
I W 7696 177

"!l'Q>Mlll,llQ) wn.o~Ir'!lllrES~ ~!!£SE~~ S~!ifi, ~MIB:;J

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 16, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/608,266

FILING DATE: June 30, 2000

PATENT NUMBER: 6,771,646

ISSUE DATE: August 03, 2004

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United Stat atent and Trademark Office

PART (/) OF ~ ART(S)

EX 1019 Page 1

1@A~Isu,1@‘m}_ul_l:sF ymsggmg 53mm]; (mymap:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 16, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/608,266

FILING DATE: June 30. 2000

PATENT NUMBER: 6,771,646

ISSUE DATE: August 03, 2094

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United Stat atent and Trademark Office

ing Officer
EX 1019 Page 1

I ',

. \

)
,l

'' '' (C

'',!

APPLICATION NO, CONT/PRIOR ,CLASS

C9/628Z6S D· 370

CerJifica~e
, , NOV: 'l ,6 2004·

l, 1
, , ! ', <l

of correction

SUBCLASS

(.EKT-J:f ICA TC:
(f.,1 Z-1 "201.4

PATENT NUMBER

I(
l

I t·I f"': 1
('

'
Certificate

SEP 21 2004

')--i.

PT0-2040
12199

of Correction·

ISSUING CLASSIFICATION
ORIGINAL I __ J CROSS REFERENCE($)

CLASS I SUBCLASS CLASS SUBCLASS (ONE SUBCLASS PER BLOCK)

Z,70 I ··!i-,'f '). : . }7o ., L/ IJ, ;i Sd--
.E ,,' I

INTERNATIONAL C~ASSIFICATION J 9-,:? ;is.,;,...

(;, () I i(._ 1-r/ ot 7of ;l_:).. 5

7// ii '1
t

0 Continued on Issue Slip Inside FIie Jacket

DRAWINGS
~,/ D TERMINAL

DISCLAIMER Sheets Drwg>.,.i ,,,Figs. Drwg. Print Fig. Total,9-lai s Print Claim for O.G.

0 The term of this patent
subsequent to _____ (date)

has been disclaimed.

D The term of this patent shall
not extend beyond the expiration date

of U.S Patent. No.------·

D The terminal _months of

lhis patent have been disclaimed.

;;;).l . .o<v ;:,.. 2. I§'
,,.r J ,·"

, . .-1.o 7
/ ,./ NOTICE OF ALLOWANCE MAILED

/ A f ~I'\. V. /Vq ve,-.. '1E97•1 ---------
(1'ss11,1aru:E.1e~ ~ (Date}

/Jic~-
Rl~NGO

PRIMARY EXAMINER ~/ lh/01-
--(=Pn-ma-,.,...,Exam-,-no·c-,1 --- (Date)

f

)SSUE BATCH NUMBER f:

//
WARNING:
n+e mfownabon disclosed heretn may be restncted Unauthonzed d1sc1osure may be prohibited ~e United States Code llUe 35, Sect1oos 122, 181 and 368
Possession outside the U.S. Pat-ent & Trademark Office 1s restncted to authonzed employees and contractors-0nty.

FILED WITH: D DISK (CRF) D FICHE D CD·ROM

ISSUE FcE IN FILE
{Attached ln pocket on right fhskle flap)

(FACE)

l
I.

I.
I

\.
\

l
I

LI ,:

I
I
' I

,,
}
'\

EX 1019 Page 2

Ev- «m .

M’PLIGATION N0
(“9 ,C’E'8366

A9PUCANTS

‘ NW; :1 5,2304 1 K

of Correction 35p 21 29% From

CERTEHCATE QfCG‘“ g:- 32'” 7 "

.t,
t"

TITLE

ISSUING CLASSIF!CATION

' , caoss REFERENCHS) i

TERMINAL
DISCLAIMER

 ‘ 1

3 C] The term of this patent :._ subsequent to (date) 21w(1 h Nguyen ‘‘ ‘ has been disclatmed. A: «swam Exmlvef) 5:63am! 1
‘ C} The term of this patent shall \

not extend beyond the expiration date
of US Patent. No.

l 3¢
xU The termmal months 0!

this patent have been disclaimed‘

WARNING:
/

The ‘niomm disaosed hazem may be restricted Unamhonzed demosure may be prambxted by the United States Code Tulle 85 Seclmns 122 181 and 389
Possession mme the US Patem 5. Trademark Otfice rs (eslncled m aulhonled employees and conxractumnw

mm, ‘3“ F!LED mm: [:1 DISK (can DFICHE [:1 cry-Hora

‘SSUE FEE ‘N F‘LE ‘mwmvmimmwem

M - ‘ , (FACE)

 .(MMH._A..=«.2~.:_., ____TWW
EX 1019 Page 2

UNITED STATES PATENT AND ThADEMARK 0FFIGE

· l ~11m ~Ill lllll lllll llli 11m II~ IIWI Iii Ill~ 111111111111 ~~
Bib Data Sheet

SERIAL NUMBER
09/608,266

!APPLICANTS

FILING DATE
06/30/2000

RULE

Haig A Sarkissian, San Antoni<:)',' TX;,-·
Russell S. Dietz, San Jos.er·CA ;

i:.J,.i'JI" L M
"* CONTINUING DAT A,;t,*.:********4•••*********

CLASS
370

Pagel of l

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE

W\SrilNOIDN. DC. 20231
www uspto g011

GROUP ART UNIT
2731

ATTORNEY
DOCKET NO.
APPT-001-4

THIS APPLNJc'LAIMS BENEFIT OF 60/141,903 06/30/1999
'fy .,l'r J

,.. FOREIGN APPucAT10Ns •••• !J.eM-•••••••••
1£v

IF REQU)RED, FOREIGN FILING LICENSE
GRANvED ** 09/01/2000

Foreign Priority claimed D yes 't!sl no,,,"'·
,/ STATE OR SHEETS TOTAL

~5 USC 119 (a-d) conditions Dyes)'. :-;;o D Met after COUNTRY DRAWING CLAIMS
INDEPENDENT

CLAIMS
met ,Allo}ll ce .
Verified and ' ·~ ,. TX 21 20 I
Acknowledoed Exafll)i?er's Sfo11ature tn,tials
J,,iiiiiiiiiiiii....ii-.----.---i.i.iii ------- ---....1------'-----"----·-

3

ADDRESS' /

Dov Rosenrel
~507 Colleg Avenue
Suite 2
Oakland ,CA 94618

TITLE

!Associative cache structure for lookups and updates of flow records in a network monitor

FILING FEE FEES: Authority has been given in Paper
RECEIVED No. to charge/credit DEPOSIT ACCOUNT

840 No. for following:

. '

file://C :\APPS\PreExam \correspondence\ l _ A.xml

ID All Fees

D 1.16 Fees (Filing)

D 1 17 Fees (Processing Ext. of
time)

ID 1.18Fees(lssue)

jD Other

jD Credit

111:

EX 1019 Page 3

Page 1 of1

 ”1.? UNITED STATES PATENT AND TRADEMARK OFFICE COMMISSTONER Foe PATENTS
UNTTED Sums PATENT AND TRADEMARK OFFICE

MSHINCmN‘ D C. 2023!
ww uspm gov

T‘JIHIJMIlilllllfllillflilfimlfiI‘mlélilmlflfiilllfiilfl
Bib Data Sheet

FILING DATE

SERIAL NUMBER 0330,2000 CLASS GROUP ART UNIT
09/608,266 37 7

RULE 0 2 31

ATTORNEY
DOCKET NO.

APPT-OO1-4
. PPLICANTS

HaigA Sarkissian San Antonio“; TX; '
RusseHS Diet: San JoeeflCA;

JV, L w
* CONT‘NUING DATAI:*(*:9HH&#**TK *iiii‘kfit‘kkk‘k

THIS APPLN=6LA!MS BENEFTT OF 60/141903 06/30/1999

,8)a" /
* FOREIGN APPLICATIONS MAW‘W

,4?"
IF REQLEJRED, FOREIGN FILING LICENSE
GRANTED ** 09I01/2000 , -

Foregn Pdonty claxmed D yes 3noy ' AD STATE OR SHEETS TOTAL INDEPENDENT
n yes. no Metafter COUNTRY DRAWING CLAIMS CLAIMS

;’1 ”i , .k» TX 21 20 3
Exalmfier‘; Si . nature lmtiats

DDRESS ’ / ‘
Dov Rosenfe!

507 Coiieg Avenue

Suite 2 {
akland ,CA 94618

ITLE

ssociative cache structure for Tookups and updates of flow records in a network monitor

D All Fees

”-1 1.16 Fees (Finng)

 FILING FEE FEES: Authority has been given in Paper D 1 17 Fees (Processing E)“. 0f
RECEIVED No. to charge/credit DEPOSIT ACCOUNT time)

______forfollowmg; [D 1.18 Fees (issue)
[[3 Other
in Credit

file://C :\APPS\PreExam\coxTespondence\1_A.xrnl 1 U:

EX 1019 Page 3

PT0-1556
(5/87)

PATENT APPLICATION SERIAL NO. ---------

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

EX 1019 Page 4

A.
i?

PTO~1556

(5/87)

'0.S.GPD: 19994594623151“

PATENT APPLICATION SERIAL NO.

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

’7

EX 1019 Page 4

0) 03--o 0

INT:fi.11: U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

Our Ref/Docket No.: APPT-001-4

Box Patent Application
ASSISTANT COMMISSIONER FOR PATENTS
Washington, D.C. 20231

Dear Assistant Commissioner:

Transmitted herewith is the patent application of

INVENTOR(s)/APPLICANT(s)
Last Name First Name, MI Residence (City and State or Country)

Sarkissian
Dietz

Haig A.
Russell S.

San Antonio, Texas
San Jose, CA

TITLE OF THE INVENTION

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387
5507 College A venue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that apply)

Included are:
K
K

sheet(s) of specification, claims, and abstract
.1L_ sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson
Information Disclosure Statement.
Form PT0-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a
copy of each references included in PT0-1449.
Declaration and Power of Attorney
An assignment of the invention to Apptitude, Inc.
A letter requesting recordation of the assignment.
An assignment Cover Sheet.
Additional inventors are being named on separately numbered sheets attached hereto.
Return postcard.

This application has:
a small entity status. A verified statement:

is enclosed
was already filed.

The fee has been calculated as shown in the following page.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI4l796l895US in an envelope addressed to Box Patent
Applicatio , Assistant Commissioner for Patents, Washington, D.C. 2~

Date: .:Jc)~ Signecv.-~-······--··-=---------
Name: Dov Rosenfeld, Reg. No. 38687

EX 1019 Page 5

020310 0 is

::...:'~‘-
g o
2" 4

gg
C IN THE US. PATENT AND TWEMARK OFFICE

E h Application Transmittal Sheet

E 1: Our RefJDocket No; APPT»001-4
53 o a...

Box Patent Application Sm %
ASSISTANT COMMISSIONER FOR PATENTS , to i
Washington, D.C. 20231 09g E

:25) E
‘42) ”3'

Dear Assistant Commissioner: :333:13"
033: g:

Transmitted herewith is the patent application of ,9, g

[NVENTOR(s)/APPLICANT(S)

Last Name First Name, MI Residence (Cit: and State or Country

Sarkissian Haig A. San Antonio, Texas
Dietz Russell S. San Jose, CA

TITLE OF THE LNVENTION

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITORm»u....

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANTfS)

..,“runit...”
Dov Rosenfeld, Reg. No. 38,387
5507 College Avenue, Suite '2
Oakland. California. 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

,jllIL.
3'3!

ENCLOSED APPLICATION PARTS (check all that a l)

tr} Included are:
: X 65 sheet(s} of specification, claims, and abstract

21 sheet(s} of formal Drawing(s) with a submission letter to the Official Draftsperson
Information Disclosure Statement.

Form PTO-.1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a
cepy of each references included in P1134449.
Declaration and Power of Attorney
An assignment of the invention to Apptitude, Inc.
A letter requesting recordation of the assignment.
An assignment Cover Sheet.
Additional inventors are being named on separately numbered sheets attached hereto.
Return postcard.

This application has:
a small entity status. A verified statement:

is enclosed

was already filed.

“lllllW

The fee has been calculated as shown in the following page.

 Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: E1417961895US in an envelope addressed to Box Patent
Applicatio , Assistant Commissioner for Patents, Washington, D.C. 20231 on.

3:9 We)

Sign .

Name: Dov Rosenfeld. Reg. No. 38687

EX 1019 Page 5

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. APPT-001-4

NO.OF EXTRA RATE EXTRA CLAIM
TOT AL CLAlMS CLAIMS FEE

TOTAL 20 0 $18 $ 0.00
CLAIMS

INDEP. 3 0 $78 $ 0.00
CLAIMS

BASIC APPLICATION FEE: $ 690.00
,

TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A check in the amount attached for application fee and presentation of claims.
A check in the amount of$ 40.00 is attached for recordation of the Assignment.
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees

required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITIAL IS ATIACHED):

, jµJ2
uoate

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax.: (5 IO) 653-7992

Respectfully Submitted,

Dov Rosenfeld , Reg. No. 38687

EX 1019 Page 6

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. APPT—OCll-d

EXTRA CLAIMNO» OF EXTRA
TOTAL CLAIMS CLAIMS FEE

RATE

TOTAL 20 $18 $ 0 00
CLAIMS

INDEP. 3 $78 $ 0 00
CLAIMS

BASIC APPLICATION FEE: 3 690.00

/' TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A check in the amount of is attached for application fee and presentation of claims.

A check in the amount of $3Q£Q is attached for recordation of the Assignment.
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees

required for this filing or credit any overpayment to Deposit Account No. 500292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

3 0 M g :
Date Dov Rosenfeld , Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 6534992

EX 1019 Page 6

= ,-

Our Ref./Docket No: APPT-001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al.

Title: ASSOCIATIVE CACHE STRUCTURE FOR
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON
SUBMISSION OF FORMAL DRAWINGS

The Assistant Corrunissioner for Patents
Washington, DC 20231
ATTN: Official Drafts person

Dear Sir or Madam:

Attached please find 11 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

Respectfully Submitted,

~-N-o_._3_8_6_87~

Address for correspondence and attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

,Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent
Applicati , Assistant Commissioner for Patents, Washington, D.C. 2023.J-<im::::::::;;l,,,..-

3cf> ~

EX 1019 Page 7

4!.

vim?!1|...”....1‘«mi:
31:]!mt...
Tffil‘

3373’“II.,.II

MUM3:71,

Our Ref/Docket No: APPT-001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, at al.

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 2_1 sheets of formal drawings to be made of record for the above

identified patent application submitted herewith.

Respectfully Submitted,

3 0 we %\/ _T
Date 0v Rosenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2

Oakland, CA 94618 >

Telephone: (510) 547-3378; Fax: (510) 653-7992

 Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI4l7961895US in an envelope addressed to Box Patent
Applicati , Assistant Commissioner for Patents, Washington, DC. 202

Date:A 3C9, W Signed-
N : Dov Rosenfeld, Reg. No. 38687

EX 1019 Page 7

0

Our Ref./Docket No.: APPT-001-4

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

Inventor(s):

SARKISSIAN, Haig A.
San Antonio, Texas

DIETZ, Russell S.
San Jose, CA

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: EI4l796l895US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,
Washingto~, .C. 20231 on. ~
Date: 7:£> ~ Signed: ~---/" 7 ~~/~---~~~~~~

EX 1019 Page 8

Mu
.Wu

H..."it..."ll..."u.....

WWW~w,

Our Rafi/Docket N0.: APPT‘001‘4

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

Inventor(s):

SARKISSIAN, Haig A.
San Antonio, Texas

DIETZ, Russell 8.

San Jose, CA

 Certificate of Mailing under 37 CFR 1.10

Thereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express M811 Label: BI417961895US in an envelopc addressed to Box Patent Application, Assistant Commissioner for Patents,

Washington, .0 20W % 2Date; 2&3 ”19$ Sigmd‘

EX 1019 Page 8

r v

C

J ! :

\.
_)

1

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:

5 60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

10

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference. ·,/. (p
1

f-;;.~ ft_, c~ ~

This application is related to the following'\J.s. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

,~o. ~,' ..S 1,'>11
U.S. Paten>--Application Serial N~ for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., filed JHRe-3Bi,

.ZOOO, Attorn~e Number APPT 001 l., and incorporated herein by

reference.

,Jo. ~
1
fR(g~Ji5

15 U.S. PatentApplisatioR ~eria.l ~fo __ ~ for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed JuRe 30, 2:00Q;

Attorney/Agent Refsnmce Nnm00r APPT 001 ~ and incorporated herein by

reference.

20 U.S. Patent Application Serial No,._~±=.====for RE-USING INFORMATION FROM

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

,,. MONITORING, to inventors Dietz, et al., filed Jutte 3Q, 200~ tterney/AgeR-1:

Refsrnnce tlfotttber APP..'F--901 3-and incorporated herein by reference.

,.;·,/6ol) .. £:7
U.S. Patent Application Serial No. d7Dt=< for STATE PROCESSOR FOR

/\.

25 PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors

1 Sarkissian, et al., filoo..JH.oo-W,--2-GOOt..A,ttomeyh\gent Refereaee Wt:1mber APPT 001,

~ and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

EX 1019 Page 9

Hm"ll..."Ilmllll..."unl'"an:
O

1

(‘3

\

10

15

20

25

O ' 5)

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of US. Provisional Patent Application Serial No.:

60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference. ‘4 ‘g. P‘ It“ +5 M (I
This application is related to the following/IDS. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

NO. ELIAS” 503’

US. PatenkkpphcatIQn—SW for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., filed—Juae—QO;

MWnefiAgenLReferenee—Number-MPT—QOI—L and incorporated herein by

reference.

No. 0,005,715
US. PatenLAppIW for PROCESS]NG PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed W99;

Attorneyfibcgent—Refereneebhmaber—APIIPOOI—E, and incorporated herein by

reference.

Mm, we

US. Patent Application Serial Nokfiz for RE-USING INFORMATION FROM
DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

MONITORING, to inventors Dietz, et al., filedWWW

Reference—Namber—APP—FQGI—g, and incorporated herein by reference.

owl/é M167
US. Patent Application Serial NOA‘@ for STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors

Sarkissian, et al., filed-June30720‘

5, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real—time

EX 1019 Page 9

0)

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

5 especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i.e., of all packets and packet

10 streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e.g., voice, video, data, real-time data, etc.), and an end user's pattern of use

within each application or the application context (e.g., options selected, service

15 delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

20 of network problems.
No. f.t>

1
(,5\ r::.9q

Related and incorporated by reference U.S. Paten~appli:a:ti@R \., ./,. M-e+ for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

inventors Dietz, et al, Aftorney/Ageat D0ek.st APPT 001 4., describes a network monitor

that includes carrying out protocol specific operations on individual packets including

25 extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

30 form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

EX 1019 Page 10

(“x

Wtil-Mv

10

15

20

25

30

O 3

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (228.. of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc), the application/use within the

protocol (cg, voice, video, data, real-time data, etc), and an end user’s pattern of use

within each application or the application context (e.g., options selected, service

delivered duration, time of day, data requested, etc). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

No. (9,651, 0??

Related and incorporated by reference U.S. Patenggppheaéenw for

METHOD AND APPARATUS FOR MONITORING TRAFFIC INA NETWORK, to

inventors Dietz, et a1, Arttor-ncystArigors-DeelsetAalt—‘—13;C-OG-l--l~a describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

form a signature (Le, key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

EX 1019 Page 10

i
''-"'

J

0)

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

5 especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i.e., of all packets and packet

10 streams passing through any location fn the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e.g., voice, video, data, real-time data, etc.), and an end user's pattern of use

within each application or the application context (e.g., options selected, service

15 delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

20 of network problems.
No. <,11,5'11 evq

Related and incorporated by reference U.S. Paten~li:ati~a , •• ,/ •• :',,-4,,+ for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

inventors Dietz, et al, MterRey,'Ageet Dock:@t APPT 001 l, describes a network monitor

that includes carrying out protocol specific operations on individual packets including

25 extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

30 form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

EX 1019 Page 11

0)

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

5 especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i.e., of all packets and packet

IO streams passing through any location fn the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e.g., voice, video, data, real-time data, etc.), and an end user's pattern of use

within each application or the application context (e.g., options selected, service

15 delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

20 of network problems.
~o. r,,1,s,, r:/jq

Related and incorporated by reference U.S. Paten~apfdicatiea \.,, ,L........,... for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

inventors Dietz, et al, AHoreey/Ageet Doek@t APPT 001 l, describes a network monitor

that includes carrying out protocol specific operations on individual packets including

25 extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

30 form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

EX 1019 Page 12

0
4

likely that a packet associated with the least recently used flow-entry will soon arrive.

A hash is often used to facilitate lookups. Such a hash may spread entries

randomly in a database. In such a case, a associative cache is desirable.

There thus is a need for a associative cache subsystem that also includes a LRU

5 replacement policy.

10

SUMMARY

Described herein is an associative cache system for looking up one or more

elements of an external memory. The cache system comprises a set of cache memory

elements coupled to the external memory, a set of content addressable memory cells

(CAMs) containing an address and a pointer to one of the cache memory elements, and

including-a matching circuit having an input such that the CAM asserts a match output
-n+e,

when !he input is the same as the address in the CAM cell:.,. W:l:l::teft cache memory

ele;::g';f/1 a particular CAM points to changes over time. In the preferred implementation,
"

the CAMs are connected in an order from top to bottom, and the bottom CAM points to

15 the least recently used cache memory element.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

20 explanation. The embodiments, in tum, are explained with the aid of the following

figures.

25

FIG., I is a functional block diagram of a network embodiment of the present

inventiorrfn which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their

formats that might be exchanged in starting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be

EX 1019 Page 13

0 .)

5

generated and used in the process of analyzing packets and of recognizing the particular

server applications _that produce the discrete application packet exchanges.

FI~., fis a functional block diagram of a process embodiment of the present

inventi,0fi that can operate as the packet monitor shown in FIG. 1. This process may be
/

5 implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and

optimization process, which in one embodiment may be used to generate data for

monitoring packets according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

10 embodimenrof the inventive packet monitor.

15

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part

of the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 ~;Hi flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

20 the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

25 process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in !lJ.1 embodiment of the inventive packet monitor.

EX 1019 Page 14

)

6

FIG. 14 is a simple functional block diagram of a process embodiment of the

present iny.ention that can operate as the packet monitor shown in FIG. 1. This process

may b.e implemented in software.

FIG. 1_5 is a functional block diagram of how the packet monitor of FIG. 3 (and

5 FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17 A is an example of the header of an Ethertype type of Ethernet packet of

10 FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

15

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

shown in FI Gs. 16 and 17 A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of

the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodiment of the inve11tion.

FIG. 18B ~s-an alternate form of storing elements of the pattern, parse and

extraction da~abase used by the parser subsystem in accordance to another embodiment

20 of the invention.

25

FIG. 19 is a block diagram of the cache memory part of the cache subsystem

1115 of the analyzer subsystem of FIG. 11.

FIG. 20 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

FIG. 21 is a block diagram of one implementation of the CAM array of the cache

subsystem 1115.

EX 1019 Page 15

o g

6

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process

maybe implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

5 FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

10 FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

shown in FIGS. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

15 FIG. 18A is a three dimensional structure that can be used to store elements of

the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodiment of the invention.

FIG. 18B isra’n'altemate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment

20 of the invention.

FIG. 19 is a block diagram of the cache memory part of the cache subsystem /
1115 of the analyzer subsystem of FIG. 11. /W...—..._ ~__, ____‘

FIG. 20 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

FIG. 21 is a block diagram of one implementation of the CAM array of the cache

subsystem l 1 15.

3,4
2!a

‘1.

EX 1019 Page 15

7

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

5 invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network

102 that communicates packets (e.g., IP datagrams) between various computers, for

10 example between the clients 104-107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of

the cloud. A monitor 108 examines the packets passing in either direction past its

connection point 121 and, according to one aspect of the invention, can elucidate what

application programs are associated with each packet The monitor 108 is shown

15 examining packets (i.e., datagrams) between the network interface 116 of the server 110

and the network. The monitor can also be placed at other points in the network, such as

connection point 123 between the network 102 and the interface 118 of the client 104, or

some other location, as indicated schematically by connection point 125 somewhere in

network 102. Not shown is a network packet acquisition device at the location 123 on

20 the network for converting the physical information on the network into packets for input

into monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication, e.g., TCP/IP, etc. Any network activity-for example an

application program run by the client 104 (CLIENT 1) communicating with another

25 running on the server 110 (SERVER 2)-will produce an exchange of a sequence of

packets over network 102 that is characteristic of the res pee ti ve programs and of the

network protocols. Such characteristics may not be completely revealing at the

individual packet level. It may require the analyzing of many packets by the monitor 108

to have enough information needed to recognize particular application programs. The

packets may need to be parsed then analyzed in the context of various protocols, for

EX 1019 Page 16

o 3

7

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

5 invention,

Operation in a Network

FIG 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network

102 that communicates packets (e.g, 1? datagrams) between various computers, for

to example between the clients 104-107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of

the cloud. A monitor 108 examines the packets passing in either direction past its

connection point 121 and, according to one aspect of the invention, can elucidate what

application programs are associated with each packet. The monitor 108 is shown

15 examining packets (Le, datagrams) between the network interface 116 of the server 110

and the network. The monitor can also be placed at other points in the network, such as

connection point 123 between the network 102 and the interface 118 of the client 104, or

some other location, as indicated schematically by connection point 125 somewhere in

network 102. Not shown is a network packet acquisition device at the location 123 on

20 the network for converting the physical information on the network into packets for input

into monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication, 2. g., TCPIIP, etc. Any network activitym-for example an

application program run by the client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2)~—wi11 produce an exchange of a sequence of

paCkets over network 102 that is characteristic of the respective programs and of the

network protocols. Such characteristics may not be completely revealing at the

individual packet level. It may require the analyzing of many packets by the monitor 108

to have enough information needed to recognize particular application programs. The

PaCkets may need to be parsed then analyzed in the context of various protocols, for
EX 1019 Page 16

,.
t,

1.,

O' .. I ',

' .)

8

example, the transport through the application session layer protocols for packets of a

type conforming to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol

stack. The ISO (International Standardization Organization) has defined a general model

5 that provides a framework for design of communication protocol layers. This model,

shown in table form below, serves as a basic reference for understanding the --- --·-·•"''

functionality of existing communication protocols.

ISO MODEL

Layer .Functionality Example

7 Application Telnet, NFS, Novell NCP, HTTP,

H.323

6 Presentation XDR

5 Session RPC, NETBIOS, SNMP, etc.

4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.

2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

Different communication protocols employ different levels of the ISO model or

I
i

I

10 may use a layered model that is similar to but which does not exactly conform to the ISO (

15

model. A protocol iri a certain layer may not be visible to protocols employed at other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

In some communication arts, the term "frame'' generally refers to encapsulated

data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

EX 1019 Page 17

:3.~,

10

15

3 3

8

example, the transport through the application session layer protocols for packets of a

type conforman to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol

stack. The ISO (lntemational Standardization Organization) has defined a general model

that provides a framework for design of communication protocol layers. This model, /
WM““M ,

shown in table form below, serves as a basic reference for understanding the if.

functionality of existing communication protocols. “it

ISO MODEL

Functionality Example

Application Telnet, NFS, Novell NCP, HTTP,

H.323

Presentation

2 Data Link Network Interface Card (I‘Iardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

Different communication protocols employ different levels of the ISO model or

may use a layered model that is similar to but which does not exactly conform to the ISO /“v ~. - “Jaw-WW).”am/m”.4

model. A protocol in' a certain layer may not be visible to protocols employed at other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame” generally refers to encapsulated

data at 081 layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

EX 1019 Page 17

0
9

"packet" generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

term "datagram" is also used. In this specification, the term "packet" is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for

5 transmission across a network. For example, a data packet typically includes an address

destination field, a length field, an error correcting code (ECC) field, or cyclic

redundancy check (CRC) field, as well as headers and footers to identify the beginning

and end of the packet. The terms "packet format" and "frame format," also referred to as

"cell format," are generally synonymous.

10 Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type-A packet

15 with the sending of a type-B packet, and the other application program does not, then in

20

order to recognize packets of that application's conversational flow, the monitor can be

available to recognize packets that match the type-B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

program's conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchanges that are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

25 previous events in the flow that lead to recognition of the content of all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor l 08, the number of packets on the network 102

30 passing by the monitor 108's connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

EX 1019 Page 18

5

3 {

'

10

and identify and maintain the state of the flows passing through the connection point.

The monitor 108 therefore masks out all the unimportant parts of each packet that will

not contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

within the monitor 108. At a first level, for example, several application programs will

all produce a first kind of packet. A first "signature" is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

IO same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational

flow. The signature can then be used to efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the

15 conversational flow, and more packets are necessary to identify the associated

application program. In such a case, a subsequent packet of a second type-but that v
potentially belongs to the same conversational flow-is recognized by using the

signature. At such a second level, then, only a few of those application programs will

have conversational flows that can produce such a second packet type. At this level in

20 the process of classification, all application programs that are not in the set of those that

lead to such a sequence of packet types may be excluded in the process of classifying the

conversational flow that includes these two packets. Based on the known patterns for the

protocol and for the possible applications, a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

25

30

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determine if this

signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packet is further

analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

EX 1019 Page 19

10

15

20

25

30

/ {I Df g

10

and identify and maintain the state of the flows passing through the connection point.

The monitor 108 therefore masks out all the unimportant parts of each packet that will

not contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi‘step process

within the monitor 108. At a first level, for example, several application programs will

all produce a first kind of packet. A first “signature” is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational

flow. The signature can then be used to efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated

application program. In such a case, a subsequent packet of a second typembut that

potentially belongs to the same conversational flow-Wis recognized by using the

signature. At such a second level, then, only a few of those application programs will

have conversational flows that can produce such a second packet type. At this level in

the process of classification, all application programs that are not in the set of those that

lead to such a sequence of packet types may be excluded in the process of classifying the

conversational flow that includes these two packets. Based on the known patterns for the

protocol and for the possible applications, a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determine if this

Signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packet is further

analyzed in the context of the sequence of previously encountered packets (the state), and

0f the possible future sequences such a past sequence may generate in conversational

EX 1019 Page 19

())

11

flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

5 it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In altemati ve

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through some point in the

10 network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processor then loads its own executable copy of the application program and uses it to

read the content being exchanged over the network. In other words, once the monitor 108

15 has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet

20 acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol

information in a multilevel model, including what server application produced the

packet.

The packet acquisition device is a common interface that converts the physical

25 signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what

operations need to occur on packets of different types-accomplished by compiler and

30 optimizer 310, (2) the processing-parsing and extraction of selected portions-of

packets to generate an identifying signature-accomplished by parser subsystem 301,

EX 1019 Page 20

t

12

and (3) the analysis of the packets-accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

5 are to be added.

A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

10 flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layer that exists in the packet 302. An extraction process 306 in parser

subsystem 301 extracts characteristic portions (signature information) from the packet

15 302. Both the pattern information for parsing and the related extraction operations, e.g.,

extraction masks, are supplied from a parsing-pattern-structures and extraction

operations database (parsing/extractions database) 308 filled by the compiler and

optimizer 310.

The protocol description language (POL) files 336 describes both patterns and

20 states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocols at the

next layer, and what information to extract for the purpose of identifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

25 protocols at any layer level. Thus 336 and 338 combined describe how one would

decode, analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

30 include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

EX 1019 Page 21

J

5

10

0 ,.)

13

the packets based on the patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that

indicate a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. These are the different states and state transitions that occur

in different conversational flows, and the state operations that need to be performed (e.g.,

patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the POL files and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the

contents of one or more of databases 308 and 326 may be manually or otherwise

generated. Note that in some embodiments the layering selections information is inherent

rather than explicitly described. For example, since a POL file for a protocol includes the

15 child protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304 is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the

packets. In particular, the PAR locates the next protocol field in the header and

20 determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An example of this is type and length comparison to distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGIT AL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

25 associated with that protocol that enables analysis of the next protocol layer. Once a

pattern or a set of patterns has been identified, it/they will be associated with a set of

none or more extraction operations. These extraction operations (in the form of

commands and associated parameters) are passed to the extraction process 306

implemented by an extracting and information identifying (Ell) engine that extracts

30 selected parts of the packet, including identifying information from the packet as

required for recognizing this packet as part of a flow. The extracted information is put in

EX 1019 Page 22

0 .
14

sequence and then processed in block 312 to build a unique flow signature (also called a

"key") for this flow. A flow signature depends on the protocols used in the packet. For

some protocols, the extracted components may include source and destination addresses.

For example, Ethernet frames have end-point addresses that are useful in building a

5 better flow signature. Thus, the signature typically includes the client and server address

pairs. The signature is used to recognize further packets that are or may be part of this

flow.

In the preferred embodiment, the building of the flow key includes generating a

hash of the signature using a hash function. The purpose if using such a hash is

IO conventional-to spread flow-entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet-a parser record

that includes the signature (i.e., selected portions of the packet), the hash, and the packet

15 itself to allow for any state processing that requires further data from the packet. An

improved embodiment of the parser subsystem might generate a parser record that has

some predefined structure and that includes the signature, the hash, some flags related to

some of the fields in the parser record, and parts of the packet's payload that the parser

subsystem has determined might be required for further processing, e.g., for state

20 processing.

Note that alternate embodiments may use some function other than concatenation

of the selected portions of the packet to make the identifying signature. For example,

some "digest function" of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal

25 data store of records of known flows that the system has already encountered, and

decides (in 316) whether or not this particular packet belongs to a known flow as

indicated by the presence of a flow-entry matching this flow in a database of known

flows 324. A record in database 324 is associated with each encountered flow.

30

The parser record enters a buffer called the unified flow key buffer (UFKB). The

lJFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

EX 1019 Page 23

0)

15

stores the packet sequence number, and another is filled with state information in the

form of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already

exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses

5 the hash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

cache is associated with the database 324. A lookup by the LUE for a known record is

carried out by accessing the cache using the hash, and if the entry is not already present

in the cache, the entry is looked up (again using the hash) in the external memory.

10 The flow-entry database 324 stores flow-entries that include the unique flow

signature, state information, and extracted information from the packet for updating

flows, and one or more statistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow-entries

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

15 Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the

database to allow for fast lookups of entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the number of bits of the hash data value used. For example, in one embodiment, each

20 flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be

more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

25 that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a

new flow, then a protocol and state identification process 318 further determines the

state and protocol. That is, process 318 determines the protocols and where in the state

sequence for a flow for this protocol's this packet belongs. Identification process 318

30 uses the extracted information and makes reference to the database 326 of state patterns

and processes. Process 318 is then followed by any state operations that need to be

EX 1019 Page 24

0
16

executed on this packet by a state processor 328.

.)

If the packet is found to have a matching flow-entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked-up flow-entry, if more

classification by state processing of the flow signature is necessary. If not, a process 322

5 updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating

includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updates the

IO state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state-to-state based on predefined state

15 transition rules and state operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next-state

to proceed to if the test result is true. An operation is an operation to be performed while

the state processor is in a particular state-for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

20 each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a

packet, and carrying out the operation or operations may leave one in a state that causes

exiting the system prior to completing the identification, but possibly knowing more

about what state and state processes are needed to execute next, i.e., when a next packet

25 of this flow is encountered. As an example, a state process (set of state operations) at a

particular state may build a new signature for future recognition packets of the next state.

30

By maintaining the state of the flows and knowing that new flows may be set up

using the information from previously encountered flows, the network traffic monitor

300 provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

EX 1019 Page 25

(J!

10

15

20

25

30

O f)

16

executed on this packet by a state processor 328.

If the packet is found to have a matching flowentry in the database 324 (e.g., in

the cache), then a process 320 determines, from the lookedaip flow-entry, if more

classification by state processing of the flow signature is necessary. If not, a process 322

updates the flow—entry in the flow—entry database 324 (e. g., via the cache). Updating

includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updates the

state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the 180 model). It does this by proceeding from state-to-state based on predefined state

transition rules and state operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next~state

to proceed to if the test result is true. An operation is an operation to be performed while

the state processor is in a particular state—for example. in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a

packet, and carrying out the operation or operations may leave one in a state that causes

exiting the system prior to completing the identification, but possibly knowing more

about What state and state processes are needed to execute next, 128., when a next packet

of this flow is encountered. As an example, a state process (set of state operations) at a

particular state may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up

using the information from previously encountered flows, the network traffic monitor

300 provides for (a) single—packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub~flows that occur in server announcement type flows.

EX 1019 Page 25

)

17

What may seem to prior art monitors to be some unassociated flow, may be recognized

by the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this

5 particular flow-entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

additional state operations to this particular packet until all those operations are

completed-that is, there are no more operations for this packet in this state. A process

332 decides if there are further states to be analyzed for this type of flow according to the

to state of the flow and the protocol, in order to fully characterize the flow. If not, the

conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing

by using the last protocol recognized by the parser as an offset into a jump table (jump

15 vector). The jump table finds the state processor instructions to use for that protocol in

the state patterns and processes database 326. Most instructions test something in the

unified flow key buffer, or the flow-entry in the database of known flows 324, if the

entry exists. The state processor may have to test bits, do comparisons, add, or subtract

to perform the test. For example, a common operation carried out by the state processor

20 is searching for one or more patterns in the payload part of the UFKB.

25

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process

322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

EX 1019 Page 26

CJ)

18

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow-entries, which in one aspect includes storing states. The monitor of

5 FIG. 3 also generates characteristic parts of packets-the signatures-that can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.

Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed

lO as more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i.e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

15 state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a short-cut recognition pattern-a signature-can be generated that will key

20 on every new incoming packet that relates to the conversational flow. Checking a

signature involves a simple operation, allowing high packet rates to be successfully

monitored on the network.

In improved embodiments, several state analyzers are run in parallel so that a

large number of protocols and applications may be checked for. Every known protocol

25 and application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

30

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

flow. The new states for the flow-those associated with a set of state transitions for one

EX 1019 Page 27

10

15

20

25

O .3

18

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow—entries, which in one aspect includes storing states. The monitor of

FIG. 3 also generates characteristic parts of packets -» the signatureswthat can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.

Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application- In a complex analysis, state transitions are traversed

as more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i.e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a shortcut recognition pattern—~21 signature—~can be generated that will key

on every new incoming packet that relates to the conversational tlow. Checking a

signature involves a simple operation, allowing high packet rates to be successfully

monitored on the network.

in improved embodiments, several state analyzers are run in parallel so that a

large number of protocols and applications may be checked for. Every known protocol

and application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

Potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

EX 1019 Page 27

l.'-

t

)

19

or more potential applications-are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation

5 process. That is, part of the initialization generates the pattern structures and extraction

operations database 308 and the state instruction database 328. Such initialization can

occur off-line or from a central location.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

10 level 0). Each protocol is either a parent node or a terminal node. A parent node links a

protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet (the root or level O node) may be an Ethertype packet-also called an Ethernet

15 TypeNersion 2 and a DIX (DIGITAL-Intel-Xerox packet)-or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP

protocol, and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level l) of a complete Ethernet frame (i.e.,

packet) of information and includes information on the destination media access control

20 address (Ost MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the infonnation specified in the POL files

for extraction the signature.

FIG. 17 A now shows the header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

25 packet that indicates the next layer level is a two-byte type field 1702 containing the

child recognition pattern for the next level. The remaining information 1704 is shown

hatched because it not relevant for this level. The list 1712 shows the possible children

for an Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the

30 IP protocol. The possible children of the IP protocol are shown in table 1752.

EX 1019 Page 28

20

The pattern, parse, and extraction database (pattern recognition database, or

PRD) 308 generated by compilation process 310, in one embodiment, is in the form of a

three dimensional structure that provides for rapidly searching packet headers for the

next protocol. FIG. 18A shows such a 3-D representation 1800 (which may be

5 considered as an indexed set of 2-D representations). A compressed form of the 3-D

structure is preferred.

An alternate embodiment of the data structure used in database 308 is illustrated

in FIG. l8B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations in

10 a memory rather than performing address link computations. In this alternate

embodiment, the PRD 308 includes two parts, a single protocol table 1850 (PT) which

has an entry for each protocol known for the monitor, and a series of Look Up Tables

1870 (LUT's) that are used to identify known protocols and their children. The protocol

table includes the parameters needed by the pattern analysis and recognition process 304

15 (implemented by PRE 1006) to evaluate the header information in the packet that is

associated with that protocol, and parameters needed by extraction process 306

(implemented by slicer 1007) to process the packet header. When there are children, the

PT describes which bytes in the header to evaluate to determine the child protocol. In

particular, each PT entry contains the header length, an offset to the child, a slicer

20 command, and some flags.

The pattern matching is carried out by finding particular "child recognition

codes" in the header fields, and using these codes to index one or more of the LUT' s.

Each LUT entry has a node code that can have one of four values, indicating the protocol

that has been recognized, a code to indicate that the protocol has been partially

25 recognized (more LUT lookups are needed), a code to indicate that this is a terminal

node, and a null node to indicate a null entry. The next LUT to lookup is also returned

from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the

form of protocol description files is shown as 402. In the particular embodiment, the

30 high level decoding descriptions includes a set of protocol description files 336, one for

each protocol, and a set of packet layer selections 338, which describes the particular

EX 1019 Page 29

i

_)

21

layering (sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract

operations 406 is generated (404), and a set of packet state instructions and operations

407 is generated (405) in the form of instructions for the state processor that implements

5 state processing process 328. Data files for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

database 406 into the memory systems of the parser and extraction engines. (See the

parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each

10 type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all th~l?_okup tables_for the

15 PRO.

Because of the large number of possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share common parents. When implemented in the form of the LUT' s, this

process can generate a single LUT from a plurality of LUT's. The optimization process

20 further includes a compaction process that reduces the space needed to store the data of

the PRO.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be

thought of as a set of 2-D structures each representing a protocol. To enable saving space

by using only one array per protocol which may have several parents, in one

25 embodiment, the pattern analysis subprocess keeps a "current header" pointer. Each

location (offset) index for each protocol 2-D array in the 3-D structure is a relative

location starting with the start of header for the particular protocol. Furthermore, each of

the two-dimensional arrays is sparse. The next step of the optimization, is checking all

the 2-D arrays against all the other 2-D arrays to find out which ones can share memory.

30 Many of these 2-D arrays are often sparsely populated in that they each have only a small

number of valid entries. So, a process of "folding" is next used to combine two or more

/

EX 1019 Page 30

0
22

2-D arrays together into one physical 2-D array without losing the identity of any of the

original 2-D arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur

between any 2-D arrays irrespective of their location in the tree as long as certain

conditions are met. Multiple arrays may be combined into a single array as long as the

5 individual entries do not conflict with each other. A fold number is then used to associate

each element with its original array. A similar folding process is used for the set of LUTs

1850 in the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

IO at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A check is made (504) to

determine if the load-packet-component operation 503 succeeded, indicating that there

was more in the packet to process. If not, indicating all components have been loaded,

15 the parser subsystem 301 builds the packet signature (512)-the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

20 successfully, indicating there was a pattern node that loaded in 505. If not, step 511

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507

(as indicated by test 508) means the parser subsystem 30 l has found a node in the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

25 If applying the node process to the component does not produce a match (test

30

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 and to step 505 to fetch the next node and process. Thus, there is an

"applying patterns" loop between 508 and 505. Once the parser subsystem 301

completes all the patterns and has either matched or not, the parser subsystem 301 moves

to the next packet component (511).

Once all the packet components have been the loaded and processed from the

EX 1019 Page 31

(J!

10

15

20

25

30

D D

22

2-D arrays together into one physical 2—D array without losing the identity of any of the

original 2—D arrays (i.e., all the 2D arrays continue to exist logically). Folding can occur

between any 2—D arrays irrespective of their location in the tree as long as certain

conditions are met. Multiple arrays may be combined into a single array as long as the

individual entries do not conflict with each other. A fold number is then used to associate

each element with its original array. A similar folding process is used for the set of LUTS

1850 in the alternate embodiment of FIG. 188.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

at 501, the packet 302. is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A check is made (504) to

determine if the load—packet-component operation 503 succeeded, indicating that there

was more in the packet to process. If not, indicating all components have been loaded,

the parser subsystem 301 builds the packet signature (512)------- the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505. If not, step 511

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507

(as indicated by test 508) means the parser subsystem 301 has found a node in the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 and to step 505 to fetch the next node and process. Thus, there is an

“applying patterns” loop between 508 and 505. Once the parser subsystem 301

Completes all the patterns and has either matched or not, the parser subsystem 301 moves

to the next packet component (511).

Once all the packet components have been the loaded and processed from the

EX 1019 Page 31

23

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6
........ --·"'"~

FIG. 6 is a flow chart for extracting the information from which to build the ---
packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this

5 point parser subsystem 301 has a completed packet component and a pattern node

available in a buffer (602). Step 603 loads the packet component available from the

pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node component in 602. If the

10 fetch was successful (test 606), indicating that there are extraction elements to apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

15 component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component

20 if there is more to extract, or to a different packet component if there is no more to

extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

25 604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

30 pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

;/

EX 1019 Page 32

10

15

20

25

30

Q 3

23

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6 .x__ . . _ . guide—,1

FIG. 6 is a flow chart for extracting the information from which to build the i I

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this

point parser subsystem 301 has a completed packet component and a pattern node

available in a buffer (602). Step 603 loads the packet component available from the

pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node component in 602. If the

fetch was successful (test 606), indicating that there are extraction elements to apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component

if there is more to extract, or to a different packet component if there is no more to

extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

EX 1019 Page 32

-

i-

, ... ,;

:-.~~~~

)

24

hash elements that are found in the pattern node that is in the element database. In 706

the resulting signature and the hash are packed. In 707 the parser subsystem 30 l moves

on to the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left

5 (test 704). Once all the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record which is similar to a parser record, but with one or more

10 different fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine

(LUE) that implements lookup operation 314. The process starts at 80 l from FIG. 7 with

the parser record that includes a signature, the hash and at least parts of the payload. In

802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the

15 lookup engine 314 computes a "record bin number" from the hash for a flow-entry. A

bin herein may have one or more "buckets" each containing a flow-entry. The preferred

embodiment has four buckets per bin.

20

25

30

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number, indicating

there are more buckets in the bin, the lookup/update engine compares (807) the current

signature (the UFKB-entry's signature) from that in the bucket (i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is marked in step

810 as "in process" and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 has a status of "found." The "found" indication allows the state

processing 328 to begin processing this UFKB element. The preferred hardware

embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

EX 1019 Page 33

25

calculator for every packet analyzed. The statistical operations may include one or more

of counting the packets associated with the flow; determining statistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determining statistical relationships of

5 timestamps of packets in the same direction. The statistical measures are kept in the

flow-entries. Other statistical measures also may be compiled. These statistics may be

used singly or in combination by a statistical processor component to analyze many

different aspects of the flow. This may include determining network usage metrics from

the statistical measures, for example to ascertain the network's ability to transfer

10 information for this application. Such analysis provides for measuring the quality of

service of a conversation, measuring how well an application is performing in the

network, measuring network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

counters that are part of the flow-entry (in the cache) in step 812. The process exits at

15 813. In our embodiment, the counters include the total packets of the flow, the time, and

a differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again

looks up the cache for another bucket from that bin. The lookup/update engine thus

20 continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and

no match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this

25 packet is new, and in 812, any statistical updating operations are performed for this

packet by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

30

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

"new" status or a "found" status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

EX 1019 Page 34

' t.

• l

t ;

)

26

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. IO and l L Note that while we are

5 describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

implemented in software running on one or more general-purpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

10 at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

15 memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction-operation database memory, in which the extraction instructions are

stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.

Typically, the system is initialized from a microprocessor (not shown) at which time

these memories are loaded through a host interface multiplexor and control register 1005

20 via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are

preferably obtained by compiling process 310 of FIG. 3.

25

30

A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet starts loading into the buffer memory 1008, pattern recognition engine (PRE)

1006 carries out the operations on the input buffer memory described in block 304 of

FIG. 3. That is, protocol types and associated headers for each protocol layer that exist in

the packet are determined.

EX 1019 Page 35

i

i

E

10

15

20

25

O J

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and l 1. Note that while we are

describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

implemented in software running on one or more generaiepurpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is showri in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction—operation database memory, in which the extraction instructions are

stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.

Typically, the system is initialized from a microprocessor (not shown) at which time

these memories are loaded through a host interface multiplexer and control register 1005

Via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are

preferably obtained by compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

Controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

Signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet Starts loading into the buffer memory 1008, pattern recognition engine (PRE)

1006 carries out the operations on the input buffer memory described in block 304 of

FIG. 3. That is, protocol types and associated headers for each protocol layer that exist in

the packet are determined.

EX 1019 Page 35

F

j

J
~
j

0
ll
r
r
.. -T
t
0
It
I.., -b

j

0
27

The PRE searches database l 001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

5 base packet offset from a control register to start the comparison. It loads this value into

a current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

10

15

Each lookup table returns a word that links to another lookup table or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a

first stage that checks the protocol type field to determine if it is an 802.3 packet and the

field should be treated as a length. If it is not a length, the protocol is checked in a

second stage. The first stage is the only protocol level that is not programmable. The

second stage has two full sixteen bit content addressable memories (CAMs) defined for

future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for

the extraction engine (also called a "slicer") 1007. The recognized patterns and the

commands are sent to the extraction engine 1007 that extracts information from the

20 packet to build the parser record. Thus, the operations of the extraction engine are those

carried out in blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to

slicer l 007 in the form of extraction instruction pointers which tell the extraction engine

1007 where to a find the instructions in the extraction operations database memory (i.e.,

slicer instruction database) 1002.

25 Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process code is used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

30 MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains

EX 1019 Page 36

p

J

)

28

a byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer l 008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

5 input buffer memory and transferring the data to a parser output buffer memory IO l 0.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE I 006 while more (i.e., later arriving) packet information is being

10 simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

15

20

25

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory l O I 0. Any additional payload from

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory l O 10, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an

analyzer host interface controller 1118, which in turn has access to a cache system 1115.

The cache system has bi-directional access to and from the state processor of the system

1108. State processor 1108 is responsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

30 With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

EX 1019 Page 37

LilLlIn!17:...an.0”

10

20

25

30

D D

28

a byte~wise barrel shifter so that the bytes moved can be packed into the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more (i.e., later arriving) packet information is being

simultaneously parsed by PRU 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory [010. Any additional payload from

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an

analyzer host interface controller 1118, which in turn has access to a cache system 1115.

The cache system has bidirectional access to and from the state processor of the system

1108. State processor 1108 is responsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

EX 1019 Page 37

29

comprising packet signatures and payloads that come from the parser into the unified

flow key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

records. A UFKB record is essentially a parser record; the UFKB holds records of

packets that are to be processed or that are in process. Furthermore, the UFKB provides

5 for one or more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lookup/update engine (LUE) 1107, the state processor (SP) I 108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

10 finite state machines (FSM's). There is bi-directional access between each of the finite

state machines and the unified flow key buffer 1103. The UFKB record includes a field

that stores the packet sequence number, and another that is filled with state information

in the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

15 and that the LUE is transferring processing of the entry to the state processor. The LUE

done indicator is also used to indicate what the next entry is for the LUE. There also is

provided a flag to indicate that the state processor is done with the current flow and to

indicate what the next entry is for the state processor. There also is provided a flag to

indicate the state processor is transferring processing of the UFKB-entry to the flow

20 insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular

25 engine has been applied to any unified flow key buffer entry is determined by status

fields set by the engines upon completion. In one embodiment, a status flag in the

UFKB-entry indicates whether an entry is new or found. In other embodiments, the LUE

issues a flag to pass the entry to the state processor for processing, and the required

operations for a new record are included in the SP instructions.

30 Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

EX 1019 Page 38

30

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

5 memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and

a microprocessor via analyzer host interface and control unit (ACIC) l 118 and host

interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content

10 addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The

bottom CAM's pointer points to the least recently used (LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

15 CAM are replaced by the flow-entry from the flow-entry database 324. This now

becomes the most recently used entry, so the contents of the bottom CAM are moved to

the top CAM and all CAM contents are shifted down. Thus, the cache is an associative

cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the

20 operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate

that a "new" UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read

a matching bin of up to four buckets from the cache. The cache system attempts to obtain

the matching bin. If a matching bin is not in the cache, the cache 1115 makes the request

to the UMC 1119 to bring in a matching bin from the external memory.

25 When a flow-entry is found using the hash, the LUE l 107 looks at each bucket

and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from

the cache, a time stamp in set in the flow key of the UFKB record, a protocol

30 identification and state determination is made using a table that was loaded by

compilation process 31 O during initialization, the status for the record is set to indicate

EX 1019 Page 39

7“,“aum.m-"as...m...M...r.»
WP'ETWKWF.'3'!un

10

15

20

25

3O

3 :3

30

particular engine.

Each of these three engines also has bi~directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) l 119 and a memory interface 1123, and

a microprocessor via analyzer host interface and control unit (ACIC) I 118 and host

interface bus (HlB) 1122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache,

The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMS) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow—entries.

The CAMS are arranged as a stack ordered from a top CAM to a bottom CAM. The

bottom CAM’s pointer points to the least recently used {LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

CAM are replaced by the flow-entry from the flow—entry database 324. This now

becomes the most recently used entry, so the contents of the bottom CAM are moved to

the top CAM and all CAM contents are shifted down. Thus, the cache is an associative

cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the

operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate

that a “new” UFKBaentry is available. The LUE uses the hash in the UFKB-entry to read

a matching bin of up to four buckets from the cache. The cache system attempts to obtain

the matching bin. If a matching bin is not in the cache, the cache 1115 makes the request

to the UMC ll 19 to bring in a matching bin from the external memory

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket

and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from

the cache, a time stamp in set in the flow key of the UFKB record, a protocol

identification and state determination is made using a table that was loaded by

compilation process 310 during initialization, the status for the record is set to indicate

EX 1019 Page 39

I

31

the LUE has processed the record, and an indication is made that the UFKB-entry is

ready to start state processing. The identification and state determination generates a

protocol identifier which in the preferred embodiment is a "jump vector" for the state

processor which is kept by the UFKB for this UFKB-entry and used by the state

5 processor to start state processing for the particular protocol. For example, the jump

vector jumps to the subroutine for processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow-entry, including the timestamp. In addition, a time difference

IO from the last stored timestamp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow-entry is examined by looking at the protocol

identifier stored in the flow-entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

15 vector for the state processor to a subroutine to state processing the protocol, and no

more classification is indicated in the preferred embodiment by the jump vector being

zero. If the protocol identifier indicates more processing, then an indication is made that

the UFKB-entry is ready to start state processing and the status for the record is set to

indicate the LUE has processed the record.

20 The state processor 1108 processes information in the cache system according to

a UFKB-entry after the LUE has completed. State processor 1108 includes a state

processor program counter SPPC that generates the address in the state processor

instruction database 1109 loaded by compiler process 310 during initialization. It

contains an Instruction Pointer (SPIP) which generates the SPID address. The instruction

25 pointer can be incremented or loaded from a Jump Vector Multiplexor which facilitates

conditional branching. The SPIP can be loaded from one of three sources: (1) A protocol

identifier from the UFKB, (2) an immediate jump vector form the currently decoded

instruction, or (3) a value provided by the arithmetic logic unit (SPALU) included in the

state processor.

30 Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

EX 1019 Page 40

/·

' '

l

F

C))

32

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and

String Compare functions necessary to implement the State Processor instructions. The

5 main blocks of the SP ALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in tum contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-

10 or-ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor l 108. The state processor is

15 entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is

new or con-esponding to a found flow-entry. This UFKB-entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used

to set the state processor's instruction counter. The state processor 1108 starts the

process by using the last protocol recognized by the parser subsystem 301 as an offset

20 into a jump table. The jump table takes us to the instructions to use for that protocol.

Most instructions test something in the unified flow key buffer or the flow-entry if it

exists. The state processor 1108 may have to test bits, do comparisons, add or subtract to

perform the test.

The first state processor instruction is fetched in 1304 from the state processor

25 instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be

performed on each unified flow key buffer entry. One aspect of the state processor is its

ability to search for one or more (up to four) reference strings in the payload part of the

30 UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

EX 1019 Page 41

'
l

l

n ..
J

...
:r
'Ac
C:
t
t

p

CJ
33

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by

5 the SP ALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

IO has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is

fully determined. If indeed there are no more states to process for this flow, then in 1311

the processor finalizes the processing. Some final states may need to put a state in place

that tells the system to remove a flow-for example, if a connection disappears from a

15 lower level connection identifier. In that case, in 1311, a flow removal state is set and

saved in the flow-entry. The flow removal state may be a NOP (no-op) instruction which

means there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP

or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

20 now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow-entry in

the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

25 exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer

1103 and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

30 insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

EX 1019 Page 42

“:11‘21?!m(1-'1":3:)-:era...»
tt‘tt‘fltntt-iHrsn"

10

15

25

30

O J

33

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SP1?) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by

the SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is

fully determined. if indeed there are no more states to process for this flow, then in 131 1

the processor finalizes the processing. Some final states may need to put a state in place

that tells the system to remove a flowufor example, if a connection disappears from a

lower level connection identifier. In that case, in 1311, a flow removal state is set and

saved in the flow—entry. The flow removal state may be a NO? (no-op) instruction which

means there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NO?

or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow-entry in

the current flow—entry. That will be the next operation that will be performed the next

time the LRE l 107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer

1103 and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB~entry indicating that

EX 1019 Page 42

F

J
~
·!

~

0\ .,
0
iJ ...
.J
"I ., ..
.,;

l

34

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

5 deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are

grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that

may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin

15

20

10 (preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB, so this bin may already have been sought for the UFKB

entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked "used" in the cache engine of cache 1115 using a timestamp

that is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as "in process"

and as "new" in the cache system (and hence in the external memory). In 1212, the initial

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

25 bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid

bucket, the unified flow key buffer entry for the packet is set as "drop," indicating that

the system cannot process the particular packet because there are no buckets left in the

system. The process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow

30 insertion and deletion operations are completed for this UFKB-entry. This also lets the

UFKB provide the FIDE with the next UFKB record.

EX 1019 Page 43

l

' l
t

!

'-~
_)

35

Once a set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and manage a particular packet and its flow signature, the

unified flow key buffer entry is marked as "completed." That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

s and extracting system.

All flow-entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lookup/update engine 1107 is able to request that the cache system

10 pull a particular flow or "buckets" of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system once it is looked up by means of the

lookup/update engine request, and the flow insertion/deletion engine 1110 can create

new entries in the cache system if required based on information in the unified flow key

15 buffer 1103. The cache retrieves information as required from the memory through the

memory interface 1123 and the unified memory controller 1119, and updates information

as required in the memory through the memory controller 1119.

There are several interfaces to components of the system external to the module

of FIG. 11 for the particular hardware implementation. These include host bus interface

20 1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessor or a multiplexor (MUX) system.

Consequently, one can connect the overall traffic classification system of FIGS. 11 and

12 into some other processing system to manage the classification system and to extract

data gathered by the system.

25 The memory interface 1123 is designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

l DRAM, synchronous graphic memory (SGRAM), static random access memory

l (SRAM), and so forth.

30 FIG. 10 also includes some "generic" interfaces. There is a packet input interface

1012-a general interface that works in tandem with the signals of the input buffer

EX 1019 Page 44

F

I

I

36

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host

interface multiplexor and control registers 1005. This enables the parsing system to be

5 managed by an external system, for example a microprocessor or another kind of

external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

10 created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes

related to creating and analyzing traffic within a network. Verilog or other HDL

implementation is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in

15 FIGS. 10 and 11 are implemented in a set of six field programmable logic arrays

(FPGA's). The boundaries of these FPGA's are as follows. The parsing subsystem of

FIG. 10 is implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and

1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,

1011 parts of 1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented

20 as a single FPGA. State processor 1108 and part of state processor instruction database

memory 1109 is another FPGA. Portions of the state processor instruction database

memory 1109 are maintained in external SRAM' s. The lookup/update engine 1107 and

the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes

the cache system 1115, the unified memory control 1119, and the analyzer host interface

25 and control 1118.

Note that one can implement the system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC's) such as FPGA's. It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a "core") of a larger single chip unit.

EX 1019 Page 45

Mg-W

4m.-~

1
33
ti

ii
i

ii

i

Us

10

15

’20

25

Q If}

36

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host

interface multiplexor and control registers 1005. This enables the parsing system to be

managed by an external system, for example a microprocessor or another kind of

external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes

related to creating and analyzing traffic Within a network. Verilog or other HDL

implementation is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in

FIGS. 10 and 11 are implemented in a set of six field programmable logic arrays

(FPGA’S). The boundaries of these FPGA’S are as follows. The parsing subsystem of

FIG. 10 is implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and

1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,

1011 parts of 1005. Referring to FIG. 11, the unified look—up buffer 1103 is implemented

as a single FPGA. State processor 1108 and part of state processor instruction database

memory 1 109 is another FPGA. Portions of the state processor instruction database

memory 1109 are maintained in external SRAM’s. The lockup/update engine 110? and

the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes

the cache system 1 l 15, the unified memory control 1119, and the analyzer host interface

and control I l 18.

Note that one can implement the system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’S) such as FPGA’s. It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

EX 1019 Page 45

l
f

I

p

' •
0
u
n
ti

.. ..
r
l-
t
~
C

.)

37

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network l 02. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in

5 either direction are supplied to monitor 300. Monitor 300 comprises the parser sub

system 301, which determines flow signatures, and analyzer sub-system 303 that

analyzes the flow signature of each packet A memory 324 is used to store the database

of flows that are determined and updated by monitor 300. A host computer 1504, which

might be any processor, for example, a general-purpose computer, is used to analyze the

IO flows in memory 324. As is conventional, host computer 1504 includes a memory, say

RAM, shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

15

20

The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also

are available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

analysis for packet exchanges that are commonly referred to as "server announcement"

25 type exchanges. Server announcement is a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcement process as a means of

multiplexing a single port or socket into many applications and services. With this type

of exchange, messages are sent on the network, in either a broadcast or multicast

30 approach, to announce a server and application, and all stations in the network may

receive and decode these messages. The messages enable the stations to derive the

EX 1019 Page 46

5

)

38

appropriate connection point for communicating that particular application with the

particular server. Using the server announcement method, a particular application

communicates using a service channel, in the form of a TCP or UDP socket or port as in

the IP protocol suite, or using a SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out "in-stream analysis" of packet

exchanges. The "in-stream analysis" method is used either as a primary or secondary

recognition process. As a primary process, in-stream analysis assists in extracting

detailed information which will be used to further recognize both the specific application

and application component. A good example of in-stream analysis is any Web-based

10 application. For example, the commonly used PointCast Web information application

can be recognized using this process; during the initial connection between a PointCast

server and client, specific key tokens exist in the data exchange that will result in a

signature being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server

15 announcement process. In many cases in-stream analysis will augment other recognition

processes. An example of combining in-stream analysis with server announcement can

be found in business applications such as SAP and BAAN.

"Session tracking" also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

20 an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

25 port to exchange the remainder of the data between the client and the server. The server

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

30

One example of session tracking is TFTP (Trivial File Transfer Protocol), a

version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFTP, a specific port (port number 69) is always

EX 1019 Page 47

O D

38

appropriate connection point for communicating that particular application with the

particular server. Using the server announcement method, a particular application

communicates using a service channel, in the form of a TCP or UDP socket or port as in

the IP protocol suite, or using a SAP as in the Novell lPX protocol suite.

5 The analyzer 303 is also capable of carrying out “in-stream analysis” of packet

exchanges. The “in-stream analysis” method is used either as a primary or secondary

recognition process. As a primary process, in—stream analysis assists in extracting

detailed information which will be used to further recognize both the specific application

and application component. A good example of in~stream analysis is any Web-based

10 application. For example, the commonly used PointCast Web information application

can be recognized using this process; during the initial connection between a PointCast

server and client, specific key tokens exist in the data exchange that will result in a

signature being generated to recognize PointCast.w...—.......
The in—strearn analysis process may also be combined with the server

15 announcement process. in many cases in-stream analysis will augment other recognition

processes. An example of combining in-strearn analysis with server announcement can

be found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

20 an initial connection to a predefined socket or port number. This method of

conununication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDP transport protocols of the 11’ protocol.

During the session tracking, a client makes a request to a server using a specificnangm»u.,«mum.>91‘.
port or socket number. This initial request will cause the server to create a TCP or UDP

25 port to exchange the remainder of the data between the client and the server. The serveri
t

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a

version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFI‘P, a specific port (port number 69) is always

EX 1019 Page 47

p

I

' I
)
3
j

0)

39

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request,

a new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TFrP; network monitor

5 300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular

10 connections in the network. Connection-oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

15

20

acknowledgement from the server. Once the server has acknowledged the

synchronization request, data may be exchanged between the client and the server. When

communication is no longer required, the client sends a finish or complete message to

the server, and the server acknowledges this finish request with a reply containing the

sequence numbers from the request. The states of such a connection-oriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

25 content, which, in another aspect of the invention, is salvaged and maintained in the

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

30 Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programming interface that allows

EX 1019 Page 48

.wn....u-..»_¢~,~u...
.m-

hluu‘han!“

we.“

WV

10

15

20

25

30

Q 3

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request,

a new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TFI‘P; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular

connections in the network. Connection-oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

acknowledgement from the server. Once the server has acknowledged the

synclnonization request, data may be exchanged between the client and the server. When

communication is no longer required, the client sends a finish or complete message to

the server, and the server acknowledges this finish request with a reply containing the

sequence numbers from the request. The states of such a connectiomoriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun—RFC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RFC), a programming interface that allows

EX 1019 Page 48

5

10

15

20

40

one program to use the services of another on a remote machine. A Sun-RPC example is

now used to explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must

establish a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun-RPC

program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun-RPC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1)

making a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a

predefined UDP or TCP socket. Once the port Mapper process on the sun RPC server

receives the request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. l) sends a TCP packet to SERVER 2

(110 in FIG. l) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

25 version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified,

and thus will use the TCP protocol for its reply.

EX 1019 Page 49

5

10
t
l
t

t

I
l
t
i

E is

o 3\j

40

one program to use the services of another on a remote machine. A Sun-RFC example is

now used to explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must

establish a connection, for which the RFC protocol can be used~

Each server running the Sun-RFC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun-RFC

program or application and a TCP or [EDP socket or port (for TCP or UDP

implementations). An application or program number is a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

wwwicannorg), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun-RFC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 1 11 is associated with Sun RPC.

As an example, consider a client (e. g., CLIENT 3 shown as 106 in FIG. 1)

making a specific request to the server (e. g., SERVER ‘2 of FIG. 1, shown as 110) on a

predefined UDP or TCP socket. Once the port Mapper process on the sun RFC server

receives the request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port lll, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified,

and thus will use the TCP protocol for its reply.

EX 1019 Page 49

5

41

3. The server 110 sends a TCP packet to port number 111, with an RPC

Bind Lookup Reply. The reply contains the specific port number (e.g., port

number 'port') on which future transactions will be accepted for the specific

RPC program identifier (e.g .. Program 'program') and the protocol (UDP or

TCP) for use.

It is desired that from now on every time that port number 'port' is used, the

packet is associated with the application program 'program' until the number 'port' no

longer is to be associated with the program 'program'. Network monitor 300 by creating

a flow-entry and a signature includes a mechanism for remembering the exchange so that

10 future packets that use the port number 'port' will be associated by the network monitor

with the application program 'program'.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways

that a particular program-say 'program' -might be associated with a particular port

number, for example number 'port'. One is by a broadcast announcement of a particular

15 association between an application service and a port number, called a Sun RPC

portMapper Announcement. Another, is when some server-say the same SERVER 2-

replies to some client-say CLIENT I-requesting some portMapper assignment with a

RPC portMapper Reply. Some other client-say CLIENT 2-might inadvertently see

this request, and thus know that for this particular server, SERVER 2, port number 'port'

20 is associated with the application service 'program'. It is desirable for the network

monitor 300 to be able to associate any packets to SERVER 2 using port number 'port'

with the application program 'program'.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. l) is

25 communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server's interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow

900 starts with a step 910 that a Remote Procedure Call bind lookup request is issued by

client 106 and ends with the server state creation step 904. Such RPC bind lookup

30 request includes values for the 'program,' 'version,' and 'protocol' to use, e.g., TCP or

EX 1019 Page 50

(J!

10

15W~Wmmuu
20

1“

s x a\J

41

3. The server 110 sends a TCP packet to port number ll 1, with an RPC

Bind Lookup Reply. The reply contains the specific port number (e.g., part

number “port"; on which future transactions will be accepted for the specific

RFC program identifier (alga Program ‘program’) and the protocol (UDP or

TCP) for use.

It is desired that from now on every time that port number ‘port’ is used, the

packet is associated with the application program ‘program’ until the number ‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 by creating

a flow-entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RFC Bind Lookup request and reply, there are other ways

that a particular program—say program—might be associated with a particular port

number, for example number ‘port’. One is by a broadcast announcement of a particular

association between an application service and a port number, called a Sun RPC

portMapper Announcement. Another, is when some server—say the same SERVER 2...

replies to some clientusay CLIENT l—v—requesting some portMapper assignment with 2.

RFC portMapper Reply. Some other clientwsay CLIENT Z—Inight inadvertently see

this request, and thus know that for this particular server, SERVER 2, port number ‘port’

is associated with the application service ‘program’. It is desirable for the network

monitor 300 to be able to associate any packets to SERVER 2 using port number ‘port’

with the application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow

900 starts with a step 910 that a Remote Procedure Call bind lookup request is issued by

client 106 and ends with the server state creation step 904. Such RFC bind lockup

request includes values for the ‘prograrn,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or

EX 1019 Page 50

r

J
42

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects. :

• Process 909: Extract the 'program,' 'version,' and 'protocol' (UDP or TCP). Extract

the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

s • Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If value is

portMapper, save paired socket (i.e., dest for destination address, src for source

address). Decode ports and mapping, save ports with socket/addr key. There may be

more than one pairing per mapper packet. Form a signature (e.g., a key). A flow

entry is created in database 324. The saving of the request is now complete.

10 At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow-

15 entry database. That signature now may be used to identify packets associated with the

server.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol

20 can announce that it is able to provide a particular application service. Embodiments of

the present invention preferably can analyze when an exchange occurs between a client

and a server, and also can track those stations that have received the announcement of a

service in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such

25 causes various clients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901

could be in reply to a portMapper request, and is also broadcast. It includes all the

service parameters.

30

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service 'program'.

EX 1019 Page 51

aw...-wt...”
.5

10

15

20

25

3O

'43 3

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects. :

a Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP). Extract

the TCP or UDP port (process 909) which is ll 1 indicating Sun RPC.

- Process 908: Decode the Sun RFC packet. Check RPC type field for ID. If value is

portMapper, save paired socket (£18., dest for destination address. src for source

address). Decode ports and mapping, save ports with socket/addr key. There may be

more than one pairing per mapper packet. Form a signature (cg, a key). A flow-

entry is created in database 324. The saving of the request is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lockup

the request (905). A new signature tie, a key) will be created and the creation of the

server state {904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now may be used to identify packets associated with the

server.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RFC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol

can announce that it is able to provide a particular application service. Embodiments of

the present invention preferably can analyze when an exchange occurs between a client

and a server, and also can track those stations that have received the announcement of a

service in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901

could be in reply to a portMapper request, and is also broadcast. It includes all the

service parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

EX 1019 Page 51

r

"" ..
1k
a"
~

"' rt
r.

n..
l'i
" (f

C
C'
l
(:
(:
t

0
43

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, "signature- I" 210 and "signature-2"

5 212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

lO

15

20

Consider first the Sun RPC Bind Lookup request. Suppose packet 206

corresponds to such a request sent from CLIENT 3 to SER VER 2. This packet contains

important information that is used in building a signature according to an aspect of the

invention. A source and destination network address occupy the first two fields of each

packet, and according to the patterns in pattern database 308, the flow signature (shown

as KEYI 230 in FIG. 2) will also contain these two fields, so the parser subsystem 301

will include these two fields in signature KEY l (230). Note that in FIG. 2, if an address

identifies the client 106 (shown also as 202), the label used in the drawing is "C (. If

such address identifies the server 110 (shown also as server 204), the label used in the

drawing is "S{. The first two fields 214 and 215 in packet 206 are "Si" and Ci" because

packet 206 is provided from the server 110 and is destined for the client I 06. Suppose

for this example, "Si" is an address numerically less than address "C{. A third field

"pl" 216 identifies the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port

number field is. The diagonal pattern in field 217 is used to identify a source-port

pattern, and the hash pattern in field 218 is used to identify the destination-port pattern.

The order indicates the client-server message direction. A sixth field denoted "i l" 2 l~j~ / ~----~
25 an element that is being requested by the client from the server. A seventh field denoted

30

"s 1 a" 220 is the service requested by the client from server 110. The following eighth

field "QA" 221 (for question mark) indicates that the client 106 wants to know what to

use to access application "s 1 a". A tenth field "QP" 223 is used to indicate that the client

wants the server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

EX 1019 Page 52

r

' t

I

5

44

packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated "Ct" and "Si", respectively. Notice the

order is now reversed, since the client-server message direction is from the server 110 to

the client 106. The protocol "p I" is used as indicated in field 226. The request "i l" is in

field 229. Values have been filled in for the application port number, e.g., in field 233

to and protocol ""p2"" in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a

15 source address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

20 operations. In this case, therefore, since we assume "Si" <"Ci", the order is address "Si"

followed by client address "C(. The next field used to build the signature is a protocol

field 242 extracted from packet 206's field 216, and thus is the protocol "pl". The next

field used for the signature is field 243, which contains the destination source port

number shown as a crosshatched pattern from the field 218 of the packet 206. This

25 pattern will be recognized in the payload of packets to derive how this packet or

sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a

combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p 1 that will be used to recognize this flow

(e.g., port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun

30 RPC Bind Lookups, are directly determinable ("known") at the parser level. So in this

case, the signature KEY-1 points to a known application denoted "al" (Sun RPC Bind

EX 1019 Page 53

'fl‘flm‘l’3‘13?!171
mmwwmur"

a,”

«10'9an

ll)

15

20

25

30

Q i)

44

packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224—233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated “Cl" and “S 1”, respectively. Notice the

order is now reversed, since the client-server message direction is from the server 110 to

the client 106. The protocol “pl” is used as indicated in field 226. The request “i1” is in

field 229. Values have been filled in for the application port number, cg, in field 233
“u ’7’”:

and protocol p~ in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a

source address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lockup

operations. In this case, therefore, since we assume “Sl”<“C1”, the order is address “81”

followed by client address “C1”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “pl”. The next

field used for the signature is field 243, which contains the destination source port

number shown as a crosshatched pattern from the field 218 of the packet 206. This

pattern will be recognized in the payload of packets to derive how this packet or

sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a

combination of TCP port numbers. in the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p1 that will be used to recognize this flow

(e.g., port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun

RPC Bind Loolrups, are directly determinable (“known”) at the parser level. So in this

case, the signature KEY-l points to a known application denoted “31” (Sun RFC Bind

EX 1019 Page 53

F ...

45

Lookup), and a next-state that the state processor should proceed to for more complex

recognition jobs, denoted as state "st0 " is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY-1. Hence, when the signature

5 enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow

entry is obtained, and in this flow-entry indicates state "st0 ". The operations for state

"st0 " in the state processor instruction database 326 instructs the state processor to build

and store a new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature

built by the state processor also includes the destination and a source addresses 250 and

10 251, respectively, for server "S 1" followed by (the numerically higher address) client

"Ci". A protocol field 252 defines the protocol to be used, e.g., "p2" which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the

reply packet. In this case, the application is Sun RPC, and field 254 indicates this

application "a2". A next-state field 255 defines the next state that the state processor

15 should proceed to for more complex recognition jobs, e.g., a state "st l ". In this particular

example, this is a final state. Thus, KEY-2 may now be used to recognize packets that

are in any way associated with the application "a2". Two such packets 208 and 209 are

shown, one in each direction. They use the particular application service requested in the

original Bind Lookup Request, and each will be recognized because the signature KEY-2

20 will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server "Si" followed by client "C(. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookup table in a least-to-highest order

25 for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address S 1 and C 1, in a pair of fields 260 and 261. A field V -----
262 defines the protocol as "p2", and a field 263 defines the destination port number.

EX 1019 Page 54

.a:5.FT}""1‘“i“r“TF7.fit‘33?inft:
“imm‘f‘rfi ItIIIInonI

WWmein.m

If)

15

25

if] s

45

Lookup), and a next—state that the state processor should proceed to for more complex

recognition jobs, denoted as state “stD” is placed in the field 245 of the flow-entry.

When the Sun RFC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEYJ. Hence, when the signature

enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow—

entry is obtained, and in this flow-entry indicates state “stD”. The operations for state

“stD” in the state processor instruction database 326 instructs the state processor to build

and store a new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature

built by the state processor also includes the destination and a source addresses 250 and

251, respectively, for server “3 1” followed by (the numerically higher address) client

“Cl”. A protocol field 252 defines the protocol to be used, e.g., “p2" which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the

reply packet. In this case, the application is Sun RFC, and field 254 indicates this

application “32”. A next-state field 255 defines the next state that the state processor

should proceed to for more complex recognition jobs, e.g., a state “stl”. In this particular

example, this is a final state. Thus, KEY-2 may now be used to recognize packets that

are in any way associated with the application “212”. Two such packets 208 and 209 are

shown, one in each direction. They use the particular application service requested in the

original Bind Lookup Request, and each will be recognized because the signature KEY-2

will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “31” followed by client “C1”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookup table in a least—to~highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, 6.3., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address 81 and C1, in a pair of fields 260 and 261. A field !/MWVWK , ..

262 defines the protocol as “p2”, and a field 263 defines the destination port number,

EX 1019 Page 54

r

5

46

Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the

packet. Others require a sequence of state transitions to occur in order to match a known

and predefined climb from state-to-state.

Thus the flow signature for the recognition of application "a2" is automatically

set up by predefining what packet-exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

10 complex state transition diagram to be traversed before a "final" resting state such as

"st 1" in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

The Cache Subsystem

Referring again to FIG. 11, the cache subsystem 1115 is connected to the lookup

15 update engine (LUE) 1107, the state processor the state processor (SP) 1108 and the flow

insertion/deletion engine (FIDE) 1110. The cache 1115 keeps a set of flow-entries of the

flow-entry database stored in memory 1123, so is coupled to memory 1123 via the

unified memory controller 1119. According to one aspect of the invention, these entries

in the cache are those likely-to-be-accessed next.

20 It is desirable to maximize the hit rate in a cache system. Typical prior-art cache

systems are used to expedite memory accesses to and from microprocessor systems.

Various mechanisms are available in such prior art systems to predict the lookup such

that the hit rate can be maximized. Prior art caches, for example, can use a lookahead

mechanism to predict both instruction cache lookups and data cache lookups. Such

25 lookahead mechanisms are not available for the packet monitoring application of cache

30

subsystem 1115. When a new packet enters the monitor 300, the next cache access, for

example from the LUE 1107, may be for a totally different flow than the last cache

lookup, and there is no way ahead of time of knowing what flow the next packet will

belong to.

One aspect of the present invention is a cache system that replaces a least recently

EX 1019 Page 55

r
.)

47

used (LRU) flow-entry when a cache replacement is needed. Replacing least recently

used flow-entries is preferred because it is likely that a packet following a recent packet

will belong to the same flow. Thus, the signature of a new packet will likely match a

recently used flow record. Conversely, it is not highly likely that a packet associated with

5 the least recently used flow-entry will soon arrive.

Furthermore, after one of the engines that operate on flow-entries, for example

the LUE 1107, completes an operation on a flow-entry, it is likely that the same or

another engine will soon use the same flow-entry. Thus it is desirable to make sure that

recently used entries remain in the cache.

10 A feature of the cache system of the present invention is that most recently used

(MRU) flow-entries are kept in cache whenever possible. Since typically packets of the

same flow arrive in bursts, and since MRU flow-entries are likely to be required by

another engine in the analysis subsystem, maximizing likelihood of MRU flow-entries

remaining in cache increases the likelihood of finding flow records in the cache, thus

15 increasing the cache hit rate.

Yet another aspect of the present cache invention is that it includes an associative

memory using a set of content addressable memory cells (CAMs). The CAM contains an

address that in our implementation is the hash value associated with the corresponding

flow-entry in a cache memory (e.g., a data RAM) comprising memory cells. In one

20 embodiment, each memory cell is a page. Each CAM also includes a pointer to a cache

memory page. Thus, the CAM contents include the address and the pointer to cache

memory. As is conventional, each CAM cell includes a matching circuit having an input.

The hash is presented to the CAM' s matching circuit input, and if the hash matches the

hash in the CAM, the a match output is asserted indicating there is a hit. The CAM

25 pointer points to the page number (i.e., the address) in the cache memory of the flow

entry.

30

Each CAM also includes a cache address input, a cache pointer input, and a cache

contents output for inputting and outputting the address part and pointer part of the

CAi\1.

The particular embodiment cache memory stores flow-entries in pages of one

bucket, i.e., that can store a single flow-entry. Thus, the pointer is the page number in the

EX 1019 Page 56

C—

E:
t

E
t
r
V
i

..v...not...»”wswam".

”mm",n.

10

l5

20

25

30

O D

47

used (LRU) flowsentry when a cache replacement is needed. Replacing least recently

used flow~entries is preferred because it is likely that a packet following a recent packet

will belong to the same flow. Thus, the signature of a new packet will likely match a

recently used flow record. Conversely, it is not highly likely that a packet associated with

the least recently used flow-entry will soon arrive.

Furthermore, after one of the engines that operate on flow—entries, for example

the LUE 1107, completes an operation on a flow-entry, it is likely that the same or

another engine will soon use the same flow-entry. Thus it is desirable to make sure that

recently used entries remain in the cache.

A feature of the cache system of the present invention is that most recently used

(MRU) flow«entries are kept in cache whenever possible. Since typically packets of the

same flow arrive in bursts, and since MRU flow—entries are likely to be required by

another engine in the analysis subsystem, maximizing likelihood of MRU flow-entries

remaining in cache increases the likelihood of finding flow records in the cache, thus

increasing the cache hit rate.

Yet another aspect of the present cache invention is that it includes an associative

memory using a set of content addressable memory cells (CAMS). The CAM contains an

address that. in our implementation is the hash value associated with the corresponding

flow~entry in a cache memory (e.g., a data RAM) comprising memory cells. In one

embodiment, each memory cell is a page. Each CAM also includes a pointer to a cache

memory page. Thus, the CAM contents include the address and the pointer to cache

memory. As is conventional, each CAM cell includes a matching circuit having an input.

The hash is presented to the CAM’s matching circuit input, and if the hash matches the

hash in the CAM, the a match output is asserted indicating there is a hit. The CAM

pointer points to the page number (i.e., the address) in the cache memory of the flow-

entry.

Each CAM also includes a cache address input, a cache pointer input, and a cache

contents output for inputting and outputting the address part and pointer part of the

CAM.

The particular embodiment cache memory stores flow-entries in pages of one

bucket, i.e., that can store a single flowentry. Thus, the pointer is the page number in the

EX 1019 Page 56

r
f

5

C))

48

cache memory. In one version, each hash value corresponds to a bin of N flow-entries

(e.g., 4 buckets in the preferred embodiment of this version). In another implementation,

each hash value points to a single flow record, i.e., the bin and bucket sizes correspond.

For simplicity, this second implementation is assumed when describing the cache 1115.

Furthermore, as is conventional, the match output signal is provided to a

corresponding location in the cache memory so that a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

One aspect of the present invention achieves a combination of associatively and

true LRU replacement policy. For this, the CAMs of cache system 1115 are organized in

10 what we call a CAM stack (also CAM array) in an ordering, with a top CAM and a

bottom CAM. The address and pointer output of each CAM starting from the top CAM

is connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to

the CAM array, and any CAM that has an address that matches the input hash asserts its

15 match output indicating a hit. When there is a cache hit, the contents of the CAM that

produced the hit (including the address and pointer to cache memory) are put in the top

CAM of the stack. The CAM contents (cache address, and cache memory pointer) of the

CAMs above the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow record is put in the cache memory element

20 pointed to by the bottom CAM. All CAM contents above the bottom are shifted down

one, and then the new hash value and the pointer to cache memory of the new flow-entry

are put in the top-most CAM of the CAM stack.

In this manner, the CAMs are ordered according to recentness of use, with the

least recently used cache contents pointed to by the bottom CAM and the most recently

25 used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM-based cache, there is no fixed

relationship between the address in the CAM and what element of cache memory it

points to. CAM' s relationship to a page of cache memory changes over time. For

example, at one instant, the fifth CAM in the stack can include a pointer to one particular

30 page of cache memory, and some time later, that same fifth CAM can point to a different

EX 1019 Page 57

: ’cvf {1}»?

10

15

20

25

30

o 3

48

cache memory. In one version, each hash value corresponds to a bin of N flow~entries

(e.g., 4 buckets in the preferred embodiment of this version). In another implementation,

each hash value points to a single flow record, ie, the bin and bucket sizes correspond.

For simplicity, this second implementation is assumed when describing the cache ll 15.

Furthermore, as is conventional, the match output signal is provided to a

corresponding location in the cache memory so that a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

One aspect of the present invention achieves a combination of associatively and

true LRU replacement policy. For this, the CAMS of cache system 1115 are organized in

what we call a CAM stack (also CAM array) in an ordering, with a top CAM and a

bottom CAM. The address and pointer output of each CAM starting from the top CAM

is connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to

the CAM array, and any CAM that has an address that matches the input hash asserts its

match output indicating a hit. When there is a cache hit, the contents of the CAM that

produced the hit (including the address and pointer to cache memory) are put in the top

CAM of the stack. The CAM contents (cache address, and cache memory pointer) of the

CAMS above the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow record is put in the cache memory element

pointed to by the bottom CAM. All CAM contents above the bottom are shifted down

one, and then the new hash value and the pointer to cache memory of the new flow-entry

are put in the topmost CAM of the CAM stack.

In this manner, the CAMs are ordered according to recentness of use, with the

least recently used cache contents pointed to by the bottom CAM and the most recently

used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM-based cache, there is no fixed

relationship between the address in the CAM and what element of cache memory it

points to. CAM’s relationship to a page of cache memory changes over time, For

example, at one instant, the fifth CAM in the stack can include a pointer to one particular

page of cache memory, and some time later, that same fifth CAM can point to a different

EX 1019 Page 57

'
49

cache memory page.

In one embodiment, the CAM array includes 32 CAMs and the cache memory

includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM

contents. Suppose the CAMs are numbered CAM0, CAM 1, ... , CAM 31, respectively,

5 with CAM0 the top CAM in the array and CAM 31 the bottom CAM.

The CAM array is controlled by a CAM controller implemented as a state

machine, and the cache memory is controlled by a cache memory controller which also is

implemented as a state machine. The need for such controllers and how to implement

them as state machines or otherwise would be clear to one skilled in the art from this

~ IO description of operation. In order not to confuse these controllers with other controllers,

for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine, respectively.

\.

Consider as an example, that the state of the cache is that it is full. Suppose

furthermore that the contents of the CAM stack (the address and the pointer to the cache

15 memory) and of the cache memory at each page number address of cache memory are as

shown in the following table.

CAM Hash Cache Point Cache Addr. Contents

CAM0 hash0 page0 page0 entry0

CAM 1 hash 1 page 1 page 1 entry 1

CAM2 hash2 page2 page2 entry2
CAM 3 hash3 page3 page3 entry3
CAM4 hash4 page4 page4 entry4

CAM5 hash5 page5 page5 entry5
CAM6 hash6 page6 page6 entry6
CAM7 hash7 page7 page7 entry7

CAM 29 hash29 page29 page29 entry29
CAM30 hash30 page30 page30 entry30

CAM31 hash31 page31 page31 entry31

This says that CAM4 contains and will match with the hash value hash4, and a lookup

with hash4 will produce a match and the address page4 in cache memory. Furthermore,

EX 1019 Page 58

10

D D

49

cache memory page.

In one embodiment, the CAM array includes 32 CAMs and the cache memory

includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM

contents. Suppose the CAMS are numbered CAMO, CAMI, CAM31, respectively,

with CAMO the top CAM in the array and CAM31 the bottom CAM.

The CAM array is controlled by a CAM controller implemented as a state

machine, and the cache memory is controlled by a cache memory controller which also is

implemented as a state machine. The need for such controllers and how to implement

them as state machines or otherwise would be clear to one skilled in the art from this

description of operation In order not to confuse these controllers with other controllers,

for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine, respectively.

Consider as an example, that the state of the cache is that it is full. Suppose

furthermore that the contents of the CAM stack (the address and the pointer to the cache

memory) and of the cache memory at each page number address of cache memory are as

shown in the following table.

CAM Hash Cache Point Cache Addr. Contents

CAMl pagel entryl

CAM2 pagez entryg

CAM3 hash3 page3 ’i page3 entry3

L CAM4 hash4 page4 r page4 entry4
CAMS hashs page5 page5 entrys

CAN16 hash6 pageé A pageé entryé l
CAM7 hash», pager} page7 entry7 1

page” entryzg A}P335330 Mono

1 [page“ entry“

This says that CAM4 contains and will match with the hash value hash4, and a lookup

With hash4 will produce a match and the address page4 in cache memory Furthermore,

EX 1019 Page 58

r

.;.;,, ,.,

__)

50

page4 in cache memory contains the flow-entry, entry 4, that in this notation is the flow

entry matching hash value hash4. This table also indicates that hash 0 was more recently

used than hash 1, hash5 more recently than hash 2, and so forth, with hash 31 the least

recently used hash value. Suppose further that the LUE 1107 obtains an entry from

5 unified flow key buffer 1103 with a hash value hash 3 1. The LUE looks up the cache

subsystem via the CAM array. CAM 31 gets a hit and returns the page number of the hit,

i.e., page 31. The cache subsystem now indicates to the LUE l 007 that the supplied hash

value produced a hit and provides a pointer to page 31 of the cache memory which

contains the flow-entry corresponding to hash 31, i.e., flow 31. The LUE now retrieve the

to flow-entry flow 31 from the cache memory at address page 31. In the preferred

embodiment, the lookup of the cache takes only one clock cycle.

