EX 1019 Page 1

e R T D TR s e :‘; 5?71545

: U S UTILITY Patent Apphcatton -
PATENT DATE |
Wﬁ g/ﬁ g oo 1M
SCANNED QA _Q:/ B
APPLICATION NO, CONTIPRI_DH [) suacu\ssw MARTW ;J;:rr” Exmsﬁ;:t;a o
g C2/E28I6R b- ' 3(0 LT Zhb4- - .

1 . ~ "‘"’ff"f'—f"“‘"“? ?- - e
i o L . . —
{\ 1§ . e ;',.f“;(. /{ F”f“”". A

& . Certificate

% erfifica Lig

CNOV T 62004 Ce#hﬁCQf@
g of Correction SEP 21 2004 bTo2340
. 12199

7 CERTIVICATE of Correatinn

ISSUING CLASSIFICATION

o, ORIGINAL 1 { CROSS REFERENCE(S)
CLASS SUBCLASS CLASS SUBCLASS (ONE SUBCLASS PER BLOCK)
i 250 249% - 170 i aea
" £ >y
- INTERNATIONAL CLASSIFICATION | 37 3o
i Glolvlr| 2r/o& 70§ 23
‘{ . 77] 19
'
', [Continued on Issue Slip Inside File Jacket

- s
R o

: TERMINAL ‘ DRAWINGS CLAIMSACLOWED

i DISCLAIMER ety — - -

N Sheets Dnﬂg _#Figs. Drwg. | Print Fig. Total /gazrﬁ?;, Print Claim for O.G.
: 2 52 | 15 | %o 7

J (] The term of this patent o NOTICE OF ALLOWANCE MAILED

subsequent to (date) - j A 1 an V. ,\/‘1“\/5}‘\ "!/I‘,] sy
has been disclaimed. - (Asslstant Examine) _ (Dale)

. I - -
3 The term of this patent shall - \‘}];2 O J Ok} o

not extend beyond the expiration date ‘C [- -
of U.S Patent, No.) ” ISSUE FEE /(.

RICKY NGO - e
MINER mount Due 5 Date Paid
PRIMARY EXA ot /0;_

U — {Primary Examiner) {Date) , 8 \?‘?jg/ h/(/ %‘)(f

/)séue BATCH NUMBER
1 The temminal months of 1{ jé P . b
this patent have been disclaimed. (L al rd .

eg: s Exa

T

{
£

{Ofte} ~
WARNING: P
The infosnation disciosed heremn may be u ed d e may be proh d By the United States Code Title 35, Sections 122, 181 and 368
Possession outside the U.S. Patent & T Office 15 to authonzed yees and c ty
. oA FLED with:] pisk crF) [JFicHE [] co-rom

lSSU i: F i: N F‘ LE (Attached In pocket on right inside flap)

AR . (FACE)

e Iy s A=

EX 1019 Page 2

Page 1 of 1

U O !Iﬂl L

Bib Data Sheet

COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE

WasrinGgTON, D C. 20231
www uspto gov

FILING DATE
06/30/2000

RULE

CLASS
370

GROUP ART UNIT
2731

SERIAL NUMBER
09/608,266

ATTORNEY
DOCKET NO.

APPT-001-4

IAPPLICANTS

Haig A. Sarkissian, San Antonic; TX .~
Russell S. Diefz, San Jose*CA

7

& 080
ek CONTlNUlNG DATA X **kwtt**t/kt**i**t‘k**f
THIS APPLN CLA!MS BENEFIT OF 60/141,903 06/30/1999

s"' /
e 4 FORE‘GN &PPLICAT!ONS ***ﬂ/lkgflp{ii**i*i*i

/A%
IF REQUIRED, FOREIGN FILING LICENSE

GRANTED ** 09/01/2000
yes E no a7

Foregn Pnonty claimed
Yo D Met after

[35 USC 119 (a-d) conditions C]

met Alloyv
Verified and
IAcknowledged

STATE OR
COUNTRY
X

SHEETS
DRAWING

21 20

Exam,u(er s S?gnature Imtials

TOTAL
CLAIMS

INDEPENDENT
CLAIMS
3

IADDRESS ’

Dov Rosenfel
5507 College’ Avenue

file://C:\APPS\PreExam\correspondence\l _A.xml

Suite 2
Oakland ,CA 94618
TITLE
Associative cache structure for lookups and updates of flow records in a network monitor
ID Ali Fees
{D 1.16 Fees (Filing)
FILING FEE [FEES: Authority has been given in Paper D 117 Fees (Processing Ext. of
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT {itime)
840 No. for following: (U 1.18 Fees (Issue)
10 other
\C] Credit

11/

EX 1019 Page 3

it

PTO-1556
(5/87)

*U.S.6PO: 1999-459-082/19144

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

»

EX 1019 Page 4

0ld 's'n s6Lof

MR

T

aall U,

o

T

R R

>

O} -p3-=¢

IN THE U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

QOur Ref/Docket No.: _APPT-001-4

’ o]
Box Patent Application :\o
ASSISTANT COMMISSIONER FOR PATENTS o
Washington, D.C. 20231 sy
foSos]
- - - ‘a
Dear Assistant Commissioner: o=
DTy
Transmitted herewith is the patent application of L
INVENTOR(s)/APPLICANT(s)
Last Name First Name, MI Residence (City and State or Country)
Sarkissian Haig A. San Antonio, Texas
Dietz Russell S. San Jose, CA
TITLE OF THE INVENTION

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387

5507 College Avenue, Suite 2

Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that apply)

Included are:
X 65 _ sheet(s) of specification, claims, and abstract
21 ___ sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson
Information Disclosure Statement.
Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a
copy of each references included in PTO-1449.
Declaration and Power of Attorney
An assignment of the invention to_Apptitude, Inc.
A letter requesting recordation of the assignment.
An assignment Cover Sheet.
Additional inventors are being named on separately numbered sheets attached hereto.
Return postcard.
This application has:
a small entity status. A verified statement:
is enclosed
was already filed.

A THT T

The fee has been calculated as shown in the following page.

Certificate of Mailing under 37 CFR 1.10

L hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent

Applicatiop, Assistant Commissioner for Patents, Washington, D.C. 20231 on.
Date: 3 o LEB/EO Signed%’
< 7

/
Name: Dov Rosenfeld, Reg. No. 38687

EX 1019 Page 5

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. _ APPT-001-4

NO. OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS CLAIMS FEE

TOTAL 20 0 $18 $ 0.00
CLAIMS

INDEP. 3 0 $78 $ 0.00
CLAIMS

BASIC APPLICATION FEE: $690.00

7 TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A check in the amount of is attached for application fee and presentation of claims.

A check in the amount of § 40.00 is attached for recordation of the Assignment.

The Commissioner is hereby authorized to charge payment of the any missing filing or other fees
required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,
Date i “Dov Rosenfeld , Reg. No. 38687

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
= Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

EX 1019 Page 6

ft

",

) Tl st Hoat

b T

it

s W |

R

Our Ref./Docket No: APPT-001-4 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al. Group Art Unit: unassigned

Title: ASSOCIATIVE CACHE STRUCTURE FOR | Examiner: unassigned
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

LETTER TO OFFICIAL DRAFTSPERSON
SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 21 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

Respectfully Submitted,

W}O.z,oa—o

¢/ Date Dov Rosenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2
Oakland, CA 94618]
Telephone: (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.10

[hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent

Applicatign, Assistant Commissioner for Patents, Washington, D.C. 202
Date:ﬁ\ﬂ« 3@, m‘@ Signed;
| Natie” Dov Rosenfeld, Reg. No. 38687

EX 1019 Page 7

L/

QOur Ref./Docket No.: __APPT-001-4

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

Inventor(s):

SARKISSIAN, Haig A.
San Antonio, Texas

DIETZ, Russell S.
San Jose, CA

Hll Hoedlt ol Buuewr

; Certificate of Mailing under 37 CFR 1.10

Thereby cert‘gfy that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: EI417961895US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

Washington, D.C. 20231 on.
Date: % % ‘2‘@19@' Signed: %/—L/

7

et o

EX 1019 Page 8

/
Yl leq
10
C
C 15
C. 20
C
25

O »

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:
60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference. 4.S. pe bt omd

This application is related to the followingAU.S. patent applications, each filed
concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

NO. (#,}P\SI(5(-’{
U.S. Patent Application SertatNom ke for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., fledJune36;
2000-AttorneyfAgent Reference Number-APPF-001, and incorporated herein by

reference.
No- 65,743
U.S. Patent Apphisatton-Sertal-Nev,_ e, for PROCESSING PROTOCOL
SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed June-30;2000;
AttomneyfAgentReference Number APPT-004-2, and incorporated herein by

reference.
oy 60?13

U.S. Patent Application Serial NO.A _——A————for RE-USING INFORMATION FROM
DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK
MONITORING, to inventors Dietz, et al., filed Jane-36;2006s AttorneyfAgent
Reference-Number-APPT-0064-3, and incorporated herein by reference.

m/é cERET7
U.S. Patent Application Serial NO)\ —eda—swn, for STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors
Sarkissian, et al., filedJune-30;-200

S, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

EX 1019 Page 9

oS

Wb o v

g

10

15

20

25

30

0 b

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

No. b,bS51,699
Related and incorporated by reference U.S. Patentapplication—, /Lo ass, for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, AttorpeviAsentDocket-ARRT-064-1, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

EX 1019 Page 10

0 b

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

5 especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet

10 streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service

15 delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

20 of network problems.
No. & b51,899
(/ Related and incorporated by reference U.S. Pateng@m for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, AtterreytAgentDocket-ARRT-004-1, describes a network monitor

that includes carrying out protocol specific operations on individual packets including

(-“\.

25 extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These

30 form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

EX 1019 Page 11

s

10

20

25

30

0)

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No. b, 651,099
Related and incorporated by reference U.S. Pateng(aﬁﬁﬁwﬁew for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, Attorney/AsentPeocket-ARPT-064-1, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

EX 1019 Page 12

O D

4

likely that a packet associated with the least recently used flow-entry will soon arrive.

A hash is often used to facilitate lookups. Such a hash may spread entries

randomly in a database. In such a case, a associative cache is desirable.

There thus is a need for a associative cache subsystem that also includes a LRU

5 replacement policy.

SUMMARY

Described herein is an associative cache system for looking up one or more
elements of an external memory. The cache system comprises a set of cache memory
elements coupled to the external memory, a set of content addressable memory cells

10 (CAMs) containing an address and a pointer to one of the cache memory elements, and
including a matching circuit having an input such that the CAM asserts a match output
C when the input is the same as the address in the CAM ccll.AWh-'té; cache memory

whch : . . .
elemen;\ a particular CAM points to changes over time. In the preferred implementation,

R]

the CAMs are connected in an order from top to bottom, and the bottom CAM points to

15 the least recently used cache memory element.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed
preferred embodiments, these should not be taken to limit the present invention to any
specific embodiment because such embodiments are provided only for the purposes of

20 explanation. The embodiments, in tumn, are explained with the aid of the following

figures.

FIG. 1 is a functional block diagram of a network embodiment of the present

invention in which a monitor is connected to analyze packets passing at a connection

point.

25 FIG. 2 is a diagram representing an example of some of the packets and their
formats that might be exchanged in starting, as an illustrative example, a conversational
flow between a client and server on a network being monitored and analyzed. A pair of
flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be

EX 1019 Page 13

10

15

20

25

0 b

generated and used in the process of analyzing packets and of recognizing the particular

server applications that produce the discrete application packet exchanges.

FIG. 3'is a functional block diagram of a process embodiment of the present
inventiof that can operate as the packet monitor shown in FIG. 1. This process may be
/7

implémented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and
optimization process, which in one embodiment may be used to generate data for

monitoring packets according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part

of the analyzer in an embodiment of the inventive packet monitor.

. FIG. 9 is 4 flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including
the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

EX 1019 Page 14

0)

6

FIG. 14 is a simple functional block diagram of a process embodiment of the

present iny,ent'ion that can operate as the packet monitor shown in FIG. 1. This process

may be ﬁnplemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

5 FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of
the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of
10 FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet
shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

15 FIG. 18A is a three dimensional structure that can be used to store elements of
the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodiment of the invention.

FIG. 18B is,aii'altemate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment

20 of the invention.

FIG. 19 is a block diagram of the cache memory part of the cache subsystem /

e

1115 of the analyzer subsystem of FIG. 11. -~

P

FIG. 20 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

FIG. 21 is a block diagram of one implementation of the CAM array of the cache
subsystem 1115.

EX 1019 Page 15

S b

7
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may
include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

5 invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network
102 that communicates packets (e.g., IP datagrams) between various computers, for

10 example between the clients 104107 and servers 110 and 112. The network is shown
schematically as a cloud with several network nodes and links shown in the interior of
the cloud. A monitor 108 examines the packets passing in either direction past its
connection point 121 and, according to one aspect of the invention, can elucidate what
application programs are associated with each packet. The monitor 108 is shown

15 examining packets (i.e., datagrams) between the network interface 116 of the server 110
and the network. The monitor can also be placed at other points in the network, such as
connection point 123 between the network 102 and the interface 118 of the client 104, or
some other location, as indicated schematically by connection point 125 somewhere in
network 102. Not shown is a network packet acquisition device at the location 123 on

20 the network for converting the physical information on the network into packets for input

into monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the
required communication, e.g., TCP/IP, etc. Any network activity—for example an
application program run by the client 104 (CLIENT 1) communicating with another
running on the server 110 (SERVER 2)—will produce an exchange of a sequence of
packets over network 102 that is characteristic of the respective programs and of the
network protocols. Such characteristics may not be completely revealing at the
individual packet level. It may require the analyzing of many packets by the monitor 108
to have enough information needed to recognize particular application programs. The

Packets may need to be parsed then analyzed in the context of various protocols, for

EX 1019 Page 16

e D

8

example, the transport through the application session layer protocols for packets of a

type conforming to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol
stack. The ISO (International Standardization Organization) has defined a general model

5 that provides a framework for design of communication protocol layers. This model,
- s

shown in table form below, serves as a basic reference for understanding the J/
functionality of existing communication protocols. 4
R,

ISO MODEL

Layer Functionality | Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR

5 Session RPC, NETBIOS, SNMP, etc.

4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,
ATM, T1 (Hardware Connection)

Different communication protocols employ different levels of the ISO model or

10 may use a layered model that is similar to but which does not exactly conform to the ISO /

e e i A BT
SN

model. A protocol in a certain layer may not be visible to protocols employed at other
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

In some communication arts, the term “frame” generally refers to encapsulated
15 data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

EX 1019 Page 17

dJ 2

9

“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the
term “datagram” is also used. In this specification, the term “packet” is intended to
encompass packets, datagrams, frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields and headers for

5 transmission across a network. For example, a data packet typically includes an address
destination field, a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and footers to identify the beginning
and end of the packet. The terms “packet format” and “frame format,” also referred to as

“cell format,” are generally synonymous.

10 Monitor 108 looks at every packet passing the connection point 121 for analysis.
However, not every packet carries the same information useful for recognizing all levels
of the protocol. For example, in a conversational flow associated with a particular
application, the application will cause the server to send a type-A packet, but so will
another. If, though, the particular application program always follows a type-A packet

15 with the sending of a type-B packet, and the other application program does not, then in
order to recognize packets of that application’s conversational flow, the monitor can be
available to recognize packets that match the type-B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

Haolt Beas Mot stumesr 20r

program’s conversational flow has started to reveal itself to the monitor 108.

20 Further packets may need to be examined before the conversational flow can be
identified as being associated with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying other packet exchanges that are
parts of conversational flows associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

25 previous events in the flow that lead to recognition of the content of all the protocol
levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a
signature of extracted characteristic portions of the packet that can be used to rapidly

~ identify packets belonging to the same flow.

In real-world uses of the monitor 108, the number of packets on the network 102

30 passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

EX 1019 Page 18

8 D

10
and identify and maintain the state of the flows passing through the connection point.
The monitor 108 therefore masks out all the unimportant parts of each packet that will
not contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

5 The recognition of the packet type, and ultimately of the associated application
programs according to the packets that their executions produce, is a multi-step process
within the monitor 108. At a first level, for example, several application programs will
all produce a first kind of packet. A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efficiently any packets that belong to the

10 same flow. In some cases, that packet type may be sufficiently unique to enable the
monitor to identify the application that generated such a packet in the conversational
flow. The signature can then be used to efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the

15 conversational flow, and more packets are necessary to identify the associated
application program. In such a case, a subsequent packet of a second type—but that
potentially belongs to the same conversational flow—is recognized by using the
signature. At such a second level, then, only a few of those application programs will
have conversational flows that can produce such a second packet type. At this level in

20 the process of classification, all application programs that are not in the set of those that
lead to such a sequence of packet types may be excluded in the process of classifying the
conversational flow that includes these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

25 It may be that the application is now recognized, or recognition may need to
proceed to a third level of analysis using the second level signature. For each packet,
therefore, the monitor parses the packet and generates a signature to determine if this
signature identified a previously encountered flow, or shall be used to recognize future
packets belonging to the same conversational flow. In real time, the packet is further
analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

EX 1019 Page 19

m%&*w ot

15

20

25

30

D)

11
flows associated with different applications. A new signature for recognizing future
packets may also be generated. This process of analysis continues until the applications
are identified. The last generated signature may then be used to efficiently recognize
future packets associated with the same conversational flow. Such an arrangement makes
it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative
embodiments of the present invention capable of eavesdropping, once the monitor 108
has recognized the executing application programs passing through some point in the
network 102 (for example, because of execution of the applications by the client 105 or
server 110), the monitor sends a message to some general purpose processor on the
network that can input the same packets from the same location on the network, and the
processor then loads its own executable copy of the application program and uses it to
read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present
invention that can be implemented with computer hardware and/or software. The system
300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet
acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,
for example in an attempt to determine its characteristics, e.g., all the protocol
information in a multilevel model, including what server application produced the

packet.

The packet acquisition device is a common interface that converts the physical
signals and then decodes them into bits, and into packets, in accordance with the
particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what
operations need to occur on packets of different types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of selected portions—of

packets to generate an identifying signature—accomplished by parser subsystem 301,

EX 1019 Page 20

O >

12
and (3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific
information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

5 are to be added.

A flow is a stream of packets being exchanged between any two addresses in the
network. For each protocol there are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these and other fields are used in
monitor 300 to identify the flow. There are other fields not important for identifying the

10 flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304
that parses the packet and determines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction process 306 in parser
subsystem 301 extracts characteristic portions (signature information) from the packet

15 302. Both the pattern information for parsing and the related extraction operations, e.g.,
extraction masks, are supplied from a parsing-pattern-structures and extraction-
; operations database (parsing/extractions database) 308 filled by the compiler and

f optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and
20 states of all protocols that an occur at any layer, including how to interpret header
information, how to determine from the packet header information the protocols at the
next layer, and what information to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections database 338 describes the
particular layering handled by the monitor. That is, what protocols run on top of what
25 protocols at any layer level. Thus 336 and 338 combined describe how one would
decode, analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data
structures. The first is the set of parsing/extraction operations 308. The pattern structures

30 include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

EX 1019 Page 21

10

15

20

25

30

O »

13
the packets based on the patterns that get matched. Thus, database 308 of
parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that

indicate a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state
patterns and processes 326. These are the different states and state transitions that occur
in different conversational flows, and the state operations that need to be performed (e.g.,
patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the
information it needs to begin processing packets. In an alternate embodiment, the
contents of one or more of databases 308 and 326 may be manually or otherwise
generated, Note that in some embodiments the layering selections information is inherent
rather than explicitly described. For example, since a PDL file for a protocol includes the

child protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input
into a packet buffer. The pattern recognition process 304 is carried out by a pattern
analysis and recognition (PAR) engine that analyzes and recognizes patterns in the
packets. In particular, the PAR locates the next protocol field in the header and
determines the length of the header, and may perform certain other tasks for certain types
of protocol headers. An example of this is type and length comparison to distinguish an
IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also
called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures
and extraction operations database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the next protocol layer. Once a
pattern or a set of patterns has been identified, it/they will be associated with a set of
none or more extraction operations. These extraction operations (in the form of
commands and associated parameters) are passed to the extraction process 306
implemented by an extracting and information identifying (EII) engine that extracts
selected parts of the packet, including identifying information from the packet as

required for recognizing this packet as part of a flow. The extracted information is put in

EX 1019 Page 22

O D

14
sequence and then processed in block 312 to build a unique flow signature (also called a
“key”) for this flow. A flow signature depends on the protocols used in the packet. For
some protocols, the extracted components may include source and destination addresses.
For example, Ethernet frames have end-point addresses that are useful in building a
5 better flow signature. Thus, the signature typically includes the client and server address
pairs. The signature is used to recognize further packets that are or may be part of this

flow.

In the preferred embodiment, the building of the flow key includes generating a
hash of the signature using a hash function. The purpose if using such a hash is
10 conventional—to spread flow-entries identified by the signature across a database for
efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record—
that includes the signature (i.e., selected portions of the packet), the hash, and the packet
15 itself to allow for any state processing that requires further data from the packet. An
improved embodiment of the parser subsystem might generate a parser record that has
some predefined structure and that includes the signature, the hash, some flags related to
some of the fields in the parser record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further processing, e.g., for state

20 processing.

Note that alternate embodiments may use some function other than concatenation
of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal
25 data store of records of known flows that the system has already encountered, and
decides (in 316) whether or not this particular packet belongs to a known flow as
indicated by the presence of a flow-entry matching this flow in a database of known

flows 324, A record in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

EX 1019 Page 23

O D

15
stores the packet sequence number, and another is filled with state information in the

form of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already
exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses
5 the hash in the UFKB record to lookup if there is a matching known flow. In the
particular embodiment, the database of known flows 324 is in an external memory. A
cache is associated with the database 324. A lookup by the LUE for a known record is
carried out by accessing the cache using the hash, and if the entry is not already present

in the cache, the entry is looked up (again using the hash) in the external memory.

10 The flow-entry database 324 stores flow-entries that include the unique flow-
signature, state information, and extracted information from the packet for updating
flows, and one or more statistical about the flow. Each entry completely describes a flow.
Database 324 is organized into bins that contain a number, denoted N, of flow-entries
(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

15 Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser
subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the
database to allow for fast lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory attached to the monitor, and
the number of bits of the hash data value used. For example, in one embodiment, each

20 flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a
16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

25 that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a
new flow, then a protocol and state identification process 318 further determines the
; state and protocol. That is, process 318 determines the protocols and where in the state
5% sequence for a flow for this protocol’s this packet belongs. Identification process 318
3 30 uses the extracted information and makes reference to the database 326 of state patterns

and processes. Process 318 is then followed by any state operations that need to be

EX 1019 Page 24

15

20

25

30

O 2

16

executed on this packet by a state processor 328.

If the packet is found to have a matching flow-entry in the database 324 (e.g., in
the cache), then a process 320 determines, from the looked-up flow-entry, if more
classification by state processing of the flow signature is necessary. If not, a process 322
updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor
328 carries out any state operations specified for the state of the flow and updates the
state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze
all levels of the protocol stack, ultimately classifying the flows by application (level 7 in
the ISO model). It does this by proceeding from state-to-state based on predefined state
transition rules and state operations as specified in state processor instruction database
326. A state transition rule is a rule typically containing a test followed by the next-state
to proceed to if the test result is true. An operation is an operation to be performed while
the state processor is in a particular state—for example, in order to evaluate a quantity
needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a
packet, and carrying out the operation or operations may leave one in a state that causes
exiting the system prior to completing the identification, but possibly knowing more
about what state and state processes are needed to execute next, i.e., when a next packet
of this flow is encountered. As an example, a state process (set of state operations) at a

particular state may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up
using the information from previously encountered flows, the network traffic monitor
300 provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet
protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

EX 1019 Page 25

17
What may seem to prior art monitors to be some unassociated flow, may be recognized

by the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this
5 particular flow-entry. A process 330 decides if more operations need to be performed for
this state. If so, the analyzer continues looping between block 330 and 328 applying
additional state operations to this particular packet until all those operations are
completed—that is, there are no more operations for this packet in this state. A process
332 decides if there are further states to be analyzed for this type of flow according to the
10 state of the flow and the protocol, in order to fully characterize the flow. If not, the
conversationai flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing
by using the last protocol recognized by the parser as an offset into a jump table jump
15 vector). The jump table finds the state processor instructions to use for that protocol in
the state patterns and processes database 326. Most instructions test something in the
unified flow key buffer, or the flow-entry in the database of known flows 324, if the
entry exists. The state processor may have to test bits, do comparisons, add, or subtract
to perform the test. For example, a common operation carried out by the state processor

20 is searching for one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an
end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

25 further states to be processed using later packets, the flow-entry is updated in process
322.

The flow-entry also is updated after classification finalization so that any further
packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

EX 1019 Page 26

J D

18

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically
maintains flow-entries, which in one aspect includes storing states. The monitor of
5 FIG. 3 also generates characteristic parts of packets-—the signatures—that can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.
Once a packet is identified to be from a known flow, the state of the flow is known and
this knowledge enables state transition analysis to be performed in real time for each
different protocol and application. In a complex analysis, state transitions are traversed

10 as more and more packets are examined. Future packets that are part of the same
conversational flow have their state analysis continued from a previously achieved state.
When enough packets related to an application of interest have been processed, a final
recognition state is ultimately reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow. The signature for that final

15 state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.
Once a particular set of state transitions has been traversed for the first time and ends in a
final state, a short-cut recognition pattern—a signature—can be generated that will key
20 onevery new incoming packet that relates to the conversational flow. Checking a
signature involves a simple operation, allowing high packet rates to be successfully

monitored on the network.

In improved embodiments, several state analyzers are run in parallel so that a
large number of protocols and applications may be checked for. Every known protocol
and application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are
automatically generated on-the-fly, and as further packets in the conversational flow are
€ncountered, signatures are updated and the states of the set of state transitions for any
Potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

EX 1019 Page 27

T

L

20

25

30

D D

19

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation
process. That is, part of the initialization generates the pattern structures and extraction
operations database 308 and the state instruction database 328. Such initialization can

occur off-line or from a central location.

The different protocols that can exist in different layers may be thought of as
nodes of one or more trees of linked nodes. The packet type is the root of a tree (called
level 0). Each protocol is either a parent node or a terminal node. A parent node links a
protocol to other protocols (child protocols) that can be at higher layer levels. Thus a
protocol may have zero or more children. Ethernet packets, for example, have several
variants, each having a basic format that remains substantially the same. An Ethernet
packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet
Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.
Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP

protocol, and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,
packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an
Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the
packet that indicates the next layer level is a two-byte type field 1702 containing the
child recognition pattern for the next level. The remaining information 1704 is shown
hatched because it not relevant for this level. The list 1712 shows the possible children
for an Bthertype packet as indicated by what child recognition pattern is found offset 12.
FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

EX 1019 Page 28

D 2
20
The pattern, parse, and extraction database (pattern recognition database, or
PRD) 308 generated by compilation process 310, in one embodiment, is in the form of a
three dimensional structure that provides for rapidly searching packet headers for the
next protocol. FIG. 18A shows such a 3-D representation 1800 (which may be

5 considered as an indexed set of 2-D representations). A compressed form of the 3-D

structure is preferred.

An alternate embodiment of the data structure used in database 308 is illustrated
in FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process 304 by indexing locations in

10 a memory rather than performing address link computations. In this alternate
embodiment, the PRD 308 includes two parts, a single protocol table 1850 (PT) which
has an entry for each protocol known for the monitor, and a series of Look Up Tables
1870 (LUT’s) that are used to identify known protocols and their children. The protocol
table includes the parameters needed by the pattern analysis and recognition process 304

15 (implemented by PRE 1006) to evaluate the header information in the packet that is
associated with that protocol, and parameters needed by extraction process 306
(implemented by slicer 1007) to process the packet header. When there are children, the
PT describes which bytes in the header to evaluate to determine the child protocol. In
particular, each PT entry contains the header length, an offset to the child, a slicer

20 command, and some flags.

The pattern matching is carried out by finding particular “child recognition
codes” in the header fields, and using these codes to index one or more of the LUT’s.
Each LUT entry has a node code that can have one of four values, indicating the protocol
that has been recognized, a code to indicate that the protocol has been partially

25 recognized (more LUT lookups are needed), a code to indicate that this is a terminal
node, and a null node to indicate a null entry. The next LUT to lookup is also returned

from a LUT lookup.

; Compilation process is described in FIG. 4. The source-code information in the
: form of protocol description files is shown as 402. In the particular embodiment, the
30 high level decoding descriptions includes a set of protocol description files 336, one for

each protocol, and a set of packet layer selections 338, which describes the particular

EX 1019 Page 29

10

20

25

30

9 D

layering (sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract
operations 406 is generated (404), and a set of packet state instructions and operations
407 is generated (4035) in the form of instructions for the state processor that implements
state processing process 328. Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern, parse, and extraction
database 406 into the memory systems of the parser and extraction engines. (See the
parsing process 500 description and FIG. 5; the extraction process 600 description and
FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each
type of application and protocol to be recognized by the analyzer are also downloaded
from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all the lookup tables for the

Because of the large number of possible protocol trees and subtrees, the compiler
process 400 includes optimization that compares the trees and subtrees to see which
children share cornmon parents. When implemented in the form of the LUT’s, this
process can generate a single LUT from a plurality of LUT’s. The optimization process
further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be
thought of as a set of 2-D structures each representing a protocol. To enable saving space
by using only one array per protocol which may have several parents, in one
embodiment, the pattern analysis subprocess keeps a “current header” pointer. Each
location (offset) index for each protocol 2-D array in the 3-D structure is a relative
location starting with the start of header for the particular protocol. Furthermore, each of
the two-dimensional arrays is sparse. The next step of the optimization, is checking all
the 2-D arrays against all the other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often sparsely populated in that they each have only a small

number of valid entries. So, a process of "folding" is next used to combine two or more

EX 1019 Page 30

O b

22
2-D arrays together into one physical 2-D array without losing the identity of any of the
original 2-D arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the tree as long as certain
conditions are met, Multiple arrays may be combined into a single array as long as the
5 individual entries do not conflict with each other. A fold number is then used to associate
each element with its original array. A similar folding process is used for the set of LUTs

1850 in the alternate embodiment of FIG. 18B.
In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting
10 at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next
(initially the first) packet component from the packet 302. The packet components are
extracted from each packet 302 one element at a time. A check is made (504) to
determine if the load-packet-component operation 503 succeeded, indicating that there
was more in the packet to process. If not, indicating all components have been loaded,

15 the parser subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and
% processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

20 successfully, indicating there was a pattern node that loaded in 505. If not, step 511

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507

(as indicated by test 508) means the parser subsystem 301 has found a node in the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test
508), the parser subsystem 301 moves (510) to the next pattern node from the pattern
database 308 and to step 505 to fetch the next node and process. Thus, there is an
“applying patterns” loop between 508 and 505. Once the parser subsystem 301
completes all the patterns and has either matched or not, the parser subsystem 301 moves

to the next packet component (511).

Once all the packet components have been the loaded and processed from the

EX 1019 Page 31

10

15

20

25

30

-

)

23
input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6 v

———— stz

FIG. 6 is a flow chart for extracting the information from which to build the P

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this
point parser subsystem 301 has a completed packet component and a pattern node
available in a buffer (602). Step 603 loads the packet component available from the
pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there
was indeed another packet component, the parser subsystem 301 fetches in 605 the
extraction and process elements received from the pattern node component in 602. If the
fetch was successful (test 606), indicating that there are extraction elements to apply, the
parser subsystem 301 in step 607 applies that extraction process to the packet component
based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this
component, and if not, the parser subsystem 301 moves back to 603 to load the next
packet component at hand and repeats the process. If the answer is yes, then the parser
subsystem 301 moves to the next packet component ratchet. That new packet component
is then loaded in step 603. As the parser subsystem 301 moved through the loop between
608 and 603, extra extraction processes are applied either to the same packet component
if there is more to extract, or to a different packet component if there is no more to

extract.

The extraction process thus builds the signature, extracting more and more
components according to the information in the patterns and extraction database 308 for
the particular packet. Once loading the next packet component operation 603 fails (test
604), all the components have been extracted. The built signature is {oaded into the
signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and
the pattern node elements are available (702). The parser subsystem 301 loads the next
pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

EX 1019 Page 32

10

15

20

25

30

O b

24
hash elements that are found in the pattern node that is in the element database. In 706

the resulting signature and the hash are packed. In 707 the parser subsystem 301 moves

on to the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left
(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and
312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the
form of a UFKB record which is similar to a parser record, but with one or more

different fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine
(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with
the parser record that includes a signature, the hash and at least parts of the payload. In
802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the
lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A
bin herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8§ are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the
hash. If the cache successfully returns with a bucket from the bin number, indicating
there are more buckets in the bin, the lookup/update engine compares (807) the current
signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in the cache) is marked in step
810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the
UFKB-entry in 802 has a status of “found.” The “found” indication allows the state
processing 328 to begin processing this UFKB element. The preferred hardware
embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

EX 1019 Page 33

2 D)
25

calculator for every packet analyzed. The statistical operations may include one or more
of counting the packets associated with the flow; determining statistics related to the size
of packets of the flow; compiling statistics on differences between packets in each
direction, for example using timestamps; and determining statistical relationships of

5 timestamps of packets in the same direction. The statistical measures are kept in the
flow-entries. Other statistical measures also may be compiled. These statistics may be
used singly or in combination by a statistical processor component to analyze many
different aspects of the flow. This may include determining network usage metrics from
the statistical measures, for example to ascertain the network’s ability to transfer

10 information for this application. Such analysis provides for measuring the quality of
service of a conversation, measuring how well an application is performing in the

network, measuring network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more
counters that are part of the flow-entry (in the cache) in step 812. The process exits at
15 813. In our embodiment, the counters include the total packets of the flow, the time, and

a differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The lookup/update engine thus

20 continues lookup up buckets of the bin until there is either a match in 808 or operation
804 is not successful (test 805), indicating that there are no more buckets in the bin and

no match was found.

ey by

If no match was found, the packet belongs to a new (not previously encountered)

i flow. In 806 the system indicates that the record in the unified flow key buffer for this

25 packet is new, and in 812, any statistical updating operations are performed for this
packet by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

EX 1019 Page 34

t
H
g

20

25

D D

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the
system are now described with reference to FIGS. 10 and 11. Note that while we are
describing a particular hardware implementation of the invention embodiment of FIG. 3,
it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be
implemented in software running on one or more general-purpose processors, or only
partly implemented in hardware. An implementation of the invention that can operate in
software is shown in FIG. 4. The hardware embodiment (FIGS. 10 and 11) can operate
at over a million packets per second, while the software system of FIG. 14 may be
suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem
1000) as implemented in hardware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is
the extraction-operation database memory, in which the extraction instructions are
stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.
Typically, the system is initialized from a microprocessor (not shown) at which time
these memories are loaded through a host interface multiplexor and control register 1005
via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are
preferably obtained by compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory
1008 using control signals 1021 and 1023, which control an input buffer interface
controller 1022. The buffer 1008 and interface control 1022 connect to a packet
acquisition device (not shown). The buffer acquisition device generates a packet start
signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive
data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a
packet starts loading into the buffer memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory described in block 304 of
FIG. 3. That is, protocol types and associated headers for each protocol layer that exist in

the packet are determined.

EX 1019 Page 35

e

TETFERT %FAR ~ o onmschas onaaws

wn

10

20

25

30

9)

27
The PRE searches database 1001 and the packet in buffer 1008 in order to
recognize the protocols the packet contains. In one implementation, the database 1001
includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.
The first lookup table is always at address zero. The Pattern Recognition Engine uses a
base packet offset from a control register to start the comparison. It loads this value into
a current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a
terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a
first stage that checks the protocol type field to determine if it is an 802.3 packet and the
field should be treated as a length. If it is not a length, the protocol is checked in a
second stage. The first stage is the only protocol level that is not programmable. The
second stage has two full sixteen bit content addressable memories (CAMs) defined for

future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for
the extraction engine (also called a “slicer”) 1007. The recognized patterns and the
commands are sent to the extraction engine 1007 that extracts information from the
packet to build the parser record. Thus, the operations of the extraction engine are those
carried out in blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to
slicer 1007 in the form of extraction instruction pointers which tell the extraction engine
1007 where to a find the instructions in the extraction operations database memory (i.e.,

slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol
identifier and a process code to the extractor. The protocol identifier is added to the flow
signature and the process code is used to fetch the first instruction from the instruction
database 1002. Instructions include an operation code and usually source and destination
offsets as well as a length. The offsets and length are in bytes. A typical operation is the
MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains

EX 1019 Page 36

ot -

LY B8R W - G e

10

15

20

25

30

J D

28
a byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the
input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction
engine 1007 performs extraction operations on data in input buffer 1008 already
processed by PRE 1006 while more (i.e., later arriving) packet information is being
simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,
the hash is loaded into parser output buffer memory 1010. Any additional payload from
the packet that is required for further analysis is also included. The parser output memory
1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer memory 1010, a data ready
signal 1025 is asserted by analyzer interface control. The data from the parser subsystem
1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem
that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is
initialized prior to operation, and initialization includes loading the state processing
information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an
analyzer host interface controller 1118, which in turn has access to a cache system 1115.
The cache system has bi-directional access to and from the state processor of the system
1108. State processor 1108 is responsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

EX 1019 Page 37

10

15

20

25

) D

29
comprising packet signatures and payloads that come from the parser into the unified
flow key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB
records. A UFKB record is essentially a parser record; the UFKB holds records of
packets that are to be processed or that are in process. Furthermore, the UFKB provides

for one or more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:
the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow
insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more
finite state machines (FSM's). There is bi-directional access between each of the finite
state machines and the unified flow key buffer 1103. The UFKB record includes a field
that stores the packet sequence number, and another that is filled with state information
in the form of a program counter for the state processor 1108 that implements state
processing 328. The status flags of the UFKB for any entry includes that the LUE is done
and that the LUE is transferring processing of the entry to the state processor. The LUE
done indicator is also used to indicate what the next entry is for the LUE. There also is
provided a flag to indicate that the state processor is done with the current flow and to
indicate what the next entry is for the state processor. There also is provided a flag to
indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been
processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB
record data may be processed by the flow insertion/deletion engine 1110 after being
processed by the state processor 1108 or only by the LUE. Whether or not a particular
engine has been applied to any unified flow key buffer entry is determined by status
fields set by the engines upon completion. In one embodiment, a status flag in the
UFKB-entry indicates whether an entry is new or found. In other embodiments, the LUE
issues a flag to pass the entry to the state processor for processing, and the required

operations for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

EX 1019 Page 38

30

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem
1115 that includes a caching engine. Cache 1115 is designed to have information flowing
in and out of it from five different points within the system: the three engines, external
5 memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and
a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host
interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content
10 addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

1 The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The

é bottorn CAM’s pointer points to the least recently used (LRU) cache memory entry.

; Whenever there is a cache miss, the contents of cache memory pointed to by the bottom
. 15 CAM are replaced by the flow-entry from the flow-entry database 324. This now

E becomes the most recently used entry, so the contents of the bottom CAM are moved to
?5 the top CAM and all CAM contents are shifted down. Thus, the cache is an associative
é cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the
20 operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate
that a “new” UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read
a matching bin of up to four buckets from the cache. The cache system attempts to obtain
the matching bin. If a matching bin is not in the cache, the cache 1115 makes the request

to the UMC 1119 to bring in a matching bin from the external memory.

25 When a flow-entry is found using the hash, the LUE 1107 looks at each bucket
and compares it using the signature to the signature of the UFKB-entry until there is a

H match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from
the cache, a time stamp in set in the flow key of the UFKB record, a protocol
30 identification and state determination is made using a table that was loaded by

compilation process 310 during initialization, the status for the record is set to indicate

EX 1019 Page 39

Mol Tt et e

15

20

25

30

» D

31
the LUE has processed the record, and an indication is made that the UFKB-entry is
ready to start state processing. The identification and state determination generates a
protocol identifier which in the preferred embodiment is a “jump vector” for the state
processor which is kept by the UFKB for this UFKB-entry and used by the state
processor to start state processing for the particular protocol. For example, the jump

vector jumps to the subroutine for processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a
previously encountered flow, then a calculator component enters one or more statistical
measures stored in the flow-entry, including the timestamp. In addition, a time difference
from the last stored timestamp may be stored, and a packet count may be updated. The
state of the flow is obtained from the flow-entry is examined by looking at the protocol
identifier stored in the flow-entry of database 324. If that value indicates that no more
classification is required, then the status for the record is set to indicate the LUE has
processed the record. In the preferred embodiment, the protocol identifier is a jump
vector for the state processor to a subroutine to state processing the protocol, and no
more classification is indicated in the preferred embodiment by the jump vector being
zero. If the protoco! identifier indicates more processing, then an indication is made that
the UFKB-entry is ready to start state processing and the status for the record is set to

indicate the LUE has processed the record.

The state processor 1108 processes information in the cache system according to
a UFKB-entry after the LUE has completed. State processor 1108 includes a state
processor program counter SPPC that generates the address in the state processor
instruction database 1109 loaded by compiler process 310 during initialization. It
contains an Instruction Pointer (SPIP) which generates the SPID address. The instruction
pointer can be incremented or loaded from a Jump Vector Multiplexor which facilitates
conditional branching. The SPIP can be loaded from one of three sources: (1) A protocol
identifier from the UFKB, (2) an immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic unit (SPALU) included in the

State processor,

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

EX 1019 Page 40

10

20

25

30

9,)

32

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and
String Compare functions necessary to implement the State Processor instructions. The
main blocks of the SPALU are: The A and B Registers, the Instruction Decode & State
Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference
Search Register set, and a Compare block which compares two operands by exclusive-

or-ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state
operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is
entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified
flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used
to set the state processor’s instruction counter. The state processor 1108 starts the
process by using the last protocol recognized by the parser subsystem 301 as an offset
into a jump table. The jump table takes us to the instructions to use for that protocol.
Most instructions test something in the unified flow key buffer or the flow-entry if it
exists. The state processor 1108 may have to test bits, do comparisons, add or subtract to

perform the test.

The first state processor instruction is fetched in 1304 from the state processor
instruction database memory 1109. The state processor performs the one or more fetched
operations (1304). In our implementation, each single state processor instruction is very
primitive (e.g., a move, a compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect of the state processor is its
ability to search for one or more (up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

EX 1019 Page 41

SHUS—

ey B B everll o LW S T A W)

e S

10

15

20

25

30

9)
33
In 1307, a check is made to determine if there are any more instructions to be
performed for the packet. If yes, then in 1308 the system sets the state processor
instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by

the SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This
state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet
has resulted in a final state. That is, is the analyzer is done processing not only for this
particular packet, but for the whole flow to which the packet belongs, and the flow is
fully determined. If indeed there are no more states to process for this flow, then in 1311
the processor finalizes the processing. Some final states may need to put a state in place
that tells the system to remove a flow-—for example, if a connection disappears from a
lower level connection identifier. In that case, in 1311, a flow removal state is set and
saved in the flow-entry. The flow removal state may be a NOP (no-op) instruction which

means there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP
or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in
1310 the system saves the state processor instruction pointer in the current flow-entry in
the current flow-entry. That will be the next operation that will be performed the next
time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer
1103 and the flow-entry in the cache. Once the state processor is done, a flag is set in the
UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be
inserted or deleted from the database of flows, control is then passed on to the flow
insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

EX 1019 Page 42

o s

S e Mkl Bl ord? s Sharan

= 3

[R W g WE - - § W

15

20

25

30

W) D

34

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the
flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are
grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that
may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin
(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that
matches the hash of the UFKB, so this bin may already have been sought for the UFKB-
entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be
maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the
bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket
and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp
that is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and
bucket record flow signature to the packet to verify that all the elements are in place to
complete the record. In 1211 the system marks the record bin and bucket as “in process”
and as “new” in the cache system {and hence in the external memory). In 1212, the initial
statistical measures for the flow-record are set in the cache system. This in the preferred
embodiment clears the set of counters used to maintain statistics, and may perform other
procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next
bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,
1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid
bucket, the unified flow key buffer entry for the packet is set as “drop,” indicating that
the system cannot process the particular packet because there are no buckets left in the
system. The process exits at 1213, The FIDE 1110 indicates to the UFKB that the {low
insertion and deletion operations are completed for this UFKB-entry. This also lets the

UFKB provide the FIDE with the next UFKB record.

EX 1019 Page 43

b = b

15

20

25

30

») D

35
Once a set of operations is performed on a unified flow key buffer entry by all of
the engines required to access and manage a particular packet and its flow signature, the
unified flow key buffer entry is marked as “completed.” That element will then be used
by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained
in the cache 1115. The cache system 1115 is intelligent enough to access the flow
database and to understand the data structures that exists on the other side of memory
interface 1123. The lookup/update engine 1107 is able to request that the cache system
pull a particular flow or “buckets” of flows from the unified memory controller 1119 into
the cache system for further processing. The state processor 1108 can operate on
information found in the cache system once it is looked up by means of the
lookup/update engine request, and the flow insertion/deletion engine 1110 can create
new entries in the cache system if required based on information in the unified flow key
buffer 1103. The cache retrieves information as required from the memory through the
memory interface 1123 and the unified memory controller 1119, and updates information

as required in the memory through the memory controller 1119.

There are several interfaces to components of the system external to the module
of FIG. 11 for the particular hardware implementation. These include host bus interface
1122,which is designed as a generic interface that can operate with any kind of external
processing system such as a microprocessor or a multiplexor (MUX) system.
Consequently, one can connect the overall traffic classification system of FIGS. 11 and
12 into some other processing system to manage the classification system and to extract

data gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory
systems that one may want to use to store the flow-entries. One can use different types of
memory systems like regular dynamic random access memory (DRAM), synchronous
DRAM, synchronous graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—a general interface that works in tandem with the signals of the input buffer

EX 1019 Page 44

e

PROS.

10

20

25

J J
36
interface control 1022. These are designed so that they can be used with any kind of
generic systems that can then feed packet information into the parser. Another generic
interface is the interface of pipes 1031 and 1033 respectively out of and into host
interface multiplexor and control registers 1005. This enables the parsing system to be
managed by an external system, for example a microprocessor or another kind of

external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodiment of this aspect of the invention is described in a
hardware description language (HDL) such as VHDL or Verilog. It is designed and
created in an HDL so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being designed for purposes
related to creating and analyzing traffic within a network. Verilog or other HDL

implementation is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in
FIGS. 10 and 11 are implemented in a set of six field programmable logic arrays
(FPGA’s). The boundaries of these FPGA’s are as follows. The parsing subsystem of
FIG. 10 is implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and
1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,
1011 parts of 1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented
as a single FPGA. State processor 1108 and part of state processor instruction database
memory 1109 is another FPGA. Portions of the state processor instruction database
memory 1109 are maintained in external SRAM’s. The lookup/update engine 1107 and
the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes
the cache system 1113, the unified memory control 1119, and the analyzer host interface

and control 1118.

Note that one can implement the system as one or more VSLI devices, rather than
as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is
anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

EX 1019 Page 45

U N Y

RTINS M R e

FYrFrre ey -

20

25

30

U D

37
Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to
analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all packets passing point 121 in
either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-
system 301, which determines flow signatures, and analyzer sub-system 303 that
analyzes the flow signature of each packet. A memory 324 is used to store the database
of flows that are determined and updated by monitor 300. A host computer 1504, which
might be any processor, for example, a general-purpose computer, is used to analyze the
flows in memory 324, As is canventional, host computer 1504 includes a memory, say
RAM, shown as host memory 1506. In addition, the host might contain a disk. In one
application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple
Network Management Protocol (SNMP) implementation. Fig. 15 describes how one
would, for example, implement an RMON probe, where a network interface card is used
to send RMON information to the network. Commercial SNMP implementations also
are available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state
analysis for packet exchanges that are commonly referred to as “server announcement”
type exchanges. Server announcement is a process used to ease communications between
a server with multiple applications that can all be simultaneously accessed from multiple
clients. Many applications use a server announcement process as a means of
multiplexing a single port or socket into many applications and services. With this type
of exchange, messages are sent on the network, in either a broadcast or multicast
approach, to announce a server and application, and all stations in the network may

receive and decode these messages. The messages enable the stations to derive the

EX 1019 Page 46

- — e o

e o < i — ¥ 1 o,

s

10

20

25

D D

38
appropriate connection point for communicating that particular application with the
particular server. Using the server announcement method, a particular application
communicates using a service channel, in the form of a TCP or UDP socket or port as in

the IP protocol suite, or using a SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in-stream analysis” of packet
exchanges. The “in-stream analysis” method is used either as a primary or secondary
recognition process. As a primary process, in-stream analysis assists in extracting
detailed information which will be used to further recognize both the specific application
and application component. A good example of in-stream analysis is any Web-based
application. For example, the commonly used PointCast Web information application
can be recognized using this process; during the initial connection between a PointCast
server and client, specific key tokens exist in the data exchange that will result in a

signature being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server
announcement process. In many cases in-stream analysis will augment other recognition
processes. An example of combining in-stream analysis with server announcement can

be found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking
applications in client/server packet exchanges. The process of tracking sessions requires
an initial connection to a predefined socket or port number. This method of
communication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific
port or socket number. This initial request will cause the server to create a TCP or UDP
port to exchange the remainder of the data between the client and the server. The server
then replies to the request of the client using this newly created port. The original port
used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a
version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFTP, a specific port (port number 69) is always

EX 1019 Page 47

N W B $B il Aente

-

W

ey

10

15

20

25

30

J D

39
used to initiate the packet exchange. Thus, when the client begins the process of
communicating, a request is made to UDP port 69. Once the server receives this request,
a new port number is created on the server. The server then replies to the client using the
new port. In this example, it is clear that in order to recognize TFTP; network monitor
300 analyzes the initial request from the client and generates a signature for it. Monitor
300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from
the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular
connections in the network. Connection-oriented exchanges often benefit from state
tracking to correctly identify the application. An example is the common TCP transport
protocol that provides a reliable means of sending information between a client and a
server. When a data exchange is initiated, a TCP request for synchronization message is
sent. This message contains a specific sequence number that is used to track an
acknowledgement from the server. Once the server has acknowledged the
synchronization request, data may be exchanged between the client and the server. When
communication is no longer required, the client sends a finish or complete message to
the server, and the server acknowledges this finish request with a reply containing the
sequence numbers from the request. The states of such a connection-oriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the
basic underlying process remains similar. A typical server announcement message is sent
to one or more clients in a network. This type of announcement message has specific
content, which, in another aspect of the invention, is salvaged and maintained in the
database of flow-entries in the system. Because the announcement is sent to one or more
stations, the client involved in a future packet exchange with the server will make an
assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programming interface that allows

EX 1019 Page 48

9)
40

one program to use the services of another on a remote machine. A Sun-RPC example is

now used to explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must

establish a connection, for which the RPC protocol can be used.

