
IW '76961 ?7

1..Q)A'liD,1J,!i~Q.i.ll('lllllEM~ ~~E1"~ ~!l!\!ID1 ~ve;;;
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 18, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/609,179

FILING DATE: June 30, 2000

PA TENT NUMBER: 6,665,725

ISSUE DATE: December 16, 2003

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States P tent and Trademark Office

. ' {

PART(/) OF~ PART(S)

EX 1018 Page 1

mm...a;

’ THE UNITED STATES ()FAMLRILA “f“EmmmmtgwmaiSf: ERESIQ'EIESw(COMB:33 W:
UNITED STATES DEPARTMENT OF COMMERCE V

United States Patent and Trademark Office a
October 18, 2018 {3*

{3

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE V I.

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS f

APPLICATION NUMBER: 09/609,179

 FILING DATE: Jame 30, 2000

PATENT NUMBER: 6,665,725

ISSUE DATE: December 16, 2003

sa.
vx;

By Authority of the E’ ‘:

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

1,-.‘1. ;
”1.. . .

1 v . z
'1: . e ,

‘ ! H:1v. I I
v ,-
4-

P. SWAI

Certify' g Officer

mam (I) 0F (4) PART(S)
EX 1018 Page 1 I

i
f
F
I

r
l

I

I \

t

;
I

I ,,

l-·-.
r

'\

\

h
t' j s.

:~

l.

1'J~.
;•_,)
}'

!

r
l

:-1
"

I .~. ,, ;.,..
)'j ,,'

J ... "r
! • I' il(r ~

,' ~.r -

'· j

(l
" ' '• 1

. ' .
,• z ... 0

\) "' i= .!l!
.l:l <(

"i -0 :, u:
f\J en

U)
en

~
::s i ,,, . 0 ..

"' w
0 ::,

" ~ L(''

./
' [

./
,. ...

APPLICATION NO. CONT/PRIOR
09/609179 D

·,

\ .

'. ~· ._..t~:-r..:;:"J~:-.... ~ .: .. ,'
. D Toe tarm·,Qf .1tils patent' :.:· • ·
subsequ~~i kl · ~ ·, : ; .: '/(da~)
has been dlsQ!allllef:t~': .. '. :'. . ' ..

·o th~ iarm.o(thls ~~t~iit ~~u .. ' .
-·~ot ext~nd 'toeyonifihe expiration elate.
iit U.,S Patent. Nci. ·· · " : '· ·

(
: .. ,

·o Toe termlnaJ _· _months of
this patent tiava been disclaimed.

WARNING:

U.S. UTILllY Patent'Applicalion .
0.1.P.E. PATENT DATE

~~ /\v ·t)tc 16 1003
SCANNED \t,b-;. Q.A. ~

.. --~.

~ ~~iPIER • '-.J I CLASS SUBCLASS ART UNIT' :t ,
709 8~1-:. :::)),.- (s ,,)I'- i. ' /- ~-.. '1'''-' ~-\ ·I l <'\ ' •: I ~' ~ \ ~ ~ 'I ~~ '. ,,, ~ -~ "i.

.. i
. ·' -

. HOSAIN T. ALAM

·, 1 Certificate'~~\
. r. . .,_

.JUN 2 9 2004 ...

of Correction~-2ol
, 12199

CROSS REFERENCE(sf' ,

Total Claims Print Claim for O.G·.

IS- 17 ·_ I .-.
NOTICE OF ALLOWANCE MAILED

7/ o,, 0-3

. .ISSUE FEE.
· ·· PRIMARY EXAMINER . •

~ .. :6/~11/o r,
· (Primary Eg,njne~ · . (Date)

ISSUE BATCH NUMBER

The Information disclosed herein may be restricted. Unauthorized disclosure may be prohibited by the United States Code ntle 35, Sections 122, 181 and 368.
Possession outside the U.S. Patent & Trademark Offioo.ls restricted to authorized employees and contractors only.

Form PT0436A
(Rav.6199)

,ssuE FEE \N F\LE
FILED WITH: D DISK (CRF) D FICHE D CD-ROM

(Attachod In pocket on right lmtlde Oap)

tllK"'lil \>~hlllil:i

\

I
I
I

I

(.
I
~ .
I
I
I ,
1·/ i I .• ,:~';

I

I
'

EX 1018 Page 2

' RATENTfihMEEH‘.

Z
9
|-- : «AM...
3 i; “T? HS. 9.‘u. , v ~ »'«‘

2 % “36.357125. ii i ,

1W2 ,g '* i .; A i‘.. . y‘rw'u.» we ‘ m . ' 4

a ". 1: .‘ , 5 g

:W y > "' , ‘w AW“ “ "—
‘ ;‘ CONT/PRIOR cuss suscmss

:34” r- H "kiwi ~ ~ ,

1; §;§ 5:2“: > ’ '"%-”;;_~, 2", j A ‘ z I Cer1if|cdfé “*1?" i3 ‘ . '1»
2&3 - "k "
43% f N K, ; , . .mmznm ‘ i

'4‘: 1 , I t

. * E x of Correchonw
%._ , T.” w _. . Mk: .4“ i

. 7‘. ‘7’}. ‘

{N‘G‘ciAsSiF

' i Hrnlscwmfifl

Pn'nt Claim

i-/,

for 0.6:

(D The arm-oi jg'bétpi-ir

 v1~
subséquéntto -‘ ' ‘. W at 9- I V “ >
hashesndlsdalniedsg . ,

§ ‘ :‘(Awwngmumy ‘

E fie igrmonhis fiéfitQQuJ.”
mot extend b‘éyona1h? expiratfgn Bate,
(nus Patentfxb'. . W .

x.
3‘ < x

. .' 'HOSAmtALAM
._ ‘ a. palm EXAMINER ' \ Amount‘li'é‘a

wag». V's‘élflM/éz, flig‘péiff "
~ (Primary Eunimr)‘ ’9 (Dana)

~a'»

D The tannins} ‘ monthsbf ‘0?“ MW

: 1 this patent Have been dxsclalmed. *
1 (Lanai: ants Examlner) ,
' WARNING: ,

i The Information disclosed herein may be restflcted. Unauthorized disclosure may ba pxohibltea by the United Stale: Code Title 35. Sections 122, 181 and 368. ‘, Possession amide the US. Patent a Trademark Oificaia restflcted to aumodzed employees and contractors onhp .. 1 1f :

E FILED WITH: 1:] max (can [:I FECHE [:1 0080M ;‘; (Amend In mm on right was flap) }

E FEE 1N FWE WRMM. humus

 : (FACE)

; A“ :f
3 at < , ‘ ‘ .7 . '5 - 3‘7"-

EX 1018 Page 2

UNITED STATES PATENT AfID ThADEMARK OFFICE

~1~111111111m 11!11m 11~1111111~11 m1 1111 !111m 1111
Bib Data Sheet

FILING DATE
SERIAL NUMBER 06/30/2000 CLASS

09/609,179
RULE

709
-

!APPLICANTS
Russell S. Dietz, San Jose, CA ; /

Andrew A Koppenhaver, Littleton, CO ;
James F. Torgerson, Andover, MN ;

I*• CONTINUING DAT A*************************
THIS APPLN CLAIMS BENEFIT OF 60/141,903 06/30/1999

\/J.)' 1 tl(a:>
** FOREIGN APPLICATIONS********************

l\)v\lQ l u,o
IF REQUIRED, FOREIGN FILING LICENSE
GRANTED** 08/23/2000 -
F ore1gn Priority claimed 0 yes llZl no

3,5 USC 119 (a-d) conditions 0 yes ~ no O Met after
STATE OR
COUNTRY met

AllowfJ~h
Verified and CA
Acknowledqed ' Examiner's Siqnature Initials

ADDRESS

-
Dov Rosenfeld
5507 College Avenue
Suite 2
Oakland ,CA 94618

ITITLE

Method and apparatus for monitoring traffic in a network

FILING FEE FEES: Authority has been given in Paper

Page 1 c,

COMMISSIONER fOR PATENTS
, UNITED STATES PATENT AND TRADEMARK OFFICE

,·

WASNINGlON, 0.C. 202.31
www.uspto gov

ATTORNEY
GROUP ART UNIT V DOCKET NO.

~si APPT-001-2

/

SHEETS TOTAL INDEPENDENT
DRAWING CLAIMS CLAIMS

20 18 1

'

lo All Fees I
jO 1.16 Fees (Filing) I
0 1.17 Fees (Processing Ext. of

RECEIVED No. to charge/credit DEPOSIT ACCOUNT time)
840 No. for following: lo 1.18 Fees (Issue) I

IO Other I
lo Credit I

. - - - - ·~

filc://C:\APPS\PreExam \correspondence\ l _ A.xml 1117/00

EX 1018 Page 3

Page 1 o

(I;*:"/‘v~.\ug\
, 5 WAR1 $\:\ UNITED STATES PATENT AND TRADEMARK OFFICET ‘ a _

COMMISSIONER FOR PATENTS
II UNITED STATES PATENT ANDTHADEMARK Orr-1c:

WASHINGTON. D.C. 8023!
wwuspto gov

v

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIiIIIIIIIIIIIIIIIIIIIIIIIIIII I § ,Bib DaIa Sheet

FILING DATE " ATTORNEY
SERIAL NUMBER 061300000 GROUP ART UNIT DOCKET NO.

091609.179 RULE _ APPT—OO1~2
* PPLICANTS

Russet! S. Dietz, San Jose, CA : /

Andrew A. Koppenhaver, Littleton, CO ;
James F. Torgerson, Andover, MN ;

i CONTINUING DATA ktfiit*l*fi*ttit****i‘l*i**l

THIS APPLN CLAIMS BENEFIT OF 60/141,903 06/30/1999

V?! 1 [LI/D
kit FOREIGN APPL'Cé‘Tio NS *fifii**ki******ki*i*i

IN I “/9
IF REQUIRED, FOREIGN FILING LICENSE
GRANTED ** 08/23/2000

ForeIgn Priority claimed D yes

affiseijsc 119 (a-d) conditiuns E] yes

00

M/ CI STATE OR SHEETSn0 Matafifi COUNTRY DRAWINGAllow no ,

erified and I; jg CA 20. cknowled-ed . Examiner's I-nature lnitiaIs

5507 College Avenue
Suite 2

OakIand .CA 94618

ITLE

Method and apparatus for monitoring traffic in a nétwork

FILING FEE FEES: Authority has been given in Paper D 1.17 Fees (Processing Ext. of
RECEIVED No. to charge/credit DEPOSIT ACCOU NT tame)

for foIIowing:

fiIczl/C :\APPS\PreExam\correspondence\LA.me 1 1,17100

EX 1018 Page 3

01--uJ-oo

IN THE U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

Box Patent Application
ASSISTANT COMMISSIONER FOR PATENTS
Washington, D.C. 20231

Dear Assistant Commissioner:

Transmitted herewith is the patent application of

Our Ref./Docket No.: APPT-001-2

INVENTOR(s)/APPLICANT(s)
Last Name

Dietz
Torgerson
Koppenhaver

First Name, MI

Russell S.
James F.
Andrew A.

Residence (City and State or Country)

San Jose, CA
Andover.MN
Fairfax, VA

TITLE OF THE INVENTION

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL
DESCRIPTION LANGUAGE

Included are:

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387
5507 College A venue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that apply)

x.. .J12.._ sheet(s) of specification, claims, and abstract
x.. ..1Q__ sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson

Information Disclosure Statement.
Form PT0-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a
copy of each references included in PT0-1449.
Declaration. and Power of Attorney
An assignment of the invention to Apptitude, Inc.
A letter requesting recordation of the assignment.
An assignment Cover Sheet.
Additional inventors are being named on separately numbered sheets attached hereto.

x.. Return postcard.
This application has:

a small entity status. A verified statement:
is enclosed

__ was already filed.

The fee has been calculated as shown in the following page.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961935US in an envelope addressed to Box Patent
Application, Assistant Commissione< fo, Patents, Washington, D.C. ~ ~

Date: t/tf'!1,.,!2, 2':, ~ Signed:

cT Name: ov Rosenfeld, Reg. No. 38687

EX 1018 Page 4

00/08/90

«r r "1

, . 0 3/ {/5 “o O

.,.‘-':—; 8 3’N l ’ l’52—“: Q \l.

xi: IN THE U.S. PATENT AND TRADEMARK OFFICE
fig 5: Application Transmittal Sheet=m

5;" _ Our Refs/Docket No.2 taper-001-2g.-|

”g 0 Box Patent Application 8 §
ASSISTANT COMMISSIONER FOR PATENTS “‘0‘ §
Washington, no. 20231 {3 Eu

”is: E8
Dear Assistant Commissioner: 3&0 $3m \"-‘-"a=”““

. “'0‘ =2e\
Transmitted herevvith is the patent application of 8‘3 E3

r2 §
INVENTOR s IAPPLICANT(S)

Last Name First Name, MI Residence (Citz and State or Country)

Dietz Russell S. San Jose, CA

Torgerson James F. Andover, MN
Koppenhaver Andrew A. Fairfax, VA

TITLE OF THE INVENTION

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL
DESCRIPTION LANGUAGE

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387
5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547—3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that apply)

Included are:

X 129 sheet(s) of specification, claims, and abstract
20 sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson

Information Disclosure Statement.

Form PTO-1449: INFORMATION DISCLOSURE CITATION [N ANAPPLICATION, together with a
copy of each references included in PTO~1449.
Declaration, and Power of Attorney
An assignment of the invention to Apptilude, Inc.
A letter requesting recordation of the assignment.
An assignment Cover Sheet.
Additional inventors are being named on separately numbered sheets attached hereto,
Return postcard.

This application has:
a small entity status. A verified statement:

is enclosed

was already filed,

“HillIll“

The fee has been calculated as shown in the following page.

 Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417___9_61935USin an envelope addressed to Box Patent
Application, AssistantCommissioner for Patents, Washington, DC 20231 on.

Date: Signed: :5 2 _.__...
Name10V'R05enfeld Reg No 38687

EX 1018 Page 4

SUBMISSION DOCUMENT Page2
AITORNEY DOCKET NO. APPT-001-2

NO. OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS CLAIMS FEE

TOTAL 18 0 $18 $ 0.00
CLAIMS

INDEP. 1 0 $78 $ 0.00
CLAIMS

BASIC APPLICATION FEE: $ 690.00

TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A check in the amount of is attached for application fee and presentation of claims.
A check in the amount of$ 40.00 is attached for recordation of the Assignment.
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees

required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICAIB OF THIS TRANSMITTAL IS ATTACHED):

(;bate
7

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

Respectfully Submitted,

EX 1018 Page 5

FY F’X\

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. gym—001-2

NO. OF EXTRA RATE EXTRA CLAIM
CLAIMS FEE

.8—--
TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A checkin the amount Of________is attached for application fee and presentation of claims
A checkin the anmunt of § 40.00 is attached for recordation of the Assignment.
The Commissioneris hereby authorized to charge payment of the any missing filing or other fees

required for this filing or credit any overpayment to Deposit Account NO. 150-0292
(A DUPLICATE OF THIS TRANSMFTTAL IS ATTACHED):

Respectfully Submitted,

W 30 W

' osenfeld , Reg. NO. 38687

Correspondence Address:
Dov Rosenfcld

5507 College Avenue. Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

EX 1018 Page 5

n
' l .. •,'

Our Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON
. SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents
Washington, DC 20231
ATTN: Official Draftsperson

Dear Sir or Madrun:

Attached please fmd 20 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

Respectfully Submitted,

f~J>O.~
Coate ;> ~N

Address for correspondence and attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College A venue, Suite 2
Oakland, CA 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI4l796I935US in an envelope addressed to Box Patent
Application, Assistant Commissioner for Patents, Washington, ~.C. 20~ _

Date: S1gned,_:~~~-------
NanfeFi5;;=

\

EX 1018 Page 6

0 (itL

Our ReffDocket No: APPT—OOI —2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et a1.

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

. SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 2._0 sheets of formal drawings to be made of record for the above

identified patent application submitted herewith.

. Respectfully Submitted,

= : Date osenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone: (510) 5413378; Fax: (510) 653—7992

Certificate of Mailing under 37 CFR 1.10

I hereby cenify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: E14 17961935US in an envelope addressed to Box Patent
Application, Assistant Commissioner for Patents, Washington, DC. 20231 on.

I Signed:é :
Nat e: Dov Rosenfeld, Reg. No. 38687

EX 1018 Page 6

,0.

r

Our Ref./Docket No.: APPT-001-2

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION LANGUAGE

Inventor(s):

DIETZ, Russell S.
San Jose, CA

KOPPENHAVER, Andrew A.
Fairfax, VA

TORGERSON, James F.
Andover, MN

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: EI417961935US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,
Washington, .C. 20231 on.

Date: ~3c) ~
./

EX 1018 Page 7

Our Rafi/Docket N0.: APPT-OOI ~2

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION LANGUAGE

gm Inventor(s):

; DLETZ, Russell 3.

2 San Jose, CA

KOPPENHAVER, Andrew A.

Fairfax, VA TORGERSON, James F.

Andover, MN

 Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being dcpmitcd with the United States Postal Service as Express Mail
(Express Mail Label: E14 17961935113 in an envelope addressed to Box Patent Application, Assistant Conunissioner for Patents,
Washington, .C. 20231 on.

Date: W 30 W SiW
/ Na . 0v Roscnfald, Reg. No. 38687

EX 1018 Page 7

n n
'

1

METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:

5 60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following U.S. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc., the

10 assignee of the present invention:

15

U.S. Patent Application Serial No. JCJ 16C~)}11for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A _NETWORK, to inventors Dietz, et al., filed June 30,

2000, Attorney/Agent Reference Number APPT-001-1, and incorporated herein by

reference.

U.S. Patent Application Serial No. Qq /lcfil2bforRE-USING INFORMATION FROM
i

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

MOJ\TffORING, to inventors Dietz, et al., filed June 30, 2000, Attorney/Agent

Reference Number APPT-001-3, and incorporated herein by reference.

U.S. Patent Application Serial No. 6~ lWl,/IJJ;for ASSOCIATIVE CACHE

20 STRUCTURE FOR WOKUPS AND UPDATES OF FLOW RECORDS IN A

NETWORK MONITOR, to inventors Sarkissian, et al., filed June 30, 2000,

Attorney/Agent Reference Number APPT-001-4, and incorporated herein by reference.

U.S. Patent Application Serial No. Qj 1£ .. mf.LG'/for STATE PROCESSOR FOR
i

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors

25 Sarkissian, et al., filed June 30, 2000, Attorney/Agent Reference Number APPT-001-5,

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

elucidation of packets communicated within a data network, including classification

30 according to protocol and application program.

/µ'1

Vr/Jl,,

'
/; ..)/
S/ zY1/J7

wiJ
:::f lYI I c: z,

EX 1018 Page 8

it.".i£:..iiI!
SEE:Lilli"

10

15

20

25

30

5“ <7“

1

METHOD AND APPARATUS FOR MONITORING

TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of US. Provisional Patent Application Serial No.:

60/141 ,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following U.S. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc, the

assignee of the present invention:

U.S. PatentApplication Serial No. :15] $08,227for METHOD AND APPARATUS FOR W"

MONITORING TRAFFIC IN ApNETWORK, to inventors Dietz, et at, filed June 30, g” ‘ '

2000, Attorney/Agent Reference Number APPT-OOl-l, and incorporated herein by

reference.

US. Patent Application Serial No. 0‘? Ismail-“or REUSING INFORMATION FROM It” . 1‘ .

“’7 227 / J 12
DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK ‘7:

MONITORING, to inventors Dietz, et a1., filed June 30, 2000, Attorney/Agent

Reference Number APPT—001-3, and incorporated herein by reference. ,

. . , WI
US. Patent Application Serial No. Wfor ASSOCIATIVE CACHE 5/ MJ’IJE?

STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A

NETWORK MONITOR, to inventors Sarkissian, et al., filed June 30, 2000,

AttorneylAgent Reference Number APPT—OOl-4, and incorporated herein by reference.

US. Patent Application Serial No. 03 m lg]for STATE PROCESSOR FOR 1%;3/32
PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors ‘

Sarkissian, et al., filed June 30, 2000, Attorney/Agent Reference Number APPT-OOl-S,

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

EX 1018 Page 8

2

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is

subject to copyright protection. The copyright owner has no objection to the facsimile

reproduction by anyone of the patent document or the patent disclosure, as it appears in

5 the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

10

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor that

can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i.e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

'bi 15 detected and analyzed, but for each of these packets the network monitor should

20

25

detennine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e.g., voice, video, data, real-time data, etc.), and an end user's pattern of use

within each application or the application context (e.g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

The recognizing and classifying in such a network monitor should be at all

protocol layer levels in conversational flows that pass in either direction at a point in a

network. Furthermore, the monitor should provide for properly analyzing each of the

packets exchanged between a client and a server, maintaining information relevant to the

current state of each of these conversational flows.

30 Related and incorporated by reference U.S. Patent application OCi /(JJ, 1;;7 for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to

L;:.)

1;,(i •l(, l, i I

EX 1018 Page 9

!!lift!

”“1.a“

10

15

20

25

30

(W F»

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is

subject to copyright protection. The copyright owner has no objection to the facsimile

reproduction by anyone of the patent document or the patent disclosure, as it appears in

the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks. In particular, there is a need for a real-time network monitor that

can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture of all

information passing through any point on the network (i. e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the

protocol (e. g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e. g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (IS P) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

The recognizing and classifying in such a network monitor should be at all

protocol layer levels in conversational flows that pass in either direction at a point in a

network. Furthermore, the monitor should provide for properly analyzing each of the

packets exchanged between a client and a server, maintaining information relevant to the

current state of each of these conversational flows.

Related and incorporated by reference U.S. Patent application (363 ICC !(1)2 for

METHOD AND APPARATUS FOR MONITORING TRAFFIC INA NETWORK, to

EX 1018 Page 9

n 0
3

inventors Dietz, et al, Attorney/Agent Docket APPT-001-1, describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from header fields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

5 belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized, a slicer extracts important packet elements from the packet. These

form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

10 The flow signature of the packet, the hash and at least some of the payload are

passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem

includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser

subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup

a database of flow records for previously encountered conversational flows to determine

15 whether a signature is from an existing flow, a state processor (SP) for performing state

processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the

database of flows, a memory for storing the database of flows, and a cache for speeding

up access to the memory containing the flow database. The LUE, SP, and FIDE are all

coupled to the UFKB, and to the cache.

20 Each flow-entry includes one or more statistical, measures, e.g., the packet count

25

related to the flow, the time of arrival of a packet, the time differential.

In the preferred hardware embodiment, each of the LUE, state processor, and

FIDE operate independently from the other two engines. The state processor performs one

or more operations specific to the state of the flow.

A network analyzer should be able to analyze many different protocols. At a base

level, there are a number of standards used in digital telecommunications, including

Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI

(Fiber Distributed Data Interface), Tl, and others. Many of these standards employ

different packet and/or frame formats. For example, data is transmitted in ATM and

30 frame-relay systems in the form of fixed length packets (called "cells") that are 53 octets

(i.e., bytes) long. Several such cells may be needed to make up the information that might

be included in the packet employed by some other protocol for the same payload

EX 1018 Page 10

r

("}

4

information-for example in a conversational flow that uses the frame-relay standard or

the Ethernet protocol.

In order for a network monitor to be able to analyze different packet or frame

formats, the monitor needs to be able to perform protocol specific operations on each

5 packet with each packet carrying information conforming to different protocols and

related to different applications. For example, the monitor needs to be able to parse

packets of different formats into fields to understand the data encapsulated in the different

fields. As the number of possible packet formats or types increases, the amount of logic

required to parse these different packet formats also increases.

10 Prior art network monitors exist that parse individual packets and look for

information at different fields to use for building a signature for identifying packets. Chiu,

et al., describe a method for collecting information at the session level in a computer

network in United States Patent 5,101,402, titled "APPARATUS AND METHOD FOR

REAL-J'IME MONITORING OF NETWORK SESSIONS AND A LOCAL AREA

15 NETWORK." In this patent, there are fixed locations specified for particular types of

packets. For example, if a DECnet packet appears, the Chiu system looks at six specific

fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the

other hand, an IP packet appears, a different set of six locations are examined. The system

looks only at the lowest levels up to the protocol layer. There are fixed locations for each

20 of the fields that specified the next level. With the proliferation of protocols, clearly the

specifying of all the possible places to look to determine the session becomes more and

more difficult. Likewise, adding a new protocol or application is difficult.

It is desirable to be able to adaptively determine the locations and the information

extracted from any packet for the particular type of packet. In this way, an optimal

25 signature may be defined using a protocol-dependent and packet-content-dependent

definition of what to look for and where to look for it in order to form a signature.

There thus is also a need for a network monitor that can be tailored or adapted for

different protocols and for different application programs. There thus is also a need for a

network monitor that can accommodate new protocols and for new application programs.

30 There also is a need for means for specifying new protocols and new levels, including

new applications. There also is a need for a mechanism to describe protocol specific

operations, including, for example, what information is relevant to packets and packets

EX 1018 Page 11

;::::;;}

n
5

that need to be decoded, and to include specifying parsing operations and extraction

operations. There also is a need for a mechanism to describe state operations to perform

on packets that are at a particular state of recognition of a flow in order to further

recognize the flow.

5 SUMMARY

One embodiment of the invention is a method of performing protocol specific operations

on a packet passing through a connection point on a computer network. The packet

contents conform to protocols of a layered model wherein the protocol at a particular

layer level may include one or a set of child protocols defined for that level. The method

10 includes receiving the packet and receiving a set of protocol descriptions for protocols

may be used in the packet. A protocol description for a particular protocol at a particular

layer level includes any child protocols of the particular protocol, and for any child

protocol, where in the packet information related to the particular child protocol may be

found. A protocol description also includes any protocol specific operations to be

15 performed on the packet for the particular protocol at the particular layer level. The

method includes performing the protocol specific operations on the packet specified by

the set of protocol descriptions based on the base protocol of the packet and the children

of the protocols used in the packet. A particular embodiment includes providing the

protocol descriptions in a high-level protocol description language, and compiling to the

20 descriptions into a data structure. The compiling may further include compressing the

data structure into a compressed data structure. The protocol specific operations may

include parsing and extraction operations to extract identifying information. The protocol

specific operations may also include state processing operations defined for a particular

state of a conversational flow of the packet.

25 BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments, in tum, are explained with the aid of the following

30 figures.

EX 1018 Page 12

6

FIG. 1 is a functional block diagram of a network embodiment of the present

invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their

5 formats that might be exchanged in starting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be generated

and used in the process of analyzing packets and of recognizing the particular server

10 applications that produce the discrete application packet exchanges.

15

FIG. 3 is a functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and optimization

process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

20 the parser in an embodiment of the inventive packet monitor.

25

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of

the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. IO is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

EX 1018 Page 13

If

n
7

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

5 monitor.

10

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

15 invention.

FIG. 17 A is an example of the header of an Ethertype type of Ethernet packet of

FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

20 shown in FIGs. 16 and 17 A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

25

FIG. 18A is a three dimensional structure that can be used to store elements of the

pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment of

the invention.

EX 1018 Page 14

n
8

FIG. 19 shows various PDL file modules to be compiled together by the compiling

process illustrated in FIG. 20 as an example, in accordance with a compiling aspect of the

invention.

FIG. 20 is a flowchart of the process of compiling high-level language files

5 according to an aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

10 invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network 102

that communicates packets (e.g., IP datagrams) between various computers, for example

15 between the clients 104-107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of the

cloud. A monitor 108 examines the packets passing in either direction past its connection

point 121 and, according to one aspect of the invention, can elucidate what application

programs are associated with each packet. The monitor 108 is shown examining packets

20 (i.e., datagrams) between the network interface 116 of the server 110 and the network.

The monitor can also be placed at other points in the network, such as connection point

123 between the network 102 and the interface 118 of the client 104, or some other

location, as indicated schematically by connection point 125 somewhere in network 102.

Not shown is a network packet acquisition device at the location 123 on the network for

25 converting the physical information on the network into packets for input into monitor

108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication, e.g., TCP/IP, etc. Any network activity-for example an

application program run by the client 104 (CLIENT 1) communicating with another

30 running on the server 110 (SERVER 2)-will produce an exchange of a sequence of

packets over network 102 that is characteristic of the respective programs and of the

EX 1018 Page 15

,;::._

·a:;:,;:·

()

9

network protocols. Such characteristics may not be completely revealing at the individual

packet level. It may require the analyzing of many packets by the monitor 108 to have

enough information needed to recognize particular application programs. The packets

may need to be parsed then analyzed in the context of various protocols, for example, the

5 transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol stack.

The ISO (International Standardization Organization) has defined a general model that

provides a framework for design of communication protocol layers. This model, shown in

10 table form below, serves as a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL

Layer Functionality Example

7 Application Telnet, NFS, Novell NCP, HTTP,

H.323

6 Presentation XDR

5 Session RPC, NETBI_QS.,.-§NMP, etc.

----·
4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.

2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

Different communication protocols employ different levels of the ISO model or

may use a layered model that is similar to but which does not exactly conform to the ISO

15 model. A protocol in a certain layer may not be visible to protocols employed at other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

EX 1018 Page 16

1M

5"

tilta...

U1

10

15

F) 0

9

network protocols. Such characteristics may not be completely revealing at the individual

packet level. It may require the analyzing of many packets by the monitor 108 to have

enough information needed to recognize particular application programs. The packets

may need to be parsed then analyzed in the context of various protocols, for example, the

transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol stack.

The ISO (International Standardization Organization) has defined a general model that

provides a framework for design of communication protocol layers. This model, shown in

table form below, serves as a basic reference for understanding the functionality of

existing connnunication protocols.

ISO MODEL

Application Telnet, NFS, Novell NCP, HTTP,

H.323

n-_

Data Link Network Interface Card (Hardware

Interface). MAC layer

Physical

Different communication protocols employ different levels of the ISO model or

 Ethernet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

may use a layered model that is similar to but which does not exactly conform to the ISO

model. A protocol in a certain layer may not be visible to protocols employed at other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2—3).

EX 1018 Page 16

n
10

In some communication arts, the term "frame" generally refers to encapsulated

data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

"packet" generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

5 term "datagram" is also used. In this specification, the term "packet" is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for transmission

across a network. For example, a data packet typically includes an address destination

field, a length field, an error correcting code (ECC) field, or cyclic redundancy check

10 (CRC) field, as well as headers and footers to identify the beginning and end of the

packet. The terms "packet format" and "frame format," also referred to as "cell format,"

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels

15 of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type-A packet

with the sending of a type-B packet, and the other application program does not, then in

order to recognize packets of that application's conversational flow, the monitor can be

20 available to recognize packets that match the type-B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

program's conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

25 simultaneously also in partial completion of identifying other packet exchanges that are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

previous events in the flow that lead to recognition of the content of all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

30 signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

EX 1018 Page 17

•

11

In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108' s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

and identify and maintain the state of the flows passing through the connection point. The

5 monitor 108 therefore masks out all the unimportant parts of each packet that will not

contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

IO within the monitor 108. At a first level, for example, several application programs will all

produce a first kind of packet. A first "signature" is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational flow.

15 The signature can then be used to efficiently identify all future packets generated in traffic

related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated application

program. In such a case, a subsequent packet of a second type-but that potentially

20 belongs to the same conversational flow-is recognized by using the signature. At such a

second level, then, only a few of those application programs will have conversational

flows that can produce such a second packet type. At this level in the process of

classification, all application programs that are not in the set of those that lead to such a

sequence of packet types may be excluded in the process of classifying the conversational

25 flow that includes these two packets. Based on the known patterns for the protocol and for

the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis using the second level signature. For each packet,

30 therefore, the monitor parses the packet and generates a signature to determine if this

signature identified a previously encountered flow, or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packet is further

EX 1018 Page 18

12

analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

5 are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative

IO embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through some point in the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

15 processor then loads its own executable copy of the application program and uses it to

read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present

20 invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol information

in a multilevel model, including what server application produced the packet.

25 The packet acquisition device is a common interface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what

30 operations need to occur on packets of different types-accomplished by compiler and

optimizer 310, (2) the processing-parsing and extraction of selected portions-of

EX 1018 Page 19

n
'

13

packets to generate an identifying signature-accomplished by parser subsystem 301, and

(3) the analysis of the packets-accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. The initialization

5 occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

10 monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem

15 301 extracts characteristic portions (signature information) from the packet 302. Both the

pattern information for parsing and the related extraction operations, e.g., extraction

masks, are supplied from a parsing-pattern-structures and extraction-operations database

(parsing/extractions database) 308 filled by the compiler and optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and

20 states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocols at the

next layer, and what information to extract for the purpose of identifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

25 protocols at any layer level. Thus 336 and 338 combined describe how one would decode,

analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

30 include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

EX 1018 Page 20

,

5

10

n
14

the packets based on the patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that indicate

a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. These are the different states and state transitions that occur in

different conversational flows, and the state operations that need to be performed (e.g.,

patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the contents

of one or more of databases 308 and 326 may be manually or otherwise generated. Note

that in some embodiments the layering selections information is inherent rather than

explicitly described. For example, since a PDL file for a protocol includes the child

15 protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304 is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the

packets. In particular, the PAR locates the next protocol field in the header and

20 determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An example of this is type and length comparison to distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

25 associated with that protocol that enables analysis of the next protocol layer. Once a

pattern or a set of patterns has been identified, it/they will be associated with a set of none

or more extraction operations. These extraction operations (in the form of commands and

associated parameters) are passed to the extraction process 306 implemented by an

extracting and information identifying (Ell) engine that extracts selected parts of the

30 packet, including identifying information from the packet as required for recognizing this

packet as part of a flow. The extracted information is put in sequence and then processed

in block 312 to build a unique flow signature (also called a "key") for this flow. A flow

EX 1018 Page 21

15

signature depends on the protocols used in the packet. For some protocols, the extracted

components may include source and destination addresses. For example, Ethernet frames

have end-point addresses that are useful in building a better flow signature. Thus, the

signature typically includes the client and server address pairs. The signature is used to

5 recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key includes generating a

hash of the signature using a hash function. The purpose if using such a hash is

conventional-to spread flow-entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

10 such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet-a parser record-that

includes the signature (i.e., selected portions of the packet), the hash, and the packet itself

to allow for any state processing that requires further data from the packet. An improved

embodiment of the parser subsystem might generate a parser record that has some

15 predefined structure and that includes the signature, the hash, some flags related to some

of the fields in the parser record, and parts of the packet's payload that the parser

s:ubsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation

20 of the selected portions of the packet to make the identifying signature. For example,

some "digest function" of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal

data store of records of known flows that the system has already encountered, and decides

(in 316) whether or not this particular packet belongs to a known flow as indicated by the

25 presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

30 stores the packet sequence number, and another is filled with state information in the form

of a program counter for a state processor that implements state processing 328.

EX 1018 Page 22

'

16

The determination (316) of whether a record with the same signature already

exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses

the hash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

5 cache is associated with the database 324. A lookup by the LUE for a known record is

carried out by accessing the cache using the hash, and if the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow

signature, state information, and extracted information from the packet for updating

10 flows, and one or more statistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow-entries

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the

·"-.,; 15 database to allow for fast lookups of entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the number of bits of the hash data value used. For example, in one embodiment, each

flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be

20 more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a

25 new flow, then a protocol and state identification process 318 further determines the state

and protocol. That is, process 318 determines the protocols and where in the state

sequence for a flow for this protocol's this packet belongs. Identification process 318 uses

the extracted information and makes reference to the database 326 of state patterns and

processes. Process 318 is then followed by any state operations that need to be executed

30 on this packet by a state processor 328.

If the packet is found to have a matching flow-entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked-up flow-entry, if more

EX 1018 Page 23

,.

n
17

classification by state processing of the flow signature is necessary. If not, a process 322

updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating

includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

5 If state processing is required, state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updates the state

to the next state according to a set of state instructions obtained form the state pattern and

processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

10 all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state-to-state based on predefined state

transition rules and state operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next-state

to proceed to if the test result is true. An operation is an operation to be performed while

15 the state processor is in a particular state-for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a packet,

and carrying out the operation or operations may leave one in a state that causes exiting

20 the system prior to completing the identification, but possibly knowing more about what

state and state processes are needed to execute next, i.e., when a next packet of this flow

is encountered. As an example, a state process (set of state operations) at a particular state

may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up

25 using the information from previously encountered flows, the network traffic monitor 300

provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

What may seem to prior art monitors to be some unassociated flow, may be recognized by

30 the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

EX 1018 Page 24

n
18

Thus, state processor 328 applies the first state operation to the packet for this

particular flow-entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

additional state operations to this particular packet until all those operations are

5 completed-that is, there are no more operations for this packet in this state. A process

332 decides if there are further states to be analyzed for this type of flow according to the

state of the flow and the protocol, in order to fully characterize the flow. If not, the

conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

10 In the particular embodiment, the state processor 328 starts the state processing by

using the last protocol recognized by the parser as an offset into a jump table (jump

vector). The jump table finds the state processor instructions to use for that protocol in the

state patterns and processes database 326. Most instructions test something in the unified

flow key buffer, or the flow-entry in the database of known flows 324, if the entry exists.

15 The state processor may have to test bits, do comparisons, add, or subtract to perform the

test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

20 this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

25 to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3

30 also generates characteristic parts of packets-the signatures-that can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.

EX 1018 Page 25

r

n
19

Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed as

more and more packets are examined. Future packets that are part of the same

5 conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i.e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

10 individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a short-cut recognition pattern-a signature-can be generated that will key on

every new incoming packet that relates to the conversational tlow. Checking a signature

15 involves a simple operation, allowing high packet rates to be successfully monitored on

the network.

In improved embodiments, several state analyzers are run in parallel so that a large

number of protocols and applications may be checked for. Every known protocol and

application will have at least one unique set of state transitions, and can therefore be

20 uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

25 flow. The new states for the flow-those associated with a set of state transitions for one

or more potential applications-are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation process.

30 That is, part of the initialization generates the pattern structures and extraction operations

database 308 and the state instruction database 328. Such initialization can occur off-line

EX 1018 Page 26

r

0
20

or from a central location.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

level 0). Each protocol is either a parent node or a terminal node. A parent node links a

5 protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet (the root or level O node) may be an Ethertype packet-also called an Ethernet

TypeNersion 2 and a DIX (DIGITAL-Intel-Xerox packet)-or an IEEE 803.2 packet.

10 Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol,

and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

15 Also shown in FIG. 16 is some (but not all) of the information specified in the POL files

for extraction the signature.

20

25

FIG. 17 A now shows the header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packet that indicates the next layer level is a two-byte type field 1702 containing the child

recognition pattern for the next level. The remaining information 1704 is shown hatched

because it not relevant for this level. The list 1712 shows the possible children for an

Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)

308 generated by compilation process 310, in one embodiment, is in the form of a three

dimensional structure that provides for rapidly searching packet headers for the next

protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as

an indexed set of 2-D representations). A compressed form of the 3-D structure is

30 preferred.

EX 1018 Page 27

r

21

An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations in a

memory rather than performing address link computations. In this alternate embodiment,

5 the PRD 308 includes two parts, a single protocol table 1850 (PT) which has an entry for

each protocol known for the monitor, and a series of Look Up Tables 1870 (LUT's) that

are used to identify known protocols and their children. The protocol table includes the

parameters needed by the pattern analysis and recognition process 304 (implemented by

PRE 1006) to evaluate the header information in the packet that is associated with that

10 protocol, and parameters needed by extraction process 306 (implemented by slicer 1007)

to process the packet header. When there are children, the PT describes which bytes in the

header to evaluate to determine the child protocol. In particular, each PT entry contains

the.header length, an offset to the child, a slicer command, and some flags.

15

The pattern matching is carried out by finding particular "child recognition codes"

in the header fields, and using these codes to index one or more of the LUT's. Each LUT

entry has a node code that can have one of four values, indicating the protocol that has

been recognized, a code to indicate that the protocol has been partially recognized (more

LUT lookups are needed), a code to indicate that this is a terminal node, and a null node

,:; to indicate a null entry. The next LUT to lookup is also returned from a LUT lookup.

20 Compilation process is described in FIG. 4. The source-code information in the

25

form of protocol description files is shown as 402. In the particular embodiment, the high

level decoding descriptions includes a set of protocol description files 336, one for each

protocol, and a set of packet layer selections 338, which describes the particular layering

(sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract

operations 406 is generated (404), and a set of packet state instructions and operations

407 is generated (405) in the form of instructions for the state processor that implements

state processing process 328. Data files for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

30 database 406 into the memory systems of the parser and extraction engines. (See the

parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each

EX 1018 Page 28

r
;:

22

type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

5 the three dimensional structure (one embodiment) or the or all the lookup tables for the

PRD.

Because of the large number of possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share common parents. When implemented in the form of the LUT' s, this

10 process can generate a single LUT from a plurality of LUT's. The optimization process

further includes a compaction process that reduces the space needed to store the data of

thePRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be

thought of as a set of 2-D structures each representing a protocol. To enable saving space

15 by using only one array per protocol which may have several parents, in one embodiment,

1;;;1 the pattern analysis subprocess keeps a "current header" pointer. Each location (offset)

index for each protocol 2-D array in the 3-D structure is a relative location starting with

the start of header for the particular protocol. Furthermore, each of the two-dimensional

arrays is sparse. The next step of the optimization, is checking all the 2-D arrays against

20 all the other 2-D arrays to find out which ones can share memory. Many of these 2-D

arrays are often sparsely populated in that they each have only a small number of valid

entries. So, a process of "folding" is next used to combine two or more 2-D arrays

together into one physical 2-D array without losing the identity of any of the original 2-D

arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur between any

25 2-D arrays irrespective of their location in the tree as long as certain conditions are met.

30

Multiple arrays may be combined into a single array as long as the individual entries do

not conflict with each other. A fold number is then used to associate each element with its

original array. A similar folding process is used for the set of LUTs 1850 in the alternate

embodiment of PIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

EX 1018 Page 29

r
$

n
23

at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one element at a time. A check is made (504) to determine

if the load-packet-component operation 503 succeeded, indicating that there was more in

5 the packet to process. If not, indicating all components have been loaded, the parser

subsystem 301 builds the packet signature (512)-the next stage (FIG 6).

IO

15

20

If a component is successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determine if the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505. If not, step 511

moves to the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the component extracted in 503. A pattern match obtained in 507 (as

indicated by test 508) means the parser subsystem 301 has found a node in the parsing

elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 and to step 505 to fetch the next node and process. Thus, there is an

"applying patterns" loop between 508 and 505. Once the parser subsystem 301 completes

all the patterns and has either matched or not, the parser subsystem 301 moves to the next

packet component (511).

Once all the packet components have been the loaded and processed from the

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6

25 FIG. 6 is a flow chart for extracting the information from which to build the

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this

point parser subsystem 301 has a completed packet component and a pattern node

available in a buffer (602). Step 603 loads the packet component available from the

pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there

30 was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node component in 602. If the

fetch was successful (test 606), indicating that there are extraction elements to apply, the

EX 1018 Page 30

r
A

24

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

5 component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component if

10 there is more to extract, or to a different packet component if there is no more to extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

604), all the components have been extracted. The built signature is loaded into the

15 signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

20 nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

hash elements that are found in the pattern node that is in the element database. In 706 the

resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left

25 (test 704). Once all the patterns of elements have been hashed, processes 304,306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFK.B in the

form of a UFKB record which is similar to a parser record, but with one or more different

30 fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine

EX 1018 Page 31

0 n
\.

25

(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with

the parser record that includes a signature, the hash and at least parts of the payload. In

802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the

lookup engine 314 computes a "record bin number" from the hash for a flow-entry. A bin

5 herein may have one or more "buckets" each containing a flow-entry. The preferred

embodiment has four buckets per bin.

10

15

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number, indicating there

are more buckets in the bin, the lookup/update engine compares (807) the current

signature (the UFKB-entry's signature) from that in the bucket (i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is marked in step

810 as "in process" and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 has a status of "found." The "found" indication allows the state

processing 328 to begin processing this UFKB element. The preferred hardware

embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment, a set of statistical operations is performed by a

20 calculator for every packet analyzed. The statistical operations may include one or more

of counting the packets associated with the flow; determining statistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determining statistical relationships of

timestamps of packets in the same direction. The statistical measures are kept in the flow-

25 entries. Other statistical measures also may be compiled. These statistics may be used

singly or in combination by a statistical processor component to analyze many different

aspects of the flow. This may include determining network usage metrics from the

statistical measures, for example to ascertain the network's ability to transfer information

for this application. Such analysis provides for measuring the quality of service of a

30 conversation, measuring how well an application is performing in the network, measuring

network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

EX 1018 Page 32

26

counters that are part of the flow-entry (in the cache) in step 812. The process exits at 813.

In our embodiment, the counters include the total packets of the flow, the time, and a

differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

5 such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again

looks up the cache for another bucket from that bin. The lookup/update engine thus

continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

10 If no match was found, the packet belongs to a new (not previously encountered)

15

flow. In 806 the system indicates that the record in the unified flow key buffer for this

packet is new, and in 812, any statistical updating operations are performed for this packet

by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

"new" status or a "found" status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

20 The hardware system

Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

25 implemented in software running on one or more general-purpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

30 more of the system may be implemented in software as processors become faster.

EX 1018 Page 33

r
n n

27

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction-operation database memory, in which the extraction instructions are stored.

5 Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the

system is initialized from a microprocessor (not shown) at which time these memories are

loaded through a host interface multiplexor and control register 1005 via the internal

buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by

compiling process 310 of FIG. 3.

10 A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

,;,,; controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

15 data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006

carries out the operations on the input buffer memory described in block 304 of FIG. 3.

That is, protocol types and associated headers for each protocol layer that exist in the

1:1 packet are determined.

20 The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

base packet offset from a control register to start the comparison. It loads this value into a

25 current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

30 The PRE 1006 includes of a comparison engine. The comparison engine has a first

stage that checks the protocol type field to determine if it is an 802.3 packet and the field

should be treated as a length. If it is not a length, the protocol is checked in a second

EX 1018 Page 34

n
28

stage. The first stage is the only protocol level that is not programmable. The second stage

has two full sixteen bit content addressable memories (CAMs) defined for future protocol

additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for the

5 extraction engine (also called a "slicer") 1007. The recognized patterns and the commands

are sent to the extraction engine 1007 that extracts information from the packet to build

the parser record. Thus, the operations of the extraction engine are those carried out in

blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in

the form of extraction instruction pointers which tell the extraction engine 1007 where to

10 a find the instructions in the extraction operations database memory (i.e., slicer instruction

database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process code is used to fetch the first instruction from the instruction

15 database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a

byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.

20

25

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more (i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

30 Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

EX 1018 Page 35

r ..
f
t
'

29

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

5 1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

10

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer

host interface controller 1118, which in turn has access to a cache system 1115. The cache

system has bi-directional access to and from the state processor of the system 1108. State

15 processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

comprising packet signatures and payloads that come from the parser into the unified flow

key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

20 records. A UFKB record is essentially a parser record; the UFKB holds records of packets

that are to be processed or that are in process. Furthermore, the UFKB provides for one or

more fields to act as modifiable status flags to allow different processes to run

concmTently.

Three processing engines run concurrently and access records in the UFKB 1103:

25 the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM's). There is bi-directional access between each of the finite

state machines and the unified flow key buffer 1103. The UFKB record includes a field

that stores the packet sequem;;e number, and another that is filled with state information in

30 the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

and that the LUE is transferring processing of the entry to the state processor. The LUE

EX 1018 Page 36

I
;
i
t

30

done indicator is also used to indicate what the next entry is for the LUE. There also is

provided a flag to indicate that the state processor is done with the current flow and to

indicate what the next entry is for the state processor. There also is provided a flag to

indicate the state processor is transferring processing of the UFKB-entry to the flow

5 insertion and deletion engine.

10

15

20

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular

engine has been applied to any unified flow key buffer entry is determined by status fields

set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry

indicates whether an entry is new or found. In other embodiments, the LUE issues a flag

to pass the entry to the state processor for processing, and the required operations for a

new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and

a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can

thus directly insert or modify data in the cache.

25 The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The

bottom CAM's pointer points to the least recently used (LRU) cache memory entry.

30 Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

CAM are replaced by the flow-entry from the flow-entry database 324. This now becomes

the most recently used entry, so the contents of the bottom CAM are moved to the top

EX 1018 Page 37

~

!
~
\',

" I,

~
~

,,
~ • ,.
\
t
t
,.
l,

5

31

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the operation

of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a "new"

UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read a matching

bin of up to four buckets from the cache. The cache system attempts to obtain the

matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket

10 and compares it using the signature to the signature of the UFKB-entry until there is a

(:! match or there are no more buckets.

15

20

If there is no match, or if the cache failed to provide a bin of flow-entries from the

cache, a time stamp in set in the flow key of the UFKB record, a protocol identification

and state determination is made using a table that was loaded by compilation process 310

during initialization, the status for the record is set to indicate the LUE has processed the

record, and an indication is made that the UFKB-entry is ready to start state processing.

The identification and state determination generates a protocol identifier which in the

preferred embodiment is a "jump vector" for the state processor which is kept by the

UFKB for this UFKB-entry and used by the state processor to start state processing for

the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow-entry, including the timestamp. In addition, a time difference

25 from the last stored timestamp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow-entry is examined by looking at the protocol

identifier stored in the flow-entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

30 vector for the state processor to a subroutine to state processing the protocol, and no more

classification is indicated in the preferred embodiment by the jump vector being zero. If

the protocol identifier indicates more processing, then an indication is made that the

EX 1018 Page 38

<~”r"'vrrwafi‘‘W'va‘fifl'x‘1‘«
mt-f‘

“Hmong.“
.”Mu9-"

10

15

20

25

30

m m\\“ ~

31

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the operation

of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a “new”

UFKB~entry is available. The LUE uses the hash in the UFKB-entry to read a matching

bin of up to four buckets from the cache. The cache system attempts to obtain the

matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to bring in a matching bin from the external memory.

When a flow~entry is found using the hash, the LUE 1107 looks at each bucket

and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from the

cache, a time stamp in set in the flow key of the UFKB record, a protocol identification

and state determination is made using a table that was loaded by compilation process 310

during initialization, the status for the record is set to indicate the LUE has processed the

record, and an indication is made that the UFKB-entry is ready to start state processing.

The identification and state determination generates a protocol identifier which in the

preferred embodiment is a “jump vector” for the state processor which is kept by the

UFKB for this UFKB-entry and used by the state processor to start state processing for

the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow-entry, including the timestamp. In addition, a time difference

from the last stored timestamp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow-entry is examined by looking at the protocol

identifier stored in the flow~entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

vector for the state processor to a subroutine to state processing the protocol, and no more

classification is indicated in the preferred embodiment by the jump vector being zero. If

the protocol identifier indicates more processing, then an indication is made that the

EX 1018 Page 38

··= ::J

n
\. ; A

32

UFKB-entry is ready to start state processing and the status for the record is set to indicate

the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a

UFKB-entry after the LUE has completed. State processor 1108 includes a state processor

5 program counter SPPC that generates the address in the state processor instruction

database 1109 loaded by compiler process 310 during initialization. It contains an

Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can

be incremented or loaded from a Jump Vector Multiplexor which facilitates conditional

branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier

IO from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the arithmetic logic unit (SP ALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

15 was decoded.

20

The State Processor ALU (SP ALU) contains all the Arithmetic, Logical and String

Compare functions necessary to implement the State Processor instructions. The main

blocks of the SP ALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-or

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state

25 operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is

new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified

30 flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used

to set the state processor's instruction counter. The state processor 1108 starts the process

EX 1018 Page 39

10

”1111:

“iii

15iii..:!:..

f'flf'l

“a.

20

25

30

32

UFKB-entry is ready to start state processing and the status for the record is set to indicate

the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a

UFKBentry after the LUE has completed. State processor 1108 includes a state processor

program counter SPPC that generates the address in the state processor instruction

database 1109 loaded by compiler process 310 during initialization. It contains an

Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can

be incremented or loaded from a lump Vector Multiplexor which facilitates conditional

branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier

from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the aritlnnetic logic unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String

Compare functions necessary to implement the State Processor instructions. The main

blocks of the SPALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and :1 Compare block which compares two operands by exclusive—on

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB—entry is

new or corresponding to a found flow~entry. This UFKB—entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the process

EX 1018 Page 39

33

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump

table. The jump table takes us to the instructions to use for that protocol. Most

instructions test something in the unified flow key buffer or the flow-entry if it exists. The

state processor 1108 may have to test bits, do comparisons, add or subtract to perform the

5 test.

The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be

IO performed on each unified flow key buffer entry. One aspect of the state processor is its

ability to search for one or more (up to four) reference strings in the payload part of the

UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be

15 performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by the

SP ALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

20 state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is fully

25 determined. If indeed there are no more states to process for this flow, then in 1311 the

processor finalizes the processing. Some final states may need to put a state in place that

tells the system to remove a flow-for example, if a connection disappears from a lower

level connection identifier. In that case, in 1311, a flow removal state is set and saved in

the flow-entry. The flow removal state may be a NOP (no-op) instruction which means

30 there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or

EX 1018 Page 40

{Ia
Er
t

.r‘Mp
l0

«whxw-

ttmore
: 15

20

25

30

(”3 0

33

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump

table. The jump table takes us to the instructions to use for that protocol. Most

instructions test something in the unified flow key buffer or the flow-entry if it exists. The

state processor 1108 may have to test bits, do comparisons, add or subtract to perform the

test

The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc), so that many such instructions need to be

performed on each unified flow key buffer entry. One aspect of the state processor is its

ability to search for one or more (up to four) reference strings in the payload part of the

UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SP1?) to obtain the next instruction. The SP]? may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is fully

determined. If indeed there are no more states to process for this flow, then in 131 1 the

processor finalizes the processing. Some final states may need to put a state in place that

tells the system to remove a flow—for example, if a connection disappears from a lower

level connection identifier. In that case, in 1311, a flow removal state is set and saved in

the flow-entry. The flow removal state may be a NOP (no—op) instruction which means

there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or

EX 1018 Page 40

'

t

--~

n
34

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow-entry in

s the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

10

Note that state processing updates information in the unified flow key buffer 1103

and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

the state processor is passing processing of this entry to the flow insertion and deletion

15 engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are

20 grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that

may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB, so this bin may already have been sought for the UFKB-

25 entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked "used" in the cache engine of cache 1115 using a timestamp that

is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

30 bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as "in process"

and as "new" in the cache system (and hence in the external memory). In 1212, the initial

EX 1018 Page 41

,4,’n—v".:9$,1“,

: ;

135:1:”:31,ii

iii!iiIZIit"

13111111".}!11.733:31353.1

10

15

20

25

30

(.71 O

34

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow—entry in

the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer 1103

and the flow-entry in the cache. Once the state processor is done, a flag is set in the

UFKB for the entry that the state processor is done. Furthennore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

insertionfdeletion engine 11 10 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB—entry indicating that

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are

grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that

may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB, so this bin may already have been sought for the UFKB-

entry by the LUE. In 1204 the FIDE 1 110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

binfbucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp that

is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as “in process”

and as “new” in the cache system (and hence in the external memory). In 1212, the initial

EX 1018 Page 41

1
I. .,.
t
t'

t r
T·

t
'f
V

l
t
!

t
~*

~=

' -~
f' " '
..

5

10

0
35

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,

the unified flow key buffer entry for the packet is set as "drop," indicating that the system

cannot process the particular packet because there are no buckets left in the system. The

process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and

deletion operations are completed for this UFKB-entry. This also lets the UFKB provide

the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buff er entry by all of

the engines required to access and manage a particular packet and its flow signature, the

15 unified flow key buffer entry is marked as "completed." That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

20

All flow-entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lookup/update engine 1107 is able to request that the cache system

pull a particular flow or "buckets" of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system once it is looked up by means of the lookup/update

25 engine request, and the flow insertion/deletion engine 1110 can create new entries in the

cache system if required based on information in the unified flow key buffer 1103. The

cache retrieves information as required from the memory through the memory interface

1123 and the unified memory controller 1119, and updates information as required in the

memory through the memory controller 1119.

30 There are several interfaces to components of the system external to the module of

FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

EX 1018 Page 42

10

,n‘é’aflr'W‘a“‘-“:‘*“‘‘'

25

30

O O

35

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,

the unified flow key buffer entry for the packet is set as “drop,” indicating that the system

cannot process the particular packet because there are no buckets left in the system. The

process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and

deletion operations are completed for this UFKB-entry. This also lets the UFKB provide

the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and manage a particular packet and its flow signature, the

unified flow key buffer entry is marked as “completed.” That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow—entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lockup/update engine 1107 is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system once it is looked up by means of the lockup/update

engine request, and the flow insertion/deletion engine 1110 can create new entries in the

cache system if required based on information in the unified flow key buffer 1103. The

cache retrieves information as required from the memory through the memory interface

1123 and the unified memory controller 1119, and updates information as required in the

memory through the memory controller 1119.

There are several interfaces to components of the system external to the module of

FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

EX 1018 Page 42

36

processing system such as a microprocessor or a multiplexor (MUX) system.

Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12

into some other processing system to manage the classification system and to extract data

gathered by the system.

5 The memory interface 1123 is designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),

and so forth.

10 FIG. 10 also includes some "generic" interfaces. There is a packet input interface

1012-a general interface that works in tandem with the signals of the input buffer

interface control I 022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host interface

15 multiplexor and control registers 1005. This enables the parsing system to be managed by

an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

20 created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes related

to creating and analyzing traffic within a network. Verilog or other HDL implementation

is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10
'{

i

25 and 11 are implemented in a set of six field programmable logic arrays (FPGA's). The

boundaries of these FPGA's are as follows. The parsing subsystem of FIG. 10 is

implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts

of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of

1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single

30 FPGA. State processor 1108 and part of state processor instruction database memory

1109 is another FPGA. Portions of the state processor instruction database memory 1109

are maintained in external SRAM' s. The lookup/update engine 1107 and the flow

EX 1018 Page 43

Mh‘wfi'fl'-Wm,mvfl-WWWWVN'"“i"
a.mom,“

 1131::.121.11.:1133311
 ,,,,.,qum-swwmmw”""‘"”"‘“‘“W" l

10

20

25

30

\(V n

36

processing system such as a microprocessor or a multiplexer (MUX) system.

Consequently, one can connect the overall traffic classification system of FIGS. 1 1 and 12

into some other processing system to manage the classification system and to extract data

gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory

systems that one may want to use to store the flow—entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),

and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012-—a general interface that works in tandem with the signals of the input buffer

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host interface

multiplexer and control registers 1005. This enables the parsing system to be managed by

an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

created in an HDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes related

to creating and analyzing traffic within a network. Verilog or other HDL implementation

is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10

and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The

boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is

implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts

of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of

1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single

FPGA. State processor 1108 and part of state processor instruction database memory

1109 is another FPGA. Portions of the state processor instruction database memory 1109

are maintained in external SRAM’s. The lockup/update engine 1107 and the flow

EX 1018 Page 43

37

insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache

system 1115, the unified memory control 1119, and the analyzer host interface and

control 1118.

Note that one can implement the system as one or more VSLI devices, rather than

5 as a set of application specific integrated circuits (ASIC's) such as FPGA's. It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a "core") of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to

10 analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in either

direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301,

which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

signature of each packet. A memory 324 is used to store the database of flows that are

15 determined and updated by monitor 300. A host computer 1504, which might be any

processor, for example, a general-purpose computer, is used to analyze the flows in

memory 324. As is conventional, host computer 1504 includes a memory, say RAM,

shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

~ 20 is coupled to a network interface card 1510 that is connected to the network 102.
~

',
"

The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also are

25 available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

30 Monitor 300, and in particular, analyzer 303 is capable of carrying out state

EX 1018 Page 44

rm.4..”mm-m

10

Hill-1

lift;.uiil.'illi'
E 15

20

«orm»

25

30

”’5"

o o\

37

insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache

system 1 115, the unified memory control 1119, and the analyzer host interface and

control 11 18.

Note that one can implement the system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub~unit (a “core”) of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in either

direction are supplied to monitor 300. Monitor 300 comprises the parser sub—system 301,

which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

signature of each packet. A memory 324 is used to store the database of flows that are

determined and updated by monitor 300. A host computer 1504, which might be any

processor, for example, a general—purpose computer, is used to analyze the flows in

memory 324. As is conventional, host computer 1504 includes a memory, say RAM,

shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMON probe, where a network interface card is used

to send RMON information to the network. Commercial SNMP implementations also are

available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

EX 1018 Page 44

0
38

analysis for packet exchanges that are commonly referred to as "server announcement"

type exchanges. Server announcement is a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple .
: clients. Many applications use a server announcement process as a means of multiplexing

J 5 a single port or socket into many applications and services. With this type of exchange,

messages are sent on the network, in either a broadcast or multicast approach, to

announce a server and application, and all stations in the network may receive and decode

these messages. The messages enable the stations to derive the appropriate connection

point for communicating that particular application with the particular server. Using the

f \J]
~ ~J

L

10 server announcement method, a particular application communicates using a service

channel, in the form of a TCP or UDP socket or port as in the IP protocol suite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out "in-stream analysis" of packet

exchanges. The "in-stream analysis" method is used either as a primary or secondary

15 recognition process. As a primary process, in-stream analysis assists in extracting detailed

information which will be used to further recognize both the specific application and

application component. A good example of in-stream analysis is any Web-based

application. For example, the commonly used PointCast Web information application can

be recognized using this process; during the initial connection between a PointCast server

20 and client, specific key tokens exist in the data exchange that will result in a signature

being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server

announcement process. In many cases in-stream analysis will augment other recognition

processes. An example of combining in-stream analysis with server announcement can be

25 found in business applications such as SAP and BAAN.

"Session tracking" also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly seen

30 in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

EX 1018 Page 45

r.w

2:;

10

15

20

30

fl 0

38

analysis for packet exchanges that are commonly referred to as “server announcement”

type exchanges. Server announcement is a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcement process as a means of multiplexing

a single port or socket into many applications and services. With this type of exchange,

messages are sent on the network, in either a broadcast or multicast approach, to

announce a server and application, and all stations in the network may receive and decode

these messages. The messages enable the stations to derive the appropriate connection

point for communicating that particular application with the particular server. Using the

server announcement method, a particular application communicates using a service

channel, in the form of a TCP or UDP socket or port as in the IP protocol suite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in—stream analysis” of packet

exchanges. The “in—stream analysis” method is used either as a primary or secondary

recognition process. As a primary process, iii—stream analysis assists in extracting detailed

information which will be used to further recognize both the specific application and

application component. A good example of iii-stream analysis is any Web-based

application. For example, the commonly used PointCast Web information application can

be recognized using this process; during the initial connection between a PointCast server

and client, specific key tokens exist in the data exchange that will result in a signature

being generated to recognize PointCast.

The iii-stream analysis process may also be combined with the server

announcement process. In many cases in—stream analysis will augment other recognition

processes. An example of combining in—stream analysis with server announcement can be

found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires

an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly seen

in the TCP and UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

EX 1018 Page 45

I
i
!
\
t

L.:..

(-,

39

port to exchange the remainder of the data between the client and the server. The server

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

5 One example of session tracking is TFTP (Trivial File Transfer Protocol), a

10

version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFTP, a specific port (port number 69) is always

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request, a

new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TFf P; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for monitoring

·e,J 15 the remaining packets of this data exchange.

l

Network monitor 300 can also understand the current state of particular

connections in the network. Connection-oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

20 server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

acknowledgement from the server. Once the server has acknowledged the synchronization

request, data may be exchanged between the client and the server. When communication

is no longer required, the client sends a finish or complete message to the server, and the

25 server acknowledges this finish request with a reply containing the sequence numbers

from the request. The states of such a connection-oriented exchange relate to the various

types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

30 basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

EX 1018 Page 46

5

10

E

15

. 20

l
l
t; 25
t;

30

m to

39

port to exchange the remainder of the data between the client and the server. The server

then replies to the request of the client using this newly created port. The original port

used by the client to connect to the server will never be used again during this data

exchange.

One example of session tracking is TPTP (Trivial File Transfer Protocol), a

version of the TCP/IP FTP proroeol that has no directory or password capability. During

the client/server exchange process of TPTP, a specific port (port number 69) is always

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Once the server receives this request, a

new port number is created on the server. The server then replies to the client using the

new port. In this example, it is clear that in order to recognize TPTP; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for monitoring

the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular

connections in the network. Connectiomoriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCP transport

protocol that provides a reliable means of sending information between a client and a

server. When a data exchange is initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence number that is used to track an

acknowledgement from the server. Once the server has acknowledged the synchronization

request, data may be exchanged between the client and the server. When communication

is no longer required, the client sends a finish or complete message to the server, and the

server acknowledges this finish request with a reply containing the sequence numbers

from the request. The states of such a connection-oriented exchange relate to the various

types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content. which, in another aspect of the invention, is salvaged and maintained in the

EX 1018 Page 46

r
'

5

40

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California)

of the Remote Procedure Call (RPC), a programming interface that allows one program to

use the services of another on a remote machine. A Sun-RPC example is now used to

explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must establish

IO a connection, for which the RPC protocol can be used.

,~ id i Each server running the Sun-RPC protocol must maintain a process and database

~ T called the port Mapper. The port Mapper creates a direct association between a Sun-RPC r ,~
program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32-bit unique identifier

15 assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

t ;~ a Sun-RPC server can present the mappings between a unique program number and a

i ;:J specific transport socket through the use of specific request or a directed announcement.

,, 20 According to ICANN, port number 111 is associated with Sun RPC.

t

l
i

25

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making

a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the

request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

EX 1018 Page 47

"wt-(76‘

./q,«”mum.“«r.

w«macawmo\u“

 .ynwym:—wu,urv-vwr»2w.

Pa.”

10

15

20

25

40

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun—RFC is the implementation by Sun Microsystems, Inc. (Palo Alto, California)

of the Remote Procedure Call (RFC), a programming interface that allows one program to

use the services of another on a remote machine. A Sun—RPC example is now used to

explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must establish

a connection, for which the RFC protocol can be used.

Each server running the Sun-RFC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun—RFC

program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32~bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org , which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a SuanPC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 1 ll is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making

a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

UDP or TCP socket. Once the port Mapper process on the sun RFC server receives the

request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RFC. This

request specifies the program (as a program identifier), version, and might

specify the prorocol (UDP or TCP).

EX 1018 Page 47

' r
t

!

i'
' t
t
j'

t
J

L

5

10

()

41

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified, and

thus will use the TCP protocol for its reply.

3. The server 110 sends a TCP packet to port number 111, with an RPC Bind

Lookup Reply. The reply contains the specific port number (e.g., port number

'port') on which future transactions will be accepted for the specific RPC

program identifier (e.g., Program 'program') and the protocol (UDP or TCP)

for use.

It is desired that from now on every time that port number 'port' is used, the

packet is associated with the application program 'program' until the number 'port' no

longer is to be associated with the program 'program'. Network monitor 300 by creating a

flow-entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number 'port' will be associated by the network monitor

15 with the application program 'program'.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways

that a particular program-say 'program' -might be associated with a particular port

number, for example number 'port'. One is by a broadcast announcement of a particular

association between an application service and a port number, called a Sun RPC

20 portMapper Announcement. Another, is when some server-say the same SERVER 2-

replies to some client-say CLIENT I-requesting some portMapper assignment with a

RPC portMapper Reply. Some other client-say CLIENT 2-rnight inadvertently see this

request, and thus know that for this particular server, SERVER 2, port number 'port' is

associated with the application service 'program'. It is desirable for the network monitor

25 300 to be able to associate any packets to SERVER 2 using port number 'port' with the

application program 'program'.

30

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server's interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow 900

starts with a step 910 that a Remote Procedure Call bind lookup request is issued by client

EX 1018 Page 48

C“) n

41

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet came in using the TCP transport and that no protocol was specified, and

thus will use the TCP protocol for its reply.

U! P” The server 110 sends a TCP packet to port number I ll, with an RPC Bind

Lookup Reply. The reply contains the specific port number (e. g., port number

‘port’) on which future transactions will be accepted for the specific RPC

program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP)

for use.

10 It is desired that from now on every time that port number ‘port’ is used, the

packet is associated with the application program ‘program’ until the number ‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 by creating a flow—entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number ‘port’ will be associated by the network monitor

 15 with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways

that a particular program—say ‘program’-—~might be associated with a particular port

number, for example number ‘port’. One is by a broadcast announcement of a particular
association between an application service and a port number, called a Sun RPC

20 portMapper Announcement. Another, is when some server—say the same SERVER 2“-

replies to some client—«say CLIENT l—requesting some portMapper assignment with a

RPC portMapper Reply. Some other client—say CLIENT 2——-might inadvertently see this

request, and thus know that for this particular server, SERVER 2, port number ‘port’ is

associated with the application service ‘program’. It is desirable for the network monitor

25 300 to be able to associate any packets to SERVER 2 using port number ‘port’ with the

application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e. g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

30 FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow 900

starts with a step 910 that a Remote Procedure Call bind lockup request is issued by clientI

EX 1018 Page 48

t

1
1
i
I
1
t

L

5

10

n
42

106 and ends with the server state creation step 904. Such RPC bind lookup request

includes values for the 'program,' 'version,' and 'protocol' to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

• Process 909: Extract the 'program,' 'version,' and 'protocol' (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

• Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If

value is portMapper, save paired socket (i.e., dest for destination address, src

for source address). Decode ports and mapping, save ports with socket/addr

key. There may be more than one pairing per mapper packet. Form a signature

(e.g., a key). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

15 the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow

entry database. That signature now may be used to identify packets associated with the

server.

The server state creation step 904 can be reached not only from a Bind Lookup

20 Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can

announce that it is able to provide a particular application service. Embodiments of the

present invention preferably can analyze when an exchange occurs between a client and a

server, and also can track those stations that have received the announcement of a service

25 in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901 could

be in reply to a portMapper request, and is also broadcast. It includes all the service

30 parameters.

EX 1018 Page 49

10 llifitl

Hill]!4552..Ha
15

M

o n

42

106 and ends with the server state creation step 904. Such RPC bind lockup request

includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

a Process 909: Extract the ‘program,’ ‘Version,’ and ‘protocol’ (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 1 ll indicating Sun RPC.

0 Process 908: Decode the Sun RPC packet. Check RPC type field for ID. if

value is portMapper, save paired socket (6.6., dest for destination address, src

for source address). Decode ports and mapping, save ports with socketladdr

key. There may be more than one pairing per mapper packet. Form a signature

(e.g., a key). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RPC bind lockup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now may be used to identify packets associated with the

SGI’VCI‘.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from 3 RFC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can

announce that it is able to provide a particular application service. Embodiments of the

present invention preferably can analyze when an exchange occurs between a client and a

server, and also can track those stations that have received the announcement of a service

in the network.

The RPC Announcement portMappcr announcement 902 is a broadcast. Such

causes various clients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RFC Reply portMapper step 901 could

be in reply to a portMapper request, and is also broadcast. It includes all the service

parameters.

EX 1018 Page 49

n
43

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service 'program'.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun

5 Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, "signature-I" 210 and "signature-2"

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds

10 to such a request sent from CLIENT 3 to SERVER 2. This packet contains important

information that is used in building a signature according to an aspect of the invention. A

source and destination network address occupy the first two fields of each packet, and

according to the patterns in pattern database 308, the flow signature (shown as KEYl 230

in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include

15 these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address identifies the

client 106 (shown also as 202), the label used in the drawing is "C{. If such address

identifies the server 110 (shown also as server 204), the label used in the drawing is "S{.

The first two fields 214 and 215 in packet 206 are "Si" and C{ because packet 206 is

\;'.J provided from the server 110 and is destined for the client 106. Suppose for this example,

I
f ,, .

20 "Si" is an address numerically less than address "C(. A third field "pl" 216 identifies the

particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port number

field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the

25 hash pattern in field 218 is used to identify the destination-port pattern. The order

indicates the client-server message direction. A sixth field denoted "i l" 219 is an element

that is being requested by the client from the server. A seventh field denoted "s1 a" 220 is

the service requested by the client from server 110. The following eighth field "QA" 221

~ (for question mark) indicates that the client 106 wants to know what to use to access

30 application "s 1 a". A tenth field "QP" 223 is used to indicate that the client wants the

server to indicate what protocol to use for the particular application.

L
EX 1018 Page 50

iaa,i
?t
l
'r
g

10

15

20

25

30

C“) 0

43

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, “signature—l” 210 and “signature~2”

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds

to such a request sent from CLIENT 3 to SERVER 2. This packet contains important

information that is used in building a signature according to an aspect of the invention. A

source and destination network address occupy the first two fields of each packet, and

according to the patterns in pattern database 308, the flow signature (shown as KEYI 230

in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include

these two fields in signature KEY l (230). Note that in FIG. 2, if an address identifies the

client 106 (shown also as 202), the label used in the drawing is “Cl”. If such address

identifies the server 110 (shown also as server 204), the label used in the drawing is “S 1”.

The first two fields 214 and 215 in packet 206 are “SI" and C1” because packet 206 is

provided from the server 110 and is destined for the client 106. Suppose for this example,

“SI” is an address numerically less than address “C1”. A third field “pl” 216 identifies the

particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port number

field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the

hash pattern in field 218 is used to identify the destination—port pattern. The order

indicates the client—server message direction. A sixth field denoted “i1” 219 is an element

that is being requested by the client from the server. A seventh field denoted “s 1a” 220 is

the service requested by the client from server 110. The following eighth field “QA” 221

(for question mark) indicates that the client 106 wants to know what to use to access

application “51a”. A tenth field “Q ” 223 is used to indicate that the client wants the

server to indicate what protocol to use for the particular application.

EX 1018 Page 50

n n
44

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

packets, and is transmitted to the server 110 on a well-known service connection identifier

(port 111 indicating Sun RPC).

5 Packet 207 is the first sent in reply to the client 106 from the server. It is the

RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated "Ci" and "Si", respectively. Notice the order

is now reversed, since the client-server message direction is from the server 110 to the

10 client 106. The protocol "pl" is used as indicated in field 226. The request "i1" is in field

t:J 229. Values have been filled in for the application port number, e.g., in field 233 and

1r protocol ""p2'"' in field 233.

The flow signature and flow states built up as a result of this exchange are now

"i described. When the packet monitor 300 sees the request packet 206 from the client, a

15 first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a source

address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

20 lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume "S 1"<"C 1", the order is address "S 1"

followed by client address "Ci", The next field used to build the signature is a protocol

field 242 extracted from packet 206's field 216, and thus is the protocol "pl". The next

25 field used for the signature is field 243, which contains the destination source port number

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be

recognized in the payload of packets to derive how this packet or sequence of packets

exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP

port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port

30 numbers of UDS for pl that will be used to recognize this flow (e.g., port 111). Port 111

indicates this is Sun RPC. Some applications, such as the Sun RPC Bind Lookups, are

EX 1018 Page 51

xiii:.ttz.“is.at53.221:"11511Itzzu112.1

10

15

20

25

30

m D

44

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well—defined format, as do all the

packets, and is transmitted to the Server 110 on a well~known service connection identifier

(port 111 indicating Sun RPC).

Packet 20? is the first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224—233. The destination and source addresses are

carried in fields 224 and 225, e. g., indicated “C1” and “SI”, respectively. Notice the order

is now reversed, since the client-server message direction is from the server 110 to the

client 106. The protocol “p1” is used as indicated in field 226. The request “i1” is in field

229. Values have been filled in for the application port number, e.g., in field 233 and

protocol ““p2”” in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a source

address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lockup

operations. In this case, therefore, since we assume “Sf’<“C1”, the order is address “SI”

followed by client address “C1”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “pl”. The next

field used for the signature is field 243, which contains the destination source port number

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be

recognized in the payload of packets to derive how this packet or sequence of packets

exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP

port numbers. In the case of the Sun RFC example, the crosshatch represents a set of port

numbers of UDS for p1 that will be used to recognize this flow (e. g., port 111). Port 111

indicates this is Sun RFC. Some applications, such as the Sun RFC Bind Lookups, are

EX 1018 Page 51

5

10

45

directly detenninable ("known") at the parser level. So in this case, the signature KEY -1

points to a known application denoted "al" (Sun RPC Bind Lookup), and a next-state that

the state processor should proceed to for more complex recognition jobs, denoted as state

"st0 " is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters

the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is

obtained, and in this flow-entry indicates state "st0 ". The operations for state "st 0 " in the

state processor instruction database 326 instructs the state processor to build and store a

new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the

state processor also includes the destination and a source addresses 250 and 251,

respectively, for server ''Si" followed by (the numerically higher address) client "C(. A

protocol field 252 defines the protocol to be used, e.g., "p2" which is obtained from the

reply packet. A field 253 contains a recognition pattern also obtained from the reply

u 15 packet. In this case, the application is Sun RPC, and field 254 indicates this application

"a2". A next-state field 255 defines the next state that the state processor should proceed

20

to for more complex recognition jobs, e.g., a state "st l". In this particular example, this is

a final state. Thus, KEY-2 may now be used to recognize packets that are in any way

associated with the application "a2". Two such packets 208 and 209 are shown, one in

each direction. They use the particular application service requested in the original Bind

Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server "S 1" followed by client "C 1". Such values are automatically

25 filled in when the addresses are first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

30 have a destination and source address S1 and C1, in a pair of fields 260 and 261. A field

262 defines the protocol as "p2", and a field 263 defines the destination port number.

EX 1018 Page 52

 10

20

25

30

(“2 (7k.

45

directly determinable (“known”) at the parser level. So in this case, the signature KEY-l

points to a known application denoted “at” (Sun RPC Bind Lookup), and a next-state that

the state processor should proceed to for more complex recognition jobs, denoted as state

“stD” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters

the analyzer subsystem 303 from the parser subsystem 301, the complete flow—entry is

obtained, and in this flow-entr indicates state “st ”. The 0 erations for state “st ” in theY D P D

state processor instruction database 326 instructs the state processor to build and store a

new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the

state processor also includes the destination and a source addresses 250 and 251,

respectively, for server “S 1” followed by (the numerically higher address) client “C1”. A

protocol field 252 defines the protocol to be used, e.g., “pz” which is obtained from the

reply packet. A field 253 contains a recognition pattern also obtained from the reply

packet. In this case, the application is Sun RFC, and field 254 indicates this application

“32”. A next-state field 255 defines the next state that the state processor should proceed

to for more complex recognition jobs, e.g., a state “stl”. In this particular example, this is

a final state. Thus, KEY-2 may now be used to recognize packets that are in any way

associated with the application “a”. Two such packets 208 and 209 are shown, one in

each direction. They use the particular application service requested in the original Bind

Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “8 1” followed by client “C1”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address 81 and C1, in a pair of fields 260 and 261. A field

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

EX 1018 Page 52

I

n
46

Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the packet.

Others require a sequence of state transitions to occur in order to match a known and

predefined climb from state-to-state.

5 Thus the flow signature for the recognition of application "a2" is automatically set

10

up by predefining what packet-exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a "final" resting state such as "st 1"

in field 255 is reached. All these are used to build the final set of flow signatures for

recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

15 analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

lf} of sequences of packets.

20

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as telephones,

"Internet" radios, pagers, and so forth. The term computer as used herein encompasses all

such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

25 limiting. Various alterations and modifications will no doubt become apparent to those or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

The Pattern Parse and Extraction Database Format

30 The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

EX 1018 Page 53

10

15

20

25

30

("3 m

46

Some network—server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the packet.

Others require a sequence of state transitions to occur in order to match a known and

predefined climb from state~to-state.

Thus the flow signature for the recognition of application “a?” is automatically set

up by predefining what packet-exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as “stl”

in field 255 is reached. All these are used to build the final set of flow signatures for

recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

of sequences of packets.

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as telephones,

“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all

such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

limiting. Various alterations and modifications will no doubt become apparent to these or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

The Pattern Parse and Extraction Database Format

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree (called

EX 1018 Page 53

J

s

47

base level). Each protocol is either a parent node of some other protocol at the next later

or a terminal node. A parent node links a protocol to other protocols (child protocols) that

can be at higher layer levels. Thus a protocol may have zero or more children.

As an example of the tree structure, consider an Ethernet packet. One of the

children nodes may be the IP protocol, and one of the children of the IP protocol may be

the TCP protocol. Another child of the IP may be the UDP protocol.

A packet includes at least one header for each protocol used. The child protocol of

a particular protocol used in a packet is indicated by the contents at a location within the

header of the particular protocol. The contents of the packet that specify the child are in

10 the form of a child recognition pattern.

A network analyzer preferably can analyze many different protocols. At a base

'"' level, there are a number of packet types used in digital telecommunications, including
:id

,fJ Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay, Digital Data Service, FDDI

(Fiber Distributed Data Interface), and T 1, among others. Many of these packet types use

IS different packet and/or frame formats. For example, data is transmitted in ATM and

frame-relay systems in the form of fixed length packets (called "cells") that are 53 octets

20

(i.e., bytes) long; several such cells may be needed to make up the information that might

be included in a single packet of some other type.

Note that the term packet herein is intended to encompass packets, datagrams,

frames and cells. In general, a packet format or frame format refers to how data is

encapsulated with various fields and headers for transmission across a network. For

example, a data packet typically includes an address destination field, a length field, an

error correcting code (ECC) field or cyclic redundancy check (CRC) field, as well as

headers and footers to identify the beginning and end of the packet. The terms "packet

25 format," "frame format" and "cell format" are generally synonymous.

The packet monitor 300 can analyze different protocols, and thus can perform

different protocol specific operations on a packet wherein the protocol headers of any

protocol are located at different locations depending on the parent protocol or protocols

used in the packet. Thus, the packet monitor adapts to different protocols according to the

30 contents of the packet. The locations and the information extracted from any packet are

adaptively determined for the particular type of packet. For example, there is no fixed

EX 1018 Page 54

,4v.“2mm:w“»t,

aynwwww"N
..:~:

.10».‘‘2

qu,rvrf..-'rr»
l‘iiiliithe{till

10

15

20

25

30

O (7)

47

base level). Each protocol is either a parent node of some other protocol at the next later

or a terminal node. A parent node links a protocol to other protocols (child protocols) that

can be at higher layer levels. Thus a protocol may have zero or more children.

As an example of the tree structure, consider an Ethernet packet. One of the

children nodes may be the IP protocol, and one of the children of the IP protocol may be

the TCP protocol. Another child of the I? may be the UDP protocol.

A packet includes at least one header for each protocol used. The child protocol of

a particular protocol used in a packet is indicated by the contents at a location within the

header of the particular protocol. The contents of the packet that specify the child are in

the form of a child recognition pattern.

A network analyzer preferably can analyze many different protocols. At a base

level, there are a number of packet types used in digital telecommunications, including

Ethernet, HDLC, ISDN, Lap B, ATM, X25, Frame Relay, Digital Data Service, FDDI

(Fiber Distributed Data Interface), and T1, among others. Many of these packet types use

different packet and/or frame formats. For example, data is transmitted in ATM and

frame-relay systems in the form of fixed length packets (called “cells”) that are 53 octets

(32.3., bytes) long; several such cells may be needed to make up the information that might

be included in a single packet of some other type.

Note that the term packet herein is intended to encompass packets, datagrams,

frames and cells. In general, a packet format or frame format refers to how data is

encapsulated with various fields and headers for transmission across a network. For

example, a data packet typically includes an address destination field, a length field, an

error correcting code (ECG) field or cyclic redundancy check (CRC) field, as well as

headers and footers to identify the beginning and end of the packet. The terms “packets)

format, “frame format” and “cell format” are generally synonymous.

The packet monitor 300 can analyze different protocols, and thus can perform

different protocol specific operations on a packet wherein the protocol headers of any

protocol are located at different locations depending on the parent protocol or protocols

used in the packet. Thus, the packet monitor adapts to different protocols according to the

contents of the packet. The locations and the information extracted from any packet are

adaptively determined for the particular type of packet. For example, there is no fixed

EX 1018 Page 54

n ,, . n
48

definition of what to look for or where to look in order to fonn the flow signature. In

some prior art systems, such as that described in United States Patent 5,101,402 to Chiu,

et al., there are fixed locations specified for particular types of packets. With the

proliferation of protocols, the specifying of all the possible places to look to determine the

s session becomes more and more difficult. Likewise, adding a new protocol or application

is difficult. In the present invention, the number of levels is variable for any protocol and

is whatever number is sufficient to uniquely identify as high up the level system as we

wish to go, all the way to the application level (in the OSI model).

Even the same protocol may have different variants. Ethernet packets for example,

10 have several known variants, each having a basic fonnat that remains substantially the

same. An Ethernet packet (the root node) may be an Ethertype packet-also called an

Ethernet Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)-or an IEEE

Ethernet (IEEE 803.x) packet. A monitor should be able to handle all types of Ethernet

protocols. With the Ethertype protocol, the contents that indicate the child protocol is in

',.j 15 one location, while with an IEEE type, the child protocol is specified in a different

location. The child protocol is indicated by a child recognition pattern.

20

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,

packet) of infonnation and includes infonnation on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the infonnation specified in the PDL files

for extraction the signature. Such infonnation is also to be specified in the parsing

structures and extraction operations database 308. This includes all of the header

infonnation at this level in the form of 6 bytes of Dst MAC information 1606 and 6 bytes

of Src MAC information 1610. Also specified are the source and destination address

25 components, respectively, of the hash. These are shown as 2 byte Dst Hash 1608 from the

Dst MAC address and the 2 byte Src Hash 1612 from the Src MAC address. Finally,

information is included (1614) on where to the header starts for infonnation related to the

next layer level. In this case the next layer level (level 2) infonnation starts at packet

offset 12.

30 FIG. 17 A now shows the header information for the next level (level-2) for an

Ethertype packet 1700.

For an Ethertype packet 1700, the relevant information from the packet that

EX 1018 Page 55

mmmom
i

mmmomrmae
m

(7 (W

48

definition of what to look for or where to look in order to form the flow signature. In

some prior art systems, such as that described in United States Patent 5,101,402 to Chiu,

er cl, there are fixed locations specified for particular types of packets. With the

proliferation of protocols, the specifying of all the possible places to look to determine the

session becomes more and more difficult. Likewise, adding a new protocol or application

is difficult. In the present invention, the number of levels is variable for any protocol and

is whatever number is sufficient to uniquely identify as high up the level system as we

wish to go, all the way to the application level (in the 081 model).

Even the same protocol may have different variants. Ethernet packets for example,

have several known variants, each having a basic format that remains substantially the

same. An Ethernet packet (the root node) may be an Ethertype packet—also called an

Ethernet Type/Version 2 and a DIX (DIGITAL-Intel—Xerox packed—or an IBEE

Ethernet (IEEE 803.x) packet. A monitor should be able to handle all types of Ethernet

protocols. With the Ethertype protocol, the contents that indicate the child protocol is in

one location, while with an IEEE type, the child protocol is specified in a different

location. The child protocol is indicated by a child recognition pattern.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature. Such information is also to be specified in the parsing

structures and extraction operations database 308. This includes all of the header

information at this level in the form of 6 bytes of Dst MAC information 1606 and 6 bytes

of Src MAC information 1610. Also specified are the source and destination address

components, respectively, of the hash. These are shown as 2 byte Dst Hash 1608 from the

Dst MAC address and the 2 byte Src Hash 1612 from the Src MAC address. Finally.

information is included (1614) on where to the header starts for information related to the

next layer level. In this case the next layer level (level 2) information starts at packet

offset 12.

FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700.

For an Ethertype packet 1700, the relevant information from the packet that

EX 1018 Page 55

I

l'.
!
" f

f

·~ .
"

.:=:.
:::

5

n n
49

indicates the next layer level is a two-byte type field 1702 containing the child recognition

pattern for the next level. The remaining information 1704 is shown hatched because it

not relevant for this level. The list 1712 shows the possible children for an Ethertype

packet as indicated by what child recognition pattern is found offset 12.

Also shown is some of the extracted part used for the parser record and to locate

the next header information. The signature part of the parser record includes extracted

part 1702. Also included is the 1-byte Hash component 1710 from this information.

An offset field 1710 provides the offset to go to the next level information, i.e., to

locate the start of the next layer level header. For the Ethertype packet, the start of the

10 next layer header 14 bytes from the start of the frame.

Other packet types are arranged differently. For example, in an ATM system, each

ATM packet comprises a five-octet "header" segment followed by a forty-eight octet

"payload" segment. The header segment of an ATM cell contains information relating to

the routing of the data contained in the payload segment. The header segment also

15 contains traffic control information. Eight or twelve bits of the header segment contain the

Virtual Path Identifier (VPI), and sixteen bits of the header segment contain the Virtual

Channel Identifier (VCI). Each ATM exchange translates the abstract routing information

represented by the VPI and VCI bits into the addresses of physical or logical network

links and routes each ATM cell appropriately.

20

25

FIG. 17B shows the structure of the header of one of the possible next levels, that

of the IP protocol. The possible children of the IP protocol are shown in table 1752. The

header starts at a different location (L3) depending on the parent protocol. Also included

in FIG. 17B are some of the fields to be extracted for the signature, and an indication of

where the next level's header would start in the packet.

Note that the information shown in FIGS. 16, 17A, and 17B would be specified to

the monitor in the form of PDL files and compiled into the database 308 of pattern

structures and extraction operations.

The parsing subsystem 301 performs operations on the packet header data based

on information stored in the database 308. Because data related to protocols can be

30 considered as organized in the form of a tree, it is required in the parsing subsystem to

EX 1018 Page 56

 ,‘«W‘wgfim5.:“a'w.

11252}:111375!

10

15

20

25

30

0 O

49

indicates the next layer level is a two-byte type field 1702 containing the child recognition

pattern for the next level. The remaining information 1704 is shown hatched because it

not relevant for this level. The list 1712 shows the possible children for an Ethertype

packet as indicated by what child recognition pattern is found offset 12.

Also shown is some of the extracted part used for the parser record and to locate

the next header information. The signature part of the parser record includes extracted

part 1702. Also included is the l-byte Hash component 1710 from this information.

An offset field 1710 provides the offset to go to the next level information, i.e., to

locate the start of the next layer level header. For the Ethertype packet, the start of the

next layer header 14 bytes from the start of the frame.

Other packet types are arranged differently. For example, in an ATM system, each

ATM packet comprises a five-octet “header” segment followed by a forty-eight octet

“payload” segment. The header segment of an ATM cell contains information relating to

the routing of the data contained in the payload segment. The header segment also

contains traffic control information. Eight or twelve bits of the header segment contain the

Virtual Path Identifier (VPI), and sixteen bits of the header segment contain the Virtual

Channel Identifier (VCI). Each ATM exchange translates the abstract routing information

represented by the VPI and VCI bits into the addresses of physical or logical network

links and routes each ATM cell appropriately.

FIG. 173 shows the structure of the header of one of the possible next levels, that

of the IP protocol. The possible children of the IP protocol are shown in table 1752. The

header starts at a different location (L3) depending on the parent protocol. Also included

in FIG. 17B are some of the fields to be extracted for the signature, and an indication of

where the next level’s header would start in the packet.

Note that the information shown in FIGS. 16, 17A, and 17B would be specified to

the monitor in the form of PDL files and compiled into the database 308 of pattern

structures and extraction operations.

The parsing subsystem 301 performs operations on the packet header data based

on information stored in the database 308. Because data related to protocols can be

considered as organized in the form of a tree, it is required in the parsing subsystem to

EX 1018 Page 56

50

search through data that is originally organized in the form of a tree. Since real time

operation is preferable, it is required to carry out such searches rapidly.

Data structures are known for efficiently storing information organized as trees.

Such storage-efficient means typically require arithmetic computations to determine

5 pointers to the data nodes. Searching using such storage-efficient data structures may

therefore be too time consuming for the present application. It is therefore desirable to

store the protocol data in some form that enables rapid searches.

In accordance with another aspect of the invention, the database 308 is stored in a

memory and includes a data structure used to store the protocol specific operations that

10 are to be performed on a packet. In particular, a compressed representation is used to store

information in the pattern parse and extraction database 308 used by the pattern

recognition process 304 and the extraction process 306 in the parser subsystem 301. The

data structure is organized for rapidly locating the child protocol related information by

using a set of one or more indices to index the contents of the data structure. A data

15 structure entry includes an indication of validity. Locating and identifying the child

protocol includes indexing the data structure until a valid entry is found. Using the data

structure to store the protocol information used by the pattern recognition engine (PRE)

1006 enables the parser subsystem 301 to perform rapid searches.

In one embodiment, the data structure is in the form of a three-dimensional

20 structure. Note that this three dimensional structure in tum is typically stored in memory

as a set of two-dimensional structures whereby one of the three dimensions of the 3-D

structure is used as an index to a particular 2-D array. This forms a first index to the data

structure.

FIG. 18A shows such a 3-D representation 1800 (which may be considered as an

25 indexed set of 2-D representations). The three dimensions of this data structure are:

EX 1018 Page 57

N’Yflk‘i‘«eV"‘ .
.wn

w:at.“Jan3

10

15

20

25

O O

50

search through data that is originally organized in the form of a tree. Since real time

operation is preferable, it is required to carry out such searches rapidly.

Data structures are known for efficiently storing information organized as trees.

Such storage—efficient means typically require arithmetic computations to determine

pointers to the data nodes. Searching using such storage-efficient data structures may

therefore be too time consuming for the present application. It is therefore desirable to

store the protocol data in some form that enables rapid searches.

In accordance with another aspect of the invention, the database 308 is stored in a

memory and includes a data structure used to store the protocol specific operations that

are to be performed on a packet. In particular, a compressed representation is used to store

information in the pattern parse and extraction database 308 used by the pattern

recognition process 304 and the extraction process 306 in the parser subsystem 301. The

data structure is organized for rapidly locating the child protocol related information by

using a set of one or more indices to index the contents of the data structure. A data

structure entry includes an indication of validity. Locating and identifying the child

protocol includes indexing the data structure until a valid entry is found. Using the data

structure to store the protocol information used by the pattern recognition engine (PRE)

1006 enables the parser subsystem 301 to perform rapid searches.

In one embodiment, the data structure is in the form of a three—dimensional

structure. Note that this three dimensional structure in turn is typically stored in memory

as a set of two-dimensional structures whereby one of the three dimensions of the 3~D

structure is used as an index to a particular 2~D array. This forms a first index to the data

structure.

FIG. 18A shows such a 3—D representation 1800 (which may be considered as an

indexed set of 2—D representations). The three dimensions of this data structure are:

EX 1018 Page 57

n n
\

,.

f,
' 51

1. Type identifier [1 :M]. This is the identifier that identifies a type of

t protocol at a particular level. For example, 01 indicates an Ethernet frame. 64

~ indicates IP, 16 indicates an IEEE type Ethernet packet, etc. Depending on

how many protocols the packet parser can handle, M may be a large number;

5 M may grow over time as the capability of analyzing more protocols is added

to monitor 300. When the 3-D structure is considered a set of 2-D structures,

the type ID is an index to a particular 2-D structure.

2. Size [1:64]. The size of the field of interest within the packet.

3. Location [1:512]. This is the offset location within the packet, expressed as

10 a number of octets (bytes).

15

At any one of these locations there may or may not be valid data. Typically, there

will not be valid data in most locations. The size of the 3-D array is M by 64 by 512,

which can be large; M for example may be 10,000. This is a sparse 3-D matrix with most

entries empty (i.e., invalid).

Each array entry includes a "node code" that indicates the nature of the contents.

This node code has one of four values: (1) a "protocol" node code indicating to the pattern

recognition process 304 that a known protocol has been recognized as the next (i.e., child)

protocol; (2) a "terminal" node code indicating that there are no children for the protocol

presently being searched, i.e., the node is a final node in the protocol tree; (3) a "null"

20 (also called "flush") node code indicating that there is no valid entry.

25

30

In the preferred embodiment, the possible children and other information are

loaded into the data structure by an initialization that includes compilation process 310

based on the PDL files 336 and the layering selections 338. The following information is

included for any entry in the data structure that represents a protocol.

(a) A list of children (as type IDs) to search next. For example, for an Ethernet

type 2, the children are Ethertype (IP, IPX, etc, as shown in 1712 of FIG.

17). These children are compiled into the type codes. The code for IP is 64,

that for IPX is 83, etc.

(b) For each of the IDs in the list, a list of the child recognition patterns that

need to be compared. For example, 64:080016 in the list indicates that the

EX 1018 Page 58

«1.1..9'zK

:‘ffjg.3Us».

“'31.".2""WéSa‘”

am«new..6";4
.“,zi‘A'vfizbtz-I*

fimflv

M:“It“!~v

e.Izrw‘Fzfif‘t

L.-.

3..

may"«

11x-

lle'ltall.

10

15

20

25

30

m m

5 1

1. Type identifier [1:M]. This is the identifier that identifies a type of

protocol at a particular level. For example, 01 indicates an Ethernet frame. 64

indicates 1?, 16 indicates an IEEE type Ethernet packet, etc. Depending on

how many protocols the packet parser can handle, M may be a large number;

M may grow over time as the capability of analyzing more protocols is added

to monitor 300. When the 3-D structure is considered a set of 2—D structures,

the type ID is an index to a particular 2-D structure.

2. Size [1:64]. The size of the field of interest within the packet.

3. Location [1:512]. This is the offset location within the packet, expressed as

a number of octets (bytes).

At any one of these locations there may or may not be valid data. Typically, there

will not be valid data in most locations. The size of the 3-D array is M by 64 by 512,

which can be large; M for example may be 10,000. This is a sparse 3—D matrix with most

entries empty (i.e., invalid).

Each array entry includes a “node code” that indicates the nature of the contents.

This node code has one of four values: (1) a “protocol” node code indicating to the pattern

recognition process 304 that a knovm protocol has been recognized as the next (i.e., child)

protocol; (2) a “terminal” node code indicating that there are no children for the protocol

presently being searched, i.e., the node is a final node in the protocol tree; (3) a “null”

(also called “flush”) node code indicating that there is no valid entry.

In the preferred embodiment, the possible children and other information are

loaded into the data structure by an initialization that includes compilation process 310

based on the PDL files 336 and the layering selections 338. The following information is

included for any entry in the data structure that represents a protocol.

(a) A list of children (as type IDs) to search next. For example, for an Ethernet

type 2, the children are Ethertype (IP, IPX, etc, as shown in 1712 of FIG.

17). These children are compiled into the type codes. The code for IP is 64,

that for IPX is 83, etc.

(b) For each of the IDs in the list, a list of the child recognition patterns that

need to be compared. For example, 642080015 in the list indicates that the

EX 1018 Page 58

:i
'•

h
t

,.

•'
.:h

t

0
52

value to look for is 0800 (hex) for the child to be type ID 64 (which is the IP

protocol). 83:8137 16 in the list indicates that the value to look for is 8137

(hex) for the child to be type ID 83 (which is the IPX protocol), etc.

(c) The extraction operations to perform to build the identifying signature for

5 the flow. The format used is (offset, length, flow_signature_value_identifier),

the flow _signature_ value_identifier indicating where the extracted entry goes

in the signature, including what operations (AND, ORs, etc.) may need to be

carried out. If there is also a hash key component, for instance, then

information on that is included. For example, for an Ethertype packet, the 2-

10

15

byte type (1706 in FIG 17) is used in the signature. Furthermore, a 1-byte

hash (1708 in FIG. 17 A) of the type is included .. Note furthermore, the child

protocol starts at offset 14.

An additional item may be the "fold." Folding is used to reduce the storage

requirements for the 3-D structure. Since each 2-D array for each protocol ID may be

sparsely populated, multiple arrays may be combined into a single 2-D array as long as

the individual entries do not conflict with each other. A fold number is then used to

associate each element. For a given lookup, the fold number of the lookup must match the

fold number entry. Folding is described in more detail below.

In the case of the Ethernet, the next protocol field may indicate a length, which

20 tells the parser that this is a IEEE type packet, and that the next protocol is elsewhere.

25

30

Normally, the next protocol field contains a value which identifies the next, i.e., child

protocol.

The entry point for the parser subsystem is called the virtual base layer and

contains the possible first children, i.e., the packet types. An example set of protocols

written in a high level protocol description language (PDL) is included herein. The set

includes PDL files, and the file describing all the possible entry points (i.e., the virtual

base) is called virtual.pd!. There is only one child, 01, indicating the Ethernet, in this file.

Thus, the particular example can only handle Ethernet packets. In practice, there can be

multiple entry points.

In one embodiment, the packet acquisition device provides a header for every

packet acquired and input into monitor 300 indicating the type of packet. This header is

EX 1018 Page 59

‘wwr‘é.-,.‘

'Cxmam;an}:‘.

”“54.1,;r.»1’;«fixv ,
Mama“.w”

.i.’1..+m1...;11.x.H...‘ 113:",.::f.'."ii-1‘Isfimiiiiiix"EESS‘nI1’:‘::uIii]:
iiffliil'lflf1173!:iii.‘‘17
iii!1533i!

10

15

20

25

30

o n

52

value to look for is 0800 (hex) for the child to be type 1D 64 (which is the IP

protocol). 83:813716 in the list indicates that the value to look for is 8137

(hex) for the child to be type 1D 83 (which is the IPX protocol), etc.

(c) The extraction operations to perform to build the identifying signature for

the flow. The format used is (offset, length, flow_signature_value_identifier),

the flow_signature_value_identifier indicating where the extracted entry goes

in the signature, including what operations (AND, ORs, etc.) may need to be

carried out. If there is also a hash key component, for instance, then

information on that is included. For example, for an Ethertype packet, the 2-

byte type (1706 in FIG 17) is used in the signature. Furthermore, a 1-byte

hash (1708 in FIG. 17A) of the type is included. . Note furthermore, the child

protocol starts at offset 14.

An additional item may be the “fold.” Folding is used to reduce the storage

requirements for the 3-D structure. Since each 2-D array for each protocol 1D may be

sparsely populated, multiple arrays may be combined into a single 2-D array as long as

the individual entries do not conflict with each other. A fold number is then used to

associate each element. For a given lookup, the fold number of the lookup must match the

fold number entry. Folding is described in more detail below.

In the case of the Ethernet, the next protocol field may indicate a length, which

tells the parser that this is a IEEE type packet, and that the next protocol is elsewhere.

Normally, the next protocol field contains a value which identifies the next, i.e., child

protocol.

The entry point for the parser subsystem is called the virtual base layer and

contains the possible first children, i.e., the packet types. An example set of protocols

written in a high level protocol description language (PDL) is included herein. The set

includes PDL files, and the file describing all the possible entry points (i.e., the virtual

base) is called virtual.de There is only one child, 01, indicating the Ethernet, in this file.

Thus, the particular example can only handle Ethernet packets. In practice, there can be

multiple entry points.

In one embodiment, the packet acquisition device provides a header for every

packet acquired and input into monitor 300 indicating the type of packet. This header is
1

EX 1018 Page 59

A

J

l
!

53

used to determine the virtual base layer entry point to the parser subsystem. Thus, even at

the base layer, the parser subsystem can identify the type of packet.

htitially, the search starts at the child of the virtual base, as obtained in the header

supplied by the acquisition device. In the case of the example, this has ID value O 1, which

5 is the 2-D array in the overall 3-D structure for Ethernet packets.

Thus hardware implementing pattern analysis process 304 (e.g., pattern

recognition engine (PRE) 1006 of FIG. 10) searches to determine the children (if any) for

the 2-D array that has protocol IDOL In the preferred embodiment that uses the 3-D data

structure, the hardware PRE 1006 searches up to four lengths (i.e., sizes) simultaneously.

10 Thus, the process 304 searches in groups of four lengths. Starting at protocol ID 01, the

\'.; first two sets of 3-D locations searched are ---if
(1, 1, 1) (1, 1, 2)

1e·c:,L1 (1, 2, 1) (1, 2, 2)

(1, 3, 1) (1, 3, 2)
!!j

15 (1, 4, l) (1, 4, 2)

{~
i;n .~---At each stage of a search, the analysis process 304 examines the packet and the 3-

20

25

D data structure to see if there is a match (by looking at the node code). If no valid data is

found, e.g., using the node code, the size is incremented (to maximum of 4) and the offset

is then incremented as well.

Continuing with the example, suppose the pattern analysis process 304 finds

something at 1, 2, 12. By this, we mean that the process 304 has found that for protocol

ID value 01 (Ethernet) at packet offset 12, there is information in the packet having a

length of 2 bytes (octets) that may relate to the next (child) protocol. The information, for

example, may be about a child for this protocol expressed as a child recognition pattern.

The list of possible child recognition patterns that may be in that part of the packet is

obtained from the data structure.

The Ethernet packet structure comes in two flavors, the Ethertype packet and

newer IEEE types, and the packet location that indicates the child is different for both.

The location that for the Ethertype packet indicates the child is a "length" for the IEEE

30 type, so a determination is made for the Ethernet packet whether the "next protocol"

location contains a value or a length (this is called a "LENGTH" operation). A successful

/ ' I \,•''

EX 1018 Page 60

15

20

25

30

53

used to determine the virtual base layer entry point to the parser subsystem. Thus, even at

the base layer, the parser subsystem can identify the type of packet.

Initially, the search starts at the child of the virtual base, as obtained in the header

supplied by the acquisition device. In the case of the example, this has ID value 01, which

is the 2D array in the overall 3~D structure for Ethernet packets.

Thus hardware implementing pattern analysis process 304 (e.g., pattern

recognition engine (PRE) 1006 of FIG. 10) searches to determine the children (if any) for

the 2—D array that has protocol 1]) 01. In the preferred embodiment that uses the 3-D data

structure, the hardware PRE 1006 searches up to four lengths (i.e., sizes) simultaneously.

Thus, the process 304 searches in groups of four lengths. Starting at protocol ID 01, the

first two sets of 3-D locations searched areW

(1,1,1) (1,1,2)

(1,2,1) (1,2,2)

(1,3,1) (1,3, 2)

(1,4,1) (1,4, 2)

1 : “Mmeach stage of a search, the analysis process 304 examines the packet and the 3—

D data structure to see if there is a match (by looking at the node code). If no valid data is

found, e. g., using the node code, the size is incremented (to maximum of 4) and the offset

is then incremented as well.

Continuing with the example, suppose the pattern analysis process 304 finds

something at l, 2, 12. By this, we mean that the process 304 has found that for protocol

1]) value 01 (Ethernet) at packet offset 12, there is information in the packet having a

length of 2 bytes (octets) that may relate to the next (child) protocol. The information, for

example, may be about a child for this protocol expressed as a child recognition pattern,

The list of possible child recognition patterns that may be in that part of the packet is

obtained from the data structure.

The Ethernet packet structure comes in two flavors, the Ethertype packet and

newer IEEE types, and the packet location that indicates the child is different for both.

The location that for the Ethertype packet indicates the child is a “length” for the IEEE

type, so a determination is made for the Ethernet packet whether the “nest protocol”

location contains a value or a length (this is called a “LENGTH” operation). A successful

EX 1018 Page 60

54

LENGTH operation is indicated by contents less than or equal to 05DC16, then this is an

IEEE type Ethernet frame. In such a case, the child recognition pattern is looked for

elsewhere. Otherwise, the location contains a value that indicates the child.

Note that while this capability of the entry being a value (e.g., for a child protocol

5 ID) or a length (indicating further analysis to determine the child protocol) is only used

,i' for Ethernet packets, in the future, other packets may end up being modified.

Accordingly, this capability in the form of a macro in the PDL files still enables such

future packets to be decoded.

Continuing with the example, suppose that the LENGTH operation fails. In that

Io case, we have an Ethertype packet, and the next protocol field (containing the child

recognition pattern) is 2 bytes long starting at offset 12 as shown as packet field 1702 in

FIG. 17 A This will be one of the children of the Ethertype shown in table 1712 in

FIG. 17 A The PRE uses the information in the data structure to check what the ID code

is for the found 2-byte child recognition pattern. For example, if the child recognition

15 pattern is 0800 (Hex), then the protocol is IP. If the child recognition pattern is OBAD

(Hex) the protocol is VIP (V1NES).

20

Note that an alternate embodiment may keep a separate table that includes all the

child recognition patterns and their corresponding protocol ID's

To follow the example, suppose the child recognition pattern at 1,2, 12 is 0800 16,

indicating IP. The ID code for the IP protocol is 6410). To continue with the Ethertype

example, once the parser matches one of the possible children for the protocl--in the

example, the protocol type is IP with an ID of 64--then the parser continues the search for

the next level. The ID is 64, the length is unknown, and offset is known to be equal or

larger than 14 bytes (12 offset for type, plus 2, the length of type), so the search of the 3-

25 D structure commences from location (64, 1) at packet offset 14. A populated node is

found at (64, 2) at packet offset 14. Heading details are shown as 1750 in FIG. 17B. The

possible children are shown in table 1752.

Alternatively, suppose that at (1, 2, 12) there was a length 121110. This indicates

that this is an IEEE type Ethernet frame, which stores its type elsewhere. The PRE now

30 continues its search at the same level, but for a new ID, that of an IEEE type Ethernet

frame. An IEEE Ethernet packet has protocol ID 16, so the PRE continues its search of

-\

EX 1018 Page 61

.03“ii-"1‘1:
p.39,

"wt.7.iv2§®rtfov:w
than?“‘\

ummagmaww'‘‘
”'69.*32’2“

"2;:3;”fiend”.u

Hf:a,mliix!H4115”"W“'"v‘"*A'r‘

fill!till"it'llil:::..

10

15

20

25

30

54

LENGTH operation is indicated by contents less than or equal to 05DC16, then this is an

IEEE type Ethernet frame. In such a case, the child recognition pattern is looked for

elsewhere. Otherwise, the location contains a value that indicates the child.

Note that while this capability of the entry being a value (e.g., for a child protocol

ID) or a length (indicating further analysis to determine the child protocol) is only used

for Ethernet packets, in the future, other packets may end up being modified.

Accordingly, this capability in the form of a macro in the PDL files still enables such

future packets to be decoded.

Continuing with the example, suppose that the LENGTH operation fails. In that

case, we have an Ethertype packet, and the next protocol field (containing the child

recognition pattern) is 2 bytes long starting at offset 12 as shown as packet field 1702 in

FIG. 17A. This will be one of the children of the Ethertype shown in table 1712 in

FIG. 17A. The PRE uses the information in the data structure to check what the 11) code

is for the found 2-byte child recognition pattern. For example, if the child recognition

pattern is 0800 (Hex), then the protocol is IP. If the child recognition pattern is OBAD

(Hex) the protocol is VIP (VlNES).

Note that an alternate embodiment may keep a separate table that includes all the

child recognition patterns and their corresponding protocol ID’s

To follow the example, suppose the child recognition pattern at 1,2,12 is 080016,

indicating IP. The ID code for the IP protocol is 6410). To continue with the Ethertype

example, once the parser matches one of the possible children for the protocl—-in the

example, the protocol type is IP with an ID of 64—~then the parser continues the search for

the next level. The ID is 64, the length is unknown, and offset is known to be equal or

larger than 14 bytes (12 offset for type, plus 2, the length of type), so the search of the 3—

D structure commences from location (64, 1) at packet offset 14. A populated node is

found at (64, 2) at packet offset 14. Heading details are shown as 1750 in FIG. 17B. The

possible children are shown in table 1752.

Alternatively, suppose that at (l, 2, 12) there was a length 121110. This indicates

that this is an IEEE type Ethernet frame, which stores its type elsewhere. The PRE now

continues its search at the same level, but for a new ID, that of an IEEE type Ethernet

frame. An IEEE Ethernet packet has protocol ID 16, so the PRE continues its search of
/’1

x’ 't. ’“\

EX 1018 Page 61

l
\

i:
}
,1
I'
+

n
55

the three-dimensional space with ID 16 starting at packet offset 14.

In our example, suppose there is a "protocol" node code found at (16, 2) at packet

offset 14, and the next protocol is specified by child recognition pattern 0800 16- This

indicates that the child is the IP protocol, which has type ID 64. Thus the search

5 continues, starting at (64, 1) at packet offset 16.

Compression.

As noted above, the 3-D data structure is very large, and sparsely populated. For

example, if 32 bytes are stored at each location, then the length is M by 64 by 512 by 32

bytes, which is M megabytes. If M = 10,000, then this is about 10 gigabytes. It is not

10 practical to include 10 Gbyte of memory in the parser subsystem for storing the database

308. Thus a compressed form of storing the data is used in the preferred embodiment. The

compression is preferably carried out by an optimizer component of the compilation

process 310.

Recall that the data structure is sparse. Different embodiments may use different

15 compression schemes that take advantage of the sparseness of the data structure. One

embodiment uses a modification of multi-dimensional run length encoding.

Another embodiment uses a smaller number two-dimensional structures to store

1'.:J the information that otherwise would be in one large three-dimensional structure. The

second scheme is used in the preferred embodiment.

20 FIG. 18A illustrated how the 3-D array 1800 can be considered a set of 2-D

25

arrays, one 2-D array for each protocol (i.e., each value of the protocol ID). The 2-D

structures are shown as 1802-1, 1802-2, ... , 1802-M for up to M protocol ID's. One table

entry is shown as 1804. Note that the gaps in table are used to illustrate that each 2-D

structure table is typically large.

Consider the set of trees that represent the possible protocols. Each node

represents a protocol, and a protocol may have a child or be a terminal protocol. The base

(root) of the tree has all packet types as children. The other nodes form the nodes in the

tree at various levels from level 1 to the final terminal nodes of the tree. Thus, one

element in the base node may reference node ID 1, another element in the base node may

30 reference node ID 2 and so on. As the tree is traversed from the root, there may be points

EX 1018 Page 62

EllHalli 10

15

20

25

30

(V, O

55

the three-dimensional space with ID 16 starting at packet offset 14.

In our example, suppose there is a “protocol” node code found at (16, 2) at packet

offset 14, and the next protocol is specified by child recognition pattern 080016. This

indicates that the child is the IP protocol, which has type ID 64. Thus the search

continues, starting at (64, 1) at packet offset 16.

Compression.

As noted above, the 3-D data structure is very large, and sparsely populated. For

example, if 32 bytes are stored at each location, then the length is M by 64 by 512 by 32

bytes, which is M megabytes. If M = 10,000, then this is about 10 gigabytes, It is not

practical to include 10 Gbyte of memory in the parser subsystem for storing the database

308. Thus a compressed form of storing the data is used in the preferred embodiment. The

compression is preferably carried out by an optimizer component of the compilation

process 310.

Recall that the data structure is sparse. Different embodiments may use different

compression schemes that take advantage of the sparseness of the data structure. One

embodiment uses a modification of multi-dimensional run length encoding.

Another embodiment uses a smaller number two—dimensional structures to store

the information that otherwise would be in one large three-dimensional structure. The

second scheme is used in the preferred embodiment.

FIG. 18A illustrated how the 3-D array 1800 can be considered a set of 2—D

arrays, one 2-D array for each protocol (i.e., each value of the protocol ID). The 2-D

structures are shown as 1802-1, 1802—2, ..., 1802-M for up to M protocol ID’s. One table

entry is shown as 1804. Note that the gaps in table are used to illustrate that each 2~D

structure table is typically large.

Consider the set of trees that represent the possible protocols. Each node

represents a protocol, and a protocol may have a child or be a terminal protocol. The base

(root) of the tree has all packet types as children. The other nodes form the nodes in the

tree at various levels from level 1 to the final terminal nodes of the tree. Thus, one

element in the base node may reference node ID 1, another element in the base node may

reference node ID 2 and so on. As the tree is traversed from the root, there may be points

EX 1018 Page 62

56

in the tree where the same node is referenced next. This would occur, for example, when

an application protocol like Telnet can run on several transport connections like TCP or

UDP. Rather than repeating the Telnet node, only one node is represented in the patterns

database 308 which can have several parents. This eliminates considerable space

5 explosion.

10

Each 2-D structure in FIG. 18A represents a protocol. To enable saving space by

using only one array per protocol which may have several parents, in one embodiment,

the pattern analysis subprocess keeps a "current header" pointer. Each location (offset)

index for each protocol 2-D array in the 3-D structure is a relative location starting with

the start of header for the particular protocol.

Each of the two-dimensional arrays is sparse. The next step of the optimization, is

checking all the 2-D arrays against all the other 2-D arrays to find out which ones can

share memory. Many of these 2-D arrays are often sparsely populated in that they each

have only a small number of valid entries. So, a process of "folding" is next used to

15 combine two or more 2-D arrays together into one physical 2-D array without losing the

identity of any of the original 2-D arrays (i.e., all the 2-D arrays continue to exist

logically). Folding can occur between any 2-D arrays irrespective of their location in the

tree as long as certain conditions are met.

Assume two 2-D arrays are being considered for folding. Call the frrst 2-D arrays

20 A and the second 2-D array B. Since both 2-D arrays are partially populated, 2-D array B

can be combined with 2-D arrays A if and only if none of the individual elements of these

two 2-D arrays that have the same 2-D location conflict. If the result is foldable, then the

valid entries of 2-D array B are combined with the valid entries of 2-D array A yielding

one physical 2-D array. However, it is necessary to be able to distinguish the original 2-D

25 array A entries from those of 2-D array B. For example, if a parent protocol of the

protocol represented by 2-D array B wants to reference the protocol ID of 2-D array B, it

must now reference 2-D array A instead. However, only the entries that were in the

original 2-D array B are valid entries for that lookup. To accomplish this, each element in

any given 2-D array is tagged with a fold number. When the original tree is created, all

30 elements in all the 2-D arrays are initialized with a fold value of zero. Subsequently, if 2-

D array B is folded into 2-D array A, all valid elements of 2-D array B are copied to the

corresponding locations in 2-D array A and are given different fold numbers than any of

EX 1018 Page 63

v25”“.,"’ ..

"wiring-wk”“J:v»«rm,

10

15

20

25

30

('7 (“rx

56

in the tree where the same node is referenced next. This would occur, for example, when

an application protocol like Telnet can run on several transport connections like TCP or

UDP. Rather than repeating the Telnet node, only one node is represented in the patterns

database 308 which can have several parents. This eliminates considerable space

explosion.

Each 2~D structure in FIG. 18A represents a protocol. To enable saving space by

using only one array per protocol which may have several parents, in one embodiment,

the pattern analysis subprocess keeps a “current header” pointer. Each location (offset)

index for each protocol 2-D array in the 3—D structure is a relative location starting with

the start of header for the particular protocol.

Each of the two-dimensional arrays is sparse. The next step of the optimization, is

checking all the 2~D arrays against all the other 2—D arrays to find out which ones can

share memory Many of these 2-D arrays are often sparsely populated in that they each

have only a small number of valid entries. So, a process of "folding“ is next used to

combine two or more 2—D arrays together into one physical 2—D array without losing the

identity of any of the original 2—D arrays (i.e., all the 2~D arrays continue to exist

logically). Folding can occur between any 2-D arrays irrespective of their location in the

tree as long as certain conditions are met.

Assume two 2—D arrays are being considered for folding. Call the first 2-D arrays

A and the second 2—D array B. Since both 2-D arrays are partially populated, 2-D array B

can be combined with 2~D arrays A if and only if none of the individual elements of these

two 2—D arrays that have the same 2«D location conflict. If the result is foldable, then the

valid entries of 2—D array B are combined with the valid entries of 2-D array A yielding

one physical 2-D array. However, it is necessary to be able to distinguish the original 2-D

array A entries from those of 2—D array B. For example, if a parent protocol of the

protocol represented by 2-D array B wants to reference the protocol ID of 2-D array B, it

must now reference 2~D array A instead. However, only the entries that were in the

original 2-D array B are valid entries for that lockup. To accomplish this, each element in

any given 2—D array is tagged with a fold number. When the original tree is created, all

elements in all the 2-D arrays are initialized with a fold value of zero. Subsequently, if 2-

D array B is folded into 2-D array A, all valid elements of 2-D array B are copied to the

corresponding locations in 2-D array A and are given different fold numbers than any of

EX 1018 Page 63

5

0
57

the elements in 2-D array A. For example, if both 2-D array A and 2-D array B were

original 2-D arrays in the tree (i.e., not previously folded) then, after folding, all the 2-D

array A entries would still have fold O and the 2-D array B entries would now all have a

fold value of 1. After 2-D array B is folded into 2-D array A, the parents of 2-D array B

need to be notified of the change in the 2-D array physical location of their children and

the associated change in the expected fold value.

This folding process can also occur between two 2-D arrays that have already been

folded, as long as none of the individual elements of the two 2-D arrays conflict for the

same 2-D array location. As before, each of the valid elements in 2-D array B must have

10 fold numbers assigned to them that are unique from those of 2-D array A. This is

accomplished by adding a fixed value to all the 2-D array B fold numbers as they are

merged into 2-D array A. This fixed value is one larger than the largest fold value in the

original 2-D array A. It is important to note that the fold number for any given 2-D array

is relative to that 2-D array only and does not span across the entire tree of 2-D arrays.

15 This process of folding can now be attempted between all combinations of two 2-

D arrays until there are no more candidates that qualify for folding. By doing this, the

!Ji total number of 2-D arrays can be significantly reduced.

20

Whenever a fold occurs, the 3-D structure (i.e., all 2-D arrays) must be searched

for the parents of the 2-D array being folded into another array. The matching pattern

which previously was mapped to a protocol ID identifying a single 2-D array must now

be replaced with the 2-D array ID and the next fold number (i.e., expected fold).

Thus, in the compressed data structure, each entry valid entry includes the fold

number for that entry, and additionally, the expected fold for the child.

An alternate embodiment of the data structure used in database 308 is illustrated in

25 FIG. 18B. Thus, like the 3-D structure described above, it permits rapid searches to be

performed by the pattern recognition process 304 by indexing locations in a memory

rather than performing address link computations. The structure, like that of FIG. 18A, is

suitable for implementation in hardware, for example, for implementation to work with

the pattern recognition engine (PRE) 1006 of FIG. 10.

30 A table 1850, called the protocol table (PT) has an entry for each protocol known

by the monitor 300, and includes some of the characteristics of each protocol, including a

EX 1018 Page 64

f5“???‘33.“:.
,‘-,

ea};-

xAmu”w”???.0...
waver.“

155*m,

3.;7.“...1‘:
-.u.»n‘:5ak». tiff-atlII‘n‘:.:!!tin!til}!

its;at.l!»

at:

10

15

20

25

30

Cl 0

57

the elements in 2-D array A. For example, if both 2—D array A and 2—D array B were

original 2—D arrays in the tree (i.e., not previously folded) then, after folding, all the 2-D

array A entries would still have fold 0 and the 2-D array B entries would now all have a

fold value of 1. After 2-D array B is folded into 2-D array A, the parents of 2—D array B

need to be notified of the change in the 2-D array physical location of their children and

the associated change in the expected fold value.

This folding process can also occur between two 2-D arrays that have already been

folded, as long as none of the individual elements of the two 2-D arrays conflict for the

same 2-D array location. As before, each of the valid elements in 2-D array B must have

fold numbers assigned to them that are unique from those of 2-D array A. This is

accomplished by adding a fixed value to all the 2-D array B fold numbers as they are

merged into 2-D array A. This fixed value is one larger than the largest fold value in the

original 2—D array A. It is important to note that the fold number for any given 2-D array

is relative to that 2-D array only and does not span across the entire tree of 2-D arrays.

This process of folding can now be attempted between all combinations of two 2-

D arrays until there are no more candidates that qualify for folding. By doing this, the

total number of 2-D arrays can be significantly reduced.

Whenever a fold occurs, the 3-D structure (i.e., all 2-D arrays) must be searched

for the parents of the 2-D array being folded into another array. The matching pattern

which previously was mapped to a protocol ID identifying a single 2—D array must now

be replaced with the 2-D array ID and the next fold number (i.e., expected fold).

Thus, in the compressed data structure, each entry valid entry includes the fold

number for that entry, and additionally, the expected fold for the child.

An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. 18B. Thus, like the 3-D structure described above, it permits rapid searches to be

performed by the pattern recognition process 304 by indexing locations in a memory

rather than performing address link computations. The structure, like that of FIG. 18A, is

suitable for implementation in hardware, for example, for implementation to work with

the pattern recognition engine (PRE) 1006 of FIG. 10.

A table 1850, called the protocol table (PT) has an entry for each protocol known

by the monitor 300, and includes some of the characteristics of each protocol, including a

EX 1018 Page 64

n
58

description of where the field that specifies next protocol (the child recognition pattern)

can be found in the header, the length of the next protocol field, flags to indicate the

header length and type, and one or more slicer commands, the slicer can build the key

components and hash components for the packet at this protocol at this layer level.

5 For any protocol, there also are one or more lookup tables (LUTs). Thus database

10

308 for this embodiment also includes a set of LUTs 1870. Each LUT has 256 entries

indexed by one byte of the child recognition pattern that is extracted from the next

protocol field in the packet. Such a protocol specification may be several bytes long, and

so several of LUTs 1870 may need to be looked up for any protocol.

Each LUT's entry includes a 2-bit "node code" that indicates the nature of the

contents, including its validity. This node code has one of four values: (1) a "protocol"

node code indicating to the pattern recognition engine 1006 that a known protocol has

been recognized; (2) an "intermediate" node code, indicating that a multi-byte protocol

code has been partially recognized, thus permitting chaining a series of LUTs together

15 before; (3) a "terminal" node code indicating that there are no children for the protocol

presently being searched, i.e., the node is a final node in the protocol tree; (4) a "null"

(also called "flush" and "invalid") node code indicating that there is no valid entry.

In addition to the node code, each LUT entry may include the next LUT number,

the next protocol number (for looking up the protocol table 1850), the fold of the LUT

20 entry, and the next fold to expect. Like in the embodiment implementing a compressed

form of the 3-D representation, folding is used to reduce the storage requirements for the

set of LUTs. Since the LUTs 1870 may be sparsely populated, multiple LUTs may be

combined into a single LUT as long as the individual entries do not conflict with each

other. A fold number is then used to associate each element with its original LUT.

25 For a given lookup, the fold number of the lookup must match the fold number in

the lookup table. The expected fold is obtained from the previous table lookup (the "next

fold to expect" field). The present implementation uses 5-bits to describe the fold and thus

allows up to 32 tables to be folded into one table.

When using the data structure of FIG. 18B, when a packet arrives at the parser, the

30 virtual base has been pre-pended or is known. The virtual base entry tells the packet

recognition engine where to find the first child recognition pattern in the packet. The

EX 1018 Page 65

“asst»

.sawing-5521::M

.u‘Lx
umL~..

~“fist-131331.13“r‘fiflx‘fifzszneu'..r.'.9*:< 'Ji ,a,.c..3r,u..

10

15

20

25

30

(7 Cl

58

description of where the field that specifies next protocol (the child recognition pattern)

can be found in the header, the length of the next protocol field, flags to indicate the

header length and type, and one or more slicer commands, the sheer can build the key

components and hash components for the packet at this protocol at this layer level.

For any protocol, there also are one or more lockup tables (LUTs). Thus database

308 for this embodiment also includes a set of LUTs 1870. Each LUT has 256 entries

indexed by one byte of the child recognition pattern that is extracted from the next

protocol field in the packet. Such a protocol specification may be several bytes long, and

so several of LUTs 1870 may need to be looked up for any protocol.

Each LUT’s entry includes a 2-bit “node code” that indicates the nature of the

contents, including its validity. This node code has one of four values: (1) a “protocol”

node code indicating to the pattern recognition engine 1006 that a known protocol has

been recognized; (2) an “intermediate” node code, indicating that a multi-byte protocol

code has been partially recognized, thus permitting chaining a series of LUTs together

before; (3) a “terminal” node code indicating that there are no children for the protocol

presently being searched, i.e., the node is a final node in the protocol tree; (4) a “null”

(also called “flush” and “invalid”) node code indicating that there is no valid entry.

In addition to the node code, each LUT entry may include the next LUT number,

the next protocol number (for looking up the protocol table 1850). the fold of the LUT

entry, and the next fold to expect. Like in the embodiment implementing a compressed

form of the 3—D representation, folding is used to reduce the storage requirements for the

set of LUTS. Since the LUTs 1870 may be sparsely populated, multiple LUTs may be

combined into a single LUT as long as the individual entries do not conflict with each

other. A fold number is then used to associate each element with its original LUT.

For a given lockup, the fold number of the lookup must match the fold number in

the lookup table. The expected fold is obtained from the previous table lockup (the “next

fold to expect” field). The present implementation uses 5-bits to describe the fold and thus

allows up to 32 tables to be folded into one table.

When using the data structure of FIG. 188, when a packet arrives at the parser, the

virtual base has been pro-pended or is known. The virtual base entry tells the packet

recognition engine where to find the first child recognition pattern in the packet. The

EX 1018 Page 65

n 0
59

pattern recognition engine then extracts the child recognition pattern bytes from the

packet and uses them as an address into the virtual base table (the first LUT). If the entry

looked up in the specified next LUT by this method matches the expected next fold value

specified in the virtual base entry, the lookup is deemed valid. The node code is then

5 examined. If it is an intermediate node then the next table field obtained from the LUT

lookup is used as the most significant bits of the address. The next expected fold is also

extracted from the entry. The pattern recognition engine 1006 then uses the next byte

from the child recognition pattern as the for the next LUT lookup.

Thus, the operation of the PRE continues until a terminal code is found. The next

10 (initially base layer) protocol is looked up in the protocol table 1850 to provide the PRE

:· 1006 with information on what field in the packet (in input buffer memory 1008 of parser
;

, I

subsystem 1000) to use for obtaining the child recognition pattern of the next protocol,

including the size of the field. The child recognition pattern bytes are fetched from the

input buffer memory 1008. The number of bytes making up the child recognition pattern

15 is also now known.

The first byte of the protocol code bytes is used as the lookup in the next LUT. If a

LUT lookup results in a node code indicating a protocol node or a terminal node, the Next

LUT and next expected fold is set, and the "next protocol" from LUT lookup is used as an

index into the protocol table 1850. This provides the instructions to the slicer 1007, and

20 where in the packet to obtain the field for the next protocol. Thus, the PRE 1006

continues until it is done processing all the fields (i.e., the protocols), as indicated by the

terminal node code reached.

Note that when a child recognition pattern is checked against a table there is

always an expected fold. If the expected fold matches the fold information in the table, it

25 is used to decide what to do next. If the fold does not match, the optimizer is finished.

Note also that an alternate embodiment may use different size LUTs, and then

index a LUT by a different amount of the child recognition pattern.

The present implementation of this embodiment allows for child recognition

patterns of up to four bytes. Child recognition patterns of more than 4 bytes are regarded

30 as special cases.

In the preferred embodiment, the database is generated by the compiler process

EX 1018 Page 66

n4‘14»,er

»*r,¢w‘..ga~i3....”t

5551this111]:

"iii?It'fmall}?‘
iii:”:11-

.0,“

i133:illili11:3!11:11..
'1:::n152131

{.12

10

15

20

25

30

0 CV

59

pattern recognition engine then extracts the child recognition pattern bytes from the

packet and uses them as an address into the virtual base table (the first LUT). If the entry

looked up in the specified next LUT by this method matches the expected next fold value

specified in the virtual base entry, the lockup is deemed valid. The node code is then

examined. If it is an intermediate node then the next table field obtained from the LUT

lockup is used as the most significant bits of the address. The next expected fold is also

extracted from the entry. The pattern recognition engine 1006 then uses the next byte

from the child recognition pattern as the for the next LUT lockup.

Thus, the operation of the PRE continues until a terminal code is found. The next

(initially base layer) protocol is looked up in the protocol table 1850 to provide the PRE

1006 with information on what field in the packet (in input buffer memory 1008 of parser

subsystem 1000) to use for obtaining the child recognition pattern of the next protocol,

including the size of the field. The child recognition pattern bytes are fetched from the

input buffer memory 1008. The number of bytes making up the child recognition pattern

is also now known.

The first byte of the protocol code bytes is used as the looloip in the next LUT. If a

LUT lockup results in a node code indicating a protocol node or a terminal node, the Next

LUT and next expected fold is set, and the “next protocol” from LUT lockup is used as an

index into the protocol table 1850. This provides the instructions to the slicer 1007, and

where in the packet to obtain the field for the next protocol. Thus, the PRE 1006

continues until it is done processing all the fields (lo, the protocols), as indicated by the

terminal node code reached.

Note that when a child recognition pattern is checked against a table there is

always an expected fold. If the expected fold matches the fold information in the table, it

is used to decide what to do next. If the fold does not match, the optimizer is finished.

Note also that an alternate embodiment may use different size LUTs, and then

index a LUT by a different amount of the child recognition pattern.

The present implementation of this embodiment allows for child recognition

patterns of up to four bytes. Child recognition patterns of more than 4 bytes are regarded

as special cases.

In the preferred embodiment, the database is generated by the compiler process

EX 1018 Page 66

n
60

310. The compiler process first builds a single protocol table of all the links between

protocols. Links consist of the connection between parent and child protocols. Each

protocol can have zero or more children. If a protocol has children, a link is created that

consists of the parent protocol, the child protocol, the child recognition pattern, and the

5 child recognition pattern size. The compiler first extracts child recognition patterns that

are greater than two bytes long. Since there are only a few of these, they are handled

separately. Next sub links are created for each link that has a child recognition pattern size

of two.

IO

All the links are then formed into the LUTs of 256 entries.

Optimization is then carried out. The first step in the optimization is checking all

the tables against all the other tables to find out which ones can share a table. This process

proceeds the same way as described above for two-dimensional arrays, but now for the

sparse lookup tables.

Part of the initialization process (e.g., compiler process 310) loads a slicer

,!J 15 instruction database with data items including of instruction, source address, destination

ij address, and length. The PRE 1006 when it sends a slicer instruction sends this instruction

20

as an offset into the slicer instruction database. The instruction or Op code tells the slicer

what to extract from the incoming packet and where to put it in the flow signature.

Writing into certain fields of the flow signature automatically generates a hash. The

instruction can also tell the slicer how to determine the connection status of certain

protocols.

~ Note that alternate embodiments may generate the pattern, parse and extraction

database other than by compiling PDL files.

t The compilation process
[
',

25 The compilation process 310 is now described in more detail. This process 310

30

includes creating the parsing patterns and extractions database 308 that provides the

parsing subsystem 301 with the information needed to parse packets and extract

identifying information, and the state processing instructions database 326 that provides

the state processes that need to be performed in the state processing operation 328.

Input to the compiler includes a set of files that describe each of the protocols that

EX 1018 Page 67

a.2:

.3k1\’é~n.i,a.g..-,v.‘1’:
‘ffn

amass»"'3'":

jwwgyro:x?~myjeffiwwr‘"2133119.k»A2.:
‘1’6?

.‘chmwwy'vA:
an;

“1"‘5‘neuritisa.

unae«an.
any...

ma«w'

‘hon”.u‘.‘

2“:

it)

15

20

25

30

(V O

60

310. The compiler process first builds a single protocol table of all the links between

protocols. Links consist of the connection between parent and child protocols. Each

protocol can have zero or more children. If a protocol has children, a link is created that

consists of the parent protocol, the child protocol, the child recognition pattern, and the

child recognition pattern size. The compiler first extracts child recognition patterns that

are greater than two bytes long. Since there are only a few of these, they are handled

separately. Next sub links are created for each link that has a child recognition pattern size

of two.

All the links are then formed into the LUTs of 256 entries.

Optimization is then carried out. The first step in the optimization is checking all

the tables against all the other tables to find out which ones can share a table. This process

proceeds the same way as described above for two-dimensional arrays, but now for the

sparse lockup tables.

Part of the initialization process (e.g., compiler process 310} loads a slicer

instruction database with data items including of instruction, source address, destination

address, and length. The PRE 1006 when it sends a slicer instruction sends this instruction

as an offset into the slicer instruction database. The instruction or Op code tells the slicer

what to extract from the incoming packet and where to put it in the flow signature.

Writing into certain fields of the flow signature automatically generates a hash. The

instruction can also tell the slicer how to determine the connection status of certain

protocols.

Note that alternate embodiments may generate the pattern, parse and extraction

database other than by compiling PDL files.

The compilation process

The compilation process 310 is now described in more detail. This process 310

includes creating the parsing patterns and extractions database 308 that provides the

parsing subsystem 301 with the information needed to parse packets and extract

identifying information, and the state processing instructions database 326 that provides

the state processes that need to be performed in the state processing operation 328.

Input to the compiler includes a set of files that describe each of the protocols that

EX 1018 Page 67

61

can occur. These files are in a convenient protocol description language (POL) which is a

high level language. POL is used for specifying new protocols and new levels, including

new applications. The POL is independent of the different types of packets and protocols

that may be used in the computer network. A set of PDL files is used to describe what

5 information is relevant to packets and packets that need to be decoded. The PDL is further

used to specify state analysis operations. Thus, the parser subsystem and the analyzer

subsystems can adapt and be adapted to a variety of different kinds of headers, layers, and

components and need to be extracted or evaluated, for example, in order to build up a

1: · unique signature.

10 There is one file for each packet type and each protocol. Thus there is a PDL file

for Ethernet packets and there is a PDL file for frame relay packets. The PDL files are

compiled to form one or more databases that enable monitor 300 to perform different

protocol specific operations on a packet wherein the protocol headers of any protocol are

located at different locations depending on the parent protocol or protocols used in the

15 packet. Thus, the packet monitor adapts to different protocols according to the contents of

the packet. In particular, the parser subsystem 301 is able to extract different types of data

for different types of packets. For example, the monitor can know how to interpret a

Ethernet packet, including decoding the header information, and also how to interpret an

frame relay packet, including decoding the header information.

20 The set of PDL files, for example, may include a generic Ethernet packet file.

There also is included a PDL file for each variation Ethernet file, for example, an IEEE

Ethernet file.

The POL file for a protocol provides the information needed by compilation

process 310 to generate the database 308. That database in tum tells the parser subsystem

25 how to parse and/or extract information, including one or more of what protocol-specific

components of the packet to extract for the flow signature, how to use the components to

build the flow signature, where in the packet to look for these components, where to look

for any child protocols, and what child recognition patterns to look for. For some

protocols, the extracted components may include source and destination addresses, and

30 the POL file may include the order to use these addresses to build the key. For example,

Ethernet frames have end-point addresses that are useful in building a better flow

signature. Thus the PDL file for an Ethernet packet includes information on how the

EX 1018 Page 68

ey.»Mark,K*Awerewit

.am”,

W“.2.

.a".”ennui”a”

51‘

,.‘ng4.&“r.e

10

15

25

30

0 Cl

61

can occur. These files are in a convenient protocol description language (PDL) which is a

high level language. PDL is used for specifying new protocols and new levels, including

new applications. The PDL is independent of the different types of packets and protocols

that may be used in the computer network. A set of PDL files is used to describe what

information is relevant to packets and packets that need to be decoded. The PDL is further

used to specify state analysis operations. Thus, the parser subsystem and the analyzer

subsystems can adapt and be adapted to a variety of different kinds of headers, layers, and

components and need to be extracted or evaluated, for example, in order to build up a

unique signature.

There is one file for each packet type and each protocol. Thus there is a PDL file

for Ethernet packets and there is a PDL file for frame relay packets. The PDL files are

compiled to form one or more databases that enable monitor 300 to perform different

protocol specific operations on a packet wherein the protocol headers of any protocol are

located at different locations depending on the parent protocol or protocols used in the

packet. Thus, the packet monitor adapts to different protocols according to the contents of

the packet. In particular, the parser subsystem 301 is able to extract different types of data

for different types of packets. For example, the monitor can know how to interpret 3

Ethernet packet, including decoding the header information, and also how to interpret an

frame relay packet, including decoding the header information.

The set of PDL files, for example, may include a generic Ethernet packet file.

There also is included a PDL file for each variation Ethernet file, for example, an IEEE

Ethernet file.

The PDL file for a protocol provides the information needed by compilation

process 310 to generate the database 308. That database in turn tells the parser subsystem

how to parse andlor extract information, including one or more of what protocol—specific

components of the packet to extract for the flow signature, how to use the components to

build the flow signature, where in the packet to look for these components, where to look

for any child protocols, and what child recognition patterns to look for. For some

protocols, the extracted components may include source and destination addresses, and

the PDL file may include the order to use these addresses to build the key. For example,

Ethernet frames have end—point addresses that are useful in building a better flow

signature. Thus the PDL file for an Ethernet packet includes information on how the

EX 1018 Page 68

5

n (")

62

parsing subsystem is to extract the source and destination addresses, including where the

locations and sizes of those addresses are. In a frame-relay base layer, for example, there are

no specific end point addresses that help to identify the flow better, so for those type of

packets, the PDL file does not include information that will cause the parser subsystem to

extract the end-point addresses.

Some protocols also include information on connections. TCP is an example of such a

protocol. Such protocol use connection identifiers that exist in every packet. The PDL file for

such a protocol includes information about what those connection identifiers are, where they
l
·, are, and what their length is. In the example of TCP, for example running over IP, these are

4
,,
..:
r y,
i
'·
·~

10 port numbers. The PDL file also includes information about whether or not there are states

that apply to connections and disconnections and what the possible children are states. So, at

15

each of these levels, the packet monitor 300 learns more about the packet. The packet monitor

300 can identify that a particular packet is part of a particular flow using the connection

identifier. Once the flow is identified, the system can determine the current state and what

states to apply that deal with connections or disconnections that exist in the next layer up to

these particular packets.

For the particular PDL used in the preferred embodiment, a PDL file may include

none or more FIELD statement each defining a specific string of bits or bytes (i.e., a field) in

the packet. A PDL file may further include none or more GROUP statements each used to tie

20 together several defined fields. A set of such tied together fields is called a group. A PDL file

may further include none or more PROTOCOL statements each defining the order of the

fields and groups within the header of the protocol. A PDL file may further include none or

more FLOW statements each defining a flow by describing where the address, protocol type,

25

and port numbers are in a packet. The FLOW statement includes a description of how

children flows of this protocol are determined using state operations. States associated may

have state operations that may be used for managing and maintaining new states learned as

more packets of a flow are analyzed.

FIG. 19 shows a set of PDL files for a layering structure for an Ethernet packet

that runs TCP on top of IP. The contents of these PDL files are attached as an

30 APPENDIX hereto. Common.pd! (1903) is a file containing the common protocol

definitions, i.e., some field definitions for commonly used fields in various network

protocols. Flows.pd! (1905) is a file containing general flow definitions. Virtual.pd!

.(1907) is a PDL file containing the definition for the VirtualBase layer used. Ethernet.pd!

EX 1018 Page 69

 10

20

25

30

(“l O

62

parsing subsystem is to extract the source and destination addresses, including where the

locations and sizes of those addresses are. In a frame-relay base layer, for example, there are

no specific end point addresses that help to identify the flow better, so for those type of

packets, the PDL file does not include information that will cause the parser subsystem to

extract the end—point addresses.

Some protocols also include information on connections. TCP is an example of such a

protocol. Such protocol use connection identifiers that exist in every packet. The PDL file for

such a protocol includes information about what those connection identifiers are, where they

are, and what their length is. In the example of TCP, for example running over IP, these are

port numbers. The PDL file also includes information about whether or not there are states

that apply to connections and disconnections and what the possible children are states. So, at

each of these levels, the packet monitor 300 learns more about the packet. The packet monitor

300 can identify that a particular packet is part of a particular flow using the connection

identifier. Once the flow is identified, the system can determine the current state and what

states to apply that deal with connections or disconnections that exist in the next layer up to

these particular packets.

For the particular PDL used in the preferred embodiment, a PDL file may include

none or more FIELD statement each defining a specific string of bits or bytes (i.e., a field) in

the packet. A PDL file may further include none or more GROUP statements each used to tie

together several defined fields. A set of such tied together fields is called a group. A PDL file

may further include none or more PROTOCOL statements each defining the order of the

fields and groups within the header of the protocol. A PDL file may further include none or

more FLOW statements each defining a flow by describing where the address, protocol type,

and port numbers are in a packet. The FLOW statement includes a description of how

children flows of this protocol are determined using state operations. States associated may

have state operations that may be used for managing and maintaining new states learned as

more packets of a flow are analyzed.

FIG. 19 shows a set of PDL files for a layering structure for an Ethernet packet

that runs TCP on top of IP. The contents of these PDL files are attached as an

APPENDIX hereto. Common.de (1903) is a file containing the common protocol

definitions, i.e., some field definitions for commonly used fields in various network

protocols. Flows.pdl (1905) is a file containing general flow definitions. Virtual.de

-(1907) is a PDL file containing the definition for the VirtualBase layer used. Ethernet.de

EX 1018 Page 69

,i
,.
',>

' I

:t
t
t
\

~
•',
'f

1'

5

10

n n ,, t,

63

(1911) is the POL file containing the definition for the Ethernet packet. The decision on

Ethertype vs. IEEE type Ethernet file is described herein. If this is Ethertype, the selection

is made from the file Ethertype.pdl (1913). In an alternate embodiment, the Ethertype

selection definition may be in the same Ethernet file 1911. In a typical implementation,

PDL files for other Ethernet types would be included. IP.pdl (1915) is a PDL file

containing the packet definitions for the Internet Protocol. TCP.pdl (1917) is the PDL file

containing the packet definitions for the Transmission Control Protocol, which in this

case is a transport service for the IP protocol. In addition to extracting the protocol

information the TCP protocol definition file assists in the process of identification of

connections for the processing of states. In a typical set of files, there also would be a file

UDP.pdl for the User Datagram Protocol (UDP) definitions. RPC.pdl (1919) is a PDL file

file containing the packet definitions for Remote Procedure Calls.

NFS.pdl (1921) is a PDL file containing the packet definitions for the Network

File System. Other PDL files would typically be included for all the protocols that might

15 be encountered by monitor 300.

20

25

Input to the compilation process 310 is the set of POL files (e.g., the files of FIG

19) for all protocols of interest. Input to process 310 may also include layering

information shown in FIG. 3 as datagram layer selections 338. The layer selections

information describes the layering of the protocols-what protocol(s) may be on top of

any particular protocols. For example, IP may run over Ethernet, and also over many

other types of packets. TCP may run on top of IP. UDP also may run on top of IP. When

no layering information is explicitly included, it is inherent; the POL files include the

children protocols, and this provides the layering information.

The compiling process 310 is illustrated in FIG. 20. The compiler loads the POL

source files into a scratch pad memory (step 2003) and reviews the files for the correct

syntax (parse step 2005). Once completed, the compiler creates an intermediate file

containing all the parse elements (step 2007). The intermediate file in a format called

"Compiled Protocol Language" (CPL). CPL instructions have a fixed layer format, and

include all of the patterns, extractions, and states required for each layer and for the entire

30 tree for a layer. The CPL file includes the number of protocols and the protocol

t definitions. A protocol definition for each protocol can include one or more of the

{ protocol name, the protocol ID, a header section, a group identification section, sections

EX 1018 Page 70

uQfikLma3.1;.bmian

cm.”

were:rmafiré':taazeta‘flffi‘lfifag
~’3%;dxiflgixd

”mt-W"Hr”"I:"

10

15

20

25

30

C) Q

63

(1911) is the PDL file containing the definition for the Ethernet packet. The decision on

Ethertype vs. lEEE type Ethernet file is described herein. If this is Ethertype, the selection

is made from the file Ethertypepdl (1913). In an alternate embodiment, the Ethertype

selection definition may be in the same Ethernet file 1911. In a typical implementation,

PDL files for other Ethernet types would be included. IP.pdl (1915) is a PDL file

containing the packet definitions for the Internet Protocol. TCP.pdl (1917) is the PDL file

containing the packet definitions for the Transmission Control Protocol, which in this

case is a transport service for the IP protocol. In addition to extracting the protocol

information the TCP protocol definition file assists in the process of identification of

connections for the processing of states. In a typical set of files, there also would be a file

UDP.de for the User Datagram Protocol (UDP) definitions. RPC.pdl (1919) is a PDL file

file containing the packet definitions for Remote Procedure Calls.

NFS.pdl (1921) is a PDL file containing the packet definitions for the Network

File System. Other PDL files would typically be included for all the protocols that might

be encountered by monitor 300.

Input to the compilation process 310 is the set of PDL files (e.g., the files of FIG

19) for all protocols of interest. Input to process 310 may also include layering

information shown in FIG. 3 as datagram layer selections 338. The layer selections

information describes the layering of the protocols—what protocol(s) may be on top of

any particular protocols. For example, [P may run over Ethernet, and also over many

other types of packets. TCP may run on top of IP. UDP also may run on top of IP. When

no layering information is explicitly included, it is inherent; the PDL files include the

children protocols, and this provides the layering information.

The compiling process 310 is illustrated in FIG. 20. The compiler loads the PDL

source files into a scratch pad memory (step 2003) and reviews the files for the correct

syntax (parse step 2005). Once completed, the compiler creates an intermediate file

containing all the parse elements (step 2007). The intermediate file in a format called

“Compiled Protocol Language” (CPL). CPL instructions have a fixed layer format, and

include all of the patterns, extractions, and states required for each layer and for the entire

tree for a layer. The CPL file includes the number of protocols and the protocol

definitions. A protocol definition for each protocol can include one or more of the

protocol name, the protocol 11), a header section, a group identification section, sections

EX 1018 Page 70

*'' '
' n n

64

for any particular layers, announcement sections, a payload section, a children section,

and a states section. The CPL file is then run by the optimizer to create the final databases

that will be used by monitor 300. It would be clear to those in the art that alternate

implementations of the compilation process 310 may include a different form of

5 intermediate output, or no intermediate output at all, directly generating the final

database(s).

10

15

20

25

After the parse elements have been created, the compiler builds the flow signature

elements (step 2009). This creates the extraction operations in CPL that are required at

each level for each PDL module for the building of the flow signature (and hash key) and

for links between layers (2009).

With the flow signature operations complete, the PDL compiler creates (step

2011) the operations required to extract the payload elements from each PDL module.

These payload elements are used by states in other PDL modules at higher layers in the

processing.

The last pass is to create the state operations required by each PDL module. The

state operations are complied from the PDL files and created in CPL form for later use

(2013).

The CPL file is now run through an optimizer that generates the final databases

used by monitor 300.

PROTOCOL DEFINITION LANGUAGE (PDL) REFERENCE GUIDE
(VERSION A0.02)

Included herein is this reference guide (the "guide") for the page description language

(PDL) which, in one aspect of the invention, permits the automatic generation of the

databases used by the parser and analyzer sub-systems, and also allows for including new

and modified protocols and applications to the capability of the monitor.

COPYRIGHT NOTICE

A portion of this of this document included with the patent contains material which is

subject to copyright protection. The copyright owner (Apptitude, Inc., of San Jose,

California, formerly Technically Elite, Inc.) has no objection to the facsimile reproduction

30 by anyone of the patent document or the patent disclosure or this document, as it appears

EX 1018 Page 71

F) O\

64

for any particular layers, announcement sections, a payload section, a children section,

and a states section. The CPL file is then run by the optimizer to create the final databases

that will be used by monitor 300. It would be clear to those in the art that alternate

implementations of the compilation process 310 may include a different form of

5 intermediate output, or no intermediate output at all, directly generating the final

database(s).

After the parse elements have been created, the compiler builds the flow signature

‘ elements (step 2009). This creates the extraction Operations in CPL that are required at

I each level for each PDL module for the building of the flow signature (and hash key) and

10 for links between layers (2009).

With the flow signature operations complete, the PDL compiler creates (step

2011) the operations required to extract the payload elements from each PDL module.

These payload elements are used by states in other PDL modules at higher layers in the

processing.
15 The last pass is to create the state operations required by each PDL module. The

g, - Zr“ state operations are complied from the PDL files and created in CPL form for later use

(201 3).

 The CPL file is now run through an optimizer that generates the final databases
E 5

used by monitor 300.

W 20 PROTOCOL DEFINlTlON LANGUAGE (PDL) REFERENCE GUIDE

‘ \ (VERSION A0.02)

Included herein is this reference guide (the “guide”) for the page description language

2}" (PDL) which, in one aspect of the invention, permits the automatic generation of the

databases used by the parser and analyzer subsystems, and also allows for including new

25 and modified protocols and applications to the capability of the monitor.

COPYRIGHT NOTICEVV,A,v.‘.“-..rorvr:--‘1io.....-l.ni.‘-...25; i,t,it,i.a,
A portion of this of this document included with the patent contains material which is

subject to copyright protection. The copyright owner (Apptitude, Inc, of San Jose,

i California, formerly Technically Elite, Inc.) has no objection to the facsimile reproduction

‘ 30 by anyone of the patent document or the patent disclosure or this document, as it appears

EX 1018 Page 71

:~

,, ' . ,;

n 0
65

in the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

Copyright© 1997-1999 by Apptitude, Inc. (formerly Technically Elite, Inc.). All Rights

Reserved.

5 1. INTRODUCTION

The inventive Protocol Definition Language (PDL) is a special purpose language used to

describe network protocols and all the fields within the protocol headers.

Within this guide, protocol descriptions (PDL files) are referred to as PDL or rules when

there in no risk of confusion with other types of descriptions.

10 PDL uses both form and organization similar to the data structure definition part of the C

if programming language and the PERL scripting language. Since PDL was derived from a

language used to decode network packet contact, the authors have mixed the language

format with the requirements of packet decoding. This results in an expressive language

that is very familiar and comfortable for describing packet content and the details required

15 representing a flow.

1.1 Summary

The PDL is a non-procedural Forth Generation language (4GL). This means is describes

what needs to be done without describing how to do it. The details of how are hidden in

the compiler and the Compiled Protocol Layout (CPL) optimization utility.

20 In addition, it is used to describe network flows by defining which fields are the address

fields, which are the protocol type fields, etc.

25

Once a PDL file is written, it is compiled using the Netscope compiler (nsc), which

produces the MeterFlow database (MeterFlow.db) and the Netscope database

(Netscope.db). The MeterFlow database contains the flow definitions and the Netscope

database contains the protocol header definitions.

These databases are used by programs like: mfkeys, which produces flow keys (also

called flow signatures); mfcpl, which produces flow definitions in CPL format; mfpkts

which produces sample packets of all known protocols; and netscope, which decodes

Sniffer™ and tcpdump files.

EX 1018 Page 72

O (Vm.

65

in the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

Copyright © 1997- 1999 by Apptitude, Inc. (formerly Technically Elite, Inc). All Rights

Reserved.

5 1. INTRODUCTION

The inventive Protocol Definition Language (PDL) is a special purpose language used to

describe network protocols and all the fields within the protocol headers.

Within this guide, protocol descriptions (PDL files) are referred to as PDL or rules when

there in no risk of confusion with other types of descriptions.

10 PDL uses both form and organization similar to the data structure definition part of the C

programming language and the PERL scripting language. Since PDL was derived from a

language used to decode network packet contact, the authors have mixed the language

format with the requirements of packet decoding. This results in an expressive language

that is very familiar and comfortable for describing packet content and the details required

15 representing a flow.

1.? Summary

The PDL is a non-procedural Forth Generation language (4GL). This means is describes

what needs to be done without describing how to do it. The details of how are hidden in

the compiler and the Compiled Protocol Layout (CPL) optimization utility.

20 In addition, it is used to describe network flows by defining which fields are the address

fields, which are the protocol type fields, etc.

Once a PDL file is written, it is compiled using the Netscope compiler (use), which

produces the MeterFlow database (MeterFlowdb) and the Netscope database

(Netscapedb). The MeterFlow database contains the flow definitions and the Netscope

25 database contains the protocol header definitions.

