provide a single-chip processor capable of versatile and
efficient emulation.

Ft would also be desirable to provide a

microprocessor architecture which would permit graceful

degradation in the event of failure. Thus, both

reliability and yield could be greatly improved, since the

first major hardware fault would not prevent function of a

chip, but would simply degrade its preformance marginally.

It is a further object of the present invention to

provide a microprocessing architecture which provides

graceful degradation, rather than catastrophic failure, in

the event of hardware fault.

Only minor exploration of the advantages of

multiprocessor systems including large numbers of

processors. has hetherto been undertaken, because of the
expense of multiple processors, the difficulty of

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

, 0071727
interconnecting them, and the extreme difficuity of

specifying appropriate protocols for the interface between

processors in a large system.

Thus, it is a further object of the present

invention to provide processors which can easily be

combined into a multi-processor system including any

desired number of processors. _
A further difficuity, if IC processors are to be made

capable of combination into multi-processor systems, is

the provision of additional hardware on chip for interface

with external processors. I/0 communication, receipt

and routing of externally generated interrupts, and
interprocessor communication with external processors

are functions which will require excess hardware if

implemented separately. .

Thus, it is a further object of the present invention

to provide an external interface which can both handle 1/0

communications inmediate interprocessor communication.

It is a further object of the present invention to

provide an interrupt managing structure, in each

processor, such that interrupts can be used both to govern

interprocessor communication and to transmit externally

generated interrupts.
When a change in operating function or structure of a

processor system is required, logic redesign is not only

expensive and difficult, but also time consuming.

Thus it is a further object of the present invention

to permit ready alteration of processor operation, at any

level, by reprogramming rather than by logic redesign.

It would be highiy desirable to have a processor

hardware system to which an "architecture compiler" could

be applied. Such a compiler would permit programming of
the effective architecture of the system, in addition to

the other changes normally possible by programming.

However, to support such a compiler it is necessary to

have hardware which permits selective and programmable

reconfiguration of Functional interconnections.

Thus, it is a further object of the present invention

to provide a processor architecture having the necessary

INTEL - 1006

wat

•

•

0071727
7

alterable functional structure to support an architecture

compiler.

Summary of the Invention

5 Th e p r e s en t i n v en t i o n p r o v i d e s for fo ur

microprogrammable 16-bit microprocessors on a single

chip. Microprogramming capability is provided by a large

PLA which is included in each processor. Each of the

processors is connected to each of three main buses,

10 namely the status bus, the data bus, and the control bus.

15

Each processor is connected to the status bus by a

respective status bus multiplexer, which operates as a

programmable interconnect. In accordance with the various

configurations of the status bus connections which are

th u s p o s s ibl e , t h e p r o c e s sors may be operated

independently (e.g. as four 16-bit processors), in

lockstep (e.g. as one 64-bit processor), or pipelined.

Thus, two major sources of programming flexibility are

provided: the microprogramming flexibility provided by

20 PLA interpretation, and the processor reconfiguration

flexibil ity wh ich is provided by the use of the

programmable status bus connections and by controlling the

instruction streams interpreted by each proc�ssor.

To exploit this flexibility in processor control,

25 each chip level instruction is directed to one or more

specific processors. Thus, when it is desired to operate

the processors in a pipeline mode (where separate

processors sequentially perform different operations on a

single data stream), each processor is respectively

30 instructed to perform the operation appropriate to its

position in the pipe l i ne sequence. In lockstep

processing, one processor is designated as the master

processor (to control sequencing etc.), and the other

lockstepped processors are all controlled simultaneously.

35 These modes of reconfiguration may also be combined, so

that, e.g., a chip might be reconfigured to contain four

independent 16-bit processors, two pipelined 32-bit

processors,. one 4 8-bi t processor (three locks tepped 16-bi t

processors) and one independent 16-bit processor, etc.
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727

Since the control bus may be segmented to carry plural

unrelated sequences of instructions, a multilevel

interrupt hierarchy is used, arbitrated by a single

control store manager, to arbitrate access to the control

bus. The external interface controls (including an

external interrupt manager, two external status ports and

two external data ports) also permit processors on more

than one RIC chip to be linked together in the various

modes discussed above. In addition, the external interface

controls also control access to external memory, I/O's,

etc.

A substantial amount of on-chip RAM is provided,.

which may be accessed by any of the processors. However,

each processor also has direct access to a primary
allocation of the on-chip RAM. All processors may

directly access their respective primary allocations of

RAM in parallel, but, to access other portions of RAM, a

processor must use the data bus, and therefore such

accesses must be arbitrated. Two design expedients
prevent hangups and deadlocks: first, 256 priority levels

are used coincidence of priority is thereby reduced.

Second, ail interrupts are sent, and acknowledged, in

parallel. Third, any processor which is unabie to acquire.

all resources needed to proceed with execution releases

all previously acquired resources while it is waiting for

the necessary resources to become available.

In addition to these crucial elements, numerous

conventional elements are aiso used to fully implement the

design. For example, each processor includes an ALU, a

barrel shifter, a memory mapper, a microsequencer, etc.

The advantages of the present invention inciude all

objects of the invention discussed above, and others which

will be obvious to those skilled in the art. For example,

the hardware layout time of the RIC chip is reduced by a

factor of almost four, since much of the structure (e.g.,

ail four processors) is replicated.

Gf course, the processors need not be 16-bit
processors, but may alternatively be 32-bit, 8-bit, etc.

Similarly, the number of processors on a chip may not be
INTEL - 1006

(,

it]

th

ene

ty

INTEL - 1006

a“

10

20

25

30

35

0071727

exactly four, but may be three, or any number larger than

four. In fact, the maximum number of processors is

constrained simply by manufacturing technology, as smaller

geometries become practicable, it might be very desirable

to include large numbers of processors on a chip. In such

case, the interconnections, busses, and protocols would

remain the same. Of course, if the processors were other

than 16-bit, the width of the respective busses would have

to be changed correspondingly.

According to the present invention, there is provided

a restructurable integrated circuit, comprising a

monolithic substrate having: a plurality of processors; a

plurality of busses, each connected to all of said

processors; and means, connected to each of said.

processors, for reconfiguring said processors selectively

so that said processors are operable in lockstep or

independently.

According to the present invention, there is provided

a restructurable integrated circuit, comprising a

monolithic substrate having: a plurality of processors; a

plurality of busses, each connected to all of said

processors; said busses comprising a status bus including

a plurality of lines said lines of said status bus

including synchronization and arithmetic linkage lines;

each said processor comprising a respective status bus

multiplexer connected to said respective processor and to

said status bus, said respective status bus multiplexer

selectively and programmably connecting or interrupting

selected lines of said status bus and selectively

connecting said respective processor to said status bus,

thereby selectively and programmably connecting said

respective processor through said status bus to adjacent

ones of said processors.

According to the present invention, there is provided

a restructurable integrated cireuit, comprising a

monolithic substrate having: a plurality of processors; a

plurality of busses, each connected to all said

processors; each said processor comprising a dynamic logic
array (DLA) connected to receive commands provided to

INTEL - 1006

INTEL - 1006

10

15

20.

25

30

35

, - 0071727
10

said respective processor said DLA comprising: an AND

Matrix; an OR matrix; intermediate lines connecting said

AND matrix to said OR matrix; a plurality of input lines,
connected to a first one of the AND and OR matrices; and a

plurality of output lines connected to the other one of
said AND and OR matrices; at least one of said AND and OR

matrices of said DLA being arranged in rows and columns to
define partitions within said respective matrix; each said
partition being selectively arranged to contain a selected

number of active elements disposed to implement a desired

logical function; and a plurality of control lines, each

said control line being connected to selectively enable or
disable said active devices in one or more of said

partitions, so that said DLA implements a selected logical

function in accordance with a state of said control lines;

whereby said DLA interprets commands provided to said
respective processor selectively in accordance with the

state of said control lines.

According to the present invention, there is provided

a restructurable integrated circuit, comprising a

monolithic substrate having: a plurality of processors; a

plurality of busses, each connected to alli of said

processors; a RAM memory, said RAM memory comprising a
plurality of RAM memory modules; said busses comprising a

data bus including a plurality of lines; and a plurality

of bus control units, each said bus control unit being

connectedto one of said processors, to one of said RAM

memory modules, and to said data bus, said bus control

unit selectively connecting said processor to said data
bus or directly to said corresponding RAM memory module.

According to the present invention, there is provided

a restructurable integrated circuit, comprising a

monolithic substrate having: a plurality of processors; a

plurality of busses, each connected to ali of said
processors; and means for reconfiguring each said
processor, so that each said processor selectively and
programmabiy is operated in lockstep withor independently

of one or more others of said processors on the same
restructurable integrated circuit or on another similar

INTEL - 1006

a

mw

INTEL - 1006

o

10

15

20

25

30

35

0071727

11

restructurable integrated circuit.

According to the present invention, there is provided

a restructurable integrated circuit, comprising a
monolithic substrate having: a plurality of processors; a

plurality of busses, each connected to all of said
processors; said busses comprising, a control bus, said
control bus comprising lines for transmitting commands,
and also lines for transmitting interrupt signals, each

said interrupt signal including bits indicating a priority
and an interruptee processor among said processors,
wherein one of said interrupt signals initiates each
sequence of said commands; wherein each said processor
contains an interrupt manager, connected to said control

bus, to receive said interrupt signals, and wherein said.
interrupt manager tests each successive one of said
interrupt signals to determine whether said respective

processor which includes said interrupt manager is

designated by said successive interrupt signal as an
interruptee, wherein said interrupt Manager stores the

priority of the one of said interrupt signals which

initiated whichever respective sequence of commands is

currently being executed by said processor, and wherein

said interrupt manager compares the priority of each

successive one of said interrupt signals which is

addressed to said respective processor with the priority

of said respective interrupt signal which initiated

whichever respective sequence of commands is currently

being executed by said processor and provides a

corresponding context switch output; and wherein each said

respective processor also contains a scheduler, connected

to said context switch line of said interrupt manager,

said scheduler displacing a sequence of said commands

currently being executed by said corresponding processor

whenever said context switch line indicates that a newly

received interrupt signal includes a higher priority

level. . , :

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

oo 12 0071727
Brief Description of the Drawings

The present invention will now be described more

specifically with reference to the accompanying drawings

wherein:

Figure 1 shows a general overview of the

restructurable IC according to the present invention;

Figure 2 shows a floor plan of a portion of the RIC,
including one processor in its entirety and one of each

kind of the external interfaces; .
Figure 3 shows portions of the AND and OR portions of

a DLA, embodied in a NOR gate implementation;

Figure 4 shows portions of the AND and OR matrixes

of a DLA embodied in a named gate implementation;

Figure 5 shows the structure of the control bus;

Figure 6 shows the relation between the central

control store controller and the four module controllers;

Figure 7 is a flowchart illustrating the operation of

the central control store controller and of the respective

module controller, where the control store is being

accessed:

Figure 8 shows the connection of the daisy chained

bus available line; .

Figure 9 is a schematic diagram of major portions of

the ALU within each processor;

Figures 10 and 11 respectively provide circuit

diagrams of portions of functional and carry chain biocks

within the ALU in each processor;

Figure 12 is a fiow chart illustrating the structure

of the barrel shifter within each processor;
Figures 13, 14(a), 14(b) and 14(c) show examples of

shift and/or rotate operations performed by the barrel

shifter within each processor;

Figure 16 shows the structure of the data bus;

Figure 17 shows the protocol of the data bus;

Figure 18 provides a block diagram of the data path

within each processor;

Figure 19 illustrates schematicaily the internal RAM

system of the RIC;

Figures 20 and 21 show the structure and operation of

INTEL - 1006

mw

Ct

a"

‘a

me

INTEL - 1006

10

15

20

25

30

35

0071727
13

the respective bus control units;

Figure 22 is a flowchart showing the operation of the

memory scheduling unit;

Figures 23-25 show the interconnections of the status

bus, as effected by the status bus multiplexer,

corresponding to different modes of reconfiguration of

adjacent processors;

Figures 26, 27 and 28 show schematically the data and

command instruction flows within the RIC, in the

independent mode, internal lockstep mode, in pipeline

mode, respectively;

Figure 29 is a block diagram of the scheduler and

interrupt manager within each processor;

Figure 30 is a flowchart of the operation of the

scheduler within each processor;

Figure 31 shows the format of the interrupt control

word;

Figure 32 shows the format of the control store

address lines, when an interrupt is being sent;

Figure 33 provides an example of interrupt timing,

when processor PR3 is interrupting processor PRI;

Figure 34 provides a pin diagram of the RIC;
Figure 35 shows generally the internal interrupt data

structure;

Figure 36 shows the operation of an external

interrupt manager, while an interrupt is being sent;

Figures 37-41 illustrate examples of configurations

which are attained by linking processors on more than one

RIC chip;

Figure 42 shows the organization of four RIC chips

into a cluster;

Figure 43 shows a hierarchical system, whereby many

RIC chips are combined;

Figure 44 is. a true representation corresponding to

the multi-chip organization shown in Figure 43;

Figure 45 shows generally the operation of an

interrupt level manager and busses, at an unspecified

level within a hierarchy such as that shown in Figures 43
and 44;

INTEL - 1006

INTEL - 1006

9071727
14

Figure 46 is a timing chart showing the information

protocol when an interrupt is in the rising phase, in a

multi-chip hierarchy such as that as of Figures 43 and 44;

and

Figure 47 is a block diagram of the microsequencer

contained in each processor.

INTEL - 1006

om,

ay

an

in

ig

INTEL - 1006

©

10

15

20

25

30

35

0071727
15

Description of the Preferred Embodiments
Figure 1 shows a block diagram of the restructurable

IC (RIC). Four microprocessors PRO through PR3 are provided

on a Single chip, and three busses 14, 52 and 56 are

provided to interconnect all of the processors. External

interfaces 76, 74 and 75, and 72 and 73 are is provided

for each of the respective busses, and on-chip RAM memory

66 and control store 38 are also provided. A more

detailed topographic view is provided in Figure 2, which

shows a floor plan of a portion of the restructurable IC,

including one processor (PR3) in its entirety, one of each

type of the external interfaces, and portions of the bus

lines and on-chip memories. The interrupt manager 12 of

each processor constantly monitors the interrupts which.

appear on the control bus 14. Only interrupts which are

addressed to processor PR3 are recognized by the interrupt

manager 12 in PR3. Such interrupts are then successively

compared, by the scheduler 16 in PR3, to see whether their

priority level is higher than that of the sequence of

instructions currently being executed by processor PR3.

If this is the case, it is necessary to begin execution of

the stream of instructions which the new interrupt has

introduced (such a stream of instructions is called a

"process"). The scheduler 16 then provides a corresponding

output to the DLA 22, which then enables the ROM

instruction register 18 or the RAM instruction register

20, so that the control DLA 22 begins to receive the

sequence of instructions contained in the "process". The

control DLA 22 functions analogously to a PLA, except that

its improved structure permits greater packing density, as

will be discussed below. Thus the control DLA generates a

substantial number of minterms in an AND Matrix, and an OR
Matrix then converts these minterms into selected

logical-sum outputs. Adjacent to the control DLA 22 is a

feedback block 24, through which a few of the outputs of

control DLA 22 are fed back to provide inputs to the DLA.

By this means finite state machine capability is provided

for the DLA 22, so that the DLA 22 can, e.g., translate

one high-level instruction into a sequence of lower-level
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

16

instructions. The DLA 22 is connected todecoder sections

25 and 26, which selects outputs of the DLA 22 as hardware

commands for the ALU 28, barrel shifter 30, register file

32, memory mapper 34, etc. Outputs of the DLA 22 are also

connectedto a microsequencer 36, which controls access to

the control bus 14 and to the control store 38. The

microsequencer 36 can send appropriate signals on the

control bus 14 to access the control store 38 through a

control store address register 40. Data which is called

from the control store 38 is output through a control

store data register 42 to the control bus 14, and then

input into the ROM instruction register 18 (if the

register 18 has been enabled by the interrupt manager 12),

and provided as an input to the AND section of the control

DLA 22. Operation of the memory mapper 34, register file

32, the barrel shifter 30, the ALU 28, the shift register

44, and the flag register 46 proceeds according to

conventional principles of operation well known in the

microprocessor art.

A status bus 52, including an end around loop 54, is

also provided on the chip. The status bus is connected to

each processor through status multiplexers 48 and 50.

Each such pair of status multiplexers operates as a

programmable interconnect. The lines of the status bus 52

and 54 are used to provide synchronization of adjacent

processors in the pipeline mode, or to provide complete

linkage of adjacent processors in the lockstep mode. [In

the independent mode no such linkage is required. The

pair of status multiplexers 48 and 50 is programmed to

provide the appropriate status bus interconnections each
time a new mode is entered.

The processor PR3 accesses the RAM memory 66 by way

of memory mapper 34. Lines from the memory mapper 34

cross the status bus 52 and 54, and interface with the

data bus 56 at a bus control unit 58. The bus control

unit 58 operates selectively and programmably, so that the

output from memory mapper 34 is either connected directly

to the RAM memory module 60 to which processor PR3 has
preferred access, through data register 62 and address

INTEL - 1006

0071727

ny

w

On

INTEL - 1006

10

15

20

25

30

35

. 0071727
register 64, or else is connected through data bus 56 to

some other area of on-chip or off-chip memory. If it is
necessary to access one of the other three modules (not
shown) of the RAM memory 66, the access will be
communicated through data bus 56 to the appropriate one of

the other three memory scheduler units 68. Each memory
scheduler unit 68 schedules memory access requests
according to first-come-first-serve, and controls access

to the corresponding memory module through a control

register 70. In addition, the data bus 56 is connected to

external data ports 72 and 73, through which each

processor can access off-chip memory.

Similarly, the status bus 52 and 54 is connected to

external status ports 74 and 75, so that off-chip
processors may be synchronized for multi-chip lockstep and
pipeline operations, and control bus 14 is provided with

an external interrupt manager 76, so that commands may be

sent to and received from off-chip processors.

The control store 38 is divided into modules 78,

controlled by respective control store module controllers

96, analogously with the division of the RAM memory 66

into modules 60. Finally, a plurality of pads contact

areas 80 are provided at the periphery of the chip, for

bonding of external contacts. An 84 pin package is

preferred.

The foregoing has provided a summary overview of the

function and structure of the restructurable integrated
circuit. A more detailed description of the chip,

together with suggestions of some possible applications,

will now be provided.

The first aspect of the restructurable integrated

circuit (RIC) which will be described in greater detail is

the control path. A crucial part in the control path is

played by the control DLA 22, and the structure and

operation of this DLA will. be described first. The PLA

used in each processor is necessarily large. The preferred

embodiment requires a PLA of 40 by 400 by 120. [In present

production technology, a PLA of this complexity would have
an area on the order of 10,000 square mils, which is

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

18 0071727
uneconomically large. However, process improvements reduce

the required area greatly. In addition, considerable size

improvement is also obtained by using a DLA (dynamic logic

array) in place of the conventional PLA, as discussed

above. Preferably mask-programmed DLA's would be used

for large-quantity applications, but field programmable

(or even electrically aiterable) DLA's would also be used

for initial development work and to maximize customer

flexibility. The exact maximum limit on density depends on

the minterm (or maxterm) products desired, but since a
typical PLA only has 10% transistor density, improvement

by a factor of four in a DLA realization is easily

attained through "folding" minterms. A dynamic logic
array (DLA) may be thought of simply as a PLA which has

been improved to utilize area more efficiently.

Alternatively, the DLA may be considered as a PLA which

has been made restructurable at the circuit level. A DLA

allows multiple functions to be embodied in a PLA, subject

to the constraint that only one function can be utilized

at a time. The DLA improves utilization of area by a

factor of 2 to 5. Also, the DLA (with associated

multiplexers) aliows the inputs and outputs of a PLA to be

used for muitiple functions instead of only one. The DLA

does this by isolating partitions of a PLA in such a way

that the circuitry performing only one function is

enabled, while the circuitry performing the other

functions is not. Selection of an active partition within

the DLA 22 is performed by the two decoders 25 and 26. In

accordance with the activation of the DLA's control lines

by these two decoders, the DLA is activated to form a

selected logical function. Of course, some partitions of

the DLA will not be controlled by these control lines.

This concept can be applied to both NOR gate

implementations of PLAS and to NAND gate implementations.

As shown in Figure 3, in the NOR gate implementation

of a PLA using NMOS technology, the transistors forming

gates in the AND matrix along with the transistors forming

gates in the OR matrix have all sources common to ground.