5 Each server running the Sun-RPC protocol must maintain a process and database
called the port Mapper. The port Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for TCP or UDP
implementations). An application or program number is a 32-bit unique identifier
assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

10 www.icann.org), which manages the huge number of parameters associated with Internet
protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on
a Sun-RPC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

AR P~ — —— toms. i oo

According to ICANN, port number 111 is associated with Sun RPC.

15 As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1)
making a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a
predefined UDP or TCP socket. Once the port Mapper process on the sun RPC server

receives the request, the specific mapping is returned in a directed reply to the client.

AT

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2
20 (110 in FIG. 1) on port 111, with an RPC Bind Lookup Request
(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This
request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and
25 version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified,

and thus will use the TCP protocol for its reply.

EX 1019 Page 49

J D

41
3. The server 110 sends a TCP packet to port number 111, with an RPC
Bind Lookup Reply. The reply contains the specific port number (e.g., port
number ‘port’) on which future transactions will be accepted for the specific

RPC program identifier (e.g., Program ‘program’) and the protocol (UDP or
3 TCP) for use.

It is desired that from now on every time that port number ‘port’ is used, the
packet is associated with the application program ‘program’ until the number ‘port’ no
longer is to be associated with the program ‘program’. Network monitor 300 by creating
a flow-entry and a signature includes a mechanism for remembering the exchange so that

10 future packets that use the port number ‘port” will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways
that a particular program—say ‘program’—rmight be associated with a particular port
number, for example number ‘port’. One is by a broadcast announcement of a particular

15 association between an application service and a port number, called a Sun RPC
portMapper Announcement. Another, is when some server-—say the same SERVER 2—

! replies to some client—say CLIENT l—requesting some portMapper assignment with a
RPC portMapper Reply. Some other client—say CLIENT 2-—might inadvertently see
this request, and thus know that for this particular server, SERVER 2, port number ‘port’

20 is associated with the application service ‘program’. It is desirable for the network
monitor 300 to be able to associate any packets to SERVER 2 using port number ‘port’

with the application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3
for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is
15 communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in
FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow

900 starts with a step 910 that a Remote Procedure Call bind lookup request is issued by
client 106 and ends with the server state creation step 904. Such RPC bind lookup

request includes values for the ‘program,’ ‘version,” and ‘protocol’ to use, e.g., TCP or

EX 1019 Page 50

2 D

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects. :

¢ Process 909: Extract the ‘program,’ ‘version,” and ‘protocol’ (UDP or TCP). Extract

the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

5 e Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If value is
portMapper, save paired socket (i.e., dest for destination address, src for source
address). Decode ports and mapping, save ports with socket/addr key. There may be
more than one pairing per mapper packet. Form a signature (e.g., a key). A flow-

entry is created in database 324. The saving of the request is now complete.

10 At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup
the request (905). A new signature (i.e., a key) will be created and the creation of the

, server state (904) will be stored as an entry identified by the new signature in the flow-
15 entry database. That signature now may be used to identify packets associated with the

SEIver.

[The server state creation step 904 can be reached not only from a Bind Lookup
Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an
RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol

20 can announce that it is able to provide a particular application service. Embodiments of
the present invention preferably can analyze when an exchange occurs between a client
and a server, and also can track those stations that have received the announcement of a

service in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such
25 causes various clients to execute a similar set of operations, for example, saving the
information obtained from the announcement. The RPC Reply portMapper step 901
could be in reply to a portMapper request, and is also broadcast. It includes all the

service parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

30 that relate to the particular service ‘program’.

EX 1019 Page 51

A Rk h R AC R SN R

PR ey

10

15

25

30

.)

43
FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature
and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun
Microsystems Remote Procedure Call protocol. A method embodiment of the present
invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2"
212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206
corresponds to such a request sent from CLIENT 3 to SERVER 2. This packet contains
important information that is used in building a signature according to an aspect of the
invention. A source and destination network address occupy the first two fields of each
packet, and according to the patterns in pattern database 308, the flow signature (shown
as KEY1 230 in FIG. 2) will also contain these two fields, so the parser subsystem 301
will include these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address
identifies the client 106 (shown also as 202), the label used in the drawing is “C;”. If
such address identifies the server 110 (shown also as server 204), the label used in the
drawing is “S;". The first two fields 214 and 215 in packet 206 are “S” and C;” because
packet 206 is provided from the server 110 and is destined for the client 106. Suppose

for this example, “Sy” is an address numerically less than address “C;”. A third field

“p!” 216 identifies the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate
port numbers that are used. The conversation direction determines where the port
number field is. The diagonal pattern in field 217 is used to identify a source-port
pattern, and the hash pattern in field 218 is used to identify the destination-port pattern.

The order indicates the client-server message direction. A sixth field denoted “i1” 219 is

P

an element that is being requested by the client from the server. A seventh field denoted

“sya” 220 is the service requested by the client from server 110. The following eighth

field “QA” 221 (for question mark) indicates that the client 106 wants to know what to

use to access application “sja”. A tenth field “QP” 223 is used to indicate that the client

wants the server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

EX 1019 Page 52

e R Kot~ N bR]

L4 S

et womor -

20

25

30

D »

44
packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233, The destination and source addresses are
carried in fields 224 and 225, e.g., indicated “C” and “S;", respectively. Notice the
order is now reversed, since the client-server message direction is from the server 110 to
the client 106. The protocol “p!” is used as indicated in field 226. The request “i!” is in
field 229. Values have been filled in for the application port number, e.g., in field 233

and protocol ““p?™ in field 233.

The flow signature and flow states built up as a result of this exchange are now
described. When the packet monitor 300 sees the request packet 206 from the client, a
first flow signature 210 is built in the parser subsystem 301 according to the pattern and
extraction operations database 308. This signature 210 includes a destination and a
source address 240 and 241. One aspect of the invention is that the flow keys are built
consistently in a particular order no matter what the direction of conversation. Several
mechanisms may be used to achieve this. In the particular embodiment, the numerically
lower address is always placed before the numerically higher address. Such least to
highest order is used to get the best spread of signatures and hashes for the lookup
operations. In this case, therefore, since we assume “S;”<“C”, the order is address “S;”

followed by client address “C,”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p!”". The next
field used for the signature is field 243, which contains the destination source port
number shown as a crosshatched pattern from the field 218 of the packet 206. This
pattern will be recognized in the payload of packets to derive how this packet or
sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a
combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p! that will be used to recognize this flow ~

(e.g., port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun
RPC Bind Lookups, are directly determinable (“known”) at the parser level. So in this

case, the signature KEY-1 points to a known application denoted “al” (Sun RPC Bind

EX 1019 Page 53

bR ot Rs £ Rl

o2 o B
HA K

o o
i

AR
WK R

Y e avm ¢ 25

10

20

25

5)

45
Lookup), and a next-state that the state processor should proceed to for more complex

recognition jobs, denoted as state “st,” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built
by the parser. This flow signature is identical to KEY-1. Hence, when the signature
enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow-
entry is obtained, and in this flow-entry indicates state “sty”. The operations for state
“stp” in the state processor instruction database 326 instructs the state processor to build
and store a new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature

built by the state processor also includes the destination and a source addresses 250 and
251, respectively, for server “S;” followed by (the numerically higher address) client
“Cy”. A protocol field 252 defines the protocol to be used, e.g., “p2” which is obtained
from the reply packet. A field 253 contains a recognition pattern also obtained from the
reply packet. In this case, the application is Sun RPC, and field 254 indicates this
application “a2”. A next-state field 255 defines the next state that the state processor
should proceed to for more complex recognition jobs, e.g., a state “st!”. In this particular
example, this is a final state. Thus, KEY-2 may now be used to recognize packets that
are in any way associated with the application “a2”. Two such packets 208 and 209 are
shown, one in each direction. They use the particular application service requested in the
original Bind Lookup Request, and each will be recognized because the signature KEY-2

will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “S;” followed by client “C,”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,
large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented
by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address S, and Cy, in a pair of fields 260 and 261. A field

[T

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

EX 1019 Page 54

P 1.
woH B gt

i5

20

25

30

J D

46
Some network-server application recognition jobs are so simple that only a single
state transition has to occur to be able to pinpoint the application that produced the
packet. Others require a sequence of state transitions to occur in order to match a known

and predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a2” is automatically
set up by predefining what packet-exchange sequences occur for this example when a
relatively simple Sun Microsystems Remote Procedure Call bind lookup request
instruction executes. More complicated exchanges than this may generate more than two
flow signatures and their corresponding states. Each recognition may involve setting up a
complex state transition diagram to be traversed before a “final” resting state such as

“sty” in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

The Cache Subsystem

Referring again to FIG. 11, the cache subsystem 1115 is connected to the lookup
update engine (LUE) 1107, the state processor the state processor (SP) 1108 and the flow
insertion/deletion engine (FIDE) 1110. The cache 1115 keeps a set of flow-entries of the
flow-entry database stored in memory 1123, so is coupled to memory 1123 via the
unified memory controller 1119. According to one aspect of the invention, these entries

in the cache are those likely-to-be-accessed next.

1t is desirable to maximize the hit rate in a cache system. Typical prior-art cache
systems are used to expedite memory accesses to and from microprocessor systems.
Various mechanisms are available in such prior art systems to predict the lookup such
that the hit rate can be maximized. Prior art caches, for example, can use a lookahead
mechanism to predict both instruction cache lookups and data cache lookups. Such
lookahead mechanisms are not available for the packet monitoring application of cache
subsystem 1115. When a new packet enters the monitor 300, the next cache access, for
example from the LUE 1107, may be for a totally different flow than the last cache
lookup, and there is no way ahead of time of knowing what flow the next packet will

belong to.

One aspect of the present invention is a cache system that replaces a least recently

EX 1019 Page 55

9)
47
used (LRU) flow-entry when a cache replacement is needed. Replacing least recently
used flow-entries is preferred because it is likely that a packet following a recent packet
will belong to the same flow. Thus, the signature of a new packet will likely match a

recently used flow record. Conversely, it is not highly likely that a packet associated with

5 the least recently used flow-entry will soon arrive.

Furthermore, after one of the engines that operate on flow-entries, for example
the LUE 1107, completes an operation on a flow-entry, it is likely that the same or
another engine will soon use the same flow-entry. Thus it is desirable to make sure that

recently used entries remain in the cache.

10 A feature of the cache system of the present invention is that most recently used
(MRU) flow-entries are kept in cache whenever possible. Since typically packets of the
same flow arrive in bursts, and since MRU flow-entries are likely to be required by
another engine in the analysis subsystem, maximizing likelihood of MRU flow-entries

remaining in cache increases the likelihood of finding flow records in the cache, thus

£
K
v
£
3
n
r
¢
]

15 increasing the cache hit rate.

Yet another aspect of the present cache invention is that it includes an associative

memory using a set of content addressable memory cells (CAMs). The CAM contains an

address that in our implementation is the hash value associated with the corresponding
flow-entry in a cache memory (e.g., a data RAM) comprising memory cells. In one

20 embodiment, each memory cell is a page. Each CAM also includes a pointer to a cache
memory page. Thus, the CAM contents include the address and the pointer to cache
memory. As is conventional, each CAM cell includes a matching circuit having an input.
The hash is presented to the CAM’s matching circuit input, and if the hash matches the
hash in the CAM, the a match output is asserted indicating there is a hit. The CAM

i e e re———"

25 pointer points to the page number (i.¢., the address) in the cache memory of the flow-

entry.

Each CAM also includes a cache address input, a cache pointer input, and a cache
contents output for inputting and outputting the address part and pointer part of the
CAM.

30 The particular embodiment cache memory stores flow-entries in pages of one

bucket, i.e., that can store a single flow-entry. Thus, the pointer is the page number in the

EX 1019 Page 56

W D

48
cache memory. In one version, each hash value corresponds to a bin of N flow-entries
(e.g., 4 buckets in the preferred embodiment of this version). In another implementation,
each hash value points to a single flow record, i.e., the bin and bucket sizes correspond.

For simplicity, this second implementation is assumed when describing the cache 1113.

5 Furthermore, as is conventional, the match output signal is provided to a
corresponding location in the cache memory so that a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

One aspect of the present invention achieves a combination of associatively and
true LRU replacement policy. For this, the CAMs of cache system 1115 are organized in
10 what we call a CAM stack (also CAM array) in an ordering, with a top CAM and a
bottom CAM. The address and pointer output of each CAM starting from the top CAM

is connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to
the CAM array, and any CAM that has an address that matches the input hash asserts its

15 match output indicating a hit. When there is a cache hit, the contents of the CAM that

produced the hit (including the address and pointer to cache memory) are put in the top

CAM of the stack. The CAM contents (cache address, and cache memory pointer) of the

b=
3
b
B
-
-

CAMs above the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow record is put in the cache memory element
20 pointed to by the bottom CAM. All CAM contents above the bottom are shifted down
one, and then the new hash value and the pointer to cache memory of the new flow-entry

are put in the top-most CAM of the CAM stack.

In this manner, the CAMs are ordered according to recentness of use, with the
least recently used cache contents pointed to by the bottom CAM and the most recently

25 used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM-based cache, there is no fixed
relationship between the address in the CAM and what element of cache memory it
points to. CAM’s relationship to a page of cache memory changes over time. For
example, at one instant, the fifth CAM in the stack can include a pointer to one particular

30 page of cache memory, and some time later, that same fifth CAM can point to a different

sila: e i

EX 1019 Page 57

49

cache memory page.

In one embodiment, the CAM array includes 32 CAMs and the cache memory
includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM
contents. Suppose the CAMs are numbered CAM,), CAM|, ..., CAMjy,, respectively,

5 with CAM, the top CAM in the array and CAM5,; the bottom CAM.

The CAM array is controlled by a CAM controller implemented as a state
machine, and the cache memory is controlled by a cache memory controller which also is
implemented as a state machine. The need for such controllers and how to implement
them as state machines or otherwise would be clear to one skilled in the art from this

L 10 description of operation. In order not to confuse these controllers with other controllers,
for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine, respectively.

Consider as an example, that the state of the cache is that it is full. Suppose
furthermore that the contents of the CAM stack (the address and the pointer to the cache
15 memory) and of the cache memory at each page number address of cache memory are as

shown in the following table.

E CAM Hash Cache Point Cache Addr. | Contents
3 CAM, hashg pageg pageg entryg
CAM, hash, page; page, entry;
CAM, hash, page, pages entry,
CAM; hashg pages page; entry;
CAM, hashy pagey pageq entry,
CAM; hashg pages pages entrys
. CAMgq hashg pageg pageg entryg
> CAM; hashy pagey pagey entryy
CAMyg hashyg pagesg pageyg entryyg
CAM3p | hashyg pagesg pagesp entrysg
- CAMjy, hashs pages; pages) entrys;
This says that CAM, contains and will match with the hash value hashy, and a lookup
with hash, will produce a match and the address page, in cache memory. Furthermore,

EX 1019 Page 58

T

50
pagey in cache memory contains the flow-entry, entryy, that in this notation is the flow-
entry matching hash value hashy. This table also indicates that hashg was more recently

: used than hash|, hashg more recently than hash,, and so forth, with hashs, the least

recently used hash value. Suppose further that the LUE 1107 obtains an entry from
5 unified flow key buffer 1103 with a hash value hashs;. The LUE looks up the cache

subsystem via the CAM array. CAM7 gets a hit and returns the page number of the hit,
i.e., pages;. The cache subsystem now indicates to the LUE 1007 that the supplied hash

value produced a hit and provides a pointer to pages; of the cache memory which

contains the flow-entry corresponding to hashs;, i.e., flows, The LUE now retrieve the
10 flow-entry flows; from the cache memory at address pagey;. In the preferred

embodiment, the lookup of the cache takes only one clock cycle.

The value hashs; is the most recently used hash value. Therefore, in accordance

b et Bt i s B A i

with an aspect of the inventive cache system, the most recently used entry is put on top

of the CAM stack. Thus hashs; is put into CAMj, (pointing to pages,). Furthermore,
15 hashsg is now the LRU hash value, so is moved to CAM3 . The next least recently used

hash value, hash,g is now moved to CAM3, and so forth. Thus, all CAM contents are

WAn wh Koo T8 H

shifted one down after the MSU entry is put in the top CAM. In the preferred
embodiment the shifting down on CAM entries takes one clock cycle. Thus, the lookup
and the rearranging of the CAM array to maintain the ordering according to usage

20 recentness. The following table shows the new contents of the CAM array and the

(unchanged) contents of the cache memory.

% *«3‘ .

EX 1019 Page 59

o

IS S

D

51

CAM Hash Cache Point Cache Addr. | Contents

CAM, hash,; pages; pageg entry
CAM, hashg pageg page; entry

CAM, hash, page, page, entry,
CAM;, hashy page, page; entrys
CAM, hash page; pageq entryy
CAM; hashy pagey pages entrys
CAMg hashg pages pageg entryg
CAM4 hashg pageg page; entry;
CAMyg | hashyg pageyg pageyg entryyg
CAMy) | hashyg pageyg pagesg entryso
CAJ\/I3 1 h&Sh30 pagesg pagesy entrysy

To continue with the example, suppose that some time later, the LUE 1007 looks

up hash value hashs. This produces a hit in CAMg pointing to pages of the cache

memory. Thus, in one clock cycle, the cache subsystem 1115 provides LUE 1007 with an

indication of a hit and the pointer to the flow-entry in the cache memory. The most

recent entry is hashs, so hashs and cache memory address pageg are entered into CAM,.

The contents of the remaining CAMs are all shifted down one up to and including the

entry that contained hashs. That is, CAM;, CAMg, ..

., CAM3; remain unchanged. The

CAM array contents and unchanged cache memory contents are now as shown in the

following table.

EX 1019 Page 60

el w

w AH ARBAd

10

15

9, D,

52

CAM Hash Cache Point Cache Addr. | Contents

CAM, hashs pages pageg entryg
CAM, hashs; pages; page; entry
CAM, hashg pageg page, entry,
CAM; hash; pagey page; entrys
CAMy hash, page, pagey entryy
CAM;, hashg pages pages entrys
CAMg hash, pagey pageg entryg
CAM;, hashg pageg page; entry;
CAMy9 | hashyg pagesg pagesg entrysg
CAM3o | hashyg pagegg pagesg entrysg
CAM3; | hashsg pagesg pages; entrys

Thus in the case of cache hits, the CAM array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem when there is a cache hit will be described
by continuing the example. Suppose there is a lookup (e.g., from LUE 1107) for hash
value hashys. The CAM array produces a miss that causes in a lookup using the hash in
the external memory. The specific operation of our specific implementation is that the
CAM state machine sends a GET message to the memory state machine that results in a
memory lookup using the hash via the unified memory controller (UMC) 1119.
However, other means of achieving a memory lookup when there is a miss in the CAM

array would be clear to those in the art.

The lookup in the flow-entry database 324 (i.e., external memory) results in a hit
or a miss. Suppose that the database 324 of flow-entries does not have an entry matching

hash value hash,3. The memory state machine indicates the miss to the CAM state

machine which then indicates the miss to the LUE 1007. Suppose, on the other hand that

there is a flow-entry—entry,;— in database 324 matching hash value hashys. In this

case, the flow-entry is brought in to be loaded into the cache.

In accordance with another aspect of the invention, the bottom CAM entry

CAMj;,; always points to the LRU address in the cache memory. Thus, implementing a

true LRU replacement policy includes flushing out the LRU cache memory entry and

EX 1019 Page 61

R 7* o M Wittt S i 1

0

D

inserting a new entry into that LRU cache memory location pointed to by the bottom

CAM. The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hashgs is put in CAM3, and flow-

entry entry,s is placed in the cache page pointed to by CAM 31. The CAM array and

now changed cache memory contents are now

CAM Hash Cache Point Cache Addr. | Contents
CAM, hashg pages pageg entryg
CAM, hashy; pagesy page; entryy
CAM, hashy pageg page, entry,
CAM; hash page, pages entrys
CAMy hash, page, pagey entry, .
CAM; hash; pages pages entrys
CAMgq hashy pagey pageg entryg
CAM; hashg pageg pagey entryy
CAMyg hashyg pageyg pageny entrysg
CAM3y | hashyg pageag pagesg entryys
CAM3, hashy, pagesp pages; entrys

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAMy, are now moved to CAM, and the entries previously in the top 30 CAMs moved

down so that once again, the bottom CAM points to the LRU cache memory page.

EX 1019 Page 62

owo

Wowa don

10

15

J)

54

CAM Hash Cache Point Cache Addr. | Contents

CAM,y hashy3 pagesq pageg entry,
CAM, hashs pages page; entry;
CAM, hashy; pages; page, entry,
CAM; hashg pageg page; entry,
CAM, hash; page pagey entryy,
CAM; hash, page, pages entrys
CAMgq hashs pages pageg entryg
CAM, hashy pagey pagey entryy

hashg pageg

CAMyg pagesg entry,g
CAM3p | hashyg pageyg pagesg entry,s
CAM;3, hash,g pageyg pages; entrys

Note that the inserted entry is now the MRU flow-entry. So, the contents of
CAMj;; are now moved to CAMj) and the entries previously in the top 30 CAMs moved

In addition to looking up entries of database 324 via the cache subsystemn 1115
for retrieval of an existing flow-entry, the LUE, SP, or FIDE engines also may update the
flow-entries via the cache. As such, there may be entries in the cache that are updated
flow-entries. Until such updated entries have been written into the flow-entry database
324 in external memory, the flow-entries are called “dirty.” As is common in cache
systems, a mechanism is provided to indicate dirty entries in the cache. A dirty entry
cannot, for example, be flushed out until the corresponding entry in the database 324 has

been updated.

Suppose in the last example, that the entry in the cache was modified by the

operation. That is, hashy3 is in MRU CAMg, CAM,, correctly points to pagesq, but the
information in pagesq of the cache, entry,3, does not correspond to entry,3 in database
324. That is, the contents of cache page pagesq is dirty. There is now a need to update the

database 324. This is called backing up or cleaning the dirty entry.

As is common in cache systems, there is an indication provided that a cache
memory entry is dirty using a dirty flag. In the preferred embodiment, there is a dirty flag

for each word in cache memory.

EX 1019 Page 63

O

RA

X

10

20

25

» D

55
Another aspect of the inventive cache system is cleaning cache memory contents
according to the entry most likely to be first flushed out of the cache memory. In our
LRU cache embodiment, the cleaning of the cache memory entries proceeds in the
inverse order of recentness of use. Thus, LRU pages are cleaned first consistent with the

least likelihood that these are the entries likely to be flushed first.

In our embodiment, the memory state machine, whenever it is idle, is
programmed to scan the CAM array in reverse order of recentness, i.¢., starting from the
bottom of the CAM array, and look for dirty flags. Whenever a dirty flag is found, the

cache memory contents are backed up to the database 324 in external memory.

Note that once a page of cache memory is cleaned, it is kept in the cache in case
it is still needed. The page is only flushed when more cache memory pages are needed.
The corresponding CAM also is not changed until a new cache memory page is needed.
In this way, efficient lookups of all cache memory contents, including clean entries are
still possible. Furthermore, whenever a cache memory entry is flushed, a check is first
made to ensure the entry is clean. If the entry is dirty, it is backed up prior to flushing the

entry.

The cache subsystem 1115 can service two read transfers at one time. If there are
more than two read requests active at one time the Cache services them in a particular

order as follows:

(1) LRU dirty write back. The cache writes back the least recently used cache
memory entry if it is dirty so that there will always be a space for the fetching

of cache misses.
(2) Lookup and update engine 1107.
(3) State processor 1108.
(4) Flow insertion and deletion engine 1110.
(5) Analyzer host interface and control 1118.

(6) Dirty write back from LRU -1 to MRU; when there is nothing else pending,

the cache engine writes dirty entries back to external memory.

FIG. 19 shows the cache memory component 1900 of the cache subsystem 1115.

EX 1019 Page 64

TE A “h L haFad

dAN I NG

10

20

25

-

J J

56
Cache memory subsystem 1900 includes a bank 1903 of dual ported memories for the
pages of cache memory. In our preferred embodiment there are 32 pages. Each page of
memory is dual ported. That is, it includes two sets of input ports each having address
and data inputs, and two sets of output ports, one set of input and output ports are
coupled to the unified memory controller (UMC) 1119 for writing to and reading from
the cache memory from and into the external memory used for the flow-entry database
324. Which of the output lines 1909 is coupled to UMC 1119 is selected by a
multiplexor 1911 using a cache page select signal 1913 from CAM memory subsystem
part of cache system1115. Updating cache memory from the database 324 uses a cache

data signal 1917 from the UMC and a cache address signal 1915.

Looking up and updating data from and to the cache memory from the
lookup/update engine (LUE) 1107, state processor (SP) 1108 or flow insertion/deletion
engine (FIDE) 1110 uses the other input and output ports of the cache memory pages
1903. A bank of input selection multiplexors 1905 and a set of output selector
multiplexors 1907 respectively select the input and output engine using a set of selection

signals 1919.

FIG. 20 shows the cache CAM state machine 2001 coupled to the CAM array
2005 and to the memory state machine 2003, together with some of the signals that pass
between these elements. The signal names are self-explanatory, and how to implement
these controllers as state machines or otherwise would be clear from the description

herein above.

While the above description of operation of the CAM array is sufficient for one
skilled in the art to design such a CAM array, and many such designs are possible, FIG.
21 shows one such design. Referring to that figure, the CAM array 2005 comprises one
CAM, e.g., CAM[7] (2107), per page of CAM memory. The lookup port or update port
depend which of the LUE, SP or FIDE are accessing the cache subsystem. The input data
for a lookup is typically the hash, and shown as REF-DATA 2103. Loading, updating or
evicting the cache is achieved using the signal 2105 that both selects the CAM input data
using a select multiplexor 2109, such data being the hit page or the LRU page (the
bottom CAM in according to an aspect of the invention). Any loading is done viaa 5 to

32 decoder 2111. The results of the CAM lookup for all the CAMs in the array is

EX 1019 Page 65

J)

57

provided to a 32-5 low to high 32 to 5 encoder 2113 that outputs the hit 2115, and which
CAM number 2117 produced the hit. The CAM hit page 2119 is an output of a MUX
2121 that has the CAM data of each CAM as input and an output selected by the signal
2117 of the CAM that produced the hit. Maintenance of dirty entries is carried out

5 similarly from the update port that coupled to the CAM state machine 2001. A MUX
2123 has all CAMs’ data input and a scan input 2127. The MUX 2123 produces the dirty
data 2125.

Although the present invention has been described in terms of the presently
preferred embodiments, it is to be understood that the disclosure is not to be interpreted

10 as limiting. Various alterations and modifications will no doubt become apparent to

W on

those of ordinary skill in the art after having read the above disclosure. Accordingly, it is

intended that the claims be interpreted as covering all alterations and modifications as

A pn R Hoa

fall within the true spirit and scope of the present invention.

Boa

B

A

PR I

EX 1019 Page 66

WA

oo ou

PR

n

koA T

w #HBA A,

58

CLAIMS

What is claimed is:

5

10

15
2.

20
35 3.
4.

7
/
A packet monitor for examining packets passing through a connection point on a

computer network, each packets conforming to one or mgfre protocols, the monitor

comprising: /
/

(a) a packet acquisition device coupled to the cgnnection point and

configured to receive packets passing throughfthe connection point;

(b) a memory for storing a database comprising none or more flow-entries for
previously encountered conversational flows to which a received packet may

belong;

(c) a cache subsystem coupled to the flowfentry database memory providing

for fast access of flow-entries from the flow-entry database; and

(d) a lookup engine coupled to the paclfet acquisition device and to the cache
subsystem and configured to lookup ywhether a received packet belongs to a
flow-entry in the flow-entry databasg, the looking up being in the cache

subsystem.
A packet monitor according to claim /1, further comprising:

a parser subsystem coupled fo the packet acquisition device and to the
lookup engine such that the agquisition device is coupled to the lookup
engine via the parser subsysfem, the parser subsystem configured to extract

identifying information frgm a received packet,

wherein each flow-entry is idenfified by identifying information stored in the flow-
entry, and wherein the cache lgokup uses a function of the extracted identifying

information.

A packet monitor according to claim 2, wherein the cache subsystem is an
associative cache subsyste,

cells (CAMs).

including one or more content addressable memory

A packet monitor ac&)rding to claim 2, wherein the cache subsystem includes:

EX 1019 Page 67

Senow

wo s b

9)

o«

59

(i) a set of cache memory elements coupled/to the flow-entry database
memory, each cache memory element incliiding an input port to input an

flow-entry and configured to store a ﬂow}entry of the flow-entry database;

/
(i1) a set of content addressable memozﬁells (CAMs) connected according to
5 an order of connections from a top CAM to a bottom CAM, each CAM
containing an address and a pointer tof one of the cache memory elements,

and including:

a matching circuit having an input such that the CAM asserts a
match output when the inptt is the same as the address in the CAM

10 cell, an asserted match oytput indicating a hit,
a CAM input configdred to accept an address and a pointer, and
a CAM address output and a CAM pointer output;
(iti) a CAM controller coupled to the CAM set; and

(iv) a memory controller coupled to the CAM controller, to the cache memory

15 set, and to the flow-entry themory,

wherein the matching circuit inpfits of the CAM cells are coupled to the lookup
engine such that that an input to the matching circuit inputs produces a match output

in any CAM cell that contains an address equal to the input, and

wherein the CAM controller i5 configured such that which cache memory element a

20 particular CAM points to changes over time.

5. A packet monitor accorgling to claim 4, wherein the CAM controller is
configured such that the Yottom CAM points to the least recently used cache

memory element.

EX 1019 Page 68

10

15

20

25

6.

S b

60

2
A packet monitor according to claim 5, wherein the address and pointer output of

each CAM starting from the top CAM is coupled to the address and pointer input of

the next CAM, the final next CAM being the bottom CAM, and wherein the CAM
controller is configured such than whefi there is a cache hit, the address and pointer
contents of the CAM that produced the hit are put in the top CAM of the stack, the

address and pointer contents of the CAMs above the CAM that produced the

asserted match output age shifted down, such that the CAMs are ordered according

to recentness of use,Avith the least recently used cache memory element pointed to
by the bottom (%(M and the most recently used cache memory element pointed to

by the top CW.

A cache system for looking up one or more elements of gn external memory,

comprising:

(a) a set of cache memory elements coupled to the external memory, each
cache memory element including an input poif to input an element of the

external memory and configured to store the/input external memory element;

(b) a set of content addressable memory c¢lls (CAMs) connected according to
an order of connections from a top C to a bottom CAM, each CAM
containing an address and a pointer tefone of the cache memory elements,

and including

(i) amatching circuit having utsuch that the CAM asserts a match

output when the input is the/same as the address in the CAM cell, an

asserted match output indicating a hit,
(i) a CAM input confjgured to accept an address and a pointer, and
(ii1) a CAM address putput and a CAM pointer output, and
(c) a CAM controller co

(d) a memory controllef coupled to the CAM controller, to the cache memory

set, and to the external memory,

EX 1019 Page 69

J D

61

wherein the matching circuit inputs of the CAM cells fare coupled such that that an
input to the matching circuit inputs produces a matcH output in any CAM cell that

contains an address equal to the input, and

wherein the CAM controller is configured such that which cache memory element a

5 particular CAM points to changes over time.

8. A cache system according to claim 7, whereiny the CAM controller is configured
such that the bottom CAM points to the least re¢ently used cache memory element,
and wherein the CAM controller is configured fo implement a least recently used
replacement policy such that least recently usefl cache memory element is the first

10 memory element flushed.

9. A cache system according to claim 8, whegein the address and pointer output of
each CAM starting from the top CAM is cogtpled to the address and pointer input of
the next CAM, the final next CAM being thie bottom CAM, and wherein the CAM

Fre is a cache hit, the address and pointer

¥ h

15 contents of the CAM that produced the hif are 57 in the top CAM of the stack, the
e

the CAM that produced the

..ﬁ.,..i

7
(¢
=
o
a
=
o
8
o
=
o
s
o~

s
ford
Land
5
o2
£,
=]
o
=%
o
S
€
=
£
&
=
-
=
o
Ll
-
=
&
0
%
B
a
=
o
]
o
=
vl
&
(@]
©
=
g
=

05

by the bottom CAM and the most recgntly used cache memory element pointed to

20 by the top CAM.

10. A cache system according to clatm 9, wherein the CAM controller is configured
such that replacing any cache memory elements occurs according to the inverse
order of recentness of use, with the least recently used entry being the first flushed

cache memory entry.

25 1L A cache system according to claim 7, wherein each memory element is a page of

memory.

12. A cache system according to claim 7, wherein each cache memory element is
provided with an indicatioh of whether or not it is dirty, and wherein the CAM
controller is configured t¢ clean any dirty cache memory elements by backing up the

30 dirty contents into the ex

EX 1019 Page 70

14.
5
15,
10
i 16.
. 17.
) 15
18.
20 19,
25

13.

0 b

62

A cache system according to claim 12, wherein the contents of any cache
memory element are maintained after cleaning unti} such cache contents need to be

replaced according to the LRU replacement policy.

A cache system according to claim 8, wherein/ each cache memory element is
provided with an indication of whether or not it/is dirty, and wherein the CAM

controller is configured to clean any dirty cachg memory elements by backing up the

dirty contents into the external memory.

A cache system according to claim 14, whgrein the CAM controller is further
configured to clean any dirty cache memory elements prior to replacing the cache

memory element contents.

A cache system according to claim 15, wherein the CAM controller is further
configured to clean any dirty cache memoyy elements prior to replacing the cache

memory element contents.

A cache system according to claim 8 wherein each cache memory element is

provided with an indication of whet no}i{'is dirty, and wherein the CAM
controller is configured to clean dirty ¢dache memory elements by backing up the

dirty contents into the external memofy in reverse order of recentness of use.

A cache system according to claim 17, wherein said cleaning in reverse order of

recentness of use automatically progeeds whenever the cache controller is idle.

A cache system for looking up gne or more elements of an external memory,

comprising:

(a) a set of cache memory/elements coupled to the external memory, each
cache memory element including an input port to input an element of the

external memory and cgnfigured to store the input external memory element;

(b) a set of content adgdressable memory cells (CAMs) containing an address

and a pointer to one jof the cache memory elements, and including a
matching circuit having an input such that the CAM asserts a match output

when the input is the same as the address in the CAM cell,

EX 1019 Page 71

v, D

63

7
wherein which cache memory element a particular CAM points to changes over

time.

20. A cache system according teXclaim 19, wherein the CAMs are connected in an
order from top to bottom, z}nfd wherein the bottom CAM points to the least recently

5 used cache memory elerfent.

bty

Roowoy b

“ o

+h

R T

[T

R IR W O

EX 1019 Page 72

SO R L

PSRN

A

o b i adi b

e

10

64

ABSTRACT

. mC’uJes
A cache system for looking up one or more elements of an external MEMOTY, SOmPFHsiRE

a set of cache memory elements coupled to the external memory, a set of content
addressable memory cells (CAMs) containing an address and a pointer to one of the
cache memory elements, and-iﬂ,el&émg a matching circuit having an input such that the
CAM asserts a match output v&;hqn the input is the same as the address in the CAM cell.
Wr&eeﬁiﬂcache memory elemen\gi\a ;Jabticular CAM points to changes over time. In the
preferred implementation, the CAM:s are connected in an order from top to bottom, and

the bottom CAM points to the least recently used cache memory element.

EX 1019 Page 73

"t PRINT OF DRAWINGS
AS ORIGINALLY -p
r:"-—‘————'ﬁh—

}v{o\ﬁg
v ke 1/21
y) 3
2\
E’ ‘ 100 CLIENT 4 /108
ANALYZER
116
CLIENT 3 SERVER
. . Mo

DATA COMMUNICATIONS
NETWORK

thuw nd fw

it

#

Wk

Blaaddede

\

i

SERVER 2 105 —
™ CLIENT 2 }—/ CLIENT 1~
1

FIG. 1

EX 1019 Page 74

G s i I R A R ,

| aos PaRSER 301 | € _ A _ . | 254 .y
! 2 306 —7 | 314—— o2
302 ANALYZE AND EXTRACT | | =
| |'RECOGNIZE | | nZNTibving | |BUILD UNIQUE|| | | LOOKUP | {g 2
| |INFORMATION W "FLOW" KEY | | KNOWN RECORD? | OF FLOWS =g
(PAR) (Ell | | |RECORDS | BE
| ' J I (DB 324 | < ¥
312 I VIA CACHE y &
! P m e — 4! | .8
l | ~— | 5
| | 1
| ' - —— = i St
! ' | 3 (318 GrDATE 221
| PATTERN, PARSE | | PROTOCOL LW |
is08—) AND ! & STATE NO— KNOWN i
| Eé;?:gATSECéN | ! IDENTIFICATION RECORD ‘
| w
| I | YES————~—A ! RS
““““““ ———— 1 . l ot
-——J | cLassiFicatn| | |
310 i [ST + 330 FINALIZATION [|
l |
PROCESSOR
i INSTRUCTION NO— 2 {
Coyr\'j[‘jLEH R | DATABASE 6334 |
OPTIMIZER | |
i 326 i
I 328 NO :
|
Y
PROTOCOL DATAGRAM | | !
DESCIPTIO LAYER | STATE |
: LANGUAGE | PROCESSNG |
OPERATIONS
I 2 ANALYZER |
| i 303 |

EX 1019 Page 75

IR v g

N TR
)

|\ PARSER 301 , & _ _ o o ____
————— 324 o
. 306 —7 314 ' ;5 g
2 ANALYZE AND SXCTRACT P 316~ | pg>
| | RECOGNIZE | | menmieving| |BUILD UNIQUE|, | | LOOKUP | =
PATTERN |- | »/CONVERSATION-»——| FROM NEW "FLOW Q5
INFORMATION T DATABASE &
| |INFORMATION o "FLOW" KEY | KNOWN RECORD? b1 oF FLows % g
(PAR) (El | | |RECORDS | Ef
| 12 / o (DB 324 | < ¥
| 3 VIA CACHE Iy Z
| f——————— 4! ! L9
—— | 'b‘
| | | X ‘l
[! -— == S A |
! ' ! o8 GPDATE o5 |
PATTERN, PARSE | PROTOCOL ; -
ls0s ™ AND [' & STATE NO—p| -LOW :
KNOWN
1308 EXTRACTION l IDENTIFICATION RECORD I
I DATABA ! i
ATABASE ' | I w
l ______ — ' o l r\)
I _ -1 | -
! cLassiFicatn| | |
310 4 | STATE v 332 FINALIZATION |
| {
PROCESSOR
COMPILER | INSTRUCTION No— 2+ 2|
D R | DATABASE |
OPTIMIZER | |
[326 |
' 3(28 NO !
| |
Y
PROTOCOL DATAGRAM | |
DESCIPTIO LAYER | STATE |
| PROCESSNG
OPERATIONS I
! I ANALYZER]
! 303 I

EX 1019 Page 76

oy

IR

MR

PRINT OF DRAWINGS
AS ORIGINALLY tp
o — T T — -

4/21

HIGH LEVEL
PACKET
DECODING
ESCRIPTION
404
) y
GENERATE
PACKET
PARSE AND Eg(?lgl]g%gNS
EXTRACT
OPERATIONS

AND
EXTRACTION

C oo

405

GENERATE
PACKET
STATE
INSTRUCTIONS

AND

OPERATIONS

STATE
PROCESSOR
INSTRUCTION

DATABASE C 408 409 D DATABASE
LOAD LOAD STATE
_| PARSING NSTRUCTION
71 SUBSYSTEM DATABASE
MEMORY MEMORY

400

:410

FIG. 4

—————————EREEE
EX 1019 Page 77

Y 3 Qarkis -
= PRINT OF DRAWINGS

AS ORIGINALLY ~ p

5/21

501

/lNPUT PACKET/Q 502

T

503 '\ LOAD PACKET
| COMPONENT

ORE IN PACKET>

YES

FEng NODE ANc/L @
PROCESS FROM
PATTERNS 505

512

BULD
N PACKET
KEY

504

A

SR ow

(]

y

it

NEXT
PACKET r/&
COMPONENTC. 511

MORE
PATTERN
NODES?

LIt}

506

APPLY NODE AND
™ PROCESS TO
507 COMPONENT

500

510\

EXTRACT
509 - | ELEMENTS

FIG. 5

EX 1019 Page 78

PRINT OF DRAWINGS
ASORIGINALLY p

6/21

601

PATTERN NODE ’

PACKET
COMPONENT AND

603 y

» LOAD PACKET
COMPONENT

* 604

PATTERNS

FETCH EXTRACTION
ND PROCESS FROM 605

NO
606
YES
6075 [APPLY EXTRACTION
PROCESS TO
COMPONENT

MORE TO
EXTRACT?

608

I 602

6

LOAD KEY

10

BUFFER

611

NEXT
PACKET
COMPONEN

Yz\f 609

A

FIG. 6

YES—

\600

EX 1019 Page 79

- Smilala,
P" PRINT OF DRAWINGS
ASORIGINALLY ¢p

7121

702

LOAD PATTERN

< 7
2 03 NODE ELEMENT 708
704 MORE PATTER OUTPUT TO
= NODES? ANALYZER
YES
' HASHKEY BUFFER
z ELEMENT FROM 705
: PATTERN NODE
= 709
: !
PACK KEY & HAS»{
706 5 \
700
y
NEXT PACKET
COMPONENT
707

FIG. 7

EX 1019 Page 80

Cmelsie

R

I B

5 806

PRINT OF DRAWINGS
ASORIGINALLY <p
8/21
~ 801
UFKB ENTRY FOR
/ PACKET //' 802
800
\ y
COMPUTE CONVERSATION| g3
RECORD BIN FROM HASH
REQUEST RECORD BIN/
BUCKET FROM CACHE |, — 804
805 ORE BUCKET

IN THE BIN?

| SET UFKB FOR
PACKET AS ‘NEW'

COMPARE CURRENT BIN |~ 807
AND BUCKET RECORD KEY)
TO PACKET

NEXT BUCKET

Q 809

oo R T

YES

MARK RECORD BIN AND
BUCKET "IN PROCESS' IN
CACHE AND TIMESTAMP

//"810

!

811-\\/

SET UFKB FOR PACKET

AS 'FOUND'

y

812X

UPDATE STATISTICS FOR
RECORD IN CACHE

813\(5 FIG. 8

]
EX 1019 Page 81

BTN ENIE

Tuy

boosha #

L]

'S

Qarl

PRINT OF DRAW{
AS ORIGINALLYF. D

901) 802

RORTMAPPES] PORTMAPPESY

EXTRACT PROGRAM

903 T GET 'PROGRAM',
'VERSION', ‘PORT' AND
‘PROTOCOL (TCP OR
UDP)

CREATE SERVER STAT!

SAVE 'PROGRAM',
804 W 'VERSION', 'PORT' AND
‘PROTOCOL (TCF OR
UDP)' WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDF PORT.

/" 905

l
LOOKUP REQUES

/ FIND 'PROGRAM'
900 AND 'VERSION'
WITH LOOKUP OF

SOURCE NETWORK
ADDRESS.

907

EXTRACT PORT

GET 'PROGRAM,
'VERSION' AND
'PROTOCOL (TCP OR
UDPy

908
< SAVE REQUEST

SAVE ‘PROGRAM!,
"VERSION' AND
‘PROTOCOL (TCP OR
UDPY WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

906 ‘\

EXTRACT
PROGRAM

GET 'PORT* AND
'PROTOCOL (TCP
OR UDPY.

S

FIG. 9

EX 1019 Page 82

“’;@“

Lt
Carlice’

G e e

-

i

INEEERE

PRINT OF DRAWINGS

AS ORIGINALLY

P

1000 —y

PATTERN
RECOGNITION

DATABASE

MEMORY

10/21

100

EXTRACTION
OPERATIONS
DATABASE
MEMORY

1031
1004 A

INFO\OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

1006 PATTERN

1031J

PARSER INPUT BUFFER
MEMORY

INPUT BUFFERY 101 1\/

RECOGNITN
ENGINE
(PRE)
1008~
PACKE
INPUT
1012
1021
PACKET
START
INTERFACE
NEX CONTROL
PACKET
102
1023

101

EXTRACTION ENGINE
(SLICER)

[4007

1013

PARSER
QUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

ANALYZER DATA REA
INTERFACE
CONTROL

READY

FIG. 10

1027~>

EX 1019 Page 83

Sty

fd

iy

IEE Yy

Comvlrtear
PRINT OF DRAWINGS
AS ORIGINALLY® °D
T i

11/21
1100 —y

R'HOT 31103

LOOKUP/
UPDATE
ENGINE

1109/

UNIFIED
PARSER | KEY

INTER- NVBUFFER
FACE (UFKB) L

(1119 112’}8

INSERTION/
DELETION
ENGINE
(FIDE)

81110

FIG. 11

(UMC)

EX 1019 Page 84

UNIFIED | |MEMORY
MEMORY b INTER-
FLOW CONTROL k- FACE

Crvlrinme

drd howhoe

E)

PRINT OF DRAWINGS
AS ORIGINALLY -p
e —— e —— :

1200 ~—y

N

1206—f

CACHE

REQUEST NEXT
BUCKET FROM

l

- NO
1208- =8

YES

1210

x

PACKET AS
‘DROP’

SET UFKB FOR

1212

12/21

~—1201

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

/

v
ACCESS
CONVERSATION
RECORD BIN

'

REQUEST RECORD BIN/

<BIN/BUCKET EMPTY

YES

IN BUCKET, MARK 'USED
WITH TIMESTAMP

¥

AND BUCKET RECORD
KEY TO PACKET

'

MARK RECORD BIN AND

AND '‘NEW' IN CACHE

;

SET INITIAL STATISTICS
FOR RECORD IN CACHE

6/1213

FIG. 12

OMPARE CURRENT BIN—1209

/&1202

BUCKET FROM CACHE |/~ 204

INSERT KEY AND HASH| /1207

BUCKET 'IN PROCESS' |/~ 1211

|

EX 1019 Page 85

E X NN

Qrelss

PRINT OF DRAWINGS

ASONGBALLY ™

13/21

Q\/r 1301
UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR ‘FOUND' 1302

Y

SET STATE PROCESSOR
INSTRUCTION POINTER TO
VALUE FOUND IN UFKB ENTRY

f1303

FETCH INSTRUCTION FROM

STATE PROCESSOR /1304

v

INSTRUCTION MEMORY

PERFORM OPERATION BASED

ON THE STATE INSTRUCTION [~ 1305

SET STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
CURRENT STATE
1308
~~—1310
SAVE STATE
PROCESSOR
INSTRUCTION | _NO DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLOW?2
CURRENT FLOW
RECORD
A
SET AND SAVE FLOW REMOVAL]
STATE PROCESSOR \f1311
INSTRUCTION IN CURRENT
FLOW RECORD

FIG. 13

EX 1019 Page 86

Bk e

Swicho ki

N T

| | ‘
140 | 1404— 1406 —) 14127 11— e ’ 3
e
e N P e 4N S
IDENTIFYING |, . O NEW "FLOW Q
|| CAITERN INFO & ErFéOCL_’ FLOW" KEYF® %EBCSFS%S RECORD? DATABASE : Fg
A
| . OF FLOWS | E 3
| T - S T | Z
| ! ! ,)52
| ! 5
[. '
| ' 1422 |
| PATTERN ' MORE UPDATE !
| STRUCTURES : ! CLASSIFICATION>—NO» LS :
| EXTRACTION . RECORD |
| OPERATIONS ;! Y \ | =
| I I | &
| ! \ N
| PARSER 1408 b=
SUBSYSEM _ _ _ _ _ _ _ b STATE ! ,
| MACHINE ! (\
| SELECTOR . '
> |
1400 : 1426‘/ [
| i YES CLASSIFICATN l
F|G 14 | 1428 FINALIZATION |
| (\ 14&2 . |
| STATE N 1434 !
| ANALYSIS | | 7] 0— !
| DPERATIONS |
ANALYZER |
| SUBSYSTEM |

EX 1019 Page 87

A4

R R R TR

121
\

PACKETS

(324
PARSER ANALYZER
1502 301 303 DATABASE
(OF
FLOWS
PACKET (MEMORY)
CQUISITION —, /1504 1506
DEVICE s C
HOST | | HOST
PROCESSOR™ | MEMORY
MONITOR %
(1510 1508
Y
100 NETWORK | S|
DISK
INTERFACE
CARD &
DB

!

A

FIG. 15

Lc/St

ATTVNIDIEO §v
SONIMYYQ 30 INTHd .- -

ay

EX 1019 Page 88

[

L

choa

PRINT OF DRAWY -
AS.%G.M,@)
16/21
1602 0 - 3 Bytes
A 1600
B Dst MAC
offset 0- 11 |~ Dst MAC | Src MAC "7/1604
Src MAC
) ,
> 1606
1608 £
Dst MAC (6)
Dst Hash (2] 1610
1612 Src MAC (8) =

1614\

|Src Hash (2!

FIG. 16

|

EX 1019 Page 89

T Qarkie

PRINT OF DRAWINGS
AS ORIGHALLY ™ 9

17/21

1704

Wi
! 1?06

Type (2).
IHash (1)
1710

\[E3 Offpet = 14

1702

fiset
121013 | Type

1708

¥—— 1700

FIG.17A

P
1712

iDP = Gx0600™
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806
VIP = Ox0BAD*
VLOOP OxOBAE
HO = Ox0BAF
NETB!OS 3COM 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX = Ox8137*
SNMP 0x814C#
IPv6 = 0x86DD*
LOOPBACK = 0x8000

Apple = 0x080007
* 1.3 Decoding
L5 Decoding

A T e R] T
L3to | [////)densiiel//// /\iag/V/ Fiad/ Oifgeh ICMP =1
%ﬁf ‘4 //TTE/]| Protocol | egadet/Ehetlsiitt IoMp =2
1] Src Address TCP =6+
Dst Address Iggg : 8
//]//00tions B Fraading//////////] PUP =12
X
¥— 1750 ISO-TP4 %gg#
Dst Address i IS?)[?!S Z 30
Dst Hash (2)]] EIG\{Q‘E = gg#
Src Address OSPF ;89
S__rc H__ash_(Eﬂ)_ * L4 Decoding
[Protodol (1) FIG.17B # L3 Re-Decoding

et = L3 + (IHL/4)

EX 1019 Page 90

[a PN 2
PRLNT OF DRAWINGS
AS QRIGINALLY vp
S ORIGINALL ,

FIELD LENGTH

1870
¥

[~
~J ™
~ ™
~ ™
~J |
=
=5
~ ™
~q ™
~ T

,_
C
-—i
Z
C

lg

A—1850

j

BYTE CODE
OF FIELD

LI 1]

PROTOCOL.