The value hash 31 is the most recently used hash value. Therefore, in accordance

with an aspect of the inventive cache system, the most recently used entry is put on top

of the CAM stack. Thus hash 31 is put into CAM 0 (pointing to page 31). Furthermore,

15 hash 30 is now the LRU hash value, so is moved to CAM 31 . The next least recently used

hash value, hash 29 is now moved to CAM 30, and so forth. Thus, all CAM contents are

shifted one down after the MSU entry is put in the top CAM. In the preferred

embodiment the shifting down on CAM entries takes one clock cycle. Thus, the lookup

and the rearranging of the CAM array to maintain the ordering according to usage

20 recentness. The following table shows the new contents of the CAM array and the

(unchanged) contents of the cache memory .

EX 1019 Page 59

r
l
i
I

t
r
I r r
' ' I ;

,)

51

CAM Hash Cache Point Cache Addr. Contents

CAM 0 hash31 page31 page0 entry0
CAM 1 hash0 page0 page 1 entry 1
CAM 2 hash 1 page 1 page2 entry2
CAM 3 hash2 page2 page3 entry 3
CAM 4 hash3 page3 page4 entry4

CAM5 hash4 page4 page5 entry5
CAM 6 hash5 page5 page6 entry6
CAM 7 hash6 page6 page7 entry7

CAM29 hash28 page2s page29 entry29

CAM30 hash29 page29 page30 entry30

CAM31 hash30 page30 page31 entry31

To continue with the example, suppose that some time later, the LUE 1007 looks

up hash value hash5. This produces a hit in CAM 6 pointing to page5 of the cache

memory. Thus, in one clock cycle, the cache subsystem 1115 provides LUE 1007 with an

indication of a hit and the pointer to the flow-entry in the cache memory. The most

;: 5 recent entry is hash5, so hash5 and cache memory address page6 are entered into CAM 0.

The contents of the remaining CAMs are all shifted down one up to and including the

entry that contained hash5. That is, CAM7, CAM 8, ... , CAM 31 remain unchanged. The

CAM array contents and unchanged cache memory contents are now as shown in the

following table.

EX 1019 Page 60

r

52

CAM Hash Cache Point CacheAddr. Contents

CAM 0 hash 5 page5 page 0 entry 0
CAM 1 hash 31 page31 page 1 entry 1
CAM 2 hasho page0 page 2 entry 2
CAM 3 hash 1 page 1 page 3 entry 3
CAM 4 hash 2 page2 page4 entry 4

CAM 5 hash 3 page3 page 5 entry 5

CAM6 hash4 page4 page 6 entry 6
CAM 7 hash6 page6 page 7 entry 7

I
CAM29 hash 28 page28 pagez9 entry29
CAM30 hash 29 page29 page30 entry 30
CAM31 hash 30 page30 page31 entry 31

Thus in the case of cache hits, the CAt\1 array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem when there is a cache hit will be described

by continuing the example. Suppose there is a lookup (e.g., from LUE 1107) for hash

5 value hash 43. The CAM array produces a miss that causes in a lookup using the hash in

the external memory. The specific operation of our specific implementation is that the

CAM state machine sends a GET message to the memory state machine that results in a

memory lookup using the hash via the unified memory controller (UMC) 1119.

However, other means of achieving a memory lookup when there is a miss in the CAM

10 array would be clear to those in the art.

The lookup in the flow-entry database 324 (i.e., external memory) results in a hit

or a miss. Suppose that the database 324 of flow-entries does not have an entry matching

hash value hash 43. The memory state machine indicates the miss to the CAM state

machine which then indicates the miss to the LUE l 007. Suppose, on the other hand that

15 there is a flow-entry--entry 43- in database 324 matching hash value hash 43. In this

case, the flow-entry is brought in to be loaded into the cache.

In accordance with another aspect of the invention, the bottom CAM entry

CAM 31 always points to the LRU address in the cache memory. Thus, implementing a

true LRU replacement policy includes flushing out the LRU cache memory entry and

EX 1019 Page 61

 10

15

52

Cache Point

Contents

 CAMZQ hflShzg pagezg a!

“Mao .t balsa. ”Page? _ a, ,_
CAM3 1 hash” page” i

Thus in the case of cache hits, the CAM array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem when there is a cache hit will be described

by continuing the example. Suppose there is a lookup (cg, from LUE 1107) for hash

value hash“. The CAM array produces a miss that causes in a lookup using the hash in

the external memory. The specific operation of our specific implementation is that the

CAM state machine sends a GET message to the memory state machine that results in a

memory lockup using the hash via the unified memory controller (UMC) 1119.

However, other means of achieving a memory lookup when there is a miss in the CAM

array would be clear to those in the art.

The lookup in the flow-entry database 324 (i.e., external memory) results in a hit

or a miss. Suppose that the database 324 of flow-entries does not have an entry matching

hash value hash43. The memory state machine indicates the miss to the CAM state

machine which then indicates the miss to the LUE l007i Suppose, on the other hand that

there is a flow~entrywentry43— in database 324 matching hash value hash43. In this

case, the flow-entry is brought in to be loaded into the cache.

In accordance with another aSpect of the invention, the bottom CAM entry

CAMM always points to the LRU address in the cache memory. Thus, implementing a

true LRU replacement policy includes flushing out the LRU cache memory entry and

EX 1019 Page 61

53

inserting a new entry into that LRU cache memory location pointed to by the bottom

CAM. The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hash43 is put in CAM 31 and flow-

entry entry 43 is placed in the cache page pointed to by CAM 31. The CAM array and

~- 5 now changed cache memory contents are now

CAM Hash Cache Point CacheAddr. Contents !

l

,.
<

" .

CAMo hash5 page5 page0 entry0
CAM 1 hash31 page31 page 1 entry 1
CAM2 hash0 page0 page2 entry2
CAM 3 hash 1 page 1 page3 entry3
CAM 4 hash2 page2 page4 entry4
CAM 5 hash 3 page3 page5 entry5
CAM6 hash4 page4 page6 entry6
CAM 7 has~ page6 page7 entry7

CAM29 hash28 page28 page29 entry29

CAM30 hash 29 page29 page30 entry43

CAM31 hash43 page30 page31 entry31

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAM 31 are now moved to CAM 0 and the entries previously in the top 30 CAMs moved

down so that once again, the bottom CAM points to the LRU cache memory page.

EX 1019 Page 62

:3

53

D

inserting a new entry into that LRU cache memory location pointed to by the bottom

CAM. The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hash43 is put in CAM31 and flowL

entry entry“ is placed in the cache page pointed to by CAM 31. The CAM array and

now changed cache memory contents are now

L CAM Hash Cache Point—r I Cache Addr.
CWhS E65." T pagco

«35113 1 Page3i ‘1 Pagei

{ CAM: L hasho pageo pageg
CAM3 hashl page! 1— page3

L CAM4 hashg pagez page4 v
CAMS hash3 page3 page5 entry5

CAM6 hash4 paged, pageé entry6 A
CAM-1 hash6 pages ‘— pagey entry7

L t" i

r CAMzg j 11331128 Pagczs u A pagegg entrygg '

FCAM30 L- h33h29 pagezg A Page3o emu/43CAM3]__‘~ hash43 page30 i page“ entry31

Note that the inserted entry is now the MRU flow—entry. So, the contents of

CAB/131 are now moved to CAMO and the entries previously in the top 30 CAMS moved

down so that once again, the bottom CAM points to the LRU cache memory page.

EX 1019 Page 62

I
I

r

0
54

CAM Hash Cache Point Cache Addr. Contents

CAM 0 hash43 page30 page0 entry0
CAM 1 hash5 page5 page 1 entry 1
CAM 2 hash31 page31 page2 entry2
CAM 3 hash0 page0 page3 entry3 -
CAM 4 hash 1 page 1 page4 entry4
CAM 5 hash2 page2 page5 entry5
CAM6 hash3 page3 page6 entry6
CAM 7 hash4 page4 page7 entry7

hash6 page6

... . ..
CAM29 page29 entry29

CAM30 hash28 page28 page30 entry43
CAM31 hash29 pagez9 page31 entry31

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAM 31 are now moved to CAM0 and the entries previously in the top 30 CAMs moved

In addition to looking up entries of database 324 via the cache subsystem 1115

for retrieval of an existing flow-entry, the LUE, SP, or FIDE engines also may update the

5 flow-entries via the cache. As such, there may be entries in the cache that are updated

flow-entries. Until such updated entries have been written into the flow-entry database

324 in external memory, the flow-entries are called "dirty." As is common in cache

systems, a mechanism is provided to indicate dirty entries in the cache. A dirty entry

cannot, for example, be flushed out until the corresponding entry in the database 324 has

lo been updated.

Suppose in the last example, that the entry in the cache was modified by the

operation. That is, hash43 is in MRU CAM0, CAMo correctly points to page30, but the

information in page30 of the cache, entry 43, does not correspond to entry43 in database

324. That is, the contents of cache page page30 is dirty. There is now a need to update the

15 database 324. This is called backing up or cleaning the dirty entry.

As is common in cache systems, there is an indication provided that a cache

memory entry is dirty using a dirty flag. In the preferred embodiment, there is a dirty flag

for each word in cache memory.

EX 1019 Page 63

To

’-1m-«WWWMrtun.
I

..r..‘u,M,WWMMHWJ..H...

.iu

i..unin...

10

15

:j
t\

54

Hash [Eadie Point

T

Cache Addr. Contents

hash43 page30 pageO etryO

CAMl hashs ,- pages if page} entry;
F CAM2 hash31 page“ pagez entry;

{ CAM3 hasho ‘ pageo page3 entry3
{ CAM4 ., hash 1 fl "page1 page4 entry/4

L. hashz : page? —, page5 entry/5
hash3 : page3 page6 entryfi

CAM7 hash4 page; page7 entry7

r hash6 pageé

[1351128

has1129

ls

pagezs

page» 7

entry“

entryn

Note that the inserted entry is now the MRU flowentry, So, the contents of

CAM31 are now moved to CAMO and the entries previously in the top 30 CAMS moved

In addition to looking up entries of database 324 via the cache subsystem l l 15

for retrieval of an existing flow~entry, the LUE, SP, or FIDE engines also may update the

flow~entries via the cache. As such, there may be entries in the cache that are updated

flow—entries. Until such updated entries have been written into the flow-entry database

324 in external memory, the flow-entries are called “dirty.” As is common in cache

systems, a mechanism is provided to indicate dirty entries in the cache. A dirty entry

cannot, for example, be flushed out until the corresponding entry in the database 324 has

been updated.

Suppose in the last example, that the entry in the cache was modified by the

operation. That is, hash43 is in MRU CAMO, CAMO correctly points to page30, but the

information in page30 of the cache, entry43, does not conespond to entry43 in database

324. That is, the contents of cache page pagem is dirty. There is now a need to update the

database 324. This is called backing up or cleaning the dirty entry.

As is common in cache systems, there is an indication provided that a cache

memory entry is dirty using a dirty flag. In the preferred embodiment, there is a dirty flag

for each word in cache memory.

EX 1019 Page 63

T

-.

_)

55

Another aspect of the inventive cache system is cleaning cache memory contents

according to the entry most likely to be first flushed out of the cache memory. In our

LRU cache embodiment, the cleaning of the cache memory entries proceeds in the

inverse order of recentness of use. Thus, LRU pages are cleaned first consistent with the

5 least likelihood that these are the entries likely to be flushed first.

10

In our embodiment, the memory state machine, whenever it is idle, is

programmed to scan the CAM array in reverse order of recentness, i.e., starting from the

bottom of the CAM array, and look for dirty flags. Whenever a dirty flag is found, the

cache memory contents are backed up to the database 324 in external memory.

Note that once a page of cache memory is cleaned, it is kept in the cache in case

it is still needed. The page is only flushed when more cache memory pages are needed.

The corresponding CAM also is not changed until a new cache memory page is needed.

In this way, efficient lookups of all cache memory contents, including clean entries are

still possible. Furthermore, whenever a cache memory entry is flushed, a check is first

15 made to ensure the entry is clean. If the entry is dirty, it is backed up prior to flushing the

20

25

entry.

The cache subsystem 1115 can service two read transfers at one time. If there are

more than two read requests active at one time the Cache services them in a particular

order as follows:

(1) LRU dirty write back. The cache writes back the least recently used cache

memory entry if it is dirty so that there will always be a space for the fetching

of cache misses.

(2) Lookup and update engine 1107.

(3) State processor 1108.

(4) Flow insertion and deletion engine 1110.

(5) Analyzer host interface and control 1118.

(6) Dirty write back from LRU -1 to MRU; when there is nothing else pending,

the cache engine writes dirty entries back to external memory.

FIG. 19 shows the cache memory component 1900 of the cache subsystem 1115.

EX 1019 Page 64

r
I

.. .
4

~

•
"

"' ..,
" "\
"'
"\
""

)

J
56

Cache memory subsystem 1900 includes a bank 1903 of dual ported memories for the

pages of cache memory. In our preferred embodiment there are 32 pages. Each page of

memory is dual ported. That is, it includes two sets of input ports each having address

and data inputs, and two sets of output ports, one set of input and output ports are

5 coupled to the unified memory controller (UMC) 1119 for writing to and reading from

the cache memory from and into the external memory used for the flow-entry database

324. Which of the output lines 1909 is coupled to UMC 1119 is selected by a

multiplexor 1911 using a cache page select signal 1913 from CAM memory subsystem

part of cache system 1115. Updating cache memory from the database 324 uses a cache

10 data signal 1917 from the UMC and a cache address signal 1915.

15

20

Looking up and updating data from and to the cache memory from the

lookup/update engine (LUE) 1107, state processor (SP) 1108 or flow insertion/deletion

engine (FIDE) 1110 uses the other input and output ports of the cache memory pages

1903. A bank of input selection multiplexors 1905 and a set of output selector

multiplexors 1907 respectively select the input and output engine using a set of selection

signals 1919.

FIG. 20 shows the cache CAM state machine 200 l coupled to the CAM array

2005 and to the memory state machine 2003, together with some of the signals that pass

between these elements. The signal names are self-explanatory, and how to implement

these controllers as state machines or otherwise would be clear from the description

herein above.

While the above description of operation of the CAM array is sufficient for one

skilled in the art to design such a CAM array, and many such designs are possible, FIG.

21 shows one such design. Referring to that figure, the CAM array 2005 comprises one

25 CAM, e.g., CAM[7] (2107), per page of CAM memory. The lookup port or update pmt

depend which of the LUE, SP or FIDE are accessing the cache subsystem. The input data

for a lookup is typically the hash, and shown as REF-DATA 2103. Loading, updating or

evicting the cache is achieved using the signal 2105 that both selects the CAM input data

using a select multiplexor 2109, such data being the hit page or the LRU page (the

30 bottom CAM in according to an aspect of the invention). Any loading is done via a 5 to

32 decoder 2111. The results of the CAM lookup for all the CAMs in the array is

EX 1019 Page 65

,._.,...We“-.-.__,1..A.
Eg

‘2:‘.lx.‘Fai 331.5

'aJrJnaqs

10

15

20

25

3 J‘

56

Cache memory subsystem 1900 includes a bank 1903 of dual ported memories for the

pages of cache memory. In our preferred embodiment there are 32 pages. Each page of

memory is dual ported. That is, it includes two sets of input ports each having address

and data inputs, and two sets of output ports, one set of input and output ports are

coupled to the unified memory controller (UMC) 1119 for writing to and reading from

the cache memory from and into the external memory used for the flow—entry database

324. Which of the output lines 1909 is coupled to UMC 1119 is selected by a

multiplexer 1911 using a cache page select signal 1913 from CAM memory subsystem

part of cache system1115. Updating cache memory from the database 324 uses a cache

data signal 1917 from the UMC and a cache address signal 1915.

Looking up and updating data from and to the cache memory from the

lockup/update engine (LUE) 1107, state processor (8?) 1108 or flow insertion/deletion

engine (FIDE) 1 110 uses the other input and output ports of the cache memory pages

1903. A bank of input selection multiplexers 1905 and a set of output selector

multiplexers 1907 respectively select the input and output engine using a set of selection

signals 1919.

FIG. 20 shows the cache CAM state machine 2001 coupled to the CAM array

2005 and to the memory state machine 2003, together with some of the signals that pass

between these elements. The signal names are self—explanatory. and how to implement

these controllers as state machines or otherwise would be clear from the description

herein above.

While the above description of operation of the CAM array is sufficient for one

skilled in the art to design such a CAM array, and many such designs are possible, FIG.

21 shows one such design. Referring to that figure, the CAM array 2005 comprises one

CAM, e.g., CAMU] (2107), per page of CAM memory. The lockup port or update port

depend which of the LLB, SP or FIDE are accessing the cache subsystem. The input data

for a lockup is typically the hash, and shown as REF-DATA 2103. Loading, updating or

evicting the cache is achieved using the signal 2105 that both selects the CAM input data

using a select multiplexor 2109, such data being the hit page or the LRU page (the

bottom CAM in according to an aspect of the invention). Any loading is done via a 5 to

32 decoder 2111. The results of the CAM loolmp for all the CAMS in the array is

EX 1019 Page 65

I
I

. ..

- '
.:~,

57

provided to a 32-5 low to high 32 to 5 encoder 2113 that outputs the hit 2115, and which

CAM number 2117 produced the hit. The CAM hit page 2119 is an output of a MUX

2121 that has the CAM data of each CAM as input and an output selected by the signal

2117 of the CAM that produced the hit. Maintenance of dirty entries is carried out

5 similarly from the update port that coupled to the CAM state machine 200 L A MUX

2123 has all CAMs' data input and a scan input 2127. The MUX 2123 produces the dirty

data 2125.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted

10 as limiting. Various alterations and modifications will no doubt become apparent to

those of ordinary skill in the art after having read the above disclosure. Accordingly, it is

intended that the claims be interpreted as covering all alterations and modifications as

fall within the true spirit and scope of the present invention .

EX 1019 Page 66

O Q

57

provided to a 32—5 low to high 32 to 5 encoder 2113 that outputs the hit 21 15, and which

CAM number 2117 produced the hit. The CAM hit page 2119 is an output of a MUX

2121 that has the CAM data of each CAM as input and an output selected by the signal

2117 of the CAM that produced the hit. Maintenance of dirty entries is carried out

similarly from the update port that coupled to the CAM state machine 2001. A MUX

2123 has all CAMS’ data input and a scan input 2127. The MUX 2123 produces the dirty

data 2125.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted

t
1J

1

10 as limiting. Various alterations and modifications will no doubt become apparent to

those of ordinary skill in the art after having read the above disclosure. Accordingly, it is

intended that the claims be interpreted as covering all alterations and modifications asnluuuiinunu

fall within the true spirit and scope of the present invention.

f211m.n’“.1:m
«J?(Li11.51B

EX 1019 Page 66

r
I
t
r
l
I

!

. ,

5

10

15

20

58

CLAIMS

)
J

What is claimed is:

/
A packet monitor for examining packets passing through a connection point on a

computer network, each packets conforming to one or mo're protocols, the monitor
!

comprising: I
(a) a packet acquisition device coupled to the c nection point and

configured to receive packets passing through he connection point;

(b) a memory for storing a database comprisi g none or more flow-entries for

(c)

(d)

previously encountered conversational flo to which a received packet may

belong;

a cache subsystem coupled to the flow entry database memory providing

for fast access of flow-entries from the ow-entry database; and

a lookup engine coupled to the pac et acquisition device and to the cache

subsystem and configured to lookup hether a received packet belongs to a

flow-entry in the flow-entry databa , the looking up being in the cache

subsystem.

2. A packet monitor according to claim , further comprising:

a parser subsystem coupled o the packet acquisition device and to the

lookup engine such that the a quisition device is coupled to the lookup

engine via the parser subsys em, the parser subsystem configured to extract

identifying information fr a received packet,

wherein each flow-entry is iden fled by identifying information stored in the flow

entry, and wherein the cache l okup uses a function of the extracted identifying

information.

25 3. A packet monitor accor ng to claim 2, wherein the cache subsystem is an

associative cache subsyste including one or more content addressable memory

cells (CAMs).

4. A packet monitor ac~rding to claim 2, wherein the cache subsystem includes:

EX 1019 Page 67

58

\
ice

CLAIMS

What is claimed is:
2'/

éyflfl/> 1‘ A packet monitor for examining packets passing through a connection point on a.1

/ computer network, each packets conforming to one or more protocols, the monitor

5 comprising: /

(a) a packet acquisition device coupled to the CL nection point and

configured to receive packets passing through he connection point;

(b) a memory for storing a database comprisi g none or more flow-entries for

previously encountered cenversational Ho

3
r
E
l to which a received packet mayun‘tnn

to belong;

4,!‘i'
(c) a cache subsystem coupled to the flow entry database memory providing

ta4..

for fast access of flow—entries from the ow~entry database; andT”

(d) a lookup engine coupled to the pac et acquisition device and to the cacheinLJ“
subsystem and configured to lookup hcther a received packet belongs to a

3 15 flowentry in the flow~entry databa , the looking up being in the cache

1‘ subsystem.

2. A packet monitor according to claim a further comprising:

a parser subsystem coupled o the packet acquisition device and to the

lookup engine such that the a quisition device is coupled to the lockup

20 engine via the parser subsys cm, the parser subsystem configured to extract

identifying information from a received packet,
I’

wherein each flow—entry is iden fied by identifying information stored in the flow—

enti'y, and wherein the cache 1 okup uses a function of the extracted identifying

information.

25 3‘ A packet monitor accor ng to claim 2, wherein the cache subsystem is an

associative cache subsyste including one or more content addressable memory

cells (CAMS).

4. A packet monitor ac rding to claim 2, wherein the cache subsystem includes:

EX 1019 Page 67

5

10

15

(i)

(ii)

)
~

59

a set of cache memory elements couplect!to the flow-entry database

memory, each cache memory element inclpding an input port to input an

flow-entry and configured to store a flowfentry of the flow-entry database;

I
a set of content addressable memoryjcells (CAMs) connected according to

an order of connections from a top Cf\M to a bottom CAM, each CAM

containing an address and a pointer t one of the cache memory elements,

and including:

a matching circuit havin an input such that the CAM asserts a

match output when the in t is the same as the address in the CAM

cell, an asserted match o tput indicating a hit,

a CAM input config red to accept an address and a pointer, and

a CAM address out ut and a CAM pointer output;

(iii) a CAM controller couple to the CAM set; and

(iv) a memory controller co led to the CAM controller, to the cache memory

set, and to the flow-entry

wherein the matching circuit inp ts of the CAM cells are coupled to the lookup

engine such that that an input t the matching circuit inputs produces a match output

in any CAM cell that contains n address equal to the input, and

wherein the CAM controller · configured such that which cache memory element a

20 particular CAM points to c nges over time.

5. A packet monitor accor ing to claim 4, wherein the CAM controller is

configured such that the ottom CAM points to the least recently used cache

memory element.

EX 1019 Page 68

.Mw,.mat«pa—mm-w.

n,u«l30niiin.3...

.>l|VWP”II>\fl‘Sil
’I}(I.
4:.

RJIun‘

J JJ

59

(i) a set of cache memory elements coupled/to the flow-entry database
memory, each cache memory element including an input port to input an

flow—entry and configured to store a flowfentry of the flow—entry database;
/

(ii) a set of content addressable memory/cells (CAMS) connected according to

5 an order of connections from a top CAN to a bottom CAM, each CAM

containing an address and a pointer to/ one of the cache memory elements,

and including:

a matching circuit havin an input such that the CAM asserts a

match output when the in t is the same as the address in the CANI

10 cell, an asserted match 0 tput indicating a hit,

a CAM input config red to accept an address and a pointer, and

a CAM address out tit and a CAM pointer output;

(iii) a CAM controller couple to the CAM set; and

(iv) a memory controller c0 led to the CAM controller, to the cache memory

15 set, and to the flow-entry emery,

wherein the matching circuit inp ts of the CAM cells are coupled to the lookup

engine such that that an input t the matching circuit inputs produces a match output

in any CAM cell that contains n address equal to the input, and

wherein the CAM controller ' configured such that which cache memory element a

20 particular CAM points to c nges overtime.

5. A packet monitor accor ing to claim 4, wherein the CAM controller is

configured such that the ottom CAM points to the least recently used cache

memory element.

EX 1019 Page 68

5

0
60

,-J

6. A packet monitor according to claim 5, wherein e address and pointer output of

each CAM starting from the top CAM is coup to the address and pointer input of

the next CAM, the final next CAM being e bottom CAM, and wherein the CAM

controller is configured such t~an ~fi there is a cache hit, the address and pointer

contents of the CAM that prod/ct ~he hit are put in the top CAM of the stack, the

address and pointer contents f the CAMs above the CAM that produced the

asserted match output shifted down, such that the CAMs are ordered according

to recentness of use ith the least recently used cache memory element pointed to

by the bottom~ and the most recently used cache memory element pointed to

10 by ,the top C,}M.

7. A cache system for looking up one or more elements of external memory,

comprising:

(a) a set of cache memory elements coupled tot e external memory, each

cache memory element including an input po to input an element of the

15 external memory and configured to store th input external memory element;

20

25

(b) a set of content addressable memory c ls (CAMs) connected according to

(c)

(d)

an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer one of the cache memory elements,

and including

/
(i) a matching circuit having uvsuch that the CAM asserts a match

output when the input is th same as the address in the CAM cell, an

asserted match output ind· ating a hit,

(ii) a CAM input configured to accept an address and a pointer, and

(iii) a CAM address utput and a CAM pointer output, and

a CAM controller co led to the CAM set;

coupled to the CAM controller, to the cache memory

set, and to the extern

EX 1019 Page 69

10

15

20

‘25

6.

o 3

60

,7

A packet monitor according to claim 5, wherein/the address and pointer output of

each CAM starting from the top CAM is COMM to the address and pointer input of

the next CAM, the final next CAM being/tlé bottom CAM, and wherein the CAM
controller is configured such than wh {there is a cache hit, the address and pointer

contents of the CAM that produce“ the hit are put in the top CAM of the stack, the

address and pointer contents/ofthe CAMS above the CAM that produced the
asserted match output ate/shifted down, such that the CAMS are ordered according
to recentness of use 4th the least recently used cache memory element pointed to

/.

by the bottom C/(M and the most recently used cache memory clement pointed to
bythe top CAM.

A cache system for looking up one or more elements of external memory,

comprising:

(a) a set of cache memory elements coupled to t 6 external memory, each

cache memory element including an input po to input an element of the

external memory and configured to store th input external memory element;

(b) a set of content addressable memory c is (CAMS) connected according to

an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer one of the cache memory elements,

and including

(i) a matching circuit having tit/such that the CAM asserts a match

output when the input is th same as the address in the CAM cell, an

asserted match output ind' ating a hit,

(ii) a CAM input cont'gured to accept an address and a pointer, and

(iii) a CAM address utput and a CAM pointer output, and

led to the CAM set;(c) a CAM controller co

(d) a memory controll coupled to the CAM controller, to the cache memory

set, and to the extern l memory,

EX 1019 Page 69

61

wherein the matching circuit inputs of the CAM cells le coupled such that that an

input to the matching circuit inputs produces a matcJ:utput in any CAM cell that
'

contains an address equal to the input, and

wherein the CAM controller is configured such th t which cache memory element a

5 particular CAM points to changes over time.

8. A cache system according to claim 7, wherei the CAM controller is configured

such that the bottom CAM points to the least re ently used cache memory element,

and wherein the CAM controller is configured o implement a least recently used

replacement policy such that least recently use cache memory element is the first

10 memory element flushed.

15

9. A cache system according to claim 8, wh ein the address and pointer output of

each CAM starting from the top CAM is co pled to the address and pointer input of

the next CAM, the final next CAM being e bottom CAM, and wherein the CAM

controller is configured such than when re is a cache hit, the address and pointer

contents of the CAM that produced the

address and pointer contents of the C

are pu} in the top CAM of the stack, the

s bole the CAM that produced the

asserted match output are shifted down such that the CAMs are ordered according

to recentness of use, with the least rec ntly used cache memory element pointed to

by the bottom CAM and the most rec ntly used cache memory element pointed to

20 by the top CAM.

25

10. A cache system according to cl m 9, wherein the CAM controller is configured

such that replacing any cache me ory elements occurs according to the inverse

order of recentness of use, with e least recently used entry being the first flushed

cache memory entry.

11. A cache system according claim 7, wherein each memory element is a page of

memory.

12. A cache system accordi to claim 7, wherein each cache memory element is

provided with an indicati of whether or not it is dirty, and wherein the CAM

controller is configured t clean any dirty cache memory elements by backing up the

30 dirty contents into the e temal memory.

EX 1019 Page 70

”WW...WN 4.t...n,»
anI!

uonuuIi-t

10

15

20

25

10.

ll.

12.

3 ”D

61

/

wherein the matching circuit inputs of the CAM celljare coupled such that that an
input to the matching circuit inputs produces a matci output in any CAM cell that

contains an address equal to the input, and

wherein the CAM controller is configured such th t which cache memory element a

particular CAM points to changes overtime.

A cache system according to claim 7, wherei the CAM controller is configured

such that the bottom CAM points to the least re ently used cache memory element,

and wherein the CAM controller is configured o implement a least recently used

replacement policy such that least recently use cache memory element is the first

memory element flushed.

A cache system according to claim 8, wh ein the address and pointer output of

each CAM starting from the top CAM is co pied to the address and pointer input of

the next CAM, the final next CAM being t e bottom CAM, and wherein the CAM

controller is configured such than when re is a cache hit, the address and pointer

contents of the CAM that produced the are ply in the top CAM of the stack, the
address and pointer contents of the C s ' box/e the CAM that produced the

asserted match output are shifted down such that the CAMS are ordered according

to recentness of use, with the least rec ntly used cache memory element pointed to

by the bottom CAM and the most rec ntly used cache memory element pointed to

by the top CAM.

A cache system according to Cl 111 9, wherein the CAM controller is configured

such that replacing any cache me cry elements occurs according to the inverse

order of recentness of use, with 6 least recently used entry being the first flushed

cache memory entry.

A cache system according claim 7, wherein each memory element is a page of

memory.

A cache system accordi to claim 7, wherein each cache memory element is

provided with an indicati of whether or not it is dirty, and wherein the CAM

controller is configured t clean any dirty cache memory elements by backing up the

dirty contents into the e ternal memory.

EX77'1019 Page 70

r

I
l •

0
62

13. A cache system according to claim 12, wherein t contents of any cache

memory element are maintained after cleaning unti such cache contents need to be

replaced according to the LRU replacement polic .

14. A cache system according to claim 8, wherei each cache memory element is

5 provided with an indication of whether or not itf s dirty, and wherein the CAM

controller is configured to clean any dirty each memory elements by backing up the

dirty contents into the external memory.

10

15

15. A cache system according to claim 14, wh rein the CAM controller is further

configured to clean any dirty cache memory lements prior to replacing the cache

memory element contents.

16. A cache system according to claim 15, herein the CAM controller is further

17.

configured to clean any dirty cache memo elements prior to replacing the cache

memory element contents.

A cache system according to claim wherein each cache memory element is

provided with an indication of whet er ~05)(is dirty, and wherein the CAM

controller is configured to clean dirty ache memory elements by backing up the

dirty contents into the external memo in reverse order of recentness of use.

18. A cache system according to clai 17, wherein said cleaning in reverse order of

recentness of use automatically pro eds whenever the cache controller is idle.

20 19. A cache system for looking up ne or more elements of an external memory,

comprising:

(a) a set of cache memory elements coupled to the external memory, each

cache memory element i eluding an input port to input an element of the

external memory and c nfigured to store the input external memory element;

25 and

(b) a set of content ad ressable memory cells (CAMs) containing an address

and a pointer to one f the cache memory elements, and including a

matching circuit h ing an input such that the CAM asserts a match output

when the input is e same as the address in the CAM cell,

EX 1019 Page 71

i: 10

15

unnx,x.p.1

20

13.

14.

15.

16.

17.

18.

19.

l/1
1‘ \

62

A cache system according to claim 12, wherein t contents of any cache

memory element are maintained after cleaning unti such cache contents need to be

replaced according to the LRU replacement policy!
/

A cache system according to claim 8, wherein each cache memory element is

provided with an indication of whether or not it/15 dirty, and wherein the CAM
controller is configured to clean any dirty each memory elements by backing up the

dirty contents into the external memory.

A cache system according to claim 14, wh rein the CAM controller is further

configured to clean any dirty cache memory . lements prior to replacing the cache

memory element contents.

A cache system according to claim 15, , herein the CAM controller is further

configured to clean any dirty cache memo elements prior to replacing the cache

memory element contents.

A cache system according to claim ' wherein each cache memory element is

provided with an indication of whet ' riogit’is dirty, and wherein the CAM

controller is configured to clean dirty ache memory elements by backing up the

dirty contents into the external memo in reverse order of recentness of use.

A cache system according to clai » 17, wherein said cleaning in reverse order of

recentness of use automatically pmr eds whenever the cache controller is idle.

A cache system for looking up no or more elements of an external memory,

comprising:

(a) a set of cache memory elements coupled to the external memory, each

cache memory element i icluding an input port to input an element of the

external memory and c nfigured to store the input external memory element;

and

(b) a set of content ad ressable memory cells (CAMS) containing an address

and a pointer to one f the cache memory elements, and including a

matching circuit h ing an input such that the CAM asserts a match output

when the input is e same as the address in the CAM cell,

EX"1019 Page 71

63

wherein which cache memory element a articular CAM points to changes over

time.

20. A cache system accordin 19, wherein the CAMs are connected in an

order from top to bottom, cµ{ct wherein the bottom CAM points to the least recently
I

s used cache memory elelllent.

EX 1019 Page 72

J J

63)7

wherein which cache memory element a/phx’ticular CAM points to changes over
, /t1me.

20. A cache system accordin t cla' 19, wherein the CAMS are connected in an

order from top to bottom, z/mfd wherein the bottom CAM points to the least recently
used cache memory elerflent.

«to

(J:
/‘

"5631“:«n.unnuuwh
L'ylIL!“
‘2
g.3
.1e”rg
3'

EX 1019 Page 72

.
/

J

64

ABSTRACT
, rtc.1ud~ 5

A cache system for looking up one or more elements of an external memory somprising

a set of cache memory elements coupled to the external memory, a set of content

addressable memory cells (CAMs) containing an address and a pointer to one of the

5 cache memory elements, and-ineh:1diag a matching circuit having an input such that the ,,

10

CAM asserts a match output when the input is the same as the address in the CAM cell.
Tue- \))hte;'h

Wfti.eli"cache m~mory elemens._a particular CAM points to changes over time. In the

preferred implementation, the CAMs are connected in an order from top to bottom, and

the bottom CAM points to the least recently used cache memory element.

EX 1019 Page 73

64

ABSTRACT

t . mcluvles
A cache system tor lookmg up one or more elements of an external memoryheempéeing
a set of cache memory elements coupled to the external memory, a set of content

addressable memory cells (CAMS) containing an address and a pointer to one of the

5 cache memory elements, anditielaéirng a matching circuit having an input such that the

CAM asserts a match output \ylfien the input is the same as the address in the CAM cell.
erhgei’Acache memory clemen‘fia Fabticular CAM points to changes overtime. In the
preferred implementation, the CAMS are connected in an order from top to bottom, and

the bottom CAM points to the least recently used cache memory element.

10.5."u.41lltn

“‘4:it"J!
12:“"It!«I.

:2"Lu

3.anink".41ii:

EX 1019 Page 73

1/21

jcuENT41\

107

DATA COMMUNICATIONS
NETWORK

123

105

jcuENT2 ~

FIG. 1

116

10

102

------ 125

CLIENT 1

EX 1019 Page 74

"' m " ‘ ’ PRLVTOFDRAWLNGS! 115,0;qu ‘11
$111359:

1 11/
my“ ,

9 $91M; 1/21
“A ' ~
L” 100 CLIENT 4 108

“‘x ANALYZER
107

116

CLIENTB 1 SERVER ~-
‘\ \ \110

106 ”21

 DATA COMMUMCATIONS
NETWORK

 '1li1t11

=1
11

Ii11

11M

1—

-\
112

FIG. 1

EX 1019 Page 74

-· -~-----1:-1)

-----------·----------------- ,... __ --· - ~ .. , "

[11i !\ ·1 ,,JI ii 'l 1 !i 11 Jlli 1,!1 !'

300
- - - - - - - - - I ~ ~ - - - -1 - - - - - - - - - - PARSER 301 r - - - - - - - - -

I I 314 I 304 306 I I 316-.
I ANALYZE AND EXTRACT BUILD UNIQUE I I LOOKUP NEW "FLOW I

---'-,I RECOGNIZE IDENTIFYING CONVERSATIO I :NRJ!N RECORD? I
PATIERN INFORMATION "FLOW" KEY I RECORDS NO I

INFORMATION (Ell) I (DB

324

I

(PAA) I I IA CACHE I
312 I

--~ I r - - - - - -:...::..J:_ _____ --====

324

DATABASE
OF FLOWS

I I
I
I
I
I
I

t_

1308

I
I

PATIERN, PARS
AND

EXTRACTION
DATABASE

,- - - - ..J

I
I
I
I
I

PROTOCOL
& STATE

IDENTIFICATION

I
UPDATE

No-.l "FLOW"
KNOWN
RECORD

- - J I I '

310

COMPILER
AND

OPTIMIZER

PROTOCOL
DESCIPTIO
LANGUAGE

FIG. 3

I
I
I
I
I
I

STATE
PROCESSOR
INSTRUCTION

DATABASE

326

ya
I STATE
I PROCESSN

CLASSIFICATN
FINALIZATION

34

~--NO

330

I OPERATION ~ ANALYZER

I 303 I

II ____ y~---------------------- I

v.) -I'\)
...I.

,i!; ~
l
o "L ~...,
,C'l 0

~~ ~
i-< ~

~
C'I

'8 Lr,

EX 1019 Page 75

"E334“ gnlwlv

I PARSER 301 ' .. .35. __________

ANALYZE AND EXTRACT l 316d , ‘o
RECOONTZE IDENTIFYING BUtLD UNIQUE I nggap NEW “FLOW , {gPATTERN CONVERSATIO w '.

(NFORMATTON WORM/mo” “FLOW" KEY - |PT KNOWN RECORD? ‘ 8??ngng '12
(PAR) (EH) 1 1 RECORDS NO l {E

VIA CACHE
_______ __J 1 YES Ir ..

r- —-- -’ I '5
' a

3‘10

AND
EXTRACTION

DATA BAS E

COMPILER
AND

OPTlMIZER

PROTOCOL
DESCIPTIO
LANGUAGE

DATAG RAM
LAYER

UPDATE

 PROTOCOL MORE N " FLOW“ l& STATE CLASSIFICATIO KNOWN
IDENTIFSCATTON RECORD

553320
YES YE ._, B

I CLASSIFICATNu FINALIZATION
STATE 332

PROCESSOR
[NSTRUCTION MORE STATES

DATABASE

STATE
PROCESSN:
OPERATION -

ANALYZER

39g

EX 1019 Page 75

FDN’I’dVHG301mm

:1 1111 1111 !: I I' I ii :111 1', i,1i 1, ji111111 F

300
___ - - - - - - - - I ~ ~ - - - - - -1 - - - - - - - - PARSER 301 I r - - - - - - -

324
I 314 I 304 306 I I 315.--..,,

302 I ANALYZE AND EXTRACT BUILD UNIQUE I I LOOKUP NEW "FLOW I
, =:7 ,1 RECOGNIZE IDENTIFYING CONVERSATIO I :NRc?~ RECORD? I

PATTERN INFORMATION "FLOW" KEY I RECORDS NO I
DATABASE
OF FLOWS

310

1308

I
I

INFORMATION (Ell) I (DB
324

I
(PAR) I I IA CACHE

312

PATTERN, PARS
AND

EXTRACTION
DATABASE

COMPILER
AND

OPTIMIZER

FIG. 3

l-----,

r--------' I ... - .J

I I ,-----r===~--_J
1- - - - .J

I
I
I
I

I

- - J

PROTOCOL
& STATE

IDENTIFICATION

3221
UPDATE Fi
"FLOW" I

NO-+! KNOWN I
RECORD 1

I I I

CLASSIFICATN

STATE
PROCESSOR
INSTRUCTION

DATABASE

33v ~ I FINALIZATION

326

328
(330

STATE
PROCESSNG ~ <,
OPERATION

MORESTATES~Nv----- '""':134

'-----NO

ANALYZER
303

~--YE;:,--~~

(,.) -I\) -I.

it;~
1
0 L

2: ~
,c:"l 0

iji ~
t-< t: s:

C"1
It, t,,

EX 1019 Page 76

.‘IIIIIIIII:I I‘III {‘I‘III‘I‘IIIIII IIIIIIIII“

I RARSER 301 ' ‘/_ it __________ 324 'u
l 304 306 —- I r I .5 E

302 ANALYZE AND I ' '0 ’
| RECOGNIZE [DEEXNTT'TfifiTNG BUILD UNIQUE I I LOOKUP ” IE 3

W PATTERN INFORMATION CONVERSAT‘O FROM NEW FLOW DATABASE ‘9 "’INFORMATION "FLOW" KEY | KNOWN FIECOFID? F FL ws I D
(PAR) (Ell) I I RECORDS O O E?

(DB 324 .< 1:

312 | g
_______ _| L u

'5

310

AND

EXTRACTION
DATABASE

COMPILER
AND

OPTIMIZER

336

-
PROTOCOL
DESCIPTIO
LANGUAGE

338

-
v

DATAG RAM
LAYER

SELECTION‘

FIG. 3

 PROTOCOL
8- STATE

STATE
PROCESSOR
INSTRUCTION

DATABASE

PROCESSN c
OPERATION ‘

IDENTIFICATION

UPDATE
"FLOW"
KNOWN
RECORD

MORE
CLASSIFICATIO

 LZ/EYE

CLASSIFICATN
FINALIZATION

332

34

ANALYZER

29.3

EX 1019 Page 76

('_ ... 1,.!--.

PR.l}i T Of DkA '°" LhG.S
AS ORIGINALLY tD ···---~ -

4/21

r-402

404 405

PACKET GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

COMPILE STATE
---""'ESCRIPTION,..f----,,.. 1INSTRUCTION

406 ?J ATTERN, PARS
AND

EXTRACTION
DATABASE 408

LOAD
PARSING

---, SUBSYSTEM
MEMORY

403

409

AND
OPERATIONS

STATE
PROCESSOR
INSTRUCTION

DATABASE

LOAD STATE
NSTRUCTIO ·14--

DATABASE
MEMORY

'-400

410

FIG. 4

407

EX 1019 Page 77

PRLVT OF DRAWUNGS
A5 pRXQ‘I‘NALLY ED» -—-- m -*

 fflGPTLEVEL /
PACKET

DECODWG
mESCWPUON‘

iE
lT
39

GENERATE

Mi

: PACKET

2 PARSEAND ,Eg3$§%ENT1 : EXTRACT ‘
T OPERAUONS

Tlii

407

STATE
PROCESSOR
INSTRUCTION

DATABASE

EXTRACTION
DATABASE

LOAD LOAD STATE

PARSING NSTRUCTTO
SUBSYSTEM DATABASE

MEMORY MEMORY

400

\~«4To

FIG. 4
A“

EX 1019 Page 77

PRL~T Of DKA"'L'GS
~-ORIGQLALLY ~

503

504

510

PATTERN J4-..!...!N=O<
NODE

509

l

5/21

501

INPUT PACKET 502

LOAD PACKET
COMPONENT 14-~~~

NO

505

508

EXTRACT
ELEMENTS1----~~~--'

FIG. 5

512

513

511

"-soo

EX 1019 Page 78

Rnrkiu '

PRINT 0F DRAWLNCS
AS ORIGINALLY ED~-~_—-m

502

ORE IN PACKE I"

FETCH NODE ANI
PROCESS FROM

PATT RNS

503

: I I

PACKET
KEY

504:14u¢{1

nh51u
u

: 513

MORE NEXT
: PATTERN PACKET
: NODES? COMPONE 511

... ' u. as

PROCESSTO
COMPONENT

510 500

v

‘

PATTERN
NODE

 509

——————-—_

EX 1019 Page 78

, PR.1..'IT Of DHA~fl,G.S

~-OJ!!G~ 'tD

603

' 604

NO

606

607

6/21

PACKET
COMPONENT AND
PATTERN NODE

LOAD PACKET
COMPONENT

FETCH EXTRACTION
ND PROCESS FROM

PATTERNS

YES

APPLY EXTRACTION
PROCESS TO
COMPONENT

FIG. 6

601

(602

610

NO LOAD KEY
BUFFER

605

611

NEXT
N PACKET 609

COMPONEN

"600

608

EX 1019 Page 79

PRL‘ITOFDRAWlhcs

”RR—1.9M an

6/21

501. VF

PACKET

COMPONENT AND f“ 502
PATTERN NODE \J

I 603

LOAD PACKET

3 : COMPONENT 610 wTuTT
604

MORE PACKE NO ~ LOADK Y
COMPONENT BUFFEE

YES

FETCH EXTRACTION 6

MIN‘gpfimw|
,

‘ ND PROCESS FROM
PATTERNS 605

NO ‘611

NEXT

No PACKET 609
COMPONEN

\

Y‘;nz::rT!

ELEMENTS?

YES

507 APPLY EXTRACTTON
PROCESS TO
COMPONENT

600

MORE TO (T 608
EXTRACT? \>

YE

FIG. 6
EX 1019 Page 79

PRL~T Of DRA\H.hG.S

~-Q.fil.G~ ~

7/21

702

703 LOAD PATTERN
NODE ELEMENT =

··- 708

704 NO
OUTPUTTO
ANALYZER

YES

HASH KEY BUFFER
705 ELEMENT FROM

PATTERN NODE

709

PACK KEY & HAS
706

_700

707

NEXT PACKET
COMPONENT

FIG. 7

EX 1019 Page 80

0-4.2.,

PRLVI 0F DRAWU‘GS

«shaggy,Y ‘QD

7/21

. 7m

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
703 “V NODE ELEMENT:1iiu

'r:U

Mme}

 ,5 704 NO

YES

HASH KEY BUFFER
I ELEMENT FROM 705
: PATTERN NODE

PACK KEY & HAS
708

NEXT PACKET
COMPONENT

707

FIG. 7

708

OUTPUT TO
ANALYZER

709

\700

EX 1019 Page 80

c,.. .. ,,:.

PRL''WT Or DRA~L"GS
~_ORIG~ALLY ~..n

800'\

805

809

811

812

8/21

801

UFKB ENTRY FOR 802
PACKET

COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM OACHE 804

806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

YES

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TlMESTAMP

SET UFKB FOR PACKET
AS 'FOUND'

UPDATE STATISTICS FOR
RECORD IN CACHE

810

8130 FIG. 8

EX 1019 Page 81

anal/L

PRLVT 0F DRAWLNGfi

As. enemy. to

8/21

/“’ 801

UFKB ENTRY FOR
PACKET J!”- 802

800\
COMPUTE CONVERSATION 803
RECORD BiN FROM HASH

» REQUEST RECORO BIN/

i BUCKET FROM CACHE 804 g 806

NO SET UFKB FOR
PACKET AS 'NEW'

 ORE BUCKET
N THE BIN?

805 .5

YES

COMPARE CURRENT BlN /«~ 807
AND BUCKET RECORD KEY

TO PACKET

; NEXT BUCKET Nowr 808
YES

809

MARK RECORD BIN AND ,, 8,0BUCKET 'sN PROCESS‘ IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8“ " AS ‘FOUND'

s»w31

KR"'|A"

812 " UPDATE STATTSTICS FOR
RECORD IN CACHE

813‘». FIG. 8
CW

EX 1019 Page 81

~

=

PRLH Of DRA \h

~-Qfil~.~-:n

903

904

9/21

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION', 'POAT' AND
'PROTOCOL {TCP OR

UDP)

CREATE SERVER STAT

SAVE 'PROGRAM',
'VERSION', 'POAT' AND
'PROTOCOL (TCP OR

UDP)' WITH NETWORK
ADDRESS IN SERVER

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

~905

LOOKUP REOUE

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

FIG. 9

907

EXTRACT PORT

GET 'PROGRAM',
'VERSION' AND

'PROTOCOL {TCP OR
UDP)'

908

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

'PROTOCOL {TCP OR
UDP)'WITH

DESTINATION
NETWORK ADDRESS.

BOTH MAKE A KEY.

EXTRACT
PROGRAM

GET 'PORT' AND
'PROTOCOL {TCP

OR UDP)'.

\909

EX 1019 Page 82

Qgrlv

PRLVT OF DRAWL

A5 ORIGINALLY F’_ _:D
-_».....~-v

901 ‘3 if“ 902 (—‘910

RPC
ENDLOOKU'

REQUEST 'ORTMAPP '
 "ORTMAPPE -

EXTRACTPROGRAM

GET ‘F’ROGRAM‘.
'VERSION‘, ‘PORT' AND
’PROTOCOL (TCF’ OR

UDP)

GET ‘PROGRAM‘,
’VERSION‘ AND

‘PROTOCOL (TCF‘ OR

‘1!11,111k
‘5i.Hi‘

SAVE PROGRAM“

 SAVE 'PROGRAM‘, *VERSION' AND ‘/904 ’\ 'VERSION', ‘PORT' AND ‘PROTOCOL (row OR
_: ‘P ROTOCOL (TCP 0R UDP)‘ WITH
r uopy WITH NETWORK DESTSNATION

ADDRESS IN SERVER NETWORK ADDRESSSTATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY.

EXTRACT
PROGRAM FTND ‘PROGRAM‘

900/
AND 'VERSION' GET 'PORT‘ AND

WTTH LOOKUP OF 'PROTOCOL (TCPSOURCE NETWORK
OR UDPY‘ADDRESS.

FIG. 9

EX 1019 Page 82

-
~

-
~

PRL,r Of DRA~~G.S
AS ORIGlNALLY ~ ___ ,.,.~

1000~ 10/21

PATTERN 1DO
RECOGNITION

DATABASE ~
MEMORY 1001

100

EXTRACTION
OPERATIONS

DATABASE
MEMORY

1031 J
1004

.---___:~------""-------.::....:;._----,. INFO OUT.

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL N

100 PATTERN
RECOGNITN

ENGINE
(PRE)

EXTRACTION ENGINE
{SLICER)

r1007

1008---

1012

1021

...
PARSER INPUT BUFFER

MEMORY

INPUT BUFFER 1011
INTERFACE
CONTROL

101

102z--/

1023 FIG. 10

1013)

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

ANALYZER
INTERFACE
CONTROL

1027

EX 1019 Page 83

earl/Ina”
mm 05 omwmcs

AS omqmmv gp

 PATTERN EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE
MEMORY MEMORY

1031

1004 \

I INFOIOUT:
HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS "C-ONTRL N

1081j

 xhvMMawn 100

PATTERN f1 007
1 RECOGNITN EXTRACTION ENGINE ,
- ENGINE (SLICER)
a {PR5}

" 1 008*\ I 013'\

\ j\ PARSER
PACKE PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD

“r" < MEMORYL101 2
10104

1021”

INTERFACE INTERFACE
CONTROL CONTROL

ANAL ZER

‘ .

PACKET READY

102M, 1 '
L1023 FIG. 10 1027M

EX 1019 Page 83

PRLH Of DKA \.\-L"'IGS
AS ORIGlNALL Y ' ,D ---w~

1100~

1101

PARSER
INTER
FACE

1103

1109

UNIFIED
FLOW
KEY

UFFER
(UFKB)

11/21

LOOKUP/
UPDATE
ENGINE

(LUE)

STATE
PROCESS
INSTRUCN
DATABASE

(SPID)

1108

1115

CACHE

STATE
PROCESSR

(SP)

FLOW
INSERTION/
DELETION

ENGINE
(FIDE)

FIG. 11

112
1118

ANALYZE
HOST

INTERFAC
AND

CONTROL
(ACIC)

HOST
BUS

INTER
FACE
(HIB)

1119 112'1

UNIFIED
MEMORY
CONTROL

(UMC)

MEMORY
INTER
FACE

EX 1019 Page 84

111191'

anbhu

PRLV T 0F DRAWUNGS

ASQEQLLQ£gE

1100 N

(1101
\

“4...!

PARSER
INTER-
FACE

‘D

1103

110

UN1FIED
FLOW
KEY

fiwFFER
(UFKB)

11/21

(-1115

/»«1107 \

LOOKUP/
UPDATE
ENGINE

(LU E)

_

STATE
PROCESS -
JNSTRUCN
DATABASE

(SPiD)

I #1108

CACHE

SJ
H STATE C-

PROCESSR

(SP)

H

FLOW
INSERTION/
DELETION

ENGINE
(FIDE)

(11181122fi\\

ANALYZE " HOST
HOST BUS

INTERFAC :~ INTER-
AND FACE

CONTROL (HlB)
(A010)

(”1119 112"?

UNIFIED MEMORY
MEMORY INTER-
CONTROL W FACE

(UMC)

EX 1019 Page 84

PRL";f OF ORA~lhG.S

~_ORIG.~Y -:n

12/21

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

1200~
ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
,- BUCKET FROM CACHE
~

REQUEST NEXT NO
BUCKET FROM 1205

1206 CACHE

INSERT KEY AND HASH 1207
NO N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

OMPARE CURRENT Bl 1209
1210 AND BUCKET RECORD

KEY TO PACKET

MARK RECORD BIN AND 1211
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

1212
SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

EX 1019 Page 85

Onr'l;hI—»

.IIt:[II».MI
II

x‘!l‘"1%n‘l

PRLV I 0F DkAwmcs
A5 ORIGDIALLY ‘1),fi. . ,2“. .

REQUEST NEXT
BUCKET FROM

1206

UCKET VALID.

1
210“ SET UFKB FOR

PACKET AS
'DROP'

 N0 N BUCKET, MARK ‘USED

12/21

UFKB ENTRY FOR
PACKET WITH
STATUS ‘NEW‘

 r1202

ACCESS

CONVERSATION /“1203

RECORD BIN J

REQUEST RECORD BIN!
BUCKET FROM CACHE

 filNz’BUCKET EMPTY

INSERT KEY AND HASH 1207

WlTH Tl MESTAMP

 OMF’ARE CURRENT Bl :

AND BUCKET RECORD
KEY TO PACKET

 MARK RECORD BIN AND

BUCKET 'IN PROCESS‘
AND 'NEW IN CACHE

 1211

1212 SET INITIAL STATISTICS
FOR RECORD IN CACHE

 % r4213

FIG. 12

Mal—I'm

EX 1019 Page 85

L

1300 ~

u

13/21

~1301

UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR 'F UNO' 1302

SET STATE
PROCESSOR

• SET STATE PROCESSOR
INSTRUCTION POINTER TO

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

INSTRUCTION NO
POINTF9TO

VALUE FOUND IN
CURRENT STATE

----------1308

1310
SAVE STATE
PROCESSOR
INSTRUCTION NO
POINTER IN

CURRENT FLOW
RECORD

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

FIG. 13

1303

1304

1305

1307

1311

--·----------

EX 1019 Page 86

III“II
.II:

IIIIII“

C‘nch;

PRINT OF DRAWUNGS

Aioqugtuyr‘w . ”A?

13/21

(I 1301
\K/F

1300 N UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR ‘FU D' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO / 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM [”1304—> STATE PROCESSOR
INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

SET STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING ~80?
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

\N—W

1308 YES
‘— 13m

SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1809
POINTER IN TATES FOR THIS FLOW“?

CURRENT FLOW
RECORD

YES

SET AND SAVE FLOW REMOVA

STATE PROCESSOR r1311
INSTRUCTION 1N CURRENT

FLOW RECORD

@1313
FIG. 13

EX 1019 Page 86

140

PACKET
I

I

: iltj' rl ,•Ii[:' II': fl', I

- - - - - - - - - -, ,-- - --------
I I

1404 1406 1412 I I 141

LOOKUP I I ANALYZE AND EXTRACT
BUILD KNOWN RECOGNIZE IDENTIFYING

"FLOW" KEY RECORDS PATIERN INFO & PROGL
I I (DB 1424) INFORMATION /STATE
I I

-=====~=--~--------

PATIERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

I PARSER 1408
l_§Ui3S_!S5~ ______ -

v:
1400 I

I
1426

FIG. 14

STATE
MACHINE

SELECTOR

1428

(
\._r-l-----,

~:::::::::::::::::::,-i···
STATE

ANALYSIS
PERATION

1432
_

YES

~-----------------

- - - - - - 1

I

N

DATABASE
OF FLOWS

1422

UPDATE
"FLOW"
KNOWN
RECORD

CLASSIFICATN
FINALIZATION

1434
N~--

ANALYZER
SUBSYSTEM

.......
,+::,.

I 1\5"
I ___..

()

EX 1019 Page 87

|

140 I

|

AND

EXTRACTION
OPE RATIONS

PARSER
SUBSYSEM

STRUCTURES

EXTRACT
RECOGNIZE IDENTIFYING

PATTERN INFO & PROCL
/STATE

I EI II II In ‘ I: I I XIII ‘ IIII’ I M II I ' V‘ ‘I I‘ " ‘

LOOKUP

.. .. KNOWN NEW "FLOW“
FLOW KEY RECORDS RECORD? DATABASE

(DB 1424) OF FLOWS

UPDATE

CLASSIFICATION KTNILnglvN
RECORD

STATE
MACHINE

SELECTOR

1426

CLASSIFICATN
FINALIZATION

STATE

ANALYSIS

ANALYZER
SUBSYSTEM

LZ/VI

x,X'IfiDI‘HOSV
(17:

'v

E.4

E
:3
fS
5
OU.

EX 1019 Page 87

~-· -· ·--. ,.,. --- ------------··-----------

121

1502

PACKET
.----llo-1.'1.CQU IS ITION

DEVICE

PACKETS

102

,r 11

PARSER
301

ANALYZE
303

MONITOR
300

FIG. 15

324

1504

HOST
PROCESSO

1510 1
NETWORK
INTERFACE

CARD

DISK
&

OB

-~

c; .,,
lo~
1~;
,C'! ..,

J! s:
lC"l

-1' V,

s

,,- 1506

HOST J -L
MEMORY

~
I\)
-L

1508

(·

EX 1019 Page 88

PACKET
‘CQWSWDN

DEWCE

PACKETS

?11‘$I.{‘i;“ 4 ‘Mn ”EH: mu, 3’11” :‘r’v

3_o_1
RARSER

MONITOR
3.0.0

>324

DNABASE
OF

FLOWS

x1510

NETWORK
INTERFACE

CARD

FIG. 15

<

Ami-$391305v kawua301mm1.
F

(B

HOST

MEMORY

LZ/QL

 (”N

EX 1019 Page 88

T

L

') \.....,

16/21

1602 0 - 3 Bytes
,k:-" 1600

I Ost MAC

offset O - 11 Ost MAC Src MAC _,,,; 1604

I Src MAC

1606
1608 .--~~~~~~~~~~~~

Ost MAC (6)

Ost Hash (2
1612 Src MAC (6)

1614
Src Hash (2

~et=12

FIG. 16

1610

EX 1019 Page 89

:4
XI
Ei

"UHU

Pam OF mum WV . .
AstEg-gL-an xx;

1 8/21

\‘Iet=12

FIG. 16

EX 1019 Page 89

T

offset
12 to 131

L3 to
[L3 +
{IHL/ 4
- 1]

17/21
1702

\ I \.Type

1704

1//// I ////IY

1706

1708

1710 'f'.-- 1700

~et=14

FIG.17A -1712

Ost Address

Ost Hash (2)

SrcAddress

Src Hash {2)

r--
1

iDP.:::: O.x:0600.
IP= Ox0800*

I
CHAOSNET = Ox0804

ARP= Ox0806
VIP= OxOBAD*

I VLOOP OxOBAE
VECHO = OxOBAF

' NETBl0S-3COM = Ox3COO -
Ox3C0D#

DEC-MOP = Ox6001
DEC-RC = Ox6002

DEC-DRP = Ox6003 *
DEC-LAT= Ox6004

DEC-DIAG = Ox6005
OEC-LAVC = Ox6007

RARP = Ox8035
ATALK = Ox8098*

VLOOP = Ox80C4
VECHO = Ox80C5
SNA-TH Ox8005*

ATALKARP = Ox80F3
IPX = Ox8137*

SNMP = Ox814C#
1Pv6 = Ox86DD *

LOOPBACK = Ox9000

Apple = Ox080007
* L3 Decoding I
L5 Decoding J

1750

17r52 ICMP = 1

IGMP = 2
GGP =3
TCP= 6*
EGP =8

IGRP = 9
PUP= 12

CHAOS= 16
UDP= 17*
IDP = 22#

IS0-TP4 = 29
DDP = 37#

ISO-IP= 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding !Proto901{1) FIG. 178

IL4 Offpet = L3 + (IHU4)

EX 1019 Page 90

' Caryl:-
PRLVT 0F DRAW [1‘65

A5.®~Q%LLY/Mjb "“3
" L/’

1 7/21
1702 M

‘22‘8‘8388‘ff t . , , V i = x ‘

12°20833! _/ xfl/ 4%. CHAOSEEE : 8‘838‘é= X

\‘~'—“-\ / VLOgg : gxggfig3 X

(“M‘JWOB . VECHO = OXOBAF
[*“J x ,r NETBiOS-3COM = OXSCOO -

170$ Type (2) _ //Ha h 1
1710 s) R1700

\‘et = 14

FIG. 17A
1712/

* L3 Decoding
L5 Decoding '

Ox3COD#
DEC-MOP = 0x6001

DEC-RC = (M5002
DEC-DRP = 0x600?
DECnLAT = 0x6004 !

DEC-DIAG : 0x6005
DEC—LAVC = 0x600?

RARP = 0x8035
ATALK = OXSOQB"

VLOOP = 0x80C4
VECHO = OXBOCS
SNA-TH : 0x8005*

ATALKARP = 0x80F3
1px = 0x813?”

SNMP = 0x814C#
vaG : OXBBDD“

LOOPBACK = 0x9000

Apple = 0x080007

 L3 to

[L3 +
(mu 4
- 1]

Src Address

Dst Address
—
Wilflfiifimflfifillflllllllfl

~_J 1:”. k 1750
Dst Address

Dst Hash (2)
Src Hash (2

-o|(1) F[G 178 ;ll~f2‘3%:?ggggdmg
.91 = L3 + (ML/4)

1752

ICMF’ = 1
IGMP = 2
GGP = 3
TOP = 6 *
EGP = 8

IGRP = 9
PUP = 12

CHAOS = 16
UDP = 17*
IDP = 22#

iSO-TP4 :- 29
DDP = 37#

lSO-IP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

W

EX 1019 Page 90

T
c~..i,; ...

I

PRL,r Of DRA\H1'.GS
AS ORIGINALLY ~ ·--·~

PROTOCOL
TYPE (ID~

18/21

..i.:::"-1800

1642

FIG. 18A

..i.:::"-1850

1870

w LUTNUM), ~

n1m~
§§§

FIG. 188

EX 1019 Page 91

ED
PRINT 0? DRAWLNG:

ASPRIGELMY

Q a AIL»-

T

18/21

PROTOCOL

Iszwqaqmi

FIG. 18A

Ar”‘1850

 mgwrmmowQOMVMP>mJOOOFOMQ

FIG. 18B

EX 1019 Page 91

~ ---·
_____ ,. _________ _

··-----· -- ____________ , ____ _

~-DATA
~ADDA

cJ-DATA
~-ADDR

I, 1: i' ;1 1 /! r• ,1 1 J,

1905

INPUT SELECT MUXES

/1919

LUESEL

SPSEL-

FIDESEL-

1900

)

-1917

ADDAriATA !! i I H . . . i I 11 ~
1
~~p~~:::;~

I PAGE-0-IN PAGE-31-tNI 1915

t0 DATA ~
IT: ADDA_;] ADDA DATA --~~~1::f1 ===:==J':I' =----------.---,--_JI I I

1909

fil•DATA

&DATA

~+DATA

DUAL PORT RAM PAGES (32)
I r.h-11 I -h· PAGE-31-0UT j CACHE WRITE STROBES

I Jr ,
PAGE-0-0UT

. . .

1907

OUTPUT SELECT MUXES

FIG. 19

1909 911

CA-UMC-DATA
'>

CAPAGESEL

LUESEL

SPSEL

FIDESEL-

191~;

1919

...I.

co
r0
...I.

-~

ii!; ~
OL 1~ -I

,C'l 0

~i ~
f-< ~ :;

r:,
'~ r.r,

EX 1019 Page 92

_ A _. ”WW—"m”
R

/1905 9
w 1‘ / 1900

% mDATA ‘ 4 JJ ADDR LUESELm

SLEESBAH INPUT SELECT MUXES " SPSELflHDESEL—
U.| —DATA ,1917

u- if T I T -—+ UMCO—CA—DATA _.- < CA-ADDRESS

ADDR DATA IL 1i ' ' ' I l __ _/~-\,,1903 x1915
PAGE~O~IN PAGE-SHN Wm~

DUAL PORT RAM PAGES {32) WW“
PAGE-0~OUT PAGE—ai-OUT CACHE WRITE STROBES

D TA
D A D x4911 .4

0 TA 0 T B 0 %
190g \ CA~UMC—DATA ~*\ ’-

’ CAPAGESELm V
3 4-DATA
~J LUESEL—w \1913

EL OUTPUT SELECT MUXES SPSEL—
U}DATA FIDESEL—

“J Aa 4DATALT] \
“V 1919

FIG. 19

1I

L

Afivmifiid’sv“=3: 5")N'IMVHO30DH!”
cri

EX 1019 Page 92

T PRL';T Of OKA'°"L'GS
~-Q!Q.G~ -:n

I

:

~ ETLUEREADY

LUEMEMREQ

SETLUESEL

I-
FIDEMEMREQ er

0
SETFIDEREADY a.

LU
SETFIDESEL 0

u:::

20/21

/2001

I

CACHE_CAM_SM

GET BACKUP GOT

CACHE_MEM_SM

FIG. 20

2005

SEL_LUE_FIDE...,.

CAM_HIT
~

CAM_HITPAGE a:
a:
<Cl

CAM_LRUPAGE ~
<(

LOAD_CAM 0

2003

SEL_CACHE-+

CA-MEM-RE---..

CA-MEM-WRIT

UMC-0-CA-REA

EX 1019 Page 93

PRLVI OF DRAths

AXQQ‘EW m

.Wm-”WW.,4

20/21

1/2001 2005
/

l.—

g LUEMEMREQ SEL_LUE~FIDE—>

‘ i SETLUEREADY CAM HIT
3 SETLUESEL — g

i HCCAMuHiTPAGE g
§ CACHENCAMMSM <1
; g FIDEMEMREQ CAM“LRUPAGE E
i n. SETFIDEREADY LOAD_CAM O:‘ LU

: SETFIDESEL
._ E REFRESH CAM\

GET BACKUP GOT /,2003/

,/

SELfiCACHE ——~>

CA-MEM-RE

CA-MEM-WRIT

§f

} CACHE ME
5 ’ SIGNALS

CACHE_MEM_5M MC
4.U MC-O-CAvNEXTA :>CACHEPORT

UMC-O-CA-REA

i FIG. 20
E

EX 1019 Page 93

l

I-
a:
0 a..
w
~
0
[l_

:::)

PRL';T Of DKA~I
AS ORlGtNALL Y 1 :O ---"::..::::::::...

21/21

CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA

LOAD, REFRESH, EVICT + r-2109
REF-DATA

2103 __../ "-2105 /2111 CAM_lNPUTDATA 2113

5T032

OECOD

CAM_NUMBER
I

LOADO

LOAD1

LOAD2

LOAD3

LOAD4

LOADS

LOAD6

LOAD7

LOAD30

LOAD31

DATA
CAM[1]

DATA

CAM[2J

CAM[3]

CAM4J

CAM[5)

CAM[7J

CAM[31)

I I
2127 DATAO • • • OATA31

NMUX32

DIRTY ENTRY

2123

2121

\
2107

MATCHO

MATCH1

MATCH2

MATCH3

MATCH4

MATCH5

MATCH6

MATCH?

MATCH30

MATCH31

32TO 5 2115

LOW
TO

HIGH CAM
HIT

ENCOD

CAM NUMBER

I
• • • OATA31

\
2117

DIRTY _PAGE, DIRTY _HASH, DIRTY _BUCKET CAM HITPAGE

' FIG. 21 - '~ 2119

r

I-a:
0
a..
a..
:::)
~

0
0
_J

EX 1019 Page 94

3

i

ixti
i

UPDATEPORT

DIRTY_PAGE, DIRTYfiHASH, DTRTYmBUCKET

.21

PRINT 0!" DRAW]

AS omcmmn :1)mm ,A

21/21

CAM_HITPAGE, REF-DATA

LOAD, REFRESH, EVICT

DiRTY ENTRY

Y

FIG

CAM_LRUPAGE, RE FvDATA

~MATCHO

~MATCH1

~MATCH2

VMATCHS

MATCHA 32 TO 5

MATCHES LOW
TO

MATCH6 HiGH

ENCOD
MATCH?

CAM__H{TPAGE\

Y\\

2175 f_CE

/ O
/ G./ O.

[LC/3N1” 3X
HT 0O.J

EX 1019 Page 94

PR.L,T Of DRA~U,,Gs;

ALQF·~G~o:n

1/21

fcuENT 41\
107

I CLIENT 3 ,..,.__ __ __

\
106

DATA COMMUNICATIONS
NETWORK

108

ANALYZER

116

I

\
\..121

- 102

125

123-

!SERVER~\

112
jcuENT 2 ~

05

FIG. 1

118
.-------'----,_/

CLIENT 1
104

EX 1019 Page 95

FRUIT OF 0&5“!ngq,-_ s,_, ‘

kioaqwuw’ in ,._ W 1
K.» V

1/21

100 -

I CLIENT 4i”.\ ANALYZER

‘ 116
—

CLIENT 3

DATA COMMUNICATIONS
NETWORK

\HIM

i
112

FIG. 1

EX 1019 Page 95

214 215 \216 217\218 219 220 221 222\223

244 245

a1 st0 20
21

D \254 ~255

·-·-·-·-4 a2 I st1 ~
CLIENT 3

,260 ,261 ,262 ,263 ,265
APPLICATION $ERVER 2

n1 81 C1 p2 datum request

........... \270 \271 r....272 \274 r....275

datum reply n2 C1 S1 p2

l 209

FIG. 2

EX 1019 Page 96

“VIM“! "’3‘ I! w‘::i:2:n’«!!-r!!!!

22?. "
214 215 216 217K218 219 220 221 222§223 is;

23 "’
.c2 2

25 =
22;
“:5

L 5?
B

£12M—-L

: CLIENTB .

= {260 (261 R252 2263 {264 (265 APPLICATION gSERVERE L
datum request2!!

27"! (‘272

K273 K274 R275 ,,,,,,,,,,

 datum repiy

EX 1019 Page 96

~ \ ;~~ '"'
,l<t;f)I.·

302

310

-----· -- --- ---~

1, r, ,1 i;

300

- - - - I~ ~ - - - - -1 ____ - - - - - - - - - ;ARSER 301 I r - - - - - -~ -- I

- I 314 316~

I 306 I LOOKUP ,Fw "°' nw I I EXTRACT BUILD UNIQUE I I FROM '
I IDENTIFYING CONVERSATIO I KNOWN

INFORMATION "FLOW" KEY I RECORDS
(Ell) I (DB 324

IA CACHE 312

r-------_J I
I - .J

324

DATABASE
OF FLOWS

I I ,------- r-----_j
1- - - - .J

[_

1308
I

PATTERN, PARS
AND

EXTRACTION
DATABASE

I
I PROTOCOL

& STATE
IDENTIFICATION

NO-+!

I
UPDATE
"FLOW"
KNOWN
RECORD I I I

Ci)
I - - - - - - ..,_ - - - -

I
I
I
I
I YES J" I I 1\3

COMPILER
AND

OPTIMIZER

FIG. 3

- - J

STATE
PROCESSOR
INSTRUCTION

DATABASE

326

?8
STATE

PROCESSN
OPERATION

NO

I _....

CLASSIFICATN ~ I
FINALIZATION I

I

34 I
I
I
I

ANALYZER

I T YES y I
I -· - -

,£!; "cl

I·~~ C: ..,
,C') 0

/'~~
~-< ~):--,
·e .

,,,-
\. ___

EX 1019 Page 97

I PARSER 301 I‘/_’_ ____________
I 304 _ 306 _ I {r 314302 ANALYZE AND I 315%
I RECOGNIZE IDEEflTééfiLfl BUILD UNIQUE I LOOKUP ..

PATTERN INFORMATION CONVERSATIO FROM NEW FLOW
I INFORMATION E“ "FLOW" KEY I KNOWN RECORD?

I I (DB 324I ’IA CACHE,
_______ J YES

I r ,. .. .1
I I I

I I I... .. _. _. .I

I I I PROTOCOL
A AND 1 & STATE CLASSIFICATIO

L308 EXTRACTION I I IDENTIFICATION
I DATABASE I
l I I

J

310

COMPILER
AND

OPTIMIZER

PROTOCOL
DESCIPTIO
LANGUAGE

DATAGRAM xLAYER I

FIG. 3

STATE
PROCESSOR

INSTRUCTION
DATABASE

325

300

328

 PROOESSNc
OPERATION‘

320
YES

332

MOT-IE STATES

330

MORE
OPERATIONS

NO

NO

YE

I 324 ,3 '°
3:) E3
IE 3

DATABASE "E 3
OF FLOWS E 7;

’15-
< I
‘6

UPDATE
"FLO v’"
KNOWN
RECORD

CLASSIFICATN
FINALIZATION

ANALYZER

3.05:

EX 1019 Page 97

l" t_.:_ :

I ..-

PRJ..''IT or· ORAYf1.1'1GS
AS ORIGlNALLY '-------;n ·------~

404

4/21

0

405

PACKET GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

COMPILE STATE
__ ___,DESCRIPT!ON,,l----,,-ilNSTRUCTION

406 O t\TIERN, PARS
AND

EXTRACTION
DATABASE 408

LOAD
PARSING

'----t"I SUBSYSTEM
MEMORY

403

409

AND
OPERATIONS

STATE
PROCESSOR
INSTRUCTION

DATABASE

LOAD STATE
NSTRUCTION. __ ~

DATABASE
MEMORY

410

FIG. 4

EX 1019 Page 98

“Wm—m”mm“

Hum 01: omwmg
A5 ORIGINALLY,“ En--'-v- ' 3::_-,—I

\J \J

HIGH LEVEL
PACKET

DECODING
DESCRTPTION

405 “\K
S404

 GENERATE

PACKET COMPILE PéXTC/{TETPARSE AND
DESCRIPTION INSTRUCTION

EXTRACT AND
OPERATIONS OPERATQNS

STATE
PROCESSOR
INSTRUCTION

DATABASE

 EXTRACTTON

DATABASE

LOAD
PARSING

SUBSYSTEM
MEMORY

LOAD STATE
NSTRUCTION
DATABASE
MEMORY

 400

EX 1019 Page 98

510

503

504

506

507

PATIERN r'lf---'-N.,..,O~
NODE

509

5/21

· 501

INPUT PACKET 502

LOAD PACKET
COMPONENT i.-~~~

505

508

EXTRACT
ELEMENTS,__.~~~~

FIG. 5

513

511

,500

EX 1019 Page 99

Qarkic ""M ' “ ' '

PRLVTOF DRAWIfipg
A5._0;EG&§_LLY r“ ‘ m x

W V)

3» 5/21

. w 501

INPUT PACKET \f— 502

503M\ LOADPACKET
\J/ COMPONENT

512n

: / " IIEDW"

é , N0 PACKET
; KEY

~ PROCESSFROM F6
PA =

: 513
3 NEXT

;; PATTERN PACKET “QL; NODES? COMPONENT 511

'-"0I aTr
PROCESSTO
COMPONENT

510—\ ‘ k\500
WUTERN

NODE

YES

CO EXTRACT5w~1 BEMBWS

FIG. 5

f1
I

J

E

EX 1019 Page 99

I " PRL'-IT Of DRA\-\'(I

~-OJ!!G~;__;J>

603

604

6/21

PACKET
COMPONENT AND
PATIERN NODE

LOAD PACKET
COMPONENT

FETCH EXTRACTION
ND PROCESS FROM

601

602

610

NO

PATIERNS 605

NO

606

APPLY EXTRACTION
PROCESS TO
COMPONENT

FIG. 6

NEXT
N PACKET

COMPONEN

608

611

609

EX 1019 Page 100

, \

Paar OF mum»
I

gnongv Eek,» \a;

2 6/21|

. f601

PACKET

COMPONENT AND F" 502
PATTERN NODE d

603

LOAD PACKET
': COMPONENT

610V604

7

/‘

3 ’MORE PACKE NO LOAD KEY
COMPONENT BUFFER

YES

FETCH EXTRACTtON 6ND PROCESS FROM/2
PATTERNS L" 505

MM;1‘

NO 611

605 NEXT .

N. PACKET y 609ELEMENTS? COMPONEN

507’ APPLY EXTRACTION
PROCESS TO

COMPONENT \800

MORE TO C 608EXTRACT? .

YES—u—w

FIG. 6
EX 1019 Page 100

l

703

704

"'7 /I") -i
II C.. I

LOAD PATTERN
NODE ELEMENT

YES

v

702

NO

HASH KEY BUFFER
ELEMENT FROM 5 705
PATTERN NODE

s PACK KEY & HAS
706

707

NEXT PACKET 1.----...J

COMPONENT

FIG. 7

706)
.__ __ OUTPUT TO

ANALYZER

l7og

EX 1019 Page 101

DABII‘O—

mums nmwmgs

away/1w" En
,» v

PATTERN NODEL

LOAD PATTERN
NODE ELEMENT

I1‘IInmH
ur{1
‘l

704m

YES

‘7

.IMIll

HASH KEY BUFFER
ELEMENT FROM
PAWERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

706 —(

 707'

FIG. 7

EX 1019 Page 101

T PRJ}iT Of ORA W ~ ,

~.9R1G~m

I

'

800~

805~

809

811

812~

. i
., ,

8/21

UFKB ENTRY FOR
PACKET

\.,,

8U1

COMPUTE CONVERSATION
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM {::ACHE

1802

803

804

NO

COMPARE CURRENT BIN .~ 807
AND BUCKET RECORD KEY

TO PACKET

808

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN 1 81

O
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
AS 'FOUND'

UPDATE STATISTICS FOR
RECORD IN CACHE

806

SET UFKB FOR
PACKET AS 'NEW'

813 FIG. 8

EX 1019 Page 102

C‘nvbir

PRLVT OF mum; ,- x /
A5 ORIGINALLY F“: in ‘~ '—.-‘-—-- mam ».

8/21
A

fSUT

UFKB ENTRTTO? 802
PACKET F

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN!

: BUCKET PROM CACHE 804

“f R— 806
f 2

i 805 _‘ ORE BUCKETb “0 SET UFKB FOR
1 \ IN THE BIN? PACKET AS ‘NEW‘

_ YES

COMPARE CURRENT BIN P 80?
AND BUCKET RECORD KEY

TO PACKET

» NEXTBUCKET No ®p808
YES

‘- 809

I<I'IIhi
II
I1 II

MARK RECORD BIN AND
BUCKET ‘IN PROCESS' IN
CACHE AND TIMESTAMP

__ SET UFKB FOR PACKET
8” AS 'FOUND‘

812 —~\ UPDATE STATISTICS FOR

RECORD IN CACHE

m FIG. 8
EX 1019 Page 102

1 PRL\ T Or ORA"' ~GS
AS ORIGlNALL Y (- ''.D

---··==----<. I

903\

904

'-.v-"

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION', 'PORT' AND
'PROTOCOL (TCP OR

UDP)

CREATE SERVER STAT

SAVE 'PROGRAM',
'VERSION', 'PORT' AND
'PROTOCOL (TCP OR

UDP)' WITH NETWORK
ADDRESS IN SERVER

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

9/21
r--902 c-910

EXTRACT PORT

GET 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)'

~908
' SAVE REQUEST

907-

SAVE 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)'WITH

DESTINATION
NETWORK ADDRESS.

t30TH MAKE A KEY.

905 906

LOOKUP REOUE

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

FIG. 9

EXTRACT
PROGRAM

GET 'PORT' AND
'PROTOCOL (TCP

OR UDP)'.

\909

EX 1019 Page 103

“W-W

MI!I.

IIIi'ix9.!zwhn‘w:
a;vI.I.s,»

Rh rlz

91mm? umwmgg’
AS omc‘mmw “1:‘—-~ ~ gm

\ 1’

GET 'PROGRAM‘,
’VERSION‘, ‘PORT’ AND
‘PROTOCOL (TCP OR

UDP)

CREATE SERVER STAT:

SAVE 'PFIOGFIAM‘,
‘VERSION', ‘POFIT‘ AND
'PROTOCOL (TCP OR

UDP)‘ WITH NETWORK
ADDRESS IN SERVER

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT,

904 w
\

FIND 'PROGFIAN‘.‘
AND ’VFFISION‘

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

(*7910

 RPC
ENDLOOKU

REQUEST

 EXTRACTPORT

GET 'PFIOGRAM‘,
“JERSION' AND

‘PROTOCOL (TOP 0R
unpy

SAVEREQUEST

SAVE ‘PFIOGRAM‘,
‘VERSION' AND r

‘PROTOCOL (TCP OH
UDP)‘ WITH

DESTINATION
NETWORK ADDRESS.

BOTH MAKE A KEY

RPC
END

LOOKUP
REHN

EXTRACT
PROGRAM

GET ‘PORT‘ AND

‘PROTOCOL (TOP
OFI UBP)’.

EX 1019 Page 103

1000~

PATIERN
RECOGNITION

DATABASE
MEMORY

100
100

10/21

100

1001

EXTRACTION
OPERATIONS

DATABASE
MEMORY

1004

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS

100

1012

1021

1031

1007 PATIERN
RECOGNITN -

ENGINE
(PRE)

EXTRACTION ENGINE
(SLICER)

PARSER INPUT BUFFER
MEMORY

INPUT BUFFER 1011
INTERFACE
CONTROL

101

FIG. 1 O

1010

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

ANALYZER
INTERFACE
CONTROL

1025

1027

EX 1019 Page 104

Corlfinoi.

PRLV T OF mom) 4)AS ORIGINALLY :33 K.)
—..-—_.. ..»__

 1 0/21

PATTERN 100?\ EXTRACTION
RECOGNITION \ OPERATIONS

DATABASE L DATABASE
MEMORY 1001 MEMORY

100 1031

K 1001\1004 \

INFO OUT

HOST INTERFACE MULTIPLEXR 8: CONTROL REGISTERS CONTRL N

1031i‘IIIIH11
EIII.

100-

PATTERN
RECOGNITN

ENGINE

(PRE)

“IIIL‘:I 1{"1007

101a)

EXTRACTION ENGINE
(SLICER)

V'11

IIIIII1
«1‘

100.

IHIIII!3|II

PARSEFI

PACKET PARSER INPUT BUFFER OUTPUT pAoKET KEY
INPUT MEMORY BUFFER AND PAYLOA

C MEMORY1012

1021

A ET
Ps-ngKm INPUT BUFFER ANALYZER DATA REA I»

INTERFACE INTERFACE
CONTROL CONTROL

AWE?!

‘ .

PACKET READY

/ 1022*
L1023 FIG. 10 1027

I

i

EX 1019 Page 104

c i ,r"'#

PRL'lT Of DKA~U,GS

A.$_0RIG~D

1100~

1101 1103

1109

~

--
UNIFIED

~

FLOW
PARSER KEY
INTER- UFFER
FACE (UFKB)

/'

(j

11/21

1115
1107

LOOKUP/
UPDATE
ENGINE

(LUE)

1108

CACHE

STATE
PROCESSR

(SP)

FLOW
INSERTION/
DELETION

ENGINE
(FIDE)

1110

FIG. 11

1118
112

ANALYZE HOST
HOST BUS

INTERFAC INTER-
AND FACE

CONTROL (HIB)
(ACIC)

1119 112

UNIFIED
MEMORY
CONTROL

(UMC)

MEMORY
INTER
FACE

EX 1019 Page 105

H11”iv111‘I‘I!
'1].{I

;‘“.t‘1‘:13

V:111|

Qnrilh-n

mun or nmwmcs

AS.Q§.IGWALLY ‘ 3” U

HOG—.1

(1101 1103 (.1115 112%

LOOKUP/
UPDATE
ENGINE

(LUE)

 PROCESS -

:NSTRUCN
DATABASE

(SPID)

INTER- H-UFFER
FACE

PROCESSR

(SP) (1119 1123~

 139115?ng “15%;“

'1 CONTROLm FACE
(UMC)

INSFiELng/OW
DELETION 1‘

ENGINE
(FiDE)

1110

FIG. 11

EX 1019 Page 105

--

PRL~T Of 0KA~L'G5
~-ORIG~ALL Y nu:D

1200~

'
REQUEST NEXT
BUCKET FROM

1206 CACHE

12/21

1201

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

ACCESS
CONVERSATION

RECORD BIN

REQUEST RECORD BIN/
BUCKET FROM CACHE

NO

INSERT KEY AND HASH
NO N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

YES
OMPARE CURRENT Bl

1210 AND BUCKET RECORD
SET UFKB FOR KEY TO PACKET

PACKET AS
'DROP'

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW IN CACHE

1212 SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

1202

1203

1204

1205

1207

1209

1211

EX 1019 Page 106

Cnv—IHr-m

1|11'1it11411“
a:11“1

‘zii1,||

1111I:11111|1!

PRLVT OF DRAWU‘Q;

ASWQQGWY nun

12/21

UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

 r1202

 ACCESS
CONVERSATION

RECORD BIN

1 204

REQUEST NEXT

BUCKET FROM 4~1N113UCKET EMPTY f1205CACHE

YES

1207

1 208

NO ENSERT KEY AND HASHN BUCKET, MARK ‘USED

WITH TIMESTAMP 12085 UGKET VALID.

OMPARE CURRENT Bl

1209
1210 AND BUCKET RECORD

SET UFKB FOR
PACKET AS KEY TO PACKET

'DROP‘

MARK RECORD BIN AND
BUCKET 'IN PROCESS' .f12”

AND ‘NEW’ IN CACHE

SET 1NITIAL STATISTICS
FOR RECORD 1N CACHE

1213

FIG. 12

EX 1019 Page 106

c,.,. .. 1,

I
1300 ~

ET STATE
PROCESSOR

13/21

~1301

UFKB ENTRY FOR
PACKET WITH STATUS

I W' R 'F ND'

SET STATE PROCESSOR
INSTRUCTION POINTER TO

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

INSTRUCTION NO
POINTER TO

VALUE FOUND IN
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN

CURRENT FLOW
RECORD

1308
1310

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

FIG. 13

1302

1303

,r-1304

1305

1307

1311

EX 1019 Page 107

WWWWMVMMMwMW.C..........WmMW..--,w.“..1
III‘'I"A?!E

II‘II‘.

r\‘IIIIII"Mi:
III'II

On pl,

FRUIT OF omwmns

ASAELQANALLY V 0

13/21

WW
1300 Tu UFKB ENTRY FOR

PACKET WITH STATUS
' - '0' ‘F' ND‘ 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER To («1303ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM F1304STATE PROCESSOR I
INSTRUCTION MEMORY

PERFORM OPERATION BASED ”1305ON THE STATE INSTRUCTION

PROCESSOR

INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

YES

SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING ~ 1309
POINTER IN TATES FOR THIS FLOW

CURRENT FLOW
RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 13“

INSTRUCTION IN CURRENT
FLOW RECORD

EX 1019 Page 107

140

PACKET

r _______ - - - - - - - - - - - ·1 1- - - - -

I I
I 1406 14 12 I I
I 1404 I I 141

ANALYZE AND EXTRACT BUILD
RECOGNIZE IDENTIFYING "FLOW" KEY

PATIERN INFO & PROGL
INFORMATION /STATE

LOOKUP
KNOWN

RECORDS
I I (DB 1424)

L_ ____ I I

I -I= = = = = ~=-..J --------

PATIERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

PARSER 1408

1 I

I

l_§U~SjS_§:~ ___ _ - - - I

v:
1400 I

I

FIG. 14

1426

STATE
MACHINE

SELECTOR

YES

1428
(__ .. .

STATE
ANALYSIS
PERATION

--------1

N

NO DATABASE
OF FLOWS

1422

UPDATE
"FLOW"
KNOWN
RECORD

CLASSIFICATN
FINALIZATION

1434
N~--

ANALYZER
SUBSYSTEM

I

I -L

~ ,
[\)

I -L

L..------ ------------- - - - - - -

0

EX 1019 Page 108

II I3IIII1 II II I“ 2 II II I "I iI :g'II II ‘1‘ III II II I II II II II i:

“i

EXTRACT LOOKUP
RECOGNIZE IDENTIFYING KNOWN

PA'I'I'EFIN INFO & PROCL RECORDS
INFORMATION /STATE (DB 1424)

NEW ”FLOW"
RECORD?