If the sources for the transistors implementing a

INTEL - 1006

iw

a

INTEL - 1006

10

20

25

30

35

0071727
19

particular function are floated, the circuit behaves as if

these transistors had been removed, so that the function

is disabled. The basic idea behind the NOR gate DLA is to

connect all the transistors implementing a function to a
control line, which is grounded when the function is to be

performed and is floated when the function is to be

disabled. To implement multiple functions in a DLA, the
sources of the transistors for each function are connected

to a separate control line corresponding to that function.

Figure 3 illustrates a typical NOR gate DLA. The ordinary
PLA circuitry is drawn in solid lines, and the additional

circuitry to implement a DLA is drawn with dotted lines.

The DLA is partitioned as shown by the dashed lines, and

the various partitions are labelled Pl through P8. If

control line Cl is at logical 1, the circuitry in

partitions Pl and P5 is activated, and the outputs E and F

become functions of the inputs A, B, and B. If the

control line Cl was at a 0 level, the E and F outputs

would not be controlled as a function of any inputs.

Additional circuitry could also be added to the P3 and P7

partitions, in order to implement another function which

controlled outputs E and F as functions of inputs A, B and
B. .

Similarly, the control line C2 in Figure 3 can

activate or neutralize circuitry in partitions P4 and P8,

and additional circuitry, to provide additional output

functions, could be added in partitions P2 and P6.

This circuit can be generalized to any number of

partitions, and the partitions can be of varying sizes.

Also, the AND matrix can be separately controlled from the
OR matrix.

| Although Figure 3 shows the DLA as an improvement
based on a Static gate PLA, for clarity, the above

discussion also applies to a DLA which is based on a

dynamic gate PLA. The additional peripheral control

circuitry required to implement a dynamic gate DLA

requires only a very small increase in chip area,

particularly where the PLA is large.

Figure 4 shows an NAND gate DLA. The concept of

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

- a9 0071727
partitioning a PLA for implementing a selected one of
multiple possible functions remains the same. What
changes is the method of isolating the gates that

implement the desired function. For NOR gate

implementations, voltage control (of the common sources)

is used. The NAND gate DLA is the current dual to the

voltage-controlled NOR gate DLA. In the NAND gate DLA,

all transistors except those implementing the desired

function are shunted by a current bypass, which is

controlled by a control line. Only the transistors which

implement the desired function are not so shunted. It is

- also possible to configure a DLA which generates maxterm

rather than minterm products, but the area economies~

remain the same.

Use of a DLA for interpretation permits the

interpretation system of each processor to be rapidly

reconfigured, by selecting one of the modes of operation

of the DLA. The DLA 22 will preferably be

mask-programmed, aithough more expensive

field-programmable structures are also useful for user

development.

Thus, the use of the control DLA 22 has provided the
sophisticated microprogramming capability which is

required in each processor. The path by which
macro-instructions are provided to the DLA as inputs will

now be traced.

The DLA 22 can aiso be used to provide real-time

capability, simply by connectinga real-time input to one
of the input lines of the DLA, and ANDing that input with

the appropriate outputs of the DLA.

The structure of the control store and control bus,
and the interrupt control system used, wiil now be

described.

-In one embodiment, the central control store is

accessible to and can be shared by all four processors.
The currently preferred alternative is to allocate the

control store 38 among the processors, like the allocation

of the data storage among the processors, while still
permitting each processor to access any portion of control

INTEL - 1006

we

a

INTEL - 1006

“0

LO

15

20

25

30

35

21 0071727
store 38. The four microsequencers 36 do not permit

parallel access, but simply permit a low average access

time. Of course, the microsequencers 36 can also be

constructed (like the bus control units 38) to permit

parallel access, but this would impose additional circuit

complexity without corresponding advantages. A central

and sharable control store provides the following

advantages: the memory space is more efficiently

utilized, since code used by multiple processors is not

replicated; the amount of control store assigned to each

processor can be better tailored to its needs; and field
programming is practical because of memory centralization.

Of course, to prevent the single channel of access to the

central control storage from becoming a system bottleneck,

the level of instructions stored in control storage should

be sufficiently high that, on the average, each processor

requires four or more complete clock cycles to execute

each single instruction received from control storage.

Since, in current microprocessor software structures, one

assembly-language instruction will typically require, on

the average, five to ten cycles, the above constraint on

the level of instructions should be very easily satisfied.

The microsequencer 36 is an address sequencer

intended for controlling the sequence of execution of

microinstructions stored in the ROM memory. Besides the

capability of sequential access, it provides conditional

branching to any microinstruction within its 14-bit range

or 16K word range. It also provides the last in and first

out stack which provides microsubroutine return linkage

and looping capability. There are 4 to 8 levels of

microsubroutines. It also has a microinstruction loop

counter within the address range. Other details of the

preferred embodiment of the microsequencer 36 will be

obvious to those skilled in the art, and are shown in

greater detail in Figure 47.

The central control store structure implies a central

shared control bus. The control bus 14 arbitrates the use

of the control store 38 among the four processors PRO-PR3,

carries addresses from the processors, and carries

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

22 0071727
microinstructions from the control store 38 to the

processors. The control bus 14 includes 73 lines, which

run nearly the length of the chip. Thus, the bus is an

expensive resource, and it is desirable to fully use the
bandwidth of the bus. That is, the bandwidth of the

control bus is approximately matched to the throughput of
the control store 38 and the microstore access rate of the

processors.

The structure of the control bus 14, according to the

currently preferred embodiment, is shown in Figure 5. The

control bus 14 includes a control data bus 82, an address

bus 84, a destination bus 86, an interrupt bus 88, and a

data routing bus 90. A control data bus 82 carries.

microinstructions fetched from the control store 38 to the

processors PRO-PR3. This bus is 40 lines wide. The

address bus 84 carries addresses generated by the

microsequencers 36 in the respective processors to the

control store 38, to fetch microinstructions. As

explained below, the address bus 84 also carries priority

information during interrupts. This bus is 14 lines wide,

allowing 16K words of address space in the control store
38. The destination bus 86 is used, whenever a processor

accesses the control store 38, to indicate which one or

more of the processors PRO-PR3 and the external interrupt >

Manager 76 are to receive the data which is stored at the

address in control store 38 which is concurrently being

accessed. The destination bus 86 is also used during

interrupts, to identify which of the processors PRO-PR3

and the interrupt manager 76 are to receive the current

interrupt (i.e., the interruptees). The destination bus 86

is 5 lines wide. The interrupt bus 88 is used to transmit

the source of an interrupt. It is also used for

interruptee processors to signal whether the interrupt is

the highest priority task they have on hand, i.e. to

signal whether the interruptee processorwill accept the
interrupt or not. This form of reply is needed to quickly

establish (or postpone) processes which require pipelined

or lockstep operation. Interrupt bus 88 is 5 lines wide.

The data routing bus 90 is controlled by the control store

INTEL - 1006

aw

INTEL - 1006

10

15

20

25

30

35

0071727
23

Manager 92, and is used to indicate which processor or

processors PRO-PR3 are to receive the microinstruction

currently being transmitted on the control data bus 82.

The data routing bus 90 is 5 lines wide. Lines DRO-DR3

are used- to designate the corresponding processor (s)

PRO-PR3 as destinations of words fetched from ROM or for

interrupts. Line DR4 is used to designate the external

interrupt manager as the destination of a fetched ROM word

or interrupt.

As shown in Figure 6, the control store manager 92 is

Organized as a central controller 94 and four control

store module controllers 96. Figure 7 is a flow chart

showing the operation of the control store manager 92.

When the control store manager 92 is activated, it

receives the destination and control address information

from the buses 86 and 84 respectively. It then selects

one of the four control store modules 78 within the

control store 38, in accordance with the two most

Significant bits of the address information which it

receives on the address bus 84. The address is then sent

to the appropriate module controller 96. The preceding

functions in the flow chart of Figure 7 have been

performed by the central controller 94, and the remainder

of the functions shown are then performed by the

appropriate module controller 96. The module controller

96 now queues the address and destination for the

requested access, and reads out the control words which

have been requested in FIFO order.

Arbitration of the control bus 14 is achieved by

means of the bus available line 98, which is daisy chained

among the processors PRO-PR3. When one processor gains

control of the control bus 14, it uses the control bus for

only one full cycle. (One phase to send an address, and a

second phase, not necessarily consecutive, to receive the

data). During the first phase, the processor which has
control of the bus 14 holds the bus available line 98

down. After the address is sent, that processor raises the

bus available line 98. Since the line is daisy chained,

the high state of the bus available line 98 is immediately. 1006

INTEL - 1006

10

15

20

25

30

35

, 90071727
received by only one processor, which then either accesses
the control memory or raises the next Link of the daisy

chain of the bus available line 98. In the case where one

processor is utilizing the control bus and the bus

available line is circulated back to it during the cycle,

(i.e., no other processor wants to use the control bus)

the processor utilizing the bus will trap the signals and

reissue it to maintain proper synchronization of the

control bus. Thus round-robin arbitration of control bus

access is provided. In similarly conventional fashion, the

address ready line 100 and the data ready line 102 are

used to synchronize communications between an active

processors and/or the control store manager 92. Othe data
ready line and address ready line are used to disseminate

between addresses and data during interrupt transmission.)

Finally, the control bus 14 also contains an

interrupt ready line 104, which is also daisy chained.

The daisy chaining permits round-robin arbitration among

processors seeking to send an interrupt. When a processor

gains control of the control bus 14 to initiate an

interrupt immediately, it sends a zero down the daisy

chained interrupt ready line 104. A processor sending an

interrupt can take over the interrupt bus 88 before
gaining the control address bus 84. When an interrupting

processor gains control of the destination bus 86, it
raises the lines within the destination bus 86 that

correspond to the processors on the external interrupt

Manager 76 which are the destinations of the interrupt
being originated. After issuing the interrupt, the

originating processor signals that it is the source of the

interrupt on the interrupt bus 88.

After an interrupt is initiated, other interrupts are
inhibited for at least two bus cycles: one for the

interrupt to be sent, and one for the replies from the

receiving processors (the interruptees) to be received by
the originating processor (the interruptor). If only

buffering of the interrupt is required, the interruptee's

interrupt manager will be able to process the interrupt

and be ready to receive another interrupt after one to

INTEL - 1006

to

INTEL - 1006

10

20

25

30

35

0071727
25

four additional bus cycles. If the receivers of the

interrupt are to become engaged in a lockstep or pipeline

process, i.e., if a context switch is necessary, the

interrupt bus 88 is blocked for the time it takes to

perform the necessary context switch. The length of the

context switch depends on how much context (i.e., register

contents ALU status, etc.) within the interrupted
processor is to be retained. As will be discussed below,

some context switches may require an essentially complete

change of processor context, while others may require only

a minimal change. The shortest context switch will

normally require three or more bus cycles. This delay

does limit the bandwidth of interrupt signals, but this

approach seems reasonable because interrupts are not

expected to take up the full available bandwidth. This

delay serves the purpose of smoothing out bursty interrupt

occurrences without reducing the average rate of the

interrupt traffic over the long run.

An interrupt is used to commence each sequence of

instructions (each “process"). As discussed above, the

interrupt specifies a priority level, and also contains a

four bit code conveyed on the data routing bus 90

specifying which processors it is addressed to. If all of

the processors addressed by the interrupt are available

(that is, have no higher-priority tasks on hand),

execution of the sequence of instructions within the

process begins. If the instructions to be executed are

located in control store 38, they are sequentially read

out by the appropriate microsequencer 36. If the

instructions to be executed are located in RAM memory 66,

they are sequentially read out by the appropriate memory

scheduler unit 68 and bus control unit 58 from RAM memory,

and the memory mapper 34 within each affected processor

transmits these instructions, through the RAM instruction

register 20, to the DLA 22. The DLA 22 can translate

these RAM instructions into ROM addresses, and these ROM

addresses are then accessed via the microsequencer. Also,

the RAM instructions can be directly decoded by the DLA

22. The control words stored in ROM do not contain
INTEL - 1006

INTEL - 1006

10

15

0071727
26

processor specification fields, but are merely short bit

strings (preferably 32-bit), of which the only fixed

format portion is an op code. When the control word which

has been called from ROM is returned to the processor's

DLA 22, the control word, together with any constants or

operands which may have been specified by the instruction

received from RAM, is interpreted by the DLA 22. The DLA

interprets the remainder of the control word field in

accordance with the opcode and the control word as, e.g.,

an operand field, a constant field, a microsequencer

command, a memory interface instruction, a status bus

command, destination and priority data (if the command is”

an interrupt), commands for control of the interrupt

Manager, the scheduler, the barrel shifter, etc. The

appropriate portions of the command word are then decoded

and provided directly to the appropriate hardware, by the

DLA aS controlled by decoders 25 and 26.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
27

Of course, this microprogramming interpretation

Structure also permits use of further stages of

interpretation before hardware execution. For example, a

command read out from the control store 38 may be

interpreted to require execution of another series of

instructions from control store 38 or from RAM 66.

Moreover, off-chip memory may also be used for

instructions. For example, if a single command in an

application language is to represent a very lengthy

subroutine, the corresponding control word in the control

store 38 might be interpreted to command loading of the

subroutine in a specified block of RAM memory 66, and

subsequently executing the instructions of that subroutine
sequentially. Of course, instructions stored in off-chip

storage can be fetched and executed through the external

interrupt manager 76 and/or the external data ports 72 and

73, aS will be discussed in greater detail below.

Further information regarding the interrupt

protocols will be provided below, where reconfiguration of

the RIC into different modes of operation is discussed in

connection withthe status bus operation. At this point,

further details regarding the structure of each processor

PRO-PR3 will be provided.

As seen in Figure 2, each processor includes, in

addition to the DLA 22 and associated decoders 25 and 26,

feedback lines 24, and instruction registers 18 and 20,

an interrupt manager 12, a scheduler 16, a memory mapper

34, a stack/register file 32, a barrel shifter 30, an ALU

28, a shift register 44 and a flag register 46. The

latter elements are conventional, but will be discussed in

greater detail for convenience and clarity. For example,

Figure 9 shows greater detail of the ALU 28. Two busses

108 and 110 are provided as inputs from other blocks of

the processor, e.g. barrel shifter 30. The busses are

connected via input latches 112 and 114 respectively, toa

P (propagate) functional block 116, a K (kill) functional

block 118, aC (carry chain) block 120, and an R (result)

functional block 122 successively. The propagate block is
controlled by P control lines 124, the kill block is

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

- 2 0074727
controlled by K control lines 126, and the result block is

controlled by R control lines 128. These control lines

are provided to the ALU 28 from the DLA 22. [In addition,

a carry in line 130 and a carry-out line 132 are provided,

to connect the C block 120 to the status multiplexers 48

and 50 (the operation of the status multiplexers 48 and 50

is discussed in greater detail below in connection with

the status bus protocol). The output of the R block 122

is a dual bus, which is provided through a flag generation

logic 134, to an output latch 136. The flag generation

logic 134 computes status and error information to provide

a program status word through the DLA. The flag

generation logic 134 (in the DLA 22) is connected to the-

flag register 46, and the output latch 136 is connected to

the shift register 44. The shift register 44 is, in turn,

connected through busses A and B (108 and 110) to the

register file 32 or, through memory mapper 32, to the bus

control unit 58, so that the output of the ALU may be

transmitted on the data bus 56, or stored for future

operation within the processor.

Figure 10 shows the component-level architecture of

one portion of one of the functional blocks 116, 118, or

122 within the ALU 28. Figure 11 shows the structure of

one portion of the carry chain block 120 within the ALU.

28. Further references on microprocessor architecture

include, for example, Osborne and Associates, which is

hereby incorporated by reference.

Figure 12 shows a schematic diagram of the data path.

Input signals are provided on busses 108 and 110, to which

are connected respective input latches 138 and 140. These

latches provide input to a barrel shifter 30. The barrel

shifter 30 is controlled by control lines 144, and

parameter inputs 146, which are both supplied by the DLA

22. The parameter inputs 146 provide values for, e.g.,

shift count and for extraction boundaries. The barrel

shifter 30 provides outputs, to bus A and bus B. ‘The ALU
generates arithmetic status signals such as carry,

overflow, negative and/or zero. The ALU also generates
other trap signals such as integer overflow, decimal

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727

digit carry etc. These signals are sent to the DLA which

performs logical operations upon them to generate signals

which set bits in the flag register. This mechanism

generates the setting of status signals for the

circulation of a computer architecture for example.

Figure 13 illustrates the terminology of shift

operations formed by the barrel shifter 30.

Conventionally, a shift left is used to designate a shift

toward the most significant bit; i.e., the most

significant bit is the leading bit for a shift left.

Similarly, the least significant bit is the trailing bit

for a shift left, and is the leading bit for a shift

right. Figures 14a,b, and c illustrate some further

examples of shift operations. Figure l4a shows a shift.
left, where the trailing bit is filled with a zero, and

the leading bit is discarded.

Figure 14b illustrates a rotate left operation,

the significant bit of input latch A (138) is mapped into

the least significant bit of input latch B (140), the most

significant bit of input latch B (140) is mapped into

the least significant bit of input latch A (138), and the

other bits are shifted accordingly. Figure 14b

illustrates a one-bit rotate operation, but a rotate

operation may move up to 16 bits, right or left, within

one clock cycle in the barrel shifter.

Figure 14c shows a shift and link operation, where

the input latch 138 is shifted right, a link-in line 152

provides the new contents of the trailing bit, and the

contents of the leading bit are output over the lLink-out

line 154. In the preferred embodiment, the link-in and

link-out lines 152 and 154 are provided by input latch B

(140), so that multi-bit shift-and-link operations may be

performed, but separate link-in and link-out lines may

alternatively be provided.

Figure 15 illustrates the extraction operation which

is performed by the barrel shifter 30. In the

illustrated operation, the barrel shifter 30 has been

commanded to extract bits 3-11 of the input, and these

bits are then provided as the leading bits at output latch
INTEL - 1006

INTEL - 1006

10

20

25

30

35

30 0071727
150. The circuitry required for an barrel shifter 30 to

perform these functions as well known, and is illustrated,

for example, in Mead and Conway, Introduction to VLSI

Systems, previously incorporated by reference.

The memory mapper 34 is merely a familiar structure

which forms a function familiar in processor architecture.

A virtual address received by the memory mapper 34 is
compared in parallel, by an associative memory operation,

with 16 stored virtual addresses. If the virtual address

received matches one of the stored virtual addresses, the

corresponding local address is used to fetch the desired

word from local memory. If there is no match, the virtual

address will be translated through a table lookup (such as”

a page table lookup) to determine the real address, and

can optionally be loaded into one of the register files.

By this means the. memory mapper 34 distinguishes between

memory units stored internally and memory units stored

externally. The memory mapper 34 thus permits hashing

table searches, and the hashing function used to select a

location in the hash table is firmware programmable. The

hashing table is implemented as a multiway set associative

Memory. The output of the hashing function points to
multiple locations to be searched in parallel. If the

desired address does not match the comparison made at the

multiple locations in the hash table, no other probes are

necessary since the desired address is (by design) not in

the table. Thus this mapping function maps memory units of
varying size. If the hashing function is used to support

a cache, the hash table entries will point to memory units

of tens of bytes. If the hashing function supports a

virtual memory translation lookaside buffer, the memory

units will be 512 bytes to 2,048 bytes typically. An

appropriate structure for the memory mapper would be that

contained in National Semiconductor chip No. 16082.
The interrupt manager 12 directly receives all

interrupts transmitted over the control bus 14. (The

interrupt protocol is discussed in greater detail below.)

The interrupt manager tests the appropriate destination

bit in each interrupt, to see whether its own processor is

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
31

an interruptee, and, if the address is appropriate,

compares the priority of the new interrupt with the

priority of the process currently being executed. If the

new process has higher priority, the interrupt manager

accepts the interrupt, and otherwise the interrupt manager

12 rejects the interrupt by pulling down the wire-ANDED
line.

The scheduler 16 buffers interrupts by priority ina

256 bit shift register. When a process is active, the

scheduler 16 scans through the shift register to find the
process with the next highest priority. When the current

process is finished or is timed out, the scheduler 16 uses

the priority of the next highest priority process to

access a table which contains a pointer to that process's

context. The appropriate context is then recalled from a

stack/register file 32, from RAM memory 66, or from
external memory.

Figure 18 provides a general overview of the data

path discussed above. Busses A and B (108 and 110) flank

the principal components of the data path, namely the

stack/register file 32, the barrel shifter 30, the ALU 28,

and the flag and shift register sets 44 and 46. In
addition, the left port 170 is provided at the input and

output ends of the data path. Although not in the

preferred embodiment, there is alternative provision for a

right port 172. This right port of one processor can be

used to connect to a left port of an adjacent processor.