FIG. 18B

EX 1019 Page 91

-y

I —

1919 =
- L/ // 1900 o _Ef
ww|—DATA -»] 4) 12 .
2y ADDR™ e LUESEL— E'E -
o~ DATA > INPUT SELECT MUXES . - SPSEL— fE g
&|~ADDR»] E
n [FIDESEL— 1917 z
Wi DATA -») i
| +—UMC-O-CA-DATA —L—
ADDRl DATA 1 T l «+———~CA-ADDRESS
e) Y vy ——1903 ~1915
PAGE-0-IN PAGE-31-IN -
DUAL PORT RAM PAGES (32) -
PAGE-0-OUT PAGE-31-OUT _CACHE WRITE STROBES
DATA DATA DATA
DATA DATA ... DAR 1909 1911 _
odra OYTB oura OY'B oliTa_oure /~ N %
1909 ’ : o N
\, : X [CA-UMCDATA
=
1907
- CAPAGESEL
m -
O |-a-DATA —
j € LUESEL— 1912
alpata OUTPUT SELECT MUXES e SPSEL—
2 «FIDESEL—
[41]
O |-DATA — A
‘TJ N
~—1919

EX 1019 Page 92

PRINT OF DRAWINGS
ASORIGINALLY

| | LUE PORT]

.

L FIDE PORT

l

CACHE PORT

]

20/21

2001 2005
%

——LUEMEMREQ-»
+—SETLUEREADY —
~——SETLUESEL —

——FIDEMEMREQ -
- SETFIDEREADY —
r¢—SETFIDESEL ——

CACHE_CAM_SM

FSEL_LUE_FIDE-»
t——CAM_HIT
|«—~CAM_HITPAGE ——
-4-CAM_LRUPAGE —
——LOAD_CAM—p

—REFRESH_CAM-»

|t

CAM_ARRAY

f

GET BACKUP GOT 2003

S S

CACHE MEM

3 SIGNALS

CACHE_MEM_SM

—SEL_CACHE —»

FIG. 20

EX 1019 Page 93

4-UMC-O-CA-NEXTADD

+—UMC-O-CA-READY—]

—
———CA-MEM-REG—»
——CA-MEM-WRITE—»|

uMmc

PRINT OF DRAW]
AS ORIGINALLY, °p

1]
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET CAM_HITPAGE

\j

Y
2119

FIG. 21

21/21
CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
, _ ! 2109
_LOAD, REFRESH, EVICT _ "> REF-DATA
\2105 2111 I 2103
Y / CAM_INPUTDATA 2113
Y]]
—LOADO-{ CAM[0] -MATCHO |/
patadd T
—LOAD1-»{ CAM[1] -MATCH1 +
DATAZ. L.
-—LOAD2-»] CAM[2] -MATCH2 »
—LOAD3-»| CAM[3] [-MATCH3 »
= —LOAD4-» CAM4] FMATCHA ™ - o o115
9 * < _~)| E
. 5TO 32 |—LOADS»{ CAMI[5] FMATCHS + Low S
}_.
a = - B éAM 5
o DECOD |—LOADG-»| CAM6] FMATCHg » HIGH e I
I 0
ENCOD S
—LOAD7-»| CAM[7] FMATCH7 »
~= \
T 2107
—LOAD30»| CAM(30] FMATCH30
—LOAD31» CAM[31] FMATCH31»
. DATA3
CAM_LRUPAGE
CAM~N,UMBER - CAM|NUMBER
! I | !
2127 DATAO| | « « « DATA31 DATAQ| | » + + DATA31
Y Y Y Y
NMUX32 2123 NMUX32
2121 &
[DIRTYENTRY | [CURRENT ENTRY |

2117 ——

EX 1019 Page 94

NEREE]

PRINT OF DRAWINGS

AS OFLGINALLY; D
U :

1/21
100 | 108
CLIENT 4 L
\\\\\ ™ ANALYZER
107
¥ 116
CLIENT 3 SERVER 2
\\ Mo
121

DATA COMMUNICATIONS
NETWORK

1

SERVER 2 105 —
- v

™ CLIENT 2 cuENTr«\1

FIG. 1

EX 1019 Page 95

B En) whp Bope fadinhue e

T
H
(214 (215 (216 217,218,219 220,221 222 223 f?': =
o e
148 |C|p il |s%a} Qalsh| QP »—-——JW }83
......... 206 (224 (225 (226 (227208 229 230231232283 | oaqivioweeen, *}2
T : &
e Ci| 511 pl il |sh H[sh|p?| 2 B
L
219\ 2402[,).72'41 242 243 244 245
g \ \ \ A\ 1Y \ \
1 11 e ._,J 1 t Y
202 (106 KEY- 51 C1 p L a Sip 20 —
21 =
(250 (251 (252 |(:2?53 (254 (255 == no
a2 2 D e - 2
KEY-2) ¢ | Cy | P2 ||, > a sty s, (ML
\ o 1
A 1
| CHENTS (260 (261 262 (263 (264 (265 APPLICATION SERVER 2 C
] i ™\ :
M S| C p2 | datum request »-———-~——--—uL
e, T< 208 (270 (271 272 273 274 275 >r -
' B Ci1] 84 p2 datum reply no ' FIG 2

EX 1019 Page 96

TR

NEW "FLOW
RECORD?

324 2
og
22

D
DATABASE "E °
OF FLOWS E S
LE
s
«‘8 ‘

UPDATE
“ELOW"
KNOWN

RECORD

4

Le/e

________________ 300
| PARSER 301 l‘i_t’_‘. -
| 304 — 306 — l 314
302 | ANALYZE AND EXTRACT ;! 316~
oozt | | oeiiin| [euiououe) 1 [0
INFORMATION| | INFORMATION™™ ™50 oy |1 KNOWN
| (Ell)
(PAR) . | | |RECORDS|
[Yy, | 1| (0B324
| | MACACHE
! r====--=- -
- —
[| I
1 | j—— — =
| | | L 4 318
I PATTERN, PARSE | | PROTOCOL MORE
™ AND I & STATE CLASSIFICATIO
:308 EXTRACTION | | I IDENTIFICATION
DATABASE |
| |
______ — |
— o
‘_.J |
810 ™ 1 ’ STATE M
! PROCESSOR
I INSTRUCTION
COR";[‘)LER R | DATABASE
OPTIMIZER i
I 326
l 328
|
DATAGRAM | |
LAYER | STATE
PROCESSNG
| OPERATIONS
|
|

CLASSIFICATN

T
1
1
|
|
|
|
l

FINALIZATION |
|
!
|
!
1
!
{
|
|
|
|
!
!

ANALYZER

EX 1019 Page 97

P ny ek

PRINT OF DRAWINGS

AS ORIGINALLY /™ "D o
w u
4/21
4071
w 402
HIGH LEVEL |/
PACKET
DECODING
DESCRIPTIONS
‘_&___'__’,/
404 405 ™
y
GENERATE
GENERATE FAGKET
A EEND COMPILE STATE
DESCRIPTIONS |NSTRUCTIONS
EXTRACT o
OPERATIONS OPERATIONS

Q 403

406 - RATTERN, PARS STATE
AND PROCESSOR
EXTRACTION INSTRUCTION
DATABASE C 408 409 DATABASE
/
LOAD LOAD STATE
.| PARSING NSTRUCTION|
7 SUBSYSTEM DATABASE [
MEMORY MEMORY

400

—0
410

FIG. 4

EX 1019 Page 98

Karkie T
PRINT OF DRAWINGS
AS ORIGINALLY/ p

/NPUT PACKETAf 502

503 LOAD PACKET |
- COMPONENT [*
5125
L
BUILD
504 PACKET
KEY
FETCH NODE ANO
» PROCESS FROM [}
PATTERNS 505
513
NEXT
PACKET =]
COMPONENTC. 5114

A

APPLY NODE AND}
ESn PROCESS TO
507 COMPONENT

500

5101

S EXTRACT
509 ELEMENTS

FIG.5

EX 1019 Page 99

S -

PRINT OF DRAW[| "
AS ORIGINALLY ¥z "D v

f 6/21

601

PACKET
COMPONENT AND [/~ 602
PATTERN NODE

603 — .
.| LOAD PACKET

. COMPONENT [610 —
604)
; LOAD KEY
f BUFFER
i FETCH EXTRACTION
AND PROCESS FROM-
PATTERNS - 605
NO 611
6086 NEXT
ORE EXTRACTION~. _NOp! PACKET 609
ELEMENTS? COMPONENT
y
6075 [APPLY EXTRACTION
PROCESS TO
COMPONENT \
600
MORE TO 608
EXTRACT?
YES

FIG. 6

EX 1019 Page 100

Cawlrin

PRINT OF DRAWINGS

ASORIGINALLY/ 1
w‘—zﬁ—&\lfn \\»/

ok

701

EY BUFFER AND/ — 702
PATTERN NODESA_/

1
LOAD PATTERN

703 __~| NODE ELEMENT [* 708 w
- N OUTPUT TO
E 704 ANALYZER
Q@
z h 4
HASH KEY BUFFER

z ELEMENT FROM 705

ot PATTERBN NODE é
z 709
\ 4

j‘% PACK KEY & HASH
706

oy

700

v
NEXT PACKET

COMPONENT
707 f

FIG. 7

EX 1019 Page 101

Cmvlris — o

PRINT OF DRAWEL ! o
AS ORIGINALLY by, D N
R e S— by
8/21
TN
. 801
UFKB ENTRY FOR 802
PACKET /
800
\ Y
COMPUTE CONVERSATION

80
RECORD BIN FROM HASH |/~ 803

!

REQUEST RECORD BIN/
BUCKET FROM CACHE |/ 804

P

j‘ 806

Wb

e

SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN | — 807
AND BUCKET RECORD KEY
TO PACKET

NEXT BUCKET NG @ - 808
(YES

-~ 80

9 MARK RECORD BIN AND 810
BUCKET IN PROCESS' IN |/
CACHE AND TIMESTAMP

!

SET UFKB FOR PACKET
811 | AS 'FOUND*

Bk o1y

A

812 _\k UPDATE STATISTICS FOR
RECORD IN CACHE

\/(l) FIG. 8

oo

EX 1019 Page 102

N I R

Sl

b by

Qark

PRINT OF DRAWINGS

ASORIGINALLY/ "D

901 —

PORTMAPPEH

/

N

EXTRACT PROGRAM

EXTRACT PORT

GET 'PROGRAM,
'VERSION', 'PORT* AND
'PROTOCOL (TCP OR
UDP)

GET 'PROGRAM,,
'VERSION' AND
‘PROTOCOL (TCP OR
ubPy

[

908

CREATE SERVER STATH

¥

SAVE REQUEST

904 —\

SAVE 'PROGRAM/,
VERSION', ‘PORT' AND
‘PROTOCOL (TCP OR
UDP) WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

SAVE ‘PROGRAM,
'VERSION' AND
'PROTOCOL (TCP OR
UDP) WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY,

900/

~" 905

4

LOOKUP REQUEST

SOURCE NETWORK

FIND 'PROGRAM'
AND 'VERSION'
WITH LOOKUP OF

ADDRESS.

.

FIG. 9

906 ‘\

EXTBACT
PROGRAM

GET 'PORT' AND
'PROTOCOL (TCP
OR UDPY.

EX 1019 Page 103

Qarlinei

S RN NN

Lt

G ate

'RINEE

PRINT OF DRAW
AS ORIGINALLY \. £D
T St

1000 —y

PATTERN
RECOGNITION
DATABASE
MEMORY

EXTRACTION
OPERATIONS
DATABASE
MEMORY

1006

ENGINE
(PRE)

PATTERN I
RECOGNITN

INTERFACE
CONTROL

INPUT BUFFER

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

INTERFACE
CONTROL

1027

EX 1019 Page 104

&ﬁ?ﬂ KRR

dap

i

vl

]

"

Qhrrisice

PRINT OF DRAWINGS
AS ORIGINALLY [j”

1100 —

31101 31103

PARSER
INTER-
FACE

-

BUFFER
(UFKB)

8”18 1122>

ANALYZE HOST

LOOKUP/
UPDATE

HOST BUS
INTERFAC INTER-
N FACE

AND
CONTROLY | (HIB)
(ACIC)

(1119 11232

UNIFIED § |MEMORY
MEMORY Ly INTER-
CONTROL A~ FACE

{(UMC)

FIG. 11

EX 1019 Page 105

R RN R T

¥

N

S

IETRRRE

PRINT OF DRAWINGS
AS ORIGINALLY FILED

1200 —y

CACHE

REQUEST NEXT
BUCKET FROM

SET UFKB FOR
PACKET AS
'DROP’

12/21

12

01

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

NO

v
ACCESS
CONVERSATION
RECORD BIN

f1 203

!

REQUEST RECORD BIN/
BUCKET FROM CACHE

f1204

<

BIN/BUCKET EMPTY.

YES

1205

INSERT KEY AND HASH
IN BUCKET, MARK 'USED
WITH TIMESTAMP

/*1207

v

ICOMPARE CURRENT BIN
AND BUCKET RECORD
KEY TO PACKET

—1209

[MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

A

1212 T INITIAL STATISTICS

FOR BRECORD IN CACHE

FIG. 12

C{}/ma

EX 1019 Page 106

IR

i

di

Chwd h b

G

(e
PRINT OF DRAWINGS
AS ORIGINALLY

/

13/21

Q\f 1301

1300 —y UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FQUND' 1302

A4
SET STATE PROCESSOR
INSTRUCTION POINTER TO 1303
VALUE FOUND IN UFKB ENTRY

FETCH INSTRUGTION FROM
STATE PROCESSOR 1304

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUND IN
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN
CURRENT FLOW

RECORD

A4

1308
1310

INSTRUCTION MEMORY

!

PERFORM OPERATION BASED | — 1305
ON THE STATE INSTRUCTION

DONE PROCESSING
STATES FOR THIS
PACKET?

DONE PROCESSING 1309

TATES FOR THIS FLOW

v
SET AND SAVE FLOW REMOVAL]
STATE PROCESSOR \fﬂm
INSTRUCTION IN CURRENT
FLOW RECORD

> é\;ms

FIG. 13

EX 1019 Page 107

T

140

RN N T

N T NN R BTN

DATABASE
OF FLOWS

STATE
ANALYSIS
DPERATIONS

1422
e

UPDATE
"FLOW*
KNOWN

RECORD

A

1404 —> 1406 — 14127 1] 1414 1416
ANALYZE AND EXTRACT Il | LOOKUP
RECOGNIZE | | IDENTIFYING |y e BUILD_ || | KNOWN
PATTERN INFO & PROCL FLOW" KEY|"™"™ RECORDS
INFORMATION /STATE I'l |(DB 1424)
I
TS EEEs
: |
!
L
PATTERN [
STRUCTURES by
AND [
EXTRACTION .
OPERATIONS L Y
[
(i 1!
PARSER 1408 I 1
SUBSYSEM _ _ _ _ _ _ _ b STATE
| MACHINE
| . SELECTOR
1400 : a2~
: YES
FIG. 14 | el
: (-] 1432
|
|
|
|

A 4

CLASSIFICATN
FINALIZATION

NO—

h
Craza

ANALYZER
SUBSYSTEM

Le/vl

et

“1

ATIVNIDINO §v
SHNTMVEG 40 INTHd

EX 1019 Page 108

ﬁ; IEER A

[T R W R T RN R NN AR

ey o5

324
(

PARSER ANALYZER

e | (P M| [omense
FLOWS

{MEMQRY)

(1504 (1506

SONTMYHG 30 INTHY

PACKET
—>ACQUISITION
DEVICE

Y

¢ HOST | HOST
PROCESSOR™ | MEMORY

y

FS/SH

MONITOR —F

121
1510 1508
(A4 \ 4

NETWORK | A C>

102
INTERFACE || DISK
CARD &

A

PACKETS

A

FIG. 15

EX 1019 Page 109

.

PRINT OF DRAW[{ N {f>
ASORIGINALLY b, {p .
T 16/21
1602 0 - 3 Bytes
N\ Ai— 1600
i - Dst MAC
offset 0 - 11 T~ Dst MAC | Src MAC ﬂ7/1604
] Src MAC b
N s
S 1606
1608 Dst MAC (6)
, [Dst Hash (2] 1610
; 1612 Src MAC (6)
i 1614\ Src Hash (21

et=12
FIG. 16

woha dinioa

EX 1019 Page 110

R N R S

R

i

AR E

Cnhrlric

PRINT OF

ASORIGINALLY [

frset
121013 | " Type

DRAWINGS

1702

17/21

@

1704

W

_

—

1708

1710

\JL3 Offet = 14

FIG. 17A

Type (2)
NI Y— 1700

1706

"
1712

S/

IDP = 0x0600*
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806
VIP = 0x0BAD*
VLOOP = 0x0BAE
VECHO = Ox0BAF
NETBIOS-3COM = 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5"
ATALKARP = 0x80F3
IPX = 0x8137*

LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

Yertal/ [ie/Iee) ietal Letiaty// /]
L3to | [////Vaetifies//// ALY/ FiAY/ Ofeeh
L3+) VAT Protocol ERRG G
Src Address
-1 Dst Address
[1]]]/0Rg7s B radid////]//1//]

o

\ S

Dst Address

Dst Hash (2)

Src Address]

[Pl)

Src Hash (2)’

FIG.17B

et = L3 + (IHL/4)

1752

ICMP =1
IGMP =2
GGP =3
TCP =6~
EGP =8
IGRP =9
PUP =12
CHAOS =16
upp =17*
IDP =22#
ISO-TP4 =29
DDP =37#
1SO-IP =80
VIP =83#
EIGRP = 88
OSPF =89

* L4 Decoding
L3 Re-Decoding

1750

EX 1019 Page 111

Qe

PRINT OF DRAWINGS
AS ORIGINALLY

p by S

18/21

PROTOCOL

HLON3T a3

FIG. 18A

1870
g

[TT77/771
SV LT

an3id 40

3000 31A8

Mﬁ\x\\\Nx\\\

A—1850

TO20L04d

FIG. 18B

EX 1019 Page 112

ok b R e o i

/1905

/1919

g | DATA
iuAg;i* L UESEL—

o L -

‘E]:ADDFb INPUT SELECT MUXES :?;ES;;_
— . _
W e 1917
=] AN ADDR_DATA /
i
] «—UMC-O-CA-DATA ——

+—-CA-ADDRESS
ADDR| DATA - {
I 4 Yy 4 h 2 4 vt l y v 1903 1915
PAGE-O-IN PAGE-31-IN <
DUAL PORT RAM PAGES (32) “
PAGE-0-OUT PAGE-31-OUT <CACHE WRITE STROBES
DATA DATA DATA
DATA DATA .. DATA 1909 1911
1908 \ : CA-UMC-DATA
1907

w - CAPAGESEL
EJ*DATA T «LUESEL— 1913

OE}«D/m - OUTPUT SELECT MUXES leSPSEL~—

2 |4 FIDESEL—
‘fg_j<-DATA —t
[T

1919

1c/61

o e

ATIVNIDINO SV
SONTMAYNQ 30 INTHd

o

EX 1019 Page 113

TR EH R

N TR

i

B o b

i

*t PRINT

OF DRAWINGS

AS ORIGINALLYT D
¥ T S

‘ FIDE PORT l |LUE PORTl

20/21

/ 2001

2005

b——LUEMEMREQ-»
re—SETLUEREADY —
e—SETLUESEL—

LFIDEMEMREQ-&
-SETFIDEREADY —
-«—SETFIDESEL —

S

CACHE_CAM_SM

-FSEL_LUE_FIDE-»-
(t——CAM_HIT et

«—CAM_HITPAGE —

--CAM_LRUPAGE —

CAM_ARRAY

| OAD_CAM~——

~—REFRESH_CAM-»

[

GET BACKUP GOT / 2003

S S

CACHE MEM

:j{ SIGNALS

CACHE PORT

|

CACHE_MEM_SM

——SEL_CACHE—»

———CA-MEM-REQ—»
- CA-MEM-WRITE—

umc

- UMC-O-CA-NEXTADB-]

—UMC-O-CA-READY—

FIG. 20

EX 1019 Page 114

AR EELE

i

CERE

Wik

qh

I
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET

FIG. 21

Y

CAM_HITPAGE
Y

2119

= b+ PRINT OF DRAWINGS
AS ORIGINALLY 2D
21/21
CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
! y 2109
KLOAD, REFRESH, EVICT 5 - REF-DATA
2105 2111 2103
L / CAM_INPUTDATA | 2113
Y 4
L LOADO-»] CAM[O] - MATCHO»> /
DATAE L~
—LOAD1-»] CAM[1] FMATCH1 »
DATARd L
—LOAD2-+ CAM[2] FMATCH2 +
—LOAD3-»] CAM[3] -MATCH3»
= —LOAD4-»] CAM4] -MATCH4 » 2705|9115
9 * < > I
w 5TO 32 —LOAD5-»{ CAM[5] FMATCHS » Low S
5 =~ 10 (cam | S
% DECOD _LOADG.>{ (ﬁpﬁ;} J—MATCHS» HIGH QT 5
o
—LOAD7-] CAM[7] marchy »{ ENCOD =
. 2107
L OAD30»| CAM[30] FMATCH30
—LOAD31»| CAM[31] FMATCH31»
. DATA3
CAM_LRUPAGE
CAM_NUMBER - CAM| NUMBER
! | |
2127 DATAQ| | » « - DATA31 DATAO| | = » » DATA31
Y Y
NMUX32 2123 NMUX32
2121 \
— [DIRTYENTRY | [CURRENT ENTRY]|
, L

2117

EX 1019 Page 115

oyfissian etal. APPT-001-4

. - “

6771646
1/21
100
CLIENT 4 /108
™ ANALYZER
107
N J 16
CLIENT 3 SERVER 2
Mo
N \1 21

DATA COMMUNICATIONS
NETWORK

102
125
\ 123
118
SERVER 2 105 —
B CLIENT 2 CLIENT 1 |—
112 104

FIG. 1

EX 1019 Page 116

JRNFGLLE (216217218 219 220,221,222 223 -
PN N
148 1¢C|p | /J il |sla| qalsh| QP +——
L DA
......... < (206 (224 (225 (226 (227,228,229 230231232233 | S,
LS 7 E
= 4 Ci| S| Pt i skl sk PP 2 3
\)\," - 2
\ C _ :
210N 2402%41 242 243 244 245 :
e N \ { \<\A " { \ ™ :
KEY-1 Sq | Cq | p! [oiAg-——— -»| al t v
202 (106) 1) %) P ;«;/:}[" D 20 —
21
2\ (250 (251 (252 (253 (254 (255
g L_._._. sl 2
KEY-2| Sy | Cy | p2 soa? | sy s, (000D
_ Y, °2_{0000nnj_
A
| CLIENTS (260 (261 (262 263 (264 (265 APPLICATION SERVER 2
] I ™ :
Misy|C|pe| | { datum request —y
_________ ,I< 205 (270 (271 (272 273 (274 275 >r
D e o Cy| S1| P2 s datum reply No
l 209

214 215

-100-LddV¥Y

e/e

™!

EX 1019 Page 117

ew uB!SSPPES

| 204 PARSER 301 :",./_.3 __________ |
2 306 314
302 | [ANACVZEAND| e N P N,
I | RECOGNIZE IDENTIEYING BUILD UNIQUE| | | | LOOKUP
M PATTERN bl e > {CONVERSATION-—»——| FROM
| |INFORMATION (Ell) "FLOW" KEY || KNOWN
(PAR) { | |RECORDS
I i J P (DB 324
| 312 VIA CACHE
_______ 1
l r -
[‘ i
| l l._ — o o]
| PATTERN, PARSH | | PROTOCOL MORE
B AND | & STATE CLASSIFICATIO
1308 EXTRACTION : | IDENTIFICATION
I DATABASE I
] !
______ . |
— e
_____l !
| v 332
310 4 STATE
\ | PROCESSOR
l INSTRUCTION
COMPILER
AND . | DATABASE
OPTIMIZER I
| 326
I 328
! Y
DATAGRAM |
LAYER I STATE
PROCESSNQ
: OPERATIONS
|

NEW "FLOW
RECORD?

324

e 19 ug!gsl)’les

DATABASE
OF FLOWS

1

UPDATE
"FLOW"
KNOWN

RECORD

}

A

NO

CLASSIFICATN
FINALIZATION

ANALYZER
303

|
|
|
]
|
|
|
No— 6334 : O

|
|
!
i
|
|
|
|
|

¥-100-Lddv

O

I |
322
—r

|

Lc/e

EX 1019 Page 118

e

Dl

garkissian et al.

RURTERTR NS

o 4 by

5

aop

SoB

Wopnoaedono,

APPT-001-4

O

S 404

GENERATE
PACKET
PARSE AND
EXTRACT
OPERATIONS

4/21

401

AND
EXTRACTION
DATABASE

402

HIGH LEVEL

PACKET
DECODING
ESCRIPTION

405
Y
GENERATE
COMPILE STATE
TE
ESCRIPTIONS ™ >|INSTRUCTIONS
AND
OPERATIONS

<‘ 403

407

STATE
PROCESSOR
INSTRUCTION
DATABASE

C 408 409)
LOAD LOAD STATE
PARSING NSTRUCTION
SUBSYSTEM DATABASE
MEMORY MEMORY

:410

FIG. 4

400

EX 1019 Page 119

Y

oo

now ot wa

garkissian et al.

APPT-001-4

5/21

QM 01

/ INPUT PACKET /<f 502

v

503 K/

LOAD PACKET
COMPONENT

504

FETCH NODE AND
PROCESS FROM
PATTERNS

" Lsos

506

MORE
PATTERN
NODES?

512

BUILD
PACKET

KEY

NEXT
PACKET

COMPONEN

APPLY NODE AN
PROCESS TO
COMPONENT

510\

EXTRACT
509 SN

\

ELEMENTS

FIG.5

500

EX 1019 Page 120

T

L garidssian et al. APPT—4
o a J

TR R

6/21
601
PACKET 502
COMPONENT AND
PATTERN NODE
603 |

LOAD PACKET -

™ COMPONENT 610 >
LOAD KEY
BUFFER
FETCH EXTRACTION
AND PROCESS FROM)
PATTERNS 605
NO 611
606 NEXT
ORE EXTRACTION>>—NO»| PACKET | =609
ELEMENTS? COMPONENT
Y
607 1 APPLY EXTRACTION
PROCESS TO
COMPONENT \
600
MORE TO 608

EXTRACT?

FIG. 6

EX 1019 Page 121

garkissian et al.

W T hnw

APPT-001-4

7/21

»

701

EY BUFFER AND 702
PATTERN NODE

A

703 —\/

LOAD PATTERN

NODE ELEMENT [

704

MORE PATTERN
NODES?

YES

h 4
HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

\5 705

A

L/7

706

PACK KEY & HASH

A

NEXT PACKET

™ | OUTPUT TO

707 5_]

COMPONENT

FIG. 7

708]

| ANALYZER

709

700

EX 1019 Page 122

I TR T

noy

T

WO,

APPT-001-4

O

sarkiSSian et al.

800
N

8/21

801

UFKB ENTRY FOR
/ PACKET /4/ 802

y

COMPUTE CONVERSATION
RECORD BIN FROM HASH

A

805

NEXT BUCKET

Q 809

REQUEST RECORD BIN/
BUCKET FROM CACHE

ORE BUCKET
IN THE BIN?

j 806

SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN
AND BUCKET RECORD KEY
TO PACKET

[‘ 807

<«NO @» 808

YES

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

/“810

SET UFKB FOR PACKET
AS 'FOUND!

A

UPDATE STATISTICS FOR
RECORD IN CACHE

wé} FIG. 8

EX 1019 Page 123

i

garkissian etal. APPT-001-4

901

PORTMAPPEH

PORTMAPPER

R 909

EXTRACT PROGRAM EXTRACT PORT
903 \ GET 'PROGRAM, GET 'PROGRAM!,
'VERSION', ‘PORT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR
UDP) uDPY
. 7) — 908
z SAVE REQUEST
CREATE SERVER STATE
- SAVE 'PROGRAM,
> SAVE 'PROGRAM;, 'VERSION' AND
904 N "VERSION', 'PORT' AND 'PROTOCOL (TCP OR
‘PROTOCOL (TCP OR UDP) WITH
UDP) WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

BOTH MAKE A KEY.

Won g

907

K‘ 905 906 ‘\

LOOKUP REQUEST EXTRACT
OOKUP REQ PROGRAM
/ FIND ‘PROGRAM'
900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF ‘PROTOCOL (TCP
SOURCE NETWORK OR UDPY.
ADDRESS,

FIG.9

EX 1019 Page 124

r

5arki55ian et al. APPT-001-4

@ 2

1000 —y 10/21

PATTERN
RECOGNITION
DATABASE

MEMORY

EXTRACTION
OPERATIONS
DATABASE
MEMORY

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRLIN

1006 PATTERN I 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)
1008 1013

PARSER
OUTPUT PACKET KEY

PACKET PARSER INPUT BUFFER

INPUT MEMORY BUFFER AND PAYLOAD
MEMORY
1012
1010
1021 1025

INPUT BUFFER
INTERFACE
CONTROL

INTERFACE
CONTROL

PACKET

1027

EX 1019 Page 125

Sarkissian etal. APPT-001-4

11/21

1100 —y

Rﬁm 31103

o
ENGINE i—IBCl)JSST
INTER-
FACE
(HIB)
INSTRUCN

DATABASE

1109/

UNIFIED
FLOW
PARSER || KEY
INTER- NBUFFER
FACE (UFKB)

STATE
PROCESSR
(SP)

{1119 1123Z

UNIFIED | |MEMORY
e L e
FLOW FAG
INSERTION/ (UMC)
DELETION
1110
R

EX 1019 Page 126

‘r

sarkissian etal. APPT-001-4

O)

12/21

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

1200 v
A ACCESS

CONVERSATION 1203
RECORD BIN s

)

REQUEST RECORD BIN/
BUCKET FROM CACHE |/~ 1204

REQUEST NEXT
(| BUCKET FROM
1206 CACHE

NG |INSERT KEY AND HASH f12°7
= IN BUCKET, MARK 'USED
1208 WITH TIMESTAMP

<BIN/BUCKET EMPTY 1205

VE v
S COMPARE CURRENT BIN—1209
1210 AND BUCKET RECORD
SET UFKB FOR
ANHEIRS KEY TO PACKET
'DROP"

v

MARK RECORD BIN AND
BUCKET IN PROCESS' |/~ 121
AND 'NEW' IN CACHE

v

SET INITIAL STATISTICS
FOR RECORD IN CACHE

<5/1213

FIG. 12

1212

EX 1019 Page 127

Y

APPT-001-4

Sarkissian et al.

1300 —y /

13/21

1301

KBOZ
SET STATE PROCESSOR

INSTRUCTION POINTER TO
VALUE FOUND IN UFKB ENTRY

UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FOUND!

FETCH INSTRUCTION FROM

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUND IN
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN
CURRENT FLOW
RECORD

> STATE PROCESSOR
INSTRUCTION MEMORY

A

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

DONE PROCESSING
STATES FOR THIS
PACKET?

1308
1310

DONE PROCESSING 1309

JATES FOR THIS FLOW?2

v
SET AND SAVE FLOW REMOVAL
STATE PROCESSOR
INSTRUCTION IN CURRENT
FLOW RECORD

j—1313

»
>

FIG. 13

EX 1019 Page 128

140

£
“““““““““““““““““““ e %‘
! 1416 ! 5
1404 — 1406 — 14127 1414 ~ | 5
ANALYZE AND EXTRACT |1 [LOOKUP &L ! =
RECOGNIZE | | IDENTIFYING |y ugy BlrR ey Lyl KNOWN CEW "ELOW® | 2
PATTERN INFO & PROCL . RDEé?%gQS RECORD?, | 0| | | DATABASE | | >
INFORMATION JSTATE ol) OF FLOWS | |, T
——————— H
N - | =
! R
: : 1422 |
' UPDATE ‘
PATTERN l MORE ; :
STRUGTURES : ! CLASSIFICATIOND>—NO-» | FFQV |
EXTRACTION P! il RECORD :
OPERATIONS | A
| | e,
| 5
| | >~
[i | B
PARSER 1408 Ly -
SUBSYSEM _ _ _ _ _ _ _ b STATE !
l MACHINE :
SELECTOR o =
: Y, > | L,J
1400 1426 1
| YES CLASSIFICATN| |
FIG. 14 ! 1428Y FINALIZATION| |
] : (\> -] 1482 : 1
| STATE > P Crazs |
: ANALYSIS | |] NO— |
1 DPERATIONS (== !
— ANALYZER |
! SUBSYSTEM :

EX 1019 Page 129

-

1502
i

PACKET

121

L]

PACKETS

»ACQUISITION

DEVICE

PARSER

ANALY
301

303

ZER

-

(—324

DATABASE

OF
FLOWS
(MEMORY)

.

MONITOR
300

HOST

1504

1506
(

‘e 1o LRISSDHE

¥-100-1ddVv

C

< HOST

PROCESSOR

"I MEMORY

102

A

(1510 J ‘

A A

NETWORK
INTERFACE
CARD &

DISK

FIG. 15

DB

L2/St

1508
(

S——

EX 1019 Page 130

P

r

garkissian et al. APPT-001-4

® 3

16/21
1602 0 - 3 Bytes
A— 1600
T Dst MAC

offset 0 - 11|~ DStMAC | Src MAC 1604

Src MAC 4
N\ _/
1608
Dst MAC (6) —
| Dst Hash (2} 1610
1612\ Src MAC (6)
1614 |Src Hash (21

et=12
FIG. 16

EX 1019 Page 131

Sarkissian et al.

offset
12t0 13

APPT-001-4

9

~—

17/21

1702

\

1706

Y
Type (2)
|Hash (1) Y 1700

1708

1710

\ L3 Offpet = 14

FIG.17A

\
CTee VIR

1704 IDP = 0x0600*

IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806
VIP = O0xOBAD*
VLOOP = Ox0BAE
VECHO = Ox0BAF
NETBIOS-3COM = 0x3C00 -
Ox3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX = 0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD *
LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

L/

1
1712

1752

L3to
[L3 +
(IHL / 4)
- 1]

I [BAE/TYee)

[ToSal et/

/1] 13essings]/ ¢

/[G Offse!

ICMP = 1

///TTE/ | Protocol

MR

IGMP =2

Src Address

GGP =3
TCP =6~

Dst Address

EGP =38

/111179 & Faderad 1111111

IGRP =9
PUP = 12

CHAQS =16

X

ubp =17~

IDP =22#
Y— 1750

ISO-TP4 =29

Dst Address _]

DDP =37#
ISO-IP =80

Dst Hash (2)[

VIP = 83#

Src Address

] EIGRP = 88

Src Hash (2)[
[Pl ()
et = L3 + (IHL/4)

FIG.17B

OSPF =89

* L4 Decoding
L3 Re-Decoding

————
EX 1019 Page 132

APPT-001-4

sarkissian et al.

18/21

PROTOCOL

TYPE (ID

=
\\\\\>\\\\
_\\\\\ \.M

wwK\\\>\\\\ 8

[TT77777/ 7717

A—1800

— >
HLON31 q7314

FIG. 18A

1870

=
=
Z
-
2
-

LI
771771
[T

ai314 40

3d00 31AdG

A—1850

v
7000.L0¥d

FIG. 18B

EX 1019 Page 133

e 18 UBISSDHES

1905
1919
/ / 1900
L |—DATA -»| 4)
=/ APDR> ¢ LUESEL— >
DATA » 0
5 PSEL—
(B:ADDR, INPUT SELECT MUXES «SPS 3
n «FIDESEL— 1017 S
wi|— =2
o ADDR_DATA [foNT
v W,
_| «—UMC-O-CA-DATA ——
<+——CA-ADDRESS
ADDR[DATA T
Yy v L A / Y VY L 2R ¢ r v R ~———-1903 1915
AGE-O-IN PAGE-31-IN «—
DUAL PORT RAM PAGES (32) <
PAGE-0-OUT PAGE-31-OUT 4CACHE WRITE STROBES
DATA DATA DATA
DATA DATA ... DATA -1909 1911 —
SAA oyte PAA ouTs olfs ours / a ©
1909 -l N
\ © |2 | CA-UMC-DATA
D L
=
1907 (_/
- CAPAGESEL
IJJ L
TA —
3]*% LUESEL— \\1913
o | paTaA OUTPUT SELECT MUXES «SPSEL—
2 «FIDESEL—
£ |«-DATA —!
m
1919

EX 1019 Page 134

T’

sarkissian et al. APPT-001:4

D
20/21
/2001 2005
PR i
*—.
& [LUEMEMREQ-» LSEL_LUE FIDE-+»
a DY —
T |«—SETLUEREADY CAM.HIT
S |«—SETLUESEL— >
. <«~CAM_HITPAGE —| &
— CACHE_CAM_SM <
«CAM_LRUPAGE —
% L FIDEMEMREQ-»| - 2
& l«SETFIDEREADY —| ____{OAD_CAM—a] ©
= {l
= -— -
Q «—SETFIDESE | REFRESH_CAM-»

1

GET BACKUP GOT /2003

vy

|

—SEL_CACHE—»

CACHE MEM CAMEM.RES

SIGNALS | CA-MEM-WRITE—»|
CACHE_MEM_SM

|« UMGC-0-CA-NEXTADD-

+—UMC-O-CA-READY—

CACHE PORT
UMC

|

FIG. 20

EX 1019 Page 135

carkissian etal. APPT-001-4

,

3

21/21
CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA F—
2109
LOAD, REFRESH, EVICT) Y CEr DATA
\ 2105 v 2111 [2103
v CAM_INPUTDATA 2113
Y r]
—LOADO-»| CAM[0] [~MATCHO %
DATAL L
—LOAD1-»{ CAM[1] -MATCH1 »
DATAZ] L
—LOAD2-»{ CAM[2] [-MATCH2 »
—LOAD3—>{ CAM[3] FMATCH3 »
= —LOAD4-»{ CAM4] MATCHA > - 2115
9 = > %
W 5TO 32 —LOAD5»| CAM[5] [~MATCH5» Low O
5 = _— 2 lcam | 5
= DECOD | —LOADE-»{ CAM[6] ~MATCH6»| HIGH o <
o)
<~ _— ENCOD 9
—LOAD7»{ CAM[7] FMATCH7 » -~
i 2107
—LOAD30»>| CAM[30] FMATCH30
—LOAD31»| CAM[31] FMATCH31»
" DATA3
CAM_LRUPAGE
CAMNUMBER - CAM| NUMBER

|
2127 DATAOl l

!

» «» « DATA31

[~

NMUX32

] | DIRTY ENTRY

J

Y
72123

2121

I |
DATAO » « + DATA31
Y

}\' NMUX32 4
~ >

[CURRENT ENTRY |
I

]
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET CAM_HITPAGE

FIG. 21

\J

\J
2119

o

S

2117

EX 1019 Page 136

&

' \\ Page 1 of 1

UNITED STATES PaTENT AND TRADEMARK OFFIGE

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D T 20231

www usplo gov
[" apeLicaTioNNUMBER | FILING/RECEIPT DATE | FIRSTNAMED APPLICANT | ATTORNEY DOCKET NUMBER |
09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4
FORMALITIES LETTER
1 i
OovRoseniod L

*0C000000005373402°
Suite 2

Oakland, CA 94618

Date Mailed" 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION
FILED UNDER 37 CFR 1.53(b)
Filing Date Granted

An application number and filing date have been accorded to this application The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

o The statutory basic filing fee is missing.

Apphcant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1 27).

« The oath or declaration is missing.

A properly signed oath or declaration in complance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

o To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non-small entity, must be submitted with the missing items identified in this letter

« The balance due by applicant is $ 820.

A copy of this notice MUST be returned with the reply.

\/; p)
/74 b /)'/} N?‘;—//

;
Customer Service Center
Initial Patent Examination Division (703) 308-1202
PART 3 - OFFICE COPY

file://C:\APPS\PreExam\correspondence\2_C.xml 9/1/00

EX 1019 Page 137

AFE> :) \
o Oé@%{efthockﬂ No: APPT-C51-4 — Patent \ \
i i s TIC -
‘ RSB ¢
! @\ 'Lt‘ 2 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE !
{ &

, S
%@@plicam(s): Sarkissian, ef al.

Application No.: 09/608266

Group Art Unit: 2731

Examiner: (Unassigned)
Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X _ Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;
X Executed Assignment with assignment cover sheet.

X Acredit card payment form in the amount of $____860.00 is attached, being for:
X Statutory basic filing fee: $ 690

X Additional claim fee of $0
X Assignment recordation fee of $ 40
X Missing Parts Surcharge $130

X _Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:
one months ($110) two months ($380)
two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail i an

envelope addressed to the Assistant Commussioner for Patents, Washington, D € 31 on
Date: /f‘:}c {/ ‘2'{:/ P ez &, Signed; o

Name. Dov Rosenfeld, Reg. No 38687

EX 1019 Page 138

)

)

R

Application 09/608266, Page 2

-/

\

X __The Commissioner is hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,
[A . _ //%_,___\
Date BevRosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld
5507 College Avenue, Suite 2
Qakland, CA 94618
Tel. (510) 547-3378; Fax: (510) 653-7992

EX 1019 Page 139

A IS ,
o A C \ .
@™) . Al

r
f/k;”?

& PATENT APPLICATION

D POWER OF ATTORNEY ATTORNEY DOCKET NO._APPT-001-4
FOR PAE "APPLICATION

As a below named mventor, | hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe 1 am the origmal, first and sole i{xvempr (if only one name 1s fisted below) or an onginal, first and jont mventor (if plural names are
fisted below) of the subject matter which is claimed and for which a patent 1s sought on the invention entitled:

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

the specification of which is attached hereto unless the following box 1s checked:
X) was filed on June 30, 2000 as US Application Serial No 09/608266 or PCT International Application Number and
was amended on __ (of applicable).

[hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. | acknowledge the duty to disclose all information whuch 1s materal to patentability as defined in 37 CEFR 1 36.

Foreign Application(s) and/or Claim of Foreign Priority

1 hereby claum foreign prionty benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed betow and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which prionity 1s claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 335
YES: _ NO:
YES: NO:

Provisional Application
I hereby claum the benefit under Title 35, United States Code Section 119(e} of any Umited States provisional application(s) histed below:

APPLICATION SERIAL NUMBER FILING DATE

U.S. Priority Claim

[hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the clamms of this application 1s not disclosed in the prior United States apphication in the manner provided by the first
paragraph of Title 35, United States Code Section 112, [acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1 56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, [hereby appoumt the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected thetewith:

Dov Rosenfeld, Reg No 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or mprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inveator: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top. San Antonio. Texas 78255

Post Office Address: Same

Mm A. Ao«»m_ Supk 11 fo09

First Invegtor’s Signature Date

EX 1019 Page 140

T

H)) a)/
Declaration and Power of Attorney (Continued)
Case No; «Case CaseNumber»

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Russell S. Dietz Citizenship: _USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

NS

e
VA

Date

yentor’s Sighature

EX 1019 Page 141

.. —— -
(P EN ﬂ \ M
(0] Oﬁ{qxb\f.ll)ocket No: APPT501-4 ~ Patent \'\ 2
oL e v .
[b £ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE)

&
& &
k"({éﬁ TEACﬁ‘!)\licant(s): Sarkissian, et al.
Application No.: 09/608266

Group Art Unit: 2731
Examiner: (Unassigned)
Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

REQUEST FOR RECORDATION OF ASSIGNMENT

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the U.S. Patent and Trademark Office is an
original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the
Assignment.

Respectfully Submitted,

(It 20, 28eB =

Date = Dov Rosenfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2

QOakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commussioner for Patents, Washington, D.C~20231 on.

Yo E
Date: &C (R e 2, St ///
/

Name: Dov Rosenfeld, Reg. No. 38687

EX 1019 Page 142

DIP A

. TN % ™.
\/) / o) Page 1 of 1
. o, e
0cT 2 4 2000 ps
>, & A -
S % & 1y
X \’:’*ﬁ‘ 4 Aot ¢ ;
13 UNITED STATES PATENT AND TRADENMARK OFFICE
i 2 COMMISSIONER FOR PATENTS
7 UNITED Stares PATENT AND TRADEMARK OFFICE
WasHINGTON, D C 2C231
www usplo gov
| APPLICATION NUMBER] FILING/RECEIPT DATE | FIRSTNAMED APPLICANT | ATTORNEY DOCKET NUMBER |
09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4

FORMALITIES LETTER

DRt RO MR

5507 College Avenue *0C000000005373402"
Suite 2
Qakland, CA 94618

Date Matled: 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION
FILED UNDER 37 CFR 1.53(b)
Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below,
however, are missing. Applicant 1s given TWO MONTHS from the date of this Notice within which to fite all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1 136(a).

+ The statutory basic filing fee is missing.
Applicant must submit $ 630 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).

« The oath or declaration is missing
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

o To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non-smail entity, must be submitted with the missing items identified in this letter.

e The balance due by applicant is $ 820.

A copy of this notice MUST be returned with the reply.

7y
Y
» ,:,/ ,
4 / .
(_’:\ ./;‘/? PR
Customer Service Center
Initia] Patent Exammation Division (703) 308-1202

PART 2 - COPY TO BE RETURNED WITH RESPONSE

it
cnitanit

]

ae B oo D

.
PR

IRV

file://C\APPS\PreExam\correspondence\2_B.xml : E 9/1/00

EX 1019 Page 143

B ™

A2,

ef.fDobkef No: APPT -4 @ Patent
" ; IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
£ .
& .
e ﬁ@&ﬁcant(s): Sarkissian, et al. Group Art Unit: 2731
Application No.: 09/608266 Examiner: (Unassigned)

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;
X Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $___860.00 is attached, being for:
X __ Statutory basic filing fee: $ 690 .

X Additional claim fee of $0
X Assignment recordation fee of $ 40
X Missing Parts Surcharge $130

_X__Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)
two months ($870) four months ($1360)
If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postat Service as first class mail in an

envelope addressed to the Assistant Commissioner for Patents, Washington, D.C, on.
e (AT 20 9500 Signed'%_—_—‘,

Narhe: Dov Rosenfeld, Reg. No. 38687

EX 1019 Page 144

Secty, 4

e 3

' Application 09/608266, Page 2

. X _The Commissioner is hereby authorized to charge payment of any missing fees associated
: . with this communication or credit any overpayment to Deposit Account
No. 50-0292

L Ak o

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

(Ot 20 100 e

Date %enfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Tel. (510) 547-3378; Fax: (510) 653-7992

v g e e

AP+ TR S

A

EX 1019 Page 145

P ey SN

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Our Docket/Ref. No.: APPT—OQ&_ O Patent : (/
S 266

RS

Title:

P L N S

Applicant(s): Sarkissian et al.
Serial No.: 09/608266
Filed:

Group Art Unit: 2731

June 30, 2000 Examiner:
ASSOCIATIVE CACHE
STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN
A NETWORK MONITOR

y-12-0/

03AI303d

X

X
X

Date:

WOOUTIYW 0002 0L
{002 21 udv

Comimissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449,

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,
@{sr ‘;1/ 290 |

7

Bov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

1 hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit [{

Signature.

Dov eld, Reg. No. 38,687

EX 1019 Page 146

') 0

QOur Docket/Ref. No.: APPT-001 ;4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al. =
it:

Serial No.: 09/608266 Group Art Unit: 2731 & w0
E iner: e 3 M
Filed: June 30, 2000 xaminer o = Q
-~ N —
Title: ASSOCIATIVE CACHE EF: S
STRUCTURE FOR LOOKUPS AND w B o5

UPDATES OF FLOW RECORDS IN 3

A NETWORK MONITOR X

; Commissioner for Patents

Washington, D.C. 20231
INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

AN S ——

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or
(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever

occurs last)

under 37 CFR 1.97(c) together with either a:
_ Certification under 37 CFR 1.97(e), or
__ a$%180.00 fee under 37 CFR 1.17(p)
(After the CFR 1.97(b) time period, but before final action or notice of
allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:

___ Certification under 37 CFR 1.97(e), and

___ apetition under 37 CFR 1.97(d)(2)(i1), and

__ a$130.00 petition fee set forth in 37 CFR 1.17(1)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before
payment of the issue fee)

PR

e e s
e

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: A‘ﬂf qj ConZa OB

Signature.

Do Grfferfeld, Reg. No. 38,687

EX 1019 Page 147

. o O

S/N: 09/608266 Page 2 1IDS

X Some of the references were cited in a search report from a foreign patent office in a
counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED
were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and
& appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation 1s
being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

ov Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: /q?r ‘?/ Fo0 |

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

EX 1019 Page 148

1 pralFURM - 1449 - ™\ SHEET 1 OF 5.
!) AW —
4 . LS
¥ ATTY. DOCKET NO. SERIAL NO.
£ APPT-001-4 09/608266
i
&
T INFORMATION DISCLOSURE STATEMENT APPLICANT
2 Ssarkissian et al.
B
se several sheets if necessary) FILING DATE GROUP
6/30/2000 2334
b2
U.S. PATENT DOCUMENTS
FILING DATE
g DOCUMENT DATE NAME CLASS | SUB-CLASS | IF APPROPRIATE
INITIAL NUMBER
! aa (736320 Apr. 5, [Bristol 364 [300 Oct. 8,
; A~ 1988 1985
A8 4891639 Jan. 2, [Nakamura 340 |825.500 [Jun. 23,
A Ar? ’ 1990 1988
i 5101402 Mar. 31, KChui et al. L7~ B May 24,
E &v AC 1992 1988
i AD 5247517 Sep. 21, [Ross et al. 370 |85.5 Sep. 2,
{I A~ 1993 1992
§ Av e P24T693 Sep. 21, [Bristol 395 800 Nov. 17,
H 1993 1992
4 P315580 May 24, [Phaal 370~ |3 Aug. 26,
: A~ 1994 1991
H "
¢ 15339268 Aug. 16, Machida 365 |49 Nov. 24,
% A~ AG 1994 ’M 1992
{ gy A 5351243 Sep. 27, [Kalkunte et. al. 38— 152~ Dec. 27,
% 1994 1991
E u P365514 Nov. 15, [Hershey et al. Can-audll oo Mar. 1,
: Vi 1994 1993
; W P375070 Dec. 20, [Hershey at al. 364 [550 Mar. 1,
A~ 1994 1993
i fr i 5394394 Feb. 28, [Crowther et al. B~ Jun. 24,
; 1995 1993
3 FOREIGN PATENT DOCUMENTS
isl PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
H NUMBER YES | NO
H
i AM
N
: AN
i . .
Iy OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
Es
, "Technical Note: the Narus System," Downloaded April 29, 1999 frc@,
A"‘J AR Wwww.narus.com, Narus Corporation, Redwood City California. -
no
TT . =
A8 < = im
= - 2
= [Ty
EXAMINER DATE CONSIDERED L m S M
AZ/, /j/),., 7/v)es § o
A *EXAMINER: initial it cnauon%onsxdered, whether or not ciation 1s it conformance with MPEP 809, Draw line through cilation if not in conforma;;é
l L\; and not considered Include a copy of this form with next communication to Applicant.