DATABASE
OF FLOWS

IATTWaonIosv S'JNHMVHGJO.1deI
I
I

I
I

I

' PATTERN yPDATE
: STRXEIBUFIES KTNLSVNVN
, EXTRACTION RECORD
I OPERATIONS
I
I
I

LZ/I7I.
PARSER

SUBSYSEM

STATE
MACHINE

SELECTOR
|
I

|

I 1426
I CLASSIFICATN
I FINALIZATION
I
I
|
|
|

STATE
ANALYSIS

OPERATION'
ANALYZER

SUBSYSTEM

EX 1019 Page 108

1502

PACKET
CQUISITIONI I •I

DEVICE

102

PACKETS

ii i1ii.itl!,,ll,t iui · "::ii:- w:·:·;jja..il u.11ii

PARSER
301

ANALYZE
303

MONITOR
300

FIG. 15

NETWORK
INTERFACE

CARD

' ,_" ···---~· ~

324

DISK
&

DB

1506

HOST
MEMORY

1508

-L

01
r'3
-L

'~ "O

1
10 ~
e""

!C') 0

1li 8 i;

'

()

EX 1019 Page 109

12‘1\

/ 1502

PACKET
CQUISITION

DEVICE

[102

ii i< in, 5 i: ,1:

PARSER

3.01

MONITOR
30.9

FIG. 15

W,_.W-....W____.._4

4, “:31 imi ” "3:63 i.» m" Eifi» nuii W M ii i}

I

,3 '"

1°?
g 2

324 {g E:
.¢ f

DATABASE _ f7;

1504 1506

HOST HOST
EPROCESSO '~ MEMORY

LZ/SL

INTERFACE
CARD

EX 1019 Page 109

l
!

1

Q

16/21

1602 0 - 3 Bytes
Jc:-- 1600

Dst MAC

Ost MAC Src MAC_.__ __.,11604

Src MAC

1608 ~~~~~~~~~~~-'
Ost MAC (6)

1612
Dst Hash (2

Src MAC (6)

1614
Src Hash (2

~et=12

FIG. 16

1606

1610

EX 1019 Page 110

mm 1' or mumg“ {NAsgaqmdn V

16/21

 “ Dst MAC

Dst MAC Sm MAC

'31!LnI!'r
.x.f»inu
[1

1W1“
met=12

FIG. 16
uLI1:".1.n

5%

EX 1019 Page 110

·¥ c,.,,rl,i,

1 _,
-,

PJU.H Of~RA~IJ'C. ·
AS ORIGINALLY ------ ,;

17/21
1702

offset/ \
1704 IDP = Ox0600*

IP= oxosoo·
CHAOSNET = Ox0804

ARP= Ox0806
VIP= OxOBAD*

VLOOP = OxOBAE
VECHO = OxOBAF

NETB10S-3COM = Ox3COO -
Ox3COD#

DEC-MOP= Ox6001

12 to 13 L' Type immuvBV
\~--~ ---~/

~ 1706

1708 Type (2)

Hash 1)
1710 T--- 1700

~et=14

FIG.17A

DEC-RC = Ox6002
DEC-DRP = Ox6003 •
DEC-LAT= Ox6004

DEC-DIAG = Ox6005
DEC-LAVC = Ox6007

RARP = Ox8035
ATALK = Ox809B*

VLOOP = Ox80C4
VECHO = Ox80C5

/ SNA-TH = Ox8005*
---- ATALKARP = Ox80F3

1712 IPX = Ox8137*

L3 to
[L3 +
(IHL/ 4
- 1]

Ost Address

Ost Hash (2) I
SrcAddress

Src Hash (2)1

I

I

SNMP = Ox814C#
1Pv6 = Ox86DD •

LOOPBACK = Ox9000

Apple = Ox080007
• L3 Decoding
LS Decoding

T--- 1750

1752
\

ICMP = 1
IGMP = 2
GGP =3
TCP= 6*
EGP =8

IGRP = 9
PUP= 12

CHAOS= 16
UDP= 17*
IDP = 22#

ISO-TP4 = 29
DDP = 37#

ISO-IP= 80
VIP = 83#

EIGRP = 88
OSPF = 89

jProto1ol (1) Fl G. 178 • L4 Decoding
L3 Re-Decoding

jl4 Offfet = L3 + (IHU4)

EX 1019 Page 111

'I:n1.iiw

1‘“:.‘“IIIt"FruM“'
'.11|II;.II
II.I"

.IIiIn

anl/h-

PRLNT 0F DRAWLNF
A5 ORIGINALLY‘_.—_. .

1 7/21
1702

1704
offset

12 to 13 _ype

1 708 Type (2)
H

1 710 aSh 1) K 1 700

L30ff.et=14

FIG. 17A
1712/

 IIIII’II'IIMIIIIIII‘I"II‘IIIIIIII

L3 to W“

[5.3:] 4 IIIIT'IIIIIWIII‘IWIM

-1]

Dst Address
—
IIIIIII"I.°IiiIMIIIHII/Illllllllll

-ow>

-et = L3 + (lHL/4)

O

IDP = 0x0600“
IP = 0x0800‘

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD‘

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS-BCOM = 0x3COO —
0X3COD#

DEC-MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003‘
DEC—LAT = 0x6004

DEC-DIAG = 0x6005
DEC—LAVC = 0x6007

RARP = 0x8035
ATALK = 0X8098‘

VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x8005‘

ATALKARP = 0x80F3
IPX = OX8137‘

SNMP = Ox814C#
IPv6 = 0X8SDD*

LOOPBACK = 0X9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

FIG. 17B

1752

ICMP =1
IGMP = 2
GGP = 3
TOP = 6*
EGP =8

IGRP = 9
PUP =12

CHAOS =16
UDP =17‘
IDP = 22#

lSO—TP4 = 29
DDP = 37#

ISO—IP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

EX 1019 Page 111

c ,

PRL'IT Of~KA~lM;;.
AS ORIGINALLY · ---···- - ,,,

PROTOCOL
TYPE (ID~

0

18/21

,k--1800

1802-1

FIG. 18A

1870

,k--1850 w LUTNUM'> ~

11 n1~~
§~§

FIG. 188

EX 1019 Page 112

Eff}
~__,.

ASngIGLNALLY

FRI): T 0!"

18/21

PROTOCOL

R1800

IhQZMJDANE
».I-.I...

F
iii-II!

1802-1

mggmVVT\u$5L_DJMEm0MOOOmax/m
r-‘I 850

EaAOOOhOKl

FIG. 188

EX 1019 Page 112

~DATA
~ADDR

o}--DATA
~-ADDR

1905

INPUT SELECT MUXES

(1919

LUESEL
SPSEL-

FIDESEL-

1900

~
~-DATA
~ADDR..,..._~~--::..::..f-i~.:....:_~~~-.,-~~~~~~~~--,--,-~~

ADDR DATA (1917

r-t-r--~--t-+-------.---1-+----UMC-0-CA-DATA -

1909

~•DATA

~DATA

~•DATA

. . . CA-ADDRESS--r-
1903 "-.1915

PAGE-0-IN
DUAL PORT RAM PAGES (32)

PAGE-0-0UT PAGE-S1-0UT CACHE WRITE STROBES
.____DTA---;D~JA:;;-----r--=--:c:-A------;._:..:..::::.'.::...::'....'...:~...'..__J

0 T A O T B B • • • 1909
1911

1907

OUTPUT SELECT MUXES

FIG. 19

CA-UMC-DATA

CAPAGESEL

LUESEL

SPSEL-

FIDESEL

~1919

1913

1

.......
c.o
i'5

0

EX 1019 Page 113

WW- ~———~~~~ a v-

1: 1:1; ,1 i; 51 1 11 i1 " ‘Ei Hi :1; " M. 11.51 “"1i- 13 1' I :-

1905 w
/ 1919 ,1: g_ l/ 1900 1o ,

1%:DATA + 2 IE; I;
.1 ADD/3': LUESELm 1E1;Q. _..._

”ELADDR INPUT SELECT MUXES SPSEL _< sFIDESEL- 5

“all-DATA {1917 , 7-— ADDR \s'
”“ *4 UMC-O-CA-DATA ’—

CIA-ADDRESS

Aw1903 \1915

 PAGE—O-IN PAGE-314M WW.
CACHE WRITE STROBES

 DUAL PORT RAM PAGES (32)

PAGE-O-OUT PAGE-31-OUT «mu—w
D TA

D A 1911 .1
0 TA 0 TB /‘ Q

1909 N
\ CA-UMC-DATA ""

Q

m CAPAGESEL:3 +DATA

a. OUTPUT SELECT MUXES P __.._
‘E‘DATA FIDESELMLL!

0 4-DATA 1E] \
\1919

FIG. 19

EX 1019 Page 113

1""1

4

,,9

I
I.

1

PRL'IT Of DKA'w1J'IG5
ALORIG~Y r 1>

LUEMEMREQ

ETLUEREADY

SETLUESEL

h: FIDEMEMREQ
0
a.. SETFIDEREADY

~ SETFIDESEL
u::

20/21

2001

CACHE_CAM_SM

2005

SEL_LUE_FIDE +

CAM_HIT

CAM_HITPAGE

CAM_LRUPAGE

LOAD_CAM

GET BACKUP GOT (2003

CACHE_MEM_SM

FIG. 20

SEL_ CACHE-+

CA-MEM-RE

CA-MEM-WRIT

UMC-0-CA-NEXTA

UMC-0-CA-REA

~
a:
a:
<(I

2
<(
0

EX 1019 Page 114

" PRINT OF Olav/mag
A5 ORJGLNALLYF Dm..—

20/21

1..

g LUEMEMREO SEL,LUE_FiDE-Q.

m SETLUEREADY CANLH”
3 SETLUESEL 3

CAMhHlTPAGE g
CACHEpAMfiM “ECAM LRUPAGE

% FIDEMEMREQ "' <52
m. ~SETFlDEREADY LOAD_CAM ULU
a SETFIDESEL
f; REFRESH‘CAM

x

H11in"1h!man
1‘\1‘ GET BACKUP GOT/2003‘}x

‘H?i' SELmCACHE—i

CAvMEM-RE

CA-MEM-WRIT

CACHE ME
S!GNALS ‘

_ CACHEfiMEM,SM

9hi!fi1;12
UMCUMC-O-CA-NEXTACACHEPORT

UMC-O-CA~REA

HQ 20

EX 1019 Page 114

·= .,

-s=
·-
=

--'"''·

:;,. •• .4

Ii:
0
(L

w
~
0
(L
:::,

PRL"IT Of DRA"'~r.s
AS ORIGINALLY ----:.=w- ':D

21/21

CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA

2109
LOAD, REFRESH, EVICT REF-DATA

2103 2105 2111
CAM_INPUTDATA 2113

5T032

DECOD

CAM_NUMBER
I

LOADO

LOAD1

LOAD2

LOAD3

LOAD4

LOAD5

LOAD6

LOAD7

LOAD30

LOAD31

CAM[OJ

DAT.
CAM[1]

DATA

CAM[2]

CAM4]

. .

I
• • • DATA31

NMUX32

DIRTY ENTRY

2123

2121

2107

MATCHO

MATCH1

MATCH2

MATCH3

MATCH4

MATCH5

MATCH6

MATCH7

MATCH31

32T05 2115

LOW
TO

CAM HIGH
HIT

ENCOD

CAM NUMBER

I
• • • DATA31

\
2117

DIRTY _PAGE, DIRTY _HASH, DIRTY _BUCKET CAM HITPAGE

' FIG. 21 - '~ 2119

Ii:
0
(L

0.
:::,
:::.:::
0
0
...J

EX 1019 Page 115

M PRINT OF DRAWUNCS
AS ORIGINALLY 3D—. —~—v - 'w_ _

21/21

CAMaHlTPAGE, REF-DATA CAM_LRUF’AGE, REF-DATA

2109
REF—DATA

2103 J
2113

MATCHO //

MATCH1

MATCH2~1
MATCHsJ

1g 1121AT(3H4+132TO5 2115 ’—
E 1::

: 33 MATCH5«> LOW o1: I" [L

i m DECOD LOADS MATCH5+~ HIGH HIT g

f. D . J 8: LOAD? CAMm MATCH? ENCOD -J

E 2107

LOADBO

LOADS1

%

E CAM—NUMBER CAM NUMBERI

1 1
2127 0mm DATAG . - - DATA31

mm NMUX32

2121 ‘ \
DIRTY ENTRY CURRENT ENTRY 211?

1 DI RTY_PAGE, D1RTY_HASH, DIRTY,BUCKET CAM_HITPAGE

v 1\
FIG. 21 “‘9

EX 1019 Page 115

l!sia~etal.
! .

APPT-001-4

C)
I
I
I
1 • ~

r

!SERVER~\

112

6771646
D

1/21

108 I CLIENT 41-----,
107

ANALYZER

DATA COMMUNICATIONS
NETWORK

123

105

I CLIENT 2 \J
FIG. 1

116

SERVER
'----~10

121

102

125

CLIENT 1 \
104

EX 1019 Page 116

 : ’%«3

Sgwssian et al. APPT-OO1-4
v (:3 ::)

6771646

1/21

100

.EENT4
ANALYZER

116

"J

SERVER 4

”‘\\ \121 \110
106

DATA COMMUNICATIONS

NETWORK

102

"\-~—« 125

123«-~—————\
_ 118

SERVER A 105 —»J

W _L|ENT2 .LIENT-\1

FIG. 1

EX 1019 Page 116

r-

IJ,,,1111.1111.11 ,t, 1111 It ll I\ 1! 1! \, I\ \I ll,! I< 1\)\

214 215 216 220 221 222,223
, '

/

S1 C1 p1 s1a QA S? OP

224 225 227 228 229 230 231 232,233

C1 S1 p1 ·1 I s1a I I S? p2

21 242 243 244 245

sto

D .
250 251 ,252 ,254 ,255

KEY-2"'==S=1===C=1 ===p2=====:::::11 -·-·---~ a2 I st1 ~
, 260 ,261 ,262 c_263 ,264 ,265

S1 C1 p2 datum request

................ , 270 ,211 ,212 c_273 ,274

C1 S1 p2 //< datum reply

l C 209

... "

2

20

APPLICATION $ERVER 2

. .
'

FIG. 2

)>
"'O
"'O .;
0 ro Ur.

EX 1019 Page 117

12‘

IJ.‘.I 1L n “J: .1. II n :n n || ‘5 u a. 4 as r. a n I x

12:9ESQ-”PEG

t"LOOZdeV
 250 251 252 253

Q

3 CUENTE APPUCAHON$ERVER2 ’260 261 R262 263 254 s <;:3K r

 270 273 274271”WT-:72Q ‘ Q" """"" 208 K ‘

EX 1019 Page 117

rJ j) /j JI II J< ,I I' IJ fl II ;1 t\ ,; !, I! (1 j\ I\:, I\ \1

300 - - - - - - - - - - - - - - - - - - ,~ ~
I PARSER 301 I r - - - - - - - - - - - - -i

304 306 314
302 I ANALYZE AND I I .---_.____, I
___~, RECOGNIZE EXTRACT BUILD UNIQUE I LOOKUP I

PATTERN IDENTIFYING CONVERSATIO I FROM
INFORMATION INFORMATION "FLOW" KEY I KNOWN I

(PAR) (Ell) I I RECORDS NO I

312 I I 1iDtAf~E I
r _______ _J I YES I

~-~ I
I

324

DATABASE
OF FLOWS

I
I

,-- - - ~

I
I
I
I

l_ ---,.

.----'---. 322 I
UPDATE

310

1308

I
I

PATTERN, PARS
AND

EXTRACTION
DATABASE

COMPILER
AND

OPTIMIZER

PROTOCOL
DESCIPTIO
LANGUAGE

FIG. 3

I
I
I
I

I
I

I

I

I

- - J

PROTOCOL
& STATE

IDENTIFICATION

STATE
PROCESSOR
INSTRUCTION

DATABASE

326

N "FLOW"
KNOWN
RECORD

CLASSIFICATN
FINALIZATION

I ANALYZER
I 303

34

---~~YE:--..----' '----------------------------

I
I
I

I~
I -"'

)>
'"O
'"O
,I
0
0 or

G

EX 1019 Page 118

LI ”:1 III II II I' ’3 II II II II I; [I II 1‘ IIII :I II I‘ (I)
E"X‘

___________________ 300 “g;

I PARSER 301 ”<2 __________ - g
304 306 :7 —~" I r 314 I 324 - 9;

302 I ANALYZE AND EXTRACT I I 316d I a
I RECOGNIZE {DENTIFY‘NG BUILD UNIQUE I I LOOKUP .. ‘ -

M PATTERN INFORMATION CONVERSATIO FROM NEW FLOW DATABASE >
INFORMATION E“ "FLOW" KEY I KNOWN RECORD? I OF FLOWS ‘0

(PAR) I I I RECORDS NO 1 ‘0
(DB 324 I 30

YES I fix 7*

I #-
I

318 322
’ UPDATE I

PROTOCOL ”FLOW" I
AND & STATE CLASSIFICATIO N KNOWN

 EXTRACTION IDENTIFICATION RECORD

DATABASE Q
320 YES YE B

CLASSIFICATN

310 STATE 1 332 FINALIZATION
 PROCESSOR

INSTRUCTION

COMP'LER DATABASEAND
OPTIMIZER

326

EFS

DATAGRAM
DESCIPTIO LAYER STATE
LANGUAGE PROCESSN G

OPERATION ‘
ANALYZER

929.3

EX 1019 Page 118

AL

r
Sarkissian et al. APPT-001-4

0

404

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

406 7J ~TTERN, PARS
AND

EXTRACTION
DATABASE

4/21

COMPILE
ESCRIPTION

403

408 409

402

PACKET
STATE

INSTRUCTION
AND

OPERATIONS

STATE
PROCESSOR
INSTRUCTION

DATABASE

LOAD
PARSING

SUBSYSTEM
MEMORY

LOAD STATE
NSTRUCTION __ ~

DATABASE
MEMORY

,400

410

FIG. 4

407

EX 1019 Page 119

T" ‘

sarKiSSiafl et ai. APPT-OO1—4

u\:llHn

a)1Hdh'Ill
uL,

I‘T‘XH

q5:un:In

406 Z-

404

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

ATTERN, PARS

AND
EXTRACTION

DATABAS E

HIGH LEVE
PACKET

DECODTNG
ED ESCRIPTION ‘

COMPILE

2| ESCRIPTION "

408

LOAD
PARSING

SUBSYSTEM
MEMORY

403

409

LOAD STATE
NSTRUCTION
DATABASE
MEMORY

405

INSTRUCTTON

OPERATEONS

 PACKET
STATE

 AND

STATE
PROCESSOR
INSTRUCTION

DATABASE

400

EX 1019 Page 119

Sarkissian et al. APPT-001-4

510

G)

503

504

1J

5/21

501

INPUT PACKET 502

LOAD PACKET
COMPONENT--~~~

NO

FETCH NODE AN
.---~~~- PROCESS FROM

PATTERN
NODE

506

507

NO

509

PATTERNS 505

NO

508

EXTRACT
ELEMENTS...__~~~---'

FIG. 5

PACKET
KEY

513

511

EX 1019 Page 120

AP PT-OO1 -4

502

503 LOAD PACKET

COMPONENT

ORE IN PACKE I"

PACKET
KEY

504

FETCH NODE AN I
PROCESS FROM

PATTERNS

513

: MORE NEXT
: PATTERN PACKET

; NODES? COMPONE 511

 A" "on us

PROCESS TO
COMPONENT

 510 500v

‘

PATTERN
NODE

509

EX 1019 Page 120

T
I sarkissian et al. APPT-())4

603

604

6/21

PACKET
COMPONENT AND
PATTERN NODE

LOAD PACKET
COMPONENT

FETCH EXTRACTION
ND PROCESS FROM

601

602

NO

610

LOAD KEY
BUFFER

PATTERNS 605

NO

L

606

APPLY EXTRACTION
PROCESS TO
COMPONENT

FIG. 6

611

NEXT
N PACKET 609

COMPONEN

"600

608

EX 1019 Page 121

.s sarkissian et al.

NU

nnHII11u.y

APPT—O -4

O

6/21

0

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 610

LOAD KEY
BUFFER

YES

FETCH EXTRACTION 6
‘ ND PROCESS FROM

PATTERNS 505

604

MORE PACKE
COMPONENT

NO 611

606

NEXT

N O PACKET 609
COMPONEN

ORE EXTRACTIO ‘
ELEMENTS?

YES

607 APPLY EXTRACTION

PSOACESSTO
C PONENT \

600

 MORE TO 608
EXTRACT?

YE

FIG. 6

EX 1019 Page 121

.,., ..

<

Sarkissian et al. APPT-001-4

C)

7/21

702

703
LOAD PATTERN
NODE ELEMENT 708

=
a

704
NO OUTPUT TO

C

C ANALYZER

= YES
a

"
HASH KEY BUFFER

a ELEMENT FROM 705
= PATTERN NODE C

=
C 709

PACK KEY & HAS
706

,700

NEXT PACKET
COMPONENT

707

FIG. 7

EX 1019 Page 122

Sarki55ian et al.

p‘.TT..\nnu

nunn:

APPT—OO1-4

703

704

706

707

7/21

0

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

NODE ELEMENT

MORE PATTERN
NODES?

YES

HASH KEY BUFFER
ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

FIG. 7

708

OUTPUT TO
ANALYZER

709

700

EX 1019 Page 122

T.rkissian et al.

' .

APPT-001-4

0

800\

805

NEXT BUCKET N

809

811

812

8/21

801

UFKB ENTRY FOR 802
PACKET

COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM ~ACHE

COMPARE CURRENT BIN
AND BUCKET RECORD KEY

TO PACKET

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
AS 'FOUND'

UPDATE STATISTICS FOR
RECORD IN CACHE

804

NO

807

808

810

806

SET UFKB FOR
PACKET AS 'NEW'

FIG. 8

EX 1019 Page 123

IIMuHII

IIIIII,“A!,IIrl.

sarkissian et al. APPT—OO1—4

802

800

N
803

REQUEST RECORD BIN/

BUCKET FROM CACHE 804

S 806
NO SET UFKB FOR

PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No® 808
YES

 ORE BUCKET
IN THE BIN? 805

YES

8 9

0 MARK RECORD BIN AND 810
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8‘ 1 As ‘FOUND‘

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813x. FIG. 8

EX 1019 Page 123

r

=
C

-

~

=

L

Sarkissian et al. APPT-001-4

0 0

9/21

EXTRACT PROGRAM EXTRACT PORT
903

GET 'PROGRAM', GET 'PROGRAM',
'VERSION', 'POAT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR

UDP) UDP)'

908

SAVE REQUEST
CREATE SERVER STAT

SAVE 'PROGRAM',

904
SAVE 'PROGRAM', 'VERSION' AND

'VERSION', 'POAT' AND 'PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)'WITH

UDP)' WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT.

907

905 906

LOOKUP REQUE

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

FIG. 9

EXTRACT
PROGRAM

GET 'POAT' ANO
'PROTOCOL (TCP

OR UDP)'.

909

EX 1019 Page 124

T"

sarkissian et a}. APPT—001-4

9/21

902 ”—910

 RPC
BIND LOOKU '

REQUEST
‘ NNOUNCME

'ORTMAPP - .ORTMAPPE ..
(T 909

EXTRACT PORTEXTRACT PROGRAM

903"\\ GET 'PROGRAM', GET ‘PROGRAM‘,
'VERSION', 'PORT‘ AND 'VERSION' AND

'PROTOCOL (TCP OR 'PROTOCOL (TCP OR
UDP) UDP)‘

1rIIII7|I
r“— 908

SAVE REQUEST.‘MI:IIh‘li' CREATE SERVER STAT‘
SAVE 'PROGRAM',

= SAVE 'PROGRAM‘, ‘VERSION‘ AND

904 ‘VERSION‘, 'PORT' AND ‘PROTOCOL (TOP OR
‘PROTOCOL (TOP DR uop)‘ WITH

UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY. I:IInunNu-5
907

RPC
BIND

LOOKUP
REPLY

905 906 ““““

LOOKUP REQUE ‘

FIND ‘PROGRAM’

EXTRACT
PROGRAM

900/ AND ‘VERSION' GET 'PORT' AND

WITH LOOKUP OF 'PROTOCOL (TCP
SOURCE NETWORK OR upp)’, ADDRESS.

FIG. 9

EX 1019 Page 124

sarkissian et al. APPT-001-4

0 I~

=
:

-C -=
:

1000~

PATTERN
RECOGNITION

DATABASE
MEMORY

100
100

10/21

100

1001

EXTRACTION
OPERATIONS

DATABASE
MEMORY

1031
1004

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS

INFO OUT.

CONTRL N

1031

100 PATTERN 1007
RECOGNITN

ENGINE
(PRE)

EXTRACTION ENGINE
(SLICER)

100

PACKET
INPUT

1012

1021

102

1023

PARSER INPUT BUFFER
MEMORY

INPUT BUFFER 1011
INTERFACE
CONTROL

101

FIG. 10

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

ANALYZER
INTERFACE
CONTROL

1025

1027

EX 1019 Page 125

r

sarkISSIan et aI. APPT‘OO1'4

O O

1 0/21

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 100‘ MEMORY

100 1031
100

1004

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL N

1031

100 PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100

PARSER

PACKET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

1012

1021

PISTXRETT INPUT BUFFER ANALYZER DATA REA'
INTERFACE INTERFACE
CONTROL CONTROL

ANAL ZER
READY

‘ V

PACKET

102

1023 FIG. 10 1027

EX 1019 Page 125

.L

sarkissian et al.

1100 ~

APPT-001-4

'1
', J
'-

1101 1103

1109

UNIFIED
FLOW

PARSER KEY
INTER- UFFER
FACE (UFKB)

11/21

1115
1107

LOOKUP/
UPDATE
ENGINE

(LUE)

STATE
PROCESS
INSTRUCN
DATABASE

(SPID)

1108

CACHE

STATE
PROCESSR

(SP)

FLOW
INSERTION/
DELETION

ENGINE
(FIDE)

1110

FIG. 11

1118
112

ANALYZE HOST
HOST BUS

INTERFAC INTER-
AND FACE

CONTROL (HIB)
(ACIC)

1119 112

UNIFIED
MEMORY
CONTROL

(UMC)

MEMORY
INTER
FACE

EX 1019 Page 126

Sarkissian et al. APPT—OO1-4
,fN
"\J

11/21

1100 N

<w1o1 1103

INSTRUCN
DAEABASE

(8MB)

UNHHED
FLOW

PARSER KEY
INTER-“i=UFFER
FACE (UFKB)

PROCESSR

(SP)

FLOW
INSERTION/
DELETION

ENGINE

(FIDE)

1119112

Mgfiggi MEMORYINTER-
“ CONTROL H FACE

(UMC)

N

EX 1019 Page 126

sarkissian et al.

1206

1208

1210

APPT-001-4

1200~

REQUEST NEXT
BUCKET FROM

CACHE

YES

SET UFKB FOR
PACKET AS

'DROP'

1212

J

12/21

~1201

UFKB ENTRY FOR
PACKET WITH 1202

NO

STATUS 'NEW'

ACCESS
CONVERSATION

RECORD BIN

REQUEST RECORD BIN/
BUCKET FROM CACHE

INSERT KEY AND HASH
N BUCKET, MARK 'USED

WITH TIMESTAMP

OMPARE CURRENT BIN
AND BUCKET RECORD

KEY TO PACKET

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

1203

1204

1205

1207

1209

1211

EX 1019 Page 127

r

“arkissian et al. APPT—OO1-4
D —”\

U

12/21

3

W
UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW‘

1202

1200
T“ ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
BUCKET FROM CACHE

REQUEST NEXT

BUCKET FROM <‘IN/BUCKET EMPTY 1205
1206 CACHE

YES

NO INSERT KEY AND HASH
3 N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

YES

1207

OMPARE CURRENT BIN 1209
AND BUCKET RECORD

KEY TO PACKET

1210

 SET UFKB FOR
PACKET AS

'DROP'

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

1211

SET INITIAL STATISTICS
FOR RECORD |N CACHE

FIG. 12

EX 1019 Page 127

Sarkissian et al. AP PT-001-4

'.,)

1300 ~

SET STATE
PROCESSOR

)

13/21

~1301

UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR 'FOUND'

SET STATE PROCESSOR
INSTRUCTION POINTER TO

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

1302

1303

1304

1305

INSTRUCTION NO 1307
POINTER TO

VALUE FOUND IN
CURRENT STATE

1308
YES

SAVE STATE
PROCESSOR
INSTRUCTION NO
POINTER IN

CURRENT FLOW
RECORD

1309

SET ANO SAVE FLOW REMOVA
STATE PROCESSOR 0 1311

INSTRUCTION IN CURRENT
FLOW RECORD

FIG. 13

EX 1019 Page 128

Y

sarkissian et al. APPT-oo1-4

O 3

13/21

fi1301

1300 N UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR 'FOUND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO
ALUE FOUND IN UFKB ENTRY
 1303

 FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

7/—1305

SET STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

SAVE STATE

PROCESSOR

INSTRUCTION DONE PROCESSING ST 1309POINTER IN TATES FOR THIS FLOW? \
CURRENT FLOW

RECORD

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

Jr—1313

FIG. 13

EX 1019 Page 128

r

PACKET

- - - - - - - - - - - - - -, 1- - - - - - - - -

I I
1416"' 1406 1412 I I 141 1404

I I LOOKUP I ANALYZE AND EXTRACT BUILD KNOWN RECOGNIZE IDENTIFYING "FLOW" KEY RECORDS PATIERN INFO & PROCL I I (DB 1424) I INFORMATION /STATE
I I

- - - - = = = ..J YES

I

PATTERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

1408 I PARSER
ISUBSYSEM

- - - I v:
1400 I

I

FIG. 14

1426

STATE
MACHINE

SELECTOR

1428

(
\.._.+--------,_

,..;:,.--'--~---,.-

STATE
ANALYSIS
PERATION

L.. - - - -

MORE
CLASSIFICATION

YES

N

-1

NO DATABASE
OF FLOWS

1422

UPDATE
"FLOW"
KNOWN
RECORD

CLASSIFICATN
Fl NALIZATION

1434
N....,__-

ANALYZER
SUBSYSTEM

I_.....
~

I-.....
f\)

I -.L

)>
lJ
lJ
,I
0

' '0
/) --J.

\...__.,.1 J:,.

u

EX 1019 Page 129

J.

1426

CLASSIFICATN
FINALIZATION

STATE
ANALYSIS

 ANALYZER
SUBSYSTEM

(if?)

I -~ - - — T 'II~~~~~~~~~~~~~~~~~~~ I 15:;
I I I I ’ 5;”,-

140 141 I i;
ANALYZE AND EXTRACT LOOKUP I g):
RECOGNIZE IDENTIFYING KNOWN NEW ”FLOW" l .

I PATTERN INFO&PFIOCL ROEgagES RECORD? DATABASE I >
1 INFORMATION ISTATE () OF FLOWS I .‘g

——————— TI

I ~~~~~~ I , 8
I I I 2.4
I I U;
I I

: PATTERN 9;??qu :
I STRXfigURES CLASSIFICATION KNOWN ‘
, EXTRACTION RECORD I

OPERATIONS

I I 3;
I I 53
' PARSER "‘

I§U§SIS§M _______ I STATE I

MACHINE :L ' =
SE ECTOR I L)

I

I

I

I

I

I

I

I

I

EX 1019 Page 129

"'

121

1502

PACKET
~-111,~CQUISITION

DEVICE

PACKETS

102

PARSER
301

ANALYZE
303

324

DATABASE
OF

FLOWS

HOST
PROCESSO

1504

I M~~TOR I I
C 1510

•

FIG. 15

NETWORK
INTERFACE

CARD

J

DISK
&

DB

1506

HOST
MEMORY

1508

--1,,

CJl
f\)
--1,,

v,
<»
~ (JI.

(/)

iii"
::I

~
ll)

)>
-0
-0
,I
0
0

Cft.

u

'1

EX 1019 Page 130

aHv

'1219Uelsswg

>
'U
'U
71O

\ S

LIFT
PACKET

CQUISITION
DEVICE

MEMORY {3\

MONITOR E

121 399

102 NETWORK ,INTERFACE L/
CARD

EX 1019 Page 130

sarkissian et al. APPT-001-4

CJ)

16/21

1602 O - 3 Bytes
Jc:--1600

I Ost MAC

offset O - 11 Ost MAC Src MAC 1604

I Src MAC

1606
1608 .----------~ /

Ost MAC (6)
1610

1612
Ost Hash {2

Src MAC {6)

1614
Src Hash (2

~et=12

FIG. 16

EX 1019 Page 131

garkiSSian et a1.
APPT—OO1 -4

:13 3

16/21

1602 0 ~ 3 Bytes

Dst MAC

‘ Dst MAC Src MAC _

Src MAC -

1814

\»-set=12

FIG. 16

“W

EX 1019 Page 131

t'

sarkissian et al. APPT-001-4

offset I
12 to 13

L3 to
[L3 +
(IHL / 4
- 1]

\)
y-- J

17/21
1702

\ 1704 IDP = Ox0600*
IP= Ox0800*

CHAOSNET = Ox0804
ARP= Ox0806
VIP = OxOBAD*

VLOOP = OxOBAE
VECHO = OxOBAF

NETBIOS-3COM = Ox3COO -
Ox3COD#

DEC-MOP = Ox6001

[\Type 1mmmz~
\~--~ ____)

~ 1706

1708 Type (2)

Hash 1)
171 O ,c.._ 1700

~et=14

FIG.17A

DEC-RC = Ox6002
DEC-DRP = Ox6003 *
DEC-LAT= Ox6004

DEC-DIAG = Ox6005
DEC-LAVC = Ox6007

RARP = Ox8035
ATALK = Ox809B*

VLOOP = Ox80C4
VECHO = Ox80C5 v SNA-TH = Ox8005*

~ ATALKARP = Ox80F3
1712 IPX = Ox8137*

Ost Address I
Ost Hash (2) I

Src Address I
Src Hash (2)j

SNMP = Ox814C#
1Pv6 = Ox86DD *

LOOPBACK = Ox9000

Apple = Ox080007
* L3 Decoding
LS Decoding

,c.._ 1750

1752

\
"-

ICMP = 1
IGMP = 2
GGP =3
TCP= 6 *
EGP = 8

IGRP = 9
PUP= 12

CHAOS= 16
UDP= 17*
IDP = 22#

ISO-TP4 = 29
DDP = 37#

ISO-IP= 80
VIP= 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding ~01(1) FIG. 17B

IL4 Offret = L3 + (IHU4)

EX 1019 Page 132

SarkiSSian et 31. APPT—001-4

U DV“

1 7/21

1702 1

92278338:
1212812, _Wlllllllll.'. CHAOSNET;0;0804

ARP = 0x0806
VIP = OXOBAD*

¥—: :—/ VLOOP = OXOBAE1706 VECHO = OXOBAF
NETBIOS-BCOM = exacoo -

”08 Type (2) / DEC-MOP = $238? #
E _ =

‘8‘ = 14 DEC-DIAG 3 016005
DEC-LAVC = 0x600?

RARP = 0x8035
ATALK = 0x8098*

VLOOP = OX8OC4
VECHO = 0x80c5

F1 G . 1 7A / SNA-TH = 0x530135**
,/ ATALKARP = 0x80F3

1712 IPX =0x8137*
SNMP = 0x814C#

in6 = meson *
LOOPBACK = 0x9000

Apple = 0x080007

* L3 Decoding

1 # L5 Decoding 1

1 _ _ 1752

WflWfi’lfi'J’MIM/fififlfi'fillllll F—
Lsto my!!!” w M- .CMP

[135,4 Mum-mmmm Iggg :3;
(-1 up w 1

1 £31; :3
WIIfi‘FiiifiWiiWiI/IIIIIIIIM 011283 f 1%

i ”185 533;
““75" 603553311

iSO-IP :80
=8s#

Egg: :gg

* L4 Decoding

-0i (1) FIG _ 1 7B # L3 Re-Decoding

-et = L3 + (lHL/4)

——-—-—

EX 1019 Page 132

r

sarkissian et al. APPT-001-4
.~

11 w
Ll.

'J

PROTOCOL
TYPE (ID~

)

18/21

J.:--1800

FIG. 18A

1802-2
1802-1

J.:--1850 w

1870

LUTNUM ~
).

11
001 0 ...J
(..) Y:!
w Ll.
._ Ll.

>-O
co

§~§
FIG. 188

1802-M

EX 1019 Page 133

r

sarkissian et al. APPT—OO1-4

‘. ‘\
\J

18/21

PROTOCOL

IPGZMJMimi

FIG. 18A

1370

LUT NUM /
______4

E30%mDOOwhim
r1850

DEEJOOOhoma

FIG. 188

EX 1019 Page 133

1909

~+DATA

~DATA

~+DATA

PAGE-0-IN

PAGE-0-0UT

INPUT SELECT MUXES

• • •

DUAL PORT RAM PAGES (32)

D A D :TA D A
0 TA O TB OU A • • •

1907

OUTPUT SELECT MUXES

FIG. 19

(1905

PAGE-31-IN

PAG E-31-0UT

D A
0 TB

(1919 1900

)
LUESEL-

SPSEL-

FIDESEL-
(1917

UMC-0-CA-DATA-

CA-ADDRESS--c_
~1903 1915

CACHE WRITE STROBES

1909

. CA-UMC-DATA .

CAPAGESEL

LUESEL

SPSEL-
1913

~1919

-L

(0 -....
J\)
-L

)>
"1J
"1J .,
0
0 __,, u.b.

EX 1019 Page 134

3O UT
\

§ (0 [e19UBISSWBS

/ ,/ 1900

g --DATA ¢ 4)4 ADDR LUESEL—

3>

IrDATA 1:
0‘ __ '0

(n —ADDR INPUT SELECT MUXES SPSEL Tl

.— FIDESEL— 8LU DATA 1917 ‘ -.*
Q ADDR DATA / 54>
u_ ADDR U

UMC-O-CA-DATA —-——

ADDR DATA

CA-ADDRESS

/’\/1903 :1915

CACHE WRITE STROBES

PAG E—O-IN

PAGE-31-IN

DUAL PORT HAM PAGES (32)
PAGE-O-OUT PAGE-31-OUT

1911 _.

T Q
ID

1909\ CA—UMC-DATA -‘

CAPAGESEL

§ 4—DATA LUESEL—

SP EL———

BEI‘DATA OUTPUT SELECT MUXES SFIDESEL—
Lu
0 4-DATAE] \

\1919

FIG. 19

EX 1019 Page 134

sarkissian et al. APPT-001;:._4

,J
20/21

(2001 2005

I-a: LUEMEMREQ SEL_LUE_FIOE--. 0
0... SETLUEREADY
w CAM_HIT
:J SETLUESEL ~ _J

CAM_HITPAGE a:
a:

CACHE_CAM_SM <l'.'.
CAM_LRUPAGE I

I-
FIDEMEMREQ ~ a: <l'.'. 0

SETFIDEREADY LOAD_CAM
0

0...
w

SETFIDESEL 0
lL

GET BACKUP GOTf 2003

SEL_CACHE-+

Ir CACHE ME CA-MEM-RE 0
0... SIGNALS CA-MEM-WRIT w CACHE_MEM_SM 0 I ~ 0 :J <l'.'.
0

UMC-0-CA-REA

FIG. 20

L

EX 1019 Page 135

?

sarkissian et a}. APPT—OOT :4:
. ~ 1

\V/ “J

20/21

-2001 2005~

/ \/

{

CACHE_CAM_SM

GET BACKUP GOT //2003

LUEMEMREQ

SETLUEREADY

SETLUESEL

SELLUEVFIDE-b

CAM_HITLUEPORT‘
CAM_H!TPAGE

FIDEMEMREQ CAM_LRUPAGE
SETFIDEREADY

SETFIDESEL

CAMARRAY

LOADflCAMFIDEPORT
REFRESHHCAM

SELuCACHE»

CACHE ME

SIGNALS

_ CACHE_MEM_¢SM

CAfiMEM-RE

CA—MEM—WRIT
a:

E
UMC—O—CA—NEXTA :3CACHEPORT

UMC—O-CA-REA

FIG. 20

EX 1019 Page 135

r

sarkissian et al. APPT-00t4

.)')

ti:
0
0..
w
~
0
0..
::::,

' 21/21

CAM_HITPAGE, REF-DATA

LOAD, REFRESH, EVICT

2105 2111

CAM_LRUPAGE, REF-DATA

2109
REF-DATA

2103
CAM_INPUTDATA 2113

LOADO

DATA
LOAD1 CAM[1]

DATA

LOAD2 CAM[2]

LOAD3 CAM[3]

LOAD4 CAM4]

STO 32 LOADS CAM[S]

DECOD LOAD6 CAM[6]

LOAD? CAM[?]

•
• 2107

•

LOAD31 CAM[31]

DATA3

CAM_NUMBER CAM_L UPAGE
I

I
2127 DATAO

I
• • • DATA31

2123

2121

I
DATAO

MATCHO

MATCH1

MATCH2

MATCH3

MATCH4

MATCHS

MATCH6

MATCH?

MATCH30

MATCH31

32T05 2115

LOW)
TO

HIGH CAM
HIT

ENCOD

CAM NUMBER

I
• • • DATA31

DIRTY ENTRY CURRENT ENTRY \
2117

DIRTY _PAGE, DIRTY _HASH, DIRTY _BUCKET CAM HITPAGE

' FIG. 21 - '~ 2119

I-
a:
0
0..
a..
::::,
~
0
0
_J

EX 1019 Page 136

sarkissian et al. Al—‘JPT—OOT-AX

.3) 3
21/21

CAM_HITPAGE, REF-DATA CANLLRUPAGE, REF-DATA

210
LOAD, REFRESH, EVICT g

REF-DATA

2111 2103~/
CAMJNPUTDATA 2113

/

LOADO CAM[O] MATCHO /
DATA

r-LOAD1 CAMU] MATCH1

DATA;
T-wLOADz' CAM[2] MATCH2

r—LOAD3 CAM[3] MATCHS

E 1~LOAD4 CAM4] MATCH4 321.05 2115
8 V; 2 E
m LOADS CAM[5] MATCHS LOW / OF- , u.

:5 Jr TO {/CAM a.
a LOADS CAM[6] MATCHES HIGH g
3 H1T O

O
L10111:)? MATCH? ENCOD —‘

CAM NUMBER

I 1

2/127 DATAO DATAO - - » DATA31
x2123 W

I /
2121 J, \\

___J DIRTY ENTRY CURRENT ENTRY 2117
DIRTY_PAGE, DIRTY_HASH, DIRTY__BUCKET CAM__H!TPAGE

v v\1
FIG. 21 2 ‘9

EX 1019 Page 136

UNITED STATES PATENT AND TRADEMARK OFFICE

Page 1 of 1

COMMISSIONER FOR PATEN1S

UNITE:) STATES PATENT ANO TRADEMARK OFFICE
WASM!NGTON, 0 C 2023!

www uspto gov

APPLICATION N1JMBER FILING/RECEIPT DA TE FIRST NAMED APPLICANT ATTORNEY DOCKET N1JMBER

09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4

FORMALITIES LETTER
Dov Rosenfeld
5507 College Avenue
Suite 2

111111111:111111111111111111111111111111111111111! 111111111111111 !1111 !llll 111111111111111111
'0C000000005373402*

Oakland, CA 94618

Date Mailed· 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a}.

• The statutory basic filing fee is missing.
Apphcant must submit $ 690 to complete the baste filing fee and/or hie a small entity statement claiming
such status (37 CFR 1 27).

• The oath or declaration is missing.
A properly signed oath or declaratton in compltance with 37 CFR 1. 63, identifying the application by the
above Application Number and Fi/mg Date, is reqwred.

• To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non-small entity, must be submitted with the missing items identified in this letter

• The balance due by applicant is $ 820.

A copy of this notice {}[UST be returned with lite reply.

Customer
Initial Patent Examination Division (703) 308-1202

PART 3 -OFFICE COPY

file://C:\APPS\PreExam\correspondence\2 _ C.xml 9/1/00

EX 1019 Page 137

\ Page 1 of1

Conwasaonafi FOR PATENTS
UNi'rao STATES PATENT AND TRADEMARK OFFICE

W‘ASHINGIUM D C 2025i
www uspio gov

AP LlCATlON MIM'BER FILING-RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NLMBER

09/608266 06/30/2000 Haig A. Sarkisstan APPT-001-4

FORMAUTIES LETTER

Eggfggfgggfivenue illlllillfillllllll'lilllllllllllllil?lllllléllllilillllililllllllllllllillillllllllllllllllll*ocooocoooosamoz'
Sorta 2

Oakiand‘ CA 94618

Date Maéled‘ {39/05/2000

NOTICE TO FILE MISSlNG PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR1.53(b)

Filing Date Granted

An appiication number and filing date have been accorded to this application The item(s) indicated below,
however, are missmg. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the prowsions of 37 CFR 1.136(3).

. The statutory basic filing fee is missing
Applicant must submit $ 690 to complete the basrc filing fee and/or file a small entity statement claiming
such status (37 OFF? 1 27).

o The oath or declaration is missmg
A property signed oath or declaration in compliance with 37 CFR 1, 63, identifying the application by the
above Application Number and Fiiing Date, is remitted,

o To avoid abandonment a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non—small entity, must be submitted With the missing items identified in this letter

a The balance due by applicant is $ 820.

A copy oftfiis notice MUST be returned with the reply.

‘\/L/‘/ fl
1% x_,/i‘/) KM

,, W, i I"
Customer Service Center
Initial Patent Examination Division (703) 3084202