For example, the right port of processor PR3 can be

connected to the left port of processor PR2. A literal

register 174 is also provided for generating constants.

Input is provided to the left port 170 from the memory

mapper 34, and the output from the right port 172 is also

routed through the memory mapper 34.

The stack/register file 32 must be a dual port

register file, in order to adequately utilize the two

busses 108 and 110. Otherwise the register file 32 is

completely conventional.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

32 0071727
The organization of the data bus 56 wWiilL now pe

described, together with the operation and structure of

the RAM memory 66, the bus control unit 58, and the memory

scheduler unit 68.

Figure 16 indicates the structure of data bus 56.

The data bus 56 includes 16 address lines 156, 16 data

lines 158, a round robin arbitration line 160, 4 source

lines 162, a module busy line 164, a source status line

166 and a BCU mode line 167. The separate address and data

lines 156 and 158 permit a data access operation to take

place within one single bus cycle, at least where the

speed of memory access permits this, as where the on-chip

RAM memory 66 is being accessed. Alternatively, the
address and data lines 156 and 158 could be multiplexed to

Save space. A round robin arbitration line 160 is daisy

chained among the four processors PRO-PR3, the four memory

modules 60, and the external data ports 72 and 73, so that

access to the data bus 56 is efficiently arbitrated. The

four source lines 162 specify the processor, module, or

data port which is the source of the memory access
request currently being conveyed. Alternatively, in

accordance with the status of control line 164, the source

lines 163 may be used to indicate which memory module 60

is going to be Serviced next by the memory module. The

10 destination lines 168 indicate which processor, module,

or port will receive the data. The source status line 166

shows (if low) that the source Lines 162 indicate the

processor, module, or data port whose memory request will

be serviced next. The high state of source status line

166 simply shows that source lines indicate the current

source. There are also two bus status lines 165 to

indicate if the bus is idle, used for reading memory or

used for writing memory.

The flowchart of Figure 17 provides further

clarification of the utilization of the lines within the

data bus 56. Once any source (a processor PRO-PR3, a RAM

memory module 60, or a data port 72 or 73) receives access

to the data bus (i.e., once that source receives a high
Signal on the daisy-chained line 160), the source

INTEL - 1006

 INTEL - 1006

10

{5

20

25

30

35

0071727
33

indicates its four bit code on lines 162. If the source

is a RAM memory module 60, and if the corresponding memory

scheduler unit 68 has a memory request pending, the source
lines 162 are driven to indicate which processor or memory

module will be serviced next, and line 166 is raised.
After this, or in any case if the source was not a memory
module subject to a pending memory request, the memory
access destination lines 168 will be raised to indicate

any combination of 10 destinations for the data to be read

out. An interlock is also provided to protect data

integrity: if the destinations include one or more RAM

memory modules 60 which have pending memory requests, the

busy line 164, which is wire-ANDED, is raised to avoid

concurrent reading and writing in the same memory space.

Figure 19 provides a general overview of the

organization of the RAM system in the RIC. Each processor

PRO-PR3 is connected, via its memory mapper 34, to a bus

control unit (BCU) 58, which provides interface with the

data bus 56. Each BCU 58 is also connected to a

corresponding memory scheduler unit (MSU) 68, and each BCU

58 and MSU 68 are both connected to a corresponding RAM

memory module 60.

When a processor accesses its own memory module 60,
the processor is directly connected through its BCU 58 to

its MSU 68. The MSU 68 indicates whether there are

pending memory requests. If there are no pending memory

request, the access occurs immediately. If accesses are

pending, the MSU 68 queues a tag indicating which

processor or data port first requested memory service.

An MSU 68 queues the request according to a first come

first served scheduling discipline. When a particular

request reaches the head of the queue, the MSU 68 signals

this to the processor or data port. The processor or data

port then reissues its request, and the memory access is

performed immediately. When a processor accesses a memory

module other than its own, the bus control units 58 must

be configured to permit communication via the data bus 56.

Thus, for example, if processor PR3 is to access the

memory module 60 corresponding to processor PRi, the DINTEL - 1006

INTEL - 1006

10

15

20

25

30°

35

34 0071727
control unit 58 corresponding to PR3 must be configured to

connect processor PR3 to the data bus 56, the BCU 58

corresponding to processor PR2 must be configured to

transmit communications along the data bus 56, the BCU 58

corresponding to the processor PR1 must be configured to

connect the data bus 56 (in the direction of processor

PR3) to the RAM memory module 60 which corresponds to the

processor PR1. As discussed above, the processor must

first wait for access to the shared data bus 56, which is

scheduled in round robin order. After a processor gains

access to the bus, it transmits the memory information and

a destination tag indicating the destination memory

module. Any memory module can have at most six requests

pending, since each processor or data port can have only

one memory request pending at a time. The memory

interface of each processor contains circuitry to monitor
the memory control signals which are communicated over the

data bus 56. This function is performed by the memory
Mapper 34.

The internal RAM memory of the RIC is preferably 16K

bytes of dynamic RAM, in an NMOS RIC (using CMOS

realization of high-power components such as bus drivers)

with a minimum geometry feature of one micron (lambda = .5

microns). .

Thus, the BCUS 58 play a crucial role in permitting
all processors to access the respective adjacent memory

module 60, while also permitting each processor to access

any other remote memory module over the data bus 56. The

structure of a BCU is shown in Figures 20 and 21. Each

BCU includes three bidirectional switches 178, 180, and

182. A short bus 184 is connected from the BCU 58 to the

Memory mapper 34 of the respective corresponding
processor, and a second short bus 186 is connected to the

address and data registers 62 and 64 of the corresponding

module 60. The bidirectional switch 178 is connected to

both of these short busses, so that, in one position, the

bidirectional switch 178 simply serves to connect the

memory mapper 34 directly to the registers 62 and 64, so
that each processor can access itS corresponding memory

INTEL - 1006

 INTEL - 1006

10

15

20

25

30

35

0071727
35

module 60, in parallel. The other position of

bidirectional switch 178 serves to connect the MSU 68 (via

short bus 186) to the data bus 56. Similarly,

bidirectional switch 182 either blocks data flow (when the

corresponding processor is accessing its own corresponding

memory module), or simply connects the short bus 184

directly to the data bus 156, or directionally connects

the short bus 184 to the two setments of data bus 56 which

are isolated when bidirectional switch 180 is in the

blocking mode. This mode of operation is shown in Figure

21, and permits operation of the RIC in the pipeline mode,

where each processor receives a data stream from an

earlier stage of operation, and contemporaneously provides

an output stream of data to the following stage of

operation. Thus, the pipeline mode requires parallel

transmission of different streams of data between

respective pairs of adjacent processors, and this

capability is provided by the blocking mode of

bidirectional switch 180 and by the directional connection

provided by directional switch 182.

When a processor accesses a remote memory module,

three different configurations of the BCUS may be

necessary. For example, if processor PR3 accesses the

Memory module 60 corresponding to processor PRO, the BCU

58 at PR3 must connect PR3 to the data bus 56, the BCU 58

corresponding to processor PRO must connect the data bus

56 to the corresponding registers 62 and 64, and the

intermediate BCUs 58 must simply permit clear operation of

the data bus 56. In the presently preferred embodiment,

the necessary coordination of BCUS 58 is accomplished by

BCU mode control line 167 in the data bus 56. When any

processor has taken control of the data bus, that

processor can then control all BCUs, uSing the BCU mode

line 167. When the arbitration lines 160 indicate that a

processor has taken control of the data bus 56, the only

necessary conditions which must be imposed on all BCUS 58

are that the bidirectional switches 180 must not block the

data bus 56. In addition, the bidirectional switches 178

in each BCU 58 are operated to connect the data bus 56 INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

36 0071727
the registers 62 and 64. Thus, each address register 64

receives the requested address, and the appropriate MSU 68

then operates the control register 70 of its memory module

60 to provide the data requested.

While the above system for controlling the BCUs 58 is

not the most efficient possible, it does avoid

interprocessor interference at a minimum requirement in

additional control lines. Preferably, each MSU 68 is

directly connected to Bus status lines 165 of the data

bus, to receive the read/write and enable bits needed for

RAM control register 70. Each MSU 68 is also provided

with two direct lines to its corresponding processor, to

provide RAM control data for local accesses without using.

data bus 56.

The memory scheduling unit (MSU) 68 operates as

shown in Figure 22. Whenever the data bus 56 is active

and the BCU mode control line 167 has been activated, the

MSU looks at the leading bits of the address lines 156 to

determine whether the access is for the memory module 60

which this MSU controls. If so, the next decision is

whether memory requests are already pending. If so, the

number of the latest requesting processor or data port it

queued in first come first serve order. Since at most six

sources (four processors and two data ports) will need to.

be queued, a small shift register will accomplish this.

Similarly, a memory access requested by the local

processor is deferred, and a busy signal returned, if

other memory requests are already pending. When a memory

read is performed, it is necessary to wait for the data
bus 56 to become available, and then to send the data word

to the destinations which have been designated over the

ten destination lines 168. If a write is performed, no

return Signal is required. In either case, the MSU 68

simply pulls the next pending memory request off the queue

register, and sends a signal to that source to notify it

that memory access is now available. The MSU 68 now waits

until the next source reissues its request, and then

enables the appropriate memory access, as noted above.
As will be obvious to those skilled in the art, an

INTEL - 1006

INTEL - 1006

0071727
37

address register 64, a data register 62, and a control

register 70 are provided as interfaces between the MSU 68

and the corresponding memory module 60.

In the presently preferred embodiment, each memory

module is addressed with a 16 bit address. This allows

for eventual growth of up to 64K bytes of directly

addressable space foe each of four processors. However, a

processor supports two types of addresses: 16 and 32 bits.

Sixteen bit addrsses are used to directly access a

processor's own memory module. Thirty-two bit addresses

are used to access external memory. In the case of

accessing other memory modules, the processor sends a 16

bit address and indicates the memory module by asserting
the destination signal associated with the desired

internal memory module. A 32 bit address can either be an

external address, or a mapped address, depending upon

processor control. If the address is designated to be an

external address, it is sent to the external memory

interface for processing. Otherwise, it is sent to the

memory mapper. The memory mapper uses an associative

search to determine if the address is internal or

external. If it is internal the associated internal
address is sent to the external memory interface.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

38 0071727
The status bus 52 (including the end around loop 54

of the status bus) interconnects the four processors

PRO-PR3, and the external status ports 74 and 75. The

status bus 52 includes only seven lines, namely a carry

status line 190, a carry IN/OUT line 191 an overflow line

192, a negative line 194, a zero line 196, and a processor

synchronization line 198, and shift rotate line 199. Thus,

including the end around loop 54, the status bus is only

14 lines wide. Each processor includes a corresponding

pair of status multiplexers 48 or 50, which are

programmable switches. These switches serve to selectively

and programmably connect the status output and input lines

of each ALU 28 to the status bus lines, both of the status”

bus 52 and of the end around loop 54, in either direction.

Figures 23-25 provide several examples of the status bus

connections selected by the status multiplexers 48 and 50.

When the processors are operating independently, as shown

in Figure 23, there is no need for status line

interconnections, and the status multiplexers 48 and 50

simply create open circuits in the status bus 52 and 54.

When -adjacent processors are operating in a pipeline

configuration, where the data output of (e.g., PR3 is

provided as an input to PR2, only the processor

synchronization line 198 needs to be connected. Finally,

when processors PR3 and PR2 are operating in a lockstep

configuration, as part of a 32 bit or wider processor, the

status outputs of processor PR2 are all provided as status

inputs to processor PR3. The processor synchronization

line is used in the lockstep mode to ensure that a new

operation is not started before the current is completed.

For example, ail processors may not receive their memory

access at the same time due to pending memory requests

from other sources being unevenly distributed across the

memory modules being accessed by lockstepped processors.

The status of the programmable interconnects in the status

multiplexer 48 and 50 is governed by control lines
provided from the DLA 22. The status lines 190 through
196 are connected to status inputs and outputs from the
ALU 28 and the flag register 46, the shift/rotate line 199

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727

is connectd to link-in and link-out bits of the barrel

39

shifter 30, and the processor synchronization line 198 is

connected to the DLA 22. The external status ports 74 and

75 also contain similar programmable interconnect

circuitry.

The manner in which the above structural features

cooperate to provide the reconfigurable multiprocessor

capability of the present invention will now be discussed

in further detail.

Figures 26, 27, and 28 illustrate the three principle

modes of operation of the restructurable integrated

circuit according to the present invention. Figure 26

shows generally the organization of the independent mode,

where processors PRO-PR3 function as, in effect, four.

independent processors which happen to be located on a

Single chip. Four separate instruction streams are

provided to the separate processor PRO-PR3, and the only

interface required between the separate processors is that

accessitated by the control bus and data bus protocols.

The same configuration also supports array processing

operations. In array processing, the interconnections of

the processors are the Same as for the independent mode;

the difference is that, in array processing, each

processor receives the same instruction stream. Of

course, array processing may also be based on lockstepped

subcombinations of processors (e.g., two 32-bit

processors).

Figure 27 shows an example of the RIC operating in

the internal lockstep mode. In this example, all four

processors have been reconfigured to operate as a single

64-bit processor. In this configuration, the control bus

14 carries a single common instruction stream, which is

received by all processors. The necessary synchronization

carry and status bits are communicated over the status bus

52 and 54, as discussed above. In addition, shift and

rotate linkage is provided, so any desired bit or rotate

operation may be performed on a 64-bit word, via the data

bus 56. (For this linkage, the data bus 56 is configured
as discussed above for the pipeline mode.) One-bit

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
shifts and rotations are performed over shift/rotate line

40

199. Accurate programming for this mode of the RIC

permits 64-bit access to the RAM memory 66 in a single

clock cycle, since each processor reads or writes its

16-bit segment of the 64-bit word, and all processors do

this in corresponding locations of the four RAM memory

modules 60 simultaneously.

Figure 28 shows an example of the RIC configured to

operate in pipeline mode. [In this configuration, the four

processors perform successive operations on what is

Originally a single data stream. That is, the total

instruction set is divided up (by the programmer) into

four operation sets which will each require approximately
equal time, and the four processors then each perform only

one respective portion of the instruction process on

successive portions of the data stream. Thus, where a

data stream must be operated on by an instruction set

which is ammenable to subdivision in this manner the

throughput is approximately quadrupled. Since the

division of the instruction set into four instruction

subsets is performed by the programmer, the instruction

stream appears, at the chip level, merely as four separate

and distinct instruction streams, one directed to each
processing step in the pipeline. As discussed above, the
BCUs 58 are configured to segment the data bus 56 and

permit direct data transfer between successive stages in

the pipeline (i.e., between adjacent processors). In

addition, lockstep and pipeline configurations may be

combined, so that the RIC operates as, e.g., two 32-bit

processors connected to form a 2-stage pipeline. [In this

case, the transfer of data between subsequent pipelined

stages must be multiplexed on the data bus 56. Thus, in

this example, where processors PR3 and PR2 form the first

stage of a 2-stage 32-bit-word pipeline, processor PR3

would transmit the most significant bits of the

first-stage output, while pulling down destination line

168 which corresponds to processor PRI, and PR2 would
subsequently output the least significant 16 bits of the

output word over data lines 158 while pulling down the

INTEL - 1006

INTEL - 1006

10

16

20

25

30

35

0071727
41

destination line 168 corresponding to processor PRO.

To accomplish reconfiguration, three main types of

interrupts are used. The first type of interrupt requests

the resources of other processors (i.e. interruptees) for

establishing a lockstep mode of operation. In this mode,

one processor controls the operations of the other

processors in the ensemble, and will therefore be called

the master processor of the lockstep ensemble. If this

type of interrupt cannot be accepted by all processors for

immediate processing (after the processors have performed

context switches), the interrupt will lead to no further

action, and will be reissued by the master processor

later. In this case, the master processor whose interrupt

was rejected will put its process in a buffer for future

rescheduling, and start running the process which it has

scheduled next. Also, it is the responsibility of the

Master processor to send an interrupt again at some later

time. Thus, a lockstep interrupt can be accepted only if

it can be processed immediately. This protocol minimizes

interprocessor communication by avoiding the necessity of

interprocessor interrupts which imply operations such as:

“your processor is needed," “my processor is now

available," "release my processor," and "your processor is

now released," etc. This reduces the numbers of bus

cycles used for interrupts and reduces the complexity of

process and interrupt scheduling. Simple buffering and

deferral of rejected interrupts is less complicated than

the alternatives discussed above.

The context switch for an interruptee in a lockstep

process will involve less context than other types of

interrupts. When a processor is involved in a lockstep

process, its microsequencer 36 remains idle during the

entire lockstep process. In effect, the master

processor's microsequencer 36 takes the place of the

Function of the microsequencer 36 in the other processors.

Thus, the other microsequencers' context can left alone,

Since in this case the sequencers will be idle. Of

course, this only matters if true microinterrupts are
permitted, i.e. interrupts can occur within the execution

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

12 | 0071727
of what would be macroinstructions in a conventional

machine. In a preferred embodiment, microinterrupts are

allowed, although their elimination would serve to reduce

complexity. The motivation for allowing microinterrupts

is two-fold. First, some applications, such as multichip

implementations of large CPUS, will not have

Macroinstructions, in order to achieve maximum

performance. Second, some macroinstructions can be very

long, such as string manipulation.

The interrupt manager of a slave lockstepped

processor keeps on monitoring the control bus 14 for

interrupts directed to it. However, if any processor ina

lockstep ensemble receives an interrupt with higher

priority than that of the currently running process in the
ensemble, the master processor, which monitors interrupts
directed to the slave processors, performs the appropriate

context switch in all processors of the block step
ensemble. The master also notifies the source of the

interrupt that its interrupt will be processed

immediately, using the normal interrupt reply. The master

processor also releases all processors in the ensemble

which are not required to serve the interrupt. The master

processor also puts the interrupted process in a buffer

for rescheduling. The master resubmits the interrupted

process to the other processors in the ensemble. After all
processors in the ensemble are again available, the

interrupted lockstep operation is resumed.

If a slave processor, while operating in a lockstep

ensemble, receives an interrupt having a lower priority

than the lockstep process, the slave processor buffers the

lower-priority process for future scheduling. Thus, while

the master processor must be able to identify interrupts

directed to any other processor in the ensemble, the

master processor's interrupt manager 12 is not required to

perform any action whatever on slave-processor-interrupts
which have a lower priority than the lockstep process.

The interrupt manager 12 in the respective slave

processors buffer lower priority interrupts.
The second type of interrupt requests specify some

INTEL - 1006

 INTEL - 1006

10

15

20

25

30

35

0071727
43

computation to be performed by the interruptee processor

(i.e., this is the familar "classical" interrupt). An

interrupt of this type will be followed by an instruction

stream specifying the process to be performed. An

interrupt of this type will be processed according to its

priority; when such an interrupt is scheduled for service,

the appropriate processor performs the requisite context

switch, in accordance with the first instruction following

the interrupt.

The third type of interrupt initiates a pipeline

process. The management of a pipeline interrupt is

similar to that of a lockstep interrupt. When a master

processor sends out a pipeline interrupt, all receiving

processors signal whether they can participate in the

Pipeline process. If less than all receivers are

available, the interrupt is withdrawn and is reissued

later. Also analogously, the master processor ina

pipeline process monitors interrupts directed to any

processor in the ensemble, and processers any interrupt

having a higher priority than the pipeline process. The

slave processors buffer only lower priority interrupts.

The principal difference between the control of pipelined

interrupts and the control of lockstep interrupts is that

the slave processors in pipeline interrupt process use

their own respective microsequencers 36 to execute

independent microinstruction streams. Therefore, the

context contained in the microsequencers 36 of the
respective slave processors must be saved.

In a Shared resource environment, such as those

discussed above, deadlock is an important hazard which

must be avoided. For example, if processors PRI] and PRO

each wish to acquire the resources both of processor PR2

and of PR3, and if processor PR1 succeeds in getting

control of processor PR2 while processor PRO gets control

of processor PR3, a deadlock would occur, if processors

PR1 and PRO were programmed simply to await availability

of the respective missing processor PR2 or PR3. Deadlock

is avoided in the present invention, by several

expedients. First, each process running and € aAFEL - 1006

INTEL - 1006

10

15

20

25

30

35

“ 0071727
interrupt is assigned a unique priority, by the

programmer. Conceptually, each process can be thought of

as having a name, which is identical to its priority and

the priority of the interrupt that initiates the process.