These databases are used by programs like: mfkeys, which produces flow keys (also

called flow signatures); mfcpl, which produces flow definitions in CPL format; mfpkts

which produces sample packets of all known protocols; and netscope, which decodes

SnifferTM and tcpdump tiles.

EX 1018 Page 72

• ,

n \ '

66

1.2 Guide Conventions

The following conventions will be used throughout this guide:

Small courier typeface indicates C code examples or function names. Functions are

written with parentheses after them [function ()],variables are written just as their

5 names [variables], and structure names are written prefixed with "struct"

[struct packet].

Italics indicate a filename (for instance, mworks!baselh/base.h). Filenames will usually

be written relative to the root directory of the distribution.

Constants are expressed in decimal, unless written "ox ... ", the C language notation for

10 hexadecimal numbers.

Note that any contents on any line in a PDL file following two hyphen (--) are ignored

by the compiler. That is, they are comments.

2. PROGRAM STRUCTURE

A MeterFlow PDL decodes and flow set is a non-empty sequence of statements.

15 There are four basic types of statements or definitions available in Meter Flow PDL:

FIELD,

GROUP,

PROTOCOL and

FLOW.

20 2.1 FIELD Definitions

25

30

The FIELD definition is used to define a specific string of bits or bytes in the packet. The

FIELD definition has the following format:

Name FIELD
SYNTAX Type [{ Enwns }]
DISPLAY-HINT "FormatString"
LENGTH "Expression"
FLAGS FieldFlags
ENCAP FieldName [, FieldName2 J
LOOKUP LookupType [Filename]
ENCODING EncodingType
DEFAULT "value"
DESCRIPTION "Description"

EX 1018 Page 73

m m

66

1.2 Guide Conventions

The following conventions will be used throughout this guide:

Small courier typeface indicates C code examples or function names. Functions are

written with parentheses after them [function()], variables are written just as their

5 names [variables], and structure names are written prefixed with “struct”

[struct packet].

Italics indicate a filename (for instance, mworks/baseflb’baseh). Filenames will usually

be written relative to the root directory of the distribution.

Constants are expressed in decimal, unless written “0x. . .”, the C language notation for

10 hexadecimal numbers.

Note that any contents on any line in a PDL file following two hyphen (—») are ignored

by the compiler. That is, they are comments.

2. PROGRAM STRUCTURE

A MeterFIow PDL decodes and flow set is a non—empty sequence of statements.

15 There are four basic types of statements or definitions available in MeterFlow PDL:

FIELD,

GROUP,

PROTOCOLaDd

FLOW.

20 2.1 FIELD Definitions

The FIELD definition is used to define a specific string of bits or bytes in the packet. The

FIELD definition has the following format:

Name FIELD

smut Type I {Enums }]

25 DISPLAY-HINT "FormatString"

LENGTH "Expression“

FLAGS FieldFlags

ENCAP FieldName [, FieldNamez 1

LOOKUP LookupType E Filename]

30 ENCODING EncodingTy-pe
DEFAULT “value”

DESCRIPTION "Description"

EX 1018 Page 73

,, '

:.::

·=

67

Where only the FIELD and SYNTAX lines are required. All the other lines are attribute

lines, which define special characteristics about the FIELD. Attribute lines are optional

and may appear in any order. Each of the attribute lines are described in detail below:

2.1.1 SYNTAX Type [{ Enums}]

5 This attribute defines the type and, if the type is an INT, BYTESTRING, BITSTRING, or

SNMPSEQUENCE type, the enumerated values for the FIELD. The currently defined

types are:

INT(numBits) Integer that is numBits bits long.

UNSIGNED INT(numBits) Unsigned integer that is numBits bits long.

BYTESTRING(numBytes) String that is numBytes bytes long.

BYTESTRING(RJ .. R2) String that ranges in size from RI to R2 bytes.

BITSTRING(numBits) String that is numBits bits long.

LSTRING(lenBytes) String with lenBytes header.

NSTRING Null terminated string.

DNSSTRING DNS encoded string.

SNMPOID SNMP Object Identifier.

SNMPSEQUENCE SNMP Sequence.

SNMPTIMETICKS SNMP TimeTicks.

COMBO fieldl field2 Combination pseudo field.

2.1.2 DISPLAY-HINT "FormatString"

10 This attribute is for specifying how the value of the FIELD is displayed. The currently

supported formats are:

Numx Print as a num byte hexidecimal number.

Numd Print as a num byte decimal number.

EX 1018 Page 74

10

Cl (7-

67

Where only the FIELD and SYNTAX lines are required. All the other lines are attribute

lines, which define special characteristics about the FIELD. Attribute lines are optional

and may appear in any order. Each of the attribute lines are described in detail below:

2.1.1 SYNTAX Type [{ Enums }}

This attribute defines the type and, if the type is an INT, BYTESTRING, BITSTRING, or

SNWSEQUENCE type, the enumerated values for the FIELD. The currently defined

types are:

Integer that is numBits bits long.

Unsigned integer that is numBits bits long.

String that is numBytes bytes long.

String that ranges in size from R] to R2 bytes.

String that is numBz‘ts bits long.

String with lenBytes header.

Null terminated string.

DNS encoded string.

SNMP TimeTicks.

COMBOfield] field2 Combination pseudo field.

2.1.2 DISPLAY-HINT "FormatString"

This attribute is for specifying how the value of the FIELD is displayed. The currently

supported formats are;

Print as a num byte hexidecimal number.

Print as a num byte decimal number.

EX 1018 Page 74

-.
;

·-
r
I

i

n . '

68

Numo Print as a num byte octal number.

Numb Print as a num byte binary number.

Numa Print num bytes in ASCII format.

Text Print as ASCII text.

HexDump Print in hexdump format.

2.1.3 LENGTH "Expression"

This attribute defines an expression for determining the FIELD's length. Expressions are

arithmetic and can refer to the value of other FIELD's in the packet by adding a$ to the

s referenced field's name. For example, "($tcpHeaderLen *4) - 20" is a valid expression if

tcpHeaderLen is another field defined for the current packet.

IO

2.1.4 FLAGS Field.Flags

The attribute defines some special flags for a FIELD. The currently supported FieldFlags

are:

SAMELAYER Display field on the same layer as the previous field.

NOLABEL Don't display the field name with the value.

NOSHOW Decode the field but don't display it.

SWAPPED The integer value is swapped.

2.1.5 ENCAP FieldName [, FieldName2]

This attribute defines how one packet is encapsulated inside another. Which packet is

determined by the value of the FieldName field. If no packet is found using FieldName

then FieldName2 is tried.

IS 2.1.6 LOOKUP LookupType [Filename]

This attribute defines how to lookup the name for a particular FIELD value. The currently

supported LookupTypes are:

EX 1018 Page 75

0 fl

68

2.1.3 LENGTH "Expression"

This attribute defines an expression for determining the FIELD's length. Expressions are

arithmetic and can refer to the value of other FIELD’s in the packet by adding a $ to the

5 referenced field’s name. For example, “($tcpHeaderLen *4) — 20” is a valid expression if

tcpHeaderLen is another field defined for the current packet.

2.1.4 FLAGS FieldFlags

The attribute defines some special flags for a FIELD. The currently supported FieldFlags

are:

2.1.5 ENCAP FieldName [, FieldNameZ]

10

This attribute defines how one packet is encapsulated inside another. Which packet is

determined by the value of the FieldName field. If no packet is found using FieldName

then FieldName2 is tried.

15 2.1.6 LOOKUP LookupType[Filename]

This attribute defines how to lookup the name for a particular FIELD value. The currently

supported LookupTypes are:

EX 1018 Page 75

•;'

69

SERVICE Use getservbyport().

HOSTNAME Use gethostbyaddr().

MACADDRESS Use $METERFLOW /conf/mac2ip.cf.

FILEfile Use file to lookup value.

2.1.7 ENCODING EncodingType

This attribute defines how a FIELD is encoded. Currently, the only supported

EncodingType is BER (for Basic Encoding Rules defined by ASN .1).

5 2.1.8 DEFAULT "value"

This attribute defines the default value to be used for this field when generating sample

packets of this protocol.

2.1.9 DESCRIPTION "Description"

This attribute defines the description of the FIELD. It is used for informational purposes

IO only.

id 2.2 GROUP Definitions

15

20

The GROUP definition is used to tie several related FIELDs together. The GROUP

definition has the following format:

Name GROUP
LENGTH "Expression"
OPTIONAL "Condition"
SUMMARIZE 11Condition 11 : 11FormatString 11 [

11Condition" : 11FormatString 11
••• l

DESCRIPTION "Description"
::= (Name=FieldOrGroup [,
Name=FieldOrGroup ...] }

Where only the GROUP and::= lines are required. All the other lines are attribute lines,

which define special characteristics for the GROUP. Attribute lines are optional and may

appear in any order. Each attribute line is described in detail below:

25 2.2.1 LENGTH "Expression"

This attribute defines an expression for determining the GROUP's length. Expressions are

EX 1018 Page 76

3"plp33»1’9}gm-aw M .

>3.»

<1»

«41' .31...‘uuu

Hgafihmrtzgryi...»a.”‘..
'seywy

@W”agmfi?
w»

“NE?2431?:‘I-,1“?"j

'iiil'nffmIiIIIit‘iiiiiithattill!

iii}!tiff?!till!£51511

3:55;:gift,

iii!Iiifli!" 10

15

20

25

69

SERVICE Use getservbyportQ.

HOSTNAME Use gethostbyaddro.

MACADDRESS Use $METERFLOW/Conf/ma021p.cf.

FILEfile Use fiie to lookup value.

2.1.7 ENCODING EncodingType

This attribute defines how a FIELD is encoded. Currently, the only supported

EncodingType is BER (for Basic Encoding Rules defined by ASN.1).

2.1.8 DEFAULT “value”

This attribute defines the default value to be used for this field when generating sample

packets of this protocol.

2.1.9 DESCRIPTION "Description"

This attribute defines the description of the FIELD. It is used for informational purposes

only.

2.2 GROUP Definitions

The GROUP definition is used to tie several related FIELDS together. The GROUP

definition has the following format:

Name GROUP

LENGTH "Expression“
OPTIONAL “Condition“

SUMMARIZE “Condition“ : "FormatString" [

"Condition" : “FormatString”... 1

DESCRIPTION "Description“

::= { Name=Field0rGroup E ,

Name=Field0rGroup... I }

Where only the GROUP and :2: lines are required. Ail the other lines are attribute lines,

which define special characteristics for the GROUP. Attribute lines are optional and may

appear in any order. Each attribute line is described in detail below:

2.2.1 LENGTH "Expression"

This attribute defines an expression for determining the GROUP'S length. Expressions are

EX 1018 Page 76

,,
,,,1

ll '
Jt .'

(, .. ·.

.
,'

70

arithmetic and can refer to the value of other FIELD's in the packet by adding a$ to the

referenced field's name. For example, "($tcpHeaderLen *4) - 20" is a valid expression if

tcpHeaderLen is another field defined for the current packet.

2.2.2 OPTIONAL "Condition"

5 This attribute defines a condition for determining whether a GROUP is present or not.

10

15

Valid conditions are defined in the Conditions section below.

2.2.3 SUMMARIZE "Condition" : "FormatString" ["Condition" :
"FormatString" ...]

This attribute defines how a GROUP will be displayed in Detail mode. A different format

(FormatString) can be specified for each condition (Condition). Valid conditions are

defined in the Conditions section below. Any FIELD's value can be referenced within the

FormatString by proceeding the FIELD's name with a $. In addition to FIELD names

there are several other special$ keywords:

$LAYER Displays the current protocol layer.

$GROUP Displays the entire GROUP as a table.

$LABEL Displays the GROUP label.

$field Displays the field value (use enumerated name if available).

$:field Displays the field value (in raw format).

2.2.4 DESCRIPTION "Description"

This attribute defines the description of the GROUP. It is used for informational purposes

only.

2.2.5 ::= { Name=FieldOrGroup [, Name=FieldOrGroup ...] }

This defines the order of the fields and subgroups within the GROUP.

20 2.3 PROTOCOL Definitions

The PROTOCOL definition is used to define the order of the FIELDs and GROUPs

within the protocol header. The PROTOCOL definition has the following format:

EX 1018 Page 77

«Ye\.,14....fl..

. ':. 5‘L r
x‘ z
a;

a}

is;

:f: 10
J ‘

f

“1?"es‘
:

5i

'1 r
.
f

V
r r‘
h

3:
.

i:
’r.,
,,

it

i 15
.

3, .fir
'%V
“3%
at t
J}

20

Cl 0

7O

arithmetic and can refer to the value of other FIELD’s in the packet by adding a $ to the

referenced field’s name. For example, “($tcpHeaderLen *4) — 20” is a valid expression if

tcpHeaderLen is another field defined for the current packet.

2.2.2 OPTIONAL "Condition"

This attribute defines a condition for determining whether a GROUP is present or not.

Valid conditions are defined in the Conditions section below.

2.2.3 SUMMARIZE "Condition" : “FormatString” ["Condition" :

"FormatString"...]

This attribute defines how a GROUP will be displayed in Detail mode. A different format

(FormatString) can be specified for each condition (Condition). Valid conditions are

defined in the Conditions section below. Any FIELD's value can be referenced within the

FormatString by proceeding the FIELD's name with a $. In addition to FIELD names

there are several other special $ keywords:

2.2.4 DESCRIPTION "Description"

This attribute defines the description of the GROUP. It is used for informational purposes

only.

2.2.5 ::= { Name=FieldOrGroup [, Name=FieldOrGroup...] }

This defines the order of the fields and subgroups within the GROUP.

2.3 PROTOCOL Definitions

The PROTOCOL definition is used to define the order of the FIELDS and GROUPS

within the protocol header. The PROTOCOL definition has the following format:

EX 1018 Page 77

5

r)
71

Name PROTOCOL
SUMMARIZE "Condition" : 11FormatString" [
"Condition" : "FormatString" •..]
DESCRIPTION "Description"
REFERENCE "Reference"
::= { Name=FieldOrGroup [,
Name=FieldOrGroup •..] }

Where only the PROTOCOL and::= lines are required. All the other lines are attribute

lines, which define special characteristics for the PROTOCOL. Attribute lines are

IO optional and may appear in any order. Each attribute line is described in detail below:

2.3.1 SUMMARIZE "Condition": "FormatString" ["Condition" :
"FormatString" ...]

This attribute defines how a PROTOCOL will be displayed in Summary mode. A

different format (FormatString) can be specified for each condition (Condition). Valid

15 conditions are defined in the Conditions section below. Any FIELD's value can be

referenced within the FormatString by proceeding the FIELD's name with a $. In addition

to FIELD names there are several other special $ keywords:

$LAYER Displays the current protocol layer.

$VARBIND Displays the entire SNMP VarBind list.

$field Displays the field value (use enumerated name if available).

$;field Displays the field value (in raw format).

$#field Counts all occurrences of field.

$*field Lists all occurrences of field.

2.3.2 DESCRIPTION "Description"

20 This attribute defines the description of the PROTOCOL. It is used for informational

purposes only.

2.3.3 REFERENCE "Reference"

This attribute defines the reference material used to determine the protocol format. It is

used for informational purposes only.

EX 1018 Page 78

 $33539

ilflii:xiii”ll"

iii!

10

15

20

o r

71

Name PROTOCOL

SUMMARIZE "Condition" : "FormatString" [

"Condition" : "Fomatstring" . . . 1

DESCRIPTION “Description"
REFERENCE "Reference"

: : = { Name=Fie1dOrGroup [,

Name=FieldOrGroup . . . 1 }

Where only the PROTOCOL and :2: lines are required. All the other lines are attribute

lines, which define special characteristics for the PROTOCOL. Attribute lines are

optional and may appear in any order. Each attribute line is described in detail below:

2.3.1 SUMMARIZE "Condition" : "FormatString" ["Condition" :

"FormatString"...]

This attribute defines how a PROTOCOL will be displayed in Summary mode. A

different format (FormatString) can be specified for each condition (Condition). Valid

conditions are defined in the Conditions section below. Any FIELD'S value can be

referenced within the FonnatString by proceeding the FlELD’s name with a 15. In addition

to FIELD names there are several other special $ keywords:

 $LAYER Displays the current protocol layer.—

2.3.2 DESCRIPTION "Description”

This attribute defines the description of the PROTOCOL. It is used for informational

purposes only.

2.3.3 REFERENCE "Reference"

This attribute defines the reference material used to determine the protocol format. It is

used for informational purposes only.

EX 1018 Page 78

'ti

J

n
72

2.3.4 ::= { Name=FieldOrGroup [, Name=FieldOrGroup ...]}

This defines the order of the FIELDs and GROUPs within the PROTOCOL.

2.4 FLOW Definitions

The FLOW definition is used to define a network flow by describing where the address,

5 protocol type, and port numbers are in a packet. The FLOW definition has the following

format:

10

15

Name FLOW
HEADER { Option [, Option. ..] }
DLC-LAYER { Option [, Option ...] }
NET-LAYER { Option [, Option. ..] }
CONNECTION { Option [, Option. ..] }
PAYLOAD { Option [, Option. ..] }
CHILDREN { Option [, Option. ..] }
STATE-BASED
ST.ATES "Definitions"

Where only the FLOW line is required. All the other lines are attribute lines, which define

special characteristics for the FLOW. Attribute lines are optional and may appear in any

order. However, at least one attribute line must be present. Each attribute line is described

in detail below:

t~ 20 2.4.1 HEADER {Option[, Option ...]}

This attribute is used to describe the length of the protocol header. The currently

supported Options are:

LENGTH=number Header is a fixed length of size number.

LENGTH=field Header is variable length determined by value of field.

IN-WORDS The units of the header length are in 32-bit words rather than bytes.

2.4.2 DLC-LAYER {Option[, Option ...]}

25 If the protocol is a data link layer protocol, this attribute describes it. The currently

supported Options are:

DESTINA TION=field Indicates which.field is the DLC destination address.

SOURCE=field Indicates whichfield is the DLC source address.

EX 1018 Page 79

if? 3,.‘im 5

U-

m

E

 20

”a: 1i}.'.'i!i:‘...nh

25

0 m

72

2.3.4 ::= { Name=Field0rGroup [, Name=FieldOrGroup...] }

This defines the order of the FIELDS and GROUPS within the PROTOCOL.

2.4 FLOW Definitions

The FLOW definition is used to define a network flow by describing where the address,

protocol type, and port numbers are in a packet. The FLOW definition has the following

format:

Name FLOW

HEADER { Option [, Optionm] }

DLC-LAYER { Option [. 0Ption...] }

NET—MYER { Option [, Option...) }

CONNECTION { Option [. Option...] }

PAYLOAD { Option E. Option...] }

CHILDREN { Option I. 0ption...] }
STATE-BASED

STATES “Definitions”

Where only the FLOW line is required. All the other lines are attribute lines, which define

special characteristics for the FLOW. Attribute lines are optional and may appear in any

order. However, at least one attribute line must be present. Each attribute line is described

in detail below:

2.4.1 HEADER { Option [, Option...] }

This attribute is used to describe the length of the protocol header. The currently

supported Options are:

LENGTHznumber

LENGTflzfield Header is variable length determined by value offield.

IN—WORDS The units of the header length are in 32~bit words rather than bytes.

2.4.2 DLC—LAYER{ Option [, Option...] }

 Header is a fixed length of size number.

If the protocol is a data link layer protocol, this attribute describes it. The currently

supported Options are:

DESTINATION=field Indicates whichfield is the DLC destination address.

SOURCE=fieZd Indicates whichfield is the DLC source address.

EX 1018 Page 79

(. .,..-~-~
!!J

·J r . .:

5

n
73

PROTOCOL Indicates this is a data link layer protocol.

TUNNELING Indicates this is a tunneling protocol.

2.4.3 NET-LAYER {Option[, Option ...]}

If the protocol is a network layer protocol, then this attribute describes it. The currently

supported Options are:

DESTINATION=field Indicates which field is the network destination address.

SOURCE=field Indicates which.field is the network source address.

TUNNELING Indicates this is a tunneling protocol.

FRAGMENT ATION=type Indicates this protocol supports fragmentation. There are

currently two fragmentation types: IPV4 and IPV6.

2.4.4 CONNECTION {Option[, Option ...] }

If the protocol is a connection-oriented protocol, then this attribute describes how

connections are established and tom down. The currently supported Options are:

IDBNTIFIER=field Indicates the connection identifier field.

CONNECT-ST ART=''.flag" Indicates when a connection is being initiated.

CONNECT-COMPLETB=''.flag" Indicates when a connection has been established.

DISCONNECT-ST ART=''.flag" Indicates when a connection is being tom down.

DISCONNECT-COMPLETE=''.flag" Indicates when a connection has been tom down.

INHERITED Indicates this is a connection-oriented protocol but

the parent protocol is where the connection is

established.

10 2.4.S PAYLOAD {Option[, Option ...]}

This attribute describes how much of the payload from a packet of this type should be

EX 1018 Page 80

 "ll?lifeIt:

'1'tinself,

10

73

Indicates this is a data link layer protocol.

Indicates this is a tunneling protocol.

2.4.3 NET-LAYER{ Option {, 0ption...] }

PROTOCOL

TUNNELING

If the protocol is a network layer protocol, then this attribute describes it. The currently

supported Options are:

DESTINATIOszield Indicates whichfield is the network destination address.

SOURCE=field Indicates whichfield is the network source address.

Indicates this is a tunneling protocol.

FRAGMENTATIONztype Indicates this protocol supports fragmentation. There are

currently two fragmentation types: IPV4 and IPV6.

2.4.4 CONNECTION { Option {, 0ption...] }

If the protocol is a connection~oriented protocol, then this attribute describes how

connections are established and torn down. The currently supported Options are:

DISCONNECT-COWLETEt’flag”

INHERITED

2.4.5 PAYLOAD { Option [, Option...] }

Indicates this is a connection—oriented protocol but

the parent protocol is where the connection is

established.

This attribute describes how much of the payload from a packet of this type should be

EX 1018 Page 80

n
74

stored for later use during analysis. The currently supported Options are:

INCLUDE-HEADER Indicates that the protocol header should be included.

LENGTH=number Indicates how many bytes of the payload should be stored.

DATA=field Indicates whichfield contains the payload.

2.4.6 CHILDREN {Option[, Option ...]}

This attribute describes how children protocols are determined. The currently supported

5 Options are:

DESTINATION=field Indicates which field is the destination port.

SOURCE=field Indicates whichfield is the source port.

LLCCHECK=flow Indicates that if the DESTINATION field is less than OxOSDC then

use flow instead of the current flow definition.

2.4.7 STATE-BASED

This attribute indicates that the flow is a state-based flow.

2.4.8 STA TES "Definitions"

10 This attribute describes how children flows of this protocol are detennined using states.

See the State Definitions section below for how these states are defined.

2.5 CONDITIONS

Conditions are used with the OPTIONAL and SUMMARIZE attributes and may consist

of the following:

Valuel == Value2 Valuel equals Value2. Works with string values.

Value 1 != Value2 Valuel does not equal Value2. Works with string values.

Valuel <= Value2 Value 1 is less than or equal to Value2.

Value 1 >= V alue2 Valuel is greater than or equal to Value2.

EX 1018 Page 81

5

n • I

75

Valuel < Value2 Value 1 is less than Value2.

Valuel > Value2 Valuel is greater than Value2.

Field m/regex/ Field matches the regular expression regex.

Where Value] and Value2 can be either FIELD references (field names preceded by a$)

or constant values. Note that compound conditional statements (using AND and OR) are

not currently supported.

2.6 STATE DEFINITIONS

Many applications running over data networks utilize complex methods of classifying

traffic through the use of multiple states. State definitions are used for managing and

maintaining learned states from traffic derived from the network.

The basic format of a state definition is:

StateName: Operand Parameters [Operand Parameters ...]

10 The various states of a particular flow are described using the following operands:

2.6.1 CHECKCONNECT, operand

Checks for connection. Once connected executes operand.

2.6.2 GOTO state

Goes to state, using the current packet.

15 2.6.3 NEXT state

Goes to state, using the next packet.

2.6.4 DEFAULT operand

Executes operand when all other operands fail.

2.6.5 CIDLD protocol

20 Jump to child protocol and perform state-based processing (if any) in the child.

2.6.6 WAIT numPackets, operandl, operand2

Waits the specified number of packets. Executes operandi when the specified number of

packets have been received. Executes operand2 when a packet is received but it is less

EX 1018 Page 82

m m

 75

Where Value] and ValueZ can be either FIELD references (field names preceded by a S)

or constant values. Note that compound conditional statements (using AND and OR) are
not currently supported.

:3 ’ 2.6 STA TE DEFINITIONS

‘~ 5 Many applications running over data networks utilize complex methods of classifying

>33 V. traffic through the use of multiple states. State definitions are used for mana in andor g g
{23%

maintaining learned states from traffic derived from the network.

The basic format of a state definition is:

StateName: Operand Parameters [Operand Parameters...)

10 The various states of a particular flow are described using the following operands:

2.6.1 CHECKCONNECT, operand

Checks for connection. Once connected executes operand.

2.6.2 GOTO state

it Goes to state, using the current packet.
t

f 15 2.6.3 NEXT state

Goes to state, using the next packet.

2.6.4 DEFAULT operand

Executes operand when all other operands fail.

2.6.5 CHILD protocol

20 Jump to child protocol and perform state-based processing (if any) in the child.

2.6.6 WAIT numPackets, operand}, operandz

Waits the Specified number of packets. Executes operand] when the specified number of

packets have been received. Executes operandZ when a packet is received but it is less

EX 1018 Page 82

,.

•'.

,,
'

76

than the number of specified packets.

2.6.7 MATCH 'string' weight offset LF-offset range LF-range, operand

Searches for a string in the packet, executes operand if found.

2.6.8 CONSTANT number offset range, operand

5 Checks for a constant in a packet, executes operand if found.

10

2.6.9 EXTRACTIP offset destination, operand

Extracts an IP address from the packet and then executes operand.

2.6.10 EXTRACTPORT offset destination, operand

Extracts a port number from the packet and then executes operand.

2.6.11 CREATEREDIRECTEDFLOW, operand

Creates a redirected flow and then executes operand.

EX 1018 Page 83

 (17‘) ("W

76

than the number of specified packets.

2.6.7 MATCH ‘string' weight offset LF-oflset range LIT-range, operand

(; I Searches for a string in the packet, executes operand if found.

5. 2.6.8 CONSTANT number offset range, operand

5 Checks for a constant in a packet, executes operand if found.

2.6.9 EXTRACTIP aflset destination, operand

g , Extracts an IP address from the packet and then executes operand.
‘7 2.6.10 EXTRACTPORT oflset destination, operand

Extracts a port number from the packet and then executes operand.

10 2.6.11 CREATEREDIRECTEDFLOW, operand Creates a redirected flow and then executes operand.

: 1‘ .—::

4V..
*2
'3‘

t .

t
5g

,23
V!

‘i.

EX 1018 Page 83

5

10

15

20

25

30

35

40

n
77

3. EXAMPLE PDL RULES

The following section contains several examples of PDL Rule files.

3. 1 Ethernet

The following is an example of the PDL for Ethernet:

MacAddress

etherType

etherData

ethernet

FIELD
SYNTAX BYTESTRING(6)
DISPLAY-HINT "lx:•
LOOKUP MACADDRESS
DESCRIPTION

"MAC layer physical address"

FIELD
SYNTAX INT(l6)
DISPLAY-HINT "lx:"
LOOKUP FILE "EtherType.cf"
DESCRIPTION

"Ethernet type field"

FIELD
SYNTAX
ENCAP

BYTESTRING(46 .. 1500)
etherType

DISPLAY-HINT "HexDump"
DESCRIPTION

"Ethernet data"

PROTOCOL
DESCRIPTION

"Protocol format for an Ethernet frame"
REFERENCE • RFC 8 94 •

: := MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData}

ethernet FLOW
HEADER { LENGTH=14
DLC-LAYER {

SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL

CHILDREN { DESTINATION=EtherType, LLC-CHECK=llc)

EX 1018 Page 84

m a

77

3. EXAMPLE PDL RULES

The following section contains several examples of PDL Rule files.

3.1 Ethernet

y The following is an example of the PDL for Ethernet:
5 MacAddress FIELD

SYNTAX BYTESTRING(6)
DISPLAY-HINT ”lxz”
LOOKUP MACADDRESS
DESCRIPTION

10 “MAC layer physical address"

etherType FIELD
SYNTAX INT(16)
DISPLAY‘HINT ”1x:"

15 LOOKUP FILE “EtherType.cf”
DESCRIPTION

“Ethernet type field"

etherData FIELD
20 SYNTAX BYTESTRING (46. . 1500)

ENCAP etherType
DISPLAY-HINT 'HexDump”
DESCRIPTION

“Ethernet data”
25

ethernet PROTOCOL
DESCRIPTION

'Protocol format for an Ethernet frame"
REFERENCE “RFC 894'

30 ::= { MacDest=macAddress, MacSrc=macAddress, EtherType=etherType,
Data=etherData }

ethernet FLOW
HEADER { LENGTH=14 }

35 DLC—LAYER {
SOURCE=MacSrc,
DESTINATION=MacDest,
TUNNELING,
PROTOCOL

40)
CHILDREN { DESTINATIONzEtherType, LLCMCHECK=11C)

EX 1018 Page 84

\

I.
1

5

10

15

20

25

30

35

40

45

50

55

60

(l

78

3.2 IP Version 4

Here is an example of the PDL for the IP protocol:

ipAddress FIELD
SYNTAX BYTESTRING(4)
DISPLAY-HINT "ld. "
LOOKUP
DESCRIPTION

HOSTNAME

"IP address•

ipVersion FIELD
SYNTAX
DEFAULT

INT(4)
"4 If

ipHeaderLength FIELD
SYNTAX INT (4)

ipTypeOfService FIELD
SYNTAX BITSTRING(B) { minCost(l),

maxReliability(2), maxThruput(3), minDelay(4)

ipLength FIELD
SYNTAX UNSIGNED INT(l6)

ipFlags FIELD
SYNTAX BITSTRING(3) { moreFrags(O), dontFrag(l) }

IpFragmentOffset FIELD
SYNTAX INT(l3)

ipProtocol FIELD
SYNTAX INT (8)
LOOKUP FILE "IpProtocol.cf•

ipData FIELD

ip

ip

SYNTAX BYTESTRING(0 .. 1500)
ENCAP ipProtocol
DISPLAY-HINT "HexDump"

PROTOCOL
SUMMARIZE
"$FragrnentOffset != o•:

"IPFragrnent ID=$Identification Offset=$Fragment0ffset•
"Default" :

"IP Protocol=$Protocol"
DESCRIPTION

"Protocol format for the Internet Protocol"
REFERENCE "RFC 791"

{ Version=ipVersion, HeaderLength=ipHeaderLength,
TypeOfService=ipTypeOfService, Length=ipLength,
Identification=Uint16, IpFlags=ipFlags,
FragmentOffset=ipFragmentOffset, TimeToLive=IntB,
Protocol=ipProtocol, Checksum=ByteStr2,
IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions,
Fragment=ipFragment, Data=ipData}

FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS}
NET-LAYER {

SOURCE= IpSrc'
OESTINATION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

EX 1018 Page 85

m a

3.2 [P Version 4

Here is an example of the PDL for the IP protocol:

ipAddress FIELD
SYNTAX BYTESTRING (4)

5 DISPLAY-HINT "1d. "
LOOKUP HOSTNAMB
DESCRI PTI0N

'IP address“

10 ipVersion FIELD
SYNTAX INT(4)
DEFAULT "4“

ipHeaderLength FIELD
15 SYNTAX INT < 4)

ipTypeOfService FIELD
SYNTAX BITSTRINGtS) (minCost(l),

maxReliability(2), maxThruput(3), minDelayt4})
20

ipLength FIELD
SYNTAX UNSIGNED INT(16}

ipFlags FIELD
25 SYNTAX EITSTRING(3) { moreFragstO). dontFragtl) }

IpFragmentOffset FIELD
SYNTAX INT(13)

30 ipProtocol FIELD
SYNTAX INT(8)
LOOKUP FILE ”IpProtocol.cf"

ipData FIELD
35 SYNTAX BYTESTRINGm. . 1500)

ENCAP ipProtocol
DISPLAY-HINT “HexDump'

ip PROTOCOL
4O SUMMARIZE

”$Fragment0ffset :2 0”:
'IPFragment ID=$Identification Offset=$FragmentOffset"

"Default“
"IP Protocol=$Protocol“

45 DESCRIPTION
"Protocol format for the Internet Protocol“

REFERENCE “RFC 791"
::= { Version=ipVersion, HeaderLength=ipHeaderLength,

TypeOfService:ipTypeOfService, LengthzipLength,
50 Identification=UInt16. IpFlags=ipF1ags,

Fragmentoffset=ipFragmentOffset, TimeToLive=Int8,
ProtocolzipProtocol, Checksum=ByteStr2,
Ip3rc=i§Address, IpDest=ipAddress, Options=ip0ptions,
FragmentzipFragment, DatazipData)

55
ip FLOW

HEADER { LENGTH=HeaderLength, IN—WORDS)
NETnLAYER {

SOURCE=IpSrC,
60 DESTINATION=IpDest.

FRAGMENTATION=IPV4e
TUNNELING

EX 1018 Page 85

5

10

15

20

25

30

0
79

CHILDREN { DESTINATION=Protocol

ipFragData
BYTESTRING(l .. 1500)

FIELD
SYNTAX
LENGTH •ipLength - ipHeaderLength * 4"
DISPLAY-HINT "HexDump.

ipFragment GROUP
OPTIONAL

::= { Data=ipFragData}
"$Fragment0ffset != o•

ipOptionCode FIELD
ipRR(Ox07), ipTimestamp(Ox44),
ipLSRR(Ox83), ipSSRR(Ox89) }

SYNTAX INT (8)

DESCRIPTION
"IP option code"

ipOptionLength FIELD
SYNTAX UNSIGNED INT(8)
DESCRIPTION

'Length of IP option"

ipOptionData FIELD
SYNTAX BYTESTRING(0 .. 1500)
ENCAP ipOptionCode
DISPLAY-HINT "HexDump.

ipOptions GROUP
LENGTH • (ipHeaderLength * 4) - 2 0"

: := Code=ipOptionCode, Length=ipOptionLength, Pointer=Uint8,
Data=ipOptionData}

EX 1018 Page 86

(W (V

79

CHILDREN { DESTINATION-“:Protocol }

ipFragData FIELD
SYNTAX BYTESTRING(1..1500>

5 LENGTH "ipbength - ipHeaaerLcngth * 4‘
DISPLAY-HINT "HexDump‘

ipFragment GROUP
OPTIONAL "SFragmentOffset != O“

10 :z: (Data=ipFragDaLa }

ipOptionCode FIELD
SYNTAX INT(8) (ipRRtOxO7). ipTimestamp<Ox44),

ipLSRR(0x83), ipSSRR10x89) }
15 DESCRIPTION

“1? option code"

ipOptionLength FIELD
SYNTAXLUNSIGNED INT(8)

20 DESCRIPTION
“Length of IP option“

ipOptionData FIELD
SYNTAX BYTESTRING(O..ISOO}

25 ENCAP ipOptionCode
DISPLAY-HINT “HexDump'

ipOptions GROUP
LENGTH “(ipHeaderLength * 4) — 20'

30 ;:= { Code=ip0ptionCode, Length=ip0ptionLength, Pointer=UInt8,
Data=ip0ptionData)

EX 1018 Page 86

5

10

80

3.3 TCP

Here is an example of the PDL for the TCP protocol:
tcpPort FIELD

SYNTAX UNSIGNED INT(16)
LOOKUP FILE • TcpPort. Cf.

tcpHeaderLen FIELD
SYNTAX INT(4)

tcpFlags FIELD
SYNTAX BIT STRING (12)

tcpData FIELD

fin(O), syn(l), rst(2), psh(3),
ack(4), urg(S) }

15 SYNTAX BYTESTRING (0 .. 1564)

20

25

30

35

40

tcp

tcp

LENGTH • ($ipLength- ($ipHeaderLength*4)) ($tcpHeaderLen*4J"
ENCAP tcpPort
DISPLAY-HINT "HexDump"

PROTOCOL
SUMMARIZE

"Default"
"TCP ACK=$Ack WIN=$WindowSize"

DESCRIPTION
"Protocol format for the Transmission Control Protocol"

REFERENCE • RFC 7 9 3"
SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=Uint32,
Ack=Uint32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags,
WindowSize=Uint16, Checksum=ByteStr2,
UrgentPointer=Uintl6, Options=tcpOptions, Data=tcpData}

FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS}
CONNECTION {

IDENTIFIER=SequenceNum,
CONNECT-START="TcpFlags:l",
CONNECT-COMPLETE=·TcpFlags:4•,
DISCONNECT-START="TcpFlags:0",
DISCONNECT-COMPLETE="TcpFlags:4"

PAYLOAD {INCLUDE-HEADER}
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort}

tcpOptionKindFIELD
45 SYNTAX UNSIGNED INT(8) { tcpOptEnd(O), tcpNop(l),

50

55

60

tcpMSS(2), tcpWscale(3), tcpTimestamp(4J
DESCRIPTION

"Type of TCP option•

tcpOptionDataFIELD
SYNTAX
ENCAP
FLAGS

BYTESTRING(O .. 1500)
tcpOptionKind
SAMELAYER

DISPLAY-HINT "HexDump"

tcpOptions GROUP
LENGTH •($tcpHeaderLen * 4) 20"

::= Option=tcpOptionKind, OptionLength=Uint8,
OptionData=tcpOptionData}

tcpMSS PROTOCOL
::= { MaxSegmentSize=Uintl6

EX 1018 Page 87

80

3. 3 TOP

Here is an example of the PDL for the TCP protocol:
tcpPort FIELD

SYNTAX UNSIGNED INT‘IE)

5 LOOKUP FILE “TCpPort.Cf"

tcpHeaderLen FIELD
SYNTAX INT(4)

10 tchlags FIELD
SYNTAX BITSTRINGUZ) (15mm), syml), rst(2). pShB),

ack(4)‘ urg(5> }

tchata FIELD
15 SYNTAX BYTESTRING{O..1564)

LENGTH '(sipLength—($ipHeaderLength*4))-($tcpHeaderLen*4)‘
ENCAP tcpPort
DISPLAY—HINT 'HexDump"

20 tcp PROTOCOL
SUMMARIZE

“Default“ .

'TCP ACK=$ACk WIN=$WindowSize"
DESCRIPTION

25 "Protocol format for the Transmission Control Protocol“
REFERENCE “RFC 793“

::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=UInt32,
A¢k=UInt32, Headerbength=tcpHeaderLen, Tchlagsztchlags,
Windowsize=UInt16, Checksum=ByteStr2,

30 UrgentPointer=UInt16, Options=tchptions, Datastchata }

tcp FLOW
HEADER { LENGTE=HeaderLength, IN-WORDS }
CONNECTION {

35 IDENTIFIER=SequencaNum,
CONNECT-START='TCpFlagSI1‘,
CONNECT»COMPLETE='Tchlags:4”,
DISCONNECT-START=”TCpFlagS:0",
DISCONNECT—COMPLETE:'Tchlags:4*

40)
PAYLOAD { INCLUDE-HEADER }
CHILDREN { DESTINATION=DestP0rt, SOURCE=SrcPort }

tchptionKindFIELD
45 SYNTAX UNSIGNED IN'rtB} { tchptEndtO), tcpNop(1),

tcpMSS(2), tchscale(3). tcpTimestamp(4) }
DESCRIPTION

“Type of TC? Option”

50 thOptionData FIELD
SYNTAX BYTBSTRING(D..1500)
ENCAP tchptionKind
FLAGS SAMELAYER
DISPLAY-HINT ”HexDump“

55
tchptions GROUP

LENGTH "($tcpHeaderLen * 4) - 20“
':= { Option=tcp0ptionxind, OptionLengthzuxntgc

OptionData=tchptionData 3
60

tcpMSS PROTOCOL
-= (MaxSegmentSize=UInt16 }

EX 1018 Page 87

;
1

I .~:

5

n
81

3.4 HTTP (with State)

Here is an example of the PDL for the HTIP protocol:

httpData FIELD
SYNTAX BYTESTRING(l .. 1500)

r)

LENGTH "($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)'
DISPLAY-HINT "Text"
FLAGS NOLABEL

http PROTOCOL
10 SUMMARIZE

15

20

25

30

35

40

45

50

55

60

"$httpData m/"GETl"HTTPj"HEADl"POST/" :
"HTTP $httpData•

"$httpData m/"[Dd)atel"[Ss)erverl"[Ll]ast-[Mm)odified/"
"HTTP $httpData"

"$httpData m/"(Cc]ontent-/"
"HTTP $httpData•

'$httpData m/"<HTML>/" :
"HTTP (HTML document]"

"$httpData m/"GIF/" :
"HTTP [GIF image]'

"Default"
"HTTP (Data]"

DESCRIPTION
"Protocol format for HTTP.'

: := { Data=httpData}

http FLOW
HEADER { LENGTH=O
CONNECTION { INHERITED}
PAYLOAD { INCLUDE-HEADER, DATA=Data, LENGTH=256}
STATES

·so: CHECKCONNECT, GOTO Sl
DEFAULT NEXT SO

Sl: WAIT 2, GOTO S2, NEXT Sl
DEFAULT NEXT SO

S2: MATCH
'\n\r\n' 900
•\n\n' 900
'POST /tds?' 50
'.hts BTTP/1.0' 50
'jdbc:sybase:Tds' 50
'PCN-The Poin' 500
't: BW-C-' 100
DEFAULT NEXT S3

S3: MATCH
'\n\r\n' 50
'\n\n' 50
'Content-Type:' 800
'PCN-The Poin' 500
't: BW-C-' 100
DEFAULT NEXT so•

sybaseWebsql FLOW
STATE-BASED

sybaseJdbc FLOW
STATE-BASED

sybaseTds FLOW
STATE-BASED

0 0 255 0,
0 0 255 0,
0 0 127 1,
4 0 127 1,
4 0 127 l,
4 1 255 0,
4 1 255 0,

0 0 0 0,
0 0 0 0,
0 0 255 0'
4 1 255 0,
4 1 255 0,

NEXT S3
NEXT S3
CHILD sybaseWebsql
CHILD sybaseJdbc
CHILD sybaseTds
CHILD pointcast
CHILD backweb

NEXT S3
NEXT S3
CHILD mime
CHILD pointcast
CHILD backweb

EX 1018 Page 88

('7 C”)

81

3.4 HTTP (with State)

Here is an example of the PDL for the HTTP protocol:
httpData FIELD

SYNTAX BYTESTRING{1..1500)
S LENGTH “(SipLength — (SipHeaderLength * 4)} — {StcpHeaderLen * 4)“

DISPLAY-HINT “Text“
FLAGS NOLABEL

http PROTOCOL
10 SUMMARIZE

"ShttpData m/“GBTIAHTTPI“EEADI*POSTJ"
“HTTP $httpData'

"$httpData m/A{Dd1ateI‘[Ss]erver[“[Ll]ast—[Mm]odified/“
“HTTP ShttpData"

15 "ShttpData m/“[Cc]ontent—/"
“HTTP ShttpData“

“$httpData m/“<HTML>/"
“HTTP [HTML document]“

"$httpData m/“GIF/“
20 "HTTP [GIF imagel“

“Default“ :
“HTTP [Data]"

DESCRIPTION
"Protocol format for HTTP.“

25 ::= { DatazhttpData }

http FLOW
HEADER { LENGTH=O }
CONNECTION { INHERITED }

30 PAYLOAD { INCLUDE—HEADER, DATA=Data. LENGTH=256 } STATES
'30: CHECKCONNECT. GOTO 31

DEFAULT NEXT so

35 31: WAIT 2, GOTO 32, NEXT 81
DEFAULT NEXT so

32: MATCH
‘\n\r\n‘ 900 0 0 255 0, NEXT 53

;:v 40 ‘\n\n' 900 O a 255 0, NEXT 53
Q ’ 'POST ltds?‘ 50 0 0 127 1, CHILD sybaseWebsql
E w '.hts HTTP/1.0' so 4 o 127 1, CHILD sybaseJdbc
{4 ’jdbc:sybase:Tds' 50 4 0 12? 1, CHILD sybasers

g ‘PCN~Tha Poin‘ 500 4 1 255 o, CHILD pointcast
~g 45 't: BW~C~‘ 100 4 1 255 o, CHILD backweb
fifi DEFAULT NEXT 53
3‘

'fi 33: MATCH
'{f ‘\n\r\n' 50 0 o o 0, NEXT 83
k 50 '\n\n' 50 o o 0 0, NEXT 33
L ‘ContentsTypet' 800 o o 255 o, CHILD mime

.% ‘PCN—The Poin‘ 500 4 l 255 O, CHILD pointcast
3: 'c: Bw~c-* 100 4 1 255 0. CHILD backweb
E DEFAULT NEXT so-
” 55

1 SybaseWebsql FLOW
‘ STATE—BASED

i sybaseJdbc FLOW
t 60 STATE—BASED

sybasers FLOW
Limp»T. STATE-BASED

_"w

EX 1018 Page 88

!:

r.,
~ ! :

Q

'' ;~

if
!d
:~

t:6
-;....?

,ft ~=

(~
~j1
hi
~:"lZ'.

i"'s
;=
•= . ' ;::::::

id

+1:
<e'
•'.

0
82

pointcast FLOW
STATE-BASED

5 back.web FLOW
STATE-BASED

mime FLOW
STATE-BASED

10 STATES
•so: MATCH

'application' 900 0 0 1 0, CHILD mimeApplication

15

20

25

30

35

40

45

50

55

60

'audio' 900 0 0 1 0, CHILD mimeAudio

'image' 50 0 0 1 0, CHILD mimeimage

'text' 50 0 0 1 0, CHILD mimeText

'video' 50 0 0 1 0, CHILD mimeVideo

'x-world' 500 4 1 255 0, CHILD mimeXworld

DEFAULT GOTO so•

mimeApplication FLOW
STATE-BASED

mimeAudio FLOW
STATE-BASED
STATES

·so: MATCH
'basic' 100 0 0
'midi' 100 0 0
'mpeg' 100 0 0
'vnd.rn-realaudio' 100 0 0
•wav'
'x-aiff'
•x-midi'
•x-mpeg'
•x-mpgurl'
•x-pn-realaudio'
'x-wav'

DEFAULT GOTO

mime Image FLOW
STATE-BASED

mimeText FLOW
STATE-BASED

mimeVideo FLOW
STATE-BASED

mimeXworld FLOW
STATE-BASED

pdBasicAudio FLOW
STATE-BASED

pd.Midi FLOW
STATE-BASED

pdMpeg2Audio FLOW
STATE-BASED

pdMpeg3Audio FLOW
STATE-BASED

pdRealAudio FLOW

so•

100 0 0
100 0 0
100 0 0
100 0 0
100 0 0
100 0 0
100 0 0

65 STATE-BASED

pdWav FLOW

1 0,
1 0,
1 o,
1 0,
1 0,
1 0,
1 0,
1 0,
1 0,
1 0,
1 0,

n

CHILD pdBasicAudio
CHILD pd.Midi
CHILD pdMpeg2Audio
CHILD pdRealAudio
CHILD pdWav
CHILD pdAiff
CHILD pd.Midi
CHILD pdMpeg2Audio
CHILD pdMpeg3Audio
CHILD pdRealAudio
CHILD pdWav

EX 1018 Page 89

O O

82

pointcast FLOW
STATE-BASED

5 backweb FLOW
STATE-BASED

mime FLOW
STATE—BASED

10 STATES
" so : MATCH

'application' 900 0 0 l 0. CHILD mimeApplication
'audio' 900 0 0 1 0, CHILD mimeAudio
'image‘ 50 O 0 1 0, CHILD mimelmage

15 'text' so 0 0 1 0, CHILD mimeText
'video' 50 D O 1 0, CHILD mimevideo
'x—world' 500 4 1 255 0, CHILD mimeXworld
DEFAULT GOTO SO“

20 mimeApplication FLOW
STATE-BASED

mimeAudio FLOW
STATE-BASED

25 STATES
“SO: MATCH

'basic' 100 0 0 1 O, CHILD deasicAudio
‘midi‘ 100 O O 1 0, CHILD deidi
'mpeg‘ 100 0 0 1 0, CHILD depegZAudio

3O 'vnd.rn—rea1audio' 100 O 0 1 O, CHILD deealAudio
'wav‘ 100 O O 1 0, CHILD deav
'x—aiff' 100 O O 1 O, CHILD pdAiff
‘x—midi' 100 0 0 1 0, CHILD deidi
'x—mpeg' 100 U 0 1 O, CHILD depengudio

35 'X-mpgurl' 100 0 G l 0, CHILD depeg3Audio
'x—pn—realaudio‘ 100 O 0 1 0, CHILD deealAudio
'x—wav‘ 100 0 0 1 0, CHILD deav

DEFAULT GOTO SO“

40 mimeImage FLOW
STATE*BASED

mimeText FLOW
STATEfiBASED

45
mimevifleo FLOW

STATE-EASED

mimeXworld FLOW
50 STATE—BASED

deasicAudio FLOW
STATE-BASED

55 deidi FLOW
STATE-BASED

depegZAudio FLOW
STATE-BASED

60
depegBAudio FLOW

STATE~BASED

deealAudio FLOW
65 STATE-BASED

deav FLOW

EX 1018 Page 89

n 0
83

STATE-BASED

pdAiff FLOW
STATE-BASED

·'

EX 1018 Page 90

(V n

83

STATE-BASED

pdAiff FLOW
STATE~BASED

H

 $3'3

EX 1018 Page 90

)' '
r

0
84

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

5 of sequences of packets.

10

15

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as telephones,

"Internet" radios, pagers, and so forth. The term computer as used herein encompasses all

such devices and a computer network as used herein includes networks of such

computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

limiting. Various alterations and modifications will no doubt become apparent to those or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.

EX 1018 Page 91

0 O

84

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generating state transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

5 of sequences of packets.

Note that one in the art will understand that computer networks are used to

connect many different types of devices, including network appliances such as telephones,

“Internet” radios, pagers, and so forth. The term computer as used herein encompasses all

such devices and a computer network as used herein includes networks of such

10 computers.

Although the present invention has been described in terms of the presently

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as

limiting. Various alterations and modifications will no doubt become apparent to those or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

15 that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.
EX 1018 Page 91

• , I

'·

f

85

APPENDIX: SOME POL FILES.

The following pages include some PDL files as examples. Included herein are the

PDL contents of the following files. A reference to PDL is also included herein. Note that

any contents on any line following two hyphen (--) are ignored by the compiler. That is,

5 they are comments.

10

15

common.pdl;

flows.pdl;

virtual.pdl;

ethemet. pdl;

IEEE8032.pdl and IEEE8033.pdl (ethertype files);

IP.pd!;

TCP.pdl and UDP.pd!;

RPC.pdl;

NFS.pd!; and

HTTP.pdl.

EX 1018 Page 92

O m

85

APPENDIX: SOME PDL FILES.

The following pages include some PDL files as examples. Included herein are the

PDL contents of the following files. A reference to PDL is also included herein. Note that

any contents on any line following two hyphen (-_) are ignored by the compiler. That is,

5 they are comments.

commonpdl;

flowspdl;

virtualpdl;

ethernetpdl;

10 IEBE8032.pdl and IEEE8033.pdl (ethertype files);
IP.pdl;

5 TCP.pdl and UDP.pd1;

RFdel;

NFS.pdl; and
15 HTTdel.

..194%”

EX 1018 Page 92

\
l J,

; .,,

~:
::;

rn
·=

:~

= !!:

!9
~=
¥~

~~J

~:
~d

,"r'i
"I

~l'
'' ,·,

I

A::"
-;: '

' ''·
r..
>

86

Common.pdl - Common protocol definitions

5 Description:

10

15

20

25

30

35

40

45

50

55

60

65

This file contains some field definitions for commonly used fields
in various network protocols.

Copyright:
Copyright (cl 1996-1999 Apptitude, Inc.

(formerly Technically Elite, Inc.)
All rights reserved.

RCS:
$Id: Common.pdl,v 1.7 1999/04/13 15:47:56 skip Exp$

Int4 FIELD
SYNTAX INT(4)

IntB FIELD
SYNTAX INT (8)

Int16 FIELD
SYNTAX INT(l6)

Int24 FIELD
SYNTAX INT (2 4)

Int32 FIELD
SYNTAX INT(32)

Int64 FIELD
SYNTAX INT (64)

UintB FIELD
SYNTAX UNSIGNED INT(B)

Uint16 FIELD
SYNTAX UNSIGNED INT(16)

Uint24 FIELD
SYNTAX UNSIGNED INT(24)

Uint32 FIELD
SYNTAX UNSIGNED INT (32)

Uint64 FIELD
SYNTAX UNSIGNED INT(64)

Sintl6 FIELD
SYNTAX INT (16)
FLAGS SWAPPED

SUint16 FIELD
SYNTAX UNSIGNED INT(l6)
FLAGS SWAPPED

Sint32 FIELD
SYNTAX INT (32)
FLAGS SWAPPED

Bytestrl FIELD
SYNTAX BYTESTRING (1)

ByteStr2 FIELD
SYNTAX BYTESTRING(2)

EX 1018 Page 93

.,{5‘ L.

—- Common.pd1 — Common protocol definitions

5 —~ Description:
—— This file contains some field definitions for commonly used fields
~- in various network protocols.

),‘ —— Copyright:
$9: 10 -- Copyright (c) 1996—1999 Apptitude, Inc.
W'R —- (formerly Technically Elite, Inc.)

—— All rights reserved.

—— RCS:

15 —— SId: Common.pdl,v 1.7 1999/04/13 15:47:56 skip Exp 5

Inttl FIELD
SYNTAX INT { 4)

20
IntB FIELD

SYNTAX INT(8)

Intle FIELD
25 SYNTAX mum)

Int24 FIELD
SYNTAX INT(24)

30 Int32 FIELD
SYNTAX mun)

Int64 FIELD
SYNTAX INT(64)

35
UIntB FIELD

SYNTAX UNSIGNED INT(8)

UIntlS FIELD
4O SYNTAX UNSIGNED INT(16)

UInt24 FIELD

SYNTAX UNSIGNED INTI24}
!

gt x 45 UInt32 FIELD
gf SYNTAX UNSIGNED INT(32)

1 UInt64 FIELD
{g SYNTAX UNSIGNED INT(54}

‘ 50
5113th FIELD

SYNTAX mrua)
FLAGS SWAPPED

1' ‘ 55 80111th FIELD
~ SYNTAX UNSIGNED INT(16)

FLAGS SWAPPED

! SInt32 FIELDi: 60 SYNTAX INT (32)
FLAGS SWAPPED

Bytestrl FIELD
SYNTAX BY'I‘ESTRING (l}

65
- ByteStrE FIELD

i SYNTAX BYTESTRING(2)

EX 1018 Page 93

5

l~

F 10

j • ~ +

15

20

25

30

35

40

,,
I

' ...

ByteStr4 FIELD
SYNTAXBYTESTRING(4)

Padl

Pad2

Pad3

Pad4

Pad5

FIELD
SYNTAX BYTESTRING (1)
FLAGS NOSHOW

FIELD
SYNTAX BYTESTRING (2)
FLAGS NOSHOW

FIELD
SYNTAXBYTESTRING(3)
FLAGS NOSHOW

FIELD
SYNTAXBYTESTRING(4)
FLAGS NOSHOW

FIELD
SYNTAXBYTESTRING(5)
FLAGS NOSHOW

macAddress FIELD
SYNTAX BYTESTRING(6)
DISPLAY-HINT "lx:•
LOOKUP MACADDRESS
DESCRIPTION

"MAC layer physical address"

ipAddress FIELD
SYNTAX BYTESTRING(4)
DISPLAY-HINT "ld."
LOOKUP HOSTNAME
DESCRIPTION

"IP addressn

ipv6Address FIELD
SYNTAX BYTESTRING(16)
DISPLAY-HINT "ld. •
DESCRIPTION

"IPV6 address"

n
87

EX 1018 Page 94

(V (V

87

Bytestr4 FIELD
SYNTAX BYTESTRING(4)

5 Padl FIELD
SYNTAX BYTESTRING(1}
FLAGS NOSHOW

PadZ FIELD
10 SYNTAX BYTESTRING(2)

FLAGS NOSHOW

Pad3 FIELD
SYNTAX BYTESTRING(3)

15 FLAGS NOSHOW

paa4 FIELD
SYNTAX BYTESTRING(4)
FLAGS NOSHOW

20
PadS FIELD

SYNTAX BYTESTRING(5)
FLAGS NOSHON

25 macAddress FIELD
SYNTAX BYTESTRING(6)
DISPLAY~HINT ‘1x:"
LOOKUP MACADDRESS
DESCRIPTION

30 “MAC layer physical address"

ipAddress FIELD
SYNTAX BYTESTRING(4)
DISPLAY~HINT “1d.”

35 LOOKUP HOSTNAME
DESCRIPTION

“ IP address"

ivaAddress FIELD
40 SYNTAX BYTESTRING(16)

DISPLAY—HINT “1d.~
DESCRIPTION

“ 1W6 address"
EX 1018 Page 94

fl,
·l

0
88

Flows.pdl - General FLOW definitions

5 Description:
This file contains general flow definitions.

Copyright:
Copyright (c) 1998-1999 Apptitude, Inc.

10 (formerly Technically Elite, Inc.)
All rights reserved.

RCS:
$Id: Flows.pdl,v 1.12 1999/04/13 15:47:57 skip Exp$

15

chaosnet FLOW

20 spanningTree FLOW

sna FLOW

oracleTNS FLOW
25 PAYLOAD { INCLUDE-HEADER, LENGTH=256}

ciscoOUI FLOW

30 -- IP Protocols

igmp FLOW

35 GGP FLOW

ST FLOW

UCL FLOW
40

egp FLOW

igp FLOW

45 BBN-RCC-MON FLOW

NVP2 FLOW

PUP FLOW
50

ARGUS FLOW

EMCON FLOW

55 XNET FLOW

MUX FLOW

DCN-MEAS FLOW
60

HMP FLOW

PRM FLOW

65 TRUNKl FLOW

TRUNK2 FLOW

EX 1018 Page 95

~— Flows.pdl - General FLOW definitions

5 -- Description:
—— This file contains general flow definitions.

-* Copyright:
—- Copyright (c) 1998—1999 Apptitude, Inc.

10 —— (formerly Technically Elite, Inc.)
-— All rights reserved.

—— RC5-

-- 51d: Flows.pdl,v 1.12 1999/04/13 15:47:57 skip Exp S
15 —*

chaosnet FLOW

20 spanningTree FLOW

sna FLOW

oracleTNs FLOW
5 PAYLOAD { INCLUDE~HEADER, LENGTH=256 }

CiscoOUI FLOW

30 -— IP Protocols

igmp FLOW

35 GGP FLOW

ST FLOW

UCL FLOW
40

egp FLOW

igp FLOW

4S BBN—RCC-MON FLOW

NVPZ FLOW

PUP FLOW
50

ARGUS FLOW

EMCON FLOW

55 XNE’I‘ FLOW '

m FLOW

DCN—MEAS FLOW
60

HMP FLOW

PR}! FLOW

65 TRUNKI FLOW

TRUNKZ FLOW

EX 1018 Page 95

() 0
89

LEAFl FLOW

LEAF2 FLOW
5

RDP FLOW

IRTP FLOW

lO ISO-TP4 FLOW

NETBLT FLOW

MFE-NSP FLOW
15

MERIT-INP FLOW

SEP FLOW

20 PC3 FLOW

IDPR FLOW
~d

XTP FLOW

~r 25
DDP FLOW .. -
IDPR-CMTP FLOW

i=
30 TPPlus FLOW

-

IL FLOW

·= SIP FLOW

rr 35
~iJ SDRP FLOW

~~ SIP-SR FLOW
~;
id 40 SIP-FRAG FLOW

IDRP FLOW

RSVP FLOW
45

MHRP FLOW

BNA FLOW

50 SIPP-ESP FLOW

SIPP-AH FLOW

INLSP FLOW
55

SWIPE FLOW

NHRP FLOW

60 CFTP FLOW

SAT-EXPAK FLOW

KRYPTOLAN FLOW
65

RVD FLOW

EX 1018 Page 96

n
', 0

90
IPPC FLOW

SAT-MON FLOW

5 VISA FLOW

IPCV FLOW

CPNX FLOW
10

CPHB FLOW

WSN FLOW

15 PVP FLOW

BR-SAT-MON FLOW

SUN-ND FLOW
20

WB-MON FLOW

~~ WB-EXPAK FLOW

:jJ
25 ISO-IP FLOW

!j!

VMTP FLOW
:~
t: SECURE-VMTP FLOW ~=

30 •.i

TTP FLOW
;r]

NSFNET-IGP FLOW

C
35 m DGP FLOW

1t!!

IJJ TCF FLOW
~

~'.
g IGRP FLOW

~ 40 f . '1 OSPFIGP FLOW ·,
Sprite-RPC FLOW

•
{i'. 45 LARP FLOW
1

MTP FLOW

AX25 FLOW
50

!PIP FLOW

MICP FLOW

55 scc-sP FLOW

ETHERIP FLOW

encap FLOW
60

GMTP FLOW

--------------~~-------------------- --------------------
65 -- UDP Protocols

--
compressnet FLOW

EX 1018 Page 97

90

I P PC FLOW

SAT-MON FLOW

5 VISA FLOW

I PCV FLOW

C PN'X FLOW
10

spas FLOW

WSN FLOW

15 PVP FLOW

BR-SAT—MON FLOW

SUN~ND FLOW
20

WB—MON FLOW

WB-EXPAK FLOW

25 ISO-IP FLOW

VMTP FLOW

SECURE—WT? FLOW
30

TTP FLOW

NSFNET-IGP FLOW

35 DGP FLOW

TCF FLOW

IGRP FLOW
40

OSPFIGP FLOW

Spr i te~RPC FLOW

45 LARP FLOW

MT? FLOW

szs FLOW
50

IPIP FLOW

mrcp FLOW

55 SCC—SP FLOW

ETHERIP FLOW

encap FLOW
6O

GMTP FLOW

65 —- UDP Protocols

EX 1018 Page 97

5

10

15

20

25

30

35

40

rje FLOW

echo FLOW

discard FLOW

systat FLOW

daytime

qotd FLOW

msp FLOW

chargen

biff FLOW

who FLOW

syslog FLOW

loadav FLOW

notify FLOW

acmaint_dbd

FLOW

FLOW

FLOW

acmaint_transd

puparp FLOW

applix FLOW

ock FLOW

n n
91

FLOW

--
-- TCP Protocols
--
tcpmux FLOW

telnet FLOW
45 CONNECTION {INHERITED}

privMail

nsw-fe FLOW
50

msg-icp

msg-auth

55 dsp FLOW

privPrint

time FLOW
60

rap FLOW

rlp FLOW

65 graphics

nameserver

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

EX 1018 Page 98

10

15

20

25

3O

35

40

45

50

55

60

65

rj e FLOW

echo FLOW

discard

sys tat FLOW

dayt ime

qo td FLOW

msp FLOW

chargen

b i f f FLOW

who FLOW

sys 1 0g FLOW

loadav FLOW

not i fy FLOW

FLOW

FLDW

FLOW

acmaint_dbd FLOW

acmaint_transd FLOW

puparp FLOW

applix FLOW

Ock FLOW

91

tcpmux FLOW

telnet FLOW
CONNECTION { INHERITED }

privMail

nsw— fe FLOW

msg—icp

msg—auth

dsp FLOW

privPrint

time FLOW

rap FLOW

rlp FLOW

graphics

nameserver

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

EX 1018 Page 98

() n
92

nicname FLOW

mpm-flags FLOW
5

mpm FLOW

mpm-snd FLOW

10 ni-ftp FLOW

auditd FLOW

finger FLOW
15

re-mail-ck FLOW

la-maint FLOW

20 xns-time FLOW

xns-ch FLOW
:-:
:;:J

:tJ isi-gl FLOW
25

~d
xns-auth FLOW

:bJ privTerm FLOW

~=
30 xns-mail FLOW

.