PART 3 , OFFICE COPY

file ://C :\APPS\PreExam\correspondence\2~C.xml 9/1 [’00

EX 1019 Page 137

L

·/1'~ :) '.0 \ . Q1r?ftef..{Dockel No: APPT-C·J1-4
1, i 1..~~~ 'a• · .
1 .t'\ t t.., . ~ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
I 111' ~

~~~ilicant(s): Sarkissian, et al. 

Application No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATIVE CACHE STRUCTURE FOR 
LOOKUPS AND UPDATES OF !:-''"'LOW 
RECORDS IN A NETWORK MONITOR 

Group Art Unit: 2731 

Examiner: (Unassigned) 

Patent 

RESPONSE TO NOTICE TO FILE MISSING PARTS OF' APPLICATION 

Assistant Commissioner for Patents 
Washington, D.C. 20231 
Attn: Box Missing Parts 

Dear Assistant Commissioner: 

This is in response to a Notice to File Missing Parts of Application under 37 CFR l .53(t). 
Enclosed is a copy of said Notice and the following documents and fees to complete the filing 
requirements of the above-identified application: 

Executed Declaration and Power of Attorney. The above-identified application is the 
same application which the inventor executed by signing the enclosed declaration; 

_K_ Executed Assignment with assignment cover sheet. 

_K_ A credit card payment form in the amount of$ 860.00 is attached, being for: 
_K_ Statutory basic filing fee: $ 690 

Additional claim fee of $ 0 
_K_ Assignment recordation fee of $ 40 
_K_ Missing Parts Surcharge $130 

_K__Applicant(s) believe(s) that no Extension of Time is required. However, this conditional 
petition is being made to provide for the possibility that applicant has inadvertently 
overlooked the need for a petition for an extension of time. 

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR l.136(a) of: 

__ one months ($110) __ two months ($380) 

__ two months ($870) __ four months ($1360) 

If an additional extension of time is required, please consider this as a petition therefor. 

Certificate of Mailing under 37 CFR 1.8 
I hereby certify that this response is being deposited with the United States Postal Service as first class mail man 
envelope addresse~ to the

7 

As~ista:t Corrurnssioner for Patents, Washing~ I on 

Date: 6c·E: L..f:~ 2-c:e-f) S1~ -_ 

Name. Dov Rosenfeld, Reg. No 38687 

EX 1019 Page 138

we ,3 w i_. ““3. ‘.

O , QnfiReffDocket No: APPTAUJ 1 —4 J Patent , i
t we» ___._,._. , l‘

1 $ ‘L ' 53’ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ‘- %l e 

\fir g
’ 47s @fipplicands): Sarkissian, er a1.

Application No.: 09/608266

Group Art Unit: 273 l

Examiner: (Unassigned)

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS TN A NETWORK MONITOR
 

RESPONSE TO NOTICE T0 FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53m.

Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above~identified application:

X Executed Declaration and Power ofAttorncy. The above—identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

X Statutory basic filing fee: § 690

X A credit card payment form in the amount of $ 860.00 is attached, being for:

X Additional claim fee of $_0

X Assignment recordation fee of 354.9

X Missing Parts Surcharge $130

X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CPR l. 136(a) of:

one months ($1 10) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required: please consider this as a petition therefor.

  

 

Certificate of Mailing under 37 CFR 1.8

Thereby certify that this response is being deposited with the United States Postal Servrce as first class mail in an
envelope addressed to the Assistant Commissioner for Patents Washington, 1)W31 on

Date: 66316— {I' 2’0 25,66 Sign ‘ M// Wm
Name. Dov Roscnfeld, Reg. No 38687

EX 1019 Page 138



r 

L 

Application 09/608266, Page 2 

_L The Commissioner is hereby authorized to charge payment of any missing fees associated 
with this communication or credit any overpayment to Deposit Account 
No. 50-0292 

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED): 

Date 

Address for correspondence: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Tel. (510) 547-3378; Fax: (510) 653-7992 

Respectfully Submitted, 

38687 

EX 1019 Page 139

A) ‘ “3“x 1/

Application 09.:608266, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50—0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

 

 

Respectfully Submitted,

 é 7:11 Ac”: ,Zfirféfl"
Date  

Address for correspondence:
Dov Rosenfeld

5507 Coilege Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 5473378; Fax: (510) 653-7992

EX 1019 Page 139



r 

b'r~:> 
(). 

~' i ~ 15l\l\\ ~. 

PATENT APPLICATION 
ATfORNEYDOCKET NO. APPT-001-4 

As a below named mventor, I hereby declare that 

My residence/post office address and citizenship are as stated below next to my name; 

I believe I am the origmal, first and sole inventor (if only one name is listed below) or an ongmal, first andjomt mventor (if plural names are 
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: 

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS Af\.TI UPDATES OF FLOW RECORDS IN A l\'ETWORK MOJ\1TOR 

the specification of which is attached hereto unless the following box is checked: 
(X) was filed on June 30. 2000 as US Application Serial No 09i608266 or PCT lntemal10nal Application Number __ and 

was amended on ____ (1f appltcable). 

I hereby state that I have reVJewed and understood the contents of the above-1dentmed specification, including the claims, as amended by any 
amendment(s) referred to above. l acknowledge the duty to disclose all mfonnation wluch 1s matenal to patentabihty as defmed in 37 CFR 1 56. 

Foreign Application(s) and/or Claim of Foreign Priority 

I hereby claun foreign prionty benefits under Title 35, Uruted States Code Sectlon 119 of any foreign application(s) for patent or inventor(s) 
certificate listed below and have also identified below any foreign application for patent or inventor(s) certJficate havmg a ftlmg date before that of 
the application on which pnonty is claimed: 

Provisional Application 

I hereby claun the benefit under Title 35, United States Code Section l I 9(e) of any Uruted States proVlsional applicatlon(s) listed below: 

U.S. Priority Claim 

[ hereby claun the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the 
subject matter of each of the clauns of this application 1s not disclosed in the prior United States appltcation in the manner proV1ded by the first 
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of 
Federal Regulations, Section 1 56(a) which occurred between the filing date of the prior application and the national or PCT international filing 
date of this application: 

POWER OF ATfORNEY: 

As a named inventor, I hereby appomt the following attomey(s) and/or agent(s) listed below to prosecute this apphcal!on and transact all busmess 
m the Patent and Trademark Office connected therewith: 

Send Correspondence to: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland. CA 9461 il 

Dov Rosenfeld, Reg No 38,687 

DirectTeleph.one Calls To: 
Dov Rosenfeld, Reg. No. 38,687 
Tel: (510) 547-337& 

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on infonnation and belief are believed 
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by 
fine or unprisorunent, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may Jeopardize the 
validity of the application or any patent issued thereon. 

Name of First Inventor: Haig A. Sarkissian Citizenship: USA 

Residence: 8701 Mountain Top, San Antonio, Texas 78255 

Post Office Address: ~ 

First Inve 

EX 1019 Page 140

 A y __ PATENT APPLlCATION .

11%,: ; no» 1 POWER OF ATTORNEY A'rronNEy DOCKET NO. APPT-001-4 lmm»'9'" negrrchrrorv ,

 

As 3 below named inventor, lhcreby declare that;

My [CSlanCft/post office address and c1tizcnship are as stated below next to m y name;

[believe [am the original, first and sole inventor (if only one name 18 listed below) or an original, first and jam: inventor {if plural names are
listed below} of the subject matter which 1s claimed and for which a parent is sought on the invention entitled:

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A NETWORK MONITOB

the specification of which is attached hereto unless the following box rs checked:
(X) was filed on lune 30. mm as US Apphcan‘on Serial No 09/608266 or PCT international Application Number and

was amended on __(1f appl.1eable}

Ihereb‘y state that l have revxewed and understood the contents of the above—identified snecificafion inducing the Claims as amended by an];anicndment(s) referred to above I acknowledge the duty to disclose all mlomizmon WlUCh IS matenzil to patentability as definedin 37 CPR156

Foreign Applicatiou(s) andfur Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35‘ United States Code Section 1 19 of any forcrgn npplication(s) for patent or inventor(sl
eemficate listed below and have also identified below any foreign application for patent or inventor(s} certificate havmg a filing date before that of
the appllcarion on which pnumy IS claimed:
 

  
{’RJORJTY CLAIMED UNDER 35

 
M’PLICATlON NUMBER D3113. FILED

 
 
  

 l
Provisional Application

I hereby claim the benefit under Title 35, United States Code Section “9(a) ol‘any Unned States provrsional applicationm lrsted below:
 

APPLICATION SERIAL NUMBER FILING DATE 

 

 

US Priority Claim

[hereby claim the benefit under Title 35, United States Code Section 120 of any United States applicanon(s) hsted below and insofar as the
subject matter of each of the alarms of this application 15 not disclosedin the prior United States applicationin the manner prowded by the first
paragraph of Title 35United States Code Section H? l acknowledge the duty to disclose material infiirmalion as definedin Title 37 Code of
Federal Regulations, Section ‘1 56(3) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:
 

|APPLICATION SERIAI l‘f’WEIR AL FILING DATE FSTATUSgpatented/oending{abandoneg} %l

POWER OF ATTORNEY:

As a named inventor, I hereby appomt the following attorney(s) and/or agentfs) listed below to prosecute this application and transact all busmess
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg No 38,68?
 

Semi Corresponilonce to: Direct Telephone Calls To:
Dov Roseofeld Dov Rosenfeld, chP No 38,687
3507 College Avenue, Suite 2 Tel: (510) 547~33?8
Oaklan¢ CA 94618

I hereby declare that all statements made herein of my own knowledgc are true and that all statements made on information and belief are believeal
to be true; and further that these statements were made with the lcnowledge that willml false statements and the like so made are punishable by
fine or imprisonment, or both under Section 1001 of“ Title 18 of the Unitlgtd States Code and that 1:111h wrllful false sialements may Jeopardize. the
validity of the application or any patent 1ssued thereon

Name of First Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Tu SanAnlonio Texas 78255 

PostiOffice Address: SameAjrllk. 31, if Ll O 0 0
First Inve or’3 Signature Date

EX 1019 Page 140



r 

,--..._ 
[ (' I 

Declaration and Power of Attorney (Continued) 
Case No; «Case CaseNumbem 

Page 2 

ADDITIONAL INVENTOR SIGNATURES: 

Name of Second Inventor; Russell S. Dietz 

95120-2736 

Citizenship: USA 

r 

EX 1019 Page 141

“I

, ‘ r‘ 1/ x
Declaration and Power of Attomey (Continued)
Case No; <1Ca5§_§2§_s_61\11_n11&r2

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name 0f Second Inventor: Russell S. Dictz Citizenship: USA

Residence: 6146 Ostenbcru Drive San Jose CA 95120-2736 

& 7&0
Date  I 'entor’s Sig aiurc

EX 1019 Page 141



T 

~ -PE>, 1 
Patent Our(JJ.~f./Docket No: APP't'::vOl-4 

. 1.~t~ cr,. 

f, ~ 'i. ~ . f IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 
~ 

l 

~~ 
:V!:iTI}~.~icant(s): Sarkissian, et al. 

Application No.: 09/608266 

Filed: June 30, 2000 

Group Art Unit: 2731 

Examiner: (Unassigned) 

Title: ASSOCIATIVE CACHE STRUCTURE FOR 
LOOKUPS AND UPDATES OF FLOW 
RECORDS IN A NETWORK MONITOR 

REQUEST FOR RECORDATION OF ASSIGNMENT 

Assistant Commissioner for Patents 
Washington, D.C. 20231 
Attn: Box Assignment 

Dear Assistant Commissioner: 

Enclosed herewith for recordation in the records of the U.S. Patent and Trademark Office is an 
original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the 
Assignment. 

()c~ ~P. Zf9-e71'!!) 

Date 

Address for correspondence: 

Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 

Respectfully Submitted, 

,2?7 
~ ---

Dov Rosenfeld, Reg. No. 38687 

Tel. (510) 547-3378; Fax: (510) 653-7992 

Certificate of Mailing under 37 CFR 1.8 
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an 
envelope addressed to the Assistant Cornrmssioner for Patents, Wash~0231 on. 

i_ ' ,-~~~---
Date: U(' f j~ . .?~ S1~/ --

/ 
Name: Dov Rosenfeld, Reg. No. 38687 

EX 1019 Page 142

p E“\t “No Ourlfiaf/Docket N01;01APP4 w” Patent \K
tum“ 6’ ’

u.)

5.9 IN THE UNITED STATES PATENT AND TRADEMARK OFFICEl A u

k*QRT:A\}5§licant(s)z Sarkissian et at.

Application No: 091608266

 

Gtoup Art Unit: 2731

Examiner: (Unassigned)

Filed: June 30, 2000

Title: ASSOCIATWE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS [N A NETWORK MONITOR
 

REQUEST FOR RECORDATION OF ASSIGNMENT

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for i‘ecordation in the records of the US. Patent and Trademark Office is an

original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the

Assignment.

Respectfully Submitted,

 Dov Rosenfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510} 5473378; Fax: (510) 6537992

 

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washingto; ./ 0231 on.

mm. 43% (- 24» new Sm
/ Name: Dov Rosenfeld. Reg. No. 38687

 

 

EX 1019 Page 142



//o\P~\ 
Page l of 1 

~ 
OCT 2 4 2000 ~' 

~ ,._l -1\tl ~ h, ,"' •, <I I{/ ,11 ... 
UNITED STATES PATENT AND T~K OrnCE 
___________ __.;........,.._..;.;.~....;..;;....;;...;c.:...:..cc..=---------=c-oM_M_IS-Sl-0-NE_R_F_O_R_PA_T_EN-TS 

APPLICATION t-.'UMBER 

09/608,266 

Dov Rosenfeld 
5507 College Avenue 
Suite 2 
Oakland, CA 94618 

FILfNG/RECE!PT DA TE 

06/30/2000 

UNITED STATES PATENT AND TRADEMAR~ OFFICE 

WASH!NGlON, 0 C 20 23i 

www uspto gov 

FlRST NAMED APPLICANT A TIORNEY DOCKET NUMBER 

Haig A. Sarkissian APPT-001-4 

FORMALITIES LEITER 

I lllll:111111 ii 111111111 lllll lllll lllll lllll lllll lllll lilll lllll lllll l!ll lllll lllil 1111 illl 
'0C000000005373402* 

Date Mailed: 09/05/2000 

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION 

FILED UNDER 37 CFR 1.53(b) 

Filing Date Granted 

An application number and filing date have been accorded to this application. The item(s) indicated below, 
however, are missing. Applicant 1s given TWO MONTHS from the date of this Notice w1thm which to file all 
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by 
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1 136(a). 

• The statutory basic filing fee is missing. 
Applicant must submit$ 690 to complete the basic filing fee and/or file a small entity statement claiming 
such status (37 CFR 1.27). 

• The oath or declaration is missing 
A properly signed oath or declaration in compliance with 37 CFR 1. 63, identifying the application by the 
above Application Number and Filing Date, is required. 

• To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth m 37 CFR 1 16(e) 
of $130 for a non-small entity, must be submitted with the missing items ident1f1ed in this letter. 

• The balance due by applicant is $ 820. 

A copy of this notice MUST be returned with the reply. 

~11. I · ,-~~ 
-C-us-to_m_e_r_s·-e-rv-i-ce_C_e_n-ter ! _,,.,~--------
Initial Patent Exammation Division (703) 308-1202 

PART 2 - COPY TO BE RETURNED WITH RESPONSE 

~:,-, 
; I' 

• _· l_ I.. 

file://C:\APPS\PrcExam\correspondence\2 _ B.xml 

J: 

. I 

EX 1019 Page 143

”N i Q l P \l / (S 1:“, \l Page 1 of l
an 2 4 2mm :3 ”

3‘3; t“6‘ C ’ t

‘c 4’) Ci“ 3,. \‘z « ‘- ‘3' 7*: {61‘
(5 v A”) UNTI‘ED bTATES PATENT AND TRAMRK OFFICEa. 
 

Conmrssronen‘ Foe Prams
UNITED STATES PATENT AND TRADEMARK OFFICE

winsnnsmn : c 2023:
www usptegov

M’PLICATION NUMBER FlLfNGfRSCElPT DATE FLRST NAB/QED APPLICANT ATTORNEY DOCKET NUMBER
 

091608266 06/3 0.72000 Hatg A. Sarkissian APPT—OO 1-4

FORMALITIES LETTER

00" Rosenfe'd lIlllilllllllllllllllllllllllllllllllllllllllillltlillilllllllllllllIllllllllllllilll
550? College Avenue mooooonooesamaoz‘Surte 2
Oakland, CA 94818

 

Date Mailed; 09/05/2000

NOTICE TO FILE MESSING PARTS OF NONPROVlSlONAL APPLlCATlON

FlLED UNDER 37 CFR1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below.
however, are missing. Applicant is given TWO MONTHS from the date of this Notice Within which to file all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1 136(a}.

o The statutory basic filing fee is missing.

Appiicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such states (37 CFR 127}

c The oath or declaration is missmg

A properly signed oath or declaration in compliance With 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

a To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR l 16(e)
of $130 for a non—small entity, must be submitted With the missmg items identified in this letter

. The balance due by applicant is S 820.

,e—U

Efifiéfis‘éiviéflhiér ’ ‘
Initial Patent Examination Division (703) 308-1202

PART 2 - COPY TO BE RETURNED WITH RESPONSE-I
.1 «HES-nMn ‘Mr '1‘ .."J.v._.‘.. ”V"  

)

f1]e://C:\APP8\PrcExamAcorrcspondenco\2flB‘xml ‘ 1 09/1/00“

EX 1019 Page 143

 
I



I \ ~. ~ ef./Dockei N~: APPT.(::/-4 ~ Pat}ecf:or / 4J 
i.· ~ ' "~, 'o:.}, IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 
f ~Pl. ft 

. 
: \ 

·. ' I 

~ 

f,fli .,,.,. ~cant(s): Sarkissian, et al. 
!•~~ 

Application No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATIVE CACHE STRUCTURE FOR 
LOOKUPS AND UPDATES OF FLOW 
RECORDS IN A NETWORK MONITOR 

Group Art Unit: 2731 

Examiner: (Unassigned) 

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION 

Assistant Commissioner for Patents 
Washington, D.C. 20231 
Attn: Box Missing Parts 

Dear Assistant Commissioner: 

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f). 
Enclosed is a copy of said Notice and the following documents and fees to complete the filing 
requirements of the above-identified application: 

_K_. Executed Declaration and Power of Attorney. The above-identified application is the 
same application which the inventor executed by signing the enclosed declaration; 

_K_. Executed Assignment with assignment cover sheet. 

_K_. A credit card payment form in the amount of$ 860.00 is attached, being for: 
_K_. Statutory basic filing fee: $ 690 
_K_. Additional claim fee of iQ 
_K_. Assignment recordation fee of $ 40 
_K_. Missing Parts Surcharge $130 

_K_.Applicant(s) believe(s) that no Extension of Time is required. However, this conditional 
petition is being made to provide for the possibility that applicant has inadvertently 
overlooked the need for a petition for an extension of time. 

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of: 

__ one months ($110) __ two months ($380) 

__ two months ($870) __ four months ($1360) 

If an additional extension of time is required, please consider this as a petition therefor. 

Certificate of Mailing under 37 CFR 1.8 
I hereby certify that this response is being deposited with the United States Postal Service as first, class mail in an 
envelope add~ssed to the Assistant Commissioner for Patents, ~~ahin~ on. ~ 

Date: a r W~ 2::9:::c5::Q Signed·---'-~ ..... . 
:;> 

Name: Dov Rosenfeld, Reg. No. 38687 

EX 1019 Page 144

 
u;
Su.

k. 

 
 
 

 
 

a. . .

8;, (m méfificanfls): Sarkrssran, et a1. Group Art Unit: 2731
V Application No: 09/608266

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDS IN A NETWORK MONITOR

Examiner: (Unassigned)

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CPR 1.53(f).

Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $ 860.00 is attached, being for:

X Statutory basic filing fee: 5 690

X Additional claim fee of 339

X Assignment recordation fee of £119

X Missing Parts Surcharge $130

X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

 

Certificate of Mailing under 37 CFR 1.8

Ihereby certify that this response is being deposited with the United States Postal Service as first’class mail in an

 
envelope addressed to the Assistant Commissioner for Patents, Washington, DC on.

Date: 62, t” MW Signed .
Name: Dov Rosenfeld, Reg. No. 38687
 
 

 
EX 1019 Page 144



b 
· Application 09/608266, Page 2 

_x_ The Commissioner is hereby authorized to charge payment of any missing fees associated 
with this communication or credit any overpayment to Deposit Account 
No. 50-0292 

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED): 

LO. l-~ 
.7 

Date 

Address for correspondence: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland, CA 94618 
Tel. (510) 547-3378; Fax: (510) 653-7992 

Respectfully Submitted, 

EX 1019 Page 145

Applicafion 09/608266, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

(26 A0 , 2% M
Date osenfeld, Reg. No. 38687

 

  
Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653—7992 
EX 1019 Page 145



,. 
,· 

' 

... Our Docket/Ref. No.: APPT-CJQ4 D Patent 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 
~ 

Applicant(s): Sarkissian et al. 

Serial No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATIVE CACHE 
STRUCTURE FOR LOOKUPS AND 
UPDATES OF FLOW RECORDS IN 
A NETWORK MONITOR 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: 2731 

Examiner: 

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

Transmitted herewith are: 

I"\) 

Ci 
c~ 
C) 

..1L An Information Disclosure Statement for the above referenced patent application, 
together with PTO form 1449 and a copy of each reference cited in form 1449 . 

..1L Return postcard. 

:x:,. 
-0 
:::0 

N 

,.._, 
= = 

X The commissioner is hereby authorized to charge payment of any missing fee associated 
with this communication or credit any overpayment to Deposit Account 50-0292. 

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED 

Date: ?re '1 ?-00 l 
/ 

Correspondence Address: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Telephone No.: +1-510-547-3378 

Respectfully submitted, 

t5ovRosenfeld 
Attorney/Agent for Applicant(s) 
Reg. No. 38687 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this correspondence is being deposited with the United States Postal Service as first 
class mail man envelope aclclres~ed to: Commissioner for Patents, Washington, D.C. 20231. 

RS 
=IF 

4-
tt-12-oi 

:::0 
fil 
0 
Pl 
< 
fT1 
0 

EX 1019 Page 146

‘(ii-

gam:d;;;:‘5’«t.a

w”gym“;“2.6,:aa.

.v’)~.:

’'tgfigWKA“e“w
rmd‘z.1

my“2
.,l'{v\

1"“It...

mo“.'‘
.t'w

.52.:‘93w.Ju‘.~

s«aw—we“.twain;

wmg(Mez'w‘ev.

6

Our Docket/Ref. No.1 APPT-0Q4 O Patent W 

[7269/
323

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 

 
 
 
 
 

 

Applicant(s): Sarkissian et al.

Serial No: 09/608266

Filed: June 30,2000

Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN

A NETWORK MONITOR

  
 
 

Group Art Unit: 2731 Lt-

Examiner:

non—rmnoneat. 1111122188? 03/113338
 

Commissioner for Patents

Washington. DC. 2023l

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

X Return postcard.

L The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Date: fgpfi q M]
Respectfully submitted,

0v Rosenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

 

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1—510-547-3378

Certificate of Mailing under 37 CFR 1.18

i hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date ol Deposit _. _

S l gn atunc.
. (an, Reg. No. 38,687.0-
 

EX 1019 Page 146



0 
Our Docket/Ref. No.: APPT-001-4 

0 
Patent 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Sarkissian et al. 

Serial No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATIVE CACHE 
STRUCTURE FOR LOOKUPS AND 
UPDATES OF FLOW RECORDS IN 
A NETWORK MONITOR 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: 2731 

Examiner: 

INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

This Information Disclosure Statement is submitted: 

l under 37 CFR l.97(b), or 

-I 
C":) 

N 
u) 
0 
0 

r 
;o 
CJ 
0 
:l: 

:x:,.. 
-0 
::::Q 

N 

~ 
c:::, 
c:::, 

(Within three months of filing national application; or date of entry of international 
application; or before mailing date of first office action on the merits; whichever 
occurs last) 

under 37 CFR l.97(c) together with either a: 
_ Certification under 37 CFR l.97(e), or 
_ a $180.00 fee under 37 CFR l.17(p) 
(After the CFR 1. 97(b) time period, but before final action or notice of 
allowance, whichever occurs first) 

under 37 CFR l.97(d) together with a: 
Certification under 37 CFR l.97(e), and 

_ a petition under 37 CFR l.97(d)(2)(ii), and 
_ a $130.00 petition fee set forth in 37 CFR 1.17(i)(l). 
(Filed after final action or notice of allowance, whichever occurs first, but before 
payment of the issue fee) 

:::0 
fT1 
(") 
fT1 
-< 
Pl 
0 

_x_ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together 
with copies, of patents, publications or other information of which applicant(s) are aware, which 
applicant(s) believe(s) may be material to the examination of this application and for which there 
may be a duty to disclose in accordance with 37 CFR 1.56. 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this correspondence is being deposited with the United States Postal Service as first 
class mail in an envelope addressed to: Commissioner for Patents, Washingtpn, D.C. 20231. 

EX 1019 Page 147

* O O
Our DocketfRef. No: APPT-001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

  
 

Applicant(s): Sarkissian et 211.

Serial No: 09/608266

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN

A NETWORK MONITOR

 
Group Art Unit: 2731

Examiner:

  meant-m00923 H.182218d? 0309033
 
Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever
occurs last)

under 37 CFR 197(0) together with either a:

Certification under 37 CFR 1.97(e), or

: a $180.00 fee under 37 CFR 1.17(p)
(After the CFR l.97(b) time period, but before final action or notice of
allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

__ Certification under 37 CFR 197(6), and

a petition under 37 CPR l.97(d)(2)(ii), and

.___ a $130.00 petition fee set forth in 37 CFR l.l7(i)(l).

(Filed after final action or notice of allowance, whichever occurs first, but before

payment of the issue fee)

 
X Applicant(s) submit herewith Form PTO l449-Inforrnation Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC, 20231‘

DateofDeposu:Ml
Signature.

. eld, Reg No. 38,687
 
 

EX 1019 Page 147



., ' 
SIN: 09/608266 Page 2 IDS 

_x___ Some of the references were cited in a search report from a foreign patent office in a 
counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED 
were cited in a search report from a foreign patent office in a counterpart foreign application. 

It is expressly requested that the cited information be made of record in the application and 
appear among the "references cited" on any patent to issue therefrom. 

As provided for by 37 CFR L97(g) and (h), no inference should be made that the information and 
references cited are prior art merely because they are in this statement and no representation is 
being made that a search has been conducted or that this statement encompasses all the possible 
relevant information. 

Date: ftr r q ;i.e-o t 
/ 

Correspondence Address: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland, CA 94618 
Telephone No.: + 1-510-547-3378 

Respectfully submitted, 

4TovRosenfeld 
Attorney/Agent for Applicant(s) 
Reg. No. 38687 

EX 1019 Page 148

(V O
SIN: 09/608266 Page 2 DS

X Some of the references were citedin a search report from a foreign patent officein a

counterpart foreign application. In particular, references AD, AF AH CI BA, BB EC, and ED

isere citedin a search report from a foreign patent officein a counterpart foreign application

It is expressly requested that the cited information be made of record in the application and

appear among the “references Cited” on any patent to issue therefrom.

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

Date: E1» q 2901

%ov Rosenfeld

Attomey/Agent for Applicant(s)

Reg No. 38687

Correspondence Address:
Dov Rosenfeld

550'? College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378 
EX 1019 Page 148



, et al.FORM -1449 __________ 
1 

't r ' • l / 
r' 
~ 
t 
~ 

ATTY. DOCKET NO. 

APPT-001-4 

§ 
INFORMATION DISCLOSURE STATEMENT APPLICANT 

Sarkissian et al. 

;/6\l-'EC~ 
1

. . v; ~ se several sheets if necessary) 

A\n 1 1 ?nn1 
C •• ~ 

I.~- n.fc~ 
~ 17'RNJE~~ V 

;: ~AMINER DOCUMENT DATE 

INITIAL NUMBER 

f 
' ) 

14736320 Apr. 5, 
;-i.v AA 

1988 

AB 
4891639 Jan. 2 I 

Ar' 1990 

4-..., AC 
5101402 Mar. 31, 

992 

AD 
5247517 '3ep. 21, 

~ L993 

/>, ... AE 
5247693 Sep. 21, 

1993 

A-,.. AF 
;5315580 May 24, 

1994 

"- AG 
p339268 iAug. 16, 

1994 
15351243 Sep. 27, 

,,._,/ AH 
1994 

IV 
5365514 !Nov. 15, 

Al 
1994 

Ar 
15375070 Dec. 20, 

AJ 
1994 

;...- 15394394 Feb. 28, 
AK 

1995 

FILING DATE 

6/30/2000 

U.S. PATENT DOCUMENTS 

NAME 

. 
Bristol 

Nakam~ra 

Ghui et al. 

1Ross et al. 

IBrist:ol 

Phaal 

IMach~da 

Kalkun,te et . .al. 

Hershey et al. 

Hershey at al. 

Crowt~er et al. 

FOREIGN PATENT DOCUMENTS 

PUBLl·CATION 

DOCUMENT DATE COUNTRY 

NUMBER 

=l 
AN 

1----- SHEET 1 OF 5 . 
\:i,_·-.------~---. 

SERIAL NO. 

09/608266 

GROUP 

~ .--?/-A·-;2.---~ -

FILING DATE 

CLASS SUB-CLASS IF APPROPRIATE 

364 300 Oct. 8, 
1985 

340 825.500 Jun. 23, 
1988 

-~~ il,.,2... May 24, 
1988 

370 85.5 Sep. 2 I 

1992 

395 800 Nov. 17, 
1992 

3-'ffi- ti Aug. 26, 
1991 

365 49 !Nov. 24 I 

1992 
13.:;z.Q-~ Dec. 27, 

1991 
3-%- tt- Mar. l, 

~ 3~ 

l, 

-3-'i'it- 24, 

TRANS-

CLASS SUB-CLASS LATION 

YES I NO 

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

"Technical Note: the Narus System," Downloaded April 29, 1999 
AR www.narus.com, Narus Corporation, Redwood City California. 

AS 

fr~ 
("") 

I'\.) 
VJ 
C; 
c._, 
-. 
.,.__ -

EXAMINER 

4 
~ DATE CONSIDERED 

1/·1-/.,<;, 
'EXAMINER: initial if c1tat1on<fons1dered, whether or not c,tat,on ,s in confonnance with MPEP 609. Draw hne through citation 1f not in confonnance 

and not considered Include a copy of this fonn with next commumcat1on to Applicant. 

b,. 

-0 
:::c, -N 

= 
rij 
CJ 

EX 1019 Page 149

~I.MW:r¢~£v-r"&p’*'
m»w

.,.IMum”:4,.~

“WA-Wmhw.‘-I»

A<»www.mr.WMMHI.

"V‘fi‘NWWIa-wwvw«.1.‘wowwm

p  

EIBQEURM'MW » fl ”Hm SHEET 1 OF 5.
ATTY. DOCKET NO.

APPT- 00 1- 4
 

SEREALNOA

09/608266
 

  
 INFORMATION DISCLOSURE STATEMENT

01‘? E

 
  
  
 

APPLICANT

Sarkissian et a1.
 

or 55 severe! sheets if necessary) FILING DATE
6/30/2000
 

  

 
  
 

 

U.S. PATENT DOCUMENTS
 

 
 

  
 

 

 
W“? "I” FILING DATE- AMINER DOCUMENT IFAPPROPRIATE

INITIAL NUMBER

Ct. 8
1985

. Jun. 2
1988

I ay 24
1988

AA 4736320 pr. 5, ristol 364 ,
’7'” 1988

- 3'

Sep. 2,
1992

. 7,

891639 an. 2, Iakamura 40
W

5101402 Iar. 31, hui et al.

300

825 500

flu,
AD 5247517 Sep. 21, 'st get: 511. 370 85.5

1%.. 1993

A:- A5 5247693 Step. 21, Pristol 395 800 Iov 11993 1992

AF '

   
  
 
  

 

5315580 lay 24 Phaal 3'90" 953 mg. 26.
A." 1994 1991

- Iachida 365 49 Iov. 24,
[w

351243 Sep Kalkunte et. .al. " Dec. 7,
1,-_ n-

5365514

 
2

ar. 1

W 1993

M 375070 Dec. 20. Iershey at: al. 364 5 ar. 1,
A" 1994 1993

394394 Feb. 28, rowther at al. . un. 24.,1,, — l 9 9 3

FOREIGN PATENT DOCUMENTS

fili
U1 0

PUBLICATION TRA NS~
DOCUMENT

NUMBER
COUNTRY CLASS SUB-CLASS LATKON YES 1 NO

n ‘-

  
OTHER DISCLOSURES (Including Author. Title. Date. Peninent Pages. Piece of Publication, Etc.)

"Technical Note: the Narus Sygtem," Qom1oaded April 29, 1999 frcgg
w.narus.com, Narus Corporatlon, Reawoocx Clty California. (.3

  
I
; EXAMNER DATE CONSIDERED

1 Ma mmII  
‘EXAMJNER: initial it cItaIIorI consmiered. whether 0! 001011390“ '3 "1 conformance With MPEP 509. Dtaw Ime through citation If no! in conformer:

Q
m.

and 95;; considered lnciude a copy of [has iorm with next communIcaIIon to AppucamA  

EX 1019 Page 149



• ft a/.PORM -1449 ----------1.. t---~~SHEET~2_0F~5_. 

ATTY. DOCKET NO. SERIAL NO 

APPT-001 4 09/608266 

INFORMATION DISCLOSURE STATEMENT APPLICANT 

Sarkissian et al. 

~ ;~al sheets if necessary) FILING DATE 
GR~ l~S 6/30/2000 

., ~/2"2-
\ot, -

j 4PR 'L 1 ?001 'l, ) U.S. PATENT DOCUMENTS 

, 
FILING DATE 

~R 
~UMENT DATE NAME CLASS SUB·CLASS IF APPROPRIATE .. NUMBER 

~ - 5414650 wfay 9, Hekhuis 364 715. 02 IMar. 24, Prf' BA 
1995 1993 

BB 
p430709 P-ul. 4' !Galloway ~- ~ Jun. 17, 

~ 1995 1992 

J1,u BC 
p432776 Jul. 11, Harper ~ N" Sep. 30, 

1995 1993 

Ir' 
5493689 Feb. 20, Waclawsky et al. 395 821 Mar. 1, 

BD 
1996 1993 

5500855 Mar. 19, IHers et al. ~ .:~ Jan. 26, 
~ BE 

1996 1994 
5568471 Oct. 22, Hershey et al. ~ ~ Sep. 6' 

/frY BF 
1996 1995 

~ BG 
5574875 Nov. 12, Stansfield et al. 395 403 ~ar. 12, 

1996 1993 

/rl-' 
5586266 !Dec. 17, Hershey et al. 395 200.11 Oct. 15, 

BH 
1996 1993 

~ 
5606668 Feb. 25, Shwed 395 200.11 !Dec. 15, 

Bl 
1997 1993 

5608662 m· .. Large et al. 364 724.01 Jan. 12, 
kt-- BJ 

7 1995 
5634009 27, Iddon et al. 395 200 .11 Oct. 27, 

~ BK 
7 1995 

FOREIGN PATENT DOCUMENTS 

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

BM 

BN 

OTHER DISCLOSURES (Including Author, Title, Date. Pertinent Pages, Place of Publication, Etc.) 

("") 

BR f\.) 
::::0 er, ;r,,, 

C -0 l"'Tl 
c, -- I. J - rn 3. N as J:·· < - ~ fTl r-

EXAMINER DATE CONSIDERED ;:::r.J = CJ 

,~fir r/t-(03,. 
0 

a 0 
:£: 

'EXAMINER initial if citation ~nsidered, whether or not citation 1s in conformance with MPEP 609. Draw line through citation if not in conformance 

and not considered. Include a copy of this form with next communication to Applicant 

EX 1019 Page 150



Et a/.rORM • 1449 ~\n~ () SHEET 3 
/ - ... 

vol.ii~ 
. 

( ,• 

"FR 11 200\ ~) 
ATTY. DOCKET NO. SERIAL NO. 

I APPT-001-4 09/608266 

!< 
INFORMATION DISC~ RE STATEM APPLICANT 

00' ~~._..~ Sarkissian et al. 

(Use several sheets if necessary) FILING DATE GROUP 

6/30/2000 ~i·r 
U.S. PATENT DOCUMENTS 

FILING DATE 

'EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF BPPROPR/BTE 

INITIAL NUMBER 

,4r CA 
15651002 Jul. 22, Van Seters et all. 370 392 Jul. 12, 

1997 1995 

kv' CB 
5684954 iNov. 4, Kaiserswerth et al. 395 200.2 ri:;3 20, 

1997 

24~el E:t ~l. cc )732213 Mar. 395 200.11 Mar. 22, 
l(V 1998 1996 

p CD 15740355 ~pr. 14, jatanabe et al. 395 183.21 ~un. 4, 
1998 1996 

k,J CE 
5761424 Jun. 2, (Adams et al. 395 200.47 Dec. 29, 

1998 1995 

~ CF 
5764638 P'un. 9, Ketchum 370 401 !Sep. 14, 

1998 95 

CG 
~781735 Jul. 14, So:uthard 395 200.54 , 

)('r" 1998 

Ar-' 15784298 Jul. 21, !Hershey et al. 364 557 1. 11, 
CH 

1998 
. 

96 

w Cf 
15787253 Jul. 28, Mccreery et al. 395 200.61 y 28, 

1998 96 

I\-+/ 
805808 Sep. 8' Hansani et al. 395 200.2 9, 

1998 1997 

;v 15812529 Sep. 22, Czarnik et al. 370 245 !Nov. 12, 
CK 

1998 1996 

FOREIGN PATENT DOCUMENTS 

PUBLI-CATJON TRANS· 

DOCUMENT DATE COUNTRY CLASS SUB.CLASS LATION 

NUMBER YES I NO 

CM 

CN 

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

CR 
-I 
('"", 

I'\.) 

cs O') ):!,a ;:o 
C) -0 rr, 
C :::tJ r'"'\ 
3: - n, 

EXAMINER DATE CONSIDERED l> - -
~ ~ f/,z,( o'!, 

-- I'-.) < 
' c::, fil ::0 c::::, 
r, - 0 

'EXAMINER m1t1al 1f cltatmn considered. whether or not citation is in conformance with MPEP 609 Draw line through c1tat1on 1f not in conto,9nce 

and not considered. Include a copy of this form with next communicat,on to Applicant. 
<' - -

t 
EX 1019 Page 151



, Et al.FORM -1449 __________ ,. 
1 
_______________ , __ ·---- SHEET 4 OF 5. 

ATIY. DOCKET NO. SERIAL NO 

APPT-001 4 09/608266 

INFORMATION DISCLOSURE STATEMENT APPLICANT 

OI JJ E 
Sarkissian et al. 

·" 
,- (Use several she 1ecessary) FILING DATE GROUP 

j ) 6/30/2000 ~ 
APR 11 2001 ::;%,.h ·2,,, 

~'k. 
flqi ~. 

U.S. PATENT DOCUMENTS 

"""-J ~~.-fkp•;., .... FILING DATE 

·EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF BPPROPRIBTc 

INITIAL NUMBER 

DA 
5819028 Oct. 6, :Manghirmalani et al. 395 185.1 iA.pr. 16, 

fi-r' 1998 1997 

j+,.J DB 
5825774 Oct. 20, Ready et al. 370 401 P-ul. 12, 

1998 1995 

kl 
5835726 Nov. 10, IShwed et al. 395 200.59 Jun. 17, 

DC 
1998 1996 

Irr 
5838919 Nov. 17, Schwaller et al. 395 200.54 Sep. 10, 

DD 
1998 1996 

/>Y DE 
5841895 Nov. 24, !Huffman 382 155 :)ct. 25, 

1998 1996 

AV OF 
5850386 Dec. 15, Anderson et al. 370 1241 Nov. 1, 

1998 ' 396 

A.N 5850388 !Dec. 15, Anderson et al. 370 
252 :tt 31, 

DG 
1998 - l96 

/J-y DH 
l:;862335 f]"an. 19, oife~ch, Jr. et al. 395 200.54 pr. 1, 

1999 1993 

kt-./ 
0878420 ~ar. 2, de_la Salle 707 10 Oct. 29, 

DI 
1999 1997 

At- DJ 
5893155 Apr. 6, C:hfriton 711 144 !Dec. 3, 

1999 1996 

ft\.../ DK 
5903754 ri:~ 11, 

Pearson 395 680 INov. 14, 
9 1997 

FOREIGN PATENT DOCUMENTS 

PUBU-CA TION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

OM 

ON 

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) --f 
r-. 

N 
DR m ;c.. :::::0 

C -0 fT1 
C. :.::0 n 
-,., ril -1, N 
)> < DS I"'-.) 

c:;:, [Tl 
<:::> r, - -= 

EXAMINER 

t)h ~ 
DATE CONSIDERED ..... 

r/'l-(o7 
~ 

"EXAMINER· mitlal if c1tat1on consid:red. whether or not c1tat1on is in conformance with MPEP 609. Draw line through citation 11 not in conformance 

and not considered. Include a copy of this form with next communication to Applicant. 

EX 1019 Page 152

 
 'IsraIFORM'WQ fl () SHEET 4 or: 5,

 
 
 
 

ATTY‘DOCKETNO.
APPT—OOl—4  

 

  
 
 

  

 
 
 
 
 

 
 
 

SEFHAL NO

09/608266

 

 

INFORMAUONINSCLOSURESTATEMENT
 

APPUCANT

Barkissian et a1.

 
HUNGDATE

6/30/2000

U.S. PATENT DOCUMENTS

 
  
 

  
 
 

 

 
 

'EXAWNER DOCUMENT
SNITIAL NUMBER

9028 Oct. 6, anghirmalani er. a1.

,4?" 1998

u

 
 

 
  

  
  

 

401\J c:
H WC now {II-

P.) L\

835726 Iov. 10, Shwed et al. 395 200059 un. 17,
W 1998 1996

1998 ' 1996

1998 *

'8flB86 Dec. 15, ‘nderson et a1. 0 24: 'ov. 1,

«-
5850388 . nderson et al. 370 252 ct. 31,

AN 06

‘ 1993

1999 1997

1999 1996

903754 I ay 11, Pearson 395 680 .
--—--

FOREIGN PATENT DOCUMENTS

PUBLICATION
DOCUMENT DATE COUNTRY CLASS SUBvCLASS

NUMBFR

OTHER DISCLOSURES (Including Author. Title, Date, Pertinent Pages. Place of Pubiication, Etc.) .4

DA 581

825774 Oct. 20, ’eady et a1. 3
---—

ac

DD 

 
Lu

23:

u.) \Ino
N H U1 Ln

6-4H6 LoKiln L0LOFT mow.
N U1

 

  

 3‘?
b)

O\O

  

 
ALJ

 

 
 

  
 

  

 

EXAMINER DATE CONSIDERED
 

 

  

o

'EXAMINEH' mm: if catahon considered. whether or not matron is in cunformance with MPEP 609. Dtaw Iine through citation it not in conformance
and not considered. |ncluds a copy of this term With nex! communscation to Applicant.

  

EX 1019 Page 152



Et al.FORM· 1449 ----------\. ,,-~~~SHEET~5_0F~5_. 

ATIY. DOCKET NO. SERIAL NO. 

APPT-001-4 09/608266 

INFORMATION DISCLOSURE STATEMENT APPLICANT 

Sarkissian et al. 
o\ \J E 

(Use severaHt[i ts if necessary) FILING DATE GROUP ,· ,, 
I 

6/30/2000 
~~· I ·""~ '\ '\ ?00\ ~-?-

l "' ... 

"' 
-

~ 
U.S. PATENT DOCUMENTS 

~ !r.1.- ...• , ........ 
FILING DATE .,. 

'EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF 8PPROPRIBTE 

INITIAL NUMBER 

A-11 EA 
15917821 Jun. 29, K:;obuyan et al. 370 392 IAug. 16, 

1999 1996 

kr EB 
5414704 IMay 9, Spinney ~· ·6-& Apr. 5, 

1995 1994 

Ir< EC 
6014380 P'an 11, !Hendel et al. 370 392 Jun. 30, 

2000 1997 

11-J ED 
5511215 IApr. 23, iTerasaka et al. 395 800 Oct. 26, 

1996 1993 

EE 

ff 

EG 

EH 

El 

EJ 

I EK 

FOREIGN PATENT DOCUMENTS 

PUBLl·CATION TRANS· 

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

OM 

ON 

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

DR 

OS 

j 
EXAMINER ar DATE CONSIDERED 

r 1~1c) > 
C 

'EXAMINER: ,rnt,al if citation considered, whether or not citation is m confonnance with MPEP 609. Draw line through citation if not In confonnance 

and not considered. Include a copy of this form with next communication to Applicant. 

EX 1019 Page 153



' f 

r 
I .' 
,_/ 

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lffl 11111 Hiil 111111111111 

United States Patent [19] 

Gobuyan et al. 

[54] LOOK-UP ENGINE FOR PACKET-BASED 
NETWORK 

[75] Inventors: Jerome Gobuyan, Kanata; Wayne 
Burwell, Ottawa; Nutan Behki, 
Nepean, all of Canada 

[73] Assignee: Newbridge Networks Corporation, 
Kanata, Canada 

[21] Appl. No.: 08/663,263 

[22] PCT Filed: Dec. 21, 1994 

[86] PCT No.: PCT/CA94/00695 

§ 371 Date: Aug.16, 1996 

§ 102(e) Date: Aug. 16, 1996 

[87] PCT Pub. No.: WO!lS/18497 

PCT Pub. Date: Jul. 6, 1995 

[30] Foreign Application Priority Data 

Dec. 24, 1993 [GB] United Kingdom ................... 9326476 

[51] Int. Cl.
6 

·············-······-········-··················· B04L 12/46 
[52] U.S. Cl. ····-···················-····--··-······ 370/392; 370/401 
[58] Field of Search ···-·-··········-····-····-···· 370/392, 395, 

370/400, 401-405, 465, 466, 351, 389, 
396, 3'l7, 474; 395/200.68 

US005917821A 

[111 Patent Number: 

[45] Date of Patent: 

5,917,821 
Jun. 29, 1999 

[56] References Cited 

U.S. PATENT DOCUMENTS 

5,095,480 3/1992 Fenner .................................... 370/238 
5,463,777 10/1995 Bialkowski et al. ············-······ 370/256 

Primary Examiner-Chau Nguyen 
Attorney, Agent, or Firm-Marks & Clerk 

[57] ABSTRACT 

An arrangement is disclosed for parsing packets in a packet
based data transmission network. The packets include 
packet headers divided into fields having values representing 
information pertaining to the packet. The arrangement 
includes an input ·receiving fields fuim the packet headers of 
incoming packets, a.memory for storing information related 
to possible values of said fields, and a device for retrieving 
the stored information appropriate to a received field value. 
The retrieving device comprises a look-up cngine•including 
at least ,one · memory organized in a hierarchical tree 
structure, and a controller for controlling the operation of the 
memory. The arrangement is capable of performing fast 
look-up operations at a low cost of implementation. 

29 Claims, 11 Drawing Sheets 

DESTINATION ADDRESS LOOKUP ENGINE~ · 

1 
DESTINATION ADDRESS 5 DALE 
LOOKUP CONTROLLER ..._~ RAM 

-£12Kx.HL 

\ 

./6 

AXE 
Input 9 Output to AXE 

LOOKUP ENGINE 
1/F CONTROLLER Output to RAM µCODE Reassembler 32x32 4 RAM DALE 

8Kx32 RAM 12 Reassembler 128K X 16 
Input 10 

7-

2 SOURCE ADDRESS SALE 8 
LOOKUP CONTROLLER RAM 

512K X 16 

SOURCE ADDRESS LOOKUP ENGINE 

EX 1019 Page 154

I I". '3

f x -‘ V l|||||||||||l|IllllllllllllllllllllllIllllllllllllllllll||||l|||||||l|l||l

  I USOOS917821A

. 1 United States Patent [19] [11] Patent Number: 5,917,821

Gobnyan et al. [45] Date of Patent: Jun. 29, 1999

[54] LOOK-UP ENGINE FOR PACKET-BASED [56] Refflences Cited
NETWORK

[75] Inventors: Jerome Gobuynn, Kanata; Wayne U'S' PATENT DOC NTS
Burwell, Ottawa; Numn Behki, 5,095,480 3/1992 Fenncr ................................... 370/238
Nepcan, all of Canada 5,463,777 10/1995 Bialkowski et al. ................... 370%

[73] Assignec: Newbridge Networks Corporation,
Kanata, Canada Primary Examiner—Chan Nguyen

[21] APPI- No.: 08/663,263 Attorney, Agent, or Firm—Marks & Clerk

[22] PCT Filed: Dec. 21, 1994 [57] ABSTRACT

[86] PCT No.: PCT/CA94/00695 An arrangement is disclosed for parsing packets in a packet-
based data transmission network. The packets include371 D : A . 16 996

§ ate “g ’ 1 packet headers divided into fields having values representing
§ 102(3) Date: Aug. 16, 1996 information pertaining to the packet. The arrangement

[87] PCT Pub. No.: w095/18497 includes an input receiving fields from the packet headers ofincoming packets, a:memory for storing information related
PCT Pub. Date: Jul- 6; 1995 to possible values of said fields, and a device for retrieving

[30] Foreign Appllmtion Priority Data the stored information appropriate to a received field value.The retnevmg dev1ce comprises a look-up engine'including
Dee. 24, 1993 [GB] United Kingdom 9326476 at least one , memory organized in a hierarchical tree

I [51] Int. CI.‘5 Lu--- HML 12/46 slmctum and aconlmller for controlling the Operation of the
; [52] U.8. Cl. ................... 370/392; 370I401 memory. The arrangement is capable of performing fast

 

 

[58] Field at Search W-.-.......M....-.:.-.... 370/392, 395, 1°°k'“P "P“a‘ions 3‘ a 10W “’5‘ 0f imPleem‘im
370/400, 401—405, 465, 466, 351, 389,

396, 397, 474; 395200.68 29 Claims 11 Drawing Sheets

DESTINATION ADDRESS LOOKUP ENGINE

DESTINAT];%N AWL? I!“ I
LOOKUP NTR I6121mmI

AXE 11

 
 

 
 

 

 
“‘9‘” I LO0KUP ENGINE Output to AXE

CONTROLLER Output to
E ”CODE Reassembler

 
  
 

4 DALE
RAM

128Kx16

 

Reassembler

Input
  

 
 SALE

RAM

512K x 16
  

  
 

SOURCE ADDRESS LOOKUP ENGINE = 77»

EX 1019 Page 154



U.S. Patent Jun.29,1999 Sheet 1 of 11 5,917,821 

100 101 102 103 104 

Dest Source Net Layer Protocol Type NL Dest NL Source 
Address Address Address Address 

Tree 
Search 

Tree Microcode Tree 
Search Comparisons Search 

FIG. 1 

Tree 
Search 

1 ,------.....---~.----------- ......... To ATM 
16 17 

Quad 
MAC LUE 

FIG. 2 ------------From ATM 

DESTINATION ADDRESS LOOKUP ENGINE 

DESTINATION ADDRESS 5 DALE 6 
1 LOOKUP CONTROLLER RAM 

512K x 16 

AXE 11 

Input ~ Output to AXE 
LOOKUP ENGINE 

UF CONTROLLER 
RAM µCODE 32x32 RAM 4 DALE 

8Kx32 RAM Reassembler 128K x 16 Input 
7 

2 SOURCE ADDRESS SALE 8 
LOOKUP CONTROLLER RAM 

FIG. 3 512K X 16 

SOURCE ADDRESS LOOKUP ENGINE 

EX 1019 Page 155

US. Patent Jun. 29, 1999 Sheet 1 of 11 5,917,821

   
100 101 102 103 104

Best Source NL Desi NL Source

Tree Tree Microcode Tree Tree

Search Search Comparisons Search Search

FIG. 1

To ATM

From ATM 
 
  

 

 
 
 

DALE

RAM

 
  
  
 

1 512Kx16
TAXE‘I 35!?n u ‘ - FtFD I Lgngg ENE? 0N X 18 “Output '[0 AXE

alga 000120”; FIFONX18 R0utputge'1 eassem er

32x32 82"“324-199Reassembler x .28er6 2
input 7 10

H

2 everrrrrreea a
FIG 3 LOOKUP 512mm 

SOURCE ADDRESS LOOKUP ENGINE

EX 1019 Page 155



- , , 

l 

J 

U.S. Patent Jun.29,1999 Sheet 2 of 11 5,917,821 

2 
SIB RAM 

SIB DATA BUS OUT SIB DATA BUS IN SIB ADDRESS BUS 

TO/FROM 
SALE, DALE 

IMPORT 
PORT 

FIG. 4 

21 
INTERFACE RAM 

INTERFACE DATA BUS IN INTERFACE ADDRESS BUS 

25 

DATA REGISTER 

µCODE ADDRESS BUS µCODE DATA BUS IN µCODE DATA BUS OUT 

MICROCODE RAM 

EX 1019 Page 156

US. Patent Jun. 29, 1999 Sheet 2 of 11 5,917,821

20

21

518 RAM

318 DATA BUS OUT SIB DATA BUS IN 818 ADDRESS BUS

INTERFACE RAM

INTERFACE DATA BUS IN INTERFACE ADDRESS BUS

 
NIBBLE INDEX

DATA REGISTER 26

CANADIAN CODE 
new
In. ‘

TOIFRDM

SALE‘ DALE DCODE ADDRESS BUS DCDDE DATA BUS TN pCDDE DATA BUS GUT

MICRDCDDE RAM

FIG. 4

 
i
1t
1x

EX 1019 Page 156



1' 

U.S. Patent 

Reassembler 
Input 

2 

7 

Jun.29,1999 Sheet 3 of 11 

DESTINATION ADDRESS LOOKUP ENGINE 

DESTINATION ADDRESS 5 DALE 
LOOKUP CONTROLLER 14---t RAM 

512Kx 16 

1/F RAM 
64x 16 21 

LOOKUP ENGINE 
CONTROLLER 

µCODE RAM 
4 8Kx32 

3 

.--------

DALE 
RAM 

128Kx 16 

SOURCE ADDRESS SALE 
LOOKUPCONTROLLER ..... ---i RAM 

512K X 16 

SOURCE ADDRESS LOOKUP ENGINE 

FIG. 5 

5,917,821 

1 

6 

11 

Output to AXE 

8 

EX 1019 Page 157

US. Patent Jun. 29, 1999 Sheet 3 of 11 5,917,821

  

 
 

 

AXE 1

Input44 DESTINATIONADDRESSLOOKUPENGINE
_ DESTINATION ADDRESS DALE 6

LOOKUP CONTROLLER RAM

I 512Kx16
42

I IIFHAM11
-“F°”""‘ 64““ OututtoAXE

4 43 LOOKUP ENGINE P
I CONTROLLER FONX18 OutputtO

323” LATCH 4 “ME Reassemb er.RQMR 1228 x
Reassembler 10

Input 2 RAM- RR II aLOOKUPC LL 51mm

SOURCE ADDRESS LOOKUP ENGINE

7

FIG. 5

 
5

i
t
i

EX 1019 Page 157



U.S. Patent Jun.29,1999 Sheet 4 of 11 5,917,821 

20 6 8 ~-------, 
SIB RAM SALE RAM DALE RAM 

AND RESULTFIFOS SALE SALE DALE DALE 
SIB 0(15:0) SIB A(3:0} SIB A(19:4) AD(19:4} A(3:0} AD(19:4) A(3:0) 

23 

LOOKUP POINTERS 

ALE RESU T BUS 

51 

MFDATABUS 

LOGIC UNIT DATA BUS 

MICROCODE PARAMETER BUS 

52 

42,43 
SNOOPAFOS 

MF 0(16:0) 

RAM D(15:0) 

21 

.-----"-L-LOAO 
INDEX POINTER t1 ..._ __ _,___t2 

CHECKSUM 
OK 

50 

LEGE 

OPCODE DIAP PARAMETER 

R 

INSTRUCTION 
REGISTER 

µ.CODE A{11 :O} µCODE 0(31 :0) 

MICROCODE RAM 

FIG. 6 

EX 1019 Page 158

US. Patent Jun. 29, 1999 Sheet 4 of 11 5,917,821

20 8 6 42, 43

SIB RAM SALE RAM DALE RAM snoop nms
AND RESULTHFOS SALE SALE DALE DALE

31300510) 818331)) SIBA(19:4) AD(19:4} AM) A0094) M33} MFDUEIO)

p ll X2
lNTERFACERAM

NIBBLEHAM

RAM M1510) RAM M49) 

  
 
 

INDEX FUENTER U30
+2

50

LEGE

CHECKSUM
ENGINE 

INSIRUWON
REGiSTER

l h 3“ ”COMM? MODE 0(31 :0)
SPIN ‘
FUNC MICRDCODE RAM

Wm...m~vmm—ytwwwdw“
EX 1019 Page 158



~ ' 

~ U.S. Patent 5,917,821 ( Jun. 29, 1999 Sheet S of 11 t 

"' 
'.· SALE/DALE BIT 19-4 BIT3-0 ADDRESS 

POINTER NIBBLE INDEX (n) 

DALE RAM DALE RAM 
512Kx 16 512Kx16 

"-6 
8 

8000 n~FFFn 
{ 

. 
FIG. 7 1 

POINTER ARRAY (MSB = 1) NEXT POINTER ARRAY POINTER (19-0) 

~Pl POINTER OR DATA I NIBBLE INDEX I 

16x 16 

POINTER ARRAY {MSB = 1) SIB (MSB=O} --
/ FIG. 8 

16x16 16x16 

' 

1 
EX 1019 Page 159

U.S. Patent Jun. 29, 1999 Sheet 5 of 11 5,917,821

POINTER NIBBLE iNDEX (n)

 

  
 
 

DALE RAM
512K x 16

DALE RAM

51 2K x 16

8000 n-FFFF n 8000 n-FFFF n

FIG. 7

- .‘ifiéfifiw $4. W
 

SlBRAMfZM
0000n-01FFn

P0075WWMSB=0 NEXT PMMIERARRAYPMMIER (190)
-'E POWER OR DATA NIBBLE iNDEX

  FIG. 8

16x16 15X16

 
EX 1019 Page 159



.~ 
t 

. r I 

1' 

t 
;. U.S. Patent 
', 

" ,, 
; 

Jun. 29, 1999 Sheet 6 of 11 

MAC ADDRESS TREE • EXAMPLE $00BFC2865739 

ROOTPOINTER---------1~
NIBBLE 1 =$0 

NIBBLE2=$0 

NIBBLE3=$8 
....,c:;;:::.i::;.r,..,<,..<,"".,I 

NIBBLE 4 = $F JnlL,ll.,.jlL.IL.IL.ILJ_!a 

NIBBLE 5 = $C ~~~~~LIU':::~~~ 

NIBBLE6 =$2 

NIBBLE7 =$8 

NIBBLE8=$6 

NIBBLES =$5 

NIBBLE 10 = $7 
NIBBLE11 =$3 

NIBBLE 12 = $9 
afffioadi:1ao~ma'tiffila 

SIB 

FIG. 10 

5,917,821 

FIG. 9 

EX 1019 Page 160

US. Patent Jun. 29, 1999 Sheet 6 of 11 5,917,821

MAC ADDRESS TREE - EXAMPLE $ODBF82865739

ROOT POINTER _____._.__>

 

NIBBLE1 = $0 III/(4»! I I I>l\}\Il l

MBBLEZ=$0 '/' \\ .4}. _/1\_‘14_\.
IIIIIIIIIIIIIII ‘4‘}. .4}.

NIBBLE3=$3 II/I/I/-‘III‘ .....ALA}. "1.3.1“
NIBBLE4= 5F. .“. // \u.. "4/1. JAN. .4}.

I‘ll-IIIIIIIIIIII .{4I4LIAI
NIBBLE5= $6 .4“. .4“. .A}. // \\
NIBBLE6 =$2 .17}. :17}. :1:7:/I I I I I
NIBBE7:$8 l-Il’I/r/+-\l\l\--I-II\4:}\-III4‘II‘I
NIBBLE8:$6 Ill-I‘ll////I/I I I I I:+\I-II I I\I}I\ .ll‘}.“:4":I"
NIBBLE9=$5 .III?I"\-IIII llr‘I
NIBBLE10=$7 14w"  

   NIBBLE11= $3 A/ ,

NIBBLE12= $9// - \

SIB

ROOT POINTER  
EX 1019 Page 160



U.S. Patent Jun. 29, 1999 Sheet 7 of 11 5,917,821 

SOURCE ADDRESS LOOKUP ENGINE 

MAG->Found/Not Found 

Address Match ( SIB Pointer) 
,,: 
j Address Match Fail 

( Null Pointer) 

f FIG. 11 t 

DESTINATION ADDRESS LOOKUP ENGINE 

MAG->Found/Not Found 

_.:Ad..;...dr __ es_s M_a_tc_h _____ ( SIB Pointer) 

...__Ad_dr_es_s M_a_tc_h F_ai_l _ .......... ( Null Pointer) 

FIG. 12 

! 

j 
EX 1019 Page 161

US. Patent Jun. 29, 1999 Sheet 7 of 11 5,917,821

SOURCE ADDRESS LOOKUP 1513811115

Address Match SlB Pointer

Address Match Fall _
Null Pomter

FIG. 11

 
DESTlNATlON ADDRESS LOOKUP ENGINE

MAC->Found/Not Found

Address Match SIB Pointer

Address Match Fall
Null Pcmter

FIG. 12

  
EX 1019 Page 161



1 

U.S. Patent Jun.29,1999 Sheet 8 of 11 5,917,821 

n·r •• ·:~ttJf cc·-alT31.JET···--,.K·/·I ...• l BIT 3-0 µCODEWORD 

LP ! BIT 15 -0 ! I 

2 °'" 

i t 
BIT 19-4 BIT 3-0 SIB ADDRESS 

FIG. 13 

11111111111111111 

Status Flags I Cl 
PortSet 

MAC Index 
MAC Flags 

Flags Proto 1 Area 
Flags Proto 2Area 
Rags Proto 3 Area 
Rags Proto 4Area 
Rags Proto 5 Area 

Other Area Pointer 
Enc Proto 1 Dest Area 
Enc Proto 2 Dest Area 
Enc Proto 3 Dest Area 
Enc Proto 4 Dest Area 
Enc Proto 5 Dest Area 

Other Dest Area Pointer 

STATION INFORMATION BLOCK 

I I I I 

Status Flags I EA I RX I RP I 
EA·CI ACTIVE 
RX-RAWIPX 
RP-ROUTED POU 

Encap Rags I o I FU I EN 
FU-FUTURE USE 
EN-MAC ENCAP FORMAT 

Photo Flags I PA I PV I Ml MH 
PA-PROTOCOL ACTIVE 
PV·PROTOCOL VALID 
Ml-MULTI-INTERFACE 
MH·MULTl·HOMED 

FIG. 14 

EX 1019 Page 162

US. Patent Jun. 29, 1999 Sheet 8 of 11 5,917,821

 BIT 3 -0 pCODE WORD

I LP
SIBADDRESS

FIG. 13

 

 
  
  

 

 
 

 

 

 
  
  

  
  

  

 

 

Status Flags Status “395 WWW-.-
99

MAC Index :
MACHagS RP ROUTED PDU

[ELIE ProtoI Area
IE Proto 2Area Encap Flags fl.-
ITEEE Proto3Area FU-FUTURE USE

2 . m PI'OIO 4 Am ENMAC ENCAP FORMAT
Proto 5 Area

Other Area Pointer Photo F1395 --IIIIINI
Prom 1 Best Area PA—PROTOCOL ACTIVE

Prot02 Dest Area NN-NNJNTNTNNNTNINE
Proto 3 Best Area MH-MULTI-HOMED

Proto 4 Desi Area

-Enc Prom 5 Dest Area
Other Dest Area Pointer F I G - 1 4

STATION INFORMATION BLOCK

 
EX 1019 Page 162



U.S. Patent Jllil. 29, 1999 Sheet 9 of 11 

I I I I I 1 I I I I I If t I I I 

PortSet 

Flags IPX 802.2 Area 
Rags IPX SNAP Area 

r-1 IPXRaw Area 
IPX Ether Area 

IPX 802.2 Dest Area 
IPX SNAP Dest Area 
IPX Raw Dest Area 
IPX Ether Dest Area 

PORT INFORMATION BLOCK 

I I I I I 

Photo Rags I PA I PV I 1 I 1 
PA-PROTOCOL ACTIVE 
PV·PROTOCOL VALID 

5,917,821 

I I 

Dest Area nibble 1 FIG. 15 
Dest Area nibble 2 

t 
Dest Area nibble 3 

~ 3 nibble destination area 

ARx-ALLOW ROUTING PROTOCOL x 

FIG. 16 

EX 1019 Page 163

US. Patent Jun. 29, 1999 Sheet 9 or 11 5,917,821

-Phoraflaesm..-
PGKSEI PIA-PROTOCOL ACTIVE

PV-PROTOCOL VALID

IPX 802.2 Area

lPX SNAP Area

IPX Raw Area

IPX Ether Area(I!

IPX 302.2 Des! Area

IPX SNAP Best Area

IPX Raw Dest Area

1PX Ether Dest Area

PORT iNFORMAOON BLOCK

 
Best Area nibbie 1 FIG . 15

Best Area nibble 2

Best Area nibble 3

E 3 nibble destination area

  

 

Source Area

Pointer .-

-\
Filtering Rule flMMMIIflflflflflnflflflfl

ARx-ALLOW ROUTING PROTOCOL x

FIG. 16

 
A
i

i
x

V““Ww.r

EX 1019 Page 163



U.S. Patent Jun.29,1999 Sheet 10 of 11 5,917,821 

FIG. 17 

•snoop done 

•FIFO not empty 
AND (Group<4) 

•FIFO not empty 
AND (Group:7) 
OR (Group=6) 

•FIFO not empty 
AND (Group=?) 

•FIFO not empty 
AND (Group=5) 

EX 1019 Page 164

US. Patent Jun. 29,1999 Sheet 10 of 11 5,917,821

OReset
 

 oFiFD empty

  osnoop done 

 
 

 

oFIFO not empiy ostop AND snoop
not done

 
 cHFO not empty F0 empty

AND (Group<4) 
 

 
 
 OFIFO not empty

AND Group=7)
OR( r0up=6) 
 

 

oFIFO not empty
AND (Group=5)

 
-SIB__TA true

FIG. 17

i

5

fg‘

EX 1019 Page 164



U.S. Patent Jun.29,1999 Sheet 11 of 11 5,917,821 

Increment Branch Instructions (Group 2, no wait states) 

PCLK 

Conditi~on~~~~~~~~~~~~~~~~~~~ 
State S2 
EXEC_CYCLE 
PC_AD=-D~~~l---~~~~~---+~~~--' 

FIG. 18 Increment/Branch instruction Increment/Branch instruction 
(Condition= TRUE) (Condition=FALSE) 

SIB RAM Access Instructions (Group 5) 
PCLK 
SIB_RQ 
SIB_GR 
SIB_CS 
SIB_TA 
SIB_Addr 

S IB_WEb(Write~__.,owooud17111:'f'J'J'JfJ',',w-\T.:ii:.Tl"lini'\:~~117110W! 
SIB_Data(Writeb==:::!~~~~~~~M__~~ 
SIB_OEb(Read) 
SIB_Data(Read)'---""11'iN'J'J'f/\imVJ'iJJ'.."lim}~wn:m~~d 

Inst Addr 
Inst Reg 

State .:::'.::::s==2~...=:....~=-=--~:::::::'.:~~====:::::'-1-~ 
EXEC_CYCLE 

FIG. 19 

SIB RAM Access 
(No wait states) 

EX 1019 Page 165

US. Patent Jun. 29, 1999 Sheet 11 of 11 5,917,821

Increment Branch Instructions (Group 2, no wait states)

 
 
 

 

  
  

  
 

 

 

  

 

 

PCLK

I/F Addr I-___I-

I/F Data IIIIIIIIIIIIIIIII-_-IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Inst Addt _I-_I1'-')I-

Inst Rev IIIIIIIIIIIIIIIII-_IIIIIIIIIIIIIIIII—_IIIIIIIIIIII

Condition 'III'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJ

State Kil-Ilfiflfilm
mm 2%-PC_ADD

F|G_ 18 Increment/Branch Instruction Increment/Branch Instruction
(Condition=TRUE) (Condition=FALSE)  

 
 

  
 

  
  
  

 

SIB RAM Access Instructions (Group 5)

PCLK

SIB_RQ

S|B_GR

SIB_CS

SIB_TA

S|B_Addr

S|B_WEb(Write
SIB_Data(Wnte

SIB_0Eb(Read)

SIB_Data(Read)

 

 

 
 

 

 

  
 

 
 

 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Valid I' Data may»)

 

 
KimV V
 
 

  
 

  

 
 

 

Inst Addr . I

State I-mIEIIII‘BIIIIIlil

EXEC_CYC LE

 
-

SIB RAM Access

(No wait states)

) FIG. 19

EX 1019 Page 165



I 

5,917,821 
1 

WOK-UP ENGINE FOR PACKET-BASED 
NETWORK 

BACKGROUND OF TIIE INVENTION 

FIELD OF TIIE INVENTION 

11ris invention relates to the field of data communications, 
and more particularly to packet-based digital communica
tions networks. 

There are two broad classes of network: circuit-based and 
packet-based. Conventional telephone networks are circuit 
based. When a call is established in a circuit-based network, 
a hard-wired COilllcction is set up between the calling parties 
and remains in place for the duration of the call. Circuit
based networks are wasteful of available bandwidth and lack 
flenbility. 

Packet-based networks overcome many of the disadvan
tages of circuit-based networks. In a packet-based network, 
the data are assembled into packets containing one or more 
address fields which define the context of a packet, such as 
protocol type and relative positions of other fields embedded 
in the packet. LAN bridges and routers use the information 
in the packet to forward it to the destination. 

In a packet-based network, a packet must be parsed as it 
flows through the network. Parsing is the process of extract
ing and analyzing the information, such as soun:c and 
destination address and net layer protocol, contained in the 
packets. 

In known nctwods, packet parsing is generally performed 
with a microprocessor, which provides flexibility in han
dling different packet types and can be upgraded to handle 
new packet types as they arc defined. Content Addressable 
Memory (CAM) is commonly used for hardware assistance 
to speed up searches through a list of known addrcsscs. llris 
is a tedious task. CAMs are also relatively expensive and 
limited in size and availability. 

2 
mation necessary for forwarding decisions. In a preferred 
embodiment the look-up engine includes a source address 
look-up engine and a destination address look-up engine. 

In a packetized data transmission conforming to IEEE802 
5 standards, the packets have a MAC (medium access control) 

header containing information about the destination and 
source addresses and the net layer protocol. The invention 
permits packet switching to be achieved in a bridge-router, 
for example an Ethernet to XIM bridge-router, at a rate of 

10 about 178,000 packets per second using 64 byte minimum 
Ethernet packets. This means that the MAC headers arc 
interpreted once every 5.6 micro seconds. 

The look-up engine preferably employs table look-ups 
using nibble indexing on variable portions of the packet, 

15 
such as MAC and network layer addresses, and bit pattern 
recognition on fixed portions for network layer protocol 
determination. 

Each look-up table is organized into a hexadecimal search 
tree. Each search tree begins with a 16 word root table. The 

20 
search key (e.g. MAC address) is divided into nibbles which 
arc used as indices to subsequent tables. The 16 bit entry in 
the table is concatenated with the next 4 bit rubble to form 
the 20 bit address of the next 16 word table. The final leaf 
entries point to the desired information. 

Bit pattern recognition is achieved by a microcode 
25 instruction set. The microcode engine has the ability to 

compare fields in a packet to preprogrammed constants and 
perform branches and index increments in a single instruc
tion cycle typically. The microcode engine has complete 
control over the search procedure, so it can be tailored to 

30 specific look-up functions. New microcode is downloaded 
as new functions are required. 

The look-up engine can perform up to two tree searches 
in parallel with microcode execution. Look-up time is quick 
because the microcode dctcmlines the packet's network 

35 layer format while the source and destination addresses arc 
being searched in parallel. The results of the source and 
destination look-ups and the protocol determination arrive at 
roughly the same time, at which point the next level of 

General purpose processor architectures are not specifi
cally directed toward the types of operations required in 
packet parsing and so they tend to be inefficient. To meet 
performance requirements, 1. fast but expensive processor 40 
based solution can be implemented. In the highest perfor
mance systems, hardware solutions arc implemented to 
increase speed, but at the cost of flexibility. 

decisions is made. 
The look-up engine also performs protocol filtering 

between areas. The system allows devices to be grouped 
arbitrarily into areas on a per protocol basis and defines 
filtering rules among these areas. Toe look-up engine keeps 
track of each station's area for each of its protocols. The 

SUMMARY OF TIIE INVENTION 

An object of the invention is to provide a fast, but 
inexpensive solution to the problem of packet-parsing in 
packet-based networks. 

45 source and destination areas are cross-indexed in a search 
tree, which is used to find the filtering rule between the two 
areas. Separate filtering rules are defined for bridging and 
network layer forwarding; bridging is normally allowed 

According to the present invention there is provided an 
arrangement for parsing packets in a packet-based digital 50 
communications network, said packets including packet 
headers divided into fields having values representing infor
mation pertaining to the packet, said arrangement compris
ing an input memory for receiving fields from said packet 
headers of incoming packets; and a look-up engine for 

55 
retrieving stored information appropriate to a received field 
value. The look-up engine includes at least one memory 
storing information related to possible values of said fields 

within an area while network layer forwarding is selectively 
allowed between areas. 

The parsing controller typically has a pointer to the 
current field in the packet being examined. The controller 
moves this pointer to the next field in the packet after all 
decisions based on the current field are made. 

At each decision point on a tree, the current field is 
compared to a known value or range. If the comparison 
yields a true condition, the controller moves to the next 
decision point by moving the current field pointer. Other
wise the field pointer is left alone and controller branches to 
new code to compare the current field to a different value or 
range. This process is repeated until a final decision is made. 

Moving to the next decision point requires several dis
crete steps in a general purpose processor. Unlike a general 
purpose processor, which has the disadvantage that it only 
has a single memory bus for both instruction and data 

in a hierarchical tree structure and associated with a respec
tive field of packet headers; a memory controller associated 
with each said memory storing information related to pos- 60 

sible values of said fields for controlling the operation 
thereof to retrieve said stored information therefrom; and a 
microcode controller for parsing a remaining portion of the 
packet header while said stored information is retriev~d and 
controlling the overall operation of said look-up cngme. 65 fetches, the Look-up engine controller has separate buses for 

instruction and data and typically performs one decision per 
step. Fast decisions are made possible by a special' set of 

Toe memory and retrieving means cons~~tc a l~k-up 
engine, which is the central resource contaunng all infor-

EX 1019 Page 166



l: 

I 
' 

' i 

J 

5,917,821 
3 

instructions which both conditionally move the pointer and 
conditionally branch to new code in a single step. The 
comparisons and pointer movements can be byte or word 
wide, according to the current field's size. 

The look-up engine implements other optimized instruc- S 
tions which perform bit level logical comparisons and 
conditional branches within the same cycle as well as other 
instructions tailored to retrieving data from nibble-indexed 
data structures. 

The look-up engine is preferably divided into the follow- 10 
ing sections: 
a) one or more nibble tree address look-up,engines (ALE) 
b) one microcode engine 

Each ALE is used to search for addresses in a tree 
structure in its own large bank of memory. The result of a 15 
search is a pointer to pertinent information about the 
address. An ALE is assigned to destination addresses 
(DALE) and source addresses (SALE). The ALEs operate 
independently of each other. 

4 
FIG. !> shows one example of a MAC search tree; 
FIG. 10 shows the effect of the Oiganizationally unique 

identifier of the MAC addresses on the size of the search 
tree; 

FIG. U shows tbe source address look-up engine table; 
FIG. 12 sbows the destination address look-up table; 
FIG.13 illustrates the look-up engine addressing modes; 
FIG. 14 sbows a station information block; 
FIG. 15 shows a port information block; 
FIG. Ui sbows an example of protocol filtering; 
FIG. 17 shows a look-up engine controller Instruction 

State Machine; 

FIG. 18 shows a typical fast timing diagram; and 

FIG. l!> shows a typical SID RAM access instruction 
timing diagram. 

DESCRIPTION OF 11lE PREFERRED 
EMBODIMEN1S The microcode engine is used to coordinate the search. It 

20 
invokes the SALE and DALE to search for the source and A typical look-up engine (LUE) in accordance with the 
destination addresses respectively and continues on to parse invention is designed to be used in a twelve-port wire speed 
the remainder of the packet using an application-specific Ethernet to ATM bridge-router capable of switching about 
instruction set to determine the protocol. 178,000 packets per second using 64 byte minimum Ether-

The SALE, DALE and microcode engine can execute in t kets This acket te ds I I k 
parallel and arrive at their corresponding results at roughly 2S ne pac · . P ra corrcspon ? a 00 -up 
th tim The "crocod • th the SALE request occumng every 5.6 µsecs. The LUE IS used each 

edsamDALEc resule. ts mial withe e~gmls e entouses. t th time a paclret is I11CCived off the Ethernet or the ATM 
an ong 1 own arnve a e k The f ,_,, · th the · "d fi din decis. networ • type o llll.Ormation at engine provi cs 
orwar dg ,

2
,,:._

0 nf. . RAM CAM . d depends on the direction of paclret flow and the type of 
a van...,.- o US1Ilg over a IS expan • ack t 
and cost. Increasing RAM is a trivial and inexpensive 30 P e · . . . . 

compared to increasing CAM size. The look-up engine provides~ the.information needed to 
advantage of the microcode engine over a general ~ the :path. to each known destination, .as ~ell as default 

purpose processor is that an ASIC implementation of the informatmn m the case of unknown destinations. 
function is much less expensive and less complex than a FIG. 1 shows a typical MAC layer header format for a 
processor-based design with all the overhead (RAM, ROM) 35 packet that can be pan;ed with the aid of the look-up engine 
associated with it. in accordance with the invention. The header comprises 

The invention also related to a method of parsing packets destination and source address fields 100, 101, a network 
in a paclret-based data transmission network, said packets layer protocol type field 102, and network layer destination 
including packet headers divided into fields having values and source address fields 103, 104. FIG. 1 also illustrates 
representing information pertaining to the packet, compris- how the header is parsed in accordance witb the invention. 
ing storing information related to possible values of said "° All fields except 102 are parsed using a tree search. The Net 
fields, receiving fields from said packet headers of incoming Layer Protocol Type field 102 is par.;cd by using microcode 
packets, and retrieving said stored information appropriate comparisons in the microcode engine to be described. 
1? a ~cceived ~eld value, cbaracte~d _in tlta~ said ~rma- On a bridge-router, each port is represented by a corrc-
tlon 1S stored m a memory orgamzed m a hieran:hical tree sponding bit in a PortSet (Ports 0-U), whicb is a 16 bit value 
structure. 45 that bas local significance only. The Control Processor and 

ATM are each assigned a port. 

The following definitions are special cases of a PortSct: 
BRIEF DESCRIPTION OF 11lE DRAWINGS 

The invention will now be described in more detail, by 
way of example only, with reference to the accompanying 
drawings, in which: so SinglcPortSc:t 

a PortSc:t with a ainglc bit aeL 
HostPortSet FIG. 1 is an example of a MAC layer header of a typical 

packet; 
FIG. 2 shows the data paths in a typical bridge-router 

between Ethernet LAN and ATM networks; 
FIG. 3 is a block diagram of a fust embodiment of a 

look-up engine in accordance with the invention; 
FIG. 4 is a block diagram of a look-up engine controller 

for the look-up engine sbown in FIG. 3; 
FIG. 5 is a block diagram of a seoond embodintent of a 

look-up engine in accordance with the invention; 
FIG. 6 is a block diagram of a look-up engine oontroller 

for the look-up engine shown in FIG. 5; 
FIG. 7 is a map of look-up engine Address Look-up 

engine (ALE) memories; 
FIG. 8 is a diagram illustrating search tree operation in an 

ALE; 

S5 

a SinglcPor!Set concaponding to the Control Processor 
MyPortSct 
a SinglcPortSct corrcaponding to the •o= port of this pacbeL 
NuJIPortSet 
a PortSet of no ports. 

A Connection Identifier (a), which is a 16 bit value with 

60 
local significance only, is used to map connections into 
VPI/VCI values. 

The following definitions are special cases of a: 

Mcsb_O 
65 a CI wm:sponding to a path t~ the d.cslulation endotation'a 

Bridge·routcr. , 

EX 1019 Page 167

 
5,917,821

3
instructions which both conditionally move the pointer and
conditionally branch to new code in a single step. The
comparimns and pointer movements can be byte or word
wide, according to the current field’s size.

The look-up engine implements other optimized instruc-
tions which perform bit level logical comparisons and
conditional branches within the same cycle as well as other
instructions tailored to retrieving data from nibble—indexeddata structures

The look-up engine is preferably divided into the follow.
ing sectiom:
a) one or more nibble tree address look-upengincs (ALE)
b) one microcode engine

BachALEisnsedtosearchforaddressesinatree
structure in its own large bank of memory. The result of a
search is a pointer to pertinent information about the
address. An ALE is assigned to destination addresses
(DALE) and source addresses (SAIE). The Allis operate
independently of each other.

The microcode engine is used to coordinate the search. It
invokes the SALE and DME to search for the source and
destination addresses respectively and continues on to parse
the remainder of the packet using an application-specific
instruction set to determine the protocol.

The SALE, DALE and mierowdc engine can execute in
parallel and arrive at their corresponding results at roughly
the same time. The microcode engine then uses the SALE
and DALE results along with its own to arrive at the
forwarding decision.

e advantage of using RAM over a CAM is expand-
ability and cost. Increasing RAM is a trivial and inexpensive
task compared to trimming CAM size.

e advantage of the microcode engine over a general
purpose processor is that an ASIC implementation of the
function is much 1m expensive and 1e$ complex than a
processonbased design with all the overhead (RAM, ROM)
associated with it.

The invention also related to a method of parsing packets
in a packet-based data tr’ammission network, said packets
including packet headers divided into fields having values
representing information pertaining to the packet, comprisv
ing storing information related to possible values of said
fields, receiving fields from said packet headers of incoming
packets, and retrieving said stored information appropriate
to a received field value, characterized in that said informa-
tion is stored in a memory organized in a hierarchical treestructure.

BRIEF DESCRIFIION OF THE DRAW'INGS

The invention will now be desmhcd in more detail, by
way of example only, with reference to the accompanying
drawings, in which:

FIG. 1 is an example of a MAC layer header of a typical
packet;

FIG. 2 shows the data paths in a typical bridge-router
between Ethernet LAN and ATM networks;

FIG. 3 is a block diagram of a first embodiment of a
look-up engine in accordance with the invention;

FIG. 4 is a block diagram of a lock—up engine controller
for the look-up engine shown in FIG. 3;

FIG. 5 is a block diagram of a second embodiment of a
look-up engine in accordance with the invention;

FIG. 6 is a block diagram of a lock—up engine controller
for the look-up engine shown in HG. 5;

FIG. 7 is a map of look-up engine Address [Jock-up
engine (ALE) memories; .

FIG. 8 is a diagram illustrating search tree operation in an
ALE;

5

it)

15

35

45

55

4
FIG. 9 shows one example of a MAC search tree;

FIG. 10 shows the effect of the orgmizationally unique
identifier of the MAC addresses on the size of the search
tree;

FIG. 11 shows the source address look—up engine table;
FIG. 12 shows the destination address look~up table;
FIG. 13 illustrates the look-up engine addressing modes;
FIG. 14 shows a station information block;
FIG. 15 shows a port infonnatinn block;
FIG. 16 shows an example of protocol filtering;
FIG. 17 shows a lock-up engine controller Instruction

State Machine;

FIG. 18 shows a typical fast timing diagram; and
FIG. 19 shows a typical SIB RAM access instruction

timing diagram.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Atypical look-up engine (LUE) in accordance with the
invention is designed to be used in a twelve-port wire speed
Ethernet to M bridge-router capable of switching about
178,000 packets per second using 64 byte minimum Ether-
net packets. This packet rate corresponds to a look-up
request occurring every 5.6 peers. The LUE is used each
time a packet is received (11? the Ethernet or the ATM
network. The type of information that the engine provides
depends on the direction of packet flow and the type of
packet.

The look-up engine provides all the information needed to
find the path to each known destination, as well as default
information in the case of unknown destinations.

FIG. 1 shows a typical MAC layer header format for a
packet that can be parsed with the aid of the look-up engine
in accordance with the invention. The header comprises
destination and murce address fields It“, 101, a network
layer protocol type field 102, and network layer destination
and source address fields 103, 104. FIG. 1 also illustrates
how the header is parsed in accordance with the invention.
All fields except 102 are parsed using a tree search. The Net
Layer Protocol “type field 102 is parsed by using miaocode
comparisons in the microcode engine to be described.

On a bridge-router, each port is represented by a com:—
sponding bit in a PortSet (Ports 0—11), which is a 16 bit value
that has local significance only. The Control Processor and
ATM are each assigned a port.

The following definitions are special cases of a PortSet:
 

SingIePortSet
t Portfiet with a aingle hit act.Mensa
a Singlel’nrmet mmponding to the Control FWD!
MyPofiSet
a SinglcPortSet corresponding to the new port of this packetNulll’ortSct
a Ports-at of no parts. 

A Connection Identifier (CI), which is a 16 bit value with
local significance only. is used to map connections into
VPI/VCI values.

The following definitions are special cases of Cl:
 

MELCl
n Cl corresponding to a path towards the destination endstalinn'l
Bridge-router. ’

EX 1019 Page 167



5,917,821 
5 

-continued 

Null_Cl 
a Cl cooncctcd to nothiog. It is returned wheo the destination is 
attached to the local Bridge-router or if the connection is oat 
allowed. 
RS_CI 
a CI corrc,,pooding to a path to the Route Server. 
ABS_Cl 
a CI conc,,poodiog to a path to the Address/Broadcast Servct 

5 

6 
The Bridge command instructs the AXE (Transfer 

Engine) to use RFC-1483 bridge encapsulation. BridgeProp 
command instructs the AXE to use bridge-router encapsu
lation (include source PortSet in encapsulation) 

UnknoWILSA -> BridgeProp, NulLCI, Ho.,tPortSet, MyPortSet 
• Unknown SA · aeod to HP for Spanning Tree pmcessiog 
• HP will decide whether to forward it to ABS for learning, 
depeoding OD Spomnng Tree atate 

MAC layer addresses are globally unique 48 bit values, 
except in some protocols such as DECNet, where they may 
not be globally unique. 

10 Uo.icut_DA -> Bridge, MeaLCI, Nul!PortSet 
• DA in the 11.me area on a different Bridge-router 
UnicuLDA -> Bridge, Nu!LCI, NullPortSet 
• DA oat in the same area (reject) 
• Protocol not allowed to bridge-router 
• DA on the aame port 
UnicuLDA -> Bridge, NulLCI, SinglePortSet 

----------------------- 15 • DA in the same area oo the oame Bridge-router but on a diffcreot 
Unicut_DA port 

a MAC layer destination addrcu of ao cnd-statioo. Unknowo_DA -> BridgeProp, ABS_Cl, NullPortSct, MyPortSct 

RouteLDA • DA not foond in the table - acnd to ABS for flood processing 
• MAC layer destination addreaa of the Rootc Scrvet Ao cod- Broadcast_DA -> BridgcProp, ABS_CI, NullPortSct, MyPortSct 
statioo aeods paclccta to the Route Server when it canoot acod to • Broadcast DA • Scod to Control Proccuor for broadcast 
the destination directly at the MAC layct 

20 
processing 

BroadcasLDA MulticaaLDA -> BridgeProp, ABS_Cl, NullPortSct, MyPortSct 
the broadcaat MAC layer address (all onea) which is =cived by • MnJticu;t DA. Send to ABS for multicast proccuing 
all end-stations. It cannot be a IOlllt:C addicss. MulticaaLDA -> Bridgcprop, NulLCI, HostPortSct, MyPortSct 

MulticuLDA • Multicast DA is of iotcrcst to HP (cg Spanniog Tree) 
a multicast MAC layer address (group bit act) which is received by • HP will decide whether to forward it to ABS for multicast 
end-stations that recognize that multicut addmsa. 25 processing 

Network layer (NL) addresses are network protocol 
dependent. They are generally divided into Network, 
Subnet, and Node portions, although not all protocols have 
all three present The Network Layer Address Field Su.es (in 30 
bits) are summarized in the table below. 

Protocol Total Size Network Subnet Node 

IP 32 8/16124 variable variable 
IPX Ill n/a 32 48 

(MAC address) 
Applc"l'olk 24 n/a 16 8 
DECNct 64 16 38 10 

(rcscrvcd) (32• 
'IDORD') 
(6 • subnet) 

The look-up engine handles unicast network layer 
addresses. 

35 

40 

When the look-up engine is used in a bridge-router 45 

providing an interface between an EtheT?et and ~ 
network, packets coming from the Ethernet side are fed mto 
the Look-up Engine. The result of the look-up has the form: 

Ioput -> Command, Cl, PortSct 

where Input is derived from the first few bytes of the pa~t 
and Command is an opcode to the AXE (Transfer engme). 

50 

Toe Quad MAC status word distinguishes between router 55 

Routing occurs when the destination address is the unicast 
Roule Server address. Filtering rules between areas are 
explicitly defined per protocol The per protocol source area 
is an attnbute of the source MAC address and the per 
protocol destination area is an attnbute of the destination NL 
address. 

Both source MAC and destination NL addresses must be 
known before network layer forwarding can occur. 

The packet will be bridged to the Route Server if any of 
the following are true: 

IP options are present 
Protocol is unknown 
The packet will be dropped if any of the following are 

true: 
Source area is not allowed to send to Destination area for 

this protocol 
Source NL address is invalid (e.g. any IP broadcast 

address) 
Checksum is invalid 
Tlllle-To-Live field expires 

UnicasLNLDA -> Route, McaLCI, NullPortSet 
• NL node on a different bridge-muter 
UoicasLNLDA -> Route, NulLCI, SinglePortSct 
• NL node on the aame bridge-router (could be same port) 
UnknOWIL..NLDA -> Bridge, RS_a, NullPortSct 
• unlmown NL oode - send to Route Server 
Unknown.J'rotocol -> Bridge, RS_Cl, NullPortSct 
• protocol unknown, or packet with optio!lll 

MAC broadcast and multicast MACs. --------------------
Bridging occurs when the destination address is _a D?ic~t 

address other than the Route Server address. Bndgmg IS 

allowed between two endstations in the same area for a 
given protocol. 

Both source and destination MAC addresses must be 
known before automatic bridging/filtering is performed; 
otherwise, the packet is sent to the Route Server for: 

SA (Source Address) validation if the SA has never been 

FIG. 2 shows the data paths in a typical bridge-router. 
Control processor 16 has control over the formatting of 
packets it sends and receives. If the control processor 16 

60 wants look-up engine 17 to perform a look-up, it formats the 
packet in the same way as Quad Mac 15; otherwise it sends 
it as a raw packet, which does not require a lengthy look-up. 
The control processor predetennines the destination by 

seen speaking a given protocol 65 
providing a CI (Connection Identifier) and an output Portset 
as part of the data stream. A bit in the Quad MAC status 
word indicates a raw packet and the look-up engine simply DA (Destination Address) resolution if the DA was not 

found in the local MAC cache. retrieves the CI and Portset as part of the data stream:. A bit 

EX 1019 Page 168

 ;,,a.;m,...,

i

5,917,821
S

-oontinued 
NuLl_CI
aClconneetedbonothinthisretumedwhenthedestinationis
attached to the lam] Bridge-router or if the mnection is notallowed.
RS__C[
a Cl cor-raponding to a path to the Route Server.ABS_CI
a Cl corraponding to a path to the Addma/Broadeast Server. 

MAC layer addms are globally unique 48 bit values,
except in some protocols such as DECNet, where they may
not be globally unique.
 

UWJA
a MAC layer destination addresa of an end-station.RouteLDA
a MAC Layer destination addreaa of the Route Server. An end-
:totion lends packet! to the Route Server when it mount and to
the dutination directly at the MAC layer.
BroadrzsLDA
the broadcast MAC layer addresa (all ones) which is received byall end-atationa. It unnot be a aource addreas.
MultimLDA
a multimt MAC layer address (your: hit aet) which is received by
end-Ionian; tlurt remgnize that multimt addrm. 

Network layer (NL) addresses are network protocol
dependent. They are generally divided into Network,
Subnet, and Node portions, although not all protocols have
all three present. The Network Layer Address Field Sizes (in
bits) are summarized in the table below.
 

 Protocol Total Size Network Subnet Node

[P 32 8/16/24 Vlriable variable
[PX so III: 32 48

(MAC address)
Apple'lhlk 24 all 16 8DEONTet 54 16 38 10

(reserved) (32 -
mono)
(6 - Inbnet) 

The look-up engine handles unicast network layer
addresses.

When the look-up engine is used in a bridge-router
providing an interface between an Ethernet and AIM
network, packets coming from the Ethernet side are fed into
the Look-up Engine. The result of the look-up has the form:
 

Input —> Command. (1, PortSet 

where lnput is derived from the first few bytes of the packet
and Command is an opcode to the AXE (Transfer engine).

The Quad MAC status word distinguishes between router
MAC, broadcast and multicast MACs.

Bridging occurs when the destination addre§ is a unicast
address other than the Route Server address. Bridging is
allowed between two endstations in the same area for a
given protocol.

Both source and destination MAC addresses must be
known before automatic bridging/filtering is performed;
otherwise, the packet is sent to the Route Server for.

SA (Source Address) validation if the SA has never been
seen speaking a given protocol

DA (Destination Address) resolution if the DA was notfound in the local MAC cache.

10

15

20

35

4s

50

55

65

6
The Bridge command instructs the AXE (Transfer

Engine) to use RFC—1483 bridge encapsulation. BridgeProp
command instructs the AXE to use bridge-router encapsu-
lation (include source PortSet in encapsulation)

Unknown_SA —> Bridgel’rop, Nul1_C[, HostPorSet, MyPortSet
' Unknown SA - lend to H? for Spanning Tree processing
" m" will decide whether to forward it to ABS for learning,
depending on Spanning Tree atate
UnimLDA -> Bridge, Meah_d, Nulll’ortSet
’ DA in the lame area on a ditfererrt Bridgeronter
UnimLDA —> Bridge, NulLCl, NtlllPortSet
' DA not in the same area (reject)
' Protocol not allowed to bridge-router
‘ DA on the lame port
UniuaLDA —> Bridge, Null_Cl, SinglePortSet
' DA in the same are: on the nine Bridge-router but on a different
port
Unknown_DA —> Bridgel’rop, ABS__C[, NullPortSet, Myl‘ortSet
‘ DA not found in the table - lend to ABS for flood pmcesing
Broadrzst_DA —> BridgeProp, ABS_CI, NullPorSet, MyPon‘Set
’ Bmadmxt DA - Send to Ornlrul Fromm for bro-dust.
proming
MnltialLDA —> BridgeProp, ABS_CI, Nulll’ortSet, MyPortSet
' Multlast DA- Send to A85 for multimt processing
MultinaLDA —> Bridgeprop, NuLCl, HoatPortSet, Myl’orrSet
' Multimt DA is of interest to HP (Cg Spanning Tree)' HPwill decidewhetherto forward it toABSformultiarst
War-“ins

Routing occurs when the destination address is the unicast
Route Server address. Filtering rules between areas are
explicitly defined per protocol The per protocol source area
is an attribute of the source MAC address and the per
protocol destination area is an attribute of the destination NLaddm.

Both source MAC and destination NL addresses must be
known before network layer forwarding can occur.

The packet will be bridged to the Route Server if any of
the following are true:

IP options are present
Protocol is unknown
The packet will be dropped if any of the following aretrue:
Source area is not allowed to send to Destination area for

this protocol
Source NL addre$ is invalid (e.g. any [P broadcast

address)
Checksurn is invalid

'I'ime-To-Live field expires

UnicasLNIDA —> Route, MeILCl, NullPortSet
' N'L node on a different bridge-router
UnicaaLNLDA -> Route, NulLCl, Singlel’ortSet
' NLnode on the nine bridge-router (could be same port)
UnhowLNLDA —> Bridge, RS_G, Nulll’ortSet' unknown N1. node - send to Route Sewer
UnhownJrotoool -> Bridge, RS_CI, NullPortSet
' protocol unknown, or packet with options 

FIG. 2 shows the data paths in a typical bridge-router.
Control processor 16 has oontrol over the formatting of
packets it sends and remives. 1f the control processor 16
wants look-up engine 17 to perform a look-up, it formats the
packet in the same way as Quad Mac 15; otherwise it sends
it as a raw packet, which does not require a lengthy look-up.
The control processor predetermines the destination by
providing a Cl (Connection Identifier) and an output Portset
as part of the data stream. A bit in the Quad MAC status
word indicatm a raw packet and the look-up engine simply
retrieves the CI and Portset as part of the data stream. A bit

EX 1019 Page 168



5,917,821 
7 

in the Quad MAC status word indicates a raw packet and tbe 
look-up engine simply retrieves the CI and Portset from the 
data stream and feeds it to the AXE (Transfer Engine) 
through the result FIFO. The Control processor is respon
sible for correctly formatting the required encapsulation. 

As shown in FIG. 2, packets commg from the NIM side 
are fed into the look-up engine. The look-up engine accepts 
an RFC-1483 encapsulated packet and determines whether 
to look at a MAC or NL address. The result of the look-up 
will have tbe form: 

8 
Index Pointer register (IP) 50 is a byte index into the 1/F 

RAM 21. Under normal operation, tbe index pointer register 
50 points to the current packet field being examined in the 
1/F RAM 21 but it can be used whenever random access to 
the 1/F RAM 21 is required. 

5 The IP 50 can be modified in one of the following ways: 
1) loaded by the LOADIP instruction (e.g. to point to the 

beginning of the packet) 
2) incremented by 1 (byte compare) or 2 (woni compare) if 

a branch condition is not met. 
10 3) incremented by 2 by a MOVE (IP)+ type instruction. -------1:n-pu-t --_->--P-ortSe--t ------- Data Register 51 contains tbe 16 bit value read from 1/F 

RAM 21 using the current IP. The DR 51 acts like a one 

Filtering is not perfurmed in this direction. It is assumed 
tbat the all filtering is done at the ingress side. It is also 
assumed that tbe destination endstation is known to be 
attached to the receiving Bridge-router, so unicast packets 
witb unknown destination addresses are dropped. 

Flood and broadcast pi,.ckets are encapsulated in a special 
format which includes an explicit output PortSet. 

word cache; the LEC keeps its contents valid al all ti.mes. 
Program Counter 52 points to tbe current microcode 

15 instruction. It is incremented by one if a branch condition is 
true, otherwise tbe displacement field is added to it. 

The Lookup Pointers (LP0-7) 23 are 16 bit registers 
which contain pointers to the SIB RAM 20. The LPs are 
used to store pointers whenever milestones are reached in a 
search. One LP will typically point to a source SIB and 

20 another will point to a destination SIB. The IP provides the 
--------------------- upper 16 bits of the pointer; the lower 4 bits are provided by 

UnicnsLDA -> SioglePortSct 
• DA on thi.t Bi:idg,,-router 
Unlmown...DA -> NnllPortSet 
• DA not in the table (drop) - thia oilnation lhould not oa:ur. 
Unu:uLNlDA -> SinglePortSet 
• NIDA on lhia Brldge-t00111r 
UnJmown....Nll)A -> NullPbrtSct 
• NIDA not in tho table (drop) lhia aituation &hould not =r. 
Broadc:Qt.J)A,PortSel -> POl!Sct 
• Proprietary Broadcut request ,..,.;.ved from RS 
MulacuLDA,l'ortSct -> PortSct 
• Proprietary Mullicut rcqw,st """'ivcd from RS 
Unknown....DA,PortSct -> PortSct 
• Proprietary Flood request received from RS 

the microcode word fur indexing into a given SIB. 
The lPs are also used to prime tbe SALE and DALE with 

their respective root pointers. 
25 X, Y Registers 53, 54 are general purpose registers where 

logic mampnlations can be ma.de (AND, OR, XOR). They 
are used for setting and clearing bits in certain words in tbe 
SIB RAM ( e.g. Age bit) and to test for certain bits (e.g. status 
bits). The X Register 53 can be selected as Operand A to the 
Logic Unit while the Y Register can be selected as Operand 

:lO B. 
The BY2 and BYNZ instructions conditionally branch on 

Y-0 and Y<>O respectively. 
The Y Register 54 is tbe only register source fur moves to 

the result FIFOs. 
Turning now to FIG. 3, the look-up engine consists of 35 

three functional blocks. namely a. destination address look-
The X Register 53 can be saved to or restored from X' 

Registers (X'O-X'7) 55. The mnemonic symbol for the 
currently selected X' register is XP. 

The S Register 56 is a pipelining stage between SIB RAM 
20 and the Logic Unit. It simplifies read access from SIB 
RAM 20 by relaxing propagation delay requirements from 

40 SIB RAM 20 valid to register setup. It provides the added 
advantage of essentially caching the most recent SIB RAM 
acces.s for repeated use. It is loaded by tbe GET lndex(LP) 
instruction. 

up en~ (DALE) 1, a. = address look-up engine 
(SALE} 2, and a look-up engine controller (LEC) 3, which 
includes a microcode ram 4. DALE 1 includes a destination 
address look-up oontrollcr 5 and DALE RAM 6. SALE 2 
includes a source address look-up controller 7 and SALE 
RAM 8. The input to the look-up engine is through a fast 
16-bit wide 1/F RAM 9 receiving input from the AXE 
(Transfer Engine) and reassembler. Tbe output from the 
look-up engine is through word-wide FIFOs 11, 12. 

One embodiment of look-up engine controller (LEC) 3 is 
5 shown in more detail in FIG. 4. This comprises (Station 4 

Information Block) SIB ram 20, interface ram 21, and 
microcode ram 22. Tbe SIB ram 20 is connected to look-up 
pointers 23. Interface ram 21 is oonnected to data register 25 
and index pointers 26 connected to ALU (Arithmetic Logic 
Unit) 27. Microcode ram 22 is connected to instruction so 
register 28. 

As in FIG. 3, the LEC 3 controls the opera.lion of the 
look-up engine. All look-up requests pass through the LEC 
3, which in tum activates tbe SALE 2 and the DALE 5 as 
required. The LEC 3 is microcode based, running from a 
32-bit wide microcode RAM. The instruction set consists 
mainly of compare-and-branch instructions, which can be 
used to find specific bit patterns or to check for valid ranges 
in packet fields. Special 1/0 instructions give the LEC 

The look-up Engine controller 3 is a microcoded engine 
tailored for efficient bit pattern comparisons through a 
packet. It communicates with the Source Address Look-up 
En~ 2 and the Destination Address Look-up Engine 1, 
which both act as co-proces.sors to the I.EC 3. 

The look-up engine snoops on the receive and transmit 
data buses and deposits the header portion of tbe packet into 
the 1/F RAM 9. The look-up response is sent to the a.ppro
pri.ate FIFO 11, 12. 

FIGS. 5 show an alternative embodiment of the loop-up 
engine and controller. In FIG. 5, the LEC 3 includes a 64xl6 
1/F (Interface) ram 41 connected to FIFO's 42, 43 (First-in, 
First-out memories) respectively connected to latche.5 44, 45 
receiving AXE (Transfer Engine) and xeassemblt?r mput. 

Referring now to FIG. 6, the LEC 3 also con~ several 
registers, which will now be described. Register select 
instructions a.re provided for tbe register banks (XP0-7, 
LP0-7). 

random read access to the interface RAM. 
The LEC has access to 3 memory systems: the interface 

RAM 9, the SIB RAM 20 and the Microcode RAM 22. 
s1 'l'hei'ii'fcffa"'~"g~'iis&tfo"~etaa.tarriiothe 

LEC 3. Tbe look-up engine hosts dump packet headers into 
this RAM through snoop FIFOs 42, 43. This RAM is only 
accessible through the snooped buses. 

The SIB RAM 20 is used to hold information for each 
known end-station. Tbe LEC 3 can arbitrarily retrieve data 

60 from this RAM and transfer it to one of the response FIFOs 
11, 12 or to internal registers for manipnlation and checking. 
High speed RAM is also used to minimize the data retrieval 
time. The size of the SIB RAM 20 is dependent on the 
maximum number of reachable end-stations. For a limit of 

65 8,000 end-stations, the SIB RAM size is 256K bytes. This 
RAM is accessible directly to the Control Processor fur 
updates. 

I 

EX 1019 Page 169

 
.*i
l
l

l
l

5,917,821
7

in the Quad MAC status word indicates a rawPacket and the
look~up engine simply retrieves the CI and Portset from the
data stream and feeds it to the AXE (Transfer Engine)
throu h the result FIFO. The Control processor is respon-
sible or eorrectl formatting the required encapmlation.

As shown in G. 2, packets eommg from the ATM side
are fed into the look-up engine. The look-up engine accepts
an RFC-1483 encapsulated packet and determines whether
to look at a MAC or NL address. The result of the look-up
will have the form:
 

Input -> PortSet 

Filtering is not performed in this direction. It is assumed
that the all filtering is done at the ingress side. It is alsoassumed that the destination endstalion is known to be
attached to the receiving Bridge-router, so unicast packets
with unknown destination addresses are dropped.

Flood and broadcast packets are encapsulated in a special
format which includes an explicit output PortSet.
 

UnimuLDA ~> SinglePortSet
“ DA on this Bridge-router
UnknownLDA -> Nulll‘ortSct
“ DA not in the table (drop) - this situation should not occur.
DMDA ~> anglePoztSet
‘ NLDA on thin Bn'dgbrmter
UnlmoquJJA —> fiullPortSct
' NIDAnntintlz txble (drop)-lhis|iuntionehoulduotonmr.
BroaduuLDAJ’onSa —> PortSet
" Proprietary Brendan request received from RS
MulwAgPortSet —> PortSet
’ ProprieturyMulliust requestremivedfmmks
Unlmmfiflortsu —> PoitSet
’ Pruprietury Flood rcqtut waived from RS 

Turning now to FIG. 3, the look-up engine consists of
three fimetionnl blocks, namely a destination address look-
upen'e(DAIE)l,nswrceaddreaslookvupe '2
(SALE 2, and : look~up engine controller (LEC) 3, w “ehincludes a microcode ram 4. DALE 1 includes a destination
address look-up controller 5 1nd DALE RAM 6. SALE 2
includes a source address lookup controller 7 and SALE
RAM 3. The input to the look-up engine is through a fast
lé-hit wide I/F RAM 9 receiving input from the AXE
(Transfer Engine) and reassembler. The output firorn the
look-up engine is through word-wide FlFOs 11, 12.

One embodiment of look-up engine conuoller (LEG) 3 is
shown in more detail in FIG. 4. This comprises (Station
Information Block) SIB ram 20, interface ram 2L and
microcode ram 23. The SIB ram 20 is connected to look-up
pointers 23. Interface ram 21 is connected to data register 25
and index pointers 26 connected toALU (Arithmetic Logic
Unit) 2?, Microcode ram 22 is connected to instruction
register 28.

’Ihe look-up Engine controller 3 is a mieroeoded en ' e
tailored for efficient bit pattern comparisons throng a
packet. It communicates wuh the Source Addres Look—up
Engine 2 and the Destination Address Look—up Engine 1,
which both act as «no-processors to the LEC 3. ‘

The look-up engine snoops on the receive and transmit
data buses and deposits the header portion of the packet into
the HF RAM 9. The look-up response is sent to the appro'
printe FIFO 1]., 12.

FIGS. 5 show an alternative embodiment of the loop-up
engine and controller. In FIG. 5, the LEC 3 includes a _64><_16
[2F (Interface) ram 41 connected to Fl'FO’s 42, 43 (Fnsbm,
First—out memories) as etively connected to latches 44, 45
receiving AXE (Transfg:Engine) and reassemble»: mput.

Referring now to FIG. 6, the LEC 3 also contains several
registers, which will now be described. Reps!“ 56100?-
instructions are provided for the register banks (XPO-‘L
{Ill—7).

10

15

35

45

50

8

Index Pointer register (IP) 50 is a byte index into the HF
RAM 21. Under normal operation, the index pointer register
50 points to the current packet field being examined in the
HF RAM 21 but it can he used whenever random am to
the HF RAM 21 is required.