Because all processes running in the system have distinct

priorities, no deadlock can occur, since the interrupt

with higher priority will preempt the destination

processor. In the presently preferred embodiment, 256

priorities are allowed in the system, as indicated by the

eight low-order lines of the address bus during an

interrupt. Whenever an interrupt is accepted and.

buffered, the priority information is also buffered. When

a buffered interrupt is scheduled for service, the
interrupt control word, including the 8-bit priority

information, is fetched to start the process.

Thus, all processes (i.e., streams of instructions)

have a priority level (or name) between zero and 255,

where 255 is the highest priority. Every process is

initiated by an interrupt having the same priority as the

process itself. The master processor of a multi-processor

process interrupts all of the needed additional processors

with the same level interrupt. In a lockstep process, the

Same microinstruction stream is executed by all

processors. Each processor in the lockstep process is

treated as if it were executing the exact same process as

all other processors. (However, at times there are minor

differences due to the relative position of a processor in

a lockstep, e.g. the presence or absence of carry-in

bits.) The difference between lockstepped processors is

that their position determines the hardware

interconnection between processors, and the

Master processor processes the higher-priority interrupt

for all processors in the ensemble. In a pipeline

process, each processor is interrupted with the same

interrupt, and initially each processor executes the same

instruction stream to set up the pipeline process.

Subsequently, each processor in the pipeline process can

execute a different microinstruction stream. The
processors diverge from the initial common

INTEL - 1006

INTEL - 1006

10

0071727

45

microinstruction stream by using their respective position

numbers to select the corresponding proper branch into the

separate microinstruction stream for each processor. Even
though each processor in a pipeline process may be

executing separate microinstruction routines, all are

considered to be executing the same process, for chip

Management purposes. The master processor in a pipeline

ensemble processes higher priority interrupts for the

whole ensemble, similar to the management of a lockstep

process. A process requiring only one processor does not

require the protocols necessary for management of

multi-processor processes.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

46 0071727
A constraint which arises from the above-discussed

priority scheme is that processes cannot be shared without

restrictions. The restriction is that a shared process

cannot have more than one invocation at a time, within the

same processor. This restriction applies formally to any

process, but is of significance only for a shared routine,

because multiple separate processes could launch a shared

routine. This restriction avoids the complexities of

storing multiple states for a single process, and avoids

the mechanism which would be necessary to distinguish

multiple invocations of the same process. The desirable

features of sharing routines and allowing recursion

are nearly all obtained in a straight forward manner: if-

a routine is to be shared or called recursively, each

possible invocation of such a routine is assigned a

unique priority level. This solution saves the control

store space required to duplicate shared routines. Upon

lauching such a task, the priority level causes an access

to a control word. In the control word is a field that

points to the first address of the routine. A shared or
recursive routine will have multiple priority levels that

all point to the same starting address inthe control

store 38.

The provision of 256 priority levels is ample for

most applications, and thus is included in the presently

preferred embodiment. However, if morepriority levels
are desirable, it is of course a trivial task to allow

for, e.g., 10-bit rather than 8-bit priority

specification. Also, the provision of 256 priority levels

means that there are only 256 active processes at one

time. There can be an unlimited number of inactive

processes.

Consider, for example, using a restructurable IC

according to the present invention to emulate a 32-bit

CPU. Processes in the restructurable IC would be assigned

to tasks such as: instruction fetch, context switch,

instruction emulation, one process per external interrupt

level, self-test, reset, etc. In this case, 256 processes
would seem adequate.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

o 0071727
The major task of the interrupt manager 12 in each

processor is to receive and generate signals according to

the interrupt signal protocol. The interrupt manager 12

sends and receives interrupts, and also signals the

scheduler 16 whenever a new interrupt has been received,

and indicates the priority of the new interrupt relative

to the priority of the process currently under execution.

Both the scheduler 16 and the interrupt manager 12 must

store the priority of the current task being executed.

When a new interrupt preempts the process currently

underway, the scheduler 16 must immediately ascertain

whether the new process requires storing of the entire

context, including the contents of sequencer 36, or

whether only a partial context switch is needed.

Information regarding the required context switch is

encoded in the higher order address bits 84. Since only

eight bits are required to specify priority, six bits may

be used to encode additional information regarding an

interrupt, such as the degree of context switch required.

If the newly received interrupt is of lower priority, and

is therefore buffered, a full context switch is

necessarily required, when the buffered priority is

eventually scheduled, because such a process is

necessarily not a lockstep process. Only lockstep

processes do not require a full context switch. The

scheduler, in such a case, stores the proper context,

buffers the current task, and signals the interrupt

Manager 12 that the processor is ready to start the new

process.

The structure and operation of the scheduler 16 will

now be discussed in greater detail, with reference to

Figure 29. The scheduler 16 must keep a list of active

processes by priority. An active process is one that will

begin execution when it is the highest priority that can

be scheduled. To save hardware, the presently preferred
embodiment maintains a 256 by 1-bit list, namely the

active process buffer 200, to store active tasks.

Whenever a particular processor has an active process
named i (i.e., a process, awaiting execution, which has

INTEL - 1006

INTEL - 1006

LO

15

20

25

30

35

48 0071727
priority i), the ith position of this processor's active

process buffer 200 in its scheduler 16 will contain a one.

When a process in the active process buffer 200 is

scheduled for execution, its location in buffer 200 (which

is also its name and its priority) is used to access a

table 210 which contains pointers to the context of each

active process. Thus, the buffer 200 serves two main

purposes: to keep track of active processes, and to rank

active jobs by priority. The scheduler 16 thus has five

main components: the buffer 200, the currently executing

process priority register 202, the next active process

priority register 204, a programmable timer 206, and a

linear search logic 208 which linearly searches the buffer -

200 to find the next highest priority test.

The operation of the scheduler 16 is diagrammed in

the flowchart of Figure 30. The scheduler 16 may be

called into action by one of three possible prompts: at

the occurrence of an interrupt, the blocking of an active

process, or the completion of a process. A "blocked"

process is one which is prevented from continuing

execution, because the required resources are not

available. For example, a lockstepped process which does

not receive all requested resources is blocked, as isa

process which requires information (not received) from

another process. When a process is blocked, its execution

is first halted. Then all necessary context is stored.

The scheduler 16 then buffers this blocked process by

putting a 1 into the active process buffer 200 at a
location equal to the priority of the blocked process. The

priority of the blocked process is loaded into the next

priority register 204 ("NEXT" in the flowchart), so that

the blocked process will be idle at least until the next

time the scheduler 16 is envoked.

A blocked process can program an interrupt, using

timer 206, if desired. When such a process is blocked, it

programs the timer with an instruction. When the timer

206 counts down to zero, a prompt to the scheduler 16 is

issued. This prompt will cause the scheduler 16 to
perform the normal scheduling cycle. If the blocked

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

be 0071727
process which set the timer 206 has the highest priority,

it will be scheduled. However, the timer 206 will be

disabled if an interrupt is received via the control bus

14, if another process is blocked, or if a process is

completed. The timer 206 is disabled in these cases

because a normal scheduling cycle will be initiated, and

therefore the timer function is not required. This

scheduling discipline for blocked processes compromises

between, on the one hand, allowing the blocked process to

continually use chip resources to determine when the

needed resources are ready, and on the other hand, forcing

a high-priority process to be blocked longer than

necessary. This compromise has low hardware cost and is

expected to provide good scheduling behavior. However,

allowing the next process to have a greater priority than

the current process, while continuing to execute the

current process, does complicate the operation of

scheduler 16 somewhat.

When the scheduler 16 is invoked because of an

interrupt, the priority of the interrupt received is

compared, by comparator 212, with the greater of the

current priority (from register 202) and the priority of

the next process (from register 204). Preemption occurs

only if the newly received interrupt has the highest

priority of the three. If preemption is required, the

newly received interrupt is initiated only after halting

the current process and performing a context switch. The

“scheduler then places the greater of the next and current
priorities into the next priority register 204. The

current process is buffered by writing a 1 in the

corresponding priority level in the active process buffer

200. If preemption is not required, the newly received

interrupt is buffered in the active process buffer 200,

and no further information about the buffered interrupt

needs to be stored at the receiving processor. The

greater of the next priority and the interrupt priority is

placed in the next priority register 204. Thus, it is

possible in some cases that the next priority register 204
May not contain valid information. This can occasionally

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

i. 0071727
occur because at times it is necessary to perform a linear

search through the active process buffer 200 to find the

next highest priority. If the contents of the next

priority register 204 are not valid when required, the

operation of the scheduler 16 is stopped until the valid

data is found, which includes the case of finding no other

active process. Finally, if a process completion prompt

is received (which is communicated to the scheduler 1¢€

through a process status bit), the next process will be

Started, and the search for the next highest priority

process will begin.

To clarify the operation of the interrupt system,

the format of an interrupt control word (ICW) will now he.

described. Each process has an ICW associated with it.

An ICW is accessed by appending a predefined constant to

the priority of a process. All ICWs are contained within

a 256 word table in the control store 38. The constant

appended for accessing an ICW is, in essence, a page frame

number for 256-word pages. The ICW has been defined for

three formats, shown in Figure 31. Other formats may of
course be defined as needed. An ICW contains the

necessary information, corresponding to an interrupt

priority level, required to start or to restart a process.

The type field of an ICW is similar to an instruction.

opcode. Although the type field is 4 bits, only three

types of ICWs have been defined: type 0 is for
single-processor processes, type 1 is lockstep processes,

and type 3 is for pipeline processes. The type field may

also be used as an iristruction field to the interrupt

Manager, to command the issuing of further interrupts.

The position field identifies the intended

recipients of the interrupt. This field contains one bit

for each processor and a one in each bit position is used

to indicate that the corresponding processor should

receive the interrupt.

The priority mask field is used to specify an

executing priority that is different from the process name

or priority. In other words, the process priority can be

considered as a bidding priority (rather than an executing

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

- 0071727
priority) when the priority mask field is utilized. The

PM bit is used to specify whether the priority mask is to

be utilized or not. The priority mask is used to increase

the probability that a process requiring multiple

resources will run to completion. The priority mask

is restricted to using a priority value which has not been

assigned to any other process. Otherwise, it would be

possible to reach deadlock when two processes contended

for resources with the same priority.

The next priority field provides the possibility of

assigning multiple priority levels to the same process.

This field is valid only if the NT bit is al. This

capability permits a run time determined priority to be

assigned to a process. This facility would be useful when

the urgency of a process changes in time. For example, a

process may issue an interrupt with a given priority

level, in anticipation of a needed service. If the

interrupt does not cause immediate action, the initiator

of the interrupt will try later. However, since the need
for the interrupt service has (in this example) become

more urgent due to the time delay, the initiator can issue

the interrupt with the next highest priority. The next

highest priority is contained in the next priority field.

Another way to use this capability is to initiate multiple

instances of the same process. This mode of operation

provides parallelism if the position field differs from
priority level to priority level. If the same position

field is used, then recursive routine can be implemented.

Finally, the control store address field points to

the address of the first microinstruction of the process

microroutine which is being introduced by the current

interrupt.

As noted above, only 8 lines of the 14 control store

address lines 84 are used to encode the priority when an

interrupt is sent. It is therefore useful to use one of

the six remaining available bits to specify whether a full

or partial context switch is to be undertaken. In

addition, another of these bits may be used to specify
whether the interrupt is to be buffered or not, if it

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

9071727

cannot. be processed immedately. Thus, Figure 32 shows the
format of the control store address lines 84 as an

interruptis being sent.
To further clarify the operation of the interrupt

system, Figure 33 provides a timing diagram corresponding

to a sample interrupt, where processor PR3 is interrupting

processor PR1. At time n, processor PR3 gains control of
the control bus 14, and indicates (on line 13) that it is

the source of the interrupt, and (on line DR1) that

processor PR1l is the destination of the interrupt. At

this time too, processor PR3 pulls down the interrupt

ready line 104 , since no other interrupt should be

transmitted over the control bus 14 until the current

interrupt has been acknowledged. At the next clock

interval, processor PR1 acknowledges the interrupt, by

raising the appropriate line of interrupt bus Il, to

indicate that processor PR1 will initiate the interrupt

after performing a context switch. Processor PR3 then

drives the address bus 84 with the address of the

microinstruction which is to begin the process signaled by

the interrupt, and, when processor PR1 completes its

context switch, processor 1 then loads this address and
raises (or ceases to pull down) interrupt bus I3 and

interrupt ready line 104, to indicate that reception of

interrupts is again possible.

The above indicates the organization of interrupt

protocols, to provide for reconfigurability and for

multi-processor capability. Other elements in the command

structure which are required for reconfigurability include

commands switch, when interpreted by the DLA 22 and by the

DLA decoder 26, specify reconfiguration of the status bus

multiplexers 48 and 50, or which specify operations of the

bidirectional switches 178, 180, and 182 in one of the

BCUs 58.

INTEL - 1006

 INTEL - 1006

10

15

20

25

30

35

0071727
53

The preferred embodiment of the restructurable IC

according to the present invention is contained in 84-pin

package. (An alternative 112-pin package, permitting 64-

pins for data and addresses, is less economical.)

For some configurations, the full 84~pin package is

not required, and cheaper packages might therefore be used

for medium-quantity production of RICs designed for such

applications.

The preferred package for the RIC according to the

present invention is in an 84-pin plastic leaded

chip-carrier, as described, e.g., in Electronics Magazine,

June 30, 1981, at page 39-40, which is incorporated by

reference. However, pin assignments are shown in Figure

34, for convenience, as if the RIC were contained in a

very large DIP package.

The preferred embodiment of the RIC has two 16-bit

data/address ports. Each port has 16 bidirectional lines

for carrying data and addresses. The data/address pins

are numbered 1 through 16 for port 1, and 26 through 41

for port 2. Only the pins associated with data port 1
will be discussed, since the corresponding pins of data

port 2 are functionally equivalent. Data ports 1 and 2

correspond to external data ports F2 and F3 shown in

Figures 1 and 2. In addition to the simple pin

connections, the external data ports 72 and 73 include

handshake signals (pins 17 and 18), for arbitrating

control of a shared external bus between One or more RICs,

external memory, I/O devices and addressed devices. Each

port includes additional pins (22 and 23) to synchronize

the sending and receiving of data and addresses on the

bus. Each port also has a bidirectional set of three

lines (pins 19-21) to indicate bus status, anda

bidirectional pair of processor tag identifiers (24 and

25). Data ports 1 and 2 are independent. However, these

ports can be operated as a Single larger port, by

internally performing the same operation to both ports

concurrently, and by externally treating the two ports as

one port. There are two main functions of the external

data port. One function is to serve as external da hare 1006

INTEL - 1006

10

15

20

25

30

35

7os 007172
ports 72 and 73. One major function of the data port is

to serve as an interface between the internal data bus 56

and the external data port pins. Effectively, what this

Means is that it has a capability of receiving an internal

command to send out data and addresses, and it can provide

that function and convert that into the appropriate
signals to the external pins. Secondly, it can receive

information from external pins and then do the proper

conversion and sending of the signals appropriately to the

internal RAM. bus 56. The second major function is a block

transfer mode. This differs slightly from the other above

operations in that instead of sending a command to send-

out one address and data word for example, the command is

more general in that it can send out multiple addresses

and data words are under internal control and instruction.

As is conventional, the most significant chunk of

data or address will be sent on the first cycle, followed

by successively less significantly chunks on successive

cycles. Ail chunks of an address or data are sent over

the same port on which the first (i.e., most significant)

chunk was sent.

These two data ports are common to all. processors on

a chip. Any processor, or any internal configuration

involving two or more processors, can use either data

port. A port is selected through the memory mapper 34

within a processor.

In addition to the functions related to external

communication protocols, which will be discussed below,

the external data ports 72 and 73 also contain circuitry,

exactly as discussed above regarding the processor

implementation of the data bus protocols, so that external

processors may also access on-chip memory.

INTEL - 1006

 INTEL - 1006

10

15

20

25

30

35

0071727
55

Data path arbitration: The facility for arbitrating

a Shared data path has been provided. Each RIC can

function with external arbitration circuitry,

master-slave, or with a round robin arbitration scheme.

The arbitration mode is designated upon the start-up of a

RIC. The arbitration signals are called Data Path

AVailable (DPAV) and Data Path GRanted. The signal labels

for port 1 are DPAV1 and DPGR1 (pins 17 and 18), and DPAV2

(pins 42 and 43) for port 2. Henceforth, these signal

labels will be referenced without a numerical suffix to

discriminate between two identical ports. When the

external arbitration circuitry mode is used, a RIC starts

the process to gain control of the bus by raising the DPAV

output signal which is connected to the external

circuitry. When the arbitration determines that the data

path is available for the requestor, the requestor's DPGR

signal is raised. For master-slave mode, the master RIC

always controls the bus. If a slave RIC wants the bus, it

sends a request to master via the DPAV signal. The master

signals that the bus can be used by the slave by raising

the DPGR signal. The other mode of arbitration is a round

robin scheme. In this scheme, a one is circulated among

data path users. When a RIC has either completed a data

' path operation or has none pending, it raises its DPAV

signal which is connected to an adjacent RIC's DPGR

signal. When a RIC's DPGR signal goes to a one, if a data

path operation is pending, it will gain control of the

data path. Otherwise the RIC will raise its DPGR signal.

If a RIC which has given up the bus determines that no

other resource wants to use the bus, this RIC will trap

the circulating 1. Then to maintain synchronization (if

any), this RIC will recirculate the 1 by raising its DPGR.

Data path status: Each port has three pins (19-Zl1,

and 44-46) to indicate the status of the data path. Only

the user which has gained control of the data path can

output on the bidirectional pins for data path status.

The assignment of the status pins is listed in Table 1 for

port l. (Port 2 is identical except that pins 44-46

replace pins 19-21 in Figure 34.)
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
56

Table I Data Path Pin Assignment

Pins

bh wo NO oS nS penn Function

Write to adjacent RIC

Readfrom adjacent RIC
Write to destination address

Read from destination address

Write to memory .

Read from memory

Write from 1/0

Read from I/O

FRPPreoOoOfooO HerOOHfFoOOo HeOfOFOF©
The data path status indicates the type of. data path

operation. There are four possible destinations for the
data path operation: a designated RIC, a destination
whose address is specified by the first portion of the

data transfer, the system memory, or the system I/O unit.

A read or write operation can be performed with any of

these four destinations. The actual number of 16-bit

address units and 16-bit data units transferred to any

destination is determined by programmation of the RIC and

the destination hardware. Direct communication is
provided to only one adjacent RIC. The destination

address mode is a general method to specify a source or

sources for a data path operation. The first portion of

the data transfer specifies an address which determines

one or more destinations. The number of 16-bit units

which comprise a destination address is user specified.

In this mode, an address is sent to all receivers on the

data path. The receivers determine whether the address is

one of their own. All addressed receivers continue to

participate in the remainder of the data path operation.

The format of the address length and data length for the

memory and 1/0 destination operations are also user
specified.

PR tag pins: These pins are bidirectional pins. As

output pins they are used to denote the source processor

INTEL - 1006

INTEL - 1006

LO

15

20

25

30

35

> = 0071727
of a data path operation, i.e., a single processor wnicn

has initiated a data path operation or the processor which

is the master processor of an internal lockstep. The data

port can thus be used with an organization in which the

data path is not controlled by a sender during an entire

data path operation. For example, a RIC could relinquish

the data path after sending an address to memory for a

read and wait for the memory to gain control of the data

path and send back the data. The motivation for

temporarily relinquishing the data path is to allow

another data path transaction to occur in the meantime.

Under this relinquishing discipline, the PR tag

information is essential in a READ operation, since the

data retrieved from the memory may return in a Sequence

which is different from the sequence of READ requests.

(this will happen, for example, in a shared interleaved

memory). The (external) memory controller buffers these

pins to tag the data appropriately when it is returned to

the RIC. Internally, the external data port 72 or 73

decodes this information onto one of the destination lines

168, to map the received data to the proper memory

location. These tag pins also indicate a destination

processor for RIC to RIC communication.

Data transfer synchronization: These two pins are

required to ensure that data is transferred correctly

between a source and destination on the data path. The

Pins are Information Available (IA) and Information

Received (IR). The protocol for transferring information

is as follows: Upon gaining control of the data path, the

source immediately pulls the IA signal low. As the source

places information on the data/address pins, the IA signal

is raised to a one. The raising of the IA signal implies

to all receivers that information is being transferred on

the data path. The IR signal is normally low. When a

receiver has buffered the information from the data path,

it raises its IR signal. The IR signal is wireANDed.