EX 1019 Page 149

™

oo,

1
- gtal.FORM - 1449 (5

SHEET 2 OF 5.
N —

ATTY. DOCKET NO. SERIAL NO
APPT-001-4 09/608266

INFORMATION DISCLOSURE STATEMENT APPLICANT

Sarkissian et al.

Use several sheets if necessary) FILING DATE GROUP
olPE\ 6/30/2000 T
b ./C' 4%;/?4 2
‘& U8, PATENT DOCUMENTS
(APR 11 2001 \
\e FILING DATE
MINER CUMENT DATE NAME CLASS | SUB-CLASS | /F APPROPRIATE
NUMBER
AV\ 'BA 15414650 ay 9, Hekhuis 364 {715.02 Mar. 24,
1995 1993
a8 15430709 Jul. 4, [Galloway 370~ 13 Jun. 17,
A 1995 1992
U sc 5432776 lJul. 11, Harper 370l Sep. 30,
%s 1995 1993
80 15493689 Feb. 20, Waclawsky et al. 395 821 ar. 1,
A~ 1996 1993
8 5500855 Mar. 19, [Hershey et al. 1390 Jan. 26,
A~ 1996 1994
BF 5568471 Oct. 22, [Hershey et al. 370 |7 Sep. 6,
Vad 1996 1995
86 5574875 Nov. 12, |Stansfield et al. 395]403 Mar. 12,
AN 1996 1993
§586266 Dec. 17, |[Hershey et al. 395 200.11 Oct. 15,
hr— BH 1996 1993
N a 5606668 Feb. 25, |Shwed 395 200.11 |DPec. 15,
A 1997 1993
B 5608662 ar. 4, |[Large et al. 364 [724.01 pan. 12,
Av 1997) 1395
K 5634009 ay 27, |Iddon et al. 395 200.11 [oct. 27,
A 1997 1995
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
BM
BN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Pubtication, Etc.)
—
[en]
BR ™~
s T ::\:)
¢ o T
YO
~ . ITH
2oy L
8s I o e
[HEN
EXAMINER DATE CONSIDERED g ‘é__% |a}
(&P‘
Al e, 7/ oz -

‘EXAMINER: wutial if c.qaﬁon*{;onsidered, whether or not citation 1s in conformance with MPEP 609. Draw fine through citation if nat in conformance
and not considered. Include a copy of this form with next communication to Applicant

EX 1019 Page 150

r

-" EtalFORM - 1449 /élo—\ (\? SHEET 3 OF 5.
ey " =
" - &
’ “0.\ ATTY. DOCKET NO. SERIAL NO,
N,Rll rA APPT-001-4 09/608266
INFORMATION DISCL RE STATEM APPLICANT
T WN\"% Sarkissian et al.
(Use several sheets if necessary) FILING DATE GROUP
6/30/2000 por e ping
A
U.S. PATENT DOCUMENTS
FILING DATE
‘EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | F BPPROPRIBTE
INITIAL NUMBER
A{, ca 15651002 Jul. 22, [Van Seters et all. 370 392 Jul. 12,
1997 . 11985
c8 5684954 Nov. 4, |Kaiserswerth et al. 395 200.2 Mar. 20,
't 1997 : 1993
cc 5732213 Mar. 24, [Gessel et al. 395 [200.11 Mar. 22,
AN 1998 1996
o 5740355 Apr. 14, [Watanabe et al. 395 [183.21 un. 4,
)l 1998 1996
A""'J cE 5761424 Jun. 2, [Adams et al. 395 1200.47 [Dec. 29,
1998 1995
oF 15764638 Jun. 9, [Ketchum 370 {401 Sep. 14,
o 1998 ‘ 1995
ce 5781735 lTul. 14, |Southard 395 [200.54 [Sep. 4,
A 1998 1997
~ cn 5784298 Jul. 21, Hershey et al. 364 [557 Jul. 11,
A 1998) 1996
o 5787253 Jul. 28, McCreery et al. 395 1200.61 [May 28,
At 1998 ’ 1996
15805808 Sep. 8, [Hansani et al. 395 j200.2 Apr. 9,
A cJ 1998 - 1997
/{j K 15812529 Sep. 22, [Czarnik et al. 370 |245 Nov. 12,
1998 1996
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
oM
CN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
CR
—_;
; [an)
no
[en]
: g =
i oo
- 13
EXAMINER ' DATE CONSIDERED =
e Do %2l 3 5B
o = 9
‘EXAMINER imitial if citation considered, whether or not citation is in conformance with MPEP 603 Draw line through citation if not in confo@nce
and not considered. Include a copy of this form with next communication to Applicant, -

EX 1019 Page 151

. £t al. FORM - 1449 O (. : SHEET 4 OF 5.
ATTY. DOCKET NO. SERIAL NO
APPT-001-4 09/608266
INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et al.
O\PE
»7 {Use several she ecessary) FILING DATE GROUP
6/30/2000 <z73T
APR 11 2001 e
P =
& &(\0 U.S. PATENT DOCUMENTS
L TRANEMIT FILING DATE
‘EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | iF BPPROPRISTE
INITIAL NUMBER
oA 5819028 Oct. 6, Manghirmalani et al. 395 |185.1 Apr . 16,
Ar 1998 1997
, 0B 15825774 Oct. 20, Ready et al. 370 j401 Jul. 12,
A 1998 1995
e 5835726 Nov. 10, {Shwed et al. 395 [200.59 |[Jun. 17,
. M 1998 1996
! oD 15838919 Nov. 17, |Schwaller et al. 395 [200.54 |Sep. 10,
~ Ar 1998 . 1996
) oE 15841895 Nov. 24, Huffman 382 {155 Oct. 25,
Av 1998 . 1996
v oF 5850386 Dec. 15, |Anderscon et al. 370 [241 Nov. 1,
A 1998 - 1996
N G 5850388 Dec. 15, |Anderson et al. 370 252 oct. 31,
A 1998 - 1996
M ot 15862335 lJan. 19, Welch, Jr. et al. 395 1200.54 @pr. 1,
1999) 1993
o 5878420 Mar. 2, [de la Salle 707 110 Oct. 29,
A 1999 1997
oy 5893155 Apr. 6, [Cheriton 711 [144 Dec. 3,
Ar 1999 ’ 1996
Afk/ DK 15903754 May 11, |Pearson 395 1680 Nov. 14,
1999 1997
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
DM
DN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, E1¢.) ey
[
no
08 0 =
o ™M
c O
=
I o M
DS = <
=
2 = O
g
EXAMINER DATE CONSIDERED =
[l 9, ?(2 /o7
“EXAMINER mitial if citation considared, whether or not citation is in conformance with MPEP 609. Draw line through citation #f niot in conformance
and ot considered. Inciude a copy of this form with next communication to Applicant,

EX 1019 Page 152

FEa—

.

* EtalFORM -

/"\,

1449 N SHEET 5 OF 5,
ATTY. DOCKET NO. SERIAL NO,
APPT-001-4 09/608266
INFORMATION DISCLOSURE STATEMENT APPLICANT
Sarkissian et al.
O\VE
- (Use severaMpiets if necessary) FILING DATE GROUP
¢) 6/30/2000 P A
ot Mé’g =
e
U.S. PATENT DOCUMENTS
FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CLASS | iF BPPROPRIBTE
INITIAL NUMBER
A—V EA 15917821 Jun. 29, (Gobuyan et al. 370 392 Aug. 16,
1999 1996
k\" B 5414704 May 9, Spinney 3746 466 Apr. 5,
1995 1994
po cc [6014380 Jan 11, [Hendel et al. 370 |392 Jun. 30,
2000 1997
D 5511215 Apr. 23, [Terasaka et al. 395 {800 Oct. 26,
i 1996 1993
EE
EF
EG
EH
El
EJ
EK
FOREIGN PATENT DOCUMENTS
PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS LATION
NUMBER YES | NO
oM
DN
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Pubtication, Etc.)
DR
[254
EXAMINER DATE CONSIDERED /
(il) t/elo>
*EXAMINER: nitial if citation ccnsxde;ed, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in canformance
L and not considerad. Include a copy of this form with next communication to Applicant.

EX 1019 Page 153

IR

i |

United States Patent [

Gobuyan et al.

A A
US005917821A

(111 Patent Number:

5,917,821

451 Date of Patent: Jun. 29, 1999

[54] LOOK-UP ENGINE FOR PACKET-BASED
NETWORK

[75] Inventors: Jerome Gobuyan, Kanata; Wayne
Burwell, Ottawa; Nutan Behki,
Nepean, all of Canada

[73] Assignee: Newbridge Networks Corporation,

Kanata, Canada
[21}] Appl. No.: 08/663,263
[22] PCT Filed: Dec. 21, 1994
[86] PCT No.: PCT/CA94/00695
§371 Date: Aug. 16, 1996

§ 102(c) Date: Aug. 16, 1996
[87]1 PCT Pub. No.: WO095/18497
PCT Pub. Date: Jul. 6, 1995
[30] Foreign Application Priority Data
Dec. 24,1993 [GB] United Kingdomcooe.... 9326476

[51] Int. CL° HO4L 12/46
[52) US.CL 370/392; 370/401
[58] Field of Search ... 370/392, 395,
370/400, 401405, 465, 466, 351, 389,

396, 397, 474; 395/200.68

[56] References Cited

U.S. PATENT DOCUMENTS

5,095,480 3/1992 Femner ..c.o.eceeececsescrmcsenneen 370/238
5,463,777 10/1995 Bialkowski et al.cccoocneece 370/256
Primary Examiner—Chau Nguyen
Antorney, Agent, or Firm—Marks & Clerk
[57} ABSTRACT

An arrangement is disclosed for parsing packets in a packet-
based data transmission network. The packets include
packet headers divided into fields having values representing
information pertaining to the packet. The arrangement
includes an input receiving fields from the packet headers of
incoming packets, a:memory for storing information related
to possible values of said fields, and a device for retrieving
the stored information appropriate to a received ficld value.
The retrieving device compriscs a look-up engine-including
at least one memory organized in a hierarchical tree
structure, and a controller for controlling the operation of the
memory. The arrangement is capable of performing fast
look-up operations at a low cost of implementation.

29 Claims, 11 Drawing Sheets

DESTINATION ADDRESS LOOKUP ENGINE -

DESTINATION AD(I))FLEESRS‘/\5 DAL Lie
1~ | LOOKUP CONTROLLER [=+—=) RAM °
A
|AXEt 9 l s
FIFO NX 1
nlpu Bl LOOKUP ENGINE x18 > Output to AXE
RIII\I;\II CODC[:)NTROLLER FIFONx 18 —»R QOutput B(f
r r
3232 "4 = 12ealssem e
RAM
Reassembler !
|nput J 128KX16%¥__10
= 1
2.1 | " SOURCE ADDRESS SAE | | g
| Lovkup CONTROLLER [=— R

SOURGE ADDRESS LOOKUP ENGINE -~ —-

EX 1019 Page 154

U.S. Patent Jun. 29,1999 Sheet 1 of 11 5,917,821

100~ 101 102 103
)] B "™

Dest | Source ¥ NL Dest [NL Source
Address | Address Net Layer Protocol Type Address | Address

o % R

Tree Tree Microcode Tree Tree
Search Search Comparisons Search Search
FIG. 1
»To ATM
1 16 i
1) ¢’
Quad Control v
M & 0 LUE
FIG. 2 L From ATM
DESTINATION ADDRESS LOOKUP ENGINE
DESTINATION ADDRESS 1S | DALE } 4~p
1—~1 | LOOKUP CONTROLLER |=—1 _ RAM
512K x 16
i
e —1 -
nput & FIF
L B LOOKUP ENGINE QN1 > Output to AXE
v CONTROLLER FIFO N x 18} Output o
Bda| | | HOODE Reassembler
SEAng{m‘r DALE
Reassembler X = i 12
input 3/ 128Kx16 1
[—
2.1 | * SOURGE ADDRESS SALE | L
7| LOOKUP CONTROLLER |=— o 8
FIG. 3

SOURCE ADDRESS LOOKUP ENGINE

EX 1019 Page 155

v

e g

U.S. Patent Jun. 29, 1999 Sheet 2 of 11 5,917,821
20
' SIB RAM
SIB DATABUS OUT SIBDATABUSIN SIB ADDRESS BUS
} l }
21+
INTERFACE RAM !
/l\v INTERFACE DATABUS IN__INTERFACE ADDRESS BUS
I
2 NIBBLE INDEX
25
i ;
{ DATA REGISTER 26
ﬁl LOOKUP POINTERS
CANADIAN CODE
COMP
I
|
™
MUK [OPCODE] DIAP] PARAMETER |
L~ (
X 25
— REGISTER N
& »
‘l‘ oot | | B\ M /
' PORT l
TO/FROM
SALE, DALE uCODEADDRESSBUS wCODE DATABUS N 11CODE DATA BUS OUT
MICROCODE RAM
FlGl 4

EX 1019 Page 156

[P———

A S 5

U.S. Patent Jun. 29,1999 Sheet 3 of 11 5,917,821
AXE 1
Input g DESTINATION ADDRESS LOOKUP ENGINE (
_ /| [oesmiaTion boRess} 5 | DALE | ~¢
32 BIT LATCH LOOKUP CONTROLLER [=+——1 _ RAM
I 512K x 16
42
/ ']
f
FIFO N x 18 T N
FFONX 18 Baxt6 7”21 ,
j F
4 Y LOOKUP ENGINE IFON x 18 = Output to AXE
43 CONTROLLER
FIFONx 18 Output to
32 BIT LATCH WCODERAM | A Reassembler
kx| 4 RAM | 12
128K X 16 -
Reassembler ~——10
Input
2.} | SOURCE ADDRESS SALE |1 g
LOOKUP CONTROLLER [==—1 _ AAM._

e

(SOURCE ADDRESS LOOKUP ENGINE
7

FIG. 5

EX 1019 Page 157

oL AR

U.S. Patent Jun. 29,1999 Sheet 4 of 11 5,917,821
20 8, (6 —42 43
SBRAM / “SALE RAM DALE RAM / T SNOOP FIFOS
AND RESULT FIFOS sMe SAE || omr o
SIBD(150) SBARD) SBAUSA)] | AD(I%4) AGD) | | AD(ISY) AGD) MFD(16:0)
A A t 1} J | A A J 2
SALE DAE | [INTERFACERAM | EFORD
NIBBLE Ram ||| NIBBLE Ram
T [RMD[150) | RAMAO)
SALE DALE (|
2~ - 51
{SALE REGISTER| }|{ {DALE REGISTER|
23 1\ [INDEX POINTER L%gﬂ
LOOKUP POINTERS | §) {
50
ALE RESULT BUS |
CHECKSUM
0K LEGE
[RE6 51 |
CHECKSUM
ENGINE m
MF DATA BUS
LOGIC UNIT DATA BUS
__ MICROCODE PARAMETER BUS
Y REGISTERS
ok [0PCODE | DIAP]PARAMETER |
¥ INSTRUCTION
58 L g REGISTER
BEE; 1l
S\ 56
{ Y REG | v
WCODE A(11:0) pCODE D(310)
SPDI MICROCODE RAM

EX 1019 Page 158

e e et o 4 N S

U.S. Patent Jun. 29, 1999 Sheet 5 of 11 5,917,821
SALE/DALE
POINTER NIBBLE INDEX (n)
DALE RAM DALE RAM
912Kx 16 512Kx 16 ~
L 8
6
8000 n-FFFF n 8000 n-FFFF n
FIG. 7
0000 n-01FFn
POINTER ARRAY (MSB=1) yex7 pOINTER ARRAY POINTER (19-0)
P] POINTER OR DATA [NIBBLE INDEX]
—
I
1616

LPEMERARHAY(MSB:U SIB (MSB =0)

/

16x16 16x16

FIG. 8

EX 1019 Page 159

Tk L o

U.S. Patent Jun. 29, 1999 Sheet 6 of 11 5,917,821
MAC ADDRESS TREE - EXAMPLE $008FC2865739
ROOT POINTER -
NIBBLE 1=$0 III/I/4IlII>I\}\!II
NIBBLE 2=$0 = .4‘.\.1.41.\,. ‘.44.\.
’ L IC000E00ay i l.‘.\-.l.\.
NIBBLE3 = $8] "/-/{/“ .4 - < doobd {‘.\. 4 .l. -{‘.\. .4‘.\.
NBBLE4=5F /), R, A//l .4‘.\‘. TN
00000000080
NIBBLES=3C /0 4. 4 =2 \’\\/ ks
NIBBLE6 =$2 .!4.\. .4‘-\- ;i‘[;\%- AN ;}\-\. _
NIBBLE? = $8 N
) {HHUo0Cy '?""' L LN
NBBLE8 =35 s IS A,
VBBLES-$0 SN
NIBBLE 10=§7 D e D
NIBBLE 11 = §3 &~ 4, FIG.9
Nl (Eensin/neinisens

NIBBLE 12 = §9 //f ,-

SiB

ROOT POINTER

A A7

-------- Secusssivjaneaesne 000

FIG. 1

Ul #3

W\

EX 1019 Page 160

U.S. Patent Jun. 29,1999

Sheet 7 of 11 5,917,821
SOURCE ADDRESS LOOKUP ENGINE
Sl
o MAC->Found/Not Found
5 b
5|
sm ST
812
Address Match o (SIB Pointer
Address Match Fail
3 ~——(Null Pointer
! FIG. 11
DESTINATION ADDRESS LOOKUP ENGINE
[o1] 02
03 o MAC->Found/Not Found
D5 oo
07
D8
09—
Lillpm
D12
Address Match ~— (SIB Pointer
Address Match Fail Nl Porer
FIG. 12

EX 1019 Page 161

§ U.S. Patent Jun. 29,1999 Sheet 8 of 11 5,917,821
5
; B SRR 4 BT3-0] pCODEWORD
§ | BIT15-0] l Lp
;
4 | BIT19-4 | BIT3-0] SIBADDRESS
FIG. 13
e L e toprt o1ty L L 1 1 1 H 1 1 i
StatusFlags] ¢l Status Flags | EA [RX [RP] | |]
o
MAC Index i
WG Fags RP-ROUTED PDU
Hags Proto 1 Area
Fags | Proto2 Area EncapFlags | 0 [FU| EN |
§ Hags Proto 3 Area FU-FUTURE USE
:t o0 Fags | Protod Avea EN-MAG ENCAP FORMAT
{ Hags Proto 3 Area
| Other Area Pointer PhotoFlags | PA | PV | M [M |
Enc | Proto 1 Dest Area PA-PROTOCOL AGTIVE
Enc | Proto2 DestArea &Ymﬂ??&‘é&&
Enc | Proto3 Dest Area MH-MULTI-HOMED
Enc | Proto4 Dest Area
Enc | Proto5 Dest Area
Other Dest Area Pointer FIG. 14

STATION INFORMATION BLOCK

EX 1019 Page 162

s sttt 3

U.S. Patent

Jun. 29,1999 Sheet 9 of 11 5,917,821

70 WS TS 20 W05 MO N NN IO U OO R NS O N A | i 1 i i i 1 1 1 i
PhotoFlags | PA | Pv | 1 | 1]
PortSet PA-PROTOCOL ACTIVE
PV-PROTOCOL VALID
Hags | IPX 802.2 Area
Hags IPX SNAP Area
Hags [PX Raw Area
Hags | IPX Ether Area
IPX 802.2 Dest Area
[PX SNAP Dest Area
IPX Raw Dest Area
|PX Ether Dest Area
PORT INFORMATION BLOCK
Dest Area nibble 1 FIG. 15
Dest Area nibbie 2
Dest Area nibble 3
el 3 NibDle destination area
Source Area
Pointer

2 nibble destination area

Filtering Rule [0 [srrarzarsjardiarsi 0 o JoJofofofofo o o]

ARx-ALLOW ROUTING PROTOCOL x

FIG. 16

EX 1019 Page 163

U.S. Patent Jun. 29,1999 Sheet 10 of 11 5,917,821

*Reset

*FIFO empty

esnoop done

State 73

oF1FO ot emply sstop AND snoop done vstop AND S100p

not done

FIFO not empty
AND (Group=7)

*FIFQ empty

State 1 ’

*F{FO not empty
AND (Group<4)

*FIFQ not empty
AND (Group=/)
OR (Group=b)

*FFO not empty
AND (Group=5)

oSIB_TA true

FIG. 17

EX 1019 Page 164

PR -:.-u&t&wé,wfw

U.S. Patent Jun. 29, 1999 Sheet 11 of 11 5,917,821
Increment Branch Instructions (Group 2, no wait states)
ek /L /NS
VF Addr X IncrementY No Increment
I/F Data KX Valid I/F Data in Valid I/F Data in
Inst Addt PC XPC+1] PC PC+dispX
Inst Re Valid Opcode KX Valid Opcode
Condition TRUE__ XCO000UCU0000000C FALSE X000
State X S2 X S3TX S0 X ST X S2 X S3|X S0 X S1 X S2 X S3
EXECCYCLE \ | /7 _| __/ __|
PC_ADD _/ (W
FIG. 18 | Increment/Branch instruction | Increment/Branch instruction
(Condition=TRUE} (Condition=FALSE)
SIB RAM Access Instructions (Group 5)
PCLK M\ L\
SIB_RQ |/ |
SIB_GR / |
SIB_CS / \
SIB_TA / \ |
SIB_Addr X
SIB_WEb(Write)
SIB_Data(Write) Valid SIB Data |
SIB_OEb(Read) A /
SIB_Data(Read) Valid SIB Data
Inst Addr X PG XPC+1
Inst Reg Valid Opcode
State X S2 X S3(X S0 X ST X S2 XS, X S3
EXECCYCLE — [/ \
SIB RAM Access -
(No wait states)
FIG. 19

EX 1019 Page 165

5,917,821

1

LOOK-UP ENGINE FOR PACKET-BASED
NETWORK

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

This invention relates to the field of data communications,
and more particularly to packet-based digital communica-
tions networks.

There are two broad classes of network: circuit-based and
packet-based. Conventional telephone networks are circuit
based. When a call is established in a circuit-based network,
a hard-wired connection is set up between the calling parties
and remains in place for the duration of the call. Circuit-
based networks are wasteful of available bandwidth and lack
flexibility.

Packet-based networks overcome many of the disadvan-
tages of circuit-based networks. In a packet-based network,
the data are assembled into packets containing one or more
address fields which define the context of a packet, such as
protocol type and relative positions of other fields embedded
in the packet. LAN bridges and routers use the information
in the packet to forward it to the destination.

In a packet-based network, a packet must be parsed as it
flows through the network. Parsing is the process of extract-
ing and analyzing the information, such as source and
destination address and net layer protocol, contained in the
packets.

In known networks, packet parsing is generally performed
with a microprocessor, which provides flexibility in han-
dling different packet types and can be upgraded to handle
new packet types as they arc defined. Content Addressable
Memory (CAM) is commonly used for hardware assistance
to speed up searches through a list of known addresses. This
is a tedious task. CAMs are also relatively expensive and
limited in size and availability.

General purpose processor architectures are not specifi-
cally directed toward the types of operations required in
packet parsing and so they tend to be inefficient. To meet
performance requirements, a fast but expensive processor
based solution can be implemented. In the highest perfor-
mance systems, hardware solutions arc implemented to
increase speed, but at the cost of flexibility.

SUMMARY OF THE INVENTION

An object of the invention is to provide a fast, but
inexpensive solution to the problem of packet-parsing in
packet-based networks.

According to the present invention there is provided an
arrangement for parsing packets in a packet-based digital
commuunications network, said packets including packet
headers divided into ficlds having values representing infor-
mation pertaining to the packet, said arrangement compris-
ing an input memory for receiving fields from said packet
headers of incoming packets; and a look-up engine for
retrieving stored information appropriate to a received field
value. The look-up engine includes at least one memory
storing information related to possible values of said fields
in a hierarchical trec structure and associated with a respec-
tive field of packet headers; a memory controller associated
with cach said memory storing information related to pos-
sible values of said ficlds for controlling the operation
thereof to retrieve said stored information therefrom; and a
microcode controller for parsing a remaining portion of the
packet header while said stored information is retrieved and
controlling the overall operation of said look-up cngine.

The memory and retrieving means cousu:m.tc a 109k-up
engine, which is the central resource containing all infor-

20

25

30

35

45

65

2

mation necessary for forwarding decisions. In a preferred
embodiment the look-up engine includes a source address
look-up engine and a destination address look-up engine.

In a packetized data transmission conforming to IEEE802
standards, the packets have 2 MAC (medium access control)
header containing information about the destination and
source addresses and the net layer protocol. The invention
permits packet switching to be achieved in a bridge-router,
for example an Ethernet to ATM bridge-router, at a rate of
about 178,000 packets per second using 64 byte minimum
Ethernet packets. This means that the MAC headers are
interpreted once every 5.6 micro seconds.

The look-up engine preferably employs table look-ups
using nibble indexing on variable portions of the packet,
such as MAC and network layer addresses, and bit pattern
recognition on fixed portions for network layer protocol
determination.

Each look-up table is organized into a hexadecimal search
tree. Bach search tree begins with a 16 word root table. The
scarch key (¢.g. MAC address) is divided into nibbles which
arc uscd as indices to subsequent tables. The 16 bit entry in
the table is concatenated with the next 4 bit nibble to form
the 20 bit address of the next 16 word table. The final leaf
entries point to the desired information.

Bit pattern recognition is achieved by a microcode
instruction set. The microcode engine has the ability to
compare ficlds in a packet to preprogrammed constants and
perform branches and index increments in a single instruc-
tion cycle typically. The microcode engine has complete
control over the search procedure, so it can be tailored to
specific look-up functions. New microcode is downloaded
as new functions are required.

The look-up engine can perform up to two tree searches
in parallel with microcode execution. Look-up time is quick
because the microcode determines the packet’s network
layer format while the source and destination addresses arc
being scarched in parallel. The results of the source and
destination look-ups and the protocol determination arrive at
roughly the same time, at which point the next level of
decisions is made.

The look-up enginc also performs protocol filtering
between arcas. The system allows devices to be grouped
arbitrarily into arcas on a per protocol basis and defines
filtering rules among these areas. The look-up engine keeps
track of cach station’s area for cach of its protocols. The
source and destination areas are cross-indexed in a search
trec, which is used to find the filtering rule between the two
areas. Separate filtering rules are defined for bridging and
network layer forwarding; bridging is normally allowed
within an area while network layer forwarding is selectively
allowed between arcas.

The parsing controller typically has a pointer to the
current field in the packet being examined. The controller
moves this pointer to the next ficld in the packet after all
decisions based on the current field are made.

At each decision point on a tree, the cumrent field is
compared to a known value or range. If the comparison
yields a true condition, the controller moves to the next
decision point by moving the current field pointer. Other-
wise the field pointer is left alone and controller branches to
new code to compare the current field to a different value or
range. This process is repeated until a final decision is made.

Moving to the next decision point requires several dis-
crete steps in a general purpose processor. Unlike a general
purpose processor, which has the disadvantage that it only
has a single memory bus for both instruction and data
fetches, the Look-up engine controller has separate buses for
instruction and data and typically performs onc decision per
step. Fast decisions are made possible by a spccial set of

EX 1019 Page 166

R R T
e

. v

ok e vy i

[T TSR

5,917,821

3

instructions which both conditionally move the pointer and
conditionally branch to new code in a single step. The
comparisons and pointer movements can be byte or word
wide, according to the current field’s size.

The look-up engine implements other optimized instruc-
tions which perform bit level logical comparisons and
conditional branches within the same cycle as well as other
instructions tailored to retrieving data from nibble-indexed
data structures.

The look-up engine is preferably divided into the follow-
ing sections:

a) one or more nibble tree address look-up engines (ALE)
b) one microcode engine

Each ALE is used to scarch for addresses in a tree
structure in its own large baok of memory. The result of a
scarch is 2 pointer to pertinent infonmation about the
address. An ALE is assigned to destination addresses
(DALE) and source addresses (SALE). The ALEs operate
independently of cach other.

The microcade engine is used to coordinate the search, It
invokes the SALE and DALE to search for the source and
destination addresses respectively and continues on to parse
the remainder of the packet using an application-specific
instruction set to determine the protocol.

The SALE, DALE and microcode engine can cxecute in
parallel and arrive at their corresponding results at roughly
the same time. The microcode engine then uses the SALE
and DALE results along with its own to amive at the
forwarding decision.

e advantage of using RAM over a CAM is expand-
ability and cost. Increasing RAM is a trivial and inexpensive
task compared to increasing CAM size.

e advantage of the mictocode engine over a general
purpose processor is that an ASIC implementation of the
function is much less expensive and less complex than a
processor-based design with all the overhead (RAM, ROM)
associated with it.

The invention also related to a method of parsing packets
in a packet-based data trapsmission network, said packets
including packet headers divided into fields having values
representing information pertaining to the packet, compris-
ing storing information related to possible values of said
ficlds, receiving fields from said packet headers of incoming
packets, and retrieving said stored information appropriate
to a received ficld value, characterized in that said informa-
tion is stored in a memory organized in a hierarchical tree
structure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in more detail, by
way of cxample only, with reference to the accompanying
drawings, in which:

FIG. 1is an example of a MAC layer header of a typical
packet;

FIG. 2 shows the data paths in a typical bridge-router
between Ethernet LAN and ATM networks;

FIG. 3 is a block diagram of a first embodiment of a
look-up engine in accordance with the invention;

FIG. 4 is a block diagram of z look-up engine controlier
for the look-up engine shown in FIG. 3;

35

4

[

50

55

FIG. § is a block diagram of 2 second embodiment of a g0

look-up engine in accordance with the invention;

FIG. 6 is a block diagram of a look-up engine controller
for the look-up engine shown in FIG. 5;

FIG. 7 is a map of look-up engine Address Look-up
engine (ALEy memories;

FIG. 8 is a diagram illustrating search tree operation in an
ALE;

4

FIG. 9 shows one example of a MAC search tree;

FIG. 10 shows the effect of the orgamizationally unique
identifier of the MAC addresses on the size of the scarch
tree;

FIG. 11 shows the source address look-up engine table;

FIG. 12 shows the destination address look-up table;

FIG. 13 illustrates the look-up engine addressing modes;

FIG. 14 shows a station information block;

FIG. 15 shows a port information block;

FIG. 16 shows an example of protoco] filtering;

FIG. 17 shows a look-up engine controller Instruction
State Machine;

FIG. 18 shows a typical fast timing diagram; and
FIG. 19 shows a typical SIB RAM access instruction
timing diagram.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A typical look-up engine (LUE) in accordance with the
invention is designed to be used in a twelve-port wire speed
Ethemet to ATM bridge-router capable of switching abount
178,000 packets per second using 64 byte minimum Ether-
net packets. This packet rate corresponds to a look-up
request occurring every 5.6 usecs. The LUE is used each
time 2 packet is received off the Ethernet or the ATM
network. The type of information that the engine provides
depends on the direction of packet flow and the type of
packet.

The look-up engine provides all the information needed to
find the path to each known destination, as well as default
information in the case of unknown destinations.

FIG. 1 shows a typical MAC layer header format for a
packet that can be parsed with the aid of the look-up engine
in accordance with the invention. The header comprises
destination and source address ficlds 100, 101, a network
layer protocol type ficld 102, and network layer destination
and source address fields 103, 104. FIG. 1 also illustrates
how the header is parsed in accordance with the invention.
All fields except 102 are parsed using a tree search. The Net
Layer Protocol Type field 102 is parsed by using microcode
comparisons in the microcode engine to be described.

On a bridge-router, cach port is represented by a corre-
sponding bit in a PortSet (Ports 0-11), which is a 16 bit value
that has Jocal significance only. The Control Processor and
ATM are cach assigned a port.

The following definitions are special cases of a PortSet:

SinglePoriSet

a PortSet with » single bit xet.

HostPortSet

a SinglePortSet corresponding to the Control Processor
MyPoriSet

a SinglcPoriSet corresponding to the source port of this packet.
NullPortSet

2 PortSet of no parts.

A Connection Identifier (CT), which is a 16 bit value with
local significance only, is used to map connections into
VPI/VCI values.

The following definitions arc special cascs of CI:

Mesh _C1

[Y1 ponding to a path ds the destinati dstation’s
Bridge-router. .

EX 1019 Page 167

i
i

.

f

e R RN

el

ort o % 41 ek dpe

M

Y

imu |

5,917,821

5

-continued

Null_Ct
a CI connected to nothing. It is returned when the destination is
attached to the local Bridge-router or if the connection is not

6

The Bridge command instructs the AXE (Transfer
Engine) to use RFC-1483 bridge encapsulation. BridgeProp
command instructs the AXE to use bridge-router encapsu-
lation (include source PortSet in encapsulation)

allowed. 5
RS_CI -
2 CI corresponding to # path to the Route Server. Unknown_SA -> BridgeProp, Null_CI, HostPortSct, MyPortSet
ABS_CI * Unknown SA - send to HP for Spanning Tree processing
a CI corresponding to a peth to the Address/Broadcast Server. * HP will decide whether to forward it to ABS for lcaming,

ds ding on Spanning Tree state

10 Unicast DA -> Bridge, Mesh_CI, NullPortSet
- - * DA in the same area on a different Bridge-router
MA(_? layer addresses are globally unique 48 bit values, Unicast_DA > Bridge, Null.CI, NullPortSet
except in some pro.tocols such as DECNet, where they may * DA not in the same area (reject)
not be globally unique. * Protocol not allowed to bridge-router

* DA on the same port

Unicast. DA -> Bridge, Null _CI, SinglePortSet
Unicast_ DA 15 « DA in the same area on the same Bridge-router but on a different
2 MAC layer destination address of an end-station. port
Router_ DA Unknown_DA -> BridgeProp, ABS__CI, NullPortSet, MyPortSet
a MAC layer destination address of the Route Server. An end- * DA ot fonnd in the tablc - send to ABS for fiood processing
station sends packets to the Route Scrver when it cannot send to Broadcast DA —> BridgeProp, ABS__CI, NullPortSet, MyPortSct
the destination directly at the MAC layer. * Broadcast DA - Send to Control Processor for broadcast
Broadcast_ DA 20 processiag .
the broadcast MAC layer address (all oncs) which is received by Multicast_DA -> BridgeProp, ABS_CI, NullPortSet, MyPortSet
all end-stations. It cannot be a source address. * Multicast DA - Send to ABS for multicast processing
Multicast_DA Multicast DA -> Bridgeprop, Null__CL, HostPortSet, MyPortSet
a multicast MAC Jayer address (group bit set) which is reccived by * Multicast DA is of interest to HP (¢g Spanning Trcc)

d-staki that gnize that multi address. * HP will decide whether to forward it to ABS for multicast
25 F ing

Network layer (NL) addresses are metwork protocol
dependent. They are generally divided into Network,
Subnet, and Node portions, although not all protocols have
all three present. The Network Layer Address Field Sizes (in
bits) are summarized in the table below.

Protocol Total Size Network. Subnet Node
)i 4 32 8/16/24 variable variable
19,4 80 nfa 32 48
(MAC address)
AppleTalk 24 n/a 16 8
DECNet 64 16 38 10
(reserved) (32 =
'HIORD")
(6 = subnet)

The look-up engine handles unicast network layer
addresses.

When the look-up engine is used in a bridge-router
providing an interface between an Ethernet and ATM
network, packets coming from the Ethemnet side are fed into
the Look-up Engine. The result of the look-up has the form:

Input ->

Command, CI, PortSet

where Input is derived from the first few bytes of the packet
and Command is an opcode to the AXE (Transfer engine).

The Quad MAC status word distinguishes between router
MAC, broadcast and multicast MACs.

Bridging occurs when the destination address is a unicast
address other than the Route Server address. Bridging is
allowed between two endstations in the same area for a
given protocol.

Both source and destination MAC addresses must be
koown before automatic bridging/fltering is performed;
otherwise, the packet is sent to the Route Server for:

SA (Source Address) validation if the SA has never been

seen speaking a given protocol

DA (Destination Address) resolution if the DA was not

found in the local MAC cache.

30

35

50

65

Routing occurs when the destination address is the unijcast
Route Server address. Filtering rules between areas are
explicitly defined per protocol The per protocol source arca
is an attribute of the source MAC address and the per
protocol destination area is an attribute of the destination NL
address.

Both source MAC and destination NL addresses must be
known before network layer forwarding can occur.

The packet will be bridged to the Route Server if any of
the following are true:

IP options are present

Protocol is unknown

The packet will be dropped if any of the following are
true:

Source area is not allowed to send to Destination area for

this protocol

Source NL address is invalid (e.g. any IP broadcast

address)

Checksum is invalid

Time-To-Live ficld expires

Unicast NLDA -> Route, Mesh_CI, NullPortSct

* NL node on a different bridge-router

Unicast NLDA -> Route, Null_CI, SinglePortSct

* NL node on the same bridge-router (could be same port)
Unknown_NLDA -> Bridge, RS_CI, NullPortSet

* unknown NL node - send to Route Server
Unknown_Protocol -> Bridge, RS_CI, NullPortSet

* protocol unknown, or packet with options

FIG. 2 shows the data paths in a typical bridge-router.
Control processor 16 has control over the formatting of
packets it sends and reccives. If the control processor 16
wants look-up engine 17 to perform a look-up, it formats the
packet in the same way as Quad Mac 15; otherwise it sends
it as a raw packet, which does not require a lengthy look-up.
The control processor predetermines the destination by
providing a CI (Connection Identifier) and an output Portset
as part of the data stream. A bit in the Quad MAC status
word indicates a raw packet and the look-up engine simply
retrieves the CI and Portset as part of the data streant. A bit

EX 1019 Page 168

5,917,821

7

in the Quad MAC status word indicates a raw packet and the
look-up engine simply retrieves the CI and Poriset from the
data stream and feeds it to the AXE (Transfer Engine)
through the result FIFO. The Control processor is respon-
sible for correctly formatting the required encapsulation.

As shown in FIG. 2, packets coming from the ATM side
are fed into the look-up engine. The look-up engine accepts
an RFC-1483 encapsulated packet and determines whether
1o look at a MAC or NL address. The result of the look-up
will have the form:

Input - PortSet

Filtering is not performed in this direction. It is assumed
that the all filtering is done at the ingress side. It is also
assumed that the destination endstation is known to be
attached to the receiving Bridge-router, so unicast packets
with unknown destination addresses are dropped.

Flood and broadcast packets are encapsulated in a special
format which inchides an explicit output PortSet.

Unicast_ DA -> SinglePortSet

* DA on this Bridge-router

Unknown_ DA ~> NullPortSet

* DA not in the table (drop) - this sitoation shonld not ocour
Unicast_NLDA -> SinglePortSet

* NLDA on this Bridge-router

Unknown NLDA ~»> NullPortSet

* NLDA not in the table (drop) - this situation should not occnr.
Broadcast_DAPortSet -»> PortSet

* Proprietary request received from RS
Multicast_ DA PortSet > PortSet
hd i Multi reguest ived from RS

Proprietary
Unknown__DA PortSet —> PonSet
* Proprictary Flood request received from RS

Turmning now to FIG. 3, the look-up engine copsisis of
three functional blocks, namely a destmation address look-
up engine (DALE) 1, a source address look-up cng‘ne
(SALE) 2, and a look-up engine controller (LEC) 3, which
includes a microcode ram 4. DALE 1 includes a destination
address look-up controller 5 and DALE RAM 6. SALE 2
includes a source address look-up controller 7 and SALE
RAM 8. The input to the look-up engine is through a fast
16-bit wide I/F RAM 9 receiving input from the AXE
(Transfer Engine) and reassembler. The output from the
look-up engine is through word-wide FIFOs 11, 12.

One cmbodiment of look-up engine controller (LEC) 3 is
shown in more detail in FIG. 4. This comprises (Station
Information Block) SIB ram 20, interface ram 21, and
microcode ram 22. The SIB ram 20 is connected to look-up
pointers 23. Interface ram 21 is connected to data register 25
and index pointers 26 connected to ALU (Arithmetic Logic
Unit) 27. Microcode ram 22 is connected to instruction
register 28.

The look-up Engine controller 3 is a microcoded cn%ine
tailored for efficient bit pattern comparisons through a
packet. It communicates with the Source Address Look-up
Engine 2 and the Destination Address Look-up Engine 1,
which both act as co-processors to the LEC 3. .

The look-up engine snoops on the receive and transmit
data buses and deposits the header portion of the packet into
the I/F RAM 9. The look-up response is sent to the appro-
priate FIFO 11, 12,

FIGS. 5 show an altemative embodiment of the loop-up
engine and controller. In FIG. 5, the LEC 3 includes a 64x16
I/F (Interface) ram 41 connected to FIFO’s 42, 43 (First-in,
First-out memorics) respectively connected to latches 44, 45
receiving AXE (Transfer Engine) and reasscmbler mput.

Referring now to FIG. 6, the LEC 3 also contains several
registers, which will now be described. Register select
instructions are provided for the register banks (XP0-7,
LPO-7).

10

40

8

Index Pointer register (IP) 50 is a byte index into the I/F
RAM 21. Under normal operation, the index pointer register
50 points to the current packet field being examined in the
I/F RAM 21 but it can be used whenever random access to
the I/F RAM 21 is required.

The IP 50 can be modified in one of the following ways:

1) loaded by the LOADIP instruction (e.g. to point to the
beginning of the packet)

2) incremented by 1 (byte compare) or 2 (word compare) if

a branch condition is oot met.

3) incremented by 2 by a MOVE (IP)+ type instruction.

Data Register 51 contains the 16 bit value read from I/F
RAM 21 using the current IP. The DR 51 acts like a one
word cache; the LEC keeps its contents valid at all times.

Program Counter 52 points to the current microcode
instruction. It is incremented by one if a branch condition is
true, otherwise the displacement field is added to it.

The Lookup Pointers (LP0-7) 23 are 16 bit registers
which contain pointers to the SIB RAM 20. The LPs are
used to store pointers whenever milestones are reached in a
search. One LP will typically point to a source SIB and
another will point to a destination SIB. The LP provides the
upper 16 bits of the pointer; the lower 4 bits are provided by
the microcode word for indexing into a given SIB.

The LPs are also used to prime the SALE and DALE with
their respective root pointers.

X,Y Registers 53, 54 are general purposc registers where
logic manipulations can be made (AND, OR, XOR). They
are used for setting and clearing bits in certain words in the
SIB RAM (e.g. Age bit) and to test for certain bits (e.g. status
bits). The X Register 53 can be sclected as Operand A to the
Logic Unit while the Y Register can be selected as Operand

B.

The BYZ and BYNZ instructions conditionally branch on
¥=0 and Y<>0 respectively.

The Y Register 54 is the only register source for movesto
the result FIFOs.

The X Register 53 can be saved to or restored from X'
Registers (X'0-X'7) 55. The mnemonic symbol for the
currently selected X' register is XP.

The S Register 56 is a pipelining stage between SIB RAM
20 and the Logic Unit. It simplifics read access from SIB
RAM 20 by relaxing propagation delay requirements from
SIB RAM 20 valid 1o register sctup. It provides the added
advantage of essentially caching the most recent SIB RAM
aceess for repeated use. It is loaded by the GET Index(LP)
instruction.

As in FIG. 3, the LEC 3 controls the operation of the
look-up engine. All look-up requests pass through the LEC
3, which in turn activates the SALE 2 and the DALE § as
required. The LEC 3 is microcode based, running from a
32-bit wide microcode RAM. The instruction set consists
mainly of compare-and-branch instructions, which can be
used to find specific bit patterns or to check for valid ranges
in packet ficlds. Special 1/0 mstructions give the LEC
random read access to the interface RAM.

The LEC has access to 3 memory systems: the interface

~ RAM 9, the SIB RAM 20 and the Microcode RAM 22.

55

TheTREFEE RAM Y 15 0860 15 feed packet dita i the
LEC 3. The look-up engine hosts durnp packet headers into
this RAM through snoop FIFOs 42, 43. This RAM is only
accessible through the snooped buses.

The SIB RAM 20 is used to hold information for each
known end-station. The LEC 3 can arbitrasily retrieve data
from this RAM and transfer it to one of the response FIFOs
11, 12 or to internal registers for manipulation and checking.
High speed RAM is also used to minimize the data retrieval
time. The size of the SIB RAM 20 is dependent on the
maximum number of reachable end-stations. For a limit of
8,000 end-stations, the SIB RAM size is 256K bytes. This
RAM is accessible directly to the Control Processor for
updates. .

| wile

EX 1019 Page 169

5,917,821

9

The Microcode RAM 22 is dedicated to the LEC 3. It
contains the 32 bit microcode instructions. The LEC 3 has
read-only access to this high speed RAM normally, but it is
mapped directly to the Control Processor’s memory space at
startup for microcode downloading.

Variable fields of a packet, such as addresses, are searched
in one of many search trees in the ALEs 1, 2, (FIG. 5), which
are nibble index machines. Each ALE 1,2 has its own search
trec RAM 6, 8 (FIG. 7), which is typically high density but
low speed. This RAM is divided into 32 byte blocks which
can either be Index Arrays or Information Blocks.

The searches in the ALEs 1, 2 are based strictly on the root
pointer, the search key and scarch key length it is given. A
look at the look-up cngine memory map (FIG. 7) as viewed
from the ALEs shows how the mechanism works.

All search trees in a given ALE 6, 8 reside in the upper
half of its memory. The 16-bit root pointer given to the ALE
will have the most significant bit set. The scarch key (c.g.
MAC address) is divided into nibbles. The first nibble is
concatenaled with the root pointer to get an index into the
root pointer array. The word at this location is retrieved. If
the MSE (Most Significant Bit) (P Bif) is set, the next nibble
is concatenated with the retrieved word to form the next
pointer. If the P Bit is clear, the search is finished. The final
result is given to the LEC, which uses it either as a pointer
into the SIB RAM, or as data, depending on the context of
the search. A zero value is reserved as a null pointer value.
FIG. 8 illustrates scarch tree operation.

The search key length limits the number of iterations to a
known maximum. The control processor manipulating the
search tree structure may choose to shorten the search by
putting data with a zero P bit at any poiunt in the tree.

“Don’t Care” fields arc also achievable by duplicating
appropriate pointers withio the same pointer array. Search
trees are maintained by the Control Processor, which has
direct access to the SALE and DALE RAMs 6, 8.

FIG. 9 is a diagram illustrating a MAC scarch tree
example. The main purpose of the ALE RAMs 6, 8 is to hold
MAC layer addresses. The size of the RAM required for a
MAC address tree depends on the statistical distribution of
the addresses. The absolute worst case is given by the
following formula:

I
N=Zuﬁn(:6“,x
=

where

X is the number of addresses

L. is the number of nibbles in the address

N is the number of pointer arrays

The amount of memory required, given 32-byte pointer
arrays, is 32N. The number obtained from this formula can
be quite buge, especially for MAC addresses, but some
ratiopalizations can be made.

In the case of MAC addresses, the first 6 nibbles of the
address is the Organizationally Unique Identifier (OUT),
which is common to Ethemet cards from the same manu-
facturer. It can be assumed that a particular system will only
have a small number of different OUlTs.

The formula for MACs then becomes:

N= Z‘:miﬂlé”‘,m'f-iimid]fi"?,xj
=t

L=t

where

M is the mumber of different OUls

X; is the number of stations in OUI;

Assuming that the addresses are distributed evenly over
all OUIs,

5

10

20

45

55

60

65

10

5 12
X
B L giet Z 16T
A"—él min(16", M)+ M qmm(16 s

The effect of QUI on Search Tree Size is shown in FIG.

Similar rationalizations can be made with IF and other
network layer protocol addresses. An IP network will not
bave very many subnets and even fewer network numbers.

Although the SALE 2 typically bolds locally attached
source MAC addresses and the DALE 1 typically holds
destination MAC addresses, either ALE 1, 2 1s capable of
bolding any arbitrary search tree. Network layer addresses,
intra-area filters, and user-defined MAC protocol types can
all be stored in search trecs. The decision to put a search tree
in either SALE or DALE is implementation dependent; it
relies on what searches can be done in parallel for maximum

The principal function of the SALE 2 is to keep track of
the MAC addresses of all stations that are locally attached to
the bridge-router. Typically one station will be attached to a
bridge-router port, but connections to traditional hubs,
repeaters and bridge-touters are allowed, so more source
addresses will be encountered.

Using the formula for RAM size above, typical RAM
calculations for the source address trees are as follows:

Number of
Number of OUls Stations Total Bytes
20 400 65,440
2 500 65,184
20 500 71,984
20 800 116,284
5 1,000 131,552

The mumber of source stations is limited to some fraction
of the total allowable stations. The limit is imposed here
because the SALE will most likely bold many of the other
search trees (e.g. per protocol NL address search trees,
intra-area filters).

‘Whenever a new source address is encountered, the SALE
1 will not find it in the MAC source address scarch tree. The
LEC 3 realizes the fact and sends it to the Control Processor.
The new source address is inserted into the scarch tree once
validation is received from the Route Server.

Whenever a previously learned address is re-encountered,

the Age entry in the SIB 20 is refreshed by the LEC 3. The
control processor clears the Age entry of all source addresses
every aging period. The entry is removed when the age limit
is ex .
The source address look-up engine table is shown in FIG.
11
The DALE 1 keeps track of all stations that are directly
reachable from the bridge-router, including those that are
locally attached. The DALE search trees are considerably
larger because they contain MAC addresses of up to 8,000
stations.

Typical memory sizes for MAC destination address
search trees would be:

Number of Number of
OUIs Stations Total Bytes
10 8,000 856,992
) 8,000 945,824
30 8,000 1,034,464

A station’s MAC address will appear in the MAC scarch
tree if the station is reachable through MAC bridging. A

EX 1019 Page 170

ki

-

S w*"%xu_ B e L T

5 G R BRI e R BNt

5,917,821

1

station’s network layer address will appear in the corre-
sponding nctwork layer search tree if it 1s reachable through
routing.

The destination address look-up engine MAC table is
shown in FIG. 12.

IP masking may be required if a particular port is known
to have a router attached to it. Masking is achieved by
configuring the IP network layer search tree in such a way
that the node portion of the address is treated as Don’t Care
bits and the corresponding pointers point to the same Next
Index Array.

The SALE and DALE RAMs 8, 6 are divided up into 16
word blocks. These RAMs are accessible only to the corre-
sponding ALE and the Control Processor. These RAMs
contain mostly pointer arrays organized in several search
trees.