·= privFile FLOW

·= ni-mail FLOW ;~

u3 35
! ! acas FLOW
~~~ 

~: covia FLOW 
g 
~d 40 tacacs-ds FLOW 

sqlnet FLOW 

gopher FLOW 
45 

netrjs-1 FLOW 

netrjs-2 FLOW 

50 netrjs-3 FLOW 

netrjs-4 FLOW 

:,• privDial FLOW 
55 

deos FLOW 

privRJE FLOW 

60 vettcp FLOW 

hosts2-ns FLOW 

xfer FLOW 
65 

ctf FLOW 

~ 

EX 1018 Page 99

 

 

  

 

10

15

20

25

30

35

4O

45

50

55

60

65

nicname

mpm—flags

mpm FLOW

mpm—snd

ni — ftp FLOW

auditd FLOW

fingeI‘FLOW

re—mailwck

la—maint

xns—time

xns-Ch FLOW

isi—gl FLOW

xns-auth

privTerm

xns—mail

privFile

ni-mail

acas FLOW

covia FLOW

tacaCSods

sqlnet FLOW

gopher FLOW

netrjs~l

netrjs-2

netrjs—3

netrj5w4

privDial

deos FLOW

privRJE

vettcp FLOW

hostsZ—ns

xfer FLOW

th FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

92

EX 1018 Page 99



0 n 
' ? 93 

mit-ml-dev FLOW 

mfcobol FLOW 

5 kerberos FLOW 

,, su-mit-tg FLOW 
: .. ;,, 

dnsix FLOW 
10 

mit-dov FLOW 

npp FLOW 
' ' 

,. 

15 dcp FLOW 

obj call FLOW 
' ,,· 
' supdup FLOW 

20 
dixie FLOW 

(J swift-rvf FLOW 

iD 25 tacnews FLOW 
~T! 
!= 

metagram FLOW h:J 

1~ 

~:± newacct FLOW 

·:._f 30 
hostname FLOW 

~bj 

iso-tsap FLOW 
~~ 

~ 35 gppitnp ~n FLOW 

'' iJJ csnet-ns FLOW 
i9 
t=-
;~ threeCom-tsmux FLOW 
bi 40 Q 

rtelnet FLOW 

:: .• . snagas FLOW 
~'· 

\~f' 45 mcidas FLOW 

r·:, 

auth FLOW 

audionews FLOW 
50 

sftp FLOW 

ansanotify FLOW 

55 uucp-path FLOW 

sqlserv FLOW 

cfdptkt FLOW 
60 

erpc FLOW 

sroakynet FLOW 

65 ntp FLOW 

ans a trader FLOW 

EX 1018 Page 100

 

 

 

 
 

10

15

20

25

30

35

40

45

50

55

65

mit~ml~dev

mfcobol

kerberos

su—mit—tg

dnsix FLOW

mit—dov

npp FLOW

dcp FLOW

objcall

supdup FLOW

dixie FLOW

swift~rvf

tacnews

metagram

newacct

hostname

iso—tsap

gppitnp

csnet-ns

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

threeCom—tsmux

rtelnet

snagas FLOW

mcidas FLOW

auth FLOW

audionews

Sftp FLOW

ansanotify

uucp~path

sqlserv

cfdptkt

erpc FLOW

smakynet

ntp FLOW

ansatrader

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

93

EX 1018 Page 100



n n 
94 

locus-map FLOW 

unitary FLOW 
5 

locus-con FLOW 

gss-xlicen FLOW 

10 pwdgen FLOW 

cisco-fna FLOW 

cisco-tna FLOW 
15 

cisco-sys FLOW 

statsrv FLOW 

20 ingres-net FLOW 

loc-srv FLOW 
'i~ ·= profile FLOW ;f; 
'"" 

25 
iJi emf is-data FLOW 
~~ 
:.:: emfis-cntl FLOW 
= 
f= 30 bl-idm FLOW 

:~ imap2 FLOW 

' ~: news FLOW 

{j1 35 

!jj 
uaac FLOW 

= iso-tpO 1:J FLOW 

~: 
40 ,~ iso-ip FLOW 

cronus FLOW 

aed-512 FLOW 
45 

sql-net FLOW 

hems FLOW 

50 bftp FLOW 

sgmp FLOW 

netsc-prod FLOW 
55 

netsc-dev FLOW 

sqlsrv FLOW 

60 knet-cmp FLOW 

pcmail-srv FLOW 
,, 
i nss-routing FLOW 

J 65 

j, 
sgmp-traps FLOW 

~ 

EX 1018 Page 101

 
 

a: .

 

 

 

10

15

20

25

3G

35

40

45

50

55

60

locus~map

unitary

locus-con

gss-xlicen

pwdgen.FLOW

cisco«fna

cisco~tna

cisco~sys

statsrv

ingres—net

loc—srv

profile

emfis-data

emfis~cntl

bl—idnLFLOW

imapZ FLOW

news FLOW

uaac FLOW

iso-tpO

iso-ip FLOW

cronus FLOW

aed-Slz

sql—net

hems FLOW

bftp FLOW

sgmp FLOW

netsc-prod

netsc-dev

sqlsrv FLOW

knet’cmp

pcmail~srv

nss—routing

sgmpatraps

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

94

EX 1018 Page 101



n ('i 

95 

cmip-man FLOW 

cmip-agent FLOW 

5 xns-courier FLOW 

s-net FLOW 

namp FLOW 
10 

rsvd FLOW 

send FLOW 

15 print-srv FLOW 

multiplex FLOW 

cl-1 FLOW 
20 

xyplex-mux FLOW 

~~ mailq FLOW 

-~ 25 vmnet FLOW 
~J ! 
i~ genrad-mux FLOW ~:::i 

~t 
:= xdmcp FLOW 

30 
nextstep FLOW 

' ' bgp FLOW 
t~ 

t= 

~== ~ 
35 ris FLOW 

!:: 
'f::.: unify FLOW ~: 

audit FLOW 

~d 40 
ocbinder FLOW 

ocserver FLOW 

45 remote-kis FLOW 

kis FLOW 

aci FLOW 
50 

mumps FLOW 

:,·.'t 
qft FLOW 

55 gacp FLOW 

prospero FLOW 

osu-nms FLOW 
60 

srmp FLOW 

ire FLOW 

65 dn6-nlm-aud FLOW 

dn6-smm-red FLOW 

<:' 

EX 1018 Page 102

 
10 
15

20

5“

25

,......«.~...w~.w...
30 
35

40 
45

55

60

65

 

cmip—man

cmip-agent

xns~courier

s—net FLOW

namp FLOW

rsvd FLOW

send FLOW

print—srv

multiplex

cl—l FLOW

xyplex-mux

mailq FLOW

vmnet FLOW

genrad-mux

xdmcp FLOW

nextstep

bgp FLOW

ris FLOW

unify FLOW

audit FLOW

achinder

ocserver

remote—kis

kis FLOW

aCi FLOW

mumps FLOW

qft FLOW

gasp FLOW

prospero

osu-nms

srmp FLOW

irc FLOW

dnS-nlm—aud

dn6«smm—red

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

FLOW

95

EX 1018 Page 102



n C--1 
', 

96 

dls FLOW 

dls-mon FLOW 
5 

smux FLOW 

src FLOW 

1,.: 10 at-rtmp FLOW 

at-nbp FLOW 

at-3 FLOW 
15 

at-echo FLOW 

at-5 FLOW 

20 at-zis FLOW 

at-7 FLOW 

i: 
{J 

at-8 FLOW 
25 

:~ 
•.::: tam FLOW ·= ;:;:.: 

:,bJ z39-50 FLOW 

!=f: 
30 ~~ .. J anet FLOW 

~ \ :~ vmpwscs FLOW 

~: softpc FLOW 

lf 35 
atls FLOW 

~JJ 
dbase FLOW 

;'9 
~=f 

i: 40 mpp FLOW 

uarps FLOW 

imap3 FLOW 
45 

fln-spx FLOW 

rsh-spx FLOW 

50 cdc FLOW 

sur-meas FLOW 

link FLOW 
55 

dsp3270 FLOW 

pdap FLOW 

60 pawserv FLOW 

zserv FLOW 

fatserv FLOW 
65 

csi-sgwp FLOW 

.t 
:' 

EX 1018 Page 103

 

96

d1 5 FLOW

d1 3 ‘mon FLOW
5

smux FLOW

S rc FLOW

2:", 10 at-rtmp FLOW

at~nbp FLOW

at — 3 FLOW
15

at—echo FLOW

at— 5 FLOW

20 at - z i s FLOW

at: ~ 7 FLOW

at- B FLOW
25

tam FLOW

239-50 FLOW

30 anet FLOW 
vmpws cs FLOW

s o ftpc FLOW
35

at ls FLOW

dbase FLOW

40 mpp FLOW

uarpS FLOW

imap3 FLOW
45

f331— spx FLOW

rsh—spx FLOW

 
50 cdc FLOW

. ”g 2 sur“meas FLOW
“3i : .
1% link FLOW

: 55

' g . dsp3 27 O FLOW

' pdap FLOW

60 pawserv FLOW

zserv FLOW

fatserv FLOW
65

cs i ~ sgwp FLOW

 
EX 1018 Page 103



n n 
' 

97 

clearcase FLOW 
' :~ ';' 

ulistserv FLOW 

5 legent-1 FLOW 

legent-2 FLOW 

hassle FLOW 
10 

nip FLOW 

tnETOS FLOW 

15 dsETOS FLOW 

is99c FLOW 

is99s FLOW 
20 

hp-collector FLOW 

!~ hp-managed-node FLOW 

i~ 

25 tf hp-alarm-mgr FLOW 

~ arns FLOW 

~~ ibm-app FLOW 

l',,-J 30 
asa FLOW 

';l,.· 
~bJ 

,. 
aurp FLOW 

:_..: 

~= 35 unidata-ldm FLOW 
~~ 

tJ ldap FLOW ri 
'= ~: uis FLOW 
.=. 40 ~ ; 
:; 

synotics-relay FLOW 

synotics-broker FLOW 

45 dis FLOW 

embl-ndt FLOW 

netcp FLOW 
50 

netware-ip FLOW 

mptn FLOW 

55 kryptolan FLOW 

work-sol FLOW 

ups FLOW 
60 

genie FLOW 

decap FLOW 

65 need FLOW 

ncld FLOW 

EX 1018 Page 104

 

 

 
‘35Iiifii

 

10

15

20

30

35

40

45

50

55

60

65

(W

clearcase FLOW

ul istserv FLOW

legent— 1 FLOW

legent-Z FLOW

has 5 le FLOW

nip FLOW

tnETOS FLOW

dsETOS FLOW

is 9 9 C: FLOW

is9 9 s FLOW

hp -co 1 1 ac tor FLOW

hp —managed—node FLOW

hp —alarm-mgr FLOW

arns FLOW

ibnvapp FLOW

asa FLOW

aurp FLOW

uniéata- 1 6m FLOW

ldap FLOW

uis FLOW

synotics~relay FLOW

synotics—broker FLOW

dis FLOW

embl -ndt FLOW

netcp FLOW

netware— ip FLOW

mptn FLOW

kryptolan FLOW

work—so l FLOW

up 5 FLOW

genie FLOW

decap FLOW

nced FLOW

ncId FLOW

97

(“3

EX 1018 Page 104



n n 
98 

imsp FLOW 

tirobuktu FLOW 
5 

prm-sm FLOW 

prm-nm FLOW 

10 decladebug FLOW 

rmt FLOW 

synoptics-trap FLOW 
15 

smsp FLOW 

infoseek FLOW 

20 bnet FLOW 

silverplatterFLOW 
~~ - orunux FLOW :!J 25 
~f hyper-g FLOW 
(:J 

ariell FLOW -
~= 
~J 30 smpte FLOW 

= ariel2 FLOW 

5d ariel3 FLOW 

~. ·~ 1, ~Jl 35 

~j 
ope-job-start FLOW 

~~ ope-job-track FLOW 
:,; tJ '~ 40 icad-el FLOW f ;" ~d 

smartsdp FLOW 

svrloc FLOW 
45 

ocs_cmu FLOW 

ocs_amu FLOW 

50 utmpsd FLOW 

utmpcd FLOW 

iasd FLOW 
55 

nnsp FLOW 

mobileip-agent FLOW 

60 mobilip-mn FLOW 

dna-cml FLOW 

comscm FLOW 
65 

dsfgw FLOW 

EX 1018 Page 105

 

 

 

 
‘3r

A“:

«i.

 

10

15

2.0

25

30

35

4O

45

50

55

60

65

imsp FLOW

t imbuktu FLOW

prm»sm FLOW

prm~nm FLOW

dec ladebug FLOW

mt FLOW

synopt ic s — trap

smsp FLOW

infoseek FLOW

bnet FLOW

s ilverplatter FLOW

onmux FLOW

hyper-g FLOW

ar iel l FLOW

smpte FLOW

ariel 2 FLOW

ar5.813 FLOW

opc— j ob—start FLOW

opc-j ob— track. FLOW

icad— El FLOW

smartsdp FLOW

svrl0c FLOW

o cs_cmu FLOW

o cs_amu FLOW

u tmpsd FLOW

utmpcd FLOW

iasd FLOW

nnsp FLOW

mobileip~agant

mobil ip-mn FLOW

dna—cml FLOW

cems cm FLOW

d5 fg’w FLOW

FLOW

FLOW

98

EX 1018 Page 105



~) ~) 

99 

dasp FLOW 

sgcp FLOW 

5 decvrns-sysmgtFLOW 

cvc_hostd FLOW 

https FLOW 
10 

CONNECTION { INHERITED } 

snpp FLOW 

microsoft-ds FLOW 
15 

ddm-rdb FLOW 

ddm-dfm FLOW 

20 ddm-byte FLOW 

as-servermap FLOW 

~~ 
tserver FLOW 

;~ 25 
a;1 exec FLOW 
·= i:d 

:f1 CONNECTION { INHERITED } 

' login FLOW := 

30 

1~ 

CONNECTION { INHERITED } 

cmd FLOW 

[: CONNECTION INHERITED } 

~j1 35 printer FLOW 

~JJ CONNECTION INHERITED } 

talk FLOW 
·"'-: : 
~~ 

·= 40 CONNECTION { INHERITED } 
;:J 

ntalk FLOW 

CONNECTION { INHERITED } 

utime FLOW 
45 

efs FLOW 

timed FLOW 

50 tempo FLOW 

courier FLOW 

conference FLOW 
55 

netnews FLOW 
;,.· 

netwall FLOW 

60 apertus-ldp FLOW 

uucp FLOW 

uucp-rlogin FLOW 
65 

klogin FLOW 

EX 1018 Page 106

1..g!“‘‘

99

dasp FLOW

Sgcp FLOW

, , 5 decvms- sysmgt FLOW

cvcwhos Cd FLOW

gf ‘ https FLOW

 

10
CONNECTION { INHERITED }

snpp FLOW

microsoft—ds FLOW
. 15

ddm—rdb FLON

i ddm—dfm FLOW

20 ddm—byte FLOW

as—servermap FLOW

tserver FLOW
25

exec FLOW

CONNECTION { INHERITED }

login FLOW
30

CONNECTION { INHERITED )
cmd FLOW

CONNECTION { INHERITED }
35 printer FLOW

CONNECTION { INHERITED )
talk FLOW

4O CONNECTION ( INHERITED )
ntalk FLOW

CONNECTION { INHERITED }
utime FLOW

45
efs FLOW

timed FLOW

SO tempo FLOW

Cour 1 er FLOW

 
conference FLOW

55
netnews FLOW

1." * netwall FLOW

T, M, 60 apertus-ldp FLOW

uucp FLOW

uucp—rlogin FLOW
65

klogin FLOW

 

EX 1018 Page 106



n 0 
100 

kshell FLOW 

new-rwho FLOW 

5 dsf FLOW 

remotefs FLOW 

rmonitor FLOW 
10 

monitor FLOW 

chshell FLOW 

15 p9fs FLOW 

whoami FLOW 

meter FLOW 
20 

ipcserver FLOW 

!:J urm FLOW 

:~ 25 FLOW ~r nqs 

~: sift-uft FLOW 
;k: 
~ ~ npmp-trap FLOW 

30 
;-~ 

npmp-local FLOW 
-~ 

npmp-gui FLOW 

~~ 
~r 35 ginad FLOW 

~JJ doom FLOW 

td mdqs FLOW , ~: 40 ' 
elcsd FLOW 

entrustmanager FLOW 

45 netviewdml FLOW 

netviewdm2 FLOW 

netviewdm3 FLOW 
50 

netgw FLOW 

netrcs FLOW 

55 flexlm FLOW 

fujitsu-dev FLOW 

ris-cm FLOW 
60 

kerberos-adm FLOW 

rfile FLOW 

65 pump FLOW 

qrh FLOW 

EX 1018 Page 107

100

kshell FLOW

new—rwho FLOW

5 ds f FLOW

remo tefs FLOW

monitor FLOW
10

moni tor FLOW

chshel 1 FLOW

15 p9 fs FLOW

whoami FLOW

meter FLOW
20

ipcserver FLOW

um FLOW

25 nqs FLOW

si f t-uft FLOW

npmp— trap FLOW
30

npmp~10ca1 FLOW

 
npmp-gu i FLOW

35 ginad FLOW

doom FLOW

mdqs FLOW
40

e lcsd FLOW

entrus tmanager FLOW

45 metviewdml FLOW

netvi ewdmZ FLOW

netviewde FLOW
50

me tgw FLOW

net:re s FLOW

55 if laxlm FLOW

fuj itsu~dev FLOW

ris —cm FLOW

kerberos —adm FLOW

rf i 1e FLOW

65 pump FLOW

qrh FLOW

 
EX 1018 Page 107



0 
101 

rrh FLOW 

tell FLOW 
5 

nlogin FLOW 

con FLOW 

10 ns FLOW 

rxe FLOW 

quotad FLOW 
15 

cycleserv FLOW 

omserv FLOW 

20 webster FLOW 

phonebook FLOW 

vid FLOW 
:-.:: 25 

cadlock FLOW 
-

rtip FLOW 
~d 

30 cycleserv2 FLOW 
-

submit FLOW 

f:-J rpasswd FLOW 

!J~ 35 

tJ entomb FLOW 

~d wpages FLOW 

1: 40 wpgs FLOW 

concert FLOW 

mdbs_daemon FLOW 
45 

device FLOW 

xtreelic FLOW 

50 maitrd FLOW 

busboy FLOW 

garcon FLOW 
55 

puprouter FLOW 

socks FLOW 

•• ~ l \ 

EX 1018 Page 108

-Wfflfimw

101

rrh FLOW

tell FLOW

nlogin FLOW

con FLOW

10 ns FLOW

rxe FLOW

quota-1c} FLOW
15

cycleserv FLOW

omserv FLOW

20 webs ter FLOW

phonebook FLOW

vid FLOW
25

cadlcck FLOW

rtip FLOW

30 cycleseer FLOW

submit FLOW

rpasswd FLOW
35

entomb FLOW

wpages FLOW

4O wpgs FLOW

concert FLOW

mdbs__daemon FLOW
45

device FLOW

xtreelic FLOW

50 maitrd FLOW

busboy FLOW

garcon FLOW
55

puprouter FLOW

socks FLOW

 
EX 1018 Page 108



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

n 
102 

Virtual.pdl Virtual Layer definition 

Description: 
This file contains the definition for the VirtualBase layer used 
by the embodiment. 

Copyright: 
Copyright (c) 1998-1999 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
$Id: Virtual.pdl,v 1.13 1999/04/13 15:48:03 skip Exp$ 

This includes two things: the flow signature (called FLOWKEY) that the 
system that is going to use. 

note that not all elements are in the HASH. Reason is that these non-HASHED 
elements may be varied without the HASH changing, whihc allows the system 
to look up multiple buckets with a single HASH. That is, the MeyMatchFlag, 
StateStatus Flag and MuliPacketID may be varied. 

FLOWKEY { 
KeyMatchFlags, -- to tell the system which of the in-HASH elements have to 

-- match for the this particular flow record. 
Flows for which complete signatures may not yet have 

-- been generated may then be stored in the system 

StateStatusFlags, 

Groupidl 
Groupid2 

DLCProtocol 

Ethernet V 2 
NetworkProtocol 
Tunnel Protocol 
Tunnel Transport 
TransportProtocol 
ApplicationProtocol 

DLCAddresses(8) 
NetworkAddresses(16) 
Tunne1Addresses(16) 
Connectionids 

MultiPacketid 

IN-HASH, 
IN-HASH, 

IN-HASH, 

IN-HASH, 
IN-HASH, 
IN-HASH, 
IN-HASH, 
IN-HASH, 

user defined 
user defined 

data link protocol - lowest level we 
evaluate. It is the type for the 

IP, etc. 
IP over IPX, etc. 

IN-HASH, -- lowest level address 
IN-HASH, 
IN-HASH, 
IN-HASH, 

used for fragrnentaion purposes 

now define all of the children. In this example, only one virtual 
55 child - Ethernet. 

60 

virtualChildren FIELD 
SYNTAX INT(8) { ethernet(l) 

now define the base for the children. In this case, it is the same as 
for the overall system. There may be multiples. 

VirtualBase PROTOCOL 
65 .. - { VirtualChildren=virtualChildren} 

EX 1018 Page 109

 

-- Virtual.pdl - Virtual Layer definition

5 -_ Description;
-— This file contains the definition for the VirtualBase layer used
—— by the embodiment.

_- Copyright:
10 —— Copyright (C) 1998-1999 Apptitude, Inc.

—— (formerly Technically Elite, Inc.)
—~ All rights reserved.

-~ ROS:

15 -- $ld: Virtual.pdl.v 1.13 1999/04/13 15:48:03 skip Exp $

 
—— This includes two things: the flow signature (called FLOWKEY) that the
—_ system that is going to use.

 
20 ~—

-~ note that not all elements are in the HASH. Reason is that these nonnaASHED

e- elements may be varied without the HASH changing, whihc allows the system
-— to look up multiple buckets with a single HASH. That is, the MeyMatchFlag,
—— Statestatus Flag and MuliPacketID may be varied.

25 —~

FLOWKEY {
KeyMatchFlags, —— to tell the system which of the in—HASH elements have to

-- match for the this particular flew record.
30 ~— Flows for which complete signatures may not yet have

—— been generated may then be stored in the system

StateStatusFlags,

35 Groupldl IN~HASH, —— user defined
GroupIdZ IN—RASH, ~— user defined

DLCProtocol IN-HASH, , —— data link protocol - lowest level we
~— evaluate. It is the type for the

40 n, Ethernet V 2
NetworkProtocol lN—HASH, ~— IP, etc.
TunnelProtocol IN—HASH, ~~ IP over IPX, etc.
TunnelTransport IN~HASH,
TransportProtocol IN—HASH,

45 ApplicationProtocol IN—HASH,

DLCAddresses(8) IN—HASH, —- lowest level address
NetworkAddresses(16} IN—HASH,
TunnelAddresses<16) IN—HASH,

50 Connectionlds IN—HASH,

EultiPacketId ~~ used for fragmentaion purposes
}
~~ now define all of the children. In this example, only one virtual

55 e» child ~ Ethernet.

virtualchildren FIELD
SYNTAX INT(8) ( ethernettl) }

ii 60 -— now define the base for the children. In this case, it is the same as
l -— for the overall system. There may be multiples.

. i ”w.

’, VirtualBase PROTOCOL
1 65 ::= { Virtualchildree=virtualchildren }

 
EX 1018 Page 109



5 

10 

n 
103 

The following is the header that every packet has to have and 
that is placed into the system by the packet acquisition system. 

VirtualBase FLOW 
HEADER { LENGTH=8} 
CHILDREN { DESTINATION=VirtualChildren} -- this will be 

Ethernet for this example. 

the VirtualBAse will be 01 for these packets. 

EX 1018 Page 110

 
{7‘s:1)

103

-— The following is the header that every packet has to have and
—~ that is placed into the system by the packet acquisition system.

 5
VirtualBase FLOW

HEADER { LENGTH=8 }
CHILDREN { DESTINATION=VirtualChildren ) -- this will be

-_ Ethernet for this example.
10 —~

-4 the VirtualBAse will be 01 for these packetsA

 

.H.)

 
 

EX 1018 Page 110



•: 
~~ 
1=,; 
ij~ 

104 

Ethernet.pdl - Ethernet frame definition 

5 Description: 
This file contains the definition for the Ethernet frame. In this 

PDL file, the decision on EtherType vs. IEEE is made. If this is 
EtherType, the selection is made from this file. It would be possible 
to move the EtherType selection to another file, if that would assist 

10 in the modularity. 

Copyright: 
Copyright {c) 1994-1998 Apptitude, Inc. 

{formerly Technically Elite, Inc.) 
15 All rights reserved. 

RCS: 
$Id: Ethernet.pdl,v 1.13 1999/01/26 15:15:57 skip Exp$ 

20 ---------------------------------------------------------------------------

25 

30 

35 

40 

45 

50 

55 

60 

65 

Enumerated type of a 16 bit integer that contains all of the 
possible values of interest in the etherType field of an 
Ethernet V2 packet. 

etherType FIELD 
SYNTAX INT(16) { xns{Ox0600), ip{Ox0800), 

chaosnet(Ox0804), arp(Ox0806), 
vines (Oxbad), 
vinesLoop(OxObae), vinesLoop{Ox80c4), 
vinesEcho(Oxbaf), vinesEcho{Ox80c5), 
netbios(Ox3c00), netbios{Ox3c01), 
netbios{Ox3c02), netbios(Ox3c03), 
netbios{Ox3c04), netbios(Ox3c05), 
netbios{Ox3c06), netbios(Ox3c07), 
netbios(Ox3c08), netbios{Ox3c09), 
netbios(Ox3c0a), netbios(Ox3c0b), 
netbios{Ox3c0c), netbios(Ox3c0d), 
dec(Ox6000), mop(Ox6001), mop2(0x6002), 
drp(Ox6003), lat(Ox6004), decDiag(Ox6005), 
lavc{Ox6007), rarp(Ox8035), appleTalk(Ox809b), 
sna{Ox80d5), aarp(Ox80f3), ipx(Ox8137), 
snmp{Ox814c), ipv6(0x86dd), loopback(Ox9000) } 

DISPLAY-HINT "lx:" 
LOOKUP 
DESCRIPTION 

FILE "EtherType.cf" 

"Ethernet type field" 

The unformatted data field in and Ethernet V2 type frame 

etherData FIELD 
SYNTAX 
ENCAP 

BYTESTRING(46 .. 1500) 
etherType 

DISPLAY-HINT "HexDump" 
DESCRIPTION 

"Ethernet data" 

The layout and structure of an Ethernet V2 type frame with 
the address and protocol fields in the correct offset position 

ethernet PROTOCOL 
DESCRIPTION 

"Protocol format for an Ethernet frame" 
REFERENCE "RFC 894" 

EX 1018 Page 111

 

—— Ethernet.pd1 - Ethernet frame definition

5 -— Description:
-— This file contains the definition for the Ethernet frame. In this
—- PDL file, the decision on EtherType vs. IEEE is made. If this is
-« EtherType, the selection is made from this file. It would be possible
—— to move the EtherType selection to another file, if that would assist

10 —— in the modularity.

~— Copyright:

: ~— Copyright (c) 1994—1998 hpptitude, Inc.
;1 —— (formerly Technically Elite, Incl)

 
: 15 ~- All rights reserved.

' —-a RC5:
V —~ $Id: Ethernet.pdl,v 1.13 1999/01/26 15:15:57 skip Exp $

20 ———————————————————————————————————————————————————————————————————————————

—- Enumerated type of a 16 bit integer that Contains all of the
—~ possible values of interest in the etherType field of an

25 —— Ethernet V2 packet.

etherType FIELD
SYNTAX INT(16) { Xfls<0x0600). ip(Ox0800),

chaosnet(0x0804), arp(0x0806),
30 vinesiOxbad).

vinesLoop(OxObae). vinesLoop(0x8004),
vinesEcho<0xbaf), vinestho(0x80c5),
netbios(0x3c00), netbios(0x3c01),
netbiosi0x3c02), netbios(0x3c03),

35 notbios(0x3c04), netbios£0x3c05).
netbios(0x3c06), netbios(0x3c07},
netbiosiOchOB), netbioe(0x3c09),
netbioe(0x3c0a), netbios(0x3cOb),
netbios(0x3c0o), netbios(0x3c0d),

40 dec(0x6000), mop<0x6001). mop2<0x6002).
drp(0x6003). 1at£0x6004}. decDiag(Ox6005),
1avc€0x600?), rarp(0x8035). appleTalk(Ox809b),
sna(0x8065), aarp(0x80f3), ipx(0x8137),
snmp(0x814c)l ipv6(0x86dd), loopback(0x9000) }

45 DISPLAY—HINT “1x:”
LOOKUP FILE “BtherType.cf”
DESCRIPTION

“Ethernet type field”

50 —— .
—— The unformatted data field in and Ethernet V2 type frame

etherData FIELD
SYNTAX BYTESTRING(46..1500)

55 ENCAP etherType
DISPLAY—HINT “HexDump”
DESCRIPTION

“Ethernet data"

60 ~~

-— The layout and structure of an Ethernet V2 type frame with
-- the address and protocol fields in the correct offset position

ethernet PROTOCOL
65 DESCRIPTION

“Protocol format for an Ethernet frame”
REFERENCE “RFC 894"

 
EX 1018 Page 111



() 

105 

::= MacDest=rnacAddress, MacSrc=macAddress, EtherType=etherType, 
Data=etherData} 

The elements from this Ethernet frame used to build a flow key 
to classify and track the traffic. Notice that the total length 
of the header for this type of packet is fixed and at 14 bytes or 
octets in length. The special field, LLC-CHECK, is specific to 
Ethernet frames for the decoding of the base Ethernet type value. 
If it is NOT LLC, the protocol field in the flow is set to the 
EtherType value decoded from the packet. 

ethernet FLOW 
HEADER { LENGTH=l4 
DLC-LAYER { 

SOURCE=MacSrc, 
DESTINATION=MacDest, 
TUNNELING, 
PROTOCOL 

CHILDREN { DESTINATION=EtherType, LLC-CHECK=llc } 

EX 1018 Page 112



<' .,· 

' 
~ 

106 

IEEE8022.pdl - IEEE 802.2 frame definitions 

5 Description: 

10 

This file contains the definition for the IEEE 802.2 Link Layer 
protocols including the SNAP (Sub-network Access Protocol). 

Copyright: 
Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 $Id: IEEE8022.pdl,v 1.18 1999/01/26 15:15:58 skip Exp$ 

20 IEEE 802. 2 LLC 

25 

30 

35 

40 

45 

50 

55 

60 

65 

llcSap FIELD 
SYNTAX INT(16) { ipx(OxFFFF), ipx(OxEOEO), isoNet(OxFEFE), 

netbios(OxFOFO), vsnap(OxAAAA), ip(Ox0606), 
vines(OxBCBC), xns(Ox8080), spanningTree(Ox4242), 
sna(OxOcOc), sna(Ox0808), sna(Ox0404) } 

DISPLAY-HINT 
DESCRIPTION 

"lx:" 

"Service Access Point" 

llcControl FIELD 
This is a special field. When the decoder encounters this field, it 
invokes the hard-coded LLC decoder to decode the rest of the packet. 
This is necessary because LLC decoding requires the ability to 
handle forward references which the current PDL format does not 
support at this time. 

SYNTAX UNSIGNED INT ( 8) 
DESCRIPTION 

"Control field" 

llcPduType FIELD 
SYNTAXBITSTRING(2) { llcinformation(O), llcSupervisory(l), 

llcinformation(2), llcUnnumbererd(3) } 

llcData FIELD 

llc 

.. 
llc 

SYNTAX 
ENCAP 
FLAGS 

BYTESTRING(38 .. 1492) 
llcPduType 
SAMELAYER 

DISPLAY-HINT "HexDump• 

PROTOCOL 
SUMMARIZE 

"$llcPduType == llcUnnumbered" : 
"LLC ($SAP) $Modifier• 

"$llcPduType == llcSupervisory" : 
"LLC ($SAP) $Function N(R)=$NR" 

"$llcPduType == 012" : 
"LLC ($SAP) N(R)=$NR N(S)=$NS" 

"Default" : 
"LLC ($SAP) $llcPduType" 

DESCRIPTION 
"IEEE 802.2 LLC frame format" 

SAP=llcSap, Control=llccontrol, Data=llcData 

FLOW 
HEADER { LENGTH=3 } 
DLC-LAYER { PROTOCOL 

EX 1018 Page 113

 

~- IEEE8022.pdl — IEEE 802.2 frame definitions

5 ~- Description:
—~ This file contains the definition for the IEEE 802.2 Link Layer
—- protocols including the SNAP {Sub-network Access Protocol).

—- Copyright:
10 ~— Copyright (c) 1994—1998 Apptitude, Inc.

-~ (formerly Technically Elite, Inc.)
—— All rights reserved. 

L —~ RC8:

; 15 —— $Id: IBE38022.pdl,v 1.18 1999/01/26 15:15:58 skip Exp $

‘é ___________________________________________________________________________y

20 “v IEEE 802.2 LLC

llcSap FIELD
SYNTAX INTllS} { ipx(0xFFFF}, ipx(0xEOEO), isoNet(OxFEFE},

netbios(OXFOF0), vsnap(0xAAAA), ip(0x0606),
25 vines(0xBCBC), xnstOxBOBO), spanningTree(0x4242),

sna(0x0c0c), sna£0x0808), sna(0x0404) }
DISPLAY~HINT “1x:"
DESCRIPTION

“Service Access Point"
30

llcContrcl FIELD

-- This is a special field. when the decoder encounters this field, it
—— invokes the hard-coded LLC decoder to decode the rest of the packet.
~- This is necessary because LLC decoding requires the ability to

35 -~ handle forward refierences which the current PDL format does not
-- support at this time.
SYNTAX UNSIGNED INT(B)
DESCRIPTION

“Control field”
40

 
llcPduType FIELD

SYNTAX BITSTRING(2) { lchnformation(O), llcSupervisory(l),
lchnformati0n(2), llcUnnumbererdi3) }

 

45 lchata FIELD
SYNTAX BYTESTRINGi38..l492)
ENCAP llcPduType
FLAGS SAMELAYER
DISPLAY—HINT “HexDump”

50
110 PROTOCOL

SUMMARIZE

“SllcPduType == llcUnnumbered”
‘LLC (SSAP) $Modifier”

55 “$11cPduType == llcSupervisory" .
-» “LLC ($SAP) SFunction N(R)=$NR"

3‘35 “SllcPduType == 012” :
‘3' “LLC ($SAP) NtR)=$NR NIS)=$NS*

“Default” :
50 “LLC ($SAP) $llcPduType"

DESCRIPTION
“IEEE 802.2 LLC frame format"

::= ( SAlelcsap, Control=llcControl, Data=lchata )

 
‘5: 65 11c FLOW
' ‘ HEADER { LENGTH=3 )

DLC-LAYER { PROTOCOL 1

 
EX 1018 Page 113



5 

n 

CHILDREN { DESTINATION=SAP} 

llcUnnumberedData FIELD 

107 

SYNTAX BYTESTRING(0 .. 1500) 
ENCAP llcSap 
DISPLAY-HINT "HexDump" 

llcUnnumberedPROTOCOL 
SUMMARIZE 

10 "Default" : 
"LLC ($SAP) $Modifier• 

::= ( Data=llcUnnumberedData} 

llcSupervisoryData FIELD 
15 SYNTAX BYTESTRING(O .. 1500) 

DISPLAY-HINT "HexDump" 

llcSupervisory PROTOCOL 
SUMMARIZE 

20 "Default" : 

25 

30 

35 

40 

"LLC ($SAP) $Function N(R)=$NR" 
: := { Data=llcSupervisoryData} 

llcinformationData 
SYNTAX 
ENCAP 
DISPLAY-HINT 

llcinformation 
SUMMARIZE 

FIELD 
BYTESTRING(O .. 1500) 
llcSap 
"HexDump" 

PROTOCOL 

"Default" : 
"LLC ($SAP) N(R)=$NR N(S)=$NS" 

Data=llcinformationData} 

SNAP 

snapOrgCode FIELD 
SYNTAX BYTESTRING (3) { snap ( "00: 00: 00"), ciscoOUI ( "00: 00: OC") , 

appleOUI("OS:00:07") } 
DESCRIPTION 

"Protocol ID or Organizational Code" 

vsnapData FIELD 
45 SYNTAX BYTESTRING(46 .. 1500) 

50 

ENCAP 
FLAGS 

snapOrgCode 
SAMELAYER 

DISPLAY-HINT "HexDump" 
DESCRIPTION 

"SNAP LLC data• 

vsnap PROTOCOL 
DESCRIPTION 

"SNAP LLC Frame" 
55 ::= { OrgCode=snapOrgCode, Data=vsnapData 

vsnap 

60 

snapType 

65 

FLOW 
HEADER { LENGTH=3 } 
DLC-LAYER { PROTOCOL 
CHILDREN { DESTINATION=OrgCode 

FIELD 
SYNTAX INT(16) { xns(Ox0600), ip(OxOSOOl, arp(Ox0806), 

vines (Oxbad), 
mop(Ox6001), mop2(0x6002), drp(Ox6003), 
lat(Ox6004), decDiag(Ox6005), lavc(Ox6007), 
rarp(Ox8035), appleTalk(Ox809B), sna(Ox80d5), 

EX 1018 Page 114

 

’ n O

107

CHILDREN { DESTINATION=SAP }

llcUnnumberedData FIELD
SYNTAX BYTESTRINGtO..1500)

5 ENCAP llcSap
DISPLAY-HINT “HexDump”

llcUnnumberedPROTOCOL
SUMMARIZE

10 “Default" .
“LLC ($SAP) SModifier“

::= C Data=11c0nnumberedData }

llcSupervisotyData FIELD
15 SYNTAX BYTESTRING(O..1500)

DISPLAY-HINT “HexDump”

llcsupervisory PROTOCOL
SUMMARIZE

20 “Default" :
“LLC ($SQP) $Function N(R)=$NR”

-:= I Data=llc8npervisoryData )

lchnformationData FIELD

 
25 SYNTAX BYTESTRING(0..1500}

ENCAP llcSap
DISPLAX—HINT “HexDump”

lchnformation PROTOCOL
30 SUMMARIZB

“Default”
“LLC ($SAP) N(R)=$NR N(s)=$NS"

-:= { Data=1lc1nformationDaca }

35 ~—
—— SNAP

snapOrgCode FIELD
SYNTAX BYTESTRINGiS) { snap(“00:00:00”}. ciscoOUI(“00:00:OC“).

40 appleOUI(“08:OO:O7”) )
DESCRIPTION

“Protocol ID or Organizational Code”

 
i 2 vsnapData FIELD

.w :2 45 SYNTAX BYTESTRING(Q6..1500)
.9 ENCAP snapOrgCode

FLAGS SAMELAYER
DISPLAY-HINT “HexDump”

‘: DESCRIPTION
' 50 “SNAP LLC data"

Vsnap PROTOCOL
DESCRIPTION

“SNAP LLC Frame"

55 ::= { OrgCodezsnapOrgCode. Data=vsnapData }

vsnap FLOW
HEADER { LENGTH=3 )
DLC'LAYER ( PROTOCOL )

60 CHILDREN ( DESTINATION=OrgCode )

\3 snapType FIELD
‘ ” SYNTAX INT(16) ( xnstOxOSOO). ipCOXOQOO), arp(0x0806),

vines{0xbad).
65 mop(0x6001), m0p2§0x6002), drp<0x6003).

lat(0x6004}. decDiag(0x6005), lavc{0x6007).
rarp(0x8035), appleTalk(0x809B}, sna(0x80d5).

 
EX 1018 Page 114



"I 

i 

5 

10 

n 
\ 

108 

aarp(Ox80F3), ipx(Ox8137), snmp(Ox814c), ipv6{0x86dd) } 
DISPLAY-HINT "lx:" 
LOOKUP 
DESCRIPTION 

FILE "EtherType.cf• 

"SNAP type field" 

snapData FIELD 
SYNTAX BYTESTRING(46 .. 1500) 
ENCAP snapType 
DISPLAY-HINT "HexDump" 
DESCRIPTION 

"SNAP data" 

snap PROTOCOL 
15 SUMMARIZE 

20 

25 

"$OrgCode == 00:00:00" : 
"SNAP Type=$SnapType" 

"Default" : 
"VSNAP Org=$OrgCode Type=$SnapType" 

DESCRIPTION 
"SNAP Frame• 

::= { SnapType=snapType, Data=snapData} 

snap FLOW 
HEADER { LENGTH=2 } 
DLC-LAYER {PROTOCOL} 
CHILDREN { DESTINATION=SnapType 

EX 1018 Page 115

 

(W m

108

aarp(0x80F3}, ipx(0x8337), snmpCOxBléc), ipv6(0x86dd) }
DISPLAY~HINT “lx:"
LOOKUP FILE “EtherType.cf"
DESCRIPTION

5 “SNAP type field“

snapData FIELD
SYNTAX BYTESTRING(46..1SOO)

_( ENCAP snapType
i g: 10 DISPLAY—HLNT “HexDump”' DESCRIPTION

“SNAP data"

snap PROTOCOL
15 SUMMARIZE

“SOrgCode :2 00:00:00” .
“SNAP Type=$SnapType”

Vi; “Default" .
2' “VSNAP Org:$0rgCode Type=$SnapType"

. 20 DESCRIPTION
;‘ “SNAP Frame"

::= { SnapType=snapType, DatazsnapData )

snap FLOW
25 HEADER { LENGTH=2 3

DLC—LAYER { PROTOCOL }
CHILDREN { DESTINATIONzSnapType }

 

 

EX 1018 Page 115



'; 

n n 
109 

IEEE8023.pdl - IEEE 802.3 frame definitions 

5 Description: 
This file contains the definition for the IEEE 802.3 (Ethernet) 
protocols. 

Copyright: 
10 Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 $Id: IEEE8023.pdl,v 1.7 1999/01/26 15:15:58 skip Exp$ 

20 IEEE 802.3 

25 

30 

ieee8023Length FIELD 
SYNTAX UNSIGNED INT(16) 

ieee8023Data FIELD 
SYNTAX 
ENCAP 

BYTESTRING(38 .. 1492) 
=llc 

LENGTH "$ieee8023Length" 
DISPLAY-HINT "HexDump" 

ieee8023 PROTOCOL 
DESCRIPTION 

"IEEE 802.3 (Ethernet) framen 
REFERENCE "RFC 1042" 

35 ::= { MacDest=macAddress, MacSrc=macAddress, Length=ieee8023Length, 
Data=ieee8023Data} 

EX 1018 Page 116

 

a 109

J: —— 113358023.de — IEEE 802.3 frame definitions

5 —— Description;
. —— This file contains the definition for the IEEE 802.3 (Ethernet)

; ~M protocols.

-— Copyright:
10 —— Copyright (c) 1994—1998 Apptitude, Inc.

—— (formerly Technically Elite, Inc.)
—— All rights reserved.

~- RC3:

15 —— $Id: IEEEBGZ3.pd1,v 1.7 1999/01/26 15:15:58 skip Exp $

20 ~— IEEE 802.3

ieeeBOZSLength FIELD
SYNTAX UNSIGNED INT(16)

25 ieee8023Data FIELD
SYNTAX BYTESTR:NG(38..1492)
ENCAP =llC

LENGTH “$ieee8023Length”
DISPLAY-HINT “HexDump”

30
ieee8023 PROTOCOL

DESCRIPTION
“lEEE 802.3 (Ethernet) frame“

REFERENCE “RFC 1042”

35 = { MacDest=macAddress, MacSrc=maCAddress, Length:ieeeBOZBLength,
DatazieeGBOZ3Data } 

 
EX 1018 Page 116



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

110 

IP.pdl - Internet Protocol (IP) definitions 

Description: 
This file contains the packet definitions for the Internet 
Protocol. These elements are all of the fields, templates and 

processes required to recognize, decode and classify IP datagrams 
found within packets. 

Copyright: 
Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
$Id: IP.pdl,v 1.14 1999/01/26 15:15:58 skip Exp$ 

The following are the fields that make up an IP datagram. 
Some of these fields are used to recognize datagram elements, build 
flow signatures and determine the next layer in the decode process. 

ipVersion FIELD 
SYNTAX INT ( 4} 
DEFAULT "4" 

ipHeaderLength FIELD 
SYNTAX INT ( 4) 

ipTypeOfService FIELD 

ipLength 

SYNTAXBITSTRING(B) { minCost(l), maxReliability(2), 
maxThruput(3), minDelay(4) } 

FIELD 
SYNTAX UNSIGNED INT(l6) 

This field will tell us if we need to do special processing to support 
the payload of the datagram existing in multiple packets. 

ipFlags FIELD 
SYNTAXBITSTRING(3) { moreFrags(O), dontFrag(l) } 

ipFragmentOffset FIELD 
SYNTAX INT ( 13) 

This field is used to determine the children or next layer of the 
datagram. 

ipProtocol FIELD 
SYNTAX INT(B) 
LOOKUP FILE "IpProtocol.cf" 

ipData FIELD 
SYNTAX BYTESTRING(0 .. 1500) 
ENCAP ipProtocol 
DISPLAY-HINT "HexDump" 

Detailed packet layout for the IP datagram. This includes all fields 
65 and format. All offsets are relative to the beginning of the header. 

ip PROTOCOL 

EX 1018 Page 117

 

—— IP.pdl — Internet Protocol (IP) definitions

;H 5 ~— Descriptian:
—— This file contains the packet definitions for the Internet

. -— Protocol. These elements are all of the fields, templates and
—— processes required to recognize, decode and classify IP datagrams
—~ found within packets.

 

 

 
 

 

IO -—
—— Copyright:
~~ Copyright (c) 1994—1998 Apptitude, Inc.
—— (formerly Technically Elite, Inc.)

“v ~— All rights reserved.
{ 15 -_‘ —~ RCS:

if -— SId: IP.pdl,v 1.14 1999/01/26 15:15:58 skip Exp $

é ‘ 20
h A _-
l; -- The following are the fields that make up an IP datagram.
" —~ Some of these fields are used to recognize datagram elements, build

w" flow signatures and determine the next layer in the decode process.
25 ~-

ipVersion FIELD
SYNTAX INT(4)
DEFAULT “4”

1‘ 30 ipHeaderLength FIELD
, SYNTAX INT (4}

3 ipTypeOfService FIELD
SYNTAX BITSTRING{8) { minCost(l), maxReliability(2},

35 maxThruput(3), minDelay(4) 3

ipLength FIELD
SYNTAX UNSIGNBD INT‘lG)

40 ——
~~ This field will tell us if we need to do special processing to support
-— fihe paylead of the datagram existing in multiple packets.

ipFlags FIELD
45 SYNTAX BITSTRING(3) { moreFrags(0), dontFrag(l) }

ipFragmentOffset FIELD
SYNTAX INT (3.3)

50 »— ~— This field is used to determine the children or next layer of the
~- datagram.

ipProtocol FIELD
55 SYNTAX INT ( B)

LOOKUP FILE “IpProtoccl.cf" 
fl ipData FIELD
' SYNTAX BYTESTRING{G..1500)

. Z: 60 ENCAE ipProtocol
,’ DIS?LAY~HINT “HexDump”

-— Detailed packet layout for the IP datagram. This includes all fields
4, 65 —- and format. All offsets are relative to the beginning of the header.

;1 ip PROTOCOL

 
EX 1018 Page 117



' < 

5 

n 
111 

SUMMARIZE 
"$Fragment0ffset != On: 

"IPFragment ID=$Identification Offset=$Fragment0ffset" 
"Default" : 

"IP Protocol=$Protocol" 
DESCRIPTION 

"Protocol format for the Internet Protocol" 
REFERENCE "RFC 7 91" 

::= { Version=ipVersion, HeaderLength=ipHeaderLength, 
IO TypeOfService=ipTypeOfService, Length=ipLength, 

Identification=Uintl6, IpFlags=ipFlags, 
FragmentOffset=ipFragmentOffset, TimeToLive=Int8, 
Protocol=ipProtocol, Checksum=ByteStr2, 
IpSrc=ipAddress, IpDest=ipAddress, Options=ipOptions, 

15 Fragment=ipFragment, Data=ipData} 

20 

25 

30 

35 

40 

ip 

This is the description of the signature elements required to build a flow 
that includes the IP network layer protocol. Notice that the flow builds on 
the lower layers. Only the fields required to complete IP are included. 
This flow requires the support of the fragmentation engine as well as the 
potential of having a tunnel. The child field is found from the IP 
protocol field. 

FLOW 
HEADER { LENGTH=HeaderLength, IN-WORDS} 
NET-LAYER { 

} 

SOURCE=IpSrc, 
DESTINATION=IpDest, 
FRAGMENTATION=IPV4, 
TUNNELING 

CHILDREN { DESTINATION=Protocol 

ipFragData FIELD 
SYNTAX 
LENGTH 

BYTESTRING(l .. 1500) 
"$ipLength - $ipHeaderLength" 4" 

ipFragment 

DISPLAY-HINT "HexDump" 

GROUP 
OPTIONAL 

::= ( Data=ipFragData} 

ipOptionCode FIELD 

"$FragmentOffset != 0" 

45 SYNTAX INT(8) ( ipRR(Ox07), ipTimestamp(Ox44), 
ipLSRR(Ox83), ipSSRR(Ox89) 

DESCRIPTION 
"IP option code" 

50 ipOptionLength FIELD 

55 

60 

SYNTAX UNSIGNED INT(8) 
DESCRIPTION 

"Length of IP option" 

ipOptionData FIELD 
SYNTAX BYTESTRING(0 .. 1500) 
ENCAP ipOptionCode 
DISPLAY-HINT "HexDump" 

ipOptions GROUP 
LENGTH "($ipHeaderLength" 4) - 20" 

::= { Code=ipOptionCode, Length=ipOptionLength, Pointer=Uint8, 
Data=ipOptionData} 

EX 1018 Page 118

 
o m

111

SUMMARIZE

“$Fragmont0ffset != O”:
“IPFragment ID=$Identification 0ffset=$FragmentOffset"

“Default'l .
5 “IP Protocol:$Protocol"

DESCRIPTION
“Protocol format for the Internet Protocol"

REFERENCE “RFC 7 9 1 "

:zz ( Version=ipVersion, HeaderLength=ipHeaderLength,
10 TypeOfService=ipTypeOfService, LengthripLength,

Identification=UInt16, IpFlagszipFlags,
Fragmentoffset=ipFragmentOffset, TimeToLivezIntS,
Protocol=ipProtocol, Checksum=ByteStr2,
IpSrc=ipAddress, IpDestzipAddress, Options=ip0ptions,

15 Fragment=ipFragment, DatazipData }

~— This is the description of the signature elements required to build a flow
—- that includes the IP network layer protocol. Notice that the flow builds on

20 —~ the lower layers. only the fields required to complete I? are included.
w— This flow requires the support of the fragmentation engine as well as the
~— potential of having a tunnel. The child field is found from the IP
—— protocol field.

25 ip FLOW
HEADER { LENGTH=HeaderLength, IN—WORDS }
NET-LAYER (

SOURCE=IpSrc‘
DESTINATIONzlpDest,

30 FRAGMENTATIONzIPV4,
TUNNELING

)
CHILDREN { DESTINATION=Protocol }

35 ipFragData FIELD
SYNTAX BYTESTRING(1..1500)
LENGTH “sipLength — SipHeaderLength * 4”
DISPLAY—HINT “HexDump”

40 ipFragment GROUP
OPTIONAL “SFragmentOffset I: 0”

:1: { Data=ipFragData )

ipOptionCode FIELD
45 SYNTAX INT(8) ( ipRRfi0x07), ipTimestamp(0x44),

ipLSRRKOxBS), ipSSRR(0x89) }
DESCRIPTION

“I? option code”

5G ipOptionLength FIELD
SYNTAX UNSIGNED INT18)
DESCRIPTION

“Length of 1? option“

55 ipOptionData FIELD
SYNTAX BYTESTRING ( 0 . . 1500 )
ENCAP ipOptionCode
DISPLAY-“HINT “ HexDump"

 
of 60 ipOptions GROUP

LENGTH “(SipfieaderLength * 4) - 20»
::= { Code=ip0ptionCode, LengthzipOptionLength, Pointer=UInt8,

Data=ip0ptionData }

 
EX 1018 Page 118



112 

TCP.pdl - Transmission Control Protocol (TCP) definitions 

5 Description: 
This file contains the packet definitions for the Transmission 
Control Protocol. This protocol is a transport service for 

the IP protocol. In addition to extracting the protocol information 
the TCP protocol assists in the process of identification of connections 

10 for the processing of states. 

Copyright: 
Copyright {c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
15 All rights reserved. 

20 

RCS: 
$Id: TCP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp$ 

This is the 16 bit field where the child protocol is located for 
the next layer beyond TCP. 

25 tcpPort FIELD 
SYNTAX UNSIGNED INT ( 16) 
LOOKUP FILE "TcpPort.cf" 

tcpHeaderLen FIELD 
30 SYNTAX INT(4) 

35 

40 

45 

50 

tcpFlags FIELD 
SYNTAXBITSTRING(12) { fin(O), syn(l}, rst(2), psh(3), ack(4), urg(5) } 

tcpData FIELD 
SYNTAX 
LENGTH 
ENCAP 

BYTESTRING(0 .. 1564) 
"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen * 4)" 
tcpPort 

DISPLAY-HINT "HexDumph 

The layout of the TCP datagram found in a packet. Offset based on the 
beginning of the header for TCP. 

tcp PROTOCOL 
SUMMARIZE 

"Default" 
"TCP ACK=$Ack WIN=$WindowSize" 

DESCRIPTION 
"Protocol format for the Transmission Cont;.rol Protocoln 

REFERENCE "RFC 793" 
::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum=Uint32, 

Ack=Uint32, HeaderLength=tcpHeaderLen, TcpFlags=tcpFlags, 
WindowSize=Uintl6, Checksum=ByteStr2, 

55 UrgentPointer=Uintl6, Options=tcpOptions, Data=tcpData} 

The flow elements required to build a key for a TCP datagram. 
Noticed that this FLOW description has a CONNECTION section. This is 

60 used to describe what connection state is reached for each setting 
of the TcpFlags field. 

tcp FLOW 
HEADER { LENGTH=HeaderLength, IN-WORDS} 

65 CONNECTION { 
IDENTIFIER=SequenceNum, 
CONNECT-START="TcpFlags:1", 

EX 1018 Page 119

-— TCP.pdl - Transmission Control Protocol (TCP) definitions

5 ~- Description:
-— This file contains the packet definitions for the Transmission
—w Control Protocol. This protocol is a transport service for
—— the IP protocol. In addition to extracting the protocol information
—— the TCP protocol assists in the process of identification of connections

10 —~ for the processing of states.

—— Copyright:
—— Copyright (c) 1994—1998 Apptitude, Inc.
~~ (formerly Technically Elite. Inc.)

15 -- All rights reserved.

-« RCS:

—~ $Id: TCP.pdl,v 1.9 1999/01/26 15:16:02 Skip Exp $

20 ———————————————————————————————————————————————————————————————————————————

—— This is the 16 bit field where the child protocol is located for
-— the next layer beyond TCP.

25 thPort FIELD
SYNTAX UNSIGNED INT(16)
LOOKUP FILE “TcpPort.cf"

thHeaderLen FIELD
30 SYNTAX INT(4)

tchlags FIELD
SYNTAXZBITSTRING(12) { fin(0), syn(1), rst(2}. psh{3), ack(4}, urg(5) }

35 tchata FIELD
SYNTAX BYTESTRING(O..1564)
LENGTH “($ipLength — ($ipHeaderLength * 4}) ~ (stcpHeaderLen * 4)”
ENCAP tcpPort
DISPLAY-HINT “HexDump”

40

~- The layout of the TCP datagram found in a packet. Offset based on the
~~ beginning of the header for TOP.

45 top PROTOCOL
SUMMARIZE

“Default” .
“TCP ACK=$ACk WIN=$WindowSize"

DESCRIPTION

50 “Protocol format for the Transmission Control Protocol“
REFERENCE “RFC 793”

', ::= { SrcPort=tcpPort, DestPort=tcpPort, SequenceNum:UInt32,
‘ Ack=UInt32, HeaderLength=tcpHeaderLen, Tchlags=tch1ags,

'4} WindowSize=UInt16, Checksum=ByteStr2,
»f 55 UrgentPointer=UInt16, Options=tchptions, Data=tchata ‘

J

 
 

"v The flow elements required to build a key for a TCP datagram.
~~ Noticed that this FLOW description has a CONNECTION section. This is

60 -- used to describe what connection state is reached for each setting
—— of the Tchlags field.

tcp FLOW
HEADER { LENGTH=HeaderLength, IN'WORDS )

65 CONNECTION {
IDENTIFIER=SequenceNum,
CONNECT—START=“Tch1ags:1",

 

EX 1018 Page 119



} 

113 

CONNECT-COMPLETE="TcpFlags:4", 
DISCONNECT-START="TcpFlags:0", 
DISCONNECT-COMPLETE="TcpFlags:4" 

5 PAYLOAD { INCLUDE-HEADER } 
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort} 

tcpOptionKindFIELD 
SYNTAX UNSIGNED INT(8) { tcpOptEnd(O), tcpNop(l), tcpMSS(2), 

10 tcpWscale(3), tcpTimestamp(4) } 

15 

20 

25 

DESCRIPTION 
"Type of TCP option" 

tcpOptionDataFIELD 
SYNTAX BYTESTRING(0 .. 1500) 

tcpOptions 

ENCAP tcpOptionKind 
FLAGS SAMELAYER 
DISPLAY-HINT "HexDump" 

GROUP 
LENGTH 
SUMMARIZE 

"($tcpHeaderLen * 4) 

"Default» : 

20" 

"Option=$0ption, Len=$0ptionLength, $OptionData" 
Option=tcpOptionKind, OptionLength=Uint8, OptionData=tcpOptionData 

tcpMSS PROTOCOL 
.. - { MaxSegmentSize=Uintl6 

EX 1018 Page 120

 
10

15

20

25

(‘1

113

CONNECT—COMPLETE=“TCpFlags:4”,
DISCONNECT—START= “Tchlags : 0 ., ,
DISCONNECT—COMPLETE:“Tchlags:4”

}
PAYLOAD ( INCLUDE~HEADER )
CHILDREN { DESTINATIONzDestPort, SOURCE=SrcPort )

tchptionKindFIELD
SYNTKXUNSIGNED INTiB) { tchptEnd<O), tcpNoptlL

thWsCalet3), tcpTimestamp(4) 3
DESCRIPTION

“Type of TCP option"

tchptionDataFIELD
SYNTAX BYTESTRING(O..1500)
ENCAP tchptionKind
FLAGS SAMELAYER
DISPLAY-HINT “HexDump”

tchptions GROUP
LENGTH “(stcpHeaderLen * 4)

~— SUMMARIZE
—— “Default”

— 20”

tcpMSS(2},

~— “Option280ption, Len=$0ptionLength, $OptionData"

tcpMSS PROTOCOL
1:: { MaxSegmentSize=UInt16 }

.: { OptionztchptionKind, OptionLength=UIntB, OptionDataztchptionData )

EX 1018 Page 120



. '· 

114 

UDP.pdl User Datagram Protocol (UDP) definitions 

5 Description: 
This file contains the packet definitions for the User Datagram 
Protocol. 

Copyright: 
10 Copyright (cl 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 $Id: UDP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp$ 

udpPort FIELD 
SYNTAX UNSIGNED INT (16) 

20 LOOKUP FILE "UdpPort.cf" 

25 

30 

35 

40 

udpLength FIELD 
SYNTAX UNSIGNED INT ( 16) 

udpData FIELD 
SYNTAX BYTESTRING(0 .. 1500) 

udp 

udp 

ENCAP udpPort 
DISPLAY-HINT "HexDUmp" 

PROTOCOL 
SUMMARIZE 

"Default" 
"UDP Dest=$DestPort Src=$SrcPort" 

DESCRIPTION 
"Protocol format for the User Datagram Protocol." 

REFERENCE "RFC 768" 
{ SrcPort=udpPort, DestPort=udpPort, Length=udpLength, 

Checksum=ByteStr2, Data=udpData} 

FLOW 
HEADER LENGTH=8 } 
CHILDREN { DESTINATION=DestPort, SOURCE=SrcPort) 

EX 1018 Page 121

 

—— UDP.pd1 — User Datagram Protocol (UDP) definitions

‘1 5 -- Description:

,7; —— This file contains the packet definitions for the User Datagram”3 —- Protocol.

—- Copyright:
10 -« Copyright (c) 1994*1998 Apptitude, Inc.

~~ (formerly Technically Elite, Inc.)
-— All rights reserved. 

1,} - RCS'
;$ 15 -~ $162 UDP.pdl,v 1.9 1999f01/26 15:16:02 skip Exp $

udpPort FIELD
. : SYNTAX UNSIGNED Imtlm

' 20 LOOKUP FILE “UdpPort.cf"

udpLength FIELD
SYNTAX UNSIGNED INT(16)

25 udpData FIELD
SYNTAX BYTESTRINGW . . 1500)
ENCAP udpPort
DISPLAYNHINT “HexDump”

30 udp PROTOCOL
SUMMARIZE

“Default”
“UDP Dest=$DestPort Src=$SrcPort”

DESCRIPTION

35 “Protocol format for the User Datagram Protocol.”
REFERENCE “RFC 768”

:= { SrcPort=udpPort, DestPort=udpPort, Length=udpLength,
Checksumzsytestrz. Data=udpData 1

40 udp FLOW
HEADER { LENGTH=8 }

, CHILDREN { DESTINATION=DestPort. SOURCE=SrcPort 3

 

EX 1018 Page 121



n n 
115 

RPC.pdl - Remote Procedure Calls (RPC) definitions 

5 Description: 

IO 

This file contains the packet definitions for Remote Procedure 
Calls. 

Copyright: 
Copyright (cl 1994-1999 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 $Id: RPC.pdl,v 1.7 1999/01/26 15:16:01 skip Exp$ 

20 

25 

30 

35 

40 

45 

rpcType FIELD 
SYNTAX UNSIGNED INT(32) { rpcCall(O), rpcReply(l) } 

rpcData FIELD 

rpc 

SYNTAX BYTESTRING(0 .. 100) 
ENCAP rpcType 
FLAGS SAMELA YER 
DISPLAY-HINT "HexDump" 

PROTOCOL 
SUMMARIZE 

"$Type == rpcCall" : 
"RPC $Program" 

"$ReplyStatus == rpcAcceptedReply" 
"RPC Reply Status=$Status" 

"$ReplyStatus == rpcDeniedReply• : 
"RPC Reply Status=$Status, AuthStatus=$AuthStatus" 

"Default" : 
'
1RPC $Program" 

DESCRIPTION 
"Protocol format for RPC" 

REFERENCE 
"RFC 1057• 

::= XID=Uint32, Type=rpcType, Data=rpcData} 

rpc FLOW 
HEADER { LENGTH=O} 
PAYLOAD { DATA=XID, LENGTH=256} 

-- RPC Call 

50 rpcProgram FIELD 
SYNTAX UNSIGNED INT(32) { portMapper(lOOOOO), nfs{l00003), 

mount(l00005), lockManager(100021), statusMonitor(l00024) 

rpcProcedure GROUP 
55 SUMMARIZE 

"Default" 
"Program=$Program, Version=$Version, Procedure=$Procedure" 

::= { Program=rpcProgram, Version=Uint32, Procedure=Uint32 } 

60 rpcAuthFlavor FIELD 
SYNTAX UNSIGNED INT(32) { null(O), unix(l), short{2) } 

rpcMachine FIELD 
SYNTAX LSTRING ( 4) 

65 
rpcGroup GROUP 

LENGTH "$NumGroups * 4" 

EX 1018 Page 122

_- RPC.pdl ~ Remote Procedure Calls (RFC) definitions

5 -— Description:
~~ This file contains the packet definitions for Remote Procedure
r" Calls.

—- Copyright;
10 —~ Copyright (c) 1994—1999 Apptitude. Inc.

-- (formerly Technically Elite, Inc.)
~— All rights reserved.

-— RC3:

15 ~— 516: RPC.pdl,v 1.7 1999/01/26 15:16:01 skip Exp $

rchype FIELD
SYNTAX.UNSIGNED INT(32) { rchall(D), rpCRep1y(1) }

20
rpcData FIELD

SYNTAX BYTESTRINGW. . 100)
ENCAP rchype
FLAGS SAMELAYER

25 DISPLAY~HINT “HexDump”

rpc PROTOCOL
SUMMARIZE

“SType == rchall"
30 “RPC $Program"

“$Replystatus == rpcAcceptedReply" :
“RPC Reply Status=$Status”

“$ReplyStatus == rpcDeniedReply“
“RPC Reply Status=$8tatus. AuthStatus=$AuthStatus”

35 “Default"
“RPC $Program"

DESCRIPTION
“Protocol format for RPC”

REFERENCE
40 “RFC 1057"

:2: ( XID=UInt32, Type=rchype. Data=rpcData }

rpc FLOW
HEADER { LENGTH=0 )

45 PAYLOAD ( DATAleD, LENGTH=256 }

—~ RPC Call

50 rpcProgram FIELD .
SYNTAX UNSIGNED INT(32) { portMapper(lGOOOO), nfs(100003).

mount(100005), lockManager(100021), statusMonitor(100024) }

rpcProcedure GROUP
55 SUMMARIZE

“Default”

“Pragramzsprogram, Version=$Version, Procedure:$?rocedure"
::= { Program=rpcProgram, VersioanIntBZ, Procedure=UInt32 }

60 rpcAuthFlavorFIELD
SYNTAX UNSIGNED INT<32) { nulliO), unixu), shorUZ) }

 
rpcMachine FIELD

SYNTAX LSTRING (4)
65

rpcGroup GROUP
LENGTH “$NumGroups * 4"

EX 1018 Page 122



'1 

.:: 

= 

n 
116 

: : = { Gid=Int32 

rpcCredentials GROUP 
LENGTH "$Credentia1Length" 

5 .. - { Stamp=Uint32, Machine=rpcMachine, Uid=Int32, Gid=Int32, 

10 

15 

20 

25 

30 

35 

40 

NumGroups=Uint32, Groups=rpcGroup} 

rpcVerifierData 
SYNTAX 
LENGTH 

rpcEncap FIELD 

FIELD 
BYTESTRING(0 .. 400) 
"$VerifierLength" 

SYNTAX COMBO Program Procedure 
LOOKUP FILE "RPC.cf" 

rpcCallData FIELD 
SYNTAX BYTESTRING(O .. 100) 
ENCAP rpcEncap 
DISPLAY-HINT "HexDump" 

rpcCall PROTOCOL 
DESCRIPTION 

"Protocol format for RPC call" 
{ RPCVersion=Uint32, Procedure=rpcProcedure, 

CredentialAuthFlavor=rpcAuthFlavor, CredentialLength=Uint32, 
Credentials=rpcCredentials, 
VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=Uint32, 
Verifier=rpcVerifierData, Encap=rpcEncap, Data=rpcCallData 

-- RPC Reply 

rpcReplyStatus FIELD 
SYNTAX INT(32) { rpcAcceptedReply(O), rpcDeniedReply(l) } 

rpcReplyData FIELD 
SYNTAX BYTESTRING(O .. 40000) 
ENCAP rpcReplyStatus 
FLAGS SAMELA YER 
DISPLAY-HINT "HexDump" 

rpcReply PROTOCOL 
DESCRIPTION 

"Protocol format for RPC reply" 
45 ::= { ReplyStatus=rpcReplyStatus, Data=rpcReplyData 

50 

rpcAcceptStatus FIELD 
SYNTAX INT(32) { Success(O), ProgUnavail(l), ProgMismatch(2), 

ProcUnavail(3), GarbageArgs(4), SystemError(5) 

rpcAcceptEncap FIELD 
SYNTAXBYTESTRING(O) 
FLAGS NOSHOW 

55 rpcAcceptDataFIELD 
SYNTAX BYTESTRING(0 .. 40000) 
ENCAP rpcAcceptEncap 
DISPLAY-HINT "HexDump" 

60 rpcAcceptedReply PROTOCOL 
.. - { VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=Uint32, 

Verifier=rpcVerifierData, Status=rpcAcceptStatus, 
Encap=rpcAcceptEncap, Data=rpcAcceptData} 

65 rpcDeniedStatus FIELD 
SYNTAX INT(32) { rpcVersionMismatch(O), rpcAuthError(l) 

EX 1018 Page 123

 
m m

116

= { Gident32 1

rchredentials GROUP
LENGTH ‘SCredentialLength"

' 5 2:: { Stamp=UInt32, MachinezrpcMachine, Uidzlnt32, GidzInt32,
I NumGroupszUInt32, GroupszrpcGroup )

3‘
'; rpcVerifierData FIELD
,‘ SYNTAX BYTESTRING(O..400)
‘ 10 LENGTH “SVeri fierLength"

-q rchncap FIELD
SYNTAX COMBO Program Procedure
LOOKUP FILE “RPC.Cf”

15
rchallData FIELD

SYNTAX BYTESTRING!0..100)
ENCAP rchncap
DISPLAYvaINT “HexDump”

20
rpCCall PROTOCOL

DESCRIPTION
“Protocol format for RPC call”

:= { RPCVersion=UInt32, ProcedurezrpcProcedure,
25 CredentialAuthF1avor=rpcAuthFlavor, CredentialLength=UInt32,

Credentials=rchredentials.
VerifierAuthFlavor=rpcAuthF1avor, VerifierLength=UInt32,
Verifier=rpcVerifierDaca, Encap=rchncap. Data=rchallData }

 
30 ~~~~~~~~~~~~~

-- RFC Reply

rpcReplyStatus FIELD
SYNTAX INT<32) { rpcAcceptedReply(0), rpcDeniedReply(l) )

35
rpcReplyData FIELD

SYNTAX BYTESTRING(O..40000)
ENCAP rpcReplyStatus
FLAGS SAMELAYER

40 DISPLAY-HINT ‘HexDump"

rpcReply PROTOCOL
DESCRIPTION

“Protocol format for RPC reply”
45 ::= { Replystatus=rpcReplyStatus, DataxrpcReplyData }

rpcAcceptStatus FIELD
SYNTAX INT(32) { Success(0), ProgUnavail(1), ProgMismatch(2),

ProcUnavai1(3), GarbageArgs(4), SystemError(5) }
50

rpcAcceptEncap FIELD
SYNTAX BYTESTRING(O)

.3 FLAGS NDSHOW

55 rpcAcceptDataFIELD
SYNTAX BYTESTRING(§..40000)
ENCAP rpcAcceptEncap
DISPLAY-HINT “HexDump”

60 rpcAcceptedReply PROTOCOL
':= { VerifierAuthFlavor=rpcAuthFlavor, VerifierLength=UInt32,

Verifier=rpcVerifierData, StatuszrpcAcceptStatus.
Encap=rpcAcceptEncap. Data=rpcAcceptData }

65 rpcDenieéStatus FIELD
SYNTAX INT(32) { rpcVersionMismatch(0), rpcAuthError(l) }

 
EX 1018 Page 123



118 

NFS.pdl - Network File System (NFS) definitions 

5 Description: 
This file contains the packet definitions for the Network File 
System. 

Copyright: 
10 Copyright (c) 1994-1998 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 $Id: NFS.pdl,v 1.3 1999/01/26 15:15:59 skip Exp$ 

20 

25 

nfsString FIELD 
SYNTAX LSTRING ( 4) 

nfsHandle FIELD 
SYNTAX BYTESTRING(32) 
DISPLAY-HINT "16x\n 

nfsData 
SYNTAX 
DISPLAY-HINT 

FIELD 
BYTESTRING(0 .. 100) 
"HexDump" 

nfsAccess PROTOCOL 
30 SUMMARIZE 

"Default• : 
"NFS Access $Filename" 

: := { Handle=nfsHandle, Filename=nfsString 

35 nfsStatus FIELD 
SYNTAX INT{32) { OK(O), NoSuchFile(2) } 

nfsAccessReply 
SUMMARIZE 

PROTOCOL 

40 "Default" : 
~NFS AccessReply $Status" 

::= { Status=nfsStatus} 

nfsMode FIELD 
45 SYNTAX UNSIGNED INT(32) 

DISPLAY-HINT "4o" 

50 

nfsCreate PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS Create $Filename• 

{ Handle=nfsHandle, Filename=nfsString, Filler=Int8, Mode=nfsMode, 
Uid=Int32, Gid=Int32, Size=Int32, AccessTime=Int64, ModTime=Int64 

55 nfsFileType FIELD 

60 

65 

SYNTAX INT(32) { Regular(l), Directory(2) } 

nfsCreateReply 
SUMMARIZE 

PROTOCOL 

"Default" : 
"NFS CreateReply $Status• 

Status=nfsStatus, Handle=nfsHandle, FileType=nfsFileType, 
Mode=nfsMode, Links=Uint32, Uid=Int32, Gid=Int32, Size=Int32, 
BlockSize=Int32, NumBlocks=Int64, FileSysid=Uint32, Fileid=Uint32, 
AccessTime=Int64, ModTime=Int64, InodeChangeTime=Int64} 

nfsRead PROTOCOL 

EX 1018 Page 124

~— NFs.pdl ~ Network File System {NFS) definitions

5 —— Description:
-— This file contains the packet definitions for the Network File
~- System.

-— Copyright:
10 —— Copyright (c) 1994«1998 Apptitude, Inc.

—- (formerly Technically Elite. Inc.)
-— All rights reserved.

—- RCS:

15 -- $Id: NFS.pd1,V 1.3 1999f01/26 15:15:59 skip Exp $

nfsstring FIELD
SYNTAX LSTRING (4)

20
nszandle FIELD

SYNTAX BYTESTRING {3 2 )
DISPLAYvI—IINT “16x\n “

25 nstata FIELD
SYNTAX BYTESTRING(O . . 100)
DISPLAY—HINT “HexDump”

nfsAccess PROTOCOL
30 SUMMARIZE

“Default”
‘NFS Access $Filename"

-:= { Handle:nfsfiandle. Filenameznfsstring }

35 nfsStatus FIELD
SYNTAX INT(32) { OK(0), NQSuchFile(2) }

nfsAccessReply PROTOCOL
SUMMARI 2E

40 “Default“
'NFS AccessReply Sstatus'

:= { Status=nfsStatus }

nfsMode FIELD
45 SYNTAX UNSIGNED INT(32)

DISPLAY—HINT “40“

nfisCreate PROTOCOL
SUMMARIZE

50 “Default”
“NFS Create $Filename"

::= { Handle=nfsflandle, FilenameznfsString, Filler=IntB, Mode=nfsMode,
Uid:Int32, GidxlntBE, Size=Int32, AccessTime=Int64, ModTime=Int64 }

55 nstileType FIELD
SYNTAX INT(32] ( Regular(l), Directory(2} }

 
nfsCreateReply PROTOCOL

SUMMARIZE
60 “Default" .

5 “NFS CreateReply $Status"
5 2:: ( Status=nfsStatus, Handle=nszandle, FileType=nstileType’
3 Mode=nfsMode, Links=UInt32, Uid=Int32, Gidzlnt32, Sizeclnt32,
E BlockSize=Int32, NumBlocks=Int64, FileSYSIdzUIntBZ, FileId=UInt32,
I 65 AccessTime=Int64, ModTimenInt64. InodeChangeTime=Int64 }

nstead PROTOCOL

”M...”.
EX 1018 Page 124



I 

I 
! 

l 

5 

10 

(~ 

SUMMARIZE 
"Default" 

119 

"NFS Read Offset=$0ffset Length=$Lengthu 
: := { Length=Int32, Handle=nfsHandle, Offset=Uint64, Count=Int32 

nfsReadReply PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS ReadReply $Status" 

Status=nfsStatus, FileType=nfsFileType, 
Mode=nfsMode, Links=Uint32, Uid=Int32, Gid=Int32, Size=Int32, 
BlockSize=Int32, NumBlocks=Int64, FileSysid=Uint32, Fileid=Uint32, 
AccessTime=Int64, ModTime=Int64, InodeChangeTirne=Int64} 

15 nfsWrite PROTOCOL 
SUMMARIZE 

"Default" 

20 

25 

30 

35 

"NFS Write Offset=$Offset" 
::= { Handle=nfsHandle, Offset=Int32, Data=nfsData 

nfsWriteReplyPROTOCOL 
SUMMARIZE 

"Default" : 
"NFS WriteReply $Status• 

Status=nfsStatus, FileType=nfsFileType, 
Mode=nfsMode, Links=Uint32, Uid=Int32, Gid=Int32, Size=Int32, 
BlockSize=Int32, NurnBlocks=Int64, FileSysid=Uint32, Fileid=Uint32, 
AccessTime=Int64, ModTirne=Int64, InodeChangeTirne=Int64} 

nfsReadDir PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS ReadDir" 

::= { Handle=nfsHandle, Cookie=Int32, Count=Int32 } 

nfsReadDirReply 
SUMMARIZE 

PROTOCOL 

"Default" : 
"NFS ReadDirReply $Status• 

40 ::= { Status=nfsStatus, Data=nfsData} 

nfsGetFileAt tr 
SUMMARIZE 

PROTOCOL 

"Default" : 
45 "NFS GetAttr" 

50 

55 

::= { Handle=nfsHandle} 

nfsGetFileAttrReply PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS GetAttrReply $Status $FileType• 

{ Status=nfsStatus, FileType=nfsFileType, 
Mode=nfsMode, Links=Uint32, Uid=Int32, Gid=Int32, Size=Int32, 
BlockSize=Int32, NumBlocks=Int64, FileSysid=Uint32, Fileid=Uint32, 
AccessTirne=Int64, ModTirne=Int64, InodeChangeTime=Int64} 

nfsReadLink PROTOCOL 
SUMMARIZE 

"Default" : 
60 "NFS ReadLink" 

: := { Handle=nfsHandle} 

nfsReadLinkReply PROTOCOL 
SUMMARIZE 

65 "Default" : 
"NFS ReadLinkReply Path=$Path" 

::= { Status=nfsStatus, Path=nfsString} 

EX 1018 Page 125

O (W

119

SUMMARIZE
“Default" .

“NFS Read Offset=$0ffset LengtthLength”
:= { Lengthzlnt32, Handle=nszandle, Offset=UInt64, Count=Int32 1

5
nsteadReply PROTOCOL

SUMMARIZE
“Default" .

“NFS ReadReply SStatus"
10 2:: { Status=nfsstatus, FileType=nstileType,

ModeznfsMode, Links=UInt32, Uidzlnt32, Gid=1nt32, SizezlntBZ,
BlackSize=Int32, NumBlocks=Int64. FileSysId=UInt32, FileId=UInt32,
AccessTime=Int64, MadTime=Int64, InodechangeTime=Int64 }

 
15 nfsWrite PROTOCOL

SUMMARIZE
“Default” .

“NFS Write Offset:$0ffset'
::= ( Handle=nszandle, Offset=1nt32, Datannstata )

20
nfsWriteReplyPROTOCOL

SUMMARIZE
“Default" .

“NFS WriceReply $Status”
25 ::= { Status=nfsstatus. FileType=nstileType,

Mode=nfsMode, Links=UInt32, Uidzlnt32, GidzIntBZ, Size=Int32,
Blocksize=1nt32, NumBlockszlnt64, FileSysId=UInt32, FileIdzUInCZZ,
AccessTimezrnt64, ModTime=Int64, InodeChangeTimerInt64 }

30 nsteadDir PROTOCOL
SUMMARIZE

“Default” :
“NFS ReadDir'

-:= [ Handle=nszandle, Cookie=1nt32. Count=Int32 }
3S

nsteadDirReply PROTOCOL
SUMMARIZE

“Default” :

“NFS ReadDirReply $Status”
40 { StatuscnfsStatus, Data=nstata }

3!

 
nstetFileAttr PROTOCOL

SUMMARIZE
“Default” :

45 “NFS GetAttr'
::= { Hand1e=nfsfiandle )

;

%

nstetFileAttrReply PROTOCOL
SUMMARIZE

50 “Default" : «

J “NFS GetAttrReply $Status $FileType“

3 ::= { Status=nfsscatus, FileType=nstileType,Mode=nfsMode, Links=UInt32, Uid=Int32. Gid=1nt32, Size=Int321
Blocksizezlnt32, NumBlocks=Int64, FileSysIfl=UInt32, FileId=UInt32,
AccessTime=Int64, ModTimezIntGA, InodeChangeTime2Int64 }L)! U}

nsteadLink PROTOCOL
SUMMARIZE

“Default" .
60 “NFS ReadLink“

::= ( Handleznfsfiandle }

nsteadLinkReply PROTOCOL
SUMMARIZE

65 “Default” .
“NFS ReadLinkReply Path=$Path'

::= { Status=nfsStatus, Path=nfsstring }

1..__..(....._.....w,
EX 1018 Page 125



I 
I 
j 

l 
l 

I 
f 

I 
i 

! 

l 
l 
l 

i· 
f 

5 

10 

nfsMount PROTOCOL 
SUMMARIZE 

"DefaultH : 
"NFS Mount $Path" 

: := { Path=nfsString} 

nfsMountReply PROTOCOL 
SUMMARIZE 

"Default" : 

120 

"NFS MountReply $MountStatus" 
MountStatus=nfsStatus, Handle=nfsHandle 

nfsStatFs PROTOCOL 
15 SUMMARIZE 

20 

25 

30 

"Default" : 
"NFS StatFs" 

::= { Handle=nfsHandle} 

nfsStatFsReply 
SUMMARIZE 

PROTOCOL 

"Default" : 
"NFS StatFsReply $Status" 

Status=nfsStatus, TransferSize=Uint32, BlockSize=Uint32, 
TotalBlocks=Uint32, FreeBlocks=Uint32, AvailBlocks=Uint32 } 

nfsRemoveDir PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS RmDir $Name• 

Handle=nfsHandle, Name=nfsString} 

nfsRemoveDirReply PROTOCOL 
SUMMARIZE 

35 "Default" : 

40 

45 

50 

55 

"NFS RmDirReply $Status" 
::= { Status=nfsStatus } 

nfsMakeDir PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS MkDir $Name* 

::= { Handle=nfsHandle, Name=nfsString} 

nfsMakeDirReply PROTOCOL 
SUMMARIZE 

"Default# : 
"NFS MkDirReply $Statusn 

::= { Status=nfsStatus } 

nfsRemove PROTOCOL 
SUMMARIZE 

"Default" : 
"NFS Remove $Name" 

{ Handle=nfsHandle, Name=nfsString 

nfsRemoveReply PROTOCOL 
SUMMARIZE 

"Default" : 
60 "NFS RemoveReply $Status• 

::= { Status=nfsStatus} 

EX 1018 Page 126

mam-mw,

n..."

..M,h.M-......~u._-w..m  
 

10

15

20

25

35

40

45

50

55

O (in

120

nfsMount PROTOCOL
SUMMARIZE

“Default"
“NFS Mount SPath”

*:= { PathznfsString }

nfsMountReplyPROTOCOL
SWARI 213

“Default“ .

“NFS MountReply $MountStatus”
::= ( MountStatus=nfsStatus, Handleznfsflandle )

nfsStath PROTOCOL
SUMMARIZE

“Default" .
“NFS Stath”

:= { Handleznfsflandle }

nfsStathReply PROTOCOL
SUMMARIZE

“Default“ .

‘NFS StatPsReply $Status"
::= { Statu52nfsStatus, TransferSize=UInt32. BlockSize=UInt32,

TotalBlocks=UInt32, FreeBlocks=UInt32, AvailBlocks=UInt32 }

nstemoveDir PROTOCOL
SUMMARIZE

“Default” .

‘NFS RmDir $Name”
':= { Handleznfsflandle, Name=nfsString }

nstemoveDirReply PROTOCOL
SUMMARIZE

“Default" .

“NFS RmnirReply $status”
‘:= { Status=nfsStatus }

nfsMakeDir PROTOCOL
SUMMARIZE

“Default“ :
“NFS MkDir $Name'

2 { Handleznfsflandle, Name=nfsString }

nfsMakeDirReply PROTOCOL
SUMMARIZE

“Default” .

“NFS MkDirReply $Status"
::= { Status=nfsStatus }

nstemove PROTOCOL
SUMMARIZE

“Default”
“NFS Remove SName”

::= { Hand1e=nszandle. Nameznfsstring }

nstemoveReply PROTOCOL
SUMMARIZE

“Default" :
60 “NFS RemoveReply $Status~

( StatusznfsStatus }
II

EX 1018 Page 126



0 
121 

HTTP.pdl - Hypertext Transfer Protocol (HTTP) definitions 

5 Description: 
This file contains the packet definitions for the Hypertext Transfer 
Protocol. 

Copyright: 
10 Copyright (c) 1994-1999 Apptitude, Inc. 

(formerly Technically Elite, Inc.) 
All rights reserved. 

RCS: 
15 $Id: HTTP.pdl,v 1.13 1999/04/13 15:47:57 skip Exp$ 

20 

25 

30 

35 

httpData FIELD 
SYNTAX 
LENGTH 

* 4)" 

BYTESTRING(l .. 1500) 
"($ipLength - ($ipHeaderLength * 4)) - ($tcpHeaderLen 

http 

DISPLAY-HINT "Text" 
FLAGS NO LABEL 

PROTOCOL 
SUMMARIZE 

"$httpData m/"GET["HTTPl"HEAD["POST/" : 
"HTTP $httpData" 

"$httpData m/"[Dd]atei"[Ss]erverj"[Ll]ast-[Mm]odified/" 
"HTTP $httpData" 

"$httpData ml" [Cc] on tent-/• 
"HTTP $httpData" 

"$httpData m/"<HTML>/" : 
"HTTP [HTML document]• 

"$httpData m/"GIF/" : 
"HTTP [GIF image]" 

"Default" 
"HTTP [Data]" 

DESCRIPTION 
40 "Protocol format for HTTP. n 

45 

50 

55 

60 

65 

: := { Data=httpData 

http FLOW 
CONNECTION {INHERITED} 
PAYLOAD { INCLUDE-HEADER, DATA=Data, LENGTH=256 } 
STATES 

"SO: CHECKCONNECT, GOTO Sl 
DEFAULT NEXT SO 

Sl: WAIT 2, GOTO S2, NEXT Sl 
DEFAULT NEXT SO 

S2: MATCH 
'\n\r\n' 900 
'\n\n' 900 
'POST /tds?' 50 
'.hts HTTP/1. 0' 50 
'jdbc:sybase:Tds' 50 
'PCN-The Poin' 500 
't: BW-C-' 100 
DEFAULT NEXT S3 

S3: MATCH 
'\n\r\n' 50 
'\n\n' 50 
'Content-Type:' 800 
'PCN-The Poin' 500 

0 
0 
0 
4 
4 
4 
4 

0 
0 
0 
4 

0 255 0, NEXT S3 
0 255 0, NEXT S3 
0 127 1, CHILD sybaseWebsql 
0 127 l, CHILD sybaseJdbc 
0 127 l, CHILD sybaseTds 
1 255 0, CHILD pointcast 
1 255 0, CHILD backweb 

0 0 0. NEXT S3 
0 0 0, NEXT S3 
0 255 0, CHILD mime 
1 255 0, CHILD pointcast 

EX 1018 Page 127

—- HTTP.pdl — Hypertext Transfer Protocol (HTTP) definitions

~~ Description:
—- This file contains the packet definitions for the Hypertext Transfer
-— Protocol.

—- Copyright:
,_ Copyright (c) 1994—1999 Apptitude, Inc.
—- (formerly Technically Elite, Inc.)
—- All rights reserved.

~~ RCS:

—— $Id: HTTP.pdl.V 1.13 1999IO4/13 15:47:57 skip Exp $

htchata FIELD
SYNTAX BYTESTRING(1..1500)
LENGTH “($ipLength — ($ipHeaderLength * 4)) — (StcpHeaderLen

‘k 4)::
DISPLAY~HINT “Text"
FLAGS NOLABEL

http PROTOCOL
SUMMARIZE

“shthData m/"GET[“HTTPE“HEAD[“POST/" :
“HTTP $httpData”

“shttpData mi“[Dd]ate|“[Ss]erver[“{Ll]ast~[Mm]odified/”
“HTTP $httpData”

“$htchata m/‘[Cc]ontent~/"
“HTTP ShttpData“

“$httpData mIA<HTML>/‘
“HTTP {HTML document)”

“$httpData mIAGIFf“ :
“HTTP [GIF image1“

“Default" :
“HTTP {Data]”

DESCRIPTION
“Protocol format for HTTP.”

::= { Data=httpData }

 
http FLOW

CONNECTION { INHERITED }
45 PAYLOAD ( INCLUDEwHEADER, DATA=Data, LENGTH=256 }

STATES
“so: CHECKCONNECT, GOTO 51

DEFAULT NEXT so

50 51: WAxT 2. GOTO 32, NEXT 51 .
DEFAULT NEXT so 

, 32: MATCH
; '\n\r\n' 900 o o 255 0, NEXT 53

‘1’ 55 '\n\n‘ 900 o o 255 0, NEXT 53
‘POST itds?’ 50 0 0 127 1, CHILD sybaseWebsql
'.hts HTTP/1.0' 50 4 0 127 1, CHILD sybaseJdbc
'jdbc:sybase:Tds' 50 4 O 127 l, CHILD sybasers
'PCN—The Poin‘ 500 4 l 255 O, CHILD pointcast

60 't: BW-C-' 100 4 1 255 0, CHILD backweb
DEFAULT NEXT S3

S3: MATCH

‘\n\r\n‘ 50 0 O 0 0, NEXT S3
65 .\n\n. 50 0 0 D 0. NEXT SB

‘Content-Typez' 800 0 0 255 0, CHILD mime
'PCN—The Poin' 500 4 l 255 0, CHILD pointcast

EX 1018 Page 127



.::;:. 

'· 
' -

(') 

122 

't: BW-C-' 100 4 1 255 0, CHILD backweb 

sybaseWebsql 
5 

sybaseJdbc 

10 sybaseTds 

pointcast 

15 
backweb 

mime 
20 

DEFAULT NEXT SO" 

FLOW 
STATE-BASED 

FLOW 
STATE-BASED 

FLOW 
STATE-BASED 

FLOW 
STATE-BASED 

FLOW 
STATE-BASED 

FLOW 
STATE-BASED 
STATES 

"SO: MATCH 
'application' 

25 

30 

50 

55 

'audio' 
'image' 
'text' 
'video' 
'x-world' 

DEFAULT GOTO 

mimeApplication FLOW 
STATE-BASED 

mimeAudio FLOW 
STATE-BASED 
STATES 

"SO: MATCH 
'basic' 
'midi' 
'mpeg' 
'vnd.rn-realaudio' 
1 wav 1 

'x-aiff' 
'x-midi' 
'x-mpeg' 
'x-mpgurl' 
'x-pn-realaudio' 
1 x-wav 1 

DEFAULT GOTO SO" 

mime Image FLOW 
STATE-BASED 

mimeText FLOW 
STATE-BASED 

mimeVideo FLOW 
STATE-BASED 

60 mimeXworld FLOW 
STATE-BASED 

65 

pdBasicAudio FLOW 
STATE-BASED 

pdMidi FLOW 
STATE-BASED 

SO" 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

900 0 0 1 0' CHILD mimeApplication 
900 0 0 1 0, CHILD mimeAudio 

50 0 0 1 0' CHILD mime Image 
50 0 0 1 0' CHILD mimeText 
50 0 0 1 0, CHILD mimeVideo 

500 4 1 255 0' CHILD mimeXworld 

0 0 1 0, CHILD pdBasicAudio 
0 0 1 0, CHILD pdMidi 
0 0 1 0, CHILD pdMpeg2Audio 
0 0 1 0, CHILD pdRealAudio 
0 0 1 0, CHILD pdWav 
0 0 1 0, CHILD pdAiff 
0 0 1 0, CHILD pdMidi 
0 0 1 0, CHILD pdMpeg2Audio 
0 0 1 0' CHILD pdMpeg3Audio 
0 0 1 0, CHILD pdRealAudio 
0 0 1 0, CHILD pdWav 

EX 1018 Page 128

10

15
 

25

30 
35

FWr

 40
 

r T ‘2 45

50

55

60

65

(W (“I\ x

122

't; BW—C-' 100 4 l 255 0, CHILD backweb
DEFAULT NEXT SO"

sybaseWebsql FLOW
STATE—BASED

sybaseJdbc FLOW
STATE-BASED

sybasers FLOW
STATE—BASED

pointcast FLOW
STATE-BASED

backweb FLOW
STATE—BASED

mime FLOW
STATE-BASED
STATES

“SO: MATCH

'application' 900 0 0 l 0, CHILD mimeApplication
'audio' 900 0 0 l 0, CHILD mimeAudio
'image' 50 0 0 l 0, CHILD mimeImage
'text‘ 50 0 0 l 0, CHILD mimeText
'video‘ 50 0 0 l 0, CHILD mimevideo
'x—world' 500 4 l 255 0, CHILD mimeXWorld

DEFAULT GOTO SO”

mimeApplication FLOW
STATE—BASED

mimeAudio FLOW
STATE—BASED
STATES

“SO: MATCH
'basic‘ 100 O O l 0, CHILD deasicAudio
'midi' 100 0 O l 0, CHILD deidi
'mpeg' 100 0 O l 0, CHILD depegZAudio
'vnd.rn-realaudio' 100 0 O 1 0, CHILD deealAudio
'wav' 100 O O 1 0, CHILD deav
'x—aiff' 100 0 O l 0, CHILD pdAiff
'x—midi' 100 0 0 l 0, CHILD deidi
'x—mpeg' 100 0 O 1 0, CHILD depeg2Audio
'x—mpgurl' 100 0 O 1 0, CHILD depeg3Audio
'x-pn—realaudio' 100 0 O 1 0, CHILD deealAudio
'x—wav' 100 0 O l 0, CHILD deav

DEFAULT GOTO SO”

mimeImage FLOW
STATE-BASED

mimeText FLOW
STATE—BASED

mimeVideo FLOW
STATE—BASED

mimeXworld FLOW
STATE-BASED

deasicAudio FLOW
STATE-BASED

deidi FLOW
STATE-BASED

EX 1018 Page 128



•· r 

~= 

5 

10 

15 

(~ (~ 

123 

pdMpeg2Audio FLOW 
STATE-BASED 

pdMpeg3Audio FLOW 
STATE-BASED 

pdRealAudio FLOW 
STATE-BASED 

pdWav FLOW 
STATE-BASED 

pdAiff FLOW 
STATE-BASED 

EX 1018 Page 129
g%««

 
 

 

 

 

5

10

15

(W

depegZAudio FLOWSTATE-BASED

depeg3Audio FLOWSTATE-BASED

deea lAudio FLOW
STATE-BASED

deav FLGW
STATE—BASED

pdAiff FLOW
STATEvBASED

123

O

EX 1018 Page 129



5 

10 

15 

20 

124 

CLAIMS 

What is claimed is: 

2. 

A method of pe forming protocol specific operations on a packet passing through 

a connection point on a computer network, the method comprising: 

(a) 

(b) receivi g a set of protocol descriptions for a plurality of protocols that 

conform a layered model, a protocol description for a particular protocol at 

a particul layer level including: 

(i) the none or more child protocols of the particular protocol, the 

(ii) 

pack t including for any particular child protocol of the particular 

prot col information at one or more locations in the packet related to the 

part cular child protocol, 

the one or more locations in the packet where information is stored 

rel ted to any child protocol of the particular protocol, and 

(iii) the none or more protocol specific operations to be 

ormed on the packet for the particular protocol at the particular layer 

(c) pe orrning the protocol specific operations on the packet specified by the 

set of , rotocol descriptions based on the base protocol of the packet and the 

childr n of the protocols used in the packet. 

A method according to claim 1, wherein step ( c) of performing protocol specific 

operations i performed recursively for any children of the children. 

3. A metho according to claim 1, wherein which protocol specific operations are 

performed i step ( c) depends on the contents of the packet such that the method 

25 adapts to · ferent protocols according to the contents of the packet. 

4. A metho according to claim 1, further comprising: 

EX 1018 Page 130

124
 

 CLAIMS

a, , What is claimed is:

 

 

 

  
10 pack t including for any particular child protocol of the particular

"iii?13551;:ll prot col information at one or more locations in the packet related to the

part cular child protocol,855:1:“eff:
(ii) the one or more locations in the packet where information is stored

rel ted to any child protocol of the particular protocol, and

15 (iii) the none or more protocol specific operations to be

pe ormed on the packet for the particular protocol at the particular layer

1e el; and

(c) pe orming the protocol specific operations on the packet specified by the

set of rotocol descriptions based on the base protocol of the packet and the

 
20 childr n of the protocols used in the packet.

 

 

:1 gr“ 2. A method according to claim 1, wherein step (c) of performing protocol specific

operations i performed recursively for any children of the children.

3. A metho according to claim 1, wherein which protocol specific operations are

performed i step (c) depends on the contents of the packet such that the method

25 adapts to ‘ ferent protocols according to the contents of the packet.

4. A metho according to claim 1, further comprising:

EX 1018 Page 130



.. ' 
'' . 

' \ 
=~ 

5 

10 

15 

n 
' 

125 

storing ad tabase in a memory, the database generated from the set of 

protocol descr· tions and including a data structure containing information on 

the possible p tocols and organized for locating the child protocol related 

information f r any protocol, the data structure contents indexed by a set of 

one or more i dices, the database entry indexed by a particular set of index 

values includ ng an indication of validity, 

wherein the child pr tocol related information includes a child recognition pattern, 

wherein step ( c) of performing the protocol specific operations includes, at any 

particular protoco layer level starting from the base level, searching the packet at 

the particular prot col for the child field, the searching including indexing the data 

structure until av id entry is found, and 

whereby the dat structure is configured for rapid searches using the index set. 

5. A method ac ording to claim 4, wherein the protocol descriptions are provided in 

6. 

a protocol desc ption language, the method further comprising: 

com iling the PDL descriptions to produce the database. 

A method a cording to claim 4, wherein the data structure comprises a set of 

arrays, each ay identified by a first index, at least one array for each protocol, each 

array further i dexed by a second index being the location in the packet where the 

child protocol elated information is stored, such that finding a valid entry in the data 

20 structure prov· des the location in the packet for finding the child recognition pattern 

for an identifi d protocol. 

7. A method cording to claim 6, wherein each array is further indexed by a third 

index being t e size of the region in the packet where the child protocol related 

information i stored, such that finding a valid entry in the data structure provides 

25 the location nd the size of the region in the packet for finding the child recognition 

pattern. 

8. A metho according to claim 7, wherein the data structure is compressed 

according to a compression scheme that takes advantage of the sparseness of valid 

entries in th data structure. 

EX 1018 Page 131

 

i
t

 
 
 

 

3
x

,

#33331.1175,"ll?tinW!‘33:}!lfill!till!
(i331It'll!if]!it???
€553![my

fl/

10

15

20

25

125

storing a d tabase in a memory, the database generated from the set of

protocol descr' tions and including a data structure containing information on

the possible p tocols and organized for locating the child protocol related

information f it any protocol, the data structure contents indexed by a set of

one or more i dices, the database entry indexed by a particular set of index

values inclu ng an indication of validity,

wherein the child pr tocol related information includes a child recognition pattern,

wherein step (c) of performing the protocol specific operations includes, at any

particular protoco layer level starting from the base level, searching the packet at

the particular prot col for the child field, the searching including indexing the data

structure until a v id entry is found, and

whereby the dat structure is configured for rapid searches using the index set.

A method ac ording to claim 4, wherein the protocol descriptions are provided in

a protocol desc ption language, the method further comprising:

com iling the PDL descriptions to produce the database.

A method a cording to claim 4, wherein the data structure comprises a set of

arrays, each ay identified by a first index, at least one array for each protocol, each

array further i dexed by a second index being the location in the packet where the

child protocol elated information is stored, such that finding a valid entry in the data

structure prov'des the location in the packet for finding the child recognition pattern

for an identifi

 

 

protocol.

A method cording to claim 6, wherein each array is further indexed by a third

index being t e size of the region in the packet where the child protocol related

information i stored, such that finding a valid entry in the data structure provides

the location nd the size of the region in the packet for finding the child recognition

pattern.

A metho according to claim 7, wherein the data structure is compressed

according to a compression scheme that takes advantage of the sparseness of valid

entries in th data structure.

EX 1018 Page 131



;~ ~ 
•= \.\ 
-

l ,', 

" ' 

j 

n 
\ 

126 

9. A method accor ing to claim 8, wherein the compression scheme combines two 

or more arrays that ave no conflicting common entries. 

10. A method accor ing to claim 4, wherein the data structure includes a set of tables, 

each table identifi by a first index, at least one table for each protocol, each table 

5 further indexed by a second index being the child recognition pattern, the data 

structure further i luding a table that for each protocol provides the location in the 

packet where the hild protocol related information is stored, such that finding a 

valid entry in the ata structure provides the location in the packet for finding the 

child recognition attem for an identified protocol. 

10 

15 

20 

25 

11. 

12. 

13. 

A method ace ding to claim 10, wherein the data structure is compressed 

according to a co pression scheme that takes advantage of the sparseness of valid 

entries in the set f tables. 

A method ace rding to claim 11, wherein the compression scheme combines two 

or more tables t t have no conflicting common entries. 

A method ace rding to claim 1, wherein the protocol specific operations include 

one or more par ing and extraction operations on the packet to extract selected 

portions of the p cket to form a function of the selected portions for identifying the 

packet as belon ing to a conversational flow. 

14. A method •+rding to claim I, wherein the protocol descriptions are provided in 

a protocol desc · tion language. 

15. A method ace rding to claim 14, further comprising: 

compi ing the PDL descliptions to produce a database and store the 

database i a memory, the database generated from the set of protocol 

descriptio s and including a data structure containing information on the 

possible pr~tocols and organized for locating the child protocol related 

informatio~ for any protocol, the data structure contents indexed by a set of 

one or mord indices, the database entry indexed by a particular set of index 

values inclu ing an indication of validity, 

EX 1018 Page 132

 

 
25

9.

10.

11.

12.

13.

14.

15.

126

 

 

 

A method accor ing to claim 8, wherein the compression scheme combines two

or more arrays that ave no conflicting common entries.

A method accor ing to claim 4, wherein the data structure includes a set of tables,

each table identifi by a first index, at least one table for each protocol, each table

further indexed by a second index being the child recognition pattern, the data

luding a table that for each protocol provides the location in the

packet where the hild protocol related information is stored, such that finding a

valid entry in the ata structure provides the location in the packet for finding the

child recognition attem for an identified protocol.

A method acc cling to claim 10, wherein the data structure is compressed

according to a co pression scheme that takes advantage of the sparseness of valid

entries in the set ftables.

 

 

A method ace rding to claim 11, wherein the compression scheme combines two

or more tables t t have no conflicting common entries.

A method acc rding to claim 1, wherein the protocol specific operations include

one or more par ing and extraction operations on the packet to extract selected

portions of the p ket to form a function of the selected portions for identifying the

packet as belon ing to a conversational flow.

A method ac ording to Claim 1, wherein the protocol descriptions are provided in

a protocol desc " tion language.

A method acc rding to claim 14, further comprising:

compi ing the PDL descriptions to produce a database and store the

database i a memory, the database generated from the set of protocol

descriptio s and including a data structure containing information on the

possible prbtocols and organized for locating the child protocol related

informatiori for any protocol, the data structure contents indexed by a set of
one or more}l indices, the database entry indexed by a particular set of index

values inclu ing an indication of validity,

EX 1018 Page 132



iii:' 

0 
127 

wherein the child protocol related information includes a child recognition pattern, 

and 

wherein the ste of performing the protocol specific operations includes, at any 

particular prot col layer level starting from the base level, searching the packet at 

5 the particular otocol for the child field, the searching including indexing the data 

valid entry is found, 

whereby the ata structure is configured for rapid searches using the index set. 

16. A method according to claim 13, further comprising: 

10 

20 17. 

18. 

25 

looking ul a flow-entry database comprising none or more flow-entries, at least 

one flow-e~hy for each previously encountered conversational flow, the looking up 

using at le i~t some of the selected packet portions and determining if the packet 

matches existing flow-entry; 

cket is of an existing flow, classifying the packet as belonging to the 

found e · ting flow; and 

acket is of a new flow, storing a new flow-entry for the new flow in the 

database, including identifying information for future packets to be 

identifi d with the new flow-entry, 

wherei the parsing and extraction operations depend on the contents of none or 

more cket headers. 

A ethod according to claim 13, wherein the protocol specific operations further 

includ one or more state processing operations that are a function of the state of the 

flow f the packet. 

A ethod according to claim 1, wherein the protocol specific operations include 

more state processing operations that are a function of the state of the flow of 

EX 1018 Page 133

127

 

 

wherein the child protocol related information includes a child recognition pattern,

and

wherein the Ste of performing the protocol specific operations includes, at any

particular prot col layer level starting from the base level, searching the packet at

the particular otocol for the child field, the searching including indexing the data

structure until valid entry is found,

whereby the ata structure is configured for rapid searches using the index set.

16. A method according to claim 13, further comprising:

looking a flow-entry database comprising none or more flow-entries, at least

one flow~e for each previously encountered conversational flow, the looking up

using at to t some of the selected packet portions and determining if the packet

matches a existing flow—entry;

if the cket is of an existing flow, classifying the packet as belonging to the

found e ' ting flow; and

if the ackct is of a new flow, storing a new flow-entry for the new flow in the

flow—en database, including identifying information for future packets to be

identifi d with the new flow-entry,

wherei the parsing and extraction operations depend on the contents of none or

more cket headers.

17. A ethod according to claim 13, wherein the protocol specific operations further

includ one or more state processing operations that are a function of the state of the

flow f the packet.

 
~;' 18. A ethod according to claim 1, wherein the protocol specific operations include

one o more state processing operations that are a function of the state of the flow of

25 the p cket.

 
EX 1018 Page 133



' i ~ 

128 

ABSTRACT 

A method of performing protocol specific operations on a packet passing through a 

connection point on a computer network. The packet contents conform to protocols of a 

: : layered model wherein the protocol at a at a particular layer level may include one or a 

s set of child protocols defined for that level. The method includes receiving the packet 

and receiving a set of protocol descriptions for protocols may be used in the packet. A 

protocol description for a particular protocol at a particular layer level includes any child 

protocols of the particular protocol, and for any child protocol, where in the packet 

information related to the particular child protocol may be found. A protocol description 

10 also includes any protocol specific operations to be performed on the packet for the 

.:;;;; particular protocol at the particular layer level. The method includes performing the 

protocol specific operations on the packet specified by the set of protocol descriptions 

based on the base protocol of the packet and the children of the protocols used in the 

packet. A particular embodiment includes providing the protocol descriptions in a high-

15 level protocol description language, and compiling to the descriptions into a data 

structure. The compiling may further include compressing the data structure into a 

compressed data structure. The protocol specific operations may include parsing and 

extraction operations to extract identifying information. The protocol specific operations 

may also include state processing operations defined for a particular state of a 

20 conversational flow of the packet. 

EX 1018 Page 134

128

ABSTRACT

A method of performing protocol specific operations on a packet passing through a

connection point on a computer network. The packet contents conform to protocols of a

layered model wherein the protocol at a at a particular layer level may include one or a

s set of child protocols defined for that level. The method includes receiving the packet

and receiving a set of protocol descriptions for protocols may be used in the packet. A

protocol description for a particular protocol at a particular layer level includes any child

protocols of the particular protocol, and for any child protocol, where in the packet

information related to the particular child protocol may be found. A protocol description

10 also includes any protocol specific operations to be performed on the packet for the

particular protocol at the particular layer level. The method includes performing the

protocol specific operations on the packet specified by the set of protocol descriptions

based on the base protocol of the packet and the children of the protocols used in the

packet. A particular embodiment includes providing the protocol descriptions in a high—

15 level protocol description language, and compiling to the descriptions into a data

structure. The compiling may further include compressing the data structure into a

compressed data structure. The protocol Specific operations may include parsing and

extraction operations to extract identifying information. The protocol specific operations

may also include state processing operations defined for a particular state of a

20 conversational flow of the packet.

 
EX 1018 Page 134



.. , 
!,.'' 

PRL'T Of DRA~L.,G.S 
AS ORIG IN ALLY FU...tI 

··--- -~- u 

1/20 

l CLIENT4.\ 
107 

108 
ANALYZER 

116 

SERVER I CLIENT 31 .... \---- " ~10 
121 

106 

lsERVER3\ 

112 

DATA COMMUNICATIONS 
NETWORK 

102 

125 

123---

1 

-, 105 
CLIENT2 ~ 

FIG. 1 

118 

CLIENT 1 \ 
104 

EX 1018 Page 135

' gum or DRAWLNGS

Aigflfigéflflflflgfl

1/20

— ,

100 CLIENT 4 103
N ANALYZER

107

— ,I SERVER ‘

CLIENT 3

”N

116

 121 \110
1‘06

DATA COMMUNICATIONS

NETWORK

102

125

123

— 118

SERVER . 105 w

.a ”N CLIENT 2 CLIENT 1 3
7'5 11 2 104

FIG. 1 '

 
EX 1018 Page 135



. ''I,...,.•""'"""""" .c·.=.,•.,7,,· 

,,____----:--_____ ...__~,,~-···"'··'' ...... · .. :~.-.:·-~"' -~---~-
214 215 216 217,218 219 220 221 222,223 

81 C1 p1 i1 s1a QA sp QP 

224. 225 

21 
242 243 244 245 

" ' 

KEY-1 81 C1 p 1 · - · - . - . - a 1 sto 
21 

D 
250 251 ,252 253 ,254 ,255 

KEY-2 s1 C1 p2 ·-·-·---, ..... ---a-2 -..1--s-t1--I 

datum request 

" ..... -...... 

' 
270 271 272 273 27 4 (' ' ' \ 275 

' C1 81 p2 datum reply 

j ( 
209 

2 

.,, 

20 

APPLICATION $ERVER 2 

................... 

. 

. . . . 

FIG. 2 

EX 1018 Page 136

    
 

K

"Inn:—
208

' tthfifilfif-a w ) m 'H.”
u .n :g ..

  
3.7.1: IL}? M as; ‘12:» Mr " 1521.221 :1 632:1» ri‘liil *‘r‘iii- em: ‘11,}:

214 215 216 217218 219 220 2210A:22(223

K265

*W1 

 
275

 

DIED8V

S'DN'IMVRUJOlk'THJHmMTV)?!"....."'

APPLICATION SERVER 2

EX 1018 Page 136



llfl'"7 
·--·-------- '' c •. "''#~jH .. :~;~.r».t1#~

4
.i}$-\I 

302 

310 

336 

Ii') 1i] ti] ;i:;:, 11;::11,,(, "jj::· 11:::11 

3CO - - - - --- -- - -- - - -- - - -,~ ~ I 
304 

PARSER 301 I r _____________ 
1 I 306 31 

ANALYZE AND EXTRACT I I .----'----, I 
I RECOGNIZE IDENTIFYING BUILD UNIQUE I I LOOKUP I 

PATTERN CONVERSATIO FROM 
INFORMATION INFORMATION "FLOW" KEY I KNOWN I 

(PAR) (Ell) I I RECORDS I 

312 I I 1i°iAf~E I 
r-------...J I I 

r-~ I 

324 

DATABASE 
OF FLOWS 

I I 
I l -,-- - - ~ ---. 
I 

PATTERN, PARS I : 

1308...) EXT~~gTION I I 
I DATABASE I I 
I I ------1----- I 

- - J 

PROTOCOL 
& STATE 

IDENTIFICATION 

COMPILER 
AND 

OPTIMIZER 

STATE 
PROCESSOR 
INSTRUCTION 

DATABASE 

326 

rs 

3221 
UPDATE~ 
"FLOW" I 
KNOWN I 
RECORD 

.--~~-YE~·--~ 
I vJ 
I~ 
10 

---NO 

CLASSIFICATN 
FINALIZATION 

34 

PROTOCOL 
DESCIPTIO 
LANGUAGE 

FIG. 3 '-~~~YE~·~~~__, 

ANALYZER 
303 

----------------------------

.~ ~ 

1
10 ~ 
~..; 
.no 

~~ i 
j~ 

C> 

EX 1018 Page 137

  

——.——_~..—~~—_~.__~

ANALYZE AND

PATTERN
INFORMATION

(PAR)

 

 

 
 
 
  

  

 

  

PATTERN. PARS
AND

EXTRACTION
DATABASE

310

COMPILEFI
AND

OPTIMIZER
336

PROTOCOL OATAGRAM
DESCIPTIO LAYER

SELECTION 'LANGUAGE 

 

 

III: III I TI! W if?" III
380

______ I/ N
PARSER am ' r —————————————I 324

 IIEitII

  

     
 

316“ .m-..

JznuAmfl‘omosv  
  
  

  

  

 
 

  

 

  

BUILD UNIQUE I I nggup NEW FLOWCONVERSATIO - M “ DATABASE
”FLOW“ KEY l KNOWN RECORD?I RECORDS N“ OF FLOWS I

(DB 324 FON'H‘IVXG301’31”
/\

 

  
 

PROTOCOL U PDATE
 

II FLOW" I
31 STATE KNOWN

IDENTIFICATION RECORD

08/8
CLASSIFICATN
FINALIZATION

STATE 3‘32
PROCESSOR
IN STRUCTION

DATABASE

 
 

 
 

NO

330

 
 

MORE
OPERATIONS .

 
PROCESSN c
OPERATION ‘. 
 ANALYZER

539§

 
EX 1018 Page 137



' .. 
' 

0 

4/20 

401 

402 

404 

GENERATE 
PACKET 

PARSE AND 
EXTRACT 

OPERATIONS 

406 ,1 ATTERN, PARS 
v AND 

EXTRACTION 
DATABASE 

HIGH LEVEL 
PACKET 

DECODING 
ESCRIPTION 

COMPILE 
ESCRIPTION 

403 

408 409) 

PACKET 
STATE 

NSTRUCTION 
AND 

OPERATIONS 

STATE 
PROCESSOR 
INSTRUCTION 

DATABASE 

LOAD 
PARSING 

~-r1 SUBSYSTEM 

LOAD STATE 
NSTRUCTIO. ,.._ __ 
DATABASE 

MEMORY MEMORY 

410 

FIG. 4 

407 

EX 1018 Page 138

hint— -1

PRLNT OF DRAWUNGS

AépRJCLNALLY r1110
“*- -W

C)

 

  
     

4/20

-7__
' 401

-.
402

HIGH LEVEL
PACKET

DECODSNG
‘IESCRIPTION ~

404 05

GENERATE
__ PACKET

; PfégéggD COMPILE STATE
~ EXTRACT ‘IESCRIPTiON ~
if OPERATIONS

| 2" :: -

' M 403

g , a 407

—— STATE
T : PROCESSOR
; :- EXTRACTION lNSTRUCTlON

;: DATABASE 408 409 W DATABASE

  
\ LOAD LOAD STATE

PARSING NSTRUCTIO
SUBSYSTEM

MEMORY mgmfi 'ema’w'fif.‘y..":“dvrW,
/"400

EX 1018 Page 138



ni<>t?, 

510 

0 

5/20 

501 

INPUT PACKET 502 

503 LOAD PACKET 
COMPONENT 

504 NO 

FETCH NODE AN 

506-

507 

PATTERN r4-.u.NO""< 
NOOE 

509 

PROCESS FROM 
505 PA E 

NO 

508 

EXTRACT 
ELEMENTSi--~~~__, 

FIG. 5 

PACKET 
KEY 

513 

511 

'-soo 

EX 1018 Page 139

mini-I :

PRLV T 0? DRAWLNGS

Aiongy “LEG 0

5/20

0

W 502
503 LOAD PACKET

COMPONENT
512

3 I I

504 ”\ ORE IN PACK , u» PACKETKEY

 

 
 

 

 

 
 

FETCH NODE AN l
PROCESS FROM ®

513  
NEXT

PACKET

COMPONE 511

MORE
PATTERN

 
‘3'}

 
”-Hu ”w

i PROCESS TO
3‘. COMPONENT

‘ *’ 51o \
‘ . 500

‘ PATTERN ~  
' ‘ EXTRACT

, 509 ELEMENTS

FIG. 5

EX 1018 Page 139



0 

6/20 

601 

PACKET 602 
COMPONENT AND 
PATIERN NODE 

603 

LOAD PACKET 
COMPONENT 610 

;= 
= 604 cJ:,: 

tp 
NO 1: LOAD KEY ·= 

:gj BUFFER 
}= 

FETCH EXTRACTION 
:=' ND PROCESS FRO 
if PATIERNS 605 

'H 
NO 

611 
:= 

-=· 606 NEXT I •:;.;:± 

'I 
·~ N PACKET 609 

COMPONEN 
i 

1: ,, 
, 607 APPLY EXTRACTIO y 

PROCESS TO 
COMPONENT 

'--600 if. 

, :~ 608 

'' 

FIG. 6 

EX 1018 Page 140

PRINT OF DRAWLNGS

ASEQELGEQLL. Y PILLO C)

6/20

. f— 601

PACKET
COMPONENT AND 602
PATTERN NODE

LOAD PACKET

COMPONENT 510

LOAD KEY
BUFFER

YES

FETCH EXTRACTiON @
‘ND PROCESS FRO (1PATTERNS 505

z, 607 APPLY EXTRACTIO .

603

 
  

 604 ‘2 MORE PACKE
COMPONENT  
 1!likeli'l

“B‘llail.

.V
vn9

 

  

   ORE EXTRACTKO ‘
ELEMENTS?

ram»;.w.m". YES

606 NEXT
NI PACKET r“ 609

COMPONEN

PROCESS TO

COMPONENT )\600
 

 
  
 

«smA\  MORE TO 608
EXTRACT?

YE

FIG. 6

EX 1018 Page 140



0 

7/20 

702 

703 LOAD PATTERN 
"" 

NODE ELEMENT 708 -::=: 
f'!'c 

"b! 
-~ 

:c"''C 704 NO OUTPUTT 'k 

i= ANALYZER 
--~ 
= 

YES 
·= 

HASH KE BUFFER 
705 

:,,,,;: ELEMENT FROM 
':.,:;;;! PATTERN NODE 
;~ 709 -
:~ 

PACK KEY & HAS 
706 

~700 

NEXT PACKET 
COMPONENT 

707 

~ 
i;: 

FIG. 7 

EX 1018 Page 141

FHA-ts- ,.

PR1): 1" OF DRAW [1‘05

@2qu 0

7/20

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

703 "\/ NODE ELEMENT 708 _.

OUTPUT T
ANALYZER

YES $9
HASH KE BUFFER

ELEMENT FROM 705

PATTERN NODE g 709

 
 

 
   MORE PATTER

NODES?
704

   
PACK KEY & HAS{1

"f 706

\700
NEXT PACKET
COMPONENT

707

FIG. 7

EX 1018 Page 141



800~ 

805 

NEXT BUCKET N 

809 

811 

812 

8/20 

UFKB ENTRY FOR 
PACKET 

0 

801 

802 

COMPUTE CONVERSATION 803 
RECORD BIN FROM HASH 

REQUEST RECORD BIN/ 
BUCKET FROM CACHE 804 

806 

NO SETUFKBFOR 
PACKET AS 'NEW' 

COMPARE CURRENT BIN 807 
AND BUCKET RECORD KEY 

TO PACKET 

808 

MARK RECORD BIN AND 810 
BUCKET 'IN PROCESS' IN 
CACHE AND TIMESTAMP 

SET UFKB FOR PACKET 
AS'FOUND' 

UPDATE STATISTICS FOR 
RECORD IN CACHE ____ ....., 

813\J FIG. 8 

EX 1018 Page 142

find...

PRINT OF DRAWLNGS

Asmomcmuv “LEO O
M -'W

8/20

. 801

UFKB ENTRY FOR
PACKET 4 802

800\
COMPUTE CONVERSATTON 803RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804 808

“0 SET UFKB FOR
PACKET AS ’NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET N® 808
YES

809

   ORE BUCKET
IN THE BIN?  1:33:5“ 805 Y

 

 ‘45}:B
nf-u YES

  
MARK RECORD BIN AND 810BUCKET ‘IN PROCESS‘ 1N
CACHE AND TSMESTAMP

SET UFKB FOR PACKET
8“ AS ‘FOUND‘

812 UPDATE STATIS'NCS FOR
RECORD IN CACHE

813m. FIG. 8

 
EX 1018 Page 142



n: .... +-

-
.. 
-

:,g:: 
:--:: 

-
-

-

i 

"' -

·-
·-
-
-
·-
-· 

PRL.,T Of DRAWL',G.S 

~JIB!GINALL y ~ 

EXTRACT PROGRAM 
903 

GET 'PROGRAM', 
'VERSION', 'PORT' AND 
'PROTOCOL (TCP OR 

UDP) 

CREATE SERVER STAT 

904 
SAVE 'PROGRAM', 

'VERSION', 'PORT' AND 
'PROTOCOL (TCF OR 

UDP)' WITH NETWORK 
ADDRESS IN SERVER 

STATE DATABASE. KEY 
ON SERVER ADDRESS 

AND TCP OR UDP PORT. 

9/20 

0 

EXTRACT PORT 

GET 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)' 

908 

SAVE REQUEST 

SAVE 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)'WITH 

DESTINATION 
NETWORK ADDRESS. 

BOTH MAKE A KEY. 

907 

905 906 

LOOKUP REQUE 

FIND 'PROGRAM' 
AND 'VERSION' 

WITH LOOKUP OF 
SOURCE NETWORK 

ADDRESS. 

FIG. 9 

EXTRACT 
PROGRAM 

GET 'PORT' AND 
'PROTOCOL (TCP 

OR UDP)'. 

909 

EX 1018 Page 143

PRINT OF DRAWINGS

9/20

901 902 910

 
 

 
 

 

 

RPC
ENDLOOKU'

REQUEST 
 
 

'ORTMAPP _ ‘NNOUNCME

909

EXTRACT PORT

GET 'PROGRAM',

EXTRACT PROGRAM

GET 'PROGRAM',
  
   
 

903

 
 
 
 

 
  
 
 

 

 
 
 

‘VERSION'. ‘POFIT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (I'CP OR

UDP) UDP)‘

 SAVE REQUEST

SAVE 'PROGRAM'.

 

  
 

 CREATESERVERSTAT  

 
 

 
 
 
 
 

 
 

 

 
 
 
 

 
 
 

 
 
 

SAVE 'PROGRAM', 'VERSION'AND

904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR
'PROTOCOL (TCF OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION .
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY,

   
 
  

 

 
 

RPC
END

LOOKUP
REPEY

 
  EXTRACT

PROGRAM 
LOOKUPREQUE‘

  
 

 
  

 

 

 
 
 

 
 
  

/ FIND 'PROGRAM'900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP

SOURCE NETWORK 0R UDP)’.ADDRESS.

FIG. 9

 
  

EX 1018 Page 143



1000~ 

PATTERN 
RECOGNITION 

DATABASE 
MEMORY 

100 
100 

10/20 

100 

1001 

0 

EXTRACTION 
OPERATIONS 

DATABASE 
MEMORY 

1031 
1004 

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS 

1021 

PATTERN 
RECOGNITN --

ENGINE 
(PRE) 

EXTRACTION ENGINE 
(SLICER) 

PARSER INPUT BUFFER 
MEMORY 

INPUT BUFFER 1011 
INTERFACE 
CONTROL 

101 

FIG. 10 

ANALYZER 
INTERFACE 
CONTROL 

1031 

1007 

1013 

1025 

1027 

EX 1018 Page 144

“kw—p A,

PRINT 0: muwuucs ,,

As ORIGENALLY ‘ . Q
"~— "xv—w—

  
1 0/20

‘00 EXTRACTION

RECOGNITION OPERATIONS

DATABASE \_ 1 DATABASE
MEMORY ‘00 MEMORY

100 10311
00 1004 \
  

 

 
 
 

INFOOUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

 
 
 

 
 
 

 

 
 

 
 

: 1031 J

g5 ‘00 PéTTERN 1007
RE OGNITN EXTRACTION ENGINE

: ENGINE (SLICER)
(PRE)

1013

1008~\III1111Ii‘II1137.
 
 
 

PARSER

 
  

 
 
 

 
  
 

  

PA " ' " PARSEFI INPUT BUFFER OUTPUT PCKET KEY
INPUT MEMORY BUFFER ‘ ND PAYLOA'

MEMORY

L*1012

1021

PQ'PAKFE; INPUT BUFFER ANALYZER DATA REA'Y  

 
 

INTERFACE
CONTROL  

 

INTERFACE
CONTROL  ANAL." "

READY 

‘ .

PACKET

 
102

1023 FIG-1O 1027

 
EX 1018 Page 144



n.•-·--... 
PRJ...'IT Of DRAWU.GS ,,...---, 
ASORlG~Y~ u 

11/20 
1100 --::.l 

1101 1103 1115 1118 
112 

LOOKUP/ 
UPDATE ANALYZE HOST ENGINE HOST BUS (LUE) INTERFAC INTER-

AND FACE 1 CONTRO (HIB) 
STATE (ACIC) 

PROCESS 
INSTRUCN 

1109 
DATABASE 

~= (SPID) 

~I: 1108 ., 
UNIFIED 

- FLOW 
;. : . PARSER KEY CACHE ~= 

~ INTER- UFFER 
= FACE (UFKB) 

STATE 
"=' 

PROCESSR 
(SP) 1119 1123 

·= 

'. 
•;:::: 

:;:;;. 

UNIFIED MEMORY 
MEMORY INTER-

FLOW CONTROL FACE 
INSERTION/ (UMC) 

'\: DELETION 
ENGINE 
(FIDE) 

' 
,·, 

" 
1110 

FIG. 11 

EX 1018 Page 145

 
rum—1 I

PRINT OF DRAWLNGS

ASORIGENALLY f“
“MW-‘m—E'L'XO (\j

11/20

1100 w

#1101 1103 1115 1118 1122—\
1107

 
  

  
 
  
  

 
 
 
 

 
  
 

LOOKUPI

 

 

UPDATE .

: INTER-
“ AND h FACE

(HIB)

PROCESS'
INSTRUCN
DATABASE

(SPID)

~ PARSER
INTER— 1":

E FACE

PROCESSR

(SP) 11191123 
 
 

UNIFIED MEMORY

MEMORY H INTER-". CONTROL FACE
(UMC)

 

  
  

FLOW
INSERTIONI
DELETION

ENGiNE
(FIDE)

 
  h h

1110

FIG. 11

EX 1018 Page 145



Dietz et 

1206 

. ! 1208 
''; 

} 

1210 

1200~ 

REQUEST NEXT 
BUCKET FROM 

CACHE 

12/20 

NO 

UFKB ENTRY FOR 
PACKET WITH 
STATUS 'NEW' 

ACCESS 
CONVERSATION 

RECORD BIN 

1201 

REQUEST RECORD BIN/ 
BUCKET FROM CACHE 

INSERT KEY AND HASH 
NO N BUCKET, MARK 'USED 

WITH TIMESTAMP 

YES 
OMPARE CURRENT Bl 
AND BUCKET RECORD 

KEY TO PACKET 

MARK RECORD BIN AND 
BUCKET 'IN PROCESS' 
AND 'NEW' IN CACHE 

1212 
SET INITIAL STATISTICS 
FOR RECORD IN CACHE 

1213 

FIG. 12 

1202 

1203 

1204 

1205 

1207 

1209 

1211 

EX 1018 Page 146

3.. ‘ Dietz et ' ‘ ““ “ ‘

  
  

 
 

 

 

‘ W

LLOflGflLfl—L)’ r1140 Q

1 2/20

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

1200 N
 

ACCESS
CONVERSATION

RECORD BIN

REQUEST RECORD BIN/
BUCKET FROM CACHE

<'lN/BUCKET EMPTY

1203
 

 

 
 

  1204

REQUEST NEXT
BUCKET FROM

CACHE

 

 
 1205

1206
 

 YES
"551.11.;"II."133:1Ii‘l‘iI1532-113:11111
 

  

  

1207

  
 
 

 
 

 
 

 

NO INSERT KEY AND HASH3 g N BUCKET, MARK ‘USED
1208 WITH TIMESTAMP

=E YES OMPARE CURRENT BI 1209

 
1210 AND BUCKET RECORD

SET UFKB FOR
PACKET AS KEY TO PACKET

'DROP‘
  

  
MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

1211

  

 

   
EX 1018 Page 146



-,=-, 

1300--:._ 

SET STATE 
PROCESSOR 

0 

13/20 

~1301 

UFKB ENTRY FOR 
PACKET WITH STATUS 

'NEW' R'F ND' 

• SET STATE PROCESSOR 
INSTRUCTION POINTER TO 

ALUE FOUND IN UFKB ENTRY 

FETCH INSTRUCTION FROM 
STATE PROCESSOR 

INSTRUCTION MEMORY 

PERFORM OPERATION BASED 
ON THE STATE INSTRUCTION 

INSTRUCTION NO 
POINTER TO 

VALUE FOUND IN 
CURRENT STATE 

SAVE STATE 
PROCESSOR 
INSTRUCTION NO 
POINTER IN 

CURRENT FLOW 
RECORD 

SET AND SAVE FLOW REMOVA 
STATE PROCESSOR 

INSTRUCTION IN CURRENT 
FLOW RECORD 

FIG. 13 

1302 

1303 

1304 

1305 

1307 

1309 

1311 

EX 1018 Page 147

'1». ‘ hint-
PRINT OF DRAWINGS

. _ 59315.,le r1110 O

13/20

@1301
1300 N UFKB ENTRY FOR

PACKET WITH STATUS
‘NEW‘ oR 'Fo ND- 1302

I
SET STATE PROCESSOR    

  
 

 

 

  
 

 

  
 
 

 
 

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

f FETCH INSTRUCTION FROM 1304. STATE PROCESSOR
: INSTRUCTION MEMORY

'

I 1305PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

 SET STATE
PROCESSOR  

  
 

 
 

INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

 
  

 
 
 
 
 

SAVE STATE 
  
  
 
  

PROCESSOR
INSTRUCTION DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO

CURRENT FLOW
 

 
RECORD
 

 
 SET AND SAVE FLOW REMOVA

STATE PROCESSOR
INSTRUCTION IN CURRENT

FLOW RECORD

@1313
FIG. 13

  1311   
EX 1018 Page 147



140 

cntt 1 f, 1 •.!l!'l• . "" .• , ,,,.. ... • .. •' , .. -,;,,,,....,;.;, ..... ,. ••• '"'a"•""" •I.ii~ 

I 

I PARSER 

PATTERN 
STRUCTURES 

AND 
EXTRACTION 
OPERATIONS 

1408 

-------.J 
- - - - - .... ---------

N 

ISUBSYSEM _____ _ ------ STATE 
MACHINE 

SELECTOR 

FIG. 14 

v: 
1400 I 

I 

I 

1426 

STATE 
ANALYSIS 
PERATION 

L-----------

YES 

------

UPDATE 
"FLOW" 
KNOWN 
RECORD 

CLASSIFICATN 
FINALIZATION 

1434 

ANALYZER 
SUBSYSTEM 

I ...i. 

I~ 
I\) 

IO 

- - - - - - - -

0 

EX 1018 Page 148

 

 TECH If?! n5?" «9:: "ii? 1532:}; $133. 'Efiiniizu M(iii! xiii: (iii :

  
 
 

 
   
  

 

LOOKUP  

 
 

 
A'ITYNiDNOS‘V 

 
 
 

  
  

  

  
  
  
 

 
 

 
 
 

EXTRACT
RECOGNIZE IDENTIFYING KNOWN NEW “FLOW"

PATTERN iNFO & PROCL RECORDS RECORD? DATABASE 1
INFORMATION {STATE (DB 1424) OF FLOWS $95!]MV‘HG30uma

Om
  l‘FLC>W“

KNOWN

 

 
 

    

 
 
  

EXTRACTION
OPERATIONS

PARSER

EUESISEM. _______ 1 STATE
MACHINE

SELECTOR

1 426

FINALIZATION

  

 
STATE

ANALYSIS _
ANALYZER

SUBSYSTEM

EX 1018 Page 148



- "';" ii .;"u ••tr .,. •. •1 " ••'l' ,,.,., r•at.i''ik. 

1502 

PACKET 
I "ACQUISITIOI\. I "i 

DEVICE 

121 

102 

PACKETS .. 

![j1 ![h r::: ·::::ii 1i] ... 11:'ll .,!'.: ·i:: !l::'11 [ii ·::::ii 11':11 

PARSER 
301 

ANALYZE 
303 

MONITOR 
~ 

FIG. 15 

324 

1504 

HOST 
ROCESSO 

1510 

NETWORK 
INTERFACE 

CARD 

j 

DISK 
& 
DB 

1506 

HOST 
MEMORY 

1508 

...... 

~ 
0 

le; .,, 

l
'o ~ 
~ '"1 

,C) 0 

~i i 
-< ~ 

Sr 
C"l 
V, 

C) 

EX 1018 Page 149

WWMMHMWM&WMMfiMM

   
 
 

  

PARSER
3,9;

  
PACKET

‘CQUISITIO3
DEWCE
 

MONWOR
3.939

 

 
  

 
 

 

a?

:0?
52
I?"
E?

CWU,

1504 (—1506

.4-
01\
no
:9

1508

§===L==5
INTERFACE 95K ’\CARD & (:1

DB

EX 1018 Page 149



,~ u 

16/20 

1602 O - 3 Bytes 
Je--1600 

I Ost MAC 

offset O - 11 Ost MAC Src MAC 

I SrcMAC 

\ / 

X 1606 

1608 / 
Ost MAC (6) 

Ost Hash (2 
1610 

1612 Src MAC (6) 

1614 
Src Hash (2 

~et=12 

FIG. 16 

EX 1018 Page 150

PRLVT OF DRAWLNGS ,’\

AS‘DEQW

16/20

  
; 

EX 1018 Page 150



" 
. " 
1 ,.: 

. !' 
< 

,. 
li.·· 

offset I 
12 to 13 

L3 to 
[L3 + 
(IHL/4 
- 1] 

17/20 
1702 

\ 
[\Type 

1704 

VIIRll lllfit/ 
\.~~~~~ ~~~~06 

1708 Type (2) 

Hash 1) 
1710 "'--1700 

~et=14 

FIG. 17A 

0 

IDP = Ox0600 * 
IP= OxOBOO* 

CHAOSNET = Ox0804 
ARP= Ox0806 
VIP= OxOBAD* 

VLOOP = OxOBAE 
VECHO = OxOBAF 

NETBl0S-3COM = Ox3COO -
Ox3COD# 

DEC-MOP = Ox6001 
DEC-RC = Ox6002 

DEC-DRP = Ox6003* 
DEC-LAT = Ox6004 

DEC-DIAG = Ox6005 
DEC-LAVC = Ox6007 

RARP = Ox8035 
ATALK = Ox809B* 

VLOOP = Ox80C4 
VECHO = Ox80C5 V SNA-TH = Ox80D5* 

1712
-- ATALKARP = Ox80F3 

IPX = Ox8137* 
SNMP = Ox814C# 

DstAddress I 
Ost Hash (2) I 

SrcAddress I 
Src Hash (2)1 

1Pv6 = Ox86DD * 
LOOPBACK = Ox9000 

Apple = Ox080007 
* L3 Decoding 
# LS Decoding 

"'-- 1750 

1752 
\ 

ICMP = 1 
IGMP =2 
GGP =3 
TCP= 6* 
EGP =8 

IGRP =9 
PUP= 12 

CHAOS= 16 
UDP= 17* 
IDP = 22# 

ISO-TP4 = 29 
DDP = 37# 

ISO-IP= 80 
VIP =83# 

EIGRP =88 
OSPF =89 

* L4 Decoding 
# L3 Re-Decoding !Proto901(1) FIG. 178 

IL4 Offf;et = L3 + (IHU4) 

EX 1018 Page 151

 

 

 

 

nines

PRINT 0F DRAW LhGS

ASEQQDMLLY mm ;3"V’

1 7/20
1702

1 704

12 to 13 _WIWIIEE

X 1706

1708 Type (2) .
H h

1?10 as 1) 1“~ 1700

\-.et=14

FlG.17A

 
 

 
5w , ' fi’iflfi'lfl1'fflMI‘ififfifiiflllfl

r: n (H

  
 

 

Late mm

1.53;” ”mm—mmm 11
_ 1} Src Address

Dst Address 

  Wllllfii’fifiiflififl‘v’MIllllllm

/
1712

O

1 IDP = OXOSOCI *
IP = OXOBOO*

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD*

VLOOP = OXOBAE
VECHO == OXDBAF

NETBlOS-3COM ='- 0X3COO -—
0x3COD#

DEC-MOP = 0x6001
DEC-RC = Dx6002

DEC-DRP == OXSOOS'
DEC-LAT = Ox6004

DEC-01AG = Ox6005
DEC-LAVC = 0x600?

RARP = Ox8035
ATALK = Ox8098*

VLOOP = Ox80C4
VECHO = DXSOCS

‘/ SNA-TH = OXSDDS"ATALKARP = 0X80F3
{PX = 0x8137*

SNMP = 0x814C#
IPv6 = OXBBDEY

LOOPBACK = OXQOOO

Apple = 0x080007
" L3 Decoding

# L5 Decoding 1

1752

  
ICMP = 1
lGMP = 2
GGP = 3
TOP = 6 *
EGP = 8

IGRP = 9
PUP = 12

CHAOS =16

i ”185 = 35;
\—~-——\ ‘5‘“ 1750 1303134 = 29

05! Address

Dst Hash (2)
Sn: Address

Src Hash (2)

 
  
  
  

-et = L3 + (lHL/4)

DDP = 37#
ISO-1P = 80

VIP = 831%
EIGRP = 88
OSPF = 89

Proto no! (1 ) :filéigigcgggdingFIG. 17B

 

EX 1018 Page 151



; 

l 

,1 { 

PROTOCOL 
TYPE (ID~ 

1642 

18/20 

J,;:--1800 

FIG. 18A 

0 

1870 

LUTNUM)t ~ ~01 J,;:--1850 
0 ...J 
(.) !:!J 
WLL 

!;: ~ 
ID 

FIG. 18B 

EX 1018 Page 152

PRINT 0F DRAWU‘CS
 

BEE-LY@5113;

 

PROTOCOL

IhwzwgDAME..,:;i,§§3§%..a.

 
S.E,Ei5.7a

FIG. 18A

a.E,:fE.a”i.S5
0.5.“—".0MQOOmtm

mm

EaJOOOHO&

EX 1018 Page 152



0 

19/20 

1901 

COMMON.POL 1903 

FLOWS.POL 1905 

VIRTUAL.POL 1907 

191 ETHERNET.POL 

1913 
ETHERTYPE 

IP.POL 1915 

TCP.POL 1917 

RPG.POL 
1919 

192 NFS.POL 

FIG. 19 

EX 1018 Page 153

PRINT OF DRAWLNGS

1 9/20

. 1901

COMMON PDL 1903

-W

 
i117115‘,

1??»mi,

 

191

192 NFSPDL 
EX 1018 Page 153



~ 

\.J 

20/20 

2001 

READ IN POL SOURCE 2003 
MODULES 

PARSE MODULES FOR 2005 
SYNTAX 

FIRST PASS, CREATE 
ALL PARSE ELEMENTS 2007 

:bJ 

i: 2009 

;= 

·~ 

THIRD PASS, CREATE 
2011 

PAYLOAD ELEMENTS 

~~ 
1b 
.-= FORTH PASS, BUILD :.~ 2013 
~:: TATES FOR EACH LIN 

READ IN LAYERING 
SOURCE MODULES 

2015 

WALK LAYERING LINKS 
FOR EACH PDL 

2017 

OUTPUT CPL 
2019 INTERMEDIATE FILE 

202tF FIG. 20 

EX 1018 Page 154

PRINT OF DRAWU‘GS fl

Aspgqggmmzc U

20/20

.f—2001

READ IN PDL SOURCE 2003
MODULES

PARSE MODULES FOR 2935
SYNTAX

FIRST PASS, CREATE
ALL PARSE ELEMENTS 2007

2009 ND PASS, BUILD FLO
SIGNATURE ELEMENT

THIRD PASS, CREATE 20“
PAYLOAD ELEMENTS

FORTH PASS, BUILD 2013
TATES FOR EACH LIN .

READ IN LAYERING 2015
SOURCE MODULES

WALK LAYERING LINKS 2017
FOR EACH PDL

OUTPUT CPL
2019 INTERMEDIATE FILE

202+”. FIG. 20  
EX 1018 Page 154



.-· . 

-~ :=
= ;;: 

PRL'ff OF DRA ~ Ii.GS 
~-QS!G.~.AJ,£ ~ m.r 

1SERVER3\ 
112 

1/20 

lcLJENT41\ 
107 

DATA COMMUNICATIONS 
NETWORK 

108 
ANALYZER 

116 

SERVER 

121 
~10 

102 

125 

123--

jcLJENT2 ~OS 

FIG. 1 

118 
,--......i;_--,_,J 

CLIENT 1 \ 
104 

EX 1018 Page 155

“' Hum 05 nmwmcs
A§.QF.U_.G.%LL¥ my

1/20

100 ' _
CLIENT4 ‘98

W107 ANALYZER
116

m

I, SERVER

106

  
  

   
, “ DATA COMMUNICATIONS

'5 : NETWORK

125

L 123

SERVER a _ 105 “J

—\ CLIENT2 CLIENT1 \
112 104

FIG. 1 ’ 
EX 1018 Page 155



217 218 219 220 221 222,223 
' . 

1 , j1 s 1a 

242 243 244 245 

st0 20 

21 
250 251,252 253 ,254 ,255 

·-·-·-·-• a2 

: CLIENT3 
,260 261 ,262 ,263 264 ,265 

n1 S1 C1 p2 datum request 

APPLICATION $ERVER 2 

C> 

\ 
270 271 272 273 274 

' ' I ,· 275 ( 

C1 S1 p2 datum reply 

c: l 209 

FIG. 2 

EX 1018 Page 156

214 215
 

tiIIis Iiiil‘n 13"» $37

(

l‘sszn m

216 217 218 219 220 221 222

165.1231 n'izu éifii: "2‘5! 153:]: 12:12

223 

 
 

-..... mmwlmw.éw_fl~ .- “g...

1".

Ammbfib'w 59-3qusomad

08/3 
APPLICATION EMF}: 2

EX 1018 Page 156



IP-----------------------------------------------.,.---k·-· .-.. ----~·-••- B .(4 

310 

1308 
I 
I 

PATTERN, PARS 
AND 

EXTRACTION 
DATABASE 

COMPILER 
AND 

OPTIMIZER 

FIG. 3 

,- - - - .J I __ -.z. __ ..., 

I PROTOCOL 
& STATE 

I IDENTIFICATION 

- - J 

STATE 
PROCESSOR 
INSTRUCTION 

DATABASE 

326 

STATE 
PROCESSN 
OPERATION 

324 

DATABASE 
OF FLOWS 

l- ---., 
....---'---, 322 I 

UPDATE 
"FLOW" I 
KNOWN I 
RECORD I C..:> 

I 1\5 
10 

CLASSIFICATN I 
FINALIZATION I 

ANALYZER 
303 

I 

34 I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

'----YE I ----------------------------

EX 1018 Page 157

WWW-WWWWMWwvwmmuu, WNW .“raid

sf '21 5‘1 1:1 132:. 1:11:11 ' m. “1" IP11 m w 12:21 1:11:

 
 
 
 
  

 
 

 
 

   

 
 

  

 

 
 

 

 

 

      
l m
1 304 305 {3) E?

302 ANALYZE AND o ,
i RECOGNIZE ID‘E’EJTTTQfi—{JG LOOKUP NEW 'FLOW {g g

PATTERN INFORMATION $sz RECORD? DATABASE ‘E 5
(EH) RECORDS OF FLOWS E a;

{DB 324 .< é
IA CACHE a

- -— — .9, '— — Uv

g4)

UPDATE
“FLOW”
KNOWN
RECORD

 
 

  

 
  
 
 

 
 

 

PROTOCOL
AND & STATE

EXTRACTJON

I
I

i

DATABASE 1
I
J

03/8
CLASSIFTCATN

T

310 FINAUZA ION
 
  

 
 

PROCESSOR
INSTRUCTION

COMP'LER DATABASEAND
OPTIMIZER 

PROTOCOL DATAGRAM
DESCIPTIO LAYER
LANGUAGE SELECTiON '  

 

PROCESSN c
OPERATION ‘

ANALYZER

30._3
  

_..__.___..____—~__—.——._.......—_....._......._

EX 1018 Page 157



, 
1 
! 

406?! 

404 

GENERATE 
PACKET 

PARSE AND 
EXTRACT 

OPERATIONS 

ATTERN, PARS 
AND 

EXTRACTION 
DATABASE 

4/20 

PACKET 
COMPILE STATE 

ESCRIPTION INSTRUCTION 
AND 

OPERATIONS 

403 

407 

STATE 
PROCESSOR 
INSTRUCTION 

408 409 DATABASE 

LOAD LOAD STATE 
PARSING NSTRUCTIO 

SUBSYSTEM DATABASE 
MEMORY MEMORY 

"400 

410 

FIG. 4 

EX 1018 Page 158

h:.-.b— A.

 

'Ei‘il1H!

)ifliil>i"‘ixn''i!Sim.

PRLVT OF DRAWII‘GS

quyguwv

404

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS 

 

  
 

405 Z‘A‘I‘I’ERN, PARSAND
EXTRACTION

DATABASE

SUBSYSTEM
MEMORY

4/20

O 401

 

  
   

HIGH LEVEL
PACKET

DECODING
‘I ESCRIPTION ‘

 
 

COMPILE
I ESCRIPTION ‘ 

403

408 409

LOAD
PARSING LOAD STATENSTRUCTIO

DATABASE
MEMORY 

 
405

PACKET
STATE

NSTRUCTION ‘
AND

OPERATIONS

407

STATE
PROCESSOR
INSTRUCTION

DATABASE

400

EX 1018 Page 158



l 
•, 

503 

504 

510 

PATTERN i..a-~~ 
NODE 

509 

5/20 

501 

INPUT PACKET 502 

LOAD PACKET 
COMPONENT i.-~~~ 

505 

508 

EXTRACT 
ELEMENTS1--~~~----' 

FIG. 5 

513 

511 

EX 1018 Page 159

“WW.._.....,‘..www.mmww”m"  

[“017 l

PRINT OF DRAWINGS

fiQfiGBL/‘LLLY {113% 3

503

510

PATTERN
NODE

502 
  
 

LOAD PACKET
COMPONENT

ORE IN PACK I"

FETCH NODE AND
PROCESS FROM

 
 
  

  
 

 
PACKET

KEY

 
  
 
 

513

  
 

 
 
 

N EXT
PACKET

COMPONE

MORE
PATTERN

511

 
 
  

 
 

  --- ' ‘u “0‘

PROCESS TO
COMPONENT

 

500

 

  

EX 1018 Page 159



., 
i 

' I 
! 
' ' 

:9 == ;o 
:::TI 
:,,:, 

~d 
~ ~= 

§• 
;._..J 

·~ 

i,#C 

:.~ 

~:=: 
ii~ 

=· ::~ 

603 

604 

NO 

606 

607 

6/20 

PACKET 
COMPONENT AND 
PATTERN NODE 

LOAD PACKET 
COMPONENT 

FETCH EXTRACTION 
ND PROCESS FRO 

PATTERNS 

APPLY EXTRACTIO 
PROCESS TO 
COMPONENT 

FIG. 6 

0 

601 

602 

610 

NO 

605 
611 

NEXT 
N PACKET 

COMPONEN 
609 

608 

EX 1018 Page 160

«\‘WMWWMWW.AWWW“W.,
mm",

 

PR1)! T 0? DRAWHNCS

A5 ORIGINALLY nuC) Q
My

PACKET 602
COMPONENT AND
PATTERN NUDE

603

CO P 61 O W

LOAD KEY
BUFFER 

YES

FETCH EXTRACTION 6‘ ND PROCESS FRO
PATTERNS ' L605

NO

606  

  

ORE EXTRACTIO ‘
ELEMENTS?  

C 611

YES

607 APPLY EXTRACTIO 3

NEXT

N o PACKET 609
COMPONEN

PROCESS TO

COMPONENT )\600
 

  
 

 
 MORE TO 608

EXTRACT?

YE

FIG. 6

EX 1018 Page 160



1 n;""+ ... ,.. 

0 

7/20 

702 

703 
LOAD PATIERN 
NODE ELEMENT 708 

-
'"' = 

·~ != 

704 
NO OUTPUTT 

l-= 
ANALYZER 

<0 
YES 

-
HASH KEY BUFFER 705 ELEMENT FROM 

::;;;;;;; PATIERN NODE 
- 709 

PACK KEY & HAS 
706 

\700 

NEXT PACKET 
COMPONENT 

707 

FIG. 7 

EX 1018 Page 161

WW.Mum.WW-....,

hm». r

 
“553‘$1..

CI"ISM{fir

SKI?!Mvii}!iii:

PRLN T OF DRAWINGS

Agpgqmmv m0

703

704

706

707

7/20

. 701

EY BUFFER AND K— 702
PATTERN NODE

LOAD PATTERN
NODE ELEMENT

 
  
  
 

MORE PAT—FER
NODES?

YES

HAS' KEY BUFFER
ELEMENT FROM 705
PATrERN NODE

PACK KEY 8: HAS

NEXT PACKET
COMPONENT

FIG. 7

708

OUTPUT T0
ANALYZER

709

700

EX 1018 Page 161



1 
l 

800'\ 

::-=: 
·= 

-

~b 805 
~=:: 

:fj 

~~ 

i!J 

·-
NEXT BUCKET 

809 

811 

812 

8/20 

802 

COMPUTE CONVERSATION 803 
RECORD BIN FROM HASH 

REQUEST RECORD BIN/ 804 BUCKET FROM CACHE 
806 

SETUFKB FOR 
PACKET AS 'NEW' 

COMPARE CURRENT BIN 807 
AND BUCKET RECORD KEY 

TO PACKET 

808 

YES 

MARK RECORD BIN AND 810 
BUCKET 'IN PROCESS' IN 
CACHE AND TIMESTAMP 

SET UFKB FOR PACKET 
AS'FOUND' 

UPDATE STATISTICS FOR i--------' 
RECORD IN CACHE 

813~ FIG. 8 

EX 1018 Page 162

a»...—WW«.MM.~-.C4..
”um"...

“I‘L—

 
 
,:.3,

Hum 0F memcs k A
AfipflquI-LY \ 3

“"" ‘ J V

8/20

. 801

UFKB ENTRY FOR 802
PACKET

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804 806

“0 SET UFKB FOR
PACKET AS “NEW“

COMPARE CURRENT EN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT UCKET NI@ 808
YES

B

L 809

 

  
 

ORE BUCKET
805 IN THE BIN?

YES

MARK RECORD BIN AND 810BUCKET 'IN PROCESS“ IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8“ AS ‘FOUND‘

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813‘». FIG. 8

EX 1018 Page 162



I 
t 

I 
i 

I 
J 

903 

904 

EXTRACT PROGRAM 

GET 'PROGRAM', 
'VERSION', 'PORT' AND 
'PROTOCOL (TCP OR 

UDP) 

CREATE SERVER STAT 

SAVE 'PROGRAM', 
'VERSION', 'PORT' AND 
'PROTOCOL (TCP OR 

UDP)' WITH NETWORK 
ADDRESS IN SEAVER 

STATE DATABASE. KEY 
ON SERVER ADDRESS 

AND TCP OR UDP PORT. 

9/20 

907 

EXTRACT PORT 

GET 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)' 

908 

SAVE REQUEST 

SAVE 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)'WITH 

DESTINATION 
NETWORK ADDRESS. 

BOTH MAKE A KEY. 

905 906 

LOOKUP REQUE 

FIND 'PROGRAM' 
AND 'VERSION' 

WITH LOOKUP OF 
SOURCE NETWORK 

ADDRESS. 

Fl·G. 9 

EXTRACT 
PROGRAM 

GET 'PORT' AND 
'PROTOCOL (TCP 

OR UDP)'. 

909 

EX 1018 Page 163

 

 
,2

,,.,_.._...,_.._....,.,mu.w
 

 

 

flint-

PRLVT OF DRAWLNGS ,
ASQBAQENALLY "\ *

Ac} V

9/20

901 902 910

 
 

 

 
 

RPC
BIND LOOKU '

REQUEST
 
'ORTMAPP "

 ’ORTMAPF’ "

 
 

 

/— 909

EXTRACT PORT

GET 'PROGRAM‘,

EXTRACT PROGRAM

GET 'PROGRAM‘,
  903

 

 
 

 
  
  

 
 

 
 

 

 
 
 
 

“VERSION”, 'PORT' AND ‘VERSION‘ AND
‘PROTOCOL (TOP OR ‘PROTOCOL (TOP OR

UDP) UDP)’
 

SAVE REQUEST

SAVE 'PROGRAM'.
VERSION“ AND

'PROTOCOL (TCF’ OR
UDP)‘ WtTH

DESTINATION
NETWORK ADDRESS.

BOTH MAKE A KEY.

   CREATE SERVER STAT

SAVE ‘PROGRAM‘,
VERSION“, ‘PORT' AND
'PROTOCOL (TCP DR

UDP)‘ wrm NETWORK
ADDRESS IN SERVER

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TOP OR UDP PORT.

 
 
 

 
 
 
 
 

 
 “2111 904 "“\
 
 
 
 
 
 

 
  

 
 

 RPC
Bl N D

LOOKUP
REPLY

 

 
 EXTRACT

PROG RAM    LOOKUP REQUE
 
 
 

 
 

 
 
  
     

 

/ FIND 'PHOGFGAM'900 AND 'VERSION' GET 'PORT' AND
WlTH LOOKUP OF 'PROTOCOL (TCP

SOURCE NETWORK OR UDP)‘.ADDRESS.

FIG. 9

EX 1018 Page 163



1000~ 

PATTERN 
RECOGNITION 

DATABASE 
MEMORY 

100 
100 

10/20 

100 

1001 

D 

EXTRACTION 
OPERATIONS 

DATABASE 
MEMORY 

1004 
1031 

INFO OUT. 

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL I 

100 

1012 

1021 

1031 

1007 PATTERN 
RECOGNITN -

ENGINE 
(PRE) 

EXTRACTION ENGINE 
(SLICER) 

PARSER INPUT BUFFER 
MEMORY 

INPUT BUFFER 1011 
INTERFACE 
CONTROL 

101 

FIG. 10 

1013 

PARSER 
OUTPUT PACKETKEY 
BUFFER AND PAYLOA 
MEMORY 

ANALYZER 
INTERFACE 
CONTROL 

1025 

EX 1018 Page 164

I'Mai-u rd

PRINT OF DRAWLNGS

EXTRACTION

OPERATIONS

PATTERN

RECOGNITION
DATABASE DATABASE

MEMORY

1031

1004 \
INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRLI

  
 

   
 
 

 
 
 

 
 
 
  

1081

”“6“ £225,51er
R EXTRACTION ENGINE

: ENGINE (SLICER)  
(PRE)

100: 
is;

 
 

 

PARSER

 
 
 

 
  

  
 
 

  
 

 
  

PA ' 7 PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLQAI

MEMORY

1012

1021

PSA'PAKIETF INPUT BUFFER ANALYZER DATA REA DY
INTERFACE INTERFACE
CONTROL CONTROL

 

‘ .

PACKET

1 022~

1023 FIG. 10 1027—J

 
 

EX 1018 Page 164



,- n:-.+.- -
PRL-.T OF DKA~U.GS 

~JIB!G.~ 

I 
i 

1100--::... 

f 1101 1103 

t 
J 

I 

1109 
-~ 
~f 

UNIFIED 
FLOW 

~d PARSER KEY 
·~i INTER- UFFER 

FACE (UFKB) 

.. 
·= 
;f; 

,=; 
=;=' 

-

-~ u 

11/20 

1115 1118 
1122 

LOOKUP/ 
UPDATE 
ENGINE 

(LUE) 

STATE 
PROCESS 
INSTRUCN 
DATABASE 

{SPID) 

STATE 
PROCESSR 

(SP) 

FLOW 
INSERTION/ 
DELETION 

ENGINE 
(FIDE) 

1110 

1108 

CACHE 

FIG. 11 

ANALYZE HOST 
HOST BUS 

INTERFAC INTER-
AND FACE 

CONTROL (HIS) 
{ACIC) 

1119 1123-

UNIFIED 
MEMORY 
CONTROL 

(UMC) 

MEMORY 
INTER
FACE 

EX 1018 Page 165

 

hcn¢~ ,

 
13:11

'55111,11

#3131iii!11”.};.13”

“URI OF DRAWINGS A

Mawczgggwt) U

1100 N

(—1101\

11/20

1103 1115 1118 11223

  
LOOKUP/

 
  

  
 
 

  
  

  
  

E53315 ANALYZE' HOST
WE) . .E1JE’R-

FACE

STATE (““3)
mousse-

mag;
1109/ (SPID)

PARSER
INTER- 1‘:
FACE

' PROCESSR
(SP) ‘ 1119 1123—

 
 

 

 
 

 

UlgiggT-fig MEMORY
h M fl INTER-

 FLow CigmgsL FACEINSERTIONI
1" DELETION F-  ENGINE

(FIDE)
 

  

1110

FlG. 11

EX 1018 Page 165



Diet7 et · · --- -- " -

PRL~T OF DKAWU.GS 

~-Qfil.G.~ 

12/20 

1201 

UFKB ENTRY FOR 
1202 PACKET WITH 

STATUS 'NEW' 

1200~ 
ACCESS 

CONVERSATION 1203 
RECORD BIN 

REQUEST RECORD BIN/ 1204 
,--: BUCKET FROM CACHE ·= 

~~ 

=::-~ 
·= REQUEST NEXT ·= NO = BUCKET FROM 1205 
·="' 1206 CACHE 

1207 ,=, INSERT KEY AND HASH f= NO N BUCKET, MARK 'USED 
~~_; 

1208 WITH TIMESTAMP 
·~ 
·= 
:-= ·= 1209 = 
O:;:;:,-

' 
1210 

i 

l 
I 
' i MARK RECORD BIN AND 1211 I BUCKET 'IN PROCESS' 1 

AND 'NEW' IN CACHE 

1212 SET INITIAL STATISTICS 
FOR RECORD IN CACHE 

1213 

FIG. 12 

EX 1018 Page 166

 _....- _... a
Diet? at '

FRUIT OF DRAWMGfi

Asflogqgfimv _m_J< > O 
12/20

1201

  
a
ixI

  
UFKB ENTRY FOR

PACKET WITH
STATUS ‘NEW'  

 
 

 

 
 

 
 

: ACCESS

F CONVERSATION 1203

5 RECORD BIN

I

f 1204
I

I REQUEST NEXT   
BUCKET FROM ‘1 iNlBUCKET EMPTY [4205 
 

 YES
 

 
INSERT KEY AND HASH ‘207

N0 N BUCKET, MARK ‘USED
WITH TIMESTAMP  
 
 

  
 

  
 

0MPARE CURRENT B] 1209
AND BUCKET RECORD1 210

KEY TO PACKET 

 
8E ’ UFKB FOR

PACKET AS
’DROP'
 

  
MARK RECORD BIN AND
BUCKET ‘lN PROCESS'
AND 'NEW’ EN CACHE

  
  G

T FIG. 12

 
EX 1018 Page 166



l 

l 

J 

I 

n;""+-

1300 ~ 

SE A E 
PROCESSOR 

13/20 

~1301 

SET STATE PROCESSOR 
INSTRUCTION POINTER TO 1303 

ALUE FOUND IN UFKB ENTRY 

FETCH INSTRUCTION FROM 
STATE PROCESSOR 

INSTRUCTION MEMORY 

PERFORM OPERATION BASED 
ON THE STATE INSTRUCTION 

1304 

1305 

INSTRUCTION NO 
POINTEPTO 

VALUE FOUND IN 
CURRENT STATE 

SAVE STATE 
PROCESSOR 
INSTRUCTION NO 
POINTER IN 

CURRENT FLOW 
RECORD 

SET AND SAVE FLOW REMOVA 
STATE PROCESSOR 

INSTRUCTION IN CURRENT 
FLOW RECORD 

.FIG. 13 

1311 

EX 1018 Page 167

nan-

mun OF DRAWINGS

AS ORIGINALLY . O
...W .9.

13/20

Q\V,-Ism
1300 w UFKB ENTRY FOR

PACKET WITH STATUS
'77 p;c NI 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304STATE PROCESSOR
INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

 

   
iii)!.If,'I:‘'If

 

 
     

 
 

 
   

   

 

 

  

A
PROCESSOR
INSTRUCTION NO IONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
'2 CURRENT STATE

.: 1308 YES1310
SAVE STATE
PROCESSOR
INSTRUCTION N0 DONE PROCESSING 1309 

    POINTER IN TATES FOR THIS FLO
CURRENT FLOW

RECORD   
  

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

@1313
.FIG. 13

  1311
 

  

EX 1018 Page 167



-----------·----- ·---·· 
ow••-A ¥~-• •~~•""·--•=• .... _ _, -·~-------·-·---·- ·-----·-··---·---~----.. "•• 

f:111iil il] :[ ,;:·11 ii:.ii .. u::1, l:. n: l!:1, fi ,;::r, f:1i fi1 - - - - - - - - - - - - - - , 
- - - - - l ,- - - -r------------- I 

1404 
ANALYZE AND 
RECOGNIZE 
PATTERN 

INFORMATION 

1406 

EXTRACT 
IDENTIFYING 

INFO& PROGL 
/STATE 

11 
I I 141 

,---8--1.U-IL-D---, 11 Rii~~ 
"FLdW" KEY RECORD 

1412 

I I (DB 1424) 
i..._ __ ___, I I 

-======.J 
I .----------

I 

I PARSER 

PATTERN 
STRUCTURES 

AND 
EXTRACTION 
OPERATIONS 

1408 
ISUBSYSEM _____ _ ------

v: 
1400 I 

I 

FIG. 14 
1426 

STATE 
MACHINE 

SELECTOR 

1428 
( 

\._..+----_-,_ 

,l.c::::::::::===,1 • 
STATE 

ANALYSIS 
PERATION 

YES 

N 

DATABASE I 
OF FLOWS 

1422 

UPDATE 
"FLOW" 
KNOWN 
RECORD 

CLASSIFICATN 
FINALIZATION 

1434 
N,.,._-

ANALYZER 
SUBSYSTEM 

I -'-
I ::f::_ 

I\) 
10 

L.. - - - - - - - - ------------ ------

C
. 
} 

EX 1018 Page 168

 M..- Wm... “WM Mm..- no... -

 
140 
  

 
 

LOOKUP 
 
 
 

 

  

 
 

 

 
  

 

EXTRACT

RgfgggfiE IDENTIFYING RggggINFO & PROCL
INFORMATION ISTATE (DB 1424) DATABASE

 

  

  

 
 

 
   

 

OF FLOWS

UPDATE
"FLOW"
KNOWN
RECORD

 
 

 

 
 

CLASSIFICATION

EXTRACTION
OPERATIONS

PARSER
SUBSYSEM

 

  
 
   
 
 

STATE
MACHINE

SELECTOR

1426

CLASSIFICATN
FINALIZATION

 
STATE

ANALYSIS

ANALYZER
SUBSYSTEM

Amnib‘fifi‘w §9NWMVUGJO.1de
.1(A

OZ/I7I

EX 1018 Page 168



------------ ----------·--------
,..,.._ ,,,.._ ~-- ... ~. ' ~·-'~~ 

Ii.: 11 fh fl, (. '•] (ii ' fu i:: "ii" (I' !/] '':::11 11::11 J/j 

1502 

PACKET 
I 11-J).CQUISITIONI I "' 

DEVICE 

121 

102 

PACKETS 

PARSER 
301 

ANALYZE 
303 

MONITOR 
300 

FIG. 15 

324 

1504 

HOST 
ROCESSO 

1510 

NETWORK 
INTERFACE 

CARD 
DISK 

& 
DB 

1506 

HOST 
MEMORY 

1508 

,...I. 

~ 
0 

~'""'~ 

,c; ~ 

l
'o ~ 
~ -t 
,C"'lo 

r~ ;;; L~ s;: 
C"l 
!.F, 

() 

EX 1018 Page 169

 

121

1502

PACKET
‘CQMSWK)

DEWCE 

HE

 

 

MMWfiflMMMKTWMWMM

324

PARSER ANAEYZE'

§Q1 39; DAJABASE

MONWOR
39.0

  

  
 

NETWORK W
INTERFACE D'SK

CARD &
DB

1..A“..-AMONG5v gammmasomxa
/

1506

HOST
MEMORY

OZ/SL

EX 1018 Page 169



1602 

I 
offset o -11 

I 

16/20 

O - 3 Bytes 

Ost MAC 

Ost MAC Src MAC 

SrcMAC 

\----~ ---~/ 

0 

~1600 

1604 

~-x 1608 / ----~ 
Ost MAC (6) 

1606 

1612 
Ost Hash (2 

1614 
Src Hash (2 

~et=12 

Src MAC (6) 

FIG. 16 

1610 

EX 1018 Page 170

m...-nummwMyfl.  
Elfii!$1.WI!
‘(fflIL,4!

M‘ii.IiiEM}!3%.

mm or DRAWLNGS
as ORIGINALLY

”N\

16/20

0 - 3 Bytes
 

 
 

Dst MAC

on MAC

Src MAC

 
 

 

 

 

EX 1018 Page 170



l 

offset I 
12 to 13 

L3 to 
[L3 + 
{IHL/ 4 
- 1] 

17/20 
1702 

\ 
j 'Type 

1704 

l!Ufllllll-fV 
\~~~~~ ~~~~06 

1708 Type (2) 

Hash 1) 
1710 -,::.__ 1700 

~et=14 

IDP = Ox0600* 
IP= Ox0800* 

CHAOSNET = Ox0804 
ARP= Ox0806 
VIP= OxOBAD* 

VLOOP = Ox0BAE 
VECHO = OxOBAF 

NETBl0S-3COM = Ox3COO -
Ox3COD# 

DEC-MOP = Ox6001 
DEC-RC= Ox6002 

DEC-DRP = Ox6003 * 
DEC-LAT= Ox6004 

DEC-DIAG = Ox6005 
DEC-LAVC = Ox6007 

RARP = Ox8035 
ATALK = Ox809B* 

VLOOP = Ox80C4 
VECHO = Ox80C5 FIG. 17A v SNA-TH = Ox80D5* 

1712
--- ATALKARP = Ox80F3 

IPX = Ox8137* 
SNMP = Ox814C# 

/ __________ X_, 
Ost Address I 

Ost Hash (2) I 
SrcAddress I 

1Pv6 = Ox86DD * 
LOOPBACK = Ox9000 

Apple = Ox080007 
* L3 Decoding 
# L5 Decoding 

-,::.__ 1750 

"- ICMP = 1 
IGMP =2 
GGP =3 
TCP =6* 
EGP =8 

IGRP =9 
PUP= 12 

CHAOS= 16 
UDP= 17* 
IDP = 22# 

1SO-TP4 =29 
DDP = 37# 

ISO-IP= 80 
VIP= 83# 

EIGRP = 88 
OSPF = 89 

Src Hash (2)j 

jProtoqol (1) FIG. 178 
* L4 Decoding 
# L3 Re-Decoding 

jL4 Offfet = L3 + (IHLf4) 

EX 1018 Page 171

wwwwwwmWWWn"yum-r»..

flied-y

 

'15?"13:111‘3!
3113!!.mL

 

PRLNTiM‘DKAWthS
A5()RJG

offset
12 to 13

 
 

L3 to

{L3 +
UHLI4
_ 1]

 

 

17/20
1 702

bf1706

/

1704

17'08 Type (2) /

-Hh 1171 0 as ) “- 1 700

\-et =14

FIG. 17A
// SNA—TH == OXBODS"ATALKARP = OXBOFS

1712

mmmmammm
WWWmm
Vlfiflfl—Mifi'lé'ififiiflm
_

Src Address

Dst Address

Dst Address

Dst Hash (2)

Src Hash (2)

I'm

.9! = L3 + (IHLf4)

  

  
 
 

 

_
VIIIIIEE‘KWfiWIHfiWI/[IIIIIIIM

film

FIG. 17B

 

 
 

 
 

  
 

. fi \

IDP = 0x0600*
IP = OXOBOO’

CHAOSNET = 0x0804
ARP = OXOBOB
VIP = OXOBAD'

VLOOP = OXOBAE
VECHO = QXOBAF

NETBIOS—SCOM = OXSCOO -
OX3COD #

DEC—MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003"
DEC-LAT = 0x6004

DEC-DIAG = OXSOOS
DEC-LAVC = 0x600?

RARP a Ox8035
ATALK = OXBOQB‘

VLOOP = 0x8004
VECHO = OXBOCS

IPX = 0x8137’
SNMP = 0x814C#

IPv6 = OXSBDD "
LOOPBACK = OXQOOO

Apple = 0x080007
* L3 Decoding
# L5 Decoding

 
1 752

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

ICMP == 1
IGMP = 2
GGP = 3
TOP 3 6 "'
EGP = 8

IGRP = 9
PUP = 12

CHAOS = 16
UDP = 17*
[DP = 22#

ISO-TF4 = 29
DDP = 37#

ISO-1P = 80
VIP = 83%?-

EIGRP = 88
OSPF = 89

* L4 Decoding
# L3 Re-Decoding

 
 

EX 1018 Page 171



, 
PRL-.T Of DKA~U..G.S 

~_ORlG.~ 

PROTOCOL 
TYPE (ID~ 

1642 

() 

18/20 

J,:;--1800 

1802-1 

FIG. 18A 

J.:;--1850 

1870 
LUTNUM), ~ ~01 0 ...J 

u~ 
WU. 

~~ 
co 

FIG. 188 

EX 1018 Page 172

PRINT OF DRAWUVCS \

A5 ORJQINALLY 15g:{’

18/20

PROTOCOL

 

Iu.i‘...~....-
15.0szQAwE

a.

mm“mm..3.E_.,_.,.
“mya.

FIG. 18A

1870

K
m0584b

:3M.3.E_:..2.5.

E3
LUT NUM:

FIG. 188

04m.»no000mgmBEEAOUOHom

 
EX 1018 Page 172



, 
0 

19/20 

1901 

COMMON.POL 1903 

FLOWS.POL 1905 

- VIRTUAL.POL 1907 
= 

.. 
L:;;,:,! 

191 ETHERNET.POL 

.. 1913 
ETHERTYPE -

.. 

IP.POL 1915 

TCP.POL 1917 

RPG.POL 
1919 

192 NFS.POL 

FIG. 19 

EX 1018 Page 173

.,»MA~.~-.

“..WWWW...“

..—.....—......-.....

"ii?#31:»15:]!"52%|45511IFS?!
11:5I!g!:1.

1 ....L (.0O _\.

 

mmr OF memcs ,.
AS omqwm' ’

-_ __. 1'

191

192

19/20

COMMONPDL 1903

FLOWSPDL 1905

VIRTUALPDL 1907

ETHERNET.PDL

ETi-IERTYF‘E [— 1913

IPPDL r1915

TCP.PDL 1917'

1919
RPCPDL

NFSPDL

192 . FIG.19

EX 1018 Page 173



, 
' 

'= ~t 
•i' 

~ 

.. 

(j 
~f. 
r~ 

1: 
.. -~ 

PRL'~T OF DRA"'ll'IG.S 
AS ORJG~ Y FII.' 

~-

2009 

2019 

20/20 

2001 

READ IN PDL SOURCE 2003 
MODULES 

PARSE MODULES FOR 2005 
SYNTAX 

FIRST PASS, CREATE 2007 ALL PARSE ELEMENTS 

THIRD PASS, CREATE 2011 
PAYLOAD ELEMENTS 

FORTH PASS, BUILD 
TATES FOR EACH LIN 

2013 

READ IN LAYERING 2015 
SOURCE MODULES 

WALK LAYERING LINKS 2017 
FOR EACH PDL 

OUTPUT CPL 
INTERMEDIATE FILE 

202-.P FIG. 20 

EX 1018 Page 174

LEI123:1:"2,11

/ NE

wthWfiMfl
fiMfl

flififlffifii

mar 05 muwmcs
AS omcmALLy my’ mag—~—

2009

2019

20/20

READ IN PDL SOURCE 2003
MODULES

PARSE MODULES FOR
SYNTAX ’” 2005

FIRST PASS, CREATE
ALL PARSE ELEMENTS 200?

' ND PASS, BUiLD FLO
IGNATURE ELEMENT

TH1RD PASS, CREATE 20”
PAYLOAD ELEMENTS

FORTH PASS, BUILD
TATES FOR EACH LIN ‘ ”M 2013

READ IN LAYERING 2015SOURCE MODULES

WALK LAYERING UNKS 201?
FOR EACH PDL

OUTPUT CPL
INTERMEDIATE FILE

202”. FIG. 20

EX 1018 Page 174



-·,,r ... , . - - ·~ \, ~ :--.4. 

1/20 

I CLIENT 41...., 
107 

I CLIENT 31---
\ 

106 

DATA COMMUNICATIONS 
NETWORK 

--.:,- ---

108 
ANALYZER 

116 

SERVER 

121 
~10 

102 

125 

123----

/sERVER 9-----, 
112 

1 CLIENT 2 j-J 05 

FIG. 1 

118 
.---~---.__/ 

CLIENT1 

104 

EX 1018 Page 175

7

wet;et al. APPTu091-2”.11. . ., w 1.; .

fi‘: ' :z“ <1J£§C‘£;‘fii"" fl {,3

1/20

100 _
CLIENT 4 108

"\ ANALYZER
107

116

— SERVER A
CUENTS

”\ V10
106 ‘21

 

;

i

I
I  
 

DATA COMMUNICATIONS

NEWNORK

 

  
11131::IEIIIII“7.75.1!113:1:31111
“iij

102

125IL}!I535II"I!1:3,,

 
_ 118

i .LIENT2 .LIENT1
112 104

FIG. 1

EX 1018 Page 175



D 

l 

-----..........._...--·~·, .. ·-- -.. ,. "'_,..,, ..... , ,, 

214 215 216 217 218 219 220 221 222,223 

1 / / ';x ',, 1 1_ 1 
S1 C1 p /, , , > /· i s a Q s p QP 

/ ///~~\. :<, 

224 225 227 228 229 230 231 232,233 

C1 S1 p1 j1 s1a s1p p2 2 

21 207 
240 241 242 243 244 245 

st0 

, 260 ,261 ,262 ,263 ,264 ,265 

n 1 S1 C1 p2 , , / datum request 

\ 
270 271 272 273 27 4 

' \ ' <: 275 

' 
C1 S1 p2 

[/', 
datum reply 

v',, 

( 
209 

20 

APPLICATION $ERVER 2 

--········" 

. . 

FIG. 2 

,. 
l 

0 

EX 1018 Page 176

r,-15" 1w

71219z

a, .3A 3"L‘O‘O'i‘ddV"

 

  
 

[0

R5
0

255 APPLICATION §ERVER 2

Wfij‘“ datum requestW! 1) 
270 271

K K   
Q272W273 274

 

EX 1018 Page 176



302 

310 

1308 
I 
I 

PATTERN, PARS 
AND 

EXTRACTION 
DATABASE 

COMPILER 
AND 

OPTIMIZER 

PROTOCOL 
DESCIPTIO 
LANGUAGE 

FIG. 3 

,- - - - ..J 

I 
I 
I 
I 
I 

- - J 

PROTOCOL 
& STATE 

IDENTIFICATION 

STATE 
PROCESSOR 
INSTRUCTION 

DATABASE 

326 

STATE 
PROCESSN·~----< 
OPERATION 

324 

DATABASE 
OF FLOWS 

l- - - - '1 
_U_P__,D.__A_T_E_ 322 I 

"FLOW" I 
KNOWN I 
RECORD 

CLASSIFICATN 
FINALIZATION 

ANALYZER 
303 

I u, 
I f\) 
10 
I 
I 
I 

34 I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 

'--~~YE I ----------------------------

',! 

"· 

·, 

0 

0 

EX 1018 Page 177

 
   

 
 

 

 
 

 

 

 

  

  

    
 
 
 

  

 
 
 

 
  

   

  
 
 

 
 

if}::iiiiiiiiiiiiifizn“:11:th 1&33f31.y:3i."i[37llffmiiIZEWfiEEiI15:14:11 E."
______________ 300 f’, (2" >1

1 PARSER gpj {$1 __________ 324 ‘ 9.
' 304 306 314 I ’1‘

ANALYZE AND EXTRACT I i >
I RECOGNIZE IDENTIFYING BUILD UNIQUE ' I LOOKUP .. * g

PATTERN INFORMATION CONVERSAT'O I @1ng Ngévcgfigg" DATABASE ‘ “1HENFORMATION “FLOW" KEY . ‘c':

I (DB 324 A)

U PDATE 

  

  
 

 
 

  
 

PROTOCOL

 
N "FLOW" I

AND .1 STATE CLASSIFICATIO KNOWN
EXTRACTION lDENTiFlCATION RECORD

DATABASE

I I310

COMPILER
AND

OPTIMIZER

 
YE

CLASSIFICATN
FTNALIZATION332

 
 
 

 
 

STATE
PROCESSOR
lNSTRUCTION

DATABASE

  

DATAGRAM
DESCIP'HO LAYER
LANGUAGE PROCESSNG

OPERATION ‘.
 

 ANALYZER

39.3

  
———————————.——————~———p—u—u—mm—c.‘

EX 1018 Page 177



.., 
I, .. 

Jietz et al. APP:f-001-2 

': : 
t' I -- ',i 

404 

GENERATE 
PACKET 

PARSE AND 
EXTRACT 

OPERATIONS 

406 0 ATTERN, PARS 
AND 

EXTRACTION 
DATABASE 

4/20 

HIGH LEVEL 
PACKET 

DECODING 
DESCRIPTION 

COMPILE 
ESCRIPTION 

403 

408 409 

402 

405 

PACKET 
STATE 

INSTRUCTION 
AND 

OPERATIONS 

STATE 
PROCESSOR 
INSTRUCTION 

DATABASE 

LOAD 
PARSING 

SUBSYSTEM 
MEMORY 

LOAD STATE 
NSTRUCTIO ,._ _ __, 
DATABASE 
MEMORY 

410 

FIG. 4 

407 

EX 1018 Page 178

7
I . ' ('V fl

)ietz et al. APRT-001-2

.-,~ ’9 .V _;-i O O

  
HIGH LEVEL

PACKET
DECODING

 

 
 

 
 
 

 
 

V I A

GENERATE PACKET 
 

 

  
  OPERATIONS

z. 1 ~

—- EXTRACT DESCRIPTION
OPERATIONS

  
  

 

 
 

  
 

  406 Z-IATTERN, PARS OSgA‘gE 0AND PR E S R
EXTRACTION INSTRUCTION

DATABASE DATABASE

 
 
 

 

  

 

 

LOAD LOAD STATE 
 

 
 

PARS'NG NSTRUCTIO
£ SUBSYSTEM DATABASE

MEMORY MEMORY

 400

n-—..-.-.,m.‘-
EX 1018 Page 178



pietz et .al. 

510 

t 
i 

APPT-001-2 

503 

504 

0 

5/20 

501 

INPUT PACKET 502 

LOAD PACKET 
COMPONENT--~~__, 

NO 

FETCH NODE AN 
.--~~~~PROCESS FROM 

PATTERNS 505 

PATTERN 
NODE 

507 

NO 

509 

508 

EXTRACT 
ELEMENTS1--~~~--1 

FIG. 5 

PACKET 
KEY 

513 

511 

"500 

EX 1018 Page 179

Diet: et ,aL APPT‘4003—2
’5‘ , ’

("vii L ‘L \

5/20

0

W 502

 
 

 

 

 
    

503 LOAD PACKET
COMPONENT

512

m = I 3

~: 504 ORE IN PACK - PACKET
KEY

T: FETCH NODE AN n
PROCESS FROM

; ; PATTERNS

513

MORE NEXT
PATTERN PACKET

 
 
 

 
NODES?  

  A'.".' 4“,

PROCESS TO
COMPONENT  

 
 

 

.1....W.mmm»mvMW~M.W"u
,

510
V

i PATTERN
5 NODE

EXTRACT

509 ELEMENTS

: FIG. 5

COMPONE 511

500

EX 1018 Page 179



I 
Dietz et al. · AF,?PT-001-2 

603 

604 

= 

NO 

606 

0 

6/20 

PACKET 
COMPONENT AND 
PATIERN NODE 

LOAD PACKET 
COMPONENT 

FETCH EXTRACTION 
ND PROCESS FRO 

PATIERNS 

APPLY EXTRACTION 
PROCESS TO 
COMPONENT 

FIG. 6 

0 

601 

602 

610 

NO LOAD KEY 
BUFFER 

605 

611 

NEXT 
N PACKET 609 

COMPONEN 

608 

EX 1018 Page 180

'1

_ I "

Dietz et al. ‘AEPT—OGT-E {

6/20

. 601

PACKET 602
COMPONENTAND
PATTERN NODE

603

LOAO PACKET

COMPONENT 610

604

LOAD KEY
BUFFER

‘2 MORE PACKE
COMPONENT    

A YES

f" FETCH EXTRACTION 6
‘ ND PROCESS FRO 2

PATTERNS 605

NO 611
NEXT

N PACKET 609
ELEMENTS? COMPONEN

YES

607“ APPLY EXTRACTION

C 2mm?
NE . \

MORE TO
EXTRACT?

  

600

  
  
 

 (“T 608
Q

YE

FIG. 6

EX 1018 Page 180



Dietz et al. APPT-001-2 
I~' 

I. l '1 ··• : r ,. ' 

703 

704 

~:.~ 

~:J 

706 

707 

0 

7/20 

EY BUFFER AND 
PATTERN NODE 

LOAD PATTERN 

701 

702 

NODE ELEMENT...-~~~ 

NO 

YES 

HASH KEY BUFFER 
ELEMENT FROM 705 
PATTERN NODE 

PACK KEY & HAS 

NEXT PACKET 
COMPONENT 

FIG. 7 

708 

OUTPUTT 
ANALYZER 

709 

''700 

EX 1018 Page 181

'T

Dietz et a}. APP/11.091 -2

 

 

3w"

i Z,
t

g

gulf

7/20

701

  702EY BUFFER AND
PATTERN NODE

LOAD PATTERN
NODE ELEMENT

MORE PATTER
NODES?

  

 
 

  

 
  

703

 

 
704 OUTPUT To

ANALYZER

HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

  709

706  
707

EX 1018 Page 181



-, 

Dietz et al. APPT-001-2 
I", 

.lPr , 

/l- j ''/ • ,( 

800'\ 

~~ 

0 

805 

NEXT BUCKET N 

809 

811 

812 

8/20 

UFKB ENTRY FOR 
PACKET 

801 

0 

802 

COMPUTE CONVERSATION 803 
RECORD BIN FROM HASH 

REQUEST RECORD BIN/ 
BUCKET FROM CACHE 804 

806 

NO SET UFKB FOR 
PACKET AS 'NEW' 

COMPARE CURRENT BIN 807 
AND BUCKET RECORD KEY 

TO PACKET 

808 

YES 

MARK RECORD BIN AND 810 BUCKET 'IN PROCESS' IN 
CACHE AND TIMESTAMP 

SET UFKB FOR PACKET 
AS 'FOUND' 

UPDATE STATISTICS FOR 
RECORD IN CACHE 1-------' 

8130 FIG. 8 

EX 1018 Page 182

Diet; et aI. APPT—QOI -2
. I "I . .

' O OI x“; x,“’ I

[L I g HI

8/20

. 801

UFKB ENTRY FOR 8
PACKET

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN!

BUCKET FROM CACHE 804

(T 806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 80?
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET No @. 808
YES

809

02

  III:III'EEEEIIIzimII'LZ'I‘I
  

ORE BUCKET
805 IN THE BIN?

 

 III;"I1
IIEEIII YES

'SEEIIIJIIZII

IIIIII:IIIIIEEEJ

MARK RECORD BIN AND 810
BUCKET ‘IN PROCESS‘ IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS 'FOUND‘

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813W]. FIG. 8

EX 1018 Page 182



., 

( 
Dietz et al. APPT-001-2 

I i · 1 / .I 0 

903 

904 

EXTRACT PROGRAM 

GET 'PROGRAM', 
'VERSION', 'PORT' AND 
'PROTOCOL (TCP OR 

UDP) 

CREATE SERVER STAT 

SAVE 'PROGRAM', 
'VERSION', 'PORT' AND 
'PROTOCOL (TCP OR 

UDP)' WITH NETWORK 
ADDRESS IN SERVER 

STATE DATABASE. KEY 
ON SERVER ADDRESS 

AND TCP OR UDP PORT. 

9/20 

907 

C) 

EXTRACT PORT 

GET 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)' 

908 

SAVE REQUEST 

SAVE 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)' WITH 

DESTINATION 
NETWORK ADDRESS. 

BOTH MAKE A KEY. 

905 906 

LOOKUP REQUE 

FIND 'PROGRAM' 
AND 'VERSION' 

WITH LOOKUP OF 
SOURCE NETWORK 

ADDRESS. 

FIG. 9 

EXTRACT 
PROGRAM 

GET 'PORT' AND 
'PROTOCOL (TCP 

OR UDP)'. 

909 

EX 1018 Page 183

Mm

Dietz et al. APPI'room-z

9/20

901 902 910

  RPC
ENDLOOKU'

REQUEST  . . NNOUNCME .
ORTMAPP 'ORTMAPP .,

 
 

S 909

       
 

    
 

 

 

  

EXTRACTPROGRAM EXTRACTPORT

903 GET ‘PROGFIAM‘, GET 'PROGRAM',
‘VERSION’, ‘PORT' AND 'VERSION' AND

'PROTOCOL (rep OR 'PROTOCDL (TCP OR
= UDP) umsy

T- SAVE REQUEST
: CREATESERVERSTKT
f”. SAVE 'PROGRAM',

SAVE ‘PROGRAM'. 'VERSION' AND

’2: 904 ‘VERSION'. 'PORT' AND ‘PROTOCOL (TOP OR  
  

  

'PROTOCOL (TOF OR UDP)‘ WITH
UDP)’ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.
  
  
 

 
 
 

ON SERVER ADDRESS
AND TCP OR UDP PORT.

  
907

 
 

RPC
END

LOOKUP
REPUY
 

 

 //— 905
LOOKUP REQUE ~

FIND 'PROGRAM'

 

 
EXTRACT
PROGRAM
 

 

 

 
 

 
 

9002A
 
  

AND 'VERSION' GET ‘PORT' AND

WITH LOOKUP OF “PROTOCOL (TCP
SOURCE NETWORK OR UDP)‘.  

ADDRESS.

FIG. 9

EX 1018 Page 183



(' 
otetz et _al. APPT-001-2 

. ;: ~ . .., 

.:=::. 
;_.:: 

n 
'---'/ 

1000~ 

PATIERN 
RECOGNITION 

DATABASE 
MEMORY 

100 
100 

10/20 

100 

1001 

/~ ____ ,./ 

EXTRACTION 
OPERATIONS 

DATABASE 
MEMORY 

1004 
1031 

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS 

INFO OUT. 

CONTRLIN 

1031 

100 
1007 PATIERN 

RECOGNITN ----1 
ENGINE 
(PRE) 

EXTRACTION ENGINE 
(SLICER) 

1012 

1021 

102 

1023 

PARSER INPUT BUFFER 
MEMORY 

INPUT BUFFER 1011 
INTERFACE 
CONTROL 

101 

FIG. 10 

PARSER 
OUTPUT PACKET KEY 
BUFFER AND PAYLOA 
MEMORY 

ANALYZER 
INTERFACE 
CONTROL 

1027 

EX 1018 Page 184

I:

piketz et ‘aI. APPT-001-2

  
1 0/20

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 100‘ MEMORY

100 1031
100

1 004

 

 

 
 

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL IN

 
 

 
 

 

 

 

 
 

 
 
 

 

 
  
 
 

 

: 1031

f 100' PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

-: 100.

: PARSER
'A PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT BUFFER AND PAYLOA!

MEMORY

1012

1021

Egg-PA???- INPUT BUFFER ANALYZER DATA READY
INTERFACE INTERFACE

 
 

 
  

 

CONTROL CONTROL
ANALYZER

READY

FIG. 10

‘ .

PACKET

EX 1018 Page 184



Dietz ~t al. APPT.::001-2 

0 

1100 ~ 

1101 

PARSER 
INTER
FACE 

1103 

1109 

UNIFIED 
FLOW 
KEY 

UFFER 
(UFKB) 

11/20 

LOOKUP/ 
UPDATE 
ENGINE 

(LUE) 

STATE 
PROCESS 
INSTRUCN 
DATABASE 

(SPID) 

1107 

1108 

1115 

CACHE 

STATE 
PROCESSR 

(SP) 

FLOW 
INSERTION/ 
DELETION 

ENGINE 
(FIDE) 

1110 

FIG. 11 

() 

1118 1122 

ANALYZE 
HOST 

INTERFAC 
AND 

CONTROL 
(ACIC) 

HOST 
BUS 

INTER
FACE 
(HIB) 

1119 1123 

UNIFIED 
MEMORY 
CONTROL 

(UMC) 

MEMORY 
INTER
FACE 

EX 1018 Page 185

Dietz at at. APPT5001—2

if C C)

  
  
  

 

 

 
 
 
 

   
 

  

  

1 1/20

1100 N

1107

05311?
~ _ ANALYZE" OST

ENGINE HOST FéUS
( UE) h lNTEfigACh iNTER-FACE

STATE 03%?“ (“”3)
PROCESS -. ( )

05-1010;
2 1109 (SPID)

f I 1108: UNIFIED

:=: PARSER
INTER- H-UFFER CACHE

; FACE (UFKB)

H
PROCESSR

1119 1123(SP)

 
 

IIIIEIIffiII'IIIIIIIFS?'EEIIIITII‘I
UNIFIED MEMORY

MEMORY H INTER- 

 
FLOW

INSERTION/
DELETION

ENGINE

(FIDE)

   
  

EX 1018 Page 185



.., 
pietz et al. APPT-001-2 

' h 
"JP"- 0 

1200--::.. 

-
-

-- REQUEST NEXT 
-- BUCKET FROM 

1206 CACHE 

~ : ~ 

-
- 1208 
~~ 

- YES 
--

1210 
SETUFKB FOR 

PACKET AS 
'DROP' 

CJ 

12/20 

NO 

UFKB ENTRY FOR 
PACKET WITH 
STATUS 'NEW' 

ACCESS 
CONVERSATION 

RECORD BIN 

1201 

REQUEST RECORD BIN/ 
BUCKET FROM CACHE 

INSERT KEY AND HASH 
NO N BUCKET, MARK 'USED 

WITH TIMESTAMP 

OMPARE CURRENT Bl 
AND BUCKET RECORD 

KEY TO PACKET 

MARK RECORD BIN AND 
BUCKET 'IN PROCESS' 
AND 'NEW' -IN CACHE 

1212 SET INITIAL STATISTICS 
FOR RECORD IN CACHE 

1213 

FIG. 12 

1202 

1203 

1204 

1205 

1207 

1209 

1211 

EX 1018 Page 186

1

 

  
 

 
 

 

 
 

 
 

 

 

  
 

pietz et al. APPT-0201-2

.0 11:4 " O 1:)
TL-I ‘: si—

1 2/20

1201

UFKB ENTRY FOR

PACKET WITH 1202
STATUS 'NEW'

1200
N ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
:= BUCKET FROM CACHE

: REQUEST NEXT NO
-E BUCKET FROM 4: IN/BUCKET EMPTY 1205
_.-. 1206 CACHE

 1208

1210

 

O INSERT KEY AND HASH
g N N BUCKET, MARK 'USED

WITH TIMESTAMP

SET UFKB FOR
PACKET AS

 

 

 

 YES

 

  
1207

 

 
 

YES

 OMPARE CURRENT BI 1209
AND BUCKET RECORD

KEY TO PACKET   

 
 

'DROP'
  
 

 
  
MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

I 1213

FIG. 12

1211

  
 

 

 

EX 1018 Page 186



..., 

Dietz et al. APPT-001-2 
' , 

I ' 0 ~ ( . ' ' ' ·· I .- ,~ t 

1300 ~ 

13/20 

~1301 

UFKB ENTRY FOR 
PACKET WITH STATUS 

'NEW' OR 'FOUND' 1302 

SET STATE 
PROCESSOR 

+ 
SET STATE PROCESSOR 

INSTRUCTION POINTER TO 
ALUE FOUND IN UFKB ENTRY 

FETCH INSTRUCTION FROM 
STATE PROCESSOR 

INSTRUCTION MEMORY 

PERFORM OPERATION BASED 
ON THE STATE INSTRUCTION 

INSTRUCTION NO 
POINTER TO 

VALUE FOUND IN 
CURRENT STATE 

SAVE STATE 
PROCESSOR 
INSTRUCTION 
POINTER IN 

CURRENT FLOW 
RECORD 

1308 
YES 

NO 

SET AND SAVE FLOW REMOVA 
STATE PROCESSOR 

INSTRUCTION IN CURRENT 
FLOW RECORD 

FIG. 13 

1303 

1304 

1305 

1307 

1309 

1311 

EX 1018 Page 187

Dietz et al. APPT—OOT -2
‘ I

:. FJPCE T V 1 j 9I ~ ( \
I L I‘,

13/20

1301

29
1300 \A UFKB ENTRY FOR

PACKET WITH STATUS
'NEW' OR 'FOUND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

 
PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

III

 
  

  
  
  

 SET STATE
 

 
    

 

  

  
  

  

 

 

   

PROCESSOR

INSTRUCTION NO DONE PROCESSING 1307
POINTER TO STATES FOR THIS

EE VALUE FOUND IN PACKET?

;: CURRENT STATE

3: 1303 YES
1310

SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLO

CURRENT FLOW
RECORD

YES

SET AND SAVE FLOW REMOVA

STATE PROCESSOR 1311
INSTRUCTION IN CURRENT

FLOW RECORD

@1313
FIG. 13

 

EX 1018 Page 187



PACKET 

!Ci1 Ii] 1i:::il 11:::h ,. 1i:::i1 .1:i::. "ii:· 11:::11 11:::11 IL:n 
r - - - - - - - - - - - - - - - - - - 1 1- - - - - - - - - - - - - - - - - - - 1 

I I I I 
1404 
ANALYZE AND 
RECOGNIZE 

PATTERN 
INFORMATION 

1406 

EXTRACT 
IDENTIFYING 

INFO& PROGL 
/STATE 

1412 I I 

BUILD I I 
11FLOW11 KEY 

I I 
I I 

-======.J 

141 
LOOKUP 
KNOWN RECORD __ _ 

(DB 1424) 

I ________ ___, 

PATTERN 
STRUCTURES 

AND 
EXTRACTION 
OPERATIONS 

I PARSER 1408 
ISUBSYSEM 

I 

------------ v: 
1400 I 1426 

FIG. 14 

STATE 
MACHINE 

SELECTOR 

STATE 
ANALYSIS 
PERATION 

YES 

N 

DATABASE 
OF FLOWS 

1422 

UPDATE 
"FLOW" 
KNOWN 
RECORD 

CLASSIFICATN 
FINALIZATION 

1434 

ANALYZER 
SUBSYSTEM 

~-------------------------

........ 

I~ 
IO 

0 

0 

EX 1018 Page 188

EXTRACT 

 
 
 

RECOGNIZE
PATTERN

INFORMATION ISTATE

 
 
 
 

PATTERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

PARSER
SUBSYSEM

IDENTIFYING
INFO & PROCL

   
 

 

 

  
  

 
  

 

   

  

  
 

 
 

LOOKUP
KNOWN

RECORD

(DB 1424)

  
  

 
 
 

 
 
 

 DATABASE

OF FLOWS 

 UPDATE
“FLOW“
KNOWN
RECORD

 

 

 

 

  
 

  

 

STATE

MAC H I N E

SELECTOR

1426

YES CLASSIFICATN
FINALIZATION

1432

STATE
ANALYSIS 

ANALYZER
SUBSYSTEM

'1919'21630
Jas‘-1'’

a-Loo—Ifédv
O

OZ/VL

EX 1018 Page 188



I,-. 

121 

1502 

PACKET 
~_.11iohcQUISITION, 

DEVICE 

PACKETS 

ijJ 1i:::il IC:h ,i::::: ·!:::i, ,,J ... 11:::11 1{ · r ien ii] .;:], ,i:::i, iCi1 

PARSER 
301 

ANALYZE 
303 

324 

DATABASE 
OF 

FLOWS 

HOST 
PROCESSO 

1504 

1 
M~~TOR I l 

C 1510 

• 

FIG. 15 

NETWORK 
INTERFACE 

CARD 

j 

DISK 
& 

DB 

1506 

HOST 
I --1. 

MEMORY 01 
f\) 
0 

1508 

0 
c5· 
Fr 
CD --~ 

-, 
)> 
"1J 

- fl "1J . -I 
I -

0 

( -\ 
.,__) 

O, 
0 ....... 

I 
I\) 

... 

EX 1018 Page 189

1113i! IiIIIiI Iii]! i135: 'iii€il III]! Him .133. ‘éi'T WET'I; iiIIiI ‘i‘iii! liiirll $311!

12'1921610
.d1

3'lOOH‘iddV
 
 

  

 
 

 

PACKET

‘ CQUISITION

DEVICE

03/9!-MONITOR
3m

NETWORK

INTERFACE

CARD {J
 

EX 1018 Page 189 a



J-,. 

APPT-001-2 
tP'~ 

0 0 

16/20 
'' ' 

' 

1602 O - 3 Bytes 
Jc--1600 

I Ost MAC 

offset O - 11 Ost MAC Src MAC 1604 

I ,, Src MAC 
), 

;i 

:i:} 1606 
1608 

~: Ost MAC (6) 
:~ Ost Hash (2 1610 
?= 1612 Src MAC (6) 

1614 
Src Hash (2 

:~ ~et=12 
:J: 

~JJ 

~~ FIG. 16 :::::=:: 
:~ 

EX 1018 Page 190

fi’fé‘tznef al. APPT—OéCfi —2if)“

,, M O QR. ' 4, , " “w" ”

16/20

 
\ 1606

1608

Dst Hash (2

 

 
 

 

 
 

"iii"115mfill}?“iii?fit:it}!
1512 Src MAC (6)

35533!.ut; 1614 Src Hash (2

\Iet=12

FIG. 16

'55:?“"I!"

3733':8335'::13]!355sz
 

j

7

EX 1018 Page 190



Dietz et aL APPT-001-2 

. = l ,H 

offset I 
12 to 13 

L3to 
[L3 + 
(IHL/ 4 
- 1] 

17/20 
1702 

\ I \Type 

1704 

l!!l/1/III~ 
\ / 
"----~~- ,-~~~1706 

1708 Type (2) 

Hash 1) 
1710 ~ 1700 

~et=14 

FIG.17A 

IDP = Ox0600* 
IP= Ox0800* 

CHAOSNET = Ox0804 
ARP= Ox0806 
VIP= OxOBAD* 

VLOOP = OxOBAE 
VECHO = OxOBAF 

NETBIOS-3COM = Ox3COO -
Ox3COD# 

DEC-MOP = Ox6001 
DEC-RC = Ox6002 

DEC-DRP = Ox6003* 
DEC-LAT= Ox6004 

DEC-DIAG = Ox6005 
DEC-LAVC = Ox6007 

RARP = Ox8035 
ATALK = Ox809B* 

VLOOP = Ox80C4 
VECHO = Ox80C5 l/ SNA-TH = Ox80D5* 

1712
-- ATALKARP = Ox80F3 

IPX = Ox8137* 
SNMP = Ox814C# 

DstAddress I 
Dst Hash (2) I 

SrcAddress I 
Src Hash (2)1 

1Pv6 = Ox86DD * 
LOOPBACK = Ox9000 

Apple = Ox080007 
*- L3 Decoding 
# LS Decoding 

~1750 

ICMP = 1 
IGMP =2 
GGP =3 
TCP= 6* 
EGP =8 

IGRP = 9 
PUP = 12 

CHAOS= 16 
UDP = 17* 
IDP = 22# 

ISO-TP4 = 29 
DDP = 37# 

ISO-IP= 80 
VIP = 83# 

EIGRP =88 
OSPF = 89 

~01<1> FIG. 178 * L4 Decoding 
# L3 Re-Decoding 

jL4 Offpet = L3 + (IHU4) 

l 

EX 1018 Page 191

fiumflfl

'Mum

 

E

kmfifi

 

w

‘Li ;

offset

 
 

L3 to

[L3 +

(EHL I 4

-1]

1704

pietz et a1. APPfidm-2

L OV

17/20
1?02

 
1712””

LOOPBACK = OXQOOO

IDP = OXOGOO"
IP = 0x0800*

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD"

VLOOP = OXOBAE
VECHO = UXOBAF

NETBIOS-SCOM = OXSCOO -
Ox3COD#

DEC—MOP = 0x6001
DEC-RC = OXGOOZ

DEC-DRP = OXBOOB"
DEC—LAT = 0x6004

DEC-DIAG = OXBOOS
DEC-LAVC -"- 0X6007

RARP = 0X8035
ATALK = OXBOQB"

VLOOP = Ox8004
VECHO = OXBOCS
SNA~TH = OXSODS"

ATALKARP = 0x80F3
IPX = 0x8137*

SNMP = Ox814C#
IPv6 = OXSSDD *

Appie = OXOSOOOT

* L3 Decoding
# L5 Decoding

 
 

 

 
.3 r ' Java.

mam-mmmm

Dst Address—
WIIIIzlii‘fi’fifififiislllllllllllll

::: K1750/__w_.

Dst Address

Dst Hash (2)

Src Address

-om> FIG. 178

-et = L3 + ("41.14)

mwmmmmm

  
   

  

  

   

1752

 

  lCMP =1
IGMP =2
GGP =3
TCP =6*
EGP = 8

{GRP =9
PUP =12

CHAOS =18
UDP =17"
IDP =22#

ISO-TP4 = 29
DDP = 37#

ISO-1P == 80
WP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
# L3 Re‘Decoding

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

EX 1018 Page 191



' ! 

l 
t 
' f 

t 'bl 
l 

APPT-661'-2 

. I·., i . . . 
{ 'I 

J: 
1-
(!) 
z 
w 
-' 
Cl 
-' w 
u. 

-' 
0 
(.) 

f2 
0 

0 

18/20 

.A.;:--1800 

FIG. 18A 

1802-2 
1802-1 

L1802-M 

,A.::--1850 

1870 

LUTNUM ~ 
). w 

Cl Cl 
0-' (.) w 
wu. 
!;: u. 
en o 

§~§ 
FIG. 188 

EX 1018 Page 192

o.{I.,.010TPD.Awt6Wu:my:if

18/20

  

    

..lIi...mIIIII!rIIIIIIIII¢IIIIIIII\.Ih...‘!III!”1-1. IIIIIIIII"IIIIIIIIIm.IIIIII.III<IIIII!III
%

 

1 642

PROTOCOL

TYPE 2

.......§6

DIME“.0MDOOm._l>m
D5mm

JOOOFOmm

FIG. 18ALé%£§;§§§§§§

FIG. 188

EX 1018 Page 192



f 
{ ofetz et al. 

1 ' 

APPT-001-2 
• 

' .... ,., ., ..... ,\ 

19/20 

1901 

COMMON.POL 1903 

FLOWS.POL 1905 

VIRTUAL.POL 1907 

191 ETHERNET.POL 

1913 
ETHERTYPE 

IP.POL 1915 

TCP.POL 1917 

RPG.POL 
1919 

192 NFS.POL 

FIG. 19 

EX 1018 Page 193

y
al. APPT-o'oi-z

10191291: 114
V

19/20

. 1901

COMMONPDL 1903

FLOWS.PDL 1905

VIRTUALPDL 1907

 
191 ETHERNETPDL”33:11.mi."1in11355111

'I‘ll11
1913

ETHERTYPE

% IP.PDL 1915

TCP.PDL 1917

1919
RPCPDL

192 NFS.PDL

192 . FIG.19

EX 1018 Page 193



Dietz et al. . APRif~001-2 

2009 

2019 

20/20 

2001 

READ IN POL SOURCE 
MODULES 

PARSE MODULES FOR 
SYNTAX 

FIRST PASS, CREATE 
ALL PARSE ELEMENTS 

2ND PASS, BUILD FLO 
SIGNATURE ELEMENT 

THIRD PASS, CREATE 
PAYLOAD ELEMENTS 

FORTH PASS, BUILD 
TATES FOR EACH LIN 

READ IN LAYERING 
SOURCE MODULES 

WALK LAYERING Ll~KS 
FOR EACH POL 

OUTPUT CPL 
INTERMEDIATE FILE 

2003 

2005 

2007 

2011 

2013 

2015 

2017 

202~ FIG. 20 

EX 1018 Page 194

Dietirét aI. . APRRiooI-z

. .«3« III! 5 H1..- 0 («:3‘w/

20/20

. 2001

READ IN PDL SOURCE F 2003
MODULES

PARSE MODULES FOR
SYNTAX 2005

FIRST PASS, CREATE
ALL PARSE ELEMENTS 2007

2009 2ND PASS, BUILD FLO
SIGNATURE ELEMENT

IIE':IM!M:m:M
II‘ZII.132“I.

IIIIIIII]III}

THIRD PASS, CREATE [“20“
PAYLOAD ELEMENTS

L175!ILJI

FORTH PASS, BUILD 2013
bTATES FOR EACH LIN '

READ IN LAYERING 2015
SOURCE MODULES

WALK LAYERING LINKS 2017
FOR EACH PDL

OUTPUT CPL
2019 INTERMEDIATE FILE

202w. FIG. 20

EX 1018 Page 194



IW 769617'7 

·~MSII1ll!i\1,HQ;.l!J'llllfE!i~ r...lffiSE~~ ~,~QMfRm 

UNITED STATES DEPARTMENT OF COMMERCE 

United States Patent and Trademark Office 

October 18, 2018 

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE 

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS 

OF: 

APPLICATION NUMBER: 09/609,179 

FILING DATE: June 30, 2000 

PA TENT NUMBER: 6,665,725 

ISSUE DATE: December 16, 2003 

By Authority of the 

Under Secretary of Commerce for Intellectual Property 

a~d Director of t~tattt Bod Trademark Office 

P. SW~, 

Certi?'6g Officer 

PART (~ OF (J).-P ART(S) 

EX 1018 Page 195

WMEQMQAEWBMW)WEwa

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

 
*5} ‘

.." October 18,2018 , 5T?
33 ‘4
- “ti THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE he“;

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS "34;“
OF:

APPLICATION NUMBER: 09/609,179

FILING DATE: June 30, 2000

PATENT NUMBER: 6,665,725

ISSUE DATE: December 16, 2003

  
  

 
 

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United Stat

j?
P. SW

Certif ' gOfficer

  

EX 1018 Page 195



I of I 

FORMALITIES LETTER 

11111m Ill I 111111 II~ 011 II! II~ II~ 1111 m, ii Ill~ II~ 119111111 ml 
·ocoooooooo5346098 • 

APPLICATION NUMBER 

09/609,179 

Dov Rosenfeld 
5507 College Avenue 
Suite 2 
Oakland, CA 94618 

FILING/RECEIPT DA TE 

06/30/2000 

0 file:///c:/ APPS/preexam/correspondence/4.htm 

UNITED STATES DEPARTMENT OF COMMERCE 
Patent and Trademark Office 

Address: COMMISSIONER OF PATENT AND TRADEMARKS 
Washmgto11, DC 20231 

FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER 

Russell S. Dietz APPT-001-2 

Date Mailed: 08/23/2000 

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION 

FILED UNDER 37 CFR 1.53(b) 

Filing Date Granted 

An application number and filing date have been accorded to this application. The item(s) indicated below, 
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all 
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by 
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a) . 

., The statutory basic filing fee is missing. 
Applicant must submit$ 690 to complete the basic filing fee and/or file a small entity statement claiming 
such status (37 CFR 1.27). 

• The oath or declaration is missing. 
A properly signed oath or declaration in compliance with 37 CFR 1. 63, identifying the application by the 
above Application Number and Filing Date, is required. 

• To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of 
$130 for a non-small entity, must be submitted with the missing items identified in this letter. 

• The balance du~ by applicant is $ 820. 

A copy of this notice MUST be returned with the reply. 

Customer Service Center 
Initial Patent Examination Division (703) 308-1202 

PART 3 - OFFICE COPY 

8/23/00 6 57 AM 

EX 1018 Page 196

left

i V 3 O fi1e:llfc:/APPS/prcexamfcorrespundencel-fi.him

 
FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCEi Patent and Trad mark Off‘

llllllllllllillillillllllillllllllIlilllllllllllllllllllllliilllllllfll Address: COMMISSIONERemf-lmmmmm
"00000000005346098’ Washington, D C 2033!

09/609,179 (36/30/2000 Russell S. Dietz APPT-OOl—2

Dov Rosenfeld

5507 College Avenue
Suite 2

Oakland, CA 94618

Date Mailed: 08/23/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.5303)

Filing Date Granted

An application number and filing date have been accorded to this application. The itemis) indicated beiow‘
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(2).

o The statutory basic filing fee is missing.
Appiicant must submit $ 690 to compiete the basic: filing fee and/or file a smei! entity statement claiming
such status (37 CFR 1.27).

o The oath or declaration is missing,
A property signed earth or deciaration in compliance with 37 CFR 1.63, identifidng the application by the
above Application Number and Fiiing Date, is required.

0 To avoid abandonment. a late fiiing fee or oath or declaration surcharge as set forth in 37' CFR 116(8) of
$130 for a non—email entity. must be submitted with the missing items identified in this letter.

' The balance due by applicant is $ 820.

A copy ofthis notice MUST be returned with the reply.

/7 ,
s1 apQW?)

Customer Service Center

Initial Patent Examination Division (703) 308-1202
PART 3 - OFFICE COPY

 

8/23/00 ('3 57 AM

EX 1018 Page 196



~e C:to f' jdff 
~f./Doc;:ketNo:APPr~l-2 n Patent ~_,., --·----

\\~ .1. ~ 'L°u~ '"~ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 
;:;:: 

~/}.. ~~- . 
~-"1Z~1~1~J~p11cant(s): Dietz, et al. 

Application No.: 09/609179 

Filed: June 30, 2000 

Title: PROCESSING PROTOCOL SPECIFIC 
INFORMATION IN PACKETS SPECIFIED 
BY A PROTOCOL DESCRIPTION 
LANGUAGE 

Group Art Unit: 2756 

Examiner: (Unassigned) 

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION 

Assistant Commissioner for Patents 
Washington, D.C. 20231 
Attn: Box Missing Parts 

Dear Assistant Commissioner: 

This is in response to a Notice to File Missing Parts of Application under 37 CFR l .53(f). 
Enclosed is a copy of said Notice and the following documents and fees to complete the filing 
requirements of the above-identified application: 

__x_ Executed Declaration and Power of Attorney. The above-identified application is the 
same application which the inventor executed by signing the enclosed declaration; 

X Executed Assignment with assignment cover sheet. 

__x_ A credit card payment form in the amount of$ 860.00 is attached, being for: 
__x_ Statutory basic filing fee: $ 690 
__x_ Additional claim fee of $ 0 
__x_ Assignment recordation fee of $ 40 
__x_ Missing Parts Surcharge $130 

__x_Applicant(s) believe(s) that no Extension of Time is required. However, this conditional 
petition is being made to provide for the possibility that applicant has inadvertently 
overlooked the need for a petition for an extension of time. 

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR l.136(a) of: 

__ one months ($110) __ two months ($380) 

__ two months ($870) __ four months ($1360) 

If an additional extension of time is required, please consider this as a petition therefor. 

Certificate of Mailing under 37 CFR 1.8 
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an 
envelope addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231 on. 

(") ~ ~-
Date: ( /Cf: .:J.--D ·~ Signe · ~ =====::::::::--__ _ 

_../ --Name: Dov Rosenfeld, Reg. No. 38687 

EX 1018 Page 197



0 
Application 09/609179, Page 2 

_K_ The Commissioner is hereby authorized to charge payment of any missing fees associated 
with this communication or credit any overpayment to Deposit Account 
No. 50-0292 

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED): 

Date 

Address for correspondence: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 

Respectfully Submitted, 

,-~--
," :ot('V"'Rosenfeld, Reg. No. 38687 

Tel. (510) 547-3378; Fax: (510) 653-7992 

EX 1018 Page 198

o 0
Application 09/609179, Page 2

with this communication or credit any overpayment to Deposit Account
No. 50—0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

X The Commissioner is hereby authorized to charge payment of any missing fees associated

 

 

Respectfully Submitted,

/W
LQHE 407 W ,‘/__,4:_;{é:::/2::
Date / DKV’Rosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. (510) 547—3378; Fax: (510) 653—7992

EX 1018 Page 198



() 
PATENT APPLICATION 

DECLARATION AND POWER OF AITORNEY 
FOR PATENT APPLICATION 

ATTORNEY DOCKET NO. APPT-001-2 

As a below named inventor, I hereby declare that: 

My residence/post office address and citizenship are as stated below next to my name; 

~m the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are 
I,...\ ~:':"::"~~?cf of the subject matter which is claimed and for which a patent is sought on the invention entitled: 

Q PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE 
(l'> 

t% lap cificat~ of which is attached hereto unless the follo~~ked: 
~ (X) g was filed on June 30, 2000 as US Application Serial No. 09/609179 or PCT International Application Number __ and 

~ was amended on (if applicable). 

~l;t-• .1. here~ that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any 
~nt(s) referred to above. I acknowledge the duty to disclose all infonnation which is material to patentability as defined in 37 CFR 1.56. 

Foreign Application(s) and/or Claim of Foreign Priority 

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s} for patent or inventor(s) 
certificate listed below and have also identified below any foreign application for patent or inventor( s) certificate having a filing date before that of 
the application on which priority is claimed: 

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 

YES: NO: 

YES: NO: 

Provisional Application 

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below: 

APPLICATION SERIAL NUMBER FILING DATE 
60/141,903 June 30, 1999 

U.S. Priority Claim 

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the 
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first 
paragraph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of 
Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing 
date of this application: 

APPLICATION SERIAL NUMBER FILING DATE ST A TUS atented/ endin abandoned 

POWER OF AITORNEY: 

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business 
in the Patent and Trademark Office connected therewith: 

Dov Rosenfeld, Reg. No. 38,687 

Send Correspondence to: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland, CA 94618 

Direct Telephone Calls To: 
Dov Rosenfeld, Reg. No. 38,687 
Tel: (510) 547-3378 

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on infonnation and belief are believed 
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by 
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the 
validity of the application or any patent issued thereon. 

Name of First Inventor: Russell S. Dietz Citizenship:~ 

95120-2736 

EX 1018 Page 199

O 0
PATENT APPLICATION

DECLARATION AND POWER OF ATTORNEY ATTORNEY DOCKET NO. APPT-Ofll-Z
FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

Mnthe original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (ifplural names are\ 610 101‘ the subject matter which is claimed and for which a patent is sought on the invention entitled:

O PROCES€MOTOCOL SPECIFIC INFORMATION IN PACKETS SPECIEIQD BY A EROTOCOL DESCRIPTION LANGUAGE
$1113 hp'éificaggn of whichis attached hereto unless the folloWiFéhecked: 

(X) 5? was filed on June 30 2000 as US Application Serial No. 09/609179 or PCT International Application Number and
.1: was amended on ______ (ifapplicable)

43' Q‘
Wthat I have reviewed and understood the contents of the above-identified specification, including the claims as amended by anyc tts) referred to above I acknowledge the duty to disclose all information whichis material to patentability as definedm 37 CFR l56

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed: 

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35
  

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 11913:) of any United States provisional applicationis) listed below:  

 

  
APPLICATION SERIAL NUMBER FILING DATE

60/ 141,903 June 30, 1999

v.81 Priority Claim

I hereby claim the benefit under Title 35, United States Code Section 120 of any United States application(s) listed below and insofar as the
subject matter of each of the claims of this applicationis not disclosedin the prior United States application111 the mannerprovided by the first
paragraph ofTitle 35 United States Code Section 112 I acknowledge the duty to disclose material information as defined1n Title 37 Code of
Federal Regulations, Section 1. 56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application: 

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ endin abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and’or agent(s) listed below to prosecute this application and transact all businessin the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687 

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the lcnowledge that willful false statements and the like so made are punishable by
fine or imprisonment or both under Section 1001 ofTitle 18 of the United States Code and that such willfiil false statements may jeopardize the
validity of the application or any patent issued thereon.

 

Name of First Inventor: Russell S. Dietz Citizenship: USfi,

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

‘ Date

  
EX 1018 Page 199



n 
Declaration and Power of Attorney (Continued) 
Case No; APPT-001-2 
Page 2 

ADDITIONAL INVENTOR SIGNATURES: 

Name of Second Inventor: Andrew A. Koppenhaver 

Residence: 10400 Kenmore Drive, Fairfax, VA 22030 

Post Office Address: Same 

Inventor's Signature 

Name of Third Inventor: James F. Torgerson 

Residence: 227 157th Ave., NW, Andover, MN 55304 

Post Office Address: Same 

Inventor's Signature 

Citizenship: USA 

Date 

Citizenship: USA 

Date 

EX 1018 Page 200



"°- ~ As a below named inventor, I hereby declare that: ~~JJ ~ ~ 

My residence/post office address and citizenship are as stat~ (llffl"A~~my name; 

I believe I am the original, first and sole inventor (if only one name 1s 1sted below) or an original, first and joint inventor (if plural names are 
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: 

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE 

the specification of which is attached hereto unless the following box is checked: 
(X) was filed on June 30, 2000 as US Application Serial No. 09/609179 or PCT International Application Number __ and 

was amended on (if applicable)_ 

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any 
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56. 

Foreign Application(s) and/or Claim of Foreign Priority 

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s) 
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of 
the application on which priority is claimed: 

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 

YES: NO: 

YES: NO: 

Provisional Application 

I hereby claim the benefit under Title 35, United States Code Section l 19(e) of any United States provisional application(s) listed below: 

APPLICATION SERIAL NUMBER FILING DATE 
60/141,903 June 30, 1999 

U.S. Priority Qaim 

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the 
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first 
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defmed in Title 37, Code of 
Federal Regulations, Section l .56(a) which occurred between the filing date of the prior application and the national or PCT international filing 
date of this application: 

APPUCATION SERIAL NUMBER FILING DATE 

POWER OF ATIORNEY: 

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business 
in the Patent and Trademark Office connected therewith: 

Send Correspondence to: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland.. CA 94618 

Dov Rosenfeld, Reg. No. 38,687 

Direct Telephone Calls To: 
Dov Rosenfeld, Reg. No. 38,687 
Tel: (510) 547-3378 

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed 
to be true; and further that tllese statements were made with the knowledge that willful false statements and the like so made are punishable by 
fine or imprisonment, or both, under Section I 001 of Title 18 of the United States Code and that such willful false statements may jeopardize the 
validity of the application or any patent issued thereon. 

Name of First Inventor: Russell S. Dien: 

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736 

Post Office Address: .§!m£ 

First Inventor's Signature 

Citizenship: _ma 

Date 

EX 1018 Page 201

 - ': ATION O
“Tensor DOCKET No. APPT-om-z  

  
 

DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION

{believe I am the original, first and sole inventor (if only one name is 15th below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

PROCESSING PROTOCOL SPECIFIC INFORMATI; 2N IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09f609l79 orPCY International Applimtion Number . ___ and

was amended on {if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendmcnfls) referred to above. l acknowledge the duty to (isolose all information which is material to patentahility as defined in 37 CPR 1.56.

 

Foreign Application(s) andlor Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 ofany foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventods) certificate having a filing date before that of
the application on which priority is claimed:

APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

— res; - NO: _
N YES: _____M_NO: fi__

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 1 19(6) ofany United States provisional application(s) listed below:

 

   

  
 

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter ofeach of the claims ofthis application is not disclosed in the prior United States application in me mannerprovided by the first
paragraph of Title 35, United States Code Section 1 12, I acknowledge the duty to disclom material information as defined in Title 37, Code of
Federal Regulations, Section l.56(a) which occurred between the filing date ofthe prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ v endin- abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) andJor agent(s) listed below to prosecute this application and transact all businessin the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687 

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3373
Oakland, CA 94618 

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Rosy)! S. Died Citizenship: 11%

Residence: 6146 Ostenberg Drive, San Jose, CA 95120—2736

Pest Office Address: Same

  

First Inventor’s Signature Date

EX 1018 Page 201



0 
DeclaratiOJl and Power of Attorney (Continued) 

, case No; APPT-001-2 

Page2 

ADDIDONAL INVENTOR SIGNATURES: 

Name of Second Inventor: Andrew A. Koppenhaver 

Residence: 9325 W. Hinsdale Place, Littleton, CO 80128 

Post Office Address: Same 

/---~ I--, 
Inventor's Signature 

Name ofThin:I Inventor: James F. Torgerson 

Residence: 227 157th Ave., NW, Andover, MN SS304 

Post Office Address: Same 

Inventor's Signature 

Citizenship: USA 

Date / f 

Citizenship: USA 

Date 

EX 1018 Page 202

(”W O\ \.

Declaration and Power ofAttorney (Conflnugd)
» Case No; APPT~001-2

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name ofSecond Inventor: Andrew A. Ko enhaver Citizenship: USA

Residence: 9325 W. Hinsdale Place Littleton CO 80123 

Post Office Address: Same

13”“ #7 ”L" WInventor’s Signature Date

Name ofThird Inventor: ngg F. Togersgn Cifiunship: USA

Residence: 227 157th Ave.I NW, Agdovgg, MN 55fl4

Post Office Address: Same

 

Inventor’s Signature Date

EX 1018 Page 202



() ,, n 
\ . 

PATENT APPLICATION 
~ DECL TlON AND POWER OF A ITORNEY ATTORNEY DOCKET NO. APPT-001-2 

FOR P NT APPLICATION 

~"L!,~~elow named inventor, I hereby declare that: 

My residence/post office address and citizenship are as stated below next to my name; 

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are 
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: 

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE 

the specification of which is attached hereto unless the following box is checked: 
(X) was filed on June 30, 2000 as US Application Serial No. 09/609179 or PCT International Application Number __ and 

was amended on (if applicable). 

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any 
amendment(s) referred to above. I acknowledge the duty to disclose all information which is matenal to patentab1lity as defined in 37 CFR 1.56. 

Foreign Application(s) and/or Claim of Foreign Priority 

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s) 
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of 
the application on which priority is claimed: 

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 

YES: NO: 

YES: NO: 

Provisional Application 

I hereby claim the benefit under Title 35, United States Code Section 119( e) of any United States provisional application(s) listed below: 

APPLICATION SERJAL NUMBER FILING DATE 
60/141,903 June 30, 1999 

U.S. Priority Claim 

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the 
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first 
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of 
Federal Regulations, Section I .56(a) which occurred between the filing date of the prior application and the national or PCT international filing 
date of this application: 

APPLICATION SERIAL NUMBER FILING DATE 

POWER OF ATTORNEY: 
As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business 
in the Patent and Trademark Office connected therewith: 

Send Correspondence to: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland CA 94618 

Dov Rosenfeld, Reg. No. 38,687 

Direct Telephone Calls To: 
Dov Rosenfeld, Reg. No. 38,687 
Tel: (510) 547-3378 

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed 
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by 
fine or imprisonment, or both, under Section I 00 I of Title 18 of the United States Code and that such willful false statements may jeopardize the 
validity of the application or any patent issued thereon. 

Name of First Inventor: Russell S. Dietz Citizenship: USA 

Residence: 6146 Ostenberg Drive. San Jose. CA 95120-2736 

Post Office Address: Same 

Inventor's Signature Date 

EX 1018 Page 203

 

  

 
Q DECL ' ‘ 1 TION AND POWER OF ATTORBEY ATTORNEY DOCKET NO. APPT-DOLZ

fiwwfigapgelow named inventor I hereby declare that:

PATENT APPLICATION  

My resideneefpost office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

the specificati on of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 095609179 or PCT International Application Number and

was amended on (if applicable).

 

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s} certificate having a filing date before that of
the application on which priority is claimed:

 

_OUN_TRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 
 

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional applieation(s) listed below
 

 

  
 

APPLICATION SERIAL NUMBER FILING DATE

60/141 ,903 June 30, 1999
 

U.S. Priority Claim

I hereby claim the beneft under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this applicationis not disclosedin the prior United States applicationin the manner provided by the first
paragraph ofTitle 35 United States Code Section ”2 I acknowledge the duty to disclose material information as definedin Title 3? Code of
Federal Regulations, Section 1.56(a) which occurred between the filging date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atentcdz'. ndin; abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) andfor agent(s) listed below to prosecute this application and transact all businessin the Patent and Trademark Office comected therewith:

Dov Rosenl‘eld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,68?
5507 College Avenue, Suite 2 7 Tel: (510) 547-3378
Oakland CA 946I8 

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or 1mprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willfiil false statements may jeopardize the
validity of the application or any patent issued thereon.

Name ofFirst Inventor: RussellS.Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

  

First Inventor’s Signature Date

EX 1018 Page 203



Declaration and Power of Attorney (Continued) 
Case No; APPT-001-2 
Page 2 

ADDITIONAL INVENTOR SIGNATURES: 

Name of Second Inventor: Andrew A. Koppenhaver 

Residence: 10400 Kenmore Drive, Fairfax, VA 22030 

Post Office Address: Same 

Inventor's Signature 

Name of Third Inventor: James F. Torgerson 

Residence: 227 157th Ave., NW, Andover, MN 55304 

Citizenship: USA 

Date 

Citizenship: USA 

°/fe. 7 /oo 
Date 

EX 1018 Page 204

(“i\.

Declaration and Power of Attorney (Continued)
Case No; APPT-001-2

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Andrew A: Koggenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

 

[nventor’s Signature

Name of Third Inventor: James F. Torgerson

Residence: 227 157th Ave. NW Andover MN 55304 

Post Office Address: me

WM  
Inv ntor’s Signature

Citizenship: USA

Date

Citizenship: USA

Zgwgéo
Date

EX 1018 Page 204



Our Ref./Do..cket No: AP(,.bo1-2 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Dietz, et al. 

Application No.: 09/609179 

Filed: June 30, 2000 

Title: PROCESSING PROTOCOL SPECIFIC 
INFORMATION IN PACKETS SPECIFIED 

~-BY A PROTOCOL DESCRIPTION 

0 ~*' ,~NGUAGE 

~ g 
rt 

Group Art Unit: 

Examiner: (Unassigned) 

~'1J.}r"'~" REQUEST FOR RECORDATION OF ASSIGNMENT 

Assistant Commissioner for Patents 
Washington, D.C. 20231 
Attn: Box Assignment 

Dear Assistant Commissioner: 

Patent 

Enclosed herewith for recordation in the records of the U.S. Patent and Trademark Office is an 
original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the 
Assignment. 

Date 

Address for correspondence: 

Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Tel. (510) 547-3378; Fax: (510) 653-7992 

Respectfully Submitted, 

-~-
=No.38687 

Certificate of Mailing under 37 CFR 1.8 
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an 
envelope addressed to the Assistant Conunissioner for Patents, Washington, D.C. on. 

zc 
/ 

Signed: -;;;;ft~>'.c::::::::.__ ____ .:::::=--
Name: 1' Rosenfeld, Reg. No. 38687 

EX 1018 Page 205

Our RefJ’Ddcket No: Apfhmsz (3 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 
 

 
 

 

Applicant(s): Dietz, et al.

Application No.: 09/609179

Filed: June 30, 2000

Group Art Unit:

Examiner: (Unassigned)

Title: PROCESSING PROTOCOL SPECIFIC

TNFORMATION IN PACKETS SPECIFIED

KmBY A PROTOCOL DESCRIPTION
Q $63 ’HLANGUAGE

s6 g»
szmis“ REQUEST FOR RECORDATION 0F ASSIGNMENT

Assistant Commissioner for Patents

Washington, DC‘ 20231

Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the US. Patent and Trademark Office is an

original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the

Assignment.

Respectfully Submitted,

@Qf' L0 @226) ./26
Date Ros/enfeld, Reg. No. 38687

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653—7992

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washington, DC.

Signed: M
Name: Ive Rosenfeld, Reg. No. 38687
 

EX 1018 Page 205



FORMALITIES LETTER 

111m Ill I~ 11; 11111111 u; 11111111111!11111111111 RH Iii I II 
•ocoooooooos34so9a• 

APPLICATION NUMBER 

09/609,179 

Dov Rosenfeld 
5507 College Avenue 
Suite 2 
Oakland, CA 94618 

FILING/RECEIPT DATE 

06/30/2000 

file:///c:/APPS/preexam/correspondence/3.htm 

UNITED STATES DEPARTMENT OF COMMERCE 
Patent and Trademark Office 
Address COMMISSIONER OF PATENT AND TRADEMARKS 

Washington, DC 20231 

FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER 

Russell S. Dietz APPT-001-2 

Date Mailed: 08/23/2000 

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION 

FILED UNDER 37 CFR 1.53(b) 

Filing Date Granted 

An application number and filing date have been accorded to this application. The item(s) indicated below. 
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which 'to file all 
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by 
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a) 

• The statutory basic filing fee is· missing. 
Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming 
such status (37 CFR 1.27). 

• The oath or declaration is missing. . 
A properly signed oath or declaration in compliance with 37 CFR 1. 63, identifying the application by the 
above Application Number and Filing Date, is required. 

• To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e) of 
$130 for a non-small entity, must be submitted with the missing items identified in this letter. 

• The balance due by applicant is $ 820. 

/ 

A copy of this notice MUST be returned with the reply. 
"" "" 
,_ ,_ ..... o.o.. ..... "" "" 0. 0 co 

0 0 .,:, 
oo ..0 "" "" 0 0 oo 

= = 00 0 M"" ,q- cu ..... ..o 
cu "" c:;r.. cu 
cu = 0 = 0 .. .., 

Customer Service Center 
Initial Patent Examination Division (703) 308-1202 

tn = co '° ::t: 
..0 = w 
= 0 

0 = = 0 = 0 
0 0 

~ 0 0 
0 ...... 

PART 2 - COPY TO BE.RETURNED WITH RESPONSE 

...... iX> 
,::Q c:, 
0 """ ;:a :z: 
:z u.J 
I.LI . = = O".I 
m 

0 = 0 .. .., ..... 
= - = 00 
0 c:o cu --cu .. .., - ULJ - '"" ..0 w C'U l.t-1.t-
C'\J I.I- - CUM ....... 0 
0 - - oo ..... 0 

Q n ') /(\(\ £ C "f A k A 

EX 1018 Page 206

file:i//c:J’APPS/prcexam/correspondencc/3.htm

 
 FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCE. Patent and Trademark Offic

llllllllllllllllllllllllllillllillllllllllllllllllllllllllllllllllllll Address comssmmomémmwarms
‘OC000000005348098* Washington, D C 20231

APPLICATION NUMBER FENCE/RECEIPT DATE ' FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/609, I 79 06/30/2000 Russell S. Dietz APPT-001—2

Dov Rosenield

5507' College Avenue
Suite 2
Oakland. CA 94618

.. Date Mailed: 08/23/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The itemis) indicated below.
however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all
required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(3)

- The statutory basic filing fee is'missing.
Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1.27).

- The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

0 To avoid abandcmrnent, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e) of
$130 for a non—small entity, must be submitted with the missing items identified in this ietterl

- The balance due by applicant is S 820.

 

.1

A copy ofthis notice MUST be returned with the reply.

 

r: E
E a ‘53 3%

Q '3?- o S 83
o O ' '

14 W . cc
0 mm

t «r m HMO

Customer Servxce Center 3‘0: E
Initial Patent Examination Division (703) 308-l202 g 8

PART 2 - COPY T0 BERETURNED WITH RESPONSE Z: 3 m s
. ‘ 8 8 Z:

E e o.
l, g f. 8

E3 3
E3. .52
1 %

.x “5'2 ' m
a .. 23% asx o :0 cu —‘ .—:

4' w 0:: ‘~ :30
B u 3 u. u.
3 L“ E“. rum
2: S “ °°Df‘ninnc r»: A\l

EX 1018 Page 206



.--:··" 
/\' E "'(.,, ' ,,. '. 
> , \~r'N.jf./Docket No: APP~ . 01-2 Patent 

1-" !:::! 
"' J!i IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

~ 

"'fNJ'& 1'6~. 
· pplicant(s): Dietz, et al. Group Art Unit: 2756 

Application No.: 09/609179 

Filed: June 30, 2000 

Title: PROCESSING PROTOCOL SPECIFIC 
INFORMATION IN PACKETS SPECIFIED 
BY A PROTOCOL DESCRIPTION 
LANGUAGE 

Examiner: (Unassigned) 

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION 

Assistant Commissioner for Patents 
Washington, D.C. 20231 
Attn: Box Missing Parts 

Dear Assistant Commissioner: 

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f). 
Enclosed is a copy of said Notice and the following documents and fees to complete the filing 
requirements of the above-identified application: 

_x_ Executed Declaration and Power of Attorney. The above-identified application is the 
same application which the inventor executed by signing the enclosed declaration; 

_x_ Executed Assignment with assignment cover sheet. 

_x_ A credit card payment form in the amount of$ 860.00 is attached, being for: 
Statutory basic filing fee: $ 690 

_x_ Additional claim fee of l.Q 
_x_ Assignment recordation fee of · $ 40 
_x_ Missing Parts Surcharge $130 

_K_Applicant(s) believe(s) that no Extension of Time is required. However, this conditional 
petition is being made to provide for the possibility that applicant has inadvertently 
overlooked the need for a petition for an extension of time. 

Applicant(s) hereby petition(s) for an ExtensiOJ}Of Time under 37 CPR l.136(a) of: 

__ one months ($110) __ two months ($380) 

__ two months ($870) __ four months ($1360) 

If an additional extension of time is required, please consider this as a petition therefor. 

EX 1018 Page 207

(mm.

L' ‘..

l k @r get/Docket No: APP . . 01~2 Patent

  
 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 

  
 
 
 

pplicant(s): DlCtZ, elf (ll. GI'OUp Art Unit: 2756
Application No: 09/609179

Filed: June 30, 2000

Title: PROCESSlNG PROTOCOL SPECIFIC

lNFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

Examiner: (Unassigned)

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, DC. 20231

Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CPR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing

requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above—identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet.

X A credit card payment form in the amount of $ 860.00 is attached, being for:

X Statutory basic filing fee: § 6 O

X Additional claim fee- of £9

X Assignment recordation fee of 'E

X Missing Parts Surcharge $130

X Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

._._.. Applieant(s) hereby petition(s) for an Extension,of Time under 37 CPR 1.136(a) of:

__..._.. one months ($110) __ two months ($380)

two months ($870) ...,.._ four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

 

Certificate of Mailing under 37 CFR 18

l hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washingto . . 2 1 on.

Date:W 35
Name: Dov Rosenfeld, Reg. No. 38687

 

  

EX 1018 Page 207



l 

Application 09/609179, Page 2 

_x__ The Commissioner is hereby authorized to charge payment of any missing fees associated 
with this communication or credit any overpayment to Deposit Account 
No. 50-0292 

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED): 

Date 

Address for correspondence: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oak.land, CA 94618 

Respectfully Submitted, 

~g.No. ~ 

Tel. (510) 547-3378; Fax: (510) 653-7992 

,;' 

EX 1018 Page 208

Application 091‘609 179, Page 2

X The Commissioner is hereby authorized to Charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50-0292
 

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectquy Submitted,

0,9 .25; 9m , .
Date ov Rosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

550’? College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547—3378; Fax: (510) 653—7992

EX 1018 Page 208



l 

G-P/ 
t/Ref. No.: APP' Patent ~ 

~ ~- r,s'v 
'° ~ 1 l lll01 ~: IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ~tt i 
~'*& m.fo nt(s ): Dietz et al. 

1.J,-t ?<?J 
s~rial No.: 09/609179 Group Art Unit: 2756 

Filed: June 30, 2000 

Title: PROCESSING PROTOCOL 
SPECIFIC INFORMATION IN 
PACKETS SPECIFIED BY A 
PROTOCOL DESCRIPTION 
LANGUAGE 

Commissioner for Patents 
Washington, D.C. 20231 

Examiner: 

RECEIVED 
APR 1 6 2001 

TechnofogyCenter2100 

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

Transmitted herewith are: 

_lL An Information Disclosure Statement for the above referenced patent applicati9n, 
together with PTO form 1449 and a copy of each reference cited in form 1449. 

l Return postcard. 

_lL The commissioner is hereby authorized to charge payment of any missing fee associated 
with this communication or credit any overpayment to Deposit Account 50-0292. 

A DUPLICATE OF THIS TRANSMITTAL IS A TT ACHED 

Date: April 9, 2001 

Correspondence Address: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Telephone No.: +1-510-547-3378 

Respectfully submitted, 

~ 
Attorney/Agent for Applicant(s) 
Reg. No. 38'687 

Certificate of Mailing under 37 CFR 1.18 

I hereby ccrufy thal lhis corre\[)Onuence is berng ueposiled with Lhe United States Postal Service as first 
class mail in an envelope addrcs~ed to: Com1ni~sioner for Patents, Washington, D.C. 20231., 

EX 1018 Page 209

 

 
 
 

@P/W
0 Our DdQL t/Ref.NO.: APP' I4.x Patent » P ,r

$ b 3 $
APR 1 3 111m 3,; IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 ant{s): Dietz et 111.

Serial N0.: 09/609179 Group Art Unit: 2756

Filed: June 30, 2000 Examiner: RECEIVED
Title: PROCESSING PROTOCOL lSPECIFIC INFORMATION IN APR 6 2001

PACKETS SPECIFIED BY A TechnPROTOCOL DESCRIPTION ology Center2100
LANGUAGE

  

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

__2(_ An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

Return postcard..1.

X The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 5041292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Date: Agril 9, 2001

 

V Rosenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Teiephone No: +1-510-547—3378
  

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this. correspondence is being deposited With the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC 20231. .

DateofDeposnt: 2%!“ TM I,
Signature:

elo, Reg. No. 38,687 
round.54’

EX 1018 Page 209



. I") 
~cket/Ref. No.: APP'!( il-2 Patent 
·o ~ .. 

n \ 'l. ~ f IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 
~v" & 

~'f4?-& T 1'l icant(s): Dietz et al. 

Serial No.: 09/609179 

Filed: June 30, 2000 

Title: PROCESSING PROTOCOL 
SPECIFIC 11\TFORMATION IN 
PACKETS SPECIFIED BY A 
PROTOCOL DESCRIPTION 
LANGUAGE 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: 2756 

Examiner: 

INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

This Information Disclosure Statement is submitted: 

_x_ under 37 CFR l.97(b), or 

RECEIVED 
APR 1 6 7001 

Technology Center 21 oo 

(Within three months of filing national application; or date of entry of international 
application: or before mailing date of first office action on the merits; whichever 
occurs last) 

under 37 CFR l.97(c) together with either a: 
_ Certification under 37 CFR l.97(e), or 
_ a $180.00 fee under 37 CFR l.17(p) 
(After the CFR 1.97(b) time period, but before final action or notice of 
allowance, whichever occurs first) 

under 37 CFR 1.97(d) together with a: 
Certification under 37 CFR l.97(e), and 

_ a petition under 37 CFR l.97(d)(2)(ii), and 
_ a $130.00 petition fee set forth in 37 CFR l.17(i)(l). 
(Filed after final action or notice of allowance, whichever occurs first, but before 
payment of the issue fee) 

l Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together 
with copies, of patents, publications or other information of which applicant(s) are aware, which 
applicant(s) believe(s) may be material to the examination of this application and for which there 
may be a duty to disclose in accordance with 37 CFR 1.56. 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this corre;,pondence is being deposHed with the United States Postal Service as first 
class mail in an envelope addre;,:,ed to: Commis:,mner for Patents. Washington, D.C. 20231. 

EX 1018 Page 210

maker/Ref. No.: APPTC 11;; C Patent
‘0 93oz.

 
  

 

 
 

  

 

t ‘ :
Serial No.: 09!609179 GIOUP A” U” 2756

Filed: June 30, 2000 Exammer‘ RECENED
. 7 APR l 6 2’80?

Title: pnocnsero PROTOCOL

SPECIFIC INFORMATION m Technology Center 2100
PACKETS SPECIFIED BY A

PROTOCOL DESCRIPTION

LANGUAGE

Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

__X__ under 37 CFR 197(1)), or

(Within three months of filing national application; or date of entry of international

application: or before mailing date of first Office action on the merits; whichever
occurs last)

____ under 37 CFR 1.97tc) together with either a:

__ Certification under 37 CFR l.97(e), or

___ a $180.00 fee under 37 CFR 1.l7(p)

(After the CFR 1.97(b) time period, but before final action or notice of

allowance, whichever occurs first)

__ under 37 CFR 1.97(d) together with a:

...,._ Certification under 37 CFR 197(6), and

_ a petition under 37 CFR 1.97(d)(2)(ii), and

__ a $130.00 petition fee set forth in 37 CFR 1.l7(i)(1).
(Filed after final action or notice of allowance, whichever occurs first, but before

payment of the issue fee)

X Applicant(s) submit herewith Form PTO 1449—lnformation Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

i hereby certify that this correspondence is being depostted With the United States Postal Service as first
class mail in an enveiope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Dcposn:

Signature; 
Dov . on. eld, Reg. No. 38,687

EX 1018 Page 210



• 

SIN: 09/609179 Page 2 IDS 

x._ Some of the references were cited in a search report from a foreign patent office in a 
counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED 
were cited in a search report from a foreign patent office in a counterpart foreign application. 

It is expressly requested that the cited information be made of record in the application and 
appear among the "references cited" on any patent to issue therefrom. 

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and 
references cited are prior art merely because they are in this statement and no representation is 
being made that a search has been conducted or that this statement encompasses all the possible 
relevant infonnation. 

Date: April 9, 2001 

Correspondence Address: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland, CA 94618 
Telephone No.: +1-510-547-3378 

Respectfully submitted, 

~ 
Attorney/Agent for Applicant(s) 
Reg. No. 38687 

EX 1018 Page 211

flax) ‘ A (“a
S/N: 09/609179 ‘ PageE “ ‘ IDS

2;, Some of the references were cited in a search report from a foreign patent office in a
counterpart foreign application. In particular, references AD, AF, AH, Cl, BA, BB, EC, and ED

were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

Date: April 9, 2001

v Rosenfeld

Attorney!Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1—510-547~3378

EX 1018 Page 211



V C\' 
/FORM -1449 

'!',,. SHEET 1 OF 5 -EtB· ,no ' 't 'l.\)u, ~1 \ ) \ J -- --... . .. - ..... k. ATIY. DOCKET NO 
4 ~~ 

SERIAL NO. 

1"~ ~ APPT-001-2 09/609179 
4't&rMQ~ Ar::""~" . 

INFORMATION"UISCLOSURE STATEMENT APPLICANT *'~ -c...., Vt: lJ 
Dietz et al. 

APR 1 6 Zan 
(Use several sheets if necessary) FILING DATE GROU~ 

6/30/2000 Center21 
71 <b 00 

' --
U.S. PATENT DOCUMENTS 

FILING DATE 

·EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPRIATE 

INITIAL NUMBER 

lW 
f4736320 Apr. 5, Bristol 364 300 Oct. 8' AA 

1988 1985 

(jf) AB 
4891639 Jan. 2, Nakamura 340 825.500 Jun. 23, 

1990 1988 

ton AC 
5101402 Mar. 31, Chui et al. 370 17 May 24, 

1992 1988 

UfJ 
AD 

5247517 Sep. 21, Ross et al. 370 85.5 Sep. 2' 
1993 1992 

(ld} A£ 
5247693 Sep. 21, Bristol ~ 8-Q.0,- Nov. 17, 

1993 -Jo1 ;"/1)3 1992 

!U) AF 
;5315580 May 24, Phaal 370 13 !Aug. 26, 

1994 1991 

(j[} AG 
;5339268 l/'\ug. 16, Machida 365 49 Nov. 24, 

1994 1992 

{J!f} AH 
5351243 Sep. 27, IKalkunte et. al. 370 92 !Dec. 27, 

1994 1991 

{/J) 5365514 Nov. 15, Hershey et al. 370 17 Mar. 1, 
Al 

1994 1993 

tJ) AJ 
5375070 Dec. 20, Hershey at al. 364 550 Mar. 1, 

1994 1993 

lW 5394394 Feb. 28, Crowther et al. 370 60 Jun. 24, 
AK 

1995 1993 

FOREIGN PATENT DOCUMENTS 

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

AM '-. 
'\ 

AN 

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

luO "Technical Note: the Narus System," Downloaded April 29 1 1999 from 
AR '(wWW.narus.com, Narus Corporation, Redwood City California. 

AS ~ 
EXAMINER 

khotl\h o;" \1 
DATE CONSIDERED 

c;j 18/oJ 
~ 

'EXAMINER 1m1tal ,t c1tat1on considered, whether or not c1tat1on is in conformance with MPEP 609 Draw lme through c1tat1on 1! not m conformance 

and not considered. Include a copy of this form w,th next commurncat1on to Applicant 

EX 1018 Page 212

 

-_. ' p SHEET 1 OF 5.
RWY DOCKET NO SERiAL N01

APPT—OOl—2 09/609179--
  
  
 
 

  
     
 

INFORMAUO CLOSURESTATEMENT wmxmm
Dietz et 31.

(Use several sheets if necessaty) FILING DATE GROUP "3‘0

6/30/2000 245.45%)”antenna 

F ‘US. PATENT DOCUMENTS
 

 
 

F! Ll N G D ATE
li' APPROPRIATE  
 

DOCUMENT
NUMBER

'EXAMINER
{N‘vTSAL

 

  

 

339268 ug. 16, Iachida
u ”-—

. 351243 Sep. 27, ,alkunte et. al. 370
wI“

1994

w 1 ~ ~

5“" AK 394394 . ' rowther et al. 370
  

FOREiGN PATENT DOCUMENTS
 

    PUBLICATION—1 TRANS-
DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION

I NUMBER YES I NO
AN .

1

 
 

OTHER DISCLOSURES {Including Author. Title, Date, Pertinent Pages, Place oi Publication, Etc.)

”Technical Note; the Narus Sygtem," Downloaded April 29,! 1999 firom
AR .narus.com, Narus Corporation, Redwood Clty Callfornla. 
AS

EXAMlNER Kha }I\ \m‘ D 1- a *1 DATE CONSIDERED g / la /03
‘EXAMlNER rmab d crianon considered, whether or no: Citation is In conformance thh MPEP 609 Draw ime ‘hmugh cxtauon 1? no! zn conformance

 

  

 
and m consnderec‘. Include a copy of WS form wun next communication to Appincant

EX 1018 Page 212



r 

: 

·. 

0'. - VO 

"' Et iii:'f ORM • 1449 
.. ft. (l) SHEET 2 OF 5 . 

I ~t9.\t.w w ' -- --
(.) 

,_--
,0 ~ ATTY. DOCKET NO. SERIAL NO 

-r1:; ~ APPT-001-2 09/609179Fl/::~,:: -t,-& rnP-n~ .. ·n' 
INFORMATION DISCLOSURE STATEMENT APPLICANT 

~-~· 
• r 

APR 1 6 zo 
ED 
01 

2100 

Dietz et al. 
.,.._ 

(Use several sheets if necessary) FILING DATE GROUP '-••HlutCJgy~ 
6/30/2000 ~?A;5- r 

~ 

U.S. PATENT DOCUMENTS 

FILING DATE 

'EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPRIATE 

INITIAL NUMBER 

15414650 May 9, Hekhuis 364 715.02 Mar. 24, 
IJjJ BA 

1995 1993 

tJ/) 5430709 Jul. 4, Galloway 1370 13 Jun. 17, 
BB 

1995 1992 

tJ 5432776 Jul. 11, Harper 370 17 Sep. 30, 
BC 

1995 1993 

,i[) 5493689 ~eb. 20, Waclawsky et al. 

~ ~- IMar. l, 
BD 

996 1993 

(/I) 5500855 IMar. 19, Hershey et al. 370 17 '1an. 26, 
BE 

1996 1994 

#) l5568471 !Oct. 22, Hershey et al. 370 17 Sep. 6, 
BF 

1996 1995 

tw 5574875 INov. 12, Stansfield et al. 395 403 Mar. 12, 
BG 

1996 1993 

6if) 15586266 Dec. 17, lHershey et al. ;J..9,,5-- 2-88. H Oct. 15, 
BH 

1996 ,DC( 2.16 1993 

Liff} 15606668 Feb. 25, Shwed ~ z-e.e. !! Dec. 15, 
Bl 

1997 ,#? ?/6 1993 

al) BJ 
5608662 Mar. 4, ~arge et al. 364 724.01 Jan. 12, 

1997 1995 

t() 5634009 May 27, Iddon et al. ~ 2ee.u Oct. 27, 
BK 

1997 170'1 ?/Jb 1995 

FOREIGN PATENT DOCUMENTS 

PU BU-CATION TRANS· 

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

BM ~ 
BN -

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication. Etc.) 

BR ~ -
BS ~ 

-EXAMINER 

lU~ CJJ DA TE CONSIDERED 

"- '517ft /o3 
'EXAMINER ,mttal ,t citation considered, whether or not citation is m conlormance with MPEP 609. Draw line through citation if not in conformance -- and not considered Include a copy of this form with next communication to Applicant. 

EX 1018 Page 213



r 
f 
1 

o''e: ~ 
-FoAM • 1449 ~ 

'.£1 al, I • Oil \ '1. '1.(\\)' ?J 

., 
,,! 

"};· ~~!) 
'&i&rnArlP 

INFORMATION Dlscr:OSURE STATEMENT 

(Use several sheets if necessary) 

AITY. DOCKET NO 

APPT-001-2 

APPLICANT 

Dietz et al. 

FILING DATE 

6/30/2000 

U.S. PATENT DOCUMENTS 

'EXAMINER DOCUMENT DATE NAME 

SERIAL NO. 

09/60917'f:ir::
c{~r::,,. 

GROUP ""'""'IOI~ 
~2/.Sj -,,,eri100 

FILING DATE 

CLASS SUB-CLASS IF BPPROPRIBTE 

INITIAL NUMBER 
:: L~(f~. ::.=... ,,()-+-C-A-t_::-56:-:5:-:l:-::0::;0::::2-----t:µ:-u--:;l-.--::2:-;2:-,-tv7a-n-:::S-e-;--t-e-r-s-e-=t-a-:;l-:;l:-.--------r3~7~0-t:3:-;9:-;2~--t:J:-u~l-.-:l:-:2:-,-1 

WO/ 1997 1995 
:, L_ll!Ll 1~+---J5::-6:-:8--:-4:-::9:-:5-:4-----t-N:-o-v-_--:4:-,--tK;:-a----;-i-s_e_r_s_w-:-e-r-:-t-;-h-e-:t-a-:l;--. -------r~:;-;::-9 ;:-5-t;:2:;0:-;0::=.=~=---t:M:-,a-r-.--::2:-:0::-,-1 

1un CB 1997 101 ic, 3 1993 

f;': l-_!{1.,11J!o!:r'..... -+-C-C--t5::-:7-3-::-2-::-2::-13::------JM-l a_9 ~-8-. -2:-4:-,---tk:;-:-e-:s-s_e_l-;--e-t--:-a-l_.-:---------il::'~-;:'Cft::-'---t2-:::~::-0-i 
7
16-:-1-t:i:-:-~_6---:-2_2_, -j t .r.<1 5740355 Apr. 14, Watanabe et al. 395 183.21 Jun. 4, 

f 
VVJ CD 1998 1996 

. ~+---+--~--+----:---t-A:-----::-----t-:::-::-~~---t----i t1n 5761424 Jun. 2, dams et al. 2~ Dec. 29, 
WI CE 1998 7ct, 2 J 2.- 1995 

lvD CF 5764638 ~~;~ 9, Ketchum 370 401 ~:~~ 14, 

11,n CG 5781735 !Jul. 14, Southard 
w111 1998 

(
'. f 5784298 Jul. 21, Hershey et al. 
MJ CH 1998 

I• t1 5787253 Jul. 2 8, McCreery et al. 
IU/ a 1998 

{l't
1 

5805808 Sep. 8, Hansani et al. 
WJ CJ 1998 

ed 5812529 Sep. 22, Czarnik et al. 
l,V11 CK 1998 

FOREIGN PATENT DOCUMENTS 

2-Q.0.54 
·z~g 

364 557 

370 245 

Sep. 4, 
1997 
!Jul. 11, 
1996 
!May 28, 
1996 
Apr. 9, 
1997 
Nov. 12, 
1996 

TRANS-

DOCUMENT 

NUMBER 

PUBLI-CA TION 

DATE COUNTRY CLASS SUB-CLASS LATION 

CM 

CN 

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

CR 

cs 

EXAMINER 

'EXAMINER: irnttal ,t citation considered, whether or not citation is in conformance with MPEP 609. Drl.w line throL;gh c,tatton ii not in conformance 

and not considered. Include a copy of this form with next commurncat,on to Applicant. 

YES I NO 

EX 1018 Page 214

 
“A

'1‘. E)

....,"«Wwwmwmvmy
.sr-m(.3.
10‘.”
i‘

 

n:‘0

In

 O O SHEETLOFi
ATFY. DOCKET NO SERIAL NO.

APPT—OOl—Z 09/60917hE
APPUCANT 2 [DDietz et al.

FILINGDATE

6/30/2000 700

U.S. PATENT DOCUMENTS

FILING DATE
DOCUMENT NAME SUBCLASS IFBWWOPWBE

NUMBER

. 3 9 2 .

 

 

3

. 14, Southard
1998

21, Hershey et al.

28, cCreery et a1. %
ansani et a1.

DOCUMENT COUNTRY
NUMBER

DATE CONSIDERED

‘EXAMINEH: inmal II Citation consndered. whether or not citation is in Conformance with MPEP 609‘ Dr.w line through cflatxon if not in conformance
and fig consrdered. Include a copy of this form With next Commumcatlon to Applicant.

EX 1018 Page 214



r 
!, 
d 

f 

,. 
' 

u -o, 
O' \ 

~ FORM -1449 . I I) '1\\ffi (j) SHEET 4 OF 5. 
Et a· I (l.\'1' \ r 0 -- --f;: ' ~ 

ATIY. DOCKET NO. ,fr~ SERIAL NO. 

::fir& TRAO~ APPT-001 2 09/609179 
- ~t::---

INFORMATION DISCLOSURE STATEMENT APPLICANT ..... \..,t~ 
Dietz et al. &: ~ APR l r: ., 

(Use several sheets if necessary) FILING DATE GROUP /8(:hflO/. 
6/30/2000 2 7 5 6 O(Jy Cent. lr 

-
U.S. PATENT DOCUMENTS 

FILING DATE 

·EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF BPPROPRIBTE 

INITIAL NUMBER 

Uf) 15819028 Oct. 6, Manghirmalani et al. ~ ~ Apr. 16, 
DA 

1998 ;!J.-01 u,3 1997 

Uf) 15825774 Oct. 20, [Re et al. 370 401 Jul. 12, 
DB 

1998 1995 

fg{7 DC 
5835726 Nov. 10, Shwed et al. ~ ~ Jun. 17, 

1998 '10°( zzg- 1996 

~ 5838919 Nov. 17, Schwaller et al. ~ 2~ Sep. 10, 
DD 

1998 709 ?,r;<_;:;;.,, 1996 

11(} DE 
5841895 tNov. 24, Huffman 382 155 Oct. 25, 

1998 1996 

llb OF 
5850386 Pee. 15, !Anderson et al. 370 241 Nov. l, 

1998 1996 

@jJ 5850388 Dec. 15, Anderson et al. 370 252 IOct. 31, 
DG 

1998 1996 

uO DH 
5862335 Jan. 19, Welch, Jr. et al. ~ 2~ IA.pr. 1, 

1999 )09 z;i z, 1993 

t(i) DI 
5878420 Mar. 2' Ide la Salle 707 10 Oct. 29, 

1999 1997 

WO DJ 
5893155 Apr. 6, Cheriton 711 144 Dec. 3' 

1999 1996 

(¥} DK 
5903754 May 11, Pearson 

~g7 
Nov. 14, 

1999 1997 

FOREIGN PATENT DOCUMENTS 

PUBLI-CATION TRANS· 

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

OM ~ ~ 

ON ""--
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

~ 

DR ~ -
OS 

--
EXAMINER 

kh~ ~ DATECONSIDEREDs/2- °t/o,3 -
•EXAMINER 1nit1al 11 c1tat1on considered, whether or not citation is in oontormance with MPEP 609. Draw line through citation if not m conformance 

-- and not considered. Include a copy of this form with next oommurncation to Applicant. 

EX 1018 Page 215

-.:v.13»;

SHEET 4 OF S.
 

U “cw

‘ 449 1111 ‘3' D
3‘ EtalFORM '1 m ‘\7« S ’1} ‘L
2 Am. DOCKET NO.

APPT- 0 0 1 ~ 2

INFORMATION DISCLOSURE STATEMENT APPLICANT
Dietz et a1.

(Use several sheets if necessary) FTUNG DATE
6/30/2000

0.8, PATENT DOCUMENTS

 

 

55mm NO.

09/609179

1h _ - IV

 

 
 

DOCUMENT
NUMBER

M1998

1998

I 1998

 
 

DATE NAME

 

 

FJLING DATE
CLAS€ SUB'CLASS .‘FBPPROPRIBTE

 
1651’ pr. 16.

Z03 1997
370 401 111.12,

1995

1.; W un. 17,

I 121995
3% M

70 ,91995

 

     
878420 !.ar cc la Salle

1999

893155 pr heriton
1999

5903754 Tay ll Pearson
1999

FOREIGN PATENT DOCUMENTS

 
PUBLl-CATION

DOCUMENT
NUMBER

  
 

 

COUNTRY

OTHER DiSCLOSURES {Including Author, Title, Date, Pertinent Pages. Place of Publlcation, Etc,)

707

CLASS SUBClASS

 
TRANS
LATION

YES I NO 

 
 

EXAMINER DATE CONSTDERED

5 29/0
  

  

‘EXAMINER

and gm considered. Include a copy of this form wnh next commmcation To Applicant.
What :3 Citation consudemd, whethe: or not citation is in confurmance wnh MPEP 609. Draw line through citation if not an conlormancs

 
’3

 

EX 1018 Page 215



f 

l 
f 
;. 

\' , 

SHEET 5 OF 5 etlJ,FOA 
. 

~PR , 1 '1.001 
19. I --I !"" 

\~ /I ATIY. DOCKET NO. SERIAL NO. ,!§ 
~~ APPT-001-2 09/609179 

f:lt::-& mAot'!:\>s 
INFORMATION DISCLOSURE STATEMENT APPLICANT --vi .. 

Dietz et al. J&: lf APR 1 , .... I 

(Use several sheets if necessary) FILING DATE GROUP 
1f/Ch"!!>fog_ 

6/30/2000 ~ 'YCe.'lti 'l(~ - U.S. PATENT DOCUMENTS 

FILING DATE 

·EXAMINER DOCUMENT DATE NAME CLASS SUB·CLASS IF BPPROPRIBTE 

INITIAL NUMBER 

lfJ 
5917821 Jun. 29, Cobuyan et al. 370 392 [Aug. 16, 

EA 
1999 1996 

uf EB 
5414704 May 9, Spinney 370 60 [A.pr. 5, 

1995 1994 

lt EC 
6014380 Jan 11, ~endel et al. 370 392 P'un. 3 0, 

2000 1997 

l1i1J 
55ll215 ,Apr. 23, Terasaka et al. ~~ ~ Oct. 26, 

ED 
1996 r701 Z4-6 1993 

EE ~ 
EF ~ 
EG ~ 
EH ~ 
El ~ 
EJ ~ 

' EK 

FOREIGN PATENT DOCUMENTS 

PUBLl·CATION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 

NUMBER YES I NO 

DM ~ 
DN "-

~ 

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) 

DR ~ -
OS ~ 

-
EXAMINER 

l/vflg 
DATE CONSIDERED 

l(hoikL, I;/Zi 103 -
'EXAMINER. initial if citation considered, whether or not c1tat1on 1s in conformance with MPEP 609. Draw line thlfiugh citation if not in conformance 

- and not considered. Include a copy of th,s form with next communica!lon to Applicant 

EX 1018 Page 216

 

 
 

r‘ m \ O - _( Harem - 1449 \m ‘3: (— .. SHEET__3_0F_3._
a Amt DOCKET NO. SERIAL N0,

‘533, ‘33 APPT—OOl—2 09/609179
ft? mane“

INFORMATION DISCLOSURE STATEMENT APPUCANT
Dietz et a1.

- 3: h 200
{Use severe! shears If necessary) 12mg:32150 0 GROUP 0‘ ' yce

7: 5/gr ' erg
r, US‘ PATENT DOCUMENTS

 
FlLlNG DATE

 

 
 
 

‘EXAM: HER DOCUMENT IF BPPHOPRIBTE
ITIAL NUMBER

”IL.—
 

 ”0.5;:
Mi»?

 
c

by” $9  
   

"a
‘2
g

.;

;

EH
t

’L, E!

1‘

 

 

FOHETGN PATENT DOCUMENTS

PUBLT-CATION
 
  

 
 

  
DOCUMENT DATE COUNTRY

NUMBER

: OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages. Place of Publication. Etc.)

E ,

_
-m

EXAMINER Khaml/x 9mg
'EXAMINER‘ anuiai if matron consndered, whether or not cutauon 15 m conformance with MPEP 609. Draw tine th Ough citanon if not in confetmance

and ngl constdered. Include a copy of thus (arm mm next communicanon to Applicani

 

 
DATE CONSIDERED

 

EX 1018 Page 216



r 
! 
~~ 
f \ Our fkcket/Ref. No.: APPT Patent 
f·O ~"°· 

\ 'l. 'l.ti IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 
~v. 

cant(s): Dietz et al. 

Filed: June 30, 2000 

Title: PROCESSING PROTOCOL 
SPECIFIC INFORMATION IN 
PACKETS SPECIFIED BY A 
PROTOCOL DESCRIPTION 
LANGUAGE 

Commissioner for Patents 
Washington, D.C. 20231 

Group Art Unit: 2756 

Examiner: RECEIVED 
APR 1 6 2001 

Techno\OQY center 21 oo 

TRANS MITT AL: INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

Transmitted herewith are: 

__x__ An Information Disclosure Statement for the above referenced patent application, 
together with PTO form 1449 and a copy of each reference cited in form 1449. 

__x__ Return postcard. 

__x__ The commissioner is hereby authorized to charge payment of any missing fee associated 
with this communication or credit any overpayment to Deposit Account 50-0292. 

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED 

Date: April 9, 2001 

Correspondence Address: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland, CA 94618 
Telephone No.: +1-510-547-3378 

Respectfully submitted, 

Doe= 
Attomey/A~ent for Applicant(s) 
Reg. No. 38687 

Certificate of Mailing under 37 CFR 1.18 

I hereby certify that this correspondeJ?ce is being deposited with the United States Postal Service as first 
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231. 

Date of Deposit: 

EX 1018 Page 217

m
0 Ourfipocket/Ref.No.z APPT 4 PatentuJ

WM
 
 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
 
 

   

 
 

 

  

Group Art Unit: 2756 Serial No.: 09/609179

' ' ED3; Filed: June 30, 2000 Exmner' RECEN

; Title: PROCESSING PROTOCOL APR 1 6 2001
g SPECIFIC 1NFORMATION IN center 2100
i PACKETS SPECIFIED BY A TGCW‘W
i PROTOCOL DESCRIPTION

LANGUAGE 

 

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

A An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

Return postcard.L

i The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Date: April 9, 2001

Dov osenfeld

Attomey/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

TelephOne No.2 +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington. DC. 20231.

Date of Deposit: . 7919 (

Signature:
d. Reg. No 38.687

 
EX 1018 Page 217



', 

I 

l 

' ., 

Our Docket/Ref. No.: APPT-001-2 Patent 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Dietz et al. 

Serial No.: 09/609179 

iled: June 30, 2000 
--J=-c1 ,-2--.,. 

Group Art Unit: 2 7 5 6 

Examiner: 

~ ~ iitf~. PROCESSING PROTOCOL 
.... ~ ~ PECIFICINFORMATIONIN 
0 .._' ~ ACKETS SPECIFIED BY A 

RECEIVED 
~ Ii PROTOCOL DESCRIPTION 

PATEM'l"'~~ LANGUAGE 

APR 1 7 2002 

Techn~Jogy fenter 2100 
~ 

Commissioner for Patents 
Washington, D.C. 20231 

INFORMATION DISCLOSURE STATEMENT 

Dear Commissioner: 

This Information Disclosure Statement is submitted: 

..X... under 37 CFR l.97(b), or 
(Within three months of filing national application; or date of entry of international 
application; or before mailing date of first office action on the merits; whichever 
occurs last) 

_x_ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together 
with copies, of patents, publications or other information of which applicant(s) are aware, which 
applicant(s) believe(s) may be material to the examination of this application and for which there 
may be a duty to disclose in accordance with 37 CFR 1.56 . 

...X. (Certification) Each item of information contained in this information disclosure 
statement was first cited in a formal communication frolfi a foreign patent office in a counterpart 
foreign application not more than three months prior to the filing of this information disclosure 
statement (written opinion from PCT mailed Jan 11,2002). 

It is expressly requested that the cited.information be made of record in the application and 
appear among the "references cited" on any patent to issue therefrom. 

Certit\cate of Mailing under 37 CFR 1.18 

' I hereby certify that this correspondence is being deposited With the United States Postal Service as first 
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 2023 L 

Date of Deposit: ;i2 t1cc.-r Z.l;e? 2.. Signatur~ ::::::::::> 
~~ ~Reg.No. 38,687 

EX 1018 Page 218

“‘w~‘-§-:H-W»W¥m
.- mrtmwumv

«mW’W—vmw‘
(N(

v»

 
 

Our Docket/Ref. No.: APPT—DOLZ Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 Applicant(s): Dietz et 211.

Serial No.: 09/609179 Group Art Unit: 2 '7 5 6

Examiner:

 

95 'ACKETS SPECIFIED BY A A PR
g PROTOCOL DESCRIPTION 1 7 2002

9‘“ LANGUAGE TeCthiogy Center 2100
“W

Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

.25.. under 37 CPR l.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

_,2_(__ Applicant(s) submit herewith Form PTO 1449—Information Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

3; (Certification) Each item of information contained in this information disclosure

statement was first cited in a formal connnunication frorii a foreign patent office in a counterpart

foreign application not more than three months prior to the filing of this information disclosure

statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited «information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

  
  

 

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deponted with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit:M Simamrflqv. v Rosenfeld, Reg. No. 38,687

EX 1018 Page 218

  



I 

I 
J 
i 

t 

s/N: 09/609179 Page2 IDS 

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and 
references cited are prior art merely because they are in this statement and no representation is 
being made that a search has been conducted or that this stat_ernent encompasses all the possible 
relevant information: · 

~ate: 3o No..r 2~ "1-

Correspondence Address: 
Dov Rosenfeld 
5507 College A venue, Suite 2 
Oakland, CA 94618 
Telephone No.: + 1-510-547-3378 

Respectfully submitted, 

~--------------

,1' 

Attorney/Agent for Applicant(s) 
Reg. No. 38687 

EX 1018 Page 219

S[N: 09/609179 Page 2 ,. IDS

AS provided for by 37 CFR I.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is
being made that a search has been conducted or that this statement encompasses all the possible

relevant information:

Respectfully submitted,

Dov éosenfeld
Attorney/Agent for Applicant(s)

/, Reg. No. 38687

5221:6130 Mar 265?,

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1 —5 10647-3378

 
l

5;

EX 1018 Page 219



ofll\4 .1449 SHEET 1 OF 1. 
erst,F --

-
,,.- ATTY. DOCKET NO. SERIAL NO. 

APPT-001-2 09/609179 

• INfOBMATION DISCLOSURE STATEMENT APPLICANT 

~~ ~ JC1<- Dietz et a1. 
~ <T 

~ 
\ 

o' ~~ ..._ 1e several sheets if necessary) FILING DATE GROUP 

' ~l , 6/30/2000 ~vsr i ' ~ Er: , U.S. PATENT DOCUMENTS 
' P.f!E1fr&~ 

_. FILING DATE 

•E)(AMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPRIATE 

tNmAL NUMBER 

-{jJ) 5,703,877 Dec. 30, Nuber et al. 370 395 Nov. 22, 
AA 1997 ,I' 1995 

'. ~ tlfl 5,826,017 Oct. 20, Holzmann 
.., 

:,::_Q..Q.-:-6-Feb. 10, 
AB 

37.J 

1998 7d/ ll1 ;( 1992 

AC I\ 
AD 

"" 
Hf ECEr {ED 

A£ \ /. PR 1 7, 1002 . 
AF \ tcnnc !P9YC!n er2100 --
AG \ 
AH \ 

' \ Al 

AJ \ 
AK \ 
AL \ 

' \ AM 

AN \ 
FOREIGN PATENT DOCUMENTS 

PUBLI-CATION TRANS-

i DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION 
~ NUMBER YES I NO 

AO I -
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.) - AP 

~ t---.. 
~MINER 

O,vt~ DATE CONSIDERED 

:--.. KhoV\n S/i'6/03 
l::XAJviiNER: 

initial if citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance ---and !l.Q1 considered. Include a copy of this form with next communication to Applicant. 

EX 1018 Page 220



0 

United States Patent 
Nuber et al. 

(19] 

[54] ACQUISITION AND ERROR. RECOVER.Y OF 
AUDIO DATA CARRIED IN A PACKETIZED 
DATA STREAM 

[75) Inventors: Ray Nuber, La Jolla; Panl Moroney. 
Olivenhain; G. Kent Walker. 
Escondido. all of Calif. 

[73} Assignee: General Imtroment Corpol"ation of 
Delaware, Odcago, m. 

[ • ] Notice: The term of this patent shall not extend 
beyond the expiration date of Pat. No. 
5,517.250. 

[21] Appl. No.: 562,611 

[22) Filed: No-v. 22, 1995 

[51] Int. CL
6 

.. -.-- .. -·-----·- BNJ 3/86; H04N 7/12 
[52] U.S. CL ····---·-·· ..... 3741/395; 370'510; 370/514; 

375/366; 348/423; 3481462; 348/4<i6; 3481467 

(58) Field or Sean:b --·--·----·--···- 370!389, 395. 
370/503, 5()(), 510, 514, 516; 375/362, 

365,366,368,371;348/423,461,462. 
464,466,467 

(56] Refe~nces Cited 

U.S. P.Kl'BNT DOCUMENTS 

5,365,272 11/1994 Sincnsa -HM>MH•-··-·--·--· 34111461 

n 
11•1111111r1111111 

(11) 

[4SJ 

US005703877A 

Patent Number: 

Date of Patent: 

5,703$77 
*Dec. 30, 1997 

5,376,969 12/1994 Z;:fepw ................................... 348/466 
5,467,342 11/1995 Logstoo et al .......................... 37M53 
5,517,250 511996 Hoogenboom et al. --··--···-· 3431467 
5,537,409 711996 Mori:ylUlla et al. ·-·-···-····· 37<Y471 

Primary Emmhtel'-Alpus H. Hsu 
Atto1'14)t Agent, or Firm-Barry R. Lipsitz 

[57] ABSTRACT 

AUdio data h processed from a packctized data stream 
carrying digital television information iD a succession of 
fixed length transport packets. Some of the packets contain 
a presentation time stamp (Pl'S) indicative of a time for 
col!lllU:.llCing the ootput of associated audio data. After the 
audio data stream has been acquired.. the dctccted audio 
packets arcmooitoredtolocarc subsequentPI'S's for adjust
ing the timing at which audio data is output, thereby 
providing Jroper lip synchronization with associated video. 
Errors iD the audio data arc processed in a manner which 
attempts to maintain synchronization of the audio data 
stream while nwl:ing the mors. In the event that the 
synchronization condition cannot be maintained, for 
example in the presence of errors over more than one audio 
fi:ame, the audio data sttcam is reacquired while the audio 
oulput is concealed.. An Ciror condition is signaled to the 
audio decoder by altering the audio synchronization wcrd 
usociated with the audio frame in which tbe en:or has 
ocam:ed.. 

25 Claims, 4 Drawing Sheets 

COMl,IANO:FORCE IDLE ~l}OO 
102 

, __ _ 
COMMAND:ACOUIRE fRAIIE SYNC 

ERROR: P'!S. SYNC. tN, ADP, EMC, RS. AUD, P1RS fUll 

EX 1018 Page 221

lllllllllfl .11? 
O

WIRIMIHEMIIII 
 

 

U3005703877A

Unlted States Patent {19] [11] Patent Number: 5,703,877
Nuber er a]. {45] Date of Patent: *Dec. 30, 1997

[54] ACQUISITION AND ERROR RECOVERY OF 5376.969 12(1994 Zdepski m......................... 3481466
AUDIO DATA CARRIED m A PACKETIZED 5.467.342 “”995 LOW 9* 81- ~~~~~~~~ . -

_ DATA STRW 5,517,750 5’1996 Hoogenboomet at .....m
5,537,409 7f1996 Nady-mad a]. ......

[75] Inventors: Ray Nnber. La 10113; Paul Mom.
1 Olivcnhoin: G. Kent Walker. Primy EmndneF-Alpus 3, Hsu
Y Escondido, all of Calif. Attorney. Agent, or Finn-Em R. Lipsitzr

3 [‘73] Assignee: General Instrument Corporation of [57] ABSTRACT

,L; Delaware, Chicago, 111. Audio data is processed from a packetized data stream
t . ' _ can'ying digital television infmfion in a succession of
5 [‘ 1 Wm “'9 m“ 01' this, P5?” 51““ “0* Md fixed length mm pacbts. Some of the packets contain
g beyond the expmmon date °f P3“ N°' a presentation time stump (PI‘S) indicative of a time for
‘3‘ 5517.250‘ commencing the output of associated audio data. After the

1 mdio data stream has been acquired, the detected audio

; [21] APPI- N04 552.511 packets at: monilmedto loom: subsequentPTS's for adjush, ing the timing 1: which audio data is output. thereby
" [22] Filed. Nov. 22" 1995 providing proper lip synchroninu‘on with associated video.
2 [51] Int. Cl.‘5 ................................. 1104.] N06; 1104»! 7/12 E11013 In the audio data m processed in a manner which
E {52] us. CI. WWW....... 3101395; 37051031701514; mums to maintain syndtmnization of the audio data
;- 37S!366:34814B: 3481462348146633481467 stream while musing the errors. In the event that the

[53] mg of Search .................... 370/339, 395. synchronization condition clnnot be maintained. for
370503, 509‘ 510, 514. 515; 375,352, example in the pumice of mots over more than one audio

355, 3551 353‘ 371; 343/423‘ 451’ 462. frame. the audio data stream is mcquired while the audio
g 4549 466. 467 uniput is concealed. An mot condition is signaled to the
; audio decoder by 33:21:13 the audio syndrroniufion word
’“ [55] References and undated with the audio mm: in which the error hasocumod.

E 0.8. PMW5
3 5,365,272 11/1994 Shams: m...»...~..._.w.~... 3481461 25 Claims, 4 Drawing Sheen;

:00

Q consummate mu:,
1
:

  
 

WWIQ F’T'S AND DATA
RECENED

ERROR: 913. SYNC. w. 1101’. ENC. RS, AUD. FTRS mu.

EX 1018 Page 221



I 
I 

I 
I 
I 

~ ., ..... ._. ••• ,,, ,, ..... ,,..N ...... //~--~- ... 1-..,..._.,_.ll,J .. __ ........, _________ ' 
~~~~,-·f.•J ....... if ' , 