Thus, in the case where there are multiple receivers, the

IR signal will remain low until all receivers have

buffered the information.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

| 58 0071727

In summary, a data path has been specified to build

arbitrary data path networks with the use of the flexible
arbitration process. The destination of an information
transfer is general because of the capacity to address

destinations. The information format is general because
it is specified through programmation of the RIC's and
configuration of the memory and I/O systems. Finally, the

transfer of information can be point to point or

multidrop.

The interrupt port (pins 51-58) serves two purposes.

One purpose is to receive and process external interrupts

as conventional microcomputers and microprocessors do. The

interrupt concept has been generalized to include this|
conventional purpose along with the capability to send

interrupts to other receivers. This generalization

provides interchip communication. The purpose of

interchip communication is to coordinate RICs to a task,

and to transfer information. The interchip communication

system is used to transmit the command part of an

interchip communique. The data part of an information

transfer is communicated between memories. For example, a

disc read operation is initiated by using the interrupt

port of a RIC to send commands to a disc controller. The
data transfer is accomplished on a separate data path

between the disc system and the memory system.

_ interrupt bus arbitration: The interrupt port of the
RIC has eight pins 51-58. Pins 57-58 are for arbitration

of shared resources used during the sending of an

interrupt. Three modes of arbitration are supported. One

mode supports a common interrupt bus which is arbitrated

in a round robin scheme. In this scheme a one is

circulated among the chips sharing the interrupt

resources as described above. The Interrupt Available

(IA) output (pin 58) of one chip is connected to the

Interrupt Granted (IG) input (pin 57) of the adjacent
chip. When the IG goes to a one at a chip, that chip can

issue an interrupt. If that chip does not have an

interrupt to send, it raises its IA signal. The second

mode is the Master slave mode described in the data port
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727

arbitration discussion. The master RIC normally has

59

control of the bus. If a slave RIC requests access by

raising the masters IG input signal, the master grants

control of the bus at its option to the slave, by raising

the master's IG signal. Another arbitration mode is to

connect the Interrupt Available and Interrupt Granted

Signals of each chip to external arbitration hardware.

When a RIC has an interrupt to send it raises the IA

signal. The external hardware raises the IG signal when

the interrupt port is available for the requestor's use.

The motivation for providing three schemes of arbitration

is to provide generality of application. The round robin

arbitration scheme provides an economical method of

connecting a small number of RICS for interchip

communication. The master-slave scheme allows the use of

a common method for coordinating multiple intelligent

devices. The capability to attach the RICsS to an external

interrupt manager makes it possible to build arbitrary

networks for interchip communication.

Interrupt information: Four pins (53-56) of the port

are dedicated to external interrupt information. The

external interrupt information protocol has minimal
specification with maximal user definition. Also, the

information protocol is self describing with respect to

discriminating between addresses and data. Also, the

protocol describes the length of the message. These self

describing features are described below. The information

protocol specifies that the first part of any communique

be the address which identifies the receiver(s) of the

interrupt. The length of the address is designated by the

user. When an interrupt is sent, all chips on a common

interrupt bus receive the address and store it. As will

be defined below, the interrupt status Signals indicate

whether the information lineS carry address or data. The

receiver buffers the address portion as long as the status

indicates address bits are being sent. After the

destination address has been sent, each receiver uses the

address to access a bit in the chip's RAM Memory 66. IE N

address bits are being sent, the high order N-3 are used
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

60 0071727
to address a byte within a table in internal memory. This

byte is sent to the RIC's external interrupt manager 76.
The lower order three address bits then select a bit

within this byte. If this selected bit is a one, then

this chip is a destination for the interrupt. This RIC

will continue to buffer the remaining information

associated with the interrupt if any is sent. This

address lookup mechanism is optional. In simple interrupt

schemes, any interrupt received could be for any receiver.

The remaining two pins (51 and 52) of the
communication port are used to indicate the status of the

interrupt bus. The assignment of the pins is shown in

Table 2: ,

Table 2

Assignment for Communication Status Pins

Isl IS2

(pin 51) (pin 52)

1 1 Receiver Ready

1 0 Sending Data

0 1 Sending Address

0 0 Information Transfer Complete

The two interrupt status lines are used for two

purposes. One purpose is to provide the asynchronous hand

shake signals between the source and destination(s). The

other purpose is to differentiate between address and data

information transfers. The interrupts signals are in the

11 (i.e., ISl=1 and IS2=1) state before the interrupt

information information transfer begins. Let the first

nibble be an address. As the first nibble is sent, the

interrupt status is 01. All IS1 signals are wireANDed

togther. Also, all IS2 signals are wireANDed together.

After a time delay, the sourceof the interrupt allows the
IS1 signal to float. Each receiver pulls the IS1 signal

to a zero as the information is loaded into the chip.

After a chip has processed the received information, this
chip allows the ISl signal to float. After all receivers

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

a 0071727
have processed the information, the IS1 signal will become

aone. Then the status is 11. The sender then learns

that the next nibble, if any, can be sent. The type of

the next data is determined by the status lines. The

status 01 corresponds to address information, and the
status 10 corresponds to data information. If data

information is sent, the sender uses the same protocol

which is used for address information transfers. The only

difference is that after the information is sent, the

sender floats both the IS1 and IS2 signals. After the

last nibble is sent, the sender puts the status 00 out to

Signify the end of the interrupt information block. After

a delay, the sender floats the status signals. This

informs the receivers that the interrupt is over. If

external arbitration is used, the end of the interrupt

also means that the next interrupt can be started. If

round robin arbitration is used, the sender raises the

Interrupt Available signal to begin the selection of the

next interrupt sender. If master-slave operation is used

and the sender is a slave, the master regains control of

the interrupt resource. If the master is the sender, this

informs the slave that the interrupt resource can be bid

for.

The communication process begins by an MPS sending an

interrupt to the chip's external interrupt manager 76. As

described above, a priority byte and four bits of runtime

information are sent to the receiver of an internal

interrupt. When the interrupt manager 76 receives an

internal interrupt, the priority byte points to a table

entry. The table is contained in the chip's RAM 66. The

table entry points to a message block. The runtime

information implies the number of bytes in the message

block. This allows 15 bytes to be sent out. If the

runtime information is a decimal zero, the second byte in

the message block contains the number of bytes in the

message. If the second byte is a decimal zero (along with

the runtime information), the next two bytes contain the

number of bytes in the message block, etc.

After the chip's external interrupt manager 76 has
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

62 0071727
received an interrupt for external sending, the interrupt

Manager 76 begins the interrupt sending process by gaining

access to the external interrupt bus. If the arbitration

scheme is round robin, or if the arbitration scheme is a

mMaster-Slave and the sender RIC is a slave, the sender

waits until the Interrupt Granted signal goes to a one.
The master can send interrupts whenever it controls the

interrupt resource. If the external arbitration scheme is

used, the sender raises the Interrupt Available signal.

The sender then waits until the Interrupt Granted signal

goes to a one. The hardware control of the Interrupt

Granted and Interrupt Availabie signals is determined by

two status bits which are initialized at startup. If

these bits are ll, the round robin arbitration is used,

and the external arbitration scheme is used if these

bits is a 00. The master slave mode is indicated by 10.

After gaining control over the external interrupt

bus, the external interrupt manager sends the destination

address. The interrupt manager 76 fetches data from the

chip's RAM 66 and sends the information, a nibble at a

time, on the interrupt port's information lines 53-56.

The beginning of the message block is implied by the
priority byte which the source processor sent to the
external interrupt manager 76 to initiate the sending
operation of the external interrupt manager 76. The

priority byte points to an entry in the External Interrupt

Table which contains both a byte which indicates whether

the interrupt is to be sent both externally and

internally, and the starting address of the message block.

The first byte in the table is used to indicate a self

interrupt, that is, an interrupt which is concurrently

sent externally and internally. This type of interrupt is

needed for interrupting external locksteps, as will be

discussed further below. The leftmost nibbleof this

byte is all ones. The right nibble is used to indicate

which internal processors are to be interrupted. The most

significant bit of the nibble corresponds to PR3, the next

most significant bit corresponds to PR2, etc. If a one is

contained in any bit of the right nibble, the

INTEL - 1006

INTEL - 1006

10

15

20

0071727
63

corresponding processor will receive the self interrupt.

The end of the destination address is marked with a byte

of zeroes. When the external interrupt manager 76 detects

the byte of zeroes, the data portion of the interrupt

message is sent if any exists. The end of the data

portion is again marked by a byte of zeroes. Then the
interrupt Manager 76 sends the source of the address if

any exists. The internal interrupt data structure is

illustrated in Figure 35. The interrupt manager sends

nibbles until the message block has been sent as

determined by the length of the message block communicated

to the external interrupt manager. After sending the

message block and before processing any other interrupt,

whether external or internal, the external interrupt)

Manager 76 writes the status of the interrupt in a table

and sends an interrupt to the processor which initiated

the interrupt. Also, if the sending of the interrupt

message block is terminated abnormally, this status is

written into the same table and the originating processor

is interrupted. This interrupt sending process is

illustrated in Figure 36.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

64 9074727
As described above, all RICS on a@ COmmon saucers upe

bus receive the destination address and buffer it in their

respective external interrupt manager 76. After the

address has been received, each external manager 76

accesses a bit to determine if its respective chip is a

destination of the interrupt. If an RIC is an interrupt

destination, the external interrupt manager 76 buffers the

remainder of the message within the chip's internal RAM.

At the end of the data portion of the message block, the

interrupt manager writes a byte of zeroes to signify the

end of the data portion. The interrupt manager also

buffers the source address of the interrupt if one is

sent. After the message block has been sent, the

destination RIC's external interrupt manager 76 uses the
destination address to access the External Interrupt Map

Table in internal RAM 66 to determine which processors on

the RIC are to receive the interrupt and what priority the

interrupt has internally. The priority of the internal

interrupt is used to designate the location in the

External Interrupt Message Table in which to write the

Starting location of the message block and the length of

the message. Then the external interrupt manager sends an

interrupt to the processors on the chip. They usethe
information in the External Interrupt Message Table to

access the message block and process it.

The memory management of the RAM areas used by the

external interrupt manager is performed by the processor

which send and receive the interrupts. When a processor

sends an external interrupt, it passes a pointer to the
message block. After the external interrupt manager 76

sends the interrupt, the sending processor is informed of

the status of the sent interrupt. If the interrupt has

been sent successfully, the processor can reclaim the

message block memory area. The external interrupt manager

76 lacks the power of a processor PRO-PR3 to perform its
own memory management. Thus, the external interrupt

Manager 76 requires memory management for the area in

which it writes a message block received externally. The

external interrupt manager has two memory pointers for

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727

storing message blocks: Current Message Block pointer

(CMB) and the Next Message Block pointer (NMB). If CMB is

valid, the external interrupt manager 76 will use this

pointer as the beginning of the message block and will

increment an address pointer after each byte of the

received message block is written. After the interrupt
message block has been received, the destination

processors are informed of the interrupt. The external

interrupt manager moves the NMB into the CMB immediately

and marks the NMB as invalid. The processors which have

received the interrupt immediately start a high priority

process which calculates a new message block area. The

Starting address of this new message block is written into

the external memory manager's NMB register. If the

external memory manager reaches the state in which neither

the CMB nor NMB pointers are valid, the transmission of

the message block will be halted until a valid pointer

exists by signalling “not ready" to the sender of the

interrupt.

The external interrupt manager 76 has a maximum block

parameter which is initialized at startup. If a message

block is sent which is greater than the maximum length,

the external interrupt manager Signals "not ready to

receive" to the interrupt sender. Also, the external

interrupt manager determines the source processors and

sends them an interrupt which implies message block

overflow. The processors then perform the action that has

been programmed in. For example, the processors can do

nothing which will abort the interrupt after the sender

exceeds a timeout. Another possibility is to send the

external interrupt manager 76 another message block

pointer. The external interrupt manager 76 is informed by

internal interrupt that it must continue receiving the

message block starting at the new memory pointer. This

latter procedure is used where the message block length is

variable and the maximum block length is set to be greater

than or equal to the majority of the message blocks.

The purpose of this interrupt interface is to provide
a spectrum of user definable interrupt mechanisms. The

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

66 0071727
simplest interrupt scheme is similar to the interrupt
mechanism used in conventional microprocessors. The

flexibility to expand beyond this simpler scheme is

achieved through internal programmation.

There are two status ports, status port 1 (pins

59-67) and status port 2 (pins 68-76). The status ports'

Signals are identical. Only status port 1 will be

discussed. One of status port's main functions is to

provide the signals to lockstep two processors on

different RICs. Status port 1 can be used to lockstep PRO

or PRI, or a lockstep of PRO and PRI, to external

processors. Status port 2 can be used to externally

lockstep PR2 or PR3 or internal locksteps in which PR2 or-

PR3 is the most significant master processor in the

lockstep. There are four types of pin functions in each

Status ports: ALU result status, carry linkage,

shift/rotate linkage, and interchip synchronization.

Status port 1 (pins 59-67) connects to the internal status

bus 52 and 54 through External Status Port 75 (seen in

Fig. 1). Similarly, status port 2 connects through

External Status Port 74 (seen in FIGs. 1 and 2).

ALU Result Status: There are four lines (59-62) for

indicating the ALU result status. There is the Negative
result status, N; the Zero result status, 2; the Carry

result status, C; and the overflow result status V. These

four signals are each wireANDed to an external bus

connected to all status ports which are externally

lockstepped. These signals are encoded to indicate up to

one of 16 ALU result statuses. The operation of these

lines is closely analogous to the internal generation of

ALU result status and the connection of ALUs (over

internal status bus 52 and 54) for internal lockstep

configurations as discussed above.

Carry Linkage: The carry linkage contains a carry in

Signal (pin 63) and a carry out signal (pin 64). The

carry out signal of one RIC is connected to the carry in

Signal of the next most significant RIC. If one's

complement arithmetic is used, the carry out of the most

significant processor is connected to the carry in of the

INTEL - 1006

INTEL - 1006

10

L5

20

25

30

35

00717or 71727
least significant processor.

Shift/Rotate Linkage: The shift/rotate linkage is

used to perform shift operations between externally

lockstepped processors. The shift/rotate hi signal

(pin 65). of a RIC is connected to the next most

significant RICs shift/rotate lo signal (pin 66). The

shift/rotate hi signal of the most significant RIC is

connected to the Shift/rotate lo signal of the least

significant RIC to provide the rotate linkage.

Interchip Synchronization: The purpose of the-

interchip synchronization (pin 76) is to ensure that

externally lockstepped processors are executing the same

instruction in phase. Processors in an external lockstep

can get out of lockstep without synchronization, because

other processors on one of the same RICS may be operating

independently of the externally lockstepped processors.

Thus, the time to fetch a microinstruction may vary among

the RICs containing the lockstepped processors. The

interchip synchronization pin serves as a flag to indicate

that each processor has finished the previous

microinstruction and has fetched the next microinstruction

and is ready to execute it. The interchip synchronization

pins are wireANDed together. When all externally

lockstepped processors are ready to execute the next

microinstruction, the interchip synchronization line will

be high. If one or more PRS are not ready, the line will

be pulled low. When the synchronization line is high,

execution begins on the next clock cycle. (All RICs with

PRs in a common external lockstep must use the same system

clock.) Shortly after execution begins, the interchip

synchronization line is pulled low until all PRs are ready

to execute the next microinstruction. When PRs are

externally lockstepped, they must be uninterruptable

during a microinstruction execution. This interrupt

restriction is needed to ensure that externally

lockstepped processors remain synchronized after beginning

a microinstruction execution. The benefit of this

restriction is that no other synchronization is needed for
the pins of the status port. There is one other issue

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727

related to the synchronization of externally lockstepped

68

processors. The effect of interrupts must be considered,

since an interrupt directed at a processor in an external

lockstep can disrupt the synchronization of the

processors. In order to maintain external lockstep

synchronization without added pins or added overhead,

interrupts to an external lockstep are restricted to being

directed at all the MPSs in the external lockstep. This

is not too severe a restriction, since it is possible to

interrupt a subset of an internal lockstep. Requiring

interrupts to be sent to the entire external lockstep

eliminates the need for processors in the external

lockstep to communicate the name of the interrupt they are
about to begin to process. An interrupt sent to an entire

external lockstep will be executed properly because all

RICs which contain the external lockstep to be interrupted

receive the same interrupt at the same time. The external

interrupt manager of an RIC processes interrupts in the

order in which they are received. Thus all processors in
an external lockstep will receive interrupts in the same

order. The self interrupt feature of a RIC is needed in

the case where an interrupt to an external lockstep is
generated within a RIC which contains a processor in the

external lockstep to be interrupted. As mentioned above,

a self interrupt is treated by the sender of the interrupt

as it is also receiving the interrupt.

As discussed above, a processor in an external

lockstep cannot be interrupted within a microinstruction.

At the end of a microinstruction a processor which has
been interrupted will issue a code on the four ALU result

status lines. (e.g., 0111.) This code implies that an

interrupt of the external lockstep has been received by at

least one of the processors. This will halt the external

lockstep execution. Each processor will discontinue
pulling down the interchip MPS synchronization line when a

context switch has been performed. If another interrupt

with higher priority than the current interrupt is sent to

the external lockstep during the time in which the current

interrupt is being switched to, the next interrupt is
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
69

ignored until all the processors have switched to the

current interrupt.

There is another main function of the status ports.

The external ALU status pins N, 2, C, V, have a value as

determined through taking the actual internal ALU status

pins as input to the control DLA 22 which then generates

the value sent to external pins. The above described

capability thus allows the actual external signals to be

used for generating real time signals. For example, in

the case of CRT controller implemented with a RIC, the N

signal could be internally controlled to generate a

horizontal syne signal. Also, the interchip

synchronization signal can be used as a direct interrupt

into the internal control system (i.e., the DLA 22 etc.).

For example, the interchip synchronization signal could be

internally interpreted as an external clock which causes a

predetermined operation to occur during each clock cycle.

All processes of an external lockstep are initiated

by interrupts. A reset to a RIC causes the master

processor in an external lockstep to generate a self

interrupt to start the external lockstep. At the

completion of a process, the master processor issues a
self interrupt to initiate the respective processes with

the highest priorities.

There are two chip control lines, the Reset In

(RI) (pin 77) and Reset Out (RO) (pin 78). The RI and RO
Signals from all RICsS are separately connected. The RI

Signal is active high. When the RI signal is raised to a

1, the RICs begin to initialize themselves for operation.

The RO signals are effectively wireANDed together. When a

RIC has completed the initialization operation, the RO

signal which had been pulled low is allowed to float. When

all RICs have completed initialization, the RO signal will

be high indicating that the system has finished

initialization.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0 0071727
When a chip is initialized, processor PR3 is

immediately initiates a process having the highest

priority (255), in which processor PR3 is the master.

Processor PR3 then loads a fixed address in location 0 of

the on-chip RAM 66, and processor PR3 then interrupts the

other processors to begin their required processes.

In the presently preferred embodiment, wherein the

RIC is embodied in one micrometer geometry NMOS with CMOS

used for high-power portions, two power pins 81 and 82 are

used: at three volts and at ground.

In addition, the presently preferred embodiment

places a clock generator on the RIC, requiring only a

crystal to be placed across the two clock inputs (pins 79

and 80). Alternatively, an external clock can be

connected to these pins, as would be desirable, e.g.,

where a system using multiple RICs was to ke embodied.

Figures 37 through 41 illustrate some specific

configurations attained using one or more RIC chips.

Figure 37 illustrates a 16-bit pipeline RIC configuration.

Note that the pipeline process need not be limited to only

four stages of processing, but, by linking together

additional RICs, may include as many stages as desired.

Figure 38 illustrates a 32-bit pipeline. Note that

processors PR3 and PR2 are lockstepped together, as are

processors PR1 and PRO. Note also that, again, although

only two stages of the pipeline are illustrated, the

pipeline may include any desired number of stages, simply

by linking together a sufficient number of RIC chips.

Figure 39 illustrates a 64-bit external lockstep

pipeline configuration. Note that processors PR3 and PR2

of RIC A, and processors PR3 and PR2 of RIC B are all

connected in lock step, as are all processors PRI] and PRO.