The IP 50 can be modified in one of the following ways:
1) loaded by the LOADIP instruction (e.g. to point to the

beginning of the packet)
2) incremented by 1 (byte compare) or 2 (word compare) if

a branch condition is not met.
3) incremented by 2 by :1 MOVE (IP)+ type instmction.

Data Register 51 contains the 16 hit value read from HF
RAM 21 using the mot IP. The DR 51 ads like a one
word cache; the LEC keeps its contents valid at all times.

Program Counter 52 points to the mutant microcode
instruction. It is incremented by one if a branch condition is
true, omerwise the displacement field is added to it.

The Lookup Pointers (LEO-7) 23 are 16 bit registers
which contain pointers to the SB RAM 20. The LPs are
used to store pointers whenever milestones are reached in a
search. One 1.? will typically point to a source SIB and
another will point to a destination SIB. The LP provides the
upper 16 bits of the pointer; the lower 4 bits are provided by
the microcode word for indexing into a given 818.

TheIPsarealsousedtoprime theSALE andDALEwith
their re ‘ve root pointers.

XX Registers $3, 54 are general purpose registers where
logic manipulations can be made (AND, OR, XOR). They
are used for setting and clearing bits in certain words in the
SIB RAM (e.g.Age bit) and to test for certain bits (e.g. status
bin). The X Register 53 can be selected as Operand A to the
Logic Unit while the Y Register an be selected as Operand
B.

The BYZ and BYNZ instructions conditionally branch on
Y—U and YOU respectively.

The Y Register 54 is the only register source for moves to
the result FIFOs.

'I'heXRegister53canbcsavedtoorrt-storedfi'omx‘
Registers OTB-XV) 55. The mnemonic symbol for the
currently selected X' register is XP.

The S Register 56 is a pipelining stage between SIB RAM
20 and the Logic Unit. It simplifies read access from SIB
RAM 20 by relaxing propagation delay requirements from
SIB RAM 2:0 valid to register setup. It provides the added
advantage of essentially caching the most recent SIB RAM
am for repeated use. It is loaded by the GET IndexaP)instruction.

As in FIG~ 3, the LEC 3 controls the operation of the
look-up engine. All look~up requests pass through the LEC
3, which in turn activates the SALE 2 and the DALE 5 as
required. The LEC 3 is microcode based, running ham 3
32-bit wide microcode RAM. The instruction set consists
mainly of compare-and—branch instructions, which can be
used to find specific bit patter-rm or to check for valid ranges
in packet fields. Special I/O instructions give the LEC
random read access to the interface RAM.

The LEC has access to 3 memory systems: the interface
’ RAM9,theSIBRAM20deheMiuocodeRAM22.

55'

65

The’ifilfiféfm‘fis‘ufi’cfitfi’féfimfidavfil‘hfi‘the
[EC 3, The look-up engine hosts dump packet headers into
this RAM through snoop FlFOs 42, 43.11115 RAM is only
accessible through the snooped buses.The SIB RAM 20 is used to hold information for cad]

known end~station. The [EC 3 can arbitrarily retrieve data
from this RAM and transfer it to one of the response FIFOS
11, 12 or to internal registers for manipulation and checking.
High speed RAM is also used to minimize the data retrieval
time. The size of the SIB RAM 20 is dependent on the
maidmum number of reachable end—stations. For a limit of
8,000 end-stations, the SIB RAM size is 256K bytes. This
RAM is aoeessflale directly to the Control Processor for
updates.

/ Ml

EX 1019 Page 169



1 

5,917,821 
9 

Toe Microcode RAM 22 is dedicated to the LEC 3. It 
contains the 32 bit microcode instructions. The LEC 3 bas 
read-only access to this high speed RAM aormally, but it is 
mapped directly to the Control Processor's memory space at 
startup for microcode downloading. 

Variable fields of a packet, such as addresses, are searched 
5 

in one of many search trees in the ALEs 1, 2, (FIG. 5), which 
are nibble index machines. Each ALE 1, 2 bas its own search 
tree RAM 6, 8 (FIG.1), which is typically high density but 
low speed. This RAM is divided into 32 byte blocks which 
can either be Index Arrays or Information Blocks. 10 

The searches in the ALEs 1, 2 are based strictly on the root 
pointer, the search key and search key length it is given. A 
look at the look-up engine memory map (FIG. 1) as viewed 
from the ALEs shows how the mechanism works. 

All search trees in a given ALE 6, 8 reside in the upper 
half of its memory. The 16-bit root pointer given to the ALE 

15 

will have the most significant bit set. The search key ( e.g. 
MAC address) is divided into mbbles. The first nibble is 
concatenated with the root pointer to get an index into the 
root pointer array. The word at this location is retrieved. If 
the MSB (Most Significant Bit) (P Bit) is set, the next rubble 20 
is concatenated with the retrieved word to form the next 
pointer. If the P Bit is clear, the search is finished. The final 
result is given to the LEC, which uses it either as a pointer 
into the SIB RAM, or as data, depending on the context of 
the search. A zero value is reserved as a null pointer value. 2S 
FIG. 8 illustrates search tree operation. 

The search key length limits the number of iterations to a 
known maximum. The control processor manipulating the 
search tree structure may choose to shorten the search by 
putting data with a zero P bit at any point in the tree. 30 

"Don't Care" fields are also achievable by duplicating 
appropriate pointers within the same pointer array. Search 
trees are maintained by the Control Processor, which has 
direct access to the SALE and DALE RAMs 6, 8. 

FIG. 9 is a diagram illustrating a MAC search tree 
example. The main purpose of the ALE RAMs 6, 8 is to hold 

35 

MAC layer addresses. The size of the RAM required for a 
MAC address tree depends on the statistical distribution of 
the addresses. The absolute worst case is given by the 

10 

The effect of Om on Search Tree Size is shown in FIG. 
10. 

Similar rationalizations can be made with IP and other 
network layer protocol addresses. An IP network will not 
have very many subnets and even fewer network numbers. 

Although the SALE 2 typically bolds locally attached 
source MAC addresses and the DALE 1 typically bolds 
destination MAC addresses, either ALE 1, 2 is capable of 
~olding any arbitrary search tree. Network layer addresses, 
mtra-area filters, and user-defined MAC protocol types can 
all be stored in search trees. The decision to put a search tree 
in ~ither SALE or DALE is implementation dependent; it 
relies on what searches can be done in parallel for maxinium 
speed. 

The principal function of the SALE 2 is to keep track of 
the MAC addresses of all stations that are locally attached to 
the bridge-router. Typically one station will be attached to a 
bridge-router port, but connections to traditional hubs 
repeaters and bridge-routers are allowed, so more so~ 
addresses will be encountered. 

Using the formula for RAM size above, typical RAM 
calculations for the source address trees are as follows: 

Number of 
Number of OUis Station» Tola! Bytes 

20 4{)0 65,440 
2 500 65,184 

20 500 77,984 
20 800 116,284 

5 1,000 131,552 

The number of source stations is limited to some fraction 
of the total allowable stations. The limit is imposed here 
because the SALE will most likely bold many of the other 
search trees (e.g. per protocol NL address search trees, 
intra-area filters). following formula: 

40 Whenever a new source address is encountered, the SALE 
L 

N= Emil(llrl,X 
ial 

1 will not find it in the MAC somce address search tree. The 
LEC 3 realizes the fact and sends it to the Control Processor. 
The new source address is inserted into the search tree once 
validation is received from the Route Server. 

where 
45 

Whenever a previously learned address is re-encountered, 
X is the number of addresses the Age entry in the SIB 20 is refm.bed by the LEC 3. The 
Lis the number of nibbles in the address control processor clears the Age entry of all source addresses 
N is the number of pointer arrays every aging period. The entry is removed when the age limit 

Th t f 
. ed, . 

32 
'- . is exceeded. 

e amoun o memory requrr given -uyte pomter Tb addre look · · • 
arrays, is 32N. The number obtained from this formula can so 11. e source ss -up engme table IS shown 1D FIG. 
be quite huge, especially for MAC addresses, but some 
rationalizations can be made. The DALE 1 keeps track of all stations that are directly 

In the case of MAC addresses, the first 6 nibbles of the reachable from the bridge-router, including those that are 
address is the Organizationally Unique Identifier (OUI), locally attached. The DALE search trees are considerably 
which is common to Ethernet cards from the same manu- l~r because they contain MAC addresses of up to 8,000 
facturer. It can be assumed that a particular system will only 55 stations. 
have a small number of different oms. Typical memory sizes for MAC destination address 

The formula for MACs then becomes: search trees would be: 

6 M fl 

N= I;mi,(16'- 1,MJ+ I;I;mi,(16>-1,x; 
P::::l pl , ... 1 

60 

where 
M is the number of different OUis 
X,. is the number of stations in O Uli 65 

Assuming that the addresses are distributed evenly over 
all OUls, 

Number of Number of 
OUh Station,, Total Bytes 

10 l!,000 1!56,992 
20 8,000 945,824 
30 8,000 1,034,464 

A ~talion's ~C address will appear in the MAC search 
tree if the station is reachable through MAC bridging. A 

EX 1019 Page 170

 
5,917,821

9
The Microcode-RAM 22 is dedicated to the LEG 3. It

contains the 32 bit microcode instructions. The LEC 3 has
read—only access to this high speed RAM normally, but it is
mapped directly to the Control Processor’s memory space at
startup for microcode downloading.

Variable fields ofa packet, such as addresses, are searched
in one ofmany search trams in theALES 1, 2, (FIG. 5), which
are nibble index machines. Each ALE 1, 2 has its own search
tree RAM 6, 8 (FIG. 7), which is typically high density but
low speed. This RAM is divided into 32 byte blocks which
can either be Index Arrays or Information Blocks.

The searches in the ALE; 1, 2 are based strictly on the root
pointer, the search key and search key length it is given. A
look at the look-up engine memory map (FIG. 7) as viewed
from the Ali's shows how the mechanism works.

All search trees in a given ALE 6, 8 reside in the upper
half of its memory. The 16-bit root pointer given to the ALE
will have the most significant bit set. The search key (cg.
MAC address) is divided into nibbles. The first nibble is
concatenated with the root pointer to get an index into the
root pointer may. The word at this location is retrieved. If
the M813 (Most Significant Bit) (P Bit) issct, the next rubble
is concatenated with the retrieved word to form the next
pointer. If the P Bit is clear, the search is finished. The final
molt is given to the LEC, which use it either as a pointer
into the SIB RAM, or as data, depending on the context of
the search. A zero value is reserved as a null pointer value.
FIG. 8 illustrates search tree operation.

"the search key length limits the number of iterations to a
known maximum. The control processor manipulating the
search tree structure may choose to shorten the search by
putting data with a zero P bit at my point in the tree.

“Don’t Care" fields are also achievable by duplicating
appropriate pointers within the same pointer array. Search
new are maintained by the Control Processor, which has
direct ems to the SALE and DALE RAM: 6, 8.

FIG. 9 is a diagram illustrating a MAC send: tree
example. The main purpose of the ALE RAMS 6, 8 is to hold
MAC layer addreses. The size of the RAM required for a
MAC address tree depends on the statistical (fishbution of
the addresses. The absolute worst case is given by the
following formula:I.

N=Zmosrgxi=1

where
X is the number of addms
L is the number of nibblm in the address

N is the number or: pointer arrays
The amount of memory required, given 32-13th pointer

arrays, is 32M. The number obtained from this formula can
be quite huge, especially for MAC anthems, but some
ratinnalizatiom can he made.

In the case of MAC addresses, the first 5 nibbles of the
address is the Urganizah'onnlly Unique Identifier (GUI),which is common to Ethernet cards from the same manu—
facturer. It can be assumed that a particular system will only
have a small number of different Ollie

The formula for MACS then becomes:
6 N (Z

N = Zmrr“.m+22mws”.xjrel Fl m7

where
M is the number of different 0013

X; is the number of stations in OUIJ-
Assuming that the addresses are distributed evenly over

allOUIs,

5

10

15

35

45

55

60

65

10
6 12 X

N: E mrxrrsH,M)+M§ minus”, Eo=1i=1

The cficct of DU! on Search Tree Size is shown in FIG.
10.

Similar rationalizations can be made with IP and other
network layer protocol addresses. An IP network will not
have very many subnets and even fewer network numbers.

Although the SALE 2 typically holds locally attached
source MAC addresses and the DALE I typically holds
destination MAC addresses, either ALE 1, 2 is capable of
holding any arbitrary search tree. Network layer addreses,
ultra-area filters, and user—defined MAC protocol types can
all be stored in search trees.'lhe decision to put a search tree
in either SALE or DALE is implementation dependent; it
reliw on what searches can he done in parallel for maximum

The principal function of the SALE 2 is to keep track of
the MAC addreses ofall stations that are locally attached to
the bridge-router. Typically one station willbe attached to a
bridge-router port, but connections to traditional hubs,
repeaters and bridge-routers are allowed, so more source
addresses will be cnmunterrd.

Using the formula for RAM size above, typical RAM
calculations for the source address trees are as follows;

 
Number or

Number of ours Stations Tour Bytes

20 400 65,440
2 500 65,184

no 500 77,984
on son 116,284

5 1,000 131,552 

The number of source stations is limited to some fraction
of the total allowable statioas. The limit is imposed here
because the SALE will most likely bold many of the other
search trees (e.g. per pmtoool NL rddrws search trees,
intro-area filters).

Whenever a new source address iscnoormtcred, the SALE
1 will not find it in the MAC source address search tree. The
LEC 3 realins the fact and sends it to the Control Proeowor.
The new smroe address is inserted into the search tree one:
validation is received from the Route Server

Whenever a previously learned address is re-enoormtered,
the Age entry in the SIB 20 is refreshed by the [EC 3. The
control processor clears the Age entry of all source addresses
every aging period. The entry is removed when the age limit
is exceeded.

The source address look-up engine table is shown in FIG.
11.

The DALE 1 keeps Book of all stations that are directly
reachable from the bridge-router, including those that are
locally attached. The DALE search trees are considerably
larger because they contain MAC addresses of up to 8,000stations.

Typical memory sizes for MAC destination address
search trees would be:
 

 
Number of Number. of

OUII Stations Total Bytes
to 8,000 856,992
20 8,000 945,824
30 8,000 1,034,464 

A stan'on’s MAC address will appear in the MAC search
tree 1f the station is machable through MAC bridging. A

EX 1019 Page 170



l 

5,917,821 
11 

station's network layer address will appear in the corre
sponding network layer search tree if it is reachable through 
routing. 

Toe destination address look-up engine MAC table is 
shown in FIG. 12. 

5 IP masking may be required if a particular port is known 
to have a router attached to it. Masking is achieved by 
configuring the IP network layer search tree in such a way 
that the node portion of the address is treated as Don't Care 
bits and the corresponding pointers point to the same Next 
Index Array. 

Toe SALE and DALE RAMs 8, 6 are divided up into 16 
word blocks. These RAMs are accessible only to the corre
sponding ALE and the Control Processor. These RAMs 
contain mostly pointer arrays organized in several search 
trees. 

Toe SIB RAM 20 is divided into 16 word blocks which 
can be treated as records with 16 fields. Each block typically 
contains information about an endstation. This RAM is 
accessible only to the LEC and the CP. 

10 

15 

12 
Filtering rules defined between areas determine whether two 
endstations are logically allowed to communicate with each 
other using a specific protocol. 

Toe Proto Area field is a pointer to a filtering rule tree, 
which is similar in structure to the address trees. The Desi 
Area field is a search key into the tree. The result of the 
search is a bitfield in which each protocol is assigned one bit. 
Communications is allowed if the corresponding bit is set. 

FIG. 16 shows a filtering rule tree. 

Toe microcode for the LEC 3 will now be descnbed. Toe 
LEC microcode is divided into four main fields as shown in 
the table below. Toe usage of each field is dependent on the 
instruction group. 

31-29 28--24 23-16 15--0 

Inst Instruction Di5plaa:mcnt Parameter 

Group 

Toe LEC 3 uses the lookup pointer (LP) as a base pointer 
into a SIB 20. The contents of the LP is obtained either from 20 

the result of a SALE 2 or DALE 1 search to access 
end-station information, or from a constant loaded in by the 
microcode to access miscellaneous information (e.g. port 
information). 1be LP provides the upper sixteen bits and the 
microcode word provides the lowest four bits of the SIB 

Toe instruction group field consists of instructions 
25 grouped according to similarity of function. A maximum of 

eight instruction groups can be defined. RAM address. 
Toe lookup Engine addressing scheme is shown in FIG. 

13. 
Toe SIB RAM 20 (FIG. 14) generally contains informa

tion about the location of an endstation and how to reach it. 30 

For example, the PortSet field may keep track of the port that 
the endstation is attached to (if it is locally attached) and the 
connection index refers to a VPI/VCI pipe to the endstation 
(if it is remotely attached). Other fields are freely definable 
for other things such as protocol filters, source and destina- 35 
tion encapsulation types and quality-of-service parameters, 
as the need arises. 

A variant of the SIB is the Port Information Block (PIB) 
(FIG.15). PIBs contain information about a particular port. 
Certain protocols have attnbutes attached to the port itself, 
rather than the endstations. An endstation inherits the char- 40 

acteristics assigned to the port to which it is attached. 
Toe definition of the SIB is flenble; the only requirement 

is that the data be easily digestible by the LUE instruction 
set. The field type can be a single bit, a nibble, a byte, or a 
whole word. 

In FIG. 14, the Cl (Connection Identifier) field is a 
reference to an Af'M connection to the endstation if it is 
remotely attached. This field is zero for a locally attached 
endstation. 

45 

Toe PortSet field is used both for determining the desti- 50 
nation port of a locally attached endstation, and for deter
mining whether a source endstation has moved. In one 
Newbridge-router Networks system, a moved endstation 
must go through a readmission procedure to preserve the 
integrity of the network. This field is zero for a remotely 55 
attached endstation. 

Toe MAC Index is a reference to the 6-byte MAC layer 
address of the endstation. This field is used for network layer 
forwarded packets, which have the MAC layer encapsula
tion removed. Toe MAC layer address is re-attached when 
a packet is re-encapsulated before retransmission out an 60 

Ethernet port. The encapsulation flags determine the MAC 
re-encapsulation format. 

The Instruction field definition is dependent on Instruc
tion Group. 

In branch instructions, the Displacement field is added to 
the PC if the branch condition is true. This field is used by 
non-branch instructions for other purposes. 

The Parameter field is a 16 bit value used for comparison, 
as an operand, or as an index, dependent on the instruction.• 

Toe functions of the groups are set out in the following 
table. 

Group 0 

Group 1 

Group 2 

Group 3 

Group 4 
Group 5 

Group 6 

Group 7 

Index Pointct(Bank Select 
inltructions 
Thcac inmw:tions mmipulalc the 
IP and the rcgislcr bank acloct 
rcgiatcL 
Fut Move Instructions 
Thc.,c instructions move data 
between 1./F RAM and intcma.l 
rcgiatcm. 
Conditional Branch inltructions 
These instructions branch when a 
given oondition is met. They can 
optionolly increment the IP. 
X Register Branch Instructions 
These instructions branch on on X 
Rcgiatcr logic comparison. 
Not Used 
Slow Move Instructions 
These inatructiona gencllllly 
involve the SIB RAM bus. The 
acccs., ti.me to the SIB RAM is 
longer because of address aetup 
time considerations and bCCllliC 
the CP may be acccasing it ot the 
same time. ACCCM to tho Result 
FIFOs arc included here. 
Not Used 
Misc Instructions 
These instructiona invoke apccio1 
functions. 

Toe Proto Area and Proto Dest Area fields are used for 
filtering operations. Because the Newbridge-router system 
essentially removes the traditional physical constraints on a 65 ---------------------

network topology, the area concept logically re~imposes the 
constraints to allow existing protocols to functmn properly. The following table describes the use of each of the fields. 

EX 1019 Page 171

 

 
H.«sawutvlti‘mgma‘drfififla‘i.‘x 5,917,821

11
station’s network layer address will appear in the cone-
sponding network layer search tree if it is reachable through
routing.

The destination address look-up engine MAC table is
shown in FIG. 12.

IP masking may be required if a particular port is known
to have a router attached to it. Masking is achier by
configuring the [P network layer search tree in such a way
that the node portion of the addrem is treated as Don’t Care
bits and the corresponding pointers point to the same Next
Index Array.

The SALE and DALE RAMs 8, 6 are divided up into 16
word blocks. These RAMs are accessible only to the corre-
sponding ALE and the Control Procesor. These RAMs
contain mostly pointer arrays organized in several searchtrees.

The SIB RAM 20 is divided into 16 word blocks which
can be treated as records with 16 fields. Each block typically
contains information about an endstation. This RAM is
accessrble only to the LEC and the CP.

The LEC 3 uses the lookup pointer (LP) as a base pointer
into a SIB 20. The contents of the LP is obtained either from
theresultofaSALEZorDALElsearch toaccess
end-station information, or from a constant loaded in by the
microcode to access miscellaneous information (e.g. port
information). The LPprovides the upper sixteen bits and the
microcode word provides the lowest four bits of the SIBRAM address.

The lockup Engine addreming scheme is shown in FIG.13.

The SIB RAM 20 (FIG. 14) generally contains informa-tion about the location of an endstation and how to reach it.
For example, the PortSet field may keep track of the port that
the endstation is attached to (if it is locally attached) and the
connection index refers to a VPI/VCI pipe to the endstation
(if it is remotely attached). Other fields are freely definable
for other things such as protocol filters, source and destina-
tion encapsulation types and quality-of-service parameters,
as the need arises.

A variant of the SIB is the Port Information Block (PIB)
(FIG. 15). HRS contain information about a particular port.
Certain protocols have attributes anached to the port itself,
rather than the endstations. An endstation inherits the char—
acteristim asigned to the port to which it is attached.

The definition of the SIB is flexible; the only requirement
is that the data be easily digestible by the LUE imtruction
set. The field type can be a single bit, a nibble, a byte, or awhole word.

In FIG. 14, the Cl (Connection Identifier) field is areference to an ATM connection to the endstation if it is
remotely attached. This field is zero for a locally attachedendstation.

The PortSet field is used both for determining the desti~
nation port of a locally attached endstation, and for deter-
mining whether a source endstation has moved. In one
Newbridge—router Networks system, a moved endstation
must go through a readmission procedure to preserve the
integrity of the network. This field is zero for a remotely
attached endstation.

The MAC Index is a reference to the 6-byte MAC layer
addre$ of the endstation. This field is used for network layer
forwarded packets, which have the MAC layer encapsula-
tion removed. The MAC layer address is rte-attached when
a packet is re-encapsulated before reu'ansmission out an
Ethernet port. The encapsulation flags determine the MAC
revencapsulation format.

The Prom Area and Proto Dest Area fields are used for

filtering operations. Because the Newbridge—router system
essentially removes the traditional physical constraints on a
network topology, the area concept lOgically re-rmposes the
constraints to allow existing protocols to function properly.

10

15

30

4s

50

55

60

65

12

Filtering rules defined between areas determine whether two
endstations are logically allowed to communicate with each
other using a specific protocol.

The Proto Area field is a pointer to a filtering rule tree,
which is similar in structure to the address trees. The Dest

Area field is a search key into the tree. The result of the
search is a bitfield in which each protocol is assigned one bit.
Communications is allowed if the corresponding bit is set.

FIG. 16 shows a filtering rule tree.
The microcode for the LEC 3 will now be described. The

LEC microcode is divided into four main fields as shown in

the table below. The usage of each field is dependent on the
instruction group.
 

 
3173 2844 23—16 15—0

Inst Insn'uction Displacement; Parameter
Group

The instruction group field consists of instructions
grouped according to similarity of function. A maximum of
eight instruction groups can be defined.

The Instruction field definition is dependent on Instruc-
tion Group.

In branch instructions, the Displacement field is added to
the PC if the branch condition is true. This field is used by
non-branch instructions for other purposes.

The Parameter field is a 16 bit value used for comparison,
as an operand, or as an index, dependent on the instruction.-

The functions of the groups are set out in the following
table.
 

Index Pointer/Bank Seled.
Inatructw'n:
Thue instructions nunipulale the
I? and the register bank select.
register.
Fast Move Inamrdiona
These instructions move tilt:
between I/F RAM and internal
registers.
Conditional Bunch Instructions
The“ instructions branch when I
given condition is met. They an
optionally inuement the 11’.
X Register Branch Instrument
'1th instructions brandl on an X
Register logic comparison.
Not Used
Slow Move Instructions
new instruction: generally
involve the SIB RAM hm. The
nun! time to the SIB RAM is
longer because of address setup
time considerations and because
the C? may he amusing it at thesame time. Amen to the Result
FIFO: are included here.
Not Used
Misc Instructions
Thae instrudiona invoke Ipecial
fundinns.

Group 4
Group 5

Group 6
Group 7

 

The following table describes the use of each of the fields.

EX 1019 Page 171



',' ·~ 
{',_ 

5,917,821 
13 14 

17-16 
Gtp 31-29 28-26 25--24 23-21 20-18 18-16" 15--0 

o 000 000 Opcr. 111 110 BScl Immediate 'hluc (15--0) 
or 
Rcgiater Select (15--4) 

001 DcsL Size I.Sci AScl BScl Immediate Value (15--0) 
Rcgiater Select (15--4) 
or Index (3-0) 

2 010 Cond. Size Disp. (8) Compo.rand 
3 o 11 Cond. 00 I.Sci Disp. (5) Comparand 
4 1 o o 
5 1 o 1 DesL Size I.Sci AScl BScl Immediate 'h!uc (15--0) 

Rcgiatcr Select (15--4) 
or Index (3-0) 

6 1 1 o 
7 111 000 Size 000 000 00 code• 

•when I.Sci - 110 

20 -continued 

~.· Condition 
Condition 

000 - (IP) - Comparand 
001 - (IP) < Comparand 010 - DALE Loolwp Re.snit 
010 - (IP) > Comparand 

25 110 - SALE l.oolcup Result 
011 -True 
100 - &tended Condition - nuc 

Immediate v.tuc 

101 - &tended Condition - Falac Word values fill the whole field 

110-Y-O Byte values nmst be repeated twice to fill the field 
111-Y<>O When BScl = 11 (Special Function.): 
Dest - Dc.stination 
000 - cwrcn!ly active FIFO 30 Value Function Mnemonic 

001 - X Rcgiater $0000 X rotate left 4 IA(X),R12(X) 
010 - Loolcup Engino Addteu RAM $1000 X rotate 8 (byte ...,.p) SWAP(X),LB(X),RB(X) 
011 - Group 5: S Rcgiater 

$2000 X rotate right 4 R4(X),L12(X) otherwise: None 
100 - Y Rcgiater $3000 portset(X) PSEr(X) 
101 - Index (LP) (SIB RAM) 35 $4000 X rotate left 1 Ll(X) 
110 - XP Register 

$5000 X rotate right,! Rl(X) 111 - Loolcup Pointer 
Opoxation - IP/Register Select opcxation $6000 flip X FLIP(X) 
00 - Register Select $7000 WE Version number VER 
10 - Load 

When Value - $3000 (Portxt Function): 
Size - IP increment 1ize 
00 - DO inCICmcnt 

40 X(ll:8) 1(15:0) 
01 - byte (+1) o 0000000000000001 
10 - word (+2) 0000000000000010 
Dia placement (8 bils) 

2 0000000000000100 00000001 - next wtruction 
00000000 - same inatruction 3 0000000000001000 
Dia placement (5 bits) 45 

4 0000000000010000 
00001 - next instruction 
00000 - ame ihatruction 5 0000000000100000 

I.Sci - Logic Unit Select 6 0000000001000000 
000-AANDB 7 0000000010000000 
001-AORB 

8 0000000100000000 010 - AAND NOT B 50 
011-AOR NOTB 9 0000001000000000 
100-AXORB 10 0000010000000000 
101- Reaervcd 

11 0000100000000000 010- B 
111-A 12 0001000000000000 

AScl - Operand A Select 55 13 0010000000000000 
000 - (IP), (IP)+ Indirect UF Data 14 0100000000000000 
001 - X X Register 

15 1000000000000000 
010 - S S Rcgiater 
011 - XP X'Rcgiater 
100 - XP x· Rcgiater 
101 - 60 FIFO Write Instructions 
110 -
111 -
BScl - Operand B Select 31-29 28-26 25-24 23-21 20-18 17-16 15--0 
00-Y YRcgister 
01 - #Value Immediate Value 1 o 1 000 00 1 1 o Extra BScl Immediate 
11 - Special Function 65 V..luc (15--0) 
When I.Sci - 110: 

EX 1019 Page 172

5,917,821

 

 

 

  

 
 

  
 

 

 

 

17—16
G'tp 31-29 28—26 25—24 13-21 20—18 18-16' 15—0

0 000 000 0pc; 111 110 BSel lumediate‘hlueOS—O)or
Regilter Select (15—4)

1 0 0 1 Deal. Size 15:1 AScl 115:1 Innnediate Value (15—0)
Register Select (15—4)
or Index (3—0)

2 0 1 0 (111111 Size Disp. (8) Campamnd
3 0 1 1 Cond. o 0 15:1 Disp. (5) Compmnd4 1 0 D
5 1 0 1 Desk. Size ISel ASel BSel [mediate Value (15—0)

Regine! Select (15—4)
or Index (3—0)6 1 1 U

7 111 000 Size 000 000 00 code:

'whcn LSel = 110

20 continued

Condmou Co I' . n
000 - (IF) - Compmnd
001 » (11’) < Compaxand 01L) - DALE Lookup Ranlt

31(1) - ('1’) > Command 25 110 < SALE backup Result
100 - Extended Condin'on -me “mail“ “1“”
101 _ Extended Canditlan 3 F1136 Word values fill the whole field

~ 110-Y-0 Bytevfluesmstbcmlednfinemfiumefield
:— 111 - Y o o = - - .
2‘ Dent _ Destinluon When BSel 11 (Spend thchons). .
7‘ 000 - currently naive FIFO 30 Value mm“ Mnemmm:5 001 » x Register 50000 x mm: 1:0 4 L4(X),R12(X)
1 01° - 1m“? F4181“ Nd!“ W 31000 x mm: a (byte mp) swnomaoggsagf 011 - Gmup 5: S Regular ,
53 0mm": None 52000 x mm: ugh: 4 R4(X),LIZ(X)
5 100 - Y Regine! $3000 ports-4X) P513100

1(1); - 7135119!) (SIB RAM) 35 54000 x mm: 1m 1 1.101)- pile: .
0 11:1 - Loolcup Pointer ”00° x “m“ “5'“ mac)
7 Operation - [P/Regiltet Select operation 55000 all? X FUNK)
i, 00 - Register Select S7000 LUE Vmion number VER
f 19 - Loud. 1 When Vllue - $301!] (Pomet Function):.1 Size » IP Inclement nae 401 DD - no inclement X0138) K1511)

V 01 ‘ by: (+1) 0 0000000000000001
; 10 - word (+2)1 . . 1 0000000000000010
y Duplaeemml (8 Int!)

J 00000001 - next inn-union 2 0000000000000100

L 00000000 - :Ime instruction 45 3 OOOUWOWCOIHOOO
lg Duplmmenqs bits). 4 0000000000010000‘ 00301 - next Instruclmn

0mm > me ihltrucfinn 5 ODDOCOONOICDOOO
15¢] - logic Uni]: Select 6 OOOODOOOOIDCDCOO

33° ‘ 2811:3313 7 0000000010000000
1 _

010 _ A AND “OTB 50 5 0000000100000000[)1] _ A OR NOT B 9 0000001000000000
100 - A XOR B 10 OOUOUIOOOWOOODO

32(1): gum“ 11 0000100000000000111 _ A 12 0001000000000000
ASel - Opennd A Select 55 13 OOIUOOUDOIIJUOOOO

y - (f). (11‘)+ Kind“);E} "F D“! 14 01000000000000001 - cglstex
010 _ S S Regina! 15 1000000000000000011 - X? X' Register
100 - X? X' Register '101 - 60 FIFO Wme Instructions
110 —
111 —

BScl - 09mm B Sch“ 31—29 23—25 25—24 73—21 20—15 17—15 15—0
00 - Y Y Registex
01 - #anue [median Value 1 0 1 0 0 0 0 0 1 1 0 Extra BSel lmmedime
11 - Special Flmdinn 55 Value (15—0)When ISel = 110:

5
Ez

.

EX 1019 Page 172



5,917,821 

Oee 01 

Oee 00 

lee 00 

15 

MOVEF #Valuc,Exln 
Move Immcdialc v.Iae to FIFO with Ema bit< 

MOVEF Y,E:ma 
Move Y Register to FIFO with Extra bib 

MOVEF lnd<:I(LP),Extra 

16 

Move lndel<Cd Looknp Data to FIFO with Extra bib 

The FIFO write instructions are used to write data into the 10 

currently active result FIFO. The Extra field control bits 16 
aod 17 in the FIFO data bus. 

The third instruction in the list is a direct memory access 
from SIB RAM to the active FIFO. SIB RAM is enabled 
while the active FIFO is sent a write pulse. Doing so avoids 

15 

having SIB data propagate through the LUE. Bit 20 differ
entiates between a OMA aod a non-OMA instruction. 

The X register cannot be used as a MOVEF source 
because what would normally be the ASel field conflicts 20 
with the Extra field. 
Usage: 

-continued 

Group/Delt/LSeVASel/BSel - Instruction Type 

101 101 110 000 00 MOVE Y,Index(LP) 
Move X Register to Indexed Lookup Data 

101 011 000 000 00 GET lndex(LP) 
Load S Register with lnd<:Ied Lookup Data 

001 111 110 000 00 MOVE Y,LP 
Move X Register to Lookup Pointer 

001 111 110 000 01 MOVE #Valuc,LP 
Move Immediate 'vllluc to Lookup Pointer 

001 11l 111 001 00 MOVE X,LP 
Move X Register to Lookup Pointer 

MOVEF #IPSnap,0 ; Packet ia IP over SNAP 
Interface RAM Data Read Instructions 

Lookup Pointer instructions are used to load the Lookup 
Pointers or to store aod retrieve values in Lookup RAM. 

25 
Usage: 

MOVE Age(LP),X 

_31_-_29 ___ :zs.;_2_6 __ ~_2_4 __ 23-_2_1 __ 20-_1_8 __ 11_-_16 __ 1S--O ____ 30 
x.Age(LP) 

; Get Age field 
; check age 
; reset age 

001 Deat Size 1 1 1 0 0 0 0 0 Unnaed 

De.I/Size 

001 00 

00110 

100 00 

100 10 

111 00 

11110 

MOVE (IP),X 
Move IP indiiect to X Register 
MOVE (IP)+,X 
Move Ip indiiect autoinc to X Regiater 
MOVE (IP),Y 
Move IP indirect to Y Regiater 
MOVE (IP)+,Y 
Move IP indiiect autoinc to Y Regiater 
MOVE (IP),IP 
Move IP indirect to LP Regiater 
MOVE (IP)+,IP 
Move IP indirect autoinc to LP Register 

Interface RAM Data Read instructions are used to read 
data from the Interface RAM 41 into the X, Y or LP Register. 
The LP used is preselected using the RSEL instruction. 
Lookup Pointer Instructions 

31-29 :ZS-26 25-24 23-21 20-18 17-16 15--0 

Group Deat 00 LSel ASel BSel Immediate 
or \hlue (15--0) 
Ema Reg Sel 

(15-4) 
or Index 
(3--0) 

Group/Dest/LSeVASel/BSel - Instruction Type 

101 101 111 001 00 MOVE x,Indcx(LP) 
Move X Register to Indexed Lookup Data 

MOVE ; put it back in 

Logic Instructions 

35 

31-29 :ZS-26 ~24 23-21 20-18 17-16 15--0 

001 Deat 00 I.Set ASel BSel Immediate 
Value (15--0) 
or lnd<:I 

40 (3-0) 

Logic instructions are used to perform logic manipula
tions on the X and Y Registers. Combinations of the 

45 selections above yield the following (useful) instructions: 

Deat/LSeVASel/BSel 

001 110 000 00 MOVE Y,X 
so Y->X 

100 111 001 00 MOVE X,Y 
X->Y 

001111 010 00 MOVE s,x 
S->X 

100 111 010 00 MOVE S,Y 

55 S->Y 
001 11 O 000 01 MOVE #\hlue,X 

Immediate v.Iae -> X 
100 110 000 01 MOVE #Valae,Y 

Immediate Value -> Y 
001 000 001 00 AND X,Y,X 

60 XANDY->X 
001 000 010 00 AND S,Y,X 

SANDY->X 
001 000 001 01 AND X,#v.lue,X 

X AND Value -> X 
001 000 010 01 AND S,#\luue,X 

65 
SAND Value -> X 

100 000 001 00 AND X,Y,Y 
XANDY->Y 

EX 1019 Page 173



!.: 

I 

17 
-continued 

Deat/1.SeVASel/BSel 

100 000 010 00 AND S,Y,Y 
SANDY->Y 

100 000 001 01 AND K,#Yalue, Y 
X AND Valw, -> Y 

100 000 010 01 AND S,!tvalw:,Y 
S AND \ltlue -> Y 

OR, ANON, ORN and XOR iue similar to AND: 
dat 001 ua bb OR aaa,bb,dst 

uaOR bb-> dst 
dst 010 ua bb ANON ua,bb,dat 

aaa OR bb -> dtlt 
dst 011 au bb ORN ea,bb,dst 

au OR bb -> dot 
dst 100 Ul bb XOR aaa,bb,dct 

aaa OR bb--> mt 

Conditional Branch Instructions 

5,917,821 

10 

15 

Cand/LScl 

111100 

110 000 

111 000 

110 010 

111 010 

18 
-continued 

BXNE #Value,Label 
Branch if X is not equal to value 
ANDBZ #Valueµbcl 
B,anch if X AND Vi.Jue is equal to zero 
ANDBNZ #Vlllueµbel 
B,anch if X AND Vi.Jue is not equal to zero 
ANDNBZ #\ltlueµbel 
Branch if X AND NOT V&luc ii equal to zero 
ANDNBNZ ~uc,LJlbcl 
Bnuu:h if X AND NOT \'l,lpc ia not equal to zero 

X Register Branch instructioas are derived from the X 
Register Logic instructions with Operand A always set to the 
X Register and Operand B always set to the Immediate 
value. The X Register is not affected by any of these 

--------------------- 20 insti:uctioas. The displacement field is reduced to 5 bits 
31-29 28-26 

010 O:md. 

O,nd/Size 

000 01 

000 10 

001 01 

00110 

01001 

01010 

llO 00 

lll 00 

25-24 23-16 15--0 

Size 

ESCNE.b #Comparand,Labcl 
&cape if Byte Nat Equal 
ESCNE.,. #Compa:rand,Llbel 
&cape if Wcmi Nat Equal 
ESCGE.b #Compannd,Lnbcl 
&cape if Byte Gn:ater or Equal 
ESCGE.,. #Camparan.d,Label 
l!icape if Wool GTI:ater or Equal 
ESCLE..b #Comparand,l.abcl 
&cape if Byte Leas or Equal 
ESCIE.w #Compmmd,l..&l,el 
&cape if Wool Leu or Equal 
B""i'Z Label 
Bwu:h if Y &giater ii zero 
BYNZ Label 
BIIIIICh if Y Register ii not zero 

Increment Branch instructions arc used to compare the 
current packet field with an immediate value. If the condi
tion is met, the branch is taken; otherwise IP is incremented 
by the Increment Size. 
Usage: 

Labcll: ; check if SNAP header 
ESCNE. w #$AAA.A,IJll,c12 ; compare to SNAP value 
ESCNE.w #$0003,0therl.abcl 

Labcl2: 

X Register Branch Iastructions 

31-29 28-26 25-'24 23-'ll 20-16 15--0 

011 Cond 00 LSel Disp v.tue 

Cond/(.sel 

110 100 BXEQ #Vi.lue,Label 
Branch if X ia equal to value 

(+/-32 insb:uctions) 

Usage: 

25 Sec Destination Inokup mstruction ..:ample 
SKIP.w ; ignore the nc:xt word field 

Other Branch Instructions 

30 ----------------------31-29 28-26 25-U 23-16 15-4 3--0 

010 Cond 

35 

100 00 $00 $000 0 DWAII' 
Wait for DALE 

40 100 00 $00 $800 O SWAIT 
Wait for SALE 

101 00 $00 $COO O FWAIT 
Wait for Snoop FIFO done 

101 00 ddd $400 0 BCSERR ddd 
BllUICh on checuwn error 

45 011 01 $01 $000 0 SKIP.b 

011 lO $01 $000 0 SKIP. w 
Skip Byte (wne u IBRA.b +1) 

Skip Word (ume u IBRA.w +l) 
011 01 ddd $000 0 IBRA.b Label 

Increment Byte and Bmnch Always 
50 011 10 ddd $000 d IBRA.w label 

55 

60 

65 

Increment Word and Branch Always 
011 00 000 $800 0 SWITCH 

Switch on X (ildd X to PC) 
011 00 ddd $000 d BRA.u Label 

Biancb Always 

These instructions are derived from the conditional 
branch instructioas. Wait instructions loop until the extended 
condition is false. Skip instructions move to the next instruc
tion and increment the IP appropriately. 

More branch instructions can be defined easily by using 
Cond•lOO or 101 and picking an unused ExtCond pattern. 

When CondaOll (True), the displacement field is 
extended to 12 bits. 

The SWITCH instruction adds the least significant nibble 
of X to the PC. If X(3:0)•0, 16 is added to the PC. , 

EX 1019 Page 174

 

‘fistmwrmtx.
swap-g:~

a;g

wan—1.“,(mm.

«.mmwvmm.x,
t

.y“

,w‘

i?

i,5

5z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5,917,821
17 18

~continued continued

DeatlLScVASel/BSel Cond/Lsel

30° 00° 010 m ‘9") S’Y’Y 111 100 3x14}! #anuemeel5 AND Y ~»> Y 5 ' _
100 m0 001 01 AND “Wax Branch 11x 13 not equal to “In:

x AND Wu: _, Y 110 000 ANDRE #anuclnbcl
mg mg (310 31 AND 5;me Branch {EXAND Value is aqua! tn zero

S AND “In: -> Y 111 000 ANDBNZ #Wuelzbel
ORANDN, ORNudXORnreaimfinrmAND: Bunch ifXANDVdueisnotequlmzcm

dz: 001 m M: 0R ”isms; 10 no mo ANDNBZ #anehhel
an OR —> t - -

BunchthAND NOTWuetsequaitomt-o

‘3‘ 01° m b” m: fifbéi" 111 010 ANDNBNZMneml
datO'llmbb ORN m,bb,dst finnchifXANDNOl‘themnotequaltouman OR bb —> dst

55!. 100 m bl! XOR mbhfist 15
m 0R bb—> dm X Register Branch instructions are derived from the X

Register Logic instructions with OperandAalw-ays set to the
Conditional Branch Mcfiom X Register and Opemd B always set to the Immediate

value. The X Registrar is not affected by any of these
20 instructions. The displacement field is minced to 5 bits

3149 28-26 25-24 23—15 15—0 (”.32 Mekong)
O 1 0 Cond. Size Dixplammnt Cowman Usage;

25 See Destiminn lockup [amnion mm'plc
SKIEW ; ignore the next word fieldChad/Sim

mo 01 ESCNEI: AC0 panndpbel .
M u Byte Norm Other Branch lush-whorls

030 10 ESCNEW #OmnpmndJAbel 30Escape if Word Nut Equll
001 01 ESCGEh Romp-WI 31—3 234$ 25,24 23,45 15_4 3-0

Esme if Byte Grater or Equal
DU! 10 MFA: WWBGI 0 1 0 Band Size 055;) ExtCund WP

Fmpc if Wad Grater 0r Equnl
010 01 ESCLEb #Cowmndlnbel

Esupc if Byte Less 1:: Equal 35
010 m ESCLE.‘ £09113)dede

Eran: xi Word Lea oz Eqml . ’D . mm110 09 m label (3011613
Bunchif‘il‘deimisum moonsmsomonwm

111 00 EYNZ hbel wm'; fm DALE
BunchifYRegjsmiznntum 4G IOOODSOOSSOOOSWAII‘

Wait for SALE
. 101 00 500 scan 0 FWAIT

Incremmt Branch mslrncnom are used to compare the Wait: for Snoop FIFO done
current packet field mth an immcdlate value If the condi— 101 ”9 w 540“ 0 mm m. . . . . . Branch on checksum cunt
hon 13 met, the branch IS taken; othervnse IP 15 mctemented 45 011 01 $01 5000 o smb
by the Increment Size. skip Bytc (sum as [aw +1)

 
Usage:

labs“: ; check if mix? header
ESCNB. w We” ; compete to SNAP value
ESCNEW “WAWIIHKI

lecn; ' 

X Register Branch Instructions
 

 

 

 

iii-29 2E~26 25-24 2341 20—16 15-0

0 1 1 Cond 0 0 15:1 Disp Vela:

CondIiSelWM
110 100 BXEQ #WueJAbel

mechifxisequalmvalue

50

55

60

65

011 10 $01 $000 0 smw
Skip Word (am: as [BEAM +1)011 01 ddd $800 0 {BRA}: hhel
lumen: Byte end Brand: Always

011 10 ddd 5000 d {BMW Label
Increment Word tad Bunch Always011 00 OR!) 5800 0 SWIICH
Switch onX(adXm.n PC)011 00 ddd 5330 d BRA“ label
Bunch Always 

These instructions are derived from the conditional

branch instructions. Wait instructions loop mm] the extended
condition is false. Skip instructions move to the next instruc-
tion and increment the IP appmpriately.

More branch instructions can be defined easily by using
Candaloo or 101 and picking an unused ExtCond pattern.

When Comic-011 (True), the displacement field isextended to 12 bits.

The SWITCH instruction adds the least. significant nibble
of X to the PC. If X(3:0)-0, 16 is added to the PC. 4

EX 1019 Page 174



5,917,821 
19 

Usage: 

SKIP.w ; ignore the next word field 
Index Pointer/Register Select Instructions 

Index Pointer/Register Select Instructions 

31-29 23--26 25-24 23-21 20--18 17-16 15--0 

Group Dest Oper l.Scl AScl BScl Immediate 
\\Jue (15--0) 
or 
Register Select 
(15-4) 

Group/l)esL/Oper/LScVAScl/BScl 

001110 oo 111 ooo oo sr X{,XPn.ll'n] 
X -> XP, optionally switch to XPo,ll'n 

001 001 00 111 100 00 LD X{,XPn,LPn] 
XP -> X. optionally IWilch to XPn,IPn 

001 011 00 111 000 00 RSl!L XPn,IPn 
nritch to XPn,LPn 

000 011 10 111 000 01 LOADCP # \\Jue 
Load [P immediate 

000 011 10 111 001 00 LOADCP X 
Load lP with X 

20 

31-29 23--26 25-24 23-21 20--18 17-16 15--0 

0 0 1 Dest 00 11 0 000 10 not med 
5 

Dest 

10 111 DMOVELP 
Move DALI! result pointer into Lookup Pointer 

001 DMOVEX 
Move DALI! rc1ult pointer into X Register 

100 DMOVEY 
Move DALI! result pointer into Y Register 

15 -----------------------

20 

The destination lookup instructions set up the DALE and 
read results from it. The currently selected lookup pointer is 
used as the root pointer. 

The DLOAD instruction loads words into the 16 by 16 bit 
DALE Nibble RAM and loads the Command Register. The 
DMOVE instruction returns the DALE result. 
Command Register 

25 ----------------------
15 14 

Start 0 

13-12 

Nibble 
Olfaet 

11-4 3--0 

00000000 Address 

Index Pointer instructions are used to perform manipula- 30 

tions on the index pointer. The Start bit signals the DALE to start the lookup. 
Transfers from the X registers are not normally used in a 

lookup function but may be useful for general purpose 
transfers from interface RAM. 

The Register Select instruction selects a register from 
each of the register banks. The format of the Bank Select 
Bits field is: 

15-12 11 10-8 7 3--0 

xxxx XEn XScl LPEn LPScl xxxx 

The En bits determine whether the corresponding select 
bits are valid. If En is 2:ero, the corresponding register 
selection remains unchanged. IfEn is one, the corresponding 
select bits are used. This mechanism allows register selec
tions to be made independent of each other. 

The Nibble Offset field points to the first valid mbble in 
the first word loaded into the Address RAM. 

35 
The Address field points to the word being written in 

Nibble RAM. 
The DMOVE instruction gets the 16 bit DALE result 

pointer. DMOVE should be preceded by DWAIT, otherwise 
the result may be invalid. 

40 Usage: 

LOADCP #StartOfl'l!cket ; point to IWt nf packet 
DLOAD (IP)+, Wordl ; load DA word 1 

45 
DLOAD (IP)+,Word2 ; load DA word 2 
DLOAD (IP)+,Word3,Sllrt ; load DA word 3 and start lookup 

: do other stuff 
DMOVI! X ; get result 
BXNI! #Null,DAFound ; address found in table 

Destination Lookup Instructions so Source Lookup Instructions 

31-29 

001 

Size/AScl 

00 001 

00 000 

10 000 

23--26 25-24 23-21 20-18 17-16 15--0 

0 1 0 Size 1 1 1 AScl O O 0,mmand/ 

DLOAD x,Addrcss LO,mmnnd] 
Lo•d X into DAIE 
DLOAD (IP),Addrcss Lo,mmand] 

Address 

Load IP indirect into DALI! / load O,mmand Reg 
DLOAD (IP)+,Addrcs• Lo,mmand] 
Load [P indirect &utoinc into DALI! / load Command Reg 

31-29 

55 00 1 

60 Sizc/AScl 

00 001 

00 000 

10 000 
65 

23--26 25-24 23-21 20--18 17-16 15--0 

0 1 0 Size 1 1 1 AScl O 1 O,mmand/ 

SLOAD K.Addrc•• LO,mmand] 
Load X into SALi! 
SLOAD (IP),Addrcss [,O,mmand] 

Address 

Load [P indirect into SALi! / load Command Word 
SLOAD (IP)+,Addrcss LO,mmand] 
Load lP indirect autoinc into SAIE / load Commnnd Wold 

EX 1019 Page 175



t 

31-29 

001 

5,917,821 
21 

28-26 25-24 23-21 20--18 17-16 15-0 

De.I O O 1 1 0 0 0 1 1 0 Immediate 

22 
the checksum each time the IP crosses a word boundary until 
the count is exhausted. 

Miscellaneous Instructions 

Value (lS-0) 5 
31-29 28-16 15-0 
111 00000000 Code (2'--0) 

De.I These instructions invoke special functions 

-------------------- 10 
111 SMOVELP 

001 

100 

Move SAIE result pointer ill1o Looknp Pointer 
SMOVEX 
Move SA1E result pointer ill1o X Register 
SMOVEY 
Move SALE result pointer ill1o Y Register 

The destination lookup instructioas set up tlie SALE and 
read results from it. The curn:ntly selected lookup pointer is 
used as the root pointer. 

The SLOAD instruction loads words into the 16 by 16 bit 
SALE Nibble RAM and loads the Command Word. The 
SMOVE instruction returns the SALE result. 
Command Word 

15 

Code 
001 STOP 

Stop o:ucution until nut lookup rcqueat 

The lookup engine operation will now be described in more 
detail. The instruction State Machine (ISM) is shown in FIG. 
17. 

A lookup engine microcode will typically take four clock 

20 cycles. A1 50 MHz, the instruction cycle takes 80 ns to 
execute. Instructions that require access to SIB RAM, which 
requm: arbitration with the Control Processor, and any 
future extensions that require more time to execute will 
requm: one or more additional cycles to complete. 

--------------------- 25 After reset, the 3 LEC is in the idle state. As soon as one 
15 14 

0 

1~12 

Nibble 
otl'sct 

11-4 3-0 

00000000 

The Start bit signals the SALE to start tlie lookup. 
The Nibble Offi.et field points to the first valid nibble in 

the first word loaded into the Address RAM. 
The Address field points to the word being written in 

Addn:ss RAM. 

of the sooop FIFOs 42, 43 is non-empty, the ISM enters the 
main instruction cycle loop. 

A microcode instruction cycle is typically divided into 
four main states. State 3 and State O allow the microcode 

30 contents to propagate through the LEC. The instruction 
group is determined in State 1. If a fast instruction is being 
executed (Groups 0-3), State 2 is entered immediately. 
Otherwise the appropriate next state is enten:d according to 
the Group field. 

The SMOVE instruction gets the 16 bit SALE result JS 
pointer. The SMOVE instruction should be preceded by 
SWAIT, otherwise the result may be invalid. 

FIG. 18 shows a typical fast instruction. 
By the time State 2 is reached, all signals will have settled. 

New values for the PC and if necessary, the IP and/or the 
selected destination, are loaded at the end of this state. Usage: 

SLOAD 
SLOAD 
SLOAD 

SWAIT 
SMOVE 
BXNE 

(IP)+, Wotdl 
(IP)+, Wotd2 
(IP)+, Word3,51art 

X 
#Null,SAFound 

Checksum Engine Instructions 

; load DA wonl 1 
; latd DA wonl 2 

; latd DA word 3 and llmt lookup 
; do other lll1Jf 
; -nit for SAlE to finish 
; get result 
; address fol.llld in table 

State 42 is a dummy state for currently undefined groups. 
'40 State S2 is a wait state for e:r:temal accesses to SIB RAM. 

The ISM exils this state when the SIB RAM has been 
granted to the LEC long enough for an access to complete. 

FIG. 19 shows a typical SIB RAM access instruction. 
States 72 and 73 are executed during the STOP instruc-

45 lion. State 73 flushes the snoop FIFOs in case. 
The I.EC cycles through States O to 3 indefinitely until a 

STOP instruction is encountered, which brings the I.EC 
back to the idle state. 

The lookup request mechanism for a MAC layer lookup 

---------------------
50 

is as fullows: 
31-29 

001 

Size/AScl 

00001 

00000 

10 000 

28-26 25-24 23-21 20-18 17-16 

010 111 AScl 10 

CLOADX 
l.oad X into Chccbum Eagino and start 
CLOAD (IP) 
Load Cl' indirect into Checksum Engine and start 
CLOAD {IP)+ 

15-0 

$8000 

Load Cl' indirect autoinc ill1o Checksum Engine and start 

S5 

60 

The CLOAD instruction loads a word count into the 65 

checksum engine, clears the checksum and starts the engine. 
The word currently indexed by IP is subsequently added to 

The requester (e.g. tlie AXE) places information, gener
ally a packet header, into the snoop FIFO. 

The empty flag of the FIFO kickstarts the LEC. 

The I.EC instructs the DALE to look up the destination 
address. 

The I.EC instructs tbe SALE to look up the source 
address. 

The LEC looks into the packet to determine the network 
layer protocol in case it needs to be forwarded. 

The LEC waits for the SALE and reads the Source 
Address SIB pointer. 

The source port is compared against the previously stored 
portset to see if the source endstation has moved. 

The LEC waits for the DALE and reads the Destination 
Address SIB pointer. 

EX 1019 Page 176

‘“can:“shavings,”fin..
na,m

.2o.‘«rah5m
w

comm:‘Wm-v

we3....
.Qp,

  5,917,821

 

 

 

 

 

21

31—29 28-26 15—24 23—21 20—18 17~16 15-0

001 Deal 00 110 001 10 Immediate
“aloe (15—0)

Dost

111 SMOVE LP
Move SALE remit pointer into Loohrp Pointer001 SMOVH X
Move SALE result pointer into X Register100 SMOVB Y
Move SALE malt pointer into Y Register 

The destination lockup instructions setup the SAIE and
read results iron) it. The mrently selected lockup pointer is
used as the root pointer.

The SLOAD instruction loads words into the 16 by 16 bit
SALE Nihble RAM and loads the Command Word. The
SMOVB instruction returns the SALE result.
Command Word

 

 15 14 13—12 11-4 3-0

Start 0 Nibble 00000000 Address
Ofi'xet 

The Start hit signals the SALE to start the looknp,
The Nibble Ofi'set field points to the first valid nibble in

the first word loaded into the Address RAM.
The Address field points to the word being written inAddress RAM.
The SMOVE instruction gets the 16 bit SALE result

pointer. The SMOVE instruction should be preceded by
SWAIT, otherwise the result may be invalid.

 

 

 

 

Usage:

sumo (Pfl,Wcrd1 ; land on mm! 1
SLOAD (D’)+,Wbrt12 ; lad DA word 2
sumo ([P)+,Word3,Stzrt

;lold DA word 3 and start lockup
. . . ; do other Imlf
SWAH' ; wait for SALE to finish
SMOVB x ; get: molt
BXNE muilfiAFound ; 31de found in table

Checksmn Engine Instructions

31-29 23-26 25-24 23—21 2048 17~1 6 15—0

0 0 1 0 1 0 Size 1 1 1 ASel 1 0 $8000 

 

 sin/m1
DO 001 CIDAD X

load X into @eclsum Engine Ind am!
00 000 CLOAD (1?)

Load [P Lndired. into Checkout Engine and start
10 000 CLOAD (131»

Land tr indirect .11me into Checkout Engine and start 

The CDOAD instruction loads a word count into .the
checksum engine, clears the checksum and starts the engine.
The word currently indexed by [P is subsequently added to

10

15

‘5

50

55

60

65

22

the chocksum each time the [Pcrosses a word boundary until
the count is exhausted.

Miscellaneous Instructions

 
31—29
1 l 1

28-16 15.0
00000000 Cuckoo) 

These instructions invoke special functions
 

Code
(X11 STOP

Stop moon until next lcohp requeat 

The lookup engine operation will now be described in more
detail. The instruction State Machine (ISM) is shown in FIG17.

Alookup engine microcode will typically take four clock
cycles. At 50 W2, the instruction cycle takes 80 as to
execute. Instructions that require access to SIB RAM, which
require arbitration with the Control Procem, and any
future extermions that require more time to execute will
require one or more additional cycles to complete.

After resct, the 3 LEG is in the idle state.As soon as one
of the snoop FIFOs 42, 43 is nonempty. the ISM enters the
main instruction cycle loop.

A microcode instruction cycle is typically divided into
four main states. State 3 and State 0 allow the microcode
contents to propagate through the LEC. The instruction
group is determined in State 1. If a fast instruction is being
executed (Groups 0—3), State 2 is entered immediately.
Otherwise the appropriate next state is entered according to
the Group field.

FIG. 18 shows a typical fast imtructicn.
By the time State 2 is reached, all signalswill have settled.

New values for the PC and if necessary, the 1? and/or the
selected destination, are loaded at the end of this state.

State 42 is a dummy state for wrently undefined groups.
State 52 is a wait state for externalamto SIB RAM.

The ISM exits this state when the SIB RAM has been
granted to the LEC long enough for an amass to complete.

FIG. 19 shows a typical SIB RAM access instruction.
States “3'2 and 73 are emuted during the STOP instruc-

tion. State 73 fimhcs the snoop HFOs in case.
The IEC cycls through States 0 to 3 indefinitely until :1

STOP instruction is encountered, which brings the [EChack to the idle state.

The lockup request mechanism for a MAC layer 100anis as follows:

The requester (eg. the AXE) places information, gener-
ally a packet header, into the snoop FIFO.

The empty flag of the FIFO kickstarts the LEC.
The [EC instructs the DALE to look up the destinationaddress.

The LEC instructs the SALE to look up the sourceaddress.

The LEC looks into the packet to determine the network
layer protocol in case it (leech to be forwarded.

The [EC waits for the SALE and reads the Source
Address 3338 pointer.

The source port is compared against the previously stored
portset to see if the source endstatinn has moved.

The LEC waits for the DALE and reads the Destination
Address SiB pointer. 4

from
C’9

EX 1019 Page 176

S



5,917,821 
23 24 

The destination area is compared to the source area to see 
if the endstatioos are in the same area. 

Packets are discarded if they serve no other useful pur
pose ( e.g. SA and DA on the same port or in different areas, 
errored packets). Otherwise they are sent to the Control 
Processor for further processing. The sow:ce port is compared against the destination port 

to see if the endstations are on the same port. 

; File:BOO.a 

Sample Program 

; Unicast Bridging Case 
; Release 1.1 F\Jnctionailiy 

B00_5wt: 
;XO - Pacb:t StaltJJI Word 
;IP = Points to 2nd by!<: of PSW 
;DR - Conlains Packet Statm Word 
;XO, lJ'O are default XI', 1P 

MOVE $8000,11' ;I.,:,ok up Destination MAC 
DLOAO (JP)+,O ;Load DstAddr bit:; 0-lS 
DLOAD (JP)+,l ;Load Ost Addr bita 16-31 

DLOAD 
MOVE 
SLOAD 
SLOAD 

;Load Ost Addr bila 32-47 
(JP)+ ,2,$8000 ;and start looknp 
$8000,11' ;I.,:,ok up Sowa, MAC 
(JP)+,O ;Load Sn: Addr bila 0-lS 
(JP)+,1 ;Load Sn: Addr bila 16-31 

;Load Src Addr bilo 32-47 
SLOAD (JP)+,2,$8000 ;and tlart lookup 

; dctcrmiru: pm!Dcol bet• 
ESCOE. w 1500, ;chcclc if 802.3 format 

8SCNE.w 
Ched:EnetType 
$AAA.A, ;checlc DSAPISSAP 

8SCNE.w 
UnbownType 
$0300, ;check CI'L field 
SNAP Unknown· 

ESCNE.w ~~. 
SNAPUnknoWJI-

ESCNE.w ~, ;check protocol 1.Jpe !l.eld 
SNAPUnknown-
Protocol 

; It's IP over SNAP 
BdgSNAPIP: 

CLOAOS ;assume IP 
header longtb is 
s 

8SCNE.w $4500, ;c:hcck IP bcadcr 
BdgSNAPIP_ 

SKIP.w 
withOpl:I 
;d:ip length 

SKIP.w ;mp i.delllifu:a-
lion 

SKJP.w ;d:ip oflilct 
E!SCLl!.b $01, ;cbockTIL 

BdgSNAPIP_ 
'ITJ.&pircd 

SKIP.b ;,,kip protocol 
SKJP.w ;akip cbecbum 
MOVE (IP)+,X ;n,ad NL5A 
MOVE R12(X).X ;,,hift fu.t nibble 

to bottom 
SWITCH ;check IP Cius 
BRA.u BdgSNAPIP· ;Onx - Class A address 

ClM,iA 
BRA.u BdgSNAPIP-

ClaMA 
BRA.a BdgSNAPlP-

ClassA 
BRA.u BdgSNAPIP-

CIM&A 
BRA.u BdgSNAPIP-

Clu.sA 
BRA.u BdgSNAPIP-

ClassA 
BRA.u BdgSNAPlP-

ClusA 
BRA.u BdgSNAPIP- ;l!lxx - 0... B addr ... 

ClaMB 
BRA.u BdgSNAPIP-

ClassB 
BRA.u BdgSNAPIP-

ClusB 
BRA.u BdgSNAPIP-

ClaasB 

EX 1019 Page 177

 

5g '

5;, 1 ' 5,917,821
:5; 23 24
* . x Tue destination area iscompmd to the source area to set: Packets are discardcd if they serve no pthcr useful pur-

if the cadstations am in the same area. pose (mg. SAand DA on the same port or 111 different areas,
‘ _ . , snared packets). Otherwise they are sent to 2110 Control

T315 50W [30“ ‘5 WWW” agxunsl the 353113110“ PO“ Pmcessor for further processing.

  to set: if the :ndstnfions are on the same port. Sample Program

; File: BDGA
'4, T -, 11mg: Bridging Chsc

' . ;" ;Rnlwc1.1fimdinniity, rm
(» BDGJmt
:5 9:0 - Packet 5mm Wotd
f3. 31’ = Point: to 2nd byt: of PSW
2*, ;DR - Contains new 5mm we‘9 9:0, LPG m dcfarult x1), L?
X MOVE $8000.}! :Imk up Bahamian MAC
E D1050 {Phil gland Du! Add: him 0-45x 0mm (my; mum DstAddt bitl mun
% ;I.aad Us: Add: him 32—17
I“; DIDAD (massage and um Lamp5: MOVE same}: ;Lonk up Samoa MAC
; : 5mm) (1mm loud Sn: Adm bin 0—15

j 5mm) my; and Stein“: bin 16-31
Lchad Sr: Addx bin 32—47

1' ; SLOAD GPFASBDOU and cm lockup

g; ; damning: 1210me ha:. BSCGEw 15m, whack if 882.3 forum
A Chink-15cm“

’ Escmw SMAA, whack DSAPISSAP
:5. Unknm‘l’ype
3? HSCNEw $0300, :11ch (:11. field“:4 SNAPUnkmwn-

' '18:: ESCNEw s 00,

at SNAPUnJmown—C

'1. ESL‘NEW E3500. whack moo! type fink!. .3 SNAPUuhmwn-f Protocol
; It”: I? we: SNAP
BngNAPIP:

;, CLOAD 5 mm: [P
“; bud-o: length is,‘ 5

3 ESCNEw $4500, flack a» header
1 WE.

. M09“
.‘~ SKEW afip length

‘ saw :15;W
:y than

smw :Ihip om:
1: Wt: 501, Maya m
iv BngNAPIP_
‘: 'l'l‘LExpixed
. 3mm; «kip 11mm

51mm 33;} chedsum
MOVE (max nan NLSA

3 MOVE 111200,}: #11211 first nibblc1 to bottom
swn‘ca whoa 11> (21m
Bil/Ln BngNAPIP‘ gflxxx - On: A IddrmGlam

3 BRAu BdgsuAru’.. Clam
BRAu BngNAPIP-

' chm
BRAu BngNAPlP-Clam
BRAu BngNAFEP-ClusA
BRAn BngNAPIP-(2th
BRA.u BngNAPl'P»cm
3mm BngNAPfP— ;10xx - am 8 {ddxwClass!)
BRAu Bdgsmm’-61ml;
311m: BngNAPKP-Class}!
BRA.“ BngNAPIP—(23.91513

EX 1019 Page 177



·, 

5,917,821 
25 26 

-coatinued 

BRA.u BdgSNAPIP- ;110:,: • Class C address 
ClassC 

BRA.u BdgSNAPIP-
ClassC 

BRA.u BdgSNAPIP- ;1110 • Class D addres, 
ClesD 

BRA.u BdgSNAPIP- ;1111 = Class E addre&a (future) 
ClassE 

BRA.u BdgSNAPIP- ;Oxn = Cles A Address 
ClassA 

BdgSNAPIPClasaA: 
OR X,SFFOO,X ;check if broadcast 
BXNE $FWF, 

BdgSNAPIP_ 
NLSAReali 

MOVE (IP)+.X gn ;check lower address word 
BXEQ $FWF, ;all ones host address 

BdgSNAPIP_ 
NLSAinvalid 

BRA.u BdgSNAPIP_ ;broadcast SA is not allowed 
NLSA\hlid 

BdgSNAPIP_ 
NLSARealign: 

SKIP.w 
BRA.u BdgSNAPIP_ 

NLSA~d 
•' 
11 

BdgSNAPIPClassB: 
MOVE (IP)+.X ;check la,v,:r address word 
BXNE $FWF, 

BdgSNAPIP_ 
NLSA\hlid 

BRA.u BdgSNAPIP_ 
NLSA\hlid 

BdgSNAPIPClassC: 
MOVE (IP)+.X ;check lower addrcu byte 
OR X,SFRJO,X ;check if broadcast 
BXEQ $FWF, 

BdgSNAPIP_ 
NLSAlnvalid 

BRA.u BdgSNAPIP_ 
NLSAV;ilid 

BdgSNAPIPC!assD: 
SKIP.w 
BRA.u BdgSNAPIP_ 

NLSA\hlid 
BdgSNAPIP_ 
NLSAinvalid 

SWAIT ;clean np aft.er 
SAU! and 
DALE 

DWAIT 
OR XP,CMD_ ;Load command Word 

DISCARD I 
CMD_ 
UNICASI',Y 

MOVEF Y, FIRST ;Send Command Word 
MOVEF NULL_a ;Send a Index 
MOVEF PORl'_CP ;De,t Port ia CP 
MOVEF RS!ILFRC_ ;SendReuon 

MAC_sRc_ 
INVAUD 

STOP 
BdgSNAPIP_ 
NLSAValid: 

SKIP.w ;skip NLDA 
SKIP.w 
BCSERRBDG_ 

SNAPIP _CSError 
RSEL LP! ;Store aource SIB pointer in LP! 
SWAIT 
SMOVE y ;Y contaim SAU! result 
MOVE Y,LP,11'2 ;I.Fl point! to Sowa: Addr SIB 

;Store dcst SIB pointer in LP2 
BYNZ BDG_J;rcHit 

BDG_SrcMios: ;••• Source 
Cache Miss••• 

OR XP,CMD_ ;Load command Word 
FWDCPI 
CMD_ 
UNICASI',Y 

;Defsult MAC Ethernet Type 
;Detault Low priority 

MOVEF Y, FIRST ;Send Command Word 

EX 1019 Page 178

 
—————‘—_

BRAu

BRA.“

BMu

BRA.u

BRA.“

BngNAPIPGuIA:0R
3m

MOVE
BXEQ

BRAru

BngNAPIP_

SKIP. E -BRAu

BngNAPLPClunB:MOVE
BXNE

EMU

BngNAPIPCIuscMOVE
OR
szo

BRAu

BngNAPLPCIusD:SKEW
BRA.“

BngNAl’fl’_NBAannlid
SWAl'I'

DWAII‘
0R

MOV'EF
MOVEF
MOVEF
MOVEF

SI‘OP
BngNAPIP~NISAanirl:

SKIRW
SKIPJV
BCSERR BDG,

SNAPIP_CSError
ESE.
SWAJT
SMOVE
MOVE

BYNZ
BDG75rcML1s:

OR

MOVEF

25
5,917,821

continued

BngNAPIP—
ClmC
BngNAPEP-
ClmC
BngN’APl‘P—ClauD
BngNAPIP-ClassE
BngNAPIP—
Clam

“HULK
SFFFF,
BngNAPIP__
NLSARafign
(FM-X
SFFFF,
BngNAPIP_
NISAInvalJ'd
BngNAPILNISAValid

BngNAPIP_NISAVhlid

(11’)+.X
SFH'T“,
BngNAPILmm
BngNAPl'P_NISAth'd

(Max
XJFWOX
Sm
BngNAPIP__
NISAlnvnlid
BngNAPIPVmm

BngNAPlP.NISAth'd

;cl.un up unzrSALE Ind
DALE

X‘P,CM.'D_
DISCARD |CMD_
Drawn
Y, msr
NULL__CI
PORLCP
RSLFRC.
MAC_SRC_
INVALU)

:akip NIDA

LPl

x1332

BDGJmI-Iit
;"‘ Source
Cache Miss "'
XP,CMD__
FWDCP |

time—ASH

Y, mgr

;11()x - Class C address

;1110 - Class D Iddnsr

;1111 = Chg E lddrm (fume)
;0xxx = Chg AAddress

whack if broadust

whack lower addmu word
:All ones hos! address

;bmadrzal: SA is not allawcd

flack lower nddreu word

pinch lower Iddmu byte
;chu:k 'Lf bro-dust

LLDId command Ward

;Send (hm-nd Word
;Send CI Index
;Dest Part in or
;Send Recon

;Slnr= mum: SI'B pointer in LP1

;Y contains SALE result
;].Fl points to Source Add: SEB
;Stcm: dcst SIB pointer in LPZ

;I.oud command Word

Default MAC Ethernet Type
;Dculu]t law priority
;Send 07de Word

26

EX 1019 Page 178



MOVEF 
MOVEF 
MOVEF 

SI'OP 
BDG_SNAPIP _ 
CSError: 

OR 

MOVEF 
MOVEF 
MOVEF 
MOVEF 

SI'OP 
BDG_SicHit: 

DWAIT 
DMOVE 
MOVE 
BYNZ 

BDG.....OC.tMiss: 

OR 

MOVEF 
MOVEF 
MOVEF 
MOVEF 

STOP 
BOO_Checl<SrcPort: 

27 
-continued 

NULL_CI 
PORT_Cl' 
RSN_FRC_ 
MAC-SRc_ 
MISS 
;Done!!! 

XP,CMD_ 
DISCARD I 
CMD_ 
UNICASr,Y 
Y, FIR5r 
NULL_CI 
PORT_Cl' 
RSN_FRC_ 
MAc_CSERR 

y 
Y,11',ll'l 
BOO_ 
C~ckSrePort 
;••• Destination 
Cache Mis, ••• 

;Send a Inda 
;Dest Port a CP 
;Send Rcoson 

;Load command Word 

;Send Command Word 
;Send CI Inda 
;Dest Port ii CP 
;Send Reason 

;Gel DAl.E result 
;point to source SIB 
;and check IOW:CC port 

XP,CMD_ ;Load command Word 
FWDCPI 
CMD_ 
UNICAST,Y 

Y, FIRST 
NULL_CI 
PORT_Cl' 
RSN_FRc_ 
MAC_DSr_ 
MISS 
;Donel!l 

;Defmlt MAC Etltomot 'fypc 
;Default I.ow priority 
;Send Command Word 
;Send a 1.n<1cx 
;Dest Port is CP 
;Send Rc:uon 

5,917,821 

GEY SIB_MAC_ ;Compare portseto in LP•> Src SIB 

AND 
BYNZ 

PORTSET(LP) 
s,FSHT(X),Y ;Y • src addr bit AND arc port bit 
BOO_ ;JOllrCC moved if bills don't match 

BOO....SicMove: 

OR 

Checl:Dc&tArco. 
;••• Soatcc 
Moved••• 
XP,CMD_ 
FWDCPI 
CMD_ 
UNICASI',Y 

Y, FIRST 
NULL_CI 
PORT_Cl' 

;Load command Word 

;Default MAC l!thomet 'fypc 
;Default I.ow priority 
;Send Command Word 
;Send a Index 
;Out Port ia CP 

MOVEF 
MOVEF 
MOVEF 
MOVEF RSN_FRC_ ;Send R,,ason 

SR<:___MOVED 
SI'OP ;Donclll 

BOO_~: 
RSEL LP2 ;point to deot SIB 
GEY SIB.J'ROTO_ ;get IP Dest Area 

AND 

BYNZ 

ARFJLl(U') 
S,MASIL 
AREA. Y;Mask 
off top 4 bits 
BOO_ 
~ICArca 

BOO.....OC.tAn:alnwlid: ;• .. Destination 

lD 
OR 

Arca I.nvalid ••• 
X 
X:,CMD_ 
DlSCARDJ 
CMD_ 
UNICASr,Y 

;Defartlt MAC l!thernct 
Type 
;Default Low priority 
;Default Multicast 

MOVEF 
MOVEF 
MOVEF 

;Load command Word 

;Send Command Word 
;Send a Index 
;Dest Port is CP 

28 

EX 1019 Page 179

 
 

5,917,821
27

—continucd

MOVEF NULL_C1 ;Scnd Cl lndcx
MOVE? POKI‘_CI’ discs! Port it C!"
MOVEF RSI‘LJ’RC. Md Rowan

MAQSRC."
MISS

STOP :Dnncm
BDG_SNAPIF_
CSError.

0R 1GCMD¥ ind mmmnd Word
DISCARD |CMD_
ummsm'

MOVEF ‘1', FIRST ;Scnd Command Word
MOVEF NULL._C[ :Sclld C1 Index
MOVEF POKLQ west Port in CF
MOVEF RSNWFRC__ ;Send RmsonMALCSERRSTOP

BDG__SrcE-Ez:
DWAIT
DMOV'E Y ;G-el DAIE. result
MOVE Y,LP,I£1 anoint to some: SIB
BYNZ BDG_ and check mum: portChecfiml’ofl

13003.ka ;--' WonCum; Miss """
OR XhClrflL. :Imd command Wood

was?!(DMD.
umcasny

;Defml! MAC Bthemzt Type
;Defmlt low pn'nrity

MOVE? Y, FTRSI‘ ;Sewd Command Woxd
MOVEF NULLJZI 53an CI Index
MOVE? PORI‘_CI’ m P01! is Cl’
MOVE? RSPLERC“ fiend Rayon

MACMDS'L.
m

STOP 3301):!!!
BDG_ChnckSrcPom

GET 5113,10st ;Compa.rc pockets in LB no Sn: SEB
Pomssrar

AND SPSETCJQX :Y - an: add: WAN!) ac port hi1BYNZ. BDG_ acme: moved if bin don‘t mid:Checchsmm
BIXLSrcMm: ;“' Sum-ccMoved ""

0R XP,CMD__ glpad command Ward
FWDCP [CMD_
UNICASI‘,Y

;Defxu1: MAC Emma: 'Iypc
;Defwlt Low priodty

MOVEF Y, FIRST ;Scnd (21mm Word
MOVEF NULL_CI fiend CI Ind“
MOVE? POKI‘_CP m Port in CF
MOVEF RSNJ'RCW ;Scnd Rama

SRQMOVED
S'UOP poms:

EDG_ChccchatAn-,a:
RSEL 1.?2 30in! to dc.“ SH}
GET SIBJRO’IIL, ;get 11’ Desera

AREA_1(LI’)
AND SMASL

Am‘fiumk
cf cop 4 bits

BYNZ BDG_
Mm

BfiGJcflAxeaInanidu'" Damion
Am: Invalid “‘

U) K
OR KCM'D“ find command Word

DISCARD §UMB—
0mm?

;De£nnlt MAC Ethernet3

35mm: Low priorityDefault Muin'm
MOVEF Y, FIRSI‘ ;Scnxi Command Word
MOVEF NULLWC! ;&nd CI [:3ch
MOVEF Pong)? :02: Part is C?

28

EX 1019 Page 179



.. 

MOVEF 

MOVE 

AND 

XOR 
;.awitch to ll'2 (l)e,it 
SIB) 

BY2 

29 
-continued 

RSN_DRC_ 
DST...AREA._ 
INV 
;Doncltl 

;Send Reason 

5,917,821 

I.Pl ;get !Cady £or Souroe Addr check 
SIBJ'ROTO_ 
AREA__l(LP) 
S,SIB___AREA._ ;act PA bit in SIBJPAREA 
PROTO_ 
AC1lVE,X 
x,sm_ 
PROTO_ 
AREA.J(LP) 

;modify 

JC,MASK_ ;Mu.k off top 4 bits 
AREA,X 
X,Y,Y,LP2 

BOO_ 
ChcckDatPort 

;check against Dest Arca 

BOO_$rcArcainvalid: ;• .. Souroc 

OR 

;Default MAC Ethcmct 

~t Low ptiority 
;Default Mnlticut 

MOVEF 
MOVEF 
MOVEF 
MOVEF 

Sl'OP 
BIXLOeckDestPott: 

;XO, LP2 arc 
dc6rull XP, IP 

ID 
GEi' 

AND 
BY'Z 

B00_$amcPort, 

OR 

;Default MAC Ethernet 

~ult Low ptiority 
MOVEF 
MOVEF 
MOVEF 
MOVEF 

Sl'OP 
BDG_OK: 

OR 

;Default MAC Ethernet 

Type • '• 
;Dcliiult Low pnonty 

MOVEF 
MOVEF 

MOVEF 

MOVEF 

Sl'OP 

Arca Invalid •• • 
XP,CMD_ ;Load command Word 
DISCARD I 
CMD_ 
UNICASI',Y 

Y, FIRST 
NULL....a 
PORT_CP 
RSNJ)RC_ 
SRc....ARflA_ 
INV 
;Donel!! 

X 
SIB...MAC_ 

r~ 
BOO_Olt 
;••• Sn:Port
Dc&t Port••• 
XP,CMD_ 
DISCARD I 
CMD_ 
UNICASr,Y 

Y, FIRSI' 
NULL....a 
PORT_NUU. 
RSNJ)RC_ 
DSI'---5AME 
;Done II! 
;••• Bridge .. 
router ••• 
XP,CMD_ 
BRIDGE
ROUTER( 
CMD_ 
UNICAST,Y 

;Send Command Word 
;Send Cl lndcx 
;Dolt Port ii. CP 
;SendR<uon 

;Load command Word 

;Send Olmmand Word 
;Send a Index 
;Dolt Port is NULL 
;Send Reason 

;Load command Word 

Y, FIRST ;Send O:>mmond Word 
SIB_MAC_CI ;Send a Index from dst SIB 
(LP) 
SIB...MAC_ ;Dest Port is dctcmuncd from d,t SIB 
POKISET(LP) 
SIB_MAC_ ;Get MAC Index from dst SIB 
MAaNDEX 
(LP) 
;Done!t! 

30 

EX 1019 Page 180

‘ 5,917,821

29 30
~continuedW

MOVEF RSN_DRC_ ;Send Emu
DSX‘ AREA.
[NV

S'I'OY Dane!!!
BDGHChackSm:

REEL LP1 :5: ready for Soul-e: Add: check
GET SIBJROID_

AREAJOJ‘)
0R SSHLAREK. m PA b1} in SIB.JPARFA

“1010,,
W .MOVE X531. unochfyPRU“)-
ARFJLJOJ)

AND XMASK .4 Musk 03 top 4 hi];
AREA, X

XOR 1:,me shack ngninst Desmm
uw‘ilch to 122 (Dem.
513)BYZ EDG—

Wmun
EwaschIcaInwlid: ;“‘“ Scum:

Ara Invalid ‘”
0R XP,CMD_ :Lmd command Word

DISCARI‘) I
CMD_
ummsrx

;Def:ult MAC Ethernet:

33w: 1m prioritymama: Multiun
MOVEF ‘5‘; FIRST fiend Gamma Ward
MOVE? WC! :5end C! [mitt
MOVEF POKI'MCP ;Delt Port is C?
MOVE? RSN~DRC_ ;S=nd Rnson

SEW
[NV

SIX)? :Donel n
BDG_Qed:DestPort

;X0, 112 m:
(kiwi: XP, 1.?

L!) X when PSW
GET SIB_MAC_ :S - duet lddxm puma:

AND W mp“ against mum: port pomtBYZ 306.9%.
BDGJxchom ;”" St: Port =-

Dcxt Fe "‘
OR XECMD. 103d comm] Ward

DISCARD
CMD_
masny

33mm: MAC Ethane:

Bepfemlt Low priorityMOVEF ‘1, FIRST ;Scnd 0mm! “kn-d
MOVEF NLILC] :Stnd CI Index
MOVE? mm ;Dest Pan is NULL
MOVE? RSNJRCm ;S¢nd Reason

DS’!‘_SAME
stop ;Dom m

BDG_OK: ;"' Btidgc~mm” .u
OR ECMD_, Md mud WardBRIDGE

ROUTER 1
CM!)—
UNICAS’LY

Wt MAC Ethernet
TY!“ .
;De£nnlt Low priority

MOVBF 3; FIRE? ;5cnd Command Word
MOVE!7 SEB_MAC_CI fiend (1 Index from dst Sm

MOVEF g”; $3118! 1’01?! is deltminad £10m duh SIBPoms
MOVEF SIB_MA _) ;01:I MAC Index Emu: dst SIBMACINDEX

5“)? 96:31:12: 

 
EX 1019 Page 180



5,917,821 
31 

The descnbed look-up engine is capable of performing 
bridge-router and most network layer look-ups in less than 
5.6 µs (1/178,000) with to minimum RAM requirements and 
cost and maximizes flexibility for future additions/ 
corrections without hardware changes. 

The intended application of the look-up engine is high 
performance LAN systems and other packet-based devices. 

32 
is retrieved and controlling the overall operation of said 
look-up engine. 

2. An arrangement as claimed in claim 1, wherein said 
memory controller associated with each said memory 

5 compares, at each decision point on the tree structure, the 
current field with a stored value or range, and moves to the 
next decision point by moving a pointer for the current field 
and branching to new code if said comparison results in a 
first logical condition, and if said comparison results in a 

_________ 0 _IDS_SARY __________ 10 second logical condition the current field is compared to a 

BRIDOE-ROUIER A LAN bridging-muting device, with 12 edlernct different value or range, and so on until said comparison 

ATM 

ABS 

AXE 
DA 

DALE 

CI 

IP 

IPX 

IEC 

LUE 
MAC 

RS 
SA 

SAIB 

SIB 

CAM 
VPI 
VC[ 
Control Proceuor 

ports ....i 1 ATM port. results in said first logical condition. 
AJsyncl,ronoos Thuisfcr Mode. A cdl ,clay 3. An arrangement as claimed in claim 1, wherein said 
llandard. 
Addrea/Broadcut Server A a,mponent of a Roote controller associated with each said memory compares val-
Server that handle& addtcu -,lotion and 15 ues based on successive mbbles of a field value in said 
broadcost tiaffic. memory with stored values to locate the related information. ~=:..The MAC add....,. of the 4. An arrangement as claimed in claim 3, wherein said 
intended dcslinalion of 1. MAC fmnc. memory controller associated with each said memory con-
Dostit!atwn Addr ... Look-up Engillc. The LUE catenates a first nibble of an incoming field value with a root 
component that generally ~ through a !Ible 20 pointer to obtain an index to a root pointer array, retrieves a 
of MAC ayer dc.stination addrcaes. word at a location identified by said index, concatenates the 
Connection ldcntifu:L A nomber intemally tJSed 
to indicate a particular =ection. next nibble with the retrieved word to form the next pointer 
Internet Protocol A popular netwod: layer and so on until said related information is retrieved. 
protocol used by the Internet commnnity. 5. An arrangement as claimed in claim 1, wherein s.rid at 
Internet Paclrl:t Exchange A Novell developed 25 least one memory is a random access memory (RAM). 
netwOik Layer protocol 
Look-up Engine Controller. n,,, LUE c:omponent 6. An arrangement as claimed in claim l, wherein one of 
that aecutes microcode. said fields comprises a destination address and said related 
Look-up Engine. information comprises the path data associated with said 
Medium k:oola Control A term commonly • -'- • • addresses. 
m:oontcrcd in IEEE 802 ,tandalds generally i:cspective U<.>tmation 
refr:rring 1o how a pamai1ar mcdwm ("u,_ 30 7. An arrangement as claimed io claim 1, wherein a 
Ethernet) i& Uled. ·MAC address~ ., commonly plurality of said memories storing information related to 
med to refer to the globally unique 48 bit add.tea• pOSS!ble values of said fields in a hierarchical tree structure 
giwn to all intcmcc carda adlicriDg somewhat to operate in n~rallel and are associated with re,m,,ctive fields 
tho IEEE 802 1tandanls. r- · .....,..-
Route Server. of said packet headers. 
Source Address. The MAC add:tc.<,1 of the originator 35 8. An arrangement as claimed in claim 7, wherein each 
of a MAC frame. said memory is a random access memory (RAM). 
=....i ~ :;o,,!:;J'/!::~ ~ a tabJc of 9. An arrangement as claimed in claim 7, wherein one of 
MAC layer source adlll'CU03. said fields comprises a destination address and said related 
Station lnfomiation Block. n., data llruclmc in ioformation comprises the path data associated with said 
the LUE that holds relevant infom1111ion abOl!t 1111 ..o destination address, and another of said fields comprises a 
endlta!ion. 
Content Addrcaablc Memory. source address, and said look-up engine also locates path 
Virtual Pllh Identifier data associated with the source in parallel with the location 
VIIlual Channel Idcnli&r of the path data associated with the destination address. 
The processor in the Bridge-muter that handka 10. An arrangement for parsing packets in a packet-based m•n·--· functions ______ --.. __ -____________ 45 digital communications network, said packets including 

packet headers divided into fields having values representing 
We claim: 
1. An arrangement for paming packets in a packet-based 

digital communications network. said packets includiog 
packet headers divided into fields having values representing so 
information pertaining to the packet, said arrangement com
prising: 

a) an input memory for receiving fields from said packet 
headers of incoming packets; and 

(b) a look-up engine for retrieving stored information 55 
appropriate to a received field value, said look-up 
engine including: 

(i) at least one memory storing information related to 
possible values of said fields in a hierarchical tree 
structure and associated with a respective field of 60 

packet headers; 
(ii) a. memory controller associated with each said 

memory storing information related to possible values 

information pertaining to the packet, said arrangement com
prising: 

(a) an input memory for receiving fields from said packet 
headers of incoming packets; and 

(b) a look-up engine for retrieving stored information 
appropriate to a received field value, said look-up 
engine including: 

( i) a plurality of memories storing information re lated to 
possible values of said fields in a hierarchical tree 
structure and operating in parallel, said memories being 
associated with respective fields of said packet headers; 

(ii) a main controller controlling overall operation of the 
look-up engine; and 

(ili) a memory controller associated with each said respec
tive memory for controlling the operation thereof to 
retrieve said stored information therefrom. 

of said fields fur controlling the operation thereof to 
retrieve said stored information therefrom; and 

11. An arrangement as claimed in claim 10, wherein said 
65 main controller is a microcode. 

(iii) a microcode controller for parsing a remaining por
tion of the packet header while said stored information 

12. An arrangement as claimed in claim ll, wherein said 
microcode controller comprises an interface memory for 

EX 1019 Page 181



5,917,821 
33 34 

receiving headers of inooming packets, a station infollllation (i) a source address look-up engine including a memory 
block memory for storing infollllation pertaining to storing information related to possible values of said 
endstations, a microoode memory storing microcode source field in a hierarchical tree structure; 
instructions, and logic circuitry for implementing said (ii) a memory oontroller associated with said source 
microcode instructions. s look-up engine for oontrolling the operation thereof to 

13. An arrangement as claimed in claim 11, wherein said retrieve stored information therefrom; 
microcode controller parses the remainder of the packet (ili) a destination address look-up engine including a 
header using a specific instruction set while said infollllation memory storing information related to possible values 
is retrieved from said plurality of memories. of said destination field in a hierarchical tree structure 

14. An arrangement as claimed in claim 13, wherein said 10 and an associated memory controller; 
microcode controller comprises separate buses for instruc- (iv) a memory controller associated with said destination 
lions and data. look-up engine for controlling the operation thereof to 

15. An arrangement as claimed in claim 14, wherein said retrieve stored information therefrom; and 
microcode controller is arranged to implement optimized ili) a microcode processor controlling overall operation of 
instructions that perform bit level logical comparisons and 15 said source and destination address look-up engine, 
conditional branches within the same cycle and other said source and destination address look-up engines 
instructions tailored to retrieving date from mbble-indexed and said processor operating in parallel, and said 
data structures. microcode processor being arranged to parse additional 

16. An arrangement as claimed in claim 15, wherein said fields in said packet header while said source and 
microcode oontroller is implemented as an ASIC processor. 20 destination address look-up engines retrieve said 

17. An arrangement for parsing packets in a packet-based related information. 
digital communications network, said packets including 21. An arrangement as claimed in claim 20 wherein said 
packet headers including destination and source address microcode processor comprises an interface memory for 
fields, said arrangement comprising: receiving said incoming packets, a station information block 

( a) an input memory for receiving fields from said packet 25 memory for storing information pertaining to endstations, a 
headers of incoming packets; and microcode memory storing microcode instructions, and 

logic circuitry for implementing said instructions. 
(b) a look-up engine for retrieving stored infollllation 22. A method of parsing packets in a packet-based digital 

appropriate to a received field value, said look-up communications network. said packets including packet 
engine including: headers divided into fields having values representing infor-

(i) a source address look-up engine including a memory 
30 

mation pertaining to the packet. oomprising the steps of: 
storing information related to possible values of said (a) receiving fields of packet headers frmn incoming 
source address field in a hierarchical tree structure; packets in an input memory; 

(ii) a memory oontroller associated with said source (b) retrieving stored information appropriate to a received 
look-up engine for controlling the operation thereof to 35 field value by performing a tree search in a look-up 
retrieve stored information therefrom; engine having at least one memory storing information 

(iii) a destination address look-up engine including a related to possible values of said fields in a hierarchical 
memory storing information related to poss1ble values tree structure and associated with a respective field of 
of said destination address field in a hierarchical tree packet headers, said at least one memory being con-
structure; 40 trolled by a memory controller associated therewith to 

(iv) a memory controller associated with said destination retrieve said stored information therefrom; and 
look-up engine for controlling the operation thereof to ( c) parsing a remaining portion of the packet header while 
retrieve stored information therefrom; said stored information is being retrieved from said at 

(v) a processor controlling overall operation of said least one memory with a main controller, which main 
source and destination address look-up engines, said 45 controller also controls the overall operation of said 
source and destination address look-up engines and look-up engine. 
said processor operating in parallel. 23. A method as claimed in claim 22, wherein at each 

18. An arrangement as claimed in claim 17, wherein said decision point in the tree search, in retrieving said informa-
processor is a microcode controller. tion the current field is compared with a stored value or 

19. An arrangement as claimed in claim 18, wherein said so range, a pointer for the current field is moved and branched 
memory controllers compare, at each decision point on the to new code if said comparison results in a first logical 
tree structure, the current field with a stored value or range, condition, and if said comparison results in a second logical 
and move to the next decision point by moving a pointer for condition, the current field is compared to a different value 
the current field and branching to new code if said compari- or range, and so on until said comparison results in said first 
son results in a first logical condition, and if said oomparison ss logical condition. 
results in a second logical condition, the current field is 24. A method as claimed in claim 22, wherein values 
compared to a different value or range, and so on until said based on successive nibbles of a field value are compared 
comparison results in said first logical oondition. with stored values to locate the related information. 

20. An arrangement fur parsing packets in a packet-based 25. A method as claimed in claim 24, wherein a first 
digital oommunications network, said packets including 60 nibble of an incoming field value is concatenated with a root 
packet headers including destination and source address pointer to obtain an index to a root pointer array, a word at 
fields, said arrangement comprising: a location identified by said index is retrieved, the next 

(a) an input memory for receiving fields from said packet nibble is concatenated with the retrieved word to form the 
headers of incoming packets; and next pointer and so on until said related infurmation is 

(b) a look-up engine for retrieving stored information 65 retrieved. 
appropriate to a received field value, said look-up 26.Amethod as claimed in claim 22, wherein infoIJDation 
engine including: related to a plurality of fields is retrieved in parallel. 

EX 1019 Page 182



f 5,917,821 
35 

27.Amelhod as claimed in claim 26, wherein one of said 
fields comprises a destination address and said related 
information comprises the path data associated with said 
respective destination addcess, and another of said fields 
comprises a source address and said related information s 
comprises the path data associated with said source address. 

28. A method of parsing packets in a packet-based digital 
communications network, said packets including packet 
headers divided into fields having values representing infor-
mation pertaining to a packet, comprising the steps of: 10 

(a) storing in memory information related to possible 
values of said fields in a hierarchical tree structure; 

(b) receiving a plurality fields from said packet headers of 
incoming packets, one of said fields being a destination 
address and said related information therefor compris- 15 

ing path data associated with said respective destination 
address, and another of said fields being a source 

36 
address and said related information therefor compris
ing path data associated with said source address; 

(c) retrieving in parallel said stored information appro
priate to received field values by performing a tree 
search under the control of a microcode controller; and 

( d) parsing a remaining portion of the packet header using 
a specific instruction set while said related information 
is retrieved. 

29. An arrangement as claimed in claim 1, wherein said at 
least one memory provides table look-ups using nibble 
indexing for variable portions of the packet header and said 
microcode controller employs bit pattern recognition on 
fixed portions of the packet header for network layer pro
tocol determination. 

* * • * * 

EX 1019 Page 183



., 
Our Docket/Ref. No.: APPT-Q Patent 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Sarkissian et al. 

Serial No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATNE CACHE 
STRUCTURE FOR LOOKUPS AND 
UPDATES OF FLOW RECORDS IN 
A NETWORK MONITOR 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: 2731 

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

Transmitted herewith are: 

~ 
n 
N 
0-1 
0 
0 
-. ....:,.. 
J:;>-

r 
:::0 
0 
Cl 

__x_ An Information Disclosure Statement for the above referenced patent application, 
together with PTO form 1449 and a copy of each reference cited in form 1449 . 

...K_ Return postcard. 

> -u 
::::0 

N 

,-...:, 
c::::> 
c:::> 

__x_ The commissioner is hereby authorized to charge payment of any missing fee associated 
with this communication or credit any overpayment to Deposit Account 50-0292. 

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED 

Correspondence Address: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Telephone No.: + 1-510-547-3378 

Respectfully submitted, 

D«<Rosenfeld 
Attorney/Agent for Applicant(s) 
Reg. No. 38687 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this correspondence is being deposited with the United States Postal Service as first 
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231. 

::0 
rt1 
(") 
rn 
< 
rT1 
CJ 

EX 1019 Page 184

Our Docket/Ref. No.2 APPT-Qfi 9 Patent____...C x,

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

  

 
Applicant(s): Sarkissian et a1.

. .. ' . 2

Serial No.: 091608266 Gloup A” Umt‘ 27'1 .4
- i ("2

Filed: June 30, 2000 Emmmer/ u I 1" E m :0
0" % m

Title: ASSOCIATNE CACHE / ‘6‘}; E3 :6 {'3
STRUCTURE FOR LOOKUPS MD ‘ APR 1 1 2001 3: 1;,” LE
UPDATES OF FLOW RECORDS IN \4 3.; g :51
A NETWORK MONITOR 1%: :0 3 {:3

@t‘m‘" C3‘ CD

 

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

Return postcard.A.

X The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50—0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Date: Qfir Q Mi
Respectfully submitted,

D5
Attorney/Agent for Applicant(s)

Reg. No. 38687

 

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No: +1-510—547-3378
 

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Serwce as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date ofDeposit: P- 0i 32%}

Signature:

 
EX 1019 Page 184



. . r .o';,, Docket/Ref. No.: APQOO 1-4 
(\ 

' . i 

Patent 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Sarkissian et al. 

Serial No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATIVE CACHE 
STRUCTURE FOR LOOKUPS AND 
UPDATES OF FLOW RECORDS 1N 
A NETWORK MONITOR 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: 

Examiner: 

INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

This Information Disclosure Statement is submitted: 

_x_ under 37 CFR l.97(b), or 

RECEIVED 
APR 1 7 2002 

Technology Center 2600 

(Within three months of filing national application; or date of entry of international 
application; or before mailing date of first office action on the merits; whichever 
occurs last) 

_x_ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together 
with copies, of patents, publications or other information of which applicant(s) are aware, which 
applicant(s) believe(s) may be material to the examination of this application and for which there 
may be a duty to disclose in accordance with 37 CFR 1.56 . 

.X (Certification) Each item of information contained in this information disclosure 
statement was first cited in a formal communication from a foreign patent office in a counterpart 
foreign application not more than three months prior to the filing of this information disclosure 
statement (written opinion from PCT mailed Jan 11,2002). 

It is expressly requested that the cited information be made of record in the application and 
appear among the "references cited" on any patent to issue therefrom. 

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and 
references cited are prior art merely because they are in this statement and no representation is 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this correspondence is being deposited with the United States Postal Service as first 
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 2023 l. 

Date of Deposit: 30 J/0µ-2/}f!) 2_ Signature: ~ 
- lJOv osenfeld, Reg. No. 38,687 

EX 1019 Page 185

O (”it6 «

A 4" «Our Docket/Ref. No.1 APPIiOOI-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE :fiff
 

 
 
 
 
 
 

  

 

Applicant(s): Sarkissian et a1.

Serial Nor: 09/608266

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS IN

A NETWORK MONITOR

 
Group Art Unit:

Commissioner for Patents

Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

__X__ under 37 CFR 1.970)), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

__)_(__ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CPR 1.56.

___X__ (Certification) Each item of information contained in this information disclosure

statement was first cited in a formal communication from a foreign patent office in a counterpart

foreign application not more than three months prior to the filing of this information disclosure

statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR1.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is
Certificate of Mailing under 37 CFR 1.18

 

 

  
l hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit:W2 Signature; &
osenfeid, Reg. No. 38,687

 

 
EX 1019 Page 185



,n 

• ,SIN: 09/608266 
( f 

\. I 

Page2 
D 

IDS 

being made that a search has been conducted or that this statement encompasses all the possible 
relevant information. 

~ AM 2../('Jp\'2... Date: ;.A;) ll It A./ 17"" 

Correspondence Address: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Telephone No.: +1-510-547-3378 

Respectfully submitted, 

~osenfeld 
Attorney/Agent for Applicant(s) 
Reg. No. 38687 

EX 1019 Page 186

o o
('8

~SIN: 09/608266 ‘ Page 2 IDS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Date: :3 WA; 24902-—
Respectfully submitted,

% gosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1—510—547-3378 
EX 1019 Page 186



Et SI.FORM -1449 ---------\01----------------10'------ SHEET 1 OF 1. 
,,,• ---#· ATTY. DOCKET NO. SERIAL NO. 

APPT-001-4 09/608266 
-

INFORMATION DISCLOSURE si:~#Pefi~ APPLICANT 

~ Sarkissian et al. AECE/Vf; 
1 ~PR i 1 1\lUl " 

(Use several sheets if necessar')..., _& l:ILING DATE GROUP APH 1 7 20 )2 
~ l;S 6/30/2000 r2t6 '?echnolnm, f'o..... -~)' ... - ....... @ - '""""'_.:,' -J -·•,v1 • 

U:S. PATENT DOCUMENTS 

D 

60( 

FILING DATE 

'EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPRIATE 

INITIAL NUMBER 

~v 5,703,877 :Oec. 30, Nuber et al. 370 395 Nov. 22, 
AA 1997 1995 

~V' 
5,835,963 !Nov. 10, Yoshi9ka et al. 711 207 Sep. 7, 

AB 1998 1995 

.IJ AC 5,860,114 µan. 12, Sell 711 146 Oct. l, 
1999 1997 

AD 

AE 

AF 

AG 

AH 

Al 

AJ 

AK 

AL 

AM 

AN 

FOREIGN PATENT DOCUMENTS 

PUBLl·CATION TRANS· 

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

AO I 
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

AP 

EXAMINER DATE CONSIDERED 

AJ/)-' t:/ /2./ () ' 
'EXAMINER: inibal if citation ~side'ied, whether or not citation is in conformance with MPEP 609. Draw tine through citation if not in conformance 

and n!l1 considered. Include a copy of this form with next communication to Applicant. 

EX 1019 Page 187



~~ 
Oar Docket/Ref. No.: AP[601-4 0 

Patent ;<_ b {, Lf 
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Sarkissian et aL 

Serial No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATIVE CACHE 
STRUCTURE FOR LOOKUPS AND 
UPDATES OF FLOW RECORDS IN 
A NETWORK MONITOR 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: ;i_ I ~ r 

RECEIVED 
APR 1 7 2002 

Technology Center 2600 

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

Transmitted herewith are: 

An Information Disclosure Statement for the above referenced patent application, 
together with PTO form 1449 and a copy of each reference cited in form 1449. 

A check for petition fees. 

_K_ Return postcard. 

_K_ The commissioner is hereby authorized to charge payment of any missing fee associated 
with this communication or credit any overpayment to Deposit Account 50-0292. 

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED 

Date~ Ht,,-.r ~2 

Correspondence Address: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
TelephoneNo.: +1-510-547-3378 

Respectfully submitted, 

~ 
Attorney/Agent for Applicant(s) 
Reg. No. 38687 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this correspondence is being deposited with the United States Postal Service as first 
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231. 

Date of Deposit: Zt> .,rJif t'J" 2Gc:9"2._ Signa~ ::;....? :::::::----.... 
ov osenfeld, Reg. No. 38,687 

EX 1019 Page 188

 
i
g r
iI

on: Docket/Ref. NO.Z APFCTAOIA 0 Patent ;é, é 47/
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE s,4 _

  
 
 

  
 

Applicant(s)z Sarkissian et 211.

Serial N0.: 09/608266

 
Group Art Unit: 3L7 3 f

Filed: June 30, 2000 RECEIVED

Title: Assocmnvn CACHE APR 1 7’ 21102
STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDS 1N Tecmomgy Center 2600
A NETWORK MONITOR

Commissioner for Patents

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMIITAL IS ATTACHED

Respectfully submitted,

4% éosenfeld
Attorney/Agent for Applicant(s)

Reg. No. 38687

Date30 HM 2062

Correspondence Address;
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1 —5 10—547—3378

  
Certificate ofMailing under 37 CFR 1.18 

1 hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit: AWN 2M?- SIQIAHW0v csenfeki, Reg. NO. 38,687

 

EX 1019 Page 188



' . 

l, 

, 
Patent 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Sarkissian et al. 

Serial No.: 09/608266 

Filed: June 30, 2000 

Title: ASSOCIATIVE CACHE 
STRUCTURE FOR LOOKUPS AND 
UPDATES OF FLOW RECORDS IN 
A NETWORK MONITOR 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: :l 7 3 \ 
Examiner: RECEIVED 

APR 1 7 2002 

Technology Center 2600 

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

Transmitted herewith are: 

....x_ An Information Disclosure Statement for the above referenced patent application, 
together with PTO form 1449 and a copy of each reference cited in form 1449. 

A check for petition fees . 

....x_ Return postcard . 

....x_ The commissioner is hereby authorized to charge payment of any missing fee associated 
with this communication or credit any overpayment to Deposit Account 50-0292. 

A DUPLICATE OF THIS TRANSMITTAL IS A TT ACHED 

Date: 2 Q tYn~ 2 Ge:> 1__ 

Correspondence Address: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Telephone No.: +1-510-547-3378 

Respectfully submitted, 

Dov~ 
Attorney/Agent for Applicant(s) 
Reg. No. 38687 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this correspondence is being deposited with the United States Postal Service as first 
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231. 

Date of Deposit:~ rfi1,;,...{": 200 L.. Signature: ~---
~Rosenfeld, Reg. No. 38,687 

( 

EX 1019 Page 189

Onr Docket/Ref. No: APIQDJOl-zt @ Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
 

Applicant(s): Sarkissian et a1.

Serial No.: 091608266

 
 
 

 
 

  

Group An Unit: 517 3 \

Filed; June 30, 2000 RECEIVED

Title: ASSOCIATIVE CACHE APR 1 7 2002

STRUCTURE FOR LOOKUPS AND Tech" I
UPDATES OF FLOW RECORDS IN 0 091’ Cem8r26uo
A NETWORK MONITOR

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMIITAL IS ATTACHED

Respectfully submitted,

Date: EQ Was-I“ ZQQL

 

Dov senfeld

Attorney/Agent for Applicant(s)

Reg. No. 3868'?

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No; +1-510-547-3378

 
 

Certificate of Mailing under 37 CFR 1.18

  
I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 2023 1.

Date ofDeposit: WM2 L5?!ng* Rosenfeld, Reg. No. 38,687

EX 1019 Page 189



UNITED STATES PATENT AND TRADEMARK OmoE 

APPLICATION NO. ;FILING DA TE 

09/60&,266 

7590 

Dov Rosenfeld 
5507 College Avenue 
Suite 2 
Oakland, CA 94618 

06/30/2000 

09/10/2003 

11JRST NAMED INVENTOR 

Haig A. Sarkissian 

UNITED STATES DEPARTMENT OF COMMERCE 
United State:!!l Pat,:,nt and Tr .. demark OffiC"e 
Addr.,. COMMISSIONER FOR PA'TF:NTS 

P.O Box 1450 
Aleundna, v_. 22)13-1450 
W11{1{,,tt:ptogov 

A TIORNEY DOCKET NO 

APPT-001-4 

CONFIR.MA'!'ION NO. 

9867 

EXAMINER 

NGUYEN, ALAN V 

ART UNIT PAPER NUMBER 

2662 

DATE MAILED: 09/10/2003 

Please find below and/or attached an Office communication concerning this application or proceeding. 

PT0-90C (Rev. 07-0 l) 

EX 1019 Page 190

 
(3 Oo, .1, r

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATEX DEPAR'IMENT 0F COWERCE
United State: Patent and Trademark 05cc
Address COMMISSIONER FOR PATENTSR0 flax I450

Ahumhu, ‘1':ng ZZJESAHSOmmpw gov

APPLICATION NO. £114ma DATE FIRST NAMED MENTOR ATTORNEY DOCKET NO CONFEKMAZVON NO.

 
09i608,266 0680/2000 Haig A. Sarkissizm ANT-00M 986’?

7590 09!:0/2003 ‘

DovRosenfem

5507 College Avenue ‘
Suite 2 NGUYEN, ALAN V
Oaklan¢ CA 94618

2662

DATE MAILED: OWN/2003 Q

Please find below and/or attached an Office communication concerning this application or proceeding.

wo—wc (Rev. 07—01)

EX 1019 Page 190