The SIB RAM 20 is divided into 16 word blocks which
can be treated as records with 16 fields. Each block typically
contains information about an endstation. This RAM is
accessible only to the LEC and the CP.

The LEC 3 uscs the lookup pointer (LP) as a base pointer
into a SIB 20. The contents of the P is obtained either from
the result of a SALE 2 or DALE 1 search to access
end-station information, or from a constant loaded in by the
microcode to access miscellaneous information (e.g. port
information). The LP provides the upper sixteen bits and the
microcode word provides the lowest four bits of the SIB
RAM address.

The lookup Engine addressing scheme is shown in FIG.
13

The SIB RAM 20 (FIG. 14) generally contaios informa-
tion about the location of an endstation and how to reach it.
For example, the PortSet ficld may keep track of the port that
the endstation is attached to (if it is locally attached) and the
connection index refers to a VPI/VCI pipe to the endstation
(if it is remotely attached). Other fields are freely definable
for other things such as protocol filters, source and destina-
tion encapsulation types and quality-of-service parameters,
as the need arises.

A variant of the SIB is the Port Information Block (PIB)
(FIG. 15). PIBs contain information about a particular port.
Certain protocols have attributes attached to the port itself,
rather than the endstations. An endstation inherits the char-
acteristics assigned to the port to which it is attached.

The definition of the SIB is flexible; the only requirement
is that the data be easily digestible by the LUE instruction
set. The field type can be a single bit, a nibble, a byte, or a
whole word.

In FIG. 14, the Cl (Connection Identifier) field is a
reference to an ATM connection to the endstation if it is
remotely attached. This ficld is zero for a locally attached
codstation.

The PortSet field is used both for determining the desti-
nation port of a locally attached endstation, and for deter-
mining whether a source endstation has moved. In one
Newbridge-router Networks system, 2 moved cndstation
must go through a rcadmission procedure to prescrve the
integrity of the network. This field is zero for a remotely
attached endstation.

The MAC Index is a reference to the 6-byte MAC layer
address of the endstation. This ficld is uscd for network layer
forwarded packets, which have the MAC layer encapsula-
tion removed. The MAC layer address is re-attached when
a packet is re-cncapsulated before retransmission out an
Ethernet port. The encapsulation flags determine the MAC
re-encapsulation format.

The Proto Arca and Proto Dest Area fields are used for
filtering operations. Becausc the Newbridge-router system
essentially removes the traditional physical constraints on a
network topology, the area concept logically re-imposes the
constraints to allow existing protocols to function properly.

10

15

25

45

12

Filtering rules defined between areas determine whether two
endstations are logically allowed to communicate with each
other using a specific protocol.

The Proto Area field is a pointer to a filtering rule tree,
which is similar in structure to the address trees. The Dest
Area field is a search key into the tree. The result of the
search is a bitfield in which each protocol is assigned one bit.
Communications is allowed if the corresponding bit is set.

FIG. 16 shows a filtering rule tree.

The microcode for the LEC 3 will now be described. The
LEC microcode is divided into four main fields as shown in
the table below. The usage of cach field is dependent on the
instruction group.

31-29 2324 23-16 15-0
Tnst I i Displ P
Group

The instruction group ficld consists of instructions
grouped according to similarity of function. A maximum of
eight instruction groups can be defined.

The Instruction ficld definition is dependent on Instruc-
tion Group.

In branch instructions, the Displacement field is added to
the PC if the branch condition is true. This field is used by
non-branch instructions for other purposes.

The Parameter field is a 16 bit value used for comparison,
as an operand, or as an index, dependent on the instruction.=-

The functions of the groups are set out in the following
table.

Index Pointer/Bank Sclect
Instructions

These instructions manipulate the
IP and the register bank select
register.

Fast Move Instructions

These instructions move data
between I/F RAM and internal
registers.
Group 2 Conditional Branch i
These instructions branch when a
given condition is met. They can
optionally increment the IP.

X Register Branch Instructions
Thesc instructions branch on an X
Register logic comparison.

Not Used

Slow Move Instructions

These instructions gencrally
involve the SIB RAM bus. The
access time to the SIB RAM is
longer because of address setup
time considerations and because
the CP may be accessing it at the
same time. Access to the Result
FIFOs arc included here.

Not Used

Misc Instructions

These instructions invoke special
functions.

Group 4
Group 5

Group 6
Group 7

The following table describes the use of each of the ficlds.

EX 1019 Page 171

YR el

RN Y

Lo IR

) on e

SRR

oy N PR,

S Nt N T

TORR———

: 5,917,821
17-16
Gp 3129 2826 2524 23-21 20-18 18-16* 150
0 000 000 Oper. 111 110 BSel mmediate Value (15-0)
or
Register Select (15-4)
1 001 Dest. Size LSel AScl BSel Immediate Value (15-0)
Register Select (15-4)
or Index (3—0)
2 010 Cond. Size Disp. (8) Comparand
3 011 Cond. 00 LSel Disp. (5) Comparand
4 100
5 101 Dest Size LSel ASe! BSel Immediate Value (15-0)
Register Select (15-4)
or Index (3—0)
6 110
7 111 000 Size 000 000 (1) codes
*when LSel = 110
20 -continued
Condition Condition

000 - (IF) = Comparand

001 - (IP) < Comparand

010 - (IP) > Comparand

011 - True

100 - Extended Condition = True

101 - Extended Condition = False

110-Y=0

m-Yo0

Dest - Destination

000 - currently sctive FIFO

001 - X Register

010 - Lookup Engine Address RAM

011 - Group 5: S Register
otherwise: None

100 - Y Register

101 - Index (LP) (SIB RAM)

110 - XP Register

111 - Loolasp Pointer

Opention - IP/Register Sclect operation

00 - Register Select

10 - Load

Size - IP increment size

00 - no increment

01 - byte (+1)

10 - word (+2)

Displacement (8 bits)

00000001 - next instruction

00000000 - same instruction

Displacement (5 bits)

00001 - next instruction

00000 - same ihstruction

LSel - Logic Unit Select

000 - AAND B

001-AORB

010 - AAND NOT B

011-AORNOT B

100 - AXOR B

101 - Reserved

010-B

111-A

AScl - Operand A Select

000 - (IP), (TP)+ Indirect [/F Data
001 -X X Register
010-S S Register

o011 - XP X' Register

100 - XP X' Register

101 -

110 -

111 -

BSel - Operand B Select

00-Y Y Register

01 - #Value Immediate Value
11- Special Function
When LSel = 110:

010 - DALE Lookup Result
25 110 - SALE Loolup Result
Immediate Value
Word values fill the whole field

Byte values mmst be repeated twice to fill the ficld

‘When BSel = 11 (Special Functions):

30 Value Function
$0000 X rotate left 4
$1000 X rotate 8 (byte swap)
$2000 X rotate right 4
$3000 portset(X)
35 $4000 X rotate left 1
$5000 X rotate right,1
$6000 fip X
$7000 LUE Version pumber
Whea Value = $3000 (Portset Function):
40 %118 (150
0 0000000000000001
1 0000000000000010
2 0000000000000100
45 3 0000000000001000
4 0000000000010000
5 0000000000100000
6 0000000001000000
7 0000000010000000
50 8 0000000100000000
9 0000001000000000
10 0000010000000000
11 0000100000000000
12 0001000000000000
55 13 0010000000000000
14 0100000000000000
15 1000000000000000

Mnemonic
LARX),R12(X)
SWAP(X),L8(X),R8(X)
R4(),L12(X)
PSET(X)

L1(X)

RICO

FLIP(X)

VER

60 FIFO Write Instructions

31-29 2826 2524 2321 2018 17-16 150
101 000 00 110 Extra BScl Immedinte
65 Value (15-0)

EX 1019 Page 172

5,917,821

15 16
Oce 01 MOVEF #Valuc Extra
Move Immediate Value to FIFO with Extra bits
Occ 00 MOVEF YExira
Move Y Register to FIFO with Extra bits
lec 00 MOVEF Index(LP),Extra
Move Indexed Lookup Data to FIFO with Extra bits
The FIFO write instructions are used to write data into the 10 -continued

currently active result FIFO. The Extra field control bits 16

and 17 in the FIFO data bus.

The third instruction in the list is a direct memory access
from SIB RAM to the active FIFO. SIB RAM is enabled
while the active FIFQ is sent a write pulse. Doing so avoids
having SIB data propagate through the LUE. Bit 20 differ-
entiates between a DMA and a non-DMA instruction.

The X register cannot be used as a MOVEF source
because what would normally be the ASel ficld conflicts

with the Extra field.
Usage:
MOVEF #PSnap,0 3 Packet is IP over SNAP

Interface RAM Data Read Instructions

31-29 28-26

2524 2321 2018 17-16

001 Dest Size 111 000 00
Dest/Size
001 00 MOVE (IP)X
Move IP indirect to X Register
001 10 MOVE (IP}+X

100 00
100 10
111 00

111 10

Move Ip indirect autoinc to X Register
MOVE (IP),Y

Move IP indirect to Y Register

MOVE (IP)+,Y

Move IP indirect autoinc to Y Register
MOVE (B)LP

Move IP indirect to LP Register
MOVE (IP}+,LP

Move IP indirect autoinc to LP Register

Interface RAM Data Read instructions are used to read
data from the Interface RAM 41 into the X, Y or LP Register.
The LP used is preselected using the RSEL instruction.

Lookup Pointer Instructions

31-29 28-26

2524 2321 2018 1716

Group Dest

00 LSel ASel BSel
or
Extra

Group/Dest/LScl/AScl/BSc! - Instruction Type

101101 11100100 MOVE X,Index(LP)

Move X Register to Indexed Lookup Data

35

45

55

60

65

Group/Dest/LSel/AScl/BSel - Lustruction Type

101 101 110 000 00

MOVE Y,Index(LP)

Move X Register to Indexed Lookup Data

101 011 000 000 00

GET Inds

Load S Register with Indexed Lookup Data

001 111 110 000 00

MOVE YLP

Move X Register to Lookup Pointer

001 111 110 000 01

MOVE #Value,LP

Move Immediate Value to Lookup Pointer

001 111 111 001 00

MOVE X,1P

Move X Register to Lookup Pointer

Lookup Pointer instructions are used to load the Lookup
Pointers or to store and retrieve values in Lookup RAM.

Usage:
MOVE Age(LP),X ; Get Age field
“es ; check age
cee ; resct age
MOVE X, Age(LP) ; put it back in
Logic Instructions
31-29 28-26 2524 23-21 20-18 1716 150

001 Dest 00 LSel

AScl BSel Immedinte
Value (15-0)
or Index

G0

Logic instructions are used to perform logic manipula-
tions on the X and Y Registers. Combinations of the
selections above yield the following (useful) instructions:

Dest/LSel/AScl/BSel

001 110 000 00 MOVE YX
Y->X

100 111 001 00 MOVE X)Y
X->Y

001 111 010 00 MOVE SX
S§-—>X

100 111 010 00 MOVE S§,Y
S$->Y

001 110 000 01 MOVE #Value X

100 110 000 01
001 000 001 00
001 000 010 00
001 000 001 01
001 000 010 01

100 000 001 00

Immediate Value -> X
MOVE #Value,Y
Immediate Value —>Y
AND X, YX
XANDY > X

AND S)YX
SANDY->X

AND X#Value X

X AND Value -> X
AND S#Value X

S AND Value -> X
AND XYY
XANDY ->Y

EX 1019 Page 173

‘ 5,917,821

-continued ~continued
Deat/1.SeV/ASel/BSel Cond/LSel
100,000 010 00 p “ANDES':,(’L v 5 111100 BXNE #ValueLabel
100 000 001 01 AND X #ValueY Branch if X is oot equal to value
X AND Valus —> Y 110000 ANDBZ #Value,Label
100 000 010 01 AND S#ValueY Branch if X AND Value is cqual to zer0

S AND Value > Y
OR, ANDN, ORK and XOR arc similar to AND:

dst 001 asa bb OR anabb,dst
222 OR bb ~> dst
dst 010 asa bb ANDN azabbdst
122 OR bb —> dst
dst 011 asa bb ORN aza,bbdst
212 OR bb —> dst
dst 100 aaa bb XOR ana,bb,dst
22 OR bb~> dst
Conditional Branch Instructions
31-29 2826 2524 23-16 15-0
010 Cord, Size Displ 3 Companud
Cond/Size
000 01 ESCNEDb #Comparand,Label
Excape if Byte Not Equal
000 10 ESCNE.w #Com el
Escape if Word Not Equal
001 01 ESCGEb #Comparand,Label
Escape if Byte Greater or Equal
001 10 ESCGEw #Comparand,Label
Excape if Word Greater or Equal
010 01 ESCLEDb 1
Escape if Byte Less or Equal
010 10 ESCIEw #Co
Escape if Word Less or Equal
110 00 BYZ Label
Branch if Y Register is zero
1100 BYNZ label
Branch if Y Register is not zero

Increment Branch instructions are used to compare the
current packet field with an immediate value. If the condi-
tion is met, the branch is taken; otherwise IP is incremented
by the Increment Size.

Usage:

Labell: ; check if SNAP header
ESCNE. w #5AAAALabel2 ; compare to SNAP value
ESCNEw #$0003,0Otherlabel

Labe12:

X Register Branch Instructions

31-29 28-26 25-24 23-21 20-16 15-0

011 Cond a0 LSel Disp Valos
Cond/LSc}
110 100 BXEQ #Value,Label

Branch if X i equal to value

111 000 ANDBNZ #Value, Label
Branch if X AND Value is not equal to zero
ANDNBZ #Value,Label
Braoch if X AND NOT Value is equal to zero
111 010 ANDNBNZ #Value, Label

Branch if X AND NOT Valuc is not equal to zero

10 110 010

¥ X Register Branch instructions are derived from the X

Register Logic instructions with Operand A always set to the
X Register and Operand B always set to the Immediate
value. The X Register is not affected by any of these

20 instructions. The displacement field is reduced to 5 bits
(4/-32 instructions)

Usage:

25 See D Lookup i pl
SKIPw ; ignore the next word field

Other Branch Instructions

30
3-28 28-26 25-24 23-16 154 30
010 Cond Size Disp BaCond ExtDisp
35
Cond/Size/Disp/ExtCond/ExtDisp.
100 00 $00 $000 0 DWAIT
Wait for DALE
40 100 00 $00 $800 0 SWAIT
Wit for SALE
101 00 $00 $C00 © FWATT
Wait for Snoop FIFO done
101 00 ddd $400 0 BCSERR ddd
Branch on checksum crror

45 011 01 $01 $000 0 SKIPb
Skip Byte (same as IBRAD +1)
011 10 $01 $000 0 SKIP.w
Skip Word (same as IBRA.w +1)
011 01 ddd $000 0 IBRAb Label
Increment Byte snd Branch Always
50 011 10 ddd $000 d EBRA.w Label
Increment Word and Branch Always
011 00 000 $800 0 SWITCH
Switch or X (add X to PC)
011 00 ddd $000 d BRA.u Label
Branch Always

55

These instructions are derived from the conditional
branch instructions. Wait instructions loop until the extended
condition is false. Skip instructions move to the next instruc-

0 tion and increment the IP appropriately.

More branch instructions can be defined easily by using
Cond=100 or 101 and picking an unused ExtCond pattern.

When Cond=011 (True), the displacement field is

s Cxtended to 12 bits.

The SWITCH instruction adds the least significant nibble

of X to the PC. If X(3:0)=0, 16 is added to the PC. -

EX 1019 Page 174

' 5,917,821

19
Usage:

SKIP.w ; ignore the next word field
Index Pointer/Register Select Instructions

Index Pointer/Register Select Instructions

31-29 2826 25-24 23-21 2018 1716 150
Group Dest Oper LSel ASel BSel Immediate
Value (15-0)
or
Register Sclect
as4
Group/Dest./Oper/LSel/ASel/BSel
001 110 00 111 000 00 ST X[, XPn,LPn]
X -> XP, optionally switch to XPn,1Pn
001 001 00 111 100 00 LD X{,XPn,LPn]
XP -> X, optionally switch to XPn,LPn
001 011 00 111 000 00 RSEL XPn,LPn
switch to XPn,LPn
000 011 10 111 000 01 LOADIP # Value
Load [P immediate
000 011 10 111 001 00 LOADIP X
Load IP with X

Index Pointer instructions are used to perform manipula-
tions on the index pointer.

Traosfers from the X registers are not normally used in a
lookup function but may be useful for general purpose
transfers from interface RAM.

The Register Select instruction selects a register from
cach of the register banks. The format of the Bank Select
Bits field is:

15-12 u 10-8 7 64 3-0

XXXX XEn XSel LPEn LPSel XXXX

The En bits determine whether the corresponding select
bits are valid. If En is zero, the comresponding register
selection remains unchanged. If En is one, the corresponding
select bits are used. This mechanism allows register selec-
tiops to be made independent of each other.

Destination Lookup Instructions

3129 2826 2524 23-21 2018 17-16 15-0
001 010 Size 111 ASel 00 Command/
Address

Size/ASel
00 001 DLOAD X,Address [,Command]

Load X into DALE
00 000 DLOAD (IP),Address [,Command]

Load [P indirect into DALE / load Command Reg
10 000 DLOAD (IP)+,Address [,Command]

Load IP indirect autoinc into DALE / load Command Reg

10

15

50

55

60

65

3120 2826 2524 23-21 20-18 17-16 15-0
001 Dest 00 110 000 10 not used
Dest
111 DMOVE LP
Move DALE result pointer into Lookup Pointer
001 DMOVE X
Move DALE result pointer into X Register
100 DMOVE Y

Move DALE result pointer into Y Register

The destination lookup instructions set up the DALE and
read results from it. The currently selected lookup pointer is
used as the root pointer.

The DLOAD instruction loads words into the 16 by 16 bit
DALE Nibble RAM and loads the Command Register. The
DMOVE instruction returns the DALE result.

Command Register

15 14 13-12 -4 30
Start 0 Nibble 00000000 Address
Offset

The Start bit signals the DALE to start the lookup.

The Nibble Offset ficld points to the first valid nibble in
the first word loaded into the Address RAM.

The Address field points to the word being written in
Nibble RAM.

The DMOVE instruction gets the 16 bit DALE result
pointer. DMOVE should be preceded by DWAIT, otherwise
the result may be invalid.

Usage:

LOADIP #StartOfPacket ; point to start of packet

DLOAD (IP)+, Wordl ; load DA word 1

DLOAD (IP)+,Word2 ; load DA word 2

DLOAD ([P)+,Word3,Start ; load DA word 3 and start lookup
A : do other stuff

DMOVE X ; get result

BXNE #Null DAFound ; address found in table

Source Lookup Instructions

31-29 2826 25-24 23-21 20-18 17-16 150
001 010 Size 111 ASel 01 Command/
Address

Size/AScl
00 001 SLOAD X,Address [,Command]

Load X into SALE
00 000 SLOAD (IP),Address [,Command]

Load IP indirect into SALE / load Command Word
10 000 SLOAD (IP)+,Address [,Command}

Load IP indirect autoinc into SALE / load Command Word

EX 1019 Page 175

R

™ ove tat

e N et

i

. 35O

X A L,

(g awe -

e

e SR i £ T NERBRIN, (St xR

gty

5,917,821

31-29 28-26 25-24 23-21 20-18 17-16 15-0
001 Dest GO 110 001 10 Immediate
Value (15-0)
Dest
111 SMOVE LP
Move SALE result pointer into Lookup Pointer
001 SMOVE X
Move SALE result pointer into X Register
100 SMOVEY

Move SALE result pointer into Y Register

The destination lookup iastructions set up the SALE and
read results from it. The currently sclected lookup pointer is
used as the root pointer.

The SLOAD instruction loads words into the 16 by 16 bit
SALE Nibble RAM and loads the Command Word. The
SMOVE instruction returns the SALE result.

Command Word

15 14 13-12 114 30
Start [4] Nibble gp000000 Address
Offset

The Start bit signals the SALE to start the lookup.

The Nibble Offset field points to the first valid nibble in
the first word loaded into the Address RAM.

The Address ficld points to the word being written in
Address RAM.

The SMOVE instruction gets the 16 bit SALE result
pointer. The SMOVE instruction should be preceded by
SWALIT, otherwise the result may be invalid.

Usage:
SLOAD (IP)+,Wordl ; Joad DA word 1
SLOAD (IP)+,Word2 ; load DA word 2
SLOAD (IP)+,Word3,Start
; load DA word 3 and start lookup
. 3 do other stoff
SWAIT ; wait for SALE to finixh
SMOVE X 3 get result
BXNE #Null, SAFound ; address found in table
Checksum Engine Instructions
n-29 2826 25-24 2321 018 17-16 15-0
001 010 Size 111 ASel 10 $8000
Size/ASel
00001 CLOAD X
Load X into Checloum Eogine and stact
00 000 CLOAD
Load [P indiredt into Checksum Engine and start
10 000 CLOAD (B)+

Load [P indirect autoinc into Checksum Engine and start

5

10

15

20

30

35

45

50

55

60

The CLOAD instruction loads a word counnt into the 65

checksum cngine, clears the checksum and starts the engine.
The word currently indexed by IP is subscquently added to

22
the checksum each time the [P crosses a word boundary until
the counnt is exhausted.
Miscellaneous Instructions

31-29
111

2816 15-0
00000000 Code (2-0)

These instructions invoke special functions

Code
001 STOP
Stop execution until next lookup requeat

The lookup engine operation will now be described in more
detail. The instruction State Machine (ISM) is shown in FIG.
17.

A lookup engine microcode will typically take four clock
cycles. At 50 MHz, the instruction cycle takes 80 ns to
exccute. Instructions that require access to SIB RAM, which
require arbitration with the Control Processor, and any
future extensions that require more time to execute will
require one or more additional cycles to complete.

After reset, the 3 LEC is in the idle state. As soon as one
of the snoop FIFOs 42, 43 is non-cmpty, the ISM enters the
main instruction cycle loop.

A microcode instruction cycle is typically divided into
four main states. State 3 and State @ allow the microcode
contents to propagate throngh the LEC. The instruction
group is determined in State 1. If a fast instruction is being
executed (Groups 0-3), State 2 is entered immediately.
Otherwise the appropriate next state is entered according to
the Group field.

FIG. 18 shows a typical fast instruction.

By the time State 2 is reached, all signals will have settled.
New values for the PC and if necessary, the IP and/or the
selected destination, are loaded at the end of this state.

State 42 is a dummy state for currently undefined groups.

State 52 is a wait state for external accesses to SIB RAM.
The ISM cxits this state when the SIB RAM has been
granted to the LEC long enough for an access to complete,

FIG. 19 shows a typical SIB RAM access instruction.

States 72 and 73 are executed during the STOP instruc-
tion. State 73 flushes the snoop FIFOs in case.

The LEC cycles through States § to 3 indefinitely until a
STOP instruction is encountered, which brings the LEC
back to the idle state.

The lookup request mechanism for 2 MAC layer lookup
is as follows:

The requester {e.g. the AXE) places information, gener-
ally a packet header, into the snoop FIFO.

The empty flag of the FIFO kickstarts the LEC.

The LEC instructs the DALE to lock up the destination
address.

The LEC ibsiructs the SALE to look up the source
address.

The LEC looks into the packet {o determine the network
layer protocol in case it needs to be forwarded.

The LEC waits for the SALE and reads the Source
Address SIB pointer.

The source port is compared against the previously stored
portset to see if the source endstation has moved.

The LEC waits for the DALE and reads the Destination
Address SIB pointer.

?{ occSS

EX 1019 Page 176

5,917,821

23

The destination area is compared to the source area to see
if the endstations are in the same area.

The source port is compared agains! the destination port

24

Packels are discarded if they serve no other useful pur-
pose (e.g. SA and DA on the same port or in differcnt areas,
crrored packets). Otherwise they are sent to the Control
Processor for further processing.

to sec if the endstations are on the same port. Sample Program

: File: BDG.a
3 Unicast Bridging Case
; Release 1.1 Functionaiity

BDG_Start:
:XO = Packet Status Word

<
Y

X,

[JIP = Poiats to 2ad byte of PSW

= ;DR = Contains Packet Statns Word

L X0, LPO are default XP, 1P

% MOVE $8000,LP ook up Deatination MAC

¥ DLOAD (IP}+0 ;Load Dst Addr bits 0-15

! DLOAD (Pj+1 {Load Dst Addr bits 16-31
3 iLoad Dst Addr bits 32-47

DLOAD (IP)+258000 :and start lookup
MOVE $8000,LP ;Look up Source MAC
SLOAD (IP)}+0 ;Load Src Addr bits 0-15

SLOAD (IP)+1 ;Load Src Addr bits 16-31
;Load Src Addr bits 3247
SLOAD (IP)+,2,$8000 and start lookup
; determine protocol here
ESCGE.w 1500, scheck if 8023 format
CheckEnetType
ESCNE.w SAAAA, scheck DSAP/SSAP
UnknownType
ESCNEw $0300, scheck CTL, field
SNAPUnkaown-
e
ESCNE.w $0000,
SNAPUnknown-
c
ESCNE.w &00 , ;check protocol type field
SNAPUnknown-
Protocol
; I's IP over SNAP
BdgSNAPIP:
CLOAD 5 sassume IP
heador length is
5
ESCNE.w $4500, seheck IP header
BdgSNAPIP...
withOpls
SKIEw sakip length
SKIPw ;akip identifica-
Hon
SKIP.w skip offset
ESCLEb $01, scheck TTL
BdgSNAPIP__
TTLExpired
SKIPh wkip protocol
SKIPw akip checksum
MOVE (IP)+,X ;read NLSA
5 MOVE R12(X),X ;shift first nibble
R to bottom
K SWITCH ;check IP Class
. BRAU BdgSNAPIP- ;0xxx = Class A address
3 BRA.u BdgSNAPIP-
R ClassA
BRA.u BdgSNAPIP-
ClassA
BRAu BdgSNAPIP-
Classa
BRAu BdgSNAPIF-
ClassA
BRA.n BdgSNAFIP-
ClassA
BRAU BdgSNAPIP-
ClassA
BRA.u BdgSNAPIP- ;10xx = Class B addreas
ClassB
BRAu BdgSNAPIP-
ClassB
BRA.u BdgSNAPIP-
ClassB
BRAu BdgSNAPIP-
ClassB

EX 1019 Page 177

~
¢
¥
P
«
3

NP b

DT T

5,917,821
25 26

-continued

BRAu
BRAu
BRAu
BRAu
BRAu

BdgSNAPIPClassA:
OR
BXNE

MOVE
BXEQ

BRAu
BdgSNAPIP__

SKIPw
BRAu

BdgSNAPIPClassB:
MOVE
BXNE

BRAu

BdgSNAPIPClassC:
MOVE
OR
BXEQ

BRAu

BdgSNAPIPClassD:
SKIP.w
BRA.u

BdgSNAPIP__
NLSAlnvalid
SWAIT

DWAIT
OR

MOVEF
MOVEF
MOVEF
MOVEF

STOP
BdgSNAPIP__
NLSAValid:

SKiP.w

SKIP.w

BCSERR BDG__
SNAPIP__CSEror

RSEL

SWAIT

SMOVE

MOVE

BYNZ
BDG__SrcMiss:

OR

MOVEF

BdgSNAPIP- ;110x = Class C address

Class!

BdgSNAPIP- ;1110 = Class D address
BdgSNAPIP- ;1111 = Class E address (future)
BdgSNAPIP- ;0xxx = Class A Address

X,$FF00,X ;check if broadcast

@®)y+,X scheck lower address word
$FFFE, ;all opes host address

alid
BdgSNAPIP__ ;broadcast SA is not allowed

P+ X ;check lower address word

(IPy+X ;check lower address byte
XSFFU0X ;check if broadcast

XP,CMD__ ;Load command Word

Y, FIRST ;Send Command Word
NULL_CI ;Send CI Index
PORT_CP ;Dest Port is CP
RSN_FRC__ ;Send Reason

MAC_SRC

INVALID

;skip NLDA

LP1 ;Store source SIB pointer in LP1

Y ;Y contains SALE result

Y,LPLP2 iLF1 points to Source Addr SIB
Store dest SIB pointer in LP2

BDG_SrcHit

*** Source

Cache Miss *=~

XP,CMD__ ;Load command Word

FWDCP |

CMD__

UNICAST,Y
;Default MAC Ethernet Type
;Detault Low priority

Y, FIRST ;Send Command Word

EX 1019 Page 178

e ML B e LS 3t b

g

-

¢ Mk e TR s

¥
I

5,917,821

27 28
-continued
MOVEF NULL_ 1 ;Send C1 Index
MOVEF PORT_CP ;Dest Port is CP
MOVEF RSN_FRC__ ;Send Resson
MAC_SRC_.
MISS
STOP sDonel!!
BDG_SNAPIP__
CSError:
OR XPCMD_ ;Load command Word
DISCARD |
CMD__
UNICASTY
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_ I 3Send CI Index
MOVEF PORT_CP ;Dest Port is CP
MOVEF RSN_FRC__ ;Send Reason
MAC_CSERR
STOP
BDG.__SrcHit:
DWAIT
DMOVE Y ;Get DALE result
MOVE RAYAS S ;point to source SIB
BYNZ BDG_ sand check aource port
CheckSrcPort
BDG_DestMi: ;*** Destinati
Cache Miss "**
OR XPCMD ;Load command Word
FWDCP |
CMD__
UNICAST,Y
;Defanlt MAC Ethernst Type
;Defanlt Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI 3Send CY Index
MOVEF PORT_CP ;Dest Port is CP
MOVEF RSN_FRC._. ;Send Reason
MAC_DST.
MISS
STOP ;Donelt!
BDG_ CheckSrcPort:
GET SIB_MAC _ ;Compare portsets in LP »> Src SIB
PORISET(LY,
AND S,PSET(X),Y ;Y = src addr bit AND src port bit
BYNZ BDG.__ ssource moved if bits don't mntch
CheckDestArea
BDG__SrcMove: ;*** Sonrce
Moved ***
OR XPCMD__ ;Load command Word
FWDCP |
CMD
UNICAST,Y
;Defmult MAC Ethernet Type
;Defanlt Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI ;Send CI Index
MOVEF PORT_CP :Deat Port is CP
MOVEF RSN_FRC__ ;Send Reason
SRC_MOVED
STOP ;sDoneltl
BDG:. CheckDestArea:
RSEL Lr2 ;point to dest SIB
GET SIB_PROTO__ ;get [P Dest Area
AREA_1(LP)
AND S,MASK_.
AREA,Y;Mask
off top 4 bits
BYNZ BDG__
CheckSreArea
BDG_DestArealavalid: ;*** Destination
Arcca Invalid ***
LD X
OR XCMD. ;Load command Word
DISCARD |
CMD._
UNICAST)Y
;Defanlt MAC Ethernat
Type
iDefault Low priarity
;Default Multicast
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_C1 ;Send CI Index
MOVEF PORT._CP ;Dest Port is CP

EX 1019 Page 179

- . ‘e
X !
i
4 . 5,917,821
53
: 29 30
1 ~continued
% MOVEF RSN_DRC_ ;Send Reason
@ DST_AREA_
% INV
f STOP ;Done!tl
BDG._CheckSreAres:
? RSEL 1P1 ;get ready for Source Addr check
w GET SIB_PROTO__
3 AREA_1(LF) .
£ OR §,SIB_AREA__ ;sct PA bit in SIB._IPAREA
2 PROTO_.
- ACTIVEX
s MOVE X,SIB._. smodify
R PROTO_.
‘ AREA_1(LF)
k. AND XMASK. sMask off top 4 bits
d X
7 XOR XYALP? scheck against Dest Area
3 switch to 1LP2 (Dest
b SIB)
14 BYZ BDG_
; CheckDestPort
b BDG__SrcArealavalid: ;*** Source
i Atea Invalid *=*
k3 OR XBCMD._. ;Loed command Word
“ DISCARD |
CMD__
UNICAST.Y
;Default MAC Ethernet
3
k&m Low priority
;Default Multicast
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CX 3Send CT Index
MOVEF PORT._CP Dest Port is CP
MOVEF RSN_DRC__ ;Send Reason
SRC_AREA
INV
STOP :Donel !
BDG__CheckDestPort:
;X0, LP2 are
default XP, LP
Lo X jrestore PSW
GET SIB_MAC_ ;S = dest addreas portset
. PO
AND S, !;xslﬂm()g,‘p ;compare against source port portsct
BYZ BDG..OK.
BDG._SamePort: 3*** Src Pot =
Dest Port *=*
OR XPCMD_ ;Load command Word
DISCARD |
CMD__
UNICAST,Y
sDefavit MAC Ethernet
gxe’fcmlt Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_C(1 ;Send CI Index
MOVEF PORT._NULL ;Dest Port is NULL
MOVEF RSN_DRC__ ;Send Reason
DST_SAME
sTOP ;Done
BDG_OK: ;*** Bridge-~
J———
OR XPCMD_ JLoad command Word
BRIDGE-
ROUTER |
CMD_
UNICASTY
;Default MAC Etherpet
Type .
;Default Low prionity
MOVEF Y, FIRST ;5end Command Word
MOVEF SIB_MAC_CI ;Send CI Index from dst SIB
MOVEF gl‘g)_MAC_ ;Dest Port is determined from dat SIB
PORTSI
MOVEF SIB_MA _) ;Get MAC Index from dst SIB
MACINDEX
sTOP ;%iz:e!!!

i PR

EX 1019 Page 180

: 5,917,821

3

The described look-up engine is capable of performing
bridge-router and most network layer look-ups in less than
5.6 s (1/178,000) with to minimum RAM requirements and
cost and maximizes flexibility for future additions/
corrections without bardware changes.

The intended application of the look-up engipe is high
performance LAN systems and other packet-based devices.

GLOSSARY

BRIDGE-ROUTER A LAN bridging-routing device, with 12 ethernet
ports and 1 ATM port.

ATM Asynchronous Transfer Mode. A ccll relay
standard.

ABS Address/Broudcast Server A component of a Route
Server that handles address msolation and
broadeast traffic,

AXE A Transfer Engine

DA Destination Address. The MAC address of the
intended destination of & MAC frame.

DALE Destination Address Look-up Bngmc. The LUE

that g 1} through x table
of MAC Inyer destination addresses.

a4 Connection [dentifier. A namber internally nsed
to indicate a parti s

14 Internet Protocol A pogular nstwork layer
protocol used by the Internet community.

IPX Internet Packet Exchangs A Novell developed
network Inyer protocol.

LEC Look-up Engine Controller. The LUE comp
that executes microcods.

LUE Look-up Engine,

MAC Medium Access Control. A termi commonly
encountered in 802 standards gencrally
teferring to how a particolar medinm fe.
Ethernet) is vsed. “MAC sddresy” ix commonly
Mwmiummcgohnymmcishuddwu
given to all interface cands
the IEEE 802 standards.

RS Route Server.

SA Source Address. The MAC address of the origioator
of a MAC frame.

SALE Source Addxuo Look- -up Engine. The LUE

y hes through a table of
MAC hya source addresses.

SIB Station Information Block The data structme in
the LUE that bolds relevant information aboat an
endstation.

CAM Content Addressable Memory.

VPl Virtual Path Identifier

vCt Virtoal Channel Identifier

Control Proczasor The processor in the Bridge-router that handles
management functions

We claim:

1. An arrangement for parsing packets in a packet-based
digital communications network, said packets inchuding
packet headers divided into fields having values representing
information pertaining 1o the packet, said arrangement com-
prising:

a) an input memory for receiving fields from said packet

headers of incomiug packets; and

®) a look-up engine for retrieving stored information
appmpuatc to a received ficld value, said look-up
engine including:

(i) at least one memory storing information related to
possible values of said fields in a hierarchical tree
structure and associated with a respective field of
packet headers;

(i) 2 memory controller associated with each said
memory storing information related to possible values

of said fields for controlting the operation thercof to
retrieve said stored information therefrom; and

(iii) a microcode controller for parsing a remaining por-
tion of the packet header while said stored information

32

is retrieved and controlling the overall operation of said
look-up engine.

2. An arrangement as claimed in claim 1, wherein said

memory controller associated with each said memory

5 compares, at each decision point on the tree structure, the

10

15

20

35

40

50

55

60

65

current field with a stored value or range, and moves to the
pext decision point by moving a pointer for the current ficld
and branching to new code if said comparison results in a
first logical condition, and if said comparison resulis in a
second logical condition the current field is compared to a
different value or range, and so on until said comparison
results in said first logical condition.

3. An amangement as claimed in claim 1, wherein said
controller associated with each said memory compares val-
ues based on successive nibbles of a field value in said
memory with stored values to locate the related information.

4. An arrangement as claimed in claim 3, wherein said
memory controller associated with each said memory con-
catenates a first nibble of an incoming field value with a root
pointer to obtain an index to a oot pointer array, retricves a
word at a location identified by said index, concatenates the
next nibble with the retrieved word to form the next pointer
and so on until said related information is retrieved.

5. An arrangement as claimed in claim 1, wherein said at
least one memory is a random access memory (RAM).

6. An arrangement as claimed in claim 1, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
respective destination addresses.

7. An arrangement as claimed io claim 1, wherein a
plurality of said memories storing information related to
possible values of said fields in 2 hierarchical tree structure
operate in parallel and are associated with respective ficlds
of said packet headers.

8. An arrangement as claimed in claim 7, wherein each
said memory is a random access memory (RAM).

9. An arrangement as claimed in claim 7, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
destination address, and another of said fields comprises a
source address, and said look-up engine also locates path
data associated with the source in paraliel with the location
of the path data associated with the destination address.

10. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers divided into fields having values representing
information pertaining to the packet, said arrangement com-
prising:

(2) an input memory for receiving fields from said packet

beaders of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

(D) a plurality of memorties storing information related to
possible values of said fields in a hierarchical tree
structure and operating in parallel, said memories being
associated with respective fields of said packet headers;

(i) a main controller controlling overall operation of the
look-up engine; and

(iii) a memory controller associated with each said respec-
tive memory for controlling the operation thereof to
retrieve said stored information therefrom.

11. An arrangement as claimed in claim 10, wherein said

main controller is a microcode.

12. An arrasgement as claimed in claim 11, wherein said
microcode controller comprises an interface memory for

EX 1019 Page 181

33

receiving headers of incoming packets, a station information
block memory for storing information pertaining to
cndstations, a microcode memory storing microcode
instructions, apd logic circuitry for implementing said
microcode instructions.

13. An arrangement as claimed in claim 11, wherein said
microcode controller parses the remainder of the packet
header using a specific instruction set while said information
is retrieved from said plurality of memories.

14. An arrangement as claimed in claim 13, wherein said
microcode controller comprises separate buses for instruc-
tions and data.

15. An arrangement as claimed in claim 14, wherein said
microcode controller is arranged to implement optimized
instructions that perform bit level logical comparisons and
conditional branches within the same cycle and other
instructions tailored to retrieving date from nibble-indexed
data structures.

16. An arrangement as claimed in claim 15, wherein said
microcode controller is implemented as an ASIC processor.

17. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers including destination and source address
fields, said arrangement comprising:

() an input memory for receiving ficlds from said packet

headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

(i) a source address look-up engine including a memory
storing information related to possible values of said
source address field in a hierarchical tree structure;

(ii) 2 memory controller associated with said source
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(iii) a destination address look-up engine including a
memory storing information related to possible values
of said destination address ficld in a hierarchical tree
structure;

(iv) a memory controller associated with said destination
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(v) a processor controlling overall operation of said
source and destination address look-up engines, said
source and destination address look-up engines and
said processor operating in parallel.

18. An arrangement as claimed in claim 17, wherein said

processor is a microcode controller.

19. Ap arrangement as claimed in claim 18, wherein said
memory controllers compare, at each decision point on the
tree structure, the current field with a stored value or range,
and move to the next decision point by moving a pointer for
the current field and branching to new code if said compari-
son resulis in a first logical condition, and if said comparison
results in a second logical condition, the current field is
compared to a different value or range, and so on until said
comparison results in said first logical condition.

20. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers including destination and source address
ficlds, said arrangement comprising:

(2) an input memory for receiving fields from said packet

headers of incoming packets; and

(b) a look-up cngine for reteieving stored information
appropriate to a reccived ficld value, said look-up
cngine including:

10

15

25

30

35

45

50

55

60

5,917,821

34

(i) a source address look-up engine including a memory
storing information related to possible values of said
source field in a hierarchical tree structure;

(ii) 2 memory controller associated with said source
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(ili) a destination address look-up engine including a
memory storing information related to possible values
of said destination field in a hierarchical tree structure
and an associated memory controller;

(iv) a memory controller associated with said destination
look-up engine for controlling the operation thereof to
retrieve stored information therefrom; and

iii) a microcode processor controlling overall operation of
said source and destination address look-up engine,
said source and destination address look-up engines
and said processor operating in parallel, and said
microcode processor being arranged to parse additional
fields in said packet header while said source and
destination address look-up engines retrieve said
related information.

21. An arrangement as claimed in claim 20 wherein said
microcode processor comprises an interface memory for
receiving said incoming packets, a station information block
memory for storing information pertaining to endstations, a
microcode memory storing microcode instructions, and
logic circuitry for implementing said instructions.

22. A method of parsing packets in a packet-based digital
communications petwork, said packets including packet
headers divided into ficlds having values representing infor-
mation pertaining to the packet, comprising the steps of:

(a) receiving ficlds of packet headers from incorning
packets in an input memory;

(b) retrieving stored information appropriate to a received
ficld value by performing a tree scarch in a look-up
engine having at least one memory storing information
related to possible values of said ficlds in a hierarchical
tree structure and associated with a respective ficld of
packet headers, said at least one memory being con-
trolled by a memory controller associated therewith to
retrieve said stored information therefrom; and

(c) parsing a remaining portion of the packet header while
said stored information is being retrieved from said at
least one memory with a main controller, which main
controller also controls the overall operation of said
look-up engine.

23. A method as claimed in claim 22, wherein at each
decision point in the tree search, in retrieving said informa-
tion the current ficld is compared with a stored value or
range, a pointer for the current field is moved and branched
to new code if said comparison results in a first logical
condition, and if said comparison results in a second logical
condition, the current ficld is compared to a different value
or range, and so on until said comparison results in said first
logical condition.

24. A method as claimed in claim 22, wherein values
based on successive mibbles of a field value are compared
with stored values to locate the related information.

25. A method as claimed in claim 24, wherein a first
nibble of an incoming field value is concatenated with a root
pointer to obtain an index to a root pointer array, a word at
a location identified by said index is retrieved, the mext
nibble is concatenated with the retrieved word to form the
next pointer and so on until said rclated information is
retrieved.

26. Amethod as claimed in claim 22, wherein information
related to a plurality of fields is retricved io parallel.

EX 1019 Page 182

35
27. Amethod as claimed in claim 26, wherein one of said
fields comprises a destination address and said related
information comprises the path data associated with said
respective destination address, and another of said ficlds
comprises a source address and said related information
comprises the path data associated with said source address.
28. A method of parsing packets in a packet-based digital
communications nctwork, said packets including packet
headers divided into fields having values representing infor-
mation pertaining to a packet, comprising the steps of:
(a) storing in memory information related to possible
vatues of said fields in a hierarchical tree structure;
(b) receiving a plurality fields from said packet headers of
incoming packets, one of said fields being a destination
address and said related information therefor compris-
ing path data associated with said respective destination
address, and another of said fields being a source

10

15

5,917,821

36

address and said related information therefor cornpris-
ing path data associated with said source address;

(c) retrieving in paralle] said stored information appro-
priate to received field values by performing a tree
scarch under the control of a microcode controller; and

(d) parsing a remaining portion of the packet header using
a specific instruction set while said related information
is retrieved.

29. An arrangement as claimed ia claim 1, wherein said at
least one memory provides table look-ups using nibble
indexing for variable portions of the packet header and said
microcode controller employs bit pattern recogpition on
fixed portions of the packet header for network layer pro-
tocol determination.

EX 1019 Page 183

" Our Docket/Ref. No.: APPT-QA p Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.

Serial No.: 09/608266 Group Art Unit: 2731 -
Filed: June 30, 2000 Examiner: _ \PE S
' m
Title: ASSOCIATIVE CACHE ; g = o
STRUCTURE FOR LOOKUPS AND . APR 112001 T e 2
UPDATES OF FLOW RECORDS IN \ R Z =
A NETWORK MONITOR > o 2 O

T 1 enapeatd o

N o

<

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT
Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

X _ Return postcard.

X

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

%J

Dé% Rosenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date:)Q'pr q/ 296 |

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

1 hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231,

Date of Deposit: ﬁ]»{)r- a4, 2001

Signature: -]
Doy 1d, Reg. No. 38,687

EX 1019 Page 184

N e et A

e il 4 3TN e

i

_Our Docket/Ref. No.: APPT-001-4

CJ @

Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE :ﬁt’ 5

Applicant(s): Sarkissian et al. . | /{// Y
Serial No.: 09/608266 roup Art Unit:
Filed: June 30, 2000 Examiner:

Title: ASSOCIATIVE CACHE
STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN
A NETWORK MONITOR

Commissioner for Patents
Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:
This Information Disclosure Statement is submitted:

_X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever
occurs last)

_X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

X {Certification) Each item of information contained in this information disclosure

statement was first cited in a formal communication from a foreign patent office in a counterpart
foreign application not more than three months prior to the filing of this information disclosure
statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is
Certificate of Mailing under 37 CFR 1.18

1 hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: %@ -Mtf 2@%)2 Si@%
osenfeld, Reg. No. 38,687

EX 1019 Page 185

e 0

<
.. -S/N: 09/608266) Page 2 DS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

%’—\

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: _ 20 Ma, 2002

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

EX 1019 Page 186

Etal.FORM - 1449

O

SHEET 1 oF 1.

L,
B ATTY. DOCKET NO. SERIAL NO.
APPT-001-4 09/608266
INFORMATION DISCLOSURE ST, APPLICANT
Sarkissian et al. RECE}VE:D
(Use several sheets if necessa ILING DATE GROUP APRT 7 20p2
@ 6/30/2000 :
T ec
& W-mu?"m nO!Ogy Cﬁﬁieragam
U.S. PATENT DOCUMENTS
*EXAMINER DOCUMENT DATE NAME CLASS | SUB-CILASS | IFAPPROPRIATE
INITIAL NUMBER
an @7()3377 Dec. 30, Nuber et al. 370 395 Nov. 22,
A 1997 1995
5 15,835,963 Nov. 10, |[Yoshipka et al. 711 207 Sep .
AV 1998 1995
L . 13,860,114 Jan. 12, [Sell 711 1146 Oct.
1999 1997
AD
AE
AF
AG
AH
Al
AJ
AK
Al
AM
AN
FOREIGN PATENT DOCUMENTS
PUBLI-CATION
DOCUMENT DATE COUNTRY CLASS | SUB-CLASS
NUMBER
AO
OTHER DISCLOSURES (Inciuding Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
T AP
EXAMINER . DATE CONSIDERED
% /j/:)/ 4 / a/)
‘EXAMINER: initial if citation é{side'i—/ed, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered. Include a copy of this form with next communication to Applicant.

EX 1019 Page 187

Lo R

O e

Our Docket/Ref. No.: APFQTZ)OIJT‘ Patent A& é é./

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE)

Applicant(s). Sarkissian et al.

i =TS
Serial No.: 09/608266 Group Art Unit:

Filed: June 30, 2000 Examiner: RECEIVED
Title: ASSOCIATIVE CACHE APR1 7 200
STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN Technology Center 2600

A NETWORK MONITOR

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT
Dear Commissioner:
Transmitted herewith are:

X _ An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449,

A check for petition fees.

Return postcard.

be e |

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

%’_

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date:ap HV 20072

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

1 hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: B@ ‘MN 2007 Signature:

Dov Rosenfeld, Reg. No. 38,687

EX 1019 Page 188

P A

Our Docket/Ref. No.: AP@OH& Q Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.
Serial No.: 09/608266 Group Art Unit: 273 \
Filed: June 30, 2000 Examiner:

RECEIVED
APR1 7 2002
Technology Center 2600

Title: ASSOCIATIVE CACHE
STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN
A NETWORK MONITOR

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT
Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.
Return postcard.

pe e |

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,
Date: 30 Mot 2007

Dov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687
Correspondence Address:

Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: MM L Signam%
v Rosenfeld, Reg. No. 38,687

EX 1019 Page 189

)

UnNITED STATES PATENT AND TRADEMARK OFFICE

(.2

Lo

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTS
PO Box 1450

Alesandra, Vigrus 2233-1450

wwwaspio gov
[aruicaTonnNo. | FILING DATE | FIRST NAMED INVENTOR ATTORNEY DOCKETNO | CONFIRMATIONNO. |
09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4 9867
7590 09/10/2003
Dov Rosenfeld { EXAMINER |
5507 College Avenue
Suite 2 NGUYEN, ALANV
Oakland, CA 94618
l ART UNIT l PAPER NUMBER {
2662
DATE MAILED: 09/10/2003 @

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

EX 1019 Page 190

~3

S

D T A

kond

™ i
; 1 | Application No. . Applicant(s)
! 09/608,266 SARKISSIAN ET AL.
Office Action Summary Examiner A Unit
Alan Nguyen 2662

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a). in no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.

If the periad for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.

if NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35U.8.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1.704(b).

PRI

Status
1)1 Responsive to communication(s) filed on
2a)] This action is FINAL. 2bX] This action is non-final.

3)] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 0.G. 213.
Disposition of Claims

4 Claim(s) 1-20is/are pending in the application.

4a) Of the above claim(s) is/are withdrawn from consideration.
51 Claim(s) is/are allowed.
6) Claim(s) 1-20 is/are rejected.
7)1 Claim(s) _____ is/are objected to.
8)[J Claim(s) are subject to restriction and/or election requirement.

Application Papers
9] The specification is objected to by the Examiner,
10)] The drawing(s) filed on 06/30/2000 is/are: a)[] accepted or b)_] objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
11)] The proposed drawing correction filed on is: a)[_] approved b)_] disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.
12)[] The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. §§ 119 and 120
13)1 Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
aJAl b)] Some* ¢)[] None of:
1.[] Certified copies of the priority documents have been received.
2] Certified copies of the priority documents have been received in Application No.

3. Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

14)["] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) [] The translation of the foreign language provisional application has been received.
15)_] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) Xl Notice of References Cited (PTO-892) 4[] mterview Summary (PTO-413) Paper No(s).
2) E Notice of Draftsperson’s Patent Drawing Review (PT0-848) 5) D Notice of Informal Patent Application (PTO-152)
3) Information Disclosure Statement(s) (PTO-1449) Paper No(s) 4& 5. 6) D Other:

L__
US Palen(and Trademark Office
PTOL-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6

EX 1019 Page 191

0O O

V Application/Control Number: 09/608,266 Page 2
Art Unit: 2662
DETAILED ACTION
Specification
1. The disclosure is objected to because of the following informalities: The serial

numbers of related applications are missing on pages 1 and 2 of the specifications.
Appropriate correction is required.
Claim Rejections - 35 USC § 102
2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that
form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless ~

{(b) the invention was patented or described in a printed publication in this or a foreign country or in public
use or on sale in this country, more than one year prior to the date of application for patent in the United
States.