In Figure 39, the 32-bit outputs from both RICs are shown

as multiplexed over respective single 16-bit data ports,

which since one of the data ports, ina pipeline

configuration, is necessarily used to receive data

supplied from the previous stage. Even wider pipelines

may be created analogously, by extending the width of the
external lock step configuration which units processors

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
71

PR3 and PR2 on different RIC chips. Thus, the width of

the pipeline word may be extended in 32-bit increments. A

32-bit increment is added by connecting all pins of the

status port for a particular stage except the carry in/out

and shift/rotate high/low signals. These signals (except

the carry and shift/rotate signals) are properly

functioning when they are, wireANDed together. The carry

out signal is connected to the next most significant carry

in pin. The shift/rotate high pin is connected to the

next most significant shift/rotate low pin. (The most.

significant shift/rotate high is connected to the least

significant shift/rotate low pin.)

Figure 40 shows a 64-bit wide stage of a pipeline.

This stage is formed by internally lockstepping all four.

processors on a restructurable IC. In Figure 40, separate

16-bit input and output ports are shown, so that

multiplexing of the data transfer over four phases is

required. It is also possible to coordinate the two data

ports of each RIC, so that a 32-bit parallel port is

formed. This would allow the 64-bit pipeline stage

configuration of Figure 40 to perform a data transfer in

two clock cycles rather than four. However, this would
require a separate isolation switches to permit 32-bit

transfers and parallel between different pairs of staqes

of a multi-stage pipeline. Thus, use of a multiplexed

16-bit port is much simpler, and is generally perferred.

Figure 41 shows two RIC chips connected to forma

128-bit wide hybrid lockstep processing element.

Internally, the four processors on each chip are

lockstepped. Since only one status port on each chip is

used to create the lockstep between the two chips shown,

it is possible to build an analogous hybrid processing

element of any multiple of 64 bits in width.

Further flexibility and/or complexity in multi-RIC

configurations is attained by using a tree topology to

implement an interrupt-driven communication network.

The following three kinds of interrupts are handled

in a uniform integrated fashion: (1) intrachip

interrupts: the source and destination processors of these
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

72 0071727
interrupts reside on the same RIC, so that tnese

interrupts originate and are handled entirely on one RIC

chip. (2) Interchip interrupts: a source processor and

the destination processors of these interrupts reside on

different chips. (3) I/O interrupts: these interrupts

originate at I/O devices and are directed to processors

residing on one or more RIC chips.

Intrachip interrupts are usually used for dynamic

reconfiguration on a chip, e.g., to initiate the internal
lockstep mode or the pipeline mode of operation. Internal

interrupts can also be used to obtain service from another

processor on the same RIC chip. Interchip interrupts play

a crucial role in multichip configurations, and are used.

to initiate various multichip modes of operation, such as

external or internal lockstep pipelines mode. Interchip

interrupts are also used to implement interprocessor

communication in a multiprocessor environment, when

different processors are implemented on different chips.

A common example would be a multichip configuration

containing a central processor and an I/0 processor,

implemented on different chips. The central processor and

the I0 processor communicate via interrupts. The I/0

processor may Share a common bus with the central

processor, while transferring information between the.

central processor's memory and the I/0 device.

Thus, any processor on a chip can receive interrupts

from three possible kinds of sources: another processor

on the same chip, some processor on a different chip, or

an I/0 device. The following integrated interrupt scheme

handles these interrupts in a uniform fashion. In

response to any interrupt the interrupt manager 12 of the

destination processor prompts the corresponding scheduler

16 to schedule an appropriate process, depending on the

priority interrupt and that of the currently running

process.

As noted above, each RIC includes an external

interrupt manager 76, which manages the reception,

storage, and internal processor notification of interrupts
received from external sources, and manages the sending of

INTEL - 1006

INTEL - 1006

10

15

20

25

0071727
73

interrupts generated by internal processors to external
destinations.

To generalize the internal interrupt management

scheme discussed above to systems which may contain many

RIC chips, we introduce the concept of a "cluster". A
cluster is a set of (e.g.) four RIC chips, which can send

interrupts to each other. Figure 42 provides an

illustrative example of a cluster containing four chips.

Thus, in a hierarchical organization of interrupts, a

cluster is an entity that stands one level above a chip.

In the present interrupt system, the role of chips within

a cluster is analogous to the role of processors within a

chip. We can now easily incorporate a bus to handle the

interchip interrupts occurring within this cluster, i.e.

the intracluster interrupts. Such a bus is called the

“cluster interrupt bus" 214, and is shown in Figure 42.

This bus also carries interrupts which are generated

within the cluster but have destinations outside the

cluster, i.e. the intercluster interrupts. Similarly, the

bus is used to transfer I/0 and intercluster interrupts

which have arisen outside the cluster but are destined for

some processor on one of the chips 216 within the cluster.

To further implement this hierarchical view, a cluster
interrupt manager 218 is provided, which serves the same

role for a cluster as the external interrupt manager 76

does for an RIC chip. Thus, the external interrupt

manager 76 of each chip 216 has to interface with the

cluster interrupt bus 214 and with the cluster interrupt

Manager 218.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

_ 35

0071727
74

The first function of the cluster interrupt manager

218 is to serve as an interface to the cluster interrupt

bus 214 and to the intercluster and I/O interrupts. Thus,

the intercluster interrupts generated in a cluster are

Sent outside the cluster via the cluster interrupt bus 214

and the cluster interrupt manager 218. Similarly,

intercluster and I/O interrupts generated outside a
cluster, but destined for chips 216 residing in the

cluster, are sent to the destination chips via the cluster

interrupt manager 218 and the cluster interrupt bus 214.

The cluster interrupt manager 218 and (e.g.) four chips

216 residing in the cluster share the cluster interrupt

bus 214. The arbitration policy for the cluster interrupt ©
but 214 need not be a round-robin one. The RIC interrupt

interface 76 allows for an externally controlled method of
arbitration. Thus, a cluster which requires a different

arbitration scheme implements the scheme in its respective

cluster interrupt manager 218. The cluster interrupt

Manager 218 can implement arbitration methods such as

priority, or on a position basis. In the priority-based

arbitration policy all contenders for the cluster
interrupt bus 214 (i.e., the chips 216 and the cluster.

interrupt manager 218) submit the priority of the

interrupt (which they wish to send to other chips) to the

bus arbitration logic present outside the chips. The

arbitration logic then decides the contender with the

highest priority and grants it control of the bus. In the

position-based arbitration policy the position of the

contender within a cluster decides who will gain control

of the bus in case of a conflict. For example, in Figure

42, uSing the position-based policy we decide that if a

conflict arises, the cluster interrupt manager 218 will

always get the first priority, followed by chip 0, 1, 2,

3, respectively. The designer is free to choose more

complex arbitration policies appropriate for the

application at hand. However, simple policies such as

round-robin or position-based can be implemented with very

little logic external to a chip, while a more complex

policy such as priority-based may require considerable

INTEL - 1006

INTEL - 1006

»

10

15

20

25

30

35

00741727
75

logic external to a chip.

The second function of the cluster interrupt manager

218 is to serve as a buffer for intercluster interrupts

going out of a cluster, as well as for intercluster and

I/O interrupts coming into the cluster. This buffering

facility serves essentially to isolate the interrrupt

traffic within and outside a cluster. The cluster

interrupt manager 218 is designed to handle interrupt

traffic on both sides of the interface simultaneously.

Such a cluster manager could be implemented with an RIC,

Or with one or two processors within an RIC.

An obvious question at this point is how to manage a

system with more than one cluster. These clusters send

the intercluster interrupts via their cluster interrupt

buses and cluster interrupt managers. Extending the

hierarchical view further, we call a set of (e.g.) four

clusters a “macrocluster." The clusters 220 within a

mMacrocluster 222 share a "macrocluster interrupt bus" 224,

which is connected to the “macrocluster interrupt manager"

226. The macrocluster interrupt bus 224 and the

macrocluster interrupt manager 226 serve the same roles in

a macrocluster 222 as do the cluster interrupt bus 214 and

the cluster interrupt manager 218 in a cluster 220. We

can extend this view further so that (e.g.) up to four

macroclusters 222 form the next higher level entity, and

so on. Finally, after an arbitrary number of levels, we

reach the level of the system consisting of (e.g.) up to

four subsystems 234, which share a bus to transfer

interrupts. This bus is called the system interrupt bus

232.

Figure 43 shows a system consisting of two subsystems

(234), subsystems 0 and 1. Subsystem 1 contains

macroclusters 0 and 1, and subsystem 0 contains only one

macrocluster, i.e., macrocluster 0. Macrocluster 0 of

subsystem 1 consists of four clusters, macrocluster 1 of

subsystem 1 consists of two clusters, and the macrocluster

of subsystem 0 consists of two clusters. Each cluster

contains four chips. In this example, subsystem 1

contains only One macrocluster. Therefore, the functions
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

"6 9071727
of the interrupt manager of this macrocluster can be
relegated to the interrupt manager of subsystem 0. this
will allow us to do away with the macrocluster interrupt

Manager and the macrocluster interrupt bus in subsystem 0.

They are shown here to illustrate the hierarchical view of

interrupts. .
Figure 44 shows the system of Figure 43 using a tree

representation, which is a natural representation for the

hierarchical view of interrupts. Processors PRO-PR3

within the RIC chips 216 are at the lowest level of the

tree, and are represented by the "leaves" of the tree. At

the next higher level lie the nodes representing RIC chips

216. At the two next higher levels the nodes represent

clusters 220 and macroclusters 222. Finally, the root of

the tree represents a complete system. ;

We can assign numbers to the levels of the tree.

Processors are assigned level 0. At successively higher

levels lie chips 216, clusters 220, macroclusters 216,

+--+ , Subsystems 234, designated as levels 1, 2, «.. - My

respectively. Similarly, we can assign numbers to the

levels of interrupt hierarchy. In case of interrupt

buses, the chip interrupt bus 88 lies at the lowest level,

numbered level 0. At successively higher levels lie the

cluster (214) macrocluster (224),... , Subsystem (228),

and system interrupt (232) buses. They are respectively

numbered 1, 2, ...- , n. The interrupt manager 12 of a

processor lies at the lowest level, i.e., level 0. At

successively higher levels lie the chip (76), cluster

(218), Macrocluster (226), ... , subsystem (230) interrupt

Managers. They are numbered 1, 2, ... , n. A processor

is completely identified by giving its complete "address,"
i.e., by identifying subsystem, ... , macrocluster,

cluster, chip, and processor. Thus, each address contains

components that identify the subsystem, ... ,

Macrocluster, cluster, chip, and processor. We can

similarly assign levels to this hierarchy of address

components. The address component identifying the

processor PRO-PR3 at the lowest level, i.e., level 0. At

successively higher levels lie the address components

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
77

identifying the chip, cluster, macrocluster, ... ~

subsystem. They are assigned levels 1, 2, ... , n.

Interrupts among processors within a chip are
z

so that communication and processing of these interrupts

must generally be completed as quickly as possible. As
described above, the source, destination, priority, and

related run-time information about such an interrupt are

communicated in just one bus cycle, once the source

processor gains control of the chip interrupt bus 88.

Interchip interrupts within a cluster are expected to be

the second most common interrupts. The present interrupt

organization allows the communication of the identity of

source chip 216 and processor PRO-PR3, destination chip(s)

and processor(s), priority, and run-time information from

the source processor to the cluster interrupt manager 218

in eight bus cycles using the cluster interrupt bus 214.

Intercluster interrupts within a macrocluster are expected

to be the next most common interrupts. The present

interrupt organization allows the communication of the

identity of the source cluster, chip, and processor;

destination cluster(s), chip(s), and processor(s); and

priority and run-time information about the interrupt from

the source processor to the macrocluster interrupt manager

226 in ten bus cycles using the macrocluster interrupt bus

224. The communication of similar information during

interrupts at each subsequently higher level takes only

two additional bus cycles for each higher level.

Figure 44 also shows the direction of the flow of

information during three sample interrupts, 1, 2, and 3.

This information identifies the source and destination of

the interrupt, priority, and run-time information. We

call this information “interrupt information." Interrupt

1 originates at PR 3 belonging to chip 2, cluster 3,

macrocluster 1, subsystem 1, and is destined for PR O in

the same chip. Interrupt 2 originates at PR 3 belonging

to chip 3, cluster 1, macrocluster 0, subsystem 1, and is

destined for PR O, PR 1, PR 2, and PR 3 in chip 0 and

cluster 0 of the same macrocluster in which the source
INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

"e 0071727
processor is located. Interrupt 3 originates at PR 0 in

chips 1, 2, and 3 belonging to cluster 0 in the

macrocliuster of subsystem 0. The interrupt information

starts at a leaf, travels up the tree as much as

necessary, i.e., rises in level, and then travels down the
tree to the leaves representing the destination

processors. We distinguish two phases of an interrupt

within the time when the interrupt information is
travelling in the tree. These phases are called "rising"

and "nonrising" phases. During the rising phase the

interrupt information is strictly travelling up the tree,

i.e., it is going from an interrupt manager at level i to

another interrupt manager at level (i+1) via the interrupt
bus at level i. During the nonrising phase, the interrupt

information is either traveling at the same level in the

tree, i.e., it is going from an interrupt manager at level

i to another manager at level i via the interrupt bus at
level i, or it is travelling down the tree, i.e., it is

going from an interrupt manager at level i to another

interrupt manager at level (i-1) via the interrupt bus at

level (i-1). For example, in Figure 44 interrupt 3 is in

its rising phase while the interrupt information is

travelling in subsystem 1; its nonrising phase begins when
the interrupt information travels from the subsystem 1

interrupt manager to subsystem 0 interrupt manager on the _

system interrupt bus, the nonrising phase continues while

the information travels in subsystem 0 until it reaches

the destination processors.

The interrupt information travels the maximum

distance and takes maximum time if the source and

destination processors reside in different subsystems, as

in interrupt 3 above. On the other hand, the distance and

time are minimum if the source and destination processors

are located on the same chip, as in interrupt 1. Thus,

the most frequently occurring interrupts are communicated

and processed in the shortest time, while the least

frequently occurring interrupts take maximum possible time

for communication and processing. This desired benefit

accrues directly from the hierarchical view of interrupts.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
79

A general interrupt protocol is discussed here in

terms of the interrupt bus and the interrupt manager at

the ith level (1l<=i<=n; i = 0 means a RIC external
interrupt manager). As illustrated in Figure 45 an

interrupt bus at level i can be shared by(e.g.) up to four

interrupt managers at level i and one interrupt manager at

level (i+1). On the other hand, an interrupt manager at

level i interfaces with an interrupt bus at level (i-1),

and the interrupt manager at level (i+1) interfaces with

an interrupt bus at level (i+1). We will now review the™

definitions of the rising and nonrising phases of an

interrupt in terms of an interrupt manager at level i.

During the rising phase of an interrupt, the

interrupt is sent out by an interrupt manager at level i;

it travels up the tree of interrupt hierarchy via the

interrupt bus at level i, to the interrupt manager at

level (i+1). An interrupt during the rising phase of

transmission is illustrated in Figure 45.

During the nonrising phase of an interrupt, the

interrupt is sent out by an interrupt manager at level i,

and the interrupt either remains at the same level i.e.,

travels on the interrupt bus at level i and goes to

another interrupt manager at level i, instead of going to

the manager at level (i+1) , or it travels down the tree
of interrupt hierarchy via the interrupt bus at level

(i-1), to interrupt manager at level (i-1). An interrupt

during the nonrising phase of interrupt transmission also

is illustrated in Figure 45.

The protocol used during the rising phase of an

interrupt is illustrated in Figure 46. [In particular, the

interrupt manager 2 at level i sends out an interrupt to

the interrupt manager at level (i+1) via the interrupt bus

at level i. The following activities take place during

this interrupt. First, manager 2 at level i gains control

of the interrupt bus at level i.

Bus cycle 0: The source interrupt manager at level i

sends all zeroes on the interrupt information lines to

designate the interrupt manager at level (i+1l) as the
destination of this interrupt. The interrupt manager at

INTEL - 1006

INTEL - 1006

10

15

20

25

30

- 35

a 0071727
level (i+1) determines that it is the destination for this

interrupt. The length of each interrupt will depend on

the source and destination address lengths. If the

interrupt Manager at level (i+1l) has enough buffer space

to storea worst case length interrupt, the interrupt

Manager begins to accept and store the interrupt

information. Otherwise, the interrupt manager does not

signal that the first nibble of the interrupt information

has been accepted, In Figure 46 the transfer
synchronization signals indicate that the first nibble has

been received, which implies that the interrupt manager

has enough buffer space to store the interrupt
information. :

Bus cycles 1 through (2n+4): These cycles are used

to transfer information identifying the interrupt's

destination address, the interrupt's priority, and the

interrupt's source address. The destination address is

sent in the following order: subsystem, ... ,
macrocluster, cluster, chip, and PR; i.e., starting with

the topmost relevant address component and proceeding down

the hierarchy in a decreasing order up to the PR

identification. The letter n is the number of levels in

the hierarchy. In Figure 46 subsystem 0, macrocluster I,

cluster 3, chips 1 and 2, processors PR 2 and PR 3 are
specified as destinations. The priority of the interrupt

is 127, and the run-time information is 34. The source

address of the interrupt is subsystem 2, macrocluster l,

cluster 2, chip 3 PR 0. Here, we have assumed that the

topmost relevant address is the subsystem address, and

therefore 2n cycles are required to transfer information

identifying the source and the destination in the worst

case. Another four cycles are needed to send the

interrupt's priority and other related information. For

example, if the topmost relevant address is only a

mMacrocluster address, then only the macrocluster, cluster,

chip, and processor sequence need to be specified on bus

cycles 1 through 5. Bus cycles 6 and 7 are used to
transfer the priority of interrupt, and bus cycles 8 and 9
are used to transfer run-time information about the

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727

interrupt. The source address is sent on bus cycles 10

through 14.

There are two differences between the rising protocol

and the nonrising protocol. One is that for the rising

protocol, the interrupt is passed to the next higher
level. For the nonrising protocol, an interrupt can be.

sent to the next lower level, or it can be sent toa

destination at the same level. The other difference

between the two protocols is the order in which the source

and destination addresses are sent. For the rising.

protocol, the highest level of the address is sent first.

For the nonrising protocol, the next level of the

hierarchy to be addressed is sent first.

The following example illustrates these protocols

more concretely. Consider a system with a hierarchy

consisting of subsystems, macroclusters, chips, and

processors PRs. An interrupt originated in one subsystem

and destined to go to some other subsystem travels the

hierarchy as indicated in Table 3. The table shows the

interrupt traffic on an interrupt bus at each level

(starting from level 1, since we are discussing the

interrupt protocol outside a chip), indicating the

sequence in which the information that identifies the
source and the destination is transferred.

Table 3 illustrates the following points: The

beginning of the nonrising phase of an interrupt signifies

that the interrupt has reached the topmost level in the

hierarchy to which it needs to climb. In the case

illustrated by the table, it is the system level, i.e.,

level 5. During the nonrising phase of an interrupt, the

level of the first address component matches that of the

interrupt bus on which the information identifying the

source and the destination is routed. For example, the
subsystem interrupt bus is at level 3, and the address

component identifying a macrocluster is also at level 3.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

0071727
82

Table 3

Interrupt Traffic External to a Chip

Interrupt bus

in use

Cluster bus

Macrocluster bus

Subsystem bus

System bus

Subsystem bus

Macrocluster bus

Cluster bus

Sequence of information transfer

identifying source and destination

Rising Phase:

Subsystem, macrocluster, cluster,

chip, processor

Subsystem, macrocluster, cluster,

chip, processor

Subsystem, macrocluster, cluster,
chip, processor

Subsystem, macrocluster, cluster,

chip, processor

Nonrising Phase:

Macrocluster, cluster, chip, PR,

subsystem*

Cluster, chip, PR, subsystem,*

Macrocluster*

Chip, PR, subsystem,* macrocluster,*

cluster*

*This address component is unnecessary in identifying the

destination of an interrupt and hence is not sent on the

destination bus.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

0071727
83

During the nonrising phase of an interrupt

transmission, the sequence of information identifying the

destination can be easily derived by a simple "shift

address component left" operation on the destination

address. This fact will be exploited to construct a
simple algorithm for interrupt managers to construct the

“ Sequence of: information identifying the destination of

interrupts passed on by them. Recall that when an

interrupt manager gets control of the bus, it identifies

the destination interrupt Manager on the first cycle. As

shown in Table 3, the destination manager can be easily
identified by the first address component during the

nonrising phase of an interrupt; during the rising phase

of an interrupt, it is identified by all zeros on the

destination bus.

The overall functions performed by interrupt managers

are discussed below. We will present the discussion

initially in terms of an interrupt manager at level i.