I I W -· 1¥/¥-4.-il!! I_~!!. ••,~10 lili'1;iij,i ·m«
"' ::-:)

s,
~I
c'

PES
HEADER

I
I
I
I
I
I
I 24
I
I
I

12 12

AUDIO FRAME
s,
~I
c'

(20

PES PAYLOAD

AUDIO FRAME

r14
12 /

s,
~ : AUDIO FRAME

ELEMENTARY
STREAM

I
I
I
f
I
I
I

I PES
PACKET

24

0 A TRANSPORT
PACKETS A V O A V O A V O A V O A V

30

' ',, 28
.... ,

32 ',,,
24 24

',

FIG. 1

188 BYTES(MPEG)
24

w ·-"]
~ ~=
Im

~
~

rn =-('II
('II
Im

~
.i:,..

EX 1018 Page 222

r.
' ‘ ’ ““"W ’ "*‘W W‘ “'W‘uWWW- . memWA. (

é

S3
.m

ELEMENTARY :96
AUDIO FRAME STREAM 8

E,

U . ‘
8 3

PES 8
PACKET L

I {3
l \ll
l

i
I 24 / 24 \ \ m
: ,I”’26 /’/ ll, \\ \\\ \\\‘\ 24 g
| , ’ x I \ \ ‘ ‘ H

. TRANSPORT 9»

I ‘ x

,’ \\ 28 24 / 2430 N ’
/ 32 ‘~\ 22 1:)

U]

fig; PAYLOAD \ FIG. 1 '51
24 “m

188 BYTES(MPEG) 31°
N]

EX 1018 Page 222

-· ·---,---~,,w.,_,, Ii • , ,_,,.,~"'·· ·--,~-·~ ·----, ' ' .. ' . . ·- " - -- .

' '.'.) .

DECODER
42

L--µ""'P __ VIDEO CONTROL DATA
88 ADDR. + CONTROL

48
VIDEO BUFFER VIDEO

TRANSPORT OEMUX AND
o....l=t.T~EAM.....__, DATA PARSING AUDIO

52

1-------VIOEO OUT

40 44 1--=-==-------,AUDIO 1--------AUDIO OUT t:1
i...;.;;;....,...."'I""' DECODER ~

PCR ADDR. + CONTROL

PROGRAM CLOCK

46

RESET
-----------------------------r---

1
I
I

PCR.o---+ 1
--,

60 62

LOOP
FILTER

46_/

vco

64 66

M J

FIG. 2

------,

COUNTER PROGRAM
CLOCK

Ul 68
':....
8

3 FIG. Q1'.)

:::f

/:)

EX 1018 Page 223

TRANSPORT

, 7 Raw

4O

44

42

DECODER

,uP
VIDEO CONTROL DATA

88 ADDR. + CONTROL 48
mm mom

I ADDR. + CONTROL“
AUDIO CONTROL DATA

DECODER
TIME

CLOCK

PROGRAM CLOCK

.. «imam W~~vfimeww rmmr) - , '

.52

DATA PARSING AUDIO AUDIO

”"w‘rflqw‘ww saga-c» a.» .. ’WW’MWWW” we..." 'A . x. - / 1W”. ~."‘*€§‘.?\.
- -. v.f

“Bled‘S'fl
VIDEO OUT

-
AUDIO

DECODER AUDIO OUT

54 LaflVE'3G
FIG. 2

VF’ZFEWS
PROGRAM

CLOCK 9

FIG. 3 LL8‘90L‘S

EX 1018 Page 223

TRANSPORT
PACKETS

40
PIO
DETECT

~-v, -........... j '.)i,U nit.···"' 1"-l!n·----·-·--·-·-· -~ ,!Ni:-. ----·~-·--""""'""""'"'iiiilt~j,,.;;r.-.-•r•:~··'
,\.

FIG. 4

74
,-, 72 MODIFIED SYNC V AUDIO DATA TO

------,__....:A.!:::U:.=.D:.::.10...:.P..:.:KTS:.;..::;...--t-----i WORD INSERTER BUFFER
DEMUX •

"'-----,, ,-, 78
7t_..-E-RR..._O_R_ _ SYNC WORD

..__---4-iDETECT11--~---, INVERTER

t CONTROL VIDEO
PKTS PKTS

SYNC

""I,----------,,
SYNC WORD PCR LIP SYNC &: BUFFER 84

.,___-i PCR &: PTS PTS OUTPUT TIMING .____._CONTROL ./
/' DETECT - COMPENSATOR

80 - ----SYNC

AUDIO SAMPLE 86
--- & BIT RATE 1-/

'---"
CONTROL

CALCULATOR

TO
µp

t___ _______ ,r..___ _ ____. ADDRESS

'-88

EX 1018 Page 224

TRANSPORT 7'0 FIG' 4
PACKETS PID

~ DETECT
40 74

72 women SYNC Aumo DATA TO

nmux AUD‘O PKTS WORD INSERTER BUFFER

ERROR SYNC WORD
INVERTERDETECT

CONTROL VlDED
PKTS PKTS

/ SYNC WORD up SYNC a; BU44 PCR 3: PTS ourpur mmcl FFER
PT CONTROLDETECT S COMPENSATOR

AUDIO SAMPLE
8c BIT RATE CONTROL
CALCULATOR

ADDRESS

TO

W as

.5:
90

"U
B?9*
G

3

L661‘0€”’90

173°9mils

LLs‘soL‘s

EX 1018 Page 224

i
f
i

l

0

U.S. Patent Dec. 30, 1997

COMMAND:ACQUIRE .._ __ ,

108

EVENT:AUDIO PTS AND DATA
RECEIVED

Sheet 4 of 4 5,703,877

ERROR:SYNC.
ENC, RS, AUD,
PTRS FULL

106

ERROR:SYNC, ENC,
RS, AUD, PTRS
FULL

ERROR:SYNC, ENC, RS,
AUD, PTRS FULL

ERROR: PTS, SYNC, OV, ADP,
ENC, RS. AUD. PTRS FULL

FIG.
5

ERROR: PTS, SYNC, ov. ADP, ENC, RS, AUD, PTRS FULL

EX 1018 Page 225

C“ 0

US. Patent Dec. 30, 1997 Sheet 4 of 4 5,703,877

COMMANDzFORCE IDLE —

102

COMMAND:ACQUIRE —@
INTERRUPT:DPTS REG 1

DELTA PTS WAfI'

104

EVENTlePUT PROCESSOR WRITES DPTS—ACQ ERRORSYNC.
ENC, RS, AUD.
PTRS FULL

PCR ACQUIRE

106

. ERRORSYNC, ENC.EVENTAUDIO PCR RECENED I RS, AUD' PTRS

PTS ACQUIRE

ERROR:SYNC. ENC, RS.

EVENTzAUDIO PTS AND DATA AUD. PTRS FULL
RECEIVED

no ® ERR0R2PCR 0&31
ERROR: PTS. SYNC. 0v. ADP,

EVENT;STC=PTS+DPTS I ENC, RS. AUD. PTRS FULL

100

ERROR: PTS. SYNC. 0V. ADP, ENC. RS. AUD. PTRS FULL

FIG. 5

EX 1018 Page 225

t

I
~ .

I

0

5,703,877
1

ACQUISfflON AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED

DATA STREAM

BACKGROUND OF THE INVENTION

2
associated data to facilitate remultiplexing and network
routing operations. When an adaptation field is used. the
payload is correspondingly shcrter in length.

The PCR is a sample of the system time clock (STC) for
5 the associated program at the time the PCR bytes are

received at the decodc:r. The decoder uses the PCR values to
The present invention relates to a method and apparatus synchronize a decoder system time clock (STC) with the

for acquiring audio data from a pac:ketized data stream and enooda's system time clock. The lower nine bits of a 42-bit
recovery from CIIors contained in such data. STC provide a modulo-300 counkr thst is incremented at a

Various standards have emerged for the transport of 10 27 MHz clock rate. At each modulo-300 rollover. the count
digital data, such as digital television data. Examples of such in the upper 33 bits is incremented, such that the upper bits
standards include the Moving Pictures Experts Group of the STC represent time in units of a 90 kHz clock period.
(MPEG) standards and the DigiCipher® n standard proJri- This enables presentation time stamps (PfS) and decode
etary to General Instrument Corporation of Chicago, m., time stamps (DTS) to be used to dictate the proper time for
U.S.A., the assignee of the present invention. The DigiCi- 15 the decoder to decode access units and to present presenta-
phCI@ n standard extends the MPEG-2 systems and video lion units with the accuracy of one 90 kHz clock period.
standards, which are widely known and recognized as Inns- Since each program or service carried by the data stream
port and video compression specifications specified by the may have its own PCR, the programs can be multiplexed
International Standards Organization (ISO) in Document asynchronously.
series ISO 13818. The MPEG-2 specification's systems 20 Synchronization of audio. video and data presentation
"layer" provides a transmission medium independent coding within a program is accomplished using a time stamp
technique to build bitstreams containing one or more MPEG app-oach. Presentation time stamps (PI'Ss) and/or decode
programs. The MPEG coding technique uses a formal gram- time stamps (DTSs)are inserted into the transport stream.for
mar ("syntax") and a set of semantic rules for the construe- the separate video and audio packets. The PrS and D'fS
tion of bitstreams. The syntax and semantic rules include 25 information is used by the decoder to determine when to
provisions for demultiplexing, clock recovery, elementary decode and display a picture and when to play an audio
stream synchronization and error handling. segment. The PrS and DTS values are relative to the same

The MPBG transport stream is specifically designed for system time clock sampled to generate the PCRs.
use with media that can generate data caors. Many

30
All MPEG video and audio data must be formatted into a

programs, each comprised of one or more elementary packetized elementary stream (PE.S) formed from a succes-
sttcams, may be combined into a transport stream. Examples sion of PES packets. Each PBS packet includes a PFS header
of services that can be provided using the MPEG format arc followed by a payload. The PBS packets are then divided
television services troadcast over teacstrial, cable television into the payloads of successive fixed length transport pack.-
and satellite netwOlb as well as interactive telephony-based 35 els.
services. The primary mode of information carriage in PES packets are of variable and relatively long length.
MPEG broadcast applications will be the MPEG-2 transport Varioos optional fields, such as the presentation time stamps
stream. The syntax and semantics of the MPBG-2 transport and decode time stamps may be included in the PPS header.
stream are defined in International Organisation for When the transport packets are formed from the PBS. the
Standardisation, ISO/IEC 13818-1. International Standard, 40 PBS headers irnmeiliately follow the lnnsport packet bead-
1994 entitled "Generic Coding of Moving Pictures and crs. A single PES packet may span many transpcxt packets
AssociatedAudio:Systems,"rccommendationH.222,incor- and the subsections of the PES packet must appear in
porated herein by reference. consecutive transport packets of the same PID value. It

Multiplexing according to the MPEG-2 standard is should be appreciated, however, that these transport packets
accomplished by segmenting and packaging elementary 45 may be freely multiplexed with other transport packets
streams such as compressed digital video and audio into having different Pills and cmying data from different
packetized elementary stream (PES) packets which are then elementary streams within the constraints of the MPEG-2
segmented and packaged into transport packets. AF. noted Systems specification.
above, each MPBG transport packet is fixed at 188 bytes in Video programs are carried by placing coded MPEG
length. The first byte is a synchroniution byte having a 50 video streams into PBS packets which are then divided into
specific eight-bit pattern, e.g., OlOOOUl. The sync byte transport packets far insertion into a transport stream. Each
indicates the beginning of each transport packet. video PES packet contains one or more coded video

Following the sync byte is a three-byte field which pictures, referred to ,as video "access units." A PrS and/or a
includes a one-bit transport pacnt error indicator, a one-bit DTS value may be placed into the PES packet header that
payload unit start indicator, a one-bit transport priority 55 encapsulates the associated access units. The DTS indicates
indicator, a 13-bit packet identifier (PID), a two-bit transport when the decoder should decode the access unit into a
scrambling control, a two-bit adaptation field control, and a presentation unit The PfS is used to actuate the decoder to
four-bit continuity counter. The remaining 184 bytes of the present the associated presentation unit.
packet may carry the data to be communicated. An optional Audio programs are provided in accordance with the
adaptation field may follow the prefix for canying bolh 60 MPOO Systems specification using the same specification of
MPEG related and private information of relevance to a the PES packet layer. PfS values may be included in lhose
given transport stream <r the elementary stream carrled PES packets that contain the first byte of an audio access unit
within a given transport packet. Provisions for clock (sync frame). The first byte of an audio access unit is part of
recovery, such as a program clock reference (PCR), and an audio sync word. An audio frame is defined as the data
bitstream splicing infonnation are typical of the information 65 between two consecutive audio sync words. including the
carried in the adaptation field. By placing such information preceding sync word and not including the succeeding sync
in an adaptation field. it becomes encapsulated with its word.

EX 1018 Page 226

ku‘mulMN.”.

,1“Mun—v«a.....

O

5,703,877
1

ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED

DATA STREAM

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus
for acquiring audio data from a packeh'zed data stream and
recovery from was contained in such data.

Various standards have emerged for the transport of
digital data. such as digital television data. Examples of such
standards include the Moving Pictures Experts Group
(MPBG) standards and the DigiCipher® 11 standard prop-i-
etary to General Instrument Corporation of Chicago, 111.,
U.S.A., the assignee of the present invention. The DigiCi-
pher® [I standard extends the MPEG-2 systems and video
standards, which are widely known and recognized as trans-
port and video compression specifications specified by the
International Standards Organization (ISO) in Document
series ISO 13818. The MPEG-2 spedfication’s systems
‘1ayer" provides a transmission medirnnindependent coding
technique to build bitstreams containing one or more MPEG
programs. The MPEG coding technique usa a formal gram-
mar (“syntax”) and a set of semantic rules for the construc-
tion of bitstreams. The syntax and semantic rules include
govisions tor demultiplexing. clock recovery, elementary
stream synchronization and error handling.

The MPEG transport stream is specifically designed for
use with media that can generate data errors. Many
gograms. each comprised of one or more elementary
streams, may be combined into a transport stream. Examples
of services that can be provided using the MPEG format are
television services broadcast over tenesh'ial. cable television
and satellite networks as well as interactive telephony-based
services. The primary mode of information carriage in
MPEG broadast applimtions will be the MPEG-2 transport
stream. The syntax and semantics of the MPEG-2 transport
stream are defined in International Organisation for
Standardisation, ISO/[EC 13818-1. Intanational Standard.
1994 entitled “Generic Coding of Moving Pictures and
Associated Audio: Systems," recommendation H.222. incor-
porated herein by reference.

Multiplexing according to the MPEG-2 standard is
accomplished by segmenting and packaging elementary
streams such as compressed digital video and audio into
packetized elementary stream (PPS) packets which are then
segmented and packaged into transport packets. As noted
above. each WEGtransport packet is fixed at 188 bytes in
length. The first byte is a synchronization byte having a
specific eight-bit pattern. e.g.. 01000111. The sync byte
indicates the beginning of each transport packet.

Following the sync byte is a three-byte field which
includes a onehit transport packet error indicator, a one-bit
payload unit start indicator, a onerbit transport priority
indicator. 3 13-bit packet identifier (PID), a two-bit transport
scrambling control, a two-bit adaptation field control. and a
four-bit continuity counter. The remaining 184 bytes of the
packet may carry the data to be communicated. An optional
adaptation field may follow the prefix for carrying both
MPEG related and private infatuation of relevance to a
given transpu't stream or the elementary stream carried
within a given transport packet. Provisions for clock
recovery. such as a program clock refaence (PCR), and
bitstrearn spliu'ng information are typical of the information
carried in the adaptation field. By placing such information
in an adaptation field. it becomes encapsulated with its

10

15

35

55

65

2
associated data to facilitate remultiplexing and network
routing operations. When an adaptation field is used. the
payload is correspondingly shorter in length.

The PCR is a sample of the system time dock (Sl‘C) for
the associated program at the time the PCR bytes are
received at the decoder. The decoder uses the PCR values to
synchronize a decoder system time clock (SIC) with the
enooda's system time clock. The lower nine bits of a 42—bit
Sl‘C provide a modulo-300 counta that is incremented at a
27 MHz clock rate. At each modulo-300 rollover. the count
in the upper 33 bits is inuemcnted, such that the uppu' bits
of the SIG represent time in units of a 90 kHz clock period.
1his enables presentation time stamps (HS) and decode
time stamps (D'I‘S) to be used to dictate the proper time for
the dccodu to decode awess units and to present presenta-
tion units with the accuracy of one 90 kHz clock period.
Since each program or service carried by the data stream
may have its own PCR. the programs can be multiplexed
asynchronously.

Synchronization of audio. video and data presentation
within a program is accomplished using a time stamp
appoach. Presentation time stamps (PTSs) and/or decode
time stamps (DTSs)are insured into the transport streamior
the separate video and audio packets. The PTS and UPS
information is used by the decoder to determine when to
decode and display a picture and when to play an audio
segment. The PI'S and UPS values are relative to the same
system time clock sampled to generate the P025.

AllMPFGvideo and audiodatamust beformattedinto a

parietized elementary stream (PBS) formed from a succes—
sion of PES packets. Each PBS packet includes a PBS header
followed by a payload The PBS packets are then divided
into the payloads of successive fixed length transport pack-ets.

PBS packets are of variable and relatively long length.
Various optional fields, such as the presentation time stamps
and decode time stamps may beincluded in the m header.
When the transport packets are formed from the PFS. the
PE? headers immediately follow the transport packet head-
ers. A single PBS packet may span many transport packets
and the subsections of the PBS packet must appear in
consecutive transport packets of the same PID value. It
should be appreciated. however, that these transport packets
may be freely multiplexed with other transport packets
having difi’u'ent Ple and carrying data from difierent
elementary stream within the constraints of the MPEG-2
Systems specification.

Video program are carried by plating coded MPEG
video streams into PFS packets which are then divided into
transport packets for insertion into a transport stream. Each
video PBS packet contains one or more coded video
pictures. referred to as video “access units." A PTS and/or a
DTS value may be placed into the PES packet header that
encapsulates the associated access units. The DTS indicates
when the decodrn' should decode the access unit into a
presentation unit. The PTS is used to aduate the decoder to
present the associated presentation unit.

Audio programs are provided in accordance with the
MPEG Systems specification using the same specification of
the PBS packet layer. PI‘S values may be included in those
PBS parkets that contain the first byte of an audio access unit
(sync frame). The first byte of an audio access unit is part of
an audio sync word. An audio frame is defined as the data
between two consecutive audio sync words. including the
preceding sync word and not including the succeeding sync
word.

EX 1018 Page 226

0
5,703,877

3 4
In DigiCipber@ n, audio transport packets include one or infoIJlllltiOD will be dominated by whether the rccciva has

both of an adaptation field and payload field. The adaptation adequate error detection. Thus, it would be advantageous to
field may be used to transport the PCR. values. The payload provide a decoder having two modes of operation. In a
field lranspc.ts the audio PBS, consisting of PES headers robust error detection environment such as for satellite
and PES data. PES headers arc used to transport the audio s cotDDlllDicalions or cable media, where error detcdion is
PfS values. Audio PBS data consists of audio frames as robust, a seamless mode of operation can be provided by
specified. e.g., by the Dolby@ AC-3 or Musicam audio trusling a bit rate change indication provided by the data. In
syntax specifications. The AC-3 spocifi.cations are set forth a less robust error detection enviromnent, indications of bit
io a document entitled Digital Audio Compression (AC-3), rate changes can be ignored, at the expense of requiring
ATSC Standard. Doc. A/52, United States Advanced Tele- 10 resynchronization of the audio in the event that the bit rate
vision Systems CQIIJDlittce. The Musicam specification can bas ICl:Ually changed.
be found in the document entitled "Coding of Moving It would be further advantageous to provide an audio
Pictures and Associated Audio for Digital Storage Media at decoder in which syncbroniz.ation to the audio bitstream is
Up to About 1.S MBII'/s," Part3Audio, 11172-3 (MPEG-1) maintained when the audio data contains errors. Such a
published by ISO. Each syntax sped.fies an audio sync frame u decoder should conceal the audio for those sync frames in
as audio sync word, followed by audio information includ- wllid! an cmr has occurred, to minimize the aural impllct of
ingaudiosamplente, bitrateand/orframesize.followedby audio data c:ro.rs.
audio data. Ji would be still further advantageous to provide a decoder

In order to reconstruct a television signal from the video in which the timing at which audio data is output from the
and audio infmmation am:ied in an MPBG/DiglOpher® D 20 decoder's audio buffer is adjusted on an ongoing basis. The
transport stream. a decoder is required to process the video intent of such adjustments would be to insure correct pre·
packets fer output to a video decompression processo: sentation time for audio elementary streams.
(VDP) and the audio paclccts for output to an audio dccom- The present invention provides methods and apparaiUS for
pression proces.sCI" (ADP). In order to properly process the decoding digital audio data from a packetized tnnsport
audio data, the decoder is required to synchrolliz.e to the 25 stream having the aforementioned and other advantages.
audio data packet stream. In particular, this is required to SUMMARY OF THE INVEN'IlON
enable audio data to be buffered for continuous output to the • . •
ADP and to enable tbe audio syntax to be read for audio rate In accordance wl:h ~ present. mveotion, a method is
ioform.ation necessary to delay the audio output to achieve provided for proccssmg digital audio data from a packel.ued
proper lip synchroniz.ation with respect to the video of the 30 data stream ca.tzying television information in I succession
same program. of fixed length transport packets. Bach of the packets

• . . includes a packet identifier (PJD). Some of the paclccls
Several .events can :result lll ~ condilions with respec:t contain a program clock reference (PCR.) value for syod!ro-

to the audio processing. These illcl:ude loss of audio trans- mzing a decoder system time clock (STC). Some of the
port packets due to transmission ~l m:o.n. ~ will 35 packets contain a presentation time stamp (PfS) indicative
also result from the receipt of audio packets which are not of a time fer commencing the output of associated data for
properly deaypted or arc still .eo~ _A decoder must be use in ieeonsttucting a television signal In accordance with
able to ~aodle such ~ without agm6cmtly degrading the method, lhe PID's for the packets carried in the data
the quality of the audio output. Slream arc monitored to identify audio p1ckets associated

'f!1e decoder must also ~ able to handle ~ges in the 40 with the desired program. The audio packets are examined
audio sample rate and audio bit rate. The audio sample rate to locate the occmrenoe of at least one audio syncbrooiza-
for a given audio clementuy stream wW rarely change. The tion wcrd therein for use in achieving a synchronization
audio bit rate, however. can often change at pr:ogram condition. The audio packets are monitored after the syn-
boundaries, and at the start and end of commcrcials. n is cbroniution condition has been achieved to locate an audio
difficult to mailltain synchronization .to the audio • sl:Rlam ,45 PTS. After the PI'S is located, the detected audio packets arc
through such rate changes, since the srze of the audio sync aearcbed to locate the next audio synchronization word.
frame~ is dependent oo the .audio ~ rate and ~t rate. Audio data following the next audio synchronization word is
Handling uodeteded errors ID the audio stream, particularly stored in a bulfcr. The stored audio data is output from the
in systems where error detection is weak. complicates the buffer when the decoder system time clock reaches a speci-
tracking of the audio stream through rate manges. When a ~ fi.ed time do:i.vcd from the PTS: The detected audio packets
received bitstream indicates that an audio rate bas changed, are continually monitored. to locate subsequent audio PrS's
the rate may or may not have actually changed. If the for adjusting the timing at which the stored audio data is
decoder responds to an indication from the bitstmun that the output from lhe buff« on an ongoing basis.
audio rate bas dtaoged when the in~cation is ~ ~or 11Dd A Pl'S pointa can be provided to maintain 11 current PfS
the rate has not changed. a loss of audio synd!romution will ss value and an address of the buffer identifying where the sync
likely occ~. 'Ibis can result in an audio signal degradation word of an audio frame refen,,d to by the current PTS is
that is noticeable to ID end user. stored. In order to provide the timing adjustment. the PfS

To support ID audio sample rate change, the audio clock value in the PJ'S pointer is replaced wil:b a new PfS value
rates utiliz.ed by the decoder must be changed. This process after data stored at the address specified by the PTS pointer
can take significant time, again degrading the quality of the <,o bas been output from the buffer. The address specified by the
audio output signal Still further. such a sample rate change PTS pointer is then replaced with a new address cocrespond-
will require the audio buffers to be cleared to establish a ing to tbe sync word of an audio fnune refened to by the new
different sample-rate-dependent lip sync delay. Thus. it may PfS value. The oulpllt of data from the buffer is suspended
not be advantageous to trust a signal in the received bit- when the new buffer address is reached during the preseo-
strea:m indicating that the audio sample rate has changed. 6S tat.ion process. The output of data from lhe buffer is recom-

With respect to bit rate changes. the relative frequency of menccd when the decoder's system ti.me clock reaches a
such changes compared to undetected enors in the bit rate specified time derived from lhe new PJ'S value.

EX 1018 Page 227

g

Mnmwxnm-WWEV—
{1m-Manon-“~W'
.w,w«

[fl 0

5,703,877
3

In DigiCiphfl'Q l]. 311le transport packets include one or
both of an adaptation field and payload field. The adaptation
field may be used to transport the PCR values. The payload
field transports the audio PBS, consisting of PBS headers
andPES data. PESheadersue usedtotranspcrtthc audio
PI‘S values. Audio PBS data consists of audio frames as

sparkled. e.g., by the Dolby® AC-3 or Musicam audio
syntax specifications. The AC3 specifications are set ford!
in a document entitled Digital Audio Compression (AC-3).
ATSC Standard. Doc. A152. United States Advanced Tele—

vision Systems Coxnmiltee. The Musieam specifieation can
be found in the dowment entitled “Coding of Moving
Pictures and Associated Audio for Digital Smge Media at
Up toAbout 1.5 MBl'I‘ls," Pauli Audio, 11172-3 (MPEG-1)
published by ISO. Etch syntax specifies an audio syncframe
as audio sync word, followed by audio information includ-
ing audio sample rate, bit rate and/or frame size. followed by
audio data.

In order to reconstruct a television signal from the video
and audio information married in an MPEGIDigiGphaG I!
msponsneamadecoderisreqldredtopmeess thevideo
packets fa output to a video decompression processor
(VD?) and the audio packets for output to an audio decom-
pression processor (ADP). In order to groperly process the
amfiodmthedeooduisrequiredmryndtroniumthe
Modntapaeketstream. Inpnflcular,tldsisrequiredto
enable audio data to be bufi'ered fir mntinuous output to the
ADP andto enablelhe audio syntax tobereadtnraudiorate
information necessary to delay the audio output to achieve
proper lip synchronization with respect to the video of the
same Wow

Several events our result in error conditions with respect
to the audio Focusing. mere include loss of mdio Inns-
port paclmts due to mmission channel errors. Ennis will
also result from the receipt of audio packets which are not
properly decrypted“ are still encrypted. Adeeodermnstbc
able to handle sud: errors without significantly Wading
the quality of the audio output.

The decoder must also be able to handle danger in the
audio sampler”: and audio bit rate. The audio sample rate
for a given audio clemenmy streamwill rarely change. ”Ibo
audio bit me, however. can alien change at program
boundaries. and at the start and end of oommem‘als. It is
difl‘tcult to maintain synchronization to the audio stream
through such rate changes, since the size of the aucfio sync
frames is dependent on the audio sample rate and bit rate.
Handling undetected errors in the audio stream, partiuilnrly
in systems where error detection is weak. complicates the
tracking of the audio strain through rate dtangcs. When a
received bitstrcam indicates that on audio rate has changed.
the rate may or may not have actually changed. If the
decoder responds to an indication fromthe bitstrwn mat the
audio rate has dianged when the limitation is in error and
the ratehas not changed. a loss of audio syndxronization will
likely occur. This can result in an audio signal degradation
that is noticeable to an end user.

To support an audio sample rate change1 the audio clock
rates utilized by the deooder must be changed. This process
«in take significant time, again degrading the quality of the
audio output signal. Still father, such a sample rate disuse
will require the audio bufiers to be cleared to establish a
dilferent sunple-rate-dependent lip sync delay. Thus, it may
not be advantageous to trust a signal in the received bit-
strcam indienting that the audio sample rate has dinnged.

With raped to hit rate changes. the relative frequency of
such dianges compared to undetected errors in the bit rate

10

15

35

45

50

SS

65

4

intonation will be dominated by whether the receiver has
adequate moi- detection Thus, it would be advantageous to
provide a decoder having two modes of operation. In a
robust error detection environment such as for satellite
communications or cable media, where error detection is
robust, a seamless mode of operation can be provided by
trusting t bit rate dunge indication provided by the data. In
a less robust em: detection environment. indications of bit
ratechangescanbeignored,atthe expenseofrequiring
resynchronization of the audio in the event that the bit rate
hns Initially {hanged

It would he further advantageous to provide an audio
decoder in which synchronization to the audio bitstream is
maintained when the audio data contains errors. Sud: a

decoder should conceal the audio for those sync frames in
whichon mhaswcmmdtominimizedte attainment of
audio data anus.

Bwould‘bc still further advantageous to provide a decoder
in which the timing at which audio data is output from the
decodu‘e audio India is adjusted on an ongoing basis. The
intent of such adjustments would be to insure correct pre-
sentdion time for audio elementary streams.

The present invention provides methods and. apparatus for
deoodingdigitalaudiodatafromapackefizedmnsport
stream having the aforementioned and other advantages.

SUMMARY OF THE WON

In accordance with the ixcsent invention. a method is
provided for processing digital audio data from a paclmlzed
date stem «trying television information in a succession
of fixed length transport packets. Each of the packets
includes a packet identifier (RED). Some of the packets
contain a progmnclock reference (PCR) value for syndm
nizing a decoder system time clock (STU). Some of the
packets contain a presentation time stamp (PPS) indicative
ofatimefaoommcing the output ofansociateddatafor
use inreconatructing a television signal. In accordance with
the method. the Pm's for the padrets carried in the data
3mm ere monitored to identify nudio packets associated
with the desired program. The audio packets are examined
to locate the occurrence of at least one audio syndnoniza-
tiou word thu‘ein for use in relieving n synchronization
condition. The audio packets are monitm'ed after the syn-
chronization condition has been addeved to locate an audio

PI‘S.Af1crfl1eYI'Sislocated.fitedetect¢dnudiopacketsure
searched to low: the next audio synchronization word.
Audio dab. following the next audio synchronizau‘on word is
stored in a bulfen The stored audio data is output from the
bulfer other: the decoder system time clock reaches a speci-
fied time derived from the PI‘S:'l‘he detected audio packets
are continually monitored to locate subsequent audio Pl‘S‘s
for adjusting the timing at which the stored audio data is
output from the buffa- on an ongoing basis.

AFI‘Spoiuta mbeprovided tomaintain acurrentl’l‘S
value and an address of the buffer identifying whee the sync
wordofannudiofumereferredtobythecurrentl’lsis
stored. In order to provide the timing adjustment. the PTS
value in the PPS pointer is replaced with a new PTS value
after data stored atthe address specifiedby thel’l‘S points
has been output fromthe butler. The address specified by the
ITS polnteris thenrede with a new address correspond~
ingto the syncwordofanaudioftamereferredto bythenew
PTS value. The output of data from the bufier is suspended
when the new bullet address is reached during the presen-
tation process The output of data tit-om the butter is recom—
menoed when the decoder's system time clock reaches a
spedfted time derived from the new PTS value.

EX 1018 Page 227

m.»

0 0

5,703,877
5 6

In an illustrated embodiment, the output of data from the indicated by the audio data on the assumption that the
buffer is recommenced when the decoder's system time sample rate has not actually changed, and concealing the
clock re.aches the time indicated by the swn of the new PJ'S audio frame containing the data indicative of an audio
value and an offset value. The offset value provides proper sample rate change while attempting to maintain the syn-
lip synchronization by accoUDting for any decoder video s chronization condition. 1bis strategy will properly respond
signal processing delay. In this manner, afta the audio and to an event in which the audio sample rate change or bit rate
video data has been decoded. the audio data can be presented change indication is the result of an euor in the indication
synchronously with the video data so that, for example, lhe itself, u opposed to an actual rate change.
movement of a person's lips in the video picture will be Similarly, audio data can be processed in accordance with
sufficiently synchronous to lhe sound reproduced. 10 a new rate indicated by the audio data in the absence of an

Toe method of the present invention can comprise the error indication pertaining to lhe audio frame containing the
further step of commencing a re.acquisition of the audio new rate, while attempting to maintain the synchronization
synchronization condition if the decoder's system time clock condition. The audio data is processed without changing the
is beyond the specified time derived from the new PrS value rate if an mor indication pertains to the audio frame
before the output of data from the buffer is recommenced. 15 containing the new rate. Al the same time, the audio framc
Thus. if a PJ'S designates that an audio frame should be to which the error condition pertains is concealed while the
presented at a time which bas already passed, reacquisition decoder attempts to maintain the synchronization condition.
of the audio data will automatically colDJl!ence to cm:t:et the If the synchronization condition cannot be maintained. a
liming ci:ror, thus minimizing the duration of the resultant reacquisition of the synchronization condition is
audio artifact. 20 commenced, as desired when lhe sample rate actually

In the illuslratcd embodiment, two consecutive audio changes.
synchronization words define an audio frame thcrcbetween, Apparams in acconlance with the present invention
includiJlg the preceding sync word. but not including the acquires audio information carried by a pack:etizcd data
succeeding sync wa:d. Toe occurrence of euors may be stream. Toe apparatus also handles errors contained in the
detected in lhe audio pac.ki:t.s. Upon detecting a first audio 25 audio infa:mation. Means arc provided for identifying audio
packet of a current audio frame containing an ci:ror, lhe write packets in lhe data stream. An audio elementary stream is
pointer for lhe buffer is advanced by the maximum number recovered from the detected audio packets for storage in a
of bytes (N) contained in one of the fixed length tr.llllsport buff'cr. An audio preselltldion time stamp (PJ'S} is located in
packets. At the same time, the CUirent audio frame is the detected audio packets. Means responsive to the PrS an:
designated as being in error. Toe subsequent audio packets 30 provided for commencing the output of audio data from the
of the c111ICnt audio frame arc monitoied for the next audio buffer at a specified time. Means are provided fa: monitoring
synchronization word after the error has been detected. If the the detected audio pacb:ts afti:r the output of audio data
synchronization ward is not n:ccived at the eiq,ected point in from the buffer has commenced, in micl' to locate subse-
the audio elementary stream. subsequent data is not stored in quent audio PrS' s fa: use in governing the output of audio
the buffer until lhe sync wml is located. Sta:age of audio 95 data from the buffer to insure audio is presented synchronous
data into the buffer is .resumed with the next sync word if lhe to any other elcmentuy streams of the same program and to
next audio synchronization word is located within N bytes maintain oor.rec:t buffer fullness.
after the commencement of lhe sem:ch lherefor. D' the next 1be apparatus can further comprise means for maintain-
audio synchronir.ation word is not located within N bytes ing a PfS pointer wJlh a airrent PfS value and an address
after the commencement of the search therefor, a reacqui- 40 of the bWfer idcntify:i:llg where a portion of audio data
sition of the synchronization condition is collllilCDccd. These referred to by the cw:rent PTS is stored. Means are Jr()Vided
steps will insure the buffer is maintained at the correct fa: replacing the Pl'S value in the PTS pointer with a new
fullness when as many as one tcansport packet is lost per cuaent PJ'S value after data stored at the address set forth in
audio sync frame, even wilh the sync frame size changes the PI'S pointer has been output from the buff'er. Toe address
such as with a sample rate of 44.1 k:sps, and will resynchro- 45 in the PJ'S pointa: is then replaced with a new address
nize the B11dio when too many audio transport packets are corresponding to a portion of audio data rcfc:rrcd to by the
lost. new current prs value. Means responsive to the PJ'S pointer

Whenever the audio data from which lhe television audio are provided for suspending the 0U1put of data from the
is being reconstructed is in caor, it is preferable to conceal buffer when the new address is reached. Means arc provided
the error in the television audio. In the illustrated 50 for: recommencing the output of data from the buff'er at a
embodiment, a cwrent audio frame is designated as being in time derived from the new current PJ'S value. In the event
cm:>r by altering the audio synd!ronizaiion word far that that the new Cllll'ent PI'S value is outside a predctemii.ned
frame. For example, eva:y otha bit of lhe audio syncb.ro- range, means provided in the apparatus conceal the audio
nization ward can be inverted. 1be error in the television signal and reestablish synchronization.
audio for the corresponding audio frame may then be ss In an illustrated embodiment, the audio transport packets
concealed in response to an altered synchronization word have a fixed length of M bytes. The transport packets carry
during the decoding and presentation process. This method a sua:cssioll of audio frames each contained wholly or
allows the buffering and Ciror detection process to signal the partially in said packets. The audio frames each begin with
decoding and presentation process when errors occur via the an audio synchronization word. Means are provided for
data itself, without the need for additional interprocess ro detecting the ocamence of enors in the audio packets. A
signals. write pointer for the buffer is advanced by the :maximum

The audio data can include information indicative of an number of audio frame bytes pa audio transport packet (N)
audio sample rate and audio bit rate, at least one of which is and a Clll'l'Cnt audio frame is designated as being in cnor
variable. In 511ch a situation. it is advantageous to maintain upon dctccting an error in an audio packet of the current
synchron.lution within the audio elementary stream during 65 audio frame. Means arc provided for monitoring the detected
a rate change indicated by the audio data. 1bis can be audio packets of the current audio ft:ame for the next audio
accomplished by ignoring an audio sample rate change synchronization word after the error has been dctected. lf the

f

L
EX 1018 Page 228

iIit
,5.~

up,w”_

0

5,703,877
5

In an illustrated embodiment. the output of data from the
buffet is recommenoed when the decoder’s system time
clock reaches the time indicated by the stun of the new PIS '
value and an offset value. The offset value provides proper
lip synchronization by accounting for any decoder video
signal accessing delay. In this nmnner. aftu' the audio and
videcdntnhns been decodedthe audio damean bemsented
synchronmsly with the video data so that. for example. the
movement of n pason’s lips in the video picture will be
sufficiently synchronous to the sound mm‘oduccd.

113a method of the present invention can oompsise the
further step of commencing a reacquisition of the audio
syndnmnization condition if the decoder‘s'system time clock
is beyond the specified time derived from the new PI‘S value
before the output of data from the butter is recommenoed.
Thus. if :1 yrs designates that an audio frame should be
presented at a time which has already passed, rencquisitlon
of the audio domwill nutcmatimlly commence to attract the
timing mar, thus minimizing the duration of the resultant
audio artifact

In the illustrated embodiment, two consecutive audio
syndnonizutian words define an audio frame therehetween.
including the preceding sync word. but not including the
succeeding sync word. The continence of errors may be
deteded in the audio packets. Upon detecting a first audio
packet ofa current audio frame containing an error; the write
pointer for the buffer is almond by the maximum number
of bytes (N) contained in one of the fixed length mnsport
packets. At the same n‘me, the current audio home is
designnmd as being in mot. The subsequent audio pockets
of the cunent audio frame are monitored for the next audio
syndn-onieefion word after the error has been deteaed. Iftiie
syndironiention wood is not received at the expected point in
the audio elementary steam. subsequent data is not stored in
the bflfifi until the sync word is located. Storage of audio
datnintochebufierisxesumedwithmenextsyncwordifme
next audio syndtroniution wad is located within N bytes
after the commencement of the search therefor. If the next
audio synchronization word is not loomed within N bytes
titer the commencement of the search therefor, a rcacqui-
sition ofthe synduoniznfion condition is commenced. These
stepswlllinnn-ethebufierismnintsinedattheemect
fullness when as runny as one transpon packet is lost pa
audio sync frame. even with the sync frame size changes
suduswithasamplemeofdlu kspsfindwillresynoluo‘
nine the audio when too many audio nansport packets are
lost.

Whenever the audio data from which the television Mo
isbeingreconsuuotedisin molt isptefemble to conceal
the exror in the television audio. In the illustrated
embodiment, a current audio fierce is designated as being in
art: by altering the audio syuduodzation word for that
frame. For example, every other bit of the audio synduo~
nintlon word can be inverted. The coat in the television
ludio for the corresponding audio {same may then be
concealed in response to an altered synchronization word
during the decoding and presentation process. This malted
allows the buffering and emudetection process to signal the
decoding and presentation process when errors occur via the
data itself, without the need for additional interprocess
signals.

The audio data can include infatuation indicative of no
audio sample rate and studio bit rate, at least one of which is
variable. in such a situation, it is advantageous to maintain
synchronization within the audio elementary stream during
a rate change indicated by the audio data. This can be
accomplished by ignoring an audio sample ran: dlangc

10

15

35

45

55

6

indicated by the audio data on the assumption that the
sample rate has not actually changed, and concealing the
audio frame containing the data indicative of an audio
maple rate change while attempting to maintain the syn-
chronization condition. This strategy will properly respond
to no event in which the audio sample rate dingo or hit rate
change indication is the result of an enter in the indication
itself. :5 opposed to an actuzlrate change

Similarly, audio data can be processed in xenordnnce with
anewratelndicatedhythenudio detainthe absenoeofan
error indication pertaining to the audio fume containing the
new rate, while attempting to maintain the syndn'onlzation
condition. The audio data is processed without changing the
rate if an error Mention pertains to the audio flame
containing the new rate. At the some time, the audio frame
to which the error condition pertains is concealed While the
decoder attempts to maintain the synchronization condition.
If the synchronization condition cannot be maintained. a
rcacquisition of the synchronization condition is
cotmnenwd, as desired when the sample rate actually
ohnnges.

Apparatus in accordance with the present invention
acquires audio information can-led by n packetized data
strum. The nppnratus also lunches errors contained in the
audio infonnntion. Means are provided for identifying audio
packem in the darn stem An audio elementary stream is
reeovaed from the detected audio pickets for stonge in a
bum-x. An audiopresentation time stamp (PPS) is located in
the detected audiopockets. Means responsive to the PTS Ire
Fovided for commencing the output of audio data from the
bufl’erstnspecifiedtime. Meansnreprovidedfotmonitoring
the detected audio pockets after the output of audio data
from the bullet has commenced, in «dc: to locate subse-
quent audio PIS’s it! use in governing the output of audio
data from the bufl’er to insure audio is presented synduonous
to my other elementary strum: of the same program and to
maintain curred buffet fullness.

The appatams can further comprise means for maintain—
ing aP‘l‘S pointerwiih n unnentl’l‘Svolne and “address
ofthebuferidenflfyingwhweaponion ofnudiodntn
refused to by the content PTS is stored. Means are provided
fu- replzcing the PTS value in the PPS pointer with a new
ctnrentFI’S valuenftadntnsmred atthe address setforthin
thePISpoint: has been output from the buffer. The address
inthePl‘Spointetisthenreplaeedwlthonewaddress
eon‘eeponding to a portion of audio data referred to by the
new moot Pl‘S value. Means responsive to the PPS pointer
use provided for suspending the output of data Eton: the
butter when the new address is reached. Means are povlded
for recommending the output of data from the buffer at a
flute derived from the new current Pl‘S value. In the event
tlut the new current PPS value is outside a predetermined
range. means provided in the apparatus conceal the audio
signnl end reestablish synchronization.

In In illustrated embodiment, the audio msport packets
have afixedlength othy-tes.'l‘hemspottpockets any
a suwcssion of audio frames each contained wholly or
pmially in said packets. The audio frames each begin with
an mdio synchronization word. Means are provided for
detectiig the commence of cents in the audio pockets. A
write pointer for the buffer is advanced by the maximum
number of audio mane bytes per audio nonsport packet (N)
and a current audio frame is designated as being in mor
upon detecting an cum in an audio packet of the cum-em.
audio frame. Means are provided for monitoring the detected
nudio packets of the men: audio frame for the next audio
syndooniutionwmdaltertheetrorhas beendeteeted.lfthe

EX 1018 Page 228

0

5,703,877
7 8

tran~ packets. Multiplex.Ing is accomplished by seg
menting elementary streams such as coded video and audio
into PBS packets and then segmenting these into transport
packets. The figure is illustrative only, since a PES packet.
such as PBS packet 16 illustrated, will commonly translate
into other than the six transport packets 24 illustrated.

synchronization wcrd is not received where expected within
the audio elementary stream, subsequent audio data is not
buffered until the next audio synchronization word is
received. This process compensates for too many audio
bytes having been butfcred when the errored audio packet s
was detected. Such an event will occur each time the lost
packet does not cauy the maximum number of possible
audio data bytes. Means are provided for resuming the ~ the example of. flG. 1: an elem.enwy stream generally
stcnge of audio data in the buifer Jf the next audio syn- . design_ated lO cont.aillS .lll~o ~ provided in audio frames
cbroniZation we.rd is located withln N bytes after the com- 10 14 delineated b,Y synchro~on W?£ds ll. Similar elemen-
mencement of the search therefor. If the next 11Udio syn- tary streams will be provided for video data and other data
chronizati.on word is not located within said N bytes after the to be transported.
commencement of the search therefor. the audio tlming will The first step in forming a transport packet stream is to
be reacquired. In 1hi1 manner. the size of the sync frames reconfigure the elementary stream for each type of data into
butfered will be maintained including for those frames that 15 a corresponding pa~ketized elementary stream (PBS)
are maitcd as being in emir, unless the next sync word is not !0rmed from succesnve PBS pac~, such as packet 16
located where ex.pected in the audio elementary stream to illustrated. Each PBS packet contains a PBS header 18
recover from the en-or before butfering any of the next followed by a PBS payload 20. The payload compises the
successive frame. This algorithm allows the decode and data to be communicated. The PBS header 18 will contain
presentation processes to rely on butfered audio frames 20 infOllll.lltion ~s~ in processing the payload data. such as
being the coacct size in bytes, even when data errors result the presentation time stamp (Pl'S).
In the loss of an unknown amount of audio data. The header and payload data from each PES packet m:

Means can also be provided for concealing en:or in an encapsulated into transport pacets 24, each containing a
audio signal reproduced from data output from the buffer transport header 30 and payload data 32. The payload data
when the data output from the buffer is in error. Means are 25 of the transport packet .24 will contain a ponion of the
further provided for altcrlng the audio synchronization word payload data 2& md/or Pl$ header 18 from PES packet 16.
associated with a cmrent audio frame, to signal the decode In an MPBG implementation, the transport header 30 will
and presentation process that a particular frame is in eaor. contain the packet identifier (PID) which identifies the
The concealing means are responsive to altered synchroni- transport packet. such as an audio transport pa.c1cet 24. a
zation wards for concealing audio associated with the car- 30 video tr111sport packet 26, or other data pacla::t 2.8. In FIG.
responding audio frame. l, only the derivation of the audio transport packets 24 is

Decoder apparatus in accordan«' with the invention shown. In~ to derive video packets 26111d other packets
acquires audio infonnation cm:rled by a pactetiz.ed data 28, COII'CSponding elcmenwy streams (not &hown) are pro-
stream and handles emirs therein. Means are provided f<r vided whlch are J>I"ocessed into PBS ~ts and transport
identifying audio packets in the data stream. Toe successive 35 p~ckds 1n essentially the ~ nwme.r illnstrated in flG. 1
audio frames are exttacted from the audio transport packets. with respect to the formation of the audio transport packets
Each audio frame is cur:ied by one or more of !he packets. Each MPBG transport packet contains 188 bytes of data.
and the start of each audio frame is identified by an audio formed from the four-byte transport header 30 and payload
synchronization word. Means icsponsive to the syncbroni- data 32, which can be up to 184 bytes. In the MPBG
zation words obtain a synchronization condition enabling ,40 implementation, an adaptation field of, e.g., eight bytes may
the recovery of audio data from the detected audio pac1a::ts be provided between the transp«t header 30 and payload 32.
for storage in a buffer. Means are provided for detecting the The variable length adaptation :field can contain. for
presence of ezroa in the audio data. Means responsive to the example, the program clock reference (PCR) used for syn-
error detecting mcanJ control the flow of data through the cbronization of the decoder system time clock (SfC).
buffa when an CllU is present, to attempt to maintain the 4S The plurality of lllldio transport packets 24. video lrans-
synchroniutlon condition while masking the eiror. Means port packets 2' and other packetll .28 is multiple:ited as
are provided for reestablishing the audio timing if the illustrated in flG. 1 to form a transport slream 2:2 that is
controlling means cannot maintain the synchronization con- COllllJlllnicated over the communication channel from the
dition. encoder to the decoder. The purpose of the decode[is to

so demultiplex the dilferent types of transport pacla::ts from the
transport stream, based on the PID's of the individual BRJEF DFSCRIPl10N OF TIIE DRAWINGS

FIG. 1 is a diagrammatic illustration showing how audio packets, and to then process each of the audio, video and
tran~ packets are foil'llcd from an elementary stream of other components for use in reconstructing a television
audio data: signal.

FIG. ~ is a block dia~am of decoder_ appar:ims that can ss FIG. 2 is a block diagram of a decoder for recovering the
be used 1D accordance with the present mvention; video and audio data. The transport stream 2:2 is input to a

FIG. ~ is a moo: detailed block diagram of the decoder demultiplexer and data parsing subsystem 44 via wminal
system wne clock (SfC) illustrated in FIG. 2; 40. The demultiplexing and data parsing subsystem com-

FIG. 4 is a more detailed bloct diagram of the dc::mnlti.- municates with a decoder miaoproccsscr 42 via a data bus
plex.ing and data paming circuit of FIG. 2; and 60 88. Subsystem 44 recovers the video and audio ttansport

flG. S is a state diagram illustrating the processing of packets from the transport packet stream and parses the
111.1dio data in accordance with the present invention. PCR, PTS and other necessary dJlta therefrom for use by

DEI'AlLF.D DBSOUPTION OF THE other decoder components. For example. PCR's are rccov-
1NVENI10N ered from adaptation fields of transport packets for use in

6S synchronizing a decoder system time clock (STC) 46 to the
FIG. 1 is a diagrammatic illustration showing how one <r system time clock of the encoder. Presentation time stamps

mare digital programs can be multiplexed into a stream of for the video and audio data streams are recovered from the

EX 1018 Page 229

3

’Et

il
S

i:5

E
ZI

O 0

5,703,877
7

synduoniutlon word is not received where expeaed within
the audio elementary stream, subsequent audio data is not
buttered until the next audio synchronization word is
received This process compensates for too my audio
bytes having been bulfered when the erroted audio packet
was detected. Such an event will ocetu' each time the lost

packet does not any the maurimum number of possible
audio data bytes. Menus are provided for resuming the
storage of audio data in the buffer if the am audio syn— '
damnation word is located within N bytes nt‘terthe com-
mencement of the search therefor. If the next audio syn-
chronization word is not located within said N bytes after the
commencement of the search therefor. the audio timing will
be rescquired. In this manner. the size of the sync frames
buffered will be maintained including for these frames that
are markedss being in error, unless the next sync word is not
locsted where expected in the audio elementary stream to
recover from the error before buffering any of the next
suwessive time This algorithm allows the decode and
presentation processes to rely on buttered audio from
being the correct size in bytes, even when data errors result
in the loss of an unknown amount of audio darn

Mennscanalsobeprovidedforconoeafingminen
sudio signal reproduced from data outwit from the butter
whenthedatsoutputfromthebufisisineuor. Meansare
ftutherprovided for altering the audio synchronization word
Associated with a assent audio frame. to signal the decode
andpresentntionpmccssflntspetfictdarframeisinerme
The concealing means are responsive to altered synchroni-
zation words for concealing audio associated with the cor—
responding nudlo frame

Decoder apparatus in accordance with the invention
acquires audio information carried by a pattefined data
stream and handles emu therein. Means are provided for
identifying audio packets in the data stream. The successive
audio fumes are extracted from the audio tramp“packets.
Eschaudiotrsmels mm'edbyoneormore ofthepldtets.
and the start of each audio frame is identified by no audio
synduonizafion word. Means responsive to the syndzroni-
zation words obtain e synchronization condition enabling
merecoveryofandiodstafromthedeteetedandiomkets
for storage in a butter. Meant are provided for detecting the
presence of errors in the audio data. Means responsive to the
are: detecting means coon-oi the flow of data through the
btlfluwhensnenorispresenntomemmtomaintalnme
syndzronizsflon condition while melting the en'oe Means
are moulded for reestablishiug the audio timing if the
controlling means cannot maintain me synchronization con-
dition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration showing how audio
transport packets are formed from an elementary stream of
audio data;

FIG. 215 a block diagram of decoder apparatus that can
be used in accordance with the present invention;

FIRE!isammodetailedblockdingrarnoftlnedeoodt:r
system time clock (SIC) illustrated in FIG. 2;

FIG. 4 is a more detailed block diagram of the demulti—
plcxing end data parsing circlit of FIG. 2; and

FIG, 5 is a state diagram illustrating the processing of
audio data in accordance with the present invention

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a diagrammatic illustration showing how one a-
more digital programs can be multiplexed into a sum of

10

15

35

d5

55

60

65

8

transport packets. Multiplexing is accomplished by seg-
menting elementary streams such as coded video and audio
into IBS packets and then segmenting these into transport
packets. The figure is illustrative only, since a PBS packet.
such as PES packet 16 illusn’nted. will commonly translate
into other than the six transport packets 24 illustrated.

In the example of FIG. 1. an elementary stream generally
designated 10 contains audio data provided in audio frames
14 delineated by synchronization words 12. Similar elemen—
tatyslreamswillbeptovidedforvideodatzmd cvtherdata
to be transPorted.

The first step in forming a transport packet stream is to
reconfigure the elementary stream for each type of data into
a corresponding packen‘zed elementary stream (PBS)
formed from successive PBS packets, such as packet 16
illustrated Fad: PPS packet contains a PBS header 13
followed by a PBS payload 20. The payload compises the
data to be oommtmicnted. The PES header 18 will contain

information useful in processing the payload data. such as
the presentation time stamp (PIS).

The headerandpsylonddatsfrctneechPEs paeketm
encapsulated into transport pockets :4. each containing a
transport header 3!! and payload date 32. The payload date
offlretranspoitpacketfiwillooutain aportionofthe
payloaddatazomdlorPBSheader 18fmmPF£ packet 16.
In no MPH} implementation, due transport header 30 will
contain the packet identifier (Pm) which identifies the
n-ansportpacket. suchssnnsudiousnsportpacketzd.a
video transport packet 26, or outer data packet 2.8. In FIG.
1. only the derivation of the audio transport packets 24 is
shown. In order to derive video packets 26 and other packets
28. corresponding elementxry streams (not shown) are pro.
video which are processed into FES pndtets and transport
packets in essentially the some manner illustrated in FIG. 1
with respect to the formation of due audio transport padtets

EaehMPEG transpmtpachet contains 188 bytes ofdata.
formed fromthe four-byte transport header 30 and payload
M32.wbichcenbcupm184bytes.lntheWEG
implementation, an sdaptntion field of. e.g.. eight bytes may
be provided between the mnspmhesder 30 and payload 32.
The variable length adaptation field can contain for
example. the program clock reference (PCR) used for syn~
chroniution of the decoder system time clock (STC).

The plurality of audio transport packets 24. video trans-
port packets 26 end other packets 28 is nulltipletted as
illustrated in FIG. 1 to form a msport stream 22 that is
communicated over the communication channel ham the

enmda to the decoder. The purpose of the decoder is to
denudfiplex the diifcrent types oftransport packets from the
transport scream based on the PlD’s of the individual
packets. and to then process each of the audio. video and
other components for use in reconstructing a television
signnl.

FIG. 2 is a block diayzm of: decoder for recovering the
video and audio data. The transport stream 22 is input to n
dennntiplexcr and date parsing subsystem 44 via terminal
40. The demultiplexing and data parsing subsystem oom-
municatec with a decoder microprocesscr 42 vi: a data bus
88. Subsystem 44 recovers the video and audio transport
packets from the nansport packet stream and parses the
PCR, PTS and other necessary data dmefmm for use by
other decoder components. For example. PCR's are recov—
ered from sdqntnu’on fields of transport packets for use in
synchronizing a decoder system firm clock (SIC) 46 to the
system time clock of the encoder. Presentation time stamps
fertile video and audio data streams are recovered from the

EX 1018 Page 229

5,703,877
9 10

resperuve PES packet headers and communicated as video The number of bits between die first bit of two consecu-
or audio control data to the video decoder S2 and audio tive audio sync words is referred to as the frame size. The
decoder 54, respectively. frame size depends on whether the audio stream is AC-3 or

The decoder time clock 46 is filustrattd in greata: detail Musicam and has a di1ferent value for each combination of
in FIG. 3. An important function of the decoder is the 5 audio sample and bit rate. In a preferred embodiment.

r-

t

reconstruction of the clock associated with a particular subsystem 44 is required to synchronize to AC-3 and Musi-
program. This clock is used to reconstruct, for example, the cam sample rates of 44.1 bps and 48 bps. The AC-3 audio
proper horizontal scan rate for the video. The i;roper p-c- syntax conveys the audio sample rate and audio frame size
sentation rate of audio and video p:c:sent.ation units must while the Musicam audio syntax conveys the audio sample
also be assured. These are the audio sample rate and the 10 rate and audio bit rate. Both AC-3 and Musicam specify one
video frame rate. Synchronization of the audio to the video, sync frame size for each bit rate when the sample rate is 48
referred to as "lip sync", is also required. bps. However, AC-3 and Musicam specify two sync frame

In order to generate a synchronized program clock, the sizes for each bit rate when the sample rate is 44.1 ksps, a
decoder system time clock (STC) 46 receives the PCR's via fact which complicates synchronization, especially through
•-•--• '9 Bef th t f th anonnrt packet loss. When the sample rate is 44.l ksps. the correct
=u.uwu · ore e commcncemen ° e tr-.r-.. 1.5 sync frame size between the two possibilities is indicated by
stream decoding, aPCR value is used to preset a counter 68 the least significant bit oftheAC- 3 frame size code or by a
for the decoder system ti.me clock. As the clock runs, the Musicam padd.isg bit.
value of this counter is fed back to a subtracter 62. The local

O
tw

11
- di ds .. _ bee

fi edba-1- al • th __,. "th b PCR' . nee o consecu vc au o sync wor ve n
e_ v uc is en co....-,"':' Wl su s~ucnt s 18 received with the correct number of bytes in between. as

the transport s~ as they amvc at terminal 60. When a 20 specified by the sync frame si:ze. subsystem 44 will store the
PCR arnves. it _represents the e<nect STC value for the audio sample rate and audio bit rate implied by the audio
program. The difference between the ~ value Bild the syntax for access by the decoder microi:rocessor 42, intcr-
STC value, as output ~m sublracter '2, is filtered by aloop rupting the miaoproccsS(I." to indicate that subsystem 44 is
filter 64 and used to drive the ~taneous frcque?cy of a waiting for the microprocessor to supply it with en audio
voltage controlled oscfilator 66 IO Clther dca:case or maease 25 PJ'S coaection factor. The correction fact Cl" is necessary in
the src frequency as necessary. The STC bas both a 90 kHz order to know when to output audio data to the audio
and Tl MHz component, and the loop filter 64 converts this decoder 54 during lnitial acquisition and during tracking for
to units in the Tl Mhz domain. The output of the VCO 66 proper lip synchronization. The value is denoted as dPI'S.
is a 27 MHz oscillator signal which is used as the program The lip sync value used for lraCking is slightly less lhan that
clock frequency output from lhe decoder system time clock. 30 used for initial acquisition to allow for time errors which will
Those skilled in the art will recognize that the dcooder time exist between any two PI'S values. namely that which is
clock 46 illustrated in FIG. 3 is implemented using well used for acquisition and those which arc used foe tracking.
known phase locked loop (FIL) techniques. Dcoodcr microprocessor 42 sets the C01rection factors

Before beginning audio synchronization. the decoder of such that audio and video-will exit the decoder with the
FIG. 2. and particularly subsystem 44, will remain idle until 35 same time relationship as it entered the encoder. thus achiev-
it .is configured by decoder miaoprocessa: 42. The oomigu- ing lip synchronization. These comction factors are deter-
ration consists of identifying the type of audio data stream mined based on audio sample rate and video frame rate (e.g.,
to be processed (e.g., Dolby AC-3 or Musicam audio).' 60HzorS0Hz).Thesedcpendendesexistbecausetheaudio
identifying the PID of packets from which the audio PCR decompression processing time rcquin:d by audio decoder
values are to be extraef.ed, and identifying tbe PID for audio 40 54 potentially depends oo audio sample and bit rate while
packets. the video decompression implemented by video decoder 52

During the idle state. sub5Ystem 44 wm instruct audio potentially dq)ends oo video frame rate and delay mode. In
decoder 54 to conceal the audio output. Concc:almcnt can be a prefeo:cd implementation, the PJ'S correction factors con-
accomplished by zeroing all of the audio samples. Subsc- sist of 11 bits, representing the number of 90 kHz clock
qucnt digital signal processing will result in a smooeh aural 4s periods by which audio data is to be delayed before output
transition from no sound to sound, and back IO no sound. to the audio decoder 54. With 11 bit values, the delay cm be
The concealment of the audio output will be terminated as high as 22.7 milliseconds.
when the synchronization process reaches a tracking state. Once the demultiplexing and data parsing subsystem 44
Decoder microprocessor 42 configures the audio famat as requests the decoder microprocessor 42 to supply the cor-
AC-3 or Music.am, depending on whether audio decoder 54 so rection factors. it will monitor reception of consecutive sync
is an AC-3 or Musicam decoder. Microprocessor 42 deter- words at the expected positions within the audio elementary
mines the audio PID and audio PCR PID from program map stream. If an = condition occurs during this time. sub-
information p:ovidcd in the transport strcam. The program system 44 wm ttansition to searching far two consecutive
map information is essentially a directory of PID's, and is audio sync words wilh the cox:rect number of data bytes in
identified via its own PID. 55 between. Otbcrw:ise, subsystem 44 remains in Stale d.PrS-

Once the demultiplexer and data parsing sub5Ystem 44 is wait until lhe decoder microprocessor sC'l'Vices the interrupt
commanded to enter a Frame Sync state via an acquire from subsystem 44 by writing dPfS._ to subsystem 44.
command, it will begin searching for two consecutive audio Once subsystem 44 is provided with the PJ'S correction
sync words and will supply the decoder microprocessor 42 fact<n, it checks whether a transport packet has been
with the audio sampling rate and audio bit rate indicated 60 received on the audio PCR PID containing a PCR value.
within the audio elementary stream. To locate the sync cm:i.cd in the adaptation field of the packd. Until this has
words, :subsystem 44 will receive 1ransport packets on the occurrc,d, n:oeption of consecutive sync words will continue
audio PID and extract the PES data. searching for the [State=PCR. Acquire]. If an error condition occurs during
occurrence of the audio sync word, which is a this time, subsystem 44 will transition to searching for two
predetermined, fixed word. For ex.ample, the AC-3 audio 65 consecutive audio sync words [Statc=Frame Sync].
sync word Is 0000 1011 0111 0111 (16 bits) while the Otherwise. it will remain in State=PCR Acquire until it
Musicam sync word is 1111 1111 1111 (12 bits). receives a PCR value on lhe audio PCR PID.

EX 1018 Page 230

(W

5,703,877
9

respective PBS packet headers and communicated as video
urandiomnlmldnlalntlwvidmdewdaSZandmdio
decoder 54. respectively.

The decodutimecloektléisillustratedingreatadetufl
inFIG.3.Animpottantfunctionofthedeooderisthe
reconstruction of the clock associated with a particular
program. This clock is used toreconstruct, for example, the
proper horizontal scan rate for the video. The proper pre—
sentation rate of audio and video presentation units must
also be assured. These are the audio sample rate and the
video from: rate. Synchronization of the sudioto the video,
referred to as “lip sync“. is also required.

In order to gemste a synchronized program clock. the
decoder system time clock (STC) 46 receives the PCR‘s Vin
terminal 60. Before the connoencement of the transport
stream decoding. a PCR value is used to preset a counter 68
for the decoder system time clock. As the clock runs. the
value of this counter is fed back to a subtracter 62. The local

feedback value is then compared with subsequent PCR’s in
theu'ansportsu'eamastheymiventterminalfl.Whena
PCR arrives, it represents the meet S'I‘C value for the
program. The difierence between the PCR value and the
SFC value, as cutout from subtract: 62, is filmedby sloop
filter 64 and used to drive the instantaneous frequency of a
voltage controlled oscillator 66 to either deame or incense
the src frequency as necessary. The SI‘C has both a QOkHZ
and 27 MHz component, sndthc loop filter 64 converts this
tounitsintne 27 Mint domain.'lheontputoftheVC066
is s27MHzoseilhtor ngnalwhiehisusedudiegmmm
clock frequency output from the dmoder system time clock.
Those skilledinfliexrtwiilreoognizethstthe decodertime
clock 46 illustrated in FIG. 3 is implemented using well
known phase locked loop (PIL) techniques.

Before beginning audio synchronization. the decoder of
FIG. 2. and particularly subsystem 6%, will remm'n idle until
it is configured by decoder nu'croproocssor 42. The configu.
mien consists of identifying the type of audio date stresm
to be processed (e.g.. Dolby A03 or Music-m audio);
identifyingthePfl) ofpaehets fromwfidtthe audioPCR
values are to be extracted, and identifying the P11) for audio
packets.

During the idle state. subsystem 44 will instruct audio
decoder 56 to conceal the audio output. Concealment can be
accomplished by zeroing all of the audio samples. Subse-
quent digital signal processing will result in a smooth lln'al
transition from no sound to sound. and back to no sound.
The concealment of the audio output will be terminated
when the synchronization pm: reaches a tracking state
Decoder microprocessor 42 configures the audio forum as
A03 or Musicum. depending on whether audio decoder 54
is an AC-3 or Musicum decoder. Microprocessor 42 deter«
mines the audio PB) and «1&0 PCRPID from program map
infomafion provided in the transport stream. The program
map information is essentially a directory of PlD's, and is
identified via its own PID.

Once the denudtiplexer and data parsing subsystem 44 is
commanded to enter a Frame Sync state via an acquire
command, it will begin searching for two consecutive mdio
sync words and will supply the decoder mimprocossor 42
with the audio sampling rate and audio bit me indicated
within the audio elementary stream. To locate the sync
words, subsystem 44 will receive transport padsets on the
audio FED and extract the PBS dam. searching for the
occurrence of the audio sync word. which is a.
modem-mined, fixed word. For example, the A03 eudio
sync word is 0000 1011 0111 0111 (16 bits) while the
Musicam sync word is 1111 1111 1111(12 bits).

10

15

45

SS

65

10
The number of bits between the first bit of two consecu-

tive audio sync words is referred to as the frame size. The
frame size depends on whether the audio stream is AC-3 or
Musicsm and has a ditfeteut value for each combination of

wdio sample sud bit rate. In a preferred embodiment.
subsystem 44 is required to synchronize to A03 and Musi-
carn reunite rates of 44.1 ksps and 48 ksps. The A03 audio
syntax conveys the audio sample rate and audio frame size
while the Musicnrn audio syntax conveys the audio sample
rate rind audio bit rate. Both A03 and Musicam specify one
sync frame size for each bit rate when the wnple rate is 48
ksps. However, AC8 and Musicsm specify two sync flame
siZes for each bit rate when the sample rate is 44.1 bps. a
fact which complicates synchronization. especially through
packet loss When the sample rate is 44.1 ksps. the correct
sync frame size between the two possibilities is indicated by
theleast signifiesntbit oftheAC~3 frame size codeorby a
Musiosrn padding bit.

Once two consecutive audio sync words have been
received with the carer: number of bytes in between, as
specifiedby the sync frame size. subsystem“ will store the
audio sample rate and audio hit rate implied by the audio
syntax for access by the decoder microprocessor 42, inter-
rupting the miaoprocessor to indicate that subsystem 44 is
uniting for the roiu'oprocessor to supply it widt an audio
PTS correction factor; The correction factor is necessary in
order to know when to output audio data to the audio
W54during initial acquisition end during backing for
prqser lip synchronization. The value is denoted as dPI'S.
111i: lip sync value used for Inciting is slightly less than that
used for initial acquisition to allow for time errors which will
exist between any two FTS values. untimely that which is
used for requisition and those which are used for tracking.

Decoder miaoprocustr 42 sets the correction fedora
such the: audio and video-will exit the decoder with the

some time relationship as it enteredtlie encoder. thus achiev-
ing lip synchronization. These correction factors are deter~
mined based on audio sample rate and videofmme rate (e.g.,
6011201 50 Hz). These dependencies exifi becausethe audio
decompression processing time required by audio dooodm
54 potentially depends on audio simple end bit rate while
the video decompression implemented by video (locale: 52
potentially depends on video fume rate and delay mode. In
a preferred implementation. the PTS correction factors cou-
sist of 11 bits, representing the number of 90 kHz clock
periods by which audio data is to be delayed before output
to the indie decoder 54. With 11 bit values. the delay can be
as high as 22.? milliseconds.

Out: the demultiplexing and data parsing subsystem 44
requests the decoder mimoprocessrr 42 to supply the cor—
rection factors. it will monitor reception of consecutive sync
words at the expectedpositions within the audio elementary
stream. If on error condition occurs dining this tirne. sub—
system 44 will trsnsition to searching for two consecutive
audio sync words with the correct number of data bytes in
behaleen. Otherwise, subsystem 44 remains in State dP'l‘S-
walt until the decoder microprocessor services the interrupt
from subsystem 44 by writing ms“, to subsystem 44.

Once subsystem 44 is provided with the FPS cotredion
factus. it checks whetha' a unsport psdtet has been
received on the sudio PCP. Pm containing a PCR value.
carried in the adaptation field of the packet. Until this has
counted, reception of conseurtive sync words will continue
[Stator-POI Acquire]. If on error condition occurs during
this time, subsystem 44 will transition to seardting for two
consecutive audio sync words {Staten-Frame Sync].
Otherwise. it will remain in State=PCR Acquire until it
receives a PCR value on the audio PCR PlD.

EX 1018 Page 230

0

5,703,877
11 12 ,.

f Afta a PCR hlls been acquired. subsystem. 44 will begin continue to :receive audio packets, write their PES data into
searching for a PTS [State=PI'S Acquire), which is carried the bulfcr so. maintain the mor pointers, and monitor
in lhe PBS heada of the audio transport packets. Until 1his reception of consecutive sync wards. If an cnor condition
bas occuncd, subsystem 44 will monitor the recc:ption of occurs during tbis time, subsystem 44 will transition to error
consecutive sync words. If an mor condition occurs during s processing. Otherwise, it will remain in State=Track until au
this time, it will transition to an crro.r handling algorithm error occurs ar microprocessor 42 commands it to return to
[State=Flror Handling). Otherwise, it will remain in the Pl'S the idle state.
acquire state until it :receives a Pl'S value on the audio PJD. As subsystem 44 outputs the sync word of each sync

When subsystem 44 receives ID audio Pl'S value, it will frame to the audio decoder 54 as part of the "audio" referred
begin searching for reception of the next audio sync word. 10 to in FIG. 2, it will sigoal the error status of each audio sync
This is important since the PTS defines the time at which t.o frame to the audio decodcc using the sync word. The sync
output the data which begins with the next audio frame. word of audio sync frames in which subsystem 44 knows of
Since audio frames are not aligned with the audio PBS, the no CfflllS will be output as specified by the Dolby AC-3 or
number of bytes which will be :received between the Pl'S Musicam speclficatioo, as appropriate. The sync word of
aod the next audio sync word varies with time. If an mar 15 audio sync frames in which subsystem 44 knows of errors
condition occurs before reception of the next audio sync will be alt=d rd.alive to the COirect sync words. As au
wmi, subsystem. 44 returns to searching for audio frame example, and in the pref med embodiment, every other bit of
synchronization [State=:Frame Sync]. It should be aptreci- the syoc word of sync ~ '? which an ~ poin8:1"
atc4 that sioce audio sync fnmes and PBS headers are not points will be invated, stutiDg with the most signffica.nt b1t

aligned, it is poSS1"ble for a PES heada, and lhe PJ'S which 20 ~~:e ~ ~~di~t ::C ~~-is~c word will~
it may contain to be n:ccived between the 12 or 16 bits w e USlcam sync war
which farm an ~udio sync wont. ID. this case, the sync word will be 010101010101. Ooly the bits of the sync word~
to which the Pl'S ref as is not the sync word which is split be ~ The audio ~ 54 ~ ~ the audio
by the PBS header but nther the following sync word. c:irors m the sync frame. whi?1 it ICCCJ.ves m which the sync

' • 25 word has been altered m this manner. However, the audio
When subsystem. 44 receives the next sync word, it has decoder will coDtinue to maintain synchronization with lhe

acquired PI'S. At 1his point. it will store the xeceiv.ed PI'S audio bitstrcam. Synchronization will be maintained assum-
and the PllS data ~starting ~ the sync word ~ first ing the audio bit rate did not change, and knowing that two
followed the PI'S) mto an audio buffer SO, together with lhe sync frame sizes are possible when the audio wnple rate is
buffer address at whi~ it writes lhe sync word. This stoo;d

30
44.1 ksps.

Pl'S~er address pair will allow su~ystem 44 to begm In accordance with the prefei:red embodiment. audio
ou1puttin.g audio ~ ~ to the ~dio decoda 54 At lhe decoder 54 will maintain synchroniz.ation through sample
coircct time, starting with the audio sy~c word. In a .I"· aod bit 111te changes if this feature is enabled by the decoder
f~ cmbodimen~ the buffer SO is implemented m a microproa:ssor 42. If the microprocessor disables sample
portion of ~Ynll;1llc random access memory (DRAM) 3s rate changes, audio decoder 54 will conceal the audio errors
akudy provided m the decoder. • • in each sync frame received with a sample rate that does not

Once subsystem 44 begins buffcnng audio data. a numha matdl the sample rate of the sync frame on which the audio
of parameters must be Ira.eked which will allow it to handle decodcc last acquired.. and will assume that the sample rate
particular error con~ti.oos, such as loss of an audio transport did oot chaoge in order to maintain synchronization. The
packet to tr~S100 errors. The~ perameters ~ be -40 audio decoder is required to process through bit rate
tl:llckcd using audio po~ including a ~S po~. a chaoges. If an error in the bit rate information is indicated,
~RAM ~set address ~mter, and a valid flag pomter e.g., through the use of a cyclic redundancy code (CRC) as
discussed m great« detail bd.ow. well known In the art. audio decodcc 54 will assume that the

After PrS is acquired. subsystem 44 begins waiting to bit rate of the cor.respondillg sync frame is the same bit rate
synchronize to PTS [State=Pl'S Sync]. ID this state, the 4S as the previous sync frame in order to maintain synchroni-
demultiplexer and data parsing subsystem 44 continues to zation. If the decoder microproccsscr 42 has enabled rate
1eceive audio packets via t.erminal 4t, writes their PES data changes, the audio decoder 54 will assume that the rates
into buffer SD, and maintains the m:or pointas. When 1his indicated in the sync frame arc COO"Cct, will process the sync
state is entered, subsystem 44 COillJ)IIICS its audio Sl'C to the frame, and use the appropriate sync frame size in maint.ain-
coaect output start time, which is the PJ'S value in the PTS so iog synchronization with the audio bitstream.
pointa plus the acquisition Pl'S correction factor (dPTS-). Demultiplexer and data parsing subsystem44 will also aid
If subsystem 44 discovers that the oorrect time has passed. microprocessOI 42 in checldog lhat audio data continues to
ie .. PCR>PI'S-klPI'S._, one or more of lhe three values is be output at the cotrect time by resynchronizing with lhe
ioron:ect and subsystem 44 will flag decodc:r miaoprocessor Pl'S for some PJ'S values :received. To accomplish this,
42. At this point. the su.tc will revert to Statc=Frame Sync, ss when a PTS value is received it will be stored in the PJ'S
and subsystem 44 will return to sear:ching far two consccu- pointer, along with the audio ofi'set address at which the next
tive audio sync words. Ottu:rwisc. until PCR=PI'S+dPI'S"""' sync word is written in audio bulfer SO. if the PI'S pointer
subsystem 44 will continue to receive audio packets, write is not already occupied. In doing this, subsystem 44 will
their PBS data into the buffer SO. maintain the trror pointers. ensure that the next sync word is received at the correct
and monitor the reception of consecutive syoc wads. ro location in the audio PBS bitstream. Otherwise, the PJ'S

When PCR=PI's+dPI'S_. subsystem 44 has synchro- value will not be stored and subsystem 44 will defer resyu-
nizcd to PJ'S and will begin tracldng the audio stream chronization until the next successful Pl'SIDRAM offset
[State=l"n.ckJ. At this time, subsystem 44 will begin trans- address pair is obtained. Subsystem 44 will store the PJ'S/
ferring the contents of the audio buffer to the audio decoder DRAM offset address pair in the Pl'S pointer until it begins
54 upon the audio decoder requesting audio data, starting 65 to output the associated audio sync frame. Once it begins
with the syoc word located at the buffer address pointed to oulputling audio data to the audio decoder 54, subsystem 44
by the Pl'S pointer. In the tracking state. subsystem 44 will will continue to service the audio decoder's requests for

EX 1018 Page 231

0

5,703,877
11

After a PCR has been acquired. subsystem“ will begin
searching for u m [SWPFS Acquire}, which is carried
in the PBS heads: of the audio trmsport pockets. Until this
has occured, subsystem 44 will monitor the reception of
consecutive sync words. If an error condition occurs dining
this time, it will transition to an error handling algorithm
[StatezBrror Handling]. Othuwise, it will rennin in the PTS
acquire state until it receives a PTS value on the audio PID.

When subsystem 44 receives an audio PTS value, it will
begin searching for reception of the next audio sync word.
't‘hlslsunpomntsincethel'rswfinesmefimemwbichto
output the data which begins with the next audio frame.
Since audio frames are not digued with the audio PBS, 61:
numba‘ of bytes which will be received between the PIS
and the next audio sync word varies with time. If an error
condition occurs before reception of the next audio sync
wad, subsystem 44 returns to searching for radio frame
synchronization {SMme Sync]. It should be appreci-
ated that since audio sync frames 1nd PES headers are not
aligned, it is possible for a PBS header, and the HS which
it may contain. to be received between the 12 or 16 bits
which frrtnan rudlo sync word. lnthls case. the sync wad
to which the FPS refers is not the sync word which is split
by the PBS heads, but rather the following sync word.

When subsystem 43 receives the next sync word, it has
acquired P'I'S. At this point. it will sure the received PIS
mddtePESdntn(ttnrtingwlthdrcsyncwordwhiohfirst
followed the PPS} into In audio butter 50. together with the
buff: admits at which it writes the sync word. This stored
P'l‘SIbufler address pair will nLlow subsystem 44 t!) begin
outputting audio PBS data to the Indie decoder 54 at the
www.mgwimmeeudiosyncwordlnapre-
ferred embodiment. the buffer 50 is implemented in a
portion of dynamic random access memory (DRAM)
already provided in the decoda.

Once subsystem-M begins buffering eudio date, a number
(3stmust be tracked which will allow it to handle
particular error conditions, such as loss of no audio transport
packet to transmission errors. These parameters can be
tracked using audio pointers including 3 PTS winter. I
DRAM offset address pointer, and a valid flag pointar
discussed in greater detail below.

Alter PTS is acquired. subsystem 44 begins waiting to
synchronize to l’l‘S [State-:PI‘S Sync]. In this state, the
dentultlplexer and data putting subsystem dd continues to
receive audio packets via rennin-l 40, writes thcerES data
into bullet 50. and maintains the error podium. When this
state is entered, subsystem 44 compares its audio ETC to be
correct output start time, which is the I’l‘S value in the PTS
pointer plus the acquisition PTS emulation frctor (dPTSm).
If subsystem 44 discovers that the correct time has passed.
Le. PClel‘Sdt-dl’l‘sgq, one or more of the three values is
incorrect end subsystems“ will flag decodermicroprocessor
42. At this point. the cute will revert to Statme Sync.
and subsystem 44 will return to searching for two consecu-
tive audio sync words. Othu'wise. untilPCR=PTS+dPrSM
subsystem 44 will continue to receive audio packets, write
their PBS data into the hutfcr SB. maintain the error pointers.
and monitor the reception of consecutive sync words.

When WWW subsystem 44 has synchro
nlzcd to FPS and will begin tracking due audio stream
[Statefl‘nck]. At this time. subsystem M will begin trans.
farting the contents of the «Indie bullet to the audio decoder
54 upon the audio decoder requesting audio data, starting
widl the sync word located at the buffer address pointed to
by the FPS pointer. In the tracking state. subsystem 44 will

It)

15

2t}

35

‘5

$5

65

12
continue to receive audio packets, write their PBS data into
the Ma 50, omintnin the error pointers, and monitor
reception of consecutive sync wads. If an error condition
ocwrs during this time, subsystem 44 will transition to error
processing. Otherwise. it will remain in Statez'l‘reck until an
morocctus ormiuopromssordz eommnndsirtorcurnto
the idle state.

As subsystem 44 outputs the sync word of each sync
frame to the radio decoder 56 as part of the “audio” referred
toinFlG. 2.1twillsignnlthearorstnmsofeaohandiosync
frmne to me audio decoder using the sync word. The we
word of radio sync flames in which subsystem 44 lmows of
no tutors will be output as specified by the Dolby AC-3 or
Musicarn specification, as appropriate. The sync word of
audio sync heme: in which subsystem 44 knows of was
will be altered relative to the correct sync words. As an
example, and in the preferred embodiment, evory other bit of
the sync word of sync frames to which an error pointer
points will be lnvated, starting with the most significant bit
of the sync word. Thus. the altered AC~3 sync word will be
1010 0001 1101 1101 while the rltu'ed Musical: sync word
will be 01010101 0101. Only the hits of the sync word will
bedtereiThe wdiodccoderSdnfll mnecalflaeeudio
errors lathe cyncfrarnewhlchitreceivesinwhichtbe sync
word Ins been altered in this manner. However, the audio
decoder will continue to maintm‘n nynchronizntion with the
audio bitsneam. Syndtronlwion will be minteined assum-
ing the audio bit rate did not change, and knowing that (We
sync {tune sizes are possible when the audio sample rate is
44.1 ksps.

In recordance with the preferred embodiment. audio
decoder 54 will mnlntnin synchronization through sample
and bit nte changes if this feature is enabled by the decoder
microprocessor 42. if the mimocessor disables sample
rate danger, audio decoder 54 will conceal the audio errors
in wait sync framereoeived wid: a sample rate that does not
match the sample rate of the sync frame on whid: the audio
dcmderlsstncqtdredondwfllrssumethat the snntplemte
did not dingo. in order: to maintain synchronization The
audio decoder is required to process through bit rate
changes. If tut error tn the bit rate information is indicated,
e.g.. through the use of a cyclic redundancy code (CRC) as
wellltncwn inure maudtodecoduSd willassume thatthe
bitrahe of the corresponding sync frame is the same bit rate
as the previous sync frame in order to maintain synchroni-
udon. If the decoder microprocessa' 42 has enabled rate
changes. the audio decoder 54 will assume that the rates
indicated in the sync frame m: correct. will process the sync
flame, and use the appropriate sync frame size in maintain-
ing synchronization with the audio bitstream.

Dcmultiplexer unddntn parsing subsystem“ will also aid
miuoproczssor 42 in checking that radio data continues to
be «mm at the correct time by resynchronlzing with the
PPS for some PI‘S values received. To accomplish this,
when a PTS value isreotivcd it will be stored in the ITS
pointer, along with the audio ofiset address at which the next
sync Word is written in audio butter 50. if the PI'S pointer
is not already ompied. In doing this, subsystem 44 will
ensure that the next sync word is received at the correct
location in the audio PBS bitntream. Otherwise, the ITS
value will not be stored and subsystem 44 will defer resyn'
chronization until the next successful PFSIDW offset

address pair is obtained. Subsystem 44 will store the PTS!
DRAM ofl’set address pair in the PI‘S pointer until it begins
to output the associated audio sync Rune. Once it begins
outputting audio data to the audio decoder 54. subsystems“
will oonu’nue to service the audio decoder‘s requests for

EX 1018 Page 231

1

t
',

f
j
f
f

l

n
5,703,877

13 14
audio data. outputting each audio sync frame in sequence.
'Ibis will continue until the sync frame pointed to by the PfS
pointer is reached. When this occurs, subsystem44 will stop
outputting data to the audio decodc:r 54 until PCR=PfS+
dPI'S_. This will detect audio timing errors which mAY s
have occurred since the last resynchronization by this

enter, respectively, with the symbol ">" that the designated
CC'Ol' will be detected when the audio processing state of
subsystem 44 is higher than the designated state. The audio
processing state hierarchy, from lowest to highest. is:

l. Idle
2. Frame Sync

method.
If PCR>Pl'S+dPI'S- when subsystem 44 completes 3· dPfS_;,

oulput of the previous sync frame, the audio decoder S4 is 4· PCRacq
processing too slow or an undetected error has occurred in 10 S. PI'S-
aFCR or PJ'S value. Aft.er this error condition. subsystem44 6. PfS Sync
will flag mkroprocessor 42. stop the output to the audio 7. 'Irack:
decoder54.cleuaudiobuffer5tandthepointers,andretum The symbol"~" preceding a state indicates that the error
to semrlling for two conseculive sync words separated by will be dctedcd when the audio processing state of sub-
the cmcct number of audio data bytes. If lb.e audio decoder 15 system 44 is equal to or higher than the designated state. The
54 is not requesting data when the buffer read pointer equals designated state(s) indicate(s) that the error will be detected
the address pointed to by the PfS pointer, an audio process- in this state or that the audio processing of subsystem 44 will
ing C1Tor bas occurred and subsystem 44 will maill&ain proceed to this state after the associated actions are curled
synchronization with the audio stream, clear its audio buffer out The designation "same" indicates that the audio pro-
and pointers, and return to searching for two consecutive 20 cessing of subsystem 44 will stay in the same st.ate after the
audio sync words (State=Fram.e Sync]. associated actions are carried out

In order to bud.le errors, subsystem 44 sets a unique ma: The heading "Buffer Action" indicates whether the audio
flag for each C1Tor condition. which is reset when mkropro- butfcr is to be flushed by setting its read and write pointers
ccssor 42 reads the flag. Bach ei:ror condition which inter- to be equal to the base address of tbe audio butfer. The
mpts microprocessor 42 will be maska.ble under control of 25 designation "none" indicates no change from ncrmal audio
the miaoprocessar. Table I lists the various error conditions buffer DIAllagement.
related to audio synchronization and the response by mb- The beading "Pointer Action" indicates by the term
system 44. In this table, "Name" is a name assigned to each "reset" that the PJ'S pointer, eaor pointers or both will be
error condition as referenced in the state diagram of FIG. S. relllmed to the state specified as if subsystem 44 had been
"Definilion" defines the conditions indicating that the cor- 30 reset The designation "none" indicates no cbaoge from
responding error bas ocaured.. "'.INr' is an intel]'Upt desi.g- nonnal pointer management The designation "sec othcr
nation whid!, If "yes", indicates that subsystem 44 will actions" indicates that other actions under the "Other
intemipt miaoproce!lsor 42 when this error occurs. "Oleck Actions" heading may indicate a pointer to be set or reset.
State" and "Next State" designate the states in which the The "Other Actions" heading states uy additional actions
error will be detected (checked) and the audio processor will required of the subsystem 44 as a result of the error.

EX 1018 Page 232

0 0

5,703,877
13

audio dam outputting each audio sync frame in sequence.
This will continue until the sync frame pointed to by the PTS
pointer is reached. When this oeetns. subsystem“ will stop
outputting data 10 the audio decoder 54 until PCR=PrS+
MSW This will detect audio timing errors which may
have oeetnred since the last resynchronization by this
method.

If mmsm when subsystem 44 completes
output of the previous sync frame, the audio decoder 54 is
pzocessing too slow or an undetected error has occurred in
aPCR or PI‘S value. After this error condition. subsystem“
will flag miaoproeessa- 42, stop me output to the audio
decoder 54. clear audio hufl’er 50 and thepointers. andretum
to seardring for two consecutive sync words separated by
the correct number of audio data bytes. if the audio decoder
54 is not requesting data when the buffer read pointer equals
the address pointed to by the PIS pointer, an audio process»
ing errorhnsoecurredandsubsystemuwfll maintain
synchronization with the nudio strum. clear its audio butter
and pointers, and return to searching for two consecutive
audio sync words [Sate-shame Sync].

In order to handle errors. subsystem 44 sets e unique emr
flag for each error condition. which is reset when misrepre-
nessor 42 reads the flag. Bach strut condition which inter.
mpts microprocessor 42 will be washable under control of
the microprocessor. Table 1 lists the various error conditions
related to audio synchronization end the response by sub-
system“ lnthistable, ‘Wm” is a turtle assignedtoeaeh
um: condition as referenmdinthe state diagram ofFIG. 5.
“Definition” defines the conditions indienting that the cor«
respondingen‘orhns mWismintenuptdesig-
nation whim. if Wes”, indicates that subsystem 44 will
interrupt mimocensor 42 when this error occurs “Check
State" and “Nell! Sure" designate the states in wbidi the
error will be detected (checked) and the audio processor will

10

13

14
enter. respectively, with the symbol “>" that the designated
emu will be detected when the audio processing state of
subsystem 44 is higher than the designated state. The audio
processing state hierarchy. from lowest to highest. is:

l. Idle

2. Frame Sync
3. dPI‘Swi,

4. PCRM,
5. yrs”,
6. PPS Sync
7. 'Il'ack

The symbol “E” preceding a state indicates that the one:
will be detected when the audio processing state of sub-
systanM is equal to or higher than the designated state. The
designated smte(s) indiutds) that the error will be detected
in this state or that the audio processing of subsystem 44 will
proceed to this state after the associated actions are carried
out. The designation "same” indicates that the nudlo pm-
eessing of subsystem 44 will stay in the same state after the
associated actions are carried out

The heading “Bufl’er Adion" indicates whether the audio
butter is to be flushed by setting its read and write pointers.
to be equal to the base address of the audio butler. The
designation “none“ indicates no change from normal audio
bufier management.

The bending “Pointer Action” indicates by the term
"reset" that me PIS pointer, error pointers or both will be
remand to the state specified as if subsystem 44 had been
reset. The designntion "none” indicates no change fiom
normal pointer mongement. The designation "see otheractions" indicates thnt other actions under the “Other
Actions" heading may indicate a pointer to be set or reset.
The “Other Actions” heading states my additional actions
required of the subsystem 44 as a result of the error.

EX 1018 Page 232

TABLE 1

SUMMA.RY Ql: ERROR§. miCf!PIIONS. AND 4CTIONS.

Cbl<:t Nes:t Buller Pointer
Name Delmilicu 1111 Stllc SWII Action Ac!icn Other AcUOIII

Jlll.-ffl PCR > PJ'S + dl'IS.,. ye1 pu_,ync fnmi:.._aync lhllh raet oooe
PILffl' PCR > PJ'S + dl'IS ... ya llllck fn111c_i1ync llush .-1 Stop o\llptll lo Aldlo Decodct (ADP).
tyllC.....ffl Input pr...-or looea IJ)'DC ilh input audio ya >idlo UIIIIC.J)'llC !lmh - Stop OlllpUI lo ADP.

£r.unn
OY_ffl Audio Bulfer overllcrwa ya ii;p!I....IJ)'DC fnmcJ7DC flush - Input plOCMIOt DWlltlml -,ncbroniutlon with the audio UI

bitalream. Slap output to ADP.
undcr.....m Au:lio Bulror uoderl'low1 no llllck - - !IOlll! Input~ mairllail» ~D 1'ilh Ibo llldiO

bilmetm. SIDp output to ADP.
f'Lm Input proc,:aor tcllCbiol Amio PBS dala ya :>lhllm.JJOC IIIDC nane - Contimo procctlW, Ill if tho, audi:l amplo 1'11111 bid DDt i:tmus,:d,

which iDdicales Ille audio nmple rite hu
cbaDj,,d sm:e tho cuxrent Pm .,... ocquind

·~ ftw,,r Input plOCCIIIOI' ll>CCffl Audio ms <1.ia :,es >hmoJ:,nc ·- DOIICO - If bit rlllo cblnact are emb1ed, input pllX<MOt will cailil:wc
wblcll indiealet Ibo audio bit 1'11111 bu dwq:,,d proeeuu11, IIU'ltina that die bit rlllo ln &ct clmlg<d ml using die
mllllive lo !be i.st IILldio 11Jt1C fnme reoebod *Ppraprialo IIYII" fnmc alzc 1o malmaln ~ If bit

r.te dw,pl ue net cmblcd, input pocc,111:1r will ec:mlnue
~ lllin, Ille bit - iJlllic:aled by Ille Jut oudio .,.... !rime ~. VI

p~ SJD:: 'IIIIXtl DOI fulmd due lo lau of audio dllla DO ill;pc,,__acqum, - DOIIIII """" Nom blll Qlber mor C01ldilioa, may lllo opply iD 1h11 c- :...:i
ofter • P'IS is rec:ei-t @

pcr._di.tl Input im--r reacl!Ol a lrlll8l)(lrt pecDt011 DO plL.aJnc plll&eqUft 4u,h ~I Input~ mJJ' mrmg PJ'S va1uc1 ill Ibo PTS pomter aa!il 00 the Ami<> PCR PlD with lho emr.noDII after iecq,don of tho - Audie> PCR. value. ...:i
d!oooammity__indaror bit of' ils ...:i
adap!lllloa..Jield set

pct_dul2 Input proce,,m rc,ceivu • 1nWlpQlt l*DI oo. no 1lwck - pll:retot Input pcoce-,r 1q,1 IIIXXiPg PIS vua ill Ille PTS poinler until
!he Au:lio PCR PID wi1h Ibo emr.nom &ftllr n,ceplion or Ille nm Audio PCR. valuo.
~_iudicator bit of ill
adaptatlon.Jleld ,et

11.ld_crrb Audio data of OIIC lnll5p0rt pocket al tile Sec >idle HIIIC OI' - pts:u:,oo Mainlain Amio Bulfer fullilelll by rdvmciDa lho PJFO write
cummt input ll)'IIC,' fnmc Ml lolt due lo fflOtS other frlmc_lYIIC; error:- pointer by 184 byte,, (MPBO). U9ll an cm:,r pointer lo 11111k the

octlom -other other cmmit IJ'llC fnme u In ffl'Ot, md cxmtmue pr,,ceuil:I& wilhoot
IIOtiotls actiom punliDs III illtemlpt. If it ii po1111>le tblt nae lhan one audio

sync WOid wu lost with the mlMinJ alldio nmport !*bl, u:b •
when~ M111icam u.yer ll II lost thm 64 tbpl or AC•3 at
lt,u lhan 48 tbpe, ll'IUl11 IO the Pnme Sync alo and ICllllt'&lo m
inlomlpt. If the uoxt audio l)'DC word la net received when Q\
cxpc,clcd, begin • byte-by-byte -,ch fi,r the audio sync WOid
during Ibo n,ccption of lllbscqueDt audio da!a. Oo:::o dlO .,,,.

C> byte -b is starilld, stop Dini audio dm in the bull'or wllil
the sync won! in bud. Do not - the tlnt byt,, examined
during the ..-h. Resume f1DriD1 audio d&tlr, when the sync bytio
di found, llutillg wilh (be f1DC word ilNlf, If the sync word di not
fotml mril:)8 the mst 184 by!Ol .-rcb,:,d, n:111111 to !be l'l'IIDO
Sync state• lllld p!lfflte an inlmupt

EX 1018 Page 233

v....uw..,,,._.. .m—pW

TABLEI

SW? 9E ERROfi, WEEw megs;
Check Nat Bulk Pom:

Nun: Dcfinifim In: Sat: Sun: Action Actim mum

M YCRI-m'fdfl‘S. yes W M Rush reset none
pmm m>m+msm ya Incl: £00le flush me: Mumvmuiobeoodawan
mm Inpmpmbmqmwimmputmdio ya Didi-e Emu-.3311: flush me: Snpompmnm.fumes
0V...€I Audio Bufl‘er overflow ya 3mm): 5mm flush rm Input pm Iminmnc mmfion with the nudit-

WMwmgmAm
1W.” Audionufl'umflcxflon no trick um um: none mefimiutymiuthnwimhmdio

bum,smpoumgmADP.
{Len- mmeWAmmsm ya ”Imam an: ma: non: Cvnfimzmiuniftbmhmkmhdmtchmged.

whichhdiamuwdiowmkmcht
chmsudsimethccmnwmmacq‘drd

M Wmmwmm ya >fimJync mm In): none Hhitmchmmmblfiinmpmvmmfimx
vmmmmbammw mmmmmmhmcmmmmm
rdflwbdnhstsflioumfiamcmcbd Wmhwuiuwmflmdnlymmwfnflanlfat

mummmmbmmwwmwmmm

mwmmmbammMeal-«WWW
pm mmmmmmmdnflhm no Em lune m m NuhncthermmndifioumyunwhinmhcmnfiulP‘l’Siamceive-d
will mumnmlmmu no W pulnquhn M WI mwmmmmhmmwmw

theAufioPCRvaimm: m MWOfflmAudchxm.
ammmmm
Whine:

pa..th Inpupmmimnmaponpmhtm m as]: um: m puma»! mmmmmmmbkMpfimmfl
mgmdioPCRmehhth: mm MWmlhsnenAMioER-W.
Wyfimufimnu
WWW":

chn‘h Adhdlhufunchupmplchtoflhe Sec Wile tumor nun: 9mm MMAuth‘fim-mllmasbymmcimmefimfitc
cmhpultyncfrmkbddubm odm' W; mun-us poinmbylflbymm‘nmmpoimrwmnkmn

action: month: other mmmubmwmmwm
actions nation: mWthHilism-sibkflmmsflmomw

mmwubuwkhdxmimhgwhmmwka‘uhn
meMumhyuflakuflmakbpsorAC-Bu
ankmmwmemmucudgmm
Wfihmmwmummnedwm
mmkfinlM-bfiemhfinflnudhqmwmd
mummnofmmmwiodamOweMw
bytcmchilmmminxwdbdnnhézbuflamfii
mmmmmmmmwwmum
Mahmhkmmfiuludlodtuwltnthuymbyu
ummmwmmmmnwmmhm
WmmfimlfimmMnmwflme
Syumm‘mdsmumm

SI

91

LLZ‘SOL‘S

EX 1018 Page 233

r 4? •

;g ·-· I

TABLE 1-contlnued

SUMMARY OP BRR.ORS, BXCBPI10NS, AND ACTIONS.

Name

•ud.-ffl'lb Audio d&la of om lrampOrt p,,clr:ot of tho yes
Clllfflll. illput syoc framot ii lost due le emm,

allot mL.crr!a bu occumd durin, tho amo
inpu! oync framo

IIICLm'.! Audio data of m<m Ihm ooo tran,p,rt p,,cb,t :,ea
of tile cum:m mput syu: fnmo ii lost due \lJ
errors

Audio di.ta of ODO tramport ptcut ii loot
whilt llrror Mode is Unp,ou:ct.ed

>idlo

>idle

Check
Stato

pls:i,,.ot u ... m em,r poimer to m,d the cumml "1Il" frame u in error.

=-other
actloM
.....r Input P"""'""'' malnlllloo ')'llCbloniz•tion ,..;!h th6 audio

l>ilstreanl. Slop outpul lo ADP.

11b implcmom Ibo abQve em,r proceaq ll:,,: MPllCI or DigiClpbcr ll imp~ lbc li:lpu! Proculor cm mlinlllm an audio bine byt,, CCJUlll by:
IIClUl!I a cotmler' 1 value oo the '!I"' frame •m 111 l,ytco • Heh li)'llC word ii ~
~ the ooumer u each n,ceived &lldio byliO ls scored in the Audio Buffer (l'IFO),
~the~ by 184 bytu ,..bo,n a lin,si.. a1ldio lr'IIW!pOC'l !*ef. ii lost ID COfD1l"1lal<I mr lbc odvmcomonl of Ibo FlPO wt!to poin""' by UW,
incremmt.ing !be CCWlfQ by m, ornallor of Ibo two .,.ni: mine &iz4s in l>yu,o co,resp,odirl& ID !be cummt bl£ n111t if tho abo'i'O decrement N!l1llll!d in a noalllivo C<JUlller va1uio (~ Ibo bt tnmp0rt pi,::bt
pouibly cootamed tho mxl iwwo ,yu:, wend and o=unq li,r the possibilitJ dw tbo audio ump le nle is 44.1 JCsp, md the oyric framot aixe bu clm,pd flom. tho 1qer ...Jue lo Ibo amaller value),
mmnm,g le Ibo l'nmll> Sync 1tlle if Ibo above im:R:mcnl rcsuluod in• coumer V1llue ,..hlch,.... 11i11 noptinl (mdicalms Ibo k>rt aampon !*DI pom'bly cootaincd l1lDNI than one IIUdio sync won!), and
boginniDg !he bftc-by-byt,, "Yll',,,1 1em,:h when !he oounll:r ill zero.

EX 1018 Page 234

TABLE l—mntinucdWWW

SUMMARY OF ERROR; mlEONg, AND ACTIONS.

Cinch Nut Mu Nimar

Nuns Definin'm In: sum SM Action Mien Mansion

man-lb Audiodsnolons mm palm affix: ya >kfls W duh gram! m
magnayncfimilbstduwm emu-m
mammlnhumcmddminadnm
inmzyucfirum

nadJn’l Aflbdmofmmeflumoneumswnpucht ya >idle 5mm 13ml: pmaset memwimmmwemtmhmuhm.
ofhzcmm’mgulrynzhmeishndmm mmm: min:

union:
PM“ Audiadmafme mponpaclwthlox ya tram w and: text Input pmrmamimtyncmmizm wimtha M0

kaErmModnitUnpmcmd birwnnismpcuwmmk

‘Tbinwkwdnxbovemmina MWammnmmmammcnmhMmmmbmmw
WacoWIvdmnmemmsiuinbymwuchmwmdhm
Mumuwhmwmkmmfinmmfihfiuflamox
Miriam”lumwhmnflgkuflbummmkflhmmwfixdndvmmtofhmwfimpoinmby 184.
Wham:mmbythemumofmatwonyucmmmbmmwmmwnnfimawnmminnmntivocmatvdmfmtflngEnchant-ampere!
m‘bl‘ywnhhaiflnmtmd’n uudmdmmfiqfixflnpoflifilitjhihnflb 19min“wwhmmmmcwmmmmmmmmm),
mummmme‘ hsmmmmnudmammvhhhw unmcmmmmmmwzmbwmmmmmmmwmw
mmmm-bybymsymwmdwmhwhmumbm.

LI

SI

LLS‘EOL‘S

EX 1018 Page 234

5,703,877
19 20

As indicated above, the demultiplexing and data parsing flag of one c.- mca:e error pointers is not set. the buffer
subsystem 44 of FIG. 2 maintains several pointers to support address of the sync wlXd is recorded into the DRAM offset
audio processing. The PI'S pointer is a set of parameters address ofone of the invalid error pointers. At the same time,
related to a PI'S value, specifically a PJ'S value, a DRAM the aror mode is set to protected. If the validity :flag of both
offset address, and a validity flag. In the illustrated embodi- 5 error pointers is set when a sync word is placed into the
mcnt. the PJ'S value comprises the 17 least significant bits butler, the en-or mode is set to unprotected but the DRAM
of the PI'S value received from the audio P.ES header. This offset address of the sync word is not recorded.
value is associated with the audio sync frame pointed to by When audio data is placed into the butler and any eiror is
the pointer's DRAM offset address field. The use of 17 bits discovered in the audio data, such as due to the loss of an
allows this field to specify a 1.456 second time window 10 audio transport packet er the reception of audio data which
((2 17-1)/90 kHz). which exceeds the maximum audio time has not been properly deaypted, subsystem44 will revert to
span which the audio buffer 50 is sized to store. the PJ'S acquire state if lbe ci::ror mode is unprotected.

The DRAM offset address maintained by the PrS pointer Otherwise, the validity bit of the error pointer which con-
is a 13-bit olfset address, relative to the audio buffer base tains the DRAM otfset address of the sync word which sta:ru
address. into the DRAM at which the first byte of the audio ts the sync frame CUIIently being received is set. In the rare
sync frame associated with the pointer's PI'S value is stored. event that an e:tr0r is discovered m the data for an audio sync
The 13 bits allows the pointer to address an audio buffer as frame during the same clock cycle that the sync word for the
wge as 8192 bytes. sync frame is removed from the buffer, the sync word will

The PJ'S pointer validity flag is a one-bit flag indicating be cacrupted as mdicated above to specify that the sync
whether or not this PfS pointer contains a valid PI'S value zo frame is known to ront.aio 1111. audio emir. At the same time,
and DRAM offset address. Since MPBG does not requm: thevaliditybitisclearedsucbthat~does.notremainsetafter
PrS values to be transported m1XC often than every 700 the sync frame .has been output. This av<!1ds the need to ~eset
milliseconds, subsystem 44 may find itself not having a valid subsystem 44 10 ~ to render the pointer useful agaJIL
PI'S value for some intervals of time. When audio data 1s bc:iJlg n:moved .from the audio buffer,

AitJ'.:l the decoder is reset, the valid flag of the PI'S pointer 2.S the sync word is ooaupted if the DRAM olfset address of
is set to invalid. When • new PJ'S value is received., if the any a:ror pointer mat.ches that of lbe data currcntly .bein~
valid ftag is set, the newly i:eceived PJ'S value is ignored. If ~emoved.~ the buffer. A! lhe same time, the validity bit
the valid ftag Is not set, the newly received PI'S value is 15 set to invalid.
st<Rd into the PJ'S pointer but its valid flag is not yet set to The decoder of FIG. 2 also illustrates a video buffer 58
valid. Aftr:r a new PJ'S value is st<ndinto the PI'S pointer, 30 and video decoder 52. These process the video data at the
lheprocessingofaudiodataiscontinuedandeachaudiodata same time the audio data is being processed as described
byte is counted. If the next audio sync frame is received and above. The ultimate goal is to have the video and audio data
placed into the buffer coi:re.cl1y. the DRAM offset address output together Ill the fl'oper time so that the television
(which corresponds to the buffer address into which the first signal can be reconstructed. with proper lip synchronization.
byte of the sync word of this sync frame is stcred) is stored 35 FIG. 4 is a block diagram illustrating the demultiplexing
mto the pointer's DRAM offset address fteld. Theo, the and data parsing subsystem 44 of FIG. 2 in greater detail..
pointer's valid flag is set to valid. The next audio sync frame AitJ'.:l the transport packets ate input via terminal 40, the PID
is received and placed into the butler COlI'CCtly when no data of each pack.et is detected by circuit 7t. The detection m the
is lost for any reason between reception of the PJ'S value and PIDs enables demultiplexer 72 to ou1p11t audio packets,
reception of a subsequent sync word before too many audio 40 video packets and any other types of packets canied m the
bytes (i.e .• the number of audio bytes pei- sync frame) are data stream, such as packets carrying rontrol data, on
buffered. If the next audio, sync frame is not reccived « separate lines.
pl~ into the butler correctly, the valid flag is not set to The audio packets output from demultiplexer 71 are input
valid.

45
to the various circuits necesncy to implement the audio

AitJ'.:l lhe PfS pointer is used to detect any audio timing processing as desm'bed above. Circuit 74 modifies the sync
cnors which may have occurred slnce the last resynchroni.- word of each audio frame known to contain errors. The
zation, the valid flag is set to invalid to allow subsequent modified sync words are obtained using a sync word inverter
PrS pointers to be captured and used. This oocun whether 78. which inverts every other bit in the sync words output
the Pl'S pointer is in the PI'S sync or tracking state. so from a sync word. PCR and PI'S detection circuit 80, m the

The ctror pointers are parameters related to an audio sync event that the audio frame to which the sync word coi:re-

frame currently in the buffer and known to contain CIJors. spoods contams an error. Error detection is provided by error
The error pointers comprise a DRAM otfsct address and a detection circuit 76.
validity flag. The DRAM oifset address is a 13-bit offset The sync word. PCR and PJ'S detection circuit 80 also
address, relative to the audio buffer base address. into the ss ou1p11ts the sync word for each audio frame to an audio
DRAM at which the first byte m the audio sync frame sample and bit rate calculator 86. This circuit detcnnines the
known to contain a:rors is stored. Thirteen bits allows the audio sample and bit rate of the audio data and passes this
pointer to address an audio buffer as large as 8192 bytes. The information to decoder microprocessor 42 via data bus 88.
validity ~ag is a o~e-bit fl~ indicatmg whether or not this The PCR and PJ'S are output from circuit 80 to a lip sync
error po10ter contains a valid DRAM offset address. When 60 and output timing compensator 82. Circuit 82 also receives
i:eceiving data from a relatively error free medium. sub- the dPI'S values from miaoprocessoc 42. and adds the
system 44. will find itse~ not having any valid error pointers approixiate values to the PJ'S in order to provide the
for some intervals of ti.me. necessary delay for prq1er lip synchronization. Compensa-

Subsystcm 44 is required to maintain a total of two CIJOl' tor 82 also determines if the delayed presentation time is
pointers and one m-or mode :flag. After reset, the validity ftag 6S outside of the acceptable range with respect to the PCR, in
is set to invalid and the error mode is set to "protected." which case an emir has occ:urred and resynchronization will
When a sync word is placed into the audio buffer, if the valid be required.

EX 1018 Page 235

0

5,703,877
19

As indicated shove. the demnidplexing and data parsing
subsystem“ of FIG. 2 maintains several pointers to support
audio processing. The 91‘s pointer is a set of ters
related to a PIS value, specifically a YTS value. a DRAM
onset address. and a validity ting. In the illustrated embodi»
meat. the PTS value comprises the 17 least signifimt hits
of the FPS value received from the audio PES header. 'I‘his
value is associated with the audio sync frame pointed to by
the poiutu's DRAM offset address field. 'lhe use of 17 bits
allows this field to specify a 1.456 second time window
«whim kHz). which ateeeds the maximum audio time
span which the audio buffer 50 is sized to store.

The DRAM ofl'setnddress maintained by the Pl‘Spolnter
is a 134m offset address. relative to the audio bufier base
address. into the DRAM at which the first byte of the audio
sync frame associated with the pointer’r FI’S value is stored.
The 13 bits allows the pointer to address an audio butler as
large as 8192 bytes.

TthI‘S pointer validity fiagisaom—bitflagindicating
whether or not this PPS pointer contains a valid FI‘S value
and DRAM offset address. Since MPEG does not require
FI'S values to be unsported more often thnn every 700
milliseconds. subsystem 44 my find itselfnot having avalid
FI‘S value for some intervnls of time.

Aflerthedocoderisresmthevnlidflng oftheFl‘Spointer
is setminvafidWhenanewPTSvalueisreceivedifme
valid flag is set. the newly received Pl‘S value is ignored If
thevalidflaglsnotset,the newlyreeeivedPI‘SV/alneis
stored into the PIS pointer-but its valid flag is notyct set to
validAfneranewFl‘Svalue is storedintcthePI‘S pointer,
the processing ofaudio data is continued and each audio data
byteiseounted. lithe nerd audio syneframelsteceived and
plawd into the buff: correctly. the DRAM offset address
(which corresponds to the bullet address into which the first
byte of the sync werdoftnis sync frame is stcred) is stored
into the pointer’s DRAM oifset address field. Then. the
pointa‘s valid flag is set no valid. The next audio sync frame
isreceivedandplnoediutothebufl‘u'con'ectlywhennodm
is lost for any reason between reception of the PPS value and
reception of a subsequent sync word before too many audio
bytes (i.e.. the number of audio bytes per sync frame) are
buttered. If the next audio, sync frame is not received or
plamd into the buffs correctly. the valid flag is not set to
valid.

AfterfltePI‘Spointu'isusedtodetectnnyattdiotiming
errors which may have ventured since the last remchroni—
ration. the valid flag is set to invalid to allow subsequent
PPS polntds to be aptured and used. This occurs whether
the PIS pointer is in the PI‘S sync or uacldng state.

The error pointers are {semesters related to an audio sync
flame currently in the butter and blown to contain wars.
The error pointers comprise a DRAM offset address and a
validity flag. The DRAM olfset address is a 13-bit 035:!
address. relative to the audio buffer base address. into the
DRAM at which the first byte of the audio sync frame
known to contain errors is stored Thirteen bits allows the
pointer to address an audio bullet as large as 81% bytes. The
validity flag is a one-bit ling indicating whether or not this
error pointer contains a valid DRAM offset address. When
receiving data from a relatively any free medium. sub.
system 44 will find itself not having any valid error pointer
for some intervals of time.

Subsystem 44 is required to maintain a total of two end
poulters and one error mode flag. After reset. the validity flag
is set to invalid and the error mode is set to "protected.“
When a sync word is plnced into the audio butter. if the valid

10

15

35

45

55

65

20
flag of one a more error pointers is not set. the bufl'er
address of the sync word is recorded into the DRAM offset
address of one of the invalid en'crpointers. At the same time.
the error mode is settoprotected. lfthe validity flagofboth
error pointers is set when a sync word is placed into the
butter, the error mode is set to unprotected but the DRAM
offset address of the sync word is not recorded.

Whenaudio dataisplneedlnto thehuffer and anymoris
discoveredin the audio data. suehns dueto the lossofan
audio transport packet or the reception of audio data which
has not been proptn‘ly decrypted. subsystem“ will revert to
the PTS acquire state if the error mode is unprotected
Otherwise, the validity bit of the error pointer which con-
tains the DRAM ofisetaddress ofthe sync word whiehstnrts
the sync fmne amently being received is set. In the rare
eventthatanerrorisdiseoveredinule dataforan audio sync
frame during the same clock. cycle that the syncword for the
sync frame is removed from the buffer. the sync word will
be corrupted as indicated above to specify that the sync
fralneislmown tooonuu'n aneudioerror. Aime samefime.
the validity bit is cleared such Limit does notremain set after
the sync frame has been output. This molds the need to reset
subsystem 44 in order to renderthepointer useful again.

When audio data is hdng removed from the audio hull‘u.
the sync Word is corrupted if the DRAM offset address of
any error pointer matches first of the data umntly being
removed from the buffer. At the same time. the validity bit
is set to invalid.

The decoder of FIG. 2 also illustrates a video buffer 58
and video decoder 52» These process the video data at the
same time the audio data is being processed as described
shove'l'he ultimate goal is tohave the video and audio data
output together at the yroper time so that the television
signal can be reconstructed with paper lip synchronization.

FIG. 4 is a block diagramillusu’nling the Multiplexing
and dataparsing subsystem“ ofFIG.2in greater detail.
Afterthetmnsportpackets u‘einputvlnterminalMJher
ofeachpaeketisdetectedhy citatit’lm'l‘hedetecdonen‘the
Pl'Ds enables demulfiplexer '73 to output audio packets.
videopackets and any mhertypesofpackets curriedinthe
data stream, such as packets carrying control data. on
separate lines.

The audio packets output from demultiplexer 72 are input
to the various circuits necessary to implement the audio
processing as described above. Circuit 74 modifies the sync
word of each audio frame known to contain errors. The

modified sync words are obtained using a sync word inverter
78. which inverts every other hit in the sync words output
from a sync wcrd. PCR and P'I‘S detection dram 80. in the
event that: the audio frame to which the sync word corre-
spondsoontains ant-mm Errordeteefiouisprovidedbyerror
detection circuit 76.

The sync word. PCR and P18 detection circuit 80 also
outputs the sync word for each audio frame to an audio
sample Ind hit rate cdculator 86. This circuit determines the
audio sample and bit rate of the audio data and passes this
information to decoder microprocessor 42 via dam bus 88.

ThePCRnudPTSareoutputfromcircuitMtoalipsync
and output timing compensator 82. Circuit 82 also receives
the MS values from miaorxocessor 42. and adds the
appropriate values to the PPS in order to provide the
necessary daisy for proper lip synchronization. Compensa-
tor 82 also determines if the delayed presentation time is
outside of the acceptable range with respect to the PCR. in
which case an em: has occurred and resynchronization will
beroquired.

EX 1018 Page 235

0 0

5,703,877
21 22

Buffer control 84 provides the control and address infor- replacing said address in said PrS pointer with a new
rnation to the audio output buffer 50. The buffer control 84 address corresponding to a portion of audio data
is signaled by ci:ror detection clrcuit 76 whenever an Cl!OI' refcm:d to by said new cmrent PI'S value;
occurs that requires the temporary suspension of the writing suspending the output of data from said buffer when said
of. data to the buffer. The buffer control 84 also receives tbe s new address is reached; and
delay values from lip sync and output timing compensatCI' recommencing the output of data from said bu:lfc:r when
82 in order to control the proper timing of data output from said decoder system time clock reaches a presentation
the buffer. time derived from said new cuaent PI'S value.

FIG. 5 is a state diagram illustrating the processing of 3. A method in accordance with claim 2 wherein said
1111dio data and response to CirOIS as set forth in Table 1. The 10 presentation time is determined from the sum of said new
idle state is represented by box 100. Acquisition offhe audio current PI'S value md an offset value that provides proper
data occurs during the frame sync state 102. The dPI'S-wait lip synchronization by accounting for a video signal pro-
state is indicated by box 104. Boxes 106,. 108 and no cessiog delay.
represent the PCR_. PI'Socir and PI'S sync states, rcspec- 4. A method in aCCCl'daoce with claim 1 wherein the time
lively. Once audio synchronization has occurred. the signal at which the audio data is output from said buffer is
is tracked as indicated by the tm:killg state of box ll2. The 15 dependent on an offset value added to said PfS for providing
outputs of each of boxes 104. 106, 1418, 110 and 112 indicate proper lip synchronization by accounting for a video signal
the cuor conditions that cause a relllrn to the frame syn- processing delay.
chronization state 112. The emir PCR DIS1 during the PTS 5. A method l.n acoordance with claim 1 comprising the
syoc state ll It will cause a return to the PTS acquire state, further steps of:
as indicated in the state diagram of FIG. 5. 20 examiniDg the detected audio packets to locate the occur-

It should now be appreciated that the present inveotion reoce of at least one audio synchronization word
provides methods and apparatus foc acquiring and process- therein for use in achieving a synchronization condition
ing errors in audio data communicated. via a transport packet prior to locating said audio PTS's;
scheme. Transport packet c:mrs are handled while maio- oommencing a reacquisition of said synchronization con-
taining audio synchronization. During such error conditions, 25 dition if said comparing step detc:nnines that said audio
the associated audio errors arc concealed. Corrupted data in paclcets are too late to decode.
an audio frame is sigoaled by altering the sync pattern 6. A method in accordance with claim 5 wherein two
8:5~ with th~ &udio frame. PI'S's are u~ to check the consecutive audio synchronizatioo words with a com:ct
timlllg of processmg and to COtTCCt audio liming arors. number of audio data bytes in between define an audio

Alth~gh the ~vention ~ been ~scribed In co~on 30 frame, said audio frame including only one of said two
with vmous specific embodiments, 1t should be appreciated consecutive audio synchronization words said method com-
and undcrstood that numcrousadaptations andmodificalions prising the further steps of· •
m.a.y be made. thcr~, without departing fro~ the spirit and detecting the occurrence. of errors in said audio packets;
scope of the mventioo as set forth In the claims. _...,_ first udlo _,._ of di

we cl.i.inr 35 upoo =w,g a a pacu;t a current au o
1. A method for processing digital audio data from a frame containing an en:or, advancing a write pointer for

pe.ci:ctlzed data stream cmying digital television informa- said butf': by ~e maximum number of payload bytes
lion in a succession of fixed length transport packets, each (N) contained m one of said fixed length transport
of said packets including a packet identlfter (PJD), some of packtts and designating said CUITent audio frame as
said packets containing a program clock reference {PCR) "° being in error;
value for synchroniziog a decoder system time dock (STC), monitoring the detected audio packets of said cwrent

\

and some of said packets containing a presentation time audio frame for the next audio synchronization WCl'd
stamp (PI'S) indicative of a time for commencing Che output after said error has been detected. and if said synchro-
o_f as~ data for us~ _in reconstructing a television nization word is not received where expected in the
mgnal. Sllld method compnsmg Che steps of: audio stream, discarding subsequent audio data while

monitoring the PlD's for the packets ca.tried in said data 45
searching for said synchronization word rather than

stream to detect audio packets, some of said audio storing the subsequent audio data into said buffc:r;
packets cmying an audio PTS; resuming the storage of &udio data in said bu:lfer upon

storing audio data from the detected audio packets in a detection of said next audio synchronization word if
buffer for subsequent output;

50
said next audio synchronization word is located within

monitoring the detected audio packets to locate audio N bytes after the commencement of the search therefor;
PI'S's; and

comparing a time derived from said STC with a time if said next audio synchronizalioo word is oo< located
derived from the located audio PI'S's to detennine within said N bytes after the commencement of the
whether said audio packets are too early to decode. too 55 search therefor, commencing a reacquisition of said
late to deoode, or ready to be decoded; and synchronization oondilion.

adjuslingthetimeatwbichsaldstorcdaudiodataisoutput 7. A method in accordance with claim 6 oompruing the
from said buffer on an ongoing basis in response to said further step of concealing television audio wors whenever
comparing step. the audio data from which said television audio is being

2. A method io accordance with claim 1 whcrcin a PI'S (,(l reconstructed is in =·
pointer is pIUvided to maintain a Cllll'Cnt PfS value and an 8. A method io aocordance with claim 7 wherein:
address of said buffer identifying where a portion of audio a cw:rent audio f:rame is designated as being in error by
data referred to by said current PTS is stored, said timing altering the audio synchronization word foi: that frame;
adjustment being pIOvided by the further steps of: and

replacing said PI'S value in said PI'S pointer with a new 6S said concealing step is responsive to an altered syncbro-
cmrent PI'S value after data stored at said address bas nization word for ooncealing audio associated with the
been output from said buffer;· COtTesponding audio frame.

EX 1018 Page 236

4.3..we...

clouds!»:95”a‘

warren“.,h...m
“a.“r.'-

r’.:\«u~.w,»:V.‘e\

Ci)

5,703,877
21

Buffer control 84 provides the control and address infor-
mation to the audio output buffer 50. The bufier control 84
is signaled by error detection cirwit 76 whenever an error
courts that requires the temporary suspension of the writing
of data to the buffer. The bufer control 84 also receives the
delay valum from lip sync and mtput timing compensatrr
82 inordrrtocommltheprqyettiming ddatnontputfrom
the bufier.

FIG. 5 is a state diagram illustrating the processing of
audio data and response to errors as set forth in Table l. The
idle state is represented by box 1011. Acquisition of the audio
data occurs during the frame sync state 102. 1hr: di’l‘S-wait
state is indicated by box 104. Boxes 106,. 108 and 110

represent the PIS”? andl’I‘S sync states, respec-
tively. Once audio synehromzttion has occurred. the signal
is tracked as indiented by the tracking state of box 112. The
outputs of each of boxes IN. 106, 108, 110 and 112 indicate
the error conditions that cause a return to the inure syn-
chronization state “1Tb: emX'PCR D181 during the FPS
sync state uttwillmuseareturutothel’l‘s acquirestate.
nsindicatediuthe state dingrnmofFIG. 5.

It should now be appreciated that the present invention
provides methods and apparatus for enquiring and process-
ingerrorsinaudiodata communicatedvinuansportpacket
scheme. Transport packet ems are handled while unit»
mining audio synchronization During such error conditions,
the nssodated audio errors are concealed. Corrupted dot: in
an audio frame is signaled by altering the sync portal:
assodntedwith the audio home. ”8‘: are used to checkthe
timing of processing and to correct audio timing me.

Although the invenu‘on has been described in connedion
with vnrious specific embodiments, it should be emaciated
and understood that numerals adaptations andmodulations
may be made mereto, without departing from the spirit and
scope of the invention as set forth in the claims.We claim:

1. A medrod for processing digital audio data from a
peckedzed data stream carrying digital television informa-
tion in a succession of fixed length transport padrets, etch
of said packets including a packet identifier (PID), some of
said pockets containing a mgr-em clock reference (PCR)
value for synchronizing n decoder system time dock (SIC).
and some of said pockets containing a presentation time
stamp (PPS) indicative of a timefor commencing the output
of associated data for use in reconstructing a television
signal. said method comprising the steps of:

monitoring the PID‘s for the packets carried in said dntn
mean; to detect audio packets, some of said nudio
packets carrying on audio PIS;

storing audio data from the detected audio packets in a
butter for subsequent output;

monitoring the «interned audio packets to locate audio
P'I‘S’s:

comparingatimederivedfromsaidmwiflintimc
derived from the located audio PI'S's to determine

whether said audio packets are too early to decode. too
late to decode. or ready to be decoded; and

adjusting the time at which said stored audio data is output
from said butter on an ongoing basis in responseto said
comparing stqa.

2.Amethodineccordancewithclnimlwhereinam so
pointer is provided to maintain a current PTS value and an
address of said bufier identifying where a portion of audio
data referred to by said current P'I‘S is stored, said timing
adjustment being provided by the further steps of:

replacing said PTS value in said I’I‘S pointer with a new as
current P‘I‘S value alter data stored at said address has
been output from said buflerg’

5

IO

15

no

25

30

35

4D

‘5

55

22
replacing said address in said I’I‘S pointer with a new

address corresponding to a portion of audio data
referred to by said new current PTS value;

suspending the output of data from said bufl’er when slid
new address is reached; and

recommcudng the output of data from said buifer when
said dewdrr system time clock reaches a presentation
time derived from said new amen: P'l‘S value.

3. A method in accordance with claim 2 wherein said
presentation time is detu'mined from the sum of said new
current PIS value and m otfset value that provides proper
lip synchronization by accounting for a video signal pro
cessing delay.

4. A method in accordance with claim I whuein the time
at which the audio data is output from said bufier is
dependent on an otiset value added to said PI‘S for providing
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim 1 comprising the
further steps of:

examining the detected audio packets to locate the occur-
rence of at least one audio synchronization word
therein forusein achieving a synchronization condition
prior to locating said audio P'I‘S’s;

commencing nrescquisition of said synctnonintion con-
dition if said competing step determines that said audio
packets are too late to decode.