{e) the invention was described in a patent granted on an application for patent by another filed in the United
States before the invention thereof by the applicant for patent, or on an international application by another
who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the
invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act of
1999 (AIPA) and the Intellectual Property and High Technology Technical Amendments
Act of 2002 do not apply when the reference is a U.S. patent resulting directly or
indirectly from an international application filed before November 29, 2000. Therefore,
the prior art date of the reference is determined under 35 U.S.C. 102(e) prior to the

amendment by the AIPA (pre-AlPA 35 U.S.C. 102(e)).

3. Claims 7-11, 19, and 20 rejected under 35 U.S.C. 102(b) as being anticipated by

Chang (US 4,458,310).

EX 1019 Page 192

O O

Application/Control Number: 09/608,266 Page 3
Art Unit; 2662

Regarding claims 7 and 19, Chang clearly describes a cache memory system
shown in figure 1 element 100 that utilizes a number of content addressable memory
(CAMs). The cache system is coupled to a processor and main memory as, clearly
shown in Figure 1 elements 101 and 102 of Chang. Figure 1 further shows the use of
LRU (least recently used) circuits (elements 104-106), each coupled to cache data
memory (elements 107-109). Figure 2 shows the use of a CAM in each LRU circuit (a
CAM controller coupled to the CAM set). Reverting to figure 1, elements 104-106 clearly
show a top LRU circuit connected to a middie LRU circuit, which is connected to a
bottom LRU circuit. Chang shows in figure 1 a control and sequencer device (element
103) that is coupled to the LRU circuit controlling the CAM, main memory, and the
cache data memory. Chang further explains the function of the LRU circuit/CAM and its
corresponding cache data memory in column 4 lines 13-20 and column 5 lines 26-33.
The CAM responds to the input of the address being received and compares that
address to the contents stored in the CAM. If there is a match, indicating a hit, the LRU
circuit uses that address to point to the cache data memory for accessing. In addition to
checking if the associated cache data has the desired word, the LRU circuit maintains
the priority of each word in the associated cache data memory, this priority information
is automatically updated by the LRU circuit for each access to the associated cache
data memory and defines which word in the cache memory is the least recently used
word. Chang also discloses repeatedly how the address of each new, least recently

used word is written into the CAM. Since each CAM will contain addresses that are

EX 1019 Page 193

O O

Application/Control Number: 09/608,266 Page 4
Art Unit: 2662

constantly changing being written into it, the CAM will therefore point to a different
address in the cache memory element.

In regards to claim 8, with the features in parent claim 7 addressed above,
Chang further discloses a deletion of the least recently used word in column 4 lines 48-
51. It is stated that the least recently used word of cache data memory 109 no longer
exists in cache memory 100 at the completion of the previous operation after the values
have been shifted down from data memory 107.

In regards to claim 9, with the features in parent claim 7 addressed above,
Chang further discloses an example of a hit, shown in column 9 lines 50-62 and figure
1. LRU circuit 104 and data memory 107 are the priority CAM and cache memory,
respectively. LRU circuit 105 and memory 108 are the next highest priority. The
contents of the match/hit are transmitted and stored within LRU circuit 104 and data
memory 107. The least recently used words from LRU circuit 104 and memory 107 are
transmitted to LRU circuit 105 and data memory 108. The steps above explain the
shifting-down process of the least recently used value. The bottom CAM (LRU circuit
106) will always point to the least recently used value in the device.

In regards to claim 10, with the features in parent claim 7 addressed above,
Chang discloses a deletion of the least recently used word in column 4 lines 48-51. Itis
stated that the least recently used word of cache data memory 109 no longer exists in
cache memory 100 at the completion of the previous operation after the values have

been shifted down from data memory 107. As the replacement process keeps going,

EX 1019 Page 194

O O

Application/Control Number: 09/608,266 Page 5
Art Unit: 2662

shifting of values also continues. This deducts to the replacing of values at the bottom of
the list, which is according to an inverse order of recentness of use.

In regards to claim 11, with the features in parent claim 7 addressed above, it is
understood that cache data memory (figure 1 elements 107-109) contains cells of words
and can be a page of memory.

In regards to claim 20, with the features in parent claim 19 addressed above,
Chang further discloses the use of least recently used (LRU) cache memory element.
Chang discloses in column 4 lines 42-48 an example of a new word placed in cache
data memory (element 107). The LRU word of memory 107 is then shifted down to
cache memory (element 108) and the LRU word of memory 108 is written to cache
memory 108. The address of that LRU word is then written to the CAM (element 106)
associated with memory 109, as described in column 5 lines 48-51, and shown in
Figure 1. Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and

points to the least recently used value stored in cache memory 109.

4. Claims 1 and 2 rejected under 35 U.S.C. 102(e) as being anticipated by Gobuyan
et al (US 5,917,821), herein Gobuyan.

Regarding claim 1, Gobuyan discloses an apparatus that examines packets
through a connection point on a network. This indicates that the apparatus has a device
for acquiring packets. Gobuyan shows in figure 3 a device with a lookup engine
(element 3), memory for storage of the entries (elements 6, 8), and a subsystem

accessing the memory (elements 5 and 7). In column 7 lines 41-43 and 56-59, Gobuyan

EX 1019 Page 195

e O

Application/Control Number: 09/608,266 Page 6
Art Unit: 2662

discloses that the lookup engine receives portions of packets containing identifying
information through a 16-bit I/F RAM (element 9). Regarding claim 2, the apparatus of
Gobuyan inherently includes a parser that extracts packets identifying information

because this operation is necessary for the lookup engine to operate.

Claim Rejections - 35 USC § 103
3. 'The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 of this title, if the differences between the subject matter sought to be patented and the prior art
are such that the subject matter as a whole would have been obvious at the time the invention was made to
a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be
negatived by the manner in which the invention was made.

4, Claim 3-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over
Gobuyan in view of Chang (US 4,458,310).

(a) Regarding claims 3 and 4, Gobuyan discloses the use of a subsystem that
accesses the database memory to search for the stored information. The
lookup engine invokes the address lookup engines (ALE) to search for the
specified address in its bank of memory.

(b) Gobuyan fails to teach the use and function of content addressable memory
(CAM) as a method to search for specified data fields.

(c) Chang teaches the use of a cache memory system that utilizes a set of
CAMs. The cache system is coupled to a processor and main memory as,
clearly shown in Figure 1 of Chang. Figure 1 further shows the use of LRU

(least recently used) circuits (elements 104-106), each coupled to cache data

EX 1019 Page 196

e O

Application/Control Number: 09/608,266 Page 7
Art Unit: 2662

memory (elements 107-109). Figure 1 further shows a control and sequencer
device (element 103) that is coupled to the LRU circuits. Figure 2 shows the
use of a CAM in each LRU circuit (a CAM controlier coupled to the CAM set).
Claim 3 is therefore rejected since Chang indicates the use of CAMs for the
cache subsystem. Reverting to figure 1, elements 104-106 clearly show a top
LRU circuit connected to:a middle LRU circuit, which is connected to a bottom
LRU circuit. Chang shows in figure 1 a control and sequencer device
(element 103) that is coupled to the LRU circuit controlling the CAM, main
memory, and the cache data memory. Chang further explains the function of
the LRU circuit/CAM and its corresponding cache data memory in column 4
lines 13-20 and column 5 lines 26-33. The CAM responds to the input of the
address being received and compares that address to the contents stored in
the CAM. If there is a match, indicating a hit, the LRU circuit uses that
address to point to the cache data memory for accessing. In addition to
checking if the associated cache data has the desired word, the LRU circuit
maintains the priority of each word in the associated cache data memory, this
priority information is automatically updated by the LRU circuit for each
access to the associated cache data memory and defines which word in the
cache memory is the leasf recently used word. Chang also discloses
repeatedly how the address of each new, least recently used word is written

into the CAM. Since each CAM will contain addresses that are constantly

EX 1019 Page 197

O)

Application/Control Number: 09/608,266 Page 8
Art Unit: 2662

changing being written into it, the CAM will therefore point to a different
address in the cache memory element.

(d) It would have been obvious to one having ordinary skill in the art at the time
the invention was made for Gobuyan’s arrangement to have a cache memory
subsystem utilizing a stack of CAMs for looking up address fields, the
motivation being improved performance through quicker execution and
accessing, as taught by Chang.

In regards to claim 5, with the features in parent claim 4 addressed above,
Gobuyan fails to disclose the use of CAMs utilizing a least recently used scheme.
Chang teaches the use of least recently used (LRU) cache memory element. Chang
discloses in column 4 lines 42-48 an example of a new word placed in cache data
memory (element 107). The LRU word of memory 107 is then shifted down to cache
memory (element 108) and the LRU word of memory 108 is written to cache memory
109. The address of that LRU word is then written to the CAM (element 106) associated
with memory 109, as described in column 5 lines 49-51, and shown in Figure 1.
Therefore LRU circuit 106 is understood to be the bottom CAM of figure 1 and points to
the least recently used value stored in cache memory 109. It would have been obvious
to one having ordinary skill in the art at the time the invention was made for Gobuyan to
use a cache subsystem having CAMs to utilize a lowest priority word scheme, the
motivation being a much faster lookup time of data fields, as taught by Chang.

In regards to claims 6, with the features in parent claim 4 addressed above,

Gobuyan fails to disclose a CAM scheme that shifts down content due to a more

EX 1019 Page 198

O O

Application/Control Number: 09/608,266 Page 9
Art Unit: 2662

recently used value. Chang teaches an example of a cache hit, shown in column 9 lines
50-62 and figure 1. LRU circuit 104 and data memory 107 are the priority CAM and
cache memory, respectively. LRU circuit 105 and memory 108 are the next highest
priority. The contents of the match/hit are transmitted and stored within LRU circuit 104
and data memory 107. The least recently used words from LRU circuit 104 and memory
107 are transmitted to LRU circuit 105 and data memory 108. The steps above explain
the shifting-down process of the least recently used value. The bottom CAM (LRU
circuit 106) will always point to the least recently used value in the device.

It would have been obvious to one having ordinary skill in the art at the time the
invention was made for Gobuyan to use a cache subsystem having CAMs utilizing a
LRU element pointed to by the bottom CAM for faster accessing of data fields, as taught

by Chang

5. Claims 12-18 rejected under 35 U.S.C. 103(a) as being unpatentabie over Chang
in view of Carter et al (US 6,003,123), herein Carter.

(a) Regarding claims 12, 13, 14, 15, 16, and 17, Chang discloses the use of a
cache system having content addressable memory as a way of looking up
specified addresses quickly.

(b) Chang fails to disclose a method to indicate dirty entries in the cache. A dirty
entry is one that has not been updated by an external memory.

(c) Carter teaches the use of labeling elements as being dirty or not dirty. Carter

discloses in column 15 lines 12-17 the use setting bits as “dirty” to allow

EX 1019 Page 199

ey A,
ind

Application/Control Number: 09/608,266 Page 10
Art Unit: 2662

hardware to determine if the block has been modified. Carter further explains
that the dirty bit of a block status in the cache is always set to zero when the
block is brought into the cache to reflect the fact that the biock has not been
modified since it was brought into the cache. Carter also discloses that if the
block is cleaned, the status remains at zero. When a block is evicted from the
cache, its dirty bit is examined, and the status of the block changed to dirty if
the cache dirty bit is set to one. When an entry is evicted, its block status bits
are copied to the local page table. This is analogous to the address being
written to the main memory in Chang's apparatus.

(d) It would have been obvious to one having ordinary skill in the art at the time
the invention was made for Chang to modify the arrangement such that the
use of setting dirty flags to determine if the cache has been modified or not,
the motivation being the prevention of contamination of data. Each cache
memory element would have an indication of whether or not it is dirty. If the
cache element is cleaned the status remains at zero.

In regards to claims 18, with the features in parent claim 17 addressed above,

For Chang’s apparatus, it inherently cleans the least recently used cache data first
because the apparatus does use the LRU scheme. The concept of lowest word priority

is to flush out the least used word.

Conclusion

EX 1019 Page 200

O O

Application/Control Number: 09/608,266 Page 11
Art Unit: 2662
6. The prior art made of record and not relied upon is considered pertinent to

applicant's disclosure.
The following patents are cited to further show the state of the art with respect to
associative cache memory and content addressable memory:
Colloff et al (US 5,530,834)
Hoover et al (US 5,749,087)
Churchill (US 3,949,369)
Houseman et al (US 4,559,618)
Okamoto et al (US 4,910,668)
Agarwal et al (US 5,530,958)

Inoshita et al (JP 2003044510A)

7. Any inquiry concerning this communication or earlier communications from the
examiner should be directed to Alan Nguyen whose telephone number is 703-305-0369.
The examiner can normally be reached on 8am-5pm ET.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s
supervisor, Hassan Kizou can be reached on 703-305-4744. The fax phone numbers
for the organization where this application or proceeding is assigned are 703-872-9314
for fegular communications and 703-872-9314 for After Final communications.

Any inquiry of a general nature or relating to the status of this application or
proceeding should be directed to the receptionist whose telephone number is 703-305-

4700.

EX 1019 Page 201

(Y ®

Application/Control Number: 09/608,266
Art Unit: 2662

an
September 3, 2003

// /
-
M)

[
1]
e |

!
HASSAN KIZ0U
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2600

Page 12

EX 1019 Page 202

Application/Control No. Applicant(s)yPatent Under
09/608.266 Reexamination
Notice of References Cited _ SARMSSIANET AL
Examiner Art Unit
Alan Nguyen 2662 Page 1 of 1
U.S. PATENT DOCUMENTS
* County Codemumborind Code | MMPaYY Name Classification
¥ | A | US-5530,958 06-1996 Agarwal et al. 71113
k| B | US-4458310 07-1984 Chang, Shih-Jeh 711/119
& | Cc | US-6,003,123 12-1999 Carter et al. 711/207
| D [US-5530,834 06-1996 Colloff et al. 711/136
¥ | E | US-5,749,087 05-1998 Hoover et al. 711/108
4(F | US-3,949,369 04-1976 Churchill, Jr., William Philip 711128
G | US-4,559,618 12-1985 Houseman etal 365/49
/’. H | US-4,910,668 03-1990 Okamoto et al. 711/207
| | US-
J | US-
K | US-
L | US-
M | US-
FOREIGN PATENT DOCUMENTS ’
* Counwe%il::imni:mzz Code MMEfstYeYY Country Name Classification
N | JP02003044510A 02-2003 JP Inoshita et al GO06F017/30
(0]
P
Q
R
S
T
NON-PATENT DOCUMENTS
* Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
U
\
w ~
\]
X ‘

.__
A copy of th

s reference is not being furmished with this Office action. (See MPEP § 707.05(a).)

US Patent and Trademark Office
TO-892 (Rev. 01-2001)

ates in MM-YYYY format are publication dates. Classifications may be US or foreign.

Notice of References Cited

Part of Paper No. 6

EX 1019 Page 203

0 0O 0 O

United States Patent [
Agarwal et al.

(111 Patent Number:
1451 Date of Patent:

5,530,958
Jun. 25, 1996

[54] CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS
AND HASH CONTROL STORAGE

[75] Inventors: Anant Agarwal, Framingham, Mass.;
Steven D. Pudar, Rancho Cordova,
Calif.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

[211 Appl. No.: 363,542
[22] Filed: Dec. 23, 1994

Related U.S. Application Data

[63] Continuation of Ser. No. 926,613, Aug. 7, 1992, abandoned.

[51] Int. CLS ... GO6F 12/10; GO6F 12/08
[52) US.ClL 395/403; 395/421.06; 395/435;
395/460; 364/DIG. 1; 364/243.41; 364/244.7,

364/255.8; 364/259.8

[58] Field of Search ... e 395/421.06, 403,
395/435, 460

[56] References Cited
U.S. PATENT DOCUMENTS
5235,697 8/1993 Steely, Jt et al. cvreiirennne 395/425
FOREIGN PATENT DOCUMENTS
2154106 5/1972 Germany .

OTHER PUBLICATIONS

Agarwal, “Analysis of Cache Performance for Operating
Systems and Multiprogramming,” Technical Report No.
CSL-TR~-87-332, Computer Systems Laboratory, Stanfard
University (May 1987).

Jouppi, “Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and
Prefetch Buffers,” Proc. of the IEEE (1950).

Agarwal, Anant, “Analysis of Cache Performance for Oper-
ating Systems and Multiprogramming, " Kluwer Academic
Publishers, Boston, MA, Title page, Contents pp. vi-ix, pp.
120-124, see p. 122, line 14-p. 124, line 2.

7
21

SO
19 S1
s2
S$3
sS4
(S5
Address aj S6
s

19 21

Kessler, et al., “Inexpensive Implementations of Set~Asso-
ciativity,” Computer Architecture News 17(3): 131-139
(Jun. 1989).

da Silva, et al., “Pseudo-associative Store with Hardware
Hashing,” IEE Proceedings E. Computers & Digital Tech-
nigues 130(1): 19-24 (Jan, 1983).

Anant Agarwal and Steven D. Pudar, “Column-Associative
Caches: A Technique for Reducing the Miss Rate of Direct-
—~Mapped Caches.” In Proceeding ISCA 1993 (Abstract).

Anant Agarwal et al.,, “Cache Performance of Operating
System and Multiprogramming Workloads,” ACM Transac-
tions on Computer Systems, 6(4): 393-431, Nov., 1988.

Anant Agarwal et al., “An Analytical Cache Model,” ACM
Transactions on Computer Systems, 7(2): 184-215, May,
1989.

Kimming So and Rudolph N. Rechtschaffen, “‘Cache Opera-
tions by MRU Change,” (Rescarch Report #RC11613
(#51667) Computer Science, pp. 1-19, (Nov. 13, 1985).
Yorktown Heights, NY: IBM T. J. Watson Research Center.
“A High Performance Memory Management Scheme";
Thakkar, Shreekant S. and Knowles, Alan E.; Computer;
May 1986; IEEE Computer Society; pp. 8-20.

Primary Examiner—Eddic P. Chan

Assistant Examiner—Reginald G. Bragdon

Attorney, Agent, or Firm—Hamilton, Brook, Smith & Rey-
nolds

I57) ABSTRACT

A column-associative cache that reduces conflict misses,
increases the hit rate and maintains a minimum hit access
time. The column-associative cache indexes data from a
main memory into a plurality of cache lines according to a
tag and index field through hash and rehash functions. The
cache lines represent a column of sets. Bach cache line
contains a rehash block indicating whether the set is a rehash
location. To increase the performance of the column-asso-
ciative cache, a content addressable memory (CAM) is used
to predict future conflict misses.

25 Claims, 7 Drawing Sheets

TAG DATA FLAG 8

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 204

U.S. Patent Jun. 25, 1996 Sheet 1 of 7 5,530,958

address
Processor dota Main 14
Memory [
b
k12
« Cache L6
T
N 15
Controller
%3]
I7
Addressq; / 2l
! TAG DATA FLAG I8
}’AG INDEX SO
19

Address aj / S6
TAG | INDEX Y4

9 21

2A

S

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 205

U.S. Patent Jun. 25, 1996 Sheet 2 of 7 5,530,958

set
0
1
2 a;
3 set
4 0
5 i
7 3
Column-Associative Two-Way Set- Associative
Vs ’ _/,
J;g. 2B
s
done Rbit=1?
1 yes w
clobber? it hp {a] .
l i miss
done / \
swap clobber2
M+] i
done
3 swap
I
done

:;;Ea_«zs hﬂ+34

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 206

U.S. Patent Jun. 25, 1996 Sheet 3 of 7 5,530,958

g gj gy gj g Ay
SO SO
s1{9j 9; a, g s1 |9 g
s2 s2
S3 S3
sS4 S4
5519 G Oy S5|@j gj ax 1
S6 S6
S7 S7
N —— A

CAM

20

Controller ™15
Zf, 5

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 207

U.S. Patent Jun. 25, 1996 Sheet 4 of 7 5,530,958

/"}CAM?\
" hy [a] ho[a] .
/ \m:ss / \r::ss
done es Rbit=1? no done clobber2
=
. hold] , _ hao[a] _ done
lllt/ \m:ss f:n/ wss M+1
putinCAM clobber! putinCAMX clobber2
swap ‘
done done
3 M+2 done swap
3 done
M+3
7;3 b
TAG | INDEX TAG DATA
20
{
CAM

6~ 1

o7
. 15—~
lﬁ Controller

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 208

U.S. Patent Jun. 25, 199 Sheet 5 of 7 5,530,958

hit by fa] miss

done inCAM?
! ﬂf/ Nfs
putinCAM y miss
l swap clobber2
done | ‘
M+1 done
3 swap
done
3{9 8 M+3
address
bus
MAR - RAM Array +
- rehash bit
LM
T HIT
— RD/WT
- (X)) f—
pu
26 : 30

545 oss

Control Logic

! HB{
— LD Data Buffer

OP, MACK p—» C
14
STALL, MEM }fe— 28 /
\ data bus
—» 1S Swap Buffer 32

%9

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 209

IUOTSIDA ISYA '€002/10/60

0000° %01

=
address - 04 23 o5 %
4 [[,_U
0 MAR RAM Array + B
12 MUX N .]
rehash bit =
: -lindex S
1 I | LM
LT e | —HT
MSEL g [—= RD/WT o
F(X) podf ;
7
~/ 0 .
T =Y
o T
' | | DSEL
0 MUX 1 | HB ”
CSEL E —+{LD Data Buffer g
(-
- | \ 14 e
38~ cam Butfer -0 CAM 1 28 / %
INC l 34y } data bus
{ —=|LS|tag| Swap Buffer N 3,
WTCAM fe— | Control Logic } T
26 MATCH |— OP, MACK |— ﬂ
FIFO cam |20 |sTaLL, MEM [1'9 10 2
&
o

EX 1019 Page 210

0000° 90" 1T

‘uoTsiop LSYH ‘€00Z/T0/60

address
bus
22 f24 f23
0
MAR
" MUX A RAM Array
r—index N
1 | LM
% r «—{HIT
MSEL | (28| —=RD/WT
|
|
1 F0 = ‘ gzlﬂ ”
- - — 30
38) ‘ :
CAM Buffer je—r DSEL HBI
INC 20 34
1 [A —a LD Data Buffer
WTCAM pe— | Control Logic
9 (g 14
MATCH }— OP, MACK |e—
! data bus
CAM STALL, MEM |—
—= LS Swap Buffer 32
36 FIFO Ctr.

=
w
i
&

&
=

=3

9661 ‘S "unf

L JO L 19948

8S6°0€S’S

EX 1019 Page 211

5,530,958

1

CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS
AND HASH CONTROL STORAGE

This application is a continuation of No. 07/926,613 filed
Aug. 7, 1992, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates generally to the field of high
performance processors that require a large bandwidth to
communicate with a main memory system. To effectively
increase the memory bandwidth, a cache memory system is
typically placed between the processor and the main
memory. The cache memory system stores frequently used
instructions and data in order to provide fast access from the
main memory.

In order for a processor to access memory, it checks the
cache first. If the desired data is in the cache, a cache hit
occurs, and the processor receives the data without further
delay. Jf the data is not in the cache, a cache miss occurs, and
the data must be retricved from the main memory to be
stored in the cache for future use. Main memory accesses
take louger than cache accesses, 5o the processor is stalled
in a cache miss, wasting a number of cycles. Thus, the goal
for nearly all modern computer systems is to service all
memory references from the cache and to minimize refer-
ences which require accesses from the main memory.

In a typical cache system, a portion of 2 main memory
address is used to index a location or a set of locations in
cache memory. In addition to storing a block (or line) of data
at that indexed location, cache memory stores one or more
tags, taken from another portion of the main memory
address, which identify the location in main memory from
which the block of data held in cache was taken.

Caches are typically characterized by their size (ie.,
amount of memory available for storage), their replacement
algorithm (i.e., method of inserting and discarding blocks of
data into a set), their degree of associativity or set size (i.e.,
number of tags associated with an index and thus the number
of cache locations where data may be located), and their
block or line size (i.e., number of data words associated with
a tag). These characteristics influence many performance
parameters such as the amount of silicon required to imple-
ment the cache, the cache access time, and the cache miss
Tate.

One type of a cache that is frequently used with modem
processors is a direct-mapped cache. In a direct-mapped
cache, each set contains only one data block and tag. Thus,
only one address cornparison is needed to determine whether
the requested data is in the cache. The direct-mapped cache
is simple, easy to design, and requires less chip area.
However, the direct-mapped cache is not without draw-
backs. Because the direct-mapped cache allows only one
data block to reside in the cache set, its miss rate tends to be
very high. However, the higher miss rate of the direct-
mapped cache is mitigated by a small hit access time.

Arother type of a cache that is frequently used is a d-way,
set associative cache. A d-way, set associative cache con-
tains S sets of d distinct blocks of data that are accessed by
addresses with common index fields that have different tag
fields. For each cache index, there are several block loca-
tions allowed, one in each set. Thus, a block of data arriving
from the main memory can go into a particular block
location of any set. The d-way set associative cache bas a
higher hit rate than the direct-mapped cache. However, its

2

25

30

2

hit access time is also higher because an associative search
is required during each reference, followed by a multiplex-
ing of the data block to the processor.

Currently, the trend among computer designers is to use
direct-mapped caches rather than d-way set associative
caches. However, as mentioned previously, a major problem
associated with direct-mapped caches is the large number of
misses that occur. One particular type of miss that occurs is
a conflict miss. A conflict miss occurs when two addresses
map into the same cache set. This situation occurs when the
addresses have identical index ficlds but different tags.
Therefore, the addresses reference the same set. A d-way set
associative cache typically does not suffer from conflict
misses because the data can co-reside in a set. Although
other types of misses, such as compulsory (misses that occor
when loading a working set into a cache) and capacity
(misses that occur when the cache is full and when the
working set is larger than the cache size) do occur, they tend
to be minimal as compared to conflict misses.

The problem of conflict misses has cansed designers to
reconsider using a direct-mapped cache and to begin design-
ing cache memory systems that can incorporate the advan-
tages of both the direct-mapped cache and the d-way asso-
ciative cache. One approach has been to use a victim cache.
A victim cache is a small, fully associative cache that
provides some exira cacbe lines for data removed from the
direct-mapped cache due to misses. Thus, for a reference
stream of conflicting addresses 2,, a;, 3; 4, . . . , the second
reference a, misses and forces the data i indexed by a, out of
the set. The data i that is forced out is placed in the victim
cache. Thus, the third reference address, a,, does not require
accessing main memory because the data is in the victim
cache and can be accessed therefrom.

However, there are several drawbacks to the victim cache.
For example, the victim cache must be very large to attain
adequate performance because it must store all conflicting
data blocks. Another problem with the victim cache is that
it requires at least two access times to fetch a conflicting

% datum (i.c., one to check the primary cache, the second to

60

65

check the victim cache, and maybe a possible third to store
the datum in the primary cache). Still another drawback to
the victim cache is that performance is degraded as the size
of the cache memory is increased because the victim cache
becomes smaller relative to the cache memory, thereby
reducing the probability of resolving conflicts.

Consequently, there is a need for an improved cache
memory system that incorporates the low conflict miss rate
of the d-way set-associative cache, maintains the critical
access path of the direct-mapped cache, and has better
performance than the victim cache.

SUMMARY OF THE INVENTION

To provide a cache memory system with a high hit rate
and a Jow hit access time, the present invention has set forth
a column associative cache that uses an arca-efficient cache
control algorithm. A column associative cache removes
substantially more conflict misses introduced by a direct-
mapped access for small caches and virtually all of those
misses for large caches. Also, there is a substantial improve-
ment in the hit access time.

In accordance with the present invention, there is a cache
memory having a plurality of cache sets representing 2
column of sets for storing data. Each cache set is indexed by
memory addresses having a tag field and an index field. A
controller indexes memory addresses to the cache data

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 212

3,530,958

3

memory by applying at least one hashing function. A hash-
ing function is an operation that maps the addresses of the
data from e main memory to the cache sets of the cache data
memory. A rehashed location stores data that is referenced
by an alternate hashing function. The use of alternative hash
functions (i.e., hash and rehash) allows cache sets associated
with a common index to be stored within the single cache
column rather than in separate columns, each of which
requires its own memory space. For example, in a direct-
mapped cache, the two hash functions allow two blocks with
the same index to reside in different cache Jocations. In
accordance with the present invention, hash control data is
stored in the cache memory to direct the cache system to a
hashed location or a rehashed location based on past cache
operations. The hash control datz may be a hash/rehash
block associated with each cache location which indicates
whether the hash or rehash function was used to store the
data io that Jocation, Alteratively, or in combination with
the hash/rehash block, a memory may identify recent cache
indexes or groups of indexes which have required rehash.

The cache memory sysiem of the presemt invention
resolves conflict misses that arise in direct-mapped cache
access by allowing conflicting addresses to dynamically
choose alternate hashing functions, so that most conflicting
data can reside in the cache. In the cache memory system of
the present invention, data is accessed from the cache by
applying a first hashing function to the indexed memory
address, If the data is valid, it is a hit and is subsequently
retrieved. For a miss at a rehashed location, as indicated by
a rehash block, the controller removes that data and replaces
it with new data from the main memory. If the cacbe location
is not a rehashed location, then a second hashing function is
applied in order to place or locate the data in a different
location. With a second miss, valid data is accessed and the
controller swaps the data in the cache locations indexed by
the first and second hashing functions.

The preferred first type of hashing function used by the
present invention is & bit selection operation. The bit selec-
tion operation indexes the data in the cache lines according
to the index field. If there is a conflict miss, then the second
hashing function is applied, The preferred second hashing
function of the present invention is a bit flipping operation.
The bit flipping operation inverts the highest order bit of the
index field of the address and accesses the data in that
particular Jocation. The present invention is not limited to
two hashing functions end may use more.

In another preferred embodiment of the present invention,
there is provided a content addressable memory (CAM)
coupled to the cache memory system for storing portions of
addresses that are expected to indicate future conflict misses
in the cache. The CAM, preferably a tag memory, improves
the efficiency of the cache by increasing the first time hit
rate. The CAM stores the indexes of cache blocks that are
present in rehashed locations. If the index of an address
matches an index stored in the CAM, then the cache
controller uses the rehash fonction (fostead of the hash
function) for the first time access. Thus, second time
accesses are reduced.

While the present invention will hereinafter be described
in connection with a preferred embodiment and method of
use, it will be understood that it is not intended to limit the
invention to this embodiment. Instead, it is intended to cover
all alternatives, modifications, and equivalents as may be
included in the spirit and scope of the present invention as
defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of 2 cache memory system
of the present invention,

—

5

2

25

50

55

60

€5

4

FIG. 2A illustrates a column associative cache with
rehash blocks.

FIG. 2B illustrates a comparison of a column associated
cache and two-way set associative cache.

FIG. 3 shows a decision tree for the column associative
cache with rehash blocks,

FIG. 4 shows a comparison between a single colummn
associative cache and the column associative cache with
rehash blocks.

FIG. 5 shows a column associative cache with a content
addressable memory (CAM) and rehash blocks.

FIG. 6 shows 2 decision tree for a column associative
cache with rehash blocks and a CAM.

FIG. 7 shows a column associative cache with a CAM.
FIG. B shows a decision tree for 2 column associative
cache with a CAM.

FIG. 9 shows the circuitry for & column associative cache
with rehash blocks.

FIG. 10 shows the circuitry for a column associative
cache with rehash blocks and 2 CAM.

FIG. 11 shows the circuitry for a column associative cache
with a CAM.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1 of the present invention, there is
shown a cache memory system 10 placed between a pro-
cessor 12 and a main memory 14, The speed of the cache is
compatible with the processor, whereas the main memory is
lower in speed, The cache anticipates the processor’s likely
use of data in the main memory based on previously used
instructions and data in the cache. Based on an assumption
that a program will sequence through successive instructions
or data addresses, a block or line of several words from the
main memory is transferred to the cache even though only
one word is needed. When the processor needs to read from
main memory the cache is checked first, If the data is in the
cache, there is & hit and retrieval from cache. If the data is
not in the cache, there is a miss and retrieval is from main
memory.

To provide a cache memory system with a high hit rate
and a low access time, the present invention has set forth a
cache that incorporates the characteristics of a direct-
mapped cache and a d-way set associative cache, The cache
of the present invention is a column associative cache 16 and
is shown in FIG. 2A. The column associative cache containg
a plurality of cache lines that represent a column of sets each
of one line, In FIG. 2A, eight sets, S0-S7 of the cache are
shown. It is noted that the column sassociative cache would
likely have hundreds or thousands of sets.

To access the cache 16, a memory address 17 is divided
into at least two fields, atag field 19 (typically the high-order
bits) and an index field 21, As in a conventional direct
mapped cache, the index field is used through a hash
function h, to reference one of the cache sets $0-S7 and the
tag field is compared to the tag of the data within that set. A
tag memory is coupled to the plurality of cache sets for
storing the tags of the data blocks. If the tag field of the
address matches the tag field of the referenced set, then there
is & hit and the data can be obtained from the block that
exhibited the hit. If the tag field of the address does not
match the tag field of the referenced set, there is a miss.

Data addresses are indexed from the main memory 14 to
the column assaciative cache 16 according to two hashing

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 213

v fgh

5,530,958

5

functions, h; and h,, which are applied by controller 15, The
hashing functions are operations that map the data addresses
from the main memory to the cache sets based on spatial and
temporal locality. Spatial locality sugpests that future
addresses are likely to be near the locations of current
addresses. Temporal locality indicates that future addresses
are more likely to reference the most recently accessed
locations again.

The first hashing function, h,, is preferably a bit selection
operation. In a bit selection operation, data is indexed to the
sets of the column associative cache according to its index
field. Since some data may contain the same index field,
there is high probability that there will be conflict miss
between the data. The column associative cache of the
present invention resolves the conflict by then applying a
second hashing function, h,. The second hashing function
dynamically chooses a different location in which the con-
flicting data can reside. The second hashing function, h,, is
preferably a bit flipping operation that flips the highest
ordered bit of the referenced by the index address and
accesses the conflicting data at the set indexed by the
inverted address. As shown in FIG. 2A, the first hashing
function, h,, indexes address a, 17 to set S1. Address 11 then
attempts to access S1 but there is a miss because address 17
is already there. To resolve the conflict, the second hashing,
h,, function is applied to address 11. This hashing function
flips the highest ordered bit of the index field so that address
11 can be indexed to S5. Thus, S1 and S5 share locations
through h; and h, so that conflicts are resolved not within a
set but within the column of sets of the entire cache.

A comparison of a column associative cache with a
conventional two way set associative cache is illustrated in
FIG. 2B. In the conventional cache, a set, such as set 2,
stores two lines of data. Thus, if the requested data is stored
in either line of a set, there is a hit. Drawbacks of such a
cache are the high hit access time and hardware complexity.
The column associate cache performs as a direct mapped
cache unless there is a miss. With a miss it accesses another
location within the same memory column. Thus, two sets
share two locations,

Also, shown in FIG. 2A is a rehash block 18 coupled to
each cache set for indicating whether the set has been
rehashed. A rebashed location is a set that has already been
indexed through the second hashing function to store data.
The purpose of the rehash block is to indicate whether a
location stores data through a rehashed index so the data
should be replaced in preference for a non-rehashed index.
Temporal locality suggests that rehashed locations should be
preferentially replaced.

FIG. 3 discloses a controller decision tree for indexing the
cache. Table 1 provides the decision tree mnemonics and
cycle times for each cycle. First, the first hashing function,
h,, is applied to the memory address a. If the first-time
access is a hit, then the data is accessed to the processor.
However, if the first-time access is a miss, then the rehashed
location block of that set is checked (Rbit=17). If the rehash
block has been set to one, then the data is removed from that
cache set indexed by h,{a] and data from the main memory
is retrieved and substituted therefor (Clobber 1). Next, the
rehash block is reset to zero to indicate that the data in this
set is to be indexed by the first hashing function h, for future
indexes.

On the other hand, if the rehash block is set to zero, then
upon a first-time miss, the second hashing function h, access
is auempted, If the second hashing function indexes to valid
data, then there is a second time hit. For a second time hit,

09/01/2003, EAST

—

o

35

50

6

the data is retrieved from that cache set and the data in the
cache sets indexed by the first and second hashing functions,
h,{a] and h,{a), are swapped (SWAP) so that the next access
will likely result in a first time hit (temporal locality).
However, if the second hashing function provides a second
time miss, then the data in that set is replaced (Clobber2).
Data from the main memory is retrieved and placed in the
cache set indexed by the second hashing function, h,[a].
Then the data in the cache sets indexed by the first and
second hashing function, h, and h, are swapped with each
other (SWAP).

TABLE 1
Mnemanic Action Cycles
h,(al bit-seleclion access 1
hjia} bit-flipping access 1
swap swap data in se1s accessed by h[a] 2
and hy(a]
clobber] get data from memory. place in set M
accessed by h,[a]
clobber2 get data from memory, place in set M
accessed by hyja]
Rbit=1? check if set accessed by hfa) is a 0
rehashed location
inCAM? check if & (or its index) matches 0
2 CAM entry
putinCAM place a (or its index) in the CAM 1
putinCAM* place the index of a and the tag 1

present in the cache location
accessed with h,(a) into the CAM

At startup, all of the empty cache sets have their rehash
blocks set to one so that compulsory misses are handled
immediately.

The rehash block 18 increases the hit rate and decreases
the access time for the column associative cache. The
increase in performance is due to the fact that the data in the
non-rehashed location are the most recent accessed data and,
according to temporal locality, this data is more likely to be
needed again. The removal of older data which will probably
not be referenced again whenever a conflict miss occurs
reduces the amount of clobbering. In addition, the ability to
immediately replace a rehashed location on the first access
reduces the number of cycles consumed by rehash accesses.

In addition to limiting rehash accesses and clobbering, the
column-associative cache with rehash block corrects a prob-
lem associated with indexing a reference pattern a,2, 2, a, 2,
8, 8, . . . where the addresses 2, and a; map into the same
cache location with bit selection, by, and a, is an address
which maps into the same location with bit flipping, h,. FIG.
4 shows how a single column associative cache and a
column associative cache with a rehash block will index the
above reference pattern. The figure shows at each location,
the data stored in that location after the data request indi-
cated by the input sequence. In the column associative
cache, address a; is shown indexed into set S1 by the first
hashing function, h,. Address a; attempts to index S1 by the
first hashing function, but there is a miss because address i
is there. Then using the second hashing function, h,, address
a; is indexed to S5 and with a miss that data is retrieved and
stored in S5. The data in S1 and S5 is then swapped. Thus,
j is now in S1 and i is now in S5. The next address, a,
attempts to access S5 but will miss because i is there. Then
the second hashing function is applied to a, and it attempts
to access S1, but there is a miss because j is there. Since this
is a second time miss, the address a;is removed from S1 and
replaced by .. Then a, and ai, are swapped so that i is in S1
and x is in S5. This pattern continues as long as a, and a,
alternate. Thus, the data referenced by one of a;and a, is

Version: 1.04.0000

EX 1019 Page 214

5,530,958

7

clobbered as the data i is swapped back and forth but never
replaced.

This detrimental effect is known as thrashing, but as
shown in FIG. 4, it does not occur in a column-associative
cache with a rehash block. In the column associative cache
with a rehash block, a, is indexed to S1 by the first hashing
function h;. Address a, attempts to index S1 but misses
because i is there. Since there is a miss, the rehash block for
S1 is checked to see if that set has been already indexed by
the second hashing function h,. Since S1 has not been
indexed by h,, its rehash block is 0. Then, the second
hashing function indexes a; to S5 and the rehash block is set
to 1. Then the datain S1 and S5 are swapped so that j is now
in S1 and i is now in S5. Address a, attempts to access S5
but misses because i is there. However, because the rehash
block of S5 is set to 1, j is removed and replaced by x. Thus
S1 contains j and S5 contains x, eliminating the thrashing of
j. Of course, this column-associative cache suffers thrashing
if three or more conflicting addresscs alternate, asin 2, 3, a,
a,a;2,a,..., but this casc is much less probable than in the
case of two altemating addresses. Thus, the rehash block
alleviates thrashing, reduces the number of rehash accesses
and nearly eliminates clobbering.

To further reduce the access tirne of the column associa-
tive cache, a content addressable memory (CAM) 20 is
added thereto. The purpose of the CAM is to reduce the
number of unnecessary rehash accesses and swaps in the
column associative cache. FIG. 5 shows the CAM 20
coupled to the column associative cache 16, The CAM
stores addresses that potentially cause conflict misses, such
as addresses that have been swapped with the rehashed
location in a second-time hit. If the address in the CAM
matches requested data address, then the controller attempts
to index the referenced data using another hashing function,
such as h,, as the first hash.

FIG. 6 shows a decision tree for indexing an address a to
the column associative cache with the CAM. Table 1 pro-
vides the decision tree mnemonics and cycle times for each
cycle. First, the CAM is checked to determine whether the
index of a matches the address entry within the CAM
(inCAM?), If there is a match, then h, is used to index a. If
h,[a] indexes valid data, then there is a hit and the data is
retrieved. However, if there is a miss, then the data is
clobbered and data from the main memory is retrieved and
placed in the cache set accessed by h, (Clobber2).

On the other hand, if there is no match in the CAM, then
h, is applied to a for indexing. If h,[a] indexes valid data,
then there is a hit. However, if there is a miss, the rehash
block is checked to determine whether the cache set
accessed by h,[a) is a rehashed location (Rbit=1?). If the
cache set is a rehashed location (=1), then b, is applied to a.
A hit results in a or its index being retrieved and placed in
the CAM (putinCAM) as a potential conflict. A miss causes
the data in the set indexed by h,[a] to be clobbered and
replaced with data retrieved from the main memory (Clob-
ber 1). If the rehash block is not set to 1, then h,, is applied
to a for indexing. A hit results in amr address from the index
of hyfaj being placed into the CAM (putinCAM®*). The
address is reconstructed from the index of a and the tag at
h;[a). Then data in cache sets accessed by h,[a] and h,[a] are
swapped with each other. A miss causes the data to be
clobbered and replaced with data retrieved from the main
memory and placed in the set indexed by h,[a] (Clobber2)
Then data in cache sets accessed by hy[a] and h,[a] are
swapped with each other (SWAP).

An cxample of how the CAM provides better perfor-
mance to the column associative cache is evident for the

09/01/2003,

25

35

45

50

o

0

EAST Version:

8

following reference pattem: a,, a,, 8, a, To access the
above reference pattern, the column associative cache 18
wastes many cycles swapping a, and a,, repeatedly whereas
the CAM 20 stores the address that referenced the data into
the rehashed location on a second-time hit. For instance, the
third reference, i, results in a second-time hit because the
data j is indexed into the rehashed location as expected, but
its address (i.e., tag and index) is stored in the CAM. The
CAM is then checked in parallel with every first-time access,
and if a match is found, the control logic will find the data
directly by rehashing instead. The benefit of adding a CAM
to the column-associative cache is that a swap is no longer
necessary between the conflicting data becanse the CAM
quickly points out those addresses which provide second-
time hits. Thus, in the above example, a; remains in the
non-rehashed location and is accessed in one cycle by h[a;].
The conflicting data a; remains in the rehashed location and
is accessed by hy[a;] after a; is matched with its entry in the
CAM.

An important feature of this design is that the search of the
CAM does not impose a one cycle penalty. This feature is
accomplished by optimizing the CAM so that a search is
completed quickly enough to precede the first-time access in
the cycle. This feature can also be implemented by perform-
ing the CAM access in a previous pipeline stage. However
accomplished, eliminating the penalty of searching the
CAM is crucial because a significant reduction in execution
time is possible only if most of the data in rehashed locations
can be retrieved as quickly as those in non-rehashed loca-
tion.

Another benefit in using a CAM is evident in a first-time
rehash hy[a] (due to a being in the CAM) that misses. The
decision tree shows that in this case, no swap is needed
because data is retrieved from the main memory and left in
the set indexed by h,[a]. This is done becanse that address
is in the CAM due to a first-time rehash. Therefore, leaving
the data in the rehashed location leads to future first-time
rehash hits in only one cycle.

One of the drawbacks of using a CAM with a column
associative cache is evident in situations when a set accessed
by h,[a] is found to be a rehashed location. Instead of
immediately replacing this data, a rehash access must be
performed to ensure that the desired data is not located in the
rehashed location. This is impossible for the single column-
associative cache with rchash block, however, it is feasible
when a CAM is included. For example, suppose an address
exists in the CAM which causes 2 first-time rehash hit at
h,[a]. The CAM is a finite resource, so this address may be
removed from the CAM after it becomes full. Now, if this
address appears again in the reference stream, there is no
CAM match, so a normal access is attempted when the data
is in the set indexed by h,[a]. Thus, replacing the non-
rehashed location immediately would result in data being
stored in two separate locations. The extra attempted rehash
guards against this wasteful situation, but it adds a one cycle
penalty.

Another embodiment of the present invention is to have
the CAM coupled to the column associative cache without
having a rehash block (see FIG. 7). As in the above embodi-
ment, the CAM 20 improves the efficiency of the column
associative cache by storing portions of addresses that are
expected to indicate future conflict misses. This reduces the
number of unnecessary rehash accesses and swaps in the
column associative cache. For example, after first time
misses, a rehash access is only attempted when the control
logic identifies this miss as a conflict. A conflict is identified
by finding a match in the CAM. This conflict may be

1.04.0000

EX 1019 Page 215

5,530,958

9

resolved by rehashing. Thus, fewer rehashes are attempted
which improves the second time hit rale and decreases the
extent of data being clobbered.

FIG. 8 discloses a controller decision tree for indexing an
address to the column associative cache with CAM. Table 1
provides the decision tree mnemonics and cycle times for
each cycle. First, the first hashing function, h,, is applied to
a memory address a. If the first time access is a hit, then the
data is accessed. However, if the first time aceess is a raiss,
the CAM is checked to see if address a matches a CAM entry
(inCAM?).

If address a does not match a CAM entry, the data in
address a is removed (clobberl) and data is retrieved from
the main memory and placed in the cache set accessed by the
first hashing function h,(a). Then the data from address a is
placed in the CAM (putinCAM).

However, if there is a match in the CAM, then the second
hashing fuaction h,[a] is applied. A hit causes the data to be
accessed and then the data in the cache sets accessed by
h,{a] and h,[a] are swapped (SWAP). A miss causes that the
data to be removed from the cache set and replaced by data
from main memory (clobber2). Then the data in the cache
sets accessed by h,[a] and h,[a] are swapped (SWAP).

For a general understanding of how to implement the
colump associative cache with rehash block, the column
associative cache with the rehash block and CAM, and the
single column associative cache with CAM, reference is
made to FIGS. 9-11 and Tables 2-4. The cache implemen-
tation for both FIGS. 9-11 are discussed at the register
transfer level without the disclosare of the detailed gate and
transistor designs since the actnal control logic can be easily
synthesized from the state flow tables set forth in Tables 2-4.

Furthermore, in order to provide brief yet descriptive
details about the various embodiments, several simplifica-
tions and assumptions have been made. For example, a
discussion regarding the clocking and timing issues is left
out. Instead, it is assumed that the controller 1§ receives
input signals at the start of a cycle and issues output signals
at the end of the cycle. Also, for simplicity, the bus interface
and driver circuits have been left out.

FIG. 9 shows a hardware implementation of the column
associative cache with rehash block for the present inven-
tion. The primary element of the column associative cache
memory system is a RAM array 23 having a rehash block 25.
The RAM, preferably & tag memory, has a plurality of cache
sets to store memory addresses. The processor sends a data
address via an p-bit multiplexor 22 to a memory address
register (MAR) 24. Connected in between the output of the
MAR and one of the inputs of the multiplexor 22 is an
inverter 26, The multiplexor 22, the MAR 24, and the
inverter 26 interact to index the data address from the
processor to the RAM. More specifically, the multiplexor
and the inverter apply the first hashing function h, and the
second hashing function h, to the data address.

The RAM 23 communicates with the data bus via a data
buffer 28. In between the data buffer and the RAM is a
second n-bit multiplexor 30, A swap buffer 32 communicates
with both the multiplexor 30 and the data buffer 28 so that
current data can be placed in the cache set most likely to be
accessed.

The controller 15 provides the necessary control logic to
each of the above components so that the algorithm of the
decision tree in FIG. 3 is followed. The control signals for
FIG. 9 are summarized in Table 2 as well as the actions taken
for a given state, input, output, and next state. A discussion
of the components and Table 2 is set forth below and can be
followed in FIG. 3.

25

40

60

10
TABLE 2
State Iaput Output Next state
IDLE OP LM,RD bia}
be} HIT IDLE
tHIT,IHB STALL,MSEL,LM,RD,.LS fifa]
{HIT,HB MEM,STALL XWAIT
flfal HIT MSELLMWT 2a)
IHIT MEM WAIT1
2ia] DSEL,.LD B[]
fifa) MSELLMWT IDLE
WAIT1 MACK MSEL,LMWT WAIT2
WAITZ DSELLD WAIT3
WAIT3 MSELLMWT IDLE
XWAIT MACK LD,WT IDLE

Upon seceiving an opcode signal (OP), the controller
loads (LM) the MAR with an memory address a from the
address bus. Then the controller issues a read or write signal
(RD/WT) to the RAM so that the first hashing function h, is
be applied to address a If the RAM returns a hit signal
(HIT), then the data is automatically loaded (D) into the
data buffer 32 to be retrieved and the controlier goes to an
IDLE state.)

If the h, [a] access misses (! HIT) and the rehash block has
not been rehashed ('HB), then the controller stalls the
processor (STALL), copies (LS) the data from the h,{a]
access into the swap buffer, loads the MAR with the second
hashing function h, (MSEL and LM), issues a read (RD)
signal to the RAM and moves to the f1{a] state. If the access
misses (1HIT) and the rehash block is set to one (HB), then
the data is removed and the controller makes a request to the
main memory (MEM), stalls the processor (STALL), and
moves to the XWAIT state.

In the f1[a] state, a hit causes the controller to load the
MAR with that index (MSEL, LM), issue a write signal
(WT) to the RAM and move to the f2[a] state. For a miss
('HIT), the controller makes a request to the main memory
(MEM) to retrieve data end moves to the WAITI state.

In the £2[a] state, the controller swaps the data in the data
buffer and the swap buffer (DSEL, LD) and moves to the
f3[a] state. .

In the £3[a] state, the controller loads the MAR (MSEL,
LM), issues a write (WT) signal to the RAM, and moves to
the IDLE state.