) Application No. 

09/608,266 

,,l\pplicant(s) 

SARKISSIAN ET AL. 

Office Action Summary Examiner 

Alan Nguyen 

Art Unit 

2662 

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address •• 
Period for Reply 

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 1 MONTH(S) FROM 
THE MAILING DATE OF THIS COMMUNICATION. 
• Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed 

t1fter SIX (6) MONTHS from the mailing date of this communication. 
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely. 
• If NO period for reply is specified above, the maximum staMory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication 
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). 
• Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any 

earned patent term adjustment. Sea 37 CFR 1.704(b). 

Status 

1)0 Responsive to communication(s) filed on __ . 

This action is FINAL. 2b)'25l This action is non-final. 2a)0 

3)0 Since this application is in condition for allowance except for fonnal matters, prosecution as to the merits is 
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11,453 O.G. 213. 

Disposition of Claims 

4)125] Claim(s) 1-20 is/are pending in the application. 

4a) Of the above claim(s) __ is/are withdrawn from consideration. 

5)0 Claim(s) __ is/are allowed. 

6)125] Claim(s) 1-20 is/are rejected. 

7)0 Claim(s) __ is/are objected to. 

8)0 Claim(s) __ are subject to restriction and/or election requirement. 

Application Papers 

9)0 The specification is objected to by the Examiner. 

10)0 The drawing(s) filed on 06/30/2000 is/are: a)O accepted or b)O objected to by the Examiner. 

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). 

11)0 The proposed drawing correction filed on __ is: a)O approved b)O disapproved by the Examiner. 

If approved, corrected drawings are required in reply to this Office action. 

12)0 The oath or declaration is objected to by the Examiner. 

Priority under 35 U.S.C. §§ 119 and 120 

13)0 Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). 

a)O All b)O Some* c)O None of: 

1.0 Certified copies of the priority documents have been received. 

2.0 Certified copies of the priority documents have been received in Application No. __ . 

3.0 Copies of the certified copies of the priority documents have been received in this National Stage 
application from the International Bureau (PCT Rule 17.2(a)). 

* See the attached detailed Office action for a list of the certified copies not received. 

14)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application). 

a) O The translation of the foreign language provisional application has been received. 
15)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121. 

Att11chment(s) 

1) ~ Notice of References Cited (PT0-892) 
2) 125] Notice of Draftsperson's Patent Drawing Review (PT0-948) 

3) ~ Information Disclosure Statement(s) (PT0-1449) Paper No(s) 4 & 5. 

4) 0 Interview Summary (PT0-413) Paper No(s). __ . 

5) 0 Notice of Informal Patent Application (PT0-152) 
6) 0 Other: . 

U S Patent and Trademarl< Off1ee 
PTOL-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6 

EX 1019 Page 191

 

 
  

 

Application No. flpplimnds)
09/608,266 SARKISSIAN ET AL.  

Office Action Summary

  
Examiner Art Unit

Alan Nguyen 2662 
  

F -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
v Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event. however, may a reply be timely filed

afler Six (6) MONTHS from 1119 mailing dais of this communication.
if the period for reply specmed above is has than mlny (30) days, a reply within the statutory mlnlmum of thirty {30) days will be considered timely.
if NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date or this communication
Failure to reply within the set or extended period for reply will. by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
Any reply received by the Office later than three months alter the mailing date of this communication. even iftimely filed, may reduce any
earned patent term adjustment. See 3? CFR 13049)).

our:
. Status

1):] Responsive to communication(s) filed on

23H] This action is FINAL. 2mm This action is non-final.

3)[:] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11. 453 0.6. 213.

Disposition of Claims

(GE Claim(s) 1—_2Qis/are pending in the application.

43) Of the above claim(s) _________ islare withdrawn from consideration.

5):] Claim(s) .___.._. is/are allowed.

(5)55 Clalm(s) 1:29 islare rejected.

7):] Clalm(s) ______ is/are objected to.

8)i:l Claim(s) are subject to restriction and/or election requirement.

Application Papers

90!: The specification is objected to by the Examiner.

10)E] The drawing(s) filed on 06/30/2000 is/are: a)I:i accepted or 13):] objected to by the Examiner.

Applicant may not requesl that any objection to the drawing(5) be held in abeyance. See 37 CFR 165(3).

11)Ij The proposed drawing correction filed on _______ is: a)[] approved b)I:I disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)I:I The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)[:] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)l:i All b)i:l Some * QB None of:

ii] Certified copies of the priority documents have been received.

21:] Certified copies of the priority documents have been received in Application No. __

3.1:} Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 172(3)).

" See the attached detailed Office actiorr for a list of the certified copies not received.

14)[:] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) [:1 The translation of the foreign language provisional application has been received.

151:] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

w“v‘m“&w’hfle‘fnAr-ut‘

 
Atlachmentis) .

1) E Notice of References Cited (PTO-892) 4) E] Interview Summary (PTO-413) Paper No(s).
2) Notice of Draflsperson's Patent Drawing Review {PTO-948) 5) E] Notice of Informal Patent Application (PTO-152)
3} 8 Information Disclosure Statemcnl(s) (PTO—1449) Paper N°($) 1.3;? 5) D Other:

  
 

U S Palem and Trademark Office .
PTOL—aza (Rev. 04-01) Office Milo“ Summary Part or Paper No. 6

 
EX 1019 Page 191



0 
Application/Control Number: 09/608,266 

Art Unit: 2662 

DETAILED ACTION 

Specification 

0 
Page2 

1. The disclosure is objected to because of the following informalities: The serial 

numbers of related applications are missing on pages 1 and 2 of the specifications. 

Appropriate correction is required. 

Claim Rejections - 35 USC§ 102 

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that 

form the basis for the rejections under this section made in this Office action: 

A person shall be entitled to a patent unless -

{b) the invention was patented or described in a printed publication in this or a foreign country or in public 
use or on sale in this country, more than one year prior to the date of application for patent in the United 
States. 

{e) the invention was described in a patent granted on an application for patent by another filed in the United 
States before the invention thereof by the applicant for patent, or on an international application by another 
who has fulfilled the requirements of paragraphs (1 ), (2), and (4) of section 371{c) of this title before the 
invention thereof by the applicant for patent. 

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act of 

1999 (AIPA) and the Intellectual Property and High Technology Technical Amendments 

Act of 2002 do not apply when the reference is a U.S. patent resulting directly or 

indirectly from an international application filed before November 29, 2000. Therefore, 

the prior art date of the reference is determined under 35 U.S.C. 102(e) prior to the 

amendment by the AIPA (pre-AIPA 35 U.S.C. 102(e)). 

3. Claims 7-11, 19, and 20 rejected under 35 U.S.C. 102(b) as being anticipated by 

Chang (US 4,458,310). 

EX 1019 Page 192



Application/Control Number: 09/608,266 

Art Unit: 2662 

0 
Page3 

Regarding claims 7 and 19, Chang clearly describes a cache memory system 

shown in figure 1 element 100 that utilizes a number of content addressable memory 

(CAMs). The cache system is coupled to a processor and main memory as, clearly 

shown in Figure 1 elements 101 and 102 of Chang. Figure 1 further shows the use of 

LRU (least recently used) circuits (elements 104-106), each coupled to cache data 

memory (elements 107-109). Figure 2 shows the use of a CAM in each LRU circuit (a 

CAM controller coupled to the CAM set). Reverting to figure 1, elements 104-106 clearly 

show a top LRU circuit connected to a middle LRU circuit, which is connected to a 

bottom LRU circuit. Chang shows in figure 1 a control and sequencer device (element 

103) that is coupled to the LRU circuit controlling the CAM, main memory, and the 

cache data memory. Chang further explains the function of the LRU circuit/CAM and its 

corresponding cache data memory in column 4 lines 13-20 and column 5 lines 26-33. 

The CAM responds to the input of the address being received and compares that 

address to the contents stored in the CAM. If there is a match, indicating a hit, the LRU 

circuit uses that address to point to the cache data memory for accessing. In addition to 

checking if the associated cache data has the desired word, the LRU circuit maintains 

the priority of each word in the associated cache data memory, this priority information 

is automatically updated by the LRU circuit for each access to the associated cache 

data memory and defines which word in the cache memory is the least recently used 

word. Chang also discloses repeatedly how the address of each new, least recently 

used word is written into the CAM. Since each CAM will contain addresses that are 

EX 1019 Page 193

 
 

O O

Application/Control Number: 09/608,266 Page 3

Art Unit; 2662

Regarding claims 7 and 19, Chang clearly describes a cache memory system

shown in figure 1 element 100 that utilizes a number of content addressable memory

(CAMS). The cache system is coupled to a processor and main memory as, clearly

shown in Figure 1 elements 101 and 102 of Chang. Figure 1 further shows the use of

LRU (least recently used) circuits (elements 104-106), each coupled to cache data

memory (elements 107-109). Figure 2 shows the use of a CAM in each LRU circuit (a

CAM controller coupled to the CAM set). Reverting to figure 1, elements 104-106 clearly

show a top LRU circuit connected to a middle LRU circuit, which is connected to a

bottom LRU circuit. Chang shows in figure 1 a control and sequencer device (element

103) that is coupled to the LRU circuit controlling the CAM, main memory, and the

cache data memory. Chang further explains the function of the LRU circuit/CAM and its

corresponding cache data memory in column 4 lines 13—20 and column 5 lines 26—33.

The CAM responds to the input of the address being received and compares that

address to the contents stored in the CAM. if there is a match, indicating a hit. the LRU

circuit uses that address to point to the cache data memory for accessing. in addition to

checking if the associated cache data has the desired word, the LRU circuit maintains

the priority of each word in the associated cache data memory, this priority information

is automatically updated by the LRU circuit for each access to the associated cache

data memory and defines which word in the cache memory is the least recently used

word. Chang also discloses repeatedly how the address of each new, least recently

used word is written into the CAM. Since each CAM will contain addresses that are

EX 1019 Page 193



() 
Application/Control Number: 09/608,266 

Art Unit: 2662 

0 
Page4 

constantly changing being written into it, the CAM will therefore point to a different 

address in the cache memory element. 

In regards to claim 8, with the features in parent claim 7 addressed above, 

Chang further discloses a deletion of the least recently used word in column 4 lines 48-

51. It is stated that the least recently used word of cache data memory 109 no longer 

exists in cache memory 100 at the completion of the previous operation after the values 

have been shifted down from data memory 107. 

In regards to claim 9, with the features in parent claim 7 addressed above, 

Chang further discloses an example of a hit, shown in column 9 lines 50-62 and figure 

1. LRU circuit 104 and data memory 107 are the priority CAM and cache memory, 

respectively. LRU circuit 105 and memory 108 are the next highest priority. The 

contents of the match/hit are transmitted and stored within LRU circuit 104 and data 

memory 107. The least recently used words from LRU circuit 104 and memory 107 are 

transmitted to LRU circuit 105 and data memory 108. The steps above explain the 

shifting-down process of the least recently used value. The bottom CAM (LRU circuit 

106) will always point to the least recently used value in the device. 

In regards to claim 10, with the features in parent claim 7 addressed above, 

Chang discloses a deletion of the least recently used word in column 4 lines 48-51. It is 

stated that the least recently used word of cache data memory 109 no longer exists in 

cache memory 100 at the completion of the previous operation after the values have 

been shifted down from data memory 107. As the replacement process keeps going, 

EX 1019 Page 194



0 
Application/Control Number: 09/608,266 

Art Unit: 2662 

0 
Pages 

shifting of values also continues. This deducts to the replacing of values at the bottom of 

the list, which is according to an inverse order of recentness of use. 

In regards to claim 11, with the features in parent claim 7 addressed above, it is 

understood that cache data memory (figure 1 elements 107-109) contains cells of words 

and can be a page of memory. 

In regards to claim 20, with the features in parent claim 19 addressed above, 

Chang further discloses the use of least recently used (LRU) cache memory element. 

Chang discloses in column 4 lines 42-48 an example of a new word placed in cache 

data memory (element 107). The LRU word of memory 107 is then shifted down to 

cache memory (element 108) and the LRU word of memory 108 is written to cache 

memory 109. The address of that LRU word is then written to the CAM (element 106) 

associated with memory 109, as described in column 5 lines 49-51, and shown in 

Figure 1. Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and 

points to the least recently used value stored in cache memory 109. 

4. Claims 1 and 2 rejected under 35 U.S.C. 102(e) as being anticipated by Gobuyan 

et al (US 5,917,821), herein Gobuyan. 

Regarding claim 1, Gobuyan discloses an apparatus that examines packets 

through a connection point on a network. This indicates that the apparatus has a device 

for acquiring packets. Gobuyan shows in figure 3 a device with a lookup engine 

(element 3), memory for storage of the entries (elements 6, 8), and a subsystem 

accessing the memory (elements 5 and 7). In column 7 lines 41-43 and 56-59, Gobuyan 

EX 1019 Page 195



0 
Application/Control Number: 09/608,266 

Art Unit: 2662 

0 
Page6 

discloses that the lookup engine receives portions of packets containing identifying 

information through a 16-bit 1/F RAM (element 9). Regarding claim 2, the apparatus of 

Gobuyan inherently includes a parser that extracts packets identifying information 

because this operation is necessary for the lookup engine to operate. 

Claim Rejections -35 USC§ 103 

3. 'The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all 

obviousness rejections set forth in this Office action: 

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in 
section 102 of this title, if the differences between the subject matter sought to be patented and the prior art 
are such that the subject matter as a whole would have been obvious at the time the invention was made to 
a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be 
negatived by the manner in which the invention was made. 

4. Claim 3-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over 

Gobuyan in view of Chang (US 4,458,310). 

(a) Regarding claims 3 and 4, Gobuyan discloses the use of a subsystem that 

accesses the database memory to search for the stored information. The 

lookup engine invokes the address lookup engines (ALE) to search for the 

specified address in its bank of memory. 

(b) Gobuyan fails to teach the use and function of content addressable memory 

(CAM} as a method to search for specified data fields. 

(c) Chang teaches the use of a cache memory system that utilizes a set of 

CAMs. The cache system is coupled to a processor and main memory as, 

clearly shown in Figure 1 of Chang. Figure 1 further shows the use of LRU 

{least recently used) circuits (elements 104-106), each coupled to ~ache data 

EX 1019 Page 196

Mm

0 O
Application/Control Number: 09/608,266 Page 6

Art Unit: 2662

discloses that the lookup engine receives portions of packets containing identifying

information through a 18-bit l/F RAM (element 9). Regarding claim 2, the apparatus of

Gobuyan inherently includes a parser that extracts packets identifying information

because this operation is necessary for the lookup engine to operate.

Claim Rejections - 35 USC § 103

3. ‘The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 of this title. it the differences between the subject matter sought to be patented and the prior art
are such that the subject matter as a whole Would have been obvious at the time the invention was made to
a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be
negatived by the manner in which the invention was made.

4. Claim 3-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Gobuyan in view of Chang (US 4,458,310).

(a) Regarding claims 3 and 4, Gobuyan discloses the use of a subsystem that

accesses the database memory to search for the stored information. The

lookup engine invokes the address lockup engines (ALE) to search for the

specified address in its bank of memory.

(b) Gobuyan fails to teach the use and function of content addressable memory

(CAM) as a method to search for specified data fields.

(:3) Chang teaches the use of a cache memory system that utilizes a set of

CAMs. The cache system is coupled to a processor and main memory as,

clearly shown in Figure 1 of Chang. Figure 1 further shows the use of LRU

(least recently used) circuits (elements 104-106), each coupled to cache data

EX 1019 Page 196

“~thww‘Wme-Waewfi/fl.



(~ 
Application/Control Number: 09/608,266 

Art Unit: 2662 

0 
Page 7 

memory (elements 107-109). Figure 1 further shows a control and sequencer 

device (element 103) that is coupled to the LRU circuits. Figure 2 shows the 

use of a CAM in each LRU circuit (a CAM controller coupled to the CAM set). 

Claim 3 is therefore rejected since Chang indicates the use of CAMs for the 

cache subsystem. Revertlng to figure 1, elements 104-106 clearly show a top 

LRU circuit connected to,a middle LRU circuit, which is connected to a bottom 

LRU circuit. Chang shows in figure 1 a control and sequencer device 

(element 103) that is coupled to the LRU circuit controlling the CAM, main 

memory, and the cache data memory. Chang further explains the function of 

the LRU circuit/CAM and Jts corresponding cache data memory in column 4 

lines 13-20 and column 5 lines 26-33. The CAM responds to the input of the 

address being received and compares that address to the contents stored in 

the CAM. If there is a match, indicating a hit, the LRU circuit uses that 

address to point to the cache data memory for accessing. In addition to 

checking if the associated cache data has the desired word, the LRU circuit 

maintains the priority of each word in the associated cache data memory, this 

priority information is automatically updated by the LRU circuit for each 

access to the associated cache data memory and defines which word in the 

cache memory is the least recently used word. Chang also discloses 

repeatedly how the address of each new, least recently used word is written 

into the CAM. Since each CAM will contain addresses that are constantly 

EX 1019 Page 197



Q 
Application/Control Number: 09/608,266 

Art Unit: 2662 

0 

changing being written into it, the CAM will therefore point to a different 

address in the cache memory element. 

Page 8 

(d) It would have been obvious to one having ordinary skill in the art at the time 

the invention was made for Gobuyan's arrangement to have a cache memory 

subsystem utilizing a stack of CAMs for looking up address fields, the 

motivation being improved performance through quicker execution and 

accessing, as taught by Chang. 

In regards to claim 5, with the features in parent claim 4 addressed above, 

Gobuyan fails to disclose the use of CAMs utilizing a least recently used scheme. 

Chang teaches the use of least recently used (LRU) cache memory element. Chang 

discloses in column 4 lines 42-48 an example of a new word placed in cache data 

memory (element 107). The LRU word of memory 107 is then shifted down to cache 

memory (element 108) and the LRU word of memory 108 is written to cache memory 

109. The address of that LRU word is then written to the CAM (element 106) associated 

with memory 109, as described in column 5 lines 49-51, and shown in Figure 1. 

Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and points to 

the least recently used value stored in cache memory 109. It would have been obvious 

to one having ordinary skill in the art at the time the invention was made for Gobuyan to 

use a cache subsystem having CAMs to utilize a lowest priority word scheme, the 

motivation being a much faster lookup time of data fields, as taught by Chang. 

In regards to claims 6, with the features in parent claim 4 addressed above, 

Gobuyan fails to disclose a CAM scheme that shifts down content due to a more 

EX 1019 Page 198



' I, 

Application/Control Number: 09/608,266 

Art Unit: 2662 

Page9 

recently used value. Chang teaches an example of a cache hit, shown in column 9 lines 

50-62 and figure 1. LRU circuit 104 and data memory 107 are the priority CAM and 

cache memory, respectively. LRU circuit 105 and memory 108 are the next highest 

priority. The contents of the match/hit are transmitted and stored within LRU circuit 104 

and data memory 107. The least recently used words from LRU circuit 104 and memory 

107 are transmitted to LRU circuit 105 and data memory 108. The steps above explain 

the shifting-down process of the least recently used value. The bottom CAM (LRU 

circuit 106) will always point to the least recently used value in the device. 

It would have been obvious to one having ordinary skill in the art at the time the 

invention was made for Gobuyan to use a cache subsystem having CAMs utilizing a 

LRU element pointed to by the bottom CAM for faster accessing of data fields, as taught 

by Chang 

5. Claims 12-18 rejected under 35 U.S.C. 103(a} as being unpatentable over Chang 

in view of Carter et al (US 6,003,123), herein Carter. 

(a} Regarding claims 12, 13, 14, 15, 16, and 17, Chang discloses the use of a 

cache system having content addressable memory as a way of looking up 

specified addresses quickly. 

{b) Chang fails to disclose a method to indicate dirty entries in the cache. A dirty 

entry is one that has not been updated by an external memory. 

(c) Carter teaches the use of labeling elements as being dirty or not dirty. Carter 

discloses in column 15 lines 12-17 the use setting bits as "dirty" to allow 

EX 1019 Page 199

 
O O

Application/Control Number: 09/608,266 Page 9

Art Unit: 2662

recently used value. Chang teaches an example of a cache hit, shown in column 9 lines

50-62 and figure 1. LRU circuit 104 and data memory 107 are the priority CAM and

cache memory, respectively. LRU circuit 105 and memory 108 are the next highest

priority. The contents of the match/hit are transmitted and stored within LRU circuit 104

and data memory 107. The least recently used words from LRU circuit 104 and memory

107 are transmitted to LRU circuit 105 and data memory 108. The steps above explain

the shifting-down process of the least recently used value. The bottom CAM (LRU

circuit 106) will always point to the least recently used value in the device.

it would have been obvious to one having ordinary skill in the art at the time the

invention was made for Gobuyan to use a cache subsystem having CAMS utilizing a

LRU element pointed to by the bottom CAM for faster accessing of data fields, as taught

by Chang

5. Claims 12-18 rejected under 35 U.S.C. 103(a) as being unpatentable over Chang

in view of Carter et al (US 6,003,123), herein Carter.

(a) Regarding claims 12, 13, 14, 15, 16, and 17', Chang discloses the use of a

cache system having content addressable memory as a way of looking up

specified addresses quickly.

(b) Chang fails to disclose a method to indicate dirty entries in the cache. A dirty

entry is one that has not been updated by an external memory.

(0) Carter teaches the use of labeling elements as being dirty or not dirty. Carter

discloses in column 15 lines 12-17 the use setting bits as “dirty” to allow

EX 1019 Page 199



,', 

i' 
.'•,, 

Application/Control Number: 09/608,266 

Art Unit: 2662 

Page 10 

hardware to determine if the block has been modified. Carter further explains 

that the dirty bit of a block status in the cache is always set to zero when the 

block is brought into the cache to reflect the fact that the block has not been 

modified since it was brought into the cache. Carter also discloses that if the 

block is cleaned, the status remains at zero. When a block is evicted from the 

cache, its dirty bit is examined, and the status of the block changed to dirty if 

the cache dirty bit is set to one. When an entry is evicted, its block status bits 

are copied to the local page table. This is analogous to the address being 

written to the main memory in Chang's apparatus. 

(d) It would have been obvious to one having ordinary skill in the art at the time 

the invention was made for Chang to modify the arrangement such that the 

use of setting dirty flags to determine if the cache has been modified or not, 

the motivation being the prevention of contamination of data. Each cache 

memory element would have an indication of whether or not it is dirty. If the 

cache element is cleaned the status remains at zero. 

In regards to claims 18, with the features in parent claim 17 addressed above, 

For Chang's apparatus, it inherently cleans the least recently used cache data first 

because the apparatus does use the LRU scheme. The concept of lowest word priority 

is to flush out the least used word. 

Conclusion 

EX 1019 Page 200

 
O i""a

Appticatton/Controi Number: 09l608,266 Page 10

Art Unit: 2662

hardware to determine if the block has been modified. Carterfurther explains

that the dirty bit of a block status in the cache is always set to zero when the

block is brought into the cache to reflect the fact that the block has not been

modified since it was brought into the cache. Carter also discloses that it the

block is cleaned, the status remains at zero. When a biock is evicted from the

cache, its dirty bit is examined, and the status of the block changed to dirty if

the cache dirty bit is set to one. When an entry is evicted, its block status bits

are copied to the local page table. This is analogous to the address being

written to the main memory in Chang’s apparatus.

(d) it would have been obvious to one having ordinary skill in the art at the time

the invention was made for Chang to modify the arrangement such that the

use of setting dirty flags to determine if the cache has been modified or not,

the motivation being the prevention of contamination of data. Each cache

memory element would have an indication of whether or not it is dirty. if the

cache element is cleaned the status remains at zero.

In regards to claims 18, with the features in parent claim 17 addressed above,

For Chang’s apparatus, it inherently cleans the least recently used cache data first

because the apparatus does use the LRU scheme. The concept of lowest word priority

is to flush out the least used word.

Conclusion

EX 1019 Page 200



0 
Application/Control Number: 09/608,266 

Art Unit: 2662 

0 
Page 11 

6. The prior art made of record and not relied upon is considered pertinent to 

applicant's disclosure. 

The following patents are cited to further show the state of the art with respect to 

associative cache memory and content addressable memory: 

Coll off et al (US 5,530,834) 

Hoover et al (US 5,749,087) 

Churchill (US 3,949,369) 

Houseman et al (US 4,559,618) 

Okamoto et al (US 4,910,668) 

Agarwal et al (US 5,530,958) 

lnoshita et al (JP 200304451 OA) 

7. Any inquiry conc~rning this communication or earlier communications from the 

examiner should be directed to Alan Nguyen whose telephone number is 703-305-0369. 

The examiner can normally be reached on 8am-5pm ET. 

If attempts to reach the examiner by telephone are unsuccessful, the examiner's 

supervisor, Hassan Kizou can be reached on 703-305-4744. The fax phone numbers 

for the organization where this application or proceeding is assigned are 703-872-9314 

for regular communications and 703-872-9314 for After Final communications. 

Any inquiry of a general nature or relating to the status of this application or 

proceeding should be directed to the receptionist whose telephone number is 703-305-

4700. 

EX 1019 Page 201



Application/Control Number: 09/608,266 

Art Unit: 2662 

an 
September 3, 2003 

/I 
t'--/.:.-.---1.1 
1..r/ l f 

HASSAN KIZOLJ 
SUPERVISORY PATENl EXAMINER 

TECHNOLOGY CENTER 2600 

Page 12 

EX 1019 Page 202

. « (f3, 0
Page 12ApplicationIControl Number: 09/608,268

Art Unit: 2662

 
an

September 3, 2003

I

32/1;l lewrw’”
‘ - , IY] n' ‘

HAééAN K1273
supsnwsonv FATE EXAMINER

TECHNOLOGY CENTER 2600

EX 1019 Page 202



"' 

~ 

Application/Control No. Applicant(s)/Patent Under 

09/608,266 
Reexamination 

Notice of References Cited 
SARKISSIAN ET AL. 

Examiner Art Unit 

Alan Nguyen 2662 
Page 1 of 1 

U.S. PATENT DOCUMENTS 

* 
Document Number Date 

Name Country Code-Number-Kind Code MM-YYYY Classification 

¥ A US-5,530,958 06-1996 Agarwal et al. 711/3 

~ B US-4,458,310 07-1984 Chang, Shih-Jeh 711/119 

f- C US-6,003, 123 12-1999 Carter et al. 711/207 

f1- D US-5,530,834 06-1996 Colloff et al. 711/136 

t E US-5,749,087 05-1998 Hoover et al. 711/108 

ek F US-3,949,369 04-1976 Churchill, Jr., William Philip 711/128 

r G US-4,559,618 12-1985 Houseman et al. 365/49 
' 

I- H US-4,910,668 03-1990 Okamoto et al. 711/207 

I US-

J US-

K US-

L US-

M US-

FOREIGN PATENT DOCUMENTS ' 

* 
Document Number Date 

Name Classification Country Code-Number-Kind Code MM-YYYY Country 

~ N JP02003044510A 02-2003 JP I noshita et al G06F017/30 

0 

p 

Q 

' R 

\ s 
; 

T 

NON-PATENT DOCUMENTS 

* Include as applicable: Author, Title Date, Publis~her, Edition or Volume, Pertinent Pages) 

u 

V 

-
w 

~ 

\ 

X < 

-~A copy of this reference is not being furnished with this Office action. (See MPEP § 707.0S(a).) , 

ates in MM-YYYY format are publication dates. Classifications may be US or foreign. 

~S Patent and Trademark Offtce 
Notice of References Cited Part of Paper No. 6 ' T0-892 (Rev. 01-2001) ;, 

f .. 

·-
EX 1019 Page 203



ff·• 

'I 111111111111111111111111111111111111111111111111111111111111111111111111111 

United States Patent [19] 

Agarwal et al. 

[54] CACHE MEMORY SYSTEM AND METHOD 
WITH MULTIPLE HASHING FUNCTIONS 
AND HASH CONTROL STORAGE 

[75] Inventors: Anant Agarwal, Framingham, Mass.; 
Steven D. Pud.ar, Rancho Cordova, 
Calif. 

[73] Assignee: Massachusetts Institute of 
Technology, Cambridge, Mass. 

[21] Appl. No.: 363,542 

[22] Filed: Dec. 23, 1994 

Related U.S. Application Data 

[63] Continuation of Ser. No. 926,613, Aug. 7, 1992, abandoned. 

[51] Int. CI.6 
............................. G06F 12/10; G06F 12/08 

[52] U.S. Cl ..................... 395/403; 395/421.06; 395/435; 
395/460; 364/DIG. l; 364/243.41; 364/244.7; 

364/255.8; 364/259.8 
[58] Field of Search ............................... 395/421.06, 403, 

395/435, 460 

[56] References Cited 

U.S. PATENT DOCUMENTS 

5,235,697 8/1993 Steely, Jr. ct al ....................... 395/425 

FOREIGN PATENT DOCUMENTS 

2154106 5/1972 Gennany . 

OTIIER PUBl.JCATIONS 

Agarwal, "Analysis of Cache Performance for Operating 
Systems and Multiprogramming," Technical Report No. 
CSL-1R-87-332, Computer Systems Laboratory, Stanford 
University (May 1987). 
Jouppi, "Improving Direct-Mapped Cache Performance by 
the Addition of a Small Fully-Associative Cache and 
Prefetch Buffers," Proc. of the IEEE (1990). 
Agarwal, Anant, "Analysis of Cache Performance for Oper
ating Systems and Multiprogramming, " Kluwer Academic 
Publishers, Boston, MA, Title page, Contents pp. vi-ix, pp. 
120-124, see p. 122, line 14-p. 124, line 2. 

(17 
AddresSOj 

TAG 

19 

19 21 

so ___ s, 
S2 
S3 
S4 

S5 
S6 

S7 

US005530958A 

[11] Patent Number: 

[ 45] Date of Patent: 

5,530,958 
Jun. 25, 1996 

Kessler, et al., "Inexpensive Implementations of Set-Asso
ciativity," Computer Architecture News 17(3): 131-139 
(Jun. 1989). 

da Silva, et al., "Pseudo-associative Store with Hardware 
Hashing," IEE Proceedings E. Computers & Digital Tech
niques 130(1): 19-24 (Jan. 1983). 

Anant Agarwal and Steven D. Pudar, "Column-Associative 
Caches: A Technique for Reducing the Miss Rate of Direct
-Mapped Caches." In Proceeding /SCA 1993 (Abstract). 

Anant Agarwal et al., "Cache Performance of Operating 
System and Multiprogramming Workloads," ACM Transac
tions on Computer Systems, 6(4): 393-431, Nov., 1988. 

Anant Agarwal et al., "An Analytical Cache Model," ACM 
Transactions on Computer Systems, 7(2): 184-215, May, 
1989. 

Kimming So and Rudolph N. Rechtschaffen, "Cache Opera
tions by MRU Change," (Research Report #RC11613 
(#51667) Computer Science, pp. 1-19, (Nov. 13, 1985). 
Yorktown Heights, NY: IBM T. J. Watson Research Center. 

"A High Performance Memory Management Scheme"; 
Thakkar, Shrec:kant S. and Knowles, Alan E.; Computer; 
May 1986; IEEE Computer Society; pp. 8-20. 

Primary E'Iaminer-Eddie P. Chan 
Assistant E'Iaminer-Reginald G. Bragdon 
Attorney, Agent, or Finn-Hamilton, Brook, Smith & Rey
nolds 

[57] ABSTRACT 

A column-associative cache that reduces conflict misses, 
increases the hit rate and maintains a minimum hit access 
time. The column-associative cache indexes data from a 
main memory into a plurality of cache Jines according to a 
tag and index field through hash and rehash functions. The 
cache lines represent a column of sets. Each cache line 
contains a rehash block indicating whether the set is a rehash 
location. To increase the performance of the column-asso
ciative cache, a content addressable memory (CAM) is used 
to predict fumre conflict misses. 

25 Claims, 7 Drawing Sheets 

TAG DATA FLAG 18 

I 
16 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 204

 
United States Patent [19]

Agarwal et al.

||lll||l|||ll||||IlllllllllllllllllllllllllllllIllllllllllllllllll|||I|l|||
U5005530958A

[11] Patent Number:

[45] Date of Patent:

5,530,958

Jun. 25, 1996 

[54] CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS
AND HASH CONTROL STORAGE

[75] Inventors: Annnt Agarwal, Framingham. Mass;
Steven D. Pudar, Rancho Cordova,
Calif.

[73] Assignee: Massachusetts Institute of
Technology. Cambridge. Mass.

[2]] App]. No.: 363,542

[22] Filed: Dec. 23, 1994

Related US. Application Data

[63] Continuation of Ser. No. 926,613, Aug. 7, 1992, abandoned.

[51] Xnt. Cl.6 ......... G06F 12/10; GOGF 12/08
[52] US. Cl. 395/403; 395/421.06; 395/435;

395/460; 364/DIG. 1; 364043.41; 364/?A4.7;
364/2553; 364/2593

 
 

[58] Field of Search_395/421.06, 403,
395/435, 460

[56] References Cited

U.S. PATENT DOCUMENTS

5,235,697 3/1993 Steely. Jr. et a]. .................... 395/425
FOREIGN PATENT DOCUMENTS

2154106 5/1972 Germany .
OTHER PUBLICATIONS

Agarwal, “Analysis of Cache Performance for Operating
Systems and Multiprogramming," Technical Report No.
CSL—TR—87—332. Computer Systems Laboratory, Stanford
University (May 1987).
Jouppi, “Improving Direct—Mapped Cache Performance by
the Addition of a Small Fully—Associative Cache and
Prefetch Buffers," Proc. of the l'EEE (1990).
Agarwal, Anant. “Analysis of Cache Performance for Oper—
ating Systems and Multiprogramming, " Kluwer Academic
Publishers. Boston, MA, Title page, Contents pp. vi—ix, pp.
120—124, see p. 122, line 14—p. 124, line 2.

l?

f 21

 
IS 21

Kessler, et a1., “Inexpensive Implementations of Set—Asso-
ciativity,“ Computer Architecture News 17(3): 131—139
(Jun. 1989).
da Silva, at 2.1., “Pseudo—associative Store with Hardware
Hashing," IEE Proceeding: E. Computers & Digital Tech—
niques 130(1): 19—24 (Jan. 1983).
Anant Agarwal and Steven D. Pudar, “Column—Associative
Caches: A Technique for Reducing the Miss Rate of Direct-
—Mapped Caches." In Proceeding ISCA 1993 (Abstract).
Anant Agarwal et 31., “Cache Performance of Operating
System and Multiprogramming Workloads," A CM Tram-ac-
tions on Computer Systems, 6(4): 393—431, Nov., 1988.
Anant Agarwal CI 8.1., “An Analytical Cache Model," ACM
Transactions on Computer Systems. 7(2): 184-215, May,
1989.

Kimming So and Rudolph N. Rechtschaffen, “Cache Opera-
tions by MRU Change,” (Rmearch Report #RC11613
(#51667) Computer Science, pp. 1—19, (Nov. 13, 1985).
Yorktown Heights, NY: IBM T. J. Watson Research Center.

"A High Performance Memory Management Scheme";
Thakkar, Shreekant S. and Knowles, Alan 13.; Computer;
May 1986; IEEE Computer Society; pp. 8—20.

Primary Examiner—Eddie P. Chan
Assistant Examiner—Reginald G. Bragdon
Attorney Agent, or Finn—Hamilton. Brook, Smith & Rey—
nolds

[57} ABSTRACT

A column-associative cache that reduces conflict misses.
increases the hit rate and maintains a minimum hit access
time. The column—associative cache indexes data from a
main memory into a plurality of cache lines according to a
tag and index field through hash and rehash functions. The
cache lines represent a column of sets. Each cache line
contains a rehash block indicating whether the set is a rehash
location. To increase the performance of the column—asso—
ciative cache a content addressable memory (CAM) is used
to predict future conflict misses.

25 Claims, 7 Drawing Sheets

TAG DATA FLAG '8

I6

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 204



U.S. Patent Jun. 25, 1996 Sheet 1 of 7 5,530,958 

address 

Processor data 
Main 

Memory -14 

'-12 
Cache -16 

t 
1-,. 

....-15 
Controller 

~-1 
.~ 

('7 
21 AddresSOj 18 TAG DATA FLAG 

TAG INDEX so 'i h1 
19 S1 

S2 

S3 
S4 

(" S5 
Address aj S6 

TAG INDEX S7 
I 

19 21 16 

~.ZA 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 205

US. Patent Jun. 25, 1996 Sheet 1 of 7 5,530,958

 
lg]

57

2!

Address Ci {8

  
TAG DATA F LAG

  
l9 2| ‘6

09/01/2003, EAST Version: 1.04.0000

 
EX 1019 Page 205



., 

U.S. Patent 

set 

0 

2 

3 

4 

5 

6 

7 

O· I 

O· J 

Jnn.25,1996 

set 

0 

1 

2 

3 

Sheet 2 of 7 5,530,958 

O· I O· 
J 

Column-Associative Two-Way Set-Associa1ive ../ 
"---------------v------------

~.2B 

/h1[a]~ 

done Rbit=l? 

1 / ~ 
clobberl h2 [a] 

I / ~iss 

done swap clobber2 
M+l 

dolne ! 
3 swap 

I 
done 

~.3 
Mt3 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 206



U.S. Patent 

so 
S1 

S2 

S3 

S4 

S5 

S6 

S7 

O· I 

O• 
) 

2 

O· 
J ax ai 

Oj Ox 

CAM 

0/ • 

Jun.25, 1996 Sheet 3 of 7 

so 
Sl 

S2 

S3 

S4 

S5 

S6 

S7 

~-4 

O· O· 
I J 

Oj Oj Ox 

/ 16 18 / 

i 

- Control I er r---15 

~-5 

09/01/2003, EAST Version: 1.04.0000 

5,530,958 

1 

EX 1019 Page 207

US. Patent Jun. 25, 1996 Sheet 3 of? 5,530,958

 
09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 207



' . 

U.S. Patent Jun. 25, 1996 Sheet 4 of 7 5,530,958 

~ inCAM?----z 

h1 [al h2[0] 
hy ~ss h;,Y ~iss 

done Rbit= 1? done clobber2 

1 / ~ 1 ' 
h2 [a] h2 [a) 

~ ~ss ~ ~ss 

putinCAM clobberl putinCAM* clobber2 
I I swap I 

done done I ' 
3 M+2 done 

3 

~.6 

TAG INDEX 
h1 so -----s, 

S2 

S3 
S4 

-----ss 
S6 

S7 

TAG 

swap 

I 
done 

M+3 

DATA 

16_.) 

~.7 
~ 

15-
Controller 

09/01/2003, EAST Version: 1.04.0000 

done 
M+1 

10 
CAM 

EX 1019 Page 208

US. Patent Jun. 25, 1996 Sheet 4 of 7 5,530,958

mCAM?
no yes

- h1g1]/ \hgto]
I miss C mISS

done yes Rbif=1? no done clobberz

1 A///// \\\\\‘ 1 5
. h2E0] . . he [03 . done

V mxss fln/ “1155 MH
pminCAM ctobben puiinCAM* czobberz

[ ' swap ;done done I

3 M+2 done stp
3 done

M+3

Z3 6

 
TAG DATATAG INDEX

  
545.7 IHHHEHEII

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 208



U.S. Patent Jun. 25, 1996 Sheet 5 of 7 

~h1rP]~ 

done in CAM? 

address 
bus 

MSEL 

34 

1 ny ~s 

clobber1 h2(a] 
putinCAM hy ~iss 

I swap clobber2 

24 

MAR 

LM 

f(X) 

26~-

done I I 
M+1 done f 

3 

~.B 

23 

RAM Array+ 
rehash bit 

HIT 

RD/WT 

30 

MUX 

swap 
I 

done 
M;-3 

25 

HB 
Control Logic 

OP. MACK 

STALL, MEM 

LO 

LS Swap Buffer 

~.9 

09/01/2003, EAST Version: 1.04.0000 

5,530,958 

14 

data bus 

32 

EX 1019 Page 209

US. Patent Jun. 25, 1996 Sheet 5 of 7 5,530,958 ' h [a] -hi? 1 miss

done mCAM?

1 {13/ V33

putinCAM y miss
I swap clobberZ

done I ‘M+1 done

3 swlap
dOne

3,3. 8 m3

address

bus
 

 
   
 
 

 
 

 

  
22 25

‘ RAM Array +
rehash bit

12

HIT

RD/WT

L0 Dam Buffer I
  Controt Logic

OP, MACK

STALL, MEM

I 3:39

09/01/2003, EAST Version: 1.04.0000

 

  
  

14

data bus

LS Swap Buffer 32 
 

EX 1019 Page 209



- ''·"' 
d • 

address I 00 -- 24 /23 ,25 • 
~ = 

MAR I ., RAM Array+ 

11 

...... 
n) 

12-I rehash bit = IMUXL_j. 
1 ...... . index 

0 

1 i ~ \D 

' HIT 0 
I-' I 26 
' MSEL I RD/WT c.... 
tv 

~ 0 
0 f(X) t,,,;) 
l,J 

I JJ'1 ~ 

I I-
tij 

-- --, I ~ (~o -= -= ;:i:,, C'I 
Cf) 

t-3 I 
< I (1) 

I Ii 1:1.l 
UJ =-f-'· I ffl 
0 

I LD Data Buffer ~ 
D C'I .. 

I 14 ~ 
I-' 38 CAM Buffer LO CAM I 28 ~ . 
0 

I data bus ,,I:,. 

0 34 I 
-, LS 1tag1 vWUj.1 t;;IUIICl 0 

I l'-32 0 
0 

WTCAM Control Logic I , ______ ...J 

01 
MATCH G OP, MACK "' 

36~ I ~. JO 
ti] 
fj,) 

FIFO CAM 20 STALL, MEM = Ctr. "' \Cl 
ti] 
QC 

EX 1019 Page 210

:uoxsxeA1,333'EOOZ/T0/50
OOOO'EO'T

56
F i F0
C tr.

 

 

 
38

 

 

CAM Buffer

‘ Control Logic

0P, MACK

20 STALL, MEM

 

 

  
 

 

RAM Array +
rehash bit

LD Dmoauffer I

 
 

 
 

l4
 
 

 
  
 

data bus

32

1“?”ch'S'fl

9661‘sz'Imr

L50919315

856‘0‘59‘9

 

EX 1019 Page 210



' •~~·; ~''.t'~ ,:~~It' ;;Ji;.\f 

e . 
00 . 

address 
~ 

bus 
,23 a 

24 a 
I 

I I. ..... I 1MAR I I RAM Array 0 
\0 

12 ......... 

rr~ex I 
0 

~ 
I-' 

C: 
......... 

I LM :' 
Iv 
0 I HIT 

~ 
0 

I w 

MSEL I 26 RD/WT .... ~ 

\:::, 

~- JI 
\,C> ~ I Q'\ 

m I f(X) 1-J 
I 

< ___ _J 
30 

i 
ro r-----
Ii 
Ul 38 

~ I-'· 

LO CAM MUX 
-.J 

0 
::i CAM Buffer HB a. .. 
I-' -.J . 

INC 20 34 Doto Buffer 
0 
,i,. 

0 
WTCAM Control Logic l2e I'\ I I 14 0 

0 
0 

OPi MACK data bus Ul MATCH 
"' "' CAM I I STALL, MEM 

Swap Buffer 
(,I,) 

I C! 32 0 
"' \C) 

36 FIFO Ctr. Ul 
QC 

EX 1019 Page 211

 

0000‘90'1

=uotsxeAsta’Eooz/Io/so

address

bus  
 

 
 

 
  

 

RAM Array
12

wwwwwwww J 30

 

 
  

INC
LD DotoBuffer I

LS Swap Buffer

Comm] Logic

OP. MACK

STALL, MEM

I4 
data bus

32

36 F IFO Cir.

111918.;'93

9661‘SZ‘unf

LJ0I.133118

8560299

 

EX 1019 Page 211



' t 

5,530,958 
1 

CACHE MEMORY SYSTEM AND METHOD 
WITH MULTIPLE HASHING FUNCTIONS 

AND HASH CONTROL STORAGE 

This application is a continuation of No. 07/926,613 filed s 
Aug. 7, 1992, now abandoned. 

BACKGROUND OF THE INVENTION 

This invention relates generally to the field of high 10 

performance processors that require a large bandwidth to 
communicate with a main memory system. To effectively 
increase the memory bandwidth, a c:ache memory system is 
typically plac:ed between the processor and the main 
memory. The cache memory system stores frequently used 15 
instructions and data in order to provide fast access from the 
main memory. 

In order for a processor to access memory, it checks the 
cache first. lf the desired da1a is in the cache, a cache hit 
occurs, and the processor receives the da1a without further 20 
delay. If the data is not in the cache, a cache miss occurs, and 
the data must be retrieved from the main memory to be 
stored in the cache for future use. Main memory accesses 
take longer than cache accesses, so the processor is stalled 
in a cache miss, wasting a number of cycles. Thus, the goal 25 
for nearly all modern computer systems is to service all 
memory references from the cache and to minimize refer
ences which require accesses from the main memory. 

In a typical cache system, a portion of a main memory 
addrc.n is wed to index a location or a set of locations in 30 

cache memory. In addition to storing a block ( or line) of data 
at that indexed location, cache memory stores one or more 
tags, taken from another portion of the main memory 
address, which identify the location in main memory from 
which the block of data held in cache was taken. 35 

Caches ere typically characterized by their size (i.e., 
amount of memory available for storage), their replacement 
algorithm (i.e., method of inserting and discarding blocks of 
data into a set), their degree of associativity or set size (i.e., 40 
number of tags associated wjth an index and thus the number 
of cache locations where data may be located), and their 
block or line size (i.e., number of data words associated with 
a tag). These characteristics influence many performance 
parameters such as the amount of silicon required to imple- 45 
ment the cache, the cache access time, and the cache miss 
rate. 

One type of a cache that is frequently used with modem 
processors is a direct-mapped cache. In a direct-mapped 
cache, each set contains only one data block and tag. Thus, 50 
only one address comparison is needed to determine whether 
the requested data is in the cache. The direct-mapped cache 
is simple, easy to design, and requires less chip area. 
However, the direct-mapped cache is not without draw
baclcs. Because the direct-mapped cache allows only one 55 
da1a block to reside in the cache set, its miss rate tends to be 
very high. However, the higher miss rate of the direct
mapped cache is mitigated by a small hit access time. 

Another type of a cache that is frequently used is ad-way, 
set associative cache. A d-way, set associative cache con- liO 

tains S sets of d distinct blocks of data that are accessed by 
addresses with common index fields that have different tag 
fields. For each cache index, there are several block loca
tions allowed, one in each seL Thus, a block of data arriving 
from the main memory can go into a particular block 65 
location of any set. The d-way set associative cache has a 
higher hit rate than the direct-mapped cache. However, its 

2 
hit access time is also higher because an associative search 
is required during each reference, followed by a multiplex
ing of the data block to the processor. 

Currently, the trend among computer designers is lo use 
direct-mapped caches rather than d-way set associative 
caches. However, as mentioned previously, a major problem 
associated with direct-mapped caches is the large number of 
misses that occur. One particular type of miss that oc:curs is 
a confilct miss. A conflict miss occurs when two addresses 
map into the same cache set. 1bis situation occurs when the 
addresses have identical index fields but different tags. 
Therefore, the addresses reference the same set. Ad-way set 
associative cache typically does not suffer from conflict 
misses because the data can co-reside in a set. Although 
other types of misses, such as compulsory (misses that occur 
when loading a working set into a cache) and capacity 
(misses that occur when the cache is full and when the 
working set is larger than the cache size) do occur, they tend 
to be minimal as compared to conflict misses. 

Tbe problem of conflict misses has caused designers to 
reconsider using a direct-mapped cache and to begin design
ing cache memory systems that can incorporate the advan
tages of both the direct-mapped cache and the d-way asso
ciative cache. One approach has been to use a victim cache. 
A victim cache is a small, fully associative cache that 
provides some extra cacbe lines for data temoved from the 
direct-mapped cache due to misses. Thus, for a reference 
stream of conflicting addresses a,, a,-. a,, 31, ••• , the second 
reference a, misses and foroes the data i indexed by a, out of 
the set. The data i that is forced out is placed in the victim 
cache. Thus, the third reference address, a,, does not require 
accessing main memory because the data is in the victim 
cache and can be accessed therefrom. 

However, there are several drawbads to the victim cache. 
For example, the victim cache must be very large to attain 
adequate performance because it must store all conflicting 
data blocks. Another problem with the victim cache is that 
it requires at least two access times to fetch a conflicting 
danun (i.e., one to check the primary cache, the second to 
check the victim cache, and maybe a possible third to store 
the datum in the primary cache). Still another drawback to 
the victim cache is that performance is degraded as the size 
of the cache memory is increased because the victim cache 
becomes smaller relative to the cache memory, thereby 
reducing the probability of resolving conflicts. 

Consequently, there ls a need for an improved cache 
memory system that incorporates the low conflict miss rate 
of the d-way set-associative cache, maintains the critical 
access path of the direct-mapped cache, and bas better 
performance than the victim cache. 

SUMMARY OF THE INVENTION 

To provide a cache memory system with a high hit rate 
and a low hit access time, the prcsent invention has set forth 
a column associative cache that uses an area-efficient cache 
control algorithm. A column associative cache removes 
substantially more conflict misses introduced by a direct
mapped access for small caches and virtually all of those 
misses for large caches. Also, there is a substantial improve
ment in the hit access time. 

In accordance with the present invention, there is a cache 
memory having a plurality of cache sets representing a 
column of sets for storing data Each cache set is indexed by 
memory addresses having a tag field and an index field. A 
controller indexes memory addresses to the cache data 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 212



5,530,958 
3 

memory by 11.pplying at least one hashing function. A hash-
ing function is an operation that maps the addresst:3 of the 
data from a main memory to the cache sets of the cache data 
memory. A rehashed location stores data that is referenced 

4 
FIG. 2A illustrates a column associative cache with 

rehash blocks. 
FIG. 2B illustrates a compmison of a column associated 

cache and two-way set associative cache. 
FIG. 3 shows a decision tree for the column associative 

cache with rehash blocks. 
FIG. 4 shows a comparison between a single column 

associative cache and the column associative cache with 

10 
rehash blocks. 

by an alternate hashing function. The use of alternative hash 5 
functions (i.e., hash and rehash) allows cache sets associated 
with a common index to be stored within the single cache 
column rather than in separate columns, each of which 
requires its own memory space. For example, in a direc:t
mapped c11Che, the two hash functions allow two blocks with 
the same index to reside in different cache locations. In 
accordance with the present invention, hash control deta is 
stored in the cache memory to direcl the cache system to a 
bashed location or a rehashed location based on past cache 
operations. The hash control data may be a hash/rehash 
block associated with each cache location which indicates 15 
whether the hash or rehash function was used to store the 
data in that location. Alternatively, or in combination with 
the hash/rehash block, a memory may identify recent cache 
indexes or groups of indexes which have required rehash. 

The cache memory system of the present invention 20 

resolves conflict misses that arise in direct-mapped cache 
access by allowing conflicting addresses to dynamically 
choose alternate hashing functions, so that most conflicting 
data can reside in the cache. In the cache memory system of 
the present invention, data is accessed from the cache by 25 
applying a first hashing function to the indexed memory 
address. If the data is valid, it is a hit and is subsequently 
retrieved. For a miss at a rehashed location, as indicated by 
a rehash block, the controller removes that data and replaces 
it with new data from the main memory. If the cache location 30 
is not a rehashed location, then a second hashing function is 
applied in order to place or locate the data in a different 
location. Wrth a second miss, valid data is accessed and the 
oontroller swaps the data in the cache locations indexed by 
the first and second hashing functions. 

The preferred first type of hashing function used by the 
35 

present jnvention is a bit selection operation. The bit selec
tion operation indexes the data in the cache lines according 
to the index field If there is a conflict miss, then the second 
hashing function is applied. The preferred second hashing 
function of the present invention is a bit flipping operation. 40 
The bit flipping operation inverts the highest order bit of the 
index field of the address and accesses the data in that 
particular location. The present invention is not limited to 
two hashing functions end may use more. 

In another preferred embodiment of the present invention, 45 
there is provided a content addressable memory (CAM) 
coupled to the cache memory system for storing portions of 
addresses that ll!C expected to indicate future conflict misses 
in the cache. The CAM, preferably a tag memory, improves 
the efficiency of the cache by increasing the first time hit so 
rate. The CAM stores the indexes of cache blockll that are 
present in rehashed locations. If the index of an address 
matches an index stored in the CAM, then the cache 
controller uses the rehash function (instead of the hash 
function) fur the first time access. Thus, second time 55 
accesses are reduced. 

While the present invention will hereinafter be described 
in connection with a preferred embodiment and method of 
use, it will be understood that it is not intended to limit the 
invention to this embodiment. Instead, it is intended to cover 60 
all alternatives, modificatiollll, and equivalents as may be 
included in the spirit 11.lld scope of the present invention as 
defined by the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 
65 

FIG. 1 shows a block diagram of a cache memory system 
of the present invention. 

FIG. 5 shows a column associative cache with a content 
addressable memory (CAM) and rehash blocks. 

FIG. 6 shows a decision tree for a column associative 
cache with rehash blocks and a CAM. 

FIO. 7 shows a column associative cache with a CAM. 
FIG. 8 shows a decision tree for a column associative 

cache with a CAM. 
FIO. 9 shows the circuitry for a column associative cache 

with rehash blocks. 
FIG. 10 shows the circuitry for a column associative 

cache with rehash blocks and a CAM. 
FIG. 11 shows the circuitry for a column associative cache 

with a CAM. 

DETAILED DESCRIPTION OF THE 
INVENTION 

Referring to FIO. 1 of the present invention, there is 
shown a cache memory 1ystcm 10 placed between a pro
cessor 12 and a main memory 14. The speed of the cache is 
compatible with the processor, whereas the main memory is 
lower in speed. The cache anticipates the processor's likely 
use of data in the main memory based on previously used 
instructions and data in the cache. Based on an assumption 
that a program will sequence through successive instructions 
or data addresses, a block or line of several words from the 
main memory is transferred to the cache even though only 
one word is needed. When the processor needs to read from 
main memory the cache is checked first If the data is in the 
c11Che, there is a hit and retrieval from cache. If the data is 
not in the caJ:he, there is a miss and retrieval is from main 
memory. 

To provide a cache memory system with a high hit rate 
and a low access time, the present invention has set forth a 
cache that incorporates the characteristics of a direct· 
mapped cache and ad-way set associative cache. The cache 
of the present invention is a column associative cache 16 and 
is shown in FIG. 2A. The column associative cache contains 
a plurality of cache lines that represent a column of sets each 
of one line. In FIG. 2A, eight sets, S0-S7 of the cache arc 
shown. It is noted that the column lll!sociative cache would 
likely have hundreds or thousands of sets. 

To access the cache 16, a memory address 17 is divided 
into at least two fields, a tag field 19 (typically the high-order 
bits) and an index field 21. As in a conventional direct 
mapped cache, the index field is used through a hash 
function h1 to reference one of the cache sets S0-S7 and the 
tag field is compared to the tag of the data within that set. A 
tag memory is coupled to the plurality of cache sets for 
storing the tags of the data blocks. If the tag field of the 
address matches the tag field of the referenced set, then there 
is a hit and the data can be obtained from the block that 
exhibited the hit. If the tag field of the address does not 
match the tag field of the referenced set, there is a miss. 

Data addresses are indexed from the main memory 14 to 
the column associative cache 16 according' to two hashing 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 213

 
 

5530958
3

memory by applying at least one hashing function. A hash-
ing function is an operation that maps the addresses of the
data from a main memory to the cache sets of the cache data
memory. A rehashod location stores data that is referenced
by an alternate hashing function. The use of alternative hash
functions (i.e., hash and rehash) allows cache sets associated
with a common index to be stored within the single cache
column rather than in separate columns, each of which
requires its own memory space. For example, in a direct-
mapped cache. the two hash function: allow two blocks with
the some index to reside in dificrent cache locations. In
accordance with the present invention, hash control data is
started in the cache memory to direct the cache system to a
bashed location or a rehashcd location based on past cache
operations. The hash control darn may be a hush/rehash
block associated with each cache location which indicates
whether the hash or rehash function was used to store the
dam in that location. Alternatively, or in combination with
the hash/rehash block, a memory may identify recent cache
indexes or groups of indexes which have required rehash.

The cache memory system of the present invention
resolves conflict misses that arise in direct-mapped cache
access by allowing conflicting addresses to dynamically
choose alternate hashing functions, so that most conflicting
data can reside in the cache. In the cache memory 3y stern of
the present invention, data is accessed from the cache by
applying a first hashing function to the indexed memory
address. If the data is valid, it is a hit and is subsequently
retrieved. For a miss at a rehashcd location, as indicated by
a rehash block, the controller removes that data and replaces
it with new data from the malnmemoty. Ifthe cache location
is not a rehashed location, then a second hashing function is
applied in order to place or locate the data in a different
location. With a second miss, valid data is accessed and the
controller swaps the data in the cache locations indexed by
the first and second hashing functions.

'Rie preferred first type of hashing function used by the
present invention is a bit selection operation. The bit selec-
tion operan‘on indexes the data in the cache lines according
to the index field If there is a cottflict miss, then the second
hashing function is applied. The preferred second hashing
Motion of the present invention is a bit dipping operation.
The hit flipping operation inverts the highest order bit of the
index field of the address and accesses the data in that
partimlnr location The present invention is not limited to
two hashing functions and may use more.

In another preferred embodiment of the present invention,
there is provided a content addressable memory (CAM)
coupled to the cache memory sysbcm for storing portions of
addresses that are expected to indicate future conflict misses
in the cache. The CAM, preferably a tag memory, improves
the efficiency of the cache by increasing the first time hit
rate. The CAM stores the indexes of cache blocks that are
present in rchashed locao‘ons. If the index of an address
matches an index stored in the CAM, then the cache
controller uses the rehash function (instead of the hash
function) for the first time access. Thus, second time
accesses are reduced.

While the present invention will hereinafter be described
in connection with a preferred embodiment and method of
use, it will be understood that it is not intended to limit the
invention to this embodiment. Instead. it is intended to cover
all alternatives. modifications, and equivalents as may be
included in the spirit and scope of the present invention as
defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of 2 cache memory system
of the present invention.

10

15

25

30

35

40

45

55

65

4
FIG. 2A illustrates a column associative cache with

rehash blocks.

FIG. 2B illustrates a comparison of a column associated
cache and twoway set associative cache.

FIG. 3 shows a decision tree for the column associative
cache with rehash blocks.

FIG. 4 shows a comparison between a single column
assooiativc cache and the column associative cache with
rehash blocks.

FIG. 5 shows a column associative cache with a content
addressable memory (CAM) and rehash blocks.

FIG. 6 shows a decision tree for a column associative
cache with rehash blocks and a CAM.

FIG. 7 shows a column associative cache with a CAM,
FIG. 8 shows a decision tree for a column associative

cache with a CM.

FIG. 9 shows the circuitry for a column associative cache
with rehash blocks.

FIG. 10 shows the circuitry for a column associative
cache with rehash blocks and a CAM.

FIG. 11 shows the circuitry for a column associative cache
with a CAM.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1 of the present invention, there is
shown a cache memory system 10 placed between a pro»
censor 12 and a main memory 14. The speed of the cache is
compatible with the processor, whereas the main memory is
lower in speed. 3118 cache anticipates the processor‘s likely
use of data “m the main memory based on previously used
instructions and data in me mole. Based on an assumption
that a program will sequence through successive instructions
or data addresses, a block or line of several words from the
main memory is transferred to the cache even though only
oncwordis needed. When the prucasurneeds toreadfrom
main memory the cache ischccked first. Ifthedatais inthe
cache, there is a hit and retrieval from cache. lithe data is
not in thc cache, them is a miss and retrieval is from main
memory.

To provide a cache memory system with a high hit rate
and a low access time, the present invention has set forth a
cache that incorporates the characteristics of a direct-
mapped cache and a d~way set associative cache. The cache
of the present invention is acolumn associative cache 16 and
is shown in FIG. 2A. The column associative cache contains

a plurality ofeachc lines that represent a column of sets each
of one line. In FIG. 2A, night sets, 80—87 of the cache are
shown. It is noted that the column associative cache would
likely have hundreds or thousands of sets.

To access the cache 16. a memory address 1’! is divided
into at least two fields. a tag field 19 (typically the high-order
bits} and an index field 21. As in a conventional direct
mapped cache, the index field is used through a hash
function l1ll to reference one of the cache sets 50—87 and the
tag field is compared to the tag of the data within that. set. A
tag memory is coupled to the plurality of cache acts for
storing the tags of the data blocks. If the tag field of the
address matches the tag field of the referenced set, then there
inalntandthedntocnnbeobtnincdfmm theblockthat
exhibited the bit. If the tag field of the address docs not
match the tag field ofthcrcferenced set, thereis amiss.

Data addresses are indexed from be main I—ory 14 to
the column associative cache 16 according‘to two hashing

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 213



,. 
,, ~: 

5,530,958 
5 6 

the data is retrieved from that cache set and the data in the 
cache sets indexed by the first and second hashing functions, 
h 1 [a] and h2 [a], are swapped (SWAP) so that the next access 
will likely result in a first time hit (temporal locality). 

functions, h1 and h2, which are applied by controller 15. The 
hashing functions are operations that map the data addresses 
from the main memory to the cache sets based on spatial and 
temporal locality. Spatial locality suggests that future 
addresses are likely to be near the locations of current 
addresses. Temporal locality indicates that future addresses 
are more likely to reference the most recently accessed 
locations again. 

5 However, if the second hashing function provides a second 
time miss, then the data in that set is replaced (Clobbcr2). 
Data from the main memory is retrieved and placed in the 
cache set indexed by the second hashing function, h2[a]. 
Then the data in the cache sets indexed by the first and The first hashing function, h 1, is preferably a bit selection 

operation. In a bit selection operation, data is indexed to the 
sets of the column associative cache according to its index 
field. Since some data may contain the same index field, 
there is high probability that there will be conflict miss 
between the data. The column associative cache of the 
present invention resolves the conflict by then applying a 15 
second hashing function, h2• The second hashing function 
dynamically chooses a different location in which the con
flicting data can reside. The second hashing function, h2, is 
preferably a bit flipping operation that flips the highest 
ordered bit of the referenced by the index address and 20 

accesses the conflicting data at the set indexed by the 
inverted address. As shown in FIG. 2A, the first hashing 
function, h1, indexes address a, 17 to set SI. Address 11 then 
attempts to access Sl but there is a miss because address 17 

10 second hashing function, h1 and h2 arc swapped with each 
other (SWAP). 

is already there. To resolve the conflict, the second hashing, 25 

h2 , function is applied to address 11. This hashing function 
flips the highest ordered bit of the index field so that address 

Mnemonic 

hi[a] 
h2[a) 
swap 

clobber! 

clobbcr2 

Rbit=l? 

inCAM? 

putinCAM 
putioCAM* 

TABLE 1 

Aclion Cycles 

bit.selection access 1 
bit-Dipping IICCCSS I 

swap dala in sets accessed by b1[al 2 
and h2[a) 

gel data from memory, place ia se1 M 
accessed by b1[a[ 

get data from memory, place in set M 
lCCCHed by h,[a) 

check if set accessed by h1[a[ is a 0 
n,hasbed locatioo 

check if a (or ii• index) mau:hcs 0 
a CAM entry 

place a (or its iodcx) in the CAM 
placc the index of a and the tag 

present in 1hc cache location 
ac:cs,cd with h1[a] i!IIO lhc CAM 11 can be indexed to SS. Thus, SI and SS share locations 

through h1 and h2 so that conflicts are resolved not within a 
set but within the column of sets of the entire cache. 

A comparison of a column associative cache with a 
conventional two way set associative cache is illustrated in 
FIG. 28. In the conventional cache, a set, such as set 2, 
stores two lines of data. Thus, if the requested data is stored 

30 At startup, all of the empty cacbe sets have their rehash 
blocks set to one so that compulsory misses are bandlcd 
immediately. 

in either line of a set, there is a hiL Drawbacks of such a 35 

cache arc the high hit access time and hardware complexity. 
The column associate cache performs as a direct mapped 
cache unless there is a miss. With a miss it accesses another 
location within the same memory column. Thus, two sets 
share two locations. 40 

The rehash block 18 increases the hit rate and decreases 
the access time for the column associative cache. The 
increase in performance is due to the fact that the data in the 
non-rehashed location are the most recent accessed data and, 
according to temporal loclllity, this data is more likely to be 
needed again. The removal of older data which will probably 
not be referenced again whenever a conflict miss occurs 
reduces the amount of clobbering. In addition, the ability to 
immediately replace a rehashed location on the first access 
reduces the number of cycles consumed by rehash accesses. 

In addition tn limiting rehash accesses and clobbering, the 
column-associative cache with rehash block corrects a prob
lem associated with indexing a reference pattern Iii a1 a,, a, a,, 
a1 a,, ... where the addresses 8t and a1 map into the same 
cache location with bit selection, h1, and a,, is an address 
which maps into the same location with bit flipping, h2• FIG. 
4 shows how a single column associative cache and a 

Also, shown in FIG. 2A is a rehash block 18 coupled to 
each cache set for indicating whether the set has been 
rehashed. A rehashed location is a set that has already been 
indexed through the second hashing function to store data. 

45 
The purpose of the rehash block is to indicate whether a 
location stores data through a rehashed index so the data 
should be replaced in preference for a non-rehashed index. 
Temporal locality suggests that rehashed locations should be 
preferentially replaced. so column associative cache with a rehash block will index the 

above reference pattern. The figure shows at each location, 
the data stored in that location after the data request indi
cated by the input sequence. In the column associative 

FIG. 3 discloses a controller decision tree for indexing the 
cache. Table 1 provides the decision tree mnemonics and 
cycle times for each cycle. F'l!St, the first hashing function, 
h1, is applied to the memory address a. If the first-time 
access is a hit, then the data is accessed to the processor. 55 
However, if the first-time access is a miss, then the rehashed 
location block of that set is checked (Rbit=l? ). If the rehash 
block has been set to one, then the data is removed from that 
cache set indexed by h1[a] and data from the main memory 
is retrieved and substituted therefor (Clobber 1). Next, the 60 
rehash block is reset to zero to indicate that the data in this 
set is to be indexed by the first hashing function h1 for future 
indexes. 

On the other band, if the rebasb block is set to zero, then 
upon a first-time miss, the second hashing function h2 access 65 
is attempted. If the second hashing function indexes to valid 
data, then there is a second time hiL For a second time hit, 

cache, address 8t is shown indexed into set SI by the first 
hashing function, h1• Address a,, attempts to index Sl by the 
first bashing function, but there is a miss because address i 
is there. Then using the second hashing function, ~. address 
ai is indexed to SS and witb a miss that data is retrieved and 
stored in SS. The data in Sl and S5 is then swapped. Thus, 
j is now in SI and i is now in SS. The next address, a ... 
attempts to access SS but will miss because i is there. Then 
the second hashing function is applied to a,, and it attempts 
to access SI, but there is a miss because j is there. Since this 
is a second time miss, the address a,, is removed from SI and 
replaced by a_.. Then a,, and ai1 are swapped so that i is in S 1 
and x is in SS. This pattern continues as long as a

1 
and a,, 

alternate. Thus, the data referenced by one of a,, and a,, is 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 214

 
5,530,958

5

functions, h1 and hz, which are applied by controller 15. The
hashing functions are operations that map the data addresses
from the main memory to the cache sets based on spatial and
temporal locality. Spatial locality suggests that future
addresses are likely to be near the locations of current
addresses. Temporal locality indicates that future addresses
are more likely to reference the most recently accessed
locations again.

The first hashing function, h,, is preferably a bit selection
operation. In a bit selection operation, data is indexed to the
sets of the column associative cache according to its index
field. Since some data may contain the same index field,
there is high probability that tltere will be conflict miss
between the data. The column associative cache of the
present invention resolves the conflict by then applying a
second hashing function, hz. The second hashing function
dynamically chooses a different location in which the con-
flicting data can reside. The second hashing function, h,, is
preferably a bit flipping operation that flips the highest
ordered bit of the referenced by the index address and
accesses the conflicting data at the set indexed by the
inverted address. As shown in FIG. 2A, the first hashing
function, h], indexes address a, 17 to set 51. Address 11 then
attempts to access 81 but there is a miss because address 17
is already there. To resolve the conflict, the second hashing,
hz, function is applied to address 11. This hashing function
flips the highest ordered bit of the index field so that address
11 can be indexed to SS. Thus. 81 and SS share locations
through b1 and b: so that conflicts are resolved not within a
set but within the column of sets of the entire cache.

A comparison of a column associative cache with a
conventional two way set associative cache is illustrated in
FIG. 23. In the conventional cache, a set, such as set 2,
stores two hues of data. Thus, if the requested data is stored
in either line of a set, there is a hit. Drawbacks of such a
cache are the high hit access time and hardware complexity.
The column associate cache performs as a direct mapped
cache unlus there is a miss. With a miss it accesses another
location within the same memory column. Thus, two sets
share two locations.

Also, shown in FIG. 2A is a rdiash block 18 coupled to
each cache set for indicating whether the set has been
rehashed. A rehashed location is a set that has already been
indexed through the second hashing function to store data.
The purpose of the rehash block is to indicate whether a
location stores data through a rehashed index so the data
should be replaced in preference for a non-rehashed index.
Temporal locality suggests that rehashed locations should be
preferentially replaced.

FIG. 3 discloses a controller decision tree for indexing the
cache. Table 1 provides the decision tree mnemonies and
cycle times for each cycle. First, the first hashing function,
h]. is applied to the memory address a. If the first-time
access is a hit, then the data is accessed to the processor.
However, if the firstvtime access is a miss, then the rehashed
location block of that set is checked (Rbit=l'.7 ). If the rehash
block has been set to one, then the data is removed from that
cache set indexed by h,[a] and data from the main memory
is retrieved and substituted therefor (Clobber 1). Next, the
rehash block is reset to zero to indicate that the data in this
set is to be indexed by the first hashing function hl for future
indexes.

0n the other hand, if the rehash block is set to zero, then
upon a first-time miss, the second hashing function h2 access
is attempted. If the second hashing function indexes to valid
data, then there is a second time hit. For a second time hit,

10

15

25

30

35

45

50

55

60

65

6
the data is retrieved from that cache set and the data in the
cache sets indexed by the first and second hashing functions.
hl [a] and h2[a], are swapped (SWAP) so that the next access
will likely result in a first time hit (temporal locality).
However, if the second hashing function provides a second
time miss, then the data in that set is replaced (Clobber2).
Data from the main memory is retrieved and placed in the
cache set indexed by the second hashing function, hz[a].
Then the data in the cache sets indexed by the first and
second hashing function. hl and h2 are swapped with each
other (SWAP).

 

 

TABLE I

Mnmunic Acu‘on Cycles

h,[a] bit-selection access 1
111(2] bit-flipping access 1
swap map data in sets accessed by h,[a] 2

and h,[a]
clubberl get data from memory. place in set M

accessed by his]
clobberZ get data from memory, place in set M

accessed by hllal
Rbit=1‘.7 check if set accessed by tide] is a Orehashed loution
inCAM'! check if a (or its index) ranches 0

a CAM enuy
putinCAM place I (or its index) in the CAM l

putinCAM‘ place the index or I and the lag I
present in the each: location

accessed with hlln] into ll: CAM 

At starnip, all of the empty cache sets have their rehash
blocks set to one so that compulsory misses are handled
immediately.

The rehash block 18 increases the hit rate and decreases
the access time for the column associative cache. The
increase in performance is due to the fact that the data in the
non-rehashed location are the most recent accessed data and,
according to temporal locality, this data is more likely to be
needed again. The removal of older data which will probably
not be referenced again whenever a conflict miss occurs
reduces the amount of clobbet'ing. In addition, the ability to
inunediately replace a rehashed location on the first access
reduces the number of cycles consumed by rehash accesses.

In addition to limiting rehash accesses and clobben'ng, the
column-associative cache with rehash block corrects a prob-
lem associated with indexing a reference pattern a, a1 ax a, a1
a] a, . . . where the addresses a, and a, map into the sarne
cache location with bit selection, h,, and a, is an address
which maps into the same location with bit flipping, hi. FIG.
4 shows how a single column associative cache and a
column associative cache with a rehash block will index the
above reference pattern. The figure shows at each location,
the data stored in that location after the data request indi-
cated by the input sequence. In the column associative
cache, address a, is shown indexed into set 81 by the first
hashing function, h,. Address a,- attempts to index 81 by the
first hashing function, but there is a miss because address i
is there. Then using the second hashing function, h,_. address
a,- is indexed to SS and with a miss that data is retrieved and
stored in SS. The data in 51 and SS is then swapped Thus,
j is now in SI and i is now in SS. The next address, a,
attempts to access SS but will miss because i is there. Then
the second hashing function is applied to a, and it attempts
to access 81, but there is a miss bemuse j is there. Since this
is a second time miss, the address aj is removed from 81 and
replaced by a, Then a1: and ail are swapped so thati is in SI
and x is in SS. This pattern continues as long as a, and a:
alternate. Thus, the data referenced by one of a,- and a, is

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 214



1' ,,· 

5,530,958 
7 

clobbered as the data i is swapped back and forth but never 
replaced. 

Tiris detrimental effect is known as thrashing, but as 
shown in FIG. 4, it docs not occur in a column-associative 
cache with a rehash block. In the column associative cache s 
with a rehash block, a1 is indexed to Sl by the first hashing 
function h1• Address a1 anempts to index SI but misses 
because i is there. Since there is a miss, the rehash block for 
Sl is checked to see if that set has been already indexed by 
the second hashing function h2• Since Sl has not been 10 
indexed by h2 , its rehash block is 0. Then, the second 
hashing function indexes ai to SS and the rehash block is set 
to 1. Then the data in Sl and SS are swapped so that j is now 
in Sl and i is now in SS. Address a,, attempts to access S5 
but misses because i is there. However, becl!llse the rehash 15 
block of SS is set to 1, j is removed and replaced by x. Thus 
SI contains j and SS contains x, eliminating the thrashing of 
j. Of course, this column-associative cache suffers thrashing 
if three or more conflicting addresses alternate, as in ~ a_, a,, 
~ ai a,, ~ ... , but this case is much less probable than in the 20 

case of two alternating addresses. Thus, the rehash block 
alleviates thrashing, reduces the number of rehash accesses 
and nearly eliminates clobbering. 

To further reduce the access time of the column associa
tive cache, a content addressable memory (CAM) 20 is 25 

added thereto. The purpose of the CAM is to reduce the 
number of unnecessary rehash accesses and swaps in the 
column associative cache. FIG. S shows the CAM 20 
coupled to the column associative cache 16. The CAM 
stores addresses that potentially cause conflict miases, such 30 
as addresses that have been swapped with the rehashed 
location in a second-time hit. If the address in the CAM 
matches requested data address, then the controller attempts 

8 
following reference pattern: a1, a1, ~. 3t .... To access the 
above reference pattern, the column associative cache 18 
wastes many cycles swapping a,. and a1, repeatedly whereas 
the CAM 20 stores the address that referenced the data into 
the rehashed location on a second-time hit For instance, the 
third reference, i, results in a second-time hit because the 
data j is indexed into the rehashed location as expected, but 
its address (i.e., tag and index) is stored in the CAM. The 
CAM is then checked in parallel with every first-time access, 
and if a match is found, the control logic will find the data 
directly by rehashing instead. The benefit of adding a CAM 
to the column-associative cache is that a swap is no longer 
necessary between the conflicting data becBUse the CAM 
quickly points out those addresses which provide second
time hits. Thus, in the above example, a,. remains in the 
non-rehashed location and is accessed in one cycle by hi[aJ 
The conflicting data a_, remains in the rehashed location and 
is accessed by h2[a1] after a1 is matched with its entry in the 
CAM. 

An important feature of this design is that the search of the 
CAM does not impose a one cycle penalty. Tiris feature is 
accomplished by optimizing the CAM so that a search is 
completed quickly enough to precede the first-time access in 
the cycle. Tiris feature can also be implemented by perform
ing the CAM access in a previous pipeline stage. However 
accomplished, eliminating the penalty of searching the 
CAM is crucial because a significant reduction in execution 
time is possi,ble only if most of the data in rehashed locations 
can be retrieved as quickly as those in non-rehashed loca
tion. 

Another benefit in using a CAM is evident in a first-time 
rehash ~[a] (due to a being in the CAM) that misses. The 
decision tree shows that in this case, no swap is needed 
because data is retrieved from the main memory and left in to index the referenced data using another hashing function, 

such as h2 , as the first hash. 35 the set indexed by h2 [a]. Tiris is done becBUse that address 
is in the CAM due to a first-time rehash. Therefore, leaving 
the data in the rehashed location leads to future first-time 
rehash hits in only one cycle. 

FIG. 6 shows a decision tree for indexing an address a to 
the column associative cache with the CAM. Table 1 pro
vides the decision tree mnemonics and cycle times for each 
cycle. First, the CAM is checked to determine whether the 
index of a matches the address entry within the CAM 40 

(inCAM?). If there is a match, then h2 is used to index a. If 
h2 [a] indexes valid data, then there is a hit and the data is 
retrieved. However, if there is a miss, then the data is 
clobbered and data from the main memory is retrieved and 
placed in the cache set accessed by h2 (Qobber2). 

One of the drawbacks of using a CAM with a column 
associative cache is evident in situations when a set accessed 
by h1 [a] is found to be II rch113hed location. Instead of 
immediately replacing this data, 11 rehash 11Ccess mnst be 
performed to ensure that the desired data is not located in the 
rch113hed location. Tiris is impossible for the single column-

On the other hand, if there is no match in the CAM, then 
45 113sociative cache with rehash block, however, it is feasible 

when a CAM is included. For example, suppose an address 
exists in the CAM which causes a first-time rehash hit at 
hia]. The CAM is a finite resource, so this address may be 

h1 is applied to a for indexing. If h1[a] indexes valid data, 
then there is a hit. However, if there is a miss, the rehash 
block is checked to determine whether the cache set 
accessed by h 1[a] is a rehashed location (Rbit=l ?). If the so 
cache set is a rehashed location (=l ), then~ is applied to a. 
A hit results in a or its index being retrieved and placed in 
the CAM (putinCAM) as a potential conflict A miss causes 
the data in the set indexed by h1[a] to be clobbered and 
replaced with data retrieved from the main memory (Clob- ss 
ber 1). If the rehash block is not set to 1, then h2 is applied 
to a for indexing. A hit results in an address from the index 

removed from the CAM after it becomes full. Now, if this 
address appears again in the reference stream, there is no 
CAM match, so a normal access is attempted when the data 
is in the set indexed by h2[a]. Thus, replacing the non
rehashed location immediately would result in data being 
stored in two separate locations. Toe extra attempted rehash 
guards against this wasteful situation, but it adds a one cycle 
penalty. 

Another embodiment of the present invention is to have 
the CAM coupled to the column associative cache without 
having a rehash block (see FIG. 7). As in the above embodi
ment, the CAM 20 improves the efficiency of the column 
associative cache by storing portions of addresses that are 
expected to indicate future conflict misses. Tiris reduces the 
number of unnecessary rehash accesses and swaps in the 
column associative cache. For example, after first time 

of h2[a] being placed into the CAM (putinCAM*). The 
address is reconstructed from the index of a and the tag at 
h1[a]. Then data in cache sets accessed by h1[a] and hz[a] are 60 

swapped with each other. A miss causes the data to be 
clobbered and replaced with data retrieved from the main 
memory and placed in the set indexed by ~[a] (Clobber2) 
Then data in cache sets accessed by h1[a] and ~[a] are 
swapped with each other (SWAP). 65 misses, a rehash access is only attempted when the control 

logic identifies this miss as a conflict. A conflict is identified 
by finding a match in the CAM. Tiris conflict may be 

An example of how the CAM provides better perfor
mance to the column associative cache is evident for the 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 215

 
5530358

7

clobbered as the data i is swapped back and forth but never
replaced

This detrimental effect is known as thrashing, but as
shown in FIG. 4, it does not occur in a column-associative
cache with a rehash block. In the column associative cache

with a rehash block, a1 is indexed to SI by the first hashing
function h,. Address a1 attempts to index 81 but misses
because i is there. Since there is a miss, the rehash block for
51 is checked to see if that set has been already indexed by
the second hashing function hz. Since 51 has not been
indexed by h], its rehash block is 0. Then, the second
hashing function indexes a, to SS and the rehash block is set
to 1. Then the detain SI and SS are swapped so that j is now
in Si and i is now in SS. Address a, attempts to access SS
but misses because i is there. However, because the rehash
block of SS is set to l, j is removed and replaced by x. Thus
Sl contains j and SS contains x, eliminating the thrashing of
j. Of course, this colunm-associative cache suffers thrashing
if three or more conflicting addresses alternate, as in a, a} a:
a, a,- a, a, . . . , but this case is much less probable than in the
case of two alternating addresses. Thus, the rehash block
alleviates thrashing, reduces the number of rehash accesses
and nearly eliminates elobbering.

To further reduce the access time of the column associa-

tive cache, a content addressable memory (CAM) 20 is
added thereto. The purpose of the CAM is to reduce the
number of unnecessary rehash accesses and swaps in the
column associative cache. FIG. 5 shows the CAM 20

coupled to the column associative cache 16. The CAM
stores addresses that potentially cause conflict misses, such
as addresses that have been swapped with the rehashed
location in a second-time hit. If the address in the CAM
matches requested data address, then the controller attempts
to index the referenced data using another hashing function,
such as hz, as the first hash.

FIG. 6 shows a decision tree for indexing an address a to
the column associative cache with the CAM. Table 1 pro-
vides the decision tree mnemonics and cycle times for each
cycle. First, the CAM is checked to determine whether the
index of a matches the address entry within the CAM
(inCAM?). If there is a match, then h, is used to index a. If
hq[a] indexes valid data, then there is a hit and the data is
retrieved However, if there is a miss. then the data is
clobbered and data from the main memory is retrieved and
placed in the cache set accessed by h2 (Clobber2).

On the other hand, if there is no match in the CAM. then
h1 is applied to a for indexing. If h,[a} indexes valid data,
then there is a hit. However. if there is a miss. the rehash
block is checked to determine whether the cache set
accessed by h,[a] is a rehashed location (Rbit:l '2). If the
cache set is a rehashed location (=1), then hz is applied to a.
A bit results in a or its index being retrieved and placed in
the CAM (putinCAM) as a potential conflict. A miss causes
the data in the set indexed by h,[a] to be clobbered and
replaced with data retrieved from the main memory (Clob-
her 1). If the rehash block is not set to 1, then h2 is applied
to a for indexing. A hit results in an address from the index
of h2[a} being placed into the CAM (putinCAM I"). The
addre35 is reconstructed from the index of a and the tag at
h, [a]. Then data in cache sets accessed by h,[a] and h2[a] are
swapped with each other. A miss causes the data to he
clobbcrcd and replaced with data retrieved from the main
memory and placed in the set indexed by h2[a] (ClobberZ)
Then data in cache sets accessed by hlla] and hq[a] are
swapped with each other (SWAP).

An example of how the CAM provides better perfor—
mance to the column aSsociative cache is evident for the

09/01/2003,

10

15

30

35

40

45

55

60

65

EAST Version:

8

following reference pattern: a,, a1, a,, a, . . . . Tb access the
above reference pattern, the column associative cache 18
wastes many cycles swapping a, and a1, repeatedly whereasthe CAM 20 stores the address that referenced the data into
the rehashed location on a second-time hit. For instance. the
third reference, i, results in a second-time hit because the
data j is indexed into the rehashed location as expected, but
its address (i.e., tag and index) is stored in the CAM. The
CAM is then checked in parallel with every first—time access,
and if a match is found, the control logic will find the data
directly by rehashing instead The benefit of adding a CAM
to the column-associative cache is that a swap is no longer
necessary between the conflicting data because the CAM
quickly points out those addresses which provide second—
tirne hits. Thus, in the above example, a,- remains in the
non-rehashed location and is accessed in one cycle by h,[a,.].
The conflicting data 2, remains in the rehashed location and
is accessed by h2[a]] after a] is matched with its entry in theCAM.

Anitnportant feature ofthis design is that the search ofthe
CAM does not impose a one cycle penalty. This feature is
accomplished by optimizing the CAM so that a search is
completed quickly enough to precede the first-time access in
the cycle. This feature can also be implemented by perform—
ing the CAM access in a previous pipeline stage. However
accomplished, eliminating the penalty of searching the
CAM is crucial because a significant reduction in execution
time is possible only if most of the data in rehashed locations
can be retrieved as quickly as those in non-rehashed loca-
tion.

Another benefit in using a CAM is evident in a first-time
rehash h,[a] (due to a being in the CAM) that misses. The
decision tree shows that in this case, no swap is needed
because data is retrieved from the main memory and left in
the set indexed by h2[a]. This is done because that address
is in the CAM due to a first-time rehash. Therefore, leaving
the data in the rehashed location leads to future first-time
rehash hits in only one cycle.

One of the drawbacks of using a CAM with a column
associative cache is evident in situations when a set accessed

by h,[a] is found to be a rehashed location. Instead of
immediately replacing this data. a rehash access must be
performed to ensure that the desired data is not located in the
rehashed location. This is impossible for the single column-
associative cache with rehash block, however, it is feasible
when a CAM is included. For example, suppose an address
exists in the CAM which causes a first-time rehash hit at
h2[a]. The CAM is a finite resource, so this address may be
removed from the CAM after it becomes full. Now, if this
address appears again in the reference stream, there is no
CAM match, so a normal access is attempted when the data
is in the set indexed by hZIa]. Thus, replacing the non-
rehashed location immediately would result in data being
stored in two separate locations. The extra attempted rehash
guards against this wasteful situation, but it adds acne cycle
penalty.

Another embodiment of the present invention is to have
the CAM coupled to the column associative cache without
having a rehash block (see FIG. 7). As in the above embodi—
ment, the CAM 20 improves the efficiency of the column
associative cache by storing portions of addresses that are
expected to indicate future conflict misses. This reduces the
number of unnecessary rehash accesses and swaps in the
column associative cache. For example, after first time
misses, a rehash access is only attempted when the control
logic identifies this miss as a conflict Aeonflict is identified
by finding a match in the CAM, This conflict may be

1.04.0000

EX 1019 Page 215



5,530,958 
9 

resolved by rehashing. Thus, fewer rehashes are attempted 
which improves the second time hit rate and decreases the 
extent of data being clobbered. 

FIG. 8 discloses a controller decision tree for indexing an 
address to the column associative cache with CAM. Table 1 5 
provides the decision tree mnemonics and cycle times for 
each cycle. First, the first hashing function, h1, is applied to 
a memory address a. If the first time access is a hit, then the 
data is accessed. However, if the first time access is a miss, 
the CAM is checked to see if address a matches a CAM entry 10 

(inCAM?). 
If address a does not match a CAM entry, the data in 

address a is removed (clobberl) and data is retrieved from 
the main memory and placed in the cache set accessed by the 
first bashing function h1[a]. Then the data from address a is 15 

S!a!C 

IDLE 
b[al 

fi(a] 

f21al 
!3[aj 

WAIT! 
WAJ.T2 
WAlT3 
XWAIT 

Input 

OP 
HIT 

!HIT,!HB 
!HIT,HB 

HIT 
!HIT 

MACK 

MACK 

10 

TABLE2 

Output Next st.Ille 

LM,RD b(al 
IDLE 

STALL,MSEL,LM,RDJ..S fl[a) 
MEM,STALL XWAIT 
MSEL,LM,WT fl(aj 

MEM WAITl 
DSE.L.LD l3[aJ 

MSEL,LM,WT IDLE 
MSEL,LM.WT WAIT2 

DSEL.LD WAITJ 
MS.EL.LM. WT IDLE 

!D,WT IDLE 

placed in the CAM (putinCAM). Upon receiving an opcode signal (OP), the controller 
However, if there is a match in the CAM, then the second loads (LM) the MAR with an memory address a from the 

hashing function h2 [aJ is applied. A hit causes the data to be address bus. Then the controller issues a read or write signal 
accessed and then the data in the cache sets accessed by (RD/WI') to the RAM so that the first hashing function h1 is 
h 1[a] and h2[a] are swapped (SWAP). A miss causes that the 20 be applied to address a. If the RAM returns a hit signal 
data to be removed from the cache set and replaced by data (HIT), then the data is automatically loaded (LD) into the 
from main memory (clobber2). Then the data in the cache data buffer 32 to be retrieved and the controller goes to an 
sets accessed by h 1[a] and h2 [aJ are swapped (SWAP). IDLE state. 

For a general understanding of how to implement the If the h 1[aJ access misses(! IDT) and the rehash block has 
column associative cache with rehash block, the column 25 not been rehashed (!HB ), then the controller stalls the 
associative cache with the rehash block and CAM, and the processor (STALL), copies (LS) the data from the h1[a] 
single column associative cache with CAM, reference is access into the swap buffer, loads the MAR with the second 