6.Amethodinnooordancewithclnim5whereinrwo
ouncewtive audio synchronization words with a correct
numb: of audio data bytes in between define an audio
frame. said audio fume including only one of said two
consecutive nudio syndironizntion words, srid method com—
mitting the further steps of:

detecting the occurence of errors in said audio packets;
upon detecting a first radio packet of a current audio

frame containing an error, advancing a write pointer for
sold butter by the mnximum number of payload bytes
(N) contained in one of sold fixed length transport
packets and designating snid ran-rent audio frame as
being in error,

monitoring the detected audio packets of said current
audio front: for the next audio synchronization word
the said error has been detected, and if said synchro-
nization road is not reca‘ved when: expected in the
audio stream, discarding subsequent audio data while
searching for said syndrronizntion word rather than
storing the subsequent audio data into said buffer:

returning the storage of audio data in said buifer upon
detection of said next audio syudnroniention word if
said next audio synchronization word is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchronization word is not located
within said N bytes nt'ter the commencement of the
search tlmefor. commencing at reacquisition of said
synchronization condition.

7. A method in accordance with claim 6 comprising the
furdier step of wounding television audio errors whenever
the audio data from which said television audio is being
reconstructed is in error.

8.). method in accordance with claim 1 wherein:

a meat audio frame is designated as being in error by
altering the audio synchronization word for that frame;
and

said concealing step is responsive to an altered synchro-
nization word for concealing audio associated with the
corresponding audio frame.

EX 1018 Page 236

0 0
5,703,877

23 24
J. A method for processing digital audio data from a ignoring a rate change indicated by said audio data on the

pacmtized data stream carrying digital television informa- assumption that the rate has not actually changed;
don in a succession of transp<Xt packets having a fixed concealing lhe audio frame containing the data indicative
length of N bytes, each of said packets including a packet of an audio sample rate change while attempting to
identi.fi.~ {PID). some of said packets containing a progillIIl s maintain said synchronization oondition; and
clock reference (PCR) value for synchronizing a decoder commencing a reacquisition of said synchronization con-
system time clock, and some of said packets containing a dilion if said condition cannot be maintained.
presentation time stamp (PJ'S) indicative of a time for 13. A method in accardance with claim 1J wherein said
commencing the output of associated data for use in recon- audio data includes information indicative of an audio
structing a ?devision signal, said method comprising the 10 sample rate and audio bit rate, at least one of said audio
steps of: sample n.te and audio bil: rate being variable, said method

monitoring lhe PID's for the paCEts cairled in said data comprising the further step of attempting to maintain syn
chronization of said audio packets during a rate change

stream to detect audio packets; indicated by said audio data by:
examining the dctectcd audio packets to locate the occur- processing said audio data in accordance w:ilh a new rate

rence of audio syncbroni7.alion wonls for use in achiev-
15 indicated by said audio data ill the absence of an em,r

ing a synchronization condition, each two consecutive indication pertaining to the audio frame containing the
audio synchronization wools defining an audio frame new rate, while attempting to maintain said synchro-
thcrebetwccn; nizalion condition;

monitoring the dctcctcd audio pac:Ja:ts after said synchro- 20 processing said audio data without changing the rate if an
nizalion condition has been achieved to locate an audio cnor indication pertains to the audio frame 0011taining
Pl'S; the new rate, while concealing the audio frame to which

s=bing the detected audio packets after locating said saidcaocconditio11pertainsudattc:mptingtomaintain
audio PJ'S to locate the next audio synchronization said synchronizatioo condition; and
word; 25 oommcncing a reacquisition of said synchronization con-

storing audio data following said next audio syochroni- dition if said condition cannot be maintained.
zation word in a buffer; 14. Apparallls for acquimlg audio information carried by

detecting the occuacncc of caors in said audio packets; a pactetizcd data stream and p:ocessfng mrors therein,
upon detecting a first audio packet of a CU1Tent audio comprising:

frame containing an error, advancing a write pointcrfor 30 meuis for detecting audio tn.nsport packets in said data
said butler by N bytes and designating said current stream:
audio frame as being in error; means for rccovcrmg audio data from said detected audio

monitoring the dctcd.cd audio packets of said cum:nt ttansport packets for storage in a buffer;
audio frame for the next audio synchronization word means for locating an audio p-eseatation time stamp
after said error bas been detected, and if said synchro- 35 (PJ'S) in said detected audio transport packets;
oi.zation word is aot :received whc:re expected in the means responsive to said Pl'S for commencing the output
audio stream, discarding subsequent audio data while of audio data from said butfcr at a spcci:licd time;
searching for said syncbroni7.ation word rather than JllCAlls for monitcring the detected audio transport packets
storing the subsequent audio data into said buffer; after lhc output of audio data from said butf'cr has

resuming the storage of audio data in said buffer upon '40 commenced. to locate subsequent audio PI'S's;
detection of said next audio synchronization wocd if means fa: comparing a time derived from a decoder
said next audio synchronization word is located withm system time clock (Si'C) to a time dmved from the
Nbytesafterlhccommenccmcntofthescarchtherefor; subsequent audio PrS's to detcm:line whe1hcr audio
and

45
data stored in said butler is too Cllfly to decode, too late

if said next audio synchronization word is not located to decode, or ready to be dccodcd; and
withm sald N byt.cs after the commencement of the means responsive to said comparing means for adjusting
search therefor, commencing a reacquisition of said the time at which said stored audio data is output from
synchronization oondition. said buffer.

le. A method in accordance with' claim 9 compri.slng the 50 15. Apparatus in accordance with claim 14 further com-
further step of concealing television audio errors whenever prising:
the audio data from which said television audio is being means for maintaming a Pl'S pointer with a current PfS
reconstructed ls in c:tror. value and an address of said buffer idelltifying wberc a

11. A method in accordance with claim 11 whaein: portion of audio data referred to by said cwrent P1'S is
a aurent audio frame ls designated as being in error by 55 stored;

altcrmg the audio synchronization word for that frame; Jll(IADS for replacing said PrS Value in said PTS pointer
and wi1h a new current PJ'S value after data stored at said

said concealing step is responsive to an altered synchro- address bas been output from said buffer, and for
nization word for concealing audio associated with the replacing said address in i.aid PJ'S pointer with a new
corresponding audio frame. fiO address corresponding to a portion of audio data

1.2.. A method in accordance with claim 1J wherein said referred to by said new current P1'S value;
audio data Includes information indicative of an audio means responsive to said PrS pointer for suspending the
sample rate and audio bit rate, at least one of said audio output of data from said buffer when said new address
sample rate and audio bit rate being variable, said method is reached; and
oomprising the further step of attempting to maintain syn- 65 means for recommencing the output of data from said
chronizllion of said audio packets during a rate change buffer at a time derived from said new cunent PJ'S
indicated by said audio data by: value.

EX 1018 Page 237

O
,o“ha-31:w.«r.(win.3};ii"i, .

23

9. A method for processing digital audio dam from a
packetized data stream carrying digital television infom
don in a succession of transport packets having a fixed
length of N bytes. each of said pockets including a packet
identifier (PID). some of said packets containing a program
clock refineries: (PCR) value for synclnonizing n deooder
system time clock, and some of said packets containing a
presentation time stamp (FPS) indicative of n time for
commencing the output of associated data for use in recon
sis-noting a television signal. said method compfising the

mwho—M
.t>v;nu.maestfis..e.ns«it?, 5

0

5,703,877
24

ignoring a rate change indicated by said audio data on the
assumption that the rate has not actually changed;

concealing the audio frame containing the data indicative
of an audio sample rate change while attempting to
maintain said synchronization condition; and

commuting n moquisition of said synchronization con-
dition if said condition cannot be maintained.

13. Amethod in accordance with claim 9 wherein said
audio data includes infonnntion indicative of an nudio

10 sample rate and audio bit rate, at least one of said audio

“595 of: sample rate and nudio bit rate being van'abie, said method.. . . . oompns‘inmfurthers ofmempn‘nto ’ ' —
monitoring '11: m 5 fix the packets can-led m ”"1 dam chronizuign «if said and? packets durigng magma”;

stream to detect audio packets; indicated by “id audio m by:
examining thedeteaednudiopacketstoloeetetheoccm—

tonne of audio synclnouimion words for use in whiev—
in: n synchronization condition. each two consecutive
audio synchronization words defining an audio frame
therebetween;

s.was«some».a
'1»,

.2!3:.»

15 procesoing said audio data in accordance with a new rate
indicated by said audio data in the absence of an error
indication pertaining to the audio frame containing the
newranwhile attemptingtomaiutain saidsyuchro—
ninn’on condition;

g monitoring theWaudio nadir” after “id 85mm 3, processing said audio um withoutdmnging the rate ifan
1: ninetion condition has been achievedto locate an audio en’or indication pertains to the audio m containing
:2 PTS: the new rate. while concealing the audio from towhich

searching the detected audio packets liter locan‘ng said said moondition pertains and attempting to maintain
{5: audio P‘I‘S to locate the next audio syndtronizntion said synchronization condition; nod

; word; 25 commencing e reaequisition of said synchronization con-
storing audio data following snid next audio synchroni-

zation went in a buffer;

detecting the occmrenee of earns in said audio packets;
upon detecting a first audio packet of a men: audio

frame conuining an error. advancing e write pointetfor
said more by N bytes and designating said cunem
audio frame as being in error;

monitoring the detected audio pickets of said amen!
audio flame for the next audio syndironizazion won!
nftersaid morhns been detected, andifsaidsynchro-
niution word is not received where equated in the
uudio stream. discarding subsequent audio data while
seardring for said syndnonization word rather than
storing the subsequent audio data into said lander.

it»

4»;- Ws“new:‘

.t,“unwary.”
wifv‘fitw‘disl:.~v:~.

30

35

dition if said condition cannot be maintained.
14. Apparatus for acquiring audio information cam'ed by

a pocketized data stream and [roaming errors then-em.
comprising:

menus for detecting audio transport packets in said data
strum;

means forrecovexing audio data from said detected audio
transport packets for storage in 1 Mar;

menus for locating an audio recirculation time stamp
{PPS} in said detected nudio transport packets;

means responsive to saidPIS for commenting the output
of audio data from said buffa- at a specified time;

means for monitoring the detected audio transport packets
afiertheoutputofnudiodatafrom saidbufferhas

resuming me storage of audio data in said buffer upon 40 COMM“. to locate subsequent "‘30 ”5'51
detedion of said next audio synchronization word if means ft: comparing a time den‘ved from a decoder

3 said next audio synchronization word is locatedwithiu system time clock (STC) to a time derived from the
‘3 N bytes afterthe commencementofthe swell merefm; subsequent audio PI‘S's to detu'mine whether audio

f and ‘5 daustorcdinsaidbufl’aistooenrlytodecochoointe
,2 if said next audio synchronization word is not located to decode. a“ rod? to be decoded; and
ti «auxin slid N bytes after the commencement of the means responsive to said comparing means for adjusting
; snatch therefor, commencing a Requisition i said the time at which said stored audio data is ouqmt from
5 synchronization condition. , said buffer.

lorAmethodinweordanccwithdaimfloonqn-isiugme so 15.Appunmsinaccordnnoewiflrclnim14fnnhucom-
1 further step of concealing television audio cums whenever prisms:
‘ the audio dam from which said television audio is being means for maintaining aP'l'S pointa with a current PTS
‘ reconmctod is in error. value and an address of said buifer identifying where n
- u. A method in accordance with cinim 10 wherein: portion of audio data refunedto by said went PTS is
K a current audio frame is designated as being in «not by 55 stored:

altering the audio synchronization word for that frame; means for replacing said I'I‘S Value in Said PPS pointer
and wifl: I new current PI‘S value mu data stored at said

said concealing step is responsive to an um syndlm- address 1m; been output {mm said button and for
nizntion Word for concealing audio assoeinted with the replacing 531d address in “1‘1 PT5 p01!!!“ W131 a MW
mooning audio frame. . so address corresponding to : pornon of audio data12. A method in aocminnoe with claim 9 wherein said

audio data includes information indicative of an audio
sample rate and audio bit rate. at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the further step of attempting to maintain syn—
dnonization of said audio packets dining a rate change
indicated by said audio data by:

i.W»,~_m

«a

6.5

referred to by said new current Fl'S value;
means responsive to said PTS pointer for suspending the

output of data from said butler when said new address
is reunited: and

means for recounmencing the output of data from said
buffer at a time derived from said new current PIS
value.

EX 1018 Page 237

0

5,703,877
25 26

16. Apparatus in accordance with claim IS further oom- means for reestablishing the detection of said audio
prising: transport packets if said controlling means cannot

means for concealing CI1'0l' in an audio signal rqroduced maintain said synchronization condition.
fromdataout.putfrom.saldbuiferandrcestablisbinglhe 21. Apparatus in accardaoce with claim 20 wherein said
detection of said audio transport packets if the time s audio transport packets each contain a fixed number N of
derived from said new current Pl'S value is outside a payload bytes. and said means responsive to uid error
predetermined range. det.ecting means comprise:

17. Apparatus in aa:ordaoce with claim 14 wherein said means far advancing a write pointer for said buffer by said
mdio transport packets each contain a fixed number N of fixed number N of bytes and desigoaling a au:rcnt
payload bytes, said packets being uranged into succewve 10 audio frame as being in m:ror upon the detection of an
audio frames commencing with an audio synchronization eaor in an audio transport packet thereof;
wa:d., said apparatus further comprising: means formooita:ing the detected audio transport packets

means for detecting the ocamencc of men in said audio of said current audio frame for the next audio synchro-
packcts; nizalion word after said error bas been detected, and if

means for advancing a write pointer for said buffer by N 15 said synchronization word is not received where
bytes and designating a currelll audio frame as being in expected in the audio stream. discarding subsequent
error upon detecting an en:or in ao audio transport audio data while searchi:og for said synchronization
packet of said airrent audio frame; word rather than storing the subsequent audio data into

mcan.s for monitoring the detected audio transport packets
20

&aid buffer; and
of said cwrcnt audio frame for the next audio synchro- means for resuming the storage of audio data in said
Dizltion word after said emr bas been detected, and if buffer upon detection of said next audio synchroniza-
said synchronization word is not received where tion word if said next audio synchronization word is
expected in the audio stream, discarding subsequent located within said fixed number N af bytes after the
audio data while searching for said synd:u:oni7.ation

25
commencement of the search therefor.

word rather than storing the subsequent audio data into .2!-Apparatlls in ttcordance with claim 20 further com-
said butfer; pnsmg:

means for resuming lbe storage of audio data in said means far concealing error in an audio signal reproduced
buffer upon detection of said next audio synchroniza.. from~ output !1'~ said buffer when the data output
tion word if said next audio synchrooizltion word is 30 from said butfer 1B m mor.
located widlin said fixed number N of bytes after the .~ Appanatus in accordance with claim 2l further com-
commencement af the search therefor; and pnsmg:

means for reestablishing the detection of said audio means for altering the audio synchronization w<rd uso-
transport packers if said next audio synchronization ciated with an audio frame containing a data ernr to
word is not located within &aid :fixed number N of bytes 35 designate that frame as being in em:r;
after the commencement af the search therefor. whc:rcin said concealing means are responsive to altered

IS. Apparatus in acccrdance with claim 17 further com- synchronization words for concealing errors in audio
prising: associated with the comspondiog audio frame.

means foc concealing aror in an audio signal rqroduccd 24. A method for managing eaa:s in data received in
from data output from said buffer when the data output 40 bursts from a ~ data stream caaying digital iDfor-
from said buffer is in aror. mation in a succession of :fixed length tra.osport packets. at

t!>. Apparatus in acca:dancc with claim 18 flll:ther com- least some of said packets contaioing a presentation time
prising: stamp (PJ'S) indic.ative of a time for commencing the fixed

means for attc:dng the audio synd:u:onization ward u,o- ~ presentation of pr~tation units from a b_utfer into
ciated with a cum:nt audio frame to designate that 45 which !11ey are temporarily stored upon receipt, said method
frame being in . comprlsiog the steps of: as e.tror, •• __,_ • ed n•~h • wh • • mom g recctv ..,......,ts to locate associated PrS's.
crein said concealing means are r~ponslve to akerl:4 said received packets caaying i;resentation units to be
synchronization wonts fa: concealing erra:s in audio presented·
associated with the corresponding audio frame. • . '

20. Apparatus for acquiring audio information carried by 50 synchro~ the presentation o_f &a1d presentation um~
a packetized data stream and processin th • from said butler to a system time clock (STC) associ-
co · • . g = Cl'Clll, 1ted with the packelized data stleam using timing mpnmif detectin di information derived from the PfS's located in said

means or g au o transport packets in said data monitoring step· and
stream, said packets being arranged into successive • deft.u:..: ft '· , •

audio frames colll.lDCncing with an audio
8

nchroniza- ss 1, g discontinw'! errors result1ng from a lo.ss. of
tion word· Y one or more tranSllll.tted packets between successive

• • ones of the received paclrr:ts and. if a discontinuity of
means. ~spollSlve to ~d synchro~zation w~ for no more than one packet is identified, advancing I write

obtaining a synchronization condition enabling the pointer of said buffer by a suitable number of bits to
reoovccy of audio data fr?M said detected audio trans- <,o compensate for the discontinuity, while maintaining the
port packets for storage m a buffer; synchronization of said presentalion with respect to

means for detecting the presence of emrs in said mdio said STC.
data; 25. A method in accordance wilh claim 24 wherein said

means responsive to said emir detecting means for con- transport packets each contain a fixed number N of payload
trolling the Oow af data through said buffer when an 6S bytes. said method comprising the further steps of:
error is present, to attempt to maintain said synchrooi- advancing said write pointer by said fixed number N of
zalion condition while masking said error; and bytes upoo the detection of a discontinuity error;

EX 1018 Page 238

0

5,703,877
25

16. Apparatus in accordance with claim 15 further com-
prising:

means for concealing error in nu audio signal reproduced
fiomdata output from said butier sndreestablishing the
detection of said audio transport packets if the time
derived from said new current PPS value is outside a
predetermined range.

17. Apparatus in awn-dance with claim 14 wherein said
audio u‘ansport packets each contain s fixed number N of
payload bytes, said packets being Arranged into suwessive
audio frames commencing with :11 audio mdn‘onizuion
word, said appmms further comprising:

meansfordetecfingtheoecmenoe ofen'orsinsaidmdio
packets;

means for advancing a write pointer for said bufier by N
bytes and designating a current audio frame as being in
error upon deteaing an error in an audio transport
packet of said ament audio fume;

means fol-monitoring the detected audio transport padrets
of said current uudio frame for the next audio synchro-
niufionwordsftersaidenuhas beendeteeted,andif
said synchronization word is not received where
expected in the audio stream, discarding subsequent
audio data while searching for said synchronization
word rather then storing the subsequent audio data into
said bufl‘er,

means for resuming the storage of audio data in said
bufier upon detection of said next audio synchroniza-
don word if said next audio synchronization wad is
located udthiusaidflxedmunherNofbytes afterthe
commencement of the search lhercfcn; and

menus for reestshlishing the detection of said audio
msport packets if sxid next audio synchroniution
wordlsnotlocatcdwithinseidfixcdnumberNofbytes
after the commencement of the search 61me

1&Apparamsinawordance wiihclajm 17fmtheroom~
. . g:
means fr: concealing mar in an audio signal reproduced

from data output from said buffer when the data output
from said butter is in error.

19. Apparatus in accordance with claim 18 further oom—
Prisms:

means for ditching the audio synchronization wad asso-
ciated with I current audio frame to designate the:
frame as being in error;

wherein said concealing means are responsive to shared
synchronization words for concealing errors in audio
associated with the corresponding audio frame.

20. Apparams for acquiring audio infa‘man‘on carried by
a packetizcd dam strum Ind processing errors therein,
comprising:

means for detecting audio transom packets in said date
stream, said packets being arranged into successive
audio frames commencing with an audio synchroniza-
tion word;

means responsive to said synchronization words for
obtaining l syndnonization condition enabling the
recovery of sudio data from said detected audio trans-
port packets for storage in a buifer;

means for detecting the presence of errors in said audio
data;

means responsive to said emr detecting means for con-
trolling the flow of data through said buffer when an
error is present. to attempt to maintain said synchroni—
zation condition while masking said mat: and

5

10

15

20

25

3O

35

4O

55

65

26
means for reestablishing the detection of said audio

transport pmkets if said controlling means cannot
maintain said synchronization condition

21. Appatatns in accordance with claim 20 wherein said
audio transport packets each contain a fixed number N of
payload bytes. and said means responsive to said error
detecting means commise:

menus for advancing a write pointer for said buiferby said
fixed numbq N of bytes and designating a went
audio frame us being in error upon the detection of an
error in an audio transport packet thereof:

means formcnitoring the detected audio transport packets
of said sin-rent audio frame for the next audio synchro-
nization word that saidarorhls beendctected‘ audit
said synchronization word is not received where
expected in the audio stream. discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said buffer, and

means for resuming the Stu-age of audio darn in said
bufl‘er upon detection of said next audio synchroniza-
tion word if said next nudio synchronization word is
located within said fixed number N of bytes after the
commencement of the search therefor.

nAppxt-emsinaooordanccwim claimemthm-com-
prising:

means for concealing cum” in 111 audio signal reproduced
from data output from said bufl'er when the data output
from said buffer is in arm.

nAppnmmsinaccordmcewimchimnfinfliercom-
pining:

means for altering the audio synchronization wu‘d Asso-
ciated with an audio frame containing a data error to
designate that frame as being in encr;

whuein said concealing means are responsive to altered
synchroniution words for concealing errors in audio
associated with the corresponding audio frame.

24Amethod formaging carers indata receivediu
hm’stsfromapacketizeddetastrenmcmying digitaiinfor-
nation in e succession of fixed length transport packets. It
least some of said packets containing a presentation time
stamp (PIS) indicative of a time for commencing the fixed
rate presentation of presentation units from a butter into
which they are temporarily stored upon receipt, said method
comprising the steps of:

monitoring received pockets to locate xssociatcd PIS’S.
snid received packets can-ylng presentation units to be
presented;

syudnonizing the presentation of said presentation units
from said butter to s system time clock (STC) associ-
nted with the packetized data stream using timing
information derived from the I'I'S‘s located in said

minimizing step; and
identifying discontinuity errors resulting horn is loss of

one or more transmitted packets between successive
one: of the received packets and if a discontinuity of
nomore than one packet is identified, advancing a write
painter of said buffer by a suitable number of bits to
compensate for the discontinuity, while maintaining the
synclnonization of said presentation with respect to
said SW.

2.5. A method in accordance with claim 24 wherein said
transport packets each contain I fixed number N of payload
bytes. said method comprising the finther steps of:

advancing said write pointer by said fixed number N of
bytes upon the detection of a discontinuity error;

EX 1018 Page 238

·•

;
<

(J

5,703,877
27

continuing said monitoring step after said discontinuity
error bas been detected in order to search for a syn
chronization word. and if said synchronization word is
not located where apected.. discarding subsequent
presentation units while sean:bing for said syndlroni- s
zation word Illther than storing said subsequent pre
sentation units in said buffer. and

28
resuming the storage of presentation units in said buffer

upon the detection of said synchronization word if said
synchronization word is located within said fixed num
ber N of bytes afttr the commencement of the search
therefor.

* * • • •

EX 1018 Page 239

.. O 0

5,703,877
27 28

continuing said monitoring step after said discontinuity resuming the storagc of prcscnlation units in said bufl‘cr
error has bccn detected in order to search for a syn’ upon the detaction of said synchronization we‘d if said
chmniwzion wad. and if said synchronization wad is synchronization wad is located within said fixed num~
not located whcrc apectm‘L discarding subsequent her N of bytes aftr: fin: oommcnccmbnt of the search
prcscutafion units while searching for said synchroni- 5 Mia.
zation ward rather than storing said subsequent gro-
senmfion units in said bufl’cr, and ¢ It a- an t

EX 1018 Page 239

.\

1111111111111 Hiil llll lllll llll lllll l1m illll lllll lDIII Ill llH 1111

United States Patent [19]

Holzmann

[54] APPARATUS AND METHOD FOR
COMMUN[CATlNG DATA BETWEEN
ELEMENTS OF A DISTRIBUTED SYSTEM
USING A GENERAL PROTOCOL

[75] Inventor: Gerard Johan Holzmann, Murray Hill,
NJ.

[73) Assignee: Lucent Technologies, Murray Hill, N.J.

[21) Appl. No.: 830,291

(22) Filed: Feb. 10, 1992

[51] Int. Cl.6
.. G06F WOO

(52] U.S. CI 395/200.6; 395/285; 395/500;
370/401; 370/428; 370/465; 370/466; 370/467;

370/468; 370/469
(58) Field of Search 398/200, 500,

[56)

398/225; 370/401, 467, 428, 465, 466,
469; 395/200.6, 200.5, 500

References Oted

U.S. PATENT DOCUMENTS

4,545,052 10/1985 Steierman 370/68
4,688,170 8/1987 Waite et al. 395/500
4,733,357 3/1988 Pcirent 364/200
4,754,400 6/1988 Wakabara et al. 395/180
4,855,905 8/1989 Estrada et al. 364/200
4,970,716 11/1990 Goto ct al. 370/58.1
5,063,494 11/1991 Davidowski ct al. 395/800
5,142,528 8/1992 Kobayashi ct al 370/79
5,163,055 11/1992 Lee et al. 371/32
5,175,817 12/1992 Adams et al. 395/200
5,182,748 1/1993 Salata ct al 370/94.1
5,245,703 9/1993 Hubert 395/200
5,276,802 1/1994 Yamaguchi ct al 395/164
5,276,816 1/1994 Cavendish et 111. 345/348
5,278,972 1/1994 Bal<cr ct 111. 395/500
5,313,467 5/1994 Va,ghescs ct al 370/94.1
5,347,524 9/1994 I' Anson ct al. 371/29.1
5,430,727 7/1995 Callon 370/85.13
5,452,433 9/1995 Nihart et 111. 395/500
5,557,798 9/1996 Skeen ct al. 395/650
5,574,919 11/1996 Netravali et al 395/561
5,581,558 12/1996 Horney, II ct al. 370/401
5,594,721 1/1997 Pan .. 370/392
5,623,666 4/1997 Pike cl al. 707/200
5,659,555 8/1997 Lee et al. 371/27.l

US005826017 A

[HJ Patent Number:
[45) Date of Patent:

5,826,017
Oct. 1998

5,680,552 10/1997 Netravali et al. 395/200.2

FOREIGN PATENT DOCUMENTS

EP-A-
0289248 4/1988 European Pat. Off. G06F 13/38

OTHER PUBLICATIONS

Gerard J. Holzmann, "Standardii.ed Protocol Interfaces",
AT&T Bell Labs, Murray Hill, NJ., Oct. 18, 1992.
J.E. Boillat, et al "Communication Protocols and Concur
rency: An OCCAM Implementation of X.25", 1988 Inter
national Zurich Seminar on Digital Communications, Mar.
8, 1988, pp. 99-102.
M. H. Sherif, et al "Evaluation of Protocols from Formal
Specifications: A Case Study with LAPD", IEEE Global
Tulecommunications Conf., vol. 3, Dec. 2, 1990, San Diego,
pp. 879-886. ..
Chesson, G., "The Protocol Engine Project", Unix Review,
Sep. 1987.
Toong, H.-M., "Microprocessors", Sci. Am., vol. 237, No.
3,p. 146,Sep. 1977.

Primary Examiner-Christopher B. Shin

[57) ABSTRACT

Apparatus and methods for communicating using protocols.
The apparatus and methods employ protocol descriptions
written in a device-independent protocol description lan
guage. A protocol is executed by employing , protocol
description language interpreter to interpret the protocol
description. ColllI!l.unication using any protocol for which
there is a protocol description may be done by means of a
general protocol. The general protocol includes a first gen
eral protocol message which includes a protocol description
for a specific protocol. The protocol apparatus which
receives the first protocol message employs a protocol
description language interpreter to interpret the included
protocol description and thereby to execute the specific
protocol. The protocol apparatus may also be made to adapt
to its environment by encacbing protocol descriptions which
were received in an earlier first general protocol message
and interpreting an encached protocol description in
response to a second general protocol message which
includes a protocol identifier specifying the encached pro
tocol description.

46 Claims, 8 Drawing Sheets

,1'

107(1)
PROTOCOL{ INFORMATION 105

O~T~ CONTROL INFORMATION 109 103(2)

103(1) DATA
SOURCE/

DESTINATION

PROTOCOL PROTOCOL
APPARATUSi.....iAPPARATUS

DATA
SOURCE/

DESTINATION

INFORMATION
105

107(2)
INFORMATION

ENTFTY
109(1)--

105

ENTITY
109(2) __ __,

EX 1018 Page 240

”em

are“

is .
Cl :

man...)«now
a

e.-.«.-.S¢-.»

.M‘‘-:W"“m-”MK..4;‘.VV:"c3'3
:‘wém.

‘1“..£r‘,“‘mer:

ugh»,-‘1sawv
"k~’~.'2
at

“are”..

llllllllllllll[Illllllllllllllllllllmllllllllllllllllllllllll

U3005826017A

Unlted States Patent {19] [11] Patent Number: 5,826,017

Holzmann {451 Date of Patent: Oct. 20, 1998

[54] APPARATUS AND METHOD FOR 5,688,552 1011997 Netmvali ct al. 395/2002COMMUNICATING DATA BETWEEN
ELEMENTS OF A DISTRIBUTED SYSTEM FOREIGN WENT DOCUMENTS
USING A GENERAL PROTOCOL EM.

0289248 4/1988 European Pat. 0f. GOEF 13/38
[75] Inventor: Gerard Johan Holzmalm, Murray Hill,

NJ_ OTHER PUBLICAIIONS

Gerard J. Holzmann, “Standardized Protocol Interfaces”,
AT&T Bell Labs, Murray Hill, NJ., Oct. 18, 1992.
J. E. Boillat, et :11 “Communication Protocols and Concur—

[73] Assignee: Lucent Technologies, Murray Hill, NJ.

[21] App}. No.: 830,291 rency: An OCCAM Implementation of X25”, 1988 Inter—

[22] Filod’ Feb 10 1992 national Zurich Seminar on Digital Communications, Mar.
. . ,

8, 1988, pp. 99402.

[51] now (21}1 GOGF moo M H, Sherif. ct al“Eva1uafiou of Protocols from Formal
[52] us. Cl. 395/200.6; 395/285; 3951500; Spec’fimlm“? A? case $de “’1‘“ W IEEE (”PM

370,401; 370I428; 370/455; 370/466; 370/467; Telecommunications Cont, vol. 3, Dec. 2, 1990, Sm Dlego,

. 879—886.
3270,1468; 370/469 P? a . . ,. . .

[58] Field of Search 398/200, 500, £333 “1° Fromm Eng” PM“! ’ UM Rev‘ew’
398/225; 370/401! 461 428~ 465: 465- Toong, H«“M., “Microprocessors”, Sci. Am, vol. 237, No.

469; 39552005, 2005, 500 3, p. 146, Sep. 1977.

[56] References Cited Primary Examiner—fibristophcr B. Shin

U.S. PATENT DOCUMENTS [57] ABSTRACT

4,545,052 10/1985 Stein-man ..
4,688,170 8/1987 Waite ct 31
4,733,357 311988 Pcirent
4,754,400 6/1988 Wakahara .
4,855,905 8/1989 Estrada c1 al. N
4,970,716 1111990 Gum et al.
5,063,494 11/1991 Davidowski ct a .
5,142,528 8/1992 Kobayashlctal. .
5,163,055 11/1992 Inc et aI.
5,175,817 12/1992 Adams eta].
5,182,748 111993 Sakata at all
5245303 9mm Hubert
5,276,802 111994 Yamaguchi ct a).
5,276,816 1/1994 Cavendish et al.
5,278,972 11’1994 Baker eta].
5,313,467 511994 Varghms et at. .
5,347,524 9/1994 I'Anson cl ai.
5,430,727 7.11995 Callon
5,452,433 9/1995 Nihm’l el 51.
5,557,793 9/1996 Skecn e: at.
5,574,919 11f1996 Netravali et al. ..
5,581,558 12/1996 Howey, I! ct all.
5,594,721 1f1997 Pan "um"...
5,623,666 M1997 '

- 370/68 Apparatus and methods for communicating using protocols.
3957500 The apparatus and methods employ protocol descriptions

gggggg written in a device-independent protocol description la n—
364a00 guage. A protocol is executed by employing gt protocol
37058.1 description language interpreter to interpret the protocol
395,303 description. Communication using any protocol for which

, 37039 there is a protocol desm'ption may be done by means of a
. 371,82 general protocol. The general protocol includes a first gen-
3951200 eral protocol message which includes a protocol description
370/941 for a specific protocol. The protocol apparatus which
3955200 receives the first protocol message: employs a protocol
33%;“; description language interpreter to interpret the included
3951500 protocol description and thereby to execute the specific

.. 3701941 - protocol. The protocol apparatus may also be made to adapt
371/294 to its environment by encaching protocol descriptions which

. TIC/85.13 were received in an earlier first general protocol message
395,600 and interpreting an encached protocol description in
395/650 response to a second general protocol message which
395/561 inchldcs a protocol identifier specifying the encached pro—370l401 ~ '
370/392 [cool descnptron.707/200

5,659,555 811997 .. 371/271 46 Claims, 8 Drawing Sheets

3-1 PRg1$§°L{ INFORMATION 105107(1) 11 1 CONTROL INFORMATION m9 103(2)

105(1) um um?ROT0€0L PROTOCOL
SOURCE/ APPARATUS APPAmus SOURCE/

Desnumou nonunion

INFORMATION 107(2) ' mroaumou ~—
105 ms .

mm ‘ ENTITY

““M 109(1) —‘-“ ______ 109(2) ._._..____;

EX 1018 Page 240

,;
,·

·~

•
i
'

U.S. Patent

0
Oct. 20, 1998

FIG. 1
.lQ1

Sheet 1 of 8 5,826,017

PROTOCOL{ INfORMATION 105
107(1) DNt CONTROL INFORMATION 109 103{2)

103(1) DATA
SOURCE/

DESTINATION

PROTOCOL i-----.; PROTOCOL
APPARATUS APPARATUS

DATA
SOURCE/

DESTINATION

INFORMATION
105

ENTITY
~-- 109(1) _ __,

107(2)
INFORMATION

105

ENTilY
---- 109(2) __ __,

FIG. 2 / 203

PROTOCOL
APPARATUS

201

I -PR-OT_OC_OL DESCRIPTION l
I 205(0)
I l

L _____ -r----~"!J
207 ..t__
OCOL EXECUTION DEVICE - -- -- - --, PROTOCOL

....--~~~~~~~.... I DATA
INFORMATION • 209 PROTOCOL INSTRUCTION INTERPRETER UNDERLYING ' t 1 1

195 I DEVICE I 1l 1

~ CONTROL CONTROL 211 1--1--
, OUTPUTS INPUTS I

FIG. 3
PROTOCOL
APPARATUS

301

INFORMATION
105 . \

L---~--~1_• ____ _J

CONTROL CONTROL
OUTPUTS INPUTS

213 214
UNDERLYING DEVICE

21 1
I I

PROTOCOL
DATA
111

L _ -- _ -- _ -- _ PROTOCOL EXECUTION D~
207

EX 1018 Page 241

O 0

US. Patent Oct.20,1998 Sheet 1 of8 5,826,017

FIG. f

L01 mom’- INFORMAIION I05

I070) 9m CONTROL INTORNRTION IDS 103(2)

WU) DATA

SOURCE/ souacz/
DESTINATION DESTINATION

107(2)INTORNIITON INFORMATION
I05 I05

ENTITY ENTITY

W mam “*4 “““H 109(2) “TH-J

FIG. 2 r2:11.

mama PROTOCOL DESCRIPTION *7
APPARAIUS 1

IO]........... --.___.___._
I PROTOCOL EXECUTION DEVICE PROTO§0L

mg?“ I 209 UNDERLYING‘ 1 1

CONTROL CONTROL
OUTPUTS INPUTS

L.-.___.-Z'.‘..__.____.3‘.‘___..-_.__..__i

F10. 3

PROTOCOL PROTOCOL INSTRUCTION INTERPRE‘ITR RENORT 309

”92%?“ .203 PROTOCOL PROTOCOL INSTRUCTION 3“-
-- L OESORIPTTON INTERPRETER Om ”J

519 = 317

‘ E 505' 367 PROTOCOL
MEMO“ i2” PROTOCOL INSTRUCTION INTERPRUER Sgggfi‘nfi coigmm l ORTRI05 I”

“A...“ CONTROL CONTROL 3‘3 “-
OUTPUTS INPUTS

215 214
UNDERLYING DEVICE

EX 1018 Page 241

.. ii-·--··~-- .. ,,,.."", '• v~.-,._ •. _~ •>···-.'-''"- ...,.,.._ . .,,_,,_, "" ... , ""''""" '""'"'"'"' .. ;'·
............ ,,._.....,..._,,M ..,.w_,,.....,, ,....,.,.,.~........,._,,.,,, __ ,,., ,-

FIG. 4
401

INSTRUCTION SET - GENERAL 403
0. STACK MANAGEMENT ANO EXPRESSION EVALUATION

PLUS,MINUS1UMIN,TIMES,OIVIDE,MOOULO arithmetic operations
ANO,OR,GT,LT,GE,lf,EO,NE,NOT boolean operations
SHIFTL,SHIFTR1BIT_ANO,BIT_ OR,XOR,BIL COMPL bitwise operators
LPUSH_BYTE,LPUSH_ WORD push o constant onto the slack
LPUSH_BYTLVAR,I_PUSH_WORD_VAR push a variable onto the slack, constant operands
PUSH_BYTLVAR,PUSH WORD_VAR push a variable onto the slack

INSTRUCTION SET - PROTOCOL RELATED 405
M_NEMONIC PARAMETERS """"""'"

t •. FSM CONTROL t}j - LOAD 2 buff er rir,slale nrr J--assign a new stale definition
-- NXT t stale nr} 407 perform a stale transition

425 _.-- ff ELSE 1 value conditional execution of commands
2. UPPER INTERFACE

ACCEPT t(buffer nr) J pass o message to the upper layer
OBTAIN 1(buffer nr} 409 fetch a new messoQe from the uooer layer

3. LOWER INTERFACE
RECV 1 buffer nrl) receive a message from the lower layer into buffer

413 SEND I buffer nr 411 send a message lo the lower layer from buffer
'- CKSUM 1 buffer nr calculate a checksum on buff er contents

415 -- BYTEORDER 1 constant) 419 define byte-order of lower layer
WORD SZ 1 conslontl , number of bytes oer word on lower lover

417 _,-- 4 .. BUFFER MANAGEMENT
ALLOC 2 buffer,moxsize) allocate bufferspace for buffer
S£TS1ZE 2 buffer,size) define lhe length field of o message in buffer
SETTIMO 2 buffer,time) define a timeout period for a message in buffer
CPY_BYTE 3 buffer,index1value) sel a byle-value in a message
CPLWORK 2 buffer,slorl_index,value) sel a work (N bvles·

0
•
00 .
~ =
~

0
p.
j;
lo-I

~
Q(I

~
ti)
!'I)
N
Q

""" Q(I

Ol oe
N
O'I
b
1-l
"'-l

~
, .. .,..

·~

")

EX 1018 Page 242

U.S. Patent

j'
l

'

" '' 503

505

509

513

',

'

.. ,:: 603

605

607

609

613

0

Oct. 20, 1998 Sheet 3 of 8 5,826,017

FIG. 5
501

RECV ___.. RBUF

LOAD
RBUF _., STATE 0

FIG. 6
601

602

ERRORMSG--+ TBUF

SEND --+ TBUF

RECV --+ RBUF

VALID MSG ?
YES

NXT RBUF(1)
617

NXT BOOTSTRAP
507

NXT ERRORSTATE
511

NXT STATE 0
515

NXT ERRORSTATE
511

NXT ERRORSTATE
511

EX 1018 Page 243

~Jo~m»...&..n‘ O 0

US. Patent Oct. 20, 1998 Sheet 3 of 3 5,826,017

FIG. 5“anmn
W..4»m“.4,_v.;.:..a.(.3,»'-".L., A1‘.VM,{-2(MM1,.>‘.

; 503 RECV """"'* RBUF«a~....Tw"«:..'.'..‘.41’' «u¢.uu..¢..w—mms-..

NXT BOOTSTRAP
507

NXT ERRORSTATE
51 i

505

.,MN;m,w«‘
509

NXT SLATE 0

515 515RBUF —-- STATE 0

‘ FIG. 6
" in

602

ERRORHSG -"- TBUF

SEND -—> TBUF

RECV --> RBUF

'ff? 505

605

607

NXT ERRORSTATE

51 1

NXT ERRORSTATE

51 1

609

613

3 ma mum)
' 517

EX 1018 Page 243

·,

,·
i

/·.

0

U.S. Patent Oct. 20, 1998 Sheet 4 of 8

703 717

715

FIG. 7

FIG. 13
GENERAL PROTOCOL APPARATUS

1323

0

5,826,017

1 c--==--=------==---::--=-----=--=-----=--=----::--=---=--=----::--=----::--=--1-- -, l
.

1

'j lflRoTocoL -DESCRIPTION TABLE 1 io31 l ·1 ·1
·1
1~oco _______ tosi, l

j j .· \ i i
iib== i ii
I I l I I
·1 ·1 ! PROTOCOL ·1 ·1

! INSTRUCTION
' ' i INTERPRETER' '
I I DATA I I
, , 311 , •

11 \ I , , PROTOCO

11
DESCRIPT I \

MEMOR I

' ' 1302 i ' ' I L _______ r--~--F ____ l __ _J I
, 319 317 321 ,

L PROTOCOL INSTRUCTION J
_ INTERPRETER MEMORY_1301 -----------------

EX 1018 Page 244

C7 0

US. Patent Oct. 20, 1998 Sheet 4 of 8 5,826,017

FIG. 7 3

GENERAL PROTOCOL APPARATUS

L23

 '1' PROIOCOL DESCRIPTION
I31l(n)

PROTOCOL
:I:I:I:3 DESCRIPTION

STATE

NUMBER 01?ng
1317

TABLE '. ' '

5mg gPRoToCOL ‘l ‘ 1313 STATE WE ENTRY glNSTRUCTION ‘
' ' glNTERPRETER'
H 1 W I 1. . = 311 . .

| ‘ PROTOCOL ' ‘ 111551111911011
. . PROTOCOL . . .

l DESCRIPTION 30'” '3” . H
11910111 , '.

' ' 13112 : ' '

. 319 I; F321 .PRoTocoL INSTRUCTION 3‘7
-MEJP‘EUW—WW—Lm________‘

EX 1018 Page 244

', ,

0

U.S. Patent Ocl 20, 1998 Sheet 5 of 8

/• Receiver Buffers • /
#define RBUF O /• receive buff er • /

0

5,826,017

FIG. 8
801 #define TBUF 1 /* transmit buffer • /

Hdefine VAR_E 2 /• variable 'e' - receiver side •/
/• T ransm iller Buffers • /
define MO O I,• message mO • /
define Ml 1 z• message ml •t

803 define R_run 2 Z• Abp_rcv_run */,
define R_ini 3 z• Abp_rcv_ini t'/
define R_ack 4 z• receive buffer - for acks
define VAILS 5 z• variable 's' - sender side
define VAR_CNT 6 z• variable 'cnt' - sender side
define B_ O 1 /• byleorder • /

#define NR_MSGS 32765 /• number of test messages sent • /

:~
*'/

rBYTE Abp_rcv_ini[] = ! /• initialization Buf[r_ini]; recvd in Slale[O] • /
/•o• /, BYTEORDER, B 0,
z•2•z LALLOC, TBUF, 2,

Z
/,*5•~ LSETS!ZE, TBUF,.. 2,

805 *B*l LALLOC, VAR_t, 1
z•11•/ !_RECV, RBUF,

lz•13•z LLOAD, 1, RBUr./* input becomes Stole[1] • /
z•16•Z LNXT, 1, l* execute il • /
/* 18*/ 0, 0, /* room for the checksum; required on 1st msg • /
I;
BYTE Abp_rcv_run[] = I /• abp receiver Buf[R_run]; recvd in Slate[1] • /
l,•o•J, LRECV, RBUF,
z•2•z LCPY_BYTE, TBUF, 0, 'A\
/*6*/ LPUSH_BYTLVAR, RBUF, 1,
/*9*/ H_CPY_BYTE, TBUF, 1,
/*12*/ LSEND, TBUF,

RBUF, 1,
VAR__[, 0,

/*14*/ LPUSH_BYTE_ VAR,
/•17• / LPUSH_BYTLVAR,
/*20*/ EQ,

807 /*21*/ IF, 34, /• e == rbuf[l] •/
/.*23*/. LPUSH_BYTE, 1,
/*25*/ LPUSH_BYTLVAR,VAR_E, 0,
/*28*/ . MINUS,
/,*29*/. H CPY BYTE,
z•32•z CACCEPT,
/*34*/ LNXT, 1
I:

VAR_E, 0,
RBUF,
/• slay in same stale • /

(BYTE MsgO[] = I /• message Buf{MO], received in Bul[RBUF] • /
'M' 0 I· I

BOl
9

BYTE Msg1[] = l /• message Buf[M1], received in Buf(RBUF] • /
'M' 1 I: I

(

EX 1018 Page 245

J
$

$

: g “a.

O 0

US. Patent Oct. 20, 1993 Sheet 5 0f 8 5,826,017

/‘ Receiver Buffers ‘/ FIG. 8
fideiine RBUF 0 /* receive bulier ’/ 0i
lldefine TBlll' i /‘I transmit bulfer ‘/ -—
gdefine VARJ 2 /' variable ’e’ — receiver side */
/‘ Transmitter Buffers ‘/

define M0 0 /* message m0 ‘/
define ill /’ message ml ‘/
define R_run ' Aprchun /

1

803 2 ‘

define R_ini 3 * Abp_ree_ini ‘/
fideiine R_ack 4 /' receive buffer - fer acks 1'/
define lidlLS 5 /* variable ’5’ - sender side */
define YAiLCNi 6 /“ variable ‘cnt’ - sender side ‘/
define B_0 i /‘ bytearder ‘/

fideiine NiLllSGS 32765 /’ number of test messages sent ’/

BYlE Abp_rcv_ini[] = i /‘ initialization Bul[r_ini]: recvd in Statelil] ‘/
/‘0"/ BYTEORDER, BO,

lzet/ rage
e was; lZALLOC. ' VAR t, 1
05 /*re/ LRECV, RBU.

/’13‘/ LLOAD, 1, ii iii, ‘ input becomes Statell] */
/*1fi‘/ Lillil, l, ‘ execute it '/
/’lil‘/ 0, D, /* ream for the checksam; required on lst msg ‘/
l;

age/abficégunll = { tau?” receiver BufliLrunl; recvd in Statelil '/
/*2'/ ricerjerre, rear,’ 0, 'A',
/*6*/ LPUSHJYTLVAR, RBUF, 1,
my H_CPY__8YTE, rear, 1.
my LSEND, rear.
/*14*/ LPUSHJYTLVAR. RBUF, r.

717*? LPUSHJYTLVAR, VAiLE, 0,*20‘ E0.

807 /*Zl*/ if, 34. /* e :: rbui[l] */
/‘23s/ LPUSlLBYTE, 1,
/‘25’/ LPUSHJYTLVARNARJ, 0,
#257 , MINUS,
may aneneae, mu, 0.
/*32*/ meager, Rear,
/‘34*/ LNXT, l /‘ stay in same state ’/
l:

BYTE Mng[] = i /‘ message Builllil], received in BullRBiif] ‘/
'M’ 0

l: ‘

BOSLBYTE lilsgill : i /‘ message Bufillll, received in Bui[RBtlf] ‘/'M‘ l
i: '

EX 1018 Page 245

' <

U.S. Patent Oct. 20, 1998 Sheet 6 of 8 5,826,017

FIG. 9 901

/• sender behavior • /
BYTE Abp_snd_ini[l = I
/•o• / LAUOC, VAR_s, 1,
/•3• / LCPLBYTE, VAR_S,0,0,
/•7•/ LALLOC, VAR_CNT,2,

/• becomes Slale[O] •/ l
/• the byte variable 's' • /
/• s = 0 •/
/• the word variable 'cnl' • / 903

/•10•/ LCPLWORD, VAR_CNT, 0, 0,
/*14* / !_SEND, R_ini,
/*16* / I_SEND, R_run,
/•1 s• / LNXT, 1

/• cnl = 0 •/ J
/• send Buf{R_ini] == Abp_rcv_ini •/ ios
/• send Buf[R_run] == Abp_rcv_run •/ _J
/• begin actual behavior • /

!:
BYTE Abp_snd_run(J = ! /• becomes Stale [1] • /
/•o• / LPUSH_BYTLVAR, VAR_S, 0,
/•3•/ SEND,
/•4• / LRECV, R_ock,
/•6• / LPUSH_BYTE_ VAR,R_ack, 01

/*9* / I_PUSH_BYTE, 'A',

/• send from buf [s] • /
/• recv into buf(r _ ock] • /
/* look at Buf[llock].cont[O] •/

/•11•/ EO,
/•12•/ IF, 32, /• #12 - #13 •/
/*14*/ LPUSH_BYTE_VAR, R_ack, 1, /* Buf[R_ack].cont[l] •/
/•11•/ LPUSH_BYTLVAR, VAR_S, 0, /• s •/
/•20•/ EQ,
/•21•/ It, 32, /• #21 - #22 •/
1•23• I LPUSH_BYTE, 1,
/*25*/ LPUSH_BYTLVAR, VAR_S, 0,
/•28• / MINUS,
/*29*/ H_CPLBYTE, VAR_S, 0, /• s = 1 - s •/
/•32• / LPUSH_BYTE, 1, /• #32 - #33 • /
/•34• / LPUSH_ WORD_ VAR,VAR_CNT, 0,
/*37*/ PLUS,
/*38*/ H_CPY_WORD, VAR_CNT, 0,
/*41*/ LPUSH_WORO_VAR,VAR_CNT, 0,

/• cnl = 1 + cnt • /

/•44• / LPUSH_ WORD, NR_MSGS> >8, NR_MSGS&255,
/•47• / GE, /• cnl >= NR_MSGS • /

907

/*48*/ IF, 54, /• 648 - 649 •/
/•so•7 LPUSH_ WORD, 255, 255, /* -1 = exit • /
/*53*/ NXT,
/*54*/ LNXT, 1 /• #54 - 655 stay in this slate •/
!;

EX 1018 Page 246

.,.:.‘.'.sanA ‘" ‘vgw‘3.2.2.39.?"u“-1.. .‘V A‘w».2”"’v’~"«"n‘""m.

,1A?7

:1A,,4A, ,.‘3.X.w .;~.\Meagan“;mm}.I.¢Az
x.»ax... ,(f—‘va‘pWu»

0 0

US. Patent Oct. 20, 1998 Sheet 6 of 8 5,826,017

F]C. 9 m

/* sender behavior ‘/
BYTE Abp_snd,ini[] = I /* becomes State[0] '/

mac, VARj, :, /‘ the byte variable '5’ */

90

L

/*3'/ LCPLBYIE, ammo», /‘ s = o ./
LALLOC, VARJNTJ. /' the word variable ’cnt‘ */ 3

may Lcwfiwoao, mm, o, a, /‘ cnt = o 1/

/*i4*/ LSEND. R_ini, /' send Bufgkjnifi :2 AprcL‘Ini 7915/‘16’/ LSENB, R_run, /‘ send Buf R_nm == “warm ’//I

{‘187 LNXT, 1 /' begin actual behavior */
BYTE Abp_snd_runU : i /* becomes State [1] ’/
/*0*/ LPUSHJYTLVAR. VMLS, 0,
/*5‘/ SEND, /‘ send fmm bufls] ‘/
/‘4‘/ LRECV, R__ock, /‘ recv into huf[r_ock] ‘/
/‘6*/ LPUSHjYTLVARRJck, 0, /* look at Buf[R_ock].coni[0] */
/‘9*/ LPUSI'LBYTE, 'A’,
/*11*/ E0.
/*12‘/ IF, 32. /* m - 313*
/‘14‘/ I_PUSH_BYTE_VAR, Luck, 1, /* Buf R_ock].conl[l] */
my LPUSH_BYTE,VAR, ms, 0, /. s */
/*20*/ E0.
/‘21'/ IF. 32, /' #21 ~ #22 */
/'23‘/ LPUSH_BYTE, 1,
/*25*/ LPUSHJYTLVAR, ms, 0. 907
/*28*/ MINUS,
/*29*/ H_CPY_BYTE, VAR_S, 0. /* s = 1 - s '/
/'32*/ unsung, a, /* #32 - #33 */
mv/ [_PUSH_WORD_VAR,VAR_CNT, o,
/*37#/ PLUS.
/*33‘/ H.CPY.WORD. VAUNT, o. /'cnt=1+cnt*/
mv/ LPUSH_WORD_VAR,VAR_CNT. o,
my Lpuserorzn, NR_NSGS>>8, nuscsuss,
NW SE, /' cnt >2: NR_MSGS */
/*43*/ IF, 54, /* #48 - #49 '/
/*50*7 LPUSILLWORD. 255. 255, /* —1 = exit '/
/*53‘/ NH,
/‘54‘/ LNXT, 1 /‘ #54 — #55 stay in this state */

I

EX 1018 Page 246

U.S. Patent

0

Oct. 20, 1998

FIG. 10

1QQ1

1003

Sheet 7 of 8

transition{ n)
! BYTE b 1, •cur _state = State[n].cont;

static int Stock[SMAX + 1];
register BYTE •prot; 1005
register int wO, wl, w2, i;
register int •sp = &Stack[SMAX];

prot = cur_state;,.-100S
;while {prot) I / 1009

1007 switch (•prot++) J

/ttm FSM CONTROL mo/

lease NXT:
assert{ sp < &Stack[SMAX]);
wO = POP;

0

5,826,017

1011 debugr next %d0, wO, 0, 0, O);

l if (wO < 0 11 wO > SMAX 11 !State[wO].cont)
return ERRORSTATE;

return wO; r case I NXT:
I wO = •prot++;

1013 debugr next %d0, wO, 0, 0, O);

L
if (wO < 0 I I wO > SMAX I \ !State[wO].cont)

return ERRORSTATE;
return wO;

(default:
1015 debugl Error <%d>O, •prot, 0, 0, O);

l. return ERRORSTATE;
l

EX 1018 Page 247

0 0

U.S. Patent Oct. 20, 1998 Sheet 8 of 8 5,826,017

FIG. 11

BYTE Bootstrap[) = l
/*O*/ LRECV, RBUF, /* receive message into RBUF */
/*2* / L CKSUM, RBUF, /* always checksum initial msg * /
/* 4* / IF, 10, /* if nonzero goto instruction # 10 * /
/*6*/ LPUSH_WORD, B00TSTRAP»8, B00TSTRAP&255,
/*9* / NXT, /* stay in bootstrap slate • /
/*10*/ LPUSH_BYTLVAR, RBUF, 0, /* get variable Buf[RBUF].conQO] */
/*13* / LPUSH_BYTE, BYTE0RD£R,
/*15*/ NE, /• Buf[RBUF).cont[O] != BYTEOROER */
/*16* / IF, 22, /• if false goto instruction #22 • /
/*18* / LPUSH_ WORO, £RRORSTATE»8, ERRORSTATE&255,
/*21*/ NXT,
/*22*/ LLOAD, 0, RBUF, /• it checks ou~ define Slate(OJ •/
{*25*/ LNXT, 0 /• and execute il */

FIG. 12
1201

BYTE Errorslate(] = 1
/*O* / LALLOC, TBUF, 1,
/*3* / L SETSIZE, TBUF, 1,
/*6*/ LCPLBYTE, TBUF, 0, £RRORMSG,
/*1 O* / LSENO, TBUF,
/*12*/ LRECV, RBUF,
/*14*/ LCKSUM, RBUF,
/*16* / IF, 22, /• if nonzero move to instruction #22 • /
/*18*/ l_PUSH_WORD, ERRORSTATE»8, ERRORSTATE&255,
/*21*/ NXT,
/*22*/ I_PUSH_BYTE,VAR,RBUF, 0,
/*25* / LPUSH_BYTE, NXT,
/*27*/ EQ, /* Buf[RBUF].cont[O] == NXT •/
/*28*/ IF, 18, /* if false move lo inslructlon #18 */
/*30* / LPUSH_ WORD_ VAR, RBUF, 11

/*33*/ NXT
l;

EX 1018 Page 248

”mm”;1.?t.A.

o 0

US. Patent Oct. 20, 1998 Sheet 8 of 8 5,826,017

FIG. 7' 1

M

BYTE Bootstrapfl : t
/‘0*/ LRECV, RBUF, /‘ receive message into RBUF */
/‘2'/ LCKSUM, RBUF, /* oinoys checksum initioi msg */
/‘4‘/ Ii, 10, /‘ if nonzero goto instruction (#0 ‘/
/*5“/ LPUStLWORD, BOOTSTRAP)>8, BOOTSTRAPGKZSS.
/‘9*/ NXT. /* stay in bootstrap state ‘/
/’10‘/ LPU$H_BYTE,,VAR, RBUF, 0, /* get voriobie Buf[RBUF}.cont[0] ‘/
/t13V LPUSHJYTE. BYTEORDER.

/‘15*/ or, /' Bui[RBUF].cont[D} 1: BYTEORDER */
/‘15*/ IF, 22, /’ if foise goto instruction #22 ‘/
/'18*/ LPUStLWORD, ERRORSTATE>>8, ERRORSTATEEEZSS.
/*21*/ NXT,

/*22*/ LLOAD, o, RBUF, /' it checks out. define smoio] */

{Q57 LNXT, 0 /‘ ond execute it */

F]G. 12

1291

BYTE Errorstotefl = 3
my LALLOC, TBUF. 1,
/*3*/ Lsnsrzr. our. 1,
/‘5*/ LCPYJYTE, TBUF, 0, ERRURMSG.
/*1o*/ LSEND, won,
my LRECV, noun,
/’14*/ LCKSUM, RBUF,

/“15‘/ 1F. 22, /‘ if nonzero move to instruction #22 '/
/*i8*/ LPUSHWWORD. ERRORSTATE>>8, ERRORSTATEMSS,
/‘21‘/ NXT.
/*22*/ Lrusnnnnvnnnour, o,
/*25*/ LPUSiLBYiE, no,

/*27*/ E0. /* Bui[RBUF].cont[0] == nxr */
/‘23‘/ It, 13: /* if false move to instruction i918 ‘/
/*3o*/ LPusnnonnvnn, naur, i,
/'33*/ NXT
i:

EX 1018 Page 248

< ,,

0 0

5,826,017
1

APPARATUS AND METHOD FOR
COMMUNICATING DATA BETWEEN

ELEMENTS OF A DISTRIBUTED SYSTEM
USING A GENERAL PROTOCOL

BACKGROUND OF TIIE INVENTION

1. Field of the Invention
The invention pertains to communications in distributed

systems generally and specifically to protocols.
2. Descript10n of the Prior Art
A computer protocol is a set of rules that governs the

interaction of concurrent processes in a distributed comput
ing system. For example, if computer A, connected to a disk
drive containing files, wishes to print out one of the files on

10

2
means for transferring the information according to the

protocol;

means for transferring the information between the
peripheral apparatus and a host device;

means independent of the host device for storing a pro
tocol description which describes the protocol and
which employs a protocol description language which
is independent of any particular implementation of the
peripheral apparatus; and

protocol description interpretation means which is inde
pendent of the host device and which is capable of
interpreting the protocol description language for inter
preting the protocol description as required to transfer
the information according to the protocol via the means
for transferring the information according to the pro
tocol and to transfer the information via the means for
providing the information to the host device.

a ,printer connected to computer B, it can do so only if 15

computer A has agreed with computer B on a protocol for
doing so. The protocol must define matters such as the
following: In another aspect, the invention is a method of commu-

20 nicating in a distributed system. The method includes the
steps of:

How does computer A ask computer B whether the printer
is available?

How does computer B tell computer A that the printer is
or is not available?

How does computer A tell computer B that it is starting to
send data?

How does computer B tell computer A to slow down the 25
speed at which computer A is sending data or to stop
sending?

How does computer B tell computer A to resume sending?
How does computer A tell computer B it is done sending?
How does computer B tell computer A that it is done 30

printing?
A general discussion of computer protocols may be found in

Gerard J. Holzmann, Design and Validation of Computer
Protocols, Prentice Hall, Englewood Cliffs, NJ. 1991.
Among the difficulties of implementing computer proto- 35

cols are those which are consequences of the fact that the
entities which execute a protocol are often different. For
example, computer A and computer B of the foregoing
example may be different kinds of machines. In other cases,
the entities executing the protocol may be programs written 40

in different programming languages. Because each of the
entities which cooperate to execute the protocol must con
tain an implementation of at least its part of the protocol,
there will be as many different implementations of at least
parts of the protocol as there are different cooperating 45

entities.
One of the difficulties which arises from this situation is

the need to reimplement each protocol for each kind of entity
which executes it. As the number of protocols and kinds of
entities grows, more and more implementation effort is 50

involved. An even more important difficulty is caused by the
fact that the implementations of the same protocol for
different entities are often done by different people; if the
different people have different understandings of the
protocol, the implementations may not be completely com- 55

patible and it will be hard to determine where they are
incompatible and what the effects of any incompatibility will
be.

The apparatus and methods disclosed in the following
overcome these problems and others by permitting all enti- 60

ties which execute a protocol to execute the same descrip
tion of the protocol.

SUMMARY OF TIIE INVENTION

In one aspect of the invention, the invention is a periph- 65
era! apparatus for communicating information using a pro
tocol. The apparatus includes

in a first entity of the distributed system,

receiving a first general protocol message which includes
a protocol description which describes a specific
protocol, the protocol description employing a protocol
description language which is independent of any par
ticular implementation of the first entity; and

responding to the first general protocol message by
employing first protocol description interpretation
means capable of interpreting the protocol description
language to interpret the protocol description as
required to communicate using the specific protocol.

In still another aspect, the invention is protocol apparatus
for communicating in a distributed system, the apparatus
including:

means for receiving a first general protocol message, the
first general protocol message including a protocol
description which describes a specific protocol and
which employs a protocol description language which
is independent of any particular implementation of the
protocol apparatus; and

means for responding to the first general protocol message
which are. capable of interpreting the protocol descrip
tion language and which interpret the protocol descrip
tion as required to communicate using the specific
protocol.

In a further aspect, the invention is apparatus for com
municating in a distributed system, the apparatus including:

first protocol apparatus for communicating using a gen
eral protocol and

second protocol apparatus for communicating using the
general protocol,

the first protocol apparatus including
means for providing a first general protocol message

which includes a protocol description which describes
a specific protocol and which employs a protocol
description language which is independent of any par
ticular implementation of the second protocol appara
tus; and

means for employing the specific protocol to communi
cate with the second protocol apparatus after providing
the first general protocol message; and

the second protocol apparatus including
means for receiving the first general protocol message

from the first protocol apparatus; and

EX 1018 Page 249

.m..."v.‘n\2"~«"

,‘E'

O 0

5,826,017
1 2

APPARATUS AND METHOD FOR means for transferring the information according to the
COMMUNICATING DATA BETWEEN protocol;ELEMENTS OF A DISTRIBUTED SYSTEM

USING A GENERAL PROTOCOL

BACKGROUND OF THE INVENTION
1, Field of the Invention

The invention pertains to communications in distributed
systems generally and specifically to protocols.

2‘ Description of the Prior Art
A computer protocol is a set of rules that governs the

interaction of concurrent processes in a distributed comput—
ing system For example, if computer A, connected to a disk
drive containing files, wishes to print out one of the files on
a printer connected to computer B, it can do so only if
computer A has agreed with computer B on a protocol for
doing so. The protocol must define matters such as the
following:

How does computerA ask computer B whether the printer
is available?

How does computer B tell computer A that the printer is
or is not available?

How does computer A tell computer B that it is starting tosend data?

How does computer B tell computer A to slow down the
speed at which computer A is sending data or to stop
sending?

How does computer B tell computerA to resume sending?
How does computerA tell computer B it is done sending?
How does computer B tell computer A that it is done

printing?
Ageneral discussion of computer protocols may be found in

Gerard J. Holzmann, Design and Validation of Computer
ProtocoLr, Prentice Hall, Englewood Cliffs, NJ. 1991.
Among the difiiculties of implementing computer proto-

cols are those which are consequences of the fact that the
entities which execute a protocol are often dilferent. For
example, computer A and computer B of the foregoing
example may be difi‘erent kinds of machines. In other cases,
the entities executing the protocol may be programs written
in diflerent programming languages. Because each of the
entities which cooperate to execute the protocol must con-
tain an implementation of at least its part of the protocol,
there will be as many diiferent implementations of at least
parts of the protocol as there are diflz‘erent cooperating
entities.

One of the difficulties which arises from this situation is

the need to reimplement each protocol for each kind of entity
which executes it. As the number of protocols and kinds of
entities grows, more and more implementation effort is
involved. An even more important difficulty is caused by the
fact that the implementations of the same protocol for
dilferent entities are often done by different people; if the
different people have difi'erent understandings of the
protocol, the implementations may not be completely com-
patible and it will be hard to determine where they are
incompatible and what the effects of any incompatibility will
be.

The apparatus and methods disclosed in the following
overcome these problems and others by permitting all enti-
ties which execute a protocol to execute the same descrip-
tion of the protocol.

SUMMARY OF THE INVENTION

In one aspect of the invention, the invention is a periph-
eral apparatus for communicating information usrng a pro-
tocol. The apparatus includes

10

15

20

25

30

35

45

50

55

60

65

means for transferring the information between the
peripheral apparatus and a host device;

means independent of the host device for storing a pro-
tocol description which describes the protocol and
which employs a protocol description language which
is independent of any particular implementation of the
peripheral apparatus; and

protocol description interpretation means which is inde—
pendent of the host device and which is capable of
interpreting the protocol description language for inter-
preting the protocol description as required to transfer
the information according to the protocolvia the means
for transferring the information according to the pro-
tocol and to transfer the information via the means for

providing the information to the host device
In another aspect, the invention is a method of commu-

nicating in a distributed system. The method includes the
steps of:

in a first entity of the distributed system,
receiving a first general protocol message which includes

a protocol description which describes a specific
protocol, the protocol description employing a protocol
description language which is independent of any par-
ticular implementation of the first entity; and

responding to the first general protocol message by
employing first protocol description interpretation
means capable of interpreting the protocol description
language to interpret the protocol description as
required to communicate using the specific protocol.

In still another aspect, the invention is protocol apparatus
for communicating in a distributed system, the apparatus
including:

means for receiving a first general protocol message, the
first general protocol message including a protocol
description which describes a specific protocol and
which employs a protocol description language which
is independent of any particular implementation of the
protocol apparatus; and

means for responding to the first general protocol message
which are capable of interpreting the protocol descrip-
tion language and which interpret the protocol descrip-
tion as required to communicate using the specific
protocol.

In a further aspect, the invention is apparatus for com-
municating in a distributed system, the apparatus including:

first protocol apparatus for communicating using a gen-
eral protocol and

second protocol apparatus for communicating using the
general protocol,

the first protocol apparatus including
means for providing a first general protocol message

which includes a protocol description which describes
a specific protocol and which employs a protocol
description language which is independent of any par-
ticular implementation of the second protocol appara-
tus; and

means for employing the specific protocol to communi—
cate with the second protocol apparatus after providing
the first general protocol message; and

the second protocol apparatus including
means for receiving the first general protocol message

from the first protocol apparatus; and

EX 1018 Page 249

0 0
5,826,017

3
means for responding to the first general protocol message

which are capable of interpreting the protocol descrip
tion language and which interpret the protocol descrip
tion as required to communicate using the specific
protocol.

The foregoing and other aspects, objects and advantages
of the invention will be apparent to one of ordinary skill in
the art who peruses the following Drawings and Detailed
Description, wherein:

s

4
107(2) carry out the protocol, which this time transfers the
information from protocol apparatus 107(2) to protocol
apparatus 107(1), and protocol apparatus 107(1) provides
the information to destination 103(1).

A system of the type shown in FIG. 1 may be built in
many different fashions and may be used in many environ
ments. For example, protocol apparatus 107(1) and 107(2)
may be connected by any kind of communications medium,
including parallel and serial buses, telecommunications

IO media and shared memory. Further, entities 109 may be
BRIEF DESCRIPTION OF 1HE DRAWING processes running in a single system or processes running in

FIG. 1 is a block diagram of a typical system in which different systems. Further, the communication may be
protocols are used; between different levels of the same system or between

different systems. Finally, the apparatus 107 may be imple
FIG. 2 is a block diagram of a first apparatus incorporat- 15 mented as a process executing in a multiprocess system or

ing the invention; in special pu1pose hardware, or as some combination of
FIG. 3 is a block diagram of a second apparatus incor- these alternatives.

porating the invention; Because it is the purpose of a protocol to communicate
FIG. 4 is a table of instructions in a protocol description between different entities 109 and protocol apparatus 107 is

language; 20 in each case part of the entity 109, it is almost always the
FIG. 5 is a flowchart of the bootstrap state; case that protocol apparatus 107(1) and protocol apparatus
FIG. 6 is a flowchart of the error state; 107(2) are implemented by different individuals. That fact

has important consequences. As explained in Holzmann,
FIG. 7 is a state diagram for the alternating bit protocol; supra, it is extremely difficult to provide a description of a
FIG. 8 is a protocol description for the receive side of the 25 protocol which is both complete and unambiguous. When

alternating bit protocol; the description is incomplete or ambiguous, different indi-
FIG. 9 is a protocol description for the send side of the viduals will implement protocol apparatus 107 which

alternating bit protocol; execute different versions of the protocol, and if two pro-
FIG. 10 is a fragment of the transition procedure; tocol apparatuses 107 which execute different versions of
FIG. 11 is a protocol description for the bootstrap state; 30 the protocol attempt to communicate using the protocol, the

communication may fail. Worse, because the failures are the
FIG. 12 is a protocol description for the error state; and results of different interpretations of the protocol
FIG. 13 is a block diagram of an embodiment which description, the manner of failure will be unpredictable and

encaches down-loaded protocol descriptions. therefore cannot be taken into account in the design of the
The reference numbers employed in the Drawing and the 35 protocol. While a complete and unambiguous protocol

Detailed Description have three or more digits. The two least description can reduce the problem, it does not eliminate it:
significant digits are a number within a figure; the remaining the individuals implementing apparatus 107 can still have
digits a.re the figure number. Thus, the element with the different understandings of the protocol description, and
reference number "305" is first shown in FIG. 3. their implementations of apparatus 107 will reflect their

DETAII.ED DESCRIPTION

The following Detailed Description will first provide an
overview of the techniques of the invention and will then
disclose in detail how the Alternating Bit Protocol
(descnbed at Holzmann, supra, pp. 75-77) may be imple
mented using the techniques of the invention.
Overview: FIGS. 1-3

40 understandings. Again, the result is the implementation of
protocol apparatuses 107 which execute different versions of
the protocol, and again, there is the risk that communications
between entities employing such apparatuses 107 will fail.

Fl G. 2 illustrates a protocol apparatus 201 which solves
45 the foregoing problem. Protocol apparatus 201 bas two main

components: protocol description 203 and protocol execu
tion device 207. Protocol description 203 is a protocol
description which is written using protocol instructions 205 FIG. 1 is a block diagram of a system 101 in which

protocols are used for communication between a. first entity
109(1) and a second entity 109(2). Each entity 109 includes 50

a source or destination 103 for information (INFO) 105 and

belonging to a protocol description language. The protocol
description language is independent of any particular hard
ware or software implementation of protocol apparatus 201.

a protocol apparatus 107.
As shown by the arrows, when entity 109(1) is commu

nicating with entity 109(2), information 105 goes from
source 103(1) to protocol apparatus (PA) 107(1), which
employs a protocol as described above to transfer informa
tion 105 to protocol apparatus 107(2). As explained above,
the connection between protocol apparatus 107(1) and pro
tocol apparatus 107(2) carries not only information 105, but
also the control information 109 which protocol apparatus
107(1) and 107(2) require to carry out the protocol. The
information 105 and control information 109 together make
up protocol data (PD.bJA) 111. Protocol apparatus 107(2)
then provides the information 105 which it receives to
destination 103(2). When entity 109(2) communicates with
entity 109(1), information 105 from source 103(2) goes to
protocol apparatus 107(2), protocol apparatuses 107(1) and

There is a single protocol description 203 for the protocol,
and every protocol apparatus 201 has a copy of part or all of
the single protoool description 203. Protocol execution

55 device 207 executes the protocol by executing the protocol
instructions in protocol description 203. The protocol
instructions 205 are executed by means of protocol instruc
tion interpreter 209. Protocol instruction interpreter 209 can
interpret all of the instructions belonging to the protocol

60 description language. As it interprets each instruction, it
produces control outputs 213 to underlying device 211,
which actually receives information 105 and provides pro
tocol data 111. Underlying device 211 may in turn provide
control inputs 214 to protocol language interpreter 209.

65 Underlying device 211 may be implemented in software, in
hardware, or in a combination. Depending on how under
lying device 211 is implemented, control outputs 213 may

EX 1018 Page 250

.34am.3m...“.m.

O (”V

5,826,017
3

means for responding to the first general protocol message
which are capable of interpreting the protocol descrip-
tion language and which interpret the protocol descrip-
tion as required to communicate using the specific
protocol.

The foregoing and other aspects, objects and advantages
of the invention will be apparent to one of ordinary slcill in
the art who penises the following Drawings and Detailed
Description, wherein:

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram of a typical system in which
protocols are used;

FIG. 2 is a block diagram of a first apparatus incorporat-
ing the invention;

FIG. 3 is a block diagram of a second apparatus incor-
porating the invention;

FIG. 4 is a table of inflructions in a protocol description
language;

FIG. 5 is a flowchart of the bootstrap state;
FIG. 6 is a flowchart of the error state;
FIG. 7 is a state diagram for the alternating hit protocol;
FIG. 8 is a protocol description for the receive side of the

alternating bit protocol;
FIG. 9 is a protocol description for the send side of the

alternating hit protocol;
FIG. 10 is a fragment of the transition procedure;
FIG. 11 is a protocol description for the bootstrap state;
FIG. 12 is a protocol description for the error state; and
FIG. 13 is a block diagram of an embodiment which

encaches down—loaded protocol descriptions.
The reference numbers employed in the Drawing and the

Detailed Description have three or more digits. The two least
significant digits are a number within a figure; the remaining
digits are the figure number. Thus, the element with the
reference number “305” is first shown in FIG. 3.

DETAIIED DESCRIPTION

The following Detailed Description will first provide an
overview of the techniques of the invention and will then
disclose in detail how the Alternating Bit Protocol
(described at Holmann, supra, pp. 75-77) may be imple-
mented using the techniques of the invention.
Overview: FIGS. 1—3

FIG. 1 is a block diagram of a system 101 in which
protocols are used for communication between a first entity
109(1) and a second entity 109(2). Each entity 109 includes
a source or destination 103 for information (INFO) 105 and
a protocol apparatus 107.

As shown by the arrows, when entity 109(1) is commu-
nicating with entity 109(2), information 105 goes from
source 103(1) to protocol apparatus (PA) 107(1), which
employs a protocol as described above to transfer informa—
don 105 to protocol apparatus 107(2), As explained above,
the connection between protocol apparatus 107(1) and pro~
toeol apparatus 107(2) carries not only information 105, but
also the control information 109 which protocol apparatus
107(1) and 107(2) require to carry out the protocol, The
information 105 and control information 109 together make
up protoool data (PD/KIA) 111. Protocol apparatus 107(2)
then provides the information 105 which it receives to
destination 103(2). When entity 109(2) communicates with
entity 109(1), information 105 from source 103(2) goes to
protocol apparatus 107(2), protocol apparatuses 107(1) and

10

15

2O

30

35

45

50

SS

60

65

4

107(2) carry out the protocol, which this time transfers the
information from protocol apparatus 107(2) to protocol
apparatus 107(1), and protocol apparatus 107(1) provides
the information to destination 103(1).

A system of the type shown in FIG. 1 may he built in
many dilferent fashiom and may be used in many environ-
ments. For example, protocol apparatus 107(1) and 107(2)
may be connected by any kind of communications medium,
including parallel and serial buses, telecommunications
media and shared memory. Further, entities 109 may be
processes running in a single system or processes running in
diiferent systems. Further, the communication may be
between different levels of the same system or between
different system. Finally, the apparatus 107 may be imple-
mented as a process executing in a multiprocess system or
in special purpose hardware, or as some combination of
these alternatives.

Because it is the purpose of a protocol to communicate
between different entities 109 and protocol apparatus 107 is
in each case part of the entity 109, it is almost always the
case that protocol apparatus 107(1) and protocol apparatus
107(2) are implemented by diifcrent individuals. That fact
has important consequences. As explained in Holxmann.
supra, it is extremely difficult to provide a description of a
protocol which is both complete and unambiguous. When
the description is incomplete or ambiguous, diflerent indi-
viduals will implement protocol apparatus 107 which
execute dilfercnt versions of the protocol, and if two pro-
tocol apparatuses 107 which execute different versions of
the protocol attempt to communicate using the protocol, the
communication may fail. Worse, because the failures are the
results of different interpretations of the protocol
description, the manner of failure will be unpredictable and
therefore cannot be taken into account in the design of the
protocol. While a complete and unambiguous protocol
description can reduce the problem, it does not eliminate it:
the individuals implementing apparatus 107 can still have
dilferent understandings of the protocol description, and
their implementations of apparatm 107 will reflect their
understandings. Again, the result is the implementation of
protocol apparatuses 10’? which execute difl’erent versions of
the protocol, and again, there is the risk that communications
between entities employing such apparatuses 107 will fail.

FIG. 2 illustrates a protocol apparatus 201 which solves
the foregoing problem. Protocol apparatus 201 has two main
components: protocol description 203 and protocol execu—
tion device 207. Protocol description 203 is a protocol
description which is written using protocol instructions 205
belonging to a protocol description language. The protocol
description language is independent of any particular hard-
ware or software implementation of protocol apparatus 201.
There is a single protocol description 203 for the protocol.
and every protocol apparatus 201 has a copy of parlor all of
the single protocol description 203. Protocol execution
device 207 executes the protocol by executing the protocol
instructions in protocol description 203. The protocol
instructions 205 are executed by means of protocol instruc-
tion interpreter 209. Protocol instruction interpreter 209 can
interpret all of the instructions belonging to the protocol
description language. As it interprets each instruction, it
produces control outputs 213 to underlying device 211,
which actually receives information 105 and provides pro-
tocol data 111. Underlying device 211 may in turn provide
control inputs 214 to protocol language interpreter 209.
Underlying device 211 may be implemented in software, in
hardware, or in a combination. Depending on not?»r under-
lying device 211 is implemented, control outputs 213 may

EX 1018 Page 250

0
5,826,017

5
include procedure calls or subroutine addresses, interprocess
communications, instructions for a processor in underlying
device 211, or control outputs to hardware devices. In the
latter case, protocol execution device 207 may be a special
ized microprocessor which executes instructions in the pro
tocol description language. Again depending on how under
lying device 211 is implemented, control inputs 214 may
include data returned by a procedure or a subroutine, data
returned by an interprocess communication, the results of
executions of instructions, or interrupts.

An implementation of protocol apparatus 201 which is
particularly advantageous is an implementation as a periph
eral device for a source or destination 103 such as a host
computer. Such an implementation would be connected
between the medium over which protocol data ll1 is to be
transferred and a bus of the host computer and would include
its own memory for storing protocol description 203 and its
own protocol execution device 207. In such an
implementation, protocol execution device 207 might be
implemented as a processor which is capable of directly
executing protocol instructions 205. A particularly advanta
gous form of such a peripheral device would be one which
was implemented in a single integrated circuit.

Protocol apparatus 201 has numerous advantages over
protocol apparatus 107. First, every protocol apparatus 201
uses a copy of a single protocol description 203; thus, there
is no possibility that different implementations of protocol
apparatuses 201 will implement different versions of the
protocol. Second, protocol description 203 is written only
once, but will be used many times. It is therefore worthwhile
to expend great efforts to ensure that protocol description
203 is in fact a correct, complete and unambiguous descrip
tion of the protocol. Third, the part of protocol apparatus 201
which may differ in the different implementations is protocol
execution device 207. However, protocol execution device
207 must now only be able to correctly execute the protocol
instructions 205 in protocol description 203. That is, the
problem is no longer the correct implementation of the
protocol, but rather the correct implementation of an instruc
tion set in a single device. This probh:m is, however, far
better understood than the problem of implementing a
protocol in two devices, and consequently, implementations
of the protocol instruction set in different protocol appara
tuses 201 are far more likely to be correct than implemen
tations of the protocol itself.
Apparatus for Executing a General Protocol: FIGS. 3 and 13

Perhaps the most significant advantage of protocol appa
ratus 201 is that it can execute any protocol for which there
is a protocol description 203 written in the protocol descrip
tion language. Consequently, protocol apparatus 201 can
easily be modified to make a general protocol apparatus
which executes a geaeral protocol and which can therefore
dynamically execute any protocol for which there is a
protocol description 203. The general protocol is simply the
following:

in a sending protocol apparatus, sending a general proto
col message which includes a protocol description 203;

in a receiving general protocol apparatus, employing
protocol instruction interpreter 209 to execute the pro
tocol description 203 contained in the general protocol
message.

FIG. 3 shows such a general protocol apparatus 301.
General protocol apparatus 301 includes protocol instruction
interpreter memory (PllM) 309, which contains protocol
description 203 for the protocol currently being executed by
protocol apparatus 301 and protocol instruction interpreter
data (PIIDPlI'A) 311, which is data employed by protocol

6
instruction interpreter 209 in executing protocol description
203. Protocol interpreter 209 has two additional compo
nents: bootstrap component (BOO'!) 305 and error compo
nent (ERR) 307. These components make it possible for

5 general protocol apparatus 301 to execute the general
protocol, and thereby make it possible for any protocol
apparatus 107 which can provide a protocol description 203
to protocol apparatus 301 to use the protocol described in the
protocol description 203 to communicate between the enti-

10 ties 109 to which protocol apparatus 107 and protocol
apparatus 301 belong. Of course, both protocol apparatuses
involved in the communication may be general protocol
apparatuses 301.

Protocol apparatus 301 executes the general protocol as
15 follows: bootstrap 305 listens for a general protocol message

(indicated by arrow 313) from the other protocol apparatus.
In a preferred embodiment, the general protocol message
uses the same path between the protocol apparatuses as does
protocol data ill. In other embodiments, there may be a

20 special path for the general protocol message. The general
protocol message further contains at least the first part of
protocol description 203 for the specific protocol to be
executed. When bootstrap 305 receives the general protocol
message, it loads the message into a buffer in protocol

25 instruction interpreter data 31l and performs checks as
described below. If the message passes the checks, bootstrap
305 loads the general protocol message into the portion of
memory 309 reserved for protocol description 203.
Thereupon, interpreter 209 begins executing the protocol

30 instructions 205 in the message, beginning with the initial
instruction. If protocol description 203 is longer than the
maximum size of an general protocol message, then the fust
part of protocol description 203 contains protocol instruc
tions which, when executed, cause the rest of protocol

35 description 203 to be loaded.
In a preferred embodiment, the general protocol requires

that the general protocol message contain checking infor
mation which permits error checking and protocol data
information which indicates bow protocol instruction inter-

40 preter 209 is to interpret protocol data ill and that the
receiving general protocol apparatus 301 use the checking
information and the protocol data information. In the pre
ferred embodiment, there are two items of checking infor
mation: a checksum for the general protocol message and a

45 . required first instruction. On receiving the general protocol
message, bootstrap 305 computes the general protocol mes
sage's checksum and compares it with the checksum in the
message; if they are different, there has been a transmission
error and bootstrap 305 waits for another general protocol

so message. If bootstrap 305's check of the required first
instruction in the general protocol message indicates that the
general protocol message is not a protocol description 203,
the error component 307 of protocol instruction interpreter
209 returns an error message (indicated by arrow 315) to the

55 protocol apparatus 101 which provided the general protocol
message. Thereupon, error 307 waits for a valid general
protocol message. Once the general protocol message has
been successfully received, it is executed by protocol
instruction interpreter 209, and as part of the execution, the

60 protocol data information in the general protocol message is
used to set parameter values in protocol instruction inter
preter data 309.

If both protocol apparatuses 107 involved in a commu
nication are protocol apparatuses 301, an enormous amount

65 of flexibility is possible. For example, if an entity 109 which
includes a protocol apparatus 301 requires that information
105 sent to it be sent according to a given protocol, the

EX 1018 Page 251

O

('3

5,826,017
5

include procedure calls or subroutine addresses, interprocess
communications, instructions for a processor in underlying
device 211, or control outputs to hardware devices. In the
latter case, protocol execution device 207 may be a special-
ized microprocessor which executes instructions in the pro-
toccl description language. Again depending on how unden
lying device 211 is implemented, control inputs 214 may
include data returned by a procedure or a subroutine, data
returned by an interprocess communication, the results of
executions of instructions, or interrupts.

An implementation of protocol apparatus 201 which is
particularly advantageous is an implementation as a periph-
eral device for a source or destination 103 such as a host
computer. Such an implementation would be connected
between the medium over which protocol data 111 is to be
transferred and a bus of the host computer and would include
its own memory for storing protocol description 203 and its
own protocol execution device 207. In such an
implementation, protocol execution device 20'! might be
implemented as a processor which is capable of directly
executing protocol instructions 205. Aparticularly advanta-
gous form of such a peripheral device would be one which
was implemented in a single integrated circuit.

Protocol apparatus 201 has numerous advantages over
protocol apparatus 107. First, every protocol apparatus 201
uses a copy of a single protocol description 203; thus, there
is no possibility that different implementations of protocol
apparatuses 201 will implement dilferent versions of the
protocol. Second, protocol description 203 is written only
once, but will be used many times. It is therefore worthwhile
to expend great eiforts to ensure that protoml description
203 is in fact a correct, complete and unambiguous descrip-
tion of the protocol. Third, the part ofprotocol apparatus 201
which may differ in the difierent implementations is protocol
execution device 207. However. protocol execution device
207 must now only be able to correctly execute the protocol
instructions 205 in protocol description 203. That is, the
problem it no longer the correct implementation of the
protocol, but rather the correct implementation of an instruc-
tion set in a single device. This problem is, however, far
better understood than the problem of implementing a
protocol in two devices, and consequently, implementations
of the protocol instruction set in difilerent protocol appara-
tuses 201 are far more likely to be correct than implemen-
tations of the protocol itself.
Apparatus for Executing a General Protocol: FIGS. 3 and 13

Perhaps the most significant advantage of protocol appa-
ratus 201 is that it can execute any protocol for which there
is a protocol description 203 written in the protocol descrip-
tion language. Consequently, protocol apparatus 201 can
easily be modified to make a general protocol apparatus
which executes a general protocol and which can therefore
dynamically execute any protocol for which there is a
protocol description 203. The general protocol is simply the
following:

in a sending protoeol apparams, sending a general proto-
col message which includes a protocol description 203;

in a receiving general protocol apparatus, employing
protocol instruction interpreter 209 to execute the pro-
tocol description 203 contained in the general protocol
message.

FIG. 3 Shows such a general protocol apparatus 301.
General protocol apparatus 301 includes protocol instruction
interpreter memory (FEM) 309, which contains protocol
description 203 for the protocol currently being executed by
protocol apparatus 301 and protocol instruction interpreter
data (PHDATA) 311, which is data employed by protocol

10

15

25

30

35

45

50

55

60

65

6

instruction interpreter 209 in executing protocol description
203. Protocol interpreter 209 has two additional compo-
nents: bootstrap component (BOOT) 305 and error compo-
nent (ERR) 307. These components make it possible for
general protocol apparatus 301 to execute the general
protocol, and thereby make it possible for any protocol
apparatus 107 which can provide a protocol description 203
to protocol apparatus 301 to use the protocol described in the
protocol description 203 to communicate between the enti-
tics 109 to which protocol apparatus 107 and protocol
apparatus 301 belong. Of course, both protocol apparatuses
involved in the communication may be general protocol
apparatuses 301.

Protocol apparatus 301 executes the general protocol as
follows: bootstrap 305 listens for a general protocol message
(indicated by arrow 313) from the other protocol apparatus.
In a preferred embodiment, the general protocol message
uses the same path between the protocol apparatuses as does
protocol data 111. In other embodiments, there may be a
special path for the general protocol message. The general
protocol message further contains at least the first part of
protocol description 203 for the specific protocol to be
executed. When bootstrap 305 receives the general protocol
message, it loads the message into a buffer in protocol
instruction interpreter data 311 and performs checks as
described below. If the message passes the checks, bootstrap
30S loads the general protocol message into the portion of
memory 309 reserved for protocol description 203.
Thereupon, interpreter 209 begins executing the protocol
instructions 205 in the massage, beginning with the initial
instruction. If protocol description 203 is longer than the
maximum size of an general protocol memage, then the first
part of protocol description 203 contains protocol imtruc-
tions which, when executed, cause the rest of protocol
description 203 to be loaded.

In a preferred embodiment, the general protocol requires
that the general protocol message contain checking infor-
mation which permits error checking and protocol data
information which indicates how protocol instruction inter-
preter 209 is to interpret protocol data 111 and that the
receiving general protocol apparatus 301 use the checking
information and the protocol data information. In the pre-
ferred embodiment, there are two items of checking infor—
mation: a checksum for the general protocol message and a
required first instruction. On receiving the general protocol
message, bootstrap 305 computes the general protocol mes-
sage’s checksum and compares it with the checksum in the
message; if they are clificrent, there has been a transmission
error and bootstrap 305 waits for another general protocol
message. If bootstrap 305’s check of the required first
instruction in the general protocol message indicates that the
general protocol message is not a protocol description 203,
the error acmponent 307 of protocol instruction interpreter
209 returns an error message (indicated by arrow 315) to the
protocol apparatus 101 which provided the general protocol
message. Thereupon, error 307 waits for a valid general
protocol message. Once the general protocol message has
been successfully received, it is executed by protocol
instruction interpreter 209, and as part of the execution, the
protocol data information in the general protocol message is
used to set parameter values in protocol instruction inter-
preter data 309.

If both protocol apparatuses 107 involved in a commu~
nication are protocol apparatuses 301, an enormous amount
of flexibility is possible. For example, if an entity 109 which
includes a protocol apparatus 301 requires that information
105 sent to it be sent according to a given protocol, the

EX 1018 Page 251

0
5,826,017

7
apparatus 301 can respond to a general protocol which
specifies another protocol by returning an error message
which indicates that it only responds to a given specific
protocol and then sending protocol description 203 for the
given specific protocol to the entity from which it received s
the general protocol message. Such a tactic might be used by
an entity 109 which requires that all data which it receives
be encrypted according to a particular scheme.

Similarly, if a communication between two entities 109
involves different types of data and different protocols are

10
better for transferring data belonging to the different types,
then two protocol apparatuses 301 could carry out the
communication by dynamically changing the protocols as
required by the type of data currently being communicated.
An example here might be a data transfer which involved

15
both digital data representing analog signals and digital data
representing numbers or characters. Toe two types of data
have different degrees of tolerance for transmission errors,
and the protocol used for each type of data might therefore
employ different error checking and correction techniques. 20
Adaptive General Protocol Apparatus: FIG, 13

The flexibility of general protocol apparatus 301 comes at
a cost: each communication using a specific protocol
includes the overhead of sending protocol description 203
for the specific protocol to general protocol apparatus 301, 25
checking the general protocol mes.sage, and loading protocol
description 203 into protocol instruction interpreter memory
309. This overhead can be avoided by equipping general
protocol apparatus 301 with a protocol instruction interpre·
tation memory 1301 (FIG. 13) which is large enough to hold 30
a number of protocol descriptions 203 and modifying the
general protocol to permit use of a protocol description
identifier specifying one of the protocol descriptions in place
of a protocol description 203. For such an adaptive general
protocol apparatus, the general protocol would be as fol- 35
lows:

In a sending protocol apparatus, sending a first message
which includes a protocol description identifier for a
protocol description 203;

8
protocol apparatus will encache protocol descriptions 203
for frequently-used protocols in the same way that a memory
system encaches frequently-used memory blocks.

An adaptive general protocol apparatus may be imple
mented by modifying bootstrap 303 and the contents of
protocol instruction interpreter memory 301. The modifica
tions to the contents of protocol instruction interpreter
memory for an adaptive general protocol apparatus 1323 are
shown in FIG.13. As before, protocol instruction interpreter
memory 1301 is divided into two parts, one containing data
311 used during execution of a protocol, and one for
protocol descriptions. Here, protocol description memory
(PDM) 1302 contains a protocol description table 1303 and
one or more protocol descriptions 1311. Protocol description
table 1303 contains a protocol description table entry 1305
for each protocol description 1311 in memory 1309. Each
entry 1305 contains at least two pieces of information: an
identifier 1307 for a protocol description 1311 and a pointer
1309 to the location in memory 1302 of protocol description
1311 specified by the identifier. There are many possible
sources for the identifiers; for example, the identifier for a
given protocol description 1311 may be the description
13ll's checksum. In another embodiment, the source of the
original protocol descriptions from which the protocol
descriptions 1311 are copied may assign a unique identifier
to each original protocol description.

As will be explained in more detail below, the protocol
descriptions 203 employed in a preferred embodiment define
a finite stale machine. Consequently, a given protocol
description 203 is divided into a set of numbered states (S)
1321. To permit location of the states, protocol description
1311 is divided into two parts: protocol description body
(PDB) 1314, which contains the instructions for the states,
and state table 1313, which relates state numbers to the
locations of the corresponding states 1321. There is an entry
1315 in state table 1313 for each state 1321 in the protocol
description body, and each entry contains the state number
(SN) 1317 and the offset (OFF) 1319 of that state from the

In a receiving general protocol apparatus, responding to
the first message by:

beginning of protocol description 1311. .
40 The mgdifications required in bootstrap 305 will be

a. determining whether the receiving general protocol
apparatus has a copy of protocol description 203
specified by the identifier;

immediately apparent from FIG. 13 and the description of
the general protocol for general protocol apparatus 1323.
When a general protocol message is received which contains

b. if it does, executing the protocol description 203 45
specified by the identifier;

a protocol description identifier for which the protocol
description 1311 is in memory 1302, bootstrap 305 simply
causes interpreter 209 to begin executing the specified

c. if it does not, returning an error message indicating
that ii does not have a copy of the specified protocol
description 203;

in the sending protocol apparatus, responding to the error
message by sending a second message which includes
protocol description 203; and

in the receiving protocol apparatus, responding to the
second message by:
a. storing protocol description 203 in the receiving

protocol apparatus; and
b. executing the protocol description.

protocol description; otherwise, bootstrap 305 retains the
identifier from the general protocol message and causes
error 307 to return an error message and wait for a message

so which contains the protocol description 1311. When the
message arrives, error 307 causes bootstrap 305 to compare
the retained identifier with the identifer in the general
protocol message containing the protocol description 1311,
and if they agree, bootstrap 305 places the protocol descrip-

55 tion 1311 in memory 1302 and makes an entry 1305 for the
new protocol description 1311 in protocol description table
1303.

Of course, many variations on the above arrangements are
possible. For example, memory 1302 is necessarily finite;
consequently, bootstrap 305 may have to remove one pro
tocol description 1311 to make room for another. One way
of doing this would be to include size and most recent use
information in protocol description table 1303, and boot
strap 305 could use that information to determine which

As may be seen from the foregoing description of the
general protocol for the adaptive general protocol apparatus,
such a general protocol apparatus would quickly adapt itse.lf 60
to the environment in which it was employed. It would m
short order contain copies of the protocol descriptions 203
for all of the protocols which were frequently employed by
the entities 109 which used the adaptive general protocol
apparatus, and would consequently only very rarely need to
request a copy of the protocol description 203 for a protocol
from the sender. Put another way, an adaptive general

65 protocol descriptions 1311 should be removed. Further, the
general protocol for general protocol apparatus 1323 might
include a checksum in the general protocol message for the

EX 1018 Page 252

O (’3

5,826,017
7

apparatus 301 can respond to a general protocol which
specifies another protocol by returning an error message
which indicates that it only responds to a given specific
protocol and then sending protocol description 203 for the
given specific protocol to the entity from which it received
the general protocol message. Such a tactic might be used by
an entity 109 which requires that all data which it receives
be encrypted according to a particular scheme.

Similarly, if a communication between two entities 109
involves difi‘erent types of data and different protocols are
better for transferring data belonging to the different types,
then two protocol apparatuses 301 could carry out the
communication by dynamically changing the protocols as
required by the type of data currently being communicated.
An example here might be a data transfer which involved
both digital data representing analog signals and digital data
representing numbers or characters. The two types of data
have different degrees of tolerance for transmission errors,
and the protocol used for each type of data might therefore
employ diflerent error checking and correction techniques.
Adaptive General Protocol Apparatus: FIG. 13

The flexibility of general protocol apparatus 301 comes at
a cost: each communication using a specific protocol
includes the overhead of sending protocol description 203
for the specific protocol to general protocol apparatus 301,
checking the general protocol message, and loading protocol
description 203 into protocol instruction interpreter memory
309. This overhead can be avoided by equipping general
protocol apparatus 301 with a protocol instruction interpre-
tation memory 1301 (FIG. 13) which is large enough to hold
a number of protocol descriptions 203 and modfiying the
general protocol to permit use of a protocol description
identifier specifying one of the protocol descriptions in plane
of a protocol description 203. For such an adaptive general
protocol apparatus, the general protocol would be as fol—
lows:

In a sending protocol apparatus, sending a first message
which includes a protocol description identifier for a
protocol description 203;

In a receiving general protocol apparatus, responding to
the first message by:
a. determining whether the receiving general protocol

apparatus has a copy of protocol description 203
specified by the identifier;

b. if it does, executing the protocol description 203
specified by the identifier,

c. if it does not, returning an error message indicating
that it does not have a copy of the specified protocol
description 203;

in the sending protocol apparatus, responding to the error
message by sending a second message which includes
protocol description 203; and

in the receiving protocol apparatus. responding to the
second message by:
a. storing protocol description 203 in the receiving

protocol apparatus; and
b. executing the protocol description.

As may be seen from the foregoing description of the
general protocol for the adaptive general protocol apparatus,
such a general protocol apparatus would quickly adapt itself
to the environment in which it was employed. It would in
short order contain copies of the protocol descriptions 203
for all of the protocols which were frequently employed by
the entities 109 which used the adaptive general protocol
apparatus, and would consequently only very rarely need to
request a copy of the protocol dmcfiption 203 for a protocol
from the sender. Put another way, an adaptive general

'10

15

20

25

35

40

45

50

55

65

8
protocol apparatus will encache protocol descriptions 203
for frequently-used protocols in the same way that a memory
system encaches frequently-used memory blocks.

An adaptive genera] protocol apparatus may be imple‘
mented by modifying bootstrap 303 and the contents of
protocol instruction interpreter memory 301. The modifica»
tions to the contents of protocol instruction interpreter
memory for an adaptive general protocol apparatus 1323 are
shown in FIG. 13. As before, protocol instruction interpreter
memory 1301 is divided into two parts, one containing data
311 used during execution of a protocol, and one for
protocol descriptions. Here, protocol description memory
(PDM) 1302 contains a protocol description table 1303 and
one or more protocol descriptiom 1311. Protocol description
table 1303 contains a protocol description table entry 1305
for each protocol description 1311 in memory 1309. Each
entry 1305 contains at least two pieces of information: an
identifier 1307 for a protocol description 1311 and a pointer
1309 to the location in memory 1302 ofprotocol description
131;! specified by the identifier. There are many possible
sources for the identifiers; for example, the identifier for a
given protocol description 1311 may be the description
1311’s checksum. In another embodiment, the source of the
original protocol descriptions from which the protocol
descriptions 131.1 are copied may assign a unique identifier
to each original protocol description.

As will be explained in more detail below, the protocol
descriptions 203 employed in a preferred embodiment define
a finite state machine. Consequently. a given protocol
description 203 is divided into a set of numbered states (S)
1321. To permit location of the states, protocol description
1311 is divided into two parts: protocol description body
(FEB) 1314, which contains the instructions for the states,
and state table 1313, which relates state numbers to the
locations of the corresponding states 1321. There is an entry
1315 in state table 1313 for each state 1321 in the protocol
description body, and each entry contains the state number
(SN) 1317 and the ofi’set (OFF) 1319 of that state from the
beginning of protocol description 1311.

The modifications required in bootstrap 305 will be
immediately apparent from FIG. 13 and the description of
the general protocol for general protocol apparatus 1323.
When a general protocol message is received which contains
a protocol description identifier for which the protocol
description 1311 is in memory 1302, bootstrap 305 simply
causes interpreter 209 to begin executing the specified
protocol description; otherwise, bootstrap 30$ retains the
identifier from the general protocol message and causes
error 307 to return an error message and wait for a message
which contains the protocol description 1311. When the
message arrives, error 307 causes bootstrap 305 to compare
the retained identifier with the identifier in the general
protocol message containing the protocol description 1311,
and if they agree, bootstrap 305 places the protocol descrip~
Lion 1311 in memory 1302 and makes an entry 1305 for the
new protocol description 1311 in protocol description table
1303.

Of course, many variations on the above arrangements are
possible. For example, memory 1302 is necessarily finite;
consequently, bootstrap 305 may have to remove one pro-
tocol description 1311 to make room for another. One way
of doing this would be to include size and most recent use
information in protocol description table 1303, and boot-
strap 305 could use that information to determine which
protocol descriptions 1311 should be removed. Further, the
general protocol for general protocol apparatus 1323 might
include a checksum in the general protocol message for the

EX 1018 Page 252

0
5,826,017

9
protocol description 1311 identified by the identifier. Boot
strap 305 could use the checksum to make sure that the copy
of the protocol description 1311 in memory 1302 was the
same as the copy held by the sender. If it was not, bootstrap
305 could send an error message requesting the protocol s
description and then proceed as previously described for
protocol descriptions for which there was no copy in
memory 1302.
Implementation of Protocol Apparatus 301

A prototype implementation of protocol apparatus301 has 10

been constructed in which protocol execution device 207 is
a computer capable of executing programs written in the
well-known "C" programming language. In the prototype
implementation, protocol instructions 205 belonging to a
protocol description language are interpreted by a protocol 15

instruction interpreter which is written in C and is executed

10
if the value at the top of the stack is equal to 0, the IF
instruction branches to the instruction specified in the IF
instruction's parameter; otherwise, it executes the instruc-
tion following the IF instruction.

Upper interface instructions 409 pass information 105 to
data source/destination 103 and receive information 105
from data source/destination 103. The information is passed
from and received into buffers in protocol instruction inter
pretation data 311. Lower interface ini;tructions 411 deal
with PDATA 111 sent and received between protocol appa
ratuses 107. Three of these instructions are used in boot
strapping. CKSUM 413 computes the checksum of a buff
er's contents and places the result in the top of the stack,
where it can be used to determine whether a branch should
be made to error component 307. BYTEORDER defines the
order of the bytes in the words of PDATA 111 which are sent
according to the protocol. WORD_SZ defines the number
of bytes in the words of PDATA 11l which are sent accord
ing to the protocol. Both instructions are used in the general
protocol message to override default byte orders and word
sizes, and they may be also used to change these aspects of
PDATA 111 during transmission of a protocol. Buffer man
agement instructions 419 allocate and size buffers in PII
DATA311 and permit values from the top of the stack to be

by a process running on the computer. General protocol
apparatus 301 has been tested by writing a protocol descrip
tion 203 for the altemating bit protocol in the protocol
description language and executing the protocol by execut- 20

ing the protocol description 203. The following discussion
will first disclose the protocol description language, then
protocol interpreter 209, bootstrap 305, and error component
307, and finally protocol description 203 for the alternating

25
written to positions in the buffers. Most of the instructions
also have a slightly faster variant (indicated by the prefix I_)
which use constant operands specified in the instruction and
therefore do not have to pop an operand from the stack.

bit protocol.
The Protocol Description Language: FIG. 4

FIG. 4 shows the instructions in a preferred embodiment
of protocol description language 401. The instructions fall
into two classes: those which perform general stack man
agement and expression evaluation, shown in table 403, and 30
those which perform operations which are particularly
related to the execution of protocols, shown in table 405.

As is apparent from table 403, protocol instruction inter
preter 209 is a stack machine. Toe stack, maintained in
protocol instruction interpretation data 311, is a standard 35
integer size push-down stack. The PUSH_BYTE and
PUSH_WORD instructions permit data to be pushed onto

Toe following is a short example program written in
protocol description language 401. The program first defines
the byte order and word sii:e for the protocol, loads the
contents of a buffer RBUF into protocol description 203 and
associates a state number represented as S with the location
of the loaded contents, and then begins executing the con-
tents as state S:

BYIEORDER, 1,
WORD_sz, 3,
!_LOAD, S, RBUF,

/• Mo,t Signifu:ant Byte lmnamitted fust • /
t• 3 bytes per word • 1
t• assign RBUF to S */

the push-down stack. The other instmctions take their oper
ands and parameters from the top of the stack and push their
results back onto the top of the stack. When a stack overflow 40 LNXT, s. /• golxl state S• /

or underflow occurs, interpreter 209 ceases executing the
protocol, error component 307 sends an error message to the
other protocol apparatus 107, and error component 307 then
waits for an error handling message from the other protocol
apparatus 107. Of course, bow the other protocol apparatus 45
107 responds to the error message is part of the protocol
described in protocol description 203. The same thing hap
pens if an arithmetic error such as a zero divide or an integer
overflow occurs.

The functions of the instructions in table 405 are generally so
clear from the table; however, certain instructions require a
more detailed explanation. Beginning with the instructions
in finite state machine control 407, instructions 421 and 42~
permit protocol detestation language 401 to describe a
protocol as a finite state machine, that is, a finite set of states 55
with definitions of transitions between the states. Thus,
LOAD instruction 421 takes two parameters from the top of
the stack, one specifying a buffer which contains a sequence
of instructions of protocol description language 401, and one
specifying a state number. The LOAD instruction loads the 60

contents of the buffer into a location in protocol description
203 and associates the state number with that location. NXT
instruction 423 pops a state value from the top of the stack
and begins execution of the sequence of instructions at the
location in protocol description 203 associated with the state 65
value. IF instruction 425 is a conditional branch instruction:
the IF instruction pops the value at the top of the stack, and

S is a constant value, as is RBUF, so !_LOAD and I_NXT
are used in the program instead of LOAD and NXT.

While protocol description language 401 effectively
describes protocols, a person implementing any substantial
protocol would not want to write the protocol description
directly in language 401. To avoid this problem, the person
implementing the protocol can descnbe the protocol in any
formal protocol specification language that can be translated
into language 401 and then translate the description in the
formal specification language into language 401. Even a
regular programming language would do to describe the
protocol. If the protocol is specified in a formal protocol
specification language which permits validation of the pro
tocol (see for example the PROMEI.A specification
language, in Holzmann, supra, p. 91ff.), there is an added
advantage that the complete protocol can be validated
exhaustively before it is converted into protocol description
language 401. In this case, it will be certain that both sides
of the protocol are implemented in precise accordance with
the validated model.
Protocol Instruction Interpreter 209

In a preferred embodiment, protocol instruction inter
preter 209 is implemented by means of a run procedure
which will be explained in more detail later. At the heart of
that procedure is the procedure transition(n). A fragment of
transistion(n) is shown in FIG. 10. transition (n) 1001

EX 1018 Page 253

O 0

5,826,017
9

protocol description 1311 identified by the identifier. Boot—
strap 305 could use the checksum to make sure that the copy
of the protocol description 1311 in memory 1302 was the
same as the copy held by the sender. If it was not, bootstrap
305 could send an error message requesting the protocol
description and then proceed as previously described for
protocol descriptions for which there was no copy in
memory 1302.
Implementation of Protocol Apparatus 301

Aprototype implementation of protocol apparatus 301 has
been constructed in which protocol execution device 207 is
a computer capable of executing programs written in the
well‘known “C” programming language. In the prototype
implementation, protocol instructions 205 belonging to a
protocol description language are interpreted by a protocol
instruction interpreter which is written in C and is executed
by a process running on the computer. General protocol
apparatus 301 has been tested by writing a protocol descrip~
tion 203 for the alternating bit protocol in the protocol
description languge and executing the protocol by execut-
ing the protocol description 203. The following discussion
will first disclose the protocol description language, then
protocol interpreter 209, bootstrap 305, and error component
307, and finally protocol description 203 for the alternating
bit protocol.
The Protocol Description Language: FIG. 4

FIG. 4 shows the instructions in a preferred embodiment
of protocol description language 401. The instructions fall
into two classes: those which perform general stack man»
agement and expression evaluation, shown in table 403, and
those which perform operations which are particularly
related to the execution of protocols, shown in table 405.

As is apparent from table 403, protocol instruction inter-
preter 209 is a stack machine. The stack, maintained in
protocol instruction interpretation data 311, is a standard
integer size push-down stack. The PUSH__BYTE and
PUSH_WORD instructions permit data to be pushed onto
the push-down stack. The other instructions take their open
ands and parameters fmm the top of the stack and push their
results back onto the top of the stack. When a stack overflow
or underflow occurs, interpreter 209 ceases executing the
protocol, error component 30'? sends an error message to the
other protocol apparatus 107, and error component 307 then
waits for an error handling message from the other protocol
apparatus 10?. Of course, how the other protocol apparatus
107 responds to the error message is part of the protocol
described in protowl description 203. The same thing hap~
pens if an arithmetic error such as a zero divide or an integeroverflow occurs.

The functions of the instructions in table 405 are generally
clear from the table; however, certain instructions require a
more detailed explanation. Beginning with the instructions
in finite state machine control 407, instructions 421 and 423
permit protocol detestation language 401 to describe a
protocol as a finite state machine, that is, a finite set of states
with definitions of transitions between the states. Thus.
LOAD instruction 421 takes two parameters floor the top of
the stack, one specifying a buffer which contains a sequence
of instructions ofprotocol description language 401, and one
specifying a state number. The LOAD instruction loads the
contents of the bulfer into a location in protocol description
203 and associates the state number with that location. NXT
instruction 423 pops a state value from the top of the stack
and begins execution of the sequence of instructions at the
location in protocol description 203 associated with the state
value. 1F instruction 425 is a conditional branch instmction:
the IF instruction pops the value at the top of the stack, and

10

15

20

30

35

4o

45

50

55

60

65

10
if the value at the top of the stack is equal to 0, the {F
instruction branches to the instruction specified in the IF
instruction’s parameter; otherwise, it executes the instruc-
tion following the lF instruction.

Upper interface instructiom 409 pass information 105 to
data source/destination 103 and receive information 105
{10151 data sourcefdestination 103. The information is passed
from and received into buffers in protocol instruction inter*
pretation data 31], Lower interface instructions 41 1 deal
with PDATA 111 sent and received between protocol appa-
ratuses 107. Three of these insh'uctions are used in boot-
strapping. CKSUM 413 computes the checksum of a bull-
er’s contents and places the result in the top of the stack,
where it can be used to determine whether a branch should
be made to error component 307. BYTEORDER defines the
order of the bytes in the words of PDATAlll which are sent
according to the protocol. WORD_SZ defines the number
of bytes in the words of PDATA 111 which are sent accord-
ing to the protocol. Both instmctions are used in the general
protocol message to override default byte orders and word
sizes, and they may be also used to change these aspects of
PDACl‘A 111 during transmission of a protocol. Bullet man-
agement instructions 419 allocate and size butters in PI!-
DPH‘A311 and permit values from the top of the stack to be
written to positions in the buffers. Most of the instructions
also have a slightly faster variant (indicated by the prefix I_)
which use constant operands specified in the instruction and
therefore do not have to pup an operand from the stack.

The following is a short example program Written in
protocol description language 401. The program first defines
the byte order and word size for the protocol, loads the
contents of a butler RBUF into protocol description 203 and
associates a state number represented as S with the location
of the loaded contenm, and then begins executing the con-
tents as state 8:

BYTEORDER, l, 1" Most Signifiaot Byte tnnxmitted first ‘/
woaonsz, 3, l‘ 3 bytes per word '1'
mono, s, anon, 1' “sign RBUF to s .;
Law: 3,“ 1* gm state 5';

S is a constant value, as is RBUF, so l_LOAD and IWNX'I‘
are used in the program instead of LOAD and NXT.

While protocol description language 401 eifectivcly
describes protocols, a person implementing any substantial
protocol would not want to write the protocol description
directly in language 401. To avoid this problem, the person
implementing the protocol can describe the protocol in any
formal protocol specification language that can be translated
into language 401 and then translate the description in the
formal specification language into language 401. Even a
regular programming language would do to describe the
protocol. If the protocol is specified in a formal protocol
specification language which permits validation of the pro-
tocol (see for example the PROMELA specification
language, in Holzmann, supra, p. 9111.), there is an added
advantage that the complete protocol can be validated
exhaustively before it is converted into protocol description
language 401. In this case, it will be certain that both sides
of the protocol are implemented in precise accordance withthe validated model.

Protocol instruction Interpreter 209
In a preferred embodiment, protocol instruction inter-

preter 209 is implemented by means of a run procedure
which will be explained in more detail later. At the heart of
that procedure is the procedure transition(n). A fragment of
transistion(u) is shown in FIG, 10. transition (13) 1001

EX 1018 Page 253

0

5,826,017
11

executes the protocol instructions 205 in one state until a
NXT or I_NXT instruction transfers control to another
state. The procedure is invoked with a single argument: the
number of the state to which traosition is to be made; when
the procedure returns, it returns the number of the next state
to which a transition is to be made. The variable cur_state
is set on entry into the procedure to point to the beginning
of the state specified by the argument. The register variable
prot contains the current byte position in the state being
executed. At 1006, prot is set to the value of cur_state, so
that execution starts at the first byte of the state. The while
loop indicated at 1007 continues to execute as long as prot
bas a non-0 value, i.e., essentially until a return statement
transfers control out of transition.

The body of the while loop is a switch statement which
contains a case for each of the instructions in protocol
description language 401. On each iteration of the loop, the
variable prot is incremented by 1, so that it points to the next
byte in the state. The value of that byte determines which
case is executed. If there is no case corresponding to that
value, default case 1015 is executed, which puts interpreter
209 into the error state and thereby transfers control to error
307. Where required, a case further contains debugging code
and assertions to check whether requirements for the execu
tion of the instruction are fulfilled. If interpreter 209 is only
used with fully tested and verified protocol descriptions 203,
the assertions and debugging code may be disabled.

Fragment 1001 shows two cases in addition to default
case 1015: those for NXT and I_NXT. With NXT 1011, the
case simply pops the value at the top of the stack (i.e., the
next state), checks whether the value is in the range of values
for states, and returns the value. With LNXT, the value of
the next state is in the code, and not on the stack, so the case
increments prot by one, checks whether the value at that
point in the code is within the range, and returns the value.
Implementation of Bootstrap 305: FIG. 5

In a preferred embodiment, Bootstrap 305 is implemented
as a state of interpreter 209. Unlike the other states, which
are defined by the protocol description loaded in by boot
strap 305, bootstrap 305 and error 307 are required for the
execution of the general protocol and therefore must be built
into a protocol apparatus 301 before a protocol description
203 can be loaded.

Since these two states are required for the general
protocol, they are the only ones that enforce a predefined
format on incoming messages, and that must require, the
presence of certain kinds of data to permit checking of the
general protocol message. As soon as these two states have
successfully received a general protocol message with pro
tocol description 203, they hand off control of the general
protocol apparatus to the protocol description 203.

In a preferred embodiment, bootstrap 305 is implemented
with a single call run (BOOTSTRAP). Procedure run () is
the implementation of interpreter 209 in a preferred embodi
ment. The procedure is reproduced completely below

run (s)
{ intn •s;

while (n >- 0 && n <- SMAX && State[n].cont)
n ""' transition(n);

i:~turn n;

12
execution when a value which is out of range of the legal
state numbers is received. Thus, when invoked with
BOOTSTRAP, a constant indicating the bootstrap state, the
run simply puts interpreter 209 into the bootstrap state.

Most of the concepts involved in implementing an
embodiment of protocol apparatus 301 can be illustrated
using an implementation of bootstrap 305. In a protocol
apparatus 301 employing such an implementation, the code
for bootstrap 305 would always be present in protocol

10 instruction interpreter memory 309.
For a general understanding of bootstrap 305, the fl.ow

chart of FIG. 5 snffices. As shown in oval 503, bootstrap
implementation 501 waits for the general protocol message
from the remote protocol apparatus 107. When the message

1s comes, it is loaded into a buffer in protocol instruction
interpreter data 311. Next, the message is checked. First, a
checksum is performed, to make sure the message is uncor
rupted. If the checksum is non-zero, a traosmission error bas
occurred, and the machine returns to the start of the boot-

20 strap state (diamond 505, 507). If the checksum is zero, a
check is made if the message has the correct type (diamond
509). In a preferred embodiment, the first instruction is
required to be the definition of the BYIEORDER for the
lower interface. This byte-order definition specifies the order

2s in which the bytes in a word sent according to the protocol
are transmitted across the lower level interface: most or least
significant byte first. It need not match the byte-order used
in either the receiving or the sending entity. If the message
is not a valid protocol description 203, interpreter 209 enters

30 error 307 (511).
If the message is a valid protocol description 203, the

contents of receive buffer is assigned to the initial state of the
newly loaded protocol, and control is transferred to that state
(box 515). A full implementation 1101 of bootstrap 305 in

35 protocol description language 401 is shown in FIG. 11.
Implementation of Error 307: FIG. 6

In a pref<irred embodiment, error component 307 is also
implemented as a state of interpreter 209. Like the bootstrap
state, this error state is part of the general protocol, not any

40 specific protocol. It is only meant to provide a standard
mechanism for responding to errors in the operation of the
general protocol apparatus 301, such as stack-overflow,
memory allocation errors, arithmetic errors (e.g., divide by
zero), etc. A flowchart for the error state is given in FIG. 6.

45 Assbown in FIG. 6, error component implementation 601
first writes a predefined error message to TBUF (box 603)
and tben notifies the remote protocol apparatus 107 of an
error condition by sending the message in TBUF (oval 605).
It then awaits a response that it will receive into the default

50 receive buffer RBUF (oval 607). If the message was uncor
rupted (diamond 609) and was a protocol decription 203
(diamond 613) control is transferred to the state that is
specified in the message, using the NXT command (617). In
all other cases (611,615), the error state is reentered from the

ss top (602). A full implementation 1201 of error 307 in
protocol description language 401 is shown in FIG. U.
An Implementation of the Alternating Bit Protocol: FIGS.
7-10

FIG. 7 is a diagram of the finite state machines imple-

run is a loop which invokes the procedure transition with a
state number transition then puts interpreter 209 into the
proper state of protocol description 203 or the states which
implement bootstrap 305 or error 307. The loop ceases

60 mented by two protocol apparatuses 107 which are commu
nicating by means of the alternating bit protocol. This
protocol employs a single bit, which can have the value "1"
or "0", as a message sequence number. When one of the
apparatuses 107, say the apparatus represented by finite state

65 machine 703, sends a message, it appends a "1" or an "O" bit
as a sequence number to the message. The receiving finite
state machine 705 sends an acknowledgment with the

EX 1018 Page 254

it

O 0

5,826,017
11

executes the protocol instructions 205 in one state until a
NXT or lflNXT instruction transfers control to another
state. The procedure is invoked with a single argument: the
number of the state to which transition is to he made; when
the procedure returns, it returns the number of the next state
to which a transition is to be made. The variable cur__state

is set on entry into the procedure to point to the beginning
of the state specified by the argument. The register variable
prot contains the current byte position in the state being
executed. At 1006, prot is set to the value of cumstate, so
that execution starts at the first byte of the state. The while
loop indicated at 100’? continues to execute as long as prot
has a non~0 value, i.e., essentially until a return statement
transfers control out of transition.

The body of the while loop is a switch statement which
contains a case for each of the instructions in protocol
description language 401. On each iteration of the loop, the
variable prot is incremented by 1, so that it points to the next
byte in the state. The value of that byte determines which
case is executed. If there is no case corresponding to that
value, default case 1015 is executed, which puts interpreter
209 into the error state and thereby transfers control to error
307. Where required, a case further contains debugging code
and assertions to check whether requirements for the execu-
tion of the instruction are fulfilled. If interpreter 209 in only
used with fully tested and verified protocol descriptions 203,
the assertions and debugging code may be disabled.

Fragment 1001 shows two cases in addition to default
case 1015: those for NXT and l__NXT. With NXT 1011, the
case simply pops the value at the top of the stack (i.e., the
next state), cheeks whether the value is in the range ofvalues
for states, and returns the value. With 1}“, the value of
the next state is in the code, and not on the stack, so the case
increments prot by one, checks whether the value at that
point in the code is within the range, and returns the value.
Implementation of Bootstrap 305: FIG. 5

In a preferred embodiment, Bootstrap 305 is implemented
as a state of interpreter 209. Unlike the other states, which
are defined by the protocol description loaded in by boot-
strap 305, bootstrap 305 and error 30’! are required for the
execution of the general protocol and therefore must be built
into a protocol apparatus 301 before a protocol description
203 can be loaded.

Since these two states are required for the general
protocol, they are the only ones that enforce a predefined
format on incoming messages, and that must require, the
presence of certain kinds of data to permit checking of the
general protocol message. As soon as these two states have
successfully received a general protocol message with pro—
toeol description 203, they hand off control of the general
protocol apparatus to the protocol description 203.

In a preferred embodiment, bootstrap 305 is implemented
with a single call run (BOOTSTRAP). Procedure run 0 is
the implementation of interpreter 209 in a preferred embodi-

ment. The promdure is reproduced completely below

run (5) int n - 5;
while (u >- 0 && n :- SMAX on Stnflnjcont)

n = tnnsitionfln);
return n;

l

run is a loop which invokes the procedure transition with a
state number transition then puts interpreter 209 into the
proper state of protocol description 203 or the states which
implement bootstrap 305 or error 307. The loop ceases

10

20

30

35

45

50

SS

60

65

12
execution when a value which is out of range of the legal
state numbers is received. Thus, when invoked with
BOOTS'I'RAP, a constant indicating the bootstrap state, the
mo simply puts interpreter 209 into the bootstrap state,

Most of the concepts involved in implementing an
embodiment of protocol apparatus 301 can be illustrated
using an implementation of bootstrap 305. In a protocol
apparatus 301 employing such an implementation, the code
{or bootstrap 305 would always be present in protocol
instruction interpreter memory 309.

For a general understanding of bootstrap 305, the flow
chart of FIG. 5 suflices. As shown in oval 503, bootstrap
implementation 501 waits for the general protocol message
from the remote protocol apparatus 107. When the message
comes, it is loaded into a bulfcr in protocol instruction
interpreter data 311. Next, the message is checked. First, a
checksum is performed, to make sure the message is uncor-
rupted. If the checksum is non—zero, a transmission error has
occurred, and the machine returns to the start of the boot—
strap state (diamond 505, 507). If the checksum is zero, a
check is made if the message has the correct type (diamond
509). In a preferred embodiment, the first instruction is
required to be the definition of the BYIEORDER for the
lower interface. This byte-order definition specifies the order
in which the bytes in a word sent according to the protocol
are transmitted across the lower level interface: most or least

significant byte first. It need not match the byte-order used
in either the receiving or the sending entity, If the message
is not a valid protocol description 203, interpreter 209 enters
error 307 (511).

If the message is a valid protocol description 203, the
contents of receive buffer is assigned to the initial state of the
newly loaded protocol, and control is transferred to that state
(box 515). A full implementation 1101 of bootstrap 305 in
protocol description language 401 is shown in FIG. 11.
Implementation of Error 307: FIG. 6

In a preferred embodiment, error component 307 is also
implemented as a state of interpreter 209. Like the bootstrap
state, this error state is part of the general protocol, not any
specific protocol. It is only meant to provide a standard
mechanism for responding to errors in the operation of the
general protocol apparatus 301, such as stack—overflow,
memory allocation errors, arithmetic errors (e.g., divide by
zero), etc. Aflowchan for the error state is given in FIG. ti.

Asshown in HG. 6, error component implementation 601
first writes a predefined error message to TBUF (box 603)
and then notifies the remote protocol apparatus 107 of an
error condition by sending the message in TBUF (oval 605).
It then awaits a response that it will receive into the default
receive buffer RBUF (oval 60?). If the message was uncoro
rupted (diamond 609) and was a protocol decription 203
(diamond 613) control is transferred to the state that is
specified in the message, using the NXT command (617). In
all other cases (611,615), the error state is mentored from the
top (602). A full implementation 1201 of error 307 in
protocol description language 401 is shown in FIG. 12.
An implementation of the Alternating Bit Protocol: FIGS.7~10

FIG. 7 is a diagram of the finite state machines imple-
mented by two protocol apparatuses 107 which are commu-
nicating by means of the alternating hit protocol. This
protocol employs a single bit, which can have the value “1”
or “0", as a message sequence number. When one of the
apparatuses 107, say the apparatus represented by finite state
machine 706, sends a message, it appends a“1" or an “0” bit
as a sequence number to the message. The receiving finite
state machine 705 sends an acknowledgment with the

EX 1018 Page 254

0 0

5,826,017
13 14

sequence number which it received to the sending finite state
machine 705; if the acknowledgment's sequence number
matches the sequence number of the sent message, the
sending finite state machine can send another message with
the other sequence number; if not, it repeats the last sent s

message arrives, it is placed in RBUF. At bytes 2 through 12,
the finite state machine writes a value indicating an
acknowledgment (in this case, the character 'N) into the
transmittal buffer, obtains the sequence number in the last
byte of RBUF, copies the sequence number into TBUF
following the 'N., and sends the acknowledgment. At bytes message.

In FIG. 7, the circles 5Pecify states and the edges specify
state transitions resulting from message exchanges. The
edge labels specify the message exchanges. Each label
consists of two characters: A indicates that the message
comes from finite state machine 703; B indicates that it
comes from machine 705. The second character specifies the
sequence number, 1 or O as described above. When an edge
label is underlined, it indicates that the message is being
transmitted to the other finite state machine. The double
headed arrows indicate states in which the receiver can
accept a message from the sender or the sender can fetch a
new message for output to the receiver.

In more detail, in state 707, sender 703 receives a message
A to be output to receiver 705. It appends the "0" sequence
number and outputs the message. In state 709, it waits for the
acknowledgment, indicated as the message B. If B has the
sequence number "0", the next state is 711, where a new
message A is received for output and the "1" sequence
number is appended. In state 713, sender 703 waits for the
acknowledgment, again indicated as B; if the message bas
the sequence number "l", the cycle begins again in state
707. If the acknowledgment received in state 709 has the
sequence number "l", the next state is 715, which retrans
mits the message A transmitted in 707 with the "O" sequence
number. If the right acknowledgment is received this time,
the next state is 711; otherwise, state 715 is reentered.
Similarly, if an A message with a sequence number "1"
receives an acknowledgment with a sequence number "0",
sender 703 goes to state 717, where it retransmits the Al
message.

14 through 20, the finite state machine compares the value
of the sequence number retained in VAR_E with the
sequence number in the last byte of RBUF. If they are the

10 same, indicating that the received message had the right
sequence number, bytes 23 through 33 are executed;
otherwise, state 1 is again executed from the beginning, as
shown at byte 34. In bytes 23 through 31, the sequence
number saved in VAR_E is subtracted from 1 and the result

15 saved in VAR.....E again. Then, the message is sent to its
destination and state 1 is again executed from the beginning.

FIG. 9 shows bow the portion of the alternating bit
protocol which sends messages is implemented in a pre
ferred embodiment. In the preferred embodiment, protocol

20 apparatus 107 in which send portion 901 is implemented is
a protocol apparatus 201 or 301 which is sending to a
protocol apparatus 301. Consequently, the send portion is
implemented in protocol description language 401 and
includes instructions which download receive portion 801 to

25 the receiving protocol apparatus 301.
The buffers and variables used in portion 901 are defined

in part 803 of FIG. 8. In the prototype, buffers O and 1 are
preset to each contain a message; as may be seen from part
809 of FIG. 8, buffer O (named MO) is set to the ASCII

30 character 'M' witb the sequence number "O" appended to it,
while buffer 1 is set to the ASCII character 'M' with the
sequence number "1" appended to it. The buffer R_run
contains the code of portion 807, while the buffer R_ini
contains the code of portion 805. The buffer R_ack, finally,

35 is used for the acknowledgement received from receiver
801. There are two variables: VAR_S, which bolds the
sequence number which is to be attached to the message, and
VAR_CNT, which is a count of the number of bytes sent by

FIG. 8 shows how the portion of the alternating bit
protocol which responds to received messages is imple
mented using protocol description language 401. The code
801 for the receive portion of the protocol bas three parts: in 40

part 803, the buffers for both the transmit and receive
portions are defined; for the receive portion, only three
buffers are required: a transmit bufferTBUF, a receive buffer
RBUF, and a variable VAR_E for the expected sequence
number.

the sender.
Returning to FIG. 9, the allocation and initialization of the

sender buffers and variables defined in 803 takes place in
section 903, which is state 0. In bytes 0-13, VAR_S and
VAR_CNT are both allocated and set to O; in bytes 14 and
15, receiver initialization code 805, contained in the buffer

45 R_ini, is sent to the receiver; in bytes 16 and 17, the code
807 for state 1 of the receiver, contained in the buffer R_run,
is sent to the receiver. These lines 905 thus perform the
downloading of protocol description 203 to the receiving
protocol apparatus 301. At byte 18, finally, the I_NXT

Portion 805 is state O of the portion of the finite state
machine which receives messages. The protocol instructions
205 of state O are received in the general protocol message
and are executed when bootstrap 305 transfers control to
state 0. As required in a preferred embodiment, the first
instruction is a BYTEORDER instruction, which here speci
fies that the first byte of the words received according to the
protocol is the most significant byte. The instructions at
bytes 2 through 10 of the general protocol message allocate
buffer space for TBUF and VAR_E. The instructions at
bytes 11 through 17 5Pecify that the receiver is to wait for the
next message, which contains the protocol instructions 205
of state 1, place that message in RBUF, load the contents of
RBUF into the part of memory 309 reserved for protocol
description 203, and associate state 1 with the location of the
loaded contents in memory 309, and then execute state 1.
The part of portion 805 beginning at byte 18 is reserved for
the checksum which bootstrap 305 uses to check for cor
rectness of transmission.

Portion 807 is state 1 of the portion of the finite state
machine which receives messages. In this state, the finite
state machine waits for a message (byte 0). When the

50 instruction starts execution of state 1 907.
At bytes 0-2 of state 1 907, the current value of VAR_S

is pushed onto the stack. At byte 3, SEND takes its param
eter from the top of the stack; thus, if VAR_S has the value
0, the message in buffer MO is sent; if it bas the value 1, the

55 message in buffer Ml is sent. In an embodiment for use in
an actual communications system, there would be code
preceding the SEND instruction which employed the
OBTAIN instruction to obtain a byte of data to be sent and
place the data in buffer MO or Ml, depending on the value

60 ofVAR_S, and then employed CPY_BYTE to append "O"
or "1" to the data, again depending on the value of VAR_S.

The code in bytes ~ receives the acknowledgment from
the receiver and pushes it onto the stack As pointed out in
the discussion of the receiver, the acknowledgment has the

65 form 'N.=quence_number>. The top byte of the stack
consequently should contain 'N. and the next byte should
contain the sequence number. In bytes 9-11, the top byte is

EX 1018 Page 255

O O

5,826,017
13

sequence number which it received to the sending finite state
machine 705; if the acknowledgment’s sequence number
matches the sequence. number of the sent: message, the
sending finite state machine can send another message with
the other sequence number; if not, it repeats the last sent
message.

In FIG. 7, the circles specify states and the edges specify
state transitions resulting from message exchanges The
edge labels specify the message exchanges. Each label
consists of two characters: A indicates that the message
comes from fwite state machine 703; B indicates that it
comes from machine 7'05. The second character specifies the
sequence number, 1 or O as described above. When an edge
label is underlined, it indicates that the message is being
transmitted to the other finite state machine. The double
headed arrows indicate states in which the receiver can
accept a message from the sender or the sender can fetch a
new message for output to the receiver.

In more detail, in state 707, sender 703 receives a message
A to be output to receiver 705. It appends the “0” sequence
number and outputs the message. In state 709, it waits for the
acknowledgment, indicated as the message 13. If B has the
sequence number “0”, the next state is 711, where a new
message A is received for output and the “1” sequence
number is appended. In state 713, sender 703 waits for the
acknowledgment, again indicated as B; if the message has
the sequence number “1”, the cycle begins again in state
707. If the acknowledgment received in state 709 has the
sequence number “1", the next state is 715, which retrans-
mits the message A transmitted in 707 with the “0" sequence
number. If the right acknowledgment is received this time,
the next state is 711; otherwise, state 715 is mentored.
Similarly, if an A wastage with a sequence number “1”
receives an acknowledgment with a sequence number “0”,
sender 703 goes to state 717, where it rctransmits the A1
message.

FIG. 8 shows how the portion of the alternating bit
protocol which responds to received messages is imple-
mented using protocol description language 401. The code
801 for the receive portion of the protocol has three parts: in
part 303, the bufiers for both the transmit and receive
portions are defined; for the receive portion, only three
buffers are required: a transmit buffer TBUF, a receive butter
RBUF, and a variable VAILE for the expected sequence
number.

Portion 805 is state 0 of the portion of the finite state
machine which receives messages. The protocol instructions
205 of state 0 are received in the general protocol message
and are executed when bootstrap 305 transfers oonnol to
state 0. As required in a preferred embodiment, the first
instruction is a BYTEORDER instruction, which here speci-
fies that the first byte of the Words received according to the
protocol is the most significant byte. The instructions at
bytes 2 through 10 of the general protocol message allocate
bufier space for TBUF and VAR_E. The instructions at
bytes 11 through 17 specify that the receiver is to wait for the
next message, which contains the protocol instructions 205
of state 1, place that message in RBUF, load the contents of
RBUF into the part of memory 309 reserved for protocol
description 203, and associate state 1 with the location of the
loaded contents in memory 309, and then execute state 1.
The part of portion 805 beginning at byte 18 is reserved for
the checksum which bootstrap 305 uses to check for con
rectness of transmission.

Portion 807 is state 1 of the portion of the finite state
machine which receives messages. in this state. the finite
state machine waits for a message (byte 0). When the

10

15

20

30

35

40

45

50

55

65

14
message arrives, it is placed in RBUF. At bytes 2 through 13,
the finite state machine writes a value indicating an
acknowledgment (in this case, the character ‘A’) into the
transmittal buffer, obtains the sequence number in the last
byte of RBUF. copies the sequence number into TBUF
following the ‘A’, and sends the acknowledgment. At bytes
14 through 20, the finite state machine compares the value
of the sequence number retained in VAR__E with the
sequence number in the last byte of RBU'F. If they are the
same, indicating that the received message had the right
sequence number, bytes 23 through 33 are executed;
otherwise, state 1 is again executed from the beginning, as
shown at byte 34. In bytes 23 through 31, the sequence
number saved in VARmE is subtracted from 1 and the result
saved in VARJ again. Then, the message is sent to its
destination and state 1 is again executed from the beginning.

FIG. 9 shows how the portion of the alternating bit
protocol which sends messages is implemented in a prev
ferred embodiment, In the preferred embodiment, protocol
apparatus 107 in which send portion 901 is implemented is
a protocol apparatus 201 or 301 which is sending to a
protocol apparatus 301. Consequently, the send portion is
implemented in protocol description language 401 and
includes instructions which download receive portion 801 to
the receiving protocol apparatus 301.

'Ihc butters and variables used in portion 901 are defined
in part 803 of FIG. 8. In the prototype, bulIers 0 and 1 are
preset to each contain a message; as may be seen from part
809 of FIG. 8, buffer 0 (named M0) is set to the ASCII
character ‘M’ with the sequence number “0" appended to it,
while buffer 1 is set to the ASCII character ‘M’ with the

sequence number “1" appended to it. The bufier Rmrun
contains the code of portion 807, while the buficr R_ini
contains the code of portion 805. The buffer R_ack, finally,
is used for the admowledgement received from receiver
801. There are two variables: VAR_S, which holds the
sequence number which is to be attached to the message, and
VAR_CNT, which is a count of the number of bytes sent by
the sender.

Returning to FIG. 9, the allocation and initializationof the
sender buEers and variables defined in 803 takes place in
section 903, which is state 0. In bytes 0—13, VAR_S and
VAR__CNT are both allocated and set to 0; in bytes 14 and
15, receiver initialization code 805, contained in the buffer
R_ini, is sent to the receiver; in bytes 16 and 17, the code
807 for state 1 of the receiver, contained in the buffer Klan,
is sent to the receiver. These lines 905 thus perform the
downloading of protocol description 203 to the receiving
protocol apparatus 301. At byte 18, finally, the I_NXT
instruction starts execution of state 1 907.

At bytes 0—2 of state 1 907, the current value of VAR__S
is pushed onto the stack. At byte 3, SEND takes its param—
eter from the top of the stack; thus, if VAR_S has the value
0, the message in buifer M0 is sent; if it has the value 1, the
message in buffer M1 is seat. In an embodiment for use in
an actual communications system, there would be code
preceding the SEND instruction which employed the
OBTAIN instruction to obtain a byte of data to be sent and
place the data in bufiier M0 or Ml, depending on the value
of VAR_S, and then employed CPY_BY’I‘E to append “0”
or “1” to the data, again depending on the value of VARfiS.

The code in bytes 4—8 receives the acknowledgment from
the receiver and pushes it onto the stack. As pointed out in
the discussion of the receiver, the acknowledgment has the
form ‘A’<sequencc_,_number>. The top byte of the stack
consequently should contain ‘A’ and the next byte should
contain the sequence number. In bytes 9-11, the top byte is

EX 1018 Page 255

0 0

5,826,017
15

checked to see whether it contains 'A'. If it does, bytes
14-31 are executed; otherwise, execution continues at byte
32. Bytes 14-31 check whether the acknowledgement has
the right sequence number; if it does, they set VAR_S to the
next sequence number. More specifically, bytes 14-20 check s
whether the sequence number in the acknowledgment is the
same as the value of VAR_S. If it is not, execution continues
at byte 32; if it is, VAR_S is set to its new value by
subtracting its current value from 1 (bytes 23-31).

The code in bytes 32-54 updates VAR_CNT and termi- 10

nates state 1 if the number of messages is greater than the
constant NR_MSGS, defined in 803 to be 32765. In bytes
32-40, 1 is added to the current value of VAR_CNT. In
bytes 41-47, VAR_CNT is pushed onto the stack, the most
and least significant bytes of NR_MSGS is pushed onto the 15
stack, and the two values are compared. If VAR_CNT>=
NR_MSGS, bytes 50-52 put the value-1 on the stack. NXT
returns that value to run, which thereupon terminates, as
previously explained. Otherwise, byte 54 is executed, which
causes state 1 907 to again begin execution. 20

Performance of Protocol Apparatus 201 or 301
The performance of the implementation of the alternating-

bit protocol just described was compared with the perfor
mance of an implementation in which the sender and
receiver were simply coded in the "C' programming lan- 25

guage. The extra overhead caused by the use of protocol
description 203 and interpreter 209 instead of a "C" program
ranged from 10-30%, depending on the length of the mes
sage being transmitted (longer messages have the lower
overhead). In many applications, the extra overhead will be 30

offset by the fact that the protocol apparatus of the invention
can interpret any protocol for which there is a protocol
description 203. Further, there are many ways of reducing
the overhead. Perhaps the most promising way is to imple
ment interpreter 209 in hardware; such hardware would be 35
capable of executing any protocol for which a protocol
description 203 existed. Other optimizations include imple
menting interpreter 209 so that a minimum number of ,,
procedure calls are required, optimizing protocol descrip
tions 203 to avoid stack operations, and implementing 40

interpreter 209 as an on-the-fly compiler, i.e., interpreter 209
operates by receiving protocol description 203 and compil
ing protocol description 203 into the machine instructions
for the hardware which will actually implement the protocol.
If the protocol apparatus is adaptive, the compilation would 45

only have to be done before the first execution of the
protocol description after it is loaded into the protocol
apparatus.
Conclusion

The foregoing Detailed Description has disclosed to those so
of ordinary skill in the art how protocol apparatus may be
constructed which is capable of executing any protocol for
which there is a protocol description written in a given
protocol language, how a sending protocol apparatus may
provide a protocol description to a receiving protocol appa- 55
ratus and thereby provide for execution of any protocol by
the receiving protocol apparatus, and how a receiving pro
tocol apparatus may be constructed which automatically
adapts to the environment in which it is employed. Advan
tages of the techniques disclosed herein include more pre- 60

cise implementations of protocols, reduced implementation
cost, and greatly increased flexibility.

While an example protocol description language and an
example implementation of an interpreter for that protocol
description language have been disclosed herein, it will be 65
apparent to those of ordinary skill in the art that other
protocol description languages and other implementations of

16
the interpreter are possible. Moreover, other arrangements
for downloading or otherwise specifying protocol descrip
tions may be used than those disclosed herein. That being the
case, the Detailed Description is to be understood as being
in all respects exemplary, but not restrictive, and the scope
of the invention is to be determined not from the Detailed
Description, but rather from the appended claims as inter
preted in light of the Detailed Description and the doctrine
of equivalents.

What is claimed is:
1. A method of communicating in a distributed system

comprising the steps of:

in a first entity of the distributed system, receiving a first
general protocol message which includes a protocol
description which describes a specific protocol, the
specific protocol descnbed by the protocol description
being initially unknown to the first entity, the protocol
description being in a protocol description language
which is independent of any particular hardware or
software implementation of the first entity; and

responding to the first general protocol message by
employing first protocol description interpretation
means to execute the protocol description included in
the first general message which enables the first entity
to communicate with a second entity of the distnbuted
system using the specific protocol.

2. Protocol apparatus for communicating in a distributed
system, the apparatus comprising:

in a first entity of the distnbuted system,
means for storing a protocol description which describes

a specific protocol, the protocol described by the pro
tocol description being initially unknown to the first
entity and in a protocol description language which is
independent of any particular hardware or software
implementation of the protocol apparatus; and

means for executing the protocol description to imple
ment the specific protocol and enabling the first entity
to communicate with a second entity of the distnbuted
system using the specific protocol.

3. A method for communicating data between elements of
a distributed system, comprising:

receiving in a first element of the distributed system a first
data message defining an arbitrary data communication
protocol which is initially unknown to the first element
and is independent from any particular hardware or
software implementation of the first element;

configuring the first element to receive data formatted in
the arbitrary data communication protocol defined in
the first data message; and

receiving, in the first element, at least one additional data
message, the at least one additional data message
transmitted using the arbitrary data communication
protocol.

4. The method of communicating set forth in claim 3,
wherein the step of configuring the first element includes:

determining whether the first data message has been
correct! y transmitted; and

if the first data message was not correctly transmitted,
returning to the step of receiving the first data message.

5. The method of communicating set forth in claim 3,
wherein the step of configuring the first element includes:

determining whether the first data message is a valid first
data message; and

if the first data message is not valid, sending an error
message.

EX 1018 Page 256

0 f) ~-.

5,826,017
17 18

6. The method of communicating set forth in claim 3, whether the arbitrary data communication protocol included
wherein the step of configuring the first element includes in the first data message is equivalent to the second arbitrary
interpreting the arbitrary data communication protocol data communication protocol.
according to the at least one parameter contained in the first 17. The method set forth in claim 16, wherein the step of
data message. determining whether the arbitrary data communication pro-

7. The method of communicating set forth in claim 6, tocol included in the first data message is equivalent to the
wherein: second arbitrary data communication protocol includes

the at least one parameter specifies a byte order employed sending a second error message if the arbitrary data com-
in the arbitrary data communication protocol; and munication protocol is not equivalent to the second arbitrary

the step of interpreting the arbitrary data communication 10 data communication protocol.
protocol includes interpreting the arbitrary data com- 18. Protocol apparatus within a first element of a distrib-
munication protocol according to the specified byte uted system for communicating with other elements of the
order. distributed system, the protocol apparatus comprising:

8. The method of communicating set forth in claim 6, means for receiving a first data message which defines an
wherein: 15 arbitrary data communication protocol which is ini·

the at least one parameter specifies a word size employed tially unknown to the first element and is independent
in the arbitrary data communication protocol; and from any particular hardware or software implemenla •

the step of interpreting the arbitrary data communication tion of the first element; and
protocol includes interpreting the arbitrary data com- means for configuring the first element to receive data
munication protocol according to the specified word 20 formatted in the arbitrary data communication protocol.
size. 19. The protocol apparatus as set forth in claim 18,

9. The method of communicating set forth in claim 3, wherein the means for receiving a first data message checks
further comprising: the first data message to determine whether the first data

sending the first data message from a second element to message has been correctly transmitted; and
the first element; and 25 if the first data message has not been correctly

employing the arbitrary data communication protocol in transmitted, the means for configuring the first element
communications between the first and second elements. does not configure the first element to receive data

10. The method of communicating set forth in claim 9, formatted in the arbitrary data communication protocol.
further comprising responding to an error message which the

30
20. The protocol 11.pparatus set forth in claim 18, wherein

first element provides to the second element in response to the means for receiving a first data message includes a
an error in the first data message. checking and indicating means for checking the first data

11. The method of communicating set forth in claim 9, message and indicating whether the first data message is a
wherein the step of employing the arbitrary data communi- valid first data message the protocol appar1.tus further com-
cation protocol includes configuring the second element to

35
prising error handling means for sending an error message

receive data formatted in the arbitrary data communication when the checking and indicating means indicates that the
protocol. first data message is not valid.

12. The method of communicating set forth in claim 3, 21. The protocol apparatus set forth in claim 18, further
wherein the step of configuring the first element includes comprising:
directly executing instructions contained in the first data

40
error handling means for sending an error message when

message and formatted in the arbitrary data communication an error occurs during operation of the means for
protocol. configuring the first element to receive data formatted

13. The method of communicating set forth in claim 3, in the arbitrary data communication protocol.
wherein the step of configuring the first element includes 22. The protocol apparatus set forth in claim 18, wherein:
compiling the arbitrary data communication protocol to

45
the first data message includes at least one parameter for

produce instructions directly executable by means acces- interpreting data transferred 11.ccording to the arbitrary
sible to the first element. data communication protocol; and

14. The method set forth in claim 3, wherein the step of the means for configuring the first element interprets the
configuring the first element to receive data formatted in the transmitted data according to the at least one parameter.
arbitrary data communication protocol includes making the

50
23. The protocol apparatus set forth in claim 22, wherein:

arbitrary data communication protocol included in the first the al least one parameter specifies a byte order of the
data message accessible to the first element. transmitted data; and

15. The method set forth in claim 3, further comprising: the means for configuring the first element interprets the
receiving in the first element a second data message which transmitted data based on the specified byte order.

defines a second arbitrary data communication proto- 55 24. The protocol apparatus set forth in claim 22, wherein:
col; the at least one parameter specifies a word size of the

responding to the second data message by determining transmitted data; and
whether the second arbitrary data communication pro· the means for configuring the first element interprets the
tocol is accessible to the first element; transmitted data based on the specified word size.

if the second arbitrary data communication protocol is 60 25. The protocol apparatus as set forth in claim 18,
accessible, configuring the first element to interpret the wherein the means for configuring the first element inter-
second arbitrary data communication protocol; and prets the first data message by directly executing instructions

if the second arbitrary data communication protocol is not contained in the first data message.
accessible, sending a first error message, and perform- 26. The protocol apparatus set forth in claim 18, wherein
ing the step of receiving a first data message. 65 the means for configuring the first element interprets the first

16. The method set forth in claim 15, wherein the step of data message by compiling the first data message to produce
receiving the first data message includes determining instructions.

EX 1018 Page 257

0 0
5,826,017

19
27. The protocol apparatus set forth in claim 18, wherein:
the protocol apparatus further includes error handling

means;
the means for receiving the first data message further

receives a second data message; and
the means for configuring the first element further

includes:
means for receiving data formatted in a second arbi

trary data communication protocol, and
means fur determining whether the second arbitrary 10

data communication protocol is accessible;
wherein,

if the second arbitrary data communication protocol is
accessible, the configuring means interprets the second
arbitrary data communication protocol, and

if the second arbitrary data communication protocol is not
accessible, the configuring means sends a first error
message.

15

28. The protocol apparatus set forth in claim 27, wherein
the means for configuring the first element further makes

20 accessible the arbitrary data communication protocol
included in the first data message.

29. The protocol apparatus set forth in claim 27, wherein
the means for configuring the first element further deter
mines whether the arbitrary data communication protocol
included in the first data message is the same as the second 25

arbitrary data communication protocol.
30. The protocol apparatus set forth in claim 18, wherein

the first data message is in a predetermined base format.
31. The protocol apparatus set forth in claim 30, wherein

the predetermined base format includes a field specifying a 30

word size.
32.The protocol apparatus set forth in claim 30, wherein

the predetermined base format includes a field specifying a
byte order.

33. An apparatus for communicating between computers 35

in a distributed system, comprising:

20
the configuring means determines whether the second

arbitrary data communication protocol is accessible,
wherein, if the configuring means determines the sec
ond arbitrary data communication protocol is
accessible, the configuring means interprets the second
arbitrary data communication protocol, and if the con
figuring means determines the second arbitrary data
communication protocol is not accessible, the receiving
means sends a first error message to the second data
processing apparatus.

36. The apparatus for communicating set forth in claim
35, wherein the configuring means further determines
whether the arbitrary data communication protocol is the
same as the second arbitrary data communication protocol.

37. A method for communicating data between a first data
processing apparatus and a second data processing
apparatus, the method comprising:

transmitting a first data message defining an arbitrary data
communication protocol, which is initially unknown to
the first data processing apparatus and is independent
from any particular hardware or software implementa·
tion of the first data processing apparatus, to the first
data processing apparatus from the second data pro·
cessing apparatus, at least a first portion of the first data
message being in the predetermined data communica
tion protocol;

placing the first data processing apparatus into the arbi.
trary data communication protocol defined in the first
data message; and

transmitting at least one additional data message between
the first data processing apparatus and second data
processing apparatus, the at least one additional mes
sage in the arbitrary data communication protocol
defined in the first data message.

38. The method for communicating data set forth in claim
37, wherein the first data processing apparatus and tbe
second data processing apparatus are computers. a first data processing apparatus of the distributed system

configured in a data communication protocol;
a second data processing apparatus of the distributed

system configured in an arbitrary data communication
protocol;

wherein the first data processing apparatus includes:

39. The method for communicating data set forth in claim
37, wherein one of the first data processing apparatus and the

40 second data processing apparatus is a peripheral apparatus.
40. A method for transmitting data to a first element of a

distributed system, the method comprising:

receiving means for receiving from the second data pro
cessing apparatus a general message that defines the 45
arbitrary data communication protocol which is ini -
tially unknown to the first data processing apparatus
and is independent from any particular hardware or
software implementation of the first data processing
apparatus, and 50

configuring means fur placing the first data processing
apparatus into the arbitrary data communication pro
tocol defined by the general message, wherein the
receiving means is able to receive an additional mes
sage in the arbitrary data communication protocol from 55
the second data processing apparatus.

34. The apparatus for communicating set forth in claim
33, wherein the configuring means further makes the arbi -
trary data communication protocol accessible to the first data
processing apparatus.

35. The apparatus for communicating set forth in claim
33, wherein:

the second data processing apparatus includes error han·
dling means;

60

the receiving means further receives a second general 65
message including a second arbitrary data communi
cation protocol; and

receiving, in the first element, a first data message defin
ing an arbitrary data communication protocol which is
initially unknown to the first element and is indepen
dent from any particular hardware or software imple-
mentation of the first element, at least a first portion of
the first data message being in the predetermined data
communication protocol;

placing the first element into the arbitrary data commu-
nication protocol defined by the first data message; and

receiving, in the first element, at least one additional data
message, the at least one additional data message in tbe
arbitrary data communication protocol defined in the
first data message.

41. A method for communicating between communica-
tions devices, comprising:

receiving, using a general protocol, a first message at a
first communications device containing a protocol defi
nition defining a specific protocol to be used for sub-
sequent messages;

executing the received protocol definition to implement
the specific protocol at the first communications device;
and

receiving, at the first communications device, the subse
quent messages using the specific protocol.

EX 1018 Page 258

0 0
5,826,017

21
42. The method for communicating between communi

cations devices as set forth in claim 41, wherein the first
message comprises a set of messages.

43. A method for communicating between communication
devices, comprising: 5

receiving, using a general protocol, a first message at a
first communications device identifying a specific pro
tocol to be used for subsequent messages;

determining if a protocol description corresponding to the
specific protocol is available to the first communica- 10

tions device and if the protocol description correspond
ing to the specific protocol is stored in the memory,
transmitting an acknowledge message, otherwise trans-
mitting an error message;

15
in response to the error message, receiving a second

message using the general protocol containing the
protocol description for the specific protocol;

executing the received protocol definition to implement
the specific protocol at the first communications device; 20
and

receiving, at the first communications device, the subse
quent messages using the specific protocol.

44. A communications device capable of communicating
with other communications devices, comprising: 25

a communications circuit for routing co=unications
messages to and from the other communications
devices and transferring data to and from the commu
nications device; and

a protocol apparatus that implements protocols used to 30

communicate with the other communications devices,
the protocol apparatus comprising:
a memory for storing at least one protocol definition,

each protocol definition defining a corresponding
protocol and being in a communications device- 35

independent protocol description language,
a protocol interpreter that executes the stored protocol

definition to implement the corresponding protocol,
and

a bootstrap interpreter that inputs a message received 40

from one of the other communications devices, the

22
message being in a general protocol and containing
a protocol definition defining a received protocol,
stores the received protocol definition in the
memory, and causes the protocol interpreter lo
execute the received protocol definition to imple
ment the received protocol, and enables the commu
nications device to receive subsequent messages
from tbe one other communications device using the
received protocol.

45. A communications device capable of communicating
with other communications devices, comprising:

a communications circuit that processes communication
messages from the other communications devices, at
least one of the communication messages specifying a
protocol definition;

a protocol apparatus that implements a protocol used to
control communication sessions with the other com
munications devices, comprising:
a memory for storing at least one protocol definition,

each protocol definition defining a corresponding
protocol and being in an independent protocol
description language;

a protocol instruction interpreter that executes a proto
col definition stored in the memory; and

a bootstrap interpreter that inputs a message received
from one of the other communications devices, the
message containing a protocol definition, stores the
received protocol definition in the memory, and
causes the protocol instruction interpreter to execute
the received protocol definition.

46. A protocol for communicating between elements,
comprising:

a resident portion, the resident portion present in each
element; and

a non-resident portion that is transmittable from a first one
of the elements to the second one of the elements,
subsequent communications between the first and sec
ond elements performed based on the non-resident
portion of the protocol.

* * * * *

EX 1018 Page 259

Our Docket/Ref. No.: AF. 11-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz et al.

Serial No.: 09/609179

Filed: June 30, 2000

Group Art Unit: 2756

Examiner:

e: PROCESSING PROTOCOL
~ SPECIFIC INFORMATION IN
1 PACKETS SPECIFIED BY A

RECEIVE!)
, ~ i,, PROTOCOL DESCRIPTION

'Ii' ~,f) LANGUAGE
PATEt&1f>

APR 1 7 2002

Tech~gy_~

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

-1L An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

-1L Return postcard.