In the WATT1 state, the memory acknowledges comple-
tion (MACK), the data is taken from the data bus and loaded
in the MAR (MSEL, LM), a write signal is issued to the
RAM (WT), and the controller moves to the WAIT2 state.

In the WAIT2 state, the controller swaps the data in the
data buffer (DSEL, LD) and moves to the WAIT3 state.

In the WAIT3 state, the controller loads (MSEL, LM) the
MAR, issues a write signal (WT) to the RAM and moves to
the IDLE state.

In the XWAIT state, the controller receives a signal that
the access is complete (MACK), loads the data into the data
buffer (LD), issues a write command (WT), and moves to the
IDLE state.

The circuitry of the colurmn associative cache with CAM
and rehash block is more complex than the cache by itself
(see FIG. 10). For example, there is a CAM 20, a first in first
out (FIFO) counter 36, 2 CAM buffer 38, and another n-bit
multiplexor 40. The FIFO counter points to the next location
in the CAM that is to be replaced and the CAM buffer holds
indexes while they are being compared or before they are
written into the CAM. Even though this hardware consumes
a great deal of area, the critical access path of the column
associative cache is not affected. Besides the above addi-

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 216

5,530,958

11

tions, the MAR 24 and the swap buffer 32 are shown to have
capability for storing partial addresses such as the index and
tag fields, respectively.

The state flow table in Table 3 reveals that the control
logic for the column associate cache with the CAM and
rehash block is more complex. For example, the variables
for each state have changed and are referenced differently
than the column associative cache. Furthermore, upon
receiving an opcode (OP), the controller searches the CAM
to determine if there is a match for the address a. If there is
no initial match (! MATCH) in the CAM, the controller
loads the MAR (LM), issues a read signal (RD) to the RAM,
and moves to the bfa) state. A match (MATCH) in the CAM
enables the controller to load the MAR (MSEL, LM), issues
aread signal (RD) to the RAM;.and moves to the fifa] state.

A hit (HIT) in the ff{a] state enables the controller to place
the index field of the data within the MAR into the CAM
buffer (LDCAM) and then move to the IDLE state. On the
other hand, a miss (! HIT) enables the controller to stall the
processor (STALL), make a request to the main memory
(MEM), and then move to the WAIT state.

A hit (HIT) in state b[a] causes the controller to place the
index field of the data within the MAR into the CAM buffer
38 (LDCAM) and moves to the IDLE state. A miss (HIT)
with a zero rehash block (! HB) or a one rehash block (HB)
causes the controller to stall the processor (STALL), load the
MAR (MSEL, LM), issue a read signal (RD) to the RAM,
load the swap buffer (LS) with the data from b[a] and move
to the fl[a] and fc[a] state, respectively.

TABLE 3

Next

State Input Output State

IDLE OP,'MATCH LMRD bla]

OPMATCH MSEL,LM,RD fa)

fija} HIT LDCAM IDLE
'HIT STALL.MEM WAIT

bia] HIT LDCAM IDLE
HIT,!HB STALL,MSEL,LMRD,LS fl[a]

HITHB STALL,MSEL,LM,RD,LS fc[a]

fl{a] HIT MSEL,LM,WT,CSEL, 2{a)

LDCAM,WTCAM

{HIT MEM WAIT1

2la] DSELLD,INC 3[a]
3[a] MSEL,LM,WT,LDCAM IDLE
fcla) HIT . LDCAM,WTCAM fc2(a]
HIT MEM WAIT

fc2[a) INCLDCAM IDLE
WAIT MACK LD,WT,LDCAM IDLE
WAIT1 MACK MSELIMWT WAIT2
WAIT2 DSEL,LD WAIT3
WAIT3 MSEL,LM,WT,LDCAM IDLE

A hit in the fl1{a] cavses the controller 1o load the MAR
(MSEL, LM), issue a write signal (WT) to the RAM, place
the address from the MAR in the CAM (CSEL, LDCAM,
WTCAM), and move to the £2{a] state. A miss (!HIT) causes
the controller to make a request to the memory (MEM) and
go to the WAIT1 state.

In the f2[a] state, the controller points to the next location
in the CAM (INC), swaps the data in the data buffer with the
data in the swap buffer (DSEL, LD), and moves to the f3[a)
state.

In the f3(a] state, the controller places an index within the
MAR and the CAM buffer (MSEL, LM, WT, LDCAM) and
moves to the IDLE state.

In the fc[a] state, the data is indexed. A hit (HIT) causes
the controller to place the index within the MAR into the
CAM hbuffer (LDCAM), place the current index into the
CAM (WTCAM), and move to the fc2[a] state. A miss

09/01/2003,

ac

35

40

45

50

60

65

EAST Version:

12
(HIT) canses the controller to make a request to the memory
to retrieve data (MEM), and move to the WAIT state.

In the fc2[a) state, the controller issues an INC command
to the FIFO counter in order to point to the next location in
the CAM, places an index within the MAR into the CAM
buffer (LDCAM), and moves to the IDLE state.

In the WAIT state, the controller receives a signal indi-
cating that the access is complete (MACK), loads the MAR
with the next access (LD), issves a write signal to the RAM
(WT), places an index within the MAR into the CAM buffer
(LDCAM) and then moves to the IDLE state.

In the WAIT1 state, the controller receives a signal
indicating that the access is complete (MACK), loads the
MAR (MSEL, LM), issues a write signal (WT), and moves
to the WAIT2 state.

In the WAIT?2 state, the controller swaps data between the
data buffer 28 and the swap buffer 32, loads the data buffer
with the data (DSEL,LD), and moves to the WAIT3 state.

In the WAITS3 state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT), places the
index within the MAR into the CAM buffer (LDCAM), and
moves to the IDLE state.

Note that all states whose next state is IDLE assert the
LDCAM line. This serves as & reminder that in order for the
CAM search and the setting of MATCH to precede the
first-time cache access, the search must be either extremely
fast or part of a previous pipeline stage. LDCAM is listed as
an output of the stages executed before the IDLE state as a
reminder of these potential solutions. In these cases, actu-
ally, the CAM buffer would need to find the next address on
the address bus, becanse the MAR has not yet latched the
next reference. Also, note that the state flow Table 3 pro-
ceeds similarly to the state flow Table 2 for first-time hits and
first-time misses when the rehash block is zero. The only
exception is for a second-time hit, when the original non-
rehashed address must be placed in the CAM in addition to
the swap. This is accomplished by asserting CSEL, LDCAM
and WTCAM during state f1[a)]. Also, INC is asserted during
f2[a] to increment the FIFO counter, which points to the
location of the next write to the CAM but does not affect the
next CAM search. ,

The new eatries in the state table involve the paths if an
initial CAM match occurs or if a first-time miss reveals a
rehashed location. If the MATCH line is asserted initially,
then the controller moves to set fi[a) and attempts a standard
rehash access. If successful, nothing remains to be done. If
it misses, then this rehashed location is simply replaced by
data from the memory during the WAIT state, Note that
MSEL and LM are not to be used to change the MAR
contents. Since the address that accesses this location is still
in the CAM, a future reference will be successful in one
cycle. In the case that a first-time miss reveals a rehashed
location, state fclfa] is entered and, unlike the column-
associative cache with rehash block, a rehash is performed
to assure that the data does not exist in the rehashed location.
If this access does indeed hit, the address is simply placed
in the CAM. Thus, a feature reference immediately finds a
match in the CAM and completes a rehash access in one
cycle. If there is & miss, then the algorithm proceeds as in the
column-associative cache with rehash block and replaces the
non-rehashed location.

The circuitry of the column associative cache with a CAM
is shown in FIG. 11. The control signals for FIG. 11 are
summarized in state flow Table 4. A discussion of the
components and Table 4 are set forth below and correspond
to the decision tree of FIG. 8.

1.04.0000

EX 1019 Page 217

5,530,958

13
TABLE 4
state input output next swate
IDLE Oop LMRDIDCAM bla)
bla] HIT IDLE
IHIT,MATCH STALL,MSEL.LM.RD, flf2]
LS
'HITIMATCH MSEL,STALL, WTCAM XWAIT
flfal HIT MSELIM.WT,DSELLD 21a)
IHIT MEM WAIT1
2{a] MSELLMWT IDLE
WAIT! MACK MSEL,LM,WTDSEL,LD WATT2
WAIT2 MSELLMWT IDLE
XWAIT MACK INCLDWT IDLE

Upon receiving an opcode (OP), the controller loads the
MAR (LM), issues a read signal (RD) to the RAM, places
the index within the MAR into the CAM buffer (LDCAM)
and moves to the b[a] state.

A hit in the b{a] state (HIT) causes the data to be accessed
and then the controller moves to the IDLE state. A miss
('HIT) with a match (MATCH) in the CAM causes the
controller to stall the processor (STALL), load the MAR
(MSEL,LM), issue a read signal (RD) to the RAM, load the
swap buffer (LS) with the data from h,{a] and move to the
fi[g] state. A miss (!HIT) without a match (! MATCH) in the
CAM causes the controller to make & request to memory
(MEM), stall the processor (STALL), write into the CAM
{WTCAM) and move to the XWAIT state,

A hit (HIT) in the fl1{a] state causes the controller to load
the MAR (MSEL,LM), write the RAM (WT), load the data
buffer with the data (DSEL,LD) and move to the f2[a] state.
A miss ({HIT) canses the conzoller to make a request to
memory (MEM) and move to the WAIT1 state,

In the f2[a] state, the controller loads the MAR (MSEL,
LM) and issues a write signal (WT), and moves to the IDLE
state.

In the WAIT1 state, the controller receives an input signal
indicating that the access is complete (MACK), then loads
the MAR (MSEL, LM), issues a write signal (WT), swaps
data between the data buffer and the swap buffer, loads the
data buffer with the data (DSEL, LD), and moves to the
WAIT2 state.

In the WATIT?2 state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT}, and moves to
the IDLE state.

In the XWAIT state the controller receives an input signal
indicating that the access is complete (MACK), then the
controlier issues an INC command to the FIFO counter in
order to point to the next location the CAM, places an index
into the MAR (LD}, writes the RAM (WT), and moves to the
IDLE state.

An important parameter for the CAM disclosed in FIGS.
10 and 11 is its size parameter. Like the victim cache, the
percentage of conflicts removed increases as its size
increases, because there are more locations to store conflict-
ing data removed from the cache. However, this improve-
ment eventually saturates to a constant level, because there
exists only so many conflicting data bits which need 10
reside therein at one time, However, the CAM can perform
without saturation for up to 128 entries, whereas the victim
cache can perform only up to 16 entries before saturation
occurs.

The column associative cache with a CAM can use the
full index field or omit some of the low order bits from the
index fields that are to be placed in the CAM. For example,
if two bits are trapped from the index, then four different
addresses could cause a CAM match with the same entry.

09/01/2003, EAST

10

-

5

20

35

40

45

55

65

Version:

14

These addresses may be consecutive numbers, since the low
order bits have been dropped. The use of partial index fields
increase the number of rehashes attempted, because a ref-
erence is predicted to be a conflict if it indexes one of four
consecutive locations. As seen previously, an increase in the
number of rehashes attempted often decreases the second
time hit rate and likely degrades performance. However, this
modification may prove useful in applications where data or
instructions are often known 1o be stored sequentially or in
consecutive bits.

Also, note that the present invention is not limited to the
two hashing functions, h, and h,, bit selection operation and
bit flipping operation. Other hashing functions may be used
in addition to bit flipping in order to improve the randomness
of accesses and to decrease the amount of clobbering.

While the invention has been particularly described in
conjunction with a preferred embodiment thereof, it will be
understood that many alternatives, modifications and varia-
tions will be apparent to those skilled in the art without
departing from the spirit and scope of the invention as
defined by the appended claims.

We claim:

1. A cache memory system comprising:

a cache memory having a plurality of cache locations,
each for storing a cache line of data, separately
accessed from a main memory, and having a first tag
memory, each cache location being indexed by indexes,
taken from memory addresses, through first and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions through the first and second hashing functions and
different indexes access common memory locations
through the first and sccond hashing functions;

hash control storage storing control data comprising hash
data associated with each cache location which indi-
cates the hashing function nsed to store data in the
cache location; and

a controller coupled to the cache memory responsive to
memory addresses in accesses to the main memory for
accessing data in the cache memory through the first
and second hashing functions and for replacing data in
the cache memory from the main memory responsive to
the control data and to comparisons between tags of the
memory addresses and tags stored in the first tag
memory.

2. A cache memory system as claimed in claim 1 wherein
the controller checks the hash data of the cache location
indexed by the first hashing function when there is a miss at
that cache location and applies the second hashing function
only when said hash data indicates data stored in the cache
location was not stored using the second hashing function.

3. A cache memory system as claimed in claim 1 wherein
the controller responds to the hash data to determine whether
to replace data stored in a first location indexed through the
first cache hashing function or a second cache location
indexed through the second hashing function.

4. A cache memory system as claimed in claim 3 wherein
the controller swaps dats replaced in & cache location with
data in another cache location indexed by a common index.

5. A cache memory system as claimed in claim 1 further
comprising a second tag memory coupled to the controller
for storing as control data at least portions of memory
addresses that indicate that data stored in a cache location is
likely indexed through one of the hashing functions.

6. A cache memory system as claimed in claim § wherein
the controller acceasses cache memory locations through the
first hashing function or the second hashing function depen-

1.04.0000

EX 1019 Page 218

5,530,958

15

dent on whether at Jeast a portion of a memory address is
stored in the second tag memory and, where a miss results
at & cache memory location with access through the first
hashing function and the second hashing function, the con-
troller replaces the data stored through the first hashing s
function if said hash data indicates the data accessed through
the first hashing function had been stored using the second
hashing function, or through the second hashing function if
said hash data indicates the data accessed through the first
hashing function had been stored using the first hashing
function. 10

7. A cache memory system as claimed in claim 1 wherein
the hash contro} storage corprises a second tag memory
coupled to the controller for storing as control data at least
portions of memory addresses that indicate a likely hashing
function through which data stored in cache is indexed, 15

8. A cache memory systern as claimed in claim 7 wherein
the second tag memory is a content addressahle memory.

9. A cache memory system comprising:

a cache memory having a plurality of cache locations,
each for storing a cache line of data, separately
accessed from a main memory, and having a first tag
memory, each cache location being indexed by indexes,
taken from memory addresses, through first and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions through the first and second hashing functions and
such that different indexes access common memory
locations through the first and second hashing func-
tions; 30

hash dara associated with each of the plurality of cache
locations for indicating the hashing function used to
store data therein; and

a controller coupled to the cache memory for accessing
data in the cache locations through the first and second 35
hashing functions and for replacing data in the cache
locations from main memory, the controller being
responsive 1o the hash data and a comparison of tags of
the memory address and stored tags in cache memory
in determining whether to replace datain a firstlocation 40
accessed through the first hashing function or in a
second location accessed through the second hashing
function.

10. A cache memory system according to claim 9, wherein

the first hashing function is a bit selection operation. 45

11. A cache memory system according to claim 9, wherein
the controller checks the hash data of a cache location
indexed by the first hashing function when there is a miss to
determine whether to apply the second hashing function.

12. A cache memory system according to claim 9, wherein 50
the second hashing function is a bit selection and flipping
operation,

13, A cache memory system according to claim 9, wherein
the controller removes the data from the cache location
indexed by the second hashing function after & miss and 55
retrieves new data from the main memory in place therefor.

14. A cache memory system according to claim 13,
wherein the controller swaps the new data in the cache
location indexed by the second hashing function with the
data in the cache location indexed by the first hashing 60
function.

15. A cache memory system according to claim 9, wherein
the controller responds to a miss at a cache location through
the first bashing function, and to hash data indicating data is
stored at that cache location through the second hashing 65
function, to remove data from that cache location and
retrieve data from main memory in place therefor.

»

0

16

16. A cache memory system as claimed in claim 15
wherein the controller swaps data replaced in a cache
Jocation with data in another cache location indexed by a
common index.

17. A cache memory systern according to claim 9, further
comprising a second tag memory coupled to the controller
for storing ai least portions of addresses that indicate that
data stored in a cache location is likely to be indexed through
the second hashing function, the controller using the second
hashing function in the initial cache indexing where an
address s found in the second tag memory.

18. A cache memory system comprising:

a cache data memory having a plarality of cache locations
for storing plural cache lines of data, each cache
location being referenced by a memory address having
an index field and a tag field, and each cache location
being indexed by indexes, taken from memory
addresses, through first and second hashing functions
such that plural memory addresses having a common
index access plural memory locations through the first
and second hashing functions and such that different
indexes access common memory locations through the
first and second hashing functions;

a first tag memory coupled 1o the cache data memory for
storing the tag fields of the data stored in the plurality
of cache locations;

hash data coupled to the cache data memory for indicating
hashing functions used to index data in the cache
locations;

a second tag memory coupled to the cache data memory
for storing at Jeast portions of memory addresses that
indicate that data stored in a cache location is likely
indexed through one of the hashing functions; and

a controller responsive to the hash data, the first tag
memory and the second tag memory for indexing
memory addresses according to at least one of the
plural hashing fanctions.

19. A cache memory system according to claim 18,
wherein the controller applies first and second hashing
functions to a memory address, the second hashing function
being a bit selection and bit flipping operation.

20. A method for accessing data from a cache data
roemory, having a plurality of cache locations and = first tag
memory, comprising the steps of:

indexing a memory address having an index field and a
tag field into an indexed cache location according to &
hashing function;

comparing a tag field of the memory address to a tag field
in the first tag memory for the indexed cache location;
and

generating a hit when (he tag field of the memory address
matches the tag field of the indexed cache location, and
generating a miss when the tag field of the memory
address does not match the tag field of the indexed
cache location, and in generating a miss, choosing
between the step of indexing another cache location
through another hashing function and the step of
replacing data, the step of replacing data in the cache
location being chosen if hash daia indicates data
located in the cache location was indexed through
another hashing function.

21. A method according to claim 20, further comprising
the steps of connecting a content addressable memory to the
cache data memory for storing portions of memory
addresses, each portion indicating that data stored in a cache
location is likely indexed through one of plural hashing

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 219

5,530,958

17
functions, and checking the content addressable memory for
a match with a portion of the memory address.
22. A method as claimed in claim 20 further comprising
swapping the replaced data in a cache location with data in
another cache location indexed by a common index.
23. A method of accessing data from & cache data memory
having a plurality of cache locations and first tag memory
comprising the steps of:
indexing a memory address having an index field and a
tag field into an indexed cache location according to &
hashing function applied to the index field; and

comparing a tag field of the memory address to a tag field
in the first tag memory for the indexed cache location;
and

storing control data which identifies the hashing function

used to store data in each cache location;

15

18

wherein data is accessed in the cache locations through
first and second hashing functions and data is replaced
in the cache locations from main memory responsive to
the control data which is stored according to past cache
operations and comparisons between tags of memory
addresses and tags stored in the first tag memory.

24. A method as claimed in claim 23 further comprising
determining from 2 second tag memory a hashing function
through which data stored in a cache locaton is likely
indexed and selects that hashing function for indexing the
cache location.

25. A method as claimed in claim 23 further comprising
swapping data in the cache location indexed by the second
hashing function with the daia in the cache location indexed
by the first hashing function when replacing data.

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 220

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,530,958
DATED ¢ June 25, 1996
INVENTOR(S) ' Anant Agarwal and Steven D. Pudar

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

At column 1, line 4, insert the following paragraph:
-=-=GOVERNMENT SUPPORT

This invention was made with government support under
Grant Number 9012773~-MIP awarded by the National Science
Foundation. The government has certain rights in the
invention.---

Signed and Sealed this
Eighth Day of October, 1996
Anest: @«a Zeycmw\
BRUCE LEHMAN
Attesting Qfficer Commissioner of Patents and Trademarks

09/01/2003, EAST Version: 1.04.0000

EX 1019 Page 221

United States Patent o) Patent Number: 4,458,310
Chang 45] Date of Patent: Jul. 3, 1984

[54) CACHE MEMORY USING A LOWEST [571 ABSTRACT
PRIORITY REPLACEMENT CIRCUIT A data processing system baving a ‘processor, main

[75] Inventor: Shin-Jeh Chang, Naperville, Il memory, and a cache memory system which imple-
- L Laboratori ments the least recently used replacement ulgorithm in

(73] Assignee: :l'fu‘;gdl s, Murray replacing cache memory words with main memory
’ words. The cache memory system is comprised of a

[21] Appl. No.: 307,857 cache control circuit and a plurality of cache memories.
[22) Filed: Oct. 2, 1981 Each cache memory stores cache memory words hav-
ing a similar time usage history. The first cache mem-

g;} ll;..s..%i Go‘:;is/w mory stores cache memory words which are more re-
/200 cently used than the cache memory words in the second

glsllEM of Search 364/200 MS FILE, 900 MS cachic memory, and the second cache memory stores
cache memory words which are more recently used

[56] References Cited than the cache metnory words in the third cache mem-
U.S. PATENT DOCUMENTS ory. When & main memory word must be transferred to

the cache memory, the main memory word is stored in

3,588,829 6/1971 Boland etal. 340/172.5 the first memory; and the first cache memory's feast

362 10/1974 Readycooennenerrenrcrernens 364/200 . .
},:‘,S'_m 471976 Waty... _____ UO/1T2.S recently used cache memory word is stored in the sec-

4,084230 471978 Matick :... 364/200 ond cache memory. The least recently used cache mem-
4,123,832 12/1978 Dennis .._.. . 364/200 ory word from the second cache memory is stored in
4,322,795 3/1982 Langeetal ... 3647200 the third cache memory. These operations maintain the
Primary Examiner—Eddie P. Chan proper time usage history of the cache memorics.
Assistant Examiner—O. Schatoff
Attorney, Agent, or Firm—P. Visserman 17 Claims, S Drawing Figures
7l 102
AN
PROCESSOR o
J £ CONTROL BUS //3
. ADDRESS BUS //2
OATA NS /77
/4 [~ MAIN MEMCRY READ
12 \-MAIN MEMORY READY 700
DATA 03 CACHE SYSTEN
L conIm
o SEQUENCER F
I R3S
iﬁ il
Tidor bR 2 100 W
w14 CACHE
b | cmcor [EIE L.
Lagge w20 | -0
] proat il ol (L2 i
- bt CACHE
: LRY I\
H=1 DATA
T2} ctRewr E— NEMORY
bowe| |[iF2 T 12 LI L
. D 3 109
L{ CACHE
Ly
DATA
CIRCWNT M RONY
23 F//3
CACHE DATA 71!
SEI.‘ECT CACHE DATA
CATING
CIRCUIT
) §

EX 1019 Page 222

U.S. Patent Jul. 3, 1984 Sheet 1 of 5 4,458,310

FIG. 1
10 102,
MAIN
PROCESSOR MEMORY
1 f
~CONTROL BUS /77
—RDDRESS BUS /72
~DATA BUS 7//
125. - MAIN MEMORY READ
CACHE 226~ “MAIN MEMORY READY 100)
DATA 103 CACHE SYSTEM
READY /A
i cougum.
A SEQUENCER]
g'}a) SH W I[TO"T4~
CA ¢ 27
okl TH 1774 JyReLL 12 o I N
LRU wan L2246 CACHE =
N okeor DATA '
A 7 MEMORY
e i 10 -
Bl 75 1R 122 108) }
17w T TEN 1D GAOHE
| CIRCUIT [W2 MEMORY
127 ' §/23
DR H--724
- ! il 09 } .
” ~CACHE
~DATA
| MEMORY
CACHE DATA 19y | ‘
SELECT CACHE DATA
. GATING
CIRCUIT
1

EX 1019 Page 223

4,458,310

Jul. 3, 1984 Sheet 2 of 5

U.S. Patent

i : - _
ME 0 wlmu .«.Q.T m.&m.c\ 1] %WN
m e , == 3
vy o2
e 7T SHOLYT
(€2 £02-
v . |
Z
- 12 M\
I£Z J\Wm\«f e L e el R
06 L (512 A 602 =
. 1 Ll - S,
TR = s g 0 AT iy [oI¥e
(4 1= @ww T .), Y
822 L/T 1 (5
27 gz oI5 M@\
502 102 2~ T 74
s ||| [e oL
1| vwa
!
\$z E08A~ 1912 22l
01 TVRERER (
/ N ¥Iv0 uwu I 3
1.7 e - - -$01
- - c0é ,_..LL r*..L\ TR |
\ ¢ L -

EX 1019 Page 224

s s 0 BB amen i e b srbe | bvene a1 s o%E hasiper e i A 4 e
=3 N .

-
FIG. 3 @
: : 5 i o, P
—— T IRCUIT l) =1
—_— . - - - - g
—= 229) 20 w! T
T J;J L llj T }-.J-. b
[i E
.m# 314-(? g2 :11-(? | m—@ mﬂ} w
308 8
m—@ m{;ﬁ m-¢ m-@ 317«#} 3/ z
— 13 11 CK [(18] 4
FI.29==] 327 EE | 326 € | 325 KE | 304 K | 329 E | 527 FE

M23 13 12 03 M02 Mol g
(1]
r 301 ;

'_, v 330 929 28

53 234 T/sz Ym S0
2 233) 232}

P
W2 s
. i ~ 5 o
[Ty
o

EX 1019 Page 225

FIG. 4
ADDR 179~
- RPL1
112 (o GG T0-T4
104 / \ T)
T \—% !xlu J
m T
" = Bl
24 ‘”i)i‘w RPLT 401 etos] |13
= £ DATA TN 1 T4 H-RPL
'} 8
) o5 == akl 13
DATA ", == ADORESS CaM MODRESS LATCHE .
SELN T IN out Y N
e I 7 DATA OUT — Lt } Lt
JSEL wmab
[‘ Y4 e 2 SEL Pn%m
, v |
407 f&'
94
Lmuzsg 1l ——ln |\
7 = wh g | ¥
123 0 EE g M1
7

\L]_JI
t—l]/

v86l ‘c ‘¢ Juded ‘SN

S Jo { 1934S

01E‘8SH'Y

EX 1019 Page 226

U.S. Patent

Jul. 3, 1984 Sheet 5 of §
Y -1
—2S
MNWIII
EuD i
..l_rr.rnhw-
s
a
— 0
= VY P
o
]
> mo....og
1)
H mooul
ngo
—
=
™
mq....lo.nu
mlouﬁ.
—
e s [e] o e
=
01
N S W
SEES

4,458,310

EX 1019 Page 227

1

CACHE MEMORY USING A Lowm PRIORITY
REPLACEMENT CIR

TECHNICAL FIELD

My invention relates to computer systems, and, par-
mﬂnﬂy,tonryuemmg:cwhemorymwl;mieh
the cache storage location for storing new information
is the location of the lowest priority word in the cache
memory.

BACKGROUND OF THE INVENTION

Modern computer systems employ processors which
are capable of operating at much higher rates of execn-
mthmhrseapmtymnnmunmumwppmt,
mdslowupmty cache memory is com-
monlynwdmnddmontollargempucxtymmmmory
1o improve program execution speed. The cache mem-
ory stores a limited mumber of instruction or data
words; and for each memory read operation, the cache
memory is checked 10 determine if the information is
available in the cache memory. If the information is
there, it will be read from the cache memory; otherwise,
it will be read from the main memory. If the information
mtmtbemdfromthcmmmmy the new informs-
tion must replace existing information in the cache
manmyatmmhcﬂmgcloanm A satisfactory
cache storage Jocation for storing mew information is
identified by one of the several commoaly used replace-
ment algorithms, ¢.g., andom replacement, least re-
cently used, eic. In general, the icast recently used re-
pheemtﬂgodthnkmmduedmbethemmdﬁ-
cient algorithm; however, implementation of this algo-
rithm in a cost-cffective manner without incurring large
time delays in maintaining a priority of cache memory
locations, with respect to which is the least recently
used memory location, has provea difficult 10 achicve.
In particular, it has proven difficult to design a cache
memory which was capable of expansion in the field.

SUMMARY OF THE INVENTION

Advantageously, in a computer system in accordance
with the prescat invention, the cache memory system is
divided into sections with each section contsining cache
data words which have a similar priority. Each section
hnnpxwﬁtyurwxmedmthnwhnchmm
the relative of the cache data words. Further-
more, the time required to update the cache memory
upon receipt of a main memory word which must be
inserted into the cache memory is reduced, since the
main memory data word is written into one section
simultaneous with the tranafer of Jowest priority cache
data words from sections having higher priority cache
data words to sections having lower priority cache data
words.

Inoneembo&mentofﬂwmvmuon,thedauprom
ing system consists of a processor, which requests data
words by generating main memory address signals, &
main memory and a cache memory system. The cache
memory system is comprised of a cache control circuit
and a first and a second cache memory. The advantage
of configuring the cache memory system into more than
one cache memory is that the system is modular and can
be expanded in the field. Also, each cache memory can
be implemented as one large scale integrated circuit.
Each cache memory stores cache data words which are
duplicates of words stored in the main memory. Each
cache memory also stores the main memory addresses

4,458,310

3

10

13

20

25

30

335

40

43

0

55

60

65

2

where the associated cache data words are duplicated in
main memory. When the processor requests & data
word by transmitting main memory address signals, the
first and second csche memory compare the stored
memory addresses with these memory signals to deter-
mine if the requested memory word is stored within
cither the first or second cache memory. If a cache
memory finds a match, it transmits to the cache control
circuit a match signal; otherwise, the cache memory
transmits & mismatch. If the cache control circuit re-
ceives mismatch signals from both cache memories, it
generates and transmits the necessary signals to cause
two operations to take place. During the first operation,
the main memory responds 10 the main memory address
signals to access and transmit the desired main memory
word to the processor and to the first cache memory.
Also, during this first operation, the first cache memory
accesses its lowest priority cache data word with the
these to the second cache memory. During the second
operation, the first cache memory stores the accessed
main memory word and main memory address signals in
the previously sccessed first cache memory locations
and the sccond cache memory stores the lowest priority
cache data word and stored main memory address from
the first cache memory in second cache memory loca-
tions.

Further, the cache control means is responsive to a
mismatch signal from the first cache memory and a
match signal from the second cache memory to cause
two operations to be performed within the cache mem-
ories. During the first operation, the first cache memory
accesses and transmits the lowest priority cache data
word and the associated main memory address to the
second cache memory and the second cache memory
trammits the cache data word associated with the
matched stored memory address to the first cache mem-
ory and to the processor. During the second operation,
the first cache memory stores the cache data word and
address from the second cache memory in the memory
Jocation formerly used by the lowest priority cache data
word and memory address. Abo, during the second
operation, the second cache memory will store the
tranamitted cache data word and associated address
from the first cache memory.

Additionally, cach cache memory will be comprised
of a mxich and a data memory. The match memory will
be used to store the stored main memory addresses and
the data memory will be used to store the cache data
words. The match memory will perform a comparison
for each set of main memory address signals which the
processor scnds out and this memory will indicate a
match or a mismatch. When a match is found, the match
memory transmits an address to the dats memory so
that it can access and transmit the designated cache data
word. A content addressable memory can be used to
implement the match memory.

Further, cach cache memory has a priority circuit
which maintsins the priority of each cache dats word
with respect to when it was accessed within the first
cache memory. The priority maintsined by the priority
circuit is the time usage history of the cache data words.
The lowest priority cache data word is the least re-
cently used cache data word.

In a data processing system comprising a processor,
main memory and cache memory system having two
sections, one illustrative method accesses and updates

EX 1019 Page 228

[ety

4,458,310

3

the cache memory system by storing the cache data
words into the cache memory system with the first
section containing words which have a higher priority
than the words stored in the second section. When the
processor accesses a data word, each section is checked
to detect whether or not the desired word is contained
in that section. If the desired word is not contained in
any section, then the main memory will be accessed and
the desired word transmitted to the processor and the
first section. The accessed main memory word will be
used to replace the lowest priority cache data word of
the first section and this word will be designated as the
highest priority cache data word and the word which
had the second lowest priority will be designated as the
lowest priority cache data word. The former lowest
priority cache dats word will be transmitted to the
second section where it will replace the lowest priority
word of the second section and will become the highest
priority word of that section. The word which had the
second lowest priority in the second section will then be
designated as the lowest priority word.

If the requested word is detected as being in the sec-
ond section, then the word from the second section will
be transmitted to the processor and will be stored in the
first section as the higbest priority word of the first
section. The lowest priority word of the first section
will be transferred to the second section where it will
become the highest priority word of the second section.
The lowest priority word can be the least recently used
word, and the highest priority word can be the most
recently used word.

BRIEF DESCRIPTION OF THE DRAWING

The invention may be better understood from the
following detailed description when read with refer-
ence to the drawing in which:

FIG. 1 is a block diagram representation of & data
processing system embodying the present invention;

FIGS. 2 and 3 show in greater detail LRU circuit 105
of FIG. §;

FIG. 4 shows in greater detail the content address-
able memory of LRU circuit 104 of FIG. 1; and

FIG. 8 shows a table giving an example of the opera-
tion of the priority circuit of FIG. 3.

DETAILED DESCRIPTION

In a data processing system as illustrated in FIG. 1,
data and instruction words are stored in memory loca-
tions of main memory 102 and cache system 100. Pro-
cessor 101 reads these memory -locations by tra.qsmit-

_ ting an address via address bus 112 and control ‘signals
via control bus 113. The cache system 100 is comprised
of control sequencer 103, LRU circuits 104, 105 and
106, cache data memories 107, 108 and 109, and cache
data gating circuit 110. The LRU circuits and cache
data memorics are grouped into pairs, and each pair
represents a cache memory unit. For example, LRU
circuit 104 and cache data memory 107 comprise onc
cache memory unit.

The cache data words stored in the cache data memo-
ries arc organized into groups with each group contaio-
ing cache data words which were last read by processor
101 at a similar point in time. Each group 18 stored in
one of the cache data memories. For example, the most
recently- used ‘group. of -words-is stored in cache d:;a
memory 107, and the least recently used group of wo! 0;
is stored in cache data memory 109. As processor 1
performs read operations, cache data words may have

20

25

435

55

4]

65

4

to be transferred between cache data memories to main-
tain the time usage history of the memories. For exam-
ple, if it is necessary 1o read a word from main memory
102, this main memory word will replace the least re-
cently used cache data word of cache data memory 104;
and the replaced cache data word will be transferred to
cache data memory 108.

During a read operation, the address transmitted by
processor 101 is checked by LRU circuits 104, 105, and
106 to determine if the addressed word is contained
within cache data memorics 107, 108, or 109, respec-
tively.

For example, if LRU circit 104 determines that the
addressed word is contained within cache data memory
107, it tranamits the address of this word 10 cache data

-memory 107 via cable 131. Cache data memory 107

responds to this address by sccessing and transmitting
the desired word to cache data gating circuit 110. From
cache data gating circuit 110, the desired data word is
transmitted to processor 101 via data bus 111 If LRU
circuit 104 does not match the address being transmitted
by processor 101 via address bus 112, it transmits to
control sequencer 103 a “1” signal via conductor 114
which indicates a mismatch. The other LRU circuits
function in a similar manner.

In addition to checking if the associsted cache data
memory has the desired memory word, the LRU cir-
cuits maintain the priority of each word in the associ-
ated cache data memory. This priority information is
antomatically updated by the LRU circuit for each
access to the associated cache data memory and defines
which word in the cache memory is the least recently
used word.

The system’s operation is further illustrated by the
three following examples. In the first example, it is
assumed that the desired word is not present in the
cache system 100 and must be read from main memory
102. If the desired word is not in the cache system 100,
then all the LRU circuits will be transmitting 1™ sig-
nals via the match lines 114, 115 and 116. In response to
these signals, control sequencer 103 will access main

-memory 102 to obtain the desired word. Since the word

read from main memory 102 is the most recently used
word, it must be placed in cache dats memory 107, the
least recently used word from cache data memory 107
must be written into cache data memory 108, and the
least recently used word of cache data memory 108
must be written into cache data memory 109, The least
recently used word of cache data memory 109 no
longer exists in cache memory 100 at the completion of
the previous operations.

In the second example of the operation of cache sys-
tem 100, it is nssumed that the desired word is in cache
data memory 107. Since the desired word is in cache
leﬂ,ithnmmwmnwomh
smain memory 102 or to transfer 2 memory word from
cache data memory 107 to cache data memory 108.
Rather, LRU circuit 104 will simply update the priority
information stored internally to circuit 104 to properly
reflect the usage order of memory words in data mem-
ory 107.

In the third example, the desired memory word is
assumed to be in data memory 108. In this case, LRU
circuit 105 would match the address being transmitted
by processor 101 via address bus 112 and cause data
memory 108 to access and transmit the desired word to
data gating circuit 110. Control sequencer 103 would
then cause this desired data word to be transmitted by

EX 1019 Page 229

R —

4,458,310

5
data gating circuit 110 vis data bus 111 to processor 101.
Since this desired word is the most recently used word,
it must be written into data memory 107. The least
recently used word of data memory 107 must be written
into the memory location which had previously held
the desired memory word in data memory 108,

LRU circuit 105 is illustrated in FIGS. 2 and 3, and
LRU circuit 106 is similar in design. LRU circuit 104 is
illustrated in FIG. 4. FIG. 2 shows the circuit which is
used to check the address transmitted by processor 101
via address bus 112 to determine whether the desired
word is in cache data memory 108, and FIG. 3 gives the
details of the priority circuit which is used to keep track
of the least recently used word in cache data memory
108. When processor 101 reads s word, it first transmits
the CAGO signal and the clock signal via control bus
113 1o the control sequencer 103 ind processor 101
transmits the address via address bus 112, Control se-

103 responds to these signals and generates the

quencer P !
C signal and S signal which are transmitted via conduc- 20

tors 122 and 123 to the LRU circuits. Data selector 202
responds to the C signal on conductor 122 by selecting
the address bits being transmitted via address bus 112
and transmits these address bits via conductors 216

through 223 to the dats-in inputs of content addressable 25

memory (CAM) 201. The CAM contains four words,
each word having eight bits. The CAM responds to the
S input transmitted vis condoctor 123, and the address
bits being received on the data-in inpuls to

compare
these address bits with the contents of each of the four 30

words stored internally. If one of the four words
maiches the address bits, then a *1” will be transmitted
viz the sssociated coductor 212, 213, 214 or 215. i no
match is found, then a *1” is transmitted via conductor
236 and stored in fip-flop 206 at T1 time. If & match is
found, the state of the conductors 212 through 215 will
be stored in Intches 204 by the falling edge of the §
signal which is transmitted via conductor 123. Data
selector 208 will sclect the contents of latches 204

3s

which sre being transmitted via conductors 224 through 40

227 to be transmitted vin conductors 228 through 231
omublcﬂltomhcdahmemnrylﬂ.ﬂldwdl_n
memory 108 will respond to the address being transmit-

. ted via.cable 132 by accessing the desired word and

transmitting this word to data gating circuit 110, as 45

previously described. Asmmstwthcdwredwmd
was stored in dsta memory 108, this word now is the
mstrwmﬂyuedwordmdmmtbetrmfaredwdatq
memory 107 and the least recently used word of data

memory 107-must-be-transferred to_data memory 108 50

and the address of this word written into CAM’ML
FIG. 4 shows the circuit which is used-to.chéck the
uddrmmmmiﬂedbyprocmlﬂviu!dfirmbmln
to determine whether the desired wotdnmcu:he_d-h
menmylM,andﬂG.Sgivuthedauﬂsoﬂthty
drcuilwhichisuwdtokccpmkofthclmt.rwqm]y
medwordinuclucdanmcmorylu.'l‘hc.mmno(
FlG.lisidmlicnlinopcmﬁoan‘IG.thhﬂ}cex-
oepﬁonthatﬂGJdoanotbavcsd:hndwtornmﬂu

55

6
address from address bus 112 or from an LRU circuit
having higher priority, .as does the circuit- shown in
FIG. 2. This distinction will be illustrated more clearly
in the following example.

To illustrate the operations of the circuits shown in
FIG. 2 and FIG. 4, the previously described example 3
is used. Example 3 described the operations which must
take place when the desired word is in data memory
108;A-more-detailed-description of this example will
now VR by first describing T from the point of
view of LRU circuit 105, and then describing the corre-
sponding actions in LRU circuit 104. It is presumed that
the word 1 in data memory 108 and word 3 in data
memory 107 are the least recently used words. To per-
form these different operations, the controller se-
quencer 103 generates a variety of timing signals, the
wmost important of which are TO through T4. During
T0, the address bits on address bus 112 are selected
through data selector 202 and used to search CAM 281
for s match. Assuming that these address bits match the
contents of word 2 in CAM 201, a “1” will be transmit-
ted on conductor 213; conductors 212, 214, and 215 will
be conducting “0s”. This operation is done under con-
trol of the S signal transmitted via conductor 123 and
the C signal transmitted via conductor 122 to data selec-
tor 202. The information on conductors 212 through
215 is stored in latches 204 at the end of the S signal. In

. addition, the S signal also clocks the match output ter-

minal of CAM 201 into flip-flop 206. The output of
flip-flop 206 is the M2 signal which is transmitted to
control sequencer 103 via conductor 118.

During T1, data selector 203 responds to the M2
signal by selecting the ontput of Iatches 204 as an ad-
dress which is transmitted to CAM 201 via conductors
208 through 211, and data selector 205 responds to the
M2 signal by sclecting the output of latches 204 as an
address which is transmitted to data memory 108 via
cable 132, In response to the address on conductors 208
through 211, CAM 201 reads the contents of the second
word and transmits these contents to latches 207 in
which these contents are stored at the end of T1. Data
memory 108 reads the contents of its second word in
response to the address transmitted via cabie 132, These
contents arc stored internal to data memory 108 and
transmitted to data gating circuit 110. During T1, LRU
gircuit 104 sccesscs the address of the least recently
used word and transmits this via cable 117 to LRU
circuit 105, and data memory 107 accesses the least
recently msed word and tranxmits this via cable 140 to
data memory 108, as will be described later. The ad-
dress from LRU circuit 104 must be written into CAM
201 and the corresponding data word written into data
memory 108. During T2, data sclector 203 will again
select the output of latches 204 which contain the ad-
dress for word 2 to be uscd as an address for CAM 201.
The least recently used address word from LRU circuit
mwﬂlbestomdinwordz.l)uﬁng'l‘l,controlse-
quencer 103 will transmit the W signal viz conductor

to data selector 202 of FIG. 2, and includes priority ¢0 124 and the RPL2 signal via conductor 120 which

circuit 444. Priority circuit 444 is identical in design 10
the priority circuit described with refcrcace to t*t?Gth;
The reason why o data selector is needed is that ‘te
circuit of FIG. 4 always \ﬂn‘s‘: the address being transmit-
ted via address bus 112. circuit of FIG s

need a data selector because this cn:cmt is associated
with the most recently used words 1 cache mem(t)‘xz
100, hence, does not have to decide whether to use

t of FIG. 4 does not 65

causes CAM 201 to write the information present at the
;1:; :::x; :ermmail ina s intr: word 2. At the same time, the
1 y word of data memory 107 is written
nto word 2 of data memory 108 with ﬁ address being
supplied by the output of Iatches 204 via data selector
205 and cable 132. As will be described later, the prior-
ity u:lnrcml shown in FIG. 3 must be updated during T3
to reflect the fact that word 2 is now the most recently

EX 1019 Page 230

4,458,310

7

;;s?:s:tvord in LRU circuit 105. During T4, fip-flop 206

.Ex_nmple 3 .is now described with respect to LRU
circuit 104 with reference to FIG. 4. During T9, a
search is performed of CAM 401, however, since no
match is found, the match output terminal is a “0»
which is stored in flip-flop 406, and no M1 signal is
transmitted 1o control sequencer 103.

During T1, since there is no M1 signal, CAM 401 is
addressed by the address from the priority circuit 444
with an address which is transmitted to the ADDRESS
IN terminals of CAM 401 via conductors 432 through
435, data sejector 403 and conductors 408 through 411.
This address bit is the address.of the least recently used
word of CAM 401 and data memory 107. Also, during
T1, dats memory 107 is addressed by the outputs of the
priority circuit 444 via data selector 405 and cable 131,
At the end of T1, the output data of CAM 401 is
clocked into latches 487. The contents of latches 407 are
transmitted via cable 117 to LRU circuit 105.

During T2 control sequencer 103 transmits the PRL1
and W signals to LRU circuit 104 and data memory 107
via conductors 119 and 124, respectively. In response to
these signals, the contents of address bis 112 are written
into the location of the lesst recently used word as
determined by the bits on conductors 432 through 435
in CAM 401. At the same time, the word present on
dats bus 111 is written into data memory 107 at the
address transmitted vis cable 131 -

During T3, the priority circuit 444 must be updated.
Note, that during this example, it was not necessary to
change any information connected with LRU circuit
106 or dats memory 109.

Another previous example to be considered is exam-
ple 1 where the desired word is not contained within
data memaries 107 through 109 and must be read from
main memory 102. For this example, none of the LRU
circuits will find & match during time T0, and at the end
of time TO, control 103 will access main
memory 102 to obtain the desired word. Control se-
quencer 103 accesses main memory 102 by transmitting
the main memory read signal via conductor 125. When
msin memory 102 has accessed the desired word, it
responds by transmitting the main memory ready signal
via conductor 126 and placing the desired memory
word on data bus 111. Control sequencer 103 is respon-
sive to the main memory ready signal to generate the
cache data ready signal which informs processor 101
that the data is available on data bus 111 and to execute
the following steps to update the LRU circuits and the
data memorics.

After receipt of the main memory ready signal, the
control sequencer 103 transmits the T1 signal. The re-
sults of the transmission of the T1 signal are first de-
scribed with reference to FIG. 2, since no m.at?h was
found, the M2 signal is not being transmitted via con-
ductor 115, data selector 203 sclects the address of the
least recently used word which is transmitted via con-
ductors 232 through 235 from the priority circuit of
FIG. 3 to perform a read on CAM 201 ;Ebcmrud
out of CAM 2015 the address of the least recently used
data word which is stored in data memory 108. At the
same time, & read is performed on data memory 108
based on the address being transmitted via cable 132,
which, again, is the address of the least recently used
word. At the end of T1, the address of the least recently
used word is clocked into latches 207 and the data being
accessed from dats memory 108 is similarly clocked

8
into a similar set of laiches in data memory 1.58. The
same type of operation is being performed in LRU
circuits 104 and 106 and data memory 107 and data
memory 109. . . .
During T2, the addresses being transmitted via cable
117 from LRU circuit 104 is written into CAM 201 xt

. “the address of the lcast recently used word as defined by

»

35

40

50

-60

65

the address fransmitted via conductors 232 through 235
from the priority circuit of FIG. 3. Similarly, the data
which had been accessed from data memory 187 is
written into data memory 108.

With respect to LRU circuit 104, the address on ad-
dress bus 112 is written into the location in CAM 401
which is addressed by information transmitted via con-
ductors 432 through 438 from priority circuit 444 which
designates the least recently used word address. The
dats which is present on data bus 111 is written into the
least recently used word of data memory 107 at the
address of the Jeast recently used word. Similar opera-
tions take place in LRU circuit 106 and data memory
108. During T3, the priority circuits of LRU circuits
104, 108, and 106 must be updated to reflect the fact that
the previously lcast recently used words are now the
most recently nsed words.

To illustrate the operation of the priority circuit
shown in FIG. 3, reference is made to example 3 which
described the operations when the desired word is con-
tained in data memory 108. The operation of the prior-
ity circuit of FIG. 3 is similar in operation to priority
circnit 444 of FIG. 4 and the priority circuit of LRU
circuit 106. In the previcus example, the least recently
used word was word 1 in data memory 108 and the
corresponding address in CAM location 1 of LRU cir-
cuit 105. During the match operation which took place
during time T0, word 2 of CAM 201 was found to con-
tain the address which processor 101 was attempting to
read. During time T3, the priority circuit shown in
FIG. 5 must be updated to reflect the fact that word 2
is now the most recently used word. However, word 1
still remains the least recently used word. Flip-flops 322
through 327 are used to maintain the priority of the
words contained in CAM 201 and datx memory 108
with respect to the usage order. NOR gates 328 through
331 decode the information contained in flip-flops 322
through 327 30 as to indicate which word is the least
recently used word. For example, if NOR gate 328 is
transmitting a *1” via conductor 232, this indicates that
word 0 is the least recently used word. OR gates 309
through 315 and AND gates 316 through 321 are used
to determine which flip-flops 322 through 327 should be
modified during an updaic operation on the priority
circuit. Table I defines the significance of one of these
flip-flops being set. For example, if flip-flop 322 is set,
then flip-flop 322 will transmit the MO1 signal as & “1”
to NOR gate 328 via conductor 301. The significance of
the flip-flop 322 being set is that word § has been used
‘more recently than word 1.

TABLE I
Defines
Signal Word
Flipflop Tramsmitted used more
Set by Flip-flop recently than ‘Word
n Mo1 o T
323 MO2 o 2
324 M03 a 3
325 Mi2 i 2
326 M13 1 3

EX 1019 Page 231

t

4,458,310

9
TABLE I-continued
Defines _
Sigmal Word
Flipflop Tranemitted wed more
Set by Flip-flop recently then Word 5
wm M23 2 3

The functions performed by NOR gates 328 through
331 are defined by Table 2.
TABLE 2
SO = MOT - MOz - M)
S1 = MO1 - M12 - M13

S2 = MOQ - M12 - M23
S§3 = MD3 - M13 - M23

10

15

By convention, if a “1” is transmitted via conductor
232, this is defined to mean that the SO signal is being
transmitted. If flip-flop 322 is set, then the value in
Table 2 for M01 is a “1”, and the valoe for M01 is a “0”; 20
and if flip-flop 322 is reset, then the value for M01 is a
“0” and the value for M01 is a “1”. For example, if
flip-flops 322, 323 and 324 are resct, then the SO signal is
transmitted via conductor 232.

The operations of OR gates 309 through 315 and 25
AND gates 316 through 321 at update time is defined by
Table 3,

TABLE 3

- itacd Flin 1) Fio D »
via conductor which which
at update time are set are resct

ns n, 123, 324

2297 325, 326 n

30 K127 3, 328

3 324, 326, 327 35

Update time occurs at time T3 when the RPL2 signal
is being transmitted via conductor 120 from coatrol
sequencer 103. T3 and RPL2 and ANDed together by
AND gate 308 which enables the OR gates 309 through 40
315 and AND gates 316 through 321. For example, if a
“1” is being transmitted via conductor 231 during the
update time, then flip-flops 324, 326 and 327 will be
reset. A “1” being transmitted via conductor 231 indi-
cates that word 3 is now the most recently used word, 45
hence, by Table 1, flip-flops 324, 326 and 327 cannot be
sct becavse they indicate that word 8, word 1 and word
2, respectively, have becn more recently accessed than
word 3.