made to FIGS. 9-11 and Tables 2-4. The cache implemen- hashing function 11:z (MSEL and LM), issues a read (RD) 
talion for both FIGS. 9-11 are discussed at the register signal to the RAM and moves to the fl[a] state. If the access 
transfer level without the disclosure of the detailed gate and 30 misses (!HIT) and the rehash block is set to one (HB), then 
transistor designs since the actual control logic can be easily the data is removed and the controller makes a request to the 
synthesized from the state flow tables set forth in Tables 2-4. main memory (MEM), stalls the processor (STALL), and 

Furthermore, in order to provide brief yet descriptive moves to the XWAIT state. 
details about the various embodiments, several simplifica- In the fl[a] state, a hit cause.! the controller to load the 
lions and assumptions have beeo made. For example, a 35 MAR with that index (MSEL. LM), issue a write signal 
discussion regarding the clocking and timing issues is left (WT) to the RAM and move to the fl[af state. For a miss 
out. Instead, it is assumed that the controller 15 receives (!HIT), the controller makes a request to the main memory 
input signals at the sllllt of a cycle and issues output signals (MEM) to retrieve data and moves to the WAITl state. 
at the end of the cycle. Also, for simplicity, the bus interface In the f2[a] state, the controller swaps the data in the data 
and driver circuits have been left out 40 buffer and the swap buffer (DSEL, LD) and moves to the 

FIG. 9 shows a hardware implementation of the column f3[a] state. 
associative cache with rehash block for the present inven- In the f3[a] state, the controller loads the MAR (MSEL, 
tion. The primary element of the column associative caclle LM), issues a write (WD signal to the RAM, and moves to 
memocy system is a RAM array 23 having a rehash block 25. the IDLE state. 
Toe RAM. preferably a tag memory, has a plurality of cache 4S In the WAITT state, the memocy acknowledges comple-
sets to store memory addresses. The processor sends a data tion (MACK), the data is taken from the data bus and loaded 
address via an n-bit multiplexor 22 to a memory address in the MAR (MSEL. LM), a write signal is issued to the 
register (MAR) 24. Connected in between the output of the RAM (WT), and the controller moves to the WAIT2 state. 
MAR and one of the inputs of the multiplexor 22 is an In the WAIT2 state, the controller swaps the data in the 
inverter 26. The multiplexor 22, the MAR 24, and the so data buffer (DSEL, LO) and moves to the WAIT3 state. 
inverter 26 interact to index the data address from the In the WAITJ state, the controller loads (MSEL, LM) the 
processor to the RAM. More specifically, the multiplexor MAR, issues a write signal (WT) to the RAM and moves to 
and the inverter apply the first hashing function h1 and the the IDLE state. 
second hashing function h:z to the data address. In the XWAIT state, the controller receives a signal that 

The RAM 23 communicates with the data bus via a data 55 the access is complete (MACK), loads the data into the data 
buffer 28. In between the data buffer and the RAM is a buffer (LD), issues a write command (WT). aod moves to the 
second n-bit multiplexor 30. A swap buffer 32 communicates IDLE state. 
with both the multiplexor 30 and the data buffer 28 so that The circuitry of the column associative cache with CAM 
current data can be placed in the cache set most likely to be and rehash block is more complex than the cache by itself 
accessed. 60 (see FIG. 10). For example, there is a CAM 20, a first in first 

The controller 15 provides the necessary control logic to out (FIFO) counter 36, a CAM buffer 38, and another n-bit 
each of the above components so that the algorithm of the multiplexor 40. Toe FIFO counter points to the next location 
decision tree in FIG. 3 is followed. The control signals for in the CAM that is to be replaced and the CAM buffer holds 
FIG. 9 are summarized in Table 2 as well as the actions taken indexes while they are being compared or before they are 
for a given state, input, output, and next state. A discussion 65 written into the CAM. Even though this hardware consumes 
of the components and Table 2 is set forth below and can be a great deal of area, the critical access path,of the column 
followed in FIG. 3. associative cache is not alfected. Besides the above addi-

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 216



I 
l'' 

5,530,958 
11 

tions, the MAR 24 and the swap buffer 32 arc shown to bavc 
capability for storing partial addresses such as the index and 
tag fields, respectively. 

The state flow table in Table 3 reveals that the control 
logic for the colunm associate cache with the CAM and 
rehash block is more complex. For example, the variables 
for each state have changed and arc referenced differently 
than the column associative cache. Furthermore, upon 
receiving an opcode (OP), the controller searches the CAM 
to detenninc if there is a match for the address a If there is 
no initial match (! MATCH) in the CAM, the controller 
loads the MAR (LM), issues a read signal (RD) to the RAM, 
and moves to the b[a] state. A match (MATCH) in the CAM 
enables the controller to load the MAR (MSEL, LM), issues 
a read signal (RD) to the RAM;.and moves to the fffa] state. 

12 
( !HIT) causes the controller to make a request to the memory 
to retrieve data (MEM), and move to the WAIT state. 

In the fc2[a] state, the controller issues an INC command 
to the FIFO counter in order to point to the next location in 
the CAM, places an index within the MAR into the CAM 
buffer (LDCAM), and moves to the IDLE state. 

In the WAIT state, the controller receives a signal indi
cating that the access is complete (MACK), loads the MAR 
with the next access (LD), issues a write signal to the RAM 

lO (WT), places an index within the MAR into the CAM buffer 
(LDCAM) and then moves to the IDLE state. 

In the WAITl state, the controller receives a signal 
indicating that the access is complete (MACK), loads the 

15 MAR (MSEL, LM), issues a write signal (WT), and moves 
to the WAIT2 state. A hit (HIT) in the ff[a] state enables the controller to place 

the index field of the data within the MAR into the CAM 
buffer (LDCAM) and then move to the IDLE state. On the 
other hllild, a miss ( ! lilT) enables the controller to stall the 
processor (STALL), make a request to the main memory 

20 
(MEM), and then move to the WAIT state. 

In the WAIT2 state, the controller swaps data between the 
data buffer 28 and the swap buffer 32, loads the data buffer 
with the data (DSEL,LD), and moves to the WAIT3 state. 

In the WAIT3 state, the controller loads the MAR (MSEL, 
LM), issues a write signal to the RAM (WT), places the 
index within the MAR into the CAM buffer (lDCAM), and 
moves to the IDLE state. 

A hit (HIT) in state b[a] causes the controller to place the 
index field of the data within the MAR into the CAM buffer 
38 (LDCAM) and moves to the IDLE state. A miss (!lilT) 
with a zero rehash block(! HB) or a one rehash block (HB) 
causes the controller to stall the processor (STALL), load the 
MAR (MSEL, LM), issue a read signal (RD) to the RAM, 
load the swap buffer (LS) with the data from b[a] and move 
to the fl[a] and fc[a] state, respectively. 

TABLE 3 

Next 
Swe IDput OulpUt swe 

IDLE OP,!MATCH LM,RD b[a] 
OP,MATCH MSEL.LM,RD II[a] 

ff[a} HIT lDCAM IDLE 
!HIT STAIL,MEM WAIT 

b[1] HIT IDCAM IDLE 
!lilT,!HB STA1.L,MSEL,LM,RD,1S fl[a} 
!HIT,HB STALL,MSEL,LM,RD,LS fc[a] 

fl[al HIT MSEL.LM,wr,CSEL, 12[a] 
UlCAM,WTCAM 

11:IlT MEM WAITl 
12[a) DSEL.UJ,INC 13(a] 
O[al MSEL,LM,wr,IDCAM IDLE 
fc[a) HIT lDCAM,WTCAM fc2[a] 

11:IlT MEM WAIT 
fc2[a) INC.IDCAM IDLE 
WAIT MACK LD,wr,LDCAM IDLE 
WAITl MACK MSEL,LM,WT WAIT2 
WAIT2 DSEL,LD WAm 
WAITI MSEL,LM,WT,LDCAM IDLE 

A hit in the fl[a] causes the controller to load the MAR 
(MSEL, LM), issue a write signal (WT) to the RAM, place 
the address from the MAR in the CAM (CSEL, LDCAM, 
WTCAM), and move to the :fl[a] state. A miss (!HIT) causes 
the controller to make a request to the memory (MEM) and 
go to the WAITl state. 

In the fl[a] state, the controller points to the next location 
in the CAM (INC), swaps the data in the data buffer with the 
data in the swap buffer (DSEL, LD), and moves to the f3[a] 

Note that all states whose next state is IDLE assert the 
25 LDCAM line. This serves as a reminder that in order for the 

, CAM search and the setting of MATCH to precede the 
first-time cache access, the search must be either extremely 
fast or part of a previous pipeline stage. LDCAM is listed as 
an output of the stages executed before the IDLE state as a 

30 reminder of these potential solutions. In these cases, actu
ally, the CAM buffer would need to find the next address on 
the address bus, because the MAR has not yet latched the 
next reference. Also, note that the state flow Table 3 pro
ceeds similarly to the state flow Table 2 for first-time hits and 

35 first-time misses when the rehash block is zero. The only 
exception is for a second-time hit, when the original non
rehashed address must be placed in the CAM in addition to 
the swap. This is accomplished by asserting CSEL, LDCAM 
and WTCAM during state fl[a]. Also, INC is asserted during 

40 f2.[a] to increment the FIFO counter, which points to the 
location of the next write to the CAM but docs not affect the 
next CAM search. 

The new entries in the state table involve the paths if an 
initial CAM match occurs or if a first-time miss reveals a 

4S rehashed locatioIL If the MKI'CH line is asserted initially, 
then the controller moves to set ff[ a] and attempts a standard 
rehash access. If successful, nothing remains to be done. If 
it misses, then this rehashed location is simply replaced by 

50 

data from the memory during the WAIT state. Note that 
MSEL and LM are not to be used to change the MAR 
contents. Since the address that accesses this location is still 
in the CAM, a future reference will be successful in one 
cycle. In the case that a first-time miss reveals a rehashed 
location, state fcl[a] is entered and, unlike the column-

55 associative cache with rehash block, a rehash is performed 
to assure that the data does not exist in the rehashed location. 
If this access does indeed hit, the address is simply placed 
in the CAM. Thus, a feature reference immediately finds a 

state. 60 
match in the CAM and completes a rehash access in one 
cycle. If there is a miss, then the algorithm proceeds as in the 
column-associative cache with rehash block and replaces the In the f3[a] state, the controller places an index within the 

MAR and the CAM buffer (MSEL, LM, WT, LDCAM) and 
moves to the IDLE state. 

In the fc[a] state, the data is indexed. A hit (HIT) causes 
the controller to place the index within the MAR into the 65 

CAM buffer (LDCAM), place the current index into the 
CAM (WTCAM), and move to the fc2[a] state. A miss 

non-rehashed location. 
The circuitry of the column associative cache with a CAM 

is shown in FIG. 11. The control signals for FIG. 11 are 
summarized in state flow Table 4. A discussion of the 
components and Table 4 arc set forth below and correspond 
to the decision tree of FIG. 8. 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 217



~ .-

5,530,958 
13 

TABLE4 

,we input output next •IAI<: 

14 
These addresses may be consecutive numbers, since the low 
order bits have been dropped. Toe use of partial index fields 
increase the number of rehashes attempted, because a ref
erence is predicted to be a conflict if it indexes one of four 

IDLE OP 
b[a] HIT 

!HIT,MATCH 

!H!T!MATCH 
fl(aJ HIT 

LM,RD,LDCAM 

STALL,MSEL,LM,RD, 
LS 

MSEL,STALL, WTCAM 
MSEL,LM,WT,DSEL,LD 

h(aJ 
IDLE 
flf•J 

XWAlT 
121a] 

5 consecutive locations. As seen previously, an increase in the 
number of rehashes attempted often decreases the second 
time hit rate and likely degrades performance. However, this 
modification may prove useful in applications where data or 
instructions are often known to be stored sequentially or in 

!HIT MEM 
f21•1 MSEL.LM,WT 

WAIT! 10 
consecutive bits. 

Also, note that the present invention is not limited to the 
two hashing functions, h1 and~. bit selection operation and 
bit flipping operation. Other hashing functions may be used 
in addition to bit flipping in order to improve the randomness 

IDLE 
WAIT! MACK MSEL,LM,WT,DSEL,LD WAIT2 
WAIT2 MSEL,LM,Wf IDLE 
XWAIT MACK lNC,lD,WT IDLE 

Upon receiving an opcode (OP), the controller loads the ts 
MAR (LM), issues a read signal (RD) to the RAM, places 
the index: within the MAR into the CAM buffer (LDCAM) 
and moves to the b[a] state. 

A bit in the b[a] state (IDT) causes the data to be accessed 
and then the controller moves to the IDLE state. A miss 20 
(!HIT) with a match (MATClij in the CAM causes the 
controller to stall the processor (STALL), load the MAR 
(MSEL,LM), issue a read signal (RD) to the RAM. load the 
swap buffer (LS) with the data from h1[a] and move to the 
fl[a] state. Amiss (!HIT) without a match(! MATClij in the 2s 
CAM causes the controller to make a request to memory 
(MEM), stall the processor (STALL), write into the CAM 
(WTCAM) and move to the XWAIT state. 

A hit (IDT) in the fl[a] state causes the comroller to load 
the MAR (MSEL,LM), write the RAM (WT), load the data 30 
buffer with the data (DSEL,LD) and move to the f2[a] state. 
A miss (!HIT) =es the controller to make a request to 
memory (NIBM) and move to the WAITl state. 

In the f2(a] state, the controller loads the MAR (MSBL, 
LM) and issues a write signal (WT), and moves to the IDLE 35 

state. 
In the WAITl state, the controller receives an input signal 

indicating that the access is complete (MACK), thea loads 
the MAR (MSEL, LM), issues a write signal (WT), swaps 
data between the data buffer and the swap buffer, loads the 40 
data buffer with the data (DSEL, LD), and moves to the 
WAIT2 state. 

In the WAIT2 state, the controller loads the MAR (MSEL, 
LM), issues a write signal to the RAM (WT), and moves to 
the IDLE state. 45 

In the XWAIT state the controller receives an input signal 
indicating that the access is complete (MACK), then the 
controller issues an INC command to the FIFO counter in 
order to point to the next location the CAM, places an index 
into the MAR (LO), writes the RAM (WT), and moves to the so 
IDLE state. 

An important parameter for the CAM disclosed in FIGS. 
10 and 11 is its size parameter. Like the victim cache, the 
percentage of conflicts removed increases as its size 
increases, because there are more locations to store conflict- ss 
ing data removed from the cache. However, this improve
ment eventually saturates to a constant level, because there 
exists only so many conflicting data bits which need to 
reside therein at oDC time. However. the CAM can perform 
without saturation for up to 128 entries, whereas the victim 60 
cache can perform only up to 16 entries before saturation 
occurs. 

The column associative cache with a CAM can use the 
full index field or omit some of the low order bits from the 
index fields lhat are to be placed in the CAM. For example, 6S 
if two bits are trapped from the index, then four different 
addresses could cause a CAM match with the same entry. 

of accesses and to decrease the amount of clobbering. 
While the invention has been particularly described in 

conjunction with a preferred embodiment thereof, it will be 
understood that many alternatives, modifications and varia
tions will be appareat to those skilled in the art without 
departing from the spirit and scope of the invention as 
defined by the appended claims. 

We claim: 
1. A cache memory system comprising: 
a cache memory having a plurality of cache locations, 

each for storing a cache line of data, separate! y 
accessed from a main memory, and having a first tag 
memory, each cache location being indexed by indexes, 
taken from memory addresses, through first and second 
hashing functions such that plural memory addresses 
having a eonunon index access plural memory loca
tions through the first and second hashing functions and 
different indexes access common memory locations 
through the first and second hashing functions; 

hash control storage storing control data comprising hash 
data associated with each cache location which indi
co.tes the bashing function used to store data in the 
cache location; and 

a controller coupled to the cache memory responsive to 
memory addresses in accesses to the main memory for 
accessing data in the cache memory through the first 
and second hashing functions and for replacing data in 
the cache memory from the main memory responsive to 
the control data and to comparisons between tags of the 
memory addresses and tags stored in the first tag 
memory. 

2. A cache memory system as claimed in claim 1 wherein 
the controller checks the hash data of the cache location 
indexed by the first hashing function when there is a miss at 
that cache location and applies the second hashing function 
only when said hl!!lh data indicates data stored in the cache 
location was not stored using the second hashing function. 

3. A cache memory system as claimed in claim 1 wherein 
the controller responds to the hash data to detennine whether 
to replace data stored in a first location indexed through the 
first cache hashing function or a second cache location 
indexed through the second hashing function. 

4. A cache memory system as claimed in claim 3 wherein 
the controller swaps data replaced in a cache location with 
data in another cache location indexed by a common index. 

5. A cache memory system as claimed in claim 1 further 
comprising a second tag memory coupled to the controller 
for storing as control data at least portions of memory 
addresses that indicate that data stored in a cache location is 
likely indcx:ed through one of the hashing functions. 

6. A cache memory system as claimed in claim S wherein 
the controller accesses cache memory locations through the 
first bashing function or the second hashing function depen· 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 218

 

 

5530958
13

TABLE 4W
some input output next out:W

lDLE OP LM.RD.LDCAM lain]bla] HIT IDLE
lHl’l‘,MATGi STALLMSWRD. flln]LS
lHlTEMATCH MSELSTALLWI‘CAM XWAlT

ills} HIT mmwwsmmu ma]
um MEM WAITl

QM MSEJMM'I' IDLE
WAITl MACK mmmwwscnm WAIT}
mm MSELJMWT IDLE
XWAIT MACK momma IDLE 

Upon receiving an upcodc (0?), the controller loads the
MAR (LM), issuce a rear] signal (RD) to the RAM. places
the index wiLhin the MAR into the CAM buffer (LDCAM)
and moves to the bla} state.

A hit in the bIa} state (HIT) causes the dam to be accessed
and then the controller moves to the IDLE state. A miss
(lHIT) with a match (MATCH) in the CAM causes the
controller to stall the processor (STALL), load the MAR
(MSEL,LM), issue a read signal (RD) to the RAM1 load the
swap bufi‘er (LS) with the data horn bin] and move to the
filial state. A miss (IHIT) without a match (! MATCH) in the
CAM causes the controller to make a request to memory
(LEAD. stall the processor (STALL), write into the CAM
(WTCAM) and move to the XWAIT state.

A hit (HIT) in the f1[a] statc causes the controller to load
the MAR (MSELLM), Write the RAM (WT), load the data
buffer with the data (DSELLD) and move to the flla] state.
A miss (ll-IE) causes the mmrollcr to make a request to
mcmory (MEM) and move to the WAIT) state.

In the f2[a] state. the controller loads the MAR (MSEL,
LM) and issues a write signal (WT), and moves to the lDLE
Sims.

In the WAITI state, the controller receives an input signal
indicating that the access is complete (MACK), then loadc
the MAR (MSEL, LM), issues a write signal (WT), swaps
data between the data buffer and the swap bufi'er, loads the
data buifa' with the data (DSEL, LD), and moves to the
WAI'I‘Z state.

In the WAIT? state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT). and moves to
the IDLE state.

In the XWAIT state the controller receives an input signal
indicating that the access is complete (MACK), then the
controller issues an INC command to the FIFO counter in
order to point to the next location the CAM. places an index
into the MAR (LB), writasthe RAM (WT), and moves to the
IDLE state.

An important parameter for the CAM disclosed in FIGS.
10 and 11 is its size parameter. Like the victim cache. the
percentage of conflicts removed increases as its size
increases. because there are more locations to store conflict—
ing data removed from the cache. However, this improve-
ment eventually saturates to a constant level, because there
exists only so many conflicting data bits which need to
reside therein at 011:: time. However, the CAM can perform
without samration for up to 128 entries, whereas the victim
cache can perform only up to 16 entries before saturationOCCUIS.

The column associative cache with a CAM can use the
full index field or omit some of the low order bits from the
index fields that are to be placed in the CAM. For example,
if two bits are trapped from the index, then four difl'crcnt
addresses could cause a CAM match with the same may.

10

15

20

25

30

35

45

50

55

60

65

14

These addresses may be consecutive numbers, since the low
order bits have been dropped The use of partial index fields
increase the number of rehashcs attempted, because a ref»
stance is predicted to be a conflict if it indexes one of four
consecutive locations, As seen previously, an increase in the
number of rchashcs attempted ofien decreases the second
time hit rate and likely degrades performance. However. this
modification may prove useful in applications where data or
instructions are often known to be stored sequentially or in
consccutivc bits.

Also, not: that the present invention is not limited to the
two hashing functions, in and hg, bit selection operation and
bit flipping operation. Other hashing functions may be used
in addition to bit flipping in order to improve the randomness
of accesses and to decrease the amount of clobbering.

While the invention has been particularly described in
conjunction with a preferred cmbodimcot thereof, it will be
understood that many alternatives, modifications and varia-
tions will be apparent to those skilled in the art without
departing from the spirit and scope of the invention as
defined by the appended claims.

We claim:
1. A cache memory system comprising:
a cache memory having a plurality of cache locations,

each for sharing a cache line of data, separately
accessed from a main memory, and having a first tag
memory, each cache location being indexed by indexes,
taken from memory uddrcsses, through first and second
hashing functions such that plural memory addresses
having a common inch access plural memory loca<
lions through the first and second hashing functions and
different indexes access common memory locations
through the first and second hashing functions;

hash conuol storagc storing control data comprising hash
data associated with each cache location which indi-
cates the bashing function used to store data in the
cache location; and

a controller coupled to the cache memory responsive to
memory addresses in accesses to the main memory for
accessing data in the cache memory through the first
and second hashing functions and for replacing dam in
the cache memory from the main memory responsive to
the comm] data and to comparisons between tags of the
memory addresses and nag: stored in the first tag
memory.

2. Acachc mcmory system as claimed in claim 1 wherein
the controller checks the hash data of the cache location

indexed by the first hashing function when there is a miss at
that cache loader: and applies the second hashing function
only when said hush data indicates data stored in the cache
location was not stored using the second hashing function.

3. A cache memory system as claimed in claim 1 wherein
the controller responds to the hash data to determine whether
to replace data stored in a first location indexed through the
first cache hashing function or a second cache location
indexed ttuough the second hashing function.

4. A cache memory system as claimed in claimS wherein
the controller swaps data replaced in :1 cache location with
data in another cache location indexed by a common index.

5. A cache memory systcm as claimed in claim 1 finthcr
comprising a second tag memory ecuplcd to the controller
for storing as control data at least portions of memory
addresses that indicate that data stored in a cache location is
likely indexed through one of the hashing functions.

6. A cache memory system as claimed in claim 5 wherein
the controller accesses cache memory locations through the
first hashing function or the second hashing function depen-

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 218



i 
l 

5,530,958 
15 

dent o~ whether at least a portion of a memory address is 
stored m the second tag memory and, where a miss results 
at a .cache m~mory location with access through the first 
hashing function and the second hashing function, the con
troller replaces the data stored through the first hashing 5 
function if said hash data indicates the data accessed through 
the first hashing function had been stored using the second 
hashing function, or through the second hashing function if 
said hash data indicates the data accessed through the first 
hashing function had been stored using the first hashing 
function. 10 

7. A cache memory system as claimed in claim 1 wherein 
the hash control storage comprises a second tag memory 
coupled to the controller for storing as control data at least 
portions of memory addresses that indicate a likely bashing 
function through which data stored in cache is indexed. 15 

8. A cache memory system as claimed in claim 7 wherein 
the second tag memory is a content addressable memocy. 

9. A cache memory system comprising: 
a cache memory having a plurality of cache locations, 20 

each for storing a cache line of data, separately 
accessed from a main memory, and having a first tag 
memory, each cache location being indexed by indexes. 
taken from memory addresses, through first and second 
hashing functions such that plural memory addresses 25 
having a common index access plural memory loca
tions through the first and second hashing functions and 
such that different indexes access common memory 
locations through the first and second hashing func-
tions; 

30 
hash data associated with each of the plurality of cache 

locations for indicating the hashing function used to 
store data therein; and 

a controller coupled to the cache memory for accessing 
data in the cache locations through the first and second 35 
hashing functions and for replacing data in the cache 
locations from main memory, the controller being 
responsive to the hash data and a comparison of tags of 
the memory address and stored tags in cache memory 
in determining whether to replace data in a first location 40 
accessed through the first hashing function or in a 
second location accessed through the second hashing 
function. 

10. A cache memory system according to claim 9, wherein 
the first hashing function is a bit selection operation. 45 

1L A cache memory system according to claim 9, wherein 
the controller checks the hash data of a cache location 
indexed by the first hashing function when there is a miss to 
detemline whether to apply the second hashing function. 

12. A cache memory system according to claim 9, wherein so 
the second hashing function is a bit selection Md flipping 
operation. 

13. A cache memory system according to claim 9, wherein 
the controller removes the data from the cache location 
indexed by the second hashing function after a miss and 55 
retrieves new data from the main memory in place therefoL 

14. A cache memory system according to claim 13, 
wherein the controller swaps the new data in the cache 
location indexed by the second hashing function with the 
data in the cache location indexed by the first bashing 60 
function. 

1S. A cache memory system according to claim 9, wherein 
the controller responds to a miss at a cache location through 
the first bashing function, and to bash data indicating data is 
stored at that cache location through the second hashing 65 
function, to remove data from that cache location and 
retrieve data from main memory In place therefor. 

16 
16. A cache memory system as claimed in claim 15 

wherein the controller swaps data replaced in a cache 
location with data in another cache location indexed by a 
conunon index. 

17. A cache memory system according to claim 9, further 
comprising a second tag memory coupled to the controller 
for storing al least portions of addresses that indicate that 
data stored in a cache location is likely to be indexed through 
the second bashing function, the com:roller using the second 
bashing function in the initial cache indexing where an 
address is found in the second tag memory. 

18. A cache memory system comprising: 
a cache data memory having a plurality of cache locations 

for storing plural cache lines of data, each cache 
location being referenced by a memory address having 
an index field and a tag field, and each cache location 
being indexed by indexes, taken from memory 
addresses, through first and second hashing functions 
such that plural memory addresses having a common 
index access plural memory locations through the fil'llt 
and second bashing functions and such that different 
indexes access common memory locations through the 
first and second hashing functions; 

a first tag memory coupled to the cache data memory for 
storing the tag fields of the data stored in the plurality 
of cache locations; 

hash data coupled to the cache data memory for indicating 
hashing functions used to index data in the cache 
locations; 

a second tag memory coupled to the cache data memory 
for storing at least portions of memory addresses that 
indicate that data stored in a cache location is likely 
indexed through one of the hashing functions; and 

a controller responsive to the bash data, the first tag 
memory and the second tag memory for indexing 
memory addresses according to at least one of the 
plural hashing functions. 

19. A cache memory system according to claim 18, 
wherein the controller applies first and second hashing 
functions to a memory address, the second hashing function 
being a bit selection and bit flipping operation. 

20. A method for accessing data from a cache data 
memory, having a plurality of cache locations and a first tag 
memory, comprising the steps of: 

indexing a memory address having an index field and a 
tag field into an indexed cache location according ta a 
bashing function; 

comparing a tag field of the memory address to a tag field 
in the first tag memory for the indexed cache location; 
and 

generating a bit when the tag field of the memory address 
matches the tag field of the indexed cache location, and 
generating a miss when the tag field of the memory 
address docs not match the tag field of the indexed 
cache location, and in generating a miss, choosing 
between the step of indexing another cache location 
through another hashing function and the step of 
replacing data, the step of replacing data in the cache 
location being chosen if hash data indicates data 
located in the cache location was indexed through 
another hashing function. 

21. A method according to claim 20, further comprising 
the steps of connecting a content addressable memory to tbe 
cache data memory for storing portions of memory 
addresses, each portion indicating that data &tored in a cache 
location is likely indexed through one of plural bashing 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 219



1 
5,530,958 

17 
functions, and checking the content addressable memory for 
a match with a portion of the memory address. 

22. A method as claimed in claim 20 further comprising 
swapping the replaced data in a cache location with data in 
another cache location indexed by a common index. s 

23. A method of accessing data from a cache data memory 
having a plurality of cache locations and first tag memory 
comprising the steps of: 

indexing a memory address having an index field and a 
tag field into an indexed cache location accordiog to a 10 
hashing function applied to the index field; and 

comparing a tag field of the memory address to a tag field 
in the first tag memory for the indexed cache location; 
and 

15 
storing control data which identifies the hashing function 

used to store data in each cache location; 

18 
wherein data is accessed in the cache locations through 

first and second hashing functions and data is replaced 
in the cache locations from main memory responsive to 
the control data which is stored according to past cache 
operations and comparisons between tags of memory 
addresses and tags stored in the first tag memory. 

24. A method as claimed in claim 23 further comprising 
determining from a second tag memory a hashing function 
through which data stored in a cache location is likely 
indexed and selects that hashing function for indexing the 
cache location. 

25. A method as claimed in claim 23 further comprising 
swapping data in the cache location indexed by the second 
hashing function with the data in the cache location indexed 
by the first hashing function when replacing data. 

* * * * * 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 220



1 

UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 
PATENTNO. : 5,530,958 

DATED June 25, 1996 

INVENTOR(S) ; Anant Agarwal and Steven D. Pudar 

It is certified that error appears in the above-indentilied patent and that said Letters Patent is hereby 
corrected as shown below: 

At column 1, line 4, insert the following paragraph: 

---GOVERNMENT SUPPORT 

This invention was made with government support under 
Grant Number 9012773-MIP awarded by the National Science 
Foundation. The government has certain rights in the 
invention.---

Attesting Officer 

Signed and Sealed this 

Eighth Day of October, 1996 

"BRUCE LEHMAN 

Commiulontr af Pau,m 11,ui Tradtmarks 

09/01/2003, EAST Version: 1.04.0000 

EX 1019 Page 221

.”.4

WWWIhWWW,”WW.0,.,
 

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,530,958

DATED : June 25, 1996

'NVENHNWS)‘ Anant Agarwal and Steven D. Pudar

it is certified that erro: appears in the above—indentified patent and that said Lenars Patent is hereby
umammasmmmnbdmm

At column 1, line 4, insert the following paragraph:

---GOVERHKENT SUPPORT

This invention was made with government support under
Grant Number 9012773~KIP awarded by the National Science
Foundation. The government has certain rights in the
invention . «~-

Signed and Sealed am;

Eighth Day of October, 1996

Men: 6444 W
BRUCEmev

Arresting 0356:? Commission" ofFarm; and Tradema rt: 

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 221



1 

United States Patent c19J 
Chang 

[S4] CACHE MEMORY USING A LOWESr 
PRIORITY REPLACEMENT CIRCUIT 

(7S] Inventor: Sldil-Jell a.us, Naperville, DI. 

(73] Assignee: . ATAT Bell I.aboratoria, Murray 
Hill, NJ. 

[21] Appl. No.: 3Jf7~ 

(22] Filed: Oct. 2, 1911 

(Sl] lat. Q.l ...... - ...................................... G06F 13/00 
(Sl] U.S. a. ................. _ ................................. 364/llDO 
(SB] Fleld of Sellrda ····-· 364noo MS FILE, 900 MS 
FILE 

(S6] Relereilca Clted 

U.S. PATENT DOCUMENTS 

3,'H,129 6/1971 Boland et al. ........ _ .•..•••.. 340/172.S 
3,14(),162 10/1974 Ready ·-··-····-···-···-······ 364/200 
3,949,3611 4/1976 Wat -···-···-····-··---··· 340/172.S 
4,014,130 .$/1978 Matick ·-··-··-···--·-·-- 364/200 
4,121,812 12/1978 Dennis ·-···-······················ 36"/200 
4,322,795 3/1982 Lange et al ......................... 364/200 

Primt1ry Emminel'-Eddie P. Chan 
.4.mslant E:Jcaminer-0. Scbatoff' 
.4ttomq, Agent, or Fimi-P. Viucrman 

CACffl IMTA 
SE ECT 

[S7] 

[IIJ Patent Number: 
[4SJ Date of Patent: 

ABSTRACT 

4,458,310 
Jul. 3, 1984 

A data processing system having a ·processor, main 
memory, and a cache memmy system which imple· 
ments the least recently used replacement &Jgorithm in 
replacing cache memory words with main memory 
words. The cache memory 1ystem ii comprised of a 
cache control circuit and a plurality of cache memories. 
Each cache memory stora cacbc memory words hav
ing a similar time uuge history. The first cache mem
mory 1ton:s cacbc memory words which are more re
cently used than the cache memory words in the second 
cache memory, and the second cache memory stores 
cache memory words which are more recently used 
than the cache memory words in the third cache mem
ory. When a main memory word must be tranlferrcd to 
the cache memory, the main memory word is stored in 
the firlt memory; and the fmt cache memory's lesst 
recently med cache memory word is stored in the sec
ond cache memory. The lcut recently med cache mem
ory word from the IICCOlld cacbc memory is stored in 
the third cache memory. These operations maintain the 
proper time uaqe hiltory of the cache memories. 

Ill. 

Ill 

EX 1019 Page 222

 

United States Patent [:9]

w:
 

[54] CACHE MEMORY USING A mwrxr
PRIORITY REPLAGEMENT CIRCUIT

Shiir-Jeh 0mg. anervillc. Ill.

’ Ant Bell Iahontnrlu, Murray
Hill. NJ.

App]. No.: 307.351

Filed: on. 2, mu
Ill. (13 ........ ............... GOGF 13/111
US. (1 ........... 364m
Fleld of Selrch ....... 364/2“) MS FILE, 9!!) MS

[75]

[73]

Inventor:

Assignee:

[21]

[22]

[51]
[52]
[58]
FILE

[561

 

Race-eel Cited
U.S. PATENT DOCUMENTS

3.5”,829 6/1971 Ballad e! IL ................... 340/1715
3.840.162 Ill/1974 Rudy ...... M. 366/11!)
3.949568 4/1976 West ......... 340/1725

  
  
 «14.230 mm Mstick M. M 364000

4.121.332 1mm Denni: .....- ..... sumo
4,322,795 mm Lsngeelnl. -.~...."...2...~. sumo

Primary Miner—Eddie P. Chen
Amino!" Examiner—O. Schatoff
Attorney, Agent, orfi‘nn—P. Vissermsn

3%“:
lil CIICIIII I'll
ll. [RU -
III CIROIIT L7] 

[11] Patent Number: 4,458,310

[45] Date of Patent: Jul. 3, 1984

[57] mm

A den processing system having I ‘proeessor. main
memory, sud a cache memory system which imple-
ments the lens! recently used replacement algorithm in
replecing cache memory words with main memory
words'l'heeochememorysystemisoomprisedof:
cache control circuit Ind a plurality of cache memories.
Bach cache memory stores ache memory words hav-
higeeimilartimeussgehistory.1hefirstcechemem-
mory stores cache memory words which n: more re-
oentlymedthmtheccchememorywordsinthesecond
cschc memory, end the mend cache memory storm
cache memory words which are more recently used
tlnnthecechememorywordsinthethirdeoehemem-
ory. When I min manory word must be trmfen'ed to
thee-chememorynhemsin memorywordisetoredin
the first memory; sad the first cache memory‘s least
rwentlynsedcachememorywordisstoredinthesec-
ondcachememory.’l'he1eutrecentlyusedcschemem-
ory word from the second cache memory is stored in
the third eeche memory. These operations msintsin the
pmpertimenngelnmryofthemchememofim.

“Milli-mm

CICME MIA
“TING
CIRCUIT
 

EX 1019 Page 222



, 
l 
1 
1 

l ' 
l 
l. 

' .. 

U.S. Patent Jut. 3, 1984 Sheet 1 of 5 4,458,310 

FIG. J 
101 J{/2 ') (j 

PROCESSOR MAIN 
MEMORY 

t , CONTROL BUS 11.1 
r-ADDRESS BUS 112 

,-DATA BUS 111 
125- ;-- i--MAIN MEMORY READ 

CACHE 
126- ..... MAIN MEMORYREADY JOO; 

- -
DATA CACHE SYSTEM 

I 

REfDY 
lfl.11 

CONTROL . & ::-
CLKJ1 SEQUENCER 
R/WJ S· -W l~ TD-T4-
CA .... c11~ . 

/ .. J0/1,tRPLl T2 
ADDR 

1111) 
. ' .__ l{l ~ CACHE 

. -, 

.( LRU 
I== - CIRtµIT iiT .. - DATA I 

~ ) 1i, MEMORY 
\ , 111-,tDD1 --uo -

- fillQB .. J057ll i-RP{2 1081' 
~ LRU 

~ 1.12 .... CACHE 
I ~t- CIRCUIT I;;;-.. -L -· ·-'1!!k DATA 
i,. I"'"' • MEMORY 

-122 !JS 

- MmB 

III 
101/J t 

I I ... · CACHE 
,i3-- -- . ·DATA 

12.1 cc, 1), 
-· _ .r.tEMORY 

--

~ CACHE DATA 110) • SEL
1
ECT CACHE DATA 

GATING 
CIRCUIT 

I 

- -

EX 1019 Page 223



1 

U.S. Patent 1u1. 3, 1984 Sheet 2 of 5 4,458,310 

. 
' I N ; .... ~ ....I 

a.. r:;:::. ~ . r:;:::. ~~ .... r~ ~~ !R~ 
~ "'"' ~~ "'"ii ~~ .._ 
..... ....., 

o.-.r-.aew>..,. 
- GI 1-1-1-1-7 .!: 
~ ::::i 

Ii! -~ 
_, ......... 

,~ ~ ..... E~ ,-c~ 
~ 
~ ~ f ~ ~ . . 

I 

~ ---~~ I 

"-i\\; f3 ..,.,.",j 
:c -,.... I= ... 

~ 
,u 

cc 
....I 

. 

~~-
r~ ~ ~~~ C..."i"-i ~ - ~-r~J=~ ~ ----=- ,. .... 
~ --.... 

< ......,_ 
y· ""'I - ~ 

1--!... J / -· .... v.> 
7 ~}--;:::; ~ ""' LI.I -· :0 I :c ...... I ,c( 

' ,c I c.:, I -~I , ::c ' ... I .... ..!. ) \ .... = ct: 
....I 

r ,c ~ -b-t. ~ - :a:: 
.... 1w ..... 

t- --- .. c:,., - _ .... < 
I ....I - .... 1w ~- -~ ~ 

!ii ~ 
3: ~ ~ 

I 

I 
.... '~ 

st ,--c"""\ { ,_-~ 

"iii !Jf r~sa tr 
• - -

a:: 
!'II ~ (.) --~ 3: ~ -~ Q v.> :;: ..... ...... ..... ..... 

EX 1019 Page 224

4,458,310Jul. 3, 1984 Sheet 2 of 5U.S. Patent

MSt

be-

.2J,jLJ3
m‘5“

.0."Hw
«5,.

Iililliii*ian'_lu||_._l._|_=lllllJJam—HMN1“\MN.59:5§WNwou<uw'_.jjllwngsufllfi

  
  

 

 

 

  

 

 ;__IiiI-“mm2.:NNN5£3.wrllu—Fa.;IlrWW—aa_.|_!III}mmmullllL:R.mfill33urun“!asas
.:SNNN

3%$4N6?TE--ga
 

EX 1019 Page 224



-RPL2 

eH}--0

221) 
-

ylJ/5-t? 
JOI 

JU~l 

JIJ-1 JIO~ 

,- CK D CK D 
FIG.I ·=- .121- FF 326- Ef ,_ ( - Q ( Q 

M23 I 

::::-
~ ..-JJJ 

135; Yss /JI; 

-

----·~'-' ·-·-- ,._ --~---·-··--···--·- ---··- ·-- .. , ...... 

FIG. 3 105. 
LBU ~IBCUIT 

- - -
1291 IJOJ JJJ, 

, 
, . 

.11111 .11111 JJ~J 

JJI...J.. JJI...J.. JJl.-J, 

CK 0 CK D CK D 
325- Ef a a 

J!I- a Ef o JIJ- a FF Q 

U3 I 12 I 103 
_J 

I 
Ll --J/9 )-JJO 

S2 1s1 !JJJ 

- -

;og-1~ 
}· 

I 

JIG-Ji 

CK D 
J.12-a FF Q 

,02 I 01 

-JOJ 
I 

~ 121 
so 

2.11; 

TO-T4 

JJI 
-'-

M2 

115 

C! • 
tl'J 
• 
"'a 
~ a 
~ 
.!-'-l -! 
Cl.) 

8 -l.,l 
2, 
Vt 

~ 

~ 
U\ 
00 .. w ...... 
0 

- -~-·-~ 

EX 1019 Page 225



FIG. 4 

. ~ 
fmr k" LBU ~IB~UII ,,,~ 

w 

- - l 
I 

~ 

1)1 10f4_ W~ll ("IOI 
L!:: ) E DATA H 

JJg, 

I i....- A '"') IRITE 
Q8I8 ~ ADDRESS ~ ADDRESS ru:... ·~ IN OUT 
~) ,f0$ IL-SEARCH 

,.... } SEL l,f/0 DATA OUT -
~ ~11.1 ---

I 

/{01 

LATCHES { Tl 

s 1---1 
l I 1/.1 

l t 

RPLl 

LATCHE' 

cu 

--

-

}--~ .. 
' 

' " 
TO 

WA n 
StLf;~QB Tl 
[i"f!DS T3· 

i-T4 ... RPLI ~~ ...... 1 
~) i-T3 

T 

) 

'" l' r= A 
r... PRIORITY - J SE.L 

L.,.-
CKT 

I I 
1\ l'-IJS 

~IJ,f 
,tOI, T4 1.13 

CLk RS i 
1.11 

D FF Q 

-

TO-
( 
T4 

. 

I 

~} JJJ 
,-l. 

I 

Ml 
l'JJI 

~ 
(I) . 
~ a 
0 a 
~ 
~ -! 
C'I.) 
:r a .. 
s, 
!Jl 

~ 
~ 

"" 00 .. 
l,,t,) ..-
0 

_J 

I 

EX 1019 Page 226



501 
50! 
50J. 
501 

MOl 
. 1 

l 
. l 
. 0 

M02 M03 
l 1 
0 1 
0 0 
0 0 

FIG. 5 

M12 Ml3 M23 
0 0 0 
0 0 1 
0 0 0 
1 l 0 

SELECTED LEAST 
RECENTLY WORD USED WORD 

1 
2 l 
3 l 
l 0 

c:: • 
Cl'.l . 
"'ti a a 
~ 
~ -i 

Cll 

[ 
VI 

s, 
VI 

~ 
~ 
VI 
00 .. 
C,I,) 
....... 
0 

____... 

EX 1019 Page 227



1 

1 
4,458,310 

CACHE MEMORY USING A LOWEST PRIORITY 
REPLACEMENT CIRCUIT 

2 
where the usociat.ed cache data words are duplicated in 
main memory. When the proceat0r requests • data 
word by transmitting main memory address signals, the 
first and aecond cache memory compare the stored 

TECHNICAL FIELD 5 memory addrrsla with these memory aignal1 to deter-
. My invention relates ~ computer 1ystems, md, par- mine if the n:quested memory word is atoned within 

ticularly, to• system 111111g a cache memory in which either the first or r.ecood cache memory. IF a ache 
the cache storage location for storing new information memory finds • match. it tr&1llmits to the cache control 
is the location of the lowest priority word in the cache cin:wt a match aipal; otherwise. the cache memory 
memory. 10 transmits a mismatch. If the cache control circuit re-

BACICGR.OUND OF nm INVBNTION ceives mismatch aign.als from both cache memories. it 
gcoeratea and tamsmitl the nec:csury signals to cause 

Modem computer 1ystema employ proc.':eDOrl which two operation& to take place. During the first operation, 
are capable of operating It m11Ch bigber rates of e.secu- the main memory responds to the main memory address 
lion than Jarse capacity main memoriea can support. 15 signala to access and transmit the desired main memory 
and a low ~: bigb-apeed ~ .~ ia com- word to the processor and to the first cache memory. 
m~y IIICd m addition to•~ cap,,city mun memory Abo, during this first operation, the first cache memory 
to unprove prognua accuuon apeed. The cache mem- accaaes its IO'Wellt priority cache data word with the 
ory llOrel • limited number of instruction or data amociated llored main memory address and transmits 
words; 1111d for each memory read operation. the cache 20 these to the ICCODd cache memory. During the second 
memory ii checked to determine if the ~~ ~ opentioa, the fint cache memory stora the ICCCllled 
available in the cache memory. If the information 11 mainmemorywordllldmainmemoryaddresslipalsin 
there. it will be read from the cache memory; otherwise. the previously acceaed first cache memory locations 
it will be read from the main memory. If the information and the aecond cacbe memory lton::I the lowest priority 
must be read from the main memory, the new informa.. 25 -.J.... data word_.,---...--'- -ory add-• 11!..-

tion must replace emtiDg infonnation in the cache .__. .... ~- - ........ ·- uuw 
memory at IIOIIIC cache atorage kx::atkm. A llltisCac:tory ~ tint cache memory m second cache memory loci-
cache storqe Jocatkm for ltoriDg new information ii ~ . . 
identified by one of the IC'Veral C011111k.ty med repJacc- . • ~ cache control meana 11 respo1111ve to a 
ment alsmithma, e.g. nndom :rq,Jacement. leut re- 30 -lc;h 11gnal from the tint cache memory 111,'Ki a 

tJy _ _. "- ...:.._, ... _ ,_... match lignal from the ICCODd cache memory to cause 
CCll -, elc. UI -- .,.._.....,. ra:endy med Je- two,.........-. to be __ ...I within the cache 
placement algorithm ii comiden,d to be the mo11t effi.. • ~.--:-- ........... ~ mem-
cieot alp:itbm; however, impJementatioa of this algo- ones. During the fin! operabon, the 6?t ~ memory 
rithm in a COlt~DIIIDJla' without incmrins Jarse accesrea and tnmsmit1 the lowest prtonty cache data 
time dela,.a in :maintainina • priority or cache memory 35 word and the .modlted main memory addmts to the 
locations. with respect to wbicb ii the leut n,ceody leCODd cache memory and the second cache memory 
mec1· memory location. Im proven difficult to acmeve. trammits the cache data word mociatcd with the 
In ,-rticul.v, it Im prown difficult to daip a cache matched stoned memory add":" to the tint cache IDCID• 
memory which wu e&plble or expami.on in the field. ory lllld to the processor. During the ICCODd operation, 

. 40 the fint cache memory ltO.n:I the cache data word and 
SUMMAR.Y OF' nm INVENTION addras from the aecond cache memory ill the memory 

Advantageously, in. computer •)'Item in accordance location formerly med by the lowest priority cache data 
with the praent inve:utlon. the cache memory tystcm ii word and memory addreu. Alllo. during the aecond 
divided into teetiom with each teCtion conmniq cache operation, the aecond cache memory will atore the 
data words wJlich :bave a limilar priority. Each aecdoo 45 tnmmitted cache dlia word and aaociated address 
... • priority c:ircuit NIIX1iated with it which maintains from the fint cache memory. 
the relative priority or the cache data won1s. Pmtber- Additionally, each cache memory will be comprised 
more. the time n:quiml to update the cache memory of a matcb and• data memory. The match memory will 
upon receipt or. main memory word which mmt be be med to store the swred main memory addn,sscs 1111d 
inserted into the cache memory ii neduced, since the ,o the data memory will be med to store the cache data 
main memory data word is written into one ICCtioo words. The match memory will perform a comparison 
aimuJtaneous with the tnllllfer of lowest priority cache for each set or main memory addnss signals which the 
data words from IICCtionl having higher priority cache processor sends out and this memory will indicate a 
data words to ICCtiom having lower priority cache data match or• mismatch. When a matcb is found, the match 
words. . !15 memory transmits 1111 addn::ss to the data memory so 

In one embodiment of the invention, the data process- that it can 1CCC11 and tn.nsmit the designated cache data 
ing system COflllists of a proceuor, which requests data word. A content addresuble memory can be used to 
worm by gencming main memory address signals, a implement the match memory. 
main memory and a cacbc memory 1ystem. The cache Furtbc:r, each cache memory has a priority circuit 
memory 1yatem is comprised of a cache control circuit 60 which maintains the priority of each cache data word 
and • first and a second cache memory. The advantage with respect to when it was accessed within the first 
of confipring the cache memory syslem into more than cache memory. The priority maintained by the priority 
one cache memory is that the sy,tem is modular and can circuit is the time usage history of the e1ebe data words. 
be expanded in the field. Also, each e1ehe memory can The lowest priority cache data word is the least re-
be implemented as one large 1Cale integrated circuit. M cently used cache data word. 
Each ache memory storca eaclie data woros which are In • data processing system comprising a processor, 
duplicates or words stored in the main memory. Each main memory 111d cache memory system having two 
cache memory also stores the main memory addresses sections, one illustnitive method accesses and updates 

EX 1019 Page 228

 

I

CACHE MEMORY usmc A Lawnm- pmonmr
REPLACEMENT cmcm

TECHNICAL FIELD

My invention ielateetocompmwummd —
tied-dynoeeystemiisingecachemoryinwtiwich
thembestouselmfionfoutoringminformtion
hthelocetionoftbetoweitprioritywurdintheachememory.

BACKGROUND OF THE WON

Modem computer systems employ prom: which
namedopauhgumuchhigbunmorwu-

lionthmhrgecepoeitymainmofiumwppon,Indalow

wordgmdformhmoryrudoperefiomthemchc
memory iietieckedtodetenniu ifthe‘mt‘ormetiouis
uvailable in the ache manory. lithe hibernation is
themitwfllberadfromtheuohememorgm
itwfllbereedfmnithenuinmnory. cheinl'ormatioo

4,458,310

5

10

15

mo

mimhemdfromthemaiiimyfihenewinfmm 25
tion must replace existing infant” in the cache
mummhemlocefimlknfisfwtoty
nebeuongeloeefimformnewhfomefionis
idendfledbyoueol’thuevaflcoinmonlyuedrephce-
men! Ilgoritlum, (3.3.. random replacement, lent re-
emflyMeIcInmaLthele-Itrwenflymedre-
phcementflgodthmhoonfidemdtobeuxmmdfi-
dent algorithm; basemenhplemeuhtion of this else»
rithmioncoitmmmnawiflmufimmrhglngc
timeddayeinmhitainingepnomy ofcocheuiemnry
WMthmpecttowhichktheleutmfly
uedmemmyloeefiomhuproveu difiicuhtoaclo‘evc.
hip-nicnlu. lthaprovendifficulttodeiisnncache
mywhichwcopefleofexpemionintbefield.

SUMMARY OF THE We}:

Wydneeomputenyminmmmce
wfihdnprmthmfiomtheuchemoryuymi:
dividedintorectiouwifiienchsectioncootniniumhe
deuwordsWhichhvculimilupeiority.Eachswtion
mimmwmnwmm
ummdmmmmm-
more, fliefimerequired to updite thencheuemory
upmrecdptofeminmywmdwhhhmbe
inserted into thee-cite memoryii minced, since the
main armory deb word is written 'mto one section
sinultlnmwiththetnmferoflowutpfimitycuche
datawmdsfromuecfioiuhvinghigherpdofityuche
date wordetosectiom luv-ins lowerprioritycoche dau
words.

Inoneembodimmtoffluinvmfiomthedauprm
inglystemoonsistsofepmocuor. whichrequmdau
words by generating main memory address signals, :
nninmemoryendaachcmanoryeystm'l‘hemche
nwmoryeystemiscompfisedofgcechemnolcimuit
mdafirstandasecondcoehemcmory.’l‘beatlmtege
ofeonfiguringihecwbemmorysyuemmtomorethm
oneaehememoryisfimawsystmismoduhrandm
beapendedktbefiddAkqachmhemmotym
be implemented as one large scale integrated circuit.
Eadtceehemmmtymccehedatawordswhiehm
duplicates of words stored in the min memory. Each
cache memory also stores the main memory eddresm

JD

35

40

45

50

55

60

65

2
whaethemockwdcncindlnwordsuedupflutedin
meinmemary.Whmtbepmoueor requestsudeta
wordby tnnunlttingmlinmcmory eddras dgnnls,the
first Ind wound cache armory compete the stored
manory-ddrwwithflmemmorysiyuhm deter-
mmeiftherequatednmorywordisitoredwithin
eitherthefimarmdachemcmon’.flacuchc
mowfifllmflhmwtheuchemot
cimuiamtchdgntkothuwisgtheclchcmemory
trumitsaminnstcklftheeachecnntmlcircuitre.
ceivsmismnchsigmhfmmbothcacbememoxiesit
mamdmnmiuthemysigmhtocnme
twoopmflomtonkcphce.nuflngfliefimtopenfion,
theminntunoiyrcnpoodstothemainmemorynidreu
signlhtomudmnunitthedefirediminmemory
wordtotheproemorendtoihefintcechememory.
Also. during this first operation. tbefilstclche memory
mihhwatprioritycoehedunwordwithflm
uocintedstoredmlhmemoryoddrmmdmmiu
thuetothemondachcmmoryJDufingthesecond
operafimthefimucbememorymtheemed
mmwordmdmflnmemoryeddmfigmlsin
theprevimflywceuedfimtmhemorylomfions
mdflieteoondachememorymthelompdofity
eechedatnwordandstoredmeinmemotylddressfmm
thefirnceehememoryiiueeondeoehememoryloa-
tioiu.

Furtherfihecacheoontrnlmeonli: ‘vctot
mismtcheignflfmthefintuchcmanoryndl
muchdgndfromthcmdcechemoryiouuse
moopentiwtobepufixmedwithintheachem‘
meingthefintopenmtl-efintaehememory
mmdumtathclowat ' ' cachednn

wmdandfliemdnmdmainmyddrustoflie
secondcechememorynndtheeeccndcechememory
transmit: the cache den wont associated with the
mstchedstoredmmyeddmtothefinteaehemm—
mmdmthepm.nnfinsiheleeond0penfion.
thefintuchememymdiewhednnwordmd
eddreufiomthewmndcochememoqinthememory
locutionformerlymedbythelowenpriofityuchedau
word and memory «liken Also. during the second
operation, the wooed cache memory will store the
limited cache din word and emaciated addrens
fromthefiiflcechcmemory.

Additiomlly,eechclchememorywillhecompfised
anchmdedntomy 'I‘hemttchmcmorywill
bemodtostoretbeetxmdmu’nmemorynddrmsmd
thedmnemorywiflhemedwnorefiieuehedau
mnematehmcmorywillperfomeeompafimn
foreachsetofmliumemorynddmaigmlswhichthe
processoremdaoutmdthiememorywiflindicltea
mntchoramismatch.Whenametchisfound,thematch
mymnmfimmddrmwmeMmemoryw
thatitanaccas-nduumnittbededwteduchedam
word.Acomenuddmblemeinorymbeusedto
implunentthemtchmemory.

Partheneechcechemmoorylnsepfiodtydrmit
which maintl'ms the priority ofcach cachedatl word
with tapes: to when it wuacoasedwithinme first
cechememory.111eprioritymimaiucdbymepxiority
drcuitisthetimeuugehistoryofihemhcdltawords.
The lowest priority cache data word is the least re-
cently used cache data word.

Inldltl processing system comprisingeproccccor,
main memory and cache memory system having two
sections. one illustrative method awesses and updates

EX 1019 Page 228



.., 

3 
4,458,310 

4 
the cache memory system by storing the cache data to be transferred between cache data memories to main-
words into the cache memory system with the first lain the time usage history of the memories. For cu.m-
!leetion containing words which have a higher priority pie, if it is necessary to read a word from main memory 
than the words stored in the second section. When the 102, this main memory word will replace the least re-
processor accesses a data word, each section is checked .5 cently used cache data word of cache data memory 104; 
to detect whether or not the desired word is contained and the replaced cache data word will be transferred to 
in that section. If the desired word is not contained in cache data memory 108. 
any section, then the main memory will be accessed and During a read operation, the address transmitted by 
the desired word transmitted to the processor and the processor 101 is checked by LRU circuits 104, 105, and 
first section. 1be accessed main memory word will be 10 106 to determine if the addressed word is contained 
used to replace the Jowesl priority cache data word of within cache data me111ories 107, 1111, or l(,t, respcc-
the first section and this word wiU be designated u the tively. 
highest priority cache data word and the word which For eumplc, if LRU cin::it 104 determines that the 
had the second lowest priority will be designated u the addressed word is contained within cache data memory 
lowest priority cache data word. The former lowest 15 107, it traosmits the address of this word to cache data 
priority cache data word will be tnnsmitted to the -memory 107 via cable 131. Cache data memory 107 
second section where it will replace the lowest priority responds to this address by accessing and transmitting 
word of the second section and will become the highest the desired word to cache data gating circuit 110. From 
priority word of that section. 1be word which had the cache data gating circuit 110, the desired data word is 
second lowest priority in the aecond aeetion will then be 20 tnmsmitted to processor 101 via data bus llL If LRU 
designated as the lowest priority word. circuit 104 does not match the address being transmitted 

If the requested word is detected u being in the sec- by processor 101 via addreu b111 112, it transmits to 
ond IICCtion, then tbe word from the second ICCtion will oontrol sequencer 103 a .. I" signal via conductor 114 
be tranllmitted to the processor and will be stored in the which indicates a mismatch. 1be other LRU cin:uits 
first section as the highest priority word of the first 25 function in a similar manner. 
section. The lowest priority word of the fuat section In addition to checking if the associated cache data 
will be transferred to the second ICCtion where it will memory bu the desired memory word, the LJlU cir-
become the highest priority word of the second section. cuita maintain the priority of each word in the usoci-
1be lowest priority word c1.11 be the least n:ccntly used ated cache data memory. This priority information is 
word, and the highest priority word can be the most 30 automatically updated by the LRU circuit for each 
recently used word. acceu to the associated cache data memory and defines 

BRJEF DESCRIPTION OF THE DB.A WING :!:tcbwow::::'1 in the cache memory is the last recently 

The invention may be better understood from the 1be system's operation is further illustrated by the 
following detailed dacription when read with refer· 35 duce following cumples. In the first CD1Dplc, it is 
ence to the drawing In which: assumed that the desired word is not present in tt.e 

FlO. 1 is a block diagram repn:scntation of a data cache system 100 and must be read from main memory 
processing system embodying the present invention; 102. If the desired word is not in the cache system llO,. 

FIGS.land 3 lhow bi greater detail LRU cucuit 105 then all the LRU circuits will be transmitting "l" sig-
of FIG. I; 40 nals via the match lines 114, 115 and 116.. In respomc to 

FIG. 4 shows in greater detail the content addrcs&- these signals, control sequencer 103 will access main 
able memory of LRU circuit 104 of FIO. I; and .memory 102 to obtain the desired word. Since the word 

FIG. 5 showa a table giving an cumple of the opera- read from main memory 102 is the most recently used 
tion of the priority circuit of FIG. 3. word, it must be placed in cache data memory 107, the 

4S lent recently med word from cache data memory 107 
DETAILED DESCRIPTION must be written into cache data memory IOI, and the 

In a data processing system a illustnated in FIO. 1, least recen~y ~ word of cache data memory 1111 
data and instruction words are stored in memory loca- must be written 1nto cache data memory 18'. 1be least 
lions of main memory 102 and cache system 100. Pr?- recently ~ word of cache data memory 10, no 
cessor 101 reads these .memory ·locations by transmit· SO longer CUits ID cache memory 100 at the completion of 
ting an address via address hos JU 1.11d control ·signals the previo111 operations. 
via control bus 113. 1be C11Che system 100 is comprised In the ~nd cum.pie of the operation of cache sys. 
of control sequencer 1113, LR.U circuits 104, 105 and tem 100, it 11 1111um~ that the desired word is in cache 
106, cache data memories 107, 108 and 18', and cache data memory 107. Smee the desired word is in cache 
data gating circuit 110. The LRU circuits and ~ 55 ~ memory 107, it is not ncccsaary to access a word in 
data memories arc grouped into pain, and each patr IIWl1 memory 102 or to transfer a memory word from 
represents a cache memory unit. For e,wnpl~ LJtU cache data ~ory 107 ~ c:ache data memory IOI. 
circuit 104 and cache data memory 107 compnse one ~ther, l;RU CU'CUI~ 104 will sunply update the priority 
cache memory unit. mformalion stored internally to circuit 104 to properly 

The cache data words stored in the cache data me~ 60 reflect the usage order of memory words in data mem-
ries are organized into groups with each group cooblm- ory 101. . 
ing cache data words which were last read b! proc~r In the third .example, the desired memory word is 
101 at a similar point in time. Each group JS stored m ~slln?-ed to be m data memory 108. In this case. LRU 
one of the cache data memories. For example, the most arcuit lOS would ~tch the address being transmitted 
recently, used ,group, of-words"is stored in cache data 65 by processor 101 via address bus 112 and cause data 
memory 107, and the least recently used group of words memory. l08 t_o ~ and transmit the desired word to 
is stored in cache data memory 10!>. As processor lOl data gating c!rcu•t.110. Control sequencer 1113 would 
performs read operations, cache data words may have then cause this desired data word to be tnmsmiltcd by 

I; 
I, ,· 

EX 1019 Page 229

 

-—- *. rel-v

4,458,310
3

the cache memory system by storing the cache data
words into the cache memory system with the first
motion containing words which have a higher priority
than the words stored in the second section. When the
processor accesses s data word, each section is checked
to detect whether or not the desired word is contained
in that section. If the desired word is not contained in
any section, then the main memory will be accessed and
the desired word transmitted to the processor and the
first section. The accented main memory word will be
used to replace the lowest priority cache data word of
the first section and this word will be designated as the
highest priority cache data word and the word which
had the second lowest priority will be designated as the
lowest priority cache data word. The former lowest
priority cache data word will be transmitted to the
second section where it will replace the lowest priority
word ot‘thesecond sectionand will hecomethe highest
priority word of that section. The word which had the

IQ

IS

second lowest priority in the would section will then be 20
designated as the lowest priority word.

"the requested word isdetcctedaabeinginthesec-
end section, then the word from the second section will
betransmitted totlteprocessorandwillbestored'mthe
firstsectionnsthchighestprioritywordofthefirst
section. The lowest priority word of the first section
will be trmfen'cd to the second section where it will
become the highest priority word ofthe second section
The lowest priority word can he the least recently used
word, and the highest priority word can be the most
recently used word.

BRIEF DESCRIPTXON OF THE DRAWING

'lhe invention my be better understood from the
following detailed description when read with refer-
crm to the drawing in which:

FIG. 1 is a block diagram mutation of a data
processing system mbodying the present invention;

FIGS. 2nd 3 show in greaterdetail LRU circuit 105
of FIG. 1;

FIG. 4» shows in grater detail the content adds-m-
able memory of LRU circuit lot of FIG. I; and

FIG. Srhowsatableglvinganuampleoftheopem
lion of the priority circuit 0‘ FIG. 3.

DETAILED Dmmon

In a data processing system as illustrated in FIG. 1.
data and instruction words are stored in armory loca-
tionsofrnainmemory [Mandcachesystem 100.Pro-
cm:- 101 read: their. memory locations by truismlt-

) ting an address via address bus 113 and control'signlls
vie control bus 113. The cache system 100 is comprised
of control sequencer 103, [Jul circuits 104, 105 and
106, cache data memories 107, me and 109. and cache
data gating circuit 110. The LRU circuits and cache
data memories are grouped into pairs, and each pair
represents a cache memory unit. For example: LKU
circuit 10% and cache data memory 10'! comprise one
cache memory unit.

The cache dam words stored in the cache data memo
ties are organized into groups with each group contarrr
ing cache data words which were last read by processor
101 at a similar point in time. Each group ts stored in
one of the cache data memories. For exsnlple. the most
recentlyused group of-wordsis stored in cache alas:
memory 107, and thelenst merrily used 51'0“? ol'wo ls
is stored in cache data memory 109. As Proms-m" 1°
performs read operations, cache data words may “WC

25

35

‘5

5‘5

65

4
to be transferred between cache data memories to main-
tain the time usage history of the memories. For exam-
ple, ifit is newssary to read a word from main memory
102. this main memory Word will replace the least re
cently used cache data word ofcache data memory 104;
and the replaced cache data word will be transferred to
cache data memory 108.

During a read operation, the uddress transmitted by
processor l0] is checked by LRU circuits 104, 105, and
106 to determine if the addnmed word is cmttained
within cache data memories 107. 10!, or 109. respec-
tively.

For example, if LRU circil 10% determines that the
addressed word it contained withincache data memory
lll7,ittransudtsthesddressoflhiswordtocochedata

‘memory 101 via cable 131. ache data memory 107
responds to this address by sew-sing and transmitting
the desired word to cache data gating circuit 110. From
cache data gating circuit 110, the desired data word is
transmitted to processor 101 via data bus 111. If LRU
circuit 104does not match the address bdng transmitted
by processor 10] via addnss bus 112, it transmits to
control sequencer 103 a “1" signal via conductor 11!
which indicates a mismatch. The other LRU circuits
function in a similar manner.

Inadditiontocheckingiftheassocietedcschedata
memorylnsthedaired memory wrd,theLRUcir-
cuitsmeintainthepriority ofeaeh wordinthcassoci-
ated cache data memory."l‘his priority information is
automatically updated by the LRU circuit for each
Wtotheassociatedcachedatamemoryand defines
which word in the cache memory is the least recently
used word.

The system's operation is further illustrated by the
three following examples. In the first example. it is
assrnnedthatthedeairedword isnotprcscntinthc
cache system it!) and must be read from main manory
102.1fthedeairedword isnotinthecachcrystemlw,
then all the LRU circuits will be transmitting “l” sig-
nalsviathematchlines 114.115.11.211“. lnrespometo
thesesigialgoontml sequencer 103 will-commie
AmemorylflwobninthcdefiredwordSinoethem
readfrommainmemorylmisfltemostrecetitlymed
word, it must be phced in cache data mmnry 107. the
least recently used word from cache data memory 107
mustbewxi’ttenintocachedetsmunory 108.andthe
least recently used word of cache data memory I“
must be wntten into cache data memory 109. The least
recently used word of cache data memory 109 no
longerexistsincachememory looat thecompletionol'
the previous operations

In the second example of the operation of cache sys—
tem 1w, ilissslumedthltthedsired wordisincache
data memory 107. Since the desired word is in cache
dammemorylfl’l.itianotnecessarytoawcssawordin
main memory 102 or to trmsfer a word from
cache data manory 1m to cache data memory 10!.
Rather, lJtU circuit 104 will simply update the priority
information stored internally to circuit 10‘ to properly
reflect the usage order of memory words in data men»
cry 10'].

In the third example. the desired memory word is
assumed to be in data memory 108. [n this case. LRU
urcuit 105 would match the address being transmitted
by processor 101 via address bus 112 and cause data
memorylm to news and transmit the desired word to
data gating circuit 110. Control sequencer 103 would
then cause this desired data word to be transmitted by

EX 1019 Page 229



l 
' ' ' 
' 

4,458,310 
5 6 

data gating circuit 110 via data bus 111 to processor 101. address from address bus Ill or from an LRU circuit 
~ince this desi~ w~rd is the most recently uscd word, having higher priority, .as doa the circuit shown in 
tt must be wntten into data memory 1117. The 1caat FIG. 1 lbis diatinction will be illustrated more clearly 
~tly used word of ~ta~ 107 m-! be written in the following cump)e. 
mto th~ memory location .which had pn:vioualy held !I To iJlustri.te the operations of the circuits shown in 
the ~ m~ry. word m data memory Ill. FIG. J and PIO. 4, the previously described cumple 3 

LR~ ~mt I~ ~ ~~rated _in FIGS. 2 and 3, and ii used. Example 3 deten'bcd the operations which must 
LR.U cucu!t 106 IS similar m design. LllU circuit 104 is take place when the desired word is in data memory 
iDUIUatcd m PIO. 4. FIG. l sh°'!'9 the circuit which is 1oa..,~::,~~ption of this. c,u.m le will 
~ to check the address~ by proca.,or 101 10 ~'SYifvaii,yi'iiiMJ'&n~--tt""rrbiii"'~··~1nror ,. .. 
via ~~ bus Ill to delenninc whether the desired view of LRU circuit 105, and then describing the corn-
~ 15 m cacfM: ~ ~~ry I~ ~d FIG. 3 gives the sponding actions in LRU circuit IIM. It is prcstmted that 
details of the pnonty CII'Cuit which IS used to keep track the word 1 iu data memory 108 and word 3 in data 

~Olf ~~tp~ uscdlOI ~"J:1 in cacrd~t ~ ~ memory 107 arc the ICllt recently used words. To per-
• w w::n ............... • ........ a WO , 1 ...... trllnllmi1s IS fi ... __ ... ..., t • ... _ 

the CAOO lignal and the clock lignal via control bus orm ....,._ ...... eren opcra~ons. u~ • con~ller ac-
113 to the control aequcncer 103 and . processor 101 q~ 113 generates.• variety or timing agnals, ~e 
transmits the address via address bus 111 C.o trol most mportant of which are n through T4. Dunng 
qwmcer 103 TCllpODds to these signals and ~ea :; TO. the address bits on address bus Ill arc selected 
C lignal and S signal which arc trammitted via conduc- 20 ~dataset~ 212 and uscd to scan:h CAM 211 
tors m and 1l3 to the LR.U circuitl Data aelcctor 202 for a match. AsluminJ that thcac address bits match the 
raponds to the c signal 

08 
conduck)r 122 by ae1ectin contcnlll of wonl J in CAM JOI. • "l" will be tr11J1Smit· 

the addrcll bits being transmitted via addrcu bus t:11 ted OD conductor 213; conductors 212, 214, and 215 will 
and trammitl thele addrea bim via conductor& 2u; be conducting. "'Os". This ~pcra~ ii doac under con
through 223 to the data-m inputs of coateat addn:sable 25 trol of the S signal trlnlmittcd vt1. conductor 123 and 
memory (CAM) llL The CAM comams four won:ls,. the C signal~ via conductor 122 to data llC)cc-
each word having eight bib. The CAM RSpOllda to the tor 202. The information on conductors m through 
S input trammittcd via conductor m, md the addreu 215 .~ stored in l~hcs 21M at the end of the s signal. In 
bits being l'l'JOl!ived on the data-in inputs to compare · addition. the S signal abo clocb the match output ter
thcse addrea bits with the contents of each of the four 30 miml of CAM JOI into flip-flop 206. The outp~t of 

(_

words stored intcmally. Jr one of the four words flip-ftop 206 is the M2 aignal which ia tnmsmittcd to 
matches the addrea bits. then a .. 1 .. will be trammittcd control aeqacocer 113 via amdnctor 115. 
via the mociated coductor 212, 213, 214 or JI!. If no During TI. data IIClector 203 responds to the M2 
match is found, then a "1" is transmitted via conductor lipal by l!elccting the output of latcba 204 u an ad-
23i md ltorcd in fUp-flop 206 at Tl time. If a match ii 3S dress which ii tnnsmitted to CAM JOI via conductors 
found, the atate of the conducton 211 through 215 will 208 through 211, md data IClcctor 205 responds to the 
be stored in latcbea 21M by the falling edge of the S Ml lipa1 by tclccting the output of latches 21M u an 
signal which ii tnmsmitted via conductor 113. Data addrcu which is trammitted to data memory 108 via 
ldcctor. 205 will sclcct the coote.Dts of latchea 21M cable 132. In rapcmsc to the addrca on conductors 208 
which ue being trammitted via conducton 224 through 40 through 211, CAM 211 mids the contents of the second 
1ZI to be trammitted via conductorll 221 tbrougb 231 word and trammiu thc5c contents to latchcl 'lATI in 
over cable 132 to cache data memory 1111.. CaclJc data which these contents arc stored at the end of Tt. Data 
memory.IOI will rapomt to the addras being transmit• memory IOI nwls the coatcnts of its ICCOlld word in 
ted via .cable Ill by ICttlling the dclired word and rcspome to the addm!a transmitted via cable 131 Thcse 
trammitting this word to data pang c:ircuit 118, u 4S contents are ltorcd iatcmal to data memory IOI and 
previously described. Aaumhls that the desired ~ ti:"~ to data gating circuit 110. During Tl, LRU 
- llored in data meaH>l')' IOI, this word DOW IS the ~ IOI ~ .. ~. ~ or the lcut recently 
mostrccentlyUlledwordmdmustbetiwferredtodata med word and tnmmits this via-c:able-117 to LR.U 
memory 107 and the least recently med word of data circuit lO!I, and data memory 1117 acceuc5 the least 
memory 107-must-bc-tramfcm=cLto.-dm IDClllPl'Y IOI 50 n:cmtly Died word and transmits this via cable 140 to 
and ~- of this word written into CAM JOI. data memory 108, u will be described later. The ad-

PIG. 4 shows the circuit which is Uled-to-check the dress from LR.U circuit 104 must be writt.cn into CAM 
address tnmsmitted by procc:saor ti via addrca bus Ill 211 and the comsponding data word written into data 
to determine whether the desired word is in cache data memory Ill. During Tl. data selector 283 will again 
memory 107, and FIG. 3 gives the dcudls of the priority 55 select the output of latches 214 which contain the ad-
circuit which is \Med to keep track of the least ~dy dress for word l to be used as an address for CAM 281. 
uscd word in cache data memory IOI. The. drcUit of The least recently used addl'all word from LRU circuit 
FIG. 4 is idmtical in opcratiou to FIG. l with ~ ex- 104 will be stored in word l. During Tl, control sc-
ception that FIG. 4 docs not have• da~ eclcctor ~ quenccr I03 will transmit the W sipa] via conductor 
to data selector 202 of FIG. Z. and illcludcs pnonty c,o ut and the RPL2 signal via conductor 128 which 
circuit 4M. Priority circuit 4M .is identical in design to cau~ CAM 20.1 to write the information present at the 
the priority circuit described with _rercrcncc !0 FIG. 3• data mput terminals into word l. At the same time, the 
The reason why no data aclcctor 15 ~ IS that ~e !east recently used word or data memory 1117 is written 
circuit of FIG. 4 always uses the ~ being trmsnut- mto ~ 2 of data memory IOI with the address bcio 
tcd via address bus Ill. The cin:Ult ?f f:l~· ' doi::i not 6S supplied by the output of latches 204 via data selecto! 

need a .. _._ selector because this circwt IS IISSO(:iatcd 205 and cable 132. As will be d--ibed lat th . ...... · each ry ·1 · · -.. er, e pnor-
with the most recently used wordl ID e memo I Y ctrcutt shown in FIG. 3 must be updated durin T3 
100, hence, docs not have to decide whc:thcr to use the to reflect the Fact that word J is now the most rec:ntly 

EX 1019 Page 230

  

4,458,310
5

dot-shtingeircoit lleiadnnbuallltoproce-sor 101.
Since this desired wordisthemost reeentlymedword,
itmustbewrittenintodatamemoryllfi.1heleut
recentlymcdwordofdatnmemorylflmuxtbewfiuen
into the memoryloufionwhicbh-dpreviomly held
theduimdmemorywordindatnmanorylm.

LRU circuit 105 ismuxttxted in FIGS. 232x13,md
LRUdmitIMhsimmrhddyLRUcimhiuis
illumtedinFIG.4.FIG.hhows thecircnitwhichi:
usedtocbeckflaeeddreuumiaedbypmcworml
vhmdreubmlumdetanfimmtherthedesired
wmdhinwhedmnemoryIMdeGJgimthe
detailsol‘theptioxityeircuitwhichismedtokccpmck
ofthelastrwmfiyusedwordinmcbednumunory
me. When processor 10! tends I word. itfinttnmib
theCAGOsignflnndtheclockfignflviaoontmlhus
113 to the control sequencer 103 dad’proceuor 101
hummimthcxddmvinnddmubnslumnuolw
quenoerlmrenpoudswthaeliguhmdgMuthc

)0

l5

CnigndmdSsigndwhichuemnnnimdv'nomdw m
mmmdmmtheLRUcimlfiletA-dmm

mpondsmtthdgulonconductormwadecfins
thenddreubitabeingmmimdv'nmmln
ondtmnmnitnthaenddmbimvhcondnctonnfi
thmughmto thedlhvininpm: ofcooteutaddrmable 25
memory(CAM)NLTbeCAM comml‘wwolfls.
achwmdhvingdghthinmcmmmthc
Sinputmmmittcdviaconductmmandtheoddm
bin being received on them-in inputsto compare

6
adorns fmun addxees bus 112 or from In LRU circuit
tuning higher pxiority, as does the circuit shown in
FIG. 1 This distinction will be illustrated more clearly
in the following enmplc.

To illultrite the operstiom of the circuit: shown in
FIG. 2 and FIG. 4» the previously dacn’bed example 3
in used. Example 3 desm’bed the operations which must
hkeplaeewhenthedeniredwotdisindaumemory
m s “WWW “Imflmwewm
fi%mmmmhmMimi?
mdedrefith,mmmdmflng themat-
sponding unions in LRU circuit 104. [t is presumed that
thewordlindmmcmorylfllmwordifindxm
memory 107mm: lent mflymfldwords. To per-
form mew dill'emt opal-axiom, the controller :5
queues: 103 generates : vulety of timing nigh-ls, the
most important of which me To through T4. During
mtheaddrwbitsonaddmsbus [unselected
thyou‘ghdlhaelecmrmmduedtosmchCAM an
roam. Assuming flat thetenddreas bit: much the
oonteotsofwdeinCAMMa“l” willbetnnsmit—
todonoondudorfla; conductorsflz, 214nm! 215MB
be conducting “as”. This openfioo is done under con-
u'oloftheS-iguul mminedvincmxdnctorlfimd
theCsisnIJtrmmittedvinoomluctor mtodan selec-
mmmhforuuionmconductmsmthmugh
ZISiIstondinluche-metthemdoffileSdgml. In

.odditimtthtlgmlnlsoclochthemtchputput ter-
thnenddratlitswiflnhemtenuofmhofthefour 30
wmdsntmedintemflly.lfoneofmefourm
mmMflmdMfimM-“Pwmbcumufined
fintbenuodutedoodnctmlll:l3.21¢or2l5.um
mnch‘ufotmd.filma“l”istmnmittedviacmducmt
mmmmmpnopmunmnamhi
rommmdmmmmzumwghmwn
bestowedinhtchmfllbythcfflfiuzedgeofthcs
tigmlwhichistunsmmedviacondnctorm.nou
:elnetor-Mwfllsdeetmeooumolmchesm

35

whichuebdnguumiflndvuoondmmflnough 40
mmbemnmfltedvheondmnmmghm
mmthZbcwhedmmluwedeu

tothenddreubeingtrmt-
.tedvie.able132lrywoudogthededredwdmd

munitfinsthilwordmdamsafingdrcuitllknfl

mswm’t'lindtumemorylllnhilwtxdnowuthc
mmflyuedwordmdmmbemfaredmm
memorylmmdtheleost recentlymedwordofm
myIWmm—Wmdm «mommy 1m 50
1nd thenédreu ol'miswmd written into CAM’ZOI.

FIG. “haw: manniwhichhmdmcheck the
uddrmmnmfuodbypmcmlflvhdfirenbulu
todetetmincwbetherthedesiredwotdismmchgdm
memorylmnndflfijgivetthedeuflsohhemmfity
circuitwhichisuedtokeepmkoftheleutfecenfly
uedwordineochedaumylfl.1‘heoamnof
FIG.nsWinopmfioumnG.2v/immex.
ceptioothatHGAdoeunothuend-nndecwrdmflu

$5

minflofcmmlinwflip-flopmfleoutpmof
flipflopflfihthemdmlwhichhmnmimdto
emolwqmerlmviacondwtor 115.

DnfingTLdnuselecta-leampondstothem
Wbyaelecfingtheontputofhtcheomgmaé
dimwhich'utnnsmifledtoCAMZOlvilmndncton
nghZIIJnddlhidmflSmpondsmtbe
mdmflbyadcofingtheoutputofhtcmmum
addmwhichhmmifledtodanmemory mam
wemmmmmmmmmmmm
fltroughzlLCAMNIreodsthecontentsoitheseoond
word and mania these content: to Malta 207 in
whlchthseoontmturecomdntthemdof'l‘l.m
mlmmdstheecmenuofiumdwordin
mmmmmmmmmubkuzm

oomentn-remediutemalmdaumemory Inland
WwdflapfingcireuitlmDminngJlu
W mwmmdmm m!!!
ugedwotdmdtrmniutlfixvinciblell‘ltomu
urwitlfl,mddaflmanory1flaceemthehst
mflymedwmdmdmmmmmmm “Bio
fiammylfiuwfllbedmibedhtcr.1‘held-
dzeufianRUcircuitlotmwbem-ittmimoCAM
101 and thecorresponding den word written into data
WlflDmingndanaeloctormwillagain
seledtheoutputot‘htehesfiflwlfichconnintheud-
diessforwordltobeuaednsmnddmss forCAMlfill
Theleust recentlyusedoddm word from LRU circuit
1“ wfllbe stored inward 2.1)xm‘ng T2, controls:-
W "3 will msmit theWsigml vixoonductor

to am selector m of no. 2, md includes PM” 6° 12" ""1 the RP” sign»: vi- conductor 120 which
circuit“. Pfiofitydrcuitm‘isidmtialbdggt;
the priority circuit 6 With rd‘ereooc to th .
The reason why no dot: selector 3 needefi Is that ’te
circuit ofFIG. 5 alwoys use: the nddrcss bans mu” "

. . . . . ed
need a. data selector bee-use tins cutout! Ia assocm
with the most recently used words a; cachetomucghr:
100, hence, does not have to dead: w ether

‘ nit of FIG. 4 does not 65

«use: CAM 20.1 to write the infonmlion present It the
am Input lemma}: into word 1. At the same time. the
last manly used word ofdam memory 107 is written
mm Ivord 2 ofdm memory 1m with the Addras beingsupp led by the output of latches 204 vi: dam selector
gas end gable 131.. As will be dewn‘bed later, the prior-
[tyrilfll’cml shown an FIG. 3 must be updated during T3
to not the fact that word 1 is now the most recently

EX 1019 Page 230

«u.



7 4,458,310 
8 

~CS:ord in LRU circuit 105. During T4, flip-flop .20fi into a lim&r set of latches in data memory 108. The 

II ~pie 3 is now dcsc 'bed .th llftllle type of operation is being performed in LJlU 
circuit 104 with reference n to FI~ 

4
~ to LRU circuita 104 and 1116 and data memory 107 and data 

:iearch is performed r CAM 401 b · u~ To, • memory 18'. 
match is found the 

0-~·-h ; oweyer, ~ no 5 During T2, the addresses being tnmunitted via cable 
• - output tenninal u a ·'O" · • t"" · · · CAM 201 at which is stored in flip-Do '""" and M . . 117 from LRU ClreWt ... is wntten mto 

• P """" no 1 111gnal IS , ·the address of the least recently med wonfas defined by 
trans!Dltted to control sequencer lOl. ··- · ......... • . ·· -·· :Z:Uthro ~i. 235 

During Tl since there is no Ml Ii-·' CAM . the addreu trmsmitted Vlll conducton u..,. 
addressed by' the ad_. __ fro th ~~· . ~l is from the priority circuit of FIG. 3. Similarly, the data 

... .,,... m e pnorny c1rcwt 444 to · had ----' f da 107 • 
with an address which is tr1m1mitted to the ADDRESS w~ . been - rom ta memory u 
IN terminals of CAM 401 via conducton 432 tbro wntten mto data memory lOll. 
43S. data selector 40l and conductors 408 tbrou :f: With r~ to 1;-kU ~cuit 104, ~ ~dress on ad-
'lbis.addreu bit is the.address,of-theicut tf used dress bus Ill ts wnttcn mto the locauon m CAM 401 
word of CAM 401 and data memory 107 ': r . which ES addreued by information transmitted via con
TI, data memory 107 ES addressed by the ~utputs ~ 15 

dlK;'Ors 432 through 435 from priority circuit 444 which 
priority circuit ll4t via data selector·405 and ca~ 131 dc:signatea the least n:cently used word address. The 
At the end of Tl. the output data of CAM 401 . · data which is present on data bus.111 is written into the 
clocked into latches 407. The contents ofJatches 407 _:! least rcc.ently used word of data memory 107 at the 
transmitted via cable 117 to LRU circuit 105. 20 a;ddres of the l~ recentl_r ~ word. Similar opera-

During Tl control sequencer 103 transmits the PRLt Uons take place m LRU clrCUlt 1116 and data memory 
and W signals to LRU circuit JIM and data memory J07 109. During T3, the priority circuits of LRU circuits 
via conductors 11' and m, respectively. In response to 104, 105, _and 106 must be updated to reflect the fact that 
these signals, the contents of address bus tll are written the previously least rca:ndy Uled words are now the 
into the location of the least recently med word • 25 most recently med words. 
~termined by the bits on conducton 432 through 435 To ~lustrate the opera~ of the priority ~t 
m CAM 401. At the ume time. the word present on shown m FIG. 3, reference ts made to example 3 which 
data bus 111 is written into data memory 107 at the described the operations when the desired word is con-
address transmitted via cable 131. · tained in data memory 108. The operation of the prior-

During T3, !ftc ~rity circuit 444 must be updated. 30 it_Y ~t of FIO. 3 is similar in_ o~~ !o priority 
Note, that dunng this example. it was not necessary to Cll.'cwt 444 of FIG. 4 and the pnonty CU'CUlt of LRU 
change any information connected with LRU circuit circuit 106. In the previous cumple. the least recently 
1116 or data memory 10,. Uled word was word 1 in data memory 18'1 and the 

Another previous example to be considered is cum- corresponding addrc:u in CAM location 1 of LRU cir-
pie I where the desired word is not contained within JS cuit 105. During the match operation which took place 
data memories 107 through 10, and must be read from during time TO, word % of CAM 201 was found to con-
main memory 102.. For this example, none of the LRU tain the address which pniceaor 101 was attempting to 
circuits wiU find • match during tlmc TO, and at the end read. During time T3, the priority circuit shown in 
of time TO, control sequencer JOl will access main FIG. 5 must be npdated to reffect the fact that word 2 
memory 102 to obtain the desired word. Control se- 40 is now the most recently used word. However, word 1 
quc:ncer 103 acceucs main memory 102 by transmitting ltill remains the least recently l1Sed word. Flip-flops m 
the main memory rad signal via conductor 125. When through 327 are used to maintain the priority of the 
main memory JD2 bas accessed the desired word, it words contained in CAM 201 and data memory tOI 
responds by transmitting the main memory ready signal with respect to the usage order. NOR gatc1321 through 
via conductor 12fi and placing the desired memory 45 331 decode the information coni.ined in Dip-flops 322 
word on data bm Ill. Control sequencer JOl is respon· through 327 IO • to indicate which word is the least 
sive to the main memory ready signal to generate the recently Uled word. For eumple, if NOR gate 328 is 
cache data ready lignal which informs processor 101 transmitting• "I" via conductor 232, this indicatea that 
that tbe data is available on data bus Ill and to C1CCllte word O is the leut recently used word. OR gacea 3o.9 
the following steps to update the LRU circuits and the ,o through 315 and AND gates 31' through 3Zl are used 
data memories. to determine which Dip-flops 322 through m should be 

After receipt of the main ~emory ~ signal, the ~~ed during an update operation on the priority 
control sequencer 103 transmits the Tl mgnaJ. The re- cm:rut. Table l defines the significance of one of these 
s~ of ~e transmission of the TI _signal ai:e first de- Dip-flaps being aet. For ewnple, if ffip-flop 322 is set, 
scnbed with ref~Da: to FIG: 2, smce ~ ma":h was ss then ffip-Oop 322 will transmit the MOJ signal as a .. 1 .. 
found, the M2 signal 1s not being transmitted Via con- to NOR gate 321 via conductor 301. The significance of 
ductor US. data selecto£ 203_ ~ the ~dress_ of the the Rip-flop 322 being set is that word O has been used 
least recently used word which ii. tranurutted vta con- lllOre n::cently than word t 
ductors 232 through 235 from the priority circuit of · 
FIG. 3 to perform a read on CAM 201.,.~;~r:ead .<,o TABLE I 
out or CAM 20ris 'the address of the least recently med 
data word which is stOffld in data memory 108. At the 
same time, a read is performed on data memory 108 
based on the address being transmitted via cable 132, 
which, again, is the address of the least recently used 65 
word. At the end of Tl, the address of the least recently 
used word is clocked into latches 207 and the data being 
accessed from data memory 108 is similarly clocked 

322 
323 
324 
325 
326 

Sipal 
Traosnuucd 
by Flip-flop 

MOI 
MOl 
M03 
Ml2 
Ml3 

Word 
UICd mon: 
rccattly 

0 
0 
0 
I 
I 

Word 

I 
2 
3 
2 
l 

EX 1019 Page 231



9 
4,458,310 

10 
TABLE I-continued to act ffip-Oopa 327 and react Oip-Oopa 323 and 325. Thia 

ia ahown on line 502 of FIG. 5. Note, that the least 
Sipal Wcnl Dmaa recently UICd word ia still word I in line 502. If, in the 

T~ aat - next search opention, the desired word is word 3, the 
by Flip-llop ncmt1y dim wcn1 5 Dip-flops m through 32'7 will be updated during time 

-~327~-----Mll------_.;-2.._.:_.....;;=._...:.:.;
3
=:.- T3 to reflect the states shown in line 503. If, on the next 

ICU'Ch operation, word I is found to contain the desired 

The functions performed by NOR. gates 32I through information, then the flip-flops 3~ ~ugh 327 will be 
331 are defined by Table 2 updated to reflect the state shown m line 504. Note, that 

• 10 the Jeut recently used word ia now word O which bu 
TABLE 2 not been IIOCCS9Cd in the lut three operations during 

so • MDI • Merz • Mm which words 2, 3 and I were both accessed. 
SI • MOI • Mll • MU It ia to be understood that the above-described em-
S2 • Mm 0 Mll 0 M23 
53 • Mll3 • 1113 • 1123 bodimcnt is merely illllltrative or the principles of the 

______ .;;;.....;;~....:;;;;;....:;::;;;._ _____ 15 invention and that other arrangements may be devised 

B 
.:.. :1 .. 

1 
... ~-,.._. • _ _. by those lkilled in the art without departing from the y amven ..... n, II a IS ....-.UllCU Via o.uuuuctor • • __ .. r .... _ . . 

l3l. this ia defined to mean that the SO lipa1 ia being 1p111t ~ ~ 0 ~ mveutiOn. 
transmitted. If fJip-Oop m ia let, then the value in What • claimed ~: . . 
Table2 for MOI iaa ..... , ud the valueforMOI iaa "O"; 20 1• ~ data pl"OCCIIUI~ system compnsmtin" • g: _., 
ud if flip-flop m ii ract, then the value for MOI ia a • ... ~ means ,or genen g mam memory ..... 
"O" and the value for M01 ia a ...... For cumple. if ~ aignala; • . 
Oip-Oopl 3l2, 323 ud 324 are raet. then the so signal is a ~ memof>'. havm~ a plurality or memory loca-
transmitted via conductor .232. tiODI for storing mun memory words; 

The operations of OR. gates 30t through 315 and 25 a cache control means; 
AND gates 316 throqh 3ll at update time is dd"med by fint ~ leCODd cache ~ ~ havin_g a plu-
Table 3. nlity of memory locations for stonng mun mem

ory addresael and corresponding cache data words 
in a priority order, and each reapomive to main 
memory addreas signals which mismatch all of the 
main memory addresaes ltored therein to generate 
and transmit a mismatch lignal to uid cache con
trol means; 

TABLE3 

)0 -- --221 322, m, 324 
229 . 32S, 32' 322 
no n1 323, m 

___ n_1 _________ .;;ll4.;.;;..;3;.;;.26.=327;;...._ 
35 

uid cache amtrol 111CU11 responsive to coocurrent 
generation or uid mismatch signals by said first and 
aec:ond cache memories to generate and transmit a 

Update time occurs at time n when the RPL2 signal fint control signal to uid main memory and said 
ii being transmitted via conductor 120 &om control fint and aecoad cache memoriea; 
aequencer 103. n and 1lPL2 and ANDed together by uid main memot"Y responsive to uid firat control 
AND gate• which enables the OR. pta • through 40 aigna1 and uid mismatched main memory address 
315 and AND gata 316 through 3lL For eumple. if a aignala to accea and transmit a main memory word 
..... is being trammitted via conductor .231 during the to uid first cache memory; 
update time. then Dip-Dopa 32f. a and m will be uid first cache memory reapomive to uid first con-
relet. A ... N being trammitted via condaclor .231 indi- troJ aignal to transmit the lowest priority cache 
cates that word 3 is now the molt m:ently llled word, 45 - data word and its corresponding ltored main mem· 
hence, by Table 1, flip-flops 324, 3l6 ud m cannot be ory addrea to aid aecoad cache memory, and to 
act becauae they indicate that word I, word 1 and word llorc uid transmitted main memory word and uid 
2, respectively, have been more recently aa:eaed than main memory addresa signals; and 
word 3. uid ICCODd cache memory responsive to uid fint 

To more clearly illustrate the operauons of the circuit 50 control lignal to store tbe transmitted lowest prior-
shown on FIG. 3, the previous example or word 2 being ity cacbc data word and its corresponding main 
matched during the operation at time TO will now be memory address. 
described with respect to FIG. 5. Line 501 shows the 2. A data processing system in accordance with claim 
initial state or the nip-flopa m through 3'¥1. When 1 wherein uid second cache memory is further respon-
word J is determined to contain the desired word, the 55 sive to main memory addrcu signals which match a 
contents of word 2 are IICCCSled in both CAM 201 and main memory address stored tberdn to generate and 
data memory 1111 and transmitted and stored within transmit a match signal to said cache control means; 
LRU circuit 104 and data memOJY 107. The least re-- said cache control means is further responsive to a 
ceody used words from LRU circuit 104 and data mem· mismatch signal from uid first cache memory and 
ory 107 are trammitted to UlU circuit 105 and data 60 said match signal from uid second cache memory 
memory IOI and ~ ~ in ~ 2 of each of~ to. generate and transmit a second control signal to 
memories. After this informatiOD has been stored in •d first and second cache memories; 
word 2, then word l is ~ most recently used word and said fmt cache memory responsive to said second 
flip-Oops 322 through 3'¥1 must be updated accordingly· control signal to transmit the lowest priority cache 
Since word l was the selected word, data selector 205 65 data word and its corresponding stored main mem-
of FIG. l is transmitting a .. l" via conductor 230. OR ory address to said second cache memory; and 
gates 309 through 315 and AND gates 316 through 321 said second cache memory responsive to said second 
respond to the "1" being annsmitted via conductor 230 control signal to store said lowest priority cache 

\ 

EX 1019 Page 232

4,458,310
9

TABLE l-oontinued
Defines
 
 

Shoal Wad
Him Tran-aired In! In:

Set by Flip-flop randy tin Wad
327 M23 2 3
 
 

The functions performed by NOR gates 32. through
331 are defined by Table 2.

TABLE 2
so—MDI-un-tsn
sr-uonmz-msz-um-mz-rm
ss-ma-mJ-un

 

 

Byconvenfiomifl“l"islnnamihedvinoonductor

mthisisdefinedtomennthstthesolignalisbdng

Tchle2foerl he‘l”.nndthevnlnefoerllisn"O"; 10
endifflip-flopmhmthenthevduefmumko
“0"IndthevslueforM01isl“l".Forexample.if
nip-mmmmaummmmesonpns
mmittedvilcondnctornz.

TlreopentionsofORgntelmthronghSISandzs
ANme 316thmngh321ntupdatetimeisdcfmedhy
Table 3.
 

 

TABLES
“Finn-rifled PW PW
vienndm M which
Itlpdnetille nut new

as 321321.324
129' 315.32: 321
no 121 313.325
23] 124,326,321 

Updatefimeoccursstdmeflwhenthellmcgnl
isbdngtnnmittedviscondnctormfromcontrol
sequencerlm.flnndRP[1endANDedbgetherby
ANDytemwhichenablestbeORgataMthrough 40
SumdANDgataMSthronghaleaex-mplqifa
“l'isbeingtnnsminedvineondnctorflldnringthe
npdntefimqtharflip-flopomn‘nndn'Iwillbe
reseLA“l"beinguanunittedvileondncu)r231indi-

10

tosetflip-flops 327|ndreset flip-flops 323 and 325.1‘his
is shown on line 502 of FIG. 5. Note, that the least
recenflyusedwordissfiflwordlinlinchJfiinthe
nextmrchopentimthedesiredwordiswordJ,the
flip-flopsmmroughm willbettpdnted during time
flwnflectthemtesshowninlinemJfionthenext
Iesrchoperation,wordlisfoundtocontainthedesired
information. thentheflip—tlops 322 through 321 willbe
npdntedtoreflect tbestateshownin line”. Note, that
theleutrecentlyusedwordisnowwordOWhichh-s
notbeensceeuedinthelsstthreeopentionsduring
which wordszsmdlwere both accessed.

It is to be understood that the shove-described em-
bodimtmt is merely illurtntive of the principles of the
invention md tint other nrrnngements my be devised
bythorelkilledinthesrtwithontdeparting fmmthe
spiritnndscopeoftheinvention.

thtisclsimedis:
LAdItaprocessingryrtemcomprising:
nprooeuormennsforgenentingmsinmemoryad-

drensignals;
I main manory having a plunlity of memory loco-

ticnsforstoringmainmemorywords;
leechecontrolmenns;
firstlndsecondcechememorieseeehhsvingapln-

ralityofmemoryloestions for storingmninmern-
orynddrusaandcorrupondingcnchedatnwords
inepriorityorder,andeechreeponsivetomnin
memory-ddresssigmlswhichmimstchaflofthe
mainmemory-ddreuesetoredthereintogenerste
Indtrmsmitemisnutehsignaltosaidcochecon-
trolmenns;

snid cache control means responsive to concurrent
generationofnidminmntchsiynlsbyuidfintlnd
secondceche mernoritsto genente Ind trnmmits
firstcontrolsignsltosaidmsinmemorysndnid
firstandseoondcachememories;

aid main memon responsive to said first control

signnktoecceusndtransmitnmainmemoryword
tonidfirstcschememory;

uidfintcnchememm'yreeponsivetosaidfirsteon-
lml signal to transmit the lowest priority cache

celesthtwordJisnowthemoltrecentlyuedword, 45 \ dmwdmdiumnspondinsnoredminmcm-
henceerTnhle l.flip-flope§24,326nnd327cnnnotbe
setbeumetheymdicetethotwdtwordllndword
Lrupectivdy,havebeenmorereoentlyeceasedthnnword3.

Tomorecle-rly fllnsmtetheopenfionsoftheeircmt so
shownonFlG.3,thepreviousmmpleofword2being
matched duringtheopcntion ettime'fllwillnowbe
describedwithrespecttoHG.5.Linemshowsthe
initial mteoftheflip—flopsmthronghm.When

orylddre-tonid seeondcnehememory,sndto
noresaidtransmittedmainmemorywordenduid
mainmemory addrussigmlsnnd

said second cache memory responsive to said first
control signal to storethetrsnsmittedlowest prior-
ity cache data word and its corresponding main

2. A data processing systeminaccordanee with claim
lwhereinnidseeondenchememoryisfmtherrespon-

wordZBdetaminedwconuinthededredmmess sivetonninmemorysddreu :ignslswhichmtch.
contentsofwordlsrescoessedinbothCAMZOtand
data memory Ill and transmitwd Ind stored wrthm
LRUcircuith-nddatnmemorylm.11|eleatre-
cently used words from LRU circuit [Mandible mem-
orylM-mtnnsmiuedtomUcirenitIDSmddetsw
memoryIMsndar-estoredinwordlofeachortlnse
memories. Afier th'n information has been stored in
word2.thenword2isthemostreoentlyusedwor_dand
flip-flops 322 through 327 must be updated accordingly.
Since word 2 was the selected word. date selector 205 65
of FIG. 2 is trsnsntitting s “l" vis conductor 230. OR
gltes 309 through 315 Ind AND_ gatt=_316 through 321
"spend to the “I" being transmitted m conductor 230

main memory address stored therein to genente Ind
tnnsrnit I mntch signs! to said ceche control means;

snideochecontrolmenmisfnrtherresponsiveton
mismatch signs] fmmssidfirstcochememoryand
slid match signal from said second cache memory
to genente Ind transmit I second control signal to