-1L The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITf AL IS ATTACHED

Date: ?;c9 d}()..f 2...Q.© 'L

Correspondence Address:
Dov Rosenfeld
5507 College A venue, Suite 2
Oakland, CA 94618
Telephone No.: + 1-510-547-3378

Respectfully submitted,

Attorney/Agent for Applicant(s)
Reg. No. 38687

Certificate of Mailing under 37 CFR 1.18

'
I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

/V1A ~
Date of Deposit: 2<D l I fL tlf 2f)«) Lsignatu~

Dov Rosenfeld, Reg. No. 38,687

EX 1018 Page 260

Our Docket/Ref. No.1 AL ill-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 Applicant(s); Dietz et al.

Serial No.: 09/609179

June 30, 2000

: PROCESSING PROTOCOL

SPECIFIC INFORMATION IN

Group Art Unit: 2 '7 5 6

Examiner:

. PACKETS SPECIFIED BY A APR 1 7 200
PROTOCOL DESCRIPTION 90hLANGUAGE ~ ”010

Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

3 [T Dear Commissioner:

Transmitted herewith are:

”2; An Information Disclosure Statement for the above referenced patent application,

together with PT0 form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

X Return postcard.

5 X The commissioner is hereby authorized to charge payment of any missing foe associated

; with this communication or credit any overpayment to Deposit Account 500292.
A DUPLICATE OF THIS IRANSMITTAL IS ATTACHED

Date: 5Q [HE WL
Respectfully submitted,

%
Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-5 10-547‘3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit:WLSignatu '

Dov Rosenfeld, Reg. No. 38,687
EX 1018 Page 260

,v

our Docket/Ref. No.: AP; JOl-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant{s): Dietz et al.

Serial No.: 09/609179

, Filed: June 30, 2000

JC1 , . : PROCESSING PROTOCOL
:~ ~ .&, ~ SPECIFIC INFORMATION IN

, iii!' ~ ACKETS SPECIFIED BY A
,' !ll!l ROTOCOL DESCRIPTION

ANGUAGE

Commissioner for Patents
Washington, D.C. 20231

/

Group Art Unif: 2 7 5 6

Examiner:

Ri=C£/V£o
APR 1 7 2002

Tec/motogy ~~~

TRANSl\fiTTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

Return postcard.
'

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMIITAL IS ATTACHED

Correspondence Address:
Dov Rosenfeld
5507 College A venue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Respectfully submitted,

~-------
~

Dov Rosenfeld
Attorney/Agent for Applicant{s)
Reg. No. 38687

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Dateo!Dopo,1t,3El Neu: 2.f\:92..-Signature, ~
Dov~No. 38,687

EX 1018 Page 261

our Dockethef. No: __A_P: 301-2 ; ' Patent 61? “P

H [5"IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 32'

Applicant(s): Dietz et a1.

Serial No; 09/609 I79

~ Filed: June 30, 2000

361 V" : PROCESSING PROTOCOL
SPECIFIC INFORMATION IN

'ACKETS SPECIFIED BY A

‘ ‘ ’ROTOCOL DESCRIPTION

ANGUAGE

Group ArtxUnit’: 2 7 5 6

Examiner:

 Commissioner for Patents

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

:. Transmitted herewith are:

: .23.. An Information Disclowre Statement for the above referenced patent application,
:; together with PTO form 1449 and a copy of each reference cited in form 1449.

of. A check for petition fees.

Return postcard.fx]><|
The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50—0292.
A DUPLICATE OF THIS TRANShflTI‘AL IS ATTACHED

Respectfully submitted,
Datezj® MM 1 00?,

it ‘ Dov Rosenfeld ' “~ e:
Attorneyngent for Applicant(s)

Reg. No. 3868’?

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510—547—3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Dateochposit:ML Signature:
Dov R0 enfeld, Reg. No. 38,687

-...mm.m.........,_,._..ma.H
EX 1018 Page 261

UNITED STATES PATENT AND TRADEMARK OrncE

APPLICATION NO. FILING DATE

09/609,179

7590

Dov Rosenfeld
5507 College Avenue
Suite 2
Oakland, CA 94618

06/30/2000

06/04/2003

FIRST NAMED INVENTOR

Russell S. Dietz

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Offic ..
Addrm COMM[SSIONER OF P>JENTII AND TRADEM,,PKS

PO. Box USO
Alnlndm, \liJguut 22313-1(50
WW'l¥'U,pto gov

ATTORNEY DOCKET NO. CONFIRMATION NO.

APPT-001-2 2668

EXAMINER

DINH, KHANH Q

ARTUNIT PAPER NUMBER

2155

DATE MAILED: 06/04/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

PT0-90C (Rev. 07-01)

EX 1018 Page 262

 UNITED STATES PATENT AND TRADEMARK Omen DNX‘I‘ED STATES DEPARTMENT OF COMMERCE
United States Pltent and Trademk Ofice
Adan" COMMISSIONER OFPm AND TRADEMARKSPO. Box “$0

Ammdfil, “mull 223114450muppcc gt?

095609,179 06/30170le Russell 8. Diem APPT-Ofll-Z 2668

7590 06/04/2003 ,

5507 College Avenue
Suite 2 DINH, KHANH Q
Oakland, CA 94618

2 1 55

2' DATE MAILED: 0610422003 fl

Please find below ands’or attached an Office communication concerning this application or proceeding.

PTO~90C (Rev. 07-01)

EX 1018 Page 262

1
! n }-----,--------------.-' '-------------, \ ' Application No. >-.pplicant(s)

Office Action Summary
09/609,179

Examiner

Khanh Dinh

DIETZ ET AL

Art Unit

2155
•• The MAILING DA TE of this communication appears on the cover sheet with the correspondence address ••

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE ;J. MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
• Extensions of time may be available under the provisions of 37 CFR 1.136(a}. In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the maihng date of this communication.
• If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.

/

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX {6) MONTHS from the mailing date of this communication.
• Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)CBJ Responsive to communication(s) filed on 11 April 2002.

This action is FINAL. 2b)[gl This action is non-final. 2a)O

3)0 Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)[gl Claim(s) 1-18 is/are pending in the application.

4a) Of the above claim(s) __ is/are withdrawn from consideration.

5)0 Claim(s) __ is/are allowed.

6)[gl Claim(s) 1-3, 13.14, 17 and 18 is/are rejected.

7)[gl Claim(s) 4-11, 15 and 16 is/are objected to.

8)0 Claim(s) __ are subject to restriction and/or election requirement.
Application Papers

9)0 The specification is objected to by the Examiner.

10)0 The drawing(s) filed on __ is/are: a)O accepted or b)O objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)0 The proposed drawing correction filed on __ is: a)O approved b)O disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)0 The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)0 Acknowledgment ls made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)O All b)O Some* c)O None of:

1.0 Certified copies of the priority documents have been received.

2.0 Certified copies of the priority documents have been received in Application No. __ .

3.0 Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)[gl Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) 0 The translation of the foreign language provisional application has been received.
15)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

1) C8J Notice of References Cited (PT0-892) 4) 0 Interview Summary (PT0-413) Paper No(s). __ .
2) 0 Notice of Draftsperson's Patent Drawing Review (PT0-948) 5) 0 Notice of Informal Patent Application (PT0-152)
3) C8J Information Disclosure Statement(s) (PT0-1449) Paper No(s) ~. 6) 0 Other:

U.S Patent and Trademarl< Office
PT0-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6

EX 1018 Page 263

I

”W" (I I Application No. 'Lppncantrs)09/609,179 DIETZ ET AL.

Office Action Summary I Examine, A“ Unit
, Khanh Dinh 2155

T -- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address -
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE s MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(3). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
It the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely.
lt NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
Failure to reply Wlthin the set or extended period for reply will, by statute. cause the application to become ABANDONED (35 U833. 35 133).
Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed. may reduce any
eamed patent term adjustment. See 37 CFR 1.70403),

.n-r
Status

MIX] Responsive to communicationts) filed on 11 Agni 2002 .

2a)[] This action is FINAL. 2mg] This action is non-final.

3)[] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle. 1935 CD. 11, 453 0.6. 213.

Disposition of Claims

4). Claim(s} fig is/are pending in the application.

4a) Of the above claim(s) _____ isIare withdrawn from consideration.

5)]:I Claim(s) _______ is/are allowed.

SIX Claim(s) 13.13.14, 1' 7 and 18 is/are rejected.

7). Claim(s) 4-1 1.15 and 16 is/are objected to.

8)[] Claim(s) are subject to restriction and/or etection requirement.
Application Papers

9)1:I The specification is objected to by the Examiner.

10):] The drawing(s) filed on__ is/are: 30!] accepted or b)[:] objected to by the Examiner.

Applicant may not request that any objection to the drawing{s) be heId in abeyance. See 37 CFR 1.853(3).

11)[:] The proposed drawing correction filed on _____ is: a)[:I approved b)[:} disapproved by the Examiner.

If approved. corrected drawings are required in reply to this Office action.

12)|:I The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)|:] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)[] Ali b)[:I Some * 0):} None of:

1.|:I Certified copies of the priority documents have been received.

2.1:} Certified copies of the priority documents have been received in Application No. ______

31:} Copies of the certified copies of the priority documents have been received in this National Stage

application from the lnternational Bureau (PCT Rule 1T.2{a)).
* See the attached detaiied Office action for a list of the certified copies not received.

14). Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) E] The translation of the foreign language provisional application has been received.

15)|:I Acknowiedgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.
Attachment(s)

1) E Notice of References Cited (PTO-892) 4) I: interview Summary (PTO-413) Paper No(s). .
2) CI Notice of Drafisperson‘s Patent Drawing Review (”0948) 5) I] Notice of Informal Patent Application (PTO-152)
3181 Information Disclosure Statement(s) (PTO—1449) P393? N0($)i._§ . 6) D Other:

lLJ—TS Patent and Trademark Office 4
PTO-326 (Rev. 0401) Office Action summary Part or Paper No. a

EX 1018 Page 263

Application/Control Number: 09/609, 179

Art Unit: 2155

DETAILED ACTION

1. Claims 1-18 are presented for examination.

Claim Rejections-35 USC§ 112

2. The following is a quotation of the second paragraph of 35 U.S.C. 112:

n

Page 1

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which
the applicant regards as his invention.

3. Claims 1 and 16 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to

particularly point out and distinctly claim the subject matter which applicant regards as the invention.

In claim 1 (page 124, line 7 and line 13, word 2) and claim 16 (page 127, line 9 word 7 and line 16 word

12):

The term "none or more" should be changed to "one or more". The Examiner assumed the term "one or

more " in this Office Action.

Correction is required.

Claim Rejections-35 USC§ 102

4. The following is a quotation of the appropriate paragraphs of35 U.S.C. 102 that form the basis for the

rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country,
more than one year prior to the date of application for patent in the United States.

5. Claims 1-3, 13, 14, 17 and 18 are rejected under 35 U.S.C. 102(b) as being anticipated by Bruell US pat.

No.5,680,585.

EX 1018 Page 264

r
r-

l

Application/Control Number: 09/609, 179

Art Unit: 2155

n

Page2

As to claim 1, Bruell discloses a method of performing protocol specific operations on a packet passing through

a connection point on a computer network, the method comprising:

(a) receiving the packet (see fig.2a, abstract, col.4 lines 33-48).

(b) receiving a set of protocol descriptions for a plurality of protocols (i.e., using a wide range of data

type protocols, see col.5 lines 10-22) that conform to a layered model, a protocol description for a particular

protocol at a particular layer level including:

(i) the one or more child protocols of the particular protocol, the to packet including for any particular

child protocol of the particular protocol information at on or more locations in the packet related to the

particular child protocol (child fields, see col.4 line 49 to col.6 line 49).

(ii) the one or more locations in the packet where information is stored related to any child protocol of

the particular protocol (see col.9 line 8 to col.IO line 63).

(iii) the one more protocol specific operations (i.e., tests using packets description files) to be performed

on the packet for the particular protocol at the particular layer level (see col.9 line 8 to col.IO line 63 and col.14

line 37 to col.15 line 10).

(c) performing the protocol specific operations on the packet specified by the set of protocol descriptions

based on the base protocol of the packet and the children of the protocols used in the packet (see fig.4, col.15

line 11 to col.16 line 42).

As to claim 2, Bruell discloses performing protocol specific operations is performed recursively for any children

of the children (see col.9 line 8 to col.IO line 63 and col.14 line 37 to col.15 line 10).

EX 1018 Page 265

Application/Control Number: 09/609, 179

Art Unit: 2155

Page 3

As to claim 3, Bruell discloses which protocol specific operations (test platforms) are performed is step (c)

depending on the contents of the packet such that the method adapts to different protocols according to the

contents of the packet (see col.9 line 8 to col.10 line 63 and col.14 line 37 to col.15 line 10).

As to claim 13, Burell discloses the protocol specific operations including one or more parsing and extraction

operations on the packet to extract selected portions of the packet to form a function of the selected portions for

identifying the packet as belonging to a convers.ational flow (decoding packets received in accordance with a

defined packet format, see col.4 line 49 to col.6 line 30 and col.14 line 37 to col.15 line 10).

As to claim 14, Bruell discloses the protocol descriptions are provided in a protocol description language (using

Packet Description Language, see col.5 line 24 to col.6 line 49).

As to claim 17, Bruell discloses the protocol specific operations further including one or more state processing

operations that are a function of the state of the flow of the packet (see fig.I, col.3 line 20 to col.4 line 33 and

col.14 line 38 to col.15 line 10).

As to claim 18, Bruell discloses the protocol specific operations including one or more state processing

operations that are a function of the state of the flow of the packet (see fig.I, col.3 line 20 to col.4 line 33 and

col.14 line 38 to col.15 line 10).

EX 1018 Page 266

Application/Control Number: 09/609, 179

Art Unit: 2155

Allowable Subject Matter

n

Page4

6. Claims 4-11 and 15 are objected to as being dependent upon a rejected base claim, but would be

allowable ifrewritten in independent form including all of the limitations of the base claim and any intervening

claims.

7. Claim 16 would be allowable ifrewritten to overcome the rejection(s) under 35 U.S.C. 112, second

paragraph, set forth in this Office action and to include all of the limitations of the base claim and any

intervening claims.

8. The following is a statement of reasons for the indication of allowable subject matter:

None of the cited prior art recites or discloses a network monitor to be analyze different packets or frame

formats for performing specific operations comprising a combination of: storing a database in a memory, the

database generated from the set of protocol descriptions and including a data structure containing information

on the possible protocols and organized for locating the child protocol related information for any protocol, the

data structure contents indexed by a set of one or more indices, the database entry indexed by a particular set of

index values including an indication of validity, wherein the child protocol related information includes a child

recognition pattern, wherein step (c) of performing the protocol specific operations includes, at any particular

protocol layer level starting from the base level, searching the packet at to the particular protocol for the child

field, the searching including indexing the data structure until a valid entry is found, and whereby the data

structure is configured for rapid searches using the index set. The invention further includes the steps of:

looking up a flow-entry database comprising one or more flow-entries, at least one flow-entry for each

previously encountered conversational flow, the looking up using at least some of the selected packet portions

EX 1018 Page 267

(J n

'
,:, .Application/Control Number: 09/609, 179 Page 5

;Art Unit: 2155

:· and determining if the packet matches an existing flow-entry; if the packet is of an existing flow, classifying the

·~: packet as belonging to the found existing flow; and if the packet is of a new flow, storing a new flow-entry for

I '

l

' .

~"

i
?,,r:
~

fl~.

,: the new flow in the flow-entry database, including identifying information for future packets to be identified

· with the new flow-entry, wherein the parsing and extraction operations depend on the contents of one or more
]

packet headers.

Other prior art cited

9. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

a. Logan et al., US pat. No.5,721,827.

b. Gupta et al., US pat. No.6,272,151.

c. Rossmann, US pat. No.6,430,409.

d. Trip et al., US pat. No.6,516,337.

e. Harvey et al., US pat. No.6,519,568.

Conclusion

10. Claims 1-3, 13, 14, 17 and 18 are rejected.

11. Claims 4-11 and 15 are objected to as being dependent upon a rejected base claim, but would be

allowable if rewritten in independent form including all of the limitations of the base claim and any intervening

claims.

12. Claim 16 would be allowable if rewritten to overcome the rejection(s) under 35 U.S.C. 112, second

paragraph, set forth in this Office action and to include all of the limitations of the base claim and any

intervening claims.

EX 1018 Page 268

«x o2’

Application/Control Number: 09/609,179 Page 5

a pm Unit: 2155

'4 and determining if the packet matches an existing flow~entry; if the packet is of an existing flow, classifying the

a packet as belonging to the found existing flow; and if the packet is of a new flow, storing a new flow—entry for

5 the new flow in the flow-entry database, including identifying information for future packets to be identified

" with the new flow—entry, wherein the parsing and extraction operations depend on the contents ofone or more

E93 packet headers.

Other prior art cited

9. The prior art made of record and not relied upon is considered pertinent to applicant‘s disclosure.

a. Logan et al., US pat. No.5,721,827.

b. Gupta et al., US pat. No.6,272,151.

c. Rossmann, US pat. No.6,430,409.

(1. Trip et al., US pat. No.6,516,337.

6. Harvey et 211., US pat. No.6,519,568.

Conclusion

10. Claims 1-3, 13, l4, l7 and 18 are rejected.

11. Claims 4—11 and 15 are objected to as being dependent upon a rejected base claim, but would be

allowable if rewritten in independent form including all of the limitations of the base claim and any intervening

claims.

12. Claim 16 would be allowable if rewritten to overcome the rej ection(s) under 35 U.S.C. 112, second

paragraph, set forth in this Office action and to include all of the limitations of the base claim and any

intervening claims.

EX 1018 Page 268

f
'

~

("l ()
'

Application/Control Number: 09/609, 179 Page6

Art Unit: 2155

13. Any inquiry concerning this communication or earlier communications from the examiner should be

directed to Khanh Dinh whose telephone number is {703) 308-8528. The examiner can normally be reached on

Monday through Friday from 8:00 A.m. to 5:00 P.m.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ayaz R.

Sheikh, can be reached on {703) 305-9648. The fax phone numbers for this group are:

After Final: {703) 746-7238

Official: {703) 746-7239

Non-Official/ Draft: (703) 746-7240

A shortened statutory period for reply is set to expire THREE months from the mailing date of this

communication. Failure to response within the period for response will cause the application to become

abandoned (35 U.S. C. Sect. 133). Extensions of time may be obtained under the provisions of 37 CFR

1.136(A).

Any inquiry of a general nature or relating to the status of this application or proceeding should be

directed to the Group receptionist whose telephone number is (703) 305 -9600.

KhanhDinh
Art Unit 2155
Patent Examiner
5/29/2003

~\!'\~~
'AVA"l. SHEIKH

SUPERVISORY PATENT EXAMINER
TECHt-10LGGY CENTER 2100

EX 1018 Page 269

Notice of References Cited

- Document Number Date
* "' Country Code-Number-Kind Code MM-YYVY - US-5,680,585 A 1()..1997

,--
US-5, 721,827 02-1998 B

- C US-6,272,151 08-2001

- US-6,430,409 08-2002 D

- E US-6,516,337 02-2003

- F US-6,519,568 02-2003

- G US-

H US-

I US-

J US-

K, US-

L us-
M US-

*
Document Number Date

Country Code-Number-Kind Code MM-YYYY

' N

0

p

a

R

s

T ~

09/609,179

Examiner

Khanh Dinh

U.S. PATENT DOCUMENTS

Name

Bruen, Gregory 0.

Logan et al.

Gupta et al.

Rossmann, Alain

Trigp et al.

Harvey et al.

.,

FOREIGN PATENT DOCUMENTS

Country

NON-PATENT DOCUMENTS

Name

Reexamination
DIETZ ET AL

Art Unit

2155
Page 1 of 1

Classification

703/26

709/217

370/489

455/422.1

709/202

705/1

Classification

* lndude as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)

u

V

w

X

. A copy of this reference Is not being rum1shed with this Office action. {See MPEP § 707.05{a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

U.S, Patent and Trademar1< Office
PT0-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 6

EX 1018 Page 270

Reexamination

09/609,179 M . DIETZ ET AL.

, 1 Notice of References Cited ' Examiner Art Unit

u.s. PATENT oocumems‘ I ‘

Classification

703/26

Logan et al. “ 709/217

A [IS-5,680,585 104997

E 03-55121 .827 02—1993

Document Number Date
Country Code-NumbefiKind Code MM.YYYY

fl U96,430,409 08-2002
a US-6.516,337 02-2003

US-6,519,568 02-2003

FOREIGN PATENT DOCUMENTS

Document Number Date ‘

 III-III!
NON-PATENT DOCUMENTS

Include as applicable: Author. Title Date, Publisher. Edition or Volume, Pertinent Pages)

--H

‘A copy of this reference is not being iumished With this Office action. {See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign

U08. Patanl and Trademark Office ‘
PTO-892 (Rev. 01-2001) Notice 0f References Cited Part of Paper No. 6

EX 1018 Page 270

r
I

JUn 13 03 03:39p + 1-5/)"291-2985

INVENTEK
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland,CA 94618,USA
Phone: (510)547·3378; Fax: (510}653-7992

dov@inventek.com

Fax

Patent Application Ser. No.: 09/609179

Applicant(s): Dietz, et al.

Filing Date: June 30. 2000

Ref./Docket No: APPT-001-2

Examiner.: Dinh. Khanh Q.

Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
P.O. Box 1450

Fax No.:

DATE:

FROM:

RE:

Alexandria, VA 22313-1450

United States Patent and Trademark Office
(Examiner Dinh, Khanh Q., Alt Unit 2155)

703- 746-7239

June 13, 2003

Dov Rosenfeld, Reg. No. 38687

Response to Office Action

Number of pages including cover: 19

OFFICIAL COMMUNICATION

PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO
EXAMINER DINH, KHANH Q., ART UNIT 2155

Certificate of Facsimile Transmission under 37 CFR 1.8

p. 1

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703- 7 46-7239 addressed the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
on.

Date: ~ Signed:--~-~-------
Name: Dov Rosenfeld, Reg. No. 38687

Received from< +1 510 291 2985 > aU/13/03 7:t1:12 PM !,"Eastern Daylight Time] ..

EX 1018 Page 271

Jun 13 03 03:39p Dovfjsenf‘eld +1-5,3291-2985 p.1

INVENTEK Fax
Dov RnsenIeId

5507 College Avenue. Suite 2
Oakland. CA 94618, USA

Phone: (510)547-3378; Fax: (510)653-7992
dev@inventek.com

Patent Application Ser. Na.: 091609179 Rafi/Docket No: APPT—001»2

Applicanfis): Dietz, et (21'. Examiner; Dinh, Khanh Q.

Filing Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents

P.O. Bax 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh, Khanh (2., Ar: Unit 2155)

Fax N04 W2

DATE: June 13, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Response to Office Action

Number ofpages including cover: 19

OFFICIAL COMMUNICATION

 PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO

EXAMINER DINH, KHANH Q, ART UNIT 2155

Certificate of Facsimile Transmission under 3? CFR 1.8

I hereby certify that this response is being facsimile transmitted :0 the United States Patent and Trademark Office at
tclcphonc number 703446—7239 addressed the Commissioner for Patents, PD. Bax 1450, Alexandria, VA 22313-1450on.

’- *1

Dane:W Signed:
Name: Dov Rusenfeld, Reg. No. 38687

Received from 4 +1 510 291 2935 > at 8113103 7:41:12 PM [Eastgm Dayllgm Time]

EX 1018 Page 271

Jun 13 03 03:3Sp Dovosenf'eld + 1-5,'J-291-2985 p.2

TRANSMITTAL
Application Number 09/609179

FORM
(to ba used for all correspondence after initial filing)

Filing Date 30 Jun 2000

First Named Inventor Dietz, Russell S.

Group Art Unit 2155

Examiner Name Dinh, Khanh Q.

Attorney Docket Number APPT-001-2

ENCLOSURES (check all that appfv)

D Fee Transmittal Form D Assignment Papers D After Allowance Communication
(for an Application) to Group

D Fee Attached D Drawing(s) D Appeal Communication to Board
of Appeals and Interferences

IBJ Amendment/ Response D Licensing-related Papers D Appeal Communication to Group
(Appeal Notice, Brief, Reply Brief)

D D After Final D Petition Routing Slip (PTO/SB/69) D Proprietary Information
and Accompanying Petition

D D Affidavits/declaration(s) D To Convert a D Status Letter
Provisional Application

D Extension of Time Request D Power of Attorney, Revocation D Additional Enclosure(s)
Change of Correspondence (please identify below):
Address

D Express Abandonment Request D Terminal Disclaimer IBJ Return Postcard

D lnfonnation Disclosure Statement D Small Entity Statement D
D Certified Copy of Priority Document(s) D Request of Refund D
D Response to Missing Parts/ Incomplete Remarks I Application

D
D D Response to Missing Parts under 37

CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATIORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No. 38687 -
Individual name -.'7 -
Signature

/~

Date "'"June 13, 2003

ADDRESS FOR CORRESPONDENCE

Finn Dov Rosenfeld

or 5507 College Avenue, Suite 2

Individual name Oakland, CA 94618, Tel: +1-510-547-3378

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at

Telephone number 703-746-7239 addressed to: Commis~er for Patents, P.O. Box 1450, Alexandria, VA
22313-1450 on this date:

I June 13, 2003

I Dov Rose
/

Type or crinted name . . No. 38687

Signature I ·~ I Date I June 13, 2003
-

Received from c +1 510 2111 211115 > at 11113103 7:41:12 PM [Eastern Daylight Time]

EX 1018 Page 272

.,WWW__

Received from < +1 510 291 2985 > at 6113103 1:41 :12 PM [Eastern Daylight Time] ‘ “’6 OD

.Jun 13 03 03:39p DovOasenFeld +1-5.':>'281-2885 p.a\

Application Number TRANSMITTAL

FORM
(to be used for all correspondence after initial filing)

09/609179

—__

ENCLOSURES checkall that ap-I)

D Fee Transmittal Form Assignment Papers After Allowance Communication(for an Application) to Grout:
Drawing(s)

 Appeal Communication to Board
D Fee Attached of Appeals and lnterferences

Amendment/ Response

D D After Final

D D Affidavits/declarationis)

Licensing-related Papers
(Appeal Notice, Brief, Reply Brief)

Petition Routing Slip [PTO/513169) Proprietary Information
and Accompanying Petition
To Convert a

Provisional Application
Power of Attorney, Revocation
Change of Correspondence
Address

Terminal Disclaimer

Status Letter

Extension of Time Request Additional Enclosure(s)
(please identify below):

E]

[I

D Appeal Communication to Group

III

III

C]

Express Abandonment Request

information Disclosure Statement Small Entity Statement

Eli]UDEIEIEIEI
 Certified Cepy of Priority Document(s) D Req uesl of Refund

Response to Missing Parts/ incomplete
Application

UUUDEIEl

D D Response to Missing Parts under 37CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT] CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No. 38687

individual name .4 ,
Signature

Date Vne 13, 2003
ADDRESS FOR CORRESPONDENCE

Firm - Dov Rosenield

0" 5507 College Avenue, Suite 2
individual name Oakland, CA 94618, Tel: +1-510-547-3378

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at
Telephone number 703-746-7239 addressed to: Commissioner for Patents, P.0. Box 1450. Alexandria. VA June 13. 2003
22313-1450 on this date:

Dov Rosefi, = - A No. 38687

EX 1018 Page 272

Jun 13 03 03:3Sp +l-5/~)291-2985

Our Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Application No.: 09/609 l 79

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

__ formal drawings (with separate letter);

This application has:
a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

x No additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify lhat this response is being facsimile transmitled to the United States Patent and Trademark
Office at telephone number 703·746-7239 addressed the Commissioner for Patents, P.O. Box 1450,
Alexandria, VA22313-1450on. ~

Date: /?-, -Ji:yµ, D? Signed:,,,,_'=-"=-----------
Name: ~687

Received from <+15102g1 2985 > at 5/13103 7:41:12 PM [Eastern DayllghtTlmeJ

p.3

EX 1018 Page 273

Jun.13 03 03: 39p Dow/Jisenf-‘eld +1—513'291'2985 P-3. k .

Our Ref./Docket No: APPT-001—2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et a1.

Application No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION

LANGUAGE

Group An Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents
PO. Box 1450

Alexandria, VA 22313—1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

formal drawings (with separate letter);

This application has:

a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

X No additional fee is required.

-63
,{5

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-746-7239 addressed the Commissioner for Patents. PO. Box 1450,
Alexandria, VA 22313—1450 on.

Date: W Signed:
Name: ov Rosenfeld. Reg. No. 38687

RecelVId from «1 510 291 2985 > ate/13103 7:41:12 PM [Eastern Dayllght Time]

EX 1018 Page 273

Jun 13 03 03:39p + 1 -5()""291-2985

INVENTEK
Dov Rosenfeld
5507 College Avenue, Suite 2
Oa~and,CA 94618,USA

Phone: (510)547-3378; Fax: (510)653-7992

dov@inventek.com

Fax

Patent Application Ser. No.: 09/609179

Applicant(s): Dietz, et al.

Filing Date: June 30, 2000

Ref.!Docket No: APPT-001-2

Examiner.: Dinh. Khanh Q.

Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
P.O. Box 1450

Fax No.:

DATE:

FROM:

RE:

Alexandria, VA 22313-1450

United States Patent and Trademark Office
(Examiner Dinh, Khanh Q., A.it Unit 2155)

703- 746-7239

June 13, 2003

Dov Rosenfeld, Reg. No. 38687

Response to Office Action

Number of pages including cover: 19

OFFICIAL COMMUNICATION

PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO
EXAMINER DINH, KHANH Q., ART UNIT 2155

Certificate of Facsimile Transmission under 37 CFR 1.8

p. 1

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703- 746-7239 addressed the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
on.

Date: ~ Signed:_-~.......,'---------
Name: Dov Rosenfeld, Reg. No. 38687

EX 1018 Page 274

‘Jun 13 03 03:39p DovOosenFeld +1-5ngSl-2985 p.1

INVENTEK Fax
Dov Rosenfeld

5507 CoIlege Avenue, Suite 2
Oakland. CA 94618, USA

Phane: (510)547-3378; Fax: (510)6537992
dov@inventek‘com

Patent Application Ser. No.: 0916091 79 Ref/Docket Na: APPT—OOl-Z

Applicantt‘s): Dietz, et al. Examiner.: Dinh, Khanh Q.

Filing Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
RO. Box 1450

Alexandria, VA 223134450

United States Patent and Trademark Office

(Examiner Dinh, Khanh (2., Art Unit 2155)

Fax No.: 703-746-7239

DATE: June 13, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Response to Offics Action

Number ofpages indm'ing cover: 19

I OFFICIAL COMMUNICATION I

 PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO '

EXAMINER DINH, KHANH 0., ART UNIT 2155

Certificate ofFacsimile Tmmmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Tradcmark Office at
tclcphonc number 7053-7464239 addresaed the Cammissioner for Patents. PO. Box 1450, Alexandria, VA 22313-1450on.

Date: 35 , ' r Signed: Z
Name: Dov Roscnfeld, Reg. No. 38687

EX 1018 Page 274

Jun 13 03 03:3Sp +1-s:)"2s1-2sss p.2

TRANSMITTAL Application Number 09/609179

FORM
(to be used for an correspondsnce after initial filing)

Filing Date 30Jun 2000

First Named Inventor Dietz, Russell S.

Group Art Unit 2155

Examiner Name Dinh, Khanh 0.

Attorney Docket Number APPT-001·2

ENCLOSURES (check all that apply)

D Fee Transmittal Form D Assignment Papers D After Allowance Communication
(for an Application} to Group

D Fee Attached D Drawing{s} D Appeal Communication to Board
of Appeals and Interferences

[8] Amendment/ Response D Licensing-related Papers D Appeal Communication to Group
(Appeal Notice, Brief, Reply Brief)

D D After Final D Petition Routing Slip (PTO/SB/69) D Proprietary Information
and Accompanying Petition

0 D Alfidavits/declaration(s} D To Convert a D Status Letter
Provisional Application

D Extension of Time Request D Power of Attorney, Revocation D Additional Enclosure{s)
Change of Correspondence (please Identify below):
Address

D Express Abandonment Request D Terminal Disclaimer [8] Return Postcard

D Information Disclosure Statement D Small Entity Statement D
D Certified Copy of Priority Document{s} D Request of Refund D
D Response to Missing Parts/ Incomplete Remarks I Application

D
D D Response to Missing Parts under 37

CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No. 38687

Individual name ~ ---:, ------
Signature ~
Date '"June 13, 2003

ADDRESS FOR CORRESPONDENCE

Finn Dov Rosenfeld

or 5507 College Avenue, Suite 2

Individual name Oakland, CA 94618, Tel: +1·510-547-3378

CERTIFICATE OF FACSIMILE TRANSMISSION

l hereby certify that this correspondence is being facsimile transmitted with the United States Patent and Trademark Office at

Telephone number 703-7 46-7239 addressed to: Commissioner for Patents, P. 0. Box 1450, Alexandria, VA
22313-1450 on this date: /

J June 13, 2003

Tvoe or Printed name I Dov Rose ·- . No. 38687 .
Signature I ~ j Date I June 13, 2003

-

EX 1018 Page 275

Jun 13 03 03:3st DovOsenFe-ld +1-5’329P2985 P-2

TRANSM ITTAL Application Number 091609179

F0R IV!
(to be used for all correspondence after initial filing)

Filing Date 30 Jun 2000

Examiner Name Dinh. Khanh Q

Attorney Docket Number AFPT~001£

First Named inventor Dretz Russell 8.

ENCLOSURES check all that 3p oly)

[3 Fee Transmittal Form Assignment Papers AtterAflowance Communication
(for an Application) to Group
Drawin 9(3)

 Appeal Communication to Board
E] Fee Attached of Appeals and lnterterenoes

Amendment} Response

D D Alter Final

E] D Altidavitsldeolarationfi}

Licensing—related Papers Appeal Communication to Group
(Appeal Noobe, Brief, Reply Brier?

Petition Routing Slip (PTO/$3169) Proprietary Information
and Accompanying Petition
To Convert a

Provisional Application
Power of Attomey. Revocation
Change of Corrospondeme
Address
Terminal Disclaimer

Status Letter

Extension of Time Request Additional Enclosure(s}
{please identify below}:

Express Abandonment Request

information Disclosure Statement Small Entity Statement

Request of Refund

DUE]DECIDED
Response to Missing Parts! incomplete
Application

E]

E]

E]

E] Certified Copy of Priority Document(s)

El

[:1

D D Response to Missing Farts under 37OFF! 1.52 or 1.53

SIGNATURE OF APPUCANT, ATTORNEY, CR AGENT! CORRESPONDENCE ADORESS

Firm or Dov Rosenfeld, Reg. No. 38687 '_
individual name - ,

Signature W.3/
Date

ADDRESS FOR CORRESPONDENCE

Dov Rosanteld

5507 College Avenue, Suite 2
Oakland, CA 94618, Tel: +1—510-547-3378

Flrrn -
or

individual name

June 13, 2003
22313-1450 on this date:

0 --.No.38687

Signature MJune13.2003

EX 1018 Page 275

Jun 13 03 03:3Sp + 1-5()'291-2985

Our Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Application No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

TRANS:MITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents
p_o. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

__ formal drawings (with separate letter);

This application has:
a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

x No additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703·746-7239 addressed the Commissioner for Patents, P.O. Box 1450,
Alexandria, VA 22313-1450 on. ~

Date: /72 A~ Q ?-, Signed:~,,......,'----------
Name: ~687

p.3

EX 1018 Page 276

Jun'ia 03 03:39p DovOsenf‘eld +1-5fjasx—asas p.3

Our RefJDocket No: APPT—001~2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et at.

Application No.: 091609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION

LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents
PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.

Included with the response are:

formal drawings (with separate letter);

This application has:

a small entity status. If a claim for such status has net earlier been made, consider
this as a claim for small entity status.

X N0 additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office a: telephone number 783-746-7239 addressed the Commissiener for Patents. RC). Box 1450,
Alexandria, VA 22313-1450 on.

Date:W Signed:
Name: 0v Roseufeld, Reg. No. 38687

EX 1018 Page 276

Jun 13 03 03:39p Dovosenf'e 1 d +1-5J291-2985 p.4

SIN 09/609179 Page4 APPT-001-2

The fee has been calculated as shown below:

CLAIMS AS AMENDED

CL.AIMS REMAINil'/G HIGHEST NUMBER NO.OF EXTRA RATE ADDITIONAL
AfTER AMENDMENT PREVIOUSLY PAID FOR CLAIMS PRESENT

TOTAL CLAIMS 17 Ml:\"US 20 0 $18

INDEP. CLATh1S 3 MINUS 3 0 $84

TOT AL ADDITIONAL FEE DUE:

x Applicant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR l.136(a) of:

__ one months ($110) __ two months ($410)

__ two months ($930) __ four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

__ A credit card payment form for the required fee(s) is attached.

x The Commissioner is hereby authorized to charge payment of the following fees
associated with this communication or credit any overpayment to Deposit Account
No. 50-0292 (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

x Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

_x__ Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

Date

Address for correspondence:
Dov Rosenfeld
5507 College A venue.Suite 2
Oakland, CA 94618
Tel. +1-510-547-3378; Fax: +1-510-291-2985

~~
~No.38687

FEE

s 0.00

$ 0.00

$ 0.00

EX 1018 Page 277

Jun 13 03 03:39.: Dovk senFeld +1—53291-2985 p.4

SIN 09/609179 Page 4 APPT—OOI -2

The fee has been calculated as shown below:

——-———-
——-—-—_

TOTAL ADDITIONAL FEE DUE:

X Applicant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has

inadvertently overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

__ one months ($110) __ two months ($410)

two months ($930) __ four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication or credit any overpayment to Deposit Account
No. 50-0292 (A DUPLICATE OF THIS TRANSMI'ITAL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

X Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

. ”’- “a /7
L; KIM Q ’7.

Date Do osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +1-510-547~3378; Fax: +1—510—291—2985

, \5

EX 1018 Page 277

mum

Jun 13 03 03:39p Davosenf'e 1 d +l 51:)291-2985

Our Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Application No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

__ formal drawings (with separate letter);

This application has:
a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

x No additional fee is required.

Certificate of Facsimile Transmis.sion under 37 CFR 1.8

l hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-746·7239 addressed the Commissioner for Patents, P.O. Box 1450,

Alexandria, VA 22_:;.:-1450 on

0

. _ ~ ~---.

Date: I~ J<."-'N1- ._, Signed:_~.,-,,,=--::·=---..::;_ ______ _

Name: Dov Rosenfeld, Reg. No. 38687

p.5

EX 1018 Page 278

Jun‘ 13 03 03:39P Dogfisenf’eld +1—5r'37231~2885 19.5

Our Ref/Docket No: APPT~DOl-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, er al‘.

Appiication No.: 091609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

TRANSMTTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the response are:

formal drawings {with separate letter);

This application has:
a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

X No additional fee is required.

Certificate of Facsimile Transmission under 37 CPR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-746-7239 addressed the Commissioner for Patents, RC). Box MSG,
Alexandria, VA 22313-1450 on.

.I." .

Date: I 5 J-g M62.» 0 3) Signed: -
Name: Dov Rosenfeld, Reg. No. 38687

EX 1018 Page 278

Jun 13 03 03:40p Dovcysenf'e 1 d +1-5,J-291-2985 p.S

SIN 09/609179 Page6 APPT-001-2

The fee has been calculated as shown below:

CLAIMS AS AMENDED

CLAIMS REMAINING HIGHEST NUMBER NO.OFEXTRA RATE AOD1Tl0NAL
AFTER AMENDMENT PREVIOUSLY PAID E'OR CLAIMS PRESENT

TOTAL CLAIMS 17 MINUS 20 0 $18

INDEP.CLAIMS 3 MINUS 3 0 $84

TOTAL ADDITIONAL FEE DUE:

....JL_ Applicant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension of time.

__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR l.136(a) of:

__ one months ($110) __ two months ($410)

__ two months ($930) __ four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

__ A credit card payment fonn for the required fee(s) is attached .

...2l_ The Commissioner is hereby authorized to charge payment of the following fees
associated with this communication or credit any overpayment to Deposit Account
No. 50-0292 (A DUPLICA1E OF THIS TRANSMITTAL IS ATTACHED):

x Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

___x_ Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

I :, .:JJ :L:k:& t9 ·.3
Date

Address for correspondence:
Dov Rosenfeld
5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +1-510-547-3378; Fax: +1-510-291-2985

FEE

$ 0.00

$ 0.00

$ 0.00

EX 1018 Page 279

.Jun'la no 03:4op Dov<jisen€eld +1*5:3—291-2985 p.e

SIN 09/609179 Page 6 AFN—0019.

The fee has been calculated as shown belmv:

ms s om

mM----= s om
‘ TOTAL ADDITIONAL FEE DUE:

X Applicant(s) believe(s) that no Extension of Time is required. However, this

conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension of time.

_______ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) __ two months ($410)

two months. ($930} __._ four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication or credit any overpayment to Deposit Account
No. 50.0292 {A DUPLICATE OF THIS TRANSMI'ITAL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

X Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

 ,5 333159 (9'3;
Date Dov Rose eld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

550? College Avenue,Suite 2
Oakland, CA 94618

Tel. +1-510~547-3378; Fax: +1-510-291~2985

EX 1018 Page 279

Jun ·13 03 03:40p +1-s·· -291-2985 p.7

4t=t{A-
L:c;iJ

Our Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRAD'EMARK OFFICE l,-lc..D3\
------------------""'""'---,.----------------

Applicant(s): Dietz, et al.

Application No.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY A
PROTOCOL DESCRIPTION LAN9JJAGE

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

RESPONSE TO OFFICE ACTION UNDER 37 CFR 1.111

Mail Stop Non Fee Amendment
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of June 4, 2003.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-746-7239 addressed the Commissioner for Patents, P.O. Box 1450,
Alexandria, VA 223 l3-l450 on.

Date: 13 Sig,ed, ~
Name:Dov ~

Received from< +1 510 291 2985 > at 8/13103 7:41:12 PM [Eastern DayDght Time]

~ {t-4

EX 1018 Page 280

x.

Received from < +1 510 291 2985 > at 8113/03 7:41:12 PM [Eastem Daylight Tlme]

1:;an '13 03 03:40:: pm; ‘15enf‘eld +1—5" ' -291—2985 P-7 l

- - it ’1]Our RefJDockct No: APPT-OO] -2 , Patfint E “7....
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 13 47,03' \

Applicant(s): Dietz, er (2!. MWGroup Art Unit; 2155

Application No.: 09/609179 Examiner: Dinh, Khanh Q.

Filed: June 30. 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED BY A

PROTOCOL DESCRIPTION LANQJJAGE

RESPONSE TO OFFICE ACTION UNDER 37 CFR 1.111

Mail Stop Non Fee Amendment
Commissioner for Patents

P.O_ Box 1450

Alexandria, VA 22313~ 1450

Dear Commissioner:

This is a response to the Office Action of June 4, 2003.

Certificate of Facsimile Transmission under?! CFR 1.8

I hereby cenify that this response is being Facsimile transmiued lo the United States Patent and Trademark
Office at telephone number 703746-7239 addressed the Commissioner for Patents, PD. Box 1450,
Alexandria, VA 223134450 on.

Signed: éa
Name: Dav 'oscnfcld. Reg. No. 38687

Date: M

EX 1018 Page 280

Jun ·13 03 03: 40p Dovosenf'eld

SIN 09/609179 Page2 APPT-001-2

INTRODUCTORY REMARKS:

In response to the Office Action of June 4, 2003, kindly amend this application as follows

and kindly consider the following remarks.

Received from <+1 510 291 2985 > at 5.113/03 7:.J1:12 PM p!astem DayllghtTlmeJ

p.B

EX 1018 Page 281

Jun ‘13 03 03:40? Dov ‘ senFeld +1-5. 281—2885 [0.8‘ O’ 3

S/N 09/609179 Page 2 APPT-OUl-Z

INTRODUCTORY REMARKS:

In response to the Office Action of June 4, 2003, kindly amend this application as follows
and kindly consider the following remarks‘

Received from < +1 510 291 2985 > at man): 7:41:12 PM [Eastern Daylight Time]

EX 1018 Page 281

:1un 13 03 03:40p Dovo,senf'el d +1-5 ~291-2985

SIN 09/609179 Page 3 APPT-001-2

AMENDMENT(S) TO THE CLAIMS:

Toe following listing of claims will replace all prior versions, and listings, of claims on the
application. Claims being amended are set forth in a larger font than all other claims. All
claims are set forth below with one of the following annotations.

• (Original): Claim filed with the application following the specification.

• (Currently amended): Claim being amended in the current amendment paper.

• (Previously amended): Claim not being cun-ently amended, but which was amended
in a previous amendment paper.

• (Cancelled): Claim cancelled or deleted from the application.

• (Withdrawn): Claim still in the application, but in a non-elected status.

• (Previously added): Claim added in an earlier amendment paper.

• (New): Claim being added in the current amendment paper.

• (Reinstated - formerly claim#_): Claim deleted in an earlier amendment paper, but
re-presented with a new claim number in current amendment.

• (Previously reinstated): Claim deleted in an earlier amendment and reinstated in an
earlier amendment paper.

• (Re-presented - formerly dependent claim#_): Dependent claim re-presented in
independent form in current amendment paper.

• (Previously re-presented): Dependent claim re-presented in independent form in an
earlier amendment, but not currently amended.

(Cancelled)
\0

(Currently amended) A method according to claim+% wherein step (c) of

performing protocol specific operations is performed recursively for any children of

the children.

(Currently amended) A method according to claim ~ wherein which protocol

specific operations are performed is step (c) depends on the contents of the packet

such that the method adapts to different protocols according to the contents of the

packet.

\/. (Currently amended) A method accoFding to claim 1, furthor comprising:!

of performing protocol specific operations on a packet passing through a connection

point on a computer network, the method comprising:

Received from< +1 510 291 29115 > ate/13/03 7:41:12 PM [Eastern Daylight Time]

p.9

EX 1018 Page 282

Jun '13 03 03:40]: Dovjrsenf‘eld +1-5‘jESI-2985 [3.9

S/N 09/609179 Page 3 APPT—OOl-Z

AMENDMENT(S) TO THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims on the

application. Claims being amended are set forth in a larger font than all other claims. All
claims are set forth below with one of the following annotations.

- (Original): Claim filed with the application following the specification.

0 (Currently amended): Claim being amended in the current amendment paper.

0 (Previously amended): Claim not being cunently amended, but which was amended
in a previous amendment paper.

- (Cancelled): Claim cancelled or deleted from the application.

- (Withdrawn): Claim still in the application, but in a non-elected status.

O (Previously added): Claim added in an earlier amendment paper.

0 (New): Claim being added in the current amendment paper.

0 (Reinstated - formerly claim # _): Claim deleted in an earlier amendment paper, but
re—presented with a new claim number in current amendment.

0 (Previously reinstated): Claim deleted in an earlier amendment and reinstated in an
earlier amendment paper.

0 (Represented — formerly dependent claim # _): Dependent claim represented in

independent form in current amendment paper.

0 (Previously re-presented): Dependent claim re—presented in independent form in an
earlier amendment, but not currently amended.

. 1. (Cancelled)- o

\ \
\ ,2.’ (Currently amended) A method according to claim 413, wherein step (c) of

performing protocol specific operations is performed recursively for any children of

\ the children.

(k \(V/QK (Currently amended) A method according to claim 433’, wherein which protocol
specific operations are performed is step (0) depends on the contents of the packet

such that the method adapts to different protocols according to the contents of the

packet

,4’3 (Currently amended) A method aseerdmg—te-elarm—tAufiher—eempesmg—l
07 erformin rotocol S ecific o erations on a acket assln throu h a connection

point on a computer network, the method comprising:

Recelved from < +1 510 291 2925 > at 5:13:03 1:41 :12 PM [Eastern Dayllght Tlme] 436

EX 1018 Page 282

Jun '13 03 03: 41p +1-5~291-2985

SIN 09/609179 Page4 APPT-001-2

(a)

{b)

(c)

receiving the packet:

receiving a set of protocol descriptions for a plurality of protocols that

conform to a layered model, a protocol description for a particular protocol at

a particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level. the-one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child

grotocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the

particular child protocol,

(ii) the one or more locations in the packet where information is stored

related to any child protocol of the particular protocol, and

(iii) if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the

one or more protocol specific operations to be performed on the

packet for the particular protocol at the particular layer level: and

performing the protocol specific operations on the packet specified bv the

set of protocol descriptions based on the base protocol of the packet and the

children of the protocols used in the packet,

the method further comprising:

storing a database in a memory, the database generated from the set of protocol

descriptions and including a data structure containing information on the

possible protocols and organized for locating the child protocol related

information for any protocol, the data structure contents indexed by a set of one

or more indices, the database entry indexed by a particular set of index values

including an indication of validity,

wherein the child protocol related information includes a child recognition pattern,

wherein step (c) of performing the protocol specific operations includes, at any

particular protocol layer level starting from the base level, searching the packet at the

particular protocol for the child field, the searching including indexing the data

structure until a valid entry is found, and

p.10

EX 1018 Page 283

~stir-r1231 03 03:41p Davijasenf‘eld +1-573—291-2885 p.10

SIN 09/609179 Page 4 APPT-OOl-Z

(a1 receiving the gasket;

receivin asetof rotocol desert tions fora iuralit of rotocols that

conform to aia ered model a rotocol descri tion fora articular rotocol at

a Qarticutar layer level including:

i if there is at least one child rotocol of the rotocol at the articular

layer level. the-one or more child grotocols of the garticular grotocol at

the garticuiar layer level, the Qacket including for any Qarticular child

grotocol of the gartiouiar protocol at the Qanicular layer level

information at one or more locations in the gasket related to the

garticular child grotocol‘

{ii} the one or more locations in the gacket where information is stored

related to any child grotocol of the Qarticular grotocol, and

(iii) if there is at least one grotocol sgecifio ogeration to be genormed on

the gacket for the garticular grotocot at the garticular layer level, the

£8 one or more rot cols 9 lie erations to be erforrn don thegecket for the garticular grotocol at the garticular lager level; and

go) gertorming the grotocol sgecific ogerations on the packet sgecified by the

set of grotocol descrigtions based on the base grotocol of the Qacket and the

children of th rotocols used in the aoket

the method further comprising:

 ,u~WWiimam...mmM.M...“Wm
«iu.

i storing a database in a memory, the database generated from the set of protocol

1 descriptions and including a data structure containing information on the
. possible protocols and organized for locating the child protocol related

information for any protocol, the data structure contents indexed by a set of one

or more indices, the database entry indexed by a particular set of index values

i

l

including an indication of validity,

wherein the child protocol related information includes a child recognition pattern,

wherein step (c) of performing the protocol specific operations includes. at any

particular protocol layer level starting from the base level, searching the packet at the

particular protocol for the chitd field, the searching including indexing the data

structure until a valid entry is found, and

EX 1018 Page 283

Jun ·13 03 03:41p +1-5~_]"291-2985

SIN 09/609179 Page5 APPT-001-2

}

whereby the data structure is configured for rapid searches using the index set.

I
(Original) A method according to claim f, wherein the protocol descriptions are provided

in a protocol description language, the method further comprising:

compiling the PDL descriptions to produce the database.

(Original) A method according to claiJ f wherein the data structure comprises a set of

arrays, each array identified by a first index, at least one array for each protocol, each array

further indexed by a second index being the location in the packet where the child protocol

related information is stored, such that finding a valid entry in the data structure provides the

location in the packet for finding the child recognition pattern for an identified protocol.

.3
(Original) A method according to clairr(j/, wherein each array is further indexed by a third

index being the size of the region in the packet where the child protocol related information is

stored, such that finding a valid entry in the data structure provides the location and the size

of the region in the packet for finding the child recognition pattern.

'1
(Original) A method according to claim7, wherein the data suucture is compressed

according to a compression scheme that takes advantage of the sparseness of valid entries in

the data structure.
5

(Original) A method according to claim/, wherein the compression scheme combines two

or more arrays that have no conflicting common entries.
\

(Original) A method according to claim f wherein the data structure includes a set of

tables, each table identified by a first index, at least one table for each protocol, each table

further indexed by a second index being the child recognition pattern, the data structure

further including a table that for each protocol provides the location in the packet where the

child protocol related information is stored, i;uch that finding a valid entry in the data

stmcture provides the location in the packet for finding the child recognition pattern for an

identified protocol. tJ
(Original) A method according to clairn)6. wherein the data structure is compressed

according to a compression scheme that takes advantage of the sparseness of valid entries in

the set of tables.
~ 1
yT. (Original) A method according to claim)-(wherein the compression scheme combines

two or more tables that have no conflicting common entries.

p. 11

EX 1018 Page 284

Jun '13 03 03:41p Dov‘jsenf‘eld +1 *5‘3—281~2985

S/N 09/609179 Page 5 APPT—OOl-Z

3?

KW

‘35};\RG‘

Q

or

whereby the data structure is configured for rapid searches using the index set.

i

(Original) A method according to claim 7{ wherein the protocol descriptions are provided
in a protocol description language, the method further comprising:

compiling the PDL descriptions to produce the database.

(Original) A method according to clainif, wherein the data structure comprises a set of
arrays, each array identified by a first index, at least one array for each protocol, each may

further indexed by a second index being the location in the packet where the child protocol

related information is stored, such that finding a valid entry in the data structure provides the

location in the packet for finding the child recognition pattern for an identified protocol.

(Original) A method according to claim/6{ wherein each array is further indexed by a third
index being the size of the region in the packet where the child protocol related information is

stored, such that finding a valid entry in the data structure provides the location and the size

of the region in the packet for finding the child recognition pattern.

‘i
(Original) A method according to claim/”Kwherein the data structure is compressed

according to a compression scheme that takes advantage of the sparseness of valid entries in

the data structure. 6

(Original) A method according to claim(K,wherein the compression scheme combines two
or more arrays that have no conflicting common entries.

(Original) A method according to claim? wherein the data structure includes a set of
tables, each table identified by a first index, at least one table for each protocol, each table

further indexed by a second index being the child recognition pattem. the data structure

further including a table that for each protocol provides the location in the packet where the

child protocol related information is stored, such that finding a valid entry in the data

structure provides the location in the packet for finding the child recognition pattern for an

’1

(Original) A method according to claim{it}?wherein the data structure is compressed

identified protocol.

according to a compression scheme that takes. advantage of the sparsencss of valid entries in

"i

(Original) A method according to claimlyf wherein the compression scheme combines

the set of tables.

two or more tables that have no conflicting common entries.

EX 1018 Page 284

Jun 13 03 03:41p +1-S·J-291-2985

i\

SIN 09/609179 Page6 APPT-001-2

\0 _,,-
....t3. (Currently amended) A method aoooFding to olaim 1, f1::1rtheF oom~rising:I

of performing protocol specific operations on a packet passing through a connection

point on a computer network, the method comprising:

(a)

(b)

receiving the packet:

receiving a set of protocol descriptions for a plurality of protocols that

conform to a layered model, a protocol description for a particular protocol at

a particular layer level including:

(i)

(ii)

if there is at !east one child protocol of the protocol at the particular

layer level, the-one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child

protocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the

particular child protocol,

the one or more locations in the packet where information is stored

related to any child protocol of the particular protocol. and .

(iii} if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level. the

one or more protocol specific operations to be performed on the

packet for the particular protocol at the particular layer level; and

(c) performing the protocol specific operations on the packet specified by the

set of protocol descriptions based on the base protocol of the packet and the

children of the protocols used in the packet

__ wherein the protocol specific operations include one or more parsing and extraction

operations on the packet to extract selected portions of the packet to form a function

of the selected portions for identifying the packet as belonging to a conversational

flow.
\0

{Currently amended} A method according to claim .:t.J.;{. wherein the protocol

descriptions are provided in a protocol description language.
\ ";

(Original) A method according to claim yr, further comprising:

Received trom < +1 51 o 291 2915 ,. at tl/13103 7:41: 12 PM (East em Daylight Time]

p.12

EX 1018 Page 285

“me

WW-MW.W»Wwo__‘4..v

l\

‘Jun ‘13 08 03:41p Dovjasenf‘eld +1—5’3-281-2985 p.12\ R

SIN 09/609179 Page 6 APPT—OOl—Z

\O/

3‘3. (Currently amended) A method aeeerelme—te-elarm—ktenher—eemeasiag-l

0t erforrnin rotocois eoifico erations one acket assin thrcu h aconnection

oint on a com uter network the method com riein :

{at receiving the gasket;

{bl receiving a set of grotocol descrigtions for a gluraligy of grotoools that

conform to a layered model, a grotocol descrigtion for a garticular grotocol at

a garticular Eager level including:

(it if there is at least one child grotoccl of the Qrotocol at the particular

layer level, theone or more child grotocols of the garticular grotocoi at

the garticular layer level, the gacket including for any garticular child

grotocol of the Qarticular grotocol at the particular layer level

information at one or more locations in the Qacket related to the

garticuiar chitd grotocol,

\ (it) the one or more locations in the Qacket where information is storedrelated to any child grotocoi oi the garticular grotocol, and ,

% (iii) if there is at least one protocol sgecific coeraticn to be gerformed on
I the gasket for the garticular grotocol at the particular layer level, the

one or more grotocol sgecific ogerations to be gerformed on the

{c} gerforming the grotocol specific ogerations on the gacket sgecified by the

set of protocol descngtions based on the base grotoool oi the cacket and the

children of the protocols used in the gacket,

wherein the protocol specific operations include one or more parsing and extraction

operations on the packet to extract selected portions of the packet to form a function

of the selected portions for identifying the packet as belonging to a conversational
flow.

\3 \0
J47 (Currently amended} A method according to claim 4g,”wherein the protocol

descriptions are provided in a protocol description language.

\‘i (I:
,187 (Original) A method according to claim l/Affurther comprising:

Received from < +1 510 29! 2985 > at 0113.133 7:41:12 PM {Eastern Daylight Time}

EX 1018 Page 285

Jun 13 03 03:41p +1-5'~291-2995

SIN 09/609 t 79 Page7 APPT-001-2

compiling the PDL descriptions to produce a database and store the database in a

memory, the database generated from the set of protocol descriptions and including a

data structure containing information on the possible protocols and organized for

locating the child protocol related information for any protocol, the data structure

contents indexed by a set of one or more indices. the database entry indexed by a

particular set of index values including an indication of validity,

wh~n the child protocol related information includes a child recognition pattern, and

~erein the step of performing the protocol specific operations includes, at any particular

protocol layer level starting from the base level, searching the packet at the particular -prot1tGPI for the child field, the searching includingindexing the data strutrure until a valid
,,,,,,.: . f d entry 1s oun •

whereby the data strucrure is configured for rapid searches using the index set. ,o
(Currently amended) A method according to claim ~ further comprising:

looking up a flow-entry database comprising none or more flow entries, at least

one flow-entry for each previously encountered conversational flow, the looking up

using at least some of the selected packet portions and determining if the packet

matches an existing flow-entry in the flow-entry database

if the packet is of an existing flow, classifying the packet as belonging to the found

existing flow; and

if the packet is of a new flow, storing a new flow-entry for the new flow in the flow·

entry database, including identifying information for future packets to be identified

with the new flow-entry;

wherein for at least one protocol. the parsing and extraction operations depend on

the contents of MR&-0-11!!.0r more packet headers.
\VJ \0
X (Original) A method according to claim,J,3', wherein the protocol specific operations

further include one or more state processing operations that are a function of the state of the

flow of the packet.

\
Received from< +1 510 291 2985 > at 11113103 7:41:12 PM t£astem Daylight TlmeJ

p.13

EX 1018 Page 286

.w*WM/WvM-n-M-

Jun 13 03 03:41P Dov?sen?eld +1-S’3291—2985
\

SIN 09/609179 Page 7 APPT~001—2

compiling the PDL descriptions to produce a database and store the database in a

memory, the database generated from the set of protocol doseriptions and including a

data structure containing information on the possible protocols and organized for

locating the child protocol related information For any protocol, the data structure

contents indexed by a set of one or more indiccs, the database entry indexed by a

particular set of index values including an indication of validity,

whe in the child protocol related information includes a child recognition pattern, and

herein the step of performing the protocol specific Operations includes, at any particular

protocol layer level starting from the base level, searching the packet at the particular

Wot the child field, the searching includirmgma valid
entry is found,

4 whereby the data structure is configured for rapid searches using the index set.\ \O

fif (Currently amended) A method according to claim fifurthor comprising:

looking up a flow—entry database comprisingWatleast

one flow—entry for each previously encountered conversational flow, the looking up

using at least some of the selected packet portions and determining if the packet

matches an sx-istingilow—entry in the flow-entry database

if the packet is of an existing flow, classifying the packet as belonging to the found

existing flow; and

if the packet is of a new flow, storing a new flow—entry for the new flow in the flow-

entry database. including identifying information for future packets to be identified

with the new flow-entry;

wherein for at least one protocol: the parsing and extraction operations depend on

the contents of none—one or more packet headers.

\V \0
«P77. (Original) A method according to claim)5, wherein the protocol specific operations

further include one or more state processing operations that are a function of the state of the

flow of the packet.

18. (Orig nal) A method aGGGWS—ialmd— of performing grotocol sgeclfic

Resolved from < +1 510 291 2985 > at 8:13:03 1:41 :12 PM {Eastern Daylight Time]

EX 1018 Page 286

Jun · 13 03 03: 42p +1-5'::)291-2985 p.14

SIN 09/609179 Page 8 APPT-001-2

(a)

i formation at one or more locations in the

articular child rotocol

ii the one or more locations in the acket where information is stored

elated to any child protocol of the particular protocol. and

Received rrom < +1510291 2985 > atfl/13103 7:41:12 PM (Eastern Daylight Time) -
EX 1018 Page 287

whens”~¢
..

5w

u

Jun '13 03 03:42p Dovfyasenl’eld +1-53‘3—291—2985 p.14

SIN 09/609179 Page 8 APPT-OOl-Z

a receivi the acket-

er level lhe-one or more child rotocols of the articular rotocol at

t e uarticular la er level the sacket includin- for an oarticuiar child

rotocol of the oarticular rotocol at the articular la or level

\

Q? in formation at one or more locations in the vacket related to the
‘ :2 articular child . rotocol

)/ ii the one or more locations in the - acket where iniorrnaiion is stored
% elated to any child Qrotoool of the garticular Qrotoool‘ and

{there is at least one rotocol s ecifico station to be erformed on

e acketforlhe articular rotocoi at the articular la er level the

one or more grotocol sgeclflc ogerafions to be gerformed on the

gackei for the garticular grotocol at the garticular layer level; and

erformin the rotocol s ecifico erations on the ackets ecifiedb the set of

rotocol desc ' tions based 0n the base rotocol of the cket and the children of the

:rotocols useg in the éacket;
wherein the olocol specific operations include one or more state processing

operations th 1 are a function of the state of therflow of the packet.

WMflm.

Received from < +1 510 291 2985 > at 6113/03 7:“:12 PM [Eastern Daylight Time]

EX 1018 Page 287

i
I

Jun 13 03 03:42p

SIN 09/609179 Page9 APPT-001-2

REMARKS

Status of the Application:

Claims l-18 are the claims of record of the application. Claims 1-3. 13, 14, 16, 17 and 18
have been rejected and claims 4-11, and 15 have been objected to as being dependent upon
a rejected base claim, but would be allowable if rewritten in independent form.

Note that the examiner did not explicitly mention claim 12. As claim 12 depends on claim
11 and claim 11 was objected to as being dependent upon a rejected base claim, but would
be allowable if rewritten in independent form, the same is assumed to apply to claim 12.

Amendment to the Claims:

Claim l has been cancelled. Some of the remaining claims were amended to not depend on
any cancelled claim. Furthermore, the none or more phrases in the claims was amended.

Claim Rejections -35 USC§ 112 Second Paragraph (Indefiniteness)

In paragraph 3 of the office action, claims 1 and 16 were rejected under 35 USC 112,
second paragraph, as being indefinite. In particular the examiner asserted that the phrase
"none or more" renders the claims indefinite.

Applicants respectfully disagree that the phrase "none or more" is indefinite in this context.
The phrasing is common in computer language descriptions, and the meaning would be
clear to those in the art. Nevertheless, the recitations in the claims that include "none or
more" have been amended to indicate the definite meaning. In claim l, for example, the
recitation of "the none or more child protocols of the particular protocol" has been
amended to "if there is at least one child protocol of the particular protocol at the particular
layer level, the one or more child protocols of the particular protocol at the particular layer
level, the packet including for any particular child protocol of the particular protocol
information at one or more locations in the packet related to the particular child protocol.

Claim Rejections -35 USC § 102

In paragraph 5 of the office action, claims 1-3, 13, 14, 17 and 18 were rejected under 35
USC 102{b) as being anticipated by Bmell (U.S. Patent 5,680,585).

Claim l has been canceled and claims 2, 3 and 14 have been a.mended to depend on claim
13 that is believed to be allowable.

The rejection of claims 13, 17 and 18 are believed to be erroneous.

Description of Bruell.

BrueJl describes a language for describing different packet formats. A packet description
language file describes a format. A compiler translates the packet description language file

Received from< +1 510 291 2985 > at 11/13103 7:41:12 PM [!!astern Daylight Time]

p.15

EX 1018 Page 288

Junlla 03 03:42p DovOosenFeld +1—553-281-2985 p.15

SIN 091609 1 79 Page 9 APPT-UO 1-2

REMARKS

Status of the Application:

Claims [~18 are the claims of record of the application. Claims 1w3, 13, 14, 16, 17 and 18

have been rejected and claims 4—11, and 15 have been objected to as being dependent upon
a rejected base claim, but would be allowable if rewritten in independent form.

Note that the examiner did not explicitly mention claim 12. As claim 12 depends on claim
11 and claim 11 was objected to as being dependent upon a rejected base claim, but would

be allowable if rewritten in independent form, the same is assumed to apply to claim 12.

Amendment to the Claims:

Claim 1 has been cancelled. Some of the remaining claims were amended to not depend on
any cancelled claim. Furthermore, the none or more phrases in the claims was amended.

Claim Rejections -35 USC § 112 Second Paragraph (Indefiniteness)

In garner:aph 3 of the office action, claims 1 and 16 were rejected under 35 USC 112,

second paragraph, as being indefinite. In particular the examiner asserted that the phrase
“none or more” renders the claims indefinite.

Applicants respectfully disagree that the phrase "none or more" is indefinite in this context.

The phrasing is common in computer language descriptions, and the meaning would be
clear to those in the art. Nevertheless, the recitations in the claims that include "none or

more“ have been amended to indicate the definite meaning. In claim 1, for example, the

recitation of "the none or more child protocols of the particular protocol" has been

amended to “if there is at least one child protocol of the particular protocol at the particular

layer level, the one or more child protocols of the particular protocol at the particular layer

level, the packet including for any particular child protocol of the particular protocol

information at one or more locations in the packet related to the particular child protocol. i

{ Claim Rejections -35 USC § 102In paragraph 5 of the offiCe action, claims 1—3, 13, 14, l? and 18 were rejected under 35

USC 102(b) as being anticipated by Bmell (US. Patent 5,680,585).

Claim 1 has been canceled and claims 2, 3 and 14 have been amended to depend on claim
13 that is believed to be allowable.

The rejection of claims 13, 17 and 18 are believed to be erroneous.

Description of Bruell.

Bruell describes a language for describing different packet formats. A packet description
language file describes a format. A compiler translates the packet description language file

\9’ 6.7/65Recelved from < M 510 291 2935 > n 3113103 7:41:12 PM [Eastern Daylight Time]

EX 1018 Page 288

Jun 13 03 03:43p

SIN 09/609179 Page IO APPT-001-2

into a data structure. Application programs may both encode data into packets according to
the defined format as well as decode packets that were assembled according to the
protocol. To do this, application programs need only reference a data structure resulting
from the compiled packet description language file. In this manner, numerous data packets
formats may be defined in accordance with different data transfer media and packet
protocols.

Claim 13

Regarding claim 13, the examiner asserts that Bruell discloses protocol specific operations
that include one or more parsing and extraction operations on the packet to extract selected
portions of the packet to form a function of the selected portions for identifying the packet
as belonging to a conversational flow.

Applicants' respectfully disagree.

First, the examiner has failed to show that any protocol specific operations disclosed in
Bruell are the protocol specific operations of step (c).

In the rejection of original claim 1 (now cancelled but incorporated into claim 13), the
examiner asserts that Bruell in col. 9 line 8 to col. 10 line 43, and in col. 14, line 37 to
col. 15, line 10 describes that the protocol description for a particular protocol at a
particular layer level includes any protocol specific operations to be performed on the
packet for the particular protocol at the particular layer level. The examiner also asserts that
"test using packet description files" in Bruell are such protocol specific operations. Col. 9
line 8 to col. 10 line 43 ofBruell describes protocols and how Bruell's language can be
used to describe how to interpret protocols, in particular, how to decode a packet based on
the protocol. Col. 14, line 37 to col. 15, line 10 ofBruell describes how the language may
be used to specify filtering. Thus, Bruell describes using the language to define a set of
protocol specific operations. However, the examiner has not shown that in Bruell the
feature the descriptions of the protocols themselves, i.e., the protocol description of the
protocol describe the protocol specific operations to be performed.

In the rejection of original claim I (now cancelled but incorporated into claim 13),
the examiner also asserts that Bruell in FIG. 4 and in col. 15 line 11-col. 16, line 42
discloses step (c) of performing the protocol specific operations on the packet specified by
the set of protocol descriptions based on the base protocol of the packet and the children of
the protocols used in the packet

Applicants respectfully disagree. While the cited passage describes some protocol
specific operations, protocol specific operations are pai.t of what Bmell calls test
application routines. For example, Bmell states that the test application routines

"may include a send routine 410, a receive routine 420 and a tap routine 430. The
test application routines each refer to the PDL data structures 405 for carrying out
their respective functions with respect to the device under test 305."

Recelvedl'Tom < +1510291 2985 > at 11/13103 7:41:12 PM [Eastern Daylight Time]

p. 16

EX 1018 Page 289

Jun 13 03 03:43]: Beggasenf'eld +1-57‘v281—2985 p.16\ v2

SIN 09/609179 Page 10 APPT—OO1-2

into a data structure. Application programs may both encode data into packets according to
the defined format as well as decode packets that were assembled according to the

protocol. To do this, application programs need only reference a data structure resulting

from the compiled packet description language file. In this manner, numerous data packets

formats may be defined in accordance with different data transfer media and packet
protocols.

Claim 13

Regarding claim 13, the examiner asserts that Bmell discloses protocol specific operations
that include one or more parsing and extraction operations on the packet to extract selected

portions of the packet to form a function of the selected portions for identifying the packet
as belonging to a conversational flow.

Applicants' respectfully disagree.

First. the examiner has failed to Show that any protocol specific operations disclosed in

Bmell are the protocol specific operations of step (c).

In the rejection of original claim 1 (now cancelled but incorporated into claim 13), the
examiner asserts that Bruell in col. 9 line 8 to col. 10 line 43, and in col. 14, line 37 to

col. 15, line 10 describes that the protocol description for a particular protocol at a

particular layer level includes any protocol specific operations to be performed on the
packet for the particular protocol at the particular layer level. The examiner also asserts that

"test using packet description files” in Bruell are such protocol specific operations. Col. 9
line 8 to col. 10 line 43 of Bruell describes protocols and how Bruell‘s language can he

used to describe how to interpret protocols, in particular, how to decode a packet based on

the protocol. Col. 14, line 37 to col. 15, line 10 of Bruell describes how the language may
be used to specify filtering. Thus, Bruell describes using the language to define a set of

protocol specific operations. However, the examiner has not shown that in Bruell the

feature the descriptions of the protocols themselves, i.e., the protocol description of the

protocol describe the protocol specific operations to be performed.

In the rejection of original claim i (now cancelled but incorporated into claim 13).
the examiner also asserts that Bruell in FIG. 4 and in col. 15 line llncol. 16, line 42

discloses step (c) of performing the protocol specific operations on the packet specified by

the set of protocol descriptions based on the base protocol of the packet and the children of

the protocols used in the packet

Applicants respectfully disagree. While the cited passage describes some protocol

specific operations, protocol specific operations are part of what Bruell calls test

application routines. For example, Bruell states that the test application routines

"may include 2. send routine 410, a receive routine 420 and a tap routine 430. The

test application routines each refer to the PDL data structures 405 for carrying out
their respective functions with respect to the device under test 305.“

i ”.0503

Received from < +1 510 291 2985 :v at 5:13:03 1:41:12 PM [Eastern 6‘1!“th Tine]

EX 1018 Page 289

r
Jun 13 03 03:43p +1-5))"291-2985

SIN 09/609179 Page 11 APPT-001-2

Thus, one may argue that Bruell describes performing protocol specific operations. In
Applicants' invention, any protocol specific operations to be performed on the packet for a
particular protocol as part of step (c) are included in the protocol description for the
paiticular protocol at a particular layer level (See restriction (iii) of step (b) that describes
what is included in the protocol description for a particular protocol). However, in Bruell,
the protocol description of the protocol does not describe the protocol description
operations to be performed. Rather, the cited part of Bruell describes how test application
routines may be written and how such written application routines, e.g., filtering, may use
compiled protocol descriptions.

In the rejection of claim 13, the examiner asserts that "decoding packets in accordance with
a defined packet format" describes "parsing and extraction operations on the packet to
extract selected portions of the packet to form a function of the selected portions for
identifying the packet as belonging to a conversational flow" and further that this is
disclosed in col. 4 line 49 to col 6, line 30 and col. 14, line 37 to col. 15, line 10 of Bruell.

Applicants respectfully disagree.

Those in the art would understand that decoding a packet is the determining of the payload
at each layer according to the protocol. This may include parsing, may include extraction
operations, and may include extracting selected portions of the packet. However, the
examiner has failed to show that Bruell discloses the feature of the extraction being to form
a function of the selected portions for identifying the packet as belonging to a
conversational flow. Applicants invention is in order to recognize packets, e.g., that pass
through a node in a network, as belonging to a conversational flow. A conversational flow
is the set of packets of a conversation. The function of the extracted portions is used to
recognize a packet as belonging to a conversational flow. The examiner has failed to show
that Bruell discloses such forming of a function.

Thus, claim 13 is believed allowable. Action to that end is respectfully requested.

Claim 17

Regarding claim 17, the examiner asserts that Bruell discloses that the protocol specific
operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Brnell's FIG. 1 and col. 3, line 20 to col. 4, line
33, and col. 14, line 38 to col. IS, line 10 describe this feature.

Claim 17 depends on claim 13. The rejection of claim 13 is believed overcome. The above
arguments with respect to claim 13 are incorporated herein by reference. Thus claim 17 is
believed allowable and action to that end is respectfully requested.

However, even if the examiner remains unconvinced by applicant's arguments for
overcoming the rejection of claim 13, Applicants still believe the examiner's arguments for
rejecting claim 17 are erroneous.

State processing that depends on the state of a conversational flow is a concept described in
the specification. A conversational flow is the set of packets of a conversation. The state of

Received from< +1 510 291 29115 > at 11/13103 7:-41 :12 PM [Eastern Daylight TimeJ

p.17

EX 1018 Page 290

Jun 13 03 03:43}: DOVOosenf-‘eld 4-1-513291—2985 p.17

S/N 09/609179 Page 11 APPT-OOl-Z

Thus, one may argue that Bruell describes performing protocol specific operations. In

Applicants‘ invention, any protocol specific operations to be performed on the packet for a

particular protocol as part of step (c) are included in the protocol description for the
particular protocol at a particular layer level (See restriction (iii) of step (b) that describes

what is included in the protocol description for a particular protocol). However, in Bruell.

the protocol description of the protocol does not describe the protocol description

operations to be performed. Rather, the cited part of Bruell describes how test application

routines may be written and how such written application routines, e.g., filtering, may use

compiled protocol descriptions.

In the rejection of claim 13, the examiner asserts that "decoding packets in accordance with

a defined packet format" describes "parsing and extraction operations on the packet to

extract selected portions of the packet to form a function of the selected portions for
identifying the packet as belonging to a conversational flow" and further that this is
disclosed in col. 4 line 49 to col 6, line 30 and col. 14, line 37 to col. 15, line 10 of Bruell.

Applicants respectfully disagree.

Those in the an would understand that decoding a packet is the determining of the payload

at each layer according to the protocol. This may include parsing, may include extraction

operations, and may include extracting selected portions of the packet. However, the
examiner has failed to show that Bruell discloses the feature of the extraction being to form

a function of the selected portions for identifling the packet as belonging to a
conversational flow. Applicants invention is in order to recognize packets, e.g., that pass

through a node in a network, as belonging to a conversational flow. A conversational flow
is the set of packets of a conversation. The function of the extracted portions is used to

recognize a packet as belonging to a conversational flow. The examiner has failed to show
that Bruell discloses such forming of a function.

Thus, claim 13 is believed allowable. Action to that end is respectfully requested.

Claim 17

Regarding claim 17, the examiner asserts that Bruell discloses that the protocol specific

operations include one or more state processing operations that are a function of the state

of the flow of the packet. In particular. that Bruell's FIG. 1 and col. 3, line 20 to col. 4, line
33. and col. 14, line 38 to col. 15, line 10 describe this feature.

Claim 17 depends on claim 13. The rejection of claim 13 is believed overcome. The above

arguments with respect to claim 13 are incorporated herein by reference. Thus claim 17 is
believed allowable and action to that end is respectfully requested.

However, even if the examiner remains unconvinced by applicant's arguments for

overcoming the rejection of claim 13, Applicants still believe the examiner's arguments for
rejecting claim 17 are erroneous.

State processing that depends on the state of a conversational flow is a concept described in

the specification. A conversational flow is the set of packets of a conversation. The state of

Recelved from < +1 510 291 2935 > at 5113103 7:41 :12 PM [Eastern Dayllghl Tlme] (0"le (33

EX 1018 Page 290

.Jun 13 03 03:44p Dovcysenf'e 1 d +1-5t~291-2985

SIN 09/609179 Page 12 APPT-001-2

a flow is described in the specification as an indication of all previous events in the flow.
State processing thus is processing that depends on the state of a conversational flow, i.e.,
on the sequence of one or more previously encountered packets of the same conversational
flow (or initial state in the case of the first packet in a conversational flow). The examiner
has failed to show that Bruell includes this feature. For example. the word "state" does not
even appear in Bruen.

The cited FIG. 1 of Bruell shows the process of constructing a packet. The cited part on
cols. 3 and 4 of Bruell describes FIG. 1 and also the use of Bruell's Janguage to define
protocols and to process a single packet. No conversational flows or state processing are
disclosed. The cited part on cols. 14 and 15 ofBruell describes how Bruell's packet
description language (PDL) may be advantageously implemented in a system for testing
internetwork routing devices (the device test environment 301). See FIG. 3. A user defines
one or several POL files 302. To use the device test environment 301, a user creates a test
file 303 that specifies the number, type and optional content of packets for the device test
environment 301 to send to and receive from a device under test 305. The remainder of the
cited part of Bruell is repeated here:

The device test environment 301 follows the script created by the test files with reference to
the data packet formats defined in the PDLfiles. The PDLfiles determine the structure and
default content of each packet type. When a device test environment 301 reads an
instruction in a test file for the device under test to send a type of packet, it assembles the
test packet by referring to the packet assembly specification in the PDLfiles 302. For
example, if the device test environment reads a test file instruction to send an Ethernet
header (£NET.sub.-- HDR) packet, it looks for the ENET.sub.-- HDR specification in the
PDLfiles and assembles the packet accordingly. Similarly, when the device test
environment reads an instruction in a test file for the device under test to receive a type of
packet, a test packet is provided/or the device to receive. If the packet the test environment
reads matches the packet type in the PDLfiles, then the device test environment 301
reports that the test succeeded; otherwise, it reports that it failed.

There is no concept of a conversational flow or of the state of the flow of the packet. Bruell
discloses testing individual packets. Thus, applicants assert, the examiner has failed to
show that Bruell describes state processing that is a function of the state of the flow of the
packet.

The rejection of claim 17 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

Claim 18

Regarding claim 18, the examiner asserts that Bruell discloses that the protocol specific
operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Bmell's FIG. 1 and col. 3, line 20 to col. 4. line
33, and col. 14, line 38 to col. 15, line 10 describe this feature.

Received from< +1 510 291 2985 > al IS/13/03 7:41:12 PM (Eastern Daylight TlmeJ

p.18

EX 1018 Page 291

t

Jun 13 08 03:44}: Dovf’jsenFeld +1-53/jESl-2985 p.18
\

SIN 09/609179 Page 12 APPT-OOl-2

a flow is described in the specification as an indication of all previous events in the flow.

State processing thus is processing that depends on the state of a conversational flow. i.e.,

on the sequence of one or more previously encountered packets of the same conversational

flow (or initial state in the case of the first packet in a conversational flow). The examiner
has failed to Show that Bruell includes this feature. For example, the word "state" does not

even appear in Bruell.

The cited FIG. 1 of Bruell shows the process of constructing a packet. The cited part on
cols. 3 and 4 of Bruell describes FIG. 1 and also the use of Bruell‘s language to define

protocols and to process a single packet. No conversational flows or state processing are

disclosed. The cited part on cols. l4 and 15 ofBruell describes how Bmell‘s packet
description language (PDL) may be advantageously implemented in a system for testing
internetwork routing devices {the device test environment 301). See FIG. 3. A user defines
one or several PDL files 302. To use the device test environment 301, a user creates a test

file 303 that specifies the number, type and optional content of packets for the device test
environment 301 to send to and receive from a device under test 305. The remainder of the

cited part of Bmell is repeated here:

The device test environment 301 follows the script created by the teszfiles with reference to

the data packetformats defined in the PDLfiIes. The PDLfiles determine the structure and

default content ofeach packet type. When a device test environment 301 reads an
instruction in a testfilefor the device under test to send a type ofpacket, it assembles the

test packer by referring to the pocket ossemhiy specxfication in the PDLfiles 302. For

example, if the device test environment reads a testfile instruction to send an Ethernet
header (ENET. sub.—- HDR) pocket, it looksfor the ENETsub.-~ HDR specification in the

PDLfiZes and assemble: the packet accordingly. Similarly, when the device zest
environment reads an instruction in a testfile for the device under test to receive a type of

packet, a test packet is providedfor the device to receive. If the pocket the test environment

reads matches the packet type in the PDLfiles, then the device test environment 30]
reports that the test succeeded; otherwise, it reports that itfailed.

There is no concept of a conversational flow or of the state of the flow of the packet. Bruell

discloses testing individual packets. Thus, applicants assert, the examiner has failed to

Show that Brnell describes state processing that is a function of the state of the flow of the

packet.

The rejection of claim 17 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

Claim 18

Regarding claim 18, the examiner asserts that Bruell discloses that the protocol specific

operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Bruell's FIG- 1 and col. 3, line 20 to col. 4, line
33, and col. 14, line 38 to col. 15, line 10 describe this feature.

2?)

Received from v: +1 etc 291 2985 > ate/13103 mm 2 PM 053mm Daylight Time)

EX 1018 Page 291

Jun 13 03 03:45p +l -5/:)291 -2985

SIN 09/609179 Page 13 APPT-001-2

First, the examiner has failed to show that any protocol specific operations disclosed in
Bruell are the protocol specific operations of step (c). The argwnents presented above for
this aspect of claim 13 also apply to the rejection of claim 18, as amended, and are
incorporated herein by reference. Furthermore, the examiner has failed to show that Bruell
discloses that the protocol specific operations include one or more state processing
operations that are a function of the state of the flow of the packet. The arguments
presented above for this aspect of claim 17 also apply to the rejection of claim 18 and are
incorporated herein by reference.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

For these reasons, and in view of the above amendment, this application is now considered
to be in condition for allowance and such action is earnestly solicited.

Conclusion

The Applicants believe all of Examiner's rejections have been overcome with respect to all
remaining claims (as amended), and that the remaining claims are allowable. Action to that
end is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com,
or a telephone call to the undersigned at +I-510-547-3378 is requested.

Ls :r~ 03
Date

Address for correspondence:
Dov Rosenfeld
5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +l-510-547-3378~ Fax: +1-510-291-2985
Email: dov@inventek.com

Rec:elved rrom <+1510291 2985 > at 11113103 7:41:12 PM !'Eastern Daylight Time]

Respectfully Submitted,

D~

p.19

EX 1018 Page 292

Jun 13 03 03:45p DouOtsent-‘eld +1-553291-2985 p.19‘ \

SIN 09/609179 Page 13 APPT—OOl-Z

First, the examiner has failed to show that any protocol specific operations disclosed in

Bruell are the protocol specific operations of step (c). The arguments presented above for
this aspect of claim 13 also apply to the rejection of claim 18, as amended, and are

incorporated herein by reference. Furthermore, the examiner has failed to show that Bruell
discloses that the protocol specific operations include one or more state processing

operations that are a function of the state of the flow of the packet. The arguments

presented ab0ve for this aspect of claim 17 also apply to the rejection of claim 18 and are

incorporated herein by reference.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to
that end is respectfuuy requested.

For these reasons, and in View of the above amendment, this application is now considered
to be in condition for allowance and such actiort is earnestly solicited.

Conclusion

The Applicants believe all of Examiner’s rejections have been overcome with respect to all
remaining claims (as amended), and that the remaining claims are allowable. Action to that
end is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and

allowance of this application, an email message to the undersigned at dov@inventek.com,

or a telephone call to the undersigned at +1—510-547—3378 is requested.

Respectfully Submitted,

Date D osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue-Suite 2
Oakland, CA 94618
Tel. + l-510-547—3378; Fax: +1-510-291-2985
Email: dov@inventek.com

r\6®

Received from ¢ H 510 291 2985 h at 611310: 7:41:12 PM [Eastern DWI Time]

EX 1018 Page 292

Jun 27 03 08:0Sa Do,Oosenfe l d +1-~:J-291-2985

INVENTEK Fax
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618, USA
Phone: (510)547-3378; Fax: (510)653-7992

dov@inventek.com

Patent Application Ser. No.: 09/609179 Ref./Docket No: APPT-001-2

Applicant(s): Dietz, et al. Examiner.: Dinh, Khanh Q.

Filing Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO:

Fax No.:

DATE:

FROM:

RE:

Dear Sir,

Commissioner for Patents
P.O. Box 1450
Alexandria. VA 22313-1450

United States Patent and Trademark Office
(Examiner Dinh, Khanh Q., Art Unit 2155)

703-746-5510

June 27, 2003

Dov Rosenfeld, Reg. No. 38687

Supplementary response: CLAIM 18 of Serial Number 09/609, 179

Number of pages including cover: 6

p. 1

1ti/s
~

l.,--3o~3

~~

Further to our telephone conversation yesterday, here is a revised amendment for claim 18, this time
with a clean version included. rve included the same remarks on the rejection of claim 18 as was in
the earlier supplemental response of 6/19/03 such that this forms a complete supplemental response.

Thank you very much,

Dov Rosenfeld

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark addressed the
Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on. ~

Dare: fe
7
/;i_ ~/ 0 3 Signed: ,,......

Name: Do~nfeld, Reg. No. 38687

Received from< +1 510 291 2985 > at 11127103 12:06:211 PM [Eastern Daylight Time)

EX 1018 Page 293

l’)

‘ w 0Jun 2? 03 08:093 Donoser‘H—‘eld +1-5i ~281—2885 p.1

INVENTEK Fax mfg
Dov Rosenfeld

L33—5507 College Avenue, Suite 2

Oakland, CA 94618, USA

Phone: (510)547-3378; Fax: (510)653-7992 ‘ (dov©inventek.com \v‘Q’W

Patent Application Ser. No.: 091609 179 Rafi/Docket No: APPT~OOI~2

Applicant(s): Dielz, er al. Examiner.: Dinh, Khanh Q.

 Filing Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
PO. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh, Khanh Q, Art Unit 2155)

Fat No.: ”703446—5510

DA TE: June 27, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Supplementaly response: CLAIM 18 of Serial Number 09/609,179

Number ofpages including cover: 6

Dear Sir,

Further to our telephone conversation yesterday, here ‘is a revised amendment for claim 18, this time
with a clean version included. I've included the same remarks on the rejection of claim 18 as was in

the earlier supplemental response of 6/ 19/03 such that this forms a complete supplemental response.

Thank you very much,

Dov Rosenfeld

e/szag

Certificate of Famimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark addressed the
Commissioner for Patents, PO. Box 1450. Alexandria, VA 22313-1450 on.

Date; Q (2 ‘i Z (2.21., __ . Signed: %
Name: Dov osenfeld, Reg. 140.3868?

Received from < +1 510 291 2985 > at 15:23:03 12:06:26 PM [Salem Daylight Tlme]

EX 1018 Page 293

Kl;;\

Jun 27 03 08:lOa aoOosenf"eld

SIN 09/609179 (Our APPT-001-2)

Applicant(s): Dietz, et al.

ApplicationNo.: 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

+ 1-;J-291-2985

Group Art Unit: 2155

Examiner: Dinh, Khanh Q.

SUPPLElVIENTAL RESPONSE

Mail Stop Non Fee Amendment
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear sir,

Further to the telephone conversations between the examiner and the undersigned
regarding claim 18, here is a revised amendment to claim 18.

AMENDMENT TO CLAIM 18~

Kindly amend claim 18 to read as follows. A recitation showing the deletions and additions

follows on a separate sheet:

\ <\, A method of performing protocol specific operations on a packet passing through a

connection point on a computer network, the method comprising:

(a) receiving the packet;

(b) receiving a set of protocol descriptions for a plurality of protocols that

conform to a layered model, a protocol description for a particular protocol at a

particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level, the one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child

protocol of the particular protocol at the pa:iticular layer level

information at one or more locations in the packet related to the

particular child protocol,

Received rrom < +1510291 2985 > at 5/27/0312:06:25 PM (Eastern Daylight Time)

p,2

EX 1018 Page 294

Jun '2’? 08 68: 10a DDQOsenFeld +1—S‘D—281~2885 p.2

S/N 09/609179 {Our APPT-OOl-El

Applicant(s): Dietz. at cl.

Application No: 09509179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

Group Art Unit 2155

Examiner: Dinh, Khanh Q.

SUPPLEMENTAL RESPONSE

Mail Stop Non Fee Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear sir.

Further to the telephone conversations between the examiner and the undersigned
regarding claim 18, here is a revised amendment to claim 18.

AMENDMENT TO CLAIM 187/

Kindly amend claim 18 to read as follows. A recitation showing the deletions and additions

. follows on a separate sheet:

\t‘\ . A method of performing protocol specific operations on a packet passing through a
connection point on a computer network, the method comprising:

(a) receiving the packet;

\ (b) receiving a set of protocol descriptions for a plurality of protocols that
Ki) conform to a layered model, a protocol description for a particular protocol at a

particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level, the one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child

protocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the

particular child protocol,

Received from < +1 510 291 $985 > at 5127103 12:03:26 PM [Eastern Daylight Time]

EX 1018 Page 294

D

.
Jun 27 03 08:lOa

,_,__

oo()osenf'e 1 d + 1-5:.:J-291-2985

SIN 09/609179 Page 2

(ii) the one or more locations in the packet where infonnation is stored

related to any child protocol of the particular protocol, and

(iii) if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the

one or more protocol specific operations to be performed on the packet

for the particular protocol at the particular layer level; and

(c) performing the protocol specific operations on the packet specified by the

set of protocol descriptions based on the base protocol of the packet and the

children of the protocols used in the packet,

wherein the packet belongs to a conversational flow of packets having a set of one or

more states, and wherein the protocol specific operations include one or more state

processing operations that are a function of the state of the conversational flow of the

packet, the state of the conversational flow of the packet being indicative of the

sequence of any previously encountered packets of the same conversational flow as the

packet.

Received from< +1510 291 2985 > at 6127/03 12:00:20 PM [Eastern Daylight Time]

p.3

EX 1018 Page 295

 Jigs-1.27 03 on: ma nakiosenreid +1—5xvs-291-2885 P.3

SIN 09/609179 Page 2

(ii) the one or more locations in the packet Where information is stored

related to any child protocol of the particular protocol, and

(iii) if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the

one or more protocol specific operations to be performed on the packet

for the paiticular protocol at the particular layer level; and

(c) performing the protocol specific operations on the packet specified by the

set of protocol descriptions based on the base protocol of the packet and the

g l children of the protocols used in the packet,
wherein the packet belongs to a conversational flow of packets having a set of one or

A more states, and wherein the protocol specific operations include one or more state
M processing operations that are a function of the state of the conversational flow of the

packet, the state of the conversational flow of the packet being indicative of the

sequence of any previously encountered packets of the same conversational flow as the

packet.

Renewed from < +1 510 29‘] 2985 7: at EIZTI03 12:06:26 PM {Eastern Daylight Time]

EX 1018 Page 295

Jun 27 03 08:lOa DoDosenf'eld +1-s,J-2s1-2sas

SIN 09/609179 Page 3

Description of amendment to claim 18:

18. (Currently amended) A method ascoreling to claim 1, of performing protocol

Cc)

specific operations on a packet passing through a connection point on a computer

network, the method comprising:

(a)

(b)

receiving the packet:

receiving a set of protocol descriptions for a plurality of protocols that

conform to a layered model, a protocol description for a particular protocol at

a particular layer level including:

(i) if there is at least one child protocol of the protocol at the particular

layer level. the-one or more child protocols of the particular protocol at

the particular layer level, the packet including for any particular child

grotocol of the particular protocol at the particular layer level

information at one or more locations in the packet related to the

particular child protocol,

(ii) the one or more locations in the packet where information is stored

related to any child protocol of the particular protocol. and

(iii) if there is at least one protocol specific operation to be performed on

the packet for the particular protocol at the particular layer level, the

one or more protocol specific operations to be performed on the

packet for the particular protocol at the particular layer level: and

performing the protocol specific operations on the packet specified by the set of

protocol descriptions based on the base protocol of the packet and the children of the

protocols used in the packet,

__ wherein the packet belongs to a conversational flow of packets having a set of one or

more states. and wherein the protocol specific operations include one or more state

processing operations that are a function of the state of the conversational flow of the

packet, the state of the conversational flow of the packet being indicative of the

sequence of any previously encountered packets of the same conversational flow as

the packet.

Received from< -t1510291 2985 > at 6127/0312:06:26 PM (Eastern Daylight Time)

P• "4

EX 1018 Page 296

,,
Jun 27 03 08:lOa DoUosenf'eld + 1-s-J-291-2985

SIN 09/609179 Page 4

REMARKS ON THE REJECTION OF CLAIM 18

Regarding claim 18, the examiner asserts that Bruell discloses that the protocol specific
operations include one or more state processing operations that are a function of the state
of the flow of the packet. In particular, that Bruell's FIG. 1 and col. 3, line 20 to col. 4, line
33, and col. 14, line 38 to col. 15, line 10 describe this feature.

Applicants respectfully disagree.

State processing that depends on the state of a conversational flow is a concept described in
the specification. A conversational flow is the set of packets of a conversation. A
conversational flow has a set of one or more states. The state of a flow is described in the
specification as an indication of all previous events in the flow. State processing thus is
processing that depends on the state of a conversational flow the packet belongs to. i.e., on
the sequence of any previously encountered packets of the same conversational flow as the
packet. The examiner has failed to show that Bruell includes this feature. For example, the
word "state" does not even appear in Bruell.

The cited FIG. 1 of Bruell shows the process of constructing a packet. The cited part on
cols. 3 and 4 of Bruell describes FIG. 1 and also the use of Bmell's language to define
protocols and to process a single packet. No conversational flows or state processing are
disclosed. The cited part on cols. 14 and 15 ofBruell describes how Bruell's packet
description language (POL) may be advantageously implemented in a system for testing
internetwork routing devices (the device test environment 301). See FIG. 3. A user defines
one or several PDL files 302. To use the device test environment 301, a user creates a test
file 303 that specifies the number, type and optional content of packets for the device test
environment 301 to send to and receive from a device under test 305. The remainder of the
cited part of Bruell is repeated here:

The device test environment 301 follows the script created by the test files with
reference to the data packet formats defined in the PDL.files. The PDLfiles
determine the structure and default content of each packet type. When a device test
environment 301 reads an instruction in a test file for the device under test to send
a type of packet, it assembles the test packet by referring to the packet assembly
specification in the PDL.files 302. For example, if the device test environment
reads a test file instruction to send an Ethernet header (£NET.sub.-- HDR) packet,
it looks for the £NET.sub.-- HDR specification in the PDLfiles and assembles the
packet accordingly. Similarly, when the device test environment reads an
instruction in a test file for the device under test to receive a type of packet, a test
packet is provided for the device to receive. If the packet the test environment reads
matches the packet type in the PDLfiles, then the device test environment 301
reports that the test succeeded; otherwise, it reports that it failed.

There is no concept of a conversational flow or of the state of the flow of the packet. Bruell
discloses testing individual packets. Thus, applicants assert, the examiner has failed to

Received from< +1 510 291 2985 > at B/27/03 12:DB:26 PM (Eastern Daylight Time)

p.5

EX 1018 Page 297

Jun 27 03 08:lla DaOasenf'eld

-)
+ 1 - s·';:-6 - 2 s 1 - 2 s a s

SIN 09/609179 Page 5

show that Bruell describes state processing that is a function of the state of the flow of the
packet.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com,
or a telephone call to the undersigned at +1-510-547-3378 is requested.

Address for correspondence:
Dov Rosenfeld
5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +1-510-547-3378; Fax: +1-510-291-2985
Email: dov@inventek.com

Received from< +1 510 291 2985 > at 5127103 12:05:25 PM [Eastern Daylight Time)

Respectfully Submitted,

p.6

EX 1018 Page 298

4,___...~m..-”M.m-..»wvmmz
.,.....-....,.._.__..."W...

E
l
l .1

. ,' ,1
Jun 27 03 08: 11a DoQosenf‘eld +1—5‘rd—291-2995 p.S

SIN 09/609179 Page 5

show that Bmell deseribes state processing that is a function of the state of the flow of the

packet.

The rejection of claim 18 is thus believed overcome and the claims are allowable. Action to
that end is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com,

or a telephone call to the undersigned at +1—510-547—3378 is requested.

Respectfully Submitted,

/"

dwKT-I- 79:9;
Date senfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +1 -5 10647-3378; Fax: +1-510-291—2985
Email: dov@inventek.com

Received from < +1 510 291 2985 > at mm: 12:06:26 PM [Eastern Dayllght Tlme]

EX 1018 Page 298

r

(\
" \ "\

Notice of Allowability

Application No.

09/609,179
Examiner

Khanh Dinh

Applicant(s)

DIETZ ET AL.
Art Unit

2155

-· The MAILING DATE of this communication appears on the cover sheet with the correspondence address-
All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included
herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS
NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative
of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. ~ This communication is responsive to 6/13/2003.

2. ~ The allowed claim(s) is/are 2-18.

3. ~ The drawings filed on 6/30/2000 are accepted by the Examiner.

4. 0 Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) 0 All b) 0 Some* c) 0 None of the:

1. 0 Certified copies of the priority documents have been received.

2. 0 Certified copies of the priority documents have been received in Application No. __ .

3. 0 Copies of the certified copies of the priority documents have been received in this national stage application from the

International Bureau (PCT Rule 17.2(a)).

• Certified copies not received:

5. D Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

(a) D The translation of the foreign language provisional application has been received.

6. D Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted
below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE

7. 0 A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF
INFORMAL PATENT APPLICATION (PT0-152) which gives reason(s) why the oath or declaration is deficient.

8. 0 CORRECTED DRAWINGS must be submitted.

(a) 0 including changes required by the Notice of Draftsperson's Patent Drawing Review (PT0-948) attached

1) 0 hereto or 2) 0 to Paper No. __ .

(b) 0 including changes required by the proposed drawing correction filed __ , which has been approved by the Examiner.

(c) 0 including changes required by the attached Examiner's Amendment/ Comment or in the Office action of Paper No. __ .

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of
each sheet.

9. 0 DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the
attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

10 Notice of References Cited (PT0-892)
30 Notice of Draftperson's Patent Drawing Review (PT0-948)
50 Information Disclosure Statements (PT0-1449), Paper No. __ .
70 Examiner's Comment Regarding Requirement for Deposit

of Biological Material

20 Notice of Informal Patent Application (PT0-152)
40 Interview Summary (PT0-413), Paper No. __ .

60 Examiner's AmendmenUComment
80 Examiner's Statement of Reasons for Allowance
90 Other

U.S. Patent and Trademark Office

PT0-37 (Rev. 04-03) Notice of Allowability Part of Paper No. 9

EX 1018 Page 299

(

(\‘ r‘ ’1.
. I ix 9, ‘\\.

* l Application No. Applicant(s) . . . 09/609,179 DIETZ ET AL. _4
Notice ofAilowabimy Examiner Art Unit

i Khanh Dinh 2155
![WWl

a -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--
l All claims being allowable, PROSECUTlON ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included
7 herewith (or previously mailed), a Notice of Allowance (PTOL-SS) or other appropriate communication will be mailed In due course. THIS

NOTICE OF ALLOWABlLITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative
of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

. 1, This communication is responsive to 6/13/2003.

i 2, E The allowed claim(s) isiare gig.
E 3. E! The drawings filed on 6/30/2000 are accepted by the Examiner.

4, [:I Acknowledgment is made of a claim for foreign priority under 35 USO, § 119(a)-(d) or (f),
g a) [3 All b) 1:] Some‘ c) C} None of the:

' 1. El Certified copies of the priority documents have been received.

2. [:1 Certified copies of the priority documents have been received in Application No.

3. [1 Copies of the certified copies of the priority documents have been received in this national stage application from the

international Bureau (PCT Rule 172(3)).

" Certified copies not received: _____

5. 1:! Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

(a) [j The translation of the foreign language provisional application has been received.

6. El Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Applicant has THREE MONTHS FROM THE “MAILING DATE" of this communication to file a reply complying with the requirements noted
below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE

7. El A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER’S AMENDMENT or NOTlCE OF
iNFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or deciaration is deficient.

8. [j CORRECTED DRAWINGS must be submitted.

(a) 1:] including changes required by the Notice of Draftsperson’s Patent Drawing Review (PTO—948) attached

1) [:l hereto or 2) D to Paper No. .

(b) l] including changes required by the proposed drawing correction filed , which has been approved by the Examiner.

(c) [:1 including changes required by the attached Examiner‘s Amendment I Comment or in the Office action of Paper No.

identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front {not the hack) of
each sheet.

9~ El DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the
attached Examiner's comment regarding REQUiREMENT FOR THE DEPOSiT OF BlOLOGlCAL MATERIAL.

Afiachmenfis)

1E] Notice of References Cited (PTO-892) 2:] Notice of Informal Patent Application (PTO—152)
3D Notice of Draftperson's Patent Drawing Review (PTO-948) 4E] Interview Summary (PT0—413). Paper No.” .
5U information Disclosure Statements (PTO-1449), Paper No. ____. 6D Examiner's Amendment/Comment
7:} Examiners Comment Regarding Requirement for Deposit 8E] Examiner's Statement of Reasons for Allowance

01‘ Biological Material 9E] Other

. ,.

engifiw;5L5“
‘ ‘ t s': idMii‘lER

Wmand Trademark Office
PTCHi7 (Rev. 04m) Notice of Allowabiiity Part of Paper No. 9

EX 1018 Page 299

UNITED STATES PATENT AND ThADEMARK OFFIGE
UNITED STATES DEPARTMENT OF COMJl'1ERf'F.
United State• Patent and Trademark Office
Addnn· COMMISSIONER FOR PATENTS

PO Box 1450
Aleundrla, VUJ!il11• ll313-14l0
wwwuspto fPV

NOTICE OF ALLOWANCE AND FEE(S) DUE

7590

Dov Rosenfeld
5507 College Avenue
Suite 2
Oakland, CA 94618

07/01/2003
EXAMINER

DINH, KHANH Q

ART UNIT CLASS-SUBCLASS

2155 709-230000

DATE MAILED: 07/01/2003

APPLICATION NO F1LINGDATE FIRST NAMED INVENTOR ATTOR.NEYDOCKETNO CONFIRMATION NO.

09/609,179 06/30/2000 Russell S. Dietz APPT-001-2 2668

TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

APPLN TYPE SMALL ENTITY ISSUE FEE PUBLICATION FEE TOT AL FEE(S) DUE DATE DUE

nonprovis1onal NO $1300 $0 $1300 10/01/2003

THE APPLICATION IDENTIFIED ABOVE BAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT.
PROSECUTION ,ON IHE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS.
THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INffiATIVE OF THE OFFICE OR UPON
PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE
MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. I.HIS. STATUTORY
PERIOD CANNOT BE. EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT
FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-85B (OR AN EQUIVALENT)
MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE APPLICATION WILL BE REGARDED AS
ABANDONED.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current
SMALL ENTITY status: .
A. If the status is the same, pay the TOT AL FEE(S) DUE shown
above.

B. If the status is changed, pay the PUBLICATION FEE (if required)
and twice the amount of the ISSUE FEE shown above and notify the
United States Patent and Trademark Office of the change in status, or

If the SMALL ENTITY is shown as NO:

A. Pay TOTAL FEE(S) DUE shown above, or

B. If applicant claimed SMALL ENTITY status before, or is now
claiming SMALL ENTITY status, check the box below and enclose
the PUBLICATION FEE and 1/2 the ISSUE FEE shown above.

CJ Applicant claims SMALL ENTITY status.
See 37 CFR 1.27.

II.PART B - FEE(S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USPTO) with
your ISSUE FEE and PUBLICATION FEE (if required). Even if the fee(s) have already been paid, Part B - Fee(s) Transmittal should be
completed and returned. If you are charging the fee(s) to your deposit account, section "4b" of Part B Fee(s) Transmittal should be
completed and an extra copy of the form should be submitted.

III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Box ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due. "

Page I of4
PTOL-85 (REV. 05-03) Approved for use through 04/30/2004.

EX 1018 Page 300

C) C

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Pntent and Trademark Office
Marnu' UOMMISSIQNER FOR PATENTSPO Box N50

MWm: 12313-1450mus-p20 30v

NOTICE OF ALLOWANCE AND FEE(S) DUE

7590 07/01/2003

Dov Rosenfeld

550'? College Avenue DINH, KHANH Q
Suite 2
camcmms .

2155 709-230000

DATE MAILED; O7!0H2003

APPLICATION NO FILING DATE FIRST NAMED MENTOR ATTORNEY DOCKET NO CONFIRMATION N0.

091609.179 06/30/2000 Russell 3. Diet: APPT-OOI -2 2668

TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

APPLN TYPE SMALL ENTITY ISSUE FEE PUBLICATION FEE TOTAL FEMS) DUE DATE DUE
N0 $0nonprovismnal S 1300 $1300 MIDI/2003

TH E APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINER AND IS ALLOWED FOR ISSUANCE AS A PATENT.
WQ11 THE MEBIIS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS.
THIS APPLICATION 18 SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE 0R UPON
PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHINmmWFROM THE
MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THISW
12311191; “313139 1 In;W.SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT
FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-SSB (0R AN EQUIVALENT)
MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE APPLICATION W’ILL BE REGARDED AS
ABANDONED.

HOW TO REPLY TO THIS NOTICE:

1. Review the SMALL ENTITY status shown above.

Ifthe SMALL ENTITY is shown as YES, verify your current If the SMALL ENTITY is shown as NO:
SMALL ENTITY status: .

Ah If the status is the same, pay the TOTAL FEE(S) DUE shown A. Pay TOTAL FEE(S) DUE shown above, ora ove.

B. If the status is changed, pay the PUBLICATION FEE (if required) B. If applicant claimed SMALL ENTITY status before, or is now
and twice the amount of the ISSUE FEE shown above and notify the claiming SMALL ENTITY status, check the box below and enclose
United States Patent and Trademark Office of the change in status, or the PUBLICATION FEE and 1/2 the ISSUE FEE shown above.

0 Applicant claims SMALL ENTITY status.
See 37 CFR 1.27.

11. PART B — FEE(S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USP’I‘O) with
Your ISSUE FEE and PUBLICATION FEE (if required). Even if the fee(s) have already been paid. Part B - Fee(s) Transmittal should be
Completed and returned. If you are charging the fec(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be
Completed and an extra copy of the form should he submitted.

III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Box ISSUE FEB unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page l of 4
PTOLSS (REV. 05—03} Approved for use through 04/30/2004.

EX 1018 Page 300

r·\
\)

PART B - FEE(S) TRANSMITT At·

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
Commissioner for Patents
Alexandria, Virginia 22313-1450

m (703)746-4000
.a'"gTRUCTIONS: This form should be used for transmittmg the ISSUE FEE and PUBLICATION FEE (if required). Blocks I through 4 should be completed where
!1;i,ropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as
indicated unless corrected below or directed otherwise in Block I, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for
maintenance fee not1ficat1ons.
--tt)R.kEN I CORRESPONDHNCH XDDIU!SS (Note. Legibly mark-up wuh any correc11ons or use Block ll Note: A cert1flcate of matlmg can only be used for domestic madtngs of the

7590 07/0112003 Fee(s) Transmittal. This certificate cannot be used for any other
accompanying papers. Each additional paper, such as an assignment or
formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

Dov Rosenfeld
5507 College Avenue
Suite 2
Oakland, CA 94618

I hereby certify that this Fee(s) Transmittal is being deposited with the
United States Postal Service with sufficient postage for first class mail in an
envelope addressed to the Box Issue Fee address above, or being facsimile
transnutted to the USPTO, on the date indicated below.

(Depo,rtors name)

{Signature)

(Date)

APPLICA TJON NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

09/609,179 06/30/2000 Russell S. Dietz

TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

APPLN.TYPE SMALL ENTITY ISSUE FEE

nonprovisional NO $1300

EXAMINER ART UNIT

DINH, KHANH Q 2155

1. Change of correspondence address or indication of "Fee Address" (37
CFR 1.363).

PUBLICATION FEE

$0

CLASS-SUBCLASS

709-230000

APPT-001-2 2668

TOTAL FEE(S) DUE DATE DUE

$1300 10/01/2003

CJ Change of correspondence address (or Change of Correspondence
Address form PTO/SB/122) attached.

2. For printing on the patent front page, list (I)
the names of up to 3 registered patent attorneys
or agents OR, alternatively, (2) the name of a
single firm (having as a member a registered
attorney or agent) and the names of up to 2
registered patent attorneys or agents. If no name
is listed, no name will be printed.

2._.. _______ _

CJ "Fee Address" indication (or "Fee Address" Indication form
PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer
Number is required.

3, ASSIGNEE NAME AND RESIDENCE DAT A TO BE PRINTED ON THE PA TENT (print or type)

3 ________ _

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. Inclusion of assignee data is only appropriate when an assignment has
been previously submitted to the USPTO or is being submitted under separate cover. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) Cl individual Cl corporation or other private group entity CJ government

4a. The following fee(s) are enclosed: 4b. Payment ofFee(s):

Cl Issue Fee Cl A check in the amount of the fee(s) is enclosed.

Cl Publication Fee Cl Payment by credit card. Form PT0-203 8 is attached.

Cl Advance Order - # of Copies------- Cl The Commissioner is hereby authorized by charge the required fee(s), or credit any overpayment, to
DepoSit Account Number (enclose an extra copy of this form).

Commissioner for Patents is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issue fee to the application identified above.

(Authonzed Signature) (Date)

NOTE; The Issue Fee and Publication Fee (if required) will not be accepted from anyone
!)ther than the applicant; a registered attorney or agent; or the assignee or other party in
Interest as shown by the records of the United States Patent and Trademark Office.

This collection of information 1s required by 37 CFR 1.311. The mformat10n is required to
obtain or retain a benefit by the public which is to file (and by the USPTO to process) an
application. Confidentiality 1s governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is
estimated to take 12 minutes to complete, including gathering, preparing, and submitting the
completed application form to the USPTO. Time will vary depending upon the mdiv1dual
case. Any comments on the amount of time you require to complete this form and/or
suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S.
Patent and Trademark Office, U.S. Department of Commerce, Alexandria, Virg_inia
22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.
SEND TO: Commissioner for Patents, Alexandria, Virginia 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are fl?quired to respond to a
collection of information unless it displays a valid 0MB control number.

TRANSMIT THIS FORM WITH FEE(S)

PTOL-85 (REV. 05-03) Approved for use through 04/30/2004. 0MB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

EX 1018 Page 301

;

,3
l
E

l

M"

C‘ U. \‘

“ r PART B - rum) TRANSMITTAL"

Complete and send this form, together with applicable fec(s), to: Mail Mail Stop ISSUE FEECommissioner for Patents

Alexandria, Virginia 22313-1450
Eu {703)746—4000

STR CTIONS: This orm shoul 6‘ used for transmitting the ISSUE FEE and .PUBLICATI . FEE 1 required . Blocks 1
ropn'ateA All further correspondence including the Patent, advance orders and notification of maintenance fees Will mailed to the current cones ondcnce address in

fixated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and’or (b) indicating a separate " EE ADDRESS“ formaintenance fee notifications.

oug ould he completed where

1 m =2! ymir «I? w. my mmmmnsnrusc 0*? ote: cert; mate 0 mar mg can on y e us or omestic mar mgs o
7590 07,01,2003 Feds) Transmittal This certificate cannot be used for any other

accompanying papers, Each additional paper, such as an assignment or
DOV Rosenfeld formal dmwmg, must have its own certificate of mailing or iransmrssron.

5507 College Avenue Certificate of Mailing or Transmission
Suite 2 I here!) certify that this Feegs) Transmittal is being deposited With theUnited rams Postal Servrce with sufficient osmge for first class mail in an
Oakland, CA 94618 envelope addressed to the Box Issue Fee a dress above, or being facsrmiletransmitted to the USPTO, on the date indicated below.

APPLICATION NO FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

091609,!79 06803000 Russell S. Diet: APPT—OOI -2 2668
TITLE OF MENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC TN A NETWORK

WW $me mew mm
N0 50nonpmvisional $1300 $1300 1 (WI/2003

DWI-i, KHANH Q 2155 709-230000

 1. Chan of correspondence address or indication of "Fee Address" (37 2. For rintin on the atom front a e, list 1
cm L 63). P g P p g ()the names of up to 3 registered patent attorneys l

0 Change of corrcggondence address (or Change of Correspondence or agents OR“ alternatively, (2) d“ name Of 3Address form PTO 32122) attached. single firm (having as a member a registered 2
[VP Add .,. that C “F Addr "1nd at‘ f attorney or agent) and the names of up to 2

cc toss in 1‘ mm or ee ass in ion om: -

PTO/SBM'I; Rev 03-02 or more recent) attached. Use of a Customer ngsm patent attorneys .or agents. if no mm“: 3
Number is required. 15 listed, no name Will be printed.

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assi ee is identified below, no assignce data will appear on thepatent. Inclusion of assignec dam is only appropriate when an assignment hasbeen previously submitted to the 'SPTO or is bemg submitted under separate cover. Completion of this form is NOT a substitute for ii ing an asstgnmcnt.
(A) NAME OF ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignoc category or categories (will not be printed on the patent) U individual D corporation or other private group entity El government
4a. The following feeds) are enclosed: 4h Payment of Feds):

Q 1551:: F“ I! A check in the amount of the feds) is enclosed.
[:3 Publication Fee E] Payment by credit card. Form PTO-2038 is attached

_ ~ Ct The Commissioner is hereby authorized by eha e the re aired feds , or credit any or aymcm, to
0 Advance Order # 0f Copies _....._____._ Deposit Account NumberWfinéfose an can: copy otlthis form), erp

Commissioner for Patents is requested to apply the Issue Fee and Publication Fee (if any) or to rte—apply any previously paid issue fee to the application identified above.

(Authorized Signature)

 (Date)

NfilE; The Issue Fee and Publication Fee (i? required) wall not be accepted from anyone
9ther than the ap licant; a registered attom or a cut; or the assignee or other party in
interest as shown y the rcwrcls of the United tales atom and Trademark Office.

Thls'collcction oi laloxmation is aired by 3? CFR 1311. The mlormation)S requigd to
Obtagn or retain a benefit by the pun lic which is to file (and b the USFI‘O to process) an
application. Confidentiality is governed by 35 U.S.C. 122 and 3 CFvaJet. This collection is
estimated to take 12 minutes to com lebe. including gathering, prepanng, and submitting the

completed application form to the SPTO. Time Will vary depending upon the indivrdual
case. Any comments on the amount of time you require to comp etc this form and/orsuggestions for reducing this burden, should be sent to the Chief In onnation Officer, US.
Patent and Trademark Office, US. Department of Commerce, Alexandria, Vir inia
22313-1450 DO NOT SEND FEES 0R COMPLETED FORMS TO THIS ADD SS.
SEND TO: Commissioner for Patents, Alexandria, Virginia 2231 15-1450.

Under the Paperwork Reduction Act of 1995, nmflsuns are required to respond to aCollection of infomation unless it displays a valid 0 control number.
TRANSMI'I‘ ms FORM WITH FEEIS)

PTOL~85 (REV, {ls-()3) Approved for use through 0413012004. 0MB 0651-0033 US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE

EX 1018 Page 301

+.
~' ,.
' ·'

r
I .
~
' ~

UNITED STATES PATENT AND TRADEMARK OFFIGE

APPLICATION NO.

09/609,179

7590

Dov Rosenfeld
5507 College A venue
Suite 2
Oakland, CA 94618

FILING DATE FIRST NAMED INVENTOR

06/30/2000 Russell S. Dietz

07/0112003

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Addm1 COMMISSIONER FOR PATENTS

P.o eoxmo
Aleundn1, \luJl1rut 22JlJ.WO
WWW uspto go¥

ATTORNEY DOCKET NO. CONFIRMATION NO.

APPT-001-2 2668

EXAMINER

DINH, KHANH Q

ART UNIT PAPER NUMBER

2155

DATE MAILED: 07/01/2003

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)

The patent term adjustment to date is 643 days. If the issue fee is paid on the date that is three months after the
mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half
months) after the mailing date of this notice, the term adjustment will be 643 days.

If a continued prosecution application (CPA) was filed in the above-identified application, the filing date that
determines patent term adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval
(PAIR) system. (http://pair.uspto.gov)

Any questions regarding the patent term extension or adjustment determination should be directed to the Office of
Patent Legal Administration at (703)305-1383.

Page 3 of4

PTOL-85 (REV. 05-03) Approved for use through 04/30/2004.

EX 1018 Page 302

0 , (“x

UNITED Scams PATENT AND TRNJEMARK OFFICE UNITED STATES DEPARTMENT OF (XDMMEKCE
United States Pntent and Trudeau-(k Office
Adam: COMMISSIONER FOR YM‘ENTS

R0 Box E650
Mandi-m. Vugmn 223334450mnegro gov

09/609,179 06/300090 Russell 5' Dim APPT-OOl-Z 2668

7590 07/01/2003

Dov Rosenfeld DINH, KHANH Q
5507 College Avenue
Suitez

Oakland, CA 94618 2255

DATE MAILED: 07/0122003 6

Determination of Patent Term Adjustment under 35 U.S.C. 154 (1))
(application filed on or after May 29, 2000)

The patent term adjustment to date is 643 days. If the issue fee is paid on the date that is three months after the

mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half
months) after the mailing date of this notice, the term adjustment will be 643 days.

If a continued prosecution application (CPA) was filed in the aboveddentified application, the filing date that

determines patent term adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval

(PAIR) system. (http:/fpairnsptogov)

Any questions regarding the patent term extension or adjustment determination should be directed to the Office of

Patent Legal Administration at (703)305—1383.

1’axaa
F,i«t
‘r

Page 3 of 4

I"Kl—$5 (REV. 05-03) Approved for use through 04/30/2004.

EX 1018 Page 302

,t
'

I

UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION NO.

09/609,179

7590

Dov Rosenfeld
5507 College Avenue
Suite 2
Oakland, CA 94618
UNITED ST ATES

FILING DATE FIRST NAMED INVENTOR

06/30/2000 Russell S. Dietz

07/01/2003

UNITED STATE'> DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Addxes1 COMMISSIONER FOR PATENTS

PO. Box l-450
Aleundna, Yuguua 22313-1450
wwwlll)'togov

ATTORNEY DOCKET NO. CONFIRMATION NO

APPT-001-2 2668

EXAMINER

DINH, KHANH Q

ART UNIT PAPER NUMBER

2155

DATE MAILED: 07/01/2003

Notice of Fee Increase on January 1, 2003

If a reply to a "Notice of Allowance and Fee(s) Due" is filed in the Office on or after January 1, 2003, then the
amount due will be higher than that set forth in the "Notice of Allowance and Fee(s) Due" since there will be an increase
in fees effective on January I, 2003. ~ Revision .of£filent and Trademark~ fur fugtl Tum: m Final Rule, 67 Fed.
Reg. 70847, 70849 (November 27, 2002).

The current fee schedule is accessible from: htw://www.uspto,&ov/main/howtofees.htm.

If the issue fee paid is the amount shown on the "Notice of Allowance and Fee(s) Due," but not the correct amount
in view of the fee increase, a "Notice to Pay Balance of Issue Fee" will be mailed to applicant. In order to avoid
processing delays associated with mailing of a "Notice to Pay Balance of Issue Fee," if the response to the Notice of
Allowance and Fee(s) due form is to be filed on or after January 1, 2003 (or mailed with a certificate of mailing on or
after January 1, 2003), the issue fee paid should be the fee that is required at the time the fee is paid. If the issue fee was
previously paid, and the response to the "Notice of Allowance and Fee(s) Due" includes a request to apply a
previously-paid issue fee to the issue fee now due, then the difference between the issue fee amount at the time the
response is filed and the previously paid issue fee should be paid. ~ Manual of Patent Examining Procedure, Section
1308.01 (Eighth Edition, August 2001).

Questions relating to issue and publication fee payments should be directed to the Customer Service Center
of the Office of Patent Publication at (703) 305-8283.

Page 4 of 4

PTOL-85 (REV. 05-03) Approved for use through 04/30/2004.

EX 1018 Page 303

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATFS DEPARTMENT OF COMJVIERCE
United States Pntent and Trademark Office
Address COMMISSIONER FOR PATENTSPO. Box 1450

Alexandria, Vngm- 123134450mus-Pu) gov

09/609,179 06/30/2000 . Russell S. Dictz APPT-OOl-Z 2668

7590 07/01/2003

Dov Rosenfeld DINH, KHANH Q
5507 College Avenue
suite: mm
Oakland, CA 94618 2155
UNITED STATES DATE MAILED: 07/01/2003

Notice of Fee Increase on January 1, 2003

If a reply to a "Notice of Allowance and Fee(s) Due" is filed in the Office on or after January 1, 2003, then the

amount due will be higher than that set forth in the "Notice of Allowance and Fee(s) Due" since there will be an increase
in fees effective on January 1, 2003. fig Reign; of11m m I rademark Reg E Ejsgal Zear 2003; Final Rule, 67 Fed.
Reg. 70847, 70849 (November 27, 2002).

The current fee schedule is accessible from:WW

If the issue fee paid is the amount shown on the "Notice of Allowance and Fee(s) Due," but not the correct amount

in view of the fee increase, a "Notice to Pay Balance of Issue Fee" will be mailed to applicant. In order to avoid
processing delays associated with mailing of a "Notice to Pay Balance of Issue Fee," if the response to the Notice of
Allowance and Fee(s) due form is to be filed on or after January 1, 2003 (or mailed with a certificate of mailing on or
after January 1, 2003), the issue fee paid should be the fee that is required at the time the fee is paid. If the issue fee was
previously paid, and the response to the "Notice of Allowance and Fee(s) Due" includes a request to apply a
previously-paid issue fee to the issue fee now due, then the difference between the issue fee amount at the time the
response is filed and the previously paid issue fee should be paid. See Manual of Patent Examining Procedure, Section
1308.01 (Eighth Edition, August 2001).

Questions relating to issue and publication fee payments should be directed to the Customer Service Center

of the Office of Patent Publication at (703) 305-8283.

Page 4 of 4

l

"i
l
:

PTOL.35 (REV. 05-03) Approved for use through 04/30/2004

EX 1018 Page 303

Jul 08 03 10:3Sa Dov Onf'eld +1-s10-2nses p.l

INVENTEK
DovRosenfakl
5507 College Avenue, Suite 2
oakland, CA 94616, USA

Fax
RECEIVED

JUL 2 8 2003
Phone: (510)547-3378; Fax: (510)653-7992
dov@ioveflllilk.com Technology Center 2100

Patent Application Ser. No.: 09/609179

Applicant(s): Dietz, el al.

Ref./Docket No: APPT-001-2

Examiner.: Dinh, Khanh Q.

Art Unit: 2155 Filing Date: June 30, 2000

TO:

Fax No.:

DATE:.

FROM:

RE:

FAX COVER PAGE

Commissioner for Patents
P.O. Box. 1450·
Alexandria, VA 22313-1450

.

United States Patent and Trademark Office
(Examiner Dinh, Khanh Q., Art Unit 2155)

703-746-7239

July 08, 2003

Dov Rosenfeld, Reg. No. 38687

Amendment after Allowance '.

Number of pages i11cluding cover: 6

OFF!CIAL COMMUNICATION

PLEASE UBGENTL Y DELIVER A COPY OF
THIS RESPONSE TO
EXAMINER DINH, KHANH Q., ART UNIT 2155

C~lificate or Facsimile Tnmsmlssion wller ':J'l. CFB 1.1

I hereby certify that this response is being facsimile uansmitted to the Unit6d Srates Patent and Trademark Offke at
telephone number 703::746:7239 addressed the Commissioner for Pale~ts. P.O. Box 1450, Alcxiindri11, VA 22 • SO
on.

Slpec!: _ __,,_.,._:;...-,~----
Name: Do

EX 1018 Page 304

WWW,»P»

x,

‘ Jul’OS (:3 10:33; Dov Onrexd +1—510-2(3985

¢ Dov Hosmfakl

5507 000992 Avenue. Suite 2

INVENTEK @600. FaxRECEIVED
0&1ch 8461mm JUL 2 8 2003
Phone: (520)547-3373; Fax:{510)65?r‘1992 . ‘

mvahvenm , . Technology Center 2100

Hum Applicétion Sen No.1 09/609179 Rafi/Docket Na: APPT-OOI -2

Appficaatfi): Dietz. e: at. ' ‘ Examiner; Dinh, Khanh Q-

Fili ; Date: June 30, 2000 Art Unit: 2155

FAX COVER PAGE

TO: Commissioner for Patents
- P.O. Box 1450'

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Dinh, Khanh (2., All Unit 2155)

Fax Nan: 7Q§J46~72§9

DA TE:. July 08 , 2003

FROM.- ‘ Dov Roscnfeld, Rag. No. 38687

RE: Amendment after Allowance . \.

Number ofpagex including cavsr: 6

OFFlCiAL COMMUNICATION .

PLEASE URGENTLY DELIVER A COPY OF-
THIS RESPONSE TO

EXAMINER DINH, KHANH Q, ART UNIT 2155

Certificate of Fumhuile Transmission under 31cm LB

mayhem numberWaddresscd the Comissioncr {or Patcms. £0. Box [450, Alexandria. VA 22I hereby catify um; this mpcnse is being facsimile mnnnined to the Uniud Slaw: Parent and decmaxk Office at ‘ ‘
“Rm-am: 01 an 231 ms . u was 2:35:24 pm [Emnayuau tum;

EX 1018 Page 304

Jul oe 03 10:39a Dov Cinf'eld

TRAN SM ITT AL
FORM

(to 1141 used fr:,(an~ after Initial 116ngJ

ENCLOSURES (check.,, rhtit l!DDIVJ

p.2

Application Number 091609179 RE

FlllngDate

First Named Inventor Dietz. Russell s.

Group Art Unit 2155

Examiner Name Dinh, Khanti a.
Attorney Docket Number ,APPT-0:>1-2

D Fee TransmlnaJ Form D Assignment Papers 0 Altar Allowanoe Communication
(for an Application) lo Group

D Fee Altached D Drawing(s) D Appeal CommunlcatiQl'l to Board
of App$als and lnletferences

[8J Ainelldment I Respon$8 D LicenSing-related Papers 0 Appeal Communication to Group
~ Notr:e. Bdel. Reply Briel)

D D After Final 0 Petilion Routing Sfip (PTOISB/69) D Prop~etary lntormalion
and Accompanying Pelitioo

D D AffidavitsldeclaraUon(s) D To Convert a D Status L<er
Provisional~

D Extension of Tune RGquesl D f>cn.wr of Allomey, AIWOCalion D Adclillonal Eni::losure(s)
Change of Ccrrespondflnce (please identify below): . Address

D Express Abandonment Reque&t D Teiminal Clsdalmer D Return Postcard

D Information Olsclosur9 Statement D Small Entity Slatement D
D Certified Copy of Priority Oocument{s) D Request or Refund D
D Rei;ponse to Missing Parts/ Incomplete Remarks I Applleation

D
0 0 Response lo Missing Parts under 37

CFR 1,52 or 1.53 .

SIGff!lTURe OF APPLICANT, ATTORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

F"um or- Dov Rosenfeld, Reg. No. 38687 -
Individual name -~
Signature ~

Date .-ws,2003

ADDRESSFORCORRl!SPONDENCE

Firm Oov Rosenfeld
or 5607 College Avenue, SI.lite 2

lncivldual name Oakland, CA 84618. Tel: +1-510-547-3318

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certlfy that this correspondence is being facsimile transmitted with the United States Patenl and Trademark Office at
Telephone number 703-746-7239 addressed to; Commissioner for Pa -. Box 1450, Alexandria, VA . July a, 2003
22313·1450onthisdate: ·
T,

Oat July 8, 2003

EX 1018 Page 305

9 " ‘6

f Jul 03 03 10:39:: Dov CLnPeld ®\ +1- #2.;-

TRANSMITTAL

. _FORM
(#2 00 used (oral!WmRik! (riffs! Ming)

mm

mmus

ewwvnn _
Efifififllllmmmm

_WWW We

ENCLOSURES check If! #18} a - . f

Response {a Missing Parts} incomplete
Amman

[3 Fee Transmmai Form D Assignment Papers D Ans! Anowame Commmleau‘on(for an Apph’cafian) m Gm“?

U Fee Attached D Drawing(s) U appeal Comicafiqn ta BoardAweigh Whats

maMmt I Response [3 Licensing-related Payers D Appaal Gammamicamn to Group. “mum E191. Rant)! and)

E] D ‘ Mar Final D Petition Rowing $pr 671088.189) a Pmprgetary IntormafionandAWPatnion

D E] Aflidavitsldeclaraflofls} D To Comm :2 C] Status Lena:Pr . . I a I' .

D Extension of Tuna Request E] PawsrotAnomey. Hawaiian D Additions! Endosumts); enema 0'Wm (please identify below):

; D Express Abandonment Haquesi D Tenninalbfsdaime: D Return Postcard

E III 1mmmam slam: E] smammm D-
Cerfified Co a: PM! Documents) Re uest or Rafund

g a w w < a a m—

D E] Responselomssmgmmamdera?CFRI.520H.53 '

SIGNATURE OF APPHCANT. ATTORNEY. 0R hGENTl WRRESFDNDBICE ADDRESS

Firm or- Dovflosanteld. Reg No 38687
Individual name

_DateMM3In 1

maess sonCORRESPONDENCEFirm Dov Rosanfald

or 5507 Coflage Aven'ue, Suits 2

Inaviduat name Oakland. CA 94618. Tel: +1.51 0—54?~3373

CERTIFICAW OF FAGSIMILE TRANSMISSION

I herebycomfy ha: this correspondence is being facsimile transmitted will: the United States Patent and deemark Office at
Tebphona number mus-7m addressed to: Commissioner for Pa :: x _. I'. Box 1450, Alemdda. VA .

 223134450 on this dale:

m7“!—

WmMm

Rudy-d m fi '01 510 a: 2.35 $878813 233522! mmnw‘rm;

EX 1018 Page 305

'I

·,

Jul 08 03 10:~s. Dov (')enf'eld

. ~({/' ~
Our Ref./Docket No: APPT-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK omcE

Applicant(s): Dietz. et aL

Application No.:· 09/609179

Filed: June 30, 2000

:ritle: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY A
PROTOCOL DESCRIPTION LANGUAGE

Group Art Unit: 2155

Examiner: Dinh, Khai:th Q.

Notice of Allowepcc mailed: July 1,
2003

Confirmation No.: 2668

AMENDMENT AFrER ALLOWANCE UNDER 37 CFR 1.312

_p,3

Mail Stop Non Fee Amendment
Commissioner for Patents

RECEIVED
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

This is an amendment after allowance under 37 CFR 1.312.

Certit'icate or Facsimile Tl'ammiasion under 37 CFR 1.8

JUL 2 8 2003

Technology Center 2100

I bereby certify that this response is being facsimile transmitted IO lhe United Stlltes Patent and Trademark
Orticc at telephone number 703-746-7239 addressed the Commissioner for Patents, P.O. Boi1 1450,
Alexandria, VA 22313-14SO on.

Name.

A.cetr1d Ihlen c +1 !10 291 21115 » at711/03 2:35:24 "M !Ealan o.,flght TtmeJ

EX 1018 Page 306

:l 'I

Jul 08 03 10:39. Dov flenf‘eld +1n—flo-2Qsas .p.3
Witt? Dmb

. Our Ref.IDockct No: _A_______PP'I‘-001-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dictz, et al.

Application No.:~ 09/609179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY A
PROTOCOL DESCRIPTION LANGUAGE

Group An Unit: 2155

Examiner: Diuh, Khanh Q.

Noticc of Allowance mailed: July 1,
2003

Confirmation No.1 2668

AlVIENDMENT AFTER ALLOWANCE UNDER 37 CFR 1.312

RECEIVED
Mail Stop Non Fee Amendment

Commissioner for Patents ' JUL 2 8 2003
PO. Box 1450 ‘

Alexandria, VA 22313-1450 . Technology Center 2100

Dear Commissioner: .

This is an amendmmt after allowance under 37 CFR 1.310.

Certificate ofFadmile Transmission under 37 CFR 1.8

 I hereby certify that this mponsc is being facsimile lransmltted to the United States Paton! and Trademark
Office at telephone number 703-746-7239 addtcssed the Commissioner for Patents, PO. Box 1450.
Alexandria, VA 273134450 on.

?
.5;x
V
g

Name. I vRosenfeld. Reg. No 38637
A~r~¢W-

Rum-amm- «1 mm 29:5 > uni-m 2:35:24 PM {Batu-n mmmq

Wan-way.«.
EX 1018 Page 306

Jul OB 03 10:40a +1-s10-2()ses

SIN 09/609179 Page2 APPT-001-2

INTRODUCTORY REMARKS:

Kindly amend this application· as follows and kindly consider the following remarks.

I

Rtcetved lrocn c .-, 510 201 2915 > ll 7N03 2:35:24 P'M ~m Dayllghl TtnoeJ

p. 4 ·

EX 1018 Page 307

I
, I

 Ju1 on 03 10:403 Dov (¥n€eld +1~sm—al\‘ 995 19.4 -

S/N 09/609179 Page 2 APPT-001-2

INTRODUCTORY REMARKS:

Kindly amend this applicadori as follows and kindly consider the following remarks.

(

Renewedm.n m 291 26:5 > 1 7M: 235:2: PM [last-m DWI! TIMI

EX 1018 Page 307

Jul 08 83 10s40a +1-s10-2t.0ses

SIN (!9/609179 Page3 APPT-001-2

AMENDMENT TO THE TITLE

Kindly delete the title of record and substitute the following title therefor:

--PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFlED
BY A PROTOCOL DESCRIPTION LANGUAGE-

p.5

EX 1018 Page 308

Jul‘ 09 83 10:40:. Dav '(xnfield +1~510—ag -985 9-5

SIN (19/609179 Page 3 APPTml-Z

AMENDMENT TO THE TITLE

Kindly delete the title: of record and substitute the following title therefor.

«PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION WGUAGE~

hams mm< n :19 291 am » a 1m): 2:353 94mm Omsk! We}

EX 1018 Page 308

i,;·

Jul OB 03 10:40a Dov (\nfald p.6

•'

0

SIN 09/609179 Page4 o~~~-
REMARKS

Status of the Application:

A Notice of Allowance was mailed on July I, 2003.

Amendment to the Title:

·. \1)~01-2

-,~~~ECEIVED.
JUL 2 S 2003

Technology Center 2100

Upon receipt of the Notice of Allowance, it was noticed that the title cited on the Notice
was wrongly written as

METHOD.AND APPRATUS FOR MONITIRING TRAFFlC IN A NETWORK

Trus is not the title of the invention as filed. A filing receipt was issued on November 7,
2000 with this wrong title. The application was fued on June 20, 2000 with the correct
title, which is:

PROCESSING PROTOCOL SPECIFIC lNFORMATION lN PACKETS
SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Correction of the title is respectfully requested.

Applicants understand that an amendment after·allowance under 37 CFR l.3·12 is not a
right, but is discretionary. The original error was the error of the Patent Office. Applicants
respectfully request that this amendment be entered.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com,
or a telephone call to the undersigned ot +l-510-547-3378 is requested.

Respectfully Submitted,

~r :we!>
. ~---
~38687 r}

Address for correspondence:·
Dov Rosenfeld
5507 College Avenue,Suite 2
Oakland, CA 94618

. Tel. +i-510-547-3378~ Fax: +1-510-291-2985
Email: dov@inventek.com

R1eetveG tram c +1 510 2111 29H > at 111/0l :Z:35:24 l'M [Eastam o.ytlghl TlmeJ .

EX 1018 Page 309

Jul 08 93 10:40a Dov (dinf‘ald Vl-l-SlO-EQSBS

sm 09/609179 Page4 ©§®ffl ab‘éfimor-z _..\
REMARKS RECE‘VED

Status of the Application: JUL 2 3 2003

A Notice of Allowance was mailed on July 1. 2003. . TechnOlOQY Center 2100
‘ Amendment to the Title:

Upon receipt of the Notice of Allowance. it was noticed that the title cited on the Notice
was wrongly written as

METHODAND APPRATUS FOR MONITIRING TRAFFIC IN A NETWORK

This is not the title of the invention as filed. A filing receipt was issued on November 7,
2000 with this wrong title. The application was filed on June 20, 2000 with the correct
title, which is:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS
SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Correction of the title is respectfully requested.

Applicants understand that an amendment afte'r'allowance under 37 CFR 1.312 is not a
. right, but is discretionary. The original error was the error of the Patent Office. Applicants

respectfully request that this amendment be entered.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com.
or a telephone call to the undersigned at +1-510-547-3378 is requested.

Respectfully Submitted. ,

63” .296 3> Z
osenfeld. Reg No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College AvenueSuite 2
Oakland, CA 946 l8 ‘

. Tel. +l-510—547—3378: Fax: +1—510-291-2985
Email: dov@inventek.com

Kleelvenlrun< 0'1 510 291 me > I! 7M3 2:35:24 pm [Em WTlme] .

EX 1018 Page 309

•
{

J

.
'

' '

'INVENTEK
Dov Rosenfeld
5507 College Avenue. Suite 2
Oakland, CA 94818, USA
Phone: (510)547-3378: Fax: (510)653-7992
dov@ln\181\tek.eom

Fax 0

Patent Applicallon Ser. No.: 09/609179

A.pplicant(s): Dietz, et al.

Filing Date: June 30, 2000

Ref./D<>cket No: APPT-001-2

Examiner.: Dinh, K.hanh Q.

Art Unil: 21SS

TO:

Faz No.:

DATE:

FROM:

RE:

FAX COVER PAGE

Commissioner for Patents
P.O. Box 1450
Alexandria. VA 22313-1450

United States Patent and Trademark Office
(Examiner Dinh, Khanb Q., Art Unit 2155)

:Z03-746-7238

J'aly 14. 2003

Dov Rosenfeld, Reg. No. 38687

Amendment after Allowance

Number of pages including cover: 6

, OFFICIAL COMMUNICATION

PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO
EXAMINER DINH, KHANH Q. 1 ART UNIT 2155

Certifioate of .Facsimile Transmlssl.1111 under 37 CFR. 1.8

l hcrcb)' certify that this response is lx:ing-facaim.ile trusmittcd 10 lhc Uniled States Pa~t and Trademark Office at
telephone number 703-746;;7238 ddressed the Commissioner for Paten!$, P.O. Box 14SO, AI.J.Ja.nc:fria. VA 223 J • 450
~- ~~~··-:...,,,-~£----

Daic: =t It Y '0 3 Signed: • •. ' ..

NIIJlle:DoYR

--........_ <+1 51D2S12ll5., aU'll4.t8U:15:111'11 p!eslemDlllllllfCTUlleJ
·,

EX 1018 Page 310

"5NVENTEK A Fax 0
Dev 8115me

5507 College Ame. am 2
Oakland. CA 946m, USA
Phone: (5105045373: F936 (510)653-7992
dovfihvenlekmm

 Patent Application Ser. Na.: 09/609179 Rafi/Decker Na: APEIHK}! -2

Applicant“): Dictz, 2: cl Examiner; Dink. Khanh Q.

Fifing Date: June: 30. 2000 Art Unix: 2155

FAX COVER PAGE

To: Commissioner for Patents
PD. Box 1450

Alexandria. VA 22313-1450

United States Patent and Trademark Office

(rimming: Dink, Khanh Q, A11 Unit 2155)

FIR No..- 203346—7238

DAIE: July 14, 2003

FROM: Dov Roscnfeld, Reg. No. 38687

RE: Amendment after Allowance

Mamba ofpagas including cover: 6

‘ OFFICIAL COMMUNICAWON

 PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO

EXAMINER DINH, KHANH Q., ART UNIT 2155

Cerfifimte of FlcsimileMinis!” unda' 37 CPR 1.8

I hatch)- unify that thi: response is being famimile transmitted to the Unimd Sm Patent Inc! Trademark Office at
ukphone numberWildfimed the Commissioner for Patents. BO. Box 1450, NWz-ia. VA 223] ‘M"011.

’2 Wham ssnumuummmsmmWfimflm}

EX 1018 Page 310

I

l

I

Jul 14 03 10c19a Dov Ros;enf"ela n1-=:>1u-c::a, -.::uo:::,

I ,. '

Our Ref/Docket No: APPf-001-2 Patent

IN THE UNITED STA TES PATENT AND TRADEMARK OFFICE

Applicant(s}: Dietz, et al. Oroup Art Unit: 2155

Application No.: 09/609179 Examiner: Dinh, Khanh Q.

Filed: June 30, 2000 Notice of Allowance mailed: July I,

nde: PROCESSIN'G PROTOCOL SPBCJFIC 2003
lNFORMATION IN PACKETS SPECIFIED BY A Confirmation No.: 2668
PROTOCOL DESCRJPTION LANGUAGE

AMENDMENT AFl'ER ALLOWANCE UNDER 37 CFR 1.312

Mail Stop Non Fee Amendment
Com.missioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

This. is an amendment after allowance under 37 CFR l.312.

This amendment was previously sent July 8, 2003 to the non-after final fax number for the
Art Unit, and is now being sent tot~ after-final fax number per examiner request.

Ctrtlftcate ofll'aaimlle Tnammlsskm IIJlder 37 CFR LI

l hen:by cutify lhat this response ls being facsimile lrllDSlniUc:d to the Ullitc:d Slates Patent and Tredcmark
Office at telephone number 70&,746-7238 ad~ the Commissioner for PalcnlS, P.O. Box 450
Aleundria,. VA 22313-1"50 on.

Date: ""-t""/l'-1 {03 Signed:_""5i~~:;..._----
Name:

,..

ce K... +n .e ~'I,

lL1 P i,,r,f
1c/l;, 0::,

EX 1018 Page 311

VWWV'W“WUWV~WW¥

Jul 14 03 10:193 Dov Rosenrexc *1-31u-ca;~caua p”:i

(”W C11””. ,\

Our RefJDockct No: gaggle Patent

IN THE UNITED STA'I‘ES PATENT AND TRADEMARK OFFICE

Applicant“): Dictz, et at.

Application No; 09I6091‘79

Filed: June 30, 2000

Title: PROCESSING PROMO}. SPECIFIC
INFORMATION IN PAWS SPECIFIED BY A
PROTOCOL DESCRE’TION LANGUAGE

Group An Unit: 2155

Examimr: Dish. Khan]: Q.

Notice ofAllowance mailed: my 1,
2003

Coufianafion No.: 2658

AWNIENI AFTER ALLOWANCE UNDER 37 CFR 1.312

Mail Stop Non Fee Amendment
Commissioner for Patents

RO‘ Box 1450
Alexandria. VA 22313-1450

Dear Commissionar:

This is an amendment after aliowancc under 37 CPR 1.312.

This amendment was previousiy sent July 8, 2003 to the nonefier final fax number for the
Art Unit. and is now being 5:11; to th: afar-final fax number per examine: request.

Certifiate atWe1Wunder 37 CPR 1.3

1 hmby certify that this response 33 Min; facsimike msmiucd t0 the United Stems Patna; and Imam):
Office at telcpham number 7%?457238 named {he Comadssioner for Pam's, PO. Box 450
Alexandria' VA 223 13-145!) on.

Mt”

fiwm‘n mm 2935 Human: :mmmmmwml

EX 1018 Page 311

t

n n
SIN 09/609179 Page2 APPT-001-2

INTRODUCTORY REMARKS:

Kindly emend this application as follows and kindly consider the following remarks.

I

!
I ~""-G!rv111c+11102H:tff••fl1~'2:tlt:1'PM m~ghl'TlmtJ
t

f •
!

t

r-. '

EX 1018 Page 312

.-r us swan-un- u‘Iv nvwv-uccu ~- v-.. n—va hwy-

0 fl

SIN 091609179 P33: 2 AFN-0014

INTRODUCTORY REMARKS:

Kindly amend this application as follows and kindly consider the fofiowing remarks.

l

i “WNW!" H 5102" am» 17114031:16:1thme111m)7

ft
!

EX 1018 Page 312

n
SIN 09/609179 Page3 APPT-001-2

AMENDMENT TO THE TITLE

Kindly delete the title of record and substitute the following title therefor:

--PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS SPECJFIED
BY A PROTOCOL DESCRlPTION LANGUAGE-

~ ~lloeo•am«•i 110211 m, •lll1nCIOH:'ll:111'Mpr.nlffl'IDllJ'lllltll 1lmaJ

t
'

I

EX 1018 Page 313

....

SIN 09/609179

REMARKS

n

Status of the Application:

Page4

A Notice of Allowance was mailed on July 1. 2003.

Amendment to the Title:

n
'

APPT-001-2

Upon receipt of the Notice of Allowance. it was noticed that the title cited on the Notice
was wrongly written as

METIIOD AND APPRATUS FOR MONITIRING TRAFFIC IN A NETWORK

This is not the title of the invention as filed. A filing receipt was issued on November 7.
2000 with this wrong title. The application was filed on June 20, 2000 with the correct
title, which is:

PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS
SPECIFIED BY A PROTOCOL DESCIUPTI.ON LANGUAGE

Correction of the title is respectfully requested.

Applicants understand that an amendment after allowance under 37 CFR 1.312 is not a
right, but is discretionary. The original error was the error of the Patent Office. Applicaots
respectfully request that this amendment be entered.

If the Examiner has any questions or comments that would advance the prosecution and
ullowance of this application, an en:ulil mes.~ge to the undersigned at dov@inventek.com,
or a telephone call to the undersigned at + 1-510-547-3378 is requested.

Date

AddRss for correspondence:
Dov Rosenfeld
5507 College: A venue.Suite 2
Oakland, CA 94618
Tel. +l-Sl0-S47·3378; Fax: +1-Sl0..291-2985
Email: dov@inventek.com

EX 1018 Page 314

1:}

sm 091609179 Fag: 4 APPT-OO 1-2

REMARKS

Status of the Application:

A Notice of Allowance was mailed on July 1. 2003.

Amendment to the 77:19:

Upon receipt of the Notice of Allowance. it was noticed that the title cited an the Notice
was wrongly written as

METHOD AND APPRATUS FOR MONH'IRING TRAFFIC IN A NETWORK

This is not the title of the invention as filed. A filing receipt was issued on Novcmhcr 7.
2000 with this wrong title. The application was filed on Jun: 20. 2000 with th: mince!
title. which is:

PROCESSING PROTOCGL SPECIFIC INFORMATION IN PACKETS
SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Correction of the title is respectfully requcstcd.

Applicants understand that an madman: me: allowance undcr 37 CPR 1.312 is not a
right. but is discretionaxy. The original error was the error of the Patent Office. Applicants
respectfully request that this amcndmcnt be entercd.

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application. an email messagc to the undersigned at dov®$nvumckcom.
or a telephone call to the undersigned at 446106473378 is requested.

3114/05
Date

Address for conespondence:
Dov Roseufcld

5507 Collcgc Avenucsuitc 2
Oakland, CA 94618
Tel. +1 6106476318; Fax: +1-510~291-2985
Email: dovfainventekmm

MM«s 5102“ an: >anm:atmtmmmomgmmj

EX 1018 Page 314

""
TRANSMITTAL () Application Number 09/609179 {)

FORM
(IO be used tor all 0011Gponc1Gnee etter inlrilll filing}

FilingDat 30Jun2000

Firs& Named Invent r Dietz. Russell s.
Group Art Unit 2155

Examiner Name Dinh, Khanh a.
Attorney Docket Number APPT-001·2

ENCLOSURES fcheclc a/I fhst annlvl

D Fee Transmittal Fo1m D Assignment Papers D After Allowance Communication
(for an Appllcallon} to Group

D Fee Attached D DravAng{s) D Appeal Communicallon to Board
ot Appeals and 1ntenen1nces

[&] Amendment I Response D llcensi ng-rela.ted Papenil D Appeal Communication to Group
(,f,ppea,I llbtia\ Bdef, Reply SritJI)

D D Alter Final D Petition Routing Slip (PTQISB/69) D Proprietary lnfonnatlon
and Acccmpanying Petition

0 D
I Affldavltsldeclara1ion(;) D To Convert a D Status Letter

Prowlonal Applk:ation

D Exlenslon of Time Requnt D PowerofAltomey,Revocation D Ackfrtlonal Enclo;ure(;)
Char,ge of Co~ndence (please Identity below}:
Address

D express Abandonment Request D Terminal Olsclalmer D Return Postcard

D Information Dl6closure Statement D Small Entity Statement D
D Certified Copy of Priority Document(s) D Request of Refund D
D Response to Missing Parts/ lncofTlllete Remarks I Application

D
D D Re6ponse to Missing Parts under37

CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATIORNEY, OR AG.ENT/ CORRESPONDENCE ADDRESS

Finn or Dov Rosenfeld,>~
lndivicluel name

Signature ~
Date July~~

A'DDRESS FOR CORRESPONDEWlf

Firm Dov Rosenfeld
or 5507 College Avenue, Suite 2

lndvidua,I name Oakland. CA 94618, Tel: +1·51o-547-3378

CERTIFICATE OF FACSIMILE TRANSMISSION

I heraby certify that Ihle correspondence is being facsimile transmitted with the United Stales Paten& and Trademark Office at

Telephone number703-746-7238 addressed to: Commissioner far Patents, P. • 80)(1450, Alexandria, VA July 14, 2003 ••
22313-1450 on 1his date:
T or. rinled name Dov Rosenfeld

Date July 14, 2003

. '•dtom c+1510211 :ZSU>IIZ711.ill3:Z:1$:11fl'M[!as1cm Daylgl'IITlmeJ

EX 1018 Page 315

 Application Numberl TRANSMITTAL 5

FORM
{to be mediate” correspondence after initial filing)

First Named Invent r Dletz. Russell 5.

Grumman _
Examiner Name Dinh. Khanh O.

ENCLOSURES emen mar ' . - /

Express Abandonment Request Terminal Dleclaimer Return Postcard
El

Intonation Dlsclosum Statement E Small Entity Statement
Certified Copy of Prior‘ty Documsnfls)

D Fee Transmittal Form D Asslgnment Papers D After Allowance Communication(foran Application) to Group

Fee Attached D Drawlngis) U Appeal Commuricatton to Boardat Append: and tntertorencss

Amendment I Response D Licensing-related Papers U meal Communication to GroupWP“ Nah Dd". Raw3"”)
Alter Final Petition Routing Slip (PTO/83169) P rieta lnfonnatlon

I: El WWW-“gr...“ III ”P 'V

D ’ Aflidevltsldsclarelinnie) D To Converts D Status LetterPtovtslonai Applicetlm

Extension of Time Request U Power ofM". Revocation E Additional Enclosure(e)Change nespondsneo ' I ,-
Address A (please Identlly be ow)

C] Request ol Refund

Response to Missing Parts! Incomplete
Apptiwion

EIEIDEIEJE]DEIDRE]
D Response to Missing Pans undera7GFH 1.52 or 1.5!

SIGNATURE OF APPUCANT. ATTORNEY, OH AGENT! CORRESPONDENCE ADDRESS

firm or Dev Rosenfsid, Reg. N0. = z .'
lntfividual name

sans-m my
W9 _
A sass FOR ccansspoune .’DD

Firm Dov Hossnleld \
0" 5507 College Avenue. Sune 2
lndvidual name Oakland CA 94618. Tel: 4-1-51 05476378

CERTIFICATE OF FACSlMILE TRANSMISSION

I hereby certily that this correspondence is being iacelmile transmitted with the United States Patent and Trademark Office at
Telephone number 703-746-7238 addressed to: Comlssloner for Parents, . Box 1450. Alexandria. VA July 14. zoom ~
22313-1450 on this date: ‘.

——/_mmm
,/

. My." loin 1“ 510 2.12!“ > I! "I“! 2:15:18 MMD-mnm]

i
l

EX 1018 Page 315

r
!
'

l

0
UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION NO. FILING DATE

09/609,179

7590

Dov Rosenfeld
5507 College Avenue
Suite 2
Oakland, CA 94618

06/30/2000

10/27/2003

FIRST NAMED INVENTOR

Russell S. Dietz

UNITED STATES DEPARTMENT OF COMME!l.CE
United States Patent and Trademark Office
Add,,..,. COMMISSIONER FOR PATENTS

P.O. Bo, 1450
Aleundna, Vug1ma 22313-1450
www .uspto.gov

ATTORNEY DOCKET NO. CONFIRMATION NO.

APPT-001-2 2668

EXAMINER

DINH, KHANH Q

ART UNIT PAPER NUMBER

2155

DATE MAILED: I0/27/2003 I/

Please find below and/or attached an Office communication concerning this application or proceeding.

PT0-90C (Rev. 10/-03)

EX 1018 Page 316

Pu

7‘33 /‘\

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCEUnited States Pntem 1nd Trudemnrk Office
Addrass‘ COMMISSIONER FOR PATIENTS

PD. Box 1450
Munich":{ Vuglmz 22313-1450www.usplo.gov

AFFLICATION N0. FILING DATE FIRST NAMED MENTOR ATTORNEY DOCKET NO, CONFIRMATION NO.

09/609,179 00/30/2000 Russell 3. Diet; APPr-om-z 2668

Dov Rosenfeld own, KHANH Q

5507 College Avenue
SW

Oakland1 CA 94618 2155 /DATE MAILED: 1012712003 /

Please find below and/0r attached an Office communication concerning this application or proceeding.

PTO-90C (Rev.10/03)

EX 1018 Page 316

__.J----------------,-;----;;----;:-------:-;----------.-;-------;;-----:~----l---'Efl.4L..:L...
Application No. -Applicant(s)

Response to Rule 312 Communication
09/609,179 DIETZ ET AL.

Examiner Art Unit

l Khanh Dinh 2155
l ----------------'-------------'--------'----~

I
f

l
i

I

, -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -

1. IZI The amendment filed on 14 July 2003 under 37 CFR 1.312 has been considered, and has been:

a) IZI entered.

b) D entered as directed to matters of form not affecting the scope of the invention.
/

c) D disapproved because the amendment was filed after the payment of the issue fee.