Recall that an interrupt manager at level i

interfaces with the interrupt bus at level i on one hand,

and the interrupt bus at level (i-1) on the other. These

buses may be arbitrated according to different policies.

Typical examples of these policies are by round-robin, by

priority, by position, etc. The chip interrupt bus 88 is

arbitrated according to a round-robin policy. Any

interrupt manager must be able to cope with simultaneous

handling of interrupts on both sides. A block diagram

showing the interface between the interrupt manager and

interrupt buses is shown in Figure 45.

Each interrupt manager maintains its own queue of

interrupts waiting to be sent. For each interrupt the

destination address priority, run-time information, the

source address, and the phase (rising or nonrising) are

Maintained in the queue. During the rising phase of an

interrupt, all the address components starting from the

topmost relevant level must be stored for the source 4a

destination identification. During the nonrising phase of

an interrupt, only those destination address components

below the level of the interrupt manager need to be
INTEL - 1006

INTEL - 1006

10

15

20

25

30

°35

7 0071727
Maintained for the destination identification. For

example, a cluster interrupt manager 218 need store only

the chip and processor identification for a destination.

The preferred interrupt manager maintains these queues as

a priority-based discipline, although a first-in first-out
queue is simpler to maintain. In the priority~based queue ©
the interrupt lying in the. front of the queue has the

highest priority among all interrupts-.in that queue,

independent of its arrival time in the queue.

The information status: signals indicate when address

information is being sent. As described above, the

destination address is sent first, followed by the

interrupt data and the source address of the interrupt.
The interrupt manager counts the number of destination

addresses received. On the basis of this number, and the
knowledge of its own level in the interrupt hierarchy, the
interrupt manager decides whether to send the information

identifying the source/destination in the order in which

it arrived (rising phase), or to perform a "Rotate address

component left" (nonrising phase). .

. The hierarchical interrupt network has been described
as an example of the application of the RIC's interrupt

port capability. This interrupt port is fully general in.
the interrupt topology and the information protocol. The

hierarchical interrupt network is only one class of

network. Within this network there is variability with
respect to the topology, which affects a RIC's external

interrupt manager in two ways. One variation is that the

length of addresses in the network varies as the number of

levels varies. As the address length varies, the buffer

space in the interrupt manager varies. The buffer space

variation can be handled by design of the hardware of

interrupt managers not contained in RICs. The buffer

Space variation is handled in the RIC by the programs that

control a RIC's external interrupt manager 76. Another

variation from topology is the set of valid addresses.

This variation is also handled by programs used by a RIC's

external interrupt manager or by hardware implementation

in other interrupt managers.

INTEL - 1006

INTEL - 1006

0071727

The above discussion has been limited to an interrupt

network containing only RICs. However, it applies equally

well to network containing any I/0 device such as

channels, discs, printers, and communication network

interfaces. The only requirement for its applicability is
that each I/0 device have an interface that is compatible
with: the RIC: interrupt port.

INTEL - 1006

INTEL - 1006

10

15

20

25

30

0071727
86

Claims

WHAT WE CLAIM IS:

1. An integrated circuit, comprising a monolithic

substrate having:
a plurality of processors;

‘-a plurality of busses, each connected to all of said

processors; and

means, connected to each of said processors, for

reconfiguring said processors selectively so that said

processors are operable in lockstep or independently.

2. The integrated circuit of Claim l,

said busses comprising a status bus including a

plurality of lines, said lines of said status bus

including synchronization and arithmetic linkage lines;

each said processor comprising a respective status

bus multiplexer connected to said respective processor and

to said status bus, said respective status bus multiplexer

selectively and programmable connecting or interrupting

selected lines of said status bus and selectively

connecting said respective processor to said status bus,

thereby selectively and programmably connecting said
respective processor through said status bus to adjacent
ones of said processors.

3. The integrated circuit of Claim 1,
wherein each said processor comprises a dynamic logic

array (DLA) connected to receive commands provided to said

respective processor, said DLA comprising: an AND matrix;

an OR matrix; intermediate lines connecting said AND

matrix to said OR matrix; a plurality of input lines,

connected to a first one of said AND and OR matrices; and

a plurality of output lines connected to the other one of

said AND and OR matrices; at least one of said AND and OR
matrices of said DLA being arranged in rows and columns to

define partitions within said respective matrix;

each said partition being selectively arranged to

INTEL - 1006

INTEL - 1006

10

15

20

25

30

35

. 0071727,
contain a selected number of active elements disposed to

implement a desired logical function; and

a plurality of control lines, each said control line

being connected to selectively enable or disable said

active devices in one or more of said partitions, so that

said DLA implements a selected logical function in

accordance with a state of said control lines;

whereby said DLA interprets commands provided to said

respective processor selectively in accordance with the

-.gtate of said control lines.

4, The integrated circuit of Claim 1, comprising:

a RAM memory, said RAM memory comprising a plurality

Of RAM memory modules;

said busses comprising a data bus including a

plurality of lines; and

a plurality of bus control units, each said bus

control unit being connected to one of said processors, to
one of said RAM memory modules, and to said data bus, said

bus control unit selectively connecting said processor to

said data bus or directly to Said corresponding RAM memory
module.

5. The integrated circuit of Claim 1,
wherein said means for reconfiguring each said

Processor operates so that each said processor selectively

and programmably is operable in lockstep with or

independently of one or more others of said processors on

the same restructurable integrated circuit or on another

Similar restructurable integrated circuit.

6. The integrated circuit of Claim 1,
said busses comprising a control bus, said control

bus comprising lines for transmitting instruction, and

also lines for transmitting interrupt signals, each said

interrupt signal including bits indicating a priority and

an interuptee signals initiates each sequence of said

instruction;

wherein each said processor. contains an interrupt

INTEL - 1006

INTEL - 1006

10°

15

20

25

35

ns 0071727
manager, connected to said control bus to receive said

interrupt signals, and wherein said interrupt manager

tests each successive one of said interrupt signals to

determine whether said respective processor which includes

said interropt manager is designated by said successive

interrupt signal as an interruptee, wherein said interrupt

manager stores the priority of the one of said interrupt

signals which initiated whichever respective- sequence of

instructions is currently being executed by said processor

and provides a-.corresponding context switch output; and

wherein each said respective processor also contains

a scheduler, connected to said context switch line of said

interrupt manager, said scheduler displacing a sequence of

said instructions currently being executed by said

corresponding processor whenever said context switch line

indicates that a newly received interrupt signal includes

a higher priority level.

7. The integrated circuit of Claim l,

wherein said busses comprises a control bus;

and further comprising an external interrupt manager
connected to said control bus and comprising external

pins, said external interrupt manager comprising a means
for sending and receiving interrupt signals each including

length information and type information specifying the

format of said corresponding interrupt signal, and each

said respective length information specifying the length

of said corresponding interrupt signal.

8. The integrated circuit of Claim 1,

said busses comprising a status bus including a

plurality of lines, said lines of said status bus

including synchronization and earth linkage lines;

each said processor comprising a respective status

bus multiplexer connected to said respective processor and

to said status bus, said respective status bus multiplexer

selectively and programmably connecting or interrupting

selected lines of said status bus and selectively

connecting said processor to said status bus, thereby

INTEL - 1006

INTEL - 1006

10.

15

20

25

30

35

. 0071727
selectively and programmably connecting said respective

processor through said status bus to adjacent ones of said

processors;

each said processor also comprising a dynamic logic

respective processor, said DLA comprising:
an AND matrix;

an OR matrix;

intermediate lines connecting said AND matrix to

said OR matrix;

.a plurality of input lines, connected to a first one

of the AND and OR matrices;

and a plurality of output lines connected to the

other one of said AND and OR matrices;

at least one of said AND and OR matrices of said DLA

being arranged in rows and columns to define partitions

within said respective matrix;

each said partition being selectively arranged to

contain a selected number of active elements disposed to

implement a desired logical function;

and a plurality of control lines, each said control

line being connected to selectively enable or disable said

active devices in one or more of said partitions, so that

said DLA implements a selected logical function in

accordance with a state of said control lines;

wherein said DLA is connected to said status

multiplexer, whereby inputs and outputs provided to said

respective processor from said respective status

multiplexer are programmably connected by said DLA.

9. A multi-processor system, comprising;

a plurality of processors;

a plurality of external interrupt managers, each

external interrupt manager being connected to one or more

of said processors and all of said processors being

connected to one of respective ones of said interrupt

managers;

bus means for transmitting signals between said

respective external interrupt managers;

wherein each said external interrupt manager

INTEL - 1006

INTEL - 1006

“107

15

0071727

comprises means for sending and receiving interrupt
signals each including length information and type

information, each said respective type information

specifying the format of said corresponding interrupt

Signal, and each said respective length information

specifying the length of said corresponding interrupt
Signal.

10. An integrated circuit, comprising a monolithic

substrate having:

a plurality of processors;

a plurality of busses, each connected to all said

processors, said busses comprising a plurality of status

lines;

each said processor comprising data path hardware and

also comprising a programmable logic array, said status

lines of said plurality of busses being connected to

inputs and to outputs of said PLA, and said output and
input lines of said PLA.

INTEL - 1006

Wy

INTEL - 1006

T Prinz, Bunke& Partner, Ernsbergerstr. 19, 8000 Miinchen.60.-. —~

eeee ° .

' .

),2, PRINZ, BUNKE & PARTNER (Catal.
Patentanwalte : European Patent Attorneys

Munchen Stuttgart

se. 0071727.

foe HCL, Munchen

EUROPEAN PATENT O RICE NCHE Nj EgonPrinz vistingrn
Erhardtstr. 27 Empfang bestatigt Gottfried Leiser Dipl.-Ing.

. wept aeknowiedgad § Karl-Heinz Schwepfinger Dip!-ing.
8000 Miinchen 2 saouse reception ' Hartmut Degwert Dip!-Phys.

inr Zeichen
Your Case
Viret.

 Stuttgart

Max BunkeDipl.-ing.

a] Dr. Holger Bunke Dipl.-Chem.

Unser Zeichen 8000 Miinchen 60, October 22, 19 82
nwer? T 3519 ErnsbergerstraBe 19

Schw/us

European Patent Application
No. 82105491.3
Texas Instruments Inc.

In response to the official notification of September 9, 1982

Applicants cancel sheet 5/38 submitted on August 27, 1982

with the set of formal drawings. This sheet 5/38 was inad-

vertently included,

With regard to the corrections made by the applicant in Figure

41 of the formal drawings the following explanation is given:

In Figure 41 of the provisional drawings filed on June 23, 1982

the four blocks shown in the upper portions of the diagram

contained the inscriptions "MPS3, MPS2, MPS1, MPSO". The

corresponding blocks in the lower portion of the diagram
did not shown any inscriptions. Both from the specification

and from Figures 37 to 40 it was obvious that the before-

mentioned inscriptions were wrong and should have read "PR3, PR2,
PR1, PRO" and that the block in the lower portion of the sketch

should have been provided with identical inscriptions. In order

INTEL - 100

INTEL - 1006

. we oe
ae ° ee «© oe ;

| "9074737".
ts me

to establish consistency with Figures 37 to 40 and

with pages 7O and 71 of the specification applicants

made the corresponding corrections and additions in :

Figure 41 (sheet 31/38) filed on August 27, 1982. Since

it was immediately evident from the documents as a whole

that an error has occurred and what the correction should

be, it is assumed that new Figure 41 will be accepted.

Prinz, Bunke & Partner

K.-H. Schwepfinger

Patent Attorney

wee ee
atten oe oe

INTEL - 1006

INTEL - 1006

EXTERNAL
INTERRUPT
MANAGER

INTERRUPT
MANAGER

SCHEDULER

REGISTERS

ALU, DECODER

eqTeana ||||weno
PORT INTERFACE

EXTERNAL

DATAPORT DATA BUS

RAM MEMORY

EXTERNAL
STATUS

PORT

EXTERNAL

DATA PORT

Fig./

8E/T

‘LZL4L00
INTEL - 1006

INTEL - 1006

0071727
2/38

Fig.2

78 CONTROL STORE MODULE
CONTROL STORE

96 MODULE
CONTROLLER ————__—__,—_——_

CONTROL. STORE

CONTROL STORE CONTROL

DATA 4? 40 ADDRESS STORE 38REGISTER REGISTER ,

 EXTER NAL
INTERRUPT

36

MANAGER|controsusBUS 25
ebLCMIOROSEQUENCERace

> | ROM INSTRUCTION te
as REG 18 <0
tz = JO
bE $ a0
z Qo'

CONTROL DLA —

@ }ROM INSTRUCTION] peep PR3i 0|piavecone26DECODE|piavecone262 REG. Le BACK
6+ 3 °

x ke <0
0 y ho} SuB MEMORY BARREL Sol oe

MAPPER w&

28| 44| 462 _—STAT US BUS LTI—EXTERNAL 22 PLEXER 45 STATUS STATUS
PORT STATUS BUS (END AROUND LOOP) a4g MULTI-PLEXER

7
MEMORY

BUS CONTRO
ONT L SCHEDULER DATA BUSUNIT

UNIT

RAM MEMORY ,66
Eanoress|para|[eonmmo. $70 -————_A-—

RAM MEMORY MODULE

EXTERNAL.
DATA
PORT

INTEL - 1006

INTEL - 1006

0071727
3/3 8

, DYNAMIC LOGIC ARRAYFig. 3 WITH REGULAR PARTITIONING
Vpp°

| | |

Pl

INTEL - 1006

INTEL - 1006

0071727
4/38

INTEL - 1006

INTEL - 1006

0071727
6/38

Figd

. Ag
ADDRESS (14 LINES)

Ald

, 86
DNo

DESTINATION (4 LINES) DN3

° 82

Do

DATA (40 LINES)

D39

90 |
DRo

DATA ROUTING (4 LINES) DR3

100~._ ,ppress READY

AR
DATA READY

DR

/04-~— INTERRUPT READY (DAISY CHAINED) -98@
IR

BUS AVAILABLE (DAISY CHAINED)

88
8 10

INTERRUPT BUS (4 LINES) "3

94

 CENTRAL
CENTROLLER

Fig.6

MODULE

CONTROLLER

MODULE

CONTROLLER
MODULE

CONTROLLER

MODULE
CONTROLLER

INTEL - 1006

INTEL - 1006

0071727
7/38

CONTROL. STORE MEMORY MANAGER

CENTRAL

CONTROLLER » 94

/4 19
SELECT 1 OF 4

MEMORY MODULES
FROM 2 MSBS OF

ADDRESS

// DESTINATION

 SEND ADDRESS

TO THE SELECTED
MEMORY MODULE

CONTROL STORE
MEMORY READ

QUEUE

DESTINATION

AND ADDRESS

SELECT QUEUED
ADDRESS FROM A

QUEUE (FIRST
COME FIRST SERVE

OR DER)

Fig. 7

CONTROLLER AT 13
EACH MEMORY

MODULE ACCESS MEMORY

12

SEND WORD

FETCHED FROM

MEMORY TO

DESTINATION

 WAIT TILL, NEXT

CONTROL. STORE
ACCESS

INTEL - 1006

INTEL - 1006

CONTROL LINES

Fig. 9

p K R

BUS A,/08 124 126 128
M2 4, 4 4

16} INPUT
LATCH A _,

R

| (RESULT)||oeyERAciON OUTPUT co
CHAIN) FUNCTIONAL Logic LATCH ~

BLOCK

INPUT Hy
LATCH B on

M6 TE} 1207, 1 122 134 136

BUS B, //0 CARRY ON,/32 CARRY IN, /70

STATUSMPXR +49

STATUS MPXR 50

4¢E4Lb400
INTEL - 1006

INTEL - 1006

0071727
9/38

OUT=G(A,B)

ow

Fig: /0

:|

Gi G) G2 G3
FUNCTIONAL BLOCK IN ALU

, Fig. //
PRECHARGE

CARRY— OUT

x | vowv]

Cin

_ Cin

CARRY -—IN

INTEL - 1006

INTEL - 1006

108

BUSA

HO

BUS B

144

138

Testa
140

LATCH B P|

BARREL

SHIFTER

DLA SIGNALS

INSET BITS

INFLAG REGS.

 REGISTERS

8€e/0T

464-4400
INTEL - 1006

INTEL - 1006

0071727
11/38

Figul3Z
INPUT LATCH

MSB LSB

LEADING BIT FOR SHIFT LEFT TRAILING BIT FOR SHIFT LEFT
TRAILING BIT FOR SHIFT RIGHT LEADING BIT FOR SHIFT RIGHT

Fig. /4

|| INPUT LATCHA
LOST LOGIC ©

(A) SHIFT LEFT WITH THE TRAILING BIT FILLED WITH O
AND THE LEADING BIT LOST (16 BIT OPER AND)

| INPUTLATCHA S|

|| INPUT LATCH B ||
(B) ROTATE LEFT (32 BIT OPERAND)

|| INPUTLATCHA |LINK~IN : LINK~OUT

(C) SHIFT RIGHT WITH THE TRAILING BIT CONNECTED TO
THE LINK-IN: AND THE LEADING BIT CONNECTED TO

THE LINK-OUT (16 BIT OPERAND)

INTEL - 1006

INTEL - 1006

Fig l5

BITO

BIT 3

BIT 11

i

|

|

0

!

i

I

|

0

0

0

oO

0

0

0

0BIT 15] 0

INPUT

LATCHA

OUTPUT

LATCH
138 150

ATA BUSFig./G Pata bu 6
ADDRESS / 1/56

16

DATA / 158

BITO ARBITRATION / /60
4

SOURCE / 162
1

BITS MODULE BUSY / 164
1

SOURCE STATUS / 1/66
10

DESTINATIONS / 168
1

BCU MODE / /67
2

BUS STATUS / 165

BIT15

8E&/cTI

LZLb4L00
INTEL - 1006

INTEL - 1006

0071727

13/38

(WAIT FOR ARBITRATION

TO GRANT SOURCE THE BUS)

SOURCE (PROCESSOR,
MEMORY MODULE, OR

DATA PORT) WAITS TO
GAT BUS ACCESS

WAIT OVER

IF THE SOURCE IS

A MEMORY MODULE AND
HAS A PENDING
MEMORY REQUEST

SOURCE LINES 162

INDICATE NEXT

PROCESSOR OR
MEMORY MODULE TO
BE SERVICED

 RAISE LINE 166
INDICATING THAT

SOURCE LINES
DESIGNATE SOURCE
TO BE SERVICED
NEXT ~

RELINQUISH

BUS AND LET
ARBITRATION

SELECT THE
NEXT SOURCE

(RAISE LINE 160)

(LINE 160 HIGH)

Fig. 17
DATA BUS PROTOCOL

 SOURCE

INDICATES

ITS 4 BiT

CODE ON
LINES 162

THE MEMORY ACCESS

DESTINATION LINES 168
ARE RAISED TO

INDICATE 1 UP TO 10
DESTINATIONS,

IF THE DESTINATIONS

ARE ONE OR MORE MEMORY
MODULES THAT HAVE

PENDING MEMORY

REQUESTS

PULL DOWN WIRE-
ANDED MEMORY

MODULE BUSY LINE 164

SEND ADDRESS AND/OR
DATA ON ADDRESS
AND DATA BUSES
156 AND 158

INTEL - 1006

INTEL - 1006

70

LEFT PORT

174 STACK 32
REGISTER

LITERAL | FILE
REGISTER|(IGREGISTERS

OF 16 BITS
WIDTH

Fig: /8

30

BARREL

SHIFTER

FLAG &

SHIFT
REGISTER

SETS

44446

172

RIGHT PORT 8E/PTI

&¢6L+400
INTEL - 1006

INTEL - 1006

Fig. 19 RESTRUCTURABLE IC RAM SYSTEM

MEMORY
MAPPER

34 OF PRO

a
TO TO cr

BCU BCU

EXTERNAL|BUS56EXTERNAL ~BOR wus 26 boat 3
72 73 CO

RAM MEMORY RAM MEMORY oO
MODULE MODULE OO

60 60 ~J
—s

~J

ho
—J

INTEL - 1006

INTEL - 1006

0071727
16/38

; TO/FROM
Fig.20 MEMORY MAPPER, 34

184

BIDIRECTIONAL
SWITCH

BIDIRECTIONAL
SWITCH

BIDIRECTIONAL
SWITCH

BIDIRECTIONAL

SWITCH

BUS CONTROL

UNIT (BCU)