To more clearly illustrate the operations of the circuit 50
shown on FIG. 3, the previous example of word 2 being
matched during the operation at time TO will now be
described with respect to FIG. 5. Line 501 shows the
initial state of the flip-flops 322 through 327. When
word 2 is determined to contain the desired word, the s5
contents of word 2 are accessed in both CAM 201 and
data memory 108 and transmitted and stored within
LRU circuit 104 snd data memory 107. The least re-
cently used words from LRU circuit 104 and dats mem-
orylMurcumminedhoLRUcirmit 105 and data 60
memorylmandmnoredinwmdlofuchorch
memorics. After this information has been stored in
wordz.thcnwordzisgbemostmomﬂyuscdworfimd
flip-flops 322 through 327 must be vpdated accordingly.
Since word 2 was the selected word, data selector 205 65
of FIG. 2 is transmitting & “1” via conductor 230. OR
gates 309 through 315 and AND pu:_316 through 321
respond to the “1” being transmitted via conductor 230

10

to set flip-flops 327 and reset flip-flops 323 and 3285. This
is shown on line 502 of FIG. 5. Note, that the least
recently used word is still word 1 in line 502. If, in the
next search operation, the desired word is word 3, the
flip-flops 322 through 327 will be updated during time
T3 to reflect the states shown in line 503. If, on the next
search operation, word 1 is found to contain the desired
information, then the flip-flops 322 through 327 will be
updated to reflect the state shown in line 504. Note, that
the least recently used word is now word 0 which has
not been accessed in the last three operations during
which words 2, 3 and 1 were both accessed.

1t is to be understood that the above-described em-
bodiment is merely illustrative of the principles of the
invention and that other arrangements may be devised
by those skilled in the art without departing from the
spirit and scope of the invention.

What is claimed is:

1. A data processing system comprising:

& processor means for generating main memory ad-

dress signals;

a main memory having a plurality of memory loca-

tions for storing main memory words;

a cache control means;

first and second cache memories each having a plu-

rality of memory locations for storing main mem-
ory addresses and corresponding cache data words
in a priority order, and each responsive to main
memory address signals which mismatch all of the
main addresses stored therein to generate
and transmit a mismatch signal to said cache con-
trol means;

said cache control means responsive to concurrent

generation of said mismatch signals by said first and
second cache memories to generate and transmit a
first control signal to said main memory and said
first and second cache memories;

said main memory responsive to said first control

signal and said mismatched main memory address
signals to access and transmit a main memory word
to said first cache memory;

said first cache memory responsive to said first con-

trol signal to transmit the lowest priority cache

~ data word and its corresponding stored main mem-
ory address to said second cache memory, and to
store said transmitted main memory word and said
main memory address signals; and

said second cache memory responsive to said first

control signal to store the transmitted lowest prior-
ity cache data word and its corresponding main
memory address.

2. A data processing system in accordance with claim
1 wherein said second cache memory is further respon-
sive to main memory address signals which match a
main memory address stored therein to generate and
transmit a match signal to said cache control means;

said cache control means is further responsive to a

mismatch signal from said first cache memory and
said match signal from said second cache memory
to generate and transmit a second control signal to
said first and second cache memories;

said first cache memory responsive to said second

control signal to transmit the lowest priority cache
data word and its corresponding stored main mem-
ory address to said second cache memory; and
said second cache memory responsive to said second
control signal to store said lowest priority cache

EX 1019 Page 232

4,458,310

11
data word and said corresponding stored main
memory address iransmitted in response to said
second control signal from said first cache memory
in the cache memory locations associated with the
- stored main memory address which matched said
main mémory address signals.
3. A data processing system in accordance with claim
2 wherein said second cache memory is further respon-
sive to said second control signal to transmit said
matched main memory address and its corresponding
cache data word to said first cache memory; and
said first cache memory further comprises means
responsive to said second control signal to store
said matched stored maxin memory address and said

10

corresponding cache data word in the cache mem- 15

ory locations of said transmitted corresponding
main memory address and said transmitted lowest
priority cache data word of said first cache mem-
ory, respectively.
4. A date processing system in accordance with claim
1 wherein said first cache memory is further responsive
to said first control signal to store said main memory
word and said mismatched main memory address sig-
nnlsmth:cu:hememory locations of said transmitted
lowest priority cache data word and said transmitted
corresponding stored main memory address in said first
cache memory.
5. A data processing system in accordance with claim
1 wherein said second cache memory is further respon-
sive to said first control signal to store said transmitted
fowest priority cache data word and said transmitted
corresponding stored main memory address from said
first cache memory in the cache memory locations of
the lowest priority cache data word and corresponding
stored main memory address of said second cache mem-
ory, respectively.
6. A data processing system in accordance with claim
2 wherein said second cache memory further comprises

35

a match memory having & plurality of memory loca- 4

tions for storing said stored main addresses and a data
memory having a plurality of memory locations for
storing said cache data words;
said match memory is responsive to said matched
main memory sddress signals to transmit said
match signal and to generate and transmit a cache
memory address of the memory location whose
contents matched said matched main memory ad-
dress signals to said data memory, and responsive
to said mismatched main memory address signals to
generate and transmit said mismatch signal; and
said data memory is responsive to said cache memory
address 1o access and transmit ssid corresponding
cache data word.
7. A data processing system in accordance with claim
6 wherein said match memory is comprised of a content
addressable memory.
8. A data processing system in accordance with claim
6 wherein each of said first and second cache memories
further compriscs & priority means for determining the
least recently used cache data word which is the lowest
priority cache data word.
9. A datz processing system in accordance with claim
8 wherein each of said priority means is further adapted
for generating the sddress of the least recently used data
word.
10. A data processing system in accordance with
claim 9 wherein said priority means of said first cache

45

0

5S

60

65

12
memory further comprises & storage means and a logic
means; and

said logic means responsive to contents of said stor-

age means and said cache memory address to gen-
erate and store information defining the accessed
order of said cache data words of said first cache
memory in said storage means.

11. In & data processing system having a processor for
generating main memory address signals, a main mem-
ory for storing main memory words, first and second
cache memories for storing main memory sddresses and
corresponding cache data words and for matching a
stored main memory address word with the main mem-
ory sddress signals, and a cache control for controlling
said first and second cache memories, a method of ac-
cumngmdachememorumdmdmnnmmy,

comprising the steps of:
storing a set of said cache data words and corre-
sponding main memory address words having a
hxgherpnontythtnuo(bersctofmdclcbedau
words and corresponding main memory address
words in said first cache memory;

stmngmdotbcrsctofnldcachcdauwordsmd
corresponding main memory address words in said
second cache memory;

detecting main memory address signals which mis-

match all of main memory address words stored in
said first and second cache memories;
reading from said main memory, thc main memory
word addressed by the mismatched main memory
address signals;

tnmfemngmdmnmmemo:ywrdtomdpmces—
sor and said first cache memory;

storing said main memory word and ssid mismatched

mnnmemorylddmsngmlsmun:l first cache

umsmhﬁngthe lowest priority cache data word of
said first cache memory to said second cache mem-

ory;
rephmgmdlowatpnnntywbcdahwmdofm
first cache memory with said main memory data

word;
identifying within said first cache memory said main
memory data word as the highest priority cache
date word and another cache data word as the
lowest priority cache data word; and

storing said transmitted ‘cache date word from said

first cache memory in said second cache memory.

12. The invention of claim 11 wherein said transmit-
ting step comprises the steps of:

replacing the lowest priority cache data word of said

second cache memory with said transmitted cache
data word; and

identifying within said second cache memory said

transmitted cache data word as the highest priority
and another cache data word ss the lowest priority
cache dats word.

13. Inadmproemnguyﬂzmhavmg lpmcmorfor
generating main memory address signals, a main mem-
ory for utormg main memory words, first and second
cache memories for storing main memory addresses and
corresponding cache data words and for matching the
stored main memory addresses with the main memory
address signals, and a cache control for controlling said
first and second cache memories, a method of accessing
said cache memories and said main memory;

comprising the steps of:

EX 1019 Page 233

4,458,310

13

storing a sct of aaid cache data words and corre-
sponding main memory addresses having a higher
priority than another sct of said cache data words
and corresponding main memory addresses in said
first cache memory;

storing said other set of said cache data words and
corresponding main memory words in said second
cache memory;

detecting main memory address signals which match
one of the stored main memory addresses in said
second cache memory;

transferring the cache data word corresponding to
the matched one of said stored main memory ad-
dresses from said second cache memory to said
processor and ssid first cache memory; and

storing said transferred cache dats word from said
second cache memory in said first cache memory.

14. The invention of claim 13 wherein said storing of

said transferred cache data word step comprises the
steps of:

transmitting the lowest priority cache data word of

uidﬁntachemcmmywuidmdcachzmm-

5

10

15

20

14
and another cache data word as the lowest priority
cache data word.
15. The invention of claim 14 wherein said transmit-
ting step comprises the steps of:
replacing the Jowest priority cache data word of said
second cache memory with said transmitted cache
data word from said first cache memory; and

identifying within said second cache memory said
transmitted cache dats word from said first cache
memory as the highest priority cache datz word
and another cache data word as the lowest priority
cache dsata word.

16. The invention of claims 11 or 14 wherein said
fowest priority cache data word of said first cache
memory comprises a least recently used cache data
word of said first cache memory and said transmitting
step comprises the step of transmitting said least re-
cently used cache data word of aaid first cache memory;
and

said replacing step comprises the step of replacing

said least recently used cache data word of ssid
first cache memory.

17. The invention of claim 14 wherein said highest
priority cache data word from said cache memory com-

NPWBMWPMYMMMMMW 25 priscs 2 most recently used cache data word and said
fit cache memory with said transferred cache step of transferring comprises the step of transferring
data word from said second cache memory; and said most recently used cache data word; and

identifying within said first cache memory said trans-
ferred cache data word from said second cache
memory as the highest priority cache data word

30

35

45

53

said step of replacing comprises the step of replacing
with said most recently used cache data word.
s * & & 2 -

EX 1019 Page 234

EX 1019 Page 235

.United States Patent [
Carter et al.

US006003123A

{11 Patent Number:
{45] Date of Patent:

6,003,123
Dec. 14, 1999

[54] MEMORY SYSTEM WITH GLOBAL
ADDRESS TRANSLATION

[75] Inventors: Nichelas P. Carter, Somerville;
Stephen W. Keckler, Cambridge;
William J. Dally, Framingham, all of
Mass.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

[21] Appl. No.: 09/021,658
[22] Filed: Feb. 10, 1998
Related U.S. Application Data

[62] Division of application No. 08/314,013, Sep. 28, 1994, Pat.

No. 5,845,331.
[51] Int.CLS GOGF 12/10
[52] US.Ch ... 711/207; 7117207
[58] Field of Search . .. T11/147, 202,

711/203, 206, 207, 209

561 References Cited
U.S. PATENT DOCUMENTS

4,241,396 12/1980 Mitchell et al.
4,408,274 10/1983 Wheatley et al.
5,075,842 12/1991 Lai ..
5,251,308 10/1993 Frank .
5,404,478 4/1995 Arai et al.
5,465,337 11/1995 Kong

OTHER PUBLICATIONS

Carter, Nicholas P, et al., “Hardwarc Support For Fast
Capability-based Addressing,” Proceedings of the 6th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS VI) ,
Oct. 5-7, 1994, pp. 1-9.

... 364200

364/200
395/479
395/425
395/416
-.. 395/417

Tyner, Paul, “APX 432 General Data Processor Architecture
Reference Manual, Chapter 3, Objects for Program Envi-
ronments,” Intel Corporation, Jan. 1981, pp. 3-1 to 3-37.

Fabry, R.S., “Capability-Based Addressing,” Fourth ACM
Symposium on Operating Systems Principles, IBM Thomas

J. Watson Research Center, Yorktown Heights, NY,

15-17, 1973, pp. 413-412.

October

Dally, William J. et al., “An Object Oriented Architecture,
"IEEE, 0149-7111/85/0000/0154, 1985, pp. 154-161.

Goodman, James R. et al., “The Wisconsin Multicube: A
New Large Scale Cache—~Coherent Multiprocessor,” IEEE,

CH2545~2/88/0000/0422, 1988, pp. 422—431.

Dally, William J, et al., “M-Machine Architecture v1.0 MIT
Concurrent VLSI Architecture Memo 58,” Massachusetts
Institute of Technology, Artificial Intelligence Laboratory,

Aug. 24, 1994, pp. 1-50.

Primary Examiner—Eddie P. Chan
Assistant Examiner—Kevin Verbrugge

Attorney, Agent, or Firm—Hamilton, Brook, Smith &
Reynolds, P.C.
571 ABSTRACT

A multiprocessor system having shared memory uses
guarded pointers to identify protected segments of memory
and permitted access to a location specified by the guarded
pointer. Modification of pointers is restricted by the hard-
ware system to limit access to memory segments and to limit

operations which can be performed within the

memory

segments. Global address translation is based on grouping of
pages which may be stored across multiple nodes. The page
groups are identified in the global translation of each node
and, with the virtual address, identify a node in which data
is stored. Pages arc subdivided into blocks and block status
flags are stored for each page. The block status flags indicate
whether a memory location may be read or writien into at a
particular node and indicate to a2 home node whether a

remote node has written new data into a location.

12 Claims, 17 Drawing Sheets

Valid
Bit Virtual Page
First 5 bits 42 bits 16 bifs
Word Unused Starting Node
Pages
Per
Unused Node
Second 23 bits | 6bits | 6bifs [Z[Y[X
Word
Page Ex'r_ent
Length (3 bits/
Dimension)

e s < b b b 5 b i, o e S o e % s

EX 1019 Page 236

.U.S. Patent Dec. 14,1999 Sheet 1 of 17 6,003,123
Pointer Segment ‘
Tag Length{L) Address 3
[1T abits | ebits | 54 bits | %
Permission : |
Bits i f !
| 54-Lbits! Lbits | :
Segment Offset
0000 {0000 ;
000!
0010
00! |
0100
010l
010
ol . :
1000 10i00 1{000
1001 .
1010 oo | N N R e
1011 o6~ o110 IR I HIoTY
1100
110t
o
i
L=0 L=1 L=2 L=3 L=4

EX 1019 Page 237

.U.S. Patent

Dec. 14,1999 Sheet 2 of 17
20
Begin Memory V
Reference
o0 /24

Pointer Bit NO Raise
Set on Input >———w» ,
Addressp ? Exception

Yes
Compare Opcodel—26
and
Permission Bits
30
28
Operation Raise
Allowed? Exception
Perform Address| 32
Computation if
Needed
Check for | 34
Segmentation
Violation
36 28
Segmentation._ Yes Raise
Violation 2 Exception

to Memory

) 40
Submit Referencel/

FIG.

2A

6,003,123

EX 1019 Page 238

.U.S. Patent Dec. 14,1999 Sheet 3 of 17 6,003,123

Permission Segment 48
Bits Length Address offset /
poimer/l 4bits | 6 bits sabits || eabits |
i N
46 50
44 Se |
/ \ |
Permissi s 1 |
®Check | " Check. §
l |
Allowed [abits | ebits | 54 bits | valid
New i
Pointer 54 :
i
FIG. 2B |

i) o .

EX 1019 Page 239

.U.S. Patent Dec. 14,1999 Sheet 4 of 17 6,003,123
Guarded Mask
uarde ‘
Pointer M
4 6 58
> 54 4
Zs 1 60
Add/ress /
5"‘ fader Masked —=violation ?
> Comparator !
Offset (54-bit
>4 L—= Result Address
56

masked Comparator

Original Pointer

Bit Cells (59)

g~

Adder Result

Violation ?

Bif Mask

D\sa \
F

e

60

2
\D/Ge 68
FIG. 4

EX 1019 Page 240

[

U.S. Patent Dec. 14, 1999 Sheet 5 of 17 6,003,123

Bit I\ldisk /62

Adder Result i Q———Iliegoliy Changed Bit ?
Original Address

66
64

FIG. &

A

1P1
ENTER2
DATA1
DATAZ2

8 §

1P2 Protected
Program RETIP Subsystem

1] DATAI 2]

DATA2 CODE
CODE cC &

IP2
GP1
RETIP GP2

GP1
GP2

D §

IP1

FIG. 6

EX 1019 Page 241

U.S. Patent Dec. 14,1999 Sheet 6 of 17 6,003,123

A
1P1
ENTER2
DATA1L
DATA2
ENTER3
R/W
Program B ¥
1] IP1
ENTER2
(’l
CODE Protected
ENTER3 Subsystem
B 2|
C
Retfurn P2 __/ CODE
Segment 6Pl
3] GP2 GPL
CODE Sl
ENTER3
DATAL
DATA2
N~ RETIP D &
IP3

EX 1019 Page 242

U.S. Patent Dec. 14, 1999 Sheet 7 of 17 6,003,123
External — 71
Memory
P T T 7T T Memory Interface Bus _}
! —1 {
P F 33 |
| 1
| i
| Cache Cache Iﬁrlzfe[??ége Cache Cache |- 7©
g Bank O Bank 1 Bank 2 Bank 3 {
| LTLB ;
I i
| Vo2 { .
! M-Switch 73
! |
! i
[1 i
} C- Switch 75
| 1 |
] |
N |
I
| !
| 1
| | ClusterO Cluster 1 Cluster 2 Cluster 3 —7‘59
]
! |
, i i i i j }
i]
Network Network]
{ GTLE Output | Ioput AP chi {
Y A— /NN PR —— [3 .,X‘_.'.‘,"_.P_c_‘ﬁl
79 77 * [8!
Network

EX 1019 Page 243

U.S. Patent

First
Word

Second
Word

Third
Word

Valid
Bit

Dec. 14,1999 Sheet 8 of 17

Virtual Page

6,003,123

1 bit 42 bits

20 bits

Lock

Physical Page

64 bits

Status Bits
(Bit /block)

64 bits

Status Bits
(Bit /block)

FIG. 9

EX 1019 Page 244

S I T T SEITIRT Y L AT TR Y PPERTIUREI U L L AR ST b NN T A NN A e L e nmeatt w

8l
Local Page Table /

Iualgd .S Qn-

Status bits
copied on
79 LTLB miss
Copy status LTLB /
27 when block =
enters cache g
\Cache = {
/ Status bits g
‘ copied on 8
LTLB entry
eviction
/, T gfpdfcfe %
atus g
henline A ! X o l
Tag Dataf W0
k evicted yirtual Physical Status g
Status Page ID Translation Bits
_ X
Virtual Physical Status
. Page ID Translation Bits g
FIG. IO g
[SY
o
LIS

EX 1019 Page 245

U.S. Patent

Virtual Address
7~

Block
Select
Bits

Dec. 14,1999 Sheet 10 of 17 6,003,123
§
|
H
i
|
Tl ;
|
LTLB ;
42
Physical | Biock S’rctusL Block Status
Translation| bit Word 0 /' 64 64 4 bit Word |
7 o
7
! pul 7[3\ /
s ! 75
4 P
F'G | l Block Status Bits ‘
. for Translated Address i

EX 1019 Page 246

rﬁ-lp» . I

U.S. Patent

Dec. 14,1999 Sheet 12 of 17 6,003,123
Valid
_ Bit Virtual Page
@'gf; 5 bits 42 bits 6 bits
Unused Starting Node
Pages
Per
Second Unused Node
Word 43 bits 6 bits | 6bits |Z|Y | X
Page Extent
Length (3 bits/
Dimension)

FIG. 13

EX 1019 Page 247

RAALCARARIEE R N

ML e

1 SR B UL P

BRSO i 2 e ST Ly s T

PR

U.S. Patent

Dec. 14,1999 Sheet 13 of 17
—102
Start
Translation
106
104
NoO Signal
Miss
Yes
Mask off L —108
Pages/Node in

virtual Address

Extract
X-0ffset from
Vvirtual Address

{10

Extract
Y-0Offset from
virtual Address

112

:

Extract

Z-Offset from
virtual Address

114

l

Add Offsets o

116

Start Node to get
Node Containing
virtual Address

FIG. 14A

6,003,123

EX 1019 Page 248

[NPATORR

PR VA

Q-

R

%

U.S. Patent Dec. 14,1999 Sheet 14 of 17 6,003,123

Page Identifier Offset
virtual Address | 42 bits 12 bits

Page Identifier Page Length
| a2 bits [6bits |6TLS Entry

126

24 — —— Hit

Bit Mask Generator Masked Comparator

FIG. 14B

EX 1019 Page 249

RTE L = > R

o O R TR . e R N IEA

RPN

PN N

Rt aR AR e, LT

BT

» soann Ry -

ERAES L I

RSP 2C L SA N

U.S. Patent Dec. 14,1999 Sheet 15 of 17 6,003,123

log log sub-cube
pages dimensions
basenode pernode Z Y X
e e P
23 V2 o | 4

L

GTLB Eniry

2121

T
e T~ "‘“ PCI e

[denm‘lere o le O101 | o fset

{115] W

18

6|4| 1
DESTINATION NODE

FIG. ISA

<6.4,{>

NN

ADDRESS
(54 bits)

N\
NI

4

Lo -

/a

c

<3,2,0>

FIG. I15B

EX 1019 Page 250

mmwmﬁmggWWWﬂ A A T NS

2 o,

o *

U.S. Patent Dec. 14, 1999 Sheet 16 of 17

6,003,123
120
Input Address o Fully - Associative
SRAM Array
Hit
L
)
)
X-Offset 28
oz
g
Bit-Field ————

18 s (18

X-Dest Y-Dest Z-Dest

FIG. 16

Extractor

U

Y-0Offset

Z-Offset

\

122

EX 1019 Page 251

U.S. Patent Dec. 14,1999 Sheet 17 of 17 6,003,123

128
/[
start
Reference
132
Raise
Exception
140
Yes 134 136 /
cache™ X _Yes Pas Yes| complete
. Block Statu
; Hit? Check ? Reference
: 150 NO 140 No
: it in LTLB Blogk is\?t 138
b ock Status
i Lorcéchggge Hit ? Exception
§ No Yes 152 Yes 144
Pas N Raise |48
1 Update Block Statug>—»| Block Status
; LTLB check ? Exception
Yes
154 46
Complete | !
. Yes | Reference
§
L Complete | 158
Gl Reference
Table ? Remotely
NO
Raise |60
Exception
—

EX 1019 Page 252

3w e

R et

[T

AL e Tererbgen 0 e g s

i
:
|

T

W T, A A T

6,003,123

1

MEMORY SYSTEM WITH GLOBAL
ADDRESS TRANSLATION

RELATED APPLICATION

This application is a divisional of Ser. No. 08/314,013,
filed Sep. 28, 1994, now U.S. Pat. No. 5,845331, Dec. 1,
1998 the entire teachings of which are incorporated herein
by reference.

GOVERNMENT SUPPORT

The invention was supported, in whole or in part, by 2
grant Contract No. F19628-92-C-0045 from the Air Force
Electronic Systems Division. The Government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

In most computer systems, individual programs access
code and data by addressing memory through a virtual
address space. That virtual address space for cach program
must then be trapslated into the physical address space in
which the code and data is actually stored in memory. Thus,
distinct programs may use identical virtual addresses which
translate to different locations in physical memory. The
physical address space utilized by several programs may be
completely distinct or they may overlap. Some level of
security must be provided in order to permit common access
to certain memory locations while protecting against unau-
thorized access to other locations.

Memory system designers must provide security without
sacrificing efficiency and flexibility. One process’ objects
must be protected from modification by other, unauthorized
processes, and user programs must not be allowed to affect
the execution of trusted system programs. It must be pos-
sible to share data between processes in a manner that
restricts data access to authorized processcs; merely provid-
ing the ability to have data be private to a process or
accessible to all processes is insufficient. An efficient mecha-
nism must also be provided to change protection domains
(the set of objects that can be referenced) when entering a
subsystem.

The current trend towands the use of multithreading as a
method of increasing the utilization of exccution units make
traditional security schemes undesirable, particularly if con-
text switches may occur on a cycle-bycycle basis. Tradi-
tional security systems have a non-zero context switch time
as loadmg the protection domain for the new context may
require msmlhng new address translations or protection
table entries.

A pumber of multithreaded systems such as Alewife
(Agarwal, A., et al., “The MIT Alewife machine: A large-
scale distributed-memory mutiprocessor,” Scalable Shared
M. Multi) s, Kluwer Academic Publishers,
1991.), and Tera (Alverson, R., et al., “The tera computer
system,” Proceedings of the 1990 International Confe e
on Supercomputing, September, 1990, ACM SIGPLAN
Computer Architecture News, pp 1-6) have avoided this
problem by requiring that all threads which are simulta-
neously loaded share the same address space and protection
domain. This may be sufficient for execution of threads from
a single user program, but disallows interleaving threads
from different protection domains, which may restrict the
performance of the machine.

SUMMARY OF THE INVENTION

The present invention relates to several aspects of a
memory system which may be used independently or

10

15

45

55

(Y]

&5

2

together. The invention is particularly applicable in 2 virtual
addressing, multiprocessor environment which requires
sharing of data among multiple tasks across multiple nodes.

In accordance with one aspect of the invention, a data
processing system comprises shared memory for storing
instructions and data for plural programs, the shared
memory being accessed in response 1o pointers. Guarded
pointers address memory locations to which access is
restricted. Each guarded pointer is a processor word which
fully identifies a protected segment in memory and an
address within the protected segment. Processor hardware
distinguishes guarded pointers from other words and is
operable under program control to modify guarded pointers.
Modification of guarded pointers is restricted so that only
addresses within the identified scgment can be created.
Thus, access outside of a protected segment is prevented. A
permission ficld in the guarded pointer indicates permissible
access to the identified memory segment such as read only
or read/write. By providing the full virtual address, segment
information, and 2 permission field, scgment checks and
permission checks can be performed during a memory
access without requiring additional machine cycles.

Preferably, each guarded pointer comprises a length field
and an address field. The value in the Iength field indicates
a division of the address field into a scgment subficld which
identifies a segment location and an offset subfield which
identifies an offset within an identified segment. The value
in the length field is preferably logarithmically encoded
using a base 2 logarithm. A tag ficld may be provided to
identify the word as a guarded pointer, and the pointer must
be so identified if it is to be used to access a memory
Jocation. By limiting the ability to sect the flag bit and to
freely modify addresses in pointers to the operating system,
the creation of forged pointers by application programs to
gain access to protected segments is avoided.

The processor hardware may be operable to generate a
second guarded pointer from a first guarded pointer, the
second guarded pointer identifying 2 subscgment within the
segment identified by the first guarded pointer. To that end,
the processor changes a value in the leogth ficld to decrease
the number of bits in the offset subficld and to increase the
pumber of bits in the segment subficld. The result is
decreased offset range and finer segment location resolution
within the original segment. However, the segment can not
be enlarged by an application program.

The processor hardware may also be operable to gencrate
a second guarded pointer from a first guarded pointer by
performing an arithmetic operation on the offset. The pro-
cessor hardware checks the second guarded pointer for over
or underflow by detecting a change in value in the segment
subficld. The hardware may also modify the permission field
of a guarded pointer to generate a pointer having only more
restricted access to the indicated scgment. For example, a
program baving permission to read/write may create a
pointer to the same memory segment with permission only
to read.

ENTER guarded pointers may be restricted for processing
by the processor hardware to only jump to the identified
address within the protected segment and to execute. Such
pointers allow access to code beginning at the pointer
address but prevent bypass of portions of the code and
prevent changing or copying of the code. Otber preferred
pointer types are read-only pointers, read/write pointers,
execute pointers and key pointers. Key pointers may not be
modified or used for data access.

In accordance with another aspect of the invention, a
method is provided for global addressing acros$ plural

EX 1019 Page 253

D 5L MY

——

SIS, 2 ¥t SR SN P AV e ¢ % DR

G

6,003,123

3

processor nodes. A virfual address is applied to a global
trapslation buffer to identify a mapping of a page group to
a sct of nodes in a system. From the virtual address and the
jdentified mapping, the system determines a destination
node at which a page containing the virtual address resides.
Amessage including the address, which may be in a guarded
pointer, may be forwarded to the destination node, and
trapslation of the virtual address to a physical address may
be performed at that node. By translating to groups of nodes,
rather than an individual node for each virtual address, the
size of the global trapslation buffer can be substantially
reduced.

Preferably, the global trapslation buffer identifies each
page group by a group size which is logarithmically
encoded. It also specifics, in each group entry, a start node
and the physical range of nodes within the group. Preferably,
the range is specified in plural dimensions, specifically in the
X, Y and Z dimensions of an array. That range is preferably
also logarithmically encoded. Finally, the translation buffer
may specify the number of pages of the page group per node.

In accordance with another aspect of the invention, virtual
page addresses are translated to physical page addresses at
each processor node and each virtual page is subdivided into
blocks. At each processor node on which data from a virtual
page is stored, a block status flag is provided for each block
of the virtual page. Blocks of data may be copied between
nodes and, based on the block status flags, access to indi-
vidual blocks on a node is restricted. The use of the blocks
allows for finer granularity in data transfers. The status flags
are preferably stored in a virtual to physical translation
buffer. Block status flags may also be stored with the data in
cache memory, and the block status flags in the translation
buffer may be updated from cache memory.

The preferred states of the status flags include invalid,
read only, read/write and read/write but dirty. The dirty
designation is provided in order to indicate to the home node
that the data has been changed since being loaded from the
home node.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not nec-
essarily to scale, emphasis instead being place upon illus-
trating the principles of the invention.

FIG. 1A illustrates the format of a guarded pointer
embodying the present invention.

FIG. 1B illustrates a simple application of a guarded
pointer having only a four bit address field.

FIG. 2A is a flow chart of a memory request in a system
that includes guarded pointers.

FIG. 2B illustrates the hardwarc utilized in an LEA
operation in which an offset is added o an existing pointer.

FIG. 3 illustrates the adder and segment check of FIG. 2B.

FIG. 4 illustrates the masked comparator of FIG. 3.

FIG. § illustrates a masked comparator bit cell in FIG. 4.

FIG. 6 illustrates register states when a program enters a
protected subsystem by jumping to an enter pointer.

FIG. 7 illustrates register states when two way protection
is provided by creating a return segment.

FIG. 8 is a block diagram of a processor chip used in an
M-Machine embodying the present invention.

20

25

w
o

40

45

55

65

4

FIG. 9 illustrates an LTLB entry having block status bits
in accordance with the present invention.

FIG. 10 illustrates status bit caching in a system using
block status bits.

FIG. 11 is a block diagram of hardware utilized in
determining status bits for a block in the LTLB.

FIG. 12 is a flow chart of a memory request in a system
that includes block status bits.

FIG. 13 is an illustration of a GTLB entry in a system
using global translation in accordance with the present
invention.

FIG. 14A is a flow chart of a GTLB translation process.

FIG. 14B illustrates a masked comparator used in the
GTLB.

FIG. 15A illustrates an example GTLB translation of an
address, and FIG. 15B illustrates the node within a group
identified by the translation of FIG. 15A.

FIG. 16 is a block diagram of a GTLB.

FIG. 17 is a flow chart of a memory request in a system
that includes guarded pointers, block status bits, and a
GTLB.

DETAILED DESCRIPTION OF THE
INVENTION
Guarded Pointers

Guarded pointers are provided as a solution to the prob-
lem of providing efficient protection and sharing of data.
Guarded pointers encode permission and segmentation
information within tagged pointer objects to implement
capability requirements of the type presented in Fabry, R.,
“Capability-based addressing,” Communications of the
ACM 17,7 (July 1974), 403—412. A guarded pointer may be
stored in a general purpose register or in memory, eliminat-
ing the need for special storage. Because memory may be
accessed directly using guarded pointers, higher perfor-
mance may be achieved than with traditional implementa-
tions of capabilitics, as table lookups to translate capabilities
to virtual addresses are not required.

FIG. 1A shows the format of a guarded pointer. A single
pointer bit is added to cach 64-bit memory word. Fifty-four
bits contain an address, while the remaining ten bits specify
the sct of operations that may be performed using the pointer
(4 bits) and the length of the segment containing the pointer
(6 bits). Segments arc required to be a power of two words
long, and to be aligned on their length. Thus, a guarded
pointer specifies an address, the operations that can be
performed using that address, and the segment containing
the address. No segment or capability tables are required.
Since protection information is encoded in pointers, it is
possible for all processes to share the same virtual address
space safely, climinating the need to change the translation
scheme on context switches and facilitating the use of
virtually-addressed caches.

All memory operations in a system that use guarded
pointers require that onc of their operands be a guarded
pointer and that the permission field of the pointer allow the
operation being attempted. Uscrs are not allowed to set the
pointer bit of a word, although they may manipulate pointers
with instructions that maintain the protection scheme. This
prevents users from creating arbitrary pointers, while allow-
ing address arithmetic within the segments that have been
allocated to a user program. Privileged programs are allowed
to set the pointer bit of a word and thus can create arbitrary
pointers.

Mecmory systems that use guarded pointers provide a
single virtual address space shared by all processés. Each

EX 1019 Page 254

)
h

Sk e

A T A 0 Y S S NPT 1

)
&
3
¥
%
¢
£
3
R

A

- e

e

6,003,123

5

guarded pointer identifics a segment of this address space
that may be any power of two bytes in length, and must be
aligned on its size. These restrictions allow six bils of
segment length information and 54 bits of virtual address to
completely specify a segment. The length field of a guarded 5
pointer encodes the base-two logarithm of the segment
length. This allows se%mcms ranging in length from 2 single
byte up to the entire 2°* byte address space in power of two
increments, As shown in FIG. 1 the length ficld also divides
the address into scgment identifier and offsct fields. A
four-bit permission field completes the capability by iden-
tifying the set of operations permitted on the segment.

FIG. 1B presents a simple illustration of the segment
Iength and address ficlds of the guarded pointer assuming an
address field of only 4 bits and a length field of 3 bits. With
the length L equal to zero, each segment is of length 2%=1
word in length. As illustrated by the vertical broken line, the
segment length L positions the division between offset and
segment 1o the far right of the address, 50 there would be no
offset. Each segment base address would also be the address
of the addressed word. With L equal one, each scgment is of
21=2 words long. The broken line indicates a one bit offset.
‘Where the full address is 1011, the base address 1010 of the
segment is defined by setting the offset to zero.

Similarly, with increasing values of L the mumber of
words in the scgment defined by the guarded pointer
increases exponentially, and the base address for the seg-
ment is defined by setting all offsct bits to zero.

It can be seen from FIG. 1B that two pointers having a

common address 1011 may indicate that the address is

within a segment ranging in length from one byte to 16
bytes. Since the base address is determined by setting the
offset 10 zero, segments must be a power of twe words long
and must be aligned on their length. As discussed below, the

6

to enter a code segment al a single location. Jumping to
an enter pointer converts it to an execute pointer which
is then loaded into the instruction pointer. There are two
types of enter pointers: enter-user and enter-privileged,
which are converled to the corresponding type of
execute pointer by a jump.

A Key pointer may oot be modificd or referenced in any
way. It may be used as an unforgeable, unalterable
identifier.

Physical: The pointer references data in physical memory
on the local node. This bypasses the virtual memory
system ignoring the LTLB on cache misses. If the
address exceeds the size of local physical memory, the
top bits are ignored.

Since the set of poioter states does not require all of the
possible four bit values, architects may implement pointer
types to support particular features of their architecture, such
as the following pointer types, which are implemented on
the M-Machine.

Execute Physical: Data may be read or executed as code,
but not written. On cache misses, the TLB is not
accessed. The thread is in privileged mode.

Enter Message: Code at this address may be executed in
a message handler. A send operation faults if the
designated IP is oot in this state.

Configuration Space: Indicates that the address refers to
an internal register in the processor.

Errval: The pointer has been generated by a deferred
exception. Any attempt to nse an Errval pointer as an
operand will cause an exception.

As noted, each pointer contains a six bit segment length
field that holds the log base 2 of the size of the segment in
which the address resides. Thus, segments may be of any

segment definition is important to define the segment of ¢ power of 2 size between 1 and 2°* bytes. This encoding

addresses within which a particular program may operate by
modifyiog a given pointer. Generally, permission is granted
to modify addresses only within a segment.

The permission field of a pointer indicates how a process

allows the base address and the extent of a pointer’s scgment
to be determined without accessing any additional informa-
tion. User-level instructions that manipulate pointers (LEA,
LOAD, STORE) have the lower and upper bounds of their

may access the data within the segment. Pointer permissions o, cooment checked automatically to ensure that the operation

may specify data access, code access, prolected entry points,
and protected identifiers (keys). The permissions granted are
with respect to use of the pointers. All pointers may them-
selves be stored in memory and loaded from memory. It is

does not access memory outside of the allowed scgment.
This segmentation and access contro]l system provides

flexibility to the user, while still permitting strictly enforced

security. Segments can be overlapped and shared as long as

use of the pointers (o access data at the indicated addresses o o,y segment is aligned to an address that is a multiple of its

which is restricted. The following is a representative sct of
permissions:

A Read Only pointer may be used to Ioad data and the

pointer may be altered within segment bounds. Store

and jump operations using the pointer are pot permit-
ted.

A Read/Write pointer may be used by load and store
operations, but not jump operations, It may be aliered
within its segment bounds.

size. Since all of the necessary segmentation information is
contained within each pointer, a separale table of segment
descriptors is unnecessary. More importantly, iustructions
need pot access such a table to check segmentation restric-
tions on mermory accesses. Also, access 1o system functions
and other routines can be given to non-trusted programs, as
the enter-privileged and enter-user permission states ensure
that a user may only execute code starting at the specified
entry point. A MEMBAR (memory barrier) instruction is

Execute pointers may be used by jump and load opera- ss used to block further instructions from executing until all

tions and may be medified within segment bounds.
Thus, holding an exccute pointer to 2 code scgment
enables 2 program to jump to any location within the
segment and to read the segment. Execute pointers may

outstanding memory references have completed.
Poipter Operalions

Guarded pointers may be implemented by adding a few
pointer manipulation instructions 1o the architecture of a

be cither execute-user or execute-privileged, which ¢o conventional machine and adding checking hardware to

encodes the supervisor mode bit explicitly within the
instruction pointer. Privileged instructions, such as
SETPTR, may only be executed with an execute-
privileged instruction pointer.

verify that each instruction operates only on legal pointer
types and that address calculations remain within pointer
bounds.

FIG. 2A shows a flow chart of the steps involved in

Enter pointers may be used only by jump operations. They 65 performing a memory reference beginning at 20 in a system

cannot be used for loads and cannot be modified in any
way. Thus, holding an enter pointer enables a program

that incorporates Guarded Pointers. First, the pointer bit of
the operand containing the address being referenced is

EX 1019 Page 255

BRI o Y e AN e,

i

> o ol S

6,003,123

7

checked at 22 to determine if the address operand is a
guarded pointer. If the pointer bit is not set, an exception
occurs at 24. Sccond, the permission field of the pointer is
checked at 26 and 28 to verify that it allows the operation
being attempted, and an exception raised at 30 if it does not.
If the operation involves address computation, an integer
offset is then added to the address field of the pointer at 32.
Segmentation violation is checked at 34 and 36. An excep-
tion 38 is raised if the result of this add overflows or
underflows into the fixed segment portion of the address,
which would create a pointer outside the original segment.
If all of these checks pass, the operation is submitted to the
memory system at 40 to be resolved.

Load/Store: Every load or storc operation requires a
guarded pointer of an appropriate type as its address argu-
ment. Protection violations are dctected by checking the
permission field of the pointer. If the address is modified by
an indexed or displacement addressing mode, bounds vio-
lations are checked by examining the length field as
described below. The protection provided by guarded point-
ers does not slow load or store operations. All checks are
made before the operation is issued without reference to any
permission tables. Once these initial checks are performed,
the access is guaranteed not to cause a protection violation,
although events in the memory system, such as TLB misscs,
may still occur.

Pointer Arithmetic: An LEA (load effective address)
instruction may be used to calculatc new pointers from
cxisting pointers. This instruction adds an integer offsct to a
data (read or read/write) or exccute pointer to produce a new
pointer. An exception is raised if the new pointer would lie
outside the secgment defined by the original pointer. For
cfficiency, a LEAB operation, which adds an offset to the
base of the segment contained in a pointer may be
implemented, as well. If a guarded pointer is used as an input
to a non-pointer operation, the pointer bit of the guarded
pointer is cleared, which converts the pointer into an integer
with the same bit ficlds as the original pointer.

FIG. 2B details the protection check hardware used on a
pointer calculation. The permission field of the pointer 42 is
checked at 44 against the opcode 46 to verify that the
requested operation using the pointer is permissible. In that
respect, the permission check hardware need only decode
the opcode to identify permission bits which are appropriate
for that opcode and compare those bits to the permission bits
of the pointer 42 in combinational logic. An integer offsct 48
may be added to the address ficld of the pointer at 50 to
generate the new pointer 54. An exception is raised if the
result of this add over or underflows into the fixed scgment
portion of the address, which would create a pointer outside
the original segment. This may be detected in the segment
check 52 by comparing the fixed portion of the address
before the add to the same field of the resulting pointer.

FIGS. 3, 4 and 5 show in greater detail the hardware of
FIG. 2B used in performing an address calculation on a
guarded pointer. The 54-bit address field of the pointer is
added in adder 56 to a 54-bit offset to get the result address.
The 6-bit length field of the pointer is fed to a mask
generator 58, which generates a 54-bit output applied as a
mask to masked comparator 60. Each bit in this output is set
to one if the corresponding bit in the address represents a bit
in the segment identifier and to zero if the bit represents a bit
in the offset portion of the address. Bits in the offset portion
of the address are allowed to change during address
calculation, while bits in the segment identifier are not.

FIG. 4 illustrates the masked comparator 60. Each bit of
the original address, the corresponding bit of the result

20

30

40

=3
=]

6.

[y

8

address, and the corresponding bit of the mask are fed into
a comparator cell 62, as shown in FIG. 5. The output of XOR
gate 64 is one if the bit from the original address and the bit
from the result address differ. This output is then ANDed at
66 with the bit from the bit mask, which is onc if the bit
being examined is part of the segment portion of the address,
and therefore not atlowed to change. The outputs of all the
comparator cells are ORed together at 68 to determine if any
of the segiment bits changed during the addition of the offset,
which indicates that a segmentation violation has occurred.

Guarded pointers expose to the compiler address calcu-
lations that are performed implicitly by bardware in con-
ventional implementations of segmentation or capabilities.
‘With the conventional approach, the segmentation hardware
performs many redundant adds to relocate a series of related
addresses. Consider, for example, the following loop:

Jor(I=0;i<N;i++) s=sta[i]

In a conventional system, eacb reference to array a would
require the segmentation hardware to automatically add the
segment offset for each afi] to the segment base. With
guarded pointers, the add can be performed once in
software, and then the resulting pointer can be incrementally
stepped through the arnay, avoiding the additional level of
indirection.

Languages that permit arbitrary pointer arithmetic or type
casts between pointers and integers, such as C, arc handled
by defining code sequences to convert between pointer and
integer types. The pointer-to-integer cast operation takes a
guarded pointer as its input and retums an integer containing
the offset ficld of the guarded pointer. This can be performed
by subtracting the segment base, determined using the
LEAB instruction, from the pointer:

LEAB Ptr, 0, Base SUB Ptr, Base, Int

The integer-to-pointer case operation uses the LEAB
instruction to take an integer and create a pointer into the
data segment of the process with the integer as its offset, as
long as the integer fits into the offset field of the data
scgment. Note that neither of these case operations requires
any privileged operations, which allows them to be inlined
into user code and exposed to the compiler for optimization.

Pointer Creation: A process executing in privileged mode,
with an execute-privileged TP, has the ability to create
arbitrary pointers and hence access the entire address space.
Privileged mode is entered by jumping to an enter-privileged
poioter. It is exited by jumping to a user pointer (enter or
cxccute). While in privilege mode, a process may execute a
SETPTR instruction to convert an integer into a pointer by
sctting the guarded pointer bit. Thus, a privileged process
may amplify pointer permissions and increase segment
lengtbs while a user process can only restrict access. No
other operations need be privileged, as guarded pointers can
be used to control access to protected objects such as system
tables and I/O devices.

Restricting Access: A process may create pointers with
restricted permissions from those pointers that it holds. This
allows a process to share part of its address space with
another process or to grant another process read-only access
to a segment to which it holds read/write permission.

ARESTRICT instruction takes a pointer, P, and an integer
permission type, T, and creates a new pointer by substituting
T for the protection ficld of P. The substitution is performed
only if T represents a strict subset of the permissions of P so
that the new pointer has only a more restricted access. For
example, a read pointer may be created from a read/write
pointer, but not vice versa. Otherwise, an exception is raised.

Similarly the SUBSEG instruction takes an integer length,
L, and a pointer, P, and substitutes L into P if L is Iéss than

R

EX 1019 Page 256

rmywh Moo et P OEIEEES ks e o8 danoril

9

the original length field of P, so that the created segment is
a subset of the original. Changing to a lesser length
decreascs the length of the offsct subfield for decreased
offset range and increases the length of the segment field for
finer segment location resolution.

The RESTRICT 2nd SUBSEG instructions allow a user
process to control access 1o its memory space cfficienily,
without system software interaction. The RESTRICT and
SUBSEG instructions are not completely necessary, as they
can be emulated by providing user processes with enter-
privileged pointers to routines that use the SETPTR instruc-
tion to create new pointers that have restricted access rights
or segment boundarics. The M-Machine, which will be
described in the pext section, takes this approach.

Pointer ldentification: The ISPOINTER instruction is
provided to determine whetber a given word is a guarded
pointer. This instruction checks the pointer bit and returps its
state as an integer. Quick pointer determination is useful for
programming systems that provide automatic storage
reclamation, such as LISP, which need to find pointers in
order to garbage collect physical space (Moon, D. A. Sym-
bolics Architecture, IEEE Computer (1987) , 43-52).
Protected Subsystems

ENTER pointers facilitate the implementation of pro-
tected subsystems without kernel intervention. A protecied
subsystem can be entered only at specific places and may
exccute in a different protection domain than its caller. Entry
into a protected subsystem, such as a file system manager, is
illustrated in FIG. 6. A program enters a protected subsystem
by jumping to an enter pointer. After entry the subsystem
code loads pointers to its data structures from the code
scgment. A represents the register state of the machine
before the protected subsystem call, B the register state just
after the call, C the register state during the execution of the
protecied subsystem, and D the register state immediately
after the return to the caller.

Before the call, the calling program (segment 1) holds an
enter pointer to the subsystem’s code segment (segment 2)
which contains the subsystem code as well as pointers to the
subsystem’s data segments, such as the file system tables. To
enter the subsystem, the caller jumps to ENTER2, causing
the hardwarc to transfer control io the entry point and
convert the enter pointer to the execute pomter P2 in
register statc B. The return instruction pointer (RETIP) is
passcd as an argument to the subsystem. The subsystem then
uses the execute pointer 1o load GP1 and GP2, the pointers
10 its data structures (state C). The subsystem returns to the
calling program by overwnting any registers containing
private pointers and jumping to RETIP (state D).

The sequence described above provides one-way
protection, protecting the subsystem's data structures from
the caller. To provide two-way protection, the caller
(segment 1) encapsulates its protection domain in a refurn
segment (segment 3) as shown in FIG. 7. Before the call
(state A), the caller holds both enter and read/write pointers
10 a return segment. The caller writes all the Live pointers in
its registers into the return segment to protect them from the
subsystem (segment 2). It then overwrites all of the pointers
in its register file except the enter pointer to the retum
segment (ENTER3), the subsystem eater pointer
(ENTER2), and any arguments for the call (state B). The
subsystem call then proceeds as described above. After
entry, the subsystern holds only an enter pointer to the return
segment and thus cannot directly access any of the data
segments in the caller’s protection domain (state C). The
subsystem returns by jumping to the return segment (state
D), which reloads the caller’s saved pointers and returns to
the calling program.

bk
(=]

20

25

30

35

40

6,003,123

10

ENTER pointers allow efficient realization of protected
system services and modular user programs that enforce
access methods to data structures. Modules of an operating
system, ¢.g., the file-system, can be implemented as uuprivi-
leged protected subsystems that contain pointers 1o appro-
priate data structures. Since these data structures cannot be
accessed from outside the protected subsystem, the file-
system’s data structures are protected from unauthorized
use. Even an IO driver can be implemented as an unprivi-
leged protected subsystem by protecting access to the read/
write pointer of a2 memory-mapped 1/0 device. With pro-
tected entry to uscr-level subsystems, very few services
actually need to be privileged.

Implementation Costs

Hardware: Guarded pointers bave two hardware costs: an
increase in the amount of memory required by a system and
the bardware required to perform permission checking. To
prevent unauthorized creation or alteration of a guarded
pointer, 2 single tag bit is required on all memory words,
which results in 2 1.5% increase in the amount of memory
required by the systerm.

The hardware required to perform permission checking on
memory aceess, and segment bounds checking on pointer
manipulation, is minimal. One decoder for the permission
ficld of the pointer, one decoder for the opcode of the
instruction being executed, and a small amount of random
logic are required to determine if the operation is allowed.
The pointer bit of an operand can be checked at the same
time, to determine if it is a legal pointer. To check for
segment bounds violations when altering a pointer, 2 masked
comparator is needed. It compares the address before and
after alteration and signals a fault if any of the scgment bits
of the address field change.

Memory systems based on guarded pointers do pot
require any scgmentation tables or protection lookaside
buffers in hardware, nor is it necessary to annotate cached
virtual-physical translations with a process or address space
identifier. As with other single address space systems, the
cache may be virtually addressed, requiring translation only
on cache misscs.

Address Space: Since 6 to 10 bits are required to encode
the permission and segment length ficld of a guarded pointer,
the virtual address space is reduced. On a2 64-bit machine, a
guarded pointer virtual address is 54 bits, which provides 16
petabytes of virtual address space, enough for the immediate
future. Several current processors support 64-bit add X
but only translate some of the bits in each address. For
example, the DEC Alpha 21064 only translates 43 bits of
each 64-bit address (Digital Equipment Corporation, Alpha

so Architecture Handbook. Maynard, Mass., 1992).

55

60

There is an opportunity cost associated with reducing the
virtual address space, however. Some system designers take
advantage of large virtual address spaces to provide a level
of security through sparse placement of objects. For
example, the Amocba distributed operating system
(Mullender, S. J., Van Rossum, G., Tanenbaum, A. S., Van
Renesse, R. and Vaa Staveren, H., “Amoeba: A distributed
operating system for the 1990s” JEEE Computer 23 (May
1990), 44-53) protects objects using a software capability
scheme. These capabilities are kept secret by embedding
them in a huge virtual address space. This becomes less
attractive if the virtual address space is 1000 times smaller.
Of course, this particular use of a sparse virtual address
space can be replaced by the capability mechanism provided
by guarded pointers.

Virtual address space fragmentation is another potential
problem with guarded pointers, as segments must bé powers

PRV

S e s s $5

o

i

EX 1019 Page 257