slid first and second cache memories;

snid first cache memory responsive to said second
control signal to transmit the lowst priority cache
date word and its eonsponding stored rnnin mem-
ory address to mid second cache memory; and

sud second cache memory responsive to said wand
control signal to store said lowest priority caChe

EX 1019 Page 232



r 

\ 

11 
4,458,310 

12 
data word and said corresponding stored main memory further comprises a storage means and • logic 
memory address transmitted in response to uid means; and 
second control signal from said fust cache memory a.id logic means responsive to contents of a.id stor-
in the cache memory locations usociated with the age means and a.id cache memory addl'CI& to gen-
stored main memory addR'SS which matched said 5 crate and store information defining the acces.,ed 
main memory addreu signals. order of said cache data words of said fmt cache 

3. A data processing system in accordance with claim memory in said storage means. 
:Z wherein said second cache memory is further rcspon- 11. ln a data processing system having a proeasor for 
sive to said scc:ond control signal to ttansmit said generating main memory addra.1 aignals. a main mcm-
matched main memory address and its corresponding JO ory for storing main memory words, first md second 
cache data word to said ftnt cache memory; and cache memories for storing ma.in memory addresses and 

said fint cache memory further comprisel means corresponding cache data words ud for matching a 
responsive to said second control signal to store stored main memory addreu word with the main mem-
said matched stored main memory addl'CI& and a.id ory address signals. and a cache control for controlling 
corresponding cache data word in the cache mem- 15 uid first and sc:cond cache memories, a met.hod of ac-
ory locations of said transmitted corresponding cessing said cache memories and said main memory; 
main memory addrca and a.id tnnsmitted lowest comprising the steps of: 
priority cache data word or said first cache mcm- storing a set of said cache data words and corre-
ory, respectively. sponding ma.in memory address words having a 

4. A data processing system in IICCOrdancc with claim 20 higher priority than mother set of uid cache data 
1 wbcrcin uid furt cache memory ii f'urthcr responsive words and corresponding main memory addrca 
to said fmt control signal to store said ma.in memory words in a.id first cache memory; 
word and said mismatched ma.in memory addrea sig- storing uid other set of Aid cache data words and 
nals in the cache memory locations of a.id ttansmitted 

25 
correspondiag main memory address words in said 

lowest priority cache data word and a.id transmitted accond cache memory; 
com:sponding stored main memory address in Aid ftrst dctccting main memory address ai,8111111 which mis-
cache memory. match aJ1 or main memory addrelS words stored in 

5. A data processing system in acc.:ordance with claim uid fint and aecond cache mcmorica; 
1 wherein uid second cache memory is further rcspon- 30 reading from uid ma.in memory, the main memory 
aive to uid ftrst control signal to store said tnmmitted word llddrcsted by the mismatched main memory 
lowest priority cache data word and said tnmsmitted address signals; 
corresponding stored main memory address from said transferring uid main memory word to uid proccs-
ftrst cache memory in the cache memo.ry locations of I01' and uid lint cache memory; 
the lowest priority cache data word and corresponding 35 storing uid main memory word and said mismatched 
stored main memory addrcls of Aid scc:ond cache mem- main memory addn:s& signals in uid first cache 
Ory, n:spectivcly. memory; 

6. A data procasing system in accordance with claim trammitting the lowest priority cache data word of 
2 wherein uid second cache memory f'urthcr compriacs uid first cache memory to said ICCODd. cache mcm-
• match memory having a plurality of memory loca- 40 ory; 
tions for storing said stored main addre:aes and a data mplacing said lowest priority cache data word of uid 
memory having a plmality of memory locations for fim cache memory with aid main memory data 
itoring said cache data words; word; 

uid match memory is responsive to uid matched identifying within 'said ftnt cache memory uicl main 
main memory address lignals to tnmsmit said 45 memory data word • the bighat priority cache 
match lignal and to gcncnte and traolmit a cache data word and another cache data word u the 
memory addrca of the memory location whole lowest priority cachc data word; and 
contentl matched a.id matched ma.in memory ad- lltOring said tnwsmitted 'ciacbe data word from a.id 
dress signals to said data memory, and RSp(llllive fim cache memory in a.id ICCOlld cache memory. 
to said mismatched main memory addrca ligna]s to ,o 12. The invention of claim 11 wherein said tnnamit-
gcncrate and transmit a.id mismatch signal; and ting atep comprucs the stepl of: 

said data memory is rcsponaive to said cache memory replacing the lowest priority cache data word of said 
address to access and transmit said corresponding ICCODd cache memory with said tl'IDlmitted cache 
cache data word. data word; and 

7. A data processing system in accordance with claim s, identifying within said second cache memory a.id 
6 wherein said match memory is comprised of• content transmitted cache data word aa the highest priority 
a.ddrcssablc memory. and mother cache data word as the lowest priority 

I. A data processing system in accordaocc with claim cache data word. 
6 wherein c:ach of said fint and scc:ond cache memories 13. In a data processing syatcm having a proccaor for 
further comprises a priority means for determining the 60 generating main memory address signals. a ma.in mem-
least recently used cache data word which is the lowest ory for 1toring main memory words, first and accond 
priority cache data word. cache memories for storing ma.in memory addresses and 

9. A data proccssing system in accordance with claim corresponding cache data words and for matching the 
I wherein each of said priority means is further adapted stored main memory addrCSICI with the ma.in memory 
for generating the address of the least recently used data 65 address signals. and a cache control for controlling said 
word. first and ICCODd cache memories, a method or accessing 

10. A data processing system in accordance with said cache memories· and said main memory; 
claim 9 wherein said priority means of said ftnt cache comprising the steps of: 

EX 1019 Page 233



... ,. 

4,458,310 
13 14 

storing a set or aid cache data words and oorre- and another cache data word u the lowest priority 
&ponding main memory addn:sses having a higher cacbc data word. 
priority than IID01bcr 1et of llllid cache data words 15. The invention of claim 14 wherein said transmit-
md comsponding main memory addres,es in llllid ting step comprises the steps of: 
fint cache memory; 5 replacing the Joweat priority cacbc data word of said 

ltoring uid other Id of said cache data words and second cache memory with said transmitted cache 
comsponding main memory words in uid second data word from said first cache memory; and 
cacbe memory, identifying within aid second cache memory said 

trlllllnittcd cache data word from said first cache 
detecting main memory address signals which match m.....,,,...., as the highest pnon· ·ty cache data word 

one of the stored main memory addreues in said IO -·J and another cache data word u the lowest priority 
ICCODd c:acbc memory; cache data word. 

transferring the cache ~ta word ~g to 16. The invention of claims 11 or 14 wherein said 
the matched ~ of aid aton:d main memory ~- lowest priority cache data word of said first cache 
dn:ues from ~ ICOODd cacbe memory to uid u memory comprises a least recently used cache data 
~ and uid firat cache memory; and . word or said firat cache memory llld said transmitting 

storing said tranaferrcd ~ data word from uid step comprises the step of tnmsmitting aid least re-
lCCC>Dd cacbc memory m uid firat cache memory. cendy used cache data word or said first cache memory· 

14. The inventkm of claim 13 wherein aid storing of and ' 
Did tr:am£cm:d cache data word step comprises the 20 aid replacing step comprises the step of replacing 
ltcpl of: aid lcut recently med cache data word of said 

tnmmitting the lowest priority cacbc data word or first cache memory. 
uid first cache memory to llllid aecond cacbc mcm- 17. The invention of claim 14 wherein aid highest 
ory; priority cache data word from aid cache memory com-

replacing uid lowest priority cache data word of said 25 prises a most recently med cache data word and said 
first cache memory with aid tranaferred cache step of tranaferring comprises the 1tep of transferring 
data word from llid IICCODd cache memory; and said most n:oendy used c:ache data word; and 

identifying within said first cache memory aid trans- aid stcp of replacing comprises the step of replacing 
ferred cache data word from llllid aecond cache with uid moet recently med cache data word. 
memory u the highest priority cacbc data word 30 • • • • • 

,, 

45 

50 

S!l 

6S 

EX 1019 Page 234



lW 7696177 

'!!Q)A\f111,'!1Qi~ .~'llH!ES~ !!-!ml!E~~ S~rD,~MtE!~ 

UNITED STATES DEPARTMENT OF COMMERCE 

United States Patent and Trademark Office 

October 16, 2018 

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE 

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS 

OF: 

APPLICATION NUMBER: 09/608,266 

FILING DATE: June 30, 2000 

PATENT NUMBER: 6,771,646 

ISSUE DATE: August 03, 2004 

By Authority of the 

Under Secretary of Commerce for Intellectual Property 
and Director of the United States Patent and Trademark Office 

PART ~F (~ART(S) 

EX 1019 Page 235

 

 
 
 

 
 

 

 
  

  

 

3U 7696M”!

 

mwmmmmmsggamma was(“OMB ‘WK,I.
‘-‘ I UNITED STATES DEPARTMENT OF COMMERCE ' ‘V. _ =:_

United States Patent and Trademark Office W

5’?

October 16, 2013 '|.;__....‘5"

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE 3‘;

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS ' 3}

OF: '
 

APPLICATION NUMBER: 09/608,266

FILING DATE: June 30, 2000

PATENT NUMBER: 6,771,646

ISSUE DATE: August 03, 2004

 

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director ofthe United States Patent and Trademark Office

>29
P. SWAI

Ccrtify' gOfficcr

EX 1019 Page 235

 

 



. United States Patent [19J 

Carter et al. 

[54] MEMORY SYSTEM WITH GLOBAL 
ADDRESSTRANSIATION 

[75] Inventors: Nicholas P. Cnrter, Somerville; 
Stephen W. Keckler, Cambridge; 
William J. Dally, Framingham, all of 
Mass. 

[73] Assignee: M~hll5'!tts Institute of 
Technology, Cambridge, Mass. 

[21] Appl. No.: 09/021,658 

[22] Filed: Feb. 10, 1998 

Related U.S. Application Data 

[62] Division of application No. 08/314,013, Sep. 28, 1994, Pal 
No. 5,845,331. 

[51] Int. Cl.6 
•••..•••••...•....•.•.....•.••........••••............ G06F 12/10 

[52] U.S. Cl . ............................................. 711/207; 711/207 
[58] Field of Search ..................................... 711/147, 202, 

711/203,206, 207,209 

[56] References Cited 

U.S. PAfENT DOCUMENTS 

4,241,396 12/1980 Mitchell et al. ···············-······· 364/200 
4,4011,274 10/1983 Wheatley et al. . ..............•...... 364/200 

5,075,842 12/1991 I.Ai ···············-················-······· 395/479 
5,251,308 10/1993 Frank et al •............................ 395/425 
5.404,478 4/1995 Arai et al .•.••.....•....•.......•.••..... 395/416 
5,465,337 11/1995 Kong -····································· 395/417 

01HER PUBLICATIONS 

Carter, Nicholas P., et al., "Hardware Support For Fast 
Capability-based Addressing," Proceedings of the 6th Inter
national Conference on Architectural Support for Program
ming wguagc:s aod Operating Systems (ASPLOS VI) , 
Oct 5-7, 1994, pp. 1-9. 

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 11111111111111111 
US006003123A 

[11] Patent Number: 

[45] Date of Patent: 

6,003,123 
Dec. 14, 1999 

Tyner, Paul, "APX 432 General Data Processor Architecture 
Reference Manual, Chapter 3, Objects for Program Envi
ronments," Intel Corporation, Jan. 1981, pp. 3-1 to 3-37. 
Fabry, R.S., "Capability-Based Addressing," Fourth ACM 
Symposium on Operating Systems Principles, IBM Thomas 
J. Watson Research Center, Yorktown Heights, NY, October 
15-17, 1973,pp. 413-412. 
Dally, William J. ct al., "An Object Oriented Architecture, 
"IEEE, 0149--7111/85/0000/0154, 1985, pp. 154-161. 
Goodman, James R. et al., "The WISCOnsin Multicubc: A 
New Large Scale Cache-Coherent Multiprocessor," IEEE, 
CH254-5-2/88/0000/0422, 1988, pp. 422-431. 
Dally, William J, ct al., "M-Machine Architecture vl.O MIT 
Concurrent VLSI Architecture Memo 58," Massachusetts 
Institute of Technology, Artificial Intelligence Laboratory, 
Aug.24,1994,pp. 1-50. 

Primary Examiner-Eddie P. Chan 
Assistant Examiner~vin ~rbrugge 
Attorney, Agent, or Finn-Hamilton, Brook, Smith & 
Reynolds, P.C. 

[57] ABSTRACT 

A multiprocessor system having shared memory uses 
guarded pointers to identify protected segments of memory 
and permitted access to a location specified by the guarded 
pointer. Modification of pointers is restricted by the hard
ware system to limit access to memory segments and to limit 
operations which can be performed within the memory 
segments. Global address translation is based on grouping of 
pages which mity be stored across multiple nodes. The page 
groups arc identified in the global translittion of each node 
and, with the virtual address, identify a node in which data 
is stored. Pages arc subdivided into blocks and block status 
flags arc stored for each page. The block status flags indicate 
whether a memory location may be read or written into at a 
particular node and indicate to ll home node whether a 
remote node has written new dlllll into a location. 

12 Claims, 17 Drawing Sheets 

Valid 
Bit Virtual Page 

First 
Word 

Second 
Word 

I I 5bits I 42 bits I ,ebits I 
Starting Node 

Pages 

Unused 

Per 
Unused 
43 bits 

Node 
\ 6 bits l 6 bits l Z l Y I x I 
Page Extent 

Length {3 bits/ 
Dimension) 

EX 1019 Page 236



F 

.U.S. Patent Dec. 14, 1999 Sheet 1 of 17 

Pointer 
Tog 

I 4 bits 

0000 t-----t 
0001 
0010 1-----1 

0011 1-----1 

0100 
01011-----t 
0110 __ -t 
0111 

1000 1-----1 

Permission 
Bits 

• 

segment 
Length(U · 

6 bits 

Address 

54 bits 

54-L bits I L bits 
Segment off set 

FIG. IA 

1qoo tiooot----1 
I 

1001 1----t 
1010 __ -f 

1011 
11001-----1 

,oi: 
101: 

I 

f ~-----IOii I ------
' 

I 

11011 ---------

11011---1 
1110 1-----f 

1111 .___ ..... 
L-=0 L=I L=2 L=3 

FIG. I B 

6,003,123 

loooo 

I :io11 ---.----
I 

L=4 

EX 1019 Page 237

US. Patent Dec.14,1999 51w 1 of 17

Pointer _ Segment ‘
T09 LengtmL) Address ‘

0000
000!
00“)
0011
@500
CID!
OHO
OIH

I000
100!
[CID
10H
”00
110!
[HO
l H!

L

 
 

 

Permission

Bits :

54-1. bits ' L bits

Segment Offset

FIG. IA

 

   

- §°°°°

- loéoo @000
min . . .
I01}! I05” I§OH you

O L=1 L=2 L33

FIG. IB

6,003,123

L

EX 1019 Page 237

_nwMMMMMWmehmmmw.

777%



.U.S. Patent Dec. 14, 1999 

Begin Memory 
Reference 

22 

Pointer Bit 
set on Input 

Address? 

20 

No 

Compare Opcode 26 
and 

Permission Bits 

No 

Perform Address 32 
computation if 

Needed 

Check for 34 
segmentation 

Violation 

Submit Reference 
to Memory 

Yes 

40 

FIG. 2A 

Sheet 2 of 17 

24 

Raise 
Exception 

30 

Raise 
Exception 

38 

Raise 
Exception 

6,003,123 

EX 1019 Page 238

US. Patent Dec. 14, 1999 Sheet 2 of 17

  
 

  

. 20
Begin Memory

Reference

24

 

 
 

  

 

  
  
 
  
  

 

  
 

Pointer Bit Raiseton In ut ,

YES

Compare Opcode 26

.0“?! .
Permissmn Bits

30

Raise

Excepfion

Operation
Allowed ?

Yes

  Perform Address

Computation if
Needed

32

  
 

  
 

 

Check for

Segmentation
Violation

34

3B

Raise

Exception
Segmentation

Violation ?
 

N0

Submit Reference

to Memory

FIG. 2A

40

6,003,123

 

EX 1019 Page 238



.U.S. Patent Dec. 14, 1999 

46 

Opcode 

Permission Segment 
Bits Length 

6 bits 

44 

Permission 
Check 

Allowed 

Sheet 3 of 17 

Address 

54 bits 

52 

segment 
Check 

50 

54 bits 

6,003,123 

48 
Offset 

64 bits 

valid 

New 
Pointer 54 

FIG. 28 

EX 1019 Page 239

US. Patent Dec. 14,1999 Sheet 3 of 17

Permission segment
Bits Length Address

Pointer

v

44

Permission 3
Check

 

 

54

6,003,123

  

EX 1019 Page 239

 

 



L., 

. U.S. Patent Dec.14, 1999 Sheet 4 of 17 

Mask 
Guarded Length Field Generator 
Pointer 
~~-r-~-.-~~~~~6 58 

64 

Address 

54 

Offset 

54 

Masked 
.___comparator 

60 

6,003,123 

violation? 

54 Result Address 

56 

FIG. 3 

Masked Comparator 
Bit Cells (54) 

Original Pointer 

Adder Result 62 

• 
Bit Mask • 

• 62 

60/ 
FIG. 4 

---Violation ? 

EX 1019 Page 240

US. Patent

Guarded
Painter

1’6“- 14, 1999

  
 

,1
64

 

 
FIG.

iwim7%

Sheet 4 of 17

Mask

Length Fieid GeneratOr

56

3

MGSked meomfcr
Bif Cells (54)

6,003,123

Viokation ?

Re sun Address

Violation ?

EX 1019 Page 240

u...“.4va”WWW.WW”WWW.mmm.

“Aw‘“WWWWM.¢WM,



.U.S. Patent 

CODE 

b, 

Dec. 14, 1999 Sheet 5 of 17 

/62 Bit Mask I 

6,003,123 

1----Jllegally Changed Bit? 

64 

FIG. 5 

A 
IPl 

ENTER2 
DATAl 
DATA2 

B f 
IP2 Protected 

RETIP" Subsystem 
DATA1 2 
DATA2 

C f 
IP2 

GPl 
RETIP 

GP2 
GPl 
GP2 

i 
fPl 

FIG. 6 

i 
I 
l 

l 
l 
'! 
! 
I 
! 

EX 1019 Page 241

US. Patent Dec. 14, 1999 Sheet 5 of 17 6,003,123

62

Bi‘r Mask /

Adder Result 3 Niegolly Changed Bi? ?
Original Address 66

 WMMpL-Wm‘v
Protected

Subsystem

..-1...‘_..m...n...”.4;Wu

EX 1019 Page 241



.U.S. Patent Dec. 14, 1999 Sheet 6 of 17 6,003,123 

A 
!Pl 

ENTER2 
DATA! 
DATA2 

ENTER3 
R/W 

Program B .f 
1 

CODE Protected 
Subsystem 

2 
C ' Return CODE 

Segment 
3 GPl 

CODE GP2 

DATA1 
DATA2 
RETIP 

IP3 

FIG. 7 

EX 1019 Page 242

 

  
US. Patent Dec. 14,1999 Sheet 6 of 17 6,003,123

Program 

 

  Protected

Subsystem

 
EX 1019 Page 242



.U.S. Patent Dec. 14, 1999 

External 
Memory 

Sheet 7 of 17 6,003,123 

1---71 

r-----------------~-------------------, 
1 

Memory Interface Bus 
1 

i I • • • ' 1 if. + • ' I! 
I I 

I Cache Cache Memory Cache Cache + 70 

I Bank O Bonk 1 Interface Bank 2 Bank 3 

: I LTLB I 
! f 'n r 
I 
I 
I 

M-Switch 

I 
I 
I 
I 
I 
I 
I 
I 
I 

t 

' 

' 't 

C-Switch 
I I 

I 

f 
' 

I " 

' 

I 
I 
I 
I 
I 
I 

I 73 

75 
I 
I 
I 
I 
I 
I 
I 

I 
1 Cluster O Cluster 1 Cluster 2 Cluster 3 --l-69 
I : 
I I 
I e w ,I • i ' I 
I • I 1~--, I 
1 GTLB J Network j I I Network l- r 
I ,__ _ ___, 1 Output I Input I 
L_ /- -----f _i ______________ \- MAPchif 1 

79 77 t I a1 

Network 

FIG. 8 

EX 1019 Page 243

  

US. Patent Dec. 14,1999 Sheet 7 of 17 6,003,123

External 7‘
Memory

I‘“"“‘“"""‘"" “mafia—rmreaase‘ea;“““7|
1

l
n

Cache Cache ‘TJO
Bank 0 Bank 3

 
.- C-Switchmv—m‘._——..__.._.._.www.........—._...__._._.__......__..__—___..

Network Networkm I-'

Network

FIG. 8

“Imsm2 M69
-

fl OJ

.401

EX 1019 Page 243

..3..”wwwm“mc‘<mw‘m



.U.S. Patent Dec. 14, 1999 Sheet 8 of 17 6,003,123 

Valid 
Bit Virtual Page 

First I I 1 bit 42 bits 20 bits I Word 
Lock Physical Page 

Second 64 bits I Word 
Status Bits 

( Bit /block) 
Third 

64 bits I 
1 Word 

Status Bits 
( Bit /block) ! 

FIG. 9 

L 

EX 1019 Page 244



r ~,"'tf•"';.«.~·:·~,~ ......... :i::,.."'·;..,'1,.;;,;-~::-f!'~::"",.,,. '",~;:-:;::::,--:.,"! 

7 

Ta 

FIG. 10 

"'""'.t"~)'!':::'..,.~~ ..,, . .-~~ :.:~,·h~~.~t ........ ,l .,,..;-•g[~ ...... ,~ ~~, ~-:",t,... ··--=-.... ~-·· ·~ 

Tobi 

• 

Virtual Physical 
Page ID Translation 

81 

Status 
Bits 

d • 00 • 

~ 
i 
""" 

ei 
~ 

"'~ 
~ 
\C 
\C 
\C 

r 
\C 

~ 
~ 
....:a 

~ -. = 6 -. ,... 
~ 

··"'."'"~· 

-··- •.. ----··· ---------------------------------
EX 1019 Page 245

‘*"""“"’V‘m"~m*w rm" “firm? A wrmzzfizr v i -: , 73‘; :1a;:*:: .mr‘tfifiwau; «my. w,» . , ._ “My...“ .. ,

 

  
 

:3
U}

Bl

Local Page Table :5

Status bits - a
capied on
LTLB miss

Copy status

 
 

  

 

 
  

 

 

77 when block g

.5: lStatus bits 5

copied on :2

LTLB entry-
eviction

5.?

a lhen line ‘°
To Data w‘ e

9 WOW Virtual Physical Status g
Status PageiD Translation Bits

Virtual PhySlCUl Status
PagelD Translation Bits

OK

‘ “a

FIG. l0 g
H

a

EX 1019 Page 245



r 

r 
i 

' 

L 

.U.S. Patent 

Virtual Address 

42 

Dec. 14, 1999 Sheet 10 of 17 6,003,123 

71 

LTLB 

Block Physical Block Statu Block Status 
Select Translation bit Word o 64 64 bit Word 1 
Bits 

6 

FIG. 11 

73 
75 

Block Status Bits 
for Translated Address 

EX 1019 Page 246

US. Patent

 
Bits

Dec. 14,1999

FIG. II

Physical Block Sfatu
Seiect Translation bitWordO

Sheet 10 of 17

 

 

 
 

 
Block Status Bits

for Translated Address

6,003,123

Block Status
bit Word I

EX 1019 Page 246

 



L 

.U.S. Patent 

First 
Word 

Second 
Word 

Dec. 14, 1999 Sheet 12 of 17 6,003,123 

Valid 
Bit Virtual Page 

j 5 bits I 42 bits 1 16bits 1 
Unused 

Unused 
43 bits 

Starting Node 

Pages 
Per 

Node 
! 6 bits I 6 bits j z j Y I X ) 

Page Extent 
Length (3 bits/ 

Dimension) 

FIG. 13 

EX 1019 Page 247

US. Patent Dec. 14,1999 Sheet 12 of 17 6,003,123

Valid

Bit Virtual Page
Fm - -

Word I- 42 bus
Unused Star’nng Node

. Pages
Per

; Second Unused Node
Word

3. Page Extent
Length (3 bits /

Dimension)

% FIG. I3

r'fim.«.
EX 1019 Page 247

.14”.w“Nam"...W...“

mm",.-..mummm_m



~~ ' 

( .U.S. Patent 
\· 

" 

;; 
·. ~· 
I , .. ,. 

i 
' :, 
.• 

? 
f 
~; 

: 

' f 
,i· 
~: 

I 
I 
! ; 
;, 

f 
~ 

L 

Dec. 14, 1999 

start 
Translation 

Mask off 
Pages/Node in 
Virtual Address 

Extract 
X-Off set from 

Virtual Address 

Extract 
Y-Offset from 
Virtual Address 

Ex.tract 
z-of f set from 

Virtual Address 

Add Off sets to 
start Node to get 
Node containing 
virtual Address 

Sheet 13 of 17 

102 

NO signal 
Miss 

108 

110 

112 

114 

116 

FIG. 14A 

6,003,123 

106 

EX 1019 Page 248

wkwmWWW3°:va2‘
‘‘«"".“V.‘\.‘.13

uWfim-

4ox:rmwmnw,miWJfiWWsfl,~

.U.S. Patent

 

 

Dec. 14, 1999 Sheet 13 of 17

I02

Start

Translation

104

No Signal
Miss

Yes

Mask off ‘08

Pages/ Node in
Virtual Address 

Extract ”0
X-Offset from

Virtual Address 
Extract “2

Y-Offset from

virtual Address 
Extract “4

Z-Offset from
Virtual Address 

  Add Offsets to

start Node to get
Node Containing
Virtual Address

H6

 

 

FIG. MA

106

6,003,123

EX 1019 Page 248

 



,. , . .. 

.L 

.U.S. Patent Dec. 14, 1999 Sheet 14 of 17 6,003,123 

Page Identifier Offset 

Virtual Address 42 bits 12bits L----------l~--....1 
Page Identifier Page Length 

42 bits 6 bits GTLB Entry 

126 

124 --Hit 

Bit Mask Generator Masked Comparator 

FIG. 148 

EX 1019 Page 249

6:319,»’

US. Patent Dec. 14,1999

Virtual Address

__-

(24

Bit Mask Generator

Page Identifier Page Length

 

Sheet 14 of 17

Page Identifier 

 
6,003,123

Offset 

 
  

GTLB Entry

Masked Comparator

F16. |4B

 
 

 

 

Hit

EX 1019 Page 249

 



L 

U.S. Patent Dec. 14, 1999 Sheet 1S of 17 

log log sub-cube 
pages dimensions 

base node per node z Y X 

118 

/'-. r"-,... 

+·Jo4-+--t---t 

DESTINATION NODE 

ADDRESS 
(54 bits) 

z 

~: 

FIG. 15A 

FIG. 158 

6,003,123 

<6,4,1> 

EX 1019 Page 250

Immaiwmwbwflww“59mm1
*F‘JWWWM.27*"

‘"=3:«HIM»’ARMI‘fl’?‘
“3%.“r.‘

,mm

US. Patent Dec. 14,1999 Sheet 15 of 17

log ioq subcube
pages dimensions

base node per node 2 Y X

 
 

 0......

DESTINATION NODE

FIG. l5A

ADDRESS

(54 bits)

FIG. 158

6,003,123

‘1!

“mm
3

E

i

: 

  

 

EX 1019 Page 250



t 

I 
[ 

l 
i 
I 
' 

I 
i 

l 

' 

U.S. Patent Dec. 14, 1999 

Input Address 

Hit 

118 

Sheet 16 of 17 

Fu! ly - Associative 
SRAM Array 

X-Offset 
U) 

-u, 
OQ) 
:::, i... 

t-o 
·--0 >c::t 

Bit-Field 
Extractor 

6,003,123 

120 

v-offset 
122 

X-Dest '<-Dest z-oest ..__ __ ___, 
z-oftset 

FIG. 16 

EX 1019 Page 251

:1

g

1;“

Llab—”(t.3,

Input Address 
US. Patent Dec. 14,1999 Sheet 16 0117 6,003,123

 
Ftu ~ Associative

SRAM Army  
 

 

Hi?

..I

WV

X~Dest Y ~Dest Z—Dest

FIG. l6

 PagesPer Node

 Bit-Field
Extractor

  
”8

Z—Offset

EX 1019 Page 251

”my...“wwmwm._..v11



U.S. Patent 

No 

Raise 
Exception 

Dec. 14, 1999 

start 
Reference 

128 

Sheet 17 of 17 

132 

Raise 
E)(C8ption 

Raise 
n 1c:-:,.....-,-, Block status 

complete 
Reference 

complete 
Reference 
Remotely 

160 

146 

158 

FIG. 17 

Exception 

6,003,123 

140 

Yes complete 
Reference 

138 

148 

EX 1019 Page 252

 
U.S. Patent Dec. 14,1999 Sheet 17 of 17 6,003,123

 
g

g :28
«i start
as: Reference

?5

i

 
 

  
  

140
135

Yes P05 Yes Compie’teBlock Statu

I38

Block Status“mew,pram
a§w

‘61 .5:

Excetion

g NO Yes '52 Yes I44
Pas N Ratse ‘43

5E Updafe Block Sta «p 0 Block Status
g LTLB Check ? Exception

 I46
 
 

comptete
Reference

an*1

“a? U!

l56 _...MMAM.W
‘1 Hit in Compiete :58

' Global Page Reference
. Tabie ? Remofely

 
  
 

(60
Raise

Exception

FIG. 17

«a
 

EX 1019 Page 252



r .• 
' .f 

,r 

I 

6,003,123 
1 

MEMORY SYSTEM WITH GLOBAL 
ADDRESS TRANSIATION 

RELATED APPLICATION 

This application is a divisional of Ser. No. 08/314,013, 
filed Sep. 28, 1994, now U.S. Pat. No. 5,845,331, Dec. 1, 
1998 the entire teachin~ of which are incorporated herein 
by reference. 

GOVERNMENT SUPPORT 

The invention was supported, in whole or in part, by a 
grant Contract No. Fl9628-92-C-0045 from the Air Force 
Electronic Systems Division. The Government has oertain 
rights in the invention. 

BACKGROUND OF TIIE INVENTION 

2 
together. The invention is particular] y applicable in a virtual 
addressing, multiprocessor environment which requires 
sharing of data among multiple tasks across multiple nodes. 

In accordance with one aspect of the invention, a data 
s processing system comprises shared memory fur storing 

instructions and data for plural programs, the shared 
memory being accessed in ~nse to pointers. Guarded 
pointers address memory locations to which access is 
restricted. Each guarded pointer is a processor word which 

10 fully identifies a protected segment in memory and an 
address within the prolected segment. Processor hardware 
distinguishes guarded pointers from other words and is 
operable under program control to modify guarded pointers. 
Modification of guarded pointers is restricted so that only 
addresses within the identified segment can be created. 

15 Thus, access outside of a protected segment is prevented. A 
permission field in the guarded pointer indicates permissible 

In most computer systems, individual programs access access to the identified memory segment such as read only 
code and data by addressing memory through a virtual or read/write. By providing the full virtual address, segment 
address space. That virtual address space fur each program information, and a permission field, segment checks and 
must then be translated into the physical address space in 

20 
permission checks can be performed during a memory 

which the code and data is actu.all y stored in memory. Thus, access without requiring additional machine cycles. 
distinct programs may use identical virtual addresses which Preferably, each guarded pointer comprises a length field 
translate to different locations m physical memory. The and an address field. The value in the length field indicates 
physical address space utilized by several programs may be a division of the address field mto a segment subfield which 
<'ompletely distinct or they may overlap. Some Iewl of 

25 
identifies a segment location and an offset subfield which 

security must be provided in order to permit common access identifies an offset within an identified segment. 1be value 
lo certain memory locations while protecting against nnau- in the length field is preferably logarithmically encoded 
thorized access to other locations. using a base 2 logarithm. A tag field may be provided to 

Memory system designers must provide security without 
30 

identify the word as a guarded pointer, and the pointer must 
sacrificing efficiency and flexibility. One process' objects be so identified if it is lo be used to access a memory 
must be protected from modification by other, unauthorized location. By limiting the ability to set the flag bit and to 
processes, and user programs must not be allowed to affect freely modify addresses in pointers to the operating system, 
the execution of trusted system programs. It must be pos- the creation of forged pointers by application programs to 
sible to share data between processes in a mann« that 35 gain access to protected segments is avoided. 
restricts data access to authorized processes; men:ly provid- The processor hardware may be operable to generate a 
ing the ability to have data be private to a process or second guarded pointer from a first guarded pointer, the 
accessible to all processes is insufficient. An efficient mecha- second gumled pointer identifying a subsegment within the 
nism must also be provided lo change protection domains segment identified by the fi.rst guarded pointer. To that end, 
(the set of objects that can be refen:nced) when entering a "° the processor changes a value in the length field to dccrea.sc 
subsystem. the number of bits in the offset subfield and to increase the 

The current trend towards the use of multithreading as a number of bits in the segment subfield. The result is 
method of increasing the utilization of eJtCCU.tion units make decreased offset range and finer segment location resolution 
traditioual security schemes undesirable, particularly if con- within the original segment. However, the segment can not 
text switches may occur on a cycle-by-cycle basis. Tradi- 45 be enlarged by an a.pplication prog,am. 
tional security systems have a non-zero context switch time The processor hardware may also be operable lo generale 
as loading the protection domain for the new context may a second guarded pointer from a first guarded pointer by 
require installing new address translations or protection performing an arithmetic operation on the offset. The pro-
table entries. cessor hardware checks the second guarded pointer for over 

A number of multithreaded systems such as Alewife so or underflow by detecting a change in value in the segment 
(Agarwal, A, et al., "The MIT Alewife machine: A large- subfield. The hardware may also modify the permission field 
scale distributed-memory mutiprocessor," Scalable Shared of a guarded pointer to generate a pointer having only more 
Memory Multiprocessors, Kluwer Academic Publishers, restricted access to the indicated segment. For example, a 
1991.), and Tera (Alverron, R., et al., "The tera computer program having permission to read/Write may create a 
system," Proceedings of the 1990 Imemational C011{erence ss pointer to the same memory segment with permission only 
on Supercompuring, September, 1990, ACM SIGPLAN to read. 
Computer Architecture News, pp 1-6) have avoided this ENTER guarded pointers may be restricted fur processing 
problem by requiring that all threads which are simulta- by tbe processor hardware lo only jump to the identified 
neously loaded shm:: the same address space and protection address within the protected segment and to execute. Such 
domain. Thismaybesuflicientfurexecutionoflhreadsfrom 60 pointers allow access to code beginning at the pointer 
a single user program, but disallows interleaving threads address but prevent bypass of portions of the code and 
from different protection domains, which may restrict the prevent changing or copying of the code. Other preferred 
performance of the machine. pointer types are read-only pointers, read/write pointers, 

SUMMARY OF TIIE INVENTION 

The present invention relates to several aspects of a 
memory system which may be used independently or 

execute pointers and key pointers. Key pointers may not be 
65 modified or used for data acces.s. 

In accordanoe with another aspect of the inveotion, a 
method is provided fur global addressing across plural 

EX 1019 Page 253

1i

\\her-«119‘:m-
s'..

hr.
lt

«rr

‘lf.
i!Q"

 

 
1:.

1233.3}.221.
aa}???

3m$111laxezijisfl—‘f‘blL~"32%?

6,003,123
1

MEMORY SYSTEM WITH GwBAL
ADDRESS TRANSLATION

RELATED APPLICATION

This application is a divisional of Set. No. 08614313,
filed Sep. 28, 1994, now US. Pat. No. 5,845,331, Dec. 1,
1998 lbs entire teachings of which are incorporated herein
by reference.

GOVERNMENT SUPPORT

The invention was supported, in whole or in part, by a
grant Contract No. F19628-92-C-0045 from the Air Force
Electronic Systems Division. The Government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

In most computer systems, individual programs access
code and data by addressing memory through a vimzal
address space. That virtual address space for each program
must then be translated into the physical address space in
which the code and data is actually stored in memory. Thus,
distinct programs may use identical virtual addresses which
translate to difierent locations in physical memory. The
physical address space utilized by several programs may be
completely distinct or they may overlap. Some level of
security must be provided in order to permit common access
to certain memory locations while protecting against unau—
thorized access to other locations.

Memory system designers must provide security Without
sacrificing efficiency and flexibility. One pm’ objects
must be protected from modification by other, unauthorized
processes, and user programs must not be allowed to adorn
the execution of trusted system programs. It must be pos-
sible to share data between processes in a manner that
restricts data axes to authorized processes; merely provid-
ing the ability to have data be privnte to a process or
ammible to all processes isinsuficient. An eficient mecha—
nism must also be provided to change protection domeim
(the set of objects that can be referenced) when entering n
snbsyslem.

The current trend towards the use of multithreading Is a
method of increasing the utilization of exealfionunils make
traditional security schema; undesirable, particularly if con-
text switches may occur on a cycle-by—cycle basis. Tradi~
tional sanity systems how a non-zero context switch time
as loading the protection domain for the new context may
require installing new address mmlntions or protection
table entries.

A number of mulfithreaded systems such as Alewife
(Agnrwal, A, ct rd, “The MIT Alewifc machine: A large-
scalc distributed-memory mutiprocessor,” Scalable Shared
M'emory Multiprocatmrs, lauwcr Academic Publishers,
1991.), and Tera (Alvarson, R, et 31., “The ten computer
system,” Proceedings of the 1990 International Caffeine-roe
on Supercomputing, September, 1990. ACM SIGPLAN
Computer Architecture News, pp 1—6) have avoided this
problem by worming that all threads which are simulta-
neously loaded share the same address space and protection
domain. This may be sufficient for execution of threads from
a single user program, but disallow interleaving threads
from different protection domains, which may restrict the
performance of the machine.

SUMMARY OF THE INVENTION

The present invention relates to several aspects of a
memory system which may be used independently or

10

15

35

45

SS

65

2

together. The invention is particularly applicable in a virtual
addressing, multiprocessor environment which requires
sharing of data among multiple tasks amss multiple nodes.

In awordance with one aspwt of the invention, a data
processing system comprises shared memory for storing
imlmctions and data for plural programs, the shared
memory being accessed in response to pointers. Guarded
pointers address memory locations to which access is
restricted. Each guarded pointer is a processor word which
fully identifies a protected segment in memory and an
address within the protracted segment. Processor hardware
distinguishes guarded pointers from other words and is
operable under program control to modify guarded pointers.
Modification of guarded pointers is restn'eted so that only
addresses within the identified segment can be created.
Thus, access outside of a protected segnent is prevented. A
permission field in the guarded pointer indicates permissible
accent to the identified memory segment such as read only
or read/write. By providing the full virtual address, segment
information, and a permission field, segment checks and
permission checks can he performed during a memory
ems without requiring additional machine cycles

Preferably, each guarded pointer mmprises a length field
and an address field. The value in the length field indicates
a division of the addrm field into a segment wbfield which
identifies a segment location and an ofi'set sublield which
identifies an ofl‘set within an identified segment. The value
in the length field is preferably logarithmically encoded
using a base 2 logarithm. A tag field may be provided to
identify the word as a guarded pointer, and the pointer must
bosoidenfifiedifitistobeusedtowoemamemory
location. By limiting the ability to set the flag bit and to
freely modify addressee in pointers to the operating system,
the creation of forged pointers by application programs to
gain access to protected segments is avoided.

The promoter hardware may he operable to generate a
second guarded pointer from a first. guarded pointer, the
second guarded pointeridentifying a subscgment within the
segment identified by the first guarded pointer. To that end,
the processor changes a value in the length field to decrease
the number of bits in the offset subfield and to increase the

number of bits in the segment subfield, The result is
decreased offset range and finer segnent location resolution
within the original segment, However, the segment can not
be enlarged by an npplication program.

The processor hardware mny also be operable to generale
a second guarded painter from a first guarded pointer by
performing an arithmetic operation on the oflset. The pro-
cessor hardware sheds the second guarded pointer for over
or underflow by detecting a change in value in the segment
wbfield. The hardware may also modify the permision field
of a guarded pointer to generate a pointer having only more
restricted access to the indicated segnent. For example, a
program having permision to read/write may create a
pointer to the some memory segment with perm‘msion only
to read.

ENTER guarded pointers may be restricted for processing
by the processor hardware to only jump to the identified
addrem within the protected segment and to execute. Such
pointers allow access to code beginning at the pointer
address but prevent bypass of portions of the oode and
prevent changing or copying of the code. Other preferred
pointer types are read-only pointers, madlmite pointers,
execute pointers and key pointers. Key pointers may not be
modified or used for data awess.

In accordance with another aspect of the invention, a
method is provided for global addresing acrosis plural

EX 1019 Page 253

 



L....._ 

6,003,123 
3 

processor nodes. A virtual address is applied to a global 
translation buffer to identify a mapping of a page group to 
a set of nodes in a system. From the virtual address and the 
identified mapping, the system determines a destination 
node at which a page containing the virtual address resides. 5 

Amcssage including the address, which may be in a guarded 
pointer, may be forwarded to the destination node, and 
translation of the virtual address to a physical address may 

4 
FIG. II illustrates an LlLB entry having block status bits 

in accordance with the present invention. 
FIG. 10 illustrates status bit caching in a system using 

block status bits. 
FIG. 11 is a block diagram of hardware utilized in 

determining status bits for a block in the L1LB. 

FIG. 12 is a flow chart of a memory request in a system 
that includes block status bits. 

be performed at that node. By translating to groups of nodes, 
rather than an individual node for each virtual address, the 
size of the global translation buffer can be substantially 
reduced. 

10 
FIG. 13 is an illustration of a GlLB entry in a system 

using global translation in accordance with the present 
invention. 

Preferably, the global translation buffer identifies each 
page group by a group size which is logarithmically 
encoded. It also specifics, in each group entry, a start node 
and the physical range of nodes within the group. Preferably, 

FIG. 14A is a flow chart of a G1LB translation process. 
FIG. 14B illustrates a masked comparator used in the 

15 G1LB. 

the range is specified in plural dimensions, specifically in the 
X, Y and Z dimensions of an array. That range is preferably 
also logarithmically encoded. Finally, the translation buffer 
may specify the numberof pages of the page group pcrnodc. 20 

In accordance with another aspect of the invention, virtual 
page addresses arc translated to physical page addresses at 
each processor node and each virtual page is subdivided into 
blocks. At each processor node on which data from a virtual 
page is stored, a block status flag is provided for each block 25 

of the virtual page. Blocks of data may be copied between 
nodes and, based on the block status flags, access to indi
vidual blocks on a node is restricted. The use of the blocks 
allows for finer granularity in data transfers. The status flags 
are preferably stored in a virtual to physical translation 30 

buffer. Block status flags may also be stored with the data in 
cache memory, and the block status flags in the translation 
buffer may be updated from cache memory. 

The preferred states of the status flags include invalid, 
read only, read/write and read/write but dirty. The dirty 35 

designation is provided in order to indicate to the home node 
that the data has been changed since being loaded from the 
home node. 

BRIEF DESCRIPTION OF 1HE DRAWINGS -40 

The foregoing and other objects, features and advantages 
of the invention will be apparent from the following more 
particular description of preferred embodiments of the 
invention, as illustrated in the accompanying drawings in -4

5 
which like reference characters refer to the same parts 
throughout the different views. The drawings are not nec
essarily to scale, emphasis instead being place upon illus
trating the principles of the invention. 

FIG. IA illustrates the format of a guarded pointer 50 
embodying the present invention. 

FIG. 1B illustrates a simple application of a guarded 
pointer having only a four bit address field. 

FIG. 2A is a flow chart of a memory request in a system 
that includes gwmled pointers. 55 

Fl G. 2B illustrates the hardware utilired in an LEA 
operation in which an offset is added lo an existing pointer. 

FIG. 3 illustrates the adder and segment check of FIG. 2B. 
FIG. 4 illustrates the masked comparator of FIG. 3. 

60 
FIG. 5 illustrates a masked comparator bit cell in FIG. 4. 
FIG. 6 illustrates register states when a program enters a 

protected subsystem by jumping to an enter pointer. 

FIG. 15A illustrates an example GlLB translation of an 
address, and FIG. lSB illustrates the node within a group 
identified by the translation of FIG. 15A 

FIG. 16 is a block diagram of a GlLB. 
FIG. 17 is a flow chart of a memory request in a system 

that includes guarded pointers, block status bits, and a 
G1LB. 

DETAil..ED DESCRIPTION OF TIIE 
INVENTION 

Guarded Pointers 
Guarded pointers arc provided as a solution to the prob-

lem of providing cflicicnt protection and sharing of data. 
Guarded pointers encode permission and segmentation 
information within tagged pointer objects to implement 
capability requirements of the type presented in Fabry, R., 
"Capability-based addressing," Communications of the 
ACM17,7 (July 1974), 403-412.Aguanlcd pointer may be 
stored in a general pwpose register or in memory, eliminat
ing the need for special storage. Because memory may be 
accessed directly using guarded pointers, higher perfor-
mance may be achieved than with traditional implementa
tions of capabilities, as table looknps to translate capabilities 
to virtual addicsscs are not required. 

FIG. IA shows the format of a guarded pointer. A single 
pointer bit is added to each 64-bit memory word. Fifty-four 
bits contain an address, while the remaining ten bits specify 
the set of operations that may be performed using the pointer 
(4 bits) and the length of the segment containing the pointer 
(6 bits). Segments arc required to be a power of two words 
long, and to be aligned on their length. Thus, a guarded 
pointer specifics an address, the operations that can be 
performed using that address, and the segment containing 
the address. No segment or capability tables arc required. 
Since protection information is encoded in pointers, it is 
possible for all processes to share the same virtual address 
space safely, eliminating the need to change the translation 
scheme on context switches and facilitating the use of 
virtually-addressed caches. 

All memory operations in a system that use guarded 
pointe1S require that one of their operands be a guarded 
pointer and that the permission field of the pointer allow the 
operation being attempted. Use!S are not allowed to set the 
pointer bit of a word, although they may manipulate pointers 
with instructions that maintain the protection scheme. This 
prevents users from creating arbitrary pointers, while allow-
ing address arithmetic within the segments that have been 
allocated to a user program. Privileged programs arc allowed 
to set the pointer bit of a word and thus can create arbitrary FIG. 7 illustrates register states when two way protection 

is provided by creating a return segment. 65 pointeIB. 
FIG. 8 is a block diagram of a processor chip used in an 

M-Machinc embodying the present invention. 
Memory systems that use guarded pointers provide a 

single virtual address space shared by all processes. Each 

EX 1019 Page 254

T.1.,‘tn.

 
 '3

3.;r
53:

,xr.

6,003,123
3

processor nodes. A virtual address is applied to a global
translation bufier to identify a mapping of a page group to
a set of nodes in a system. From the virtual address and the
identified mapping, the system determines a destination
node at which a page containing the virtual address resides.
Amessage including the address, which may be in a guarded
pointer, may be forwarded to the destination node, and
translation of the virtual address to a physical address may
be performed at that node. By translating to groups of nodes,
rather than an individual node for each virtual address, the
size of the global translation buffer can be substantially
reduced.

Preferably, the global translation buffer identifies each
page group by a group size which is logarithmically
encoded. It also specifies, in each group entry, a start node
and the physical range of nodes within the group. Preferably,
the range is specified in plural dimensions, specifically in the
X, Y and Z dimensions of an array. That range is preferably
also logarithmically encoded. Finally, the translation bufier
may specify the number ofpages of the page group per node.

In accordance with another aspect of the invention, virtual
page addresses are translated to physical page addresses at
each processor node and each virtual page is subdivided into
blocks. At each processor node on which data from a virtual
page is stored, a block status flag is provided for each block
of the virtual page. Blocks of data may be copied between
nodes and, based on the block status flags, access to indi-
vidual blocks on a node is restricted The use of the blocks
allows for finer granularity in data transfers. The status flags
are preferably stored in a virtual to physical translation
buffer. Block status flags may also be stored with the data in
cache memory, and the block status flags in the translation
bnfler may be updated from cache memory.

The preferred states of the status flags include invalid,
read only, read/write and read/write but dirty. The dirty
designation is provided in order to indicate to the home node
that the data has been changed since being loaded from the
home node.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the difl'erent views. The drawings are not nec-
essarily to scale, emphasis instead being place upon illus-
trating the principles of the invention.

FIG. 1A illustrates the format of a guarded pointer
embodying the present invention.

FIG. 1B illustrates a simple application of a guarded
pointer having only a four bit address field.

FIG. 2A is a flow chart of a memory request in a system
that includes guarded pointers

FIG. ZB illustrates the hardware utilized in an LEA
operation in which an olfset is added to an existing pointer.

FIG. 3 illustrates the adder and segment chedr of FIG. 2B.
FIG. 4 illustrates the masked comparator of FIG. 3.
FIG. 5 illustrates a masked comparator bit cell in FIG. 4.
FIG. 6 illustrates register states when a program enters a

protected subsystem by jumping to an enter pointer.
FIG. 7 illustrates register states when two way protection

is provided by creating a return segment.
FIG. 8 is a block diagram of a processor chip used in an

M—Machine embodying the present invention.

10

15

30

35

45

50

55

60

65

4

FIG. 9 illustrates an LTLB entry having block status bits
in accordance with the present invention.

FIG. 10 illustrates status bit caching in a system using
block status bits.

FIG. 11 is a block diagram of hardware utilized in
deter-ruining status bits for a block in the LTLB.

FIG. 12 is a flow chart of a memory request in a system
that includes block status bits.

FIG. 13 is an illustration of a GTLB entry in a system
using global translation in accordance with the present
invention.

FIG. 14A is a flow chart of a GTLB translation process.
FIG. 14B illustrates a masked comparator used in the

GTLB.

FIG. 15A illustrates an example GTLB translation of an
address, and FIG. 15B illustrates the node within a group
identified by the translation of FIG. 15A.

FIG. 16 is a block diagram of a GTLB.
FIG. 17 is a flow chart of a memory request in a system

that includes guarded pointers, block status bits, and aGTLB.

DETAILED DESCRIPTION OF THE
INVENTION

Guarded Pointers
Guarded pointers are provided as a solution to the prob-

lem of providing eflicient protection and sharing of data.
Guarded pointers encode permission and segmentation
information within tagged pointer objects to implement
capability requirements of the type presented in Fabry, R.,
“Capability-based addresing,” Communications of the
ACM 17,7 (July 1974), 403—412. A guarded pointer may be
stored in a general purpose register or in memory, eliminat-
ing the need for special storage. Because memory may be
accessed directly using guarded pointers, higher perfor-
mance may be achieved than with traditional implementa-
tions ofcapabilities, as table loohrps to translate mpabilities
to virtual addreses are not required.

FIG. lAshows the format of a guarded pointer. A m'ngle
pointer bit is added to each 64-bit memory word. Fifly-four
bits contain an address, while the remaining ten bits specify
the set of operations that may be performed using the pointer
(4 bits) and the length of the segment containing the pointer
(6 bits). Segments are required to be a power of two words
long, and to be aligned on their length. Thus, a guarded
pointer specifies an addres, the operations that can be
performed using that address, and the segment containing
the address. No segment or capability tables are required.
Since protection information is encoded in pointers, it is
possible for all processes to share the same virtual address
space safely, eliminating the need to change the translation
scheme on context switches and facilitating the use of
virtually-addressed caches.

All memory operations in a system that use guarded
pointers require that one of their operands be a guarded
pointer and that the permission field of the pointer allow the
operation being attempted. Users are not allowed to set the
pointer bit of a word, although they may manipulate pointers
with instructions that maintain the protection scheme. This
prevents users from creating arbitrary pointers, while allow-
ing address arithmetic within the segments that have been
allocated to a user program. Privileged programs are allowed
to set the pointer bit of a word and thus can create arbitrary
pointers.

Memory systems that use guarded pointers provide a
single virtual address space shared by all processes. Each

EX 1019 Page 254

 



l 

6,003,123 
s 6 

guarded pointer identifies a segment of this add!css space to enter a code segment at a single location. Jumping to 
that may be any power of two bytes in length, and must be an enter pointer converts it to an execute pointer which 
aligned on its size. These R:Strictions allow six bits of is then loaded into the instruction pointer. 'Ibcre are two 
segment length information and 54 bits of virtual address to types of enter pointers: enter-user and enter-privileged, 
completely specify a segment. The length fieW of a gwuded 5 which are converted to the com:.sponding type of 
pointer encodes the base-two logarithm of the segment execute pointer by a jump. 
length. This allows semients ranging in length from a single A Key pointer may not be modified or referenced in any 
byte up to the entire 2 4 byte address space in power of two 
increments. As shown in FIG. I the length field also divides way. It may be used as an unforgeable, unalterable 

identifier. the address into segment identifier and offset fields. A 10 
four-bit permission field completes the capability by idea- Physical: The pointer references data in physical memory 
tifying the set of operations permitted on the segment. on the local node. This bypasses the virtual memory 

FIG. 1B presents a simple illustration of the segment system ignoring the LlLB on cache misses. If the 
length and addR:Ss fields of the guarded pointer assuming an address exceeds the size of local physical memory, the 
address field of only 4 bits and a length field of 3 bits. With 

15 
top bits are ignored. 

the length L equal to zero, each segment is of length 2°-1 Since the set of pointer states does not require all of the 
word in length. As illustrated by the vertical broken line, the pOSSible four bit values, architects may implement pointer 
segment length L positions the division between off.set and types to support particular features of their architecture, such 
segment to the far right of the address, so there would be no as the following point.er types, which are implemented on 
offset. Each segment base address would also be the address 

20 
the M-Machine. 

of the addressed word. With Lequal one, each segment is of Execute Physical: Data may be read or executed as code, 
21 .. 2 words long. The broken line indicates a one bit offset. but not written. On cache misses, the n.B is not 
Where the full address is 1011, the base address 1010 of the accessed. Tue thread is in privileged mode. 
segment is defined by setting the offset to zero. Ent.er Message: Code at this address may be executed in 

Similarly, with increasing values of L the number of 25 a message handler. A send operation faults if the 
words in the segment defined by the guarded pointer designated IP is not in this state. 
increases exponentially, and the base address for the seg- Configuration Space: Indicates that the address refers to 
ment is defined by setting all offset bits to zero. an internal register in the processor. 

It can be seen from FIG. 1B that two point.exs having a Errval: The pointer has been generated by a demrred 
common address 1011 may indicate that the address is 30 exception. Any attempt to use an Errval pointer as an 
within a segment ranging in length from one byte to 16 operand will cause an exception. 
bytes. Since the base add!css is determined by setting the As noted, each pointer contains a six bit segment length 
offset lo zero, segments must be a power of two words long field that holds the log base 2 of the size of the segment in 
and must be aligned on their length. As discussed below, the which the address resides. Thus, segments may be of any 
segment definition is important to define the segment of 35 power of 2 size between 1 and 2"" bytes. This encoding 
addresses within which a particular program may operate by allows the base addR:Ss and the extent of a pointer's segment 
m~ng a given pointer. ~~rally, permission is granted to be determined without accessing any additional informa-
to modify ~~ only Wl~ a ~~nt. lion. User-level instructions that manipulate pointers (LEA, 

The pem:llSSlon fie~ o_f a pomter indica~ how a ~~ LOAD, STORE) have the lower and upper bounds of their 
may a~ the data within the segment. Point.erpe~ "° segment checked automatically to ensure that the operation 
may specify d~a ~ code access. pro~ed entry pomts, does not access memory outside of the allowed segment. 
~ protected 1dentiliets (keY':)· The petnm:51ons granted are This segmentation aod access control system provides 
wtth n1spect to ~ of the pomteIS. All pomtexs may the~- flenbility to the user, while still permitting strictly enforced 
selves be sto~ lD memory and loaded rm~ memory. It JS security. Segments can be overlapped and shared as long as 
use. of~ ~ters _to access da_ta ~ the mdicated ~dresses 45 each segment is aligned to an address that is a multiple of its 
whic~ ~ restacted. The followmg JS a representallve set of size. Since all of the necessary segmentation information is 
pemuss1ons: . contained within each pointer, a separate table of segment 

A Re_ad Only pomter may ~ ~ to load data and the descriptors is unnecessary. More importantly, instructions 
pom!er may be ~tered ~ se~ent bounds. Sto:e need not access such a table to check segmentation restric-
and Jump operallons usmg the pomter are not pemnt- so tions on memory accesses. Also, access to system functions 
ted. and other routines can be given to non-trusted programs, as 

A Read/Write pointer may be used by load and store the enter-privileged and enter-user permission states ensure 
operations, but not jump operations. It may be altered that a user may only execute code starting at the specified 
within its segment bounds. entry point. A MEMBAR (memory barrier) instruction is 

Execute pointexs may be used by jump and load opera- ss used to block further instructions from encuting until all 
tions and may be modified within segment bounds. outstanding memory references have completed. 
Thus, holding an execute pointer to .t code segment Pointer Operations 
enables a program to jump to any location within the Guarded pointers may be implemented by adding a few 
segment and to read the segment. Execute pointers may pointer manipulation instructions to the architecture of a 
be either execute-user or execute-privileged, which .o conventional machine aod adding checking hardware to 
encodes the supervisor mode bit explicitly within the verify that c:.tch instruction operates only on legal pointer 
instruction pointer. Privileged instructions, such as types and that addR:Ss calcula.tions remain within point.er 
SETPTR, may only be executed with an execute- bounds. 
privileged instruction pointer. FIG. 2A shows a flow chart of the steps involved in 

Enter pointers may be used only by jump operations. They 65 perfomling a memory reference beginning at 20 in a system 
cannot be used for loads and cannot be modified in any that incorporates Guarded Pointers. First, the pointer bit of 
way. Thus, holding an enter pointer enables a program the operand containing the address being remrenced is 

EX 1019 Page 255

 
rag”

 
"tMyrmtfluaemay1.1.3w;Mann",figrltm“gerrwtta“‘ ‘‘

»«fiwWfiWand:mega,“dawns”..1
a“,g,.

6,003,123
S

guarded pointer identifies a segment of this address space
that may be any power of two bytes in length, and must be
aligned on its size. These restrictions allow six bits of
segment length information and 54 bits of virtual address to
completely specify a segment. The length field of a guarded
pointer encodes the base-two logarithm of the segment
length. This allows segments ranging in length from a singlebyte up to the entire 2 ‘ byte address space in power oftwo
increments. As shown in FIG. 1 the length field also divides
the address into segment identifier and allied fields. A
four-bit permission field completes the capability by iden-
tifying the set of operations permitted on the segment.

FIG. 1B presents a simple illustration of the segment
length and address fields of the guarded pointer assuming an
address field of only 4 bits and a length field of 3 bits With
the length L equal to zero, each segment is of length 20-1
word in length. As illustrated by the vertical broken line, the
segment length L positions the division between olfset and
segment to the far right of the address, so there would be no
ofiset. Each segment base addroeswonld also be the address
of the addressed word. “fut: Lequal one, each segment is of
252 words long. The broken line indicates a one bit ofiset.
Where the full address is 1011, the base admires 1010 of the
segment is defined by setting the offset to zero.

Similarly, with increasing values of L the number of
words in the segment defined by the guarded pointer
increases exponentially. and the base address for the seg-
ment is defined by setting all otfset hits to zero.

It can be seen from FIG. RB that two pointers having a
common address 1011 may indicate that me address is
within a segment ranging in Iength from one byte to 16
bytes. Since the base address is determined by setting the
offset to zero, segments must be a power of two words long
and must be aligned on theirlength.As dismissed below, the
segment definition is important to define the segment of
addresses within which a particular program may operate by
modifying a given pointer. Generally, permision is granted
to modify addresses only within a segment.

The permission field of a pointer indicates how a pmcms
may acems the data within the sean Pointerpemtisicns
may specify data access, code access, promoted entry points,
and protected identifiers (keys). The permissions granted are
with respect to use of the pointers All pointers may them-
selves be stored in memory and loaded from memory. It is
use of the pointers to ace-es data at the indicated addresses
which is restricted; The following is a representative set of
permissions:

A Read Only pointer may be used to load data and the
pointer may be altered within segment bounds. Store
and jump operation; using the pointer are not permit-red.

A ReadXWrite pointer may be used by load and store
operations, but not jump operations. It may be altered
within its segment bounrk.

Execute pointers may be used by jump and load opera-
tions and may be modified within segment bounds.
Thus, holding an execute pointer to a code segment
enables a program to jump to any location within the
segment and to read the segment. Execute pointers may
be either execute-user or execute—privileged, which
encodes the supervisor mode bit explicitly within the
instruction pointer. Privileged instructions, such as
SETPTR, may only be credited with an cxccutc~
privileged instruction pointer.

Enter pointers may be used only byjump operations. They
cannot be used for loads and cannot be modified in any
way. Thus, holding an enter pointer enables a program

10

15

35

4s

50

SS

65

6

to enter a code segment at a single location. Jumping to
an enter pointer converts it to an exowle pointer which
is then loaded into the instruction pointer. There are two
types of enter pointers: enter—user and enter~privileged,
which are converted to the corresponding type of
exeatte pointer by a jump.

A Key pointer may not be modified or referenced in any
way. It may be used as an unforgeable, unalterahle
identifier.

Physical: The pointer references data in physical memory
on the local node. This bypasses the virtual memory
system ignoring the LTLB on cache misses. If the
address exceeds the size of local physical memory, the
top bits are ignored.

Since the set of pointer states does not require all of the
possible four bit values, architects may implement pointer
types to support particular features of their architecture, such
as the following pointer types, which are implemented onthe M—Machine.

Execute Physical: Data may be read or executed as code,
but not written. 0n cache misses, the TLB is not
named. The thread is in privileged mode.

Enter Message: Code at this address may be executed in
a message handler. A send operation faults if the
designated [P is not in this state.

Configuration Space: Indicates that the address refers to
an internal register in the promssor.

Err-val: The pointer has been generated by a deferred
exception. Any attempt to use an Emal pointer as an
operand will cause an exception.

As noted, each pointer contains a six bit segment length
field that holds the log base 2 of the size of the mgment in
which the address resides. ”thus, segments may be of any
power of 2 size between 1 and 25" bytes. This encoding
allows the base address and the extent of a pointer’s segment
to be determined without accessing any additional informa-
tion. User—level instructions that manipulate pointers (LEA,
LOAD, STORE) have the lower and upper bounck of their
segment dredrted automatically to ensure that the operation
does not access memory outside of the allowed mgment.

This segmentation and am who] system provides
flexibility to the user, while still permitting strictly enforced
security. Segments an be overlapped and shared as long as
each segment is aligned to an address that is amultiple of its
size. Since all of the necessary segmentation information is
contained within each pointer, a separate table of segment
descriptors is unnecessary. More importantly, instructions
need not access such a table to check segmentation rushin-
tions on memory am Also, access to system functions
and other routines can be given to non-trusted programs, as
the enter-privileged and enter-user permission states ensure
that a user may only execute code starting at the specified
entry point. A MEMBAR (memory barrier) instruction is
used to block further instructions from executing until all
outstanding memory referenccs have utmplctcdt
Foiuter Operations

Guarded pointers may be implemented by adding a few
pointer manipulation instructions to the architecture of a
conventional machine and adding checking hardware to
verify that each instruction operates only on legal pointer
types and that address calculations remain within pointerbounds.

FIG. 2A shows a flow chart of the steps involved in
performing a memory reference beginning atZI) in a system
that incorporates Guarded Pointers First, the pointer bit of
the operand containing the address being referenced is

EX 1019 Page 255



L 

6,003,123 
7 

checked at 22 to determine if the address operand is a 
guarded pointer. If the pointer bit is not set, an exception 

0 ccws at 24. Second, the permission field of the pointer is 
checked at 26 and 28 to verify that it allows the operation 
being attempted, and an exception raised at 30 if it docs not. 5 

If the operation involves address computation, an integer 
offset is then added to the address field of the pointer at 32. 
Segmentation violation is checked at 34 and 36. An excep
tion 38 is raised if the result of this add overflows or 
underflows into the fixed segment portion of the address, 10 

which would create a pointer outside the original segment. 
If all of these checks pass, the operation is submitted to the 
memory system at 40 to be resolved. 

Load/Store: Every load or store operation requires a 
guarded pointer of an appropriate type as its address argu- 15 
meat. Protection violations are detected by checking the 
permission field of the pointer. If the address is modified by 
an indexed or displacement addressing mode, bounds vio
lations are checked by examining the length field as 
dcscnbed below. The protection provided by guarded point- 20 

crs does not slow load or store operations. All checks arc 
made before the operation is issued without reference to any 
permission tables. Once these initial checks arc performed, 
the access is guaranteed not to cause a protection violation, 
although events in the memory system, such as 1LB misses, 25 

may still occur. 
Pointer Arithmetic: An LEA (load effective address) 

instruction may be used to calculate new pointers from 
existing pointers. This instruction adds an integer offset to a 
data (read or read/write) or execute pointer to produce a new 30 

pointer. An exception is raised if the new pointer would lie 
outside the segment defined by the original pointer. For 
cfliciency, a LEAB operation, which adds an offset to the 
base of the segment contained in a pointer may be 
implemented, as well. If a guarded pointer is used as an input 35 

to a non-pointer operation, the pointer bit of the guarded 
pointer is cleared, which converts the pointer into an integer 
with the same bit fields as the original pointer. 

FIG. 2B details the protection check hardware used on a 
pointer calculation. Thc permission field of the pointer 42 is 40 

checked at 44 against the opcode 46 to verify that the 
requested operation using the pointer is permissible. In that 
respect, the permission check hardware need only decode 
the opcode to identify permission bits which arc appropriate 
for that opcode and compare those bits to the permission bits 45 

of the pointer 42 in combinational logic. An integer offset 48 
may be added to the address field of the pointer at 50 to 
generate the new pointer 54. An exception is raised if the 
result of this add over or underflows into the fixed segment 
portion of the address, which would create a pointer outside 50 
the original segment. This may be detected in the segment 
check 52 by comparing the fixed portion of the address 
before the add to the same field of the resulting pointer. 

FIGS. 3, 4 and 5 show in greater detail the hardware of 
FIG. 2B used in performing an address calculation on a 55 

guarded pointer. The 54-bit address field of the pointer is 
added in adder 56 to a 54-bit olfsct to get the result address. 
The 6-bit length field of the pointer is fed to a mask 
generator 58, which generates a 54-bit output applied as a 
mask to masked comparator 60. Each bit in this output is set 60 

to one if the corresponding bit in the address represents a bit 
in the segment identifier and to zero if the bit represents a bit 
in the offset portion of the address. Bits in the offset portion 

8 
address, and the corn:sponding bit of the mask are fed into 
a comparator cell 62, as shown in FIG. 5. The output of XOR 
gate 64 is one if the bit from the original address and the bit 
from the result address differ. This output is then ANDed at 
66 with the bit from the bit mask, which is one if the bit 
being examined is part of the segment portion of the address, 
and therefore not allowed to change. The outputs of all the 
comparator cells are ORed together at 68 to determine if any 
of the segment bits changed during the addition of the offset, 
which indicates that a segmentation violation bas occurred. 

Guarded pointers expose to the compiler address calcu
lations that arc performed implicitly by hardware in con
ventional implementations of segmentation or capabilities. 
With the conventional approach, the segmentation hardware 
performs many redundant adds to relocate a series of related 
addresses. Consider, for example, the following loop: 

for(/-O;i<N;i++) -,+a[ i]; 

In a conventional system, eacb reference to array a would 
require the segmentation hardware to automatically add the 
segment offset for each a[i] to the segment base. With 
guarded pointers, the add can be performed once in 
software, and then the resulting pointer can be incrementally 
stepped through the array, avoiding the additional level of 
indirection. 

Languages that permit arbitrary pointer arithmetic or type 
casts between pointers and integers, such as C, arc handled 
by defining code sequences to convert between pointer and 
integer types. The pointer-to-integer cast operation takes a 
guarded pointer as its input and returns an integer containing 
the offset field of the guarded pointer. This can be performed 
by subtracting the segment base, determined using the 
LEAB instruction, from the pointer: 

LEAB Ptr, 0, Base SUB Ptr, Base, Int 
The integer-to-pointer case operation uses the LEAB 

instruction to take an integer and create a pointer into the 
data segment of the process with the integer as its offset, as 
long as the integer fits into the offset field of the data 
segment. Note that neither of these case operations requires 
any privileged operations. which allows them to be inlined 
into user code and exposed to the compiler for optimization. 

Pointer Creation: A process executing in privileged mode, 
with an execute-privileged IP, has the ability to create 
arbitrary pointers and hence access the entire address space. 
Privileged mode is entered by jumping to an enter-privileged 
pointer. It is exited by jumping to a user pointer (enter or 
execute). While in privilege mode, a process may execute a 
SETPTR instruction to convert an integer into a pointer by 
setting the guarded pointer bit. Thus, a privileged process 
may amplify pointer permissions and increase segment 
lengths while a user process can only restrict access. No 
other operations need be privileged, as guarded pointers can 
be used to control access to protected objects such as system 
tables and 1/0 devices. 

Restricting Access: A process may create pointers with 
restricted permissions from those pointers that it bolds. This 
allows a process to share part of its address space with 
another process or to grant another process read-only access 
to a segment to which it holds read/write permission. 

A RESTRICT instruction takes a pointer, P, and an integer 
permission type, T, and creates a new pointer by substituting 
T for the protection field of P. The substitution is performed 
only if T represents a strict subset of the permissions of P so 
that the new pointer has only a more restricted access. For 
example, a read pointer may be created from a read/write of the address arc allowed to change during address 

calculation, while bits in the segment identifier arc not. 65 pointer, but not vice versa. Otherwise, an exception is raised. 
Similarly the SUBSEG instruction takes an integer length, 

L, and a pointer, P, and substitutes L into P if L is less than 
FIG. 4 illustrates the masked comparator 60. Each bit of 

the original address, the corresponding bit of the result 

EX 1019 Page 256

 
6,003,123

7

checked at 22 to determine if the address operand is a
guarded pointer. If the pointer bit is not set, an exception
occurs at 24. Second, the permission field of the pointer is
checked at 26 and 28 to verify that it allows the operation
being attempted, and an exception raised at 30 if it does not.
If the operation involves addres computation, an integer
offset is then added to the address field of the pointer at 32.
Segmentation violation is checked at 34 and 36. An excep-
tion 38 is raised if the result of this add overflows or
underflows into the fixed segment portion of the address,
which would create a pointer outside the original segment.
If all of these checks pass, the operation is submitted to the
memory system at 40 to be resolved.

Load/Store: Every load or store operation requires a
guarded pointer of an appropriate type as its address argu-
ment. Protection violations are detected by checking the
permission field of the pointer. If the address is modified by
an indexed or displacement addressing mode, bounds vio-
lations are checked by examining the length field as
described below. The protection provided by guarded point-
ers does not slow load or store operations All checks are
made before the operation is issued without reference to any
permission tables. Once these initial checks are performed,
the access is guaranteed not to cause a protection violation,
although events in the memory system, such as TLB misses,
may still occur.

Pointer Arithmetic: An LEA (load effective address)
instruction may he used to calculate new pointers from
existing pointers. This instruction adds an integer offset to a
data (read or read/write) or execute pointer to produce a new
pointer. An exception is raised if the new pointer would lie
outside the segment defined by the original pointer. For
etficiency, a LEAB operation, which adds an ofl'set to the
base of the segment contained in a pointer may be
implemented, as well. lfa guarded pointer is used as an input
to a non—pointer operation, the pointer bit of the guarded
pointer is cleared, which converts the pointer into an integer
with the same hit fields as the original pointer.

FIG. 2B details the protection check hardware used on a
pointer calculation. The permission field of the pointer 42 is
checked at 44 against the opcode 46 to verify that the
requested Operation using the pointer is permissible. In that
respect, the permission chedr hardware need only decide
the opcode to identify permission bits which are appropriate
for that opcode and compare those bits to the permission bits
of the pointer 42 in combinational logic. An integer offset 48
may be added to the address field of the pointer at 50 to
generate the new pointer 54. An exception is raised if the
result of this add over or underflows into the fixed segment
portion of the address, which would create a pointer outside
the original segment. This may be detected in the segment
check 52 by comparing the fixed portiin of the address
before the add to the same field of the resulting pointer.

FIGS. 3, 4 and 5 show in greater detail the hardware of
FIG. 2B used in performing an address calculation on a
guarded pointer. The 54-bit address field of the pointer is
added in adder 56 to a 54-bit ofi'set to get the result address.
The 6-bit length field of the pointer is fed to a mask
generator 58, which generates a 54-bit output applied as a
mask to masked comparator 60. Each bit in thisoutput is set
to one if the corresponding bit in the address represents a bit
in the segment identifier and to zero if the hit represents a bit
in the offset portion of the address. Bits in the offset portion
of the address are allowed to change during addreg
calculation, while bits in the segment identifier are not.

FIG. 4 illustrates the masked comparator 60. Each bit of
the original address, the corresponding bit of the result

10

15

35

45

50

55

60

65

8
address, and the corresponding bit of the mask are fed into
a comparator cell 62, as shown in FIG. 5. The output of XOR
gate 64 is one if the bit from the original address and the bit
from the result addrem difier. This output is then ANDed at
66 with the bit from the bit mask, which is one if the bit
being examined is part of the segment poru'on of the address,
and therefore not allowed to change. The outputs of all the
comparator cells are ORed together at 68 to determine if any
of the segment bits changed during the addition of the offset,
which indicates that a segmentation violation has occurred.

Guarded pointers expose to the compiler address calcu—
lations that are performed implicitly by hardware in con-
ventional implementations of segmentation or capabilities.
With the conventional approach, the segmentation hardware
performs many redundant adds to relocate a series of related
addresses. Consider, for example, the following loop:

fwtl-OfidlflH) Neill;

In a conventional system, each reference to array a would
require the segmentation hardware to automatically add the
segment otIset for each a[i] to the segment base. With
guarded pointers, the add can be performed once in
software, and then the resulting pointer can be incrementally
stepped through the array, avoiding the additional level of
indirection.

Languages that permit arbitrary pointer arithmetic or type
casts between pointers and integers, such as C, are handled
by defining code sequencrs to convert between pointer and
integer types. The pointer-to-integer cast operation takes a
guarded pointer as its input and returns an integer containing
the ofiset field of the guarded pointer. This can be performed
by subtracting the segment base, determined using the
LEAB instruction, from the pointer.

LEAB Ptr, 0, Base SUB Ptr, Base, Int
The integer—to-pointer case operation uses the LEAB

instruction to take an integer and create a pointer into the
data segment of the process with the integer as its offset, as
long as the integer fits into the offset field of the data
segment. Note that neither of these case operations requires
any privileged operations, which allows them to be inlined
into user cock: and exposed to the compiler for optimization.

Pointer Creation: Aprocess executing in privileged mode,
with an execute—privileged 11-", has the ability to create
arbitrary pointers and hence am the entire addres space.
Privileged mode is entered by jumping to an enter—privileged
pointer. [t is exited by jumping to a user pointer (enter or
execute). While in privilege mode, a process may execute a
SETP’I'R instruction to convert an integer into a pointer by
setting the guarded pointer bit. Thus, a privileged process
may amplify pointer permissions and increase segment
lengths while a user process an only restrict acces. No
other operations need be privileged, as guarded pointers can
be used to control access to protected objects such as system
tables and I/O devices.

Restricting Amess: A procrss may create pointers with
restricted permissions from those pointers that it holds. This
allows a process to share part of its address space with
another process or to grant another process read—only access
to a segment to which it holds read/write permission.

ARESTRICT instruction takes apointer, P, and an integer
permission type, T, and creates a new pointer by substituting
T for the protection field of P. The substitution is performed
only if T represents a strict subset of the permissions of P so
that the new pointer has only a more restricted access. For
example, a read pointer may be Created from a read/write
pointer, but not vice versa. Otherwise, an exception is raised.

Similarly the SUBSEG instruction takes an integer length,
L, and a pointer, P, and substitutes L into P if L is less than

 

#—_‘

EX 1019 Page 256



6,003,123 
9 10 

I 
the original length field of P, so that the created segment is ENTER pointers allow efficient realization of protected 
a subset of the original. Changing to a les.ser length system services and modular user programs that enforce 
decreases the length of the offset sub.field for decreased access methods to data structures. Modules of an operating 
offset range and increases the length of the segment field for system, e.g., the file-system, can be implemented as unprivi-
finer segment location resolution. s lcged protected subsystelll6 that contain pointers to appro-

The RESTRICT and SUBSEG inslructions allow a nser priatc data strucnm:s. Since these data slructures camiot be 
process to control access. to its 1;11emory space efficiently, accessed from outside the protected subsystem, the filc-
withont s}'.Stem ~ftware mteraction. The RESTRICT and system's data structures arc protected from unauthorized 
SUBSEG inSlructions are 11~ complciely necessarr, as they use. Even an UO driver can be impkmented as an unprivi-
can be emulated by providing user processes with enter- . 

"vil ed · ,_ t tin' that th SE'T'IYT'I) · tru 10 leged protected subsystem by protecting access to the read/ pn eg pom ... rs o rou es nse e ,r ,.,. ms c- . . f d l/0 -'--" With 
tion to create new pointers that have restricted access rights wnte pomter O a memory-mappe u,;.v,ce. 1 J?ro-
or segment boundaries. The M-Machine, which will be tectcd entry to user-l~V:el subsystems, very few services 
descn"bed in the next section, takes this approach. actually n~ to be pnvileged. 

Pointer Identification: The lSPOINTER instruction is Implementation Costs 
provided to determine whether a given word is a guarded 1S Hardware: Guarded pointers have two hardwan} costs: an 
pointer. This instruction checks the pointer bit and returns its increase in the amount of memory required by a system and 
state as an integer. Quick pointer determination is useful for the hardware required to peiform permission cbeclcing. To 
programming systems that provide automatic storage prevent unauthorized creation or alteration of a guarded 
reclamation, such as USP, which need to find pointers in pointer, a single tag bit is required on all memory words, 
order to garbage collect physical space (Moon, D. A. Sym- 20 which results in a 1.5% increase in thc amount of memory 
bolics Architecture, IEEE Computer (1987) , 43-52). required by the system. 
Protected Subsystems The hardware required to perform permission checking on 

ENTER pointers facilitate the implementation of pro- memory access, and segment bounds checking on pointer 
tected subsystems withont kernel intervention. A protected manipulation, is minimal. One decoder for the permission 
subsystem can be entered only at specific places and may '1.5 field of the pointer, one decoder for the opcode of the 
eiu:cutc in a different protection domain tha.n its caller. Entry instruction being executed, a.nd a small amount of random 
into a protected subsystem, such as a file system manager, is logic are required to determine if the operation is allowed. 
illustrated in FlG. 6. A program enters a protected subsystem The pointer bit of an operand can be checked at the same 
by jumping to an enter pointer. After entry the subsystem time, to determine if it is a legal pointer. To check for 
code loads pointers to its data structuics from the code 30 segment bounds violations when altering a. pointer, a masked 
segment. A represents the register state of the ma.chine comparator is needed It compares the ~ before and 
before the protected subsystem call, B thc register stale just after alteration and signals a. fault if any of the segment bits 
after the call, C the register state during the execution of the of thc address field change. 
protected subsystem, .and D the register state immediately Memory systems based on guarded pointeIS do not 
after the return to the· caller. 35 require my segment.ation tables or protection loobside 

Before the call, the calling program (segment 1) bolds an buffers in hardware, nor is it necessary to annotate cached 
enter pointer to the subsystem's code segment (segment 2) virtual-physical translations with a. process or address space 
which oontains the subsystem code as well as pointers to the identifier. As with other single a.ddrcs& space systems, the 
subsystem's data. segments. such as the file system tables. To cache may be virtually addn:ssed., requiring translation only 
enter the subsystem, the caller jumps to ENTER2, causing -40 on cache misses. 
the hardware to transfer conlrol to the entry point and Address Space: Since 6 to 10 bil5 arc required to encode 
convert the enter pointer to the execute pointer lP2 in the permission and segment kngth field of a. guvded pointer, 
register state B. 'The retnm instruction pointer (RETIP) is the virtua1 address space is reduced. On a 64-bit machine, a 
passed as an ugument to the subsystem. The subsystem then guarded pointer virtual address is 54 bits. which provides 16 
lll!Cs the execute pointer to load GPl and GP2, the pointers 4S petabytes of virtual addmss space, enough for the immediate 
to its data structures (state C). The subsystem returns to the future. Several current processors support 64-bit addresses, 
calling program by overwriting any registers oontaining but only translate some of the biL5 in each address. For 
private pointers and jumping to RE11P (state D). example, the DEC Alpba 21064 only translates 43 biL5 of 

The sequence described above provides one-way ea.ch 64-bit address (Digital Equipment Corpora.lion, Alpha 
protection, protecting the subsystem's data slructures from so Architecture Handbook:. Maynard, Mass., 1992). 
the calkr. To provide two-way protection, the caller There is an opportunity cost associated with reducing the 
(segment 1) encapsulates its protection domain in a return virtual address space, however. Some system designers take 
segment (segment 3) as shown in FlG. 7. Before the call advantage of large v.irtual. address spaces to provide a. level 
(state A), the caller bolds both enter and read/write pointers of security through sparse placement of objects. For 
to a return segmenL The caller writes all the live pointers in 55 example, the Amoeba distributed operating system 
its registers into the return segment to protect them from the (Mullendcr, S. J., Van Rossum, G., Tanenbaum, A. S., Van 
subsystem (segment 2). It then overwrites all of the pointers Rencsse, R. and Van Staveren, H., "Amoeba: A distnbutcd 
in its register file except the enter pointer to the return operating system for the 1990s" IEEE Computer 23 (May 
segment (ENTER3), the subsystem enter pointer 1990), 44-53) protects objecL<; using a software capability 
(ENTER2), and any arguments for the call (state B). The 60 scheme. These capabilities are kept secret by embedding 
subsystem call lllen proceeds as descnbcd above. After them in a huge virtual address space. This becomes less 
entry, the subsystem holds only an enter pointer to the return attractive if the virtual address space is 1000 times smaller. 
segment and thus canoot directly access any of the data Of course, this particular use of a sparse virtual address 
segments in the caller's protection domain (state C). The space can be replaced by the capability mechanism provided 
subsystem returns by jumping to the return segment (state 6S by guarded pointers. 
D), which reloads the caller's saved pointers and returns to Virtual address space fragmentation is another potential 
the calling program. problem with guarded pointers, as segments must be powers 

L 
EX 1019 Page 257

 

“mmmmA:on
€—
.1\-

Jh

9

the original length field of P, so that the created segment is
a subset of the original. Changing to a lesser length
decreases the length of the otfset subtield for decreased
otfset range and increases the length of the segment field for
finer segment location resolution.

The RESTRICI‘ and SUBSEG instructions allow a user

process to control access to its memory space ctficiently,
without system software interaction. The RESTRICT and
SUBSEG instmctious are not completely necessary, as they
can be emulated by providing user promises with enter-
privilegod pointers to routines that use the SETPTR instruc-
tion to create new pointers that have restricted access rights
or segment boundaries. The ltd-Machine, which will be
described in the next section, takes this approach.

Pointer Identification: The lSPOINTER instruction is
provided to determine whether a given word is a guarded
pointer. This instruction checks the pointer bit and returns its
state as an integer. Quick pointer determination is meful for
programming systems that provide automatic storage
reclamation, such as LISP, which need to find pointers in
order to garbage collect physical space (Moon, D. A. Sym-
bolics Amhitecmre, IEEE Computer (1987} , 43-52).
Protected Subsystems

ENTER pointers facilitate the implementation of pro~
looted subsystem without kernel intervention. A protected
subsystem can be entered only at specific places and may
execute in z dificrent protection domain than its caller. Entry
into a protected subsystem, such 3 a file system manager, is
illustrated in FIG. 6. Aprogram enters a protected subsystem
by jumping to an enter pointer. After entry the subsystem
code loads pointers to its data strucntres from the code
segment. A represents the register state of the machine
before the protected subsystem call, B the register state just
after the call, C the register state during the execution of the
protected subsystem, and D the register state immediately
after the return to thc'caller.

Before the call, the calling progam (segment 1) holds an
enter pointer to the subsystem’s code segment (segment 2)
which contains the subsystem code as well aspointers to the
subsystem’s data segments, arch a the file system tables. To
enter the subsystem, the caller jumps to BN'I'ERZ, causing
the hardware to transfer control in the entry point and
convert the enter pointer to the execute pointer M in
register state B. The return instruction pointer (RETII’) is
passed as an argument to the subsystem. The subsystem then
uses the execute pointer to load GM and GPZ, the pointers
to its data structures (state C). The nibsystem returns to the
calling program by overwriting any registers containing
private pointers and jumping to RETIP (state D).

The sequence described above provides one—way
protection, protecting the subsystem's data structures from
the caller. To provide two-way protection, the caller
(segment 1) encapsulates its protection domain in a return
segment (segment 3) as shown in FIG. 7. Before the call
(state A), the caller holds both enter and readfwrite pointers
to a return segment. The caller writes all the live pointersin
its registers into the return segment to protect them from the
subsystem {segment 2). It then overwrites all of the pointers
in its register file except the enter pointer to the return
segment (ENTER3), the subsystem enter pointer
(ENTERB), and any arguments for the call (state B). The
subsystem call then proceeds as described above. After
entry, the subsystem holds only an enter pointer to the return
segment and thus cannot directly access any of the data
segments in the caller’s protection domain {state C). The
subsystem returns by jumping to the return segment (state
D), which reloads the caller’s saved pointers and returns to
the calling program.

10

15

35

45

6,003,123
10

ENTER pointers allow efficient realization of protected
system services and modular user programs that enforce
access methods to data structures. Modules of an operating
system, eg, the filesystem, can be implemented as unprivi-
leged protected subsystems that contain pointers to appro-
priate data structures. Since these data structures moot be
accessed from outside the protected subsystem, the tile-
system’s data stmctures are protected from unauthorized
use. Even an U0 driver can be implemented as an unprivi-
leged protected subsystem by protecting access to the read]
write pointer of a memory-mapped l/O device. With pro»
teeter! entry to user-level subsystems, very few services
actually need to be privileged.
Implementation Costs

Hardware: Guarded pointers have two hardware costs: an
increase in the amount of memory required by a system and
the hardware required to perform permission cheddng. To
prevent unauthorized creation or alteration of a guarded
pointer, a single tag bit is required on all memory words,
which results in a. 1.5% increase in the amount of memory
required by the system.

The hardware required to perform permission checking on
memory access, and segment bounds checking on pointer
manipulation, is minimal One decoder for the permission
field of the pointer, one decoder for the opcode of the
instruction being executed, and a small amount of random
logic are required to determine if the operation is allowed.
The pointer bit of an operand can be attacked at the same
time, to determine if it is a legal pointer. To check for
segment buttock violations when altering a pointer, a masked
comparator '5 needed. It compare; the address before and
after alteration and signals a fault if any of the segment bits
of the address field change.

Memory systems based on guarded pointers do not
require any segmentation tables or protection lookaside
bllfiGIS in hardware, nor is it memory to annotate cached
virhial~physiml translations with a process or address space
identifier. As with other single address space systems, the
cache may he virtmlly addressed, requiring translation only
on ache misses

Addres Space: Since 6 to 10 bits are required to encode
the permission and segment length field ofa guarded pointer,
the virtual addressspace is reduced. On a 64-bit machine, a
guarded pointer virtual address is 54 bits, which provides 16
petabytes ofvirtual address space, enough for the immediate
future. Several current processors mpport 64—bit addrm,
but only translate some of the bin in each address. For
example. the DEC Alpha 21064 only translates 43 hits of
each 64-bit address (Digital Equipment Corporation, Alpha

50 Architecture Hardback. Maynard, Mess, 3.992).

55

65

There is an opportunity cost associated with reducing the
virtual address space, however. Some system designers take
advantage of large virtual addrem spaces to provide 1 level
of security through sparse placement of objects. For
example, the Amoeba distributed operating system
(Mullender, S. 1., Van Rossum, 6., Tanenbanm, A. S., Van
Renesse, R. and Van Stavcrcu, Ii, “Amoeba: A distributed
operating system for the 19908“ IEEE Comma 23 (May
1990), 44—53) protects objects using a software capability
scheme. These capabilititzs are kept secret by embedding
them in a huge virtual address space. This becomes less
attractive if. the virtual addres space is 1000 times smaller.
Of course, this particular use of a sparse virtual retirees
space can be replaced by the capability mechanism provided
by guarded pointers.

Virtual address space fragmentation is another potential
problem with guarded pointers, as segments must be powers

.«t»,-o-...nmi...

...mu...WM”...

EX 1019 Page 257