Any amendment filed after the date the issue fee is paid must be accompanied by a petition under 37 CFR 1.313(c)(1)

and the required fee to withdraw the application from issue.

d) D disapproved. See explanation below.

e) D entered in part. See explanation below.

t<..OINH
10/23/03
4.U, ll5"S"

HOSAINALNA
SUPERVISOPY PA"'l"ENT E)(AM1NER

I, 0----l!. P~fi,pp;;a;;;:ten:.t=an::;,dT:;::ra::;d=:ema=rk"Offi""ce=---------------------------------------__J

i' OL-271 (Rev. 04-01) Reponse to Rule 312 Communication Part of Paper No. 11

EX 1018 Page 317

.7.”rue~5r~x~dA ,

rev-eHwy.,";""‘,;\W""n~

“Tn—r“,“w‘fl-rr—tcNW,ww—..
l.i

it;:

a) E entered.

K-DINH

lo/23/03
4,0. 2155'

3% Patent and Trademark Office0L-271 (Rev. 04-01)

Response to Rule 312 Communication

\ -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address —

1. E The amendment filed on 14 July 2003 under 37 CFR 1.312 has been considered, and has been:

b) [:1 entered as directed to matters of form not affecting the scope of the invention.

c) [:1 disapproved because the amendment was filed after the payment of the issue fee.

Any amendment filed after the date the issue fee is paid must be accompanied by a petition under 37 CFR 1.313(c)(1)

and the required fee to withdraw the application from issue.

d) I] disapproved. See explanation below.

e) [I entered in part. See explanation below.

Application No. ‘Applicant(s)

09/609,179 "‘ DIETZ ET AL.

Examiner

Khanh Dinh ‘

I

HOSAIN ALAM

SUpEm/isopv PATENT EXAMINER
a

Reponse to Rule 312 Communication Part of Paper No. 11

EX 1018 Page 317

l
t
.~
t

\

1

.. Ref./Docket No: Ah'T-001-2 Patent
t

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Dietz, et al.

Assignee: Hi/fn, Inc.

Patent No: 6,665,725 0 \
Issue Date: December, 16, 2003

Application No.: 09/609,179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

~-i': i 1 2.004

' ,r· - ··•'{'C.\ctiv\',
[)1 \ .. ;\}I \Q'

REQUEST FOR CERTIFICATE OF CORRECTIONS

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

The above patent contains significant errors as indicated on the attached Certificate of Correction forrn
(submitted in duplicate).

_L Such errors arose through the fault of the Patent and Trademark Office. It is requested that the
certificate be issued at no cost to the applicant.

However, if it is determined that the error(s) arose through the fault of applicant(s), please note
that such error is of clerical error or minor nature and occurred in good faith and therefore issuance of
the certificate of Correction is respectfully requested. The Commissioner is authorized to charge
Deposit Account No. 50-0292 any required fee. A duplicate of this request is attached.

,•,~

__ Such error arose through the fault of applicant(s). A credit card charge forrn for the fee is
enclosed. Such irror is of clerical error or minor nature ~d occurred in good faith and therefore
issuance of the certificate of Correction is respectfully requested.

Such errors specifically:

In col. 6, line 47 change "NBTBIOS" to --NETBIOS--.

Certificate of Mailing under 37 CFR 1.8 .
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on.

Dmoo Aer SI Z.00'1 . ··- Signode ~ ~
Name: Amy Drury

EX 1018 Page 318

Wag: C at a»
s Ref.fDocket No: APr’T-OOI-Z Patent #24n .

APR 0 s 2004 °' IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ’ I}
t ; ($3

$2» 4
d TRAP-c “.3ntor(s): Dietz, er a!

Assignee: Hilfn, Inc.

Patent No: 6,665,725M

Issue Date: December, 16, 2003

Application No: O9f609,l79 { :artiizcaie

Filed: June 30, 2000 31?: g f 2005:

; Title: PROCESSING PROTOCOL SPECIFIC “i ,ifimeetim t
3 INFORMATION IN PACKETS SPECIFIED it “W

, BY A PROTOCOL DESCRIPTION

g LANGUAGE

%

t RE UEST FOR CERTIFICATE OF CORRECTIONS

Commissioner for Patents

PO. BOX 1450

Alexandria, VA 22313-1450

Dear Commissioner:

The above patent contains significant errors as indicated on the attached Certificate of Correction form

(submitted in duplicate).

X Such errors arose through the fault of the Patent and Trademark Office. It is requested that the

certificate be issued at no cost to the applicant. _ ‘

However, if it is determined that the error(s) arose through the fault of applicant(s), please note

that such error is of clerical error or minor nature and occurred in good faith and therefore issuance of

the certificate of Correction is respectfully requested. The Commissioner is authorized to charge

Deposit Accgunt No 50-0292 any required fee. A duplicate of this request is attached.
Such error arose through the fault of applicant(s)A credit card charge form for the fee15

enclosed Such error is of clerical error or minor nature and occurred1n good faith and therefore
issuance of the certificate of CorrectionlS respectfully requested.

Such errors specifically:

In col. 6, line 47 change "NBTBIOS" to ~-NETBIOS~-.

Certificate of Mailing under 37 CFR 18

I hereby certify that this response is being deposited with the United States Postal Service as first class mailin an
envelope addressed to the Comrtussiouer for Patents, 1’O. Box 1450, Alexandria, VA 22313-1450 on.

Date: Ag (5 g 100% . W Signed:
Name: Amy Drury

APR12 2w;

EX 1018 Page 318

-
;

Our Ref./Docket No: APi-'T-001-2

In col. 6, line 55 change "Diferent" to --Different--.

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.
FIG6--.

In col. 18, line 17 change "updatelookup" to --update-lookup--.

In col. 25, line 38 change "server-say" to --server-say--.

In col. 53, line 4 change ""Default"" to --"Default" :--.

Page 2

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines .UP with the beginning
of "SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to ~-rl p--.

In col 71, 9th line from the bottom change "netbios (Ox3c00," to --netbios (Ox3c00)--~

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" to --SYNTAX INT (8)--.

In col. 81, approx. line 41 change "SYNTAXBITSRING(12)" to --SYNTAX BITSTRING (12)--.

In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE--:

In col. 93, approx. line 45 change "'vnd.m-relaudio" to --'vnd.rn-realaudio'--.

In col. 96, line 38, change "In" to --in--.

The undersigned requests being contacted at (510) 547-3278 if there are any questions or clarifications,
or if there are any problems with issuance of the Certificate of Correction.

Respectfully Submitted,

Apr. 5
1
'loo '-1

Date Do osenfeld, Reg. No. 38687
Agent of Record.

Address for correspondenee:
Dov Rosenfeld
5507 College A venue, Suite 2,
Oakland, CA 94618 .Tel. (510)547-3378; Fax: (510)291-2985

EX 1018 Page 319

Our Ref/Docket No: APr—‘T-001-2 Page 2

In col. 6, line 55 change "Diferent" to "Different".

In col. 16, line 27 change "FIG. 6 FIG 6" to
-—FIG 6.

FIG6——.

In col. 18, line 17 change "updatelookup" to -—update-lookup-—.

In col. 25, line 38 change "server-say" to --server—say-—.

In col. 53, line 4 change ""Default"" to --"Default" :--.

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines'up with the beginning
of "SYNTAX" in line 42 and with the beginning of "LENGTH“ in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of

"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to 4—r1p--.

In col 71, 9th line from the bottom change "netbios (0x3cOO," to --netbios (0x3c00)-—, ,

In col. 73, aprox. line 25 Change "tyop" to -—type—-.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" to --SYNTAX INT (8)—-.

In col. 81, approx. line 41 change "SYNTAXBITSR1NG(12)" to ——SYNTAX BITSTRING (12)».

In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE";

In col. 93, approx. line 45 change "'vndm—relaudio" to --'vnd.rn-realaudio'~—.

In col. 96, line 38, change "In" to ——in--.

The undersigned requests being contacted at (510) 547-3878 if there are any questions or clarifications,

or if there are any problems with issuance of the Certificate of Correction.

Respectfully Submitted,

 fig 5 Zoo ‘1
Date ‘ Do osenfeld, Reg. No. 38687

' ‘ Agent ‘of Record.

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2,

Oakland, CA 94618 «Tel. (510)547-3378; Fax: (510)291-2985

EX 1018 Page 319

PTO/SB/44 (10-96)
Approved for use through 6/30/99. 0MB 0651·0033

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperv.ak Reductioo Act of 1995, no persons are requi<ed to respond to a collection of information unless it-dispays a valid 0MB conlrol

number.

(Also Form PT0-1050)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO: 6,665,725 Yt7 /
DATED : December 16, 2003

INVENTOR(S) : Dietz, et al.

It is certified that an error appears in the above-identified patent and that said Letters Patent
are hereby corrected as shown below: -- -

In col. 6, line 47 change "NBTBIOS" to --NETBIOS--.

ln col. 6, line 55 change "Diferent• to --Different--. ·

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.
FIG6-·.

In col. 18, line 17 change "updatelookup" to --update-lookup--.

In col. 25, line 38 change userver-say" to --server-say--.

In col. 53, line 4 change' ''"Default"" to --"Default" :--.

.. ,__ --·-·

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of "SYNTAX" in
line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --r1 p--.

In col 71, 9th line from the bottom change "netbios (Ox3c00.'' to --netbios (Ox3c00)-·.

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" tO.r'·SYNTAX INT {8)-· ..
I

- \
In col. 81, approx. line 41 change "SYNTAXB1TSRING(12)" to --SYNTAX BITSTRING,(12)-~.
. """-·

- ,_ ;

In col. 83, approx. lir,e 36 change "LOOKUPFILE" to --LOOKUP FILE--.

In col. 93, approx. line 45 change "'vnd.m-relaudio" to ~-·vnd.rn-realaudio'--.

In col. 96, line 38, change "In" to --in--.

MAILING ADDRESS OF SENDER (Atty/Agent of Record):

\

Dov Rosenfeld, Reg. No. 38687
5507 College Avenue, Suite 2
Oakland, CA 94618

PATENT NO: 6,665.725
No. of ad9itional copies

APR I 2 20IM

EX 1018 Page 320

PTO/88144 (1098)
Approved for use through 8/30/99 OMB 0651 0033

Patent and Trademark Office: U3. DEPARTMENT OF COMMERCE
Underme Papermn: Reductton Act of 1995, nopetsons are requedtorespcmto acoltecttonotmtonnation unhes‘rtdsptays avatidOMB contranumber.

Also Form PTO-1050

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO: 6,665,725 I’M

DATED : DecemberIG, 2003

INVENTORISI : Dietz, et a1.

It Is certified that an error appears In the aboveuidentified patentend that said Letters Patent
are hereby corrected as shown below:

In coI. 6, line 47 change "NBTBIOS" to ~~NETBIOS--.

In Cd. 6, Iine 55 change 'Diferent" to --Differen ~-. '

In col. 16, Iine 27 change "FIG. 8 FIG 6" to
«FIG 6.
FIGS».

In cot. 18, Iine 17 change "updatelookup“ to v-update-Iookupu.

In col. 25, line 38 change “servereay” to "server—say".

In cot 58, line 4 changé""'DefauIt“” to ——"Default".

In cot. 53, Iine 45 shift "DISPLAYHINT" to the right so its beginning lines up with the beginning of
"SYNTAX" in Iine 42 and with the beginning of "LENGTH" in Iine 43.

In cut 58 Iine 46 shift "FLAGS" to the right so Its beginning lines up with the beginning of “SYNTAX" in
Iine 42 and with the beginning of "LENGTH" in Iine 43.

In coI. 61, aprox. Iine 32 change "rip" to --r1p--.

In co! 71, 9th Iine from the bottom change “netbios (0x3600,” to --netbios (0X3COO)--.

In cot. 73, aprox. Iine 25 change “tyop" to «type». I

in cal. 79, 4th Iine from the bottom change "SYNTAXINT(8)" tea-SYNTAX INT (8)—~. :’I“

' I

In C01. 81, approx. Iine 41 Change "SYNTAXBITSRING(12)" to --SYNTAX BITSTFIINGIE‘I 2)-:.

In 001.83. approx. Ispé‘és change "LOOKUPFILE" to ~~LOOKUP FILE".

In col. 93, approx. line 45 change “'vnd.m-Ie|audio" to ¢-'vnd.rn—realaudio'--.

In col. 96, Iine 38, change "In“ to --In--.

MAILING ADDRESS OF SENDER (AIISIIAgenI of Record):
Dov Rosenfeld, Reg. No. 38687 ~ PATENT NO: 6 665 725
5507 Cottage Avenue. Suite 2 No. of adgitional copies
Oakland. CA 94618

APR 1 2 20M

EX 1018 Page 320

PTO/SB/44 (10-96)
Approved for use through 6/30/99. 0MB 0651-0033

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Papel'M'.llk Reduction Act of 1995, no persons are required to raspooj to a collection of information unless it cisplays a valid 0MB ccntrol

number.

/Also Form PT0-10501

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO: 6,665,725 f?/
DATED : December 16, 2003

INVENTOR(S) : Dietz, et al.

It is certified that an error appears in the above-identified patent and that said Letters Patent
are hereby corrected as shown below:

In col. 6, line 47 change "NBTBIOS" to --NETBIOS--.

In col. 6, line 55 change "Diferent" to --Different--.

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.
FIG6--.

In col. 18, line 17 change "updatelookup" to --update-lookup--.

In col. 25, line 38 change "server-say" to --server-say--.

In col. 53, line 4 change ""Default"" to --"Default" :--.

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of "SYNTAX" in
line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --r1 p--.

In col 71, 9th line from the bottom change "netbios (Ox3c00," to --netbios (Ox3c00)--.

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" tQ.i"·SYNTAX INT (8)--.

In col. 81, approx. line 41 change "SYNTAXB1TSRING(12)" to --SYNTAX BITSTRING (12)u.

In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE--.

In col. 93, approx. line 45 change "'vnd.m-relaudio" to 7-'vnd.rn-realaudio'--.

In col. 96, line 38, change "In" to --in--.

MAILING ADDRESS OF SENDER (Atty/Agent of Record):
Dov Rosenfeld, Reg. No. 38687
5507 College Avenue, Suite 2
Oakland, CA 94618

PATENT NO: 6,665.725
No. of additional copies

APR 1 2 200Al

EX 1018 Page 321

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 Bl
DATED : December 16, 2003
INVENTOR(S) : Dietz et al.

Page 1 of 2

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6,
Line 47, change ''NBTBIOS" to --NETBIOS --.
Line 55, change "Diferent" to --Different--.

Column 16.
Line 27, change "FIG. 6 FIG 6" to
--FIG. 6.
FIG6--.

Column 18,
Line 17, change "updatelookup" to -- update-lookup-.

Column 25.
Line 38, change "server-say" to -- server-say--.

Column 53,
Line 4, change '"'Default"" to - "Default" : --.

. Line 45, shift "DISPLAY-HINT" to the right so its beginning lines up with the
beginning of "SYNTAX" in line 42 and with the beginning of "LENGTif' in line 43.
Line 46, shift "FLAGS" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of"LENGTH" in line 43.

Column 61.
Aprox. line 32, change "rip" to - rlp --.

Column 71,
Line 9, from the bottom, change "netbios (Ox3c00,'' to -- netbios (Ox3c00) --.

Colwnn 73,
Aprox. Line 25, change "tyop" to -- type--.

Column 79,
Line 4 from the bottom, change "SYNTAXINT(8)" to -- SYNTAX INT (8) --.

EX 1018 Page 322

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 6,665,725Bl
DATED : December 16, 2003

Page 2 of 2

INVENTOR(S) : Dietz et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 81.
Approx. line 41, change "SYNTAXBITSRING(l2)" to -- SYNTAX BITSTRING
(12) --.

Column 83,
Approx. line 36, change "WOKUPFILE" to --WOKUP FILE--.

Column 93,
Approx. line 45, change "vnd.m-relauclio" to -- 'vnd.rn-realauclio' --.

Column 96,
Line 38, change "In" to -- in--.

Signed and Sealed this
/

Twenty-ninth Day of June, 2004

JONW.DUDAS
Acting Director of the United States Patent and Trademark Office

EX 1018 Page 323

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 B1 Page 2 of 2
DATED : December 16, 2003
INVENTOR(S) : Dietz et 211.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 81

Approx. line 41, change “SYNTAXBITSRING(12)” to -- SYNTAX BITSTRING
(12) --.

Column 83

Approx. line 36, change “LOOKUPFILE” to -- LOOKUP FILE --.

Column 93

Approx. line 45, change “vnd.m-relaudio” to -- ‘vndm-realaudio’ —-.

Column 96

Line 38, change “In” to -- in -—.

Signed and Sealed this
_/

Twenty-ninth Day of June, 2004

m W4)»

‘ x 5 JON w. DUDAS
‘ Acting Director ofthe United States Patent and Trademark Oflicg

EX 1018 Page 323

Our Ref./Docket No: APf>T-001-2 Patent

~ 10 t.,. IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
t;.

~ 0 i t~
Inv"'JJ· r(s): Dietz, et al.

I ~~
}t (',.~-

~~'· 1gnee: Hi/fn, Inc.

Patent No: 6,665,725 0(
Issue Date: December, 16, 2003

Application No.: 09/609,179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

REQUEST FOR CERTIFICATE OF CORRECTIONS

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Commissioner:

The above patent contains significant errors as indicated on the attached Certificate of Correction form
(submitted in duplicate).

K Such errors arose through the fault of the Patent and Trademark Office. It is requested that the
certificate be issued at no cost to the applicant.

However, if it is determined that the error(s) arose through the fault of applicant(s), please note
that such error is of clerical error or minor nature and occurred in good faith and therefore issuance of
the certificate of Correction is respectfully requested. The Commissioner is authorized to charge
Deposit Account No. 50-0292 any required fee. A duplicate of this request is attached.

__ Such error arose through the fault of applicant(s):.,A credit card charge form for the fee is
enclosed. Such error is of clerical error or minor nature and occurred in good faith and therefore
issuance of the certificate of Correction is respectfully requested.

Such errors specifically:

In col. 6, line 47 change "NBTBIOS" to --NETBIOS--.

Certificate of Mailing upder 37 CFR 1.8
I hereby certify that this response Is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on.

Date: [Wr. 5, 1oO "'\. Signed: -------.1-----1o----=::::;;,4-_

APR l 2 2®:4

EX 1018 Page 324

Our Roi/Docket No: APPT-OOl-2 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent No: 6,665,725 Bl

Issue Date: December, 16, 2003

Application No.: 09/609,179

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC

INFORMATION IN PACKETS SPECIFIED

BY A PROTOCOL DESCRIPTION

LANGUAGE

REQUEST FOR CERTIFICATE OF CORRECTIONS

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

Dear Commissioner:

The above patent contains significant errors as indicated on the attached Certificate of Correction form

(submitted in duplicate).

X Such errors arose through the fault of the Patent and Trademark Office. It is requested that the
certificate be issued at no cost to the applicant. .

However, if it is determined that the error(s) arose through the fault of applicant(s), please note

that such error is of clerical error or minor nature and occurred in good faith and therefore issuance of

the certificate of Correction is respectfully requested. The Commissioner is authorized to charge

Deposit Account No. 50-0292 any required fee. A duplicate of this request is attached.

Such error arose through the fault of applicant(s),A credit card charge form for the fee is

enclosed. Such error is of clerical error or minor nature and occurred in good faith and therefore

issuance of the certificate of Correction is respectfully requested.

Such errors specifically:

In col. 6, line 47 change "NBTBIOS" to -—NETBIOS——.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Commissioner for’Patents, PO. Box 1450, Alexandria. VA 22313-1450 011.

Signed: ’
Name: Amy Drury

APR 12 299!

EX 1018 Page 324

Our Ref./Docket No: APPT-001-2

In col. 6, line 55 change "Diferent" to --Different--.

In col. 16, line 27 change "FIG. 6 FIG 6" to
--FIG 6.
FIG6--.

In col. 18, line 17 change "updatelookup" to --update-lookup--.

In col. 25, line 38 change "server-say" to --server-say--.

In col. 53, line 4 change ""Default"" to --"Default" :--.

Page2

In col. 53, line 45 shift "DISPLAY-HINT" to the right so its beginning lines ,up with the beginning
of "SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 53 line 46 shift "FLAGS" to the right so its beginning lines up with the beginning of
"SYNTAX" in line 42 and with the beginning of "LENGTH" in line 43.

In col. 61, aprox. line 32 change "rip" to --rlp--.

In col 71, 9th line from the bottom change "netbios (Ox3c00," to --netbios (Ox3c00)--.

In col. 73, aprox. line 25 change "tyop" to --type--.

In col. 79, 4th line from the bottom change "SYNTAXINT(8)" to --SYNTAX INT (8)--.

In col. 81, approx. line 41 change "SYNTAXBITSRING(12)" to --SYNTAX BITSTRING (12)--.

In col. 83, approx. line 36 change "LOOKUPFILE" to --LOOKUP FILE--.

In col. 93, approx. line 45 change "'vnd.m-relaudio" to --'vnd.m-realaudio'--.

In col. 96, line 38, change "In" to --in--.

The undersigned requests being contacted at (510) 547-3378 if there are any questions or clarifications,
or if there are any problems with issuance of the Certificate of Correction.

Respectfully Submitted,

A:pr, :,
1

1,oO '1
Date Dov~

Agent of Record.
Address for correspondenee:
Dov Rosenfeld
5507 College A venue, Suite 2,
Oakland, CA 94618 .. '.:fel. (510)547-3378; Fax: (510)291-2985

EX 1018 Page 325

-7?,?
DOCKET NO.: 10354-00lGEN PATENT El-

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Application of:

Russell S. Dietz, Andrew A. Koppenhaver,

James F. Torgerson

Application No.: 09/609,179

Patent No.: 6,665,725

Confirmation No.: 2668

Group Art Unit: 2155

Issue Date: December 16, 2003

Filing Date: June 30, 2000 Examiner: Khanh Q. Dinh

For: PROCESSING PROTOCOL SPECIFIC INFORMATION IN PACKETS
SPECIFIED BY A PROTOCOL DESCRIPTION LANGUAGE

Commissioner for Patents
Office of Patent Publications
ATTN: Certificate of Correction Branch
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

REQUEST FOR CERTIFICATE OF CORRECTION
PURSUANT TO 37 CFR § 1.322 & 37 CFR § 1.323

It is respectfully requested that a Certificate of Correction be issued for the above-identified
patent. The p~nt has one (1) error that is the fault of the applicant. Applicant's e1TOr
occurred in good}faith and is of a clerical or typographical nature, or minor character, and is
not believed to constitute new matter or require examination.

Enclosed herewith please find a completed Certificate of Correction form.

The fee in the amount of $100.00 is attached.

Date: September 4, 2013

Meunier Carlin & Curfman, LLC
817 W. Peachtree St., NW
Suite 500
Atlanta, GA 30308
phone: (404) 645-7713
fax: (404) 645-7707

Respectfully submitted,

/La~rence A. Aaronson/
Lawrence Aaronson
Reg. No. 38,369

EX 1018 Page 326

• PTO/SB/44 (09-07)
Approved for use through 08/31/2013. 0MB 0651-0033

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid 0MB control number.

(Also Form PT0-1050)

PATENT NO.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

6,665,725

APPLICATION NO.: 09/609, 179

ISSUE DATE

INVENTOR(S)

December 16, 2003

Russell S. Dietz, Andrew A. Koppenhaver, James F. Torgerson

Page _1_ of _2_

It is certified that an error appears or errors appear in the above-identified patent and that said Letters Patent
is hereby corrected as shown below:

IN THE CLAIMS:

Column 1, lines 15 and 16, claim 14, change "searching the packet at the particular protocol" to --searching
the packet at the particular protocol level--.

MAILING ADDRESS OF SENDER (Please do not use customer number below):

Meunier Carlin & Curfman, LLC
817 W. Peachtree St., NW, Suite 500
Atlanta, GA 30308

This collection of information is required by 37 CFR 1.322, 1.323, and 1.324. The information is required lo obtain or retain a benefit by the public which is to file
(and by the USPTO to process) an application. Confidentiality 1s governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to
complete, including gathering, preparing, and submitting the completed application form lo the USPTO. Time will vary depending upon the individual case. Any
comments on the amount of lime you require lo compl~le this 'form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer,
U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria,
VA 22313-1450.

If you need assistance iii completing the fonn, call 1-BOO-PT0-9199 and select option 2.

EX 1018 Page 327

PATENT NO.
APPLICATION NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

: 6,665,725 Bl
: 09/609179
: December 16, 2003
: Russell S. Dietz, Andrew A. Koppenhaver and James F. Torgerson

Page 1 of I

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS:

Column 1, lines 15 and 16, claim 14, change "searching the packet at the particular protocol"

to --searching the packet at the particular protocol level--.

/

Signed and Sealed this
Eighth Day of October, 2013 ,

fa/~~_)
Teresa Stanek Rea

Deputy Director of the United States Patent and Trademark QfficC'

EX 1018 Page 328

 UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,665,725 B1 Page 1 of}
APPLICATION NO. : 09/609179

DATED : December 16, 2003

INVENTOR(S) : Russell S. Dieiz, Andrew A. Koppcnhaver and James F. Torgerson

It is certified that error appears in the above—identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS:

Column 1, lines 15 and 16, claim 14, change “searching the packet at the particular protocol"

to «scatching the packet at the particular protocol level--.

Signed and Sealed this

Eighth Day of October, 2013 \

‘ : K %/jgfifl.)
Teresa Stanek Rea

Deputy Director ofthe Um'léa‘ Sfflfes Parent and Trademark Qfl'ic'c

EX 1018 Page 328

Dav senf'eld ~ +l-510- . -2985

Fax
::: iJ Dov Rosenfeld
P.1 ~ 5507 College Avenue, Suite 2
Pl ~ Oakland, CA 94618, USA·

Y~ Phone: (510)547-3378; Fax: (510)663-7992
~ dov@inventak.com

OUR REF: APPT-001-2

TO: Mail Stop Issue Fee
Commissioner for Patents ,;
P.O. Box 1450

FAX No.: (703) 746-4000

DATE:

FROM:

RE:

Alexandria. VA 22313-1450

September 24, 2003

Dov Rosenfeld, Reg. No., 38,687

Issue Fee for Application No.: 09/609,179

Nwnber of pages including cover: 5

OFFICIAL COMMUNICATION

ISSUE FEE PAYMENT

Included herewith are:

• A transmittal letter and copy

• Fee(s) Transmittal (form PTOL-85)

• Credit Card charge form for issue fee

Cutificote or Facsimile Transmission under 37 CFR l.S

P• 1

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark Office at telephone
number (703) 746-4000 addressed to Mail Stop Issue Fee, Commissioner for PatcnlS, P.O. Box 14SO, Alexandria, VA 22313-14SO
on. ------......
Date: September 24, 2003 Signed:_....:..:....,,~~::......----

Name: Dnv R

ltecelYed ll'om .. +1 $t0 291 UH ,. 111 !l/24/03 1:a:OI PM (EIISl«II Daylight Tlm~J

Match and Return

EX 1018 Page 329

Sep 24 03 05:16p , Dav senf‘eld H‘- ' +1—510— 22985 [3.1

INVENTEK ‘ Fax
DovHosenfeid

Oaldand, CA 94618, USA'
Phone: (51 (3547-3378; Fax: (510)653-7992

‘ dwalnventekeom /

OUR REF: APPT-OOI -2

TO: Mail Stop Issue Fee FAX Na..- (703) 746—4000
Commissioner for Patents i
PO. Box 1450

Alexandria, VA 22313-1450

DATE.- September 24, 2003

FROM.- Dov Rosenfeld, Reg. No., 38.687

RE: Issue Fee for Application No.: O9I609.179

Number ofpage: iricluding cover: 5

I ‘ ' OFFICIAL COMMUNICATION
ISSUE FEE PAYMENT

Included herewith are:

o A trénsmittal letter and copy

0 Peé(s) Transmittal (form P'l‘OL-85)

0 Credit Card charge form for issue fee

Certificateof Plain“: Transmission undu- 31 CFR 1.8

I hereby cem‘fy that this response is being facsimile unnsnfiued In In: United Slams Patent and Trademark Office at telephone
number (703) 746-4000 addressed to Mail Stop Issue Fee. Commissioner for Paxcms. PO. Box I450. Alexandria, VA 223)3-l450
on. '

/’
Name: Dov m. 4‘" Reg. No. 38687

Ruched from ‘ M 510 m w: 2 a mm mm- m [Emnmgm Tine]

Match and Return

EX 1018 Page 329

03 05:46p Dov . senf'e 1 d ...:. +1-510-, -2985

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicaot(s): Dietz, et al.

Application No.; 09/609, l 79

Filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECJFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

"

Group Art Unit: 2756

Examiner:

Notice of Allowance Mailed:
July, l, 2003

Confinnation No: 2668

SUBMISSION OF ISSUE FEE

Mail Stop ISSUE FEE'
Commissioner for Patents
P.O. Box 1450
Alexandria. VA 22313-1450

Dear Commissioner:

Patent

Transmitted herewith is a completed '1ssue Fee Transmittal .. Form. Included with the form arc:
~ A credit card payment form for the issue fee and any advance order of copies;

drawing corrections (with separate letter);
formal drawjngs (with separate letter);

_K... The Commissioner is hereby authorized to charge payment of the any missing fee or
credit any overpayment to Deposit Account No. 50..0292
(A DUPLICATE OFTIIIS TRANSMITTAL IS ATI ACHED):

Date

Address for correspondence:
Dov Rosenfeld to

5507 College Avenuc,Suite 2
Oakland, CA 94618

Respectfully Submitted,

Tel. +l-510-547-3378; Fax:. +l-413-638-1280

Cerlificate of Facsimll• Tl'IUISllllsslon under YI CFK 1.8

I bm>by certify that this response is being facsimile iransmincd to the United StatcJ Pa~nc aud Trademark. Oific~ 111
telephone number (703) 746-4000 addressed to Mail Stop Issue fee, Commissioner for Patents, P.O. Box 1450,
Alexandria, VA 22313-1450on. ~

Date; Seofomber 24, 2003 Sipcd: --~----------
Name: Dov oscnfeld, Reg. No. 38687

Recmec:1 irom c+1110 291 2915 > .. 9l24m:I 1:41:ot l'M [l!atem Daylight ,._I

p.2

EX 1018 Page 330

Sep 24 O3 05:46]D Dov . senf‘eld ~' ' ‘ “hi-510$ -2985 p.2_-v

\,

Our RefJDocket No: AEP’T-OOI -g ‘ Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

\ Applicant(s): Dietz, er a1.

Application No; 09/609,179 .

filed: June 30, 2000

Title: PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED
BY A PROTOCOL DESCRIPTION
LANGUAGE

Group Art Unit: 2756
Eitaminer:

Notice of Allowance Mailed:

July, 1. 2003

Confirmation No: 2668

SQBMISSION 0F ISSUE FEE

Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria1 VA 22313-1450

Dear Commissioner:

Transmitted herewith is a completed “Issue Fee Transmittal" Form. Included with the form are:
X A credit card payment form for the issue fee and any advance order of copies;

__ drawing corrections (with separate letter);
formal drawings (with separate letter);

X The Commissioner is hereby authorized to charge payment of the any missing fee or
credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

g? 9492 0%
Dale .

Address for correspondence:
Dov Rosenfeld n

5507 College Avenue,Suite 2
Oakland. CA 94618

Tel. +1-510-547-3378; Fax; +1-413-638-1280

Dov nfeld, Reg. No. 58687

Certificate atFacsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsimile transmitted to the United States Patent and Trademark 003cc a!
telephone number (703) 746-4000 addressed to Mail Stop Issue Fee, Commissioner for Parents. PO. Box 1450, Alexandria. VA 22313-1450 on. .

Date; 5mm :4. 2m: . Signed:
Name: Dev oscnteld, Reg. No. 38687

Hitched flour <91 ‘10 1912005 > Im3:68;" PM Em!“ Mum Tine)

EX 1018 Page 330

2"4 03 05:4'7p Dov Genf'eld ~ +1-s10-()-29es

PARTB- FEE(S)TRANSMIITAL

lete and send this Iona, tc;geth,r w',ja applicable fu(s), to: Mall Mail Stop ISSUE FEE
·' Commissioner for Pateats

Alexandria, Virelnla 22313-1450
Ill (703)746-4000

P• "4

:of : 1$ orm use lAnfflllllfflJ ,od B A I , ICCIDI • au o comp cled whcR
~.r.!priat=, All fricr C:011C$pODdcnCO inclullin& ·the Patent, advaDl:e mdcts ad notilic:atica of malncemnce fcca wiU mailed to d1t, cuncnt -mdcncc addrca u
:::a;:~1~ :='if ~lo• or dir=tcd olhcrwise i11 Block 1, by (a) spccifyilli a n~ carrespondcllcc address; anc!for (I>) lndica1m~ a ,opuatc • ADDRESS" Cw

C(AtlGJQl COUJ:SrO.\.DOl:£XDDrn(Rou: wam: . ., :a;..,~™• a1c A£ IJ Note: A a:ruticaie of ma.d1os: can oiily bi ucd for domeitic ,naJmgs Of lbo
7S9D Ol'OlllGOJ Fcc(s) T111115mlmJ. Tlus cemfi""1c canaot be u...i tor any other

accoa,pa11yin& pq,crs. £,ch addltlanal paper, such as m aoil!""!""I or
Dov Rosenfeld fonnal dniwinr, 111.ust haw ib own 1*tlflcai:c otuuilills ar uansm1ssion.
5507 College Avenue C'ertiJkat, or lllailio1 _. TrM1mlnlon
Suite 1 I hmobv ecrtify thal lh" Fecfsl Tnmm1inal ia bcine deposited with !he
Oald·-" CA 94618 United Slue& Pott.al Service wit!\ a,,m.,icn, ~osmse ror fltsl class..,.., ill an

......_ envelope addr ... cd 10 du: Bo" Issue Fee addtcs,i above, or bcin& fllcsitnile -·~:~uSPTO on the dale indicalodbclow. I ~~~9, --=1
. t.f S "'f. 0 !, (ON).

AJ'nlCATl~NO. FTUNOOATE FIRSl'~INV!il\TOR ·

llilli09.l 79 06130/2000 Rasocll S. Dietz APPI-001-2
TIIl..E OF INVENTION: METHOD AND APPARATUS FOR MONlTORINO TRAFFIC DI A NETWORK

i\PP\JI. TYPE SMAU. E?-.'TlTY ISSUI! fEI!

nonpwvisional NO S1300

DINH. KHANH Q 21SS

J. Chaf'_.lle of omR1pOndcncc addc,,ss or inclicalio11 of "Fee A<likcss" (l 7
CER. 1.)63). ·

PL:Bl.lCATIOS FE£ TOT AL FEe(S) Dtm

so $1300

2. Far printin, Oil the p;oapt ttont ~ list (I)
die amnca of11p 10 3 ~ palcnl aaomeys
ot aecJIII OR, llltt!Wively. (2) the name of a

CONl'lllMA Timi NO.

266S

DATE DUE

10/01/2003

~n.:!.~~.:c~(orChaqcofConqoadau:e

~ "Fee Addreso" indic;alion {or"Fce ~ lndh:ation Corm
PTO:'SB!"7; Rev 03-02 or11111Cercccnl)allachcd. Use ah Ca.....,.
:Sumberts reqllired.

aia&I• Ann (hnin, u a meml,cr a rc,i,tc~ I Dlr•n+Lk al,IOn,ay or •cnt) IDd tbe umc, of up 10 2 2 ... _......,..,...._a.u.;_...,._..,_.,._ __
n:ptcml p11e11t ~omc,ys or ascnt•. If no -..... is (iAod, llOJIIDIC>Wi\l b,; printed.), ________ _

3. ASSIG:SEE NAME AND RESIDENCE DATA TO BE PRJMTED ON 1111! rATENT (Jlrinl or type)

PLEASE NOT.I!: Unless an aai&nH is identified below, no u•ee da,a will &PJJC'I! an du: patent. 1nc1.,.;.,., of -igncc dalll i• univ appraprialc when ID usipmcnt ha
been pccvioosly nbmilk:d IO di• 1.ISPTO or i• kinG 111bmnkd UNlcr sq,amtc coocr. Co,npletlon of this Coal! is NOT I sub,ti11110 forfilini: - auiaarnent.
(A) JIIA.\CE OF ASSIGNEE (B) RESIDENCE: (CITY and STA TE OR COUNTAV)

1-\i/..f" l Lie.. Los C:,a:t·os, c..1'

Please cboct the oppn,prialc assigm:e catq,'OI}' or aiegoiia (wlD not be prinlcd Oii UIC patc:111) D individual C(gorpontiOII or Olhi:r privalc group catity :;;r i:onaumm
..._ The rollowins fcc<s) arc enclosed: 4b. Pl)D!Cllt offcc(s):

~ Issue F'ee DA du:ol: In Ille lfflllWII oft•• foe(s) i• mclmcd.

o l'ublicaumi Fee MPaymcat b)i. canl. Form Fr0-2038 a a:iachcd.

11 Advancc'Onlct'. e of Copies \ O '!I(Tluo Commisaionor ia hcrs1'Y ~thorlud. by ctw,io lhc miuired fee(s), orc~lt any i>vapayment. ,o
- 'l>cposit /\,:count N\nnbor ~Q- O'\'\ 'l.. (er.c:Tose u ex!A COJ!ll ol'th.is form).

Cornmi1Slo11er for Palcnts is requcam tll apply the Issue Pee and l'Dblicalion fee (ihny}or ID lC11Jpl)· 1111)" pwnously paid issue fci, to ~ application idculiliod aboY\l.

ToLi cotlet'Doa of infomaabon u 1CQDiled ij }7 CFR I j i I. The illformatio• 1~ rc:qulJed u,
obiaill or retain a benefit by the publie •h1ch ;, to file (and by tile vsrro 10 ~e$$) 111
llPJ?lication, Coc,fidcnliality u1ovcnicd ~ 3S u.s.c. 1221111d 37 CFR 1.14. This collection is
csumated to take 12 mim,ic.s to c;unp(elc inclmn1 calhering. piq,ariag. and •ubmill!IIS the
completed opplic:attion form lo 1M OSPID TUllc will va., dcpetidir! u~ the iodivuhaal
case. Any C0111t11Cnl$ on the amount of tiroe you ~ire ID com e"" :his form and/or
SUl!gcslioas for reducing Ibis bualen~ 1bould l>c SC!\I to 1b Cbid In omiwoo Officer, C.S.

~:fN.1;i. T~~'f ~f>'\ifes· cRtcp~M~~~·~·e;~~'rioi~~r
SEND TO: Commissioacr for Patents, Al.,.mdria, Virzinia 2ll 13-l 4SO.

Under the P~'Oltc Redllclion Aci of 199,. 1lO pmons arc z,;quiml to rc>p0nd to a i
coll,:~n c7f inronnahoa unless 11 di$JJl&ys a ,-.lid 0MB CCX>trol manbcr. _

TllANSMIT THIS FORM WITH FEE.(S)

PTOL-IS (REV. OS.OJ) Appto•cd for 111e tluoUll-'t ll'/l0.'2004. OMO 06$1-0033 U.S. P111cm ind Tndcmart Office; U.S. DEPAltTME'IT 01' COMMER'§ i 2
... Cet\fed ~om< +1 510 291 291t:. IC 11124103 l:U:05 PM (eastern Daylight Time] ~ ";! ~

~ ~fi
.... -cu
0 00

EX 1018 Page 331

Sep 24 03 05:47,» Dav flenfeld e‘. ‘ ' +1-51o-(12ses p.4

PART B - FEE(S) TRANSMI'ITAL

etc and send this (om, Ill-galls" with appliuhle “2(3), to: Mall Mail Stop ISSUE FEE" Commission" for Pate-ts
Alexandria, Virginia 22313-1450

Eu (103)746-4000
I"Wn..fl..-g-£I mwflr’a ' IWX~II:»‘ .._ . ,

with. All funhcr ”mundane: inclnifin: m Pam. lm men and mine-lion or “131m: fan will .. nailed to die cal-lent mes tandem m

i3? 'mcd unless correcud below or dim oliwrwis: in Block 1. by (I) specifying a new cutesy-awe: Iddms; ult'Jur (b) lndiqlin: a 0mm: ' ADDRESS" I:mm {cc incarnation » ‘ . ~ : .0 - ' l ole: or ' ‘ - '
79!! 0mm“; Fa“ Transmllnl. This Wfifilfll: amt It used far :11? othera myingplpaxizqhaddldmlplpcr.nxbumnsimlorDov Rosenfe'ld . l‘ duwing, nun luv: m M Human: ofmziliug at mummies.

’ 5507 Collegc Avenue - Catalina nl‘ Mailing or Tramnhsinn

sum 0mg“ “swhemamwwm 0:30“
0mm CA 94618 Jun,» Mum! 353”»; um F33“ flsibgig. '3:Lh."5’ai‘3£mused mm: USPTO on m due indicxled below.

unnum-no. nuns on: . msr NAMED mvamou ‘ ATTDRXEY men-rye.

W609J79 06302000 - Rim“ 5. Dill APPI-ODI-Z 2668
TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC TN A NETWORK

rc-ucmrza mmmm m
Imapmviiioml no man :0 mac “00112003

«m—
DINH,KHANHQ 2155 709430000

 LCM ofcmwapondsnesaldns: mindicalionof'Foe Aw (37 2. For priming an the plan! from pun, list (I)

GIRL”). ' bmofupmlmgisaedpkmsmmys 1Wor mu OR. “unduly. fl) the name of a

mfin fifififigfih' Chungcomenspmdmcu single firm (huh; I: 1 member a main-fled I I l I IStworacm)wdtheamlofupw2a 'Feo Adams!" indication (or 'Fe: Andrus!” lndlcndon form
PTOISBAT; Rev 01-02 or manual)mm Us. 0! I Cuban:
Numbcrk requlred.

"mislead plum auwwys ur agents. If m um:
blw.mmwillbeprimmt 3

3. ASSIGNEE NAME AND RESIDENQ DATA TO BE HUNTED ON THE PATENT (pr'ml or typa)

FLESH NOTE: Unlcns In wig-n isidulflfiad bulow no u a: flaw will smut an the dull. lxlcluiun of flip: dal- in an I «pr-2' when III assignmcn! habum miwsly nlnnind w III! SPI'O n: i: being wh'ni‘llnd :9}. sap-nu: m. Conjmlgn of this (om is MT I tutu-inn: forl’x my: nsig-rnzn'.

(A) NAME OF ASSIGNEE . (B) RBIDENCE: (C117 and NAIF-OK COUNTRY)

I'll/4n, Inc. 'Lus Gates,C.A
Pleas chuck the npprulxill: 15:55:: ulcgmy nrulegni'iu (will notbc ' don lhc In!) D indivillul
4-. Th: following feds) Ire aloud: 4h Pm: finds):

mks“ Fee . D AdIcckln lhcmlufllle (”(5) ismfluud.
u l'nblinlimi Fa: Rhyme“ h) tndi uni. farm PTO-2038 i: cud-d.

' - m Co unions is maximized c m: aired feet: ,nrcwdll an ‘ no
VMwmoma. sorcwxu__19___ MALT: IlNlli'bG! - ”(m magma” mum). rmrrtvm

Conmiulona- lbr Palms is Klimt“ mam I'll: Issue F: Ind nflIUcnion Fe: (if-anon» mapply mypcrviously plld issue it: to me Ipplicuion idaulified show.

 l W5“? ”“13“ aim” em. 0:" " ”P aim”;9 In lcm‘lwgmu I or. ‘m I“! an

maintain“? memdicme United m maarnacnurkmom; Pm,
lm collection “film)3 MERE 5 5’ CH [5", in: information Is [Elma In

a“brain gr main ; benefit by the 1: lie Whlch is In file (and the usrro go process) up
wgfictllon. Confidmmhty upwind by 35 U.S.C. [22 npd 3 CFR Lu. This wlhgtinn is
ashamed In aka l2 minuu to cum cl: including gathering. preparing. And submium; the
complncd appliau'on form Io Ill: SP'I'O Time “’1" vary depend: upon the indivudualuse. Any comments on [he mm or lilul: you mqu'n m mm an: :lii: form andlor
suggmims for reducing Ihll human: should ‘0: sun in this Chic! In aim-non Dinner. [.25.
Plant Ind Tm‘kmark Office. U.‘.i. Department of Commute, Maximum, Vl 1m:
mill-1450. DDINQT SHD FEB OR comma) FORMS TO THIS ADDR 8.SEND TO. Commune“: for Pam-m. Alcamdnn. Virginia ZZJlJ-HSO.

Undzr the ngcnmfl: [simian An of ”91., no mum are mailed Io Eli!!!“ In Ioolleclion 17f lnl'omlhon miles: It displlys I VIhd O Dunn-u] nunba’.
TRANSMIT nus FORM wrm rams)

nous (REV. 054m ApmeId for use mush 04/303000. 0MB 0651-0033 us Palm: mamam Officn; us. 0295mm 0F comma

”caved prom < 01 510 291 10:5 > as man: mama PMmmownme]

1300.00HP

i
;

 09/20/2063ma0000005709509179
01“2:150! 02”2:6001

EX 1018 Page 331

. :

-----------J--··'" _______________ ...__..,.. ____________ .,
Application or Docke~ Number

PATENT APPLICATION FEE DETERMINATION RECORD
Effective December 29, 1999

CLAIMS AS FILED - PART I
(Column 1) (Column 2)

FOR NUMBER FILED NUMBER EXTRA

BASIC FEE

TOTAL CLAIMS (.f minus 20= •

INDEPENDENT CLAIMS } minus 3 = *

MULTIPLE DEPENDENT CLAIM PRESENT

• If the difference in column 1 is less than zero, enter "O" in column 2

CLAIMS AS AMENDED - PART II
(Column 1) <Column 2)

CLAIMS HIGHEST
<[REMAINING NUMBER
I- AFTER PREVIOUSLY

Column 3)

PRESENT
EXTRA

z AMENDMENT PAID FOR ~ 1----~f-,;.;=..;,,;;.;.=;.;._+-----t-----'-_..;........;-+-----t
c Total • Minus •• =
Z1----~-----+-----t------+-----t
w Independent • Minus ••• = == 1-------'......; _____ __ ___. _____ _,_ ___ -I
<[

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

(Column 1) (Column 2)
CLAIMS HIGHEST

CD REMAINING NUMBER

(Column 3'

PRESENT
EXTRA !z AFTER . PREVIOUSLY .-

W 1-------1-AM_EN_D_M....;;E;...N-'-T-+----1--P-'A_ID_F_O_R_-+-----1

~ Total Minus •• = z ...,_ ___ --tr------+------t------+-----1
w Independent • Minus ••• =
~ 1------'-------'----....L..-------'------1

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM.

/

(Column 1) (Column 2) Column 3)
CLAIMS HIGHEST

U REMAINING NUMBER PRESENT
I- AFTER PREVIOUSLY EXTRA

ffi 1--!....--~~A;.;.;M.::.EN~D:;.;,M;,;.;E:,;.N;.;.T-+----+--' _P..;.'A;.;.;;ID;...F;...O;.;.R~-+-----1

== C Total Mfnus ..
z 1------'-11------+-----t,-------+-----t
~ Independent • Minus •••

<[1 FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

SMALL ENTITY
TYPE C::J
RATE FEE

OTHER THAN
OR SMALL ENTITY

RATE FEE

690.00 345.00 OR
1----+----t

X$9= OR X$18=

X39= OR X78=

+130= OR +260=

TOTAL OR TOTAL "-".--.. .. __,
OTHER THAN

SMALL ENTITY OR SMALL ENTITY

ADDI
RATE TIONAL

FEE

X$9= OR

ADDI
RATE TIONAL

FEE

X$18=

X39= X78=
a----+----o~t----+-----t

+130= OR +260=

TOTAL TOTAL
ADDIT. FEE ____ OR ADDIT. FEE---'""'

RATE

X$9=

X39=

ADDI
TIONAL

FEE

OR

OR

RATE

X$18=

X78=

ADDI
TIONAL

FEE

t----+----t 1-----+-----I

+130= OR +260=

· TOTAL TOTAL
ADDIT. FEE ____ OR ADDIT. FEE----i

RATE

X$9=

ADDI
TIONAL

FEE

OR

RATE

X$18=

ADDI
TIONAL

FEE

't----+----1 1-----+------t
X39= OR X78=

.-----1------1 1-----1------1

+130= OR +260=
• If the entry in column 1 is less than the entry in column 2, write "O" in column 3. TOTAL TOTAL
•• 11 the "Highest Number Previ_ously Pai_d For" INTl:ILS SPACE i_s less than 20, enter "2.0." ADDIT. FEE OR ADDIT. FEE_ __ -t
···11 the "Highest Number Previously Paid For" IN THIS SPACE 1s less than 3, enter "3.

The "Highest Number PreviouslY, eaid For" (Total or Independent) is the highest number found in the appropriate. box in column 1 .

FORM PT0-875
(Rev 12/99)

Patent and Trademark Ot11ce, U.S. DEPARTMENT OF COMMERCE

·u.s GPO, 2000-463-433/29044

EX 1018 Page 332

Application or Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD
Effective October 1, 2000

CLAIMS AS FILED- PART I
Column 1

TOTAL CLAIMS

FOR NUMBER FILED NUMBER EXTRA

TOTAL CHARGEABLE CLAIMS (l . •
d minus 20=

* INDEPENDENT CLAIMS / minus 3 =

MULTIPLE DEPENDENT CLAIM PRESENT D
* If the difference in column 1 is less than zero, enter "O" in column 2

SMALL ENTITY
TYPE c::J

RATE FEE

BASIC FEE 355.00

X$9=

X40=

+135=

TOTAL

OTHER THAN
OR SMALL ENTITY

RATE FEE

OR BASIC FEE 710.00

OR X$18=

OR XBO=

OR +270=

OR TOTAL '/0

CLAIMS AS AMENDED - PART II ~/;{ g
~

OTHER THAN
SMALL ENTITY OR SMALL ENTITY Column 1 Column 2 Column 3

CLAIMS HIGHEST
REMAINING NUMBER PRESENT

AFTER PREVIOUSLY EXTRA
AMENDMENT PAID FOR

Total * I~ Minus ** ?--0 =

Independent * .3 Minus *** 3
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM D

Column 1 Column 2 Column 3
HIGHEST CLAIMS

REMAINING
AFTER

AMENDMENT

NUMBER PRESENT
PREVIOUSLY EXTRA

PAID FOR

Total * Minus **

Independent * Minus ***

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

Column 1 Column 2
CLAIMS HIGHEST

(.) REMAINING NUMBER
I- AFTER PREVIOUSLY

D

Column 3

PRESENT
EXTRA ffi AMENDMENT PAID FOR :E r,::;a:.;;.;;.;......;.:.:..-.-"""~__:..;.-----'-l--"'-'------t-------t------1

Cl Total * Minus **
Z1--------1-----+----+------+-----t
w Independent * Minus *** =
:E 1--------'-----.L---__. ___;;_ _ _.__-==---1 <(

FIRST PRESENTATION OF MULTIPLE DEPENPENT CLAIM

ADDI-

RATE TIONAL

FEE

X$9=

X40=

+135=

TOTAL
ADDIT. FEE

ADDI-

RATE TIONAL

FEE

X$9=

X40=

+135=

TOTAL
ADDIT. FEE

ADDI-

RATE TIONAL

FEE

X$ 9=
/

X40=

+135=

ADDI-

RATE TIONAL

FEE

OR X$18=

OR XBO=

OR +270=

TOTAL
OR ADDIT. FEE.._ __ .,.

ADDI-

RATE TIONAL

FEE

OR X$18=

OR XBO=

OR +270=

TOTAL
OR ADDIT. FEE

ADDI-

RATE TIONAL
FEE

OR X$18=

OR XBO=

OR +270=

• If the entry in column 1 is less than the entry in column 2, write "O" in column 3. , TOTAL TOTAL
•• If the "Highest Number Previously Paid For" IN THIS._SPACE 1s less than 20, enter "20." OR ADDIT. FEE..._ __ .,.
... If the "Highest Number Previously Paid For" lN THIS SPACE is less than 3, enter "3."

ADDIT. FEE

The "Highest Number Previously P.aid For'' (Total or Independent) is the highest number found in the appropriate b9x in column 1.

FORM PT0-875
(Rev. 8/00)

Patent and Trademark Otf1ce, U.S DEPARTMENT OF COMMERCE

EX 1018 Page 333

WW'M'WM:

- Application or Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD

Effective October 1, 2000

CLAIMS AS FILED - PART I SMALL ENTITY OTHER THAN
TYPE E3 OR SMALL ENTITY

RAT FEE

355.00 OR BASIC FEE 710.00

OR X$18=

ITI

Tl ITI ITI

OR X80:

OR +270:

* If the difference in column 1 is less than zero, enter “0" in column 2
_ OR TOTAL (0

CLAIMS AS AMENDED - PART II I“ ° ' omen THAN

Column 1 Column 2 SMALL ENTITY OR SMALL ENTITY
CLAIMS ‘ I HIGHEST

REMAINING NUMBER ADDI- ADDI-
AFTER PREVIOUSLY RATE TIONAL RATE TIONAL

AMENDMENT " PAID FOR FEE FEE

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

X$ 9: OR X$18=AMENDMENM
X40:

+135: OR +270:

TOTAL OR TOTALADDIT. FEE ADDIT. FEE

: HIGHEST

In : REMAINING » NUMBER ADD" ADDI-
E AFTER PREVIOUSLY RATE TIONAL RATE TIONAL
u, ,_ mm Q AMENDMENT “HAW PAID FOR FEE FEE
E

LU .

Inde endent M-nu In:— om-FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM ,

IIORII
x TOTAL TOTAL

ADDITI FEE-OR ADDIT. FEE-

CLAIMS ‘~ HIGHEST

REMAINING ‘ NUMBER ADDI- ADDI-
AFTER ’ '. PREVIOUSLY TIONAL RATE TIONAL

AMENDMENT . PAID FOR FEE FEE

OR X$18=

U
I-
z ,
U]
E
D
2
Lu
5
< OR X80:

OR +270: ' It the entry in column 1 is less than the entry in column 2, write "0" in column 3.

" It the “Highest Number Previously Paid Fol”. lN THIiSPACE IS less than 20. enter-"20" ADDIT. FEE ADDIT. FEE
“'If the “HIghest Number PreVIously PaId For’ IN THIS SPACE Is less than 3, enter 3.

The “Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.

6‘S‘,_
OR

FRORM PTO-875 Patent and Trademark OIIICe. US DEPARTMENT OF COMMERCEev. 8/00) ’

EX 1018 Page 333

\t'EST Refine Search 0 (') http ://westbrs: 8002/bin/ cgi-bin/PreSear

Set Name Query Hit Count Set Name
side by side result set

DB=USPT; PLUR=YES; OP=ADJ

L24 111 and L23 29 L24

L23 114 and L22 29 L23

L22 113 and 120 280 L22

L21 115 and L20 0 L21

L20 112 and 113 280 L20

L19 117 and L18 0 L19

L18 110 and 111 1453 L18

L17 Ll6 and 19 2 L17

L16 16 and L15 62 L16

L15 14 and 15 141 L15

L14 12 and 13 5387 L14

L13 pars$4 and compil$3 3782 L13

Ll2 compress$3 and Ll 1 3331 L12

Lll index$3 same entry 12455 Lll
LIO client and server 16935 LIO

L9 child$4 and protocol 8849 L9
L8 child$4 (4a) protocol 0 L8
L7 child$4 4a protocol 0 L7

L6 layer$2 and LS 10625 L6

i
LS protocol same operat$4 31181 LS
L4 pdl or protocol definition language 1895 L4

L3 monitor$4 same 11 31281 L3
t L2 ip or internet protocol 39482 L2

Ll network or internet 263481 L1

END OF SEARCH HISTORY

EX 1018 Page 334

wEST Refine Search 0 0 http:/ /westbrs: 8002/bin/cgi-bin/PreSear

WEST

Help Logout 11 Interrupt

Main Menu Search Form '.osting Counts Show· 8 Nurnberf, Edit 8 l'Jumt)ets

Search Results -

ff --___ ._· __ : _ ·-_: __ _ ___ -----:-=-_ -·---: ____ ~- ____ . -----Te~~ ~...;cc.;:c......_:-------"--- ----~----.. - .;....;,.:---~- - ;...;------_.;;-_;;;;_,·-IL _ _ -_-_ .:~~~;~en~_s I
j1:=!(2=3=AND==l==l)=.U=SP=T=. =======~'::::' ======2=91
!(Ll l AND L23).USPT. II 291

us Patents Full-Text"Database . ·--- . a
US Pre-Grant Publication Full-Text Database
JPO Abstracts Database
EPO Abstracts Database
Derwent World Patents Index

Database: IBM Technical Disclosure Bulletins ...

I
L24

Search: _

Clear

Search History

DATE: Thursday, May 29, 2003 Printable Copy Create Case

Refine Search

EX 1018 Page 335

WEST Refine Search 0 O http:/fwestbrsz8002/bin/cgi-bin/PreSear

WEST

Mainl . l ’ . Number

 [(ZéANDWHill—13‘s???" M _, H “1
[(L11 AND L23).USPT. l

 US Patents Full-Text Database
US Pre-Grant Publication Full—Text Database
JPO Abstracts Database
EPO Abstracts Database
DenNent World Patents Index

Database; IBM Technical Disclosure Bulletins

L24 5
Search: Refine Search

DATE: Thursday, May 29, 2003 Printable Copy Create Case

EX 1018 Page 335

•
l.
t

[(ecord List Display 0 http://westbrs: 8002/bin/gate.exe?f=TOCOSn 7e5 .25&ref=24&dbname=USPT &ESNAME

WEST

I._. __ G_e_n_e_ra_te_c_o_lle_c_ti_o_n _ _.j I Print

Search Results - Record(s) 1 through 29 of29 returned.

@ 1. Document ID: US 6571285 Bl

L24: Entry 1 of 29

US-PAT-NO: 6571285
DOCUMENT-IDENTIFIER: US 6571285 Bl

File: USPT May 27, 2003

TITLE: Providing an integrated service assurance environment for a network

,,.ar·•··•••@WliiM•lii•MAMNMA@•MbiGiiiMMDMF!i,IMDMI

@ 2. Document ID: US 6519568 Bl

L24: Entry 2 of 29

US-PAT-NO: 6519568
DOCUMENT-IDENTIFIER: US 6519568 Bl

File: USPT

TITLE: System and method for electronic data delivery

Feb 11, 2003

1a1ar1Mi•#WPMliiiMPll•MAAMM@r1-MMdi 1iiW -
@ 3. Document ID: US 6516337 Bl

L24: Entry 3 of 29

US-PAT-NO: 6516337
DOCUMENT-IDENTIFIER: US 6516337 Bl

File: USPT Feb 4, 2003

TITLE: Sending to a central indexing site meta data or signatures from objects on a
computer network

t:mmsriM•iM@QIEM·/iiW•lidlM&MNWW#ri·HfiiDUiiWiP! WI

@ 4. Document ID: US 6430409 Bl

L24: Entry 4 of 29

US-PAT-NO: 6430409
DOCUMENT-IDENTIFIER: US 6430409 Bl

File: USPT Aug 6, 2002

EX 1018 Page 336

3'5de List Display 0 http:f/westbrs: 800%in/gate.exe?f=TOCO811785.25&ref*~*24&dbnama==USPT&ESNMfE

WEST

[Generate Conection _

Search Results — Record(s) 1 through 29 of 29 returned.

1. DocumentID: US 6571285 Bl

L24: Entry 1 of 29 File: USPT May 27, 2003

US-PAT-NO: 6571285
DOCWENT~IDENTIFIERz US 6571285 B].

TITLE: Providing an integrated service assurance environment for a network

mm: mm
[£6375 .;1.3 r; 1: La im: r‘mm:]

2. ‘Documemm: US 6519568 Bl

L24: Entry 2 of 29 File: USPT Feb 11, 2003

US-PAT-NO: 6519568
DOCUMENT~IDENTIFIERz US 6519568 81

TITLE: System and method for electronic data delivery

Fuih “Wilda—j CitaiEQE-W—"fm - V terz-H-‘Lgljifiachment3.
Draw-u (was: i

m—

3. Document ID: US 6516337 Bl

L24: Entry 3 Of 29 File: USPT Feb 4, 2003

US—PAT-NO: 6516337
DOCUMENT'IDENTIFIER: US 6516337 Bl

TITLE: Sending to a central indexing site meta data or signatures from objects on a
computer network

Tifle {£33711me rut AE‘euéérri“:lassn‘ieatmn Tit-em! Fiefe u
{”3va E M lmaga- ‘1

4. Document ID: US 6430409 B1

L24: Entry 4 0f 29 File: USPT Aug 6, 2002

US—PAT~NO: 6430409 ’
DOCUMENT-IDENTIFIER: US 6430409 Bl

EX 1018 Page 336

itecord List Display 0 http://westbrs:8002/bin/gate.exe?f=TOCQ8n7e5.25&ref=24&dbname=USPT&ESNAME

TITLE: Method and architecture for an interactive two-way data communication network

emt=r·•··Mi@IGMWh•WlildMMMMiii·MNIMIIM&Mi

D 5. Document ID: US 6421730 Bl

L24: Entry 5 of 29

US-PAT-NO: 6421730
DOCUMENT-IDENTIFIER: US 6421730 Bl

File: USPT Jul 16, 2002

TITLE: Programmable system for processing a partitioned network infrastructure

' enr,•r•Mi•DMM!M,14!M•MMliiMMMIMWMi19414idMi&iifll

~ 6. Document ID: US 6405037 Bl

L24: Entry 6 of 29

US-PAT-NO: 6405037
DOCUMENT-IDENTIFIER: US 6405037 Bl

File: USPT Jun 11, 2002

TITLE: Method and architecture for an interactive two-way data communication network

mear••··••·••••·•••••••*·' ... ,,,.1
l!I 7. Document ID: US 6401117 Bl

L24: Entry 7 of 29

US-PAT-NO: 6401117
DOCUMENT-IDENTIFIER: US 6401117 Bl

File: USPT Jun 4, 2002

TITLE: Platform permitting execution of multiple network infrastructure applications

0 8. Document ID: US 6393487 B2

L24: Entry 8 of 29

US-PAT-NO: 6393487
DOCUMENT-IDENTIFIER: US 6393487 B2

File: USPT May 21, 2002

TITLE: Passing a communication control block to a local device such that a message

EX 1018 Page 337

Igword List Display C'\ http://westbrs:8002/binlgate.exe?%TOCC7§811765.25&ref=24&dbnamFUSPT&ESNAME
I

TITLE: Method and architecture for an interactive twomway data communication network

mSecguentez: .ettaxzhrrxentz:

 "E511“ “i” "fig; 1' EEEfiE'rTVEmTESmE.... T‘EQWEQEEEETEEETEQW
“Dram [new

i Image

 mama—WW»... mMMWflmMmmMWWW--flWW-WWW~WWMWm:mm—m

Cl 5. DocumentID: US 6421730 B1

L24: Entry 5 of 29 File: USPT Jul 16, 2002

US—PAT—NO: 6421730
DOCUMENT-IDENTIFIER: US 6421730 Bl

TITLE: Programmable system for processing a partitioned network infrastructure

Witgtza r: F m nt
Irnsge g

Fienieml E Cissfmc‘afiun [

 F uII _[Tm}: Afia-fienfi:
[1 guns De; 1::

Data ; Reference Sealiemgezc

6. Document ID: US 6405037B1

L24: Entry 6 of 29 File: USPT Jun 11, 2002

US-PATvNO: 6405037
DOCUMENT-IDENTIFIER: US 6405037 Bl

TITLE: Method and architecture for an interactive two—way data communication network

 WEE—i— fmmlhm.'1" ii" "
[new 095::

31-: thment -::

 image

7. DocumentID: US 6401117131

L24: Entry 7 of 29 File: USPT Jun 4, 2002

US—PAT-NO: 5401117
DOCUMENT—IDENTIFIER: US 6401117 Bl

TITLE: Platform permitting execution of multiple network infrastructure applications

{ngerent’k Sewer—ska:

”Fqu
:11 tax»... Dem

page .aMaci'nfiéfiflié'E

8. Document ID: US 6393487 B2

L24: Entry 8 of 29 File: USPT May 21, 2002

US-PAT-NO: 6393487
DOCUMENI~IDENTIFIER3 US 6393487 B2

TITLE: Paasing a communication control block to a local device such that a message‘

EX 1018 Page 337

r

} ..

f(ecord List Display 0 http://westbrs:8002/bin/gate.exe?f=TOC08n7e5.25&ref=24&dbname=USPT&ESNAME

is processed on the device

1&1zmr••••MM¥itiMIINIMMIIMN@Miii#ri9AdidMIMtiNi

0 9. Document ID: US 6334153 Bl

L24: Entry 9 of 29

US-PAT-NO: 6334153
DOCUMENT-IDENTIFIER: US 6334153 Bl

File: USPT Dec 25, 2001

TITLE: Passing a communication control block from host to a local device such that a
message is processed on the device

D 10. Document ID: US 6304915 Bl

L24: Entry 10 of 29

US-PAT-NO: 6304915
DOCUMENT-IDENTIFIER: US 6304915 Bl

File: USPT

.ll.ttachments -
Oct 16, 2001

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser

lli!IL'lllf'MA@MNEiMiiiMIRIIMMAdWF438@Mi1iWIZWI •114!

0 11. Document ID: US 6272151 Bl

L24: Entry 11 of 29

US-PAT-NO: 6272151
DOCUMENT-IDENTIFIER: US 6272151 Bl

TITLE: Scalable multimedia network

File: USPT Aug 7, 2001

==--.ariM•@NMMM®IM•IIMIAMWWA@•NdiD@ 1@Mm

@ 12. Document ID: US 6247060 Bl

L24: Entry 12 of 29

US-PAT-NO: 6247060
DOCUMENT-IDENTIFIER: US 6247060 Bl

File: USPT Jun 12, 2001

TITLE: Passing a communication control block from host to a local device such that a
message is processed on the device

EX 1018 Page 338

mmmm:

gecord List Display 0 http://westbrs:8002/binfgate.exe?f=TOC “W 8n7e5.25&ref-=24&dbname=—‘USPT&ESNAME

is processed on the device

 “Pu-3“! I; Title 1 Citation? ant I Rel-i931} fiaszificatmn
Dual-d. Pest.

Date
 Reference > Ezequen»: sites—Wheat;

 Image

9. DocumentLD: US 6334153B1

L24: Entry 9 of 29 File: USEDT Dec 25, 2001

US-PAT-NO: 6334153
DOCUMENT-IDENTIFIER: US 6334153 Bl

TITLE: Passing a communication control block from host to a local device such that a
message is processed on the device

:1 Remxenggj Sequencesi stachmenfgi

E] 10. Document ID: US 6304915B1

L24: Entry 10 of 29 File: USPT Oct 16, 2001

US-PAT—NO: 6304915
DOCUMENT-IDENTIFIER= US 6304915 E1

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser

Txiiv‘: i C fiction
9 ram [J a; c:

F {.3 mi

 , I mega

11. DocumentID: US 6272151 BI

L24: Entry 11 of 29 File: USPT Aug 7, 2001

US-PAT-NO: 6272151
DOCUMENT—IDENTIFIER: US 6272151 Bl

TITLE: Scalable multimedia network

"W‘Zwm—‘I -

Ftenlesm] Classmc-amn I E‘Iate (Severance beqllri‘f‘nt-Ecit
Full ’ml e

Draw. [2&5 2:
[item-n

 ant Exachment: i

[I] 12. Document ID: US 6247060 B1

L24: Entry 12 of 29 File: USPT Jun 12, 2001

US-PAT~NO: 6247060
DOCUMENT-IDENTIFIER: US 6247060 Bl

TITLE: Passing a communication control block from host to a local device such that a
message is processed on the device

EX 1018 Page 338

•.
' 'r

y.~ord List Display 0 http://westbrs:8002/bin/gate.exe7f=T°C08n7e5.25&ref=24&dbname=USPT&ESNAME

1r411=r••··•MM·-,,1"'··••·•••••**M·l·••*"•',d4''1 w

D 13. Document ID: US 6202060 Bl

L24: Entry 13 of 29

US-PAT-NO: 6202060
DOCUMENT-IDENTIFIER: US 6202060 Bl

TITLE: Data management system

File: USPT Mar 13, 2001

lf8t1r•Mi•DMUMIMD•Wd•MMAAM#&@r\EWdidiiiliJMi

D 14. Document ID: US 6199076 Bl

L24: Entry 14 of 29

US-PAT-NO: 6199076
DOCUMENT-IDENTIFIER: US 6199076 Bl

File: USPT Mar 6, 2001

TITLE: Audio program player including a dynamic program selection controller

itmr•diMWM&MliiilMMl•ii@MMG@ri·AMiD@i&iiJfll -
@ 15. Document ID: US 6157955 A

L24: Entry 15 of 29

US-PAT-NO: 6157955
DOCUMENT-IDENTIFIER: US 6157955 A

File: USPT Dec 5, 2000

TITLE: Packet processing system including a policy engine having a classification
unit

@ 16. Document ID: US 6157935 A

L24: Entry 16 of 29

US-PAT-NO: 6157935
DOCUMENT-IDENTIFIER: US 6157935 A

File: USPT

TITLE: Remote data access and management system

Dec 5, 2000

EX 1018 Page 339

[Word List Display 0 hnptlhvestbrsflooybimgataexflfi'l‘ocfi‘j8n7e§ .25 &ref=24&dbname=USPT&ESNAME

Full T7312” ” "

1:] 13. Documentfl): US 6202060B1

L24: Entry 13 of 29 File: USPT Mar 13, 2001

US—PAT-NO: 6202060
DOCUMENT-IDENTIFIER: US 6202060 Bl

TITLE: Data management system

 Full T1615“ Citation} ant

Dram: {5.33.3

 fieuzesm Ilfasz-‘mmiitun Date 1 Fivztewrure 1 SemeranPE; , L‘.fian:|'nrzént3

762‘:

E] 14. Document ID: 1756199076131

L24: Entry 14 of 29 File: USPT Mar 6, 2001.1""SH“‘VM‘
US~PAT~NO: 61990?6
DOCUMENT—IDENTIFIER: US 6199076 B1

x,

TITLE: Audio program player including a dynamic program selection controller

15. Documentfl): US 6157955A

L24: Entry 15 of 29 File: USPT Dec 5, 2000

US~PAT~NO: 6157955
DOCUMENT-IDENTIFIER: US 6157955 A

TITLE: ?acket processing system including a policy engine having a classification
unit

FIJE! ”1 T1112

['ISM Dram
l'.‘ nan-z. n 92.35:: hmehis . Fla-Menu Classification Reference 1 Sequence-S:

 warm-m

16. DocumentID: US 6157935A

L24: Entry 16 of 29 File: USPT Dec 5, 2000

amiédeWimbfiw"~kamu-A'
u‘$5."?

US-PAT*NO: 6157935
DOCUMENT-IDENTIFIER: US 6153935 A<-¢m'u,

TITLE: Remote data access and management system

EX 1018 Page 339

T
!

ieeord List Display 0 http://westbrs:8002/bin/gate.exe?f=TOC08n7e5.25&ref=24&dbname=USPT&ESNAME

llt&•rMM•IMWGMMd•IIIMtiiAIMMG@MMitl@i&iMII 11111

D 17. Document ID: US 6150962 A

L24: Entry 17 of 29 File: USPT Nov 21, 2000

US-PAT-NO: 6150962
DOCUMENT-IDENTIFIER: US 6150962 A

TITLE: Predictive data entry method for a keyboard

D 18. Document ID: US 6085233 A

L24: Entry 18 of 29 File: USPT Jul 4, 2000

US-PAT-NO: 6085233
DOCUMENT-IDENTIFIER: US 6085233 A

TITLE: System and method for cellular network computing and communications

llflpj•••M••AWMMMMBDIMAMIUAAiG@riSddldM!MiiPi

@ 19. Document ID: US 5978840 A

...
L24: Entry 19 of 29 File: USPT Nov 2, 1999

US-PAT-NO: 5978840
DOCUMENT-IDENTIFIER: US 5978840 A

TITLE: System, method and article of manufacture for a payment gateway system
architecture for processing encrypted payment transactions utilizing a multichannel,
extensible, flexible architecture

10,•.nr•M•IAMMMIIIJMIIPIMAAMMl@Mdidi/MMM -
D 20. Document ID: US 5931917 A
L24: Entry 20 of 29 File: USPT Aug 3, 1999

US-PAT-NO: 5931917
DOCUMENT-IDENTIFIER: US 5931917 A

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser ,

EX 1018 Page 340

1(6de List Display 0 http://westbrs:8002/biI1/gate.cxc?f~=TOC 811765.25&re%24&dbname-‘=USPT&ESNAME

. Full 3 ~.lrii'lhemi "chéné'n'l Frant Tateaxieva-E]:
Ewan-I Des»:

$15533? { 0537:7533??? ;.. "EffiéEt-nné'rfi?

E] 17. Document ID: US 6150962A

L24: Entry 17 of 29 File: USPT Nov 21, 2000

US-PAT~NO: 6150962
DOCUMENT—IDENTIFIER: US 6150962 A

TITLE: Predictive data entry method for a keyboard

”GEE?! fflffii’efljfifis’non Front 3 Faerie-n Iiiassific‘ation Date 3F:me[an-::ew3"‘§1»:«::;r.seru:e33-.flfiaci’tmerdz.

E] 18. Document ID: US 6085233A

L24: Entry 18 of 29 File: USPT Jul 4, 2000

USwPAT-NO: 6085233
DOCWENT-IDENTIFIER: US 6085233 A

TITLE: System and method for cellular network computing and communications

 Full 3 True 3 titan-mi Fifi-Fr
Draw. [rem

3m. [513;: watt-3r;

’ Reference Aflfimncee 3 Attach—{HERE z‘ }
Image 3

19. DocumentID: US 5978840A

L24: Entry 19 of 29 File: USPT Nov 2, 1999

US-PAT-NO: 5978840
DOCUMENT-IDENTIFIER: US 5978840 A

TITLE: System, method and article of manufacture for a payment gateway syetem
architecture for processing encrypted payment transactions utilizing a multichannel,
extensible, flexible architecture

 4 Fun g Tatle f Efrem“ Frag?
Dram [-eze

C ISLE: mam n

Ref-arena;- iwgéwencegl Afi-atf’umeni: 3

E] 20. DocumentID: US 5931917A

L24: Entry 20 of 29 File: USP’I‘ Aug 3, 1999

USrPAT-NO: 5931917
DOCUMENT-IDENTIFIER: US 5931917 A

TITLE: System, method and article of manufacture for a gateway system architecture
with system administration information accessible from a browser

EX 1018 Page 340

I

iecord List Display 0 , http://westbrs:8002/bin/gate.exe?f=TOCC18n7e5.25&ref=24&dbname=USPT&ESNAME

,.,,.r•MIIWNMIMMiilW•WM•IM&W@M®•IAAMiffiMiii4• w

D 21. Document ID: US 5911485 A

L24: Entry 21 of 29

US-PAT-NO: 5911485
DOCUMENT-IDENTIFIER: US 5911485 A

File: USPT

TITLE: Predictive data entry method for a keypad

D 22. Document ID: US 5864542 A

L24: Entry 22 of 29

US-PAT-NO: 5864542
DOCUMENT-IDENTIFIER: US 5864542 A

TITLE: Scalable multimedia network

File: USPT

Jun 15, 1999

Wi

Jan 26, 1999

!Wlr'•M••WWMLMr/i•M•WM•IMMNhiiii@iiEHMiDM!i0Mi
[> ra"" ti.;,.," I rnage !

D 23. Document ID: US 5809415 A

L24: Entry 23 of 29

US-PAT-NO: 5809415
DOCUMENT-IDENTIFIER: US 5809415 A

File: USPT Sep 15, 1998

TITLE: Method and architecture for an interactive two-way data communication network

D 24. Document ID: US 5799017 A

L24: Entry 24 of 29

US-PAT-NO: 5799017
DOCUMENT-IDENTIFIER: US 5799017 A

TITLE: Scalable multime~ia network

-
File: USPT Aug 25, 1998

n-,r·•··•@&IUMMMIRli@diMMJWW@MMIDiiilll ...
EX 1018 Page 341

. Kooord List Display 0 http://wcs’tbrs:8002/13in/gatc.cxe?fiTOC®8n7e5.25&ref=24&dbname=USPT&ESNAME

 :zatic-n] Date-T Refineme- i

 .f‘lliigil I 31313:: hITIEiFItIE ‘
E‘I’SMI De: :22

F—— W WWW.

El 21. Document ID: US 5911485331

L24: Entry 21 of 29 File: USPT Jun 15, 1999

US-PAT-NO: 5911485
DOCUMENT—IDENTIFIER: US 5911485 A

TITLE: Predictive data entry method for a keypad

‘ m: [We math”, 5mm
Draw Dem .Im‘age

Ratereme] ‘9': . ~ I213::mat|v:'r1 1 [latefigment I 4 .‘J-J’cacI'nnrz‘nt:

El 22. Document ID: US 5864542A

L24: Entry 22 of 29 File: USPT Jan 26, 1999>a..~wmrmran:-w
US-PAT—NO: 5864542
DOCUMENT-IDENTIFIER: US 5864542 A

TITLE: Scalable multimedia network

Date I Remen-ze I Eefiizerurefl .‘v'sfiatt'nne

 raamwwmu«’9f

Imy.

El 23. DocumentID: US 5809415A

L24: Entry 23 of 29 File: USPT Sep 15, 1998

USvPAT~NO= 5809415
DOCUMENT-IDENTIFIER: US 5809415 A

TITLE: Method and architecture for an interactive two—way data communication network

 FuII I Title I Ertafic-r-I Front ‘ :euse-uJI‘FZIaszmétumI [:ate
bra-m, g. as -;-

Ram rm;- I E-EWE‘I‘ICEE:
Image ,

E] 24. Document ID: US 5799017A

L24: Entry 24 of 29 File: USPT Aug 25, 1998

US-PATuNO: 5799017
DOCUMENT-vIDENTIFIER: US 5799017 A

TITLE: Scalable multimeuia network

Refeuente
 Full Tune Cristian] ani >

I
R 12» mm C: I355 ificaiim. Aft-ax: fitment? -

Dram D 95:: Image

EX 1018 Page 341

T

.. , ,.

jltCOfd List Display 0 http://westbrs:8002/bin/gate.exe?f=T0co8n7e5.25&ref=24&dbname=USPT&ESNAME

D 25. Document ID: US 5740176 A

L24: Entry 25 of 29

US-PAT-NO: 5740176
DOCUMENT-IDENTIFIER: US 5740176 A

TITLE: Scalable multimedia network

File: USPT Apr 14, 1998

lat$1.:r•M•i4WiiM@ffllWM•Md@MA¥&@ii·HdidlhiiJP!

D 26. Document ID: US 5732216 A

L24: Entry 26 of 29

US-PAT-NO: 5732216
DOCUMENT-IDENTIFIER: US 5732216 A

TITLE: Audio message exchange system

File: USPT Mar 24, 1998

.,.riM•idiidMlilM•Ml•M@MWAe;1;; •• ;4w1MM!M&M! ..
@ 27. Document ID: US 5721827 A

L24: Entry 27 of 29

US-PAT-NO: 5721827
DOCUMENT-IDENTIFIER: US 5721827 A

File: USPT Feb 24, 1998

TITLE: System for electrically distributing personalized information

D 28. Document ID: US 5673265 A

L24: Entry 28 of 29 File: USPT

US-PAT-NO: 5673265
DOCUMENT-IDENTIFIER: US 5673265 A

TITLE: Scalable multimedia network

..
Sep 30, 1997

l!D&'f"IM••h4UMMfflliN•M@AMWW@•i3Mdldi1Mild -
EX 1018 Page 342

a
i
l

word List Display 0 http://westbrs: 8002111infgate£x67%TOC08n7e525&ref=24&dbnmne=USPT&ESNAI\/IE

[I 25. Document ID: US S740176A

L24: Entry 25 of 29 File: USPT Apr 14, 1998

US-PAT-NO: 5740176
DOCUMENT~IDENTIFIER= US 5740176 A

TITLE: Scalable multimedia network

' Fufl Tune Citation

{fi-ram Lesa

Front | Review} alas-:meaticm ! fiat;

J

E] 26. DocumentID: US 5732216A

L24: Entry 26 of 29 File: USPT Mar 24, 1998

US-PAT-NO: 5732216
DOCUMENT-IDENTIFIER: US 5732216 A

TITLE: Audio message exchange systemhr5$MWN‘“W.
, “F1113“ { We WTEIVis'fimmF-rat F533;: “1373-“. v dab-TE] [made I Refinance I Sequwéfil

Draw Daze 1 “ME
.. :51: fitment z. 1

mum; I gm»!»in-..

27. Document ID: US 5721827A

L24: Entry 27 of 29 File: US?T Feb 24, 1998

‘aa,»
‘1m

US-PAT-NO: 5721827
DOCUMENTuIDENTIFIER: US 5721827 A

TITLE: System for electrically distributing personalized information

 Fun fine new. |
F: e‘n‘ieeF m rut
 m ! (fagsm-rstE-n { C'sgami?-21éiémza I 3':- 1uem§é17lfifij§31]};eri:

[tma-xv Daze lrnege ;

W.

E] 28. Document ID: US 5673265 A

L24: Entry 23 of 29 File: USPT Sep 30, 1997

‘.‘Mv‘uvanfiat-J‘Wfihw-WM1WV4flkshwwfikfl7:
US—PAT-NO: 5673265
DOCUMENT-IDENTIFIER: US 5573265 A

TITLE: Scalable multimedia network

“Fun 'mse

‘E‘mmfiezc E

F: aid-am)

Chatio r. ant
 Kate I Rafa-ante I SE’IWE'DIEE‘.‘C1352 'rficatinzm

EX 1018 Page 342

i
R~rd List Display 0

http://westbrs:8002/bin/gate.exe?f=TOCD8n7e5.25&ref=24&dbname=USPT &ESNAME

,,

'

i

D 29. Document ID: US 5555244 A

L24: Entry 29 of 29

US-PAT-NO: 5555244
DOCUMENT-IDENTIFIER: US 5555244 A

TITLE: Scalable multimedia network

File: USPT Sep 10, 1996

••••WIIUMIEIMiiiiD•IM•Mii4WMi@riMHib 111M11ii

'---G_e_n_e_r_at_e_c_o_1_1e_c_uo_n __ } (Print j

11=1 =======T=er=m=======!l[;===D=oc=u=m=en=ts=~=~I
'j:=(2=3 =AND==ll=).U=S=P=T·========-::1:=I ======i2)=:9 1

l(~l_!_ ~}:2~):USPT IL_ __ _2-jj

Display Format:! ... T_r __ ! ! Change Format

Previous Page Next Page

EX 1018 Page 343

Rword List Display 0 http://westbrs: 8002/bin/gate.exe?f=TOC&("§8n7e5.25&ref=24&dbname=-USPT&ESNAME

C] 29. Document ID: US 5555244A

L24: Entry 29 of 29 File: USP'I‘ Sep 10, 1996

US-PAT-NO: 5555244
DOCUMENT~IDENTIFIER= US 5555244: A

TITLE: Scalable multimedia network

Full ITltlv‘: thaii-zmi Fri-rat
Draw, Daze I image?

”WWW

Hindi: i

 Remew Iliazsmtamn rifle Reference zrqm-‘ru'r‘v‘ I .flfiait‘nnemi .

I Generate Collection II Print I

I Term II Documents 29IE(I23 AND 11).USPT. _IWI
(L11 AND L23)USPT_. ,. _ MW MWE’;

Display Forma : Change Format

Previous Page Next Page

EX 1018 Page 343

·'

'

-,Jjcation Number Information
f.Pr

http://expoweb1:8001/cgi-bin/expo/Geninfo/snquery.pl?APPL_ID=09609l79

0
,. f'J PALM INTRANET

-----~- J, • . -.-------------------------

Day: Monday
Date: 6/16/2003
Time: 11 :49: 19

Application Number Information

Application Number: 09/609179
Assignments
Filing Date: 06/30/2000
Effective Date: 06/30/2000

Examiner Number: 74865 / DINH, KHANH

Group Art Unit: 2155
Class/Subclass: 709/236.000

Application Received: 07/03/2000 Lost Case: NO
Patent Number: Interference Number: Waiting for Response Desc.

Mail Non Final
Issue Date: 00/00/0000 Unmatched Petition: NO
Date of Abandonment: 00/00/0000 L&R Code: Secrecy Code:1
Attorney Docket Number: APPT-001-2 Third Level Review: NO
Status: 41 /NON FINAL ACTION MAILED

Secrecy Order: NO
Status Date: 06/04/2003

Confirmation Number: 2668 Oral Hearing: NO
Title of Invention: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK

ii PALM: Locat10n I Clir;;to I Charge to II Employee Name II Location I Bar Code i Location i Date
' '

Name :

09609179/I 21Cl i

No Charge Ch:e t•llsAID,ABUDULKADAR I PK2/06/C 06/05/2003 to Location
Name 1 09

Appln I Contents 11 Petition Info 11 Atty/Agent Info
Info

11 Continuity Data 11 Foreign Data I~

Search Another: Application# I __ ___.
I Search I or Patent# I 11 Search I

PCT / c:J / 1--I _ _.I I Search or PG PUBS # l 11 Search

Attorney Docket#,,__ ________ _. I Search J

Bar Code# i...1 _____ __.I I Search I

To go back use Back button on your browser toolbar.

Back to PALM I ASSIGNMENT I OASIS I Home page

6/16/03 11:49 AM

EX 1018 Page 344

‘Ap

3

E&.

rmrfixfiAvW‘bfiwx-tmaa»
":"a:W‘smfim‘k‘ufii‘mi“‘1'!

plicaflon Number Information http://expowebl :8001/cgi-bin/expo/GenInfo/anuery.pl?APPL_ID=09609179

O 3 Day : Monday
“'5:WWifiifgfi’ifiéf’l‘?

Application Number Information

Application Number: 09/609179
Assi nments Examiner Number: 74865 / DINHZ KHANH

Filing Date: 06/30/2000 Group Art Unit: 2155
Effective Date: 06/30/2000 Class/Subclass: 709/236.000

Application Received: 07/03/2000 Lost Case: NO . .

Patent Number: Interference Number: K311511133)30%Elzslponse Desc.
Issue Date: 00/00/0000 Unmatched Petition: N0 —‘

Date ofAbandonment: 00/00/0000 L&R Code: Secrecy Code:1

Attorney Docket Number: APPT-001-2 Third Level Review: NO Secrecy Order: NO
Status: 41 INON FINAL ACTION MAILED Status Date: 06/04/2003

Confirmation Number: 2668 Oral Hearing: N0
Title of Invention: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK

; ‘ PALM f Location " arge to arge to i fl 7 . H

g : No Charge No i PK2/06/C
09609179 i 21C1 : 06/05/2003 to Location Charge to! SAID,ABUDULKADAR 09

: I i Name :

Appln Petition Info Atty/Agent Info Continuity Data Foreign Data Inve
Info

Search Another: A lication#E: Wham/#:3—

PCT/EJ/Ej— orPGPUBS#l:Z::I—

AttorneyDocket#i::::::]

BarCode#::3—

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

6/16/03 11:49 AM

EX 1018 Page 344

Jicatio11; Number Information http://expowebl:800l/cgi-bin/expo/Genlnfo/snquery.pl?APPL_ID=09609l79

• PALMINTRANET ~ ~ ~.,-.---------.a--
Day: Monday
Date: 6/16/2003
Time: 11:49:19

Application Number Information

Application Number: 097609179
Assignments
Filing Date: 06/30/2000
Effective Date: 06/30/2000

Examiner Number: 74865 / DINH, KHANH

Group Art Unit: 2155 _
Class/Subclass: 709/236.000

Application Received: 07/03/2000
Patent Number:

Lost Case: NO
Interference Number:
Unmatched Petition: NO
L&R Code: Secrecy Code:1

W airing for Response Desc.
Mail Non Final

Issue Date: 00/00/0000
Date of Abandonment: 00/00/0000

,1'
Attorney Docket Number: APPT-001-2 Third Level Review: NO
Status: 41 /NON FINAL ACTION MAILED

Secrecy Order: NO
Status Date: 06/04/2003

Confirmation Number: 2668 Oral Hearing: NO
Title of Invention: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK

!Bar Code II L~~J!i I Location l ~hrt:to I Charge to I Employee Name I T
Date Name

0960917911 21Cl I No Charge
Cha~:. to1

rAID,ABUDULKADAR I PK2/06/C 06/05/2003 to Location
Name 09

Appln I Contents ! l Petition Info ! l Atty/Agent Info ! ! Continuity Data fl Foreign Data 11 lnve
Info

Search Another: Application# I ---
1 Search I

PCT/ t::J / ._l __ ! l Search j

or Patent#_! __ _.I (Search I

or PG PUBS# I ____ I I Search !

Attorney Docket# __________ I Search I

Bar Code # ... I _____ ___.i ! Search I

To go back use Back button on your browser toolbar.

Back to PALM I ASSIGNMENT I OASIS I Home page

6/16/03 11:49 AM

EX 1018 Page 345

r,»

WW6“

«wmen-rrwvmimrwnvv
Vws».r‘M-WWMAWlam.»-

mam Number Information http://expowebl :8001Icgi-bill/export}enInfo/anuerprAPPLwfly—‘wéw179

V Day : Monday

W? FALM ENTRANET ‘ 33:30:33?

Application Number Information

Application Number: 09/609179 EX . crNumber: 74865 IDINH KHANH
Assignments , ,

Filing Date: 06/30/2000 Group Art Unit: 2155 '

Effective Date: 06/30/2000 Class/Subclass: 709/236.000
Application Received: 07/03/2000 Lost Case: NO . _

Patent Number: Interference Number: grflhfig for Response Desc.. . on Fmal
Issue Date: 00/00/0000 Unmatched Petmon: NO _..______.._.

Date ofAbandonment: 00/00/0000 ! L&R Code: Secrecy Code:1
Attorney Docket Number: APPT-001—2 ' Third Level Review: NO Secrecy Order: NO
Status: 41 INON FINAL ACTION MAILED Status Date: 06/04/2003

Confirmation Number: 2668 Oral Hearing: N0
Title ofInvention: NIETHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK

[{I Pm [if Locauon 11 CEarge to HCEarge to I I . I. Bar Code i Location i Date Loc Name j Employee Name Locatlon
1 N0 hafge ° PIG/061C

09609179' 21C1 06/05/2003 to Locatlon Charge to SAID,ABUDULKADAR 09
i Name

Appln Petition Info Atty/Agent Info Continuity Data Foreign Data lnve
Info

Search Another: A lieation#[I
orramm-

PCT/CZE/CZJ- orPGPUBS#i:::i—

Attorney Docket#:::::::::1-

Bar Code #2::-

To go back use Back button on your browser toolbar.

Back to PALM ! ASSIGNMENT l OASIS [Home page

6/16/03 11:49 AM

EX 1018 Page 345

,--------__;:o
This Forni is for INTERN.AL PTO USE ONLY

It docs NOT get mailed to the applicant.

NOTICE OF FILING I CLATI\1 FEE(S) DUE
(CALCULATION SHEET)

APPL I CA TIO N l'tU1\ IDER: __ 4.z.+/_l_. t1...:..J...t..J-:...7__;_7 __ _

Tot:::sl Fee C:ilcubtioa

Toul !°'um lier

Fer Code es C1:J,m1 [Ilr:J X Fee

Sm [nury Li: En ory

D.i:;fc F,h:i;; F:c ~o 1·101

'_LL_ -:a.
)

TOTAL fE[CALCL'LATIO"'

Tot.JI Fili:ig. Fe~:; Du::= s ---~J_J._D_,_,1) __

le::;s Fili::g Fe::s Submin::d · j; _____ __,..:::;;._ __ _

BALANCE DUE

ro!Uvt OIPE·R./\M-01 (Rev. 12197)

I '-:! 111 l· 7

Tot::il

EX 1018 Page 346

This Fomfi is for meRNAL PTO USE ONLY

. It docs NOT get mailed to the applicant.
NOTICE OF FILING / CLAIM FEE(S) DUE

(CALCULATION SHEET)

AFFLICATION NmeER: ’ 21 “*7/77

Tom! Fcc Calcuiarion

Tom! Numbrr

Fa: Codc ”Chum" Extra X Fe: Fcc - Total

San/L1: . Sm Enmy Lg Emu-yl

amcmmghc zomm - ._____.._ 17.232. " iii

' Tautcumsvzo 2:310: __j_£_ 40- ________ X ________. ._..__. ‘ ._...__.

Indcacndcm Chan: 2-3 20TH“! “L. 3" W «1 W m ' —————-~

Mutt C’s; Ciatmf‘mzzm 21145164 ___..... W '_..

Sankara: zone: ___.._.. "557 ‘ “LED.

Eagilzh Tmzsfznon [3° _._...._..

TOTAL FEE CALCL'LATIOV &

F223 du: upon film; the appianzxor.

TouIFiimg Fess Duc= BMW 4"“

Ltzs Filing Fczs Submimd - 5 "

(.

BALANCE DUE =5 #3

5’ M
0mm: oflnilinl Pazcm E ' inauon

I Igmc 7
FORM owe-mmo: (Ru. £2197)

EX 1018 Page 346

(12) United States Patent
Dietz et al.

(54) PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY
A PROTOCOL DESCRIPTION IANGUAGE

(75) Inventors: Russell S. Dietz, San Jose, CA (US);
Andrew A. Koppenhaver, Littleton,
CO (US); James F. Torgerson,
Andover, MN (US)

(73) Assignee: Hl/tn, Inc., Los Gatos, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 537 days.

(21) Appl. No.: 09/609,179

(22) Filed: Jun. 30, 2000

(60)

(51)
(52)

(58)

(56)

Related U.S. Application Data
Provisional application No. 60/141,903, filed on Jun. 30,
1999.

Int. 0. 7
••..••.•.•..••.••.......•..••.....•..•••.•...... G06F 13/00

U.S. a 709/230; 709/246; 709/228;
370(389

Field of Search 709/203, 206,
709/216, 217, 222, 2%, 225, 228, 230,

232; 703/26; 370/489, 13, 17

References Cited

U.S. PATENT DOCUMENIS

4,736,320 A
4,891,639 A
5,101,402 A
5,'JA7,.517 A
5,247,693 A
5,315,.580 A
5,339,268 A
5,351,243 A
5,365,.514 A
5,375,000 A
5,394,394 A
5,414,650 A

4/1988 Bristol ..••••.••......•...•... 364/300
1/1990 Nakamun, ••••..• ••• .•... 340/825.S
3/1992 Chui ct al. 370/17
9/1993 Ros:s et al. .••••.••••••...•• 370/85.S
9/1993 Bristol 709/2rD
5/1994 Phaal 370/13
8/1994 Machida 365/49
9/1994 Kalkunte ct al•....•••. 370/92

11/1994 Hetshey ct al 370/17
12/1994 Hemhey ct al. 364/550
2/1995 Crowther et al. 370/60
5/1995 Hekhuls 3641715.02

11111 ~IIIU I Ill 111111111111111111 D~ 11111111 II 11111
US006665725Bl

(10) Patent No.: US 6,665,725 Bl
Dec. 16, 2003 (45) Date of Patent:

5,414,704 A 5/1995 Spinney 370/60

(List continued on next page.)

OTIIER PUBLlCIUIONS

"Technical Note: the Narus System," Downloaded Apr. 29,
1999 from www.narus.com, Narus Corporation, Redwood
City California.

Primary Examiner-Hosain T. Alam
Assistant Examiner--Kbanb Quang Dinh
(74) Attorney. Agent, or Firm--Oov Rosenfeld; Inventek

(57) ABSTRACT

A method of performing protocol specific operations on a
packet passing through a connection point on a computer
network. The packet contents conform to protocols of a
layered model wherein the protocol at a at a particular layer
level may include one or a set of child protocols defined for
that level. 1he method includes receiving the packet and
receiving a set of protocol descriptions for protocols may be
used in the packel A protorol description for a particular
protocol at a particular layer level includes any child pro
tocols of the particular protocol. and for any child protocol,
where in the packet in.formation related to the particular
child protocol may be found. A protocol description also
includes any protocol specific operations to be performed on
the packet for the particular protocol at the particular layer
level. The method includes performing the protocol specific
operations on the packet specified by the set of protocol
descriptions based on the base protocol of the packet and the
children of the protocols used in the packet. A particular
embodiment includes providing the protocol descriptions in
a high-level protocol description language, and compiling to
the descriptions into a data structure. The compiling may
further include compressing the data structure into a com
pressed data structure. The protocol specific operations may
include parsing and extraction operations to extract identi
fying information. The protocol specific operations may also
include state processing operations defined fur a particular
state of a conversational flow of the packet.

17 Claims, 20 Drawing Sheets

EX 1018 Page 347

(12) United States Patent

ll00666572581

(10) Patent No; US 6,665,725 B1
 Dietz et a]. (4g Date of Patent: Dec. 16, 2003

(54) PROCESSING PROTOCOL SPECIFIC 5,414,704 A 5/1995 Spinney 370KB
ORMATION m PACKETS SPECIFIED BY . .

gamma DESCRIPI‘ION LANGUAGE 0““ “0mm“ 0“ “‘7’“ P33“)
OTHER PUBLICKI‘IONS

(75) Inventors Russell 5. Dletz, San Jose, CA (US);
Andrew A. Koppenhaver, Littleton,
CO (US); James I". 'Ibrgerson,
Andover, MN (US)

(73) Assignee: Hl/m, Inc, Los Gatos, CA (US)

(“) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 537 days.

(21) App]. No.: 0914502179

(22) Filed: Jun. 30, 2000

Related US. Application Data
(60) Provisional agitation No. 601141303, filed on Jun. 30,

1999.

(51) [1&le 606F153“!!!
(52) US. Cl. 7091230; 709346; 709/228;

370/389

(58) Field of Search 709/203, 206,
709/216, 217, 222. 246, 225, 228, 230,

232; 703/26; STD/489, l3, 17

(56) References Cited
US. PATENT DOCUMENTS

4,736,320 A 4/1988 Bristol .. 364/300
4,891,639 A 1/1990 Nahum“ . 340/8255
5,101,402 A 311992 Chui ct ll. .. . 370/17
5,247,517 A 91'1993 Ross eta]. .. 3701855
5,247,693 A 921993 Bristol 709/203
5,315,580 A 511994 Phanl . 3’70I13
5,339,268 A 8/1994 Mochidn 365/49
$351,243 A 91/1994 Kalkunte et nL .. 370192
5,365,514 A 11i1994 Hershey et al. .. 370i17
5,375,070 A 12/1994 Hershey etal. . 364550
$394,394 A 2/1995 Crowthnr et al. STD/60
5,414,650 A 511995 Heklmls 364/71502

“Technical Note: the Nat-us System,” Downloaded Apr. 29,
1999 from wwwnarussom, Nams Corporation, Redwood
City California.

Primary Examiner—Homo T. Alam
Assistrmt Mortar—Khan]: Quang Dinb
(74) Attorney, Agent, orFM Roscnfeld; Inventck

(57) ABSTRACI‘

A method of performing protocol specific operations on a
packet passing through a connection point on a computer
network. The packet contents conform to protocols of a
layered model wherein the protocol at a at a particular layer
level may include one or a set of child protocols defined for
that level. The method includes receiving the packet and
receiving a set of protocol descriptions for protocols may be
used in the packet. A protocol desuiption for a particular
protocol at a particular layer level includm any child pm~
toools of the particular protocol, and for any child protocol,
where in the packet information related to the particular
child protocol may be found. A protocol description also
includes any protocol specific operations to he pcrfiormed on
the packet for the particular protocol at the particular layer
lcch The method includm; performing the protocol specific
operations on the packet specified by the set of protocol
descriptions based on the base protocol of the packet and the
children of the protocols used in the packet. A particular
embodiment includes providing the protocol descriptions in
a high-level protocol description language, and compiling to
the descriptiom into a data structure. The compiling may
further include compressing the data structure into a com
pressed data structure. The protocol specific Operations may
include parsing and extraction operations to extract identi-
fying information. The protocol specific operations may also
include state ptocwsing operations defined liar a particular
state of a conversational flow of the packet

17 Claims, 20 Drawing Sheets

EX 1018 Page 347

US 6,665,725 Bl
Page 2

U.S. P.Kl'ENT DOCUMENTS

5,430,709 A 7/1995 Galloway••............• 370/13
5,432,776 A 7/1995 Harper•..... 370/17
5,493,689 A 2/1996 Waclawsky et al.•.• 709/206
5,500,855 A 3/1996 Hershey et al 370/17
5,511,215 A 4/1996 Terasala el al 709/246
5,568,471 A 10/1996 Hershey et .:t 370/17
5,574,875 A 11/1996 Stansfield el al. 395/403
5,586,266 A 12/1996 Hershey et .:t .••.•••.•....• 709/216
5,606,668 A 2/19ff7 Shwed .••.•....•••.....•...•• 709/216
5,60!,662 A 3/1997 Large et al. .•......... 364/724.01
5,634,009 A 5/19ff7 Iddon el al. 709/W6
5,651,002 A 7/1997 Van Selem et aL .•...••.• 370/392
5,61ll,58S A • 10/tm Bruell 703/26
5,684,954 A 11/1997 Kaiserswertb ct al 709/203
5,703,877 A 12/19ff7 Nuber et al. ..•..........•.. 370/395
5,721)fZ7 A * 2/1998 Logan et al.•.•..•.... 709/217
5,732,213 A 3/1998 Gessel et al. .••.........•.• 709/216
5,740,355 A 4/1998 Wata.nabe et al 395/183.21
5,761,424 A 6/1998 Adams et al ..•.......••••• 709/232
5,764,638 A 6/1998 ~lchum••...•••.•...... 370/401
5,781,735 A 7/1998 Southard••.........•.•.. 709/238
5,784,298 A 7/1998 Hershey et al 3641557

5,787,253 A
5,805,808 A
5,812,529 A
5,819,028 A
5,825,774 A
5,826,017 A
5,835,726 A
5,838,919 A
5,841,895 A
5,850,386 A
5,850,388 A
5,862,335 A
5,878,420 A
5,893,155 A
5,903,754 A
5,917,821 A
6,014,380 A
6,272,151 Bl •
6,430,409 Bl •
6,516,337 Bl •
6,519,568 81 •

• cited by en.miner

7/1998 McCreery el al •.....••.•. 1(1)/'lZ!
9/1998 Hamani et al. 709{}.00
9/1998 Czarnik et al.•..• 370/245

lQ/1998 Mangbinnalani et al. ••. 7(1){}.00
10/1998 Ready et al.•...... 370/401
10/1998 Holzmann .••.....••...•..•. 7(1)/206
11/1998 Shwed el al.. 709/228
11/1998 Schwaller et al. 709/208
11/1998 Huffman ••.••.••••.•••.....•• 382/155
12/1998 Anderson et al .•.....•••.• 370/241
12/1998 Anderson et al. ..••••..... 370/252

1/1999 Welch, 1L et al. ••..•• 709/232
3/1999 de la Salle .•...••..••.••..•.• 707/10
4/1999 Cheriton •••••.••••••••••..••• 711/144
5/1999 Pearson 700/238
6/1999 Gobuyan et al 370/392
1/2000 Hendel et al. • .••...••••... 370/392
8/2001 Gupta et al 370/489
8/200'1 Rossmann 455/4221
2/200'3 Tripp et aL •.••••••••••••••• 709/202
2/2003 Harvey et al. 705/1

EX 1018 Page 348

'
f

t

~1
} '
I'
.•, ,.

U.S. Patent Dec.16, 2003 Sheet 1 of 20

I CLIENT 41,
107

/

ANALYZER

US 6,665,725 Bl

108

116

lcuENT31i...----
\

106

SERVER

~10

DATA COMMUNICATIONS
NElWORK

121

123-

icLJENT 2 j-)05
CLIENT 1

FIG. 1

102

104

EX 1018 Page 349

US. Patent Dec. 16,2003 Sheet 1 of 20 US 6,665,725 B1

,2-

100 CLIENT4 ‘08
‘\ ANALYZER

107 - “6
, "

SERVER ‘

”\HOfi
106 121

DATA COMMUNICATIONS

NETWORK

102

125

.. 123
11—— 11a
SERVER A ~ 105 u

"x CUENT 2 CLIENT 1

112 104

FIG. 1
EX 1018 Page 349

214 215 216 217 218 219 220 221 222 223
'

,-: -: j1 s1a Q sp QP

224 225 226 227 228 229 230 231 232 233

C1 S1 p1 ;>.'. sp P2

21 242 243 244 245

st0

21
250 251 ,252 253 ,254 ,255

KEY-2 s, Ci P2 ·-·-·-·-1 ,; I st, I
260 ,261 ,262 ,263 264 265

n1 S1 C1 P2 , datum request

.
• ({ \ • {' (270 271 272 273 27 4 275

/

C1 81 P2 datum reply

l C 209

2

...................... ",

. .

APPLICATION $ERVER 2

................

. . .

FIG. 2

d • CJ").
•

EX 1018 Page 350

-- ‘ ~-‘+ ”W‘s‘érhkédmw.m1 «e.»

214 215 216 217 218 219 220 221 222 223

11193921'S'fl

£002‘9!ma

OZI"Z”WIS
APPLiCATlON {SERVER 2

1:1szL‘s99‘9sn

EX 1018 Page 350

.gWfl/{1anAWM/L a”. A .m , ~ mum“ m .. .Lfi mmum- :. . k

302

310

-------------------,~~
I PARSER 301 I r - - - - - - - - - - - - -,
I 304 306 314

ANALYZEAND EXTRACT I I ~~:...__- I
I RECOGNIZE IDENTIFYING BUILD UNIQUE I I LOOKUP I

324

PATTERN CONVERSATIO FROM
INFORMATION INFORMATION "FLOW" KEY I KNOWN I DATABASE

(PAR) (Ell) I RECORDS I OF FLOWS

312 I 1i°!A~~E I
r-------...J I I

~-~ I
I I t
I - ---i

.- -- 322
,-- - - ~

I I .-----L------',

PATTERN, PARS I I PROTOCOL
AND I & STATE

1308 EXTRACTION I IDENTIFICATION
I DATABASE I I

'------ ----' I

COMPILER
AND

OPTIMIZER

FIG. 3

- - J

STATE
PROCESSOR
INSTRUCTION

DATABASE

326

STATE
PROCESSN
OPERATION

L------YEs....----'

UPDATE
"FLOW"
KNOWN
RECORD

CLASSIFICATN
FINALIZATION

ANALYZER
303

34

..

0 •
00 •
'"'C =
~ =

EX 1018 Page 351

4 Wm» ”Myra” I . , I" MEDICAMWMWCWMJC; “ ‘

PARSER 3_O_1

ANALYZE AN D
RECOGNIZE

PATTERN

EXTRACT

IDENTIFYING BUILD UNIQUECONVERSATIO

I
|

I I LOOKUP
'FLOW' KEY l

I
I

FROM
KNOWN

I RECORDS
I (DB 324‘ IA CACHE

 NEW "FLO
RECORD?

 DATABASE

OF FLOWS

gI hl

l I I I I l I l I |

mama'S'fl

_______ ._I
:5

8
___1 H

I UPDATE 322' “:2
PATTERN, PARS I PROTOCOL "FLOW" I 3

AND 8- STATE KNOWN I u

EXTRACTION l IDENTIFICATION RECORD I
DATABASE I I

_ _ J g
I I CLASSIFICATN I a

310 I FINALIZATION I u

PROCESSOR : 3.I INSTRUCTION NCOMPILER 34 6
AND I DATABASE I

OPTIMIZER I I
I |
I NO |

I 330 I C:
PROTOCOL I l m
DESCIPTIO I MORE I a
LANGUAGE I OPERATION I “aa

I ANALYZER I y:
l 313 I :3

~ I ____________YE_ _______________ | U:
55H

EX 1018 Page 351

U.S. Patent Dec. 16, 2003 Sheet 4 of 20 US 6,665,725 Bl

404

GENERATE
PACKET

PARSE ANO
EXTRACT

OPERATIONS

406 tf ~TTERN, PARS
AND

EXTRACTION
DATABASE

COMPILE
ESCRJPTION

403

408 409

PACKET
STATE

NSTRUCTION
AND

OPERATIONS

STATE
PROCESSOR
INSTRUCTION

DATABASE

LOAD
PARSING

SUBSYSTEM
MEMORY

LOAD STATE
NSTRUCTIO ,.__
DATABASE
MEMORY

410

FIG. 4

407

EX 1018 Page 352

U.S. Patent Dec. 16, 2003 Sheet 5 of 20

510

503

504

507

PATTERN NO
NODE

509

501

INPUT PACKET 502

LOAD PACKET
COMPONENT 14--~~--.

NO

505

NO

508

EXTRACT
ELEMENTSt--~~~--

FIG. 5

US 6,665,725 Bl

PACKET
KEY

513

511

EX 1018 Page 353

;

.c

!

t

U.S. Patent Dec. 16, 2003 Sheet 6 of 20 US 6,665,725 Bl

601

PACKET 602 COMPONENT AND
PATTERN NODE

603

LOAD PACKET
COMPONENT 610

604

NO LOAD KEY
BUFFER

FETCH EXTRACTION
ND PROCESS FRO

PATTERNS 605

NO 611

606 NEXT
N PACKET 609

COMPONEN

607 APPLY EXTRACTIO
PROCESS TO
COMPONENT

608

..._---YE:--..----..1

FIG. 6

EX 1018 Page 354

'I.
t

U.S. Patent

703

704

706

707

Dec. 16, 2003 Sheet 7 of 20 US 6,665,725 Bl

EV BUFFER AND
PATIERNNODE

701

702

LOAD PATIERN
NODEELEMENT1+-~~~

YES

HASH KEY BUFFER
ELEMENT FROM
PATIERNNODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

NO

705

FIG. 7

708

OUTPUTT1
,__~_...ANALYZER

,700

EX 1018 Page 355

U.S. Patent Dec.16, 2003 Sheet 8 of 20 US 6,665,725 Bl

800~

805

NEXT BUCKET N

809

811

812

UFKB ENTRY FOR
PACKET

801

802

COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
AS'FOUND'

UPDATE STATISTICS FOR

804

807

808

810

806

SETUFKBFOR
PACKET AS 'NEW'

RECORD IN CACHE 1------

FIG. 8

EX 1018 Page 356

·,.
'

U.S. Patent Dec.16, 2003 Sheet 9 of 20

903

904

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION', 'PORT AND
'PROTOCOL (TCP OR

UDP)

CREATE SERVER STAT

SAVE 'PROGRAM',
'VERSION', 'PORT AND
'PROTOCOL (TCP OR

UDP)' WITH NElWORK
ADDRESS IN SERVER

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

905

LOOKUP REQUE

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

FIG. 9

907

US 6,665,725 Bl

EXTRACT POAT

GET 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)'

908
SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)'WITH

DESTINATION
NETWORK ADDRESS.

BOTH MAKE A KEY.

EXTRACT
PROGRAM

GET 'PORT AND
'PROTOCOL (TCP

OR UDP)'.

909

EX 1018 Page 357

'J, -;

U.S. Patent Dec. 16, 2003 Sheet 10 of 20 US 6,665,725 Bl

1000 --:4.

PATTERN
RECOGNITION

DATABASE
MEMORY 1001

EXTRACTION
OPERATIONS

DATABASE
MEMORY

1004

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS

1021

1007 PATTERN
RECOGNITN ---"II

ENGINE
(PRE)

EXTRACTION ENGINE
(SLICER}

PARSER INPUT BUFFER
MEMORY

INPUT BUFFER 1011
INTERFACE
CONTROL

101

1013

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOA
MEMORY

ANALYZER
INTERFACE
CONTROL

1025

._.,. READY

FIG. 10 1027

EX 1018 Page 358

U.S. Patent Dec. 16, 2003 Sheet 11 of 20

1100 ~

1101 1103

1109

UNIFIED
FLOW

PARSER KEY
INTER- UFFER
FACE (UFKB)

LOOKUP/
UPDATE
ENGINE

(LUE)

STATE
PROCESS
INSTRUCN
DATABASE

(SPID)

STATE
PROCESSR

(SP)

FLOW
INSERTION/
DELETION

ENGINE
(FIDE}

1110

1115

1108

CACHE

FIG. 11

US 6,665,725 Bl

1118
11

ANALYZE
HOST

INTERFAC
AND

CONTRO
(ACIC)

UNIFIED
MEMORY
CONTROL

(UMC)

HOST
BUS

INTER-
FACE
(HIB)

MEMORY
INTER
FACE

EX 1018 Page 359

•

U.S. Patent Dec. 16, 2003

1206

1208

1210

1200~

REQUEST NEXT
BUCKET FROM

CACHE

YES

SETUFKBFOR
PACKET AS

'DROP'

NO

NO

1212

Sheet 12 of 20 US 6,665,725 Bl

1201

UFKB ENTRY FOR
PACKET WITH
STATUS'NEW

ACCE
CONVERSATION

RECORD BIN

REQUEST RECORD BIN/
BUCKET FROM CACHE

INSERT KEY AND HASH
N BUCKET, MARK 'USED

WITH TIMESTAMP

OMPARE CURRENT Bl
AND BUCKET RECORD

KEY TO PACKET

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 1NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

1202

1203

1204

1205

1207

1209

1211

FIG. 12

A

EX 1018 Page 360

U.S. Patent Dec.16, 2003 Sheet 13 of 20 US 6,665,725 Bl

1300 ~

SLr1S01

SET STATE PROCESSOR
INSTRUCTION POINTER TO

ALUE,FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

1308

1310
YES

SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN-...;;,_<

CURRENT FLOW
RECORD ~

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

FIG. 13

1303

1304

1305

1307

1309

1311

EX 1018 Page 361

~~;r,

140

PACKET

~"'.t, .·.rf t.\:' ·"):...t"":~:~,';;'7',':•'. • ·,, '~~;:~.,;1,i,:4~ ~ ... ;. ~ . ' '·

-~. '~ -··--.- - e-- ••-.- ,..\.. ,_ -

r------------------,r------------------1
I 11 I
I 1404 1406 1412 I I 141---~-.

NALYZE AND EXTRACT BUILD I I LOOKUP
RECOGNIZE IDENTIFYING 'FLOW" KEY KNOWN
PATTERN INFO & PROCL RECORD

INFORMATION /STATE I I (DB 1424)

PATIERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

PARSER '-1408
SUBSYSEM

I I

-======.J

------------ STATE
MACHINE

SELECTOR ~
1400 1426

FIG. 14
i\1' I I',••

STATE
ANALYSIS
PERATION"' , ••

YES

DATABASE
OF FLOWS

1422

UPDATE.._...
"FLOW"
KNOWN
RECORD

CLASSIFICATN
FINALIZATION

1434
NU--'

ANALYZER
SUBSYSTEM

~-------------------------

0 • r.,;.
•
~
~ ;-
= """'

~

~
~~
N = 6

g::
~
~
~

=
N =

d
00
C',

Q\
~
~
Ul

Cd
"""

-~~;., -.:.i.;'

EX 1018 Page 362

!
'!

,•
I
1

: > fr
J ti,

U.S. Patent

~

w
Ng!
~o
z
<(

a:
w
CJ) ,-1 o:g
~

Dec.16, 2003

co >-0 I- a: U) (/) 0 ,-
O:E
::r: w

:E
,q'
0
U)

0
I- (/)
cn en
0W J:o

0 a:

Sheet 15 of 20 US 6,665,725 Bl

('()
0
LO ,-

~
CJ) ol!S ID
- Cl Cl

~w
a:~ Cl

0 0 u.. a:
,-

~a:<(U)
,- w~O

zz

LO
a: ,-
0
t:01 •
zo C, QC')
:E -LL

EX 1018 Page 363

U.S. Patent Dec. 16, 2003 Sheet 16 of 20 US 6,665,725 Bl

1602 0 - 3 Bytes
Jt:---1600

DstMAC I
offset O -11 1604 Dst MAC Src MAC ---

I Src MAC

\..._____ _ __ __,/ ______ x _____ _
1608 _/'_~~~~~~--~--~~--;

Ost MAC (6)

1606

Ost Hash (2 1610

Src MAC (6)

1614
Src Hash (2

~t=12

FIG. 16

EX 1018 Page 364

U.S. Patent Dec.16, 2003 Sheet 17 of 20 US 6,665,725 Bl

offset I
12 to 13

L3to
[L3 +
(IHL/ 4
- 1]

1702

\ I 'Type

1704

V/11/!IIII~
\~-~

1708 Type (2)

Hash 1)
1710 -,c...._ 1700

~et=14

FIG. 17A

IDP = Ox0600*
IP= OxOBOO*

CHAOSNET = Ox0804
ARP=Ox0806
VIP = OxOBAD*

VLOOP = OxOBAE
VECHO = OxOBAF

NETBl0S-3COM = Ox3COO -
Ox3COD#

DEC-MOP = Ox6001
DEC-RC = Ox6002

DEC-DRP = Ox6003 *
DEC-LAT= Ox6004

DEC-DIAG = Ox6005
DEC-LAVC = Ox6007

RARP = Ox8035
ATALK = Ox809B*

VLOOP = OxBOC4
VECHO = Ox80C5 V SNA-TH = OxBOD5*

1712
--- ATALKARP = OxBOF3

IPX = Ox8137*
SNMP = Ox814C#

DstAddress I
Dst Hash (2) I

SrcAddress I
Src Hash (2)1

1Pv6 = Ox86DD*
LOOPBACK = Ox9000

Apple = Ox080007
*-L3 Decoding
L5 Decoding

~1750

1752
~

ICMP = 1
IGMP =2
GGP =3
TCP =6*
EGP =8

IGRP =9
PUP= 12

CHAOS= 16
UDP= 17*
IDP = 22#

IS0-TP4 = 29
DDP =37#

ISO-IP= 80
VIP =83#

EIGRP =88
OSPF =89

~01c1> FIG. 178 * L4 Decoding
L3 Re-Decoding

!L4 Off;et = L3 + (IHU4)

EX 1018 Page 365

U.S. Patent Dec.16, 2003 Sheet 18 of 20 US 6,665,725 Bl

:c
~ z
w _,
C
...I
w
u:::

PROTOCOL
TYPE {1Dl

Jc--1800

FIG. 18A·

1802-2
1802-1

l._1802-M

Jc,--1850 w cc
0 ...I
0W

1870
LUTNUM). ~

...I
0
0

5
WLL

~~
m

FIG. 188

EX 1018 Page 366

,· .,

U.S. Patent Dec. 16, 2003 Sheet 19 of 20 US 6,665,725 Bl

1901

COMMON.POL 1903

FLOWS.POL 1905

it
VIRTUAL.POL 1907

·~
191 ETHERNET.POL ~;

;
~

l
"' 1913

ETHERTYPE

IP.POL 1~15

TCP.POL 1917

RPC.PDL
1919

192 NFS.POL

, . .. -~ FIG. 19

EX 1018 Page 367

U.S. Patent

" /

t,
' (

2009

l

.)
1
t
{ ,
;,

i

1
f

!,

i

2019

Dec. 16, 2003 Sheet 20 of 20

2001

READ IN POL SOURCE
MODULES

PARSE MODULES FOR
SYNTAX

FIRST PASS, CREATE
ALL PARSE ELEMENTS

ND PASS, BUILD FLO
IGNATURE ELEMENT

THIRD PASS, CREATE
PAYLOAD ELEMENTS

FORTH PASS, BUILD
TATES FOR EACH LIN

READ IN LAYERING
SOURCE MODULES

WALK LAYERING LINKS
FOR EACH POL

OUTPUT CPL
INTERMEDIATE FILE

US 6,665,725 Bl

2003

2005

2007

2011

2013

2015

2017

202.,_I' FIG. 20

EX 1018 Page 368

•. ..
'

l,

US 6,665,725 Bl
1

PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY
A PROTOCOL DESCRIPTION LANGUAGE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application Serial No.: 60/141,903 for METIIOD
AND APPARATIJS FOR MONITORING TRAFFIC IN A
NETWORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following U.S. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

U.S. patent application Ser. No. 09/608,237 for
METIIOD AND APPARATIJS FOR MONITORING
TRAFFIC IN A NETWORK, to inventors Dietz, et al.,
filed Jun. 30, 2000, and incorporated herein by refer-
ence.

2
packets the network monitor should determine the protocol
(e.g., http, ftp, H.323, VPN, etc.), the application/use within
the protocol (e.g., voice, video, data, real-time data, etc.),
and an end user's pattern of use within each application or

s the application context (e.g., options selected, service
delivered, duration. time of day, data requested, etc.). Also,
the network monitor should not be reliant upon server
resident information such as log files. Rather, it should allow
a user such as a network administrator or an Internet service

10 provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and
to receive timely notification of network problems.

The recognizing and classifying in such a network moni-
15 tor should be at all protocol layer levels in conversational

flows that pass in either direction at a point in a network.
Furthermore, the monitor should provide for properly ana
lyzing each of the packets exchanged between a client and
a server, maintaining information relevant to the current

20 slate of each of these conversational flows.

Related and incorporated by refe11:nce U.S. patent appli-
U.S. patent application Ser. No. 09/608,126 for cation Ser. No. 09/608,237 for ME1HOD AND APPARA-

RE-USING INFORMATION FROM DATA TRANS- TUS FOR MONITORING TRAFFIC IN A NETWORK, to
ACI10NS FOR MAINTAINING STATISTICS IN inventors Dietz, et al, describes a network monitor that
NETWORK MONITORING, to inventors Dietz, et al., 25 includes carrying out protocol specific operations on indi-
filed Jun. 30, 2000, and incoi:porated herein by refer- vidual packets including extracting information from header
ence. fields in the packet to use for building a signature for

U.S. patent application Ser. No. 09/608,266 for ASSO- identifying the conversational flow of the packet and fur
CIATIVE CACHE STRUCTURE FOR LOOKUPS recognizing future packets as belonging to a previously
AND UPDATES OF FLOW RECORDS IN A NET- 30 encountered flow. A parser subsystem includes a parser for
WORK MONITOR, to inventors Sarkissian, et al., filed recognizing different patterns in the packet that identify the
Jun. 30, 2000, and incorporated herein by reference. protocols used. For each protocol recognized, a slicer

U.S. patent application Ser. No. 09/608,267 for STP;IB extracts important packet elements from the packet. These
PROCESSOR FOR PATTERN MATCHING IN A form a signature (i.e., key) for the packet. The slicer also
NETWORK MONITOR DEVICE, to inventors

35
preferably generates a hash for rapidly identifying a flow

Sarkissian, et al., filed Jun. 30, 2000, and incorporated that may have this signature from a database of known
herein by reference. flows.

FIElD OF INVENTION

The present invention relates to computer networks, spe
cifically to the real-time elucidation of packets communi
cated within a data network, including classification accord
ing to protocol and application program.

COPYRIGHT NOTICE

The flow signature of the packet, the hash and at least

40
50Dle of the payload are passed to an analyz.er subsystem. In
a hardware embodiment, the analyzer subsystem includes a
unified flow key buffer (UFKB) for receiving parts of
packets from the parser subsystem and for storing signatures
in process, a lookup/update engine (LUE) to lookup a

45
database of flow records for previously encountered con
versational flows to determine whether a signature is from
an existing flow, a slate processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for A portion of the disclosure of this patent document

contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-

50
tion by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

inserting new flows into the database of flows, a memory for
storing the database of flows, and a cache for speeding up
access to the memory containing the flow database. The
LUE, SP, and FIDE are all coupled to the UFKB, aad to the
cache.

Each flow-entry includes one or more statistical measures,

55 e.g., the packet count related to the flow, the time of arrival
of a packet, the time differential. BACKGROUND

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other interconnected
netwodcs. In particular, there is a need for a real-time
network monitor that can provide details as to the applica
tion programs being used. Such a monitor should enable
non-intrusive, remote detection, characterization, analysis,
and capture of all information passing through any point on
the network (i.e., of all packets and packet streams passing
through any location in the network). Not only should all the
packets be detected and analyzed, but for each of these

In the preferred hardware embodiment, each of the LUE,
state processor, and FIDE operate independently from the
other two engines. The state processor performs one or more

60 operations specific to the stale of the flow.
A network analyzer should be able to analyze many

different protocols. Al a base level, there are a number of
standards used in digital telecommunications, including
Ethernet, HDLC, ISDN, Lap B, ATM, X.25, Frame Relay,

65 Digital Data Service, FDDI (Fiber Distributed Data
Interface), Tl, and others. Many of these standards eD;)ploy
different packet and/or frame formats. For example, data is

EX 1018 Page 369

US 6,665,725 Bl
3 4

transmitted in A'.IM and frame-relay systems in lhe form of protocol descriptions for protocols may be used in the
fixed length packets (called "cells") that are 53 octets (i.e., packet. A protocol description for a particular protocol at a
bytes) long. Several such cells may be needed to make up the particular layer level includes any child protocols of the
information that might be included in the packet employed particular protoro], and for any child protocol, where in the
by some other protocol for the same payload information- 5 packet information related to the particular child protocol
for example in a convemational flow lhat uses the frame- may be found. A protocol description also includes any
relay standard or the Ethernet protocol. protocol specific operations to be performed on the packet

In order for a network monitor to be able to analyze for the particular protocol at the particular layer level. The
different packet or frame formats, the monitor needs to be melhod includes performing the protocol specific operations
able to perform protocol specific operations on each packet 10 on the packet specified by the set of protocol descriptions

based on the base protocol of the packet and the children of
with each packet carrying information conforming to dif- the protocols used in the packet. A particular embodiment
ferent protocols and related to different applications. For includes providing the protorol descriptions in a high-level
example, the monitor needs to be able to parse packets of protocol description language, and compiling to the descrip-
different formats into fields to understand the data encapsu- tions into a data strncture. The compiling may further
lated in the different fields. As the number of possible packet 15 include compressing the data structure into a compressed
formats or types increases, the amount of logic required to data structure. The protocol specific operations may include
parse these different packet formats also increases. parsing and extraction operations to extract identifying

Prior art network monitms exist that parse individual information. The protocol specific operations may also
packets and look for information at different fields to use for include state processing operations defined for a particular
building a signature for identifying packets. Chiu, et al., 20 state of a conversational flow of the packet.

descn:ie a method for collec~g information at the session BRIEF DESCRIPTION OF THE DRAWINGS
level m a computer network m U.S. Pat. No. 5,101,402,
titled "APPARATUS AND METIIOD FOR REAL-TIME Although the present invention is better understood by
MONITORING OF NETWORK SESSIONS AND A referring to the detailed preferred embodiments, these
LOCAL AREA NETWORK." In this patent, there are fixed 25 should not be taken to limit the present invention to any
locations specified for particular types of packets. For specific embodiment because such embodiments are pro-
example, ih DECnet packet appear.;. the Chiu system looks vided only for the purposes of explanation. The
at six specific fields (at 6 locations) in the packet in order to embodiments, in tum, are explained with the aid of the
identify the session of the packeL If. on the other band, an following figures.
IP packet appears, a different set of six locations are exam- 30 FIG. I is a functional block diagram of a network embodi-
ined. The system looks only at the lowest levels up to the ment of the present invention in which a. monitor is con-
protocol layer. There are fixed locations for each of the fields nected to analyze packets passing at a connection point.
that specified the next level. With the proliferation of FIG. 2 is a diagram representing an example of some of
protocols, clearly the specifying of a.11 the poss1ble places to the packets and their formats that might be exchanged in
look to determine the session becomes more and more 35 starting, as an illustrative example, a conversational flow
difficult. Likewise, adding a. new protocol or application is between a client and server on a network being monitored
difficult. and analyzed. A pair of flow signatures particular to this

It is desirable to be able to adaptively determine the example and to embodiments of tbe present invention is also
locations and the information extracted from any packet for illustrated. This represents some of the ~ible flow signa-
the particular type of packet. In this way, an optimal signa- 40

tores 1!1at can be generated an~ ~d m th~ process of
ture may be defined using a protocol-dependent and packet- anal~g packets and of reco~g the p~~ar server
content-dependent definition of what to look for and where applications that produce the discrete application packet
to look for it in order to form a signature. exchanges.

There thus is also a need for a network monitor that can 45 FIG.3is a functional block diagram of a processembodi-
be tailored or adapted for different protocols and for different men~ of the p~nt inventio~ that can operate :i5 tbe packet
application programs. There thus is also a need for a network ~omtnr shown m FIG. 1. This process may be llllplemented
monitor that can accommodate new protocols and for new m softw~ or hardware. .
application programs. There also is a need for means for FIG .. 4 JS a flo~c~art _of a high-level_ pr~tocol languag_e
specifying new protorols and new levels, including new 50 compiling and optimiZat:ion process, which I? o?e embodi-
applications. There also is a need for a mechanism to ment n:iay be ~ to generate data f°?r mo!lltormg packets
describe protocol specific operations, including, for according.to versions of the present mvention.
example, what information is relevant to packets and pack- FIG. 5 JS a flowchart of a packet parsing process used as
ets that need to be decoded, and to include specifying part of the parser in an embodiment of tbe inventive packet
parsing operations and extraction operations. There also is a 55 monitor.
need for a mechanism to describe state operations to perform FIG. 6 is a flowchart of a packet element extraction
on packets lhat are at a particular state of recognition of a process that is used as part of the parser in an embodiment
flow in order to further recognize the flow. of the inventive packet monitor.

SUMMARY
One embodiment of the invention is a method of per

forming protocol specific operations on a packet passing
through a connection point on a computer network. The
packet contents conform to protocols of a layered model
wherein the protocol at a particular layer level may include
one or a set of child protocols defined for that level. The
method includes receiving the packet and receiving a set of

FIG. 7 is a flowchart of a Row-signature building process

60 that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process that is used as part of the analyzer in an embodiment
of the inventive packet monitor.

65 FIG. 9 is a flowcbart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

EX 1018 Page 370

:~

t
!
~

'

US 6,665,725 Bl
5 6

FIG. to is a functional block diagram of a hardware parser in the interior of the cloud. A monitor 108 examines the
subsystem including the pattern recognizer and extractor packets passing in either direction past its connection point
that can form part of the parser module in an embodiment of 121 and, according to one aspect of the invention, can
the inventive packet monitor. elucidate what application programs are associated with

FIG. 11 is a functional block diagram of a hardware 5 each packet. The monitor 108 is shown examining packets
analyzer including a state processor that can form part of an (i.e., datagrams) between the network interface 116 of the
embodiment of the inventive packet monitor. server 110 and the network. The monitor can also be placed

FIG. 12 is a functional block diagram of a flow insertion at other points in the network,. such as connection point 123
and deletion engine process that can form part of the between the network 102 and the interface 118 of the client
analyzer in an embodiment of the inventive packet monitor. 10 104, or some other location, as indicated schematically by

connection point 125 somewhere in network 102. Not
FIG. 13 is a flowchart of a state processing process that shown is a network packet acqu:i.si.tion device at the location

can form part of the analyzer in an embodiment of the 123 on the network for converting the physical information
inventive packet monitor. on the network into packets for input into monitor 108. Such

FIG. 14 is a simple functional block diagram of a process 15 packet acquisition devices are common.
embodiment of the present invention that can operate as the Various protocols may be employed by the network to
packet monitor shown in FIG. 1. This process may be establish and maintain the required communication, e.g.,
implemen~ in so~are. . TCP/IP, etc. Any network activity-for example an appli-

FI_G. 15 IS a functional block diagram of how the packet cation program run by the client 104 (CT.IENT 1) commu-
momtor of FIG. 3 (and FIGS. 10 and 11) may operate on a 20 nicating with another running on the server 110 (SERVER
network with a processor such as a microprocessor. 2)-will produce an exchange of a sequence of packets over

FIG. 16 is an example of the top (MAC) layer of an network102thatischaracteristicoflhercspc:ctiveprograms
Ethernet packet and some of the elements that may be and of the network protocols. Such characteristics may not
extracted to form a signature according to one aspect of the be completely revealing at the individual packet level. It
invention. 2S may require the analyzing of many packets by the monitor

FIG.17Ais an example of the headerof an Ethertypc type 108 to have enough information needed to recognize par-
of Ethernet packet of FIG. 16 and some of the elements that ticular application programs. The packets may need to be
may be extracted to form a signature according to one aspect parsed then analY?,Cd in the context of various protocols, for
of the invention. example, the transport through the application session layer

FIG. 17B is an example of an IP packet, for example, of 30 protocols for packets l of a type conforming to the ISO
the Ethertype packet shown in FlGS.16 and 17A, and some layered ne~ mode· . .
of the elements that may be extracted to form a signature Commumcation protocols are, layered, which IS • also
according to one aspect of the invention. referred to as a protocol stack. The ISO (International

FIG. 18A is a three dimensional structure that can be used S~on Organization) has ~fined a general .m<J?el
d . 35 that provides a framework for design of commumcation

to store elements of the pattern, p~ an extraction data- rotocol la rs. This model sho in table from below
base used by the parser subsystem m accordance to one P ye • ,. wn . . '

bod' t f the · ti serves as a basic reference for understanding the function-
em unen ° mven on. ality of existing communication protocols.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser 40
subsystem in accordance to another embodiment of the
invention. ISO MODEL

HG. 19 shows various PDL file modules to be compiled
together by the compiling process illustrated in FlG. 20 as
an exaniple, in accordance with a compiling aspect of the 45

invention. j FIG. 20 is a flowchart of the process of compiling
high-level langnage files according to an aspect of the
invention.

50

DETAILED DESCRIPTION OF TilE
PREFERRED EMBODIMENTS

Layer

7

6
s
4
3
2

I'Raenlalion
Session
Tunsport
Network
Datatink

Physical

Telnet, NFS, Novell NCl', HTI1',
H.323
XDR
RPC, NBTBIOS, SNMP, etx:.
TCP, Nowt SPX, UDP, etx:.
IP, Novcll lPX, VIP, Apple Till, etc.
Network Interface Cud (Hudware
!ntcrf.aoo). MAC layer
Ethemet, Tob,n Ring, Frame Relay,
ATM, Tl (Ha,dwue Connection)

Note that I.his document includes hardware diagrams and
descriptions that may include signal names. In most cases, 55
the names arc sufficiently descriptive, in other cases how
ever the signal names are not needed to understand the
operation and practice of the invention.

~t communications protocols employ different lev-
els- oTtlielSO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to
protocols employed at other layers. For example, an appli-

Operation in a Network

FIG. 1 represents a system embodiment of the present
invention that is referred to herein by the general reference
numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between
various computers, for example between the clients 104-107
and servers 110 and 112. The network is shown schemati
cally as a cloud with several network nodes and links shown

60 cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2-3).

In some communication arts, the term "frame" generally
refers to encapsulated data at OSI layer 2, including a
destination address, control bits for flow control, the data or

6S payload, and CRC (cyclic redundancy check) data for error
checking. The term "packet'' generally refers to encapsu
lated data at OSI layer 3. In the TCP/IP world, the term

EX 1018 Page 371

US 6,665,725 Bl
7

"datagram" is also used. lo Ibis specification, the term
"packet" is intended to encompass packets, datagrams,
frames, and cells. lo general, a packet format or frame
format refers to how data is encapsulated with various fields
and headera for transmission across a network. For example,
a data packet typically includes an address destination field,
a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headets and
foolcra to identify the beginning and end of the packet The
terms "packet fonnat" and "frame format," also referred to
as "cell format," arc generally synonymous.

Monitor 108 looks at every packet passing the connection
point Ul for analysis. However, not every packet carries the
same information useful for recognizing all levels of the
protocol. For example, in a convcraational flow associated

• with a particular application, the application will cause the
server to send a type-A packet, but so will another. If,
though, the particular application program always follows a
type-A packet with the sending of a type-B packet, and the
other application program does not, then in order to recog
nize packets of that application's conversatinnal flow, the
monitor can be available to recogruze packets that match the
type-B packet to asoociate with the type-A packet If such is
recogn.izcd after a type-A packet, then the particular appli
cation program's conversational flow has started to reveal
itself to the monitor 108.

8
such a case, a subsequent packet of a second type-but that
potentially belongs to the same conversational flow-is
recognized by using the signature. At such a second level,
then, only a few of those application programs will have

5 conversational flows that can produce such a second packet
type. At this level in the process of classification, all appli
cation programs that are not in the set of those that lead to
such a sequence of packet types may be excluded in the
process of classifying the conversational flow that includes

10 these two packets. Based on the known patterns for the
protocol and for the possible applications, a signatlm: is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognm:d, or
15 recognition may need to proceed to a third level of analysis

using the second level signature. For each packet, therefore,
the monitor paraes the packet and generates a signature to
determine if this signature identified a previously encoun
tered flow, or shall be used to recognize future packets

20 belonging to the same conversational flow. In real time, the
packet is further analy:zed in the context of the sequence of
previously encountered packets (the state), and of the pos
sible future sequences such a past sequence may generate in
conversational flows associated with di.trercnt applications.

25 A new signature for recognizing future packets may also be
generated This process of analysis continues until the
applications arc identified. The last generated signature may
then be used to efficiently recognize future packets associ-

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying 30

other packet exchanges that arc parts of conversational flows
associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a ilow. The state of

ated with the same convcisational flow. Such an arrange
ment makes it possible for the monitor 108 to cope with
millions of packets per second that must be inspected.

Another aspect of the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through some point
in the network 102 (for example, because of execution of the

a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels, 35

e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

applications by the client 105 or server 110), the monitor
sends a message to some general purpose processor on the
network that can input the same packets from the same
location on tbc network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being exchanged over the network:. In other
words, once the monitor 108 bas accomplished recognition

45
of the application program, eavesdropping can commence.

In real-world uses of the monitor 108, the number of
40

packets on the network 102 passing by the monitor !OS's
connection point can exceed a million per second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
state of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of The Network Monitor
each packet that will not contribute to its classification. FIG. 3 shows a network packet monitor 300, in an
However, the parts to mask-out will change with each packet embodiment of the present invention that can be imple-
depending on which flow it belongs to and depending on the 50 mented with computer hardware and/or software. The sys-
state of the flow. tem 300 is similar to monitor 108 in FIG. 1. A packet 302 is

The recognition of the packet type, and ultimately of the examined, e.g., from a packet acquisition device at the
associated application programs according to the packets location Ul in netwmk 102 (FIG. 1), and the packet
that their executions produce, is a multi-step process within evaluated, for example in an attempt to determine ils
the monitor 108. At a first level, for example, several 55 characteristics, e.g., all the protocol information in a multi-
application programs will all produce a firat kind of packet. level model, including what server application produced the
A first "signature" is produced from selected parts of a packet.
packet that will allow monitor 108 to identify efficiently any The packet acquisition device is a common interface that
packets that belong to the same flow. In some cases, that converts the physical signals and then decodes them into
packet type may be sufficiently unique to enable the monitor 60 bits, and into packets, in accordance with the particular
to identify the application that generated such a packet in the network (Ethernet, frame relay, ATM, etc.). The acquisition
conversational flow. The signature can then be used to device indicates to the monitor 108 the type of network of
efficiently identify all future packets generated in traffic the acquired packet or packets.
related to that application. Aspects shown here include: (1) the initialization of the

In other cases, that firat packet only starts the process of 65 monitor to generate what operations need to occur on
analyzing the converaational ilow, and more packets are packets of different types-accomplished by compiler and
necessary to identify the associated application program. In optinilier 310, (2) the processing-'!)araing and extraction of

EX 1018 Page 372

US 6,665,725 Bl
9 10

selected portions-of packets to generate an identifying protocol includes the child protocols, the parent protocols
signature--accomplisbed by parser subsystem 301, and (3) also may be detennined.
the analysis of the packets--accomplisbed by analyzer 303. In the preferred embodiment, the packet 302 from the

Toe purpose of compiler and optimizer 310 is to provide acquisition device is input into a packet buffer. The pattern
protocol specific information to parser subsystem 301 and to s recognition process 304 is carried out by a pattern analysis
analyzer subsystem 303. Toe initialization occurs prior to aod recognition (PAR) engine that analyzes and recognizes
operation of the monitor, and only needs to i:c-occur when patterns in the packets. In particular, the PAR locates the
new protocols are to be added. next protocol field in the header and determines the length

of the header, and may perform certain other tasks for certain
A flow is a stream of packets being exchanged between types of protocol headers. An example of this is type and

any two addresses in the network. For each protocol there 10 length comparison to distinguish an IEEE 802.3 (Ethernet)
are known to be several fields, such as the destination packet from the older type 2 (or Version 2) Ethernet packet,
(recipient), the source (the sender), and so forth, and these also called a DIGITAL-Intel-Xerox (DIX) packet. Toe PAR
and other fields are used in monitor 300 to identify tbc llow. also uses the pattern structures and extraction operations
There are other fields not important for identifying the flow, database 308 to identify the next protocol and parameters
such as checksums, and those parts are not used for identi- 15 associated with that protocol that enables analysis of the
fication. next protocol layer. Once a pattern or a set of patterns has

Parser subsystem 301 examines the packets using pattern been identified, it/they will be associated with a set of none
recognition process 304 that parses tbe packet and deter- or more extraction operations. These extraction operations
mines the protocol types and associated headers for each (in the form of commands and associated parameters) are
protocol layer that exists in the packet 302. An extraction 20 passed to the extraction process 306 implemented by an
process 306 in parser subsystem 301 extracts characteristic extracting and information identifying (Ell) engine that
portions (signature information) from the packet 302. Both extracts selected parts of the packet, including identifying
the pattern information for parsing and the related extraction information from the packet as required for recognizing this
operations, e.g., extraction masks, are supplied from a packet as part of a flow. Toe extracted information is put in
parsing-pattern-structures and extraction-operations data- 25 sequence and then processed in block312 to build a unique
base {patsing/extractions database) 308 filled by the com- flow signature (also called a "key") for this flow. A !low
piler aod optimizer 310. signature depends on the protocols used in the packet. For

Toe protocol description language (PDL) files 336 some protocols, the extracted components may include
describes both patterns and states of all protocols that an

30
source and destination addresses. For example, Ethernet

occur at any layer, including how to interpret header frames have end-point addresses that are useful in building
information, how to determine from the packet header a better flow signature. Thus, the signature typically inclndes
information the protocols at the next layer, and what infor- the client and server address pairs. The signature is used to
mation to extract for the purpose of identifying a flow, and recognize further packets that are or may be part of this flow.
ultimately, applications and services. The layer selections

35
In the preferred embodiment, the building of the flow key

database 338 describes the particular layering handled by the includes generating a hash of the signature using a bash
monitor. That is, what protocols run on top of what protocols function. The purpose if using such a hash is conventional-
at any layer level. Thus 336 and 338 combined describe how to spcead flow-entries identified by the signature across a
one would decode, analyze, and understand the information database for efficient searching. The bash generated is
in packets, aod, furthermore, how the information is layered.

40
pceferably based on a hashing algorithm aod such bash

This information is input into compiler and optimizer 310. generation is known to those in the art.
When compiler and optimizer 310 executes, it generates In one embodiment, the parser passes data from the

two sets of internal data structures. The first is the set of packet-a parser record--tbat includes the signature (i.e.,
parsing/extraction operations 308. The pattern structures selected portions of the packet), the hash, aod the packet
include parsing information and descnbe what will be 45 itself to allow for any state processing that requires further
recognized in the bcadei:s of packets; the e:xtraction opera- data from the packet. An improved embodiment of the parser
tions are what elements of a packet are to be extracted from subsystem might generate a parser record that has some
the packets based on the patterns that get matched. Thus, predefined structure and that includes the signature, the
database 308 of parsing/extraction operations includes infor- hash, some flags related to some of the fields in the parser
mation describing how to determine a set of one or more 50 record, aod parts of the packet's payload that the parser
protocol dependent extraction operations from data in the subsystem has detennined might be required for further
packet that indicate a protocol used in the packet. processing, e.g., for state processing.

The other internal data structure that is built by compiler Note that alternate embodiments may use some function
310 is the set of state patterns and processes 326. These are other than concatenation of the selected portions of the
the different states and state transitions that occur in different ss packet to make the identifying signature. For example, some
conversational flows, and the state operations that need to be "digest function" of the concatenated selected portions may
performed (e.g., patterns that need to be examined and new be used.
signatures that need to be built) during any state of a The parser record is passed onto lookup process 314
conversational flow to further the task of analyzing the which looks in an internal data store of records of known
conversational flow. 60 flows that the system has already encountered, and decides

Thus, compiling the PDL files and layer selections pro- (in 316) whether or not this particular packet belongs to a
vides monitor 300 with the information it needs to begin known flow as indicated by the presence of a flow-entry
processing packets. In an alternate embodiment, the contents matching this flow in a database of known flows 324. A
of one or more of databases 308 and 326 may be manually record in database 324 is associated with each encountered
or otherwise generated. Note that in some embodintents the 65 flow.
layering selections information is inherent rather than Toe parser record enters a buffer called the unified flow
explicitly descabcd. For example, since a PDL tile for a key buffer (UFKB). The UFKB stores the data on flows in

EX 1018 Page 373

;.

' t
'

US 6,665,725 Bl
11

a data slrocture that is similar to the parser record, but that
includes a field that can be modified. In particular, one or the
UFKB record fields stores the packet sequence number, and
another is filled with state information in the form of a
program counter for a state processor that implements state 5
processing 328.

12
ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from slate-to-state
based on predefined state transition rules and state opera -
lions as specified in state processor instruction database 326.
A state transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
state processor is in a particular state-for example, in order
to evaluate a quantity needed to apply the state transition
rule. Toe state processor goes through each rule and each
state process until the test is true, or there are no more tests
to perform.

Toe determination (316) of whether a record with the
same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFKB records and uses the
bash in the UFKB record to lookup if there is a matching 10
known flow. In the particular embodiment, the database of
kuown flows 324 is in an external memory. A cache is
associated with the database 324. A lookup by the LUE for
a known record is carried out by acc:cssing the cache using In general, the set of state operations may be none or more
the hash, and if the entry is not already present in the cache, operations on a packet, and carrying out the operation or
the entry is looked up (again using the bash) in the external 15 operations may leave one in a state that causes exiting the
memory. system prior to completing the identification, but possibly

Toe flow-entry database 324 stores flow-entries that knowing more about what state and state processes are
include the unique flow-signature, state information, and needed to execute next, i.e., when a next packet of this flow
extracted information from the packet for updating flows, is encountered. As an example, a state process (set of state
and one or more statistical about the flow. Each entry 20 operations) at a particular state may build a new signature
completely describes a flow. Database 324 is organized into for future recognition packets of the next state.
bins that contain a number, denoted N, of flow-entries (also By maintaining the state of the flows and knowing that
called flow-entries, each a bucket), with N being 4 in the new flows may be set up using the information from
preferred embodiment. Buckets (i.e., flow-entries) are previously encountered flows, the network traffic monitor
accessed via the hash of the packet from the parser sub- 25 300 provides for (a) single-packet protocol recognition of
system 301 (i.e., the bash in the UFKB record). The hash flows, and (b) multiple-packet protocol recognition offlows.
spreads the flows across the database to allow for fast Monitor 300 can even recogni7.e the application prograni
lookups of entries, allowing shallower buckets. Toe designer from one or more disjointed sub-flows that occur in server
selects the bucket depth N based on the amount of memory announcement type flows. What may seem to prior art
attached to the monitor, and the number of bits of the hash 30 monitors to be some unassociated flow, may be recognized
data value used. For example, jn one embodiment, each by the inventive monitor using the flow signature to be a
flow-entry is 128 bytes long, so for 128K flow-entries, 16 sub-flow associated with a previously encountered sub-flow.
Mbytes are required. Using a 16-bit hash gives two flow- Thus, state processor 328 applies the first state operation
entries per bucket. Empirically, this has been shown to be to the packet for this particular flow-entry. A process 330
more than adequate for the vast majority of cases. Note that

35
decides if more operations need to be performed for this

another embodiment uses flow-entries that are 256 bytes state. If so, the anal~r continues looping between block
long. 330 and 328 applying additional state operations to this

Herein, whenever an access to database 324 is described, particular packet until all those opera1ions are completed-
it is to be understood that the access is via the cache, unless that is, there are no more operations for this packet m this
otherwise staled or clear from the context.

40
state. A process 332 decides if there are further states to be

If there is no flow-entry found matching the signature, i.e., analyzed for this type of flow according to the state of the
the signature is for a new flow, then a protocol and state flow and the protocol, in order lo fully characterize the flow.
identification process 318 further determines the state and If not, the conversational flow has now been fully charac-
protocol. That is, process 318 determines the protocols and

45
teriz.ed an_d a process 334 finalizes the classification of the

where in the state sequence for a flow for this protocol's this conversational flow for the flow.
packet belongs. Identification process318 uses the extracted In the particular embodinient, the state processor 328
information and makes reference to the database 326 of state starts the state processing by using the last protocol recog-
patterns and processes. Process 318 is then followed by any nizcd by the parser as an offset into a jump table Gump
state operations that need to be executed on this packet by 50 vector). Toe jump table finds the state processor instructions
a state processor 328. to use for that protocol in the state patterns and processes

If the packet is found to have a matching flow-entry in the database 326. Most instructions test something in the unified
database 324 (e.g., in the cache), then a process 320 flow key buffer, or the flow-entry in the database of known
determines, from the looked-up flow-entry, if more classi- flows 324, if the entry exists. The state processor may have
fication by state processing of the flow signature is neces- 55 to test bits, do comparisons, add, or subtract lo perform the
sary. If not, a process 322 updates the flow-entry in the test. For example, a common operation carried out by the
flow-entry database 324 (e.g., via the cache). Updating stale processor is searching for one or more patterns in the
includes updating one or more statistical measures stored in payload part of the UFKB.
the flow-entry. In our embodiment, the statistical measures Thus, in 332 in the classification, the analyzer decides
are stored in counters in the flow-entry. 60 whether the flow is at an end state. If not al an end state, the

If state processing is required, state process 328 is com- flow-entry is updated (or created if a new flow) for this
menced. State processor 328 carries out any state operations flow-entry in process 322.
specified for the state of the flow and updates the state lo the Furthermore, if the flow is known and if in 332 it is
next state according to a set of state instructions obtained determined that there are further states to be processed using
form the state pattern and processes database 326. 65 later packets, the !low-entry is updated in proces.s 322.

Toe state processor 328 analyzes both new and existing Toe !low-entry also is updated after classification, final-
flows in order to analyze all levels of the protocol stack, ization so that any further packets belonging to this flow will

EX 1018 Page 374

I
I

l
j

' ' ,j

t
I

,;

US 6,665,725 Bl
13 14

be readily identified from their signature as belonging lo this called an Ethernet TypeNersion 2 and a DIX (DIGITAL-
fully analyzed conveisational flow. Intel-Xerox packet)--or an IEEE 803.2 packet. Continuing

After updating, database 324 therefore includes the set of with the IEEE 802.3 packet,. one of the children nodes may
all the conversational flows that have occurred. be the IP protocol, and one of the children of the IP protocol

Thus, the embodiment of present invention shown in F1G. 5 may be the TCP protocol.
3 automatically maintains flow-entries, which in one aspect F1G. 16 shows the header 1600 (base level 1) of a
includes storing states. The monitor of F1G. 3 also generates complete Ethernet frame (i.e., packet) of information and
characteristic parts of packei-the signatures-that can be includes information on the destination media access control
used to recognize flows. The flow-entries may be identified address (Dst MAC 1602) and the source media access
and accessed by their signatures. Once a packet is identified 10 control address (Src MAC 1604). AJi;o shown in F1G. 16 is
to be from a known flow, the state of the flow is known and some (but not all) of the information specified in the PDL
this knowledge enables state transition analysis to be per- files for extraction the signature.
formed in real tinle for each different protocol and applica- F1G. 17 A now shows the header information for the next
tion. In a complex analysis, state transitions are traversed as level (level-2) for an Ethertype packet 1700. For an Ether-
more and more packets are examined. Future packets that 15 type packet 1700, the relevant information from the packet
are part of the same conversational flow have their state that indicates the next layer level is a two-byte type field
analysis continued from a previously achieved state. When 1702 containing the child recognition pattern for the next
enough packets related to an application of interest have level. The remaining information 1704 is shown batched
been processed, a final recognition state is ultimately because it not relevant for this level The list 1712 shows the
reached, i.e., a set of states has been traversed by state 20 possi"ble children for an Ethertype packet as indicated by
analysis to completely characterize the conversational flow. what child recognition pattern is found offset U. FIG. 17B
The signature for that final state enables each new incoming shows the structure of the header of one of the possible next
packet of the same conversational flow to be individually levels, that of the IP protocol. The possible children of the
recognized in real tinle. IP protocol are shown in table 1752.

In this manner, one of the great advantages of the present
25

The pattern, parse, and extraction database (pattern rec-
invention is realized. Once a particular set of state transitions ognition database, or PRD) 308 generated by compilation
has been traversed for the first time and ends in a final state, process 310, in one embodiment,. is in the form of a three
a short-cut recognition pattern---« signature-can be gener- dimensional structure that provides fur rapidly searching
atcd that will key on every new incoming packet that relates packet headers for the next protocol. FIG. 18A shows such
to the conversational flow. Checking a signature involves a

30
a 3-D representation 1800 (which may be considered as an

simple operation, allowing high packet rates to be success- indexed set of 2-D representations). A compressed form of
fully monitored on the network. the 3-D structure is preferred.

In improved embodiments, several state analyzers are run An alternate embodiment of the data structure used in
in parallel so that a large number of protocols and applica- 35 database 308 is illustrated in FIG. 18B. Thus, like the 3-D
lions may be checked for. Every known protocol and appli- structure of FIG. ISA. the data structun: permits rapid
cation will have at least one unique set of state transitions, searches to be performed by the pattern recognition process
and can therefore be uniquely identified by watching such 304 by indexing locations in a memory rather than perform-
transitions. ing address link computations. In this alternate embodiment,.

When each new conversational flow starts, signatures that 40 the PRD 308 includes two parts. a single protocol table 1850
recognize the flow are automatically generated on-the-fly, (PT) which has an entry for each protocol known for the
and as further packets in the conversational flow are monitor, and a series of Look Up Tables 1870 (LUT's) that
encountered, signatures are updated and the states of the set are used to identify known protocols and their children. The
of state transitions for any potential application are further protocol table includes the parameters needed by the pattern
traversed according to the state transition rules fur the flow. 45 analysis and recognition process 304 (implemented by PRE
The new states for the flow-those associated with a set of 1006) to evaluate the header information in the packet that
state transitions for one or more potential applications-are is associated with that protocol, and parameters needed by
added to the records of previously encountered states for extraction process 306 (implemented by slicer 1007) to
easy recognition and retrieval when a new packet in the flow process the packet header. When there are children, the PT
is encountered. 50 describes which bytes in the header to evaluate to determine

Detailed Operation

F1G. 4 diagrams an initialization system 400 that includes
the compilation process. That is, part of the initialization
generates the pattern structures and extraction operations 55
database 308 and the state instruction database 328. Such
initialization can occur off-line or from a central location.

the child protocol. In particular, each PT entry contains the
header length, an offset to the child, a slicer command, and
some flags.