INTEL - 1006

INTEL - 1006

0071727
17/38

NON LOCAL SOURCE

MEMORY REQUEST

Fig. 22

BUS DETERMINE
ACTIVE IF ACCESS IS

FOR THIS MSU
LOCAL PR NO
MEMORY

REQUEST Cwarr>)

YES

ARE
MEMORY

REQUESTS
PENDING

LOCAL
MSU

BUSY

No NO

YES YES

QUEUE

REQUESTING

PR’S TAG

SEND

Cwair) REQUESTINGPR A BUSY (FIRST COME
FIRST SERVE

ORDER

 SIGNAL

PERFORM

MEMORY
ACCESS

YES WAIT FOR
BUS

SEND SIGNAL TO

SEND WORD

PR WHOSE

MEMORY REQUEST TO
WILL BE DESTINATIONS

SERVICED NEXT,
IF ANY

WAIT IS NOT
FINISHED

WAIT TILL

THE PR WHOSE
MEMORY RE-

QUEST IS TO
BE SERVICED

NEXT

NO

MORE

MEMORY

REQUESTS

INTEL - 1006

INTEL - 1006

0071727
18/38

PR3 PR6

CARRY STATUS/9O

CARRY IN/ouT /9/

overFLow /92

NEGATIVE/I4

ZERO/96

pr syncH/9@

SHIFT/ROT/GY

Fig 2S INDEPENDENT MODE INTERCONNECTION
PR3 PR2

carry status /90

CARRY IN/ouT /9/

OVERFLOW /92

NEGATIVE /94

zeERo/96

PR SYNCH 198-

SHIFT/ROT /99

Fig: 24 PIPELINE MODE INTERCONNECTION

PR3 PR2

carry status /90

CARRY IN/ouT /9/

oveRFLow /92

NEGATIVE /9F

zero/96

PR sYNcH /9@

sHiFt/rot /99

Flg: 25 LOCKSTEP MODE INTERCONNECTION

INTEL - 1006

INTEL - 1006

INDEPENDENT MODE Fig.26

CONTROL STORE

CONTROL BUS 8E/6T
INSTRUCTION

STREAM O
RIC CHIP

_4éLb400
INTEL - 1006

INTEL - 1006

Fig: 27
INTERNAL LOCKSTEP MODE

38

CONTROL STORE

COMMON INSTRUCTION

STREAM TO ALL PR’S

8£/0¢4
6414400

INTEL - 1006

INTEL - 1006

PIPELINE MODE Fig:28

CONTROL STORE

CONTROL BUS 8E/TG
CL4400

INTEL - 1006

INTEL - 1006

0071727

INTERRUPT DESTINATION
BUS BUS

INTERRUPT ADDRESS
READY BUS

88 104 8&6 EF

R NTERRUPT INTERRUPT INTERRUPT
INTERRUPT \ oF F MANAGER
BUS LOGIC DETECTOR PRIORITY

REGISTER /2
|ss«dLGOMPARATOR .INTERRUPT

MANAGER

MULTIPLEXER

EXECUTING PROCESS
PRIORITY

REGISTER

NEXT PROCESS

PRIORITY
SCHEDULER

/6
REGISTER

GREATEST |
PRIORITY PLA
STATUS CONTROLLER

BIT

PROCESS PROCESS

FROM

MICRO- TIMER
INSTRUCTION

REGISTER

206

BIT BIT

Fig. 29 CONTEXT2/0 POINTER
TABLE

ACTIVE
PROCESS
BUFFER

256 X 1

LINEAR

SEARCH
LOGIC

BLOCKED END OF

INTEL - 1006

INTEL - 1006

BUFFER P(INT)

a TEMP = CURRENTP(CURR)> CURRENT NEXT
P (NEXT) NEXT +- TEMP BLOCKED TEMP — CURRENT

PROCESS CURRENT + NEXT

PROMPT NEXT*- TMP

BUFFER P(INT)

IF

NDROMPT| PaNT)> NEXT ~ PONT) BUFFER PUNT)
P(CURR)

PREEMPT

CURRENT PROCESS
BUFFER P(INT)

Fig. JO

PROCESS
COMPLETION

IF

P (CURR) >
P (NEXT)

CURRENT NEXT PROMPT
NEXT P(INT)

CURRENT > NEXT
SEARCH BUFFER FOR

NEXT HIGHEST
PRIORITY TASK

WAIT
FORA

PROMPT

NEXT + CURRENT

CURRENT = P(INT)
CURRENT = P(INT)

P(INT) = PRIORITY OF THE INTERRUPT ~ NEXT — REGISTER CONTAINING PRIORITY OF NEXT SCHEDULED

P(NEXT) = PRIORITY NEXT GREATEST PRIORITY PROCESS NeGeers eR INING y_ CURRENT -— REGISTER CONTAINING PRIORITY OF CURRENTLY
P(CURR) = PRIORITY OF CURRENTLY EXECUTING PROCESS EXECUTING PROCESS

TEMP —- TEMPORARY REGISTER

8E/E6

L¢4+400
INTEL - 1006

INTEL - 1006

POSITION|PMBIT PRIORITY NEXT CONTROL STORE

FIELD (iF MASK PRIORITY ADDRESS FIELD
4 BITS|(BIT MAP PRIORITY|FIELD LEVEL (POINTS TO THE

OF PRS MASK IS|(CONTAINS PRIORITY|FIELO FIRST MICRO-
IN THE VALID)|PRIORITY FIELD IS |(CONTAINS INSTRUCTION OF
INTERRUPT OF PROCESS|VALID)|HIGHEST THIS PROCESS)
PROCESS) WHEN PRIORITY 14 BITS
4 BITS EXECUTING) LEVEL FOR

8 BITS THIS PROCESS)
8 BITS

TYPE 0000 SINGLE SLICE PROCESS

TYPE 0001 LOCKSTEP PROCESS .

TYPE 0010 PIPELINE PROCESS Fig: 3/
OTHER TYPES UNSPECIFIED 8E/PEG

esfoul«P=tet PRIORITY
19 12 ff 10 9 8 7 0

CS 1-e FULL CONTEXT SWITCH

O-+ PARTIAL CONTEXT SWITCH

BU 1 -+ BUFFER INTERRUPT IF NOT IMMEDIATELY PROCESSED

0+ DO NOT BUFFER INTERRUPT

Fig: 32
¢ UNDEFINED

LcL+400
©

INTEL - 1006

INTEL - 1006

Fig. 33

BUS

AVAILABLE

SIGNAL

CARRIES PRIORITY

ADDRESS OF INTERRUPT —— ne ee ee ee came eee eee me CARRIES ADDRESSBUS AND INTERRUPT —| OF NEXT FETCHED
DESCRIPTION DATA _—— MICROINSTRUCTION vw

PR! WILL START on

INTERRUPT INTERRUPT AFTER NN
BUS II DOING A CONTEXT Go

PR1 1S THE SOURCE SWITCH PR11S READY @
INTERRUPT OF THE INTERRUPT TO RECEIVE

BUS 13 INTERRUPTS

DESTINATION PR1 RECEIVES THE
BUS DRI INTERRUPT

(TO PRI)

INTERRUPTAVAILABLE ©
©

- ~J
N N+1 N+2 N+X 3.

—~J

ho

—~J

INTEL - 1006

INTEL - 1006

26/38

DATA/ADDRESS
LINES

DATA
PORT 1

RESTRUCTURABLEic
DATA PATH

ARBITRATION

fe

STATUS

DATA TRANSFERSYNCHRONIZATION

TAG

DATA ADDRESS
LINES

0071727

“= Fig, 34GND ‘

cLock

RESET OUT CONTROL
RESET IN

, INTERCHIP
SYNCHRONIZATION
SHIFT ROTATE LO
SHIFT ROTATE HI

CARRY OUT

STATUS
PORT 2

CARRY IN

OVERFLOW

CARRY

ZERO

NEGATIVE

INTERCHIP
SYNCHRONIZATION
SHIFT/ROTATE LO
SHIFT/ROTATE HI

CARRY OUT

CARRY IN STATUS

OVERFLOW PORT 4
CARRY

ZERO

NEGATIVE
INTERRUPT
TRANSFER
SYNCHRONIZATION

INTERRUPT
INFORMATION

INTERRUPT
PORT

INTERRUPT

|
]

=
DATA TRANSFER
SYNCHRONIZATION

DATA
DATA PATH
STATUS

DATA PATH
ARBITRATION

INTEL - 1006

INTEL - 1006

‘External

Interrupt

Message

Interrupt 76 Fig. 35

 External

Interrupt
Table

Message Block
Address

Self Interrupt

Nibble

Message
Length

Destination”
Address

0

Ooo0000000

‘Oo0god0g0g|
Source

Address

Message Block

internal

Ram, 66

ry

*
Optional

8E/LS

LCLb400
INTEL - 1006

INTEL - 1006

EXTERNALINTERRUPT

MANAGER

MESSAGE
PRIORITY LENGTH

Fig: 36

GAIN ACCESS
OVER

INTERRUPT
PORT

RECEIVING
INTERRUPT
MANAGER

PRIORITY STATUS

86/84

4044400
INTEL - 1006

INTEL - 1006

Next Pipeline
Stage 0ee

“= ZI)#83[one]wee[Te]om:[Toe]eno[17
_TEaOT

Fig. 37

i)

©

~N

co

@

Stage L Stage L+ 4

Next Pipeline
= A Stage

Previous

Stage 3
~)J
—>

~JFigs 38 ~
|

INTEL - 1006

INTEL - 1006

Data

Next Pipeline

Previous Stage
Stage

Next Pipeline
Stage

Previous

Stage

Locks tepped

re} Af re} TonA200]|ig 40
Data From Previous Stage

‘86/06

L644400
INTEL - 1006

INTEL - 1006

31/38

FIg. 4/ To Next Pipeline
Data Stage

 From Previous

Pipeline Stage

To Next Pipeline

From Previous

Pipeline Stage

INTEL - 1006

INTEL - 1006

Chip 3 _ - a
\2/67

214

Cluster Interrupt Bus

N267

intercluster

viterrupt interrupts
Manager >

Intercluster
and 1/0

Interrupts

218

Fig. 42

8E/E

LéL-400
INTEL - 1006

INTEL - 1006

-

222
XN

0071727

|

elon]
|CLUSTER1,INTERRUPTBUS

n
2
o
b
o
2
x
ir

F
z
a
©
Ww
FF
n
2

3

CLUSTER3,INTERRUPTBUS

CLUSTER 3
INTERRUPT

MANAGER

CLUSTER 2
INTERRUPT

MANAGER

CLUSTER 1!
INTERRUPT

MANAGER

CLUSTER 0
INTERRUPT

MANAGER

: y : i

|

. MACROCLUSTER 1

Fig: 43a INTERRUPTMANAGER

230 SYSTEM

1) 228 INTERRUPT
SUBSYSTEM 1 Bus

SUBSYSTEM, INTERRUPT BUS INTERRUPT
MANAGER

fl 232 |
22 6 MACROCLUSTER ©INTERRUPT

MANAGER SUBSYSTEM

| 2354
MACROCLUSTER 0, INTERRUPT BUS

 CLUSTER 0

INTERRUPT
MANAGER

CLUSTER 1 2gINTERRUPT
MANAGER
ofan} [amks

KScurt|cures KD

220
X

5 ~
!
|CLUSTER|.INTERRUPTBUS CLUSTER0,INTERRUPTBU

INTEL - 1006

INTEL - 1006

34/38

SUBSYSTEM 1

INTERRUPT

MANAGER
SUBSYSTEM 2

234

0071727

Fig, 43b
228

SUBSYSTEM 0, INTERRUPT BUS

|
226 MACROCLUSTER 0

INTERRUPT

MACROCLUSTER 0, INTERRUPT BUS

|

 CLUSTER1,INTERRUPTBU
CLUSTER1

INTERRUPT |
MANAGER

u

CLUSTER © |
INTERRUPT

MANAGER

CLUSTER0,INTERRUPTBUS
cCHIPO KS

INTEL - 1006

INTEL - 1006

Fig. 44

FLOW OF INFORMATION

DURING INTERRUPT 1 O

O C

mH O O BO O© O O @

\ /
PR3 PRO

CHIP 2, CLUSTER 3, .
MACROCLUSTER 1, SUBSYSTEM 1

SOURCE AND DESTINATION OF
INTERRUPT 1

ROOT

FLOW OF INFORMATION
DURING INTERRUPT3

SYSTEMS

O-SUBSYSTEMS

()-MACROCLUSTERS

C)}-CLUSTERS

FLOW OF INFORMATION e
DURING INTERRUPT 2

C) r)

Oogddo 0 Q

PRO, CHIP 0 PR3 PR ,3,2,1,0,

CLUSTER 1, CHIP 3, CLUSTER3, CHIP 0, CLUSTER 0
MACROCLUSTER 1, MACROCLUSTER 0, MACROCL.USTER 0,

SUBSYSTEM1 SUBSYSTEM1 eee1—_—_— VY
SOURCE OF SOURCE OF DESTINATION OF

INTERRUPT 3 INTERRUPT 2INTERRUPT 2

iy
4

CHIP 3, CHIP 2, CHIP 1.

CLUSTER 0, MACROCLUSTER OF
SUBSYSTEM 0

DESTINATION OF

INTERRUPT 3

8&/GCE&

4644400
INTEL - 1006

INTEL - 1006

“ «

Interrupt Bus (Level i) Interrupt Interrupt Bus
Manager (Level

(yOTY (Level i+1)
i+1)

Interrupt Interrupt
Transmission Transmission
ina - in a Rising i)
Nonrising Phase rox)
Phase

Interrupt Interrupt Interrupt Interrupt _
Manager 3 Manager 2 Manager ! Manager 0 eo
(Level i) (Level i) (Level i) (Level i) Go

Fig, 45

Interrupt Interrupt Interrypt Interrupt
Bus Bus Bus Bus
(Level i-!) (Level i-t) (Level i-1) (Level i-1)

Nonrising interrupt @
~
onan

~J

hO

~J

INTEL - 1006

INTEL - 1006

a,2AQsng

Interrupt Information Bus

TII z7Ir €It vIT

Hl
ed ee eee we ee Fee ee

8E/LE

LCL4L00

7"

mm,

Interrupt Manager
is Local Destination

Subsystem

Macrocluster

]

Cluster

3
SSsauppy uo}}eu;3sS9q

Chips $
1 and 2 t

MPSs

2 and 3

High Order
Nibble

Low Order

Nibble

High Order
Nibble

(221) Aq|40}4d

Low Order

Nibble

4 uo}2ew4sojuy awyluny
Subsystem

2 ‘

Macrocluster nn

] Q £c
“7

“———_— —= a
e

Cluster >
2 aQa

—_—— st

: a
Chip a

3

MPS

0

INTEL - 1006

INTEL - 1006

0071727
38/38

Figs47 *™ cLock

STACK

POINTER LL

REGISTER/
COUNTER

»

5 WORD X 12 BIT

OUT

IN

MICROPROGRAM

COUNTER-

REGISTER po

{|

INCREMENTER (~] DLA

 F PC >

MULTIPLEXERDECREMENT/
ty

INSTRUCTION PLA

14

\/ —=> 12-BIT DATA PATH
M CONTROL PATH
VU

TO CONTROL
MEMORY
MANAGER

Sw »

INTEL - 1006

INTEL - 1006

0071727
EP 82 10 5491

P.9) ohn arent EUROPEAN SEARCH REPORT

 DOCUMENTS CONSIDEREDTO BE RELEVANT

Citation of documentwith indication. where appropriate, Relevant CLASSIFICATION OF THE
Category of relevant passages to claim APPLICATION(Int. Ci. 5)

x

G06 F 15/06

FOURTH EUROMICRO SYMPOSIUM ON

INTEGRATION: TECHNOLOGY,
APPLICATIONS AND IMPACTS,
17th-19th October 1978- Munich,
pages 34-38, North-Holland
Publishing company-Amsterdam
(NL);
B.R.BORGERSON: "A microarchitec-

ture for achieving mainframe
performance using LSI modules".
*Page 35, left-hand column, line
31 - right-hand column, line 12;
page 38, lines 1,2* & US -A- 4
210 960 & US - A - 4 199 811

IEEE TRANSACTIONS ON COMPUTERS,
vol. C-28, no. 10, October 1979,
pages 704-721, New York (USA);
S.I.KARTASHEV et al.: "A multi-

computer system with dynamic
architecture". *Pages 706-708
under: "IIT Dynamic computer
Group*

TECHNICAL FIELDS
SEARCHED(int. Cl. 9)

G06 F 15/06
G06 F 9/22
H 03 K 19/17

FR-A-2 406 852 (TOSHIBA)
*Page 6, line 3 - page 7, line
26; page 10, line 26 = page 11,
line 4; page 16, lines 12-38% &
GB - A = 2 007 886

-/-

The present search report has been drawn upforall claims

Place of search Date of completion of the search Examiner

THE HAGUE 28-10-1982 THOMAES K.

CATEGORYOF CITED DOCUMENTS : theory or principle underlying the invention
: earlier patent document, but published on, or

after thefiling date
: documentcited in the application
: documentcited for other reasons

: particularly relevantif taken alone
: particularly relevant if combined with another

documentof the same category
: technological background: non-written disclosure -
* intermediate document

erom4
: memberofthe same patentfamily,‘corresponding_ "

document
EPOForm1503.03.62 VvO><x

INTEL - 1006

Ml

INTEL - 1006

so:wn
EuropeanPatent . - “ 0 0 7 4 7 2 v

0 Office EUROPEAN SEARCH REPORT
. EP 82 10 5491

DOCUMENTS CONSIDEREDTO BE RELEVANT . _ Page 2
Citation of documentwith indication. where appropriate, Relevant CLASSIFICATION OF THE

Category ot relevant passages . to claim APPLICATION(int. Cl. 3)

TECHNICAL FIELDS
SEARCHED(int. Cl. 3)

ELECTRONIC DESIGN, vol. 29, no. |
10, May 1981, pages 197-202,
WASECA, MN (USA);
R.HAINES: "Two muCs on one chip
split the silicon and the work".
*Page 197, right-hand column,
line l1- page 198, right-hand coli-
umn, line 17%

EDN, vol. 23, no. 3, 5th
February 1978, pages 53-61,
Denver (USA);
J.BRICK et al.:-~ "“Microprogram-
ming ups your options in
muP-system design". *Pages
55,56; the passage "Now design a
CCU; page 61, the passage "Now
for the complete muprocessor"™*

MORRIS B.: "Semiconductor ,

|circuit design", vol. 4, 1975,
pages 103-123, Texas
instruments, Bedford (GB);
P.VAN CUYLENBURG: "VIII micro-

processors". *Page 107, left-hand
column, first paragraph; pages
114,115*

US-A-4 034 356 (IBM)

*Column 2, line 40 = column 3,
line 26*

-/-

The present search report has been drawnupforall claims ,

Place of search Date of completion of the search Examiner

THE HAGUE 28-10-1982 ___-|THOMAES K.

CATEGORYOF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or

: particularly relevantif taken alone - after the filing date ;
: particularly relevant if combined with another D : documentcited in the application

documentof the same category L : documentcited for otherreasons °
: technological background eee-srtentroittettoeteomte= ren temes-evamssrsunecstsenenessen esemesenrronssenemanent
: non-written disclosure & : memberof the same patent family, corresponding
: intermediate document . document

vOy><x"EPOForm1503.03.82

INTEL - 1006

INTEL - 1006

ofr EUROPEAN SEARCH REPORTice . seals q Jo»i 9d European Patent : : 0 0 71 127
. -EP 8216 5491

DOCUMENTSCONSIDERED TO BE RELEVANT~ ~“—~|——Page _3 °
- - Citation of documentwith indication. where appropriate, --
., of relevant passages "OE

IEEE TRANSACTIONS ON COMPUTERS,
vol. C=-28, no. 9, September
1979, pages 602-608, New York
(USA); .

|R.A.WOOD: "A high density pro- ~"|:
logic array chip".’°

as discribed on page li,
1-15 of the application

under examination*

EP-A-O 031 889 (IBM)

TECHNICALFIELDS
- SEARCHED(Int. Cl.)

t

CATEGORY OF CITEDDOCUMENTS : theory orprinciple underlyingthe invention~~~]

NM

2 - : : earlier patent document, but published on, or
“| X: particularly relevantif taken alone . after the filing date .
3 Y : particularly relevant if combined with another : documentcited in the application
— documentof the same category : documentcited forother reasons as
s}| A: technological background mete + smansnrte tote armament ene "tne es aemle sare ere eee ne
| QO: non-written disclosure : memberof the samepatentfamily, corresponding
&} P : intermediate document- . . document -