The pattern matching is carried out by finding particular
"child recognition codes'' in the header fields., and using
these codes to index one or more of the LUT's. Each LUT
entry has a node code that can have one of four values,
indicating the protocol that has been recogniz.ed, a code to
indicate that the protocol has been partially recognized
(more LUTlookups are aceded), a code to indicate that this
is a terminal node, and a null node to indicale a null entry.
The next LUT to lookup is also returned from a LUT lookup.

The different protocols that can exist in different layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called level 0). 60

Each protocol is either a pmmt node or a terminal node. A
parent node links a protocol to other protocols (child
protocols) that can be at higher layer levels. Thus a protocol
may have :zero or more children. Ethernet packets, for
example, have several variants, each having a basic format
that remains substantially the same. An Ethernet packet (the
root or level O node) may be an Ethertype packet-also

Compilation process is described in F1G. 4. Toe source
code information in the furm of protocol description files is

65 shown as 402. In the particular embodiment, the high level
decoding descriptions includes a set of protocol description
files 336, one for each protocol, and a set of packet layer

EX 1018 Page 375

US 6,665,725 Bl
15 16

selections 338, which de.scribes the particular layering (sets If a component .is successfully loaded in 503, the node and
of trees of protocols) that the monitor is to be able to handle. processes are fetched (505) from the pattern, parse and

A compiler 403 compiles the descriptions. The set of extraction database 308 to provide a set of patterns and
packet parse-and-extract operations 406 is generated (404), processes for that node to apply to the loaded packet
and a set of packet state instructions and operations 407 is 5 component. Toe parser subsystem 301 checks (506) to
generated (405) in the form of instructions for the state determine if the fetch pattern node operation 505 completed
processor that implements state processing process 328. successfully, indicating there was a pattern node that loaded
Data files for each type of application and protocol to be in sos. If not, step 511 moves to the next packet component.
recognized by the analyzer are downloaded from the pattern, If yes, then the node and pattern matching process arc
parse, and extraction database 406 into the memory systems 10 lied · fYl
of the parser and extraction engines. (See the parsing process app Ill S to the component extracted in 503. A pattern
500 description and FIG. S; the extraction process 600 match obtained in 5fYl (as indicated by test 508) means the
description and FIG. 6; and the parsing subsystem hardware parser subsystem 301 has found a node in the parsing
description and FIG. 10). Data files for each type of appli- elements; the parser subsystem 301 proceeds to step 509 to
cation and protocol to be rccogni2:ed by the analyzer are also extract the elements.
downloaded from the state-processor instruction database l5 If applying the node process to the component does not
407 into the state processor. (sec the state processor 1108 produce a match (test 508), the paraer subsystem 301 moves
description and FIG. 11.). (510) to the next pattern node from the pattern database 308

Note that generating the packet parse and extraction and to step 505 to fetch the next node and process. Thus,
operations builds and links the three dimensional structure there is an "applying patterns" loop between 508 and SOS.
(one embodiment) or the or all the lookup tables for the 20 Once the parser subsystem 301 completes all the patterns
PRD. and has either matched or not, the parser subsystem 301

Because of the l3.1ge number of possible protocol trees and moves to the next packet component (511).
subtrees, the compiler process 400 includes c,itimization Once all the packet components have been the loaded and
that compares the trees and su~trces to see ~ch children processed from the input packet 302, then the load packet
share co~o~ parents. When unplemen~d m the form of 25 will fail (indicated by test 504), and the parser subsystem
the Lur s, th.is process can generate a smgle Lur from a 301 to build ckct • hi h · clescnbed ·
plurality of LUT's. The optimization process further movi:s . a pa Signature w. c ts . . IIl
includes a compaction process that redoces the space needed FIG. 6 ~G. 6 IS a flow chart for_extractillg the information
to store the data of the PRD. from which to build the packet signature. The flow starts at

As an example of compaction, consider the 3-D structure 30 601, which is the exit point 513 of FIG. S. At this point
of FIG. 18A that can be thought of as a set of 2-D structures parser subsystem 301_ has ~ completed packet component
each representing a protocol To enable saving space by and a pattern node available m a buffer (602). Step 603 lo~
using only one array per protocol which may have several the packet component available from the pattern ~~ys.is
parents, in one embodiment, tbe pattern analysis subprocess process of FIG. 5. "'. the load completed (test 604), mdicat-
keeps a "current header'' pointer. Each location (olfset)

35
mg that there was mdeed anotI_ier packet compon~nt, the

index for each protocol 2-D array in the 3-D structure is a parser subsystem 30~ fetches m 605 the extractmn and
relative location starting with the start of header fur the process elements receIVed from the pattern n~e ~onent
particular protocol. Furthermore, each of the two- m 602. If the fet~h was successful (test 606), mdicating that
dimensional arrays is sparse. The next step of the then: are extraction ~lemeots to a~ly, the parser subsystem
optimization, is checking all the 2-D arrays against all the

40
301 m step 6fYl applies that ex~act_1on p~ to '!1e packet

other 2-D arrays to find out which ones can share memory. component based on '.'8 extracuon mstruction receIVed from
Many of these 2-D arrays are often sparsely populated in that that pattern node. This removes and saves an element from
they each have only a small number of valid entries. So, a the packet component.
process of "folding" is next nsed to combine two or more In step 608, the parser subsystem 301 checks if there .is
2-D arrays together into one physical 2-D array without 45 more to extract from this component, and if not, the parser
losing the identity of any of the original 2-D arrays (i.e., all subsystem 301 moves back to 603 to load the next packet
the 2-D arrays continue to exist logically). Folding can occur component at hand and repeats the process. If the answer is
between any 2-D arrays irrespective of their location in the yes, then the parser subsystem 301 moves to the next packet
tree as long as certain conditions are met. Multiple arrays component ratchet. That new packet component is then
maybe combined into a single array as long as the individual 50 loaded in step 603. As the parser subsystem 301 moved
entries do not conflict with each other. A fold number is then through the loop between 608 and 603, extra extraction
used to associate each element with its original array. A processes are applied either to the same packet component
similar folding process is used for the set of LUTs 1850 in if there is more to extract, or to a different packet component
the alternate embodiment of FIG. 18B. if there is no more to extract.

In 410, the analyzer has been initialized and is ready to 55 The extraction process thus builds the signature, extract-
perform recognition. ing more and more components according to the information

FIG. S shows a flowchart of how actual parser subsystem in the patrems and extraction database 308 for the particular
301 functions. Starting at 501, the packet 302 is input to the packet. Once loading the next packet component operation
packet buffer in step 502. Step 503 loads the next (initially 603 fails (test 604), all the components have been extracted.
the first) packet component from the packet 302. Toe packet 60 The built signature is loaded into the signature buffer (610)
components arc extracted from each packet 302 one element and the parser subsystem 301 proceeds to FIG. 7 to complete
at a tinie. A check is made (504) to determine if the the signature generation process.
load-packet-<:0mponent operation 503 succeeded, indicating Referring now to FIG. 7, the process continues at 701. The
that there was more in the packet to process. If not, indi- signature buffer and the pattern node clements are available
eating all components have been loaded, the parser sub- 65 (702). The parser subsystem 301 loads the next pattern node
system 301 builds the packet signature (512)-the next stage element. If the load was successful (test 704) indicating
(FIG. 6). there are more nodes, the parser subsystem 301 in 705

,,.

EX 1018 Page 376

US 6,665,725 Bl
17

hashes the signature buffer element based on the hash
elements that are found in the pattern node that is in the
element database. In 706 the resulting signature and the hash
are packed. In 7117 the parser subsystem 301 moves on to the
next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more
patterns of elements left (lest 704). Once all the patterns of
elements have been bashed, processes 304, 30(i and 312 of
parser subsystem 301 are complete. Parser subsystem 301
has generated the signature used by the analyzer subsystem
303.

A parser record is loaded into the analyzer, in particular,
into the UFKB in the form of a UFKB record which is
similar to a parser record, but with one or more different
fields.

18
It may be that the bucket of the bin did not lead lo a

signature match (test 808). In such a case, the analyzer in
809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The

s lookup/llpdate engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that !here are no more
buckets in the bin and no match was found.

If no match was found, the packet belongs to a new (not
10 previously encol.llltcred) flow. In 806 the system indicates

that !he record in the unified flow key buffer for this packet
is new, and in 812, any statistical updating operations are
performed for this packet by updating !he flow-entry in the
cache. The update operation exits at 813. A flow insertion/

1s deletion engine (FIDE) crca.tes a new record for this flow
HG. 8 is a flow diagram descnbing the operation of the (again via the cache).

lookup/update engine (LUE) !hat implements look.llp opera- Thus, the updatelookup engine ends wilh a UFKB-entry
tion 314. The process starts at 801 from HG. 7 with the for the packet wilh a "new" status or a "found" status.
parser record that includes a signature, the hash and at least Note that the above system uses a bash to which more
parts of !he payload. In 802 those elements are shown in the 20 than one flow-entry can match. A longer hash may be used
form of a UFKB-entry in lhe buffer. The LUE, the lookup that corresponds to a single flow-entry. In such an
engine 314 computes a "record bin number" from the bash embodiment, the flow chart of HG. 8 is simplified as would
for a :flow-entry. A bin herein may have one or more be clear to those in the art.
"buckets" each containing a flow-entry. The preferred
embodiment bas four buckets per bin.

25
The Hardware System

Since preferred hardware embodiment includes the cache, Each of the individual hardware elements through which
all data accesses to records in the :flowchart of HG. 8 are !he data flows in the system are now described wilh refer-
stated as being to or from the cache. ence to FIGS. 10 and 11. Note that while we arc descnoing

Thus, in 804, !he system looks up the cache for a bucket a particular hardware implementation of !he invention
from that bin using the hash. If the cache successfully 30 embodimentofFIG.3,itwouldbecleartooneskilledinthe
returns wilh a bucket from the bin number, indicating there art !hat the ffow of FIG. 3 may alternatively be implemented
are more buckets in the bin, the lookllp/update engine in software running on one or more general-purpose
compares (807) the current signature (the UFKB-entry's processors, or only partly implemented in hardware. An
signature) from that in the bucket (i.e., the flow-entry implementation of the invention that can operate in software
signature). If the signatures match (test 808), that record (in 35 is shown in FIG. 14. The hardware embodiment (FIGS. 10
the cache) is marked in step 810 as "in·process" and a and ll) can operate at over a million packets per second,
timestamp added. Step 811 indicates to the UFKB that the while the software system of FIG. 14 may be suitable fur
UFKB-entry in 802 has a status of "found." The "found" slower networks. To one skilled in the art it would be clear
indication allows the state processing 328 lo begin process- !hat more and more of the system may be implemented in
ing this UFKB element. The prefi:lrred hardware embodi- 40 software as procellSOIS become faster.
ment includes one or more slate processo1:5, and these can FIG. 10 is a description of the parsing subsystem (301,
operate in parallel with the lookup/llpdate engine. shown here as subsystem 1000) as implemented in bard-

In the preferred embodiment, a set of statistical operations ware. Memory 1001 is the pattern recognition database
is performed by a calculator for every packet analyzed. The memory, in which the patterns that are going to be analyzed
statistical operations may include one or more of counting 4S are stored. Memory 1002 is the extraction-operation data-
the packets associated with the flow; determining statistics base memory, in which tbe extraction instructions are stored.
related lo the size of packets of the flow; compiling statistics Both 1001 and 1002 correspond to internal data structure
on differences between packets in each direction, for 308 of FIG. 3. Typically, the system is initialized from a
example using timestamps; and determining statistical rela- microprocessor (not shown) at which time these memories
tionships of timestamps of packets in the same direction. so are loaded through a host interface multiplexor and control
The statistical measures are kept in the flow-entries. Other register 1005 via the internal buses 1003 and 1004. Note that
statistical measures also may be compiled. These statistics the contents of 1001 and 1002 are preferably obtained by
may be used singly or in combination by a statistical compiling process 310 of FIG. 3.
processor component to analyze many different aspects of A packet enteIS the parsing system via 1012 into a parser
the flow. This may include determining network usage ss input buffer memory 1008 using control signals 1021 and
metrics from the statistical measures, fur example to ascer• 1023, which control an input buffer interface controller
lain the network's ability lo transfer information for this 1022. The buffer 1008 and interface control 1022 connect lo
application. Such analysis provides for measuring the qual- a packet acquisition device (not shown). The buffer acqui-
ity of service of a conversation, measuring bow well an sition device generates a packet start signal 1021 and the
application is performing in the network, measuring network 60 interface control 1022 generates a next packet (i.e., ready to
resources consumed by an application, and so furtb. receive data) signal 1023 to control the data flow into parser

To provide for such analyses, the lookllp/update engine input buffer memory 1008. Once a packet starts loading into
updates one or more counters that are part of the flow-entry the buffer memory 1008, pattern recognition engine (PRE)
(in the cache) in step 812. The process exits at 813. In our 1006 carries out the operations on the input buffer memory
embodiment, the counters include the total packets of the 65 descnbed in block 304 of FIG. 3. That is, protocol types and
flow, the time, and a differential time from the last timestamp associated headers for each prolocol layer that exist, in the
to the present timestamp. packet are determined.

EX 1018 Page 377

I

L

US 6,665,725 Bl
19

The PRE searches database 1001 and the packet in buffer
1008 in order to recognize the protocols the packet contains.
In one implementation, the database 1001 includes a series

20
all the information of a packet is in the parser output buffi:r
memory 1010, a data ready signal 1025 is asserted by
analyzer interface control. The data from the parser sub-
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready signal 1027 is asserted.

FIG. 11 shows the hardware components and dataflow for
the analyzer subsystem that performs the functions of the
analyzer subsystem 303 of FIG. 3. The analyzer is initialized
prior to operation, and initialization includes loading the

of linked lookup tables. Each lookup table uses eight bits of
addressing. The fust lookup table is always at address zero. s
The Pattern Recognition Engine uses a base packet offset
from a conlrol n:gister to start the comparison. It loads this
value into a CUITent offset pointer (COP). It then reads the
byte at base packet offset from the parser input buffer and
uses it as an address into the fust lookup table. 10 state processing information generated by the compilation

process310 into a database memory for the state processing,
called state processor instruction database (SPID) memory
1109.

Each lookup table returns a word that links to another
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command for the slicer. Finally it returns the value to add to The analyzer subsystem 1100 includes a host bus interface
the COP. 15 1122 using an analyzer host interface controller 1118, which

The PRE 1006 includes of a comparison engine. The in tum has access to a cache system 111S. The cache system
comparison coginc has a fust stage that checks the protocol has bi-directional access to and from the state processor of
type field to determine if it is an 802.3 packet and the field the system 1108. State processor 1108 is responsible for
should be truted as a length. If it is not a length, the protocol initializing the state processor instruction database memory
is checked in a second stage. The first stage is the only 20 1109 from information given over the host bus interface
protocol level that is not programmable. The second stage 1122.
has two full sixteen bit content addressable memories With the SPID 1109 loaded, the analyzer subsystem 1100
(CAM.s) defined for future protocol additions. n:ccives parser records comprising pacb:t signatures aad

Thus, whenever the PRE recognizes a pattern, it also payloads that come from the parser into the unified flow key
generates a command for the extraction engine (also called

25
buffer (UFKB) 1103. UFKB is comprised of memory set up

a "slicer") 1007. The recognized patterns and the commands to maintain UFKB records. A UFKB record is essentially a
are sent to the ertraction engine 1007 that extracts informa- parser record; the UFKB holds records of packets that are to
tion from the packet to build the parser record. Thus, the he processed or that are in process. Furthermore, the UFKB
operations of the extraction engine arc those carried out in

30
provides for one or more fields to act as modifiable status

blocks 306 and 3U of FIG. 3. The commands arc sent from flags to allow different processes to run concurrently.
PRE 1006 to slicer 1007 in the form of extraction instruction Three processing engines rnn concwrently and access
pointers which tell the extraction engine 1007 where to a n:cords in the UFKB 1103: the lookup/update engine (LUE)
find the instructions in the extraction operations database l107, the state processor (SP) 1108, and the flow insertion
memory (i.e., slicer instruction database) 1002. 35 and deletion engine (FIDE) l110. Each of these is imple-

Thus, when the PRE 1006 recognizes a protocol it outputs mented by one or mon: finite state machines (FSM's). There
both the protocol identifier and a process code to the is bi-directional access between each of the finite state
extractor. The protocol identifier is added to the flow sig- machines and the unified flow key buffer 1103. The UFKB
naturt: and the process code is used to fetch the fust n:cord includes a field that ston:s the packet sequence
ins1ruction from the instruction database 1002. Instructions 40 number, and another that is filled with state information in
include an ope.ration code and usually source and destination the form of a program counter for the state processor 1108
offsets as well as a length. The offsets and length are in that implements state processing 328. The status flags of the
bytes. A typical operation is the MOVE instruction. This UFKB for any entry includes that the LUE is done and that
instruction tells the slicer 1007 to copy n bytes of data the LUE is transferring processing of the cnlry to the state
unmodified from the input huif.er 1008 to the output buffer 45 processor. The LUE done indicator is also used to indicate
1010. 1be extractor contains a byte-wise barrel shifter so what the next entry is for the LUE. The.re also is provided a
that the bytes moved can be packed into the flow signature. flag to indicate that the state processor is done with the
The extractor contains another instruction called HASH. current flow and to indicate what the next entry is for the
This inslruction tells the extractor to copy from the input state processor. There also is provided a flag to indicate the
buffer 1008 to the HASH generator. 50 state processor is transferring processing of the UFKB-<:nlry

Thus these instructions are for extracting selected element to the flow insertion and deletion engine.
(s) of the packet in the input buffer memory and transferring A new UFKB record is first processed by the LUE 1107.
the data to a parser output buffer memory 1010. Some A record that bas been processed by the LUE 1107 may be
instructions also generate a hash. processed by the state processor l108, and a UFKB reoord

The extraction engine 1007 and the PRE operate as a ss data may be processed by the flow insertion/deletion engine
pipeline. That is, extraction engine 1007 performs extraction 110 after being processed by the state processor 1108 or only
operations on data in input buffer 1008 already processed by by the LUE. Whether or not a particular engine has been
PRE 1006 while more (i.e~ later arriving) packet informa- applied to any unified flow key buffer entry is determined by
lion is being simultaneously parsed by PRE 1006. This status fields set by the engines upon completion. In one
provides high processing speed sufficient to accommodate 60 embodiment, a status flag in the UFKB-<:nlry indicates
the high arrival rate speed of packets. whether an entry is new or found. In other embodiments, the

Once all the selected parts of the pacb:t used to form the LUE issues a flag to pass the enlry lo the state processor for
signature are extracted, the hash is loaded into parser output processing, and the required operations for a new record are
buffer memory 1010. Any additional payload from the included in the SP instructions.
packet that is required for further analysis is also included. 65 Note that each UFKB--c.ntry may not need to be processed
The parser output memory 1010 is interfaced with the by all three engines. Furthermore, some UFKB cnlries ,may
analyzer subsystem by analyzer interface conlrol 1011. Once need to be processed more than once by a particular engine.

EX 1018 Page 378

US 6,665,725 Bl
21 22

Each of these three engines also has bi-directional access protocol iden tiller indicates more processing, then an indi-
lo a cache subsystem 1115 that includes a caching engine. cation is made that the UFKB-entry is ready to start state
Cache 1115 is designed to have information flowing in and processing and the status for the record is set to indicate the
out of it from five different points within the system: the LUE has processed the record.
three engines., external memory via a unified memory con- 5 The state processor 1108 processes information in the
troller (UMC) lll9 and a memory interface 1123, and a cache system aa:ording lo a UFKB-entry after the LUE has
microprocessor via analyzer host interface and control unit completed. State processor 1108 includes a state processor
(ACIC) lll8 and host interface bus (HIB) 1122. The ana- program counter SPPC that generates the address in the state
lyzer microprocessor (or dedicated logic processor) can thus processor instruction database 1109 loaded by compiler
directly insert or modify data in the cache. 10 process 310 during initialization. It contains an Instruction

The cache subsystem lllS is an associative cache that Pointer (SPIP) which generates the SPID address. The
includes a set of content addressable memory cells (CAMs) instruction pointer can be incremented or loaded from a
each including an address portion and a pointer portion Jump Vector Multiplexor which facilitates conditional
pointing to the cache memory (e.g., RAM) containing the branching. The SPIP can be loaded from one of three
cached flow-entries. The CAMs arc arranged as a stack 15 sources: (1) A protocol identifier from the UFKB, (2) an
ordered from a top CAM to a bottom CAM. 'The bottom immediate jump vector form the currently decoded
CAM's pointer points lo the least recently used (LRU) cache instruction, or (3) a value provided by the arithmetic logic
memory entry. Whenever there is a cache miss, the contents unit (SPALU) included in the state processor.
of cache memory pointed to by the bottom CAM are Thus, after a Flow Key is placed in the UFKB by the LUE
replaced by the flow-entry from the flow-entry database 324. 20 with 1. known protocol identifier, the Program Counter is
This now becomes the most recently used entry, so the initialized with the last protocol recognized by the Parser.
contents of the bottom CAM are moved to the top CAM and This first instruction is a jump lo the subroutine which
all CAM contents are shifted down. Thus, the cache is an analyzes the protocol that was decoded.
associative cache with a true LRU replacement policy. Toe State Processor ALU (SPALU) contains all the

The LUE 1107 first processes a UF.KB-cntry, and basi- 25 Arithmetic, Logical and String Compare functions necessary
cally perfonns the operation of blocks 314 and 316 in FIG. to implement the State Processor instructions. The main
3. A signal is provided to the LUE to indicate that a "new" blocks of the SPALU are: The A and B Registers, the
UFKB-entry is available. The LUE uses the hash in the Instruction Decode & State Machines, the String Reference
UFKB-entry to read a matching bin of up to four buckets Memory the Search Engine, an Output Data Register and an
from the cache. The cache system attempts to obtain the 30 Output Control Register
matching bin. If a matching bin is not in the cache, the cache The Search Engine in turn contains the Target Search
lll5 makes the request to the UMC 1119 to bring in a. Register set, the Reference Search Register set, and a
matching bin from the external memory. Compare block which compares two operands by exclusive-

When a flow-entry is round using the hash, the LUE 1107
35

or-ing them together.
looks at each bucket and compares it using the signature to Thus, after the UFKB sets the program counter, a
the signature of the UFKB-entry until there is a match or sequence of one or more state operations arc be executed in
there am no more buckets. state processor 1108 to further analyze the packet that is in

If there is no match, or if the cache failed to provide a bin the flow key buffer entry for this particular packet.
of flow-entries from the cache, a time stunp in set in the flow 40 FIG. 13 descnbes the operation of the state processor
key of the UFKB record, a protocol identification and state 1108. The state processor is entered at 1301 with a unified
determination is made using 1. table that was loaded by flow key buffer entry to be processed. The UFKB-entry is
compilation process 310 during initialization, the status for new or corresponding to a found flow-entry. This UFKB-
the record is set to indicate the LUE has processed the entry is retrieved from unified flow key buffer 1103 in 1301.
record, and an indication is made that the UFKB-entry is 45 In 1303, the protocol identifier for the UFKB-entry is used
ready to start state processing. The identification and state to set the state processor's instruction counter. The state
determination generates a protocol identifier which in the processor 1108 starts the process by using the last protocol
preferred embodiment is a "jump vector" for the stale recognized by the parser subsystem 301 as an oflilet into a
processor which is kept by the UFKB for this UFKB-entry jump table. The jump table takes us to the instructions to use
and used by the state processor to start state processing for 50 for that protocol. Most instructions test something in the
the particular protocol. For example, the jump vector jumps unified flow key buffer or the flow-entry if it exists. The state
to the subroutine for processing the state. processor 1108 may have to test bits, do comparisons, add or

If there was a match, indicating that the packet of the subtract to perform the test.
UFKB-entry is for a previously encountered flow, then a The first state processor instruction is fetched in 1304
calculator component enters one or more statistical measures 55 from the state processor instruction database memory 1109.
stored in the flow-entry, including the timestamp. In The state processor performs the one or more fetched
addition, a time difference from the last stored timestamp operations (1304). In our implementation, each single state
may be stored, and a packet count may be updated. The state processor instruction is very primitive (e.g., a move, a
of the flow is obtained from the flow-entry is examined by compare, etc.), so that many such instructions need to be
looking at the protocol identifier stored in the flow-entry of 60 performed on each uni_fi~ flo~_key buffer entry. One aspect
database 324. If that value indicates that no more classifi- of the state proces.sor is its ability to search for one or more
cation is required, then the status for the record is set to (up to four) refei:en~ ~!rings in the payload part of !he
indicate the LUE has processed the record. In the preferred UFKB entry. This JS llllplemented by a search engine
embodiment, the protocol identifier is a jump vector for the compo_nen! of th~ state processor responsive lo special
state processor to a subroutine to state processing the 65 searching instructions.
protocol, and no more classification is indicated in the In 1307, a check is made to determine if there arc any
preferred embodiment by the jump vector being zero. If the more instructions to be performed for the packet. If yes, 'then

EX 1018 Page 379

US 6,665,725 Bl
23

in 1308 the system sets the state processor instruction
pointer (SPIP) to obtain the next instruction. The SPIP may

24
in place lo complete the record. Ia 1211 the system marks tbe
record bin and bucket as "in process" and as "new" in the
cache system (and hence in the external memory). la 1212,
the initial statistical measures for tbe flow-record are set in

be set by an immediate jump vector in the currently decoded
instruction, or by a value provided by the SPALU during
processing.

The next instruction to be performed is now fetched
(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions

5 the cache system. This in the preferred embodiment clears
the set of counters used to maintain statistics, and may
perform other procedures for statistical operations requ:iJes
by the analyzer for the first packet seen for a particular flow.

to be performed
At this stage, a check is made in 1309 if the processing on 10

this particular packet has resulted in a final state. That is, is
the analyzer is done processing not only for this particular
packet, but for the wbole flow lo which the packet belongs,
and the flow is fully determined. If indeed there are no more
states to process for this flow, then in 1311 the processor 15

finalizes the processing. Some :final states may need lo put

Back in step 1205, if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system. If this succeeds, the processes of 1207, 1209,
1211 md 1212 are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key buffer entry for
the packet is set as "drop," indicating that the system cannot
process the particular packet because there are no buckets
left in the system. The process exits at 1213. The FIDE 1110
indicates to the UFKB that the flow insertion and deletion
operations are completed for this UFKB-entry. This also lets
the UFKB provide tbe FIDE with the next UFKB record.

a state in place that tells the system to remove a flow-for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal
state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which means there
are no removal instructions.

20 Once a set of operations is performed on a unified flow

Once the appropriate flow removal instruction as specified
for this flow (a NOP or otherwise) is set and saved, the
process is exited at 1313. The state processor 1108 can now
obtain another unified flow key buJfer entry to process.

If at 1309 it is determined that processing for this flow is
not completed, then in 1310 the system saves the state
processor instruction pointer in the cnrrent flow-entry in the
current flow-entry. That will be the next operation that will
be performed the next time the LRE 1107 finds packet in the
UFKB that matches this flow. The processor now exits
processing this particular unified flow key buffer entry at
1313.

key buffer entry by all of the engines required to access and
manage a particnlar packet and its flow signature, the unified
flow key buJfer entry is marked as "completed." That
element will then be used by the parser interface for the next

25 packet and flow signature coming in from the parsing and
extracting system.

All flow-entries arc maintained in the external memory
and some are maintained in the cache 1115. The cache

30
system 1115 is intelligent enough to access the flow database
and to understand the data structures that exists on the other
side of memory interface 1123. The lookup/update engine
1107 is able to request that the cache system pull a particular
flow or "buckets" of flows from the unified memory con-

35 trollcr 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache system once it is looked up by means of the lookup/
update engine request, and the flow insertion/deletion engine

Note that state processing updates information in the
unified flow key buJfer 1103 aod the flow-entry in the cache.
Once the state processor is done, a flag is set in the UFKB
for the entry that the state processor is done. Furthermore, If
the flow needs to be inserted or deleted from the database of "°
flows, control is then passed on lo the flow insertion/deletion
engine 1110 for that flow signature and packet entry. This is
done by the state processor setting another flag in the UFKB
for this UFKB-entry indicating that the state processor is
passing processing of this entry to the flow inse.rtioo and 45
deletion engine.

1110 can create new entries in the cache system if required
based on information in the unified flow key buJfer 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 and the unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There 1111 several interfaces lo components of the system
external to the module of FIG. 11 forthe particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing system such as a micropro-

The flow insertion and deletion engine 1110 is responsible
for maintaining the flow-entry database. In particular, for
creating new flows in the flow database, aod deleting flows
from the database so that they can be reused.

The process of flow insertion is now descnbed with the
aid of FIG. 12. Flows are grouped into bins of buckets by the
hash value. The engine processes a UFKB-entry that may be
new or that the state processor otherwise has indicated needs

50 cessor or a multiplexor (MUX) system. Consequently, one
can connect tbe overall traffic classification system of FIGS.
11 and 12 into some other processing system to manage tbe
classification system and to extract data gathered by the
system.

The memory interface 1123 is designed to interface to any
of a variety of memory systems that one may want to use to
store the flow-entries. One can use different types of
memory systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous

to be created. FIG. 12 shows the case of a new entry being 55

created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB, so this bin may already
have been sought for the UFKB-entry by the LUE. In 1204
the FIDE 1110 requests that the record bin/bucket be main
tained in the cache system 1115. If in 1205 the cache system
1115 indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucket is marked "used" in tbe cache engine of cache 1115
using a timestamp that is maintained throughout the process.

60 graphic memory (SGRAM), static random access memory
(SRAM), aod so forth.

FIG. 10 also includes some "generic" interfaces. There is
a packet input interface 1012-a general interface that
wodcs in tandem with the signals of the input buffer interface

65 control 1022. These are designed so that they cao be used
with any kind of generic systems that can then feed packet
infol'Illation into the parser. Another generic interface is the

In 1209, the FIDE 1110 compares the bin and bucket record
flow signature to the packet to verify that all the clements are

EX 1018 Page 380

US 6,665,725 Bl
25

interface of pipes 1031 and 1033 respectively out of and into
host interface multiplexor and control registers 1005. This
enables the parsing system to be managed by an external
system, for example a microprocessor or another kind of
external logic, and enables the external system to program 5

26
In addition, MIB Compilers are available. An MIB Com

piler is a tool that greatly simplifies the creation and main
tenance of proprietary MIB extensions.

Examples of Packet Elucidation

and otherwise conlrol the parser. Monitor 300, and in particular, analyzer 303 is capable of
The preferred embodiment of this aspect of the invention carrying out state analysis for packet exchanges that are

is described in a hardware description langnage (IIDL) such commonly referred to as "server announcement" type
as VHDL or Vcrilog. It is designed and created in an HDL exchanges. Server announcement is a process used to ease
so that it may be used as a single chip system or, for instance, 10 communications between a server with multiple applications
integrated into another general-purpose system that is being that can all be simultaneously a.cccssed from multiple cli-
dcsigned for purposes related to creating and analyzing ents. Many applications use a server announcement process
traffic within a network. Verilog or other HDL implemen- as a means of multiplexing a single port or socket into many
talion is only one method of descn"bing the hardware. applications and services. With this type of exchange, mes-

In accordance with one hardware implementation, the 15 sages are sent on the nctwodc, in either a broadcast or
elements shown in FIGS.10 and 11 are implemented in a set multicast approach, to announce a server and application,
of six field programmable logic arrays (FPGA's). The and all stations in the network may receive and decode these
boundaries of these FPGA's are as follows. The parsing messages. The messages enable the stations to derive the
subsystem of FIG. 10 is implemented as two FPGAS; one appropriate coonection point for communicating that par-
FPGA, and includes blocks 1006, 1008 and 1012, parts of 20 ticular application with the particular server. Using the
1005, and memory 1001. The second FPGA includes 1002, server announcement method, a particular application com-
1007, 1013, 1011 parts of 1005. Referring to FIG. 11, the municates using a service channel, in the form of a TCP or
unified look-up bufi'er 1103 is implemented as a single UDPsocketorportasintheIPprotocolsnitc,orusingaSAP
FPGA. State processor 1108 and part of state processor as in the Novell IPX protocol snite.
instruction database memory 1109 is another FPGA Por- 25 The analyzer 303 is also capable of carrying out "in-
tions of the state processor instruction database memory stream analysis" of packet exchanges. The "in-stream analy-
1109 are maintained in external SRAM's. The lookup/ sis" method is used either as a primary or secondary rerog-
update engine 1107 and the flow insertion/deletion engine nition process. As a primary process, in-stream analysis
1110 are in another FPGA. The sixth FPGA includes the assists in extracting detailed information which will be used
cache system 1115, the unified memory control 1119, and the 30 to further n:cognize both the specific application and appli-
analyzer host interface and control 1118. cation component. A good enmple of in-stream analysis is

Note that one can implement the system as one or more any Web-based application. For example, the rommonly
VSU devices, rather than as a set of application specific used PointCast Web information application can be rerog-
integrated circuits (ASIC's) such as FPGA's. It is antici-

35
nized using this process; during the initial connection

pated that in the future device densities will continue to between a PointCast server and client, specific key tokens
increase, so that the complete system may eventually form exist in the data exchange that will result in II signature being
a sub-unit (a "core") of a larger single chip unit. generated to recogni7.e PointCast.

Operation of the Invention
The in-stream analysis process may also be combined

40
with the server announcement process. In many cases

FIG. 15 shows how an embodiment of the network in-stream analysis will augment other recognitinn processes.
monitor 300 might be used to analyze traffic in a network An example of combining in-stream analysis with server
102. Packet acquisition device 1502 acquires all the packets announcement can be found in business applications such as
from a connection point 121 on network 102 so that all SAP and BAAN.
packets passing point 121 in either direction are supplied to 45 "Session tracking" also is known as one of the primary
monitor 300. Monitor 300 comprises the parser sub-system processes for tracking applications in client/server packet
301, which determines flow signatures, and analyzer sub- exchanges. The process of tracking sessions requires an
system 303 that analyzes the flow signature of each packet. initial connection to a predefined socket or port number. This
A memory 324 is used to store the database of flows that arc method of rommunication is used in a variety of transport
determined and updated by monitor 300. A host computer so layer protocols. It is most commonly seen in the TCP and
1504, which might be any processor, for example, a general- UDP transport protocols of the IP protocol.
purpose computer, is used to analyze the fiows in memory During the session tracking, a client makes a request to a
324. As is conventional, host computer 1504 includes a server using a specific port or socket number. This initial
memory, say RAM, shown as host memory 1506. In xcquest will cause the server to create a TCP or UDP port to
addition, the host might contain a disk. In one application, ss exchange the remainder of the data between the client and
the system can operate as an RMON probe, in which case the the server. The server then replies to the request of the client
host computer is coupled to a network interface card 1510 using this newly created port. The original port used by the
that is connected to the network 102. client to connect to the server will never be used again

The preferred embodiment of the invention is supported during this data exchange.
by an optional Simple Network Management Protocol 60 One example of session tracking is TFIP (Trivial File
(SNMP) implementation. FIG.15 describes how one would, Transfer Protocol), a ver.;ion of the TCP/IP FTP protocol
for example, implement an RMON probe, where a network that has no directory or password capability. During the
interface card is used to send RMON information to the client/server exchange process of TFIP, a specific port (port
network. Commercial SNMP implementations also are number 69) is always used to initiate the packet exchange.
available, and using such an implementation can simplify 65 Thus, when the client begins the process of communicating,
the process of porting the preferred embodiment of the a request is made to UDP port 69. Once the server req:ives
inventinn to any platform. this request, a new port number is created on the server. The

EX 1018 Page 381

r

US 6,665,725 Bl
27

server then replies to the client using the new port. In this
example, it is clear that in order to recognize TFI'P; network
monitor 300 analy1.es the initial request from the client and
generates a signature for it. Monitor 300 m;es that signature
to recognize the reply. Monitor 300 also analyus the reply 5
from the server with the key port information, and uses this
to create a signature for monitoring the remaining packets of
this data exchange.

Network monitor 300 can also understand the current
state of particular connections in the network. Connection- 10

oriented exchanges often benefit from state tracking to
correctly identify the application. An example is the com
mon TCP transport protocol that provides a reliable means
of sending information between a client and a server. When
a data exchange is initiated, a TCP request for synchroni- 15
zation message is sent. This message contains a specific
sequence number that is used to track an acknowledgement
from the server. Once the server has acknowledged the
synchronization request. data may be exchanged between
the client and the server. When communication is no longer 20

required, the client sends a finish or complete message to the
server, and the server acknowledges this finish request with
a reply containing the sequence numbers from the request.
The states of such a connection-oriented exchange relate to
the various types of connection and maintenance messages. 25

Server Announcement Example

The individual methods of server announcement proto
cols vary. However, the basic underlying process remains
similar. A typical server announcement message is sent to 30

one or more clients in a netwoik. This type of announcement
message has specific content. which, in another aspect of the
invention, is salvaged and maintained in the database of
flow-entries in the system. Because the announcement is
sent to one or more stations, the client involved in a future 35

packet exchange with the server will make an assumption
that the information announced is known, and an aspect of
the inventive monitor is that it too can make the same
assumption.

Sun-RPC is the implementation by Sun Microsystems,
40

Inc. (Palo Alto, Calif.) of the Remote Procedure Call (RFC),
a programming interface that allows one program to use the
services of another on a remote machine. A Sun-RPC
example is now used to explain how monitor 300 can

45
capture server announcements.

A remote program or client that wishes to use a server or
procedure must establish a connection, for which the RPC
protocol can be used.

Each server running the Sun-RPC protocol must maintain so
a process and database called the port Mapper. The port
Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for
TCP or UDP implementations). An application or program
number is a 32-bit unique identifier assigned by ICANN (the 55
Internet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge number of param
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each port Mapper
on a Sun-RPC server can present the mappings between a 60

unique program number and a specific transport socket
through the use of specific request or a directed announce
ment. According to lCANN, port number Ill is associated
with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown 65

as 106 in FIG. 1) making a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as llO) on a predefined

28
UDP or TCP socket. Once the port Mapper process on the
sun RPC server receives the request. the specific mapping is
returned in a directed reply to the client.

1.Aclient(CLIENT3, 106 in FIG.1) sends a TCP packet
to SERVER 2 (nO in FIG. 1) on port Ill, with an RPC
Bind Lookup Request (rpcBindLookup). TCP or UDP
port Ill is always associated Sun RPC. This request
specifics the program (as a program identifier), version,
and might specify the protocol (UDP or TCP).

2. The server SERVER 2 (no in FIG. 1) extracts the
program identifier and version identifier from the
request. The server also uses the fact that this packet
came in using the TCP transport and that no protocol
was specified, and thus will use the TCP protocol for its
reply.

3. The server no sends a TCP packet to port number 111,
with an RPC Bind Lookup Reply. The reply contains
the specific port number (e.g., port number 'port') on
which future transactions will be accepted for the
specific RPC program identifier (e.g., Program
'program') and the protocol (UDP or TCP) for use.

It is desired that from now on every time that port number
'port' is used, the packet is associated with the application
program 'program' until the number 'port' no longer is to be
associated with the program 'program'. Network monitor
300 by creating a flow-entry and a signatw:e includes a
mechanism for remembering the exchange so that future
packets that use the port number 'port' will be associated by
the network monitor with the application program 'pro
gram'.

In addition to the Sun RPC Bind Lookup request and
reply, there are other ways that a particular program-say
'program' -might be associated with a particular port
number, for example number 'port'. One is by a broadcast
announcement of a particular association between an appli
cation service and a port number, called a Sun RPC port
Mapper Announcement. Another, is when some server-say
the same SERVER 2--rcplies to some client-5ay CLlENT
1-requesting some portMapper assignment with a RPC
portMapper Reply. Some other client-say CLIENT
2-might inadvertently see this request, and thus know that
for this particular server, SERVER 2, port number 'port' is
associated with the application service 'program'. It is
desirable for the network monitor 300 to be able to associate
any packets to SERVER 2 using port number 'port' with the
application program 'program'.

FIG. 9 represents a dataftow 900 of some operations in the
monitor 300 of FIG. 3 for Sun Remote Procedure Call.
Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is com
municating via its interface to the network ns to a server
no (e.g., SERVER 2 in FIG. I) via the server's interface to
the network 116. Further assume that Remote Procedure
Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup request is issued by client 106
and ends with the server stale creation step 904. Such RPC
bind looknp request includes values for the 'program,'
'version,' and 'protocol' to use, e.g., TCP or UDP. The
process for Sun RPC analysis in the network monitor 300
includes the following aspects.:

Process 909: Extract the 'program,' 'version,' aod 'pro
tocol' (UDP or TCP). Extract the TCP or UDP port
(process 909) which is Ill indicating Sun RPC.

Process 908: Decode the Sun RPC packet. Check RPC
type field for ID. If value is portMapper, save paired
socket (i.e., dest for destination address, src for source

j,

f
l
l
t

EX 1018 Page 382

T

US 6,665,725 Bl
29 30

address). Decode ports and mapping, save ports with used to identify the destination-port pattern. Toe order
socket/addr key. There may be more than one pairing indicates the client-server message direction. A sixth field
per mapper packet. Form a signature (e.g., a key). A denoted "i 1

" 219 is an element that is being requested by the
flow-entry is created in database 324. The saving of the client from the server. A seventh field denoted "Si a" 220 is
request is now complete. s the service requested by the client from server 110. The

At some later time, the server (process 907) issues a RPC following eighth field "QA" 221 (for question mark) indi-
bind lookup reply. Toe packet monitor 300 will extract a cates that the client 106 wants to know what to use to access
signature from the packet and recogni7.C it from tbe previ- application "s 1a". A tenth field "QP" 223 is used to indicate
ou.sly stored flow. The monitor will get the protocol port that the client wants the server to indicate what protocol to
number (906) and lookup the request (905). A new signature 10 use for the particular application.
(i.e., a key) will be created and the creation of the server Packet 206 initiates the sequence of packet exchanges,
state (904) will be stored as an entry identified by the new e.g., a RPC Bind Looknp Request to SERVER 2. It follows
signature in the flow-entry database. That signature now a well-defined format, as do all the packets, and is trans-
may be used to identify packets associated with the server. muted to tbe server 110 on a well-known service connection

The server state creation step 904 can be reached not only 15 identifier (port m indicating Sun RPC).
from a Bind Lookup Request/Reply pair, but also from a Packet 207 is the first sent in reply to the client 106 from
RPC Reply portMapper packet shown as 901 or an RPC the server. It is the RPC Bind Lookup Reply as a result of
Announcement portMapper shown as 902. The Remote the request packet 206.
Procedure Call protocol can announce that it is able to Packet 207 includes ten fields 224-233. The destination
provide a particular application service. Embodiments of the 20 and source addresses are carried in fields 224 and 225, e.g.,
present invention preferably can analyze when an exchange indicated "Ct and "S 1 ", respectively. Notice the order is
occurs between a client and a server, and also can track those now reversed, since the client-server message direction is
stations that have received the announcement of a service in from the server 110 to tbe client 106. The I!rotocol "p 1

" is
the network. used as indicated in field 226. The request "i "is in field 229.

Toe RPC Announcement portMapper announcement 902 25 Values have been filled in for the application port number,
is a broadcast. Such causes various clients to execute a e.g., in field 233 and protocol ""p:z,,,, in field 233.
similar set of operations, for example, saving the informa- Toe flow signature and flow states built up as a result of
lion obtained from the announcement The RPC Reply this exchange are now dcscnbed When the packet monitor
portMapper step 901 could be in reply to a portMapper 300 sees the request packet 206 from the client, a first flow
request, and is also broadcast. It includes all the service 30 signature 210 is built in the parser subsystem 301 according
parameters. to the pattern and extraction operations database 308. This

Thus monitor 300 creates and saves all such states for signature 210 includes a destination and a source address
later classification of flows that relate to the particnlar 240 and 241. One aspect of the invention is that the flow
service 'program'. keys are built consistently in a particular order no matter

FIG. 2 shows how tbe monitor 300 in tbe example of Sun 3S what the direction of conversation. Several mechanisms may
RPC builds a signature and flow states. A plurality of packets be used to achieve this. In the particular embodiment, the
206-209 arc exchanged, e.g., in an exemplary Sun Micro- numerically lower address is always placed before the
systems Remote Procedure Call protocol. Amethod embodi- numerically higher address. Such least to highest order is
ment of the present invention might generate a pair of flow used to get the best spread of signatures and hashes for the
signatures, "'signaturc-1" 210 and "signature-2" 212, from 40 lookup operations. In this case, therefore, since we assume
informationfoundinthepackets206and207wbich,inthe "S 1n<"C1", the order is address "St followed by client
example, correspond to a Sun RPC Bind Lookup request and address "C1 ". The next field used to build the signature is a
reply, respectively. protocol field 242 extracted from packet 206's field 216, and

Consider first the Sun RPC Bind Lookup request. Sup- thus is the protocol "p1
". The next field used for the

pose packet 206 corresponds to such a request sent from 4S signature is field 243, which contains the destination source
CLIENT 3 to SERVER 2. This packet contains important port nllDlber shown as a crosshatched pattern from the field
information that is used in building a signature according to 218 of the packet 206. This pattern will be recognized in the
an aspect of the invention. A source and destination network payload of packets to derive bow this packet or sequence of
address occupy the first two fields of each packet, and packets exists as a flow. In practice, these may be TCP port
according to the patterns in pattern database 308, the flow so numbe1S, or a combination of TCP port numbers. In the case
signature (shown as KEYl 230 in FIG. 2) will also contain of the Sun RPC example, the crosshatch represents a set of
these two fields, so the parser subsystem 301 will include port numbers of UDS for p1 that will be used to recognize
these two fields in signature KEY 1 (230). Note that in FIG. this flow(e.g.,port 111). Port m indicates this is Sun RPC.
2, if an address identifies the client 106 (shown also as 202), Some applications, such as the Sun RPC Bind Lookups, arc
the label used in the drawing is "C 1". If such address 55 directly determinable ("known") at the parser level. So in
identifies the server no (shown also as server 204), the label this case, tbe signature KEY-1 points to a kuown application
used in tb.e drawing is "S 1 ". The first two fields 214 and 215 denoted "a 1

" (Sun RPC Bind Lookup), and a next-state that
in packet 206 are "S 1" and C1" because packet 206 is the state processor should proceed to for more complex
provided from the server no and is destined for the client recognition jobs, denoted as state "stn" is placed in the field
106. Suppose for this example, "Si'' is an address numeri- 60 245 of the flow-entry.
cally less than address "Ci". A third field "p 1" 216 identifies When the Sun RPC Bind Lookup reply is acquired, a flow
the particular protocol being used, e.g., TCP, UDP, etc. signature is again built by tb.e parser. This flow signature is

In packet 206, a fourth field 217 and a fifth field 218 are identical to KEY-1. Hence, when the signature enters the
used to communicate port numbers that are used. The analyzer subsystem 303 frorn the parser subsystem 301, the
conversation direction determines where tb.e port number 65 complete flow-entry is obtained, and in this flow-entry
field is. Toe diagonal pattern in field 217 is used to identify indicates state "str:f'. The operations for state "sin" in the
a source-port pattern, and the bash pattern in field 218 is state processor instruction database 326 instructs the state

EX 1018 Page 383

US 6,665,725 Bl
31

processor to build and store a new flow signature, shown as
KEY-2 (2U) in FIG. 2. This flow signature built by the state
processor also includes the destination and a source
addresses 250 and 251, respectively, for server "Si'' fol
lowed by (the numerically higher address) client "C/'. A 5

protocol field 252 defines the protorol to be used, e.g., "p2,',
which is obtained from the reply packet. Afield 253 contains
a recognition pattern also obtained from the reply packet. In
this case, the application is Sun RPC, and field 254 indicates
this application "az,,. A next-state field 255 defines the next 10

state that the state processor should proceed to for more
complex recognition jobs, e.g., a state "st"'. In this particular
example, this is a final state. Thus, KEY-2 may now be used

32
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosw-e. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true spirit and scope of the
present invention.

The Pattern Parse and Extraction Database Format

The different protocols that can exist in different layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called base
level). Each protocol is either a parent node of some other
protocol at the next later or a terminal node. A parent node
links a protocol to other protocols (child protorols) that can
be at higher layer levels. Thus a protocol may have zero or
more children.

to recognize packets that are in any way associated with the
application "a2

". 1\vo such packets 208 and 209 are shown, 15

one in each direction. They use the particular application
service requested in the original Bind lookup Request, and
each will be recognized because the signature KEY-2 will be
built in each case.

The two flow signatures 210 and 2U always order the
destination and source address fields with server "Si" fol
lowed by client "C~". Such values are automatically filled in
when the addresses are first created in a particular flow
signature. Preferably, large collections of flow signatures are
kept in a lookup table in a least-to-highest order for the best 25

spread of flow signatun:s and hashes.

As an example of the tree structure, consider an Ethernet
packet. One of the children nodes may be the IP protocol,
and one of the children of the IP protocol may be the TCP

20 protocol. Another child of the IP may be the UDP protocol.
A packet includes at least one header for each protocol

used. The child protocol of a particular protocol used in a
packet is indicated by the contents at a location within tbe
header of the particular protocol. The contents of the packet
that specify the child are in the form of a child recognition
pattern. Thereafter, the client and server exchange a number of

packets, e.g., represented by request packet 208 and Anetworkanalyzerprefcrablycananalyzemanydifferent
response packet 209. The client 106 sends packets 208 that proto~~-a base level, the~~ anut?bcro!packet types
have a destination and source address S and c in a pair of 30 used m digital teleoommumcalions, mcluding Ethernet,
fields 260 and 261. A field 262 defines tlle pro~! as "p:z.', HDLC, I~DN, Lap B, . .MM! ~· Frame Relay, Digital
and a field 263 defines the dcstioation port number. Data Service, FDDI (Fiber Distributed Data lnterf~), and

Some network-server application recognition jobs are so TI, among others. Many of these packet types ~ differc~t
simple that only a single state transition has to occur to be pa~et and/or frame formals. For exam?le, data JS tl'lms!Dlt•
able to pinpoint the application that prodnced the packet. 35 ted m .MM and frame-relay systems JD the fo~ of fixed
Others require a sequence of state transitions to occur in length packets (called "cells") that are 53 octets (i.c., bytes)
order to match a known and predefined climb from state- long; several such cells may be needed to make up the
to-state. information that might be included in a single packet of

Thus the flow signature for the recognition of application some other type.
"a2n is automatically set up by predefining what packet- 40 Note that the term packet herein is intended to encompass
exchange sequences occur for this example when a rela- packets, datagrams, frames and cells. In general, a packet
tively simple Sun Microsystems Remote Procedure Call format or frame format refers to how data is encapsulated
bind lookup request :instruction executes. More complicated with various fields and headers for transmission across a
exchanges than this may generate more than two flow network. For example, a data packet typically includes an
signatures and their corresponding states. Each recngnition 45 address destination field, a length field, an error correcting
may involve setting up a complex state transition diagram to code (ECC) field or cyclic redundancy check (CRC) field, as
be traversed before a "final" resting state such as "st,_" in well as headers and footers to identify the beginning and end
field 255 is reached. All these are used to build the final set of the packet. The terms "packet format," "frame format''
of flow signatures for recognizing a particular application in and "cell format'' are generally synonymous.
the future. 50 The packet monitor 300 can analyze different protocols,

Embodiments of the present invention automatically gen- and thus can perform different protocol specific operations
erate flow signatures with the necessary recognition patterns on a packet wherein the protocol headers of any protocol a.re
and state transition climb procedure. Such comes from located at different locations depending on the parent pro-
analyzing packets acrording to parsing rules, and also gen- tocol or protocols used in the packet. Thus, the packet
crating state transitions to search for. Applications and 55 monitor adapts to different protocols according to the con-
protocols, at any level, are recognized through state analysis tents of the packet. The locations and the information
of sequences of packets. extracted from any packet are adaptively determined for the

Note that one in the art will understand that computer particular type of packet. For example, there is no fixed
networks are used to connect many different types of definition of what to look for or where to look in order to
devices, including network appliances such as telephones, 60 form the flow signature. In some prior art systems, such as
"Internet" radios, pagers, and so forth. The term computer as that de&:ribed in U.S. Pat. No. 5,101,402 to Chiu, et al., there
used herein encompasses all such devices and a computer are fixed locations specified for particular types of packets.
network as used herein includes networks of such comput- With the proliferation of protocols, the specifying of all the
ers. possible places to look to determine the session becomes

Although the present invention bas been descnbed in 65 more and more difficult. likewise, adding a new protocol or
terms of the presently preferred embodiments, it is to be application is difficult. In the present invention, the nUl:)lbcr
understood that the disclosure is not to be interpreted as oflevels is variable for any protocol and is whatever number

EX 1018 Page 384

US 6,665,725 Bl
33 34

is sufficient to uniquely identify as high up the level system FIG. 17B shows the structure of the header of one of the
as we wish to go, all the way to the application level (in the possible next levels, that of the IP protocol. The possible
OSI model). children of the IP protocol are shown in table 1752. The

Even the same protocol may have different variants. header starts at a different location (l3) depending on the
Ethernet packets for example, have several known variants, S parent protocol. Also included in FIG. 17B are some of the
each having a basic format that remains substantially the fields to be extracted for the signature, and an indication of
same. An Ethernet packet (the root node) may be an Ether- where the next level's header would start in the packet.
type packet-also called an Ethernet TypeNersion 2 and a Note that the information shown in FIGS. 16, 17A, and
DIX (DIGITAL-Intel-Xerox packet)-<>r an lEEE Ethernet 17B would be specified to the monitor in the form of PDL

(lEEE 803.x) packet. A monitor should be able to handle all 10 files and compiled into the database 308 of pattern structures
and extraction operations.

types of Ethernet protocols. With the Ethertype protocol, the The parsing subsystem 301 performs operations on the
contents that indicate the child protocol is in one location, packet header data based on information stored in the
wlnle with an lEEE type, the child protocol is specified in a database 308. Because data related to protocols can be
different location. The child protocol is indicated by a child considered as organized in the form of a tree, it is required
recognition pattern. 15 in the parsing subsystem to search through data that is

FIG. 16 shows the header 1600 (base level 1) of a originally organized in the form of a tree. Since real time
complete Ethernet frame (ie., packet) of information and operation is prefurable, it is required to carry out such
includes information on the destination media access control searches rapidly.
address (Dst MAC 1602) and the source media access Data structures are known for efficiently storing informa-
control address (Src MAC 1604). Also shown in FIG. 16 is 20 lion organized as trees. Such storage-efficient means typi-
some (but not all) of the information specified in the PDL cally require arithmetic computations to determine pointers
files for extraction the signature. Such information is also to to the data nodes. Searching using such storage-efficient data
be specified in the parsing structures and extraction opera- structures may therefore be too time consuming for the
tions database 308. This includes all of the header informa- present application. It is therefore desirable to store the
tion at this level in the form of 6 bytes of Dst MAC 25 protocol data in some form that enables rapid searches.
information 1606 and 6 bytes of Src MAC information 1610. In accordance with another aspect of the invention, the
Also specified are the source and destination address database 308 is stored in a memory and includes a data
components, respectively, of the hash. These are shown as 2 structure used to store the protocol specific operations that
byte Dst Hash 1608 from the Dst MAC address and the 2 are to be performed on a packet. In particnlar, a compressed
byte Src Hash 1612 from the Src MAC address. Finally, 30 representation is used to store information in the pattern
inf~rmation _is included (1614) on where to the he~der starts parse and extraction da.tabase 308 used by the pattern
for information related to the next layer level. In this case the recognition process 304 and the extraction process 306 in
next layer level (level 2) information starts at packet offset the parser subsystem 301. The data structure is organized for
12.

35
rapidly locating the child protocol related information by

FIG. 17A now shows the header information for the next using a set of one or more indices to index the contents of
level (level-2) for an Ethertype packet 1700. the data structure. A data structure entry includes an indi-

For an Ethertype packet 1700, the relevant information cation of validity. Locating and identifying the child proto-
from the packet that indicates the next layer level is a col includes indexing the data structure until a valid entry is
two-byte type field 1702 containing the child recognition

40
fuund. Using the data structure to store the protocol infor-

pattern for the next level. The remaining information 1704 mation used by the pattern recognition engine (PRE) 1006
is shown hatched because it not relevant for this level. The enables the pamer subsystem 301 to perform rapid searches.
list 1712 shows the possible children for an Ethertype packet In one embodiment, the data structure is in the furm of a
as indicated by what child recognition pattern is found offset three-dimensional structure. Note that this three dimensional
12. 45 structure in turn is typically stored in memory as a set of

Also shown is some of the extracted part used for the two-dimensional structures whereby one of the three dimen-
par:ser record and to locate the next header information. The sions of the 3-D structure is used as an index to a particnlar
signature part of the parser record includes extracted part 2-D array. This forms a first index to the data structure.
1702. Also included is the 1-byte Hash component 1710 FIG. 18A shows such a 3-D representation 1800 (which
from this information. 50 may be considered as an indexed set of2·D representations).

An offset field 1710 provides the offset to go to the next The three dimensions of this data structure are:
level information, i.e., to locate the start of the next layer 1. 'fype identifier [1:M]. This is the identifier that identi-
level header. For the Ethertype packet, the start of the next fies a type of protocol at a particular level. For example,
layer header 14 bytes from the start of the frame. 01 indicates an Ethernet frame. 64 indicates IP, 16

Other packet types are arranged differently. For example, 55 indicates an lEEE type Ethernet packet, etc. Depending
in an ATM system, each ATM packet comprises a five-octet on how many protocols the packet parser can handle, M
"header" segment followed by a forty-eight octet "payload" may be a large number; M may grow over time as the
segment. The header segment of an ATM cell contains capability of analyzing more protocols is added to
information relating to the routing of the data contained in monitor 300. When the 3-D structure is considered a set
the payload segment. The header segment also contains 60 of 2-D structures, the type ID is an index to a particular
traffic control information. Eight or twelve bits of the header 2-D structure.
segment contain the Vutual Path Identifier (VPI), aud six- 2. Size [1:64]. The size of the field of interest within the
teen bits of the header segment contain the Vutual Channel packet.
Identifier (VCI). Each ATM exchange translates the abstract 3. Location [1:512]. This is the offset location within the
routing information represented by the VPI and VCI bits into 65 packet, expressed as a number of octets (bytes).
the addresses of physical or logical network links and routes At any one of these locations there may or may n9t be
each ATM cell appropriately. valid data. Typically, there will not be valid data in most

EX 1018 Page 385

US 6,665,725 Bl
35

locations. The size of the 3-D array is M by 64 by 512, which
can be large; M for example may be 10,000. This is a sparse
3-D matrix with most entries empty (i.e., invalid).

36
monitor 300 indicating the type of packet. This header is
used to determine the virtual base layer entry point to the
parser subsystem. Thus, even at the base layer, the parser
subsystem can identify the type of packet.

Initially, the search starts at the child of the virtual base,
as obtained in the header supplied by the acquisition device.
In the case of the example, this bas ID value 01, which is the
2-D array in the overall 3-D structure for Ethemet packets.

Thus hardware implementing pattern analysis process 304

Each array entry includes a "node code" that indicates the
nature of the contents. This node code has one of fom s
values: (1) a "protocol" node code indicating to the pattern
recognition process 304 that a known protocol has been
recognized as the next (i.e., child) protocol; (2) a "terminal"
node code indicating that there are no children for the
protocol presently being searched, i.e., the node is a final
node in the protocol tree; (3) a "null" (also called "flush")
node code indicating that there is no valid enliy.

10 (e.g., pattern recognition engine (PRE) 1006 of FIG. 10)
searches to determine the children (if any) for the 2-D array
that bas protocol ID 01. In the preferred embodiment that
uses the 3-D data structure, the hardware PRE 1006 searches
up to fom lengths (i.e., sizes) simultaneously. Thus, the

In the preferred embodiment, the possible children and
other information are loaded into the data structure by an
initialization that includes compilation process 310 based on
the PDL files 336 and the layering selections 338. The
following information is included for any enliy in the data
structure that represents a protocol.

15 process 304 searehes in groups of four lengths. Starting at
protocol ID 01, the first two sets of 3-D locations searched

(a) A list of children (as type IDs) to search next. For
example, for an Ethernet type 2, the children are
Ethertype (IP, IPX, etc, as shown in 1712 of FlG.17). 20

These children are compiled into the type codes. The
code for IP is 64, that for IPX is 83, etc.

(b) For each of the IDs in the list, a list of the child
recognition patterns that need to be compucd. For

are

(1, 1, 1)
(1, 2, 1)
(1, 3, 1)
(1, 4, 1)

(1, 1, 2)
(1, 2, 2)
(1, 3, 2)
(1, 4, 2)

example, 64:0800 16 in the list indicates that the value 25 At each stage of a search, the analysis process 304
to look for is 0800 (hex) for the child to be type ID 64 examines the packet and the 3-D data structure to see if there
(which is the IP protocol). 83:8137 16 in the list indi- is a match (by looking at the node code). If no valid data is
cates that the value to look for is 8137 (hex) for the found, e.g .. using the node code, the size is incremented (to
child to be type ID 83 (which is the IPX protocol), etc. mu:imum of 4) and the offset is then incremented as well.

(c) The extraction operations to perform lo build the 30 Contiouingwiththeexample,supposethepattemanalysis
identifying signature for the :Dow. The format used is process 304 finds something at 1, 2, 12. By this, we mean
(offset, length, flow _sigoature_ value_identifier), the that the process 304 has found that for protocol ID value 01
fiow_signature_value_identifier indicating where the (Ethernet) at packet offset 12, there is information in the
extracted entry goes in the signature, including what packet having a length of 2 bytes (octets) that may relate to
operations (AND, ORs, etc.) may need to be carried 3S the next (child) protocol. The information, for example, may
out. If there is also a hash key component, for instance, be about a child for this protocol expressed as a child
then information on that is included. For example, for recognition pattern. The list of possible child recognition
an Ethertype packet, the 2-byte type (1706 in FlG.17) patterns that may be in that part of the packet is obtained
is used in the signature. Furthermore, a 1-byte hash from the data structure.
(1708 in FIG. 17A) of the type is included .. Note 40 The Ethernet packet structure comes in two flavors, the
furthermore, the child protocol starts at offi;et 14. Etbertype packet and newer IEEE types, and the packet

An additional item may be the "fold." Folding is used to location that indicates the child is different for both. The
reduce the storage requirements for the 3-D structure. Since location that for the Ethertype packet indicates the child is
each 2-D array for each protocol ID may be sparsely a "length" for the IEEE type, so a determination is made for
populated, multiple arrays may be combined into a single 45 the Ethernet packet whether the "next protocol" location
2-D array as long as the individual entries do not conflict contains a value or a length (this is called a "LENGTH"
with each other. A fold number is then used to associate each operation). A successful LENGTH operation is indicated by
element. For a given lookup, the fold number of tbe lookup contents less than or equal to 05DC 16, then this is an IEEE
must match the fold number entry. Folding is described in type Ethernet frame. In such a case, the child recognition
more detail below. so pattem is looked for elsewhere. Otherwise, the location

In the case of the Ethernet, the next protocol field may contains a value that indicates the child.
indicate a length, which tells the parser that this is a IEEE Note that while this capability of the enuy being a value
type packet, and that the next protocol is elsewhere. (e.g., for a child protocol ID) or a length (indicating further
Normally, the next protocol field contains a value which analysis to determine the child protocol) is only used for
identifies the next, i.e., child protocol. 55 Ethernet packets, in the future, other packets may end up

The entry point for the parser subsystem is called the being modified. Accordingly, this capability in the form of a
virtual base layer and contains the possible first children, macro in the PDL files still enables such future packets to be
i.e., the packet types. Aa example set of protocols written in decoded.
a high level protocol description language (PDL) is included Continuing with the example, suppose that the LENGTH
herein. The set includes PDL files, and the file descnbing all 60 operation fails. In that case, we have an Ethertype packet,
the J)OSSlble entry points (i.e., the virtual base) is called and the next protocol field (containing the child recognition
virtual.pd.I. There is only one child, 01, indicating the pattern) is 2 bytes long starting at offset 12 as shown as
Ethernet, in this file. Thus, the particular example can only packet field 1702 in FIG. 17A This will be one of the
handle Ethernet packets. Io practice, there can be multiple children of the Ethertype shown in table 1712 in FIG. 17 A
entry points. 65 Toe PRE uses the information in the data structure to check

In one embodiment, the packet acquisition device pro- what the ID code is for the found 2-byte child recogniJ;ion
vides a header for every packet acquired and input into pattern. For example, if the child recognition pattern is 0800

EX 1018 Page 386

US 6,665,725 Bl
37

(Hex), then the protocol is IP. If the child recognition pattern
is OBAD (Hex) the protocol is VIP (VINES).

Nole that an alternate embodiment may keep a separate
table that includes all the child IC{X)gnition patterns and their
corresponding protocol ID's

To follow the example, suppose the child recognition
pattern al 1, 2, 12 is 0800 1,., indicating IP. The ID code for
the IP protocol is 6410). To continue with the Ethertype
example, once the parser matches one of the possible
children for the protocl-in the example, the protocol type
is IP with an ID of 64-tben the parser continues the search
for the next level. The ID is 64, the length is unknown, and
offset is known to be equal or larger than 14 bytes (12 offset
for type, plus 2, the length of type), so the search of the 3-D
structure commences from location (64, 1) at packet offset
14. A populated node is fonnd at (64, 2) at packet offset 14.
Heading details are shown as 1750 in FIG. 17B. The
possible children are shown in table 1752.

Alternatively, suppose that at (1, 2, 12) there was a length
121110 • This indicates that this is an IEEE type Ethernet
frame, which stores its type elsewhere. The PRE now
continues its search at the same level, but for a new ID, that
of an IEE.E type Ethernet frame. An IEE.E Ethernet packet
has protocol ID 16, so the PRE continues its search of the
three-dimensional space with ID 16starting at packet offset
14.

In our example, suppose there is a "protocol" node code
found at (16, 2) at packet offset 14, and the next protocol is
specified by child recognition pattern 0800 16 • This indicates
that the child is the IP protocol, which has type ID 64. Thus
the search continues, starting at (64, 1) at packet offset 16.
Compression.

As noted above, the 3-D data structure is very large, and
spaISely populated. For example, if 32 bytes are stored at
each locatinn, then the length is M by 64 by 512 by 32 bytes,
which is M megabytes. If M-10,000, then this is about 10
gigabytes. It is not practical to include 10 Gbyte of memory

38
for example, when an application protocol like Telnet can
run on several transport connections like TCP or UDP.
Rather than repeating the Telnet node, only one node is
represented in the patterns database 308 which can have

5 several parents. This eliminates considerable space explo
sion.

Each 2-D structure in FIG. 18A represents a protocol. To
enable saving space by using only one array per protocol
which may have several parents, in one embodiment, the

10 pattern analysis subprocess keeps a "current header'' pointer.
Each location (offset) index for each protocol 2-D array in
the 3-D structure is a relative location starting with the start
of header for the particular protocol.

Bach of the two-dimensional arrays is sparse. The next
15 step of the optimization, is checking all the 2-D arrays

against a1l the other 2-D arrays to find out which ones can
share memory. Many of these 2-D arrays are often sparsely
populated in that they each have only a small number of
valid entries. So, a process of "folding" is next used to

20 combine two or more 2-D arrays together into one physical
2-D array without losing the identity of any of the original
2-D arrays (i.e., all the 2-D arrays continue to exist
logically). Folding can occur between any 2-D arrays irre
spective of their location in the tree as long as certain

25 conditions are met.
Assume two 2-D arrays are being considered for folding.

Call the first 2-D arrays A and the second 2-D array B. Since
both 2-D arrays are partially populated, 2-D array B can be
combined with 2-D arrays A if and only if none of the

30 individual elements of these two 2-D arrays that have the
same 2-D location conflict. If the result is foldable, then the
valid entries of 2-D array B are combined with the valid
entries of 2-D array A yielding one physical 2-D array.
However, it is necessary to be able to distinguish the original

35 2-D array A entries from those of 2-D array B. For example,
if a parent protocol of the protocol represented by 2-D array
B wants to rcfetence the protocol ID of 2-D array B, it must
now reference 2-D array A instead. However, only the in the parser subsystem for storing the database 308. Thus a

compressed form of storing the data is used in the preferred
embodiment The compression is preferably carried out by -40
an optimizer component of the compilation process 310.

entries that were in the original 2-D am y B are Vlllid entries
for that lookup. To accomplish this, each element in any
given 2-D array is tagged with a fold number. When the

Recall that the data structure is sparse. Different embodi
ments may use different compression schemes that take
advantage of the sparseness of the data structure. One
embodiment uses a modification of multi-dimensional run
length encoding.

Another embodiment uses a smaller number two
dimensional structures to store the information that other
wise would be in one large three-dimensional structure. The
second scheme is used in the preferred embodiment.

FIG. 18A illustrated bow the 3-D array 1800 can be
considered a set of 2-D arrays, one 2-D array for each
protocol (i.e., each value of the protocol ID). The 2-D
structures are shown as 1802-1, 1802-2, . .. , 1802-M for up
to M protocol ID's. One table entry is shown as 1804. Note
that the gaps in table are used to illustrate that each 2-D
structure table is typically large.

Consider the set of trees that represent the possible
protocols. Each node represents a protocol, and a protocol
may have a child or be a terminal protocol. The base (root)
of the tree has all packet types as children. The other nodes
form the nodes in the tree at various levels from level 1 to
the final terminal nodes of the tree. Thus, one element in the
base node may reference node ID 1, another element in the
base node may reference node ID 2 and so on. As the tree
is traversed from the root, there may be points in the tree
where the same node is refen:mced next. This would occur,

original tree is created, all elements in all the 2-D arrays are
initialm:d with a fold value of zero. Subsequently, if 2-D
array B is folded into 2-D array A, all valid elements of 2-D

45 array B are copied to the corresponding locations in 2-D
array A and are given different fold numbers than any of the
elements in 2-D array A For example, if both 2-D array A
and 2-D array B were original 2-D arrays in the tree (i.e., not
previously folded) then, after folding, all the 2-D array A

50 entries would still have fold O and the 2-D array B entries
would now all have a fold value of L After 2-D array B is
folded into 2-D array A, the parents of 2-D array B need to
be notified of the change in the 2-D array physical location
of their children and the associated change in the expected

55 fold value.
This folding process can also occur between two 2-D

arrays that have already been folded, as long as none of the
individual elements of the two 2-D arrays conflict for the
same 2-D array location. As before, each of the valid

60 elements in 2-D array B must have fold numbers assigned to
them that are unique from those of 2-D array A This is
accomplished by adding a fixed value to all the 2·D array B
fold numbers as they are merged into 2-D array A. This fixed
value is one larger than the largest fold value in the original

65 2-D array A It is important to note that the fold number for
any given 2-D array is relative to that 2-D array only and
does not span across the entire tree of 2-D arrays.

EX 1018 Page 387

US 6,665,725 Bl
39 40

'lb.is process of folding can now be attempted between all When using the data structure of FIG. 18B, when a packet
combinations of two 2-D arrays until there are no more arrives at the parser, the virtual base has been pre-pended or
candidates that qualify for folding. By doing this. the total is known. The virtual base entry tells the packet recognition
number of 2-D arrays can be significantly reduced. engine where to find the first child recognition pattern in the

Whenever a fold occurs, the 3-D structure (i.e., all 2-D s packet. The pattern recognition engine then extracts the
arrays) must be searched for the parents of the 2-D array child recognition pattern bytes from the packet and uses
being folded into another array. The matching pattern which them as an address into the virtual base table (the first LUI).
previously was mapped to a protocol ID identifying a single If the entry looked up in the specified next LUT by this
2-D amy must now be replaced with the 2-D array ID and method matches the expected next fold value specified in the
the next fold number (i.e., expected fold).

10
virtual base entry, the lookup is deemed valid. The node

Thus, in the compressed data structure, each entry valid code is then examined. If it is an intermediate node then the
entry includes the fold number for that entry, and next table field obtained from the LUT lookup is used as the
additionally, the expected fold for the child. most significant bits of the address. The next expected fold

An alternate embodiment of the data structure used in is also extracted from the entry. The pattern recognition
database 308 is illustrated in FIG. 18B. Thus, like the 3-D engine 1006 then uses the next byte from the child recog-
structure described above, it permits rapid searches lo be 15 nition pattern as the for the next LUT lookup.
performed by the pattern recognition process 304 by index- Thus, the operation of the PRE continues until a terminal
ing locations in a memory rather than performing address code is found. The next (initially base layer) protocol is
link computations. The structure, like that of FIG. 18A. is looked up in the protocol table 1850 to provide the PRE
suitable for implementation in hardware, fur example, for 1006 with information on what field in the packet (in input
implementation to work with the pattern recognition engine 20 buffer memory 1008 of parser subsystem 1000) to use for
(PRE) 1006 of FIG. 10. obtaining the child recognition pattern of the next protocol,

A table 1850, called the protocol table (PI) has an entry including the siz.e of the :field. The child recognition pattern
for each protocol known by the monitor 300, and includes bytes are fetched from the input buffer memory 1008. The
some of the characteristics of each protocol, including a number of bytes making up the child recognition pattern is
description of where the field that specifies next protocol 25 also oow known.
(the child recognition pattern) can be fuund in the header, the The first byte of the protocol code bytes is used as the
length of the next protocol field, flags to indicate the header lookup in the next LUT. If a LUT lookup results in a node
length and type,.. and one or more slicer commands, the slicer code indicating a protocol node or a terminal node, the Next
can build the key components and hash components for the LUT and next expected fold is set, and the "next protocol"
packet at this protocol at this layer level. 30 from LUT lookup is used as an index into the protocol table

For any protocol, there also arc one or more lookup tables 1850. 'lb.is provides the instructions to the slicer 1007, and
(LU'Is). Thus database 308 for this embodiment also where in the packet to obtain the field for the next protocol.
includes a set of LUTs 1870. Each LUT has 256 entries Thus, the PRE 1006 continues until it is done processing all
indexed by one byte of the child recognition pattern that is the fields (i.e., the protocols), as indicated by the terminal
extracted from the next protocol field in the packet. Such a 3S node code reached.
protocol specification may be several bytes long, and so Note that when a child recognition pattern is checked
several of LUTh 1870 may need lo be looked up for any against a table there is always an expected fold. If the
protocol. expected fold matches the fold information in the table, it is

Each LUT's entry includes a 2-bit "node code" that used to decide what lo do next. If the fold does not match,
indicates the nature of the contents, including its validity. 40 the optimizer is finished.
'lb.is node code bas one of four values: (1) a "protocol" node Note also that an alternate embodiment may use diffi:rent
code indicating to the pattern recognition engine 1006 that size LUTs, and then index a LUT by a different amount of
a known protocol has been recognized; (2) an "intermediate" the child recognition pattern.
node code, indicating that a multi-byte protocol code has The present implementation of this embodiment allows
been partially recognm:d, thus permitting chaining a series 45 for child recognition patterns of up lo four bytes. Child
of LUTs together before; (3) a "terminal" node code indi- recognition patterns of more than 4 bytes are regarded as
eating that there are no children for the protocol presently special cases.

' . being searched, i.e., the node is a :final node in the protocol In the preferred embodiment, the database is generated by
tree; (4) a "null" (also called "flush" and "invalid") node the compiler process 310. The compiler process first builds
code indicating that there is no valid entry. 50 a single protocol table of all the links between protocols.

1n addition to the node code, each LUT entry may include Links consist of the connection between parent and child
the next LUT number, the next protocol number (for looking protocols. Each protocol can have zero or more children. If
up the protocol table 1850), the fold of the LUT entry, and a protocol bas children, a link is created that consists of the
the next fold to expect. Like in the embodiment implement- parent protocol, the child protocol, the child recognition
ing a compressed form of the 3-D representation, folding is 5S pattern, and the child recognition pattern size. The compiler
used to reduce the storage requirements for the set of LUTh. first extracts child recognition patterns that are greater than
Since the LUTs 1870 may be sparsely populated, multiple two bytes long. Since there are only a few of these, they are
LUTs may be combined into a single LUT as long as the handled separately. Next sub links are created for each link
individual entries do not conflict with each other. A fold that bas a child recognition pattern size of two.
number is then used to associate each clement with its 60 All the links are then formed into the LUTs of 256 entries.
original LUT. Optimization is then carried out. The first step in the

For a given lookup, the fold number of the lookup must optimization is checking all the tables against all the other
match the fold number in the lookup table. The expected fold tables to find out which ones can share a table. This process
is obtained from tbe previous table lookup (the "next fold to proceeds the same way as described above for two-
expect'' field). The present implementation uses 5-bits to 65 dimensional arrays, but now fur the sparse lookup tables.
describe the fold and thus allows up to 32 tables to be folded Part of the initialization process (e.g., compiler p~ss
into one table. 310) loads a slicer instruction database with data items

EX 1018 Page 388

US 6,665,725 Bl
41 42

these addresses to build tbe key. For example, Ethernet
frames have end-point addresses that arc useful in building
a. better flow signature. Thus the PDL file for an Ethernet
packet includes information on bow the parsing subsystem
is to extract the source and destination addresses, including
where the locations and sizes of those addresses are. In a
frame-relay base layer, for example, there are no specific end
point addresses that help to identify the flow better, so for
those type of packets, the PDL file does not include infor-

including of instruction, source addn:ss, destination address,
and length. The PRE 1006 when it sends a slicer instruction
sends this instruction as an o:ll:set into the slicer instruction
database. The instruction or Op code tells the slicer what to
extract from the incoming packet and where to put it in the 5

flow signature. Writing into certain fields of the flow signa
ture automatically generates a hash. The instruction can also
tell the slicer how to determine the connection status of
certain protocols.

10 mation that will cause the parser subsystem to extract the
end-point addresses.

Note that alternate embodiments may generate the
pattern, parse and extraction database other than by com
piling PDL files. Some protocols also include information on connections.

The Compilation Process
TCP is an example of such a protocnl. Such protocol use
connection identifiers that exist in every packet. The PD L

l5 file for such a protocol includes information about what
The compilation process 310 is now described in more those connection identifiers are, where they are, and what

detail. This process 310 includes creating the parsing pat- their length is. In the example of TCP, for example running
terns and extractions database 308 that provides the parsing over IP, these are port numbers. The PDL file also includes
subsystem ~01 "?th. the. informa~on needed to parse pack_ets information about whether or not there are states that apply
and extract identifying information, and the state processmg to connections and disconnections and what the possible
instructions database 326 that provides the state processes

20
children are states. So, at each of these levels,. the packet

that need to be performed in the state processing operation monitor 300 learns more about the packet. The packet

328. monitor 300 can identify that a particular packet is part of a
Input to the compiler includes a set of files that describe particular flow using the connection identifier. Once the flow

each of the protocols that can occur. These files are in a 25 is identified,. the system can detemiine the current state and
convenient protocol description language (PDL) whicli is a what states to apply that deal with connections or di.scon-
higb level language. PDL is used for specifying new proto- nections that exist in the next layer up to these particular
cols and new levels, including new applications. The PDL is packets.
independent of the different types of packets and protocols For the particular PDL used in the preferred embodiment,
that may be used in the computer network.Asel of PDL files 30 a PDL file may include none or more FIELD statement eacli
is used to descnbe what information is relevant to packets defining a specific string of bits or bytes (i.e., a field) in the
and packets that need to be decoded. The PDL is further used packet. A PDL file may further include none or more
to specify state analysis operations. Thus, the parser sub- GROUP statements each used to tie together several defined
system and the analyzer subsystems can adapt and be fields. A set of such tied together fields is called a group. A
adapted to a variety of dilierent kinds of headers, layers, and 35 PDL file may further include none or more PROTOCOL
components and need to be extracted or evaluated, for statements each defining the order of the fields and groups
example, in order to build up a unique signature. within the header of the protocol. A PDL file may further

There is one file for each packet type and each protocol. include none or more FLOW statements eacli defining a flow
Thus there is a PDL file for Ethernet packets and there is a by describing where the addr-, protocol type, and port
PDLfile for frame relay packets. The PDLfiles are compiled "° numbers are in a. packet. The FLOW statement includes a
to form one or more databases that enable monitor 300 to description of how cliildren flows of this protocol are
perform different protocol specific operations on a packet determined using state operations. States associated may
wherein the protocol headers of any protocol are located at have state operations that may be used for managing and
dilierent locations depending on the parent protocol or maintaining new states learned as more packets of a flow are
protocols used in the packet Thus, the packet monitor adapts 45 analyzed.
to dilierent protocols according to the contents of the packet. FIG. l!I shows a set of PDL files for a layering structure
In particular, the parser subsystem 301 is able to extract for an Ethernet packet that runs TCP on top of IP. The
different types of data for dilierent types of packets. For contents of these PDL files are attached as an APPENDIX
example, the monitor can know bow to interpret a Ethernet hereto. Common.pd! (1903) is a file containing the common
packet, ~eluding decoding the header ~orm~on, and a;1so 50 protocol definitions, i.e., some field definitions for com-
how to mterpret an frame relay packet, mcluding decoding monly used fields in various network protocols. Flows.pd!
the header information. (1!105) is a file containing general flow definitions. Virtu-

The set of PDL files, for example, may inchlde a generic al.pd! (1!107) is a PDL file containing the definition for the
Ethernet packet file. There also is included a PDL file for V:trtua!Base layer used. Ethernet.pd! (1!111) is the PDL file
each variation Ethernet file, for example, an EEE Ethernet ss containing the definition for the Ethernet packet. The deci-
file. sion on Ethertype vs. IEEE type Ethernet file is described

The PDL file for a protocol provides the information herein. If this is Ethertype, the selection is made from the file
needed by compilation process 310 to generate the database Ethertype.pdl (1!113). In an alternate embodiment, the Ether-
308. That database in tum tells the parser subsystem how to type selection definition may be in the same Ethernet file
parse and/or extract information, including one or more of 60 1!111. In a typical im~lementation, PDL fil~ for other
what protocol-specific compon"nts of tbe packet to extract Ethernet types would be incl_aded. IP.pd! (1!115) 1s a PDL file
for the flow signature, how to use the components to build containing the p~cket definitions for ~ Internet Protocol.
the flow signature, where in the packet to look for these TCP.pd! (1!117) IS the PDL file contammg the packet defi-
components, where to look for any cliild protocols, and what nitions for the Transmission Control Protocol, which in Ibis
child recognition patterns to look for. For some protocols, 65 case is a transport servi~ for the_ IP protocol. In addition to
the extracted components may include source and destina- extracting the protocol informallon the TCP protocol pefi-
tion addresses, and the PDL file may include the order to use nition file assists in the process of identification of connec-

EX 1018 Page 389

US 6,665,725 Bl
43

lions for the proce55ing of states. In a typical set of files,
there also would be a file UDP.pdl for the User Datagram
Protocol (UDP) definitions. RPC.pdl (1919) is a PDLfilc file
containing the packet definitions for Remote Procedure
Cal.ls.

NFS.pdl (1921) is a PDL file containing the packet
definitions for the Network File System. Other PDL files
would typically be included for all the protocols that might
be encountered by monitor 300.

44
COPYRIGIIT NOTICE

A portion of this of this document included with the patent
contains material which is subject to copyright protection.

5
The copyright owner (Apptiludc, Inc., of San Jose, Calif.,
formerly Technically Elite, Inc.) has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosnre or this document, as it appears in the
Patent and Trademark Office patent file or records, but

10
otherwise reserves all copyright rights whatsoever. Copy
right<el 1997-1999 by Apptiludc, Inc. (formerly Technically
Elite, Inc.). All Rights Reserved.

l. INTRODUCTION

Input to the compilation process 310 is the set of PDLfiles
(e.g., the files of FIG. 19) for all protocols of interest. Input
to process 310 may also include layering information shown
in FIG. 3 as datagram layer selections 338. Tue layer
selections information describes the layering of the
protocols-what protocol(s) may be on top of any particular

15
The inventive protocol Definition Language (PDL) is a

protocols. For example, IP may run over Ethernet, and also special purpose language used to describe network protocols
over many other types of packets. TCP may run on top of IP. and all the fields within the protocol headers. Within this
UDP also may run on top of IP. When no layering informa- guide, protocol descriptions (PDL files) arc mferred to as
lion is explicitly included, it is inherent; the PDL files PDL or rules ':'h~n there in no risk of confusion with other
include the children protocols, and this provides the layering types of descnptions.
information.

20
PDL uses both form and organization sinlilar to the data

The compiling process 310 is illustrated in FIG. 20. Tue structure definition part of the C programming language and
compiler loads the PDL source files into a scratch pad the PERL scripting language. Since PDL was derived from
memory (step 2003) and reviews the files fur the correct a language used to decode network packet contact, the
syntax (parse step 2005). Once completed, the compiler 25 authors have mixed the language format with the require-
creates an intermediate file containing all the parse elements ments of packet decoding. This msults in an expressive
(step 2007). The intermediate file in a format called "Com- language that is very familiar and comfortable for describing
piled Protocol Language" (CPL). CPL instructions have a packet content and the details required representing a flow.

fixed layer formal, and include all of the patterns, 11 Summary
extractions, and states required for each layer and for the 30 •
entire tree for a layer. Tue CPL file includes the number of The PDL is a non-procedural Forth Generation language
protocols and the protocol definitions.A protocol definition (4GL). This means is descn"bes what needs to be done
for each protocol can include one or more of the protocol without describing how to do it. The details of how are
name, the protocol JD, a header section, a group idcntifica- hidden in the compiler and the Compiled Protocol Layout
lion section, sections for any particular layers, announce- 35 (CPL) optimization utility. •
mcnt sections, a payload section, a children section, and a In addition, it is used to describe network flows by
states section. The CPL file is then run by the optimizer to defining which fields arc the address fields, which are the
create the final databases that will be used by monitor 300. protocol type fields, etc.
It would be clear to those in the art that alternate imple- Once a PDL file is written, it is compiled using the
mentations of the compilation process 310 may include a 40 Nctscopc compiler (nsc), which produces the McterFlow
different form of intermediate output, or no intermediate database (MeterFlow.db) and the Nctscope database
output at all, directly generating the final database(s). (Netscape.db). The McterFlow database contains the flow

After the parse elements have been created, the compiler definitions ~ the Nctscope database contains the protocol
builds the flow signature elements (step 2009). This creates header definitions.
the extraction operations in CPL that are required at each 45 These databases are used by programs like: mfkeys,
l~vel for each PDL module for the building of the flow which produces flow keys (also called flow signatures);
signature (and hash key) and for links between layers mfcpl, which produces flow definitions in CPL format;
(2009). mfpkts which produces sample packets of all known proto-

With the flow signature operations complete, the PDL cols; and netscopc, which decodes Sniffernc and tcpdump
compiler creates (step 2011) the operations required to 50 files.
extract the payload clements from each PDL module. These 12 Guide Conventions
payload clements are used by states in other PDL modules
at higher layers in the processing. The following conventions will be used throughout this

guide:
The last pass is to create the state operations required by

each PDL module. The state operations are complied from 55 Small courier typeface indicates C code examples or
the PDL files and created in CPL form for later use (2013). function names. Functions are written with parentheses after

Tue CPL file is now run through an optimiz.er that them [function 0], variables arc written just as their names
generates the final databases used by monitor 300. [variables), and structure names are written prefixed with

"struct" [struct packet J.
PROTOCOL DEFINITION LANGUAGE (PDL) 60 Italics indicate a filename (for instance, mworks/base/h/

REFERENCE GUIDE (VERSION AO.OZ) base.h). Filenames will usually he written relative to the root
Included herein is this reference guide (the "guide") for directory of the distnbution.

the page description language (PDL) which, in one aspect of Constants are expressed in decimal, unless written
the invention, permits the automatic generation of the data- "Ox ..• ", the C language notation for hexadecimal numbers.
bases used by the parser and analyzer sub-systems, and also 65 Note that any contents on any line in a PDL file following
allows for including new and modified protocols and appli- two hyphen(--) are ignored by the compiler. That is, they, arc
cations to the capability of the monitor. comments.

EX 1018 Page 390

•• f .. ,

US 6,665,725 Bl
45

2. PROGRAM STilUClURE

A MeterFlow PDL decodes and flow set is a non-empty
sequence of statements.

46
2.1.3 LENGTII "Expression"

This attribute defines an expression for determining the

There are four basic types of statements or definitions s
available in MeterFiow PDL:

FIELD's length. Expressions are arithmetic and can refer to
the value of other FIELD'sin the packet by adding a$ to the
referenced :field's name. For example, "($tcpHeaderLen"4)-
20" is a valid expression if tcpHeaderLen is another :field

FlEill,

GROUP,

PROTOCOL and

FLOW.

2.1 Field Definitions

defined for the current packet.
2.1.4 FIAGS FieldFlags

The attribute defines some special flags for a FIELD. The
10 currently supported FieldFlags arc:

SAMElAYER
The FIELD definition is used to define a specific string of NOLABEL

Display fi.cld on the same layer as the picvious field.
Don't display the fu:ld JWI1e with the value.

bits or bytes in the packet. The FIELD definition has the 15 NOSHOW Decode the field but don't display it.
following format: SWAPPED Tb,: integer value is .,.,.ppod.

Name FIELD -------------------

SYNI'AX Type [{Enums }]

DISPLAY-IIlNI' "FormatString"

lENGTII "Expression"

FLAGS FieldFlags
ENCAP FieldName [, FieldName2]

LOOKUP LoolrupType [Filename]
ENCODING Encodinglype
DEFAULT "value"
DESCRIPTION "Description"'
Where only the FIELD and SYNTAX lines are required.

2.15 ENCAP FieldName [, FieldName2]
This attribute defines how one packet is encapsulated

20 inside another. Which packet is determined by the value of
the FieldName field. If no packet is found using FieldName
then FieldName2 is tried.
2.1.6 LOOKUP LookupType [Filename]

This attribute defines how to lookup the name for a
25 particular FIELD value. The currently supported Loolrup

Types are:

All the other lines are attribute lines, which define special 30
characteristics about the FIELD. Attribute lines are optional
and may appear in any order. Each of the attribute lines are
descnbed in detail below:

Sl!RVICB
HOSI'NAMH
MACADDRESS
F1LE file

Uae geloervbyport{).
Use gethostb}'!lddr().
Uae $METER.FLOW /conf./mac2ip.cf.
U.. file to lookup value.

2.1.1 SYNTAX Type [{Enums}]
This attnbute defines the type and, if the type is an INT, 35

BYTES1RING, fflTS1RING, or SNMPSEQUENCE type,
the enumerated values for the FIELD. The currently defined
types are:

INr(numBils)
UNSIGNED INT(numBil:s)

BYfESTRlNG(numByte.,;)
BYfESTRlNG(Rl · • • R2)

BITSTRING(numBits)
I.SfRING(lenByt.es)
NSTRING
DNSSIR!NG
SNMPOID
SNMPSEQUENCE
SNMPnMETICKS
COMBO fuoldl field2

lnleg,,r that ii numBils bits long.
Unaiped inleger that ia numBils
bits long.
String that iJI numByte.,; bytes loog.
String that ""'&"' in size from
R1 to R2 byte.,;.
String that is numBil:s bits long.
String with lenByt"' hcadct
Null ierminattd ,Iring.
DNS encoded 1tring.
SNMP Object Identifier.
SNMP Sequence.
SNMP TimeTicks.
Combimttion paeudo wold.

40

45

50

2.12 DlSPLAY-IIlNT "FormatString"
This attribute is for specifying how the value of the 55

FIELD is displayed. The currently supported formats are:

2.1.7 ENCODING EncodingType
This attribute defines how a FIELD is encoded. Currently,

the only supported EncodingType is BER (for Basic Encod
ing Rules defined by ASN.1).
2.1.8 DEFAULT "value"

This attnbute defines the default value to be used for this
field when generating sample packets of this protocol.
2.1.9 DESCRIPTION "Description"

This attribute defines tbe description of the FIELD. It is
used for informational purposes only.

22 Group Definitions

The GROUP definition is used to tie several related
FIELDs together. The GROUP definition has the following
format:

Name GROUP
lENGTII "Expression"
OPTIONAL "Condition"
SUMMARIZE "Condition":"FormatString"

["Coodition": "FormatString" ...]
DESCRIPTION "Description"

::•{Name-FieldOrGroup [, Name•FieldorGroup ...]}
Where only the GROUP and ::-lines are required. All the

other lines arc attribute lines, which define special charac-
Numx
Numd
Numo
Numb
Numa
1bxt
HittDump

Print u a num byte heJidccimal number.
Print u a num byte decimal numbct
Print u a num byte octal number.
Print a.s a num byte binary number.

60 teristics for the GROUP. Attribute lines are optional and may
appear in any order. Each attribute line is descnbed in detail
below:

Print num bytes in ASCII format.
Print as ASCII tat.
Print in hcxdump format.

22.1 LENGTII "Expression"
This attnbute defines an expression for determining the

65 GROUP's length. Expressions are arithmetic and can refer
-------------------- to the value of other FIEill's in the packet by adding ,a $ lo

the referenced field's name. For example,

EX 1018 Page 391

US 6,665,725 B1
47

"($tcpHeaderLen*4)-20" is a valid expression if tcpHead
erLen is another field defined for the current packet.

2.2.2 OPTIONAL "Condition"

This attribute defines a condition for determining whether
a GROUP is present or not. Valid conditions are defined in 5

the Conditions section below.

48

-continued

Displaya the field value (in raw format).
Coon.ta all oa:umncea of field.
Lall all occum,nces of ti.old.

2.3.2 DFSCRIPTION "Description" 2.2.3 SUMMARIZE "Condition":"FormatString"
["Condition":"FormatString" ...]

This attnbute defines how a GROUP will be displayed in
Detail mode. A different format (FormatString) can be
specified for each condition (Condition). Valid conditions
arc defined in the Conditions section below. Any FJEU)'s
value can be referenced within the FormatString by pro
ceeding the FIELD's name with a S. In addition to FIELD
names there are several other special S keywords:

This attnbute defines the description of the PROTOCOL.

10
It is used for informational purposes only.
2.3.3 REFERENCE "Reference"

This attribute defines the reference material used to deter
mine the protocol format. It is used fur informational pur
poses only.

15 2.3.4 ::-{Name-FieldOrGroup (.
Name-FieldOrGroup ...]}

$LAYER
$GROUP
$LABEL
$fu::ld

$:field

Displays the currclll protoool layer.
Displays the cntin, GROUP u a table.
Displays the OROUP label
Displays tho field value (use
cnumemtcd name if available).
Displays the field value (in raw fom:iat).

2.2.4 DFSCRIPITION "Description"
This attnbute defines the description of the GROUP. It is

used for informational purposes only.
2.2.5 ::-{Name .. FieldOrGroup [,
Name-FieldOrGroup ...]}

This defines the order of the fields and subgroups within
the GROUP.

2.3 PROTOCOL Definitions

20

25

30

35

The PROTOCOL definition is used to define the order of
the FIELDs and GROUPs within the protocol header. The
PROTOCOL definition has the following format:

This defines the order of the FIEIDs and GROUPs within
the PROTOCOL.

2.4 FLOW Definitions

The FLOW definition is used to define a network flow by
describing where the address, protocol type, and port num
bers are in a packet. The FLOW definition has the following
furmal:

Name FLOW
IIBADER {Option [, Option •..]}

DLC-lAYER {Option[, Option ...]}

NET-LAYER {Option[, Option ...]}

CONNECTION {Option[, Option ...]}

PAYLOAD {Option[, Option •..]}
CIULDREN {Option[, Option •..]}

STATE-BASED
STATES "Definitions"
Where only the FLOW line is required.All the other lines

arc attnbutc lines, which define special characteristics for
the FLOW. Attribute lines are optional and may appear in
any order. However, at least one attnbute line must be

Name PROTOCOL

SUMMARIZE "Condition":"FormatString"] "Condition
":"FormatString" .•.]

40 present. Each attribute line is descn'bed in detail below:
2.4.1 IIBADER {Option[, Option .•.]}

DFSCRIPTION "Description"

REFERENCE "Reference"

This attribute is used to describe tbe length of the protocol
header. The currently supported Options are:

45
::-{Name-FieldOrGroup [, Name•FieldOrGroup ...]} -------------------
Where only the PROTOCOL and ::~lines arc required. All LENOIB • nwnber Header is a frwl length of siu numbeL

the other lines are attnbute lines, which define special LENOm ~ field Header is variable length determined

characteristics for the PROTOCOL. Attnbutc lines arc by value of field. IN-WORDS Tho units of the header length arc
optional and may appear in any order. Each attnbutc line is 50 in 32-bit worda rather thnn bytes.

descnbed in detail below: --------------------
2.3.1 SUMMARIZE "Condition":"FormatString"
["Condition":"FormatString" ...]

This attnbute defines how a PROTOCOL will be dis
played in Summary mode. A different format (FormatString) 55
can be specified for each condition (Condition). Valid con-
ditions are defined in the Conditions section below. Any
FIELD's value can be referenced within the FormatString by
proceeding the PIEL.D's name with a S. In addition to
FIELD names there are several other special S keywords: 60

2.4.2 DLC-1.AYER { Option [, Option ...]}
If the protocol is a data link layer protocol, this attribute

descnbes it. The currently supported Options are:

DESTIW,I10N • field

SOURCI! • fu::ld

PRorocoL

TUNNELING

Indicates which field is the DLC
destination address.
Indicates wh.ich fu:ld is the DLC
aoun:c i.ddrCM.

lndicates this is ._ data link
layer protocol.
Indicates this i.i a lllmlc!ing protocol.

$1..AYf!R
$VARBIND
$field

Diaplaya the cunclll protocol layer.
Display, tho entire SNMP 'lm.rBind wt.
Displays the field value (use
enumcratcd name if available).

65 2.43 NET-LAYER {Option[, Option ...]}
If the protocol is a network layer protocol, then, this

attribute describes it. The currently supported Options are:

EX 1018 Page 392

..

,, .,
,J
{

US 6,665,725 Bl

Df!SfINAJ10N - &Id

SOURCE - licld

TUNNEl.lNG
FRAGMENTATION $ type

49

Indicates which tlold ia the
nctworl< destination addrCiS.
Indicates which fu:ld i.a the
networlc liOtl1'CC address.
Indicates this is a bmncliag protocol.
Indicates this prolocol supports
fragmentation. There me curreuU y
two ftagmentanon types: 1PV4 and
Il'V6.

2.4.4 CONNECTION {Option[, Option ...]}

s

10

Jftbe protocol is a connection-oriented protocol, then this
attribute descnbes how connections are established and torn 15
down. The currently supported Options are:

IDEN'llFil!R - w,ld lndialte1 the connection
idcnti&r fu:ld.

CONNF.CT-S'D\Xr - "llag"' 1.ndicatea when " CO!lllCction
ia being initiated.

CONNF.CT-OOMPLEIB - •!lag" l.ndicatea when a connection
bu been calllbli&hed.

20

Valuol - Valuc2

Value! la Value2

Valuel <- Valuc2
Valuel ,-. Value2
Value1 < Valuc2
Valuel > Value2
F'icltl m/rcga/

50

Valucl equals Value2.
Woi:ka with •Iring valuoi,.
Valncl docs not equal '3lue2.
Wow with •Iring VJ!ucs.
Valuc1 is less than or equal to Value2.
Valucl is greater than or equal lo Valuc2.
Valncl is less than Valuc2.
Valucl ia greater than Valuc2.
Ftchl ma!chca the regular c,r;p.....wn rogex.

Where Value} and Value2 can be either FIELD references
(field names preceded by a $) or constant values. Note that
compound conditional statements (using AND and OR) are
not currently supported.

2.6 STATE DEFINfTIONS

Many applications running over data networks utilize
complex methods of cbssifying traffic through the use of
mnltiple states. State definitions are used for managing and
maintaining learned states from traffic derived from the

DlSCONNECT-SD\KI' - "flag" l.ndicatea when a co~on
is being tom down. 25

network.
DISCONNECT-COMPLETE - "flag" lndlcate1 when " connection

bu been lom down. The basic format of a state definition is:

StateName: Operand Parameters [Operand
Parameters ...]

INHERlTl!D Indicate& thia is •
connection-oriented protocol
but tho pamnt protocol is
where the connection ia
c:stabliahed. 30

The various states of a particular flow are descnbed using
the following operands:

2.45 PAYWAD {Option[, Option ...]}
'Ibis attnbute describes how much of the payload from a

packet of this type should be stored for later use during 35
analysis. The currently supported Options are:

2.6.1 CHECKCONNECT, Operand

Checks for connection. Once connected executes oper
and.

2.6.2 GOTO State

Goes to state, using the current packet
2.6.3 NEXT State

INa.J.JDf!-Hl!ADER l.ndicab>I that the protocol header
abould be included.

Goes to state, using the next packet.

40 2.6.4 DEFAULT Operand

I.ENG111 - number lndicaJ:u how many bytes of the payload
1bould be atnred.

D.A:fA • fidd lndicatea which field COllWllS tho payload.

2.4.6 CHILDREN { Option [, Option ...]}
'Ibis attnbute describes how children protocols are deter

mined. The currently supported Options are:

Executes operand when all other operands fail.
2.65 CIIlLD Protocol

Jump to child protocol and perform state-based process-
45 ing (if any) in the child

2.6.6 WAIT Numpackets, Operandl, Operand2

Wairs the specified number of packets. Executes operandl
when the specified number of packets have been received.
Executes operand2 when a packet is received but it is less

-------------------- SO than the number of specified packets.
DESl'INATION • &ld
SOURCl!•&ld
ILCCHECK • !low

l.ndicat<& w]w:h &Id is the destination port.
Indicates which field i,, the aourco port.
Indicates that if tho DESI1NATION field
is leas than O >< 05DC then 1lSC l!ow
inatead of the current !low definition.

2.4.7 STATE-BASED
'Ibis attribute indicates that the flow is a state-based flow.

2.4.8 STATES "Definitions"

2.6.7 MPJCH 'String' Weight Offset I.F-olfset Range
I.F-range, Operand

Searches for a string in the packet, executes operand if
found.

55
2.6.8 CONSTANT Number Offset Range, Operand

Checks for a constant in a packet, executes operand if
found.
2.6.9 EXTRACTIP Offset Destination, Operand

Extracts an IP address from the packet and then executes
operand.

'Ibis attribute describes how children flows of this pro- 60

tocol are determined using states. See the State Definitions
section below for how these states are defined. 2.6.10 EX'IRACIPORT Offset Destination, Operand

Extracts a port number from the packet and then executes

65
operand.

25 CONDITIONS

Q>nditions are used with the OPTIONAL and SUMMA
RIZE attnbutes and may consist of the following:

2.6.11 CREATEREDIRECTEDFLOW, Operand
Creates a redirected flow and then executes operand.

EX 1018 Page 393

US 6,665,725 Bl
51

3. EXAMPLE PDL RULES

The following section contains several examples of PDL
Rule files.

3.1 Ethernet

The following is an example of the PDL for Ethernet:

s

52

-continued

ipData FIELD

ip

SYNTAX
ENCAP
DISPLAY..HINT

PROI'OCOL
SUMMARIZE
"$F,agmcn10ffsct I• 0"

BYTESTRIN0(0 .. 1500)
ipProtocol
"HaDump"

--------------------- 10

"lpFmgmenl ID=$1denlification Olhet-$Fragmenloffiiet''
·"Default":

MacAddress FIELD

elhet'l)rpc

etherData

othemet

SYNTAX
DISPLAY-H!Nf
LOOKUP
DESCR1l'I'l0N

F1ELD
SYNTAX
DISPLAY..fflNI'
LOOKUP
DESCRJPI'ION

BYTESI'RING (6)
.. 1.x:"·
MACADDRESS

FILE "ElhcrType.cl"

"Elbemot type field"
F1ELD
SYNTAX
ENCAP
DISPLAY-HINT
DESCRIPTION

BYI'ESI1UN0(4!U500)
elhor'I'ype

"HcxDump"

"Ethomot data"
PROfOCOL
DESCRIPTION

"Protocol format for an Etbemot fmmc"
REFERENCE "RFC 894"

::- { Macl)eot,..macAddreu, MacSm-macA<lmeu, ~
Data-otherData }

elbemet FLO\V
HEADER { U!NGI'fl-14 }
DLCIAYER{

SOURCE-MocSrc,
DESTIN.IITION-MacDeat,
TUNNEl.lNG,
PROIOCX>L

}
CHILDREN { DESTIN.IITION-Elbcr'I'ype,
Ll.C-CflECK,.Ilc }

32 IP Version 4

Here is an example of the PDL for the IP protocol:

1S

"IP Protocol-$Protocol"
DESCRIPTION

"Protocol lbrmat for tho Internet Protocol"
R.EfERENCE "RFC '191"

::- { Veision-ipVemi<>n, HeadcrLength..Jp&adorLength,
TypeOfScrvicc-ip'IypeOfServicc, Length•ipl.ength,
ldenlili.cation-Ulntl6, JpF1"8""'ipFlngs,
FmgmcntOffsct,.ipFragmcntOlfsct, TimeThLive-!nl8,
Protocol-ipProtorol, Checl<sum-BytcSb:2,
IpSro-ipAddrcu, IpDcst-ipAddreu, Optiona-ip<)ptions,

20 ip

Fragment..JpFmgmeot, Dat,,-ipData }
FLOW
HEADER { LENOTil•HuderLength, IN-WORDS}

25

NET-lAYER {
SOURCE-IpSrc,
DESTINATION-lpDost,
FRAG~ON=IPV~
TUNNELINO

}
CHILDREN { DESTINATION•Protocol }

ipfugData FlEU)

SYNTAX
U!NGTII

BYI'ESfRINO(l-1500)
"ipLenglh - ipHeadcd.cogth • 4''
"Hal)ump"

30 ipF11gmont
DISPLAY..HINT
GROUP
OI'l'IONAL

35

::• { Data-ipFragData }
ipOptionCodc FlEI.D

"$Fragmcnt0ffset I• O"

SYNrAX INT(B) { ipRR(Ox01}, ipTtmcatamp(Ox44),
ipLSRR(Ox83),
ipSSRR(Oz89) }

DESCRirnON
"IP option code"

FIEID
SYNTAX UNSIGNED INT(8)
DBSCRIP'IION

40 ipOptionl)ata FIE1.D
"Length of IP option"

ipOptiom

SYNTAX
ENCAP
DISPLAY-HINT

GROUP

BYfESTR.ING(0 •. 1500)
ipOptionCode

"He:d>ump"

U!NGTII "(,pHcadotLength • 4) - 20"

-------------------- 45 ::• { Code,.ip()ptionCode, Longlb-ip()ptionLcngth, Poilll:er,,,Ulll18,

"'IP address"
ipvcraion

FIELD
SYNTAX
DISPLAY-HINT
LOOKUP
DESCRIPilON

FIELD
SYNI'AX
DEFAUl.l'

INT(4)
"4''

ipHeaderl..ongtb F!ELD

ip'IypeOfServicc

ipLength

ipFlags

SYNTAX INT(4)
l'llllD
SYNTAX

FIELD

BITSTRING(8) { minCost(l),
!llURclinbility(2),
IIIJIXThruput(3),
minDc!ny(4) }

SYNil\X UNSIGNED INT(16)
F1ELD
SYN'D\X BITSTRIN0(3) { moreFrag;,(O),

dontFrag(l) }
IpFragmentOflset FIELD

SYNTAX INT(13)
ipProtocol F1EI.D

SYNTAX INT(8)
LOOKUP FILE "lpProtocol.cl"

Data..JpOptionData }

33TCP
50

Here is an example of the PDL for the TCP protocol:

55 tq,Port Fl'.ELD

60

65

SYNTAX UNSIONl!D INT(16)
LOOKUP FILE "TcpPort.cf"

tcpHeaderLen Fil!LD
SYNrAX INT(4)

tq,Flags FIELD
SYNTAX BITSTRIN0(12) { fiD(O), oyn(l), rot(2), pcb.(3),

ack(4), nrg(5) }
tcpData FIBLD

SYNrAX BYTESTRIN0(0 .. 1564)
LENGTH• ($ipLength- ($jpHeadcrLength•4)) -
($tcpHeadcrLen"4) "
ENCAP tcpport
DISPLAY-HINf "HexDump"

tcp PRorocOL

EX 1018 Page 394

US 6,665,725 Bl

SUMMARIZE
"Default"

53

-continued

-rcP ACK..$Ack WIN=SW"l!ldowSize"
DESCR!PTION

"Protocol format fur the 'I'r,wmission Control Protocol"
REFERENCE "RFC 793"

::• { Sn:Port,.tcpPort, DcstPort.tcpPort, ScqucnccNum=Uint32,
Ack=Ulnl32, Hcadcr.Length=tcpHcadcd.en, 'IcpFlap,=tcpFlap,
Wl!ldowSizc-UlnU 6, Chccbum=llylcSIJ'2,
UrgcntPointc.-Ulnt16, Options-tcp()ptions, Data=tcpData }

tcp FLOW
HEADER { LENGTH-HcadcrLength, IN-WORDS }
O)NNECTION {

}

IDENI'IFlER=ScquenccNum,
CONNECT-STAlrr="TcpFlaga:r,
CONNECT-COMPLErE="TcpFlaga:4",
DlSCONNECT-SfARr="TcpFlags:O'',
DlSCONNECT-COMl'I.ETE-"TcpFlaga:4"

PAYLOAD { INCLUDE-READER }
CllllDREN { DES'I1NATION-Dcstl'ort, SOURCE-SrcPort }

tq,OptionKind FIBID
SYNTAX UNSIGNED INT(8) { tcpOptEnd(O),
tcpNop(l),

tcpMSS(2), tcpW1ca.le(J), t,;pTunestamp(4)}
DESCRIPTION

"fype of TCP option"
t,;pOptionDaltFIELD

tq,Options

SYNTAX
ENCAP
FLAGS
DISPLAY-HINT
GROUP

BYTllSTRING(0 .. 1500)
tcpOplionKind
SAMELA1'ER
"HcxDump"

lENG'IH "($tcplkadcrLen • 4) • 20"
::= { Option=tcpOptionKind, OptionLengU..Ulnt8,

OptionData-tcpOptlonData }
t,;pMSS PROIOCOL
::- { MaxSegmentSizc..Ulntl 6 }

3.4 lITIP (With State)

Here is an example of the POL for the lITIP protocol:

httpl)ala FIElD
SYN'D\X BYTESTRING(l .. 1500)
LENGTH "($ipl.ength • ($iplleJdi,rLength • 4)) •

($tcpHcadcrl.en • 4) "
"'Tc:zt" DISPLAY-HINT

FLAGS NOLA.BEL
PROTOCOL
SUMMARlZE

hllp

"$httpData m(mnfHITlfHEADrrosrr:
"HITP $lµtpData"

"$http0.ta m([Dd]otcl'[S. Jcrvc.j"[U]ast
[Mm]odilied/" :

"IJITP $hl!pData"
"$httpData m/[Cc},nlent-r:

"IITil' $bttpDal:a'"
$httpData m(<IITML:,/" :

"HITP lIITML documcntJ·
$http Data m/ GJF I" :

"IJITP [GIF imagcJ'
"Default" :

"IJITP [Data :r·
DESCRIPTION

"*Protocol format fot Hrl"P~"
::= { Data=hllpData }
http Fl.OW
HEADER { IENGTII-0 }
CONNF.CTION { INHl!RITED }
PAYLOAD { INCLUDE-HEADER, DAJ'A=Data, LENG'IH=256 }
Sf.ATES

"SO; CHECKCUNNECT, GOTO Sl
D!!FAUI.:r NEXT SO

s

10

15

20

25

30

35

"°

45

50

55

60

65

sybucWeboql

sybucldbc

aybuenla

pointcut

baci:web

mime

. SO: MAICH
'applicalion'

4audio'

'imago'

·-·
'video'

'i:-world'

54

-continued

Sl: WAIT 2, GOTO S2, NEXT Sl
DEFAUI.:r NEXT SO

S2: Mlil'CH
'\n\!\n'
'\n\11'
•posr /1.ds?'

'.hta HITP/1.0'

'jdbc:sybuc:Tds'

'PCN-Tbe Poin'

't:BW-C'

900 0 0 2SS 0, NEXI' S3
900 0 0 255 0, NEXI' S3
so O O 1271,

CHILD 1ybucWebsql
50401271,

CHILD 1ybucJdbc
50401271,

CHILD aybucTds
500 4 1255 0,
CHILD poinlcllJst
100 4 1255 0,
CHILD bac:ltweb

DEFAUI.:r NEXT SJ
s3:MATCH

'\11\1\n'
'\11\11'
'CoDICJlt-'fypc:'

'PCN-Tbe Poin'

't: BW-C-'

50 0 0 0 0, NEXTS3
50 0 0 0 0, NEXT S3

800 0 0 2SS 0,
CHllDmime
500 41255 0,
CHILDpoinlclllst
100 412550,
CHILD backweb

DEFAUI.:r NEXI' SO"
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
FLOW
STATE-BASED
ST/JES

900 0 0 1 o,
ClilLD mimcApplication
9000 0 10,
ClilLD mimeAudio

5000 10,
ClilLD mimclmage

50 0 0 1 0,
CHll.J) mimc'Il:,:a:t

5000 10,
ClilLD mimcVulco
500 41255 0,
CHD.D mimeXwodd

Dl!FAUI.T GOTO SO"
mimApplication FLOW

STME-BASED
Fl.OW
SI'ATIMIASED
STKI'E!S
·so: MA:ICH

'basic' 100 0 0 1 0,
CIIllD pdBuicAudio

'midi' 100 0 0 1 0,
CHILD pdMidi

'mpeg" 100 0 0 1 0,
Oll1D pdMpcg2Audio

"vnd.nt-n,alaudio' 100 0 0 1 O,
Oll1D pdRcalAndio

'wav' 100 O O 1 O,
CHILDpdWav

'x-aitf' 100 O O 1 O,
Cl:llLD pdAif£

':<·midi' 100 0 0 1 o,
OIILD pdMidi

'i:-mpeg' 100 0 0 1 0,
CIIllD pdMpcg2Audio

•x-mpgurl' 100 0 0 1 0,
CHILD pdMpcg3Audio

EX 1018 Page 395

1

mimelmage

mimeVidco

mimeXworld

pdMidi

pdMpcgZAudio

pdMpeg.3Alldio

pdReal.Audio

pdWav

55

-contioucd

'x-pn-realmdio•

'I-'WIV'

DEFAUIT OOTO SO"
FLOW
Sflu'E-BASED
FLOW
Sfl«'E-BASIID
FLOW
STl«'E-BASED
FLOW
soot!-BASED

FLOW
SOOl!-BASED

FLOW
STl«'E-BASED

FLOW
S'OO'B-BASED

FLOW
STATE-BASED

FLOW
Sflu'E-BASED

FLOW
sr.ID!-BASED

FLOW
STl«'E-BASED

US 6,665,725 Bl

1000010,
CHilD pdRcaJAudio
100 0 0 l 0,
CHilD pdWav

56
devices, including network appliances such as telephones,
"Internet" radios, pagers, and so forth. The term computer as
used herein encompasses all such devices and a computer
network as used herein includes networks of such comput-

5 en;.

Although the present invention has been descnbed in
terms of the presently preferred embodiments, it is to be
unden;tood that the disclosure is not to be interpreted as

10 limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true spirit and scope of the

15
present invention.

APPENDIX: SOME PDL FILES

Toe following pages include some PDL files as examples.

20
Included herein are the PDL contents of the following files.
A reference to PDL is a1so included herein. Note that any
contents on any line following two hyphen(-) are ignored
by the compiler. That is, they are comments.

-------------------- 25

common.pell;

flows.pdl;

virtual.pdl;
ethemet.pdl;

Embodiments of the present invention aulomatically gen
erate flow signatun:s with the necessary recognition patterns
and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and a1so gen- 30
crating state transitions to search for. Applications and
prot.ol;Ols, at any level, are recognized through state analysis

IEEE8032.pdl and IBEF.8033.pdl (cthertype files);
IP.pdl;

TCP.pdl and UDP.pdl;
RPC.pdl; of sequences of packets.

Note that one in the art will unden;tand that computer
networks are used to connect many different types of

NFS.pdl; and
HITP.pdl.

- Common.pd] - O>mmon protocol defl.nitiollS

Deocription:
Thia file a,ntaim, aome field deliniru,na for commonly used fields
in various network protocoli.

- Copyright;
Copyright (c) 1996-1999 Apptitudc, Inc.

(formerly 'Il:chnically Elitc, Inc.)
All rights reserved.

RCS:
$Id: O>mmon.pdl,v 1.7 1999/04{13 15:47:56 .:tcip Eap $

lnt4 FlEU)

SYNTAX INT(4)
lnt8 FIELD

SYNTAX INT(8)
!nt16 FIELD

SYNTAX INT(16)
lnt24 FIELD

SYNTAX INT(24)
lnt32 FIELD

SYND\X INT(32)
!nt64 FIELD

SYNTAX INT(64)
Uint8 FIELD

SYND\X UNSIGNED INT(8)
Ulnt16 FJELl)

SYND\X UNSIGNED INT(l 6)
Ulnt24 FIELD

SYNTAX UNSIGNED INT(24)
Ulnt32 FIELD

EX 1018 Page 396

57

-continued

SYNTAX UNSIGNED INT(32)
liln!64 FIELD

SYNTAX UNSIGNED INT(64)
Slnt16 FIELD

SYNTAX INT(16)
FLAGS SWAPPED

St:llnt16 FlEI.D
SYNTAX UNSIGNED INT(l6)
FLAGS SWAPPED

Slnt32 FIElD
SYNTAX INT(32)
F'.LAOS SWAPPED

ByteStrl FlEI.D
SYNTAX BYI'ESTRING(l)

ByteStr2 F1ELD
SYNTAX BY'IESI"RING(2)

ByteStr4 F1ELD
SYNTAX BYIESfRJNG(4)

Padl F1ELD
SYNTAX BYIBSfRJNG(!)
FLAGS NOSHOW

Fad2 FlEU)

SYNTAX BYIB5TRING(2)
FLAGS NOSHOW

Fad3 FIELD
SYNTAX BYIESTRING(3)
FLAGS NOSHOW

Fad4 FlElD
SYNTAX BYl1lSfRING(4)
FLAGS NOSHOW

Pad5 FIELD
SYNTAX BYIESTRING(S)
FLA.OS NOSHOW

mac:i\ddn:s1 FIElD
SYNTAX BYI'ESrRING(6)
DISPLAY-HINI' "l:c"'
LOOKUP MAC.ADDRESS
Dl'lSCRIYI10N

"MAC layer physical address"
ipAddresa FIElJ)

SYNTAX BYIBS'I'RING(•)
DISPLAY-HINT "ld.n
LOOKUP HOSI'NAME
DESCRIP'llON

"IP a..ldres£''
ipv6Addn,a FIELD

SYNTAX BY11lS11UNG(l6)
DISPLAY-HINI' "ld"
DESCRIP'I10N

"IPV6 addn,u"

Flows.pd! - a.,..,ra1. FLOW definiliOW1

Description:
Thia file contains gClll'ral Dow dclinilions.

Copyright:
Copyright (c) 1998-1999 Applitude, me.

(fomcrly Technically Elite, Inc.)
All rights rved.

RCS:
$Id: Flo.,..pdl,v 1.12 1999,'04/l3 15:47:57 &ldp Exp$

chaoanet FLOW
sparmingftec FLOW
.,,.. FLOW
omcleTNS FLOW

PAYLOAD { INCLUDE-HEADER, LENGlH-256 }
cis<:t>Ot:ll FLOW

- IP Protocols

igmp FLOW
GOP FLOW
ST FLOW
UCL FLOW

US 6,665,725 Bl
58

EX 1018 Page 397

1
l

:gp FLOW
,gp FLOW
BBN-RCC-MON FLOW
NVP2 FLOW
PUP FLOW
ARGUS FLOW
EMCON FLOW
XNET FLOW
MUX FLOW
DCN-MEAS FLOW
HMP FLOW
PRM FLOW
'IRUNKJ. FLOW
'IRUNK2 FLOW
LEAFl FLOW
LEAF2 FLOW
RDP FLOW
IKI'P FLOW
ISO-TP4 FLOW
NEI'BU' FLOW
MFE-NSP FLOW
MERIT-IN!' FLOW
SEP FLOW
PC3 FLOW
IDPR FLOW
Xl'P FLOW
DDP FLOW
IDPR-CMil' FLOW
TPPlus FLOW
IL FLOW
SIP FLOW
SDRP FLOW
SIP-SR FLOW
SIP-PRAG FLOW
IDRP FLOW
RSVP FLOW
MHRP FLOW
BNA FLOW
SIPP-ESP FLOW
SIPP-AH FLOW
INLSP FLOW
SWIPE FLOW
NHRP FLOW
CFTP FLOW
SAT-HXPAK FLOW
KRYPTOLAN FLOW
RVD FLOW
IPPC FLOW
SAT-MON FLOW
VISA FLOW
IPCV FLOW
CPNX FLOW
CPHB FLOW
WSN FLOW
PVP FLOW
BR-SAT-MON FLOW
SUN-ND FLOW
WB-MON FLOW
WB-l!XPAK FLOW
ISO-IP FLOW
VMTP FLOW
SECURE-VMTP FLOW
TI1' FLOW
NSJ<NET-IGP FLOW
DGP FLOW
TCF FLOW
IGRP FLOW
OSPFIGP FLOW
Sprile-RPC FLOW
lARP FLOW
MTP FLOW
AX25 FLOW
IPIP FLOW
MICP FLOW
SCC-SP FLOW
ETHERlP FLOW
encap FLOW
GMTI' FLOW

US 6,665,725 Bl
59 60

-continued

EX 1018 Page 398

l

UDP Protocols
compIOS&net FLOW
rje FLOW
echo FLOW
discard FLOW
1yll.at FLOW
daytime FLOW
qotd FLOW
map FLOW
chargcn FLOW
bilf FLOW
who FLOW
sy1log FLOW
loadav FLOW
notify FLOW
acuwnL.dbd FLOW
acmainLtramd FLOW
pup,up FLOW
applix FLOW
ock FLOW

- Ta' Protooo1s

tcpmuI FLOW
telnet FLOW

61

-o:>atinued

CONNECTION { lNHERITED }
privMail FLOW
IISW•fe FLOW
img•iq, FLOW
img-aulh FLOW
dip FLOW
privPrinl FLOW
lime FLOW
rap Fl.OW
rip FLOW
graphics FLOW
JWDeSC<VCr FLOW
nicnamc FLOW
mpm-l!ag.< Fl.OW
mpm FLOW
mpm-<llld FLOW
ni..flp FLOW
audild FLOW
fillgcr FLOW
re-mall-ck FLOW
la-main! FLOW
XD1-lime FI.OW
xns-<:h FLOW
iai-gl FLOW
Xlll-&uth FLOW
priv'I'crm FI.OW
na-mail FLOW
privFile FLOW
ni-mail FLOW
ICU FLOW
covil FLOW
tac:acs-d< FLOW
aqlllcl FLOW
gopher FLOW
nctrjs-1 FLOW
nctrjs-2 FI.OW
nctrjs-3 FLOW
nctrjs-4 FLOW
privDial FLOW
<kos FLOW
privRJE FLOW
vcttcp FLOW
hosta2-na FLOW
ncr FLOW
ctf FLOW
mit-ml-dcv FLOW
mfcobol FLOW
kei:beros FLOW
1u-mi1-tg FLOW
dnsix FLOW
mit-dov FLOW
npp FLOW
d<:p FLOW
objc:all FLOW

US 6,665,725 Bl
62

EX 1018 Page 399

wpdup FLOW
dine FLOW
swift-rvf FLOW
tacnew11 FLOW
motagr.un FLOW
ncwaa:t FLOW
hmtxwnc FLOW
iso-tsap FLOW
gppitnp FLOW
csnet-ns FLOW
threeCom-tsmUJt FLOW
rtelnet FLOW
magas FLOW
mcidu FLOW
auth FLOW
audioocws FLOW
aftp FLOW
anw,olify FLOW
UllCJ>1)&th FLOW
"'!lierv FLOW
cfdptkt FLOW
erpc FLOW
omakynet FLOW
nip FLOW
anoatiader FLOW
locus-map FLOW
unilary FLOW
locua-<:an FLOW
p-xli<:en FLOW
pwdgen FLOW
dsco-frui FLOW
d:Jco..tna FLOW
dsco-sys FLOW
sta11rv FLOW
ingrea--net FLOW
loc-erv FLOW
pmfile FLOW
t:mfis.dala FLOW
emfis..cntl FLOW
bl-idm FLOW
imap2 FLOW
nows FLOW
uuc FLOW
iao-tpO FLOW
iso-ip FLOW
cronua FLOW
aed-512 FLOW
"'!I-net FLOW
hcl!ll! FLOW
bftp FLOW
agmp FLOW
nctsc;,rod FLOW
nctsc-<lcv FLOW
sqwv FLOW
knct-cmp FLOW
pcmail-1rv FLOW
ms-routing FLOW
sgmp-trapa FLOW
cmip-mAII FLOW
cmip-agcnt FLOW
s;m.,courier FLOW
... .,,1 FLOW
namp FLOW
n,vd FLOW
send FLOW
print-orv FLOW
multiplex FLOW
cl-1 FLOW
xypleX-mUJt FLOW
mailq FLOW
vmnct FLOW
gcnn,d-mUJt FLOW
xdmcp FLOW
nelli£t<:p FLOW
bgp FLOW
ris FLOW
unify FLOW
audit FLOW
ocbinder FLOW

US 6,665,725 Bl
63 64

-continued

EX 1018 Page 400

l
l
i

°"""rvcr FLOW
remoto-l:is FLOW
las FLOW
aci FLOW
mump! FLOW
qft FLOW
gacp FLOW
prospcro FLOW
0111-nms FLOW
~p FLOW
uc FLOW
dn6-n!m-aud FLOW
dn6-£llllll-rcd FLOW
dl4 FLOW
dt.-mon FLOW
smux FLOW
sn: FLOW
at-limp FLOW
at-nbp FLOW
at-3 FLOW
at-echo FLOW
at-5 FLOW
at-zis FLOW
at-7 FLOW
at-8 FLOW
tam FLOW
z39-50 FLOW
anct FLOW
vmpwscs FLOW
soft.pc FLOW
atls FLOW
dbuo FLOW
mpp FLOW
iwp• FLOW
imap3 FLOW
fin..spx: FLOW
?Sh-£px FLOW
ale FLOW
aur-mcu FLOW
lmJc FLOW
dap3270 FLOW
pdap FLOW
pawserv FLOW
DCIV FLOW
&tscrv FLOW
c:si-agwp FLOW
dcarQll/le FLOW
lllilllerv FWW
legcnt-l FLOW
legcnt-2 FLOW
hassle FLOW
nip FLOW
tnET0S FLOW
dsE'IOS FLOW
is99c FLOW
is99s FLOW
hp-collector FLOW
hp-managed-DOde FLOW
hp-alarm-mgr FLOW
ams FLOW
ibm-app FLOW
ua FLOW
awp FLOW
unidota-ldm FLOW
ldap FLOW
uis FLOW
1ynotics-relay FLOW
1ynotics-brok<:r FLOW
dis FLOW
embl-ndt FLOW
netcp FLOW
nctwm>-ip FLOW
mptn FLOW
kryptolan FLOW
worl<-sol FLOW
ups FLOW
genie FLOW
dccap FLOW
need FLOW

US 6,665,725 Bl
65 66

-continued

EX 1018 Page 401

l
i

US 6,665,725 Bl
67 68

-continued

ncld FLOW
im.,p FLOW
timbuktu FLOW
prm-1m FLOW
prm-nm FLOW
dccladcbug FLOW
rmt FLOW
1ynoptica-trap FLOW
smap FLOW
infoseck FLOW
bnct FLOW
1ilvcrplattcr FLOW
onmux FLOW
hypcr-g FLOW
arieU FLOW
smptc FLOW
aricl2 FLOW
aricl3 FLOW
opc-job-1tart FLOW
opc-job-tllck FLOW
icad-el FLOW
SDlllibldp FLOW
svrloc FLOW
ocs_cmu FLOW
ocs_amu FLOW
ntmpsd FLOW
utmpcd FLOW
iasd FLOW
nnsp FLOW
mobilcip-agcnt FLOW
mobilip-mn FLOW
dna-cml FLOW
CODllCDl FLOW
da[gw FLOW
w..p FLOW
sgcp FLOW
dc:cvms-ayamgt FLOW
cvc_hootd FLOW
https FLOW

CONNECl10N { INHERTIBD }
mpp FLOW
mictoaofi-da FLOW
ddm-rdb FLOW
ddm-<lfm FLOW
ddm-bytc FLOW
u-acrvOlllllp FLOW
tacrvcr FLOW
exec FLOW

CONNECI10N { !NHERI1ED }
login FLOW

CONNECI10N { INHERTIBD }
cmd FLOW

CONNECI10N { INHERTIBD }
printer FLOW

CONNECI10N { !NHERTIBD }
talk FLOW

CONNECI10N { INHERfllID }
ntalk FLOW

CONNECl10N { !NHERTIBD }
utimc FLOW
c£s FLOW
timed FLOW
tempo FLOW
cooricr FLOW
conference FLOW
nctru:ws FLOW
nctwall FLOW
apcrtu.s-ldp FLOW
uucp FLOW
uucp-rlogin FLOW
ldogin FLOW
k.shcll FLOW
ncw-rwho FLOW
dsf FLOW
rcmotcfs FLOW
rmonilor FLOW
monitor FLOW
chshcll FLOW
p9fs FLOW

EX 1018 Page 402

wboami
meter
ipcserver
wm
nq,
,ift-uft
npmp-tr2p
npmp-local
npmp-gui
gillad
doom
mdqs
clcsd

FLOW
FLOW

FLOW
FLOW
FLOW

FLOW
FLOW
FLOW
FLOW

FLOW
FLOW
FLOW
FLOW

enlru&lmanager FLOW
netvicwdm.1 FLOW
nctvicwdm2 FLOW
nctvicwdm3 FLOW
netgw FLOW
nebt:l! FLOW
t!cxlm FLOW
~jitau-dev FLOW
rui-cm FLOW
ktmcroa-tdm FLOW
rfilc FLOW
pump FLOW
qm FLOW
nh FLOW
tell FLOW
nlogin FLOW
con FLOW
1111 FLOW
w: FLOW
quollld FLOW
cycleaerv FLOW
omserv FLOW
web.tee FLOW
phonebook FLOW
vid FLOW
cadloclt PLOW
rtip FLOW
cycleaerv2 FLOW
mbmit FLOW
rpasawd FLOW
entomb FLOW
wpages FLOW
wpg,, FLOW
concert FLOW
mdbs_daemon FLOW
device FLOW
:moelic FLOW
lllllitrd FLOW
busboy FLOW
gm:on FLOW
puprouter FLOW
sods FLOW

69

-continued

Vutual.pdl - Vutual Layer definition

Description:

US 6,665,725 Bl

Thia file contains the definition for the VutuaW...e layer used
by the embodimenL

Copyrighl:
Copyright (c) 1998-1999 Apptitude,

(formerly Technically Elile, Inc.)
All right,! reaervcd.

RCS:
$Id: Vutual.pdl,v l.13 1999/04/13 15:48:03 skip Exp$

Tbl, includea two thing,,: the flow signature (called FLOWKEY) that the
ayst.em that ii going to UliC.

note that not all elemen!S are in the HASH. Reason ii that theoe non-HASHED
elementa may be varied without tbe HASH changing, which allowa the system
to look up multiple buckets wuh • 1ingle HASH. That is, tbe MeyMatchFlag,
StateStatus Flag and Mu.lipac:keUD may be varied.

FLOWKEY{

70

EX 1018 Page 403

US 6,665,725 Bl
71

-continued

KcyMatchFlags, - to tell the system which of the in-HASH elements have to
- match for the this particular flow record.

- Flows for which complete signatures may not yet have
- been gene11.ted may then be atored in the 1y1tem

StateStatuaFlags,
Groupldl
Groupld2
DLCPtotocol

-EthemetV2
NetworkProtocol
Tunnc!Protocol
Tunne!Transport
TransportProtocol
Application Protocol
DLCAddn:sacs(B)
NetwotkAddrcssca(l 6)
Tunne!Addrcsscs(l 6)
Conncctionlds
MultiPacketld

IN-HASH, - llitr defined
IN-HASH, - llier defined
IN-HASH, , - data link protocol - lowest level w,:

- ev,tluate. It is the type for the

IN-HASH,
IN-HASH,
IN-HASH,
IN-HASH,
IN-HASH,
IN-HASH,
IN-HASH,
IN-HASH,
IN-HASH,

-JP,etc.
- IP over IPx, etc.

-- lowest level addrcss

- used for fmgmcntaion pwpooea

now define all of the children. In this CDMple, only one virtual
child - EthcmeL

virtualChildrcn FIEID
SYNTI\X INT(•) { ethemet(l) }

now define the base for the children. In this ca<e, it is the amc as
for the overall system. There may be multipt ...

Virtuallluc PROfoaJL
::= { VlrlualChildren=Virtua!Childrcn }

- The following is the header that every packet has to have and
that is placed into the 1ystem by the pacla:t acquiaition aystem..

Virtuallluc FLOW
HEADER { LENG1H=B }
CEilWREN { DESllNJXllON= Virtual Children } - thia will be

Ethernet for this example.

the Vrrtua!BAsc will be 01 for these packets.

EtherncLpdl - Ethernet frame definition

Dcaaiption:
Thia file contains the definition for the Ethernet fiame. In this

PDL file, the decision on EthcrType va. IEEE ia made. If this is
EtherTypc, the aelcction is made from thia file. It would be pouible
to move the EthcrTypc oclection to another file, if that would uail:t
in the modularity.

Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.

(formerly 11:chnically Elite, Inc.)
All righla reserved.

RCS:
$Id: Ethcmct.pdl,v 1.13 1999/01/26 15:15:57 skip Exp$

Enumerated type of• 16 bit integer that contains all of the
poosible values of inter..t in the etherTypc field of an
Ethernet V2 packcL

etherTypc
INT(16) { =(0i0600), ip(OiOBOO),
chaosnet(OiOB04), arp(Oi0806),
vincs(Oxbad),
vincsLoop(OxObae), vincsLoop(O.SOc4),
vincsEcho(Oxbal), vine5Echo(Ox80c5),
netbios(Ox3c00, netbios(Ox3c01),
netbios(Ox3c02), nethioo(Ox3c03),
nethios(Ox3c04), netbioo(Ox3c05),
netbioa(Ox3c06), nethios(Ox3c07)
nethios(Ox3c08), nethioo(Ox3c09)
netbios(Ox3c0a), netbioa(Ox3c0b),
nctbios(Ox3c0c), netbios(Ox3cOd)
dcc(Ox6000), mop(Ox6001), mop2(0x6002)
drp(Ox6003), lat(Ox6004), dccDiag(Ox6005),

72

EX 1018 Page 404

l
!

US 6,665,725 Bl
73

-continued

DISPLAY-HINT
lOOKUI'
DESCRIPTION

lavc(Dx6007), mp(Oz803S), applclltlk{lh809b).
•na(Ox80d5), amp(Ox80f3), ipx{lk8137)
smnp(Ox814c), ipv6(Dx86dd), loopback(Clx9000) }
.. h:::"

ffi.ll "Ethel'fypc.cf'

"Ethernet type field"

The unformatted data licld in and Ethernet V2 type frame

ctherO..ta F[EIJ)

SYNTAX BYTESTRING(46 •. 1500)
EN CAP ethetfype
DISPLAY-HINT "Hcrllump"
DESCRD'TION

"Ethernet data"

The layout l1lld stnlcll!:ft: of llll Ethernet V2 type frome with
- the address ond protocol fields in the correct offi!cl poail:ion
cthemet PRorocoL

DESCRIPTION
"Protocol foxmat for llll Ethernet frame"

REFERENCE "RFC 894"
::- { ~ ~- Ethcl'fypc-ctherl'ypc,

Da!a..:therData)

The e!ement,i from this Ethomct frame us"'1 lo build • flow by
lo classify and tncli:: the tnllic. Notice that the total length
of the huder for thia tyoe of pacb,t is hod and at 14 bytes or
octets in length. The apcci,,l field, lLC.CBECK, is 5Pccilic to
Ethcmet frames for the decoding of the bue Ethernet type value.
If i.t is NOT U,C, the protocol field in the flow is oet lo the

- l!theifypc value decoded from tho packet.

cthemct FLOW
HEADBR { Ll!NG"lH-14 }
DLCLAYER{

SOURCB-MlK:Sn:,
DESI'lNAllON-MacDc,;~
TUNNEllNO,
PRcmx:oL

IEEE8022.pdl • IEEE 802.2 name dellniliDna

Dctcriplion:
This file contains the definition for tho IEEE 802.2 link Layer
proloco!J including the SNAP (Sub-networkA=u Protocol).

Copyright:
Copyright (c) 1994-1998 Apptitudc, Inc.

(fonnmly 'll:chnically Elite, Inc.)
All righ.ls reserved.

RCS:
$Id: IEEE8022.pdi,v i.18 1999/01/26 15:15:58 skip Exp$

IEEE 802.2 LLC

llcSap FIELD
SYNTAX INT(16) { ipx(OxFFFF), ip~EO). isoNet(OxFEFE),

netbios(OxFORl), vonap(OXAAAA). ip(010606),
vincs(DIBCBC), Xlll!(Oil!OSO), optnningTrcc(Ox4242),
an11(0xOc:Oc), sm(Oidl808), sna(010404) }

DISPLAY-HINT "ix:"
DESCRIPTION

"Servi.cc Access Point"
llcO>ntrol F1ELD

- Tbil ii • special field. When the decoder cnooulllcra this field, it
invokes the bard-mdcd lLC decoder to decode the "'st of the packet.
Tbil ii necessary because U.C decoding require,, the ability lo

- bandh, forward referCllccs which the current POL format doc& not
support at this time.

SYND\X UNSIGNED INT(8)
DESCRimON

"Control field"

74

EX 1018 Page 405

1
I

US 6,665,725 Bl
75

-continued

11cPduType FlELD
SYN'D\X BITSTRING(2) { 11clnformation(O), llcSupcrviaory(l),

11cl)ata
11clnformation(2), llcUnnumbercrd(3) }
FlELD

SYN'D\X
ENCAP
FLAGS

BYI'ESfRING(38 .. 1492)
11cPduType
SAMEI.AYER

DISPI.AY-IIlNI' "Hcrllump"
11c PROfOCOL

SUMMARIZE
"$11cPduType - 11cUnnumbercd" :

"LLC ($SAP) $Modifici"
"$11cPduType - 11cSupcrvuory" :

"LLC ($SAP) $Function N(R)-$NR"
"$11cPduType = Oj2" :

"LLC ($SAP) N(R)-$NR N(S)-$NS"
"Default''

"LLC ($SAP) $11cPdu'Iypc"
DFSCRIPTION

"IEEE 802.2 I.LC fnunc format''
::- { SAP-11cSap, Control-llcControl, Data-11c:Oata }
llc FLOW

HEADER { LENGIB-3 }
DLC-IAYER { PRCJfOCOL }
CIIlIDREN { DESllNM'ION..SAP }

llcUnnumbcrcdData FIEW
SYN'D\X BYI'ESfRING{0-1500)
ENCAP 11cSap
DISPI.AY-IIlNI' "HaDurnp"

11cUnnwnbcrcd PROTOCOL
SUMMARIZE

"Default'':
"LLC ($SAP) $Modifici"

::= { Data=llcUnnumbcrcdData }
llcSupcrviaoryData FIEW

SYNU.X BYfESTRING(0 .. 1500)
DISPI.AY-IIlNI' "HaDurnp"

llcSupcrvisory PROfOCOL
SUMMARIZE

"Default":
"LLC ($SAP) $Function N(R)-$NR"

::- { Dalll-llcSupcrvisorylJllta }
llclnfounationData FlELD

SYN'D\X BYfESTRING(O_lSOO)
ENCAP 11cSap
DISPI.AY-IIlNI' "HaDurnp"

llclnformation PROfOCOL
SUMMARIZE

"Default":
"LLC ($SAP) N(R)..$NR N(S)=$NS"

::- { Data-llclnformationData }

- SNAP

snapOrgCodc FIEW
SYND\X

DFSCRIPTION

BYfESTRING{3) { snap("00:00:0CT'}, ciscoOtn("00:00:0C"),
applcOUI("OB:00:07") }

""Protocol ID or Organir.ational Code"
vsnapData FIELD

SYN'D\X
ENCAP
FLAGS

BYI'ESTRING(46 .. 1500)
snapOrgCodc
SAMEI.AYER

DISPI.AY-IIlNI' "HcxDump"
DFSCRIPTION

"SNAP I.LC dsta"
vsnop PROfOCOL

DFSCRIPTION
"SNAP LLC Frame"

::- { OrgCodc-snapOrgCodc, Data-vanapData }
vsnap

Sllllp'fypc

FLOW
HEADER { LENGIB-3 }
DLC-1.AYER { PROfOCOL}
CHIWREN { DESTINM'JON-<>rgCodc }

FlELD
SYNTAX INf(16) { :ms(Ox0600), ip(Oi0800), arp(OiOB06)

vines (Omad),
mop(Ox6001), mop2(0x6002), drp(Ox6003),
lat(Ox6004), dccDias(Ox6005), lavc(Ox6007)

76

EX 1018 Page 406

l

US 6,665,725 Bl
77

-continued

rarp(Oi:8035), appleTalk(Ox809B), 1na(OJ:80d5),
urp(!lxl!OF3), ipx(Oi:8137), anmp(Ox814c), ipv6(0xl!6dd) }

DISPLAY-mNT "lx:"
LOOKUP FllE "Ethe{fypc.cf'
DESCRIPTION

"SNAP type field"
aru,pData FIELD

snap

SYNTAX
ENCAP
DISPLAY-HINT
DESCRIPTION

"SNAP data"
PRaIDCOL
SUMMARIZE

BYTESTIUNG(46.1500)
soap'fype
"Elerllw.np"

"$0rgCode - 00:00:00"
"SNAP 1),pe,4SnapType"

"Default''
"VSNAP Orgoo$0rgCode 'l)'pca$SnapTypc''

DESCRIPTION
"SNAP Frame"

::-{ Snap~. Da!A-,apl)ala }
sru,p FLOW

HEADER { LENGTH•2 }
DlC·LAYl!R { PRorocoL }
CHIIDREN { DESI'IN,IDON-SnapType }

- IEEEl023.pdl • IEEE ro2.3 frame definitions
- Description:

Thill file contains tho definition for the IEEE 802.3 (Ethernet)
protocols.

- Copyright:
Copyright (c) 1994-1998 Apptilude, Inc.

(formerly Thchnially Elite, Ille.)
All right.a reserved.

- RCS:
$Id: IEEE8023.pdl,v 1.71999/01/26 15:15:58 skip exp$

IEEE 802.3

iece8023Lcngth FIELD
SYND\X UNSIGNED 1Nf(16)

iece8023Data FIELD
SYNTAX BYTESrRING(38.1492)
ENCAP ~11c
IBNGTH "$icec8023Lcngth"
DISPLAY.HINT "Hei:Dump"

iece8023 PRaroa:>L
DESCRIPTION

"IEEE 802.3 {Elhemct) frame"
REFERENCE "RFC 1042"

::= { MacDc.t,.m.acAddrcsa, Mac:Sro-macAddres•, Lengtl,,.i,:ec8023Lcngt.h,
Data-iec:e8023Data }

- IP.pd! • lnmmet Protocol (IP) definitions

Description:
Thia file contains the packet definitions for the IDtemet
Protocol. Thc.sc elements arc all of the fields, templ•ta ond

processes required to rccogoire, decode and classify IP dntagrams
found within pockets.

- Copyright,
Copyright (c) 1994-1998 Apptitnde, iDc.

(formerly Technically Elite, Inc.)
All rights reserved.

- RCS:
$Id: lP.pdl,v 1.141999/01/26 15:15:58 &kip Exp$

- The following are the fields that make up an IP datagram.
- Some of these fields are uocd to recognize: datagram clements, build

78

EX 1018 Page 407

l

US 6,665,725 Bl
79

-continued

flow signatwes and detenn.ine the nen layer in the decode process.

ip Version FIELD
SYN'D\X INI"(4)
DEFAUIT "4"

ipHeaderLength FIELD
SYN'D\X INI"(4)

ipTypeO!Servicc FIELD
SYNTAXBITSTRING(B) { minCost(l), mnReliability(2),

maxThruput(3), minDelay(4) }
ipLength F1ElD

SYN'D\X UNSIGNED INT(16)

Thia field will tell us if we need to do special processing to support
the payload of the datagr.un aisling in multiple packets.

ipAag., FTElD
SYNTAX BITSTR1NG(3) { mon:Fral!l'(O), dontFrag(l) }

ipFragmentOffset FIELD
SYN'D\X INI"(13)

- Thia field ia 111ed to detenn.ine the children or next layer of the
datagram.

ipProtocol FIELD
SYNTAX INI"(8)
LOOKUP FILE "lpProtocolcf"

ipData FIELD
SYN'D\X BYTESfRING(0 .. 1500)
ENCAP ipProtocol
DISPIAY-HINT "HexDump"

Detailed pack.et layout for the IP datagram. Thia includes all fielda
and formal All olucta arc n:lalive to the beginning of the header.

ip PROfOCOL
SUMMARIZE

"$Fragment0fnct I= O":
"IPFragment ID=$Identilication Offiiet,,,$Fragmcnt.Offiict"

"Default":
"IP Protocol-$Protocol"

DESCRI17110N
"Protocol format for the Interact Protocol"

REFERENCE "RFC 791"
::- { \lmion-ipVemion, HeaderLength-ipHeaderLength,

TypeOfServi<:e-ipTypeOfService, Length-ipLength,
ldentification-UlnU6, IpF!aga-ipFlag.,,
FragmentOfr.et,.ipFmgmentO!liet, T1II1eT0Live-Int8,
Protocol-ipProtocol, Cbec1awn-BytcStr2,
lpSro-ipAddreu, IpDeat-ipAddn:&1, Option&-ipOptiona,
Fmgment-ipFragmcnt. Data-ipO.ta }

ip

Thia ia the description of the aignalure elements n:quired to build • flow
tha1 include& the IP network layer protocol Notice that the flow builds on
the !owe, layora. Only the fields required to complete IP an: included.
Thia flow requires the ""PPort of the fmgmentation engine u well aa the
potential of having a tunnel The child field ia found from the IP
protocol field

FLOW
HEADER { IENGTil=HeadcrLength, IN-WORDS }
NEI'-IAYER {

SOURCE-lpSrc,
DESTINATION=lpDcst,
FRAGMENTIJION-IPV4,
1UNNELING

}
ClilLDREN { DESilNATION=Protocol }

ipFragDatn FIELD

ipFragmenl

SYNTAX
IBNGTII
DISPIAY-HINT

BYTESfRING(l .. 1500)
"$ipLength - $ipHeaderLength • 4"
"HcxI>wnp"

"$Fragment01fsct !- Q"'

Group
OPTIONAL

::- { Data=ipFragData }
ipOptionCodc FIELD

SYNTAXINT(B) { ipRR(Ox07), ipTunc•tamp(Ox44),
ipLSRR(Ox83), ipSSRR(Ox89) }

DESCRIPTION
"IP option code"

80

EX 1018 Page 408

l

US 6,665,725 Bl
81

-<::ontinued

ipOptionLength FIEU)

SYN'D\X UNSIGNED 1Nf(8)
DESCRIPTION

"Length of IP option"
ipOptionData F1ELD

BYfESTIUNG(0 .. 1500)
ipOptionCode
"HexDump"

ipOptions

SYNTAX
ENCAP
DISPlAY-HINT
GROUP

::= {
LENG1H "($ipHcaderl..ength • 4) - 2CT'

Cooe=ipOptionCodc, l..ength=ipOptionLength, Pointer-=lilnl8,
Dat ... ipOptionData }

TCP.pd! - Transmission Conllol Protocol (TCP) definitions
Description:

Thia file contains the packet definitions for the Transmission
Control Protocol This protocol is a transport acrvicc for

the IP protocol. In addition to extracting the protocol information
the TCP protocol assist,, in the procc.. of identification of connections
for the proccuing of ,tales.

Copyright:
Copyright (c) 1994-1998 Apptilude, Inc.

(formerly Thchnically Elite, Inc.)
All rights rc5ervcd.

RCS:
$Id: TCP.pdl,v 19 1999~1/26 15:16:02 skip Exp$

This is the 16 bit field where the child protocol is located for
the next layer beyond TCP.

tcpPort FIEU)

SYNTAX UNSIGNED 1Nf(16)
LOOKUP FILE "TcpPorlcf"

tcpHcaderLen FIELD
SYNTAX 1Nf(4)

tcpFlags FIEID
SYN'D\XBITSrRING(12) { fin(O), ayn(l), mt(2), psh(3), ack(4). wg(S) }

tcpData FIELD
SYNTAX
LENG1H
ENCAP
DISPLAY-HINT

BYIBSI'RING(0-1564)
"($ipLength - ($ipHeaderLength • 4)) - ($tcpHeaderl..en • 4)"
tcpPort
"Hcw>ump"

The layout of the TCP datagram found in a packet Olli,ct hued on the
beginning of the bcade, for TCP.

tcp PROTOCOL
SUMMARIZE

"Default":
"TCP ACK...$Ack WINa$WmdowSize"

DESCRIPTION
"Protocol format for the Tunsmi.ssion Control Protocol"

REFERENCE "RFC 793"
::= { Srcport-tcpPort, DcstPort-tcpPort, ScquenccNum=Ulnt32,

Ack=lilnl32, Hcadei:Length=tcpHcadei:Len, TcpFlags=tcpF!ags,
WmdowSize=Uint16, Checksum-ByteStr2,
UrgentPoiotcr-=Ulnt16, Options=tcpOptions, Data=tcpData }

The flow clements required to build a Irey for a TCP datagram.
Noticed that this FLOW description bas a CONNECilON section. This is
med to describe what connection 1t:zlte is reached for each setting
of the TcpF!ags field.

tcp FLOW
HEADER { LENGTH=HeaderLength, IN-WORDS }
CONNECilON {

}

IDENilFlER-SCqucnccNum,
CONNECT-STARr ="TcpFlags:1",
CONNECT-COMPl.1ITE-"1l:pFlag,:4'',
DISCONNECT-STARr="TcpFlags:0",
DISCONNECT-COMPlEfE="'Il:pFlags:4"

PAYLOAD { INCLUDE-HEADER }
CIIlLDREN { DESilNATION-DcstPort, SOURCE-SrcPort }

tcpOptionKind FIELD
SYNTAX UNSIGNED 1Nf(8) { tcpOptEnd(O), tcpNop(l), tcpMSS(2),

82

EX 1018 Page 409

US 6,665,725 Bl
83

-continued

tcpWscaie(3), tcpT1Dleitamp(4) }
DESCRIPTION

tcpOptionDala
'Type of TCP option"

FIELD

tcpOptioos

SYNTAX
ENCAP
FIAGS
DISPLAY-HINT
GROUP
LENG1H
SUMMARIZE

"Default'':

BYI'ESTRING(0 .. 1500)
tcpOptionK.ind
SAMEIAYER
"HcxDump"

"($tcpHeaderLen • 4) - 20"

"Option=$0ption, Lcn=$0ptionLength, $OptionData"
:,- { Option=tq,OptionKind, optionLength=Uint8, OptiooData=tcpOptiooData }
tcpMSS PROl'CCOL
::- { MaxSegmentSize..aillnU 6 }

UDP.pd! - Uaer Datagram Protocol (UDP) definitions

Description:
This file containa the packet definitions for the User Datagram
Protocol

Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.

(formerly 1echoically Elite, lnc.)
All rights resem:d.

RCS:
$Id: UDP.pdl,v 1.9 1999/01{16 15:16:02 akip F.xp $

ndpPort FlELD
SYND\X UNSIGNED INT(16)
LOOKUPFILE "Udpport.cf'

ndpLcngth FlELD
SYND\X UNSIGNED INT(16)

ndpData FIELD

ndp

::- {

udp

SYND\X
ENCAP
DISPLAY-HINT
PROTOCOL
SUMARI2E

"Dewtlt":

BYIB5TRING(0 .. 1500)
ndpPort
"HexDump"

"UDP 0cst-$DestPort Src-$SrcPort''
DESCRIP1l0N

"Protocol format for the U1er Datagram Protocol."
REFERENCE "RFC 768"
SrcPort,,udpPort, DcstPort.-.-ndpPor~ Lcogth=adpLcogth,
Checnum=ByteSII2, Data-ndpData }
FLOW
HEADER { LENG1H=8 }
amDREN { DESTINXI10N=DestPort, SOURCE-Srcport }

RPC.pdl - Remote Procedure Calls (RPC) definitio05

Description:
This file contains the packet definitions for Remote Procedure
Calls.

Copyright:
Copyright (c) 1994-1999 Apptitude,

(formerly 1echoically Elite, Inc.)
All rights reaerved.

- RCS:
$Id: RPC.pdl,v 1.7 1999/01/26 15:16:01 •kip F.xp $

rpcType FlEW
SYNTAX UNSIGNED INT(32) { rpcCall(O), rpcReply(l) }

rpcData F1EW
SYNTAX
ENCAP
FlAGS
DISPLAY-HINT

rpc PROTOCOL
SUMMARIZE

BYTESTRING(0 .. 100)
rpcType
SAMELAYER
"HexDump"

"Slype = rpcCall"

84

EX 1018 Page 410

I

J

85

-continued

"RPC $Program"
"$RcplyStatus = ,pcAcceptedReply'' :

"RPC Reply S1atus..,$Status"
"$RcplyS1atus - rpcDeniedReply''

US 6,665,725 Bl

"RPC Reply Statuso:$:Status, AuthStatus,.$AuthStatus"
"Default"

"RPC $Program"
DESCRIPTION

"Protocol format for RPC"
REFERENCE

"RFC 1057"
::- { XlD=Uint32, 'f>'J>"'"'Pc'Iype, Dalzl""J'cData }
rpc Fl.OW

HEADER { LENGTil..(J }
PAYLOAD { D>JA=XID, LENGTil=256 }

- RPC Call

,:pcPrognun FlELD
SYNTAX UNSIGNED INT(32) { portMapper(lOOOOO), nfa(100003),

monnt(lOOOOS), lockMllllllger(100021), slzltusMonitor(100024) }
rpcProcedn:rc GROUP

SUMMARIZE
·0erau1r·:

"Progr.un,-$Program, Vcmion-$Vcrsion, Pmccdwc-$Procedwc"
::= { Program=,:pcProgram, Version•Ulnt32, Procodure-Ulnt32 }
,pcAulhFlavor FIELD

SYNTAX UNSIGNED INT(32) { null(O), unix(l), short(2) }
rpcMachine FIELD

SYNTAX LSI'RING(4)
rpcGroup GROUP

LENGill "$NumGroups • 4"
::- { Gid,.,lnt32 }
,:pcCrodentials GROUP

LENGill "$Crcdentia1Longth"
::• { Stamp-Ulnt3:Z. Macbino-rpcMachine, Uid=!nt32, Gid=Int32,

NomGroupa-Ulnt32, Groups-rpcGroup }
,:pcVcrilicro..ta FlELD

SYNTAX BYI'ESTRING(0 .. 400)
LENGilI "$Verifier Length"

rpcEncap FlElD
SYNTAX COMBO Program Proccdwc
LOOKUP F1LE "RPCcf'

rpcCallData FIELD
SYNTAX BYI'ESTRING(0-100)
ENCAP rpcEncap
DISPLAY-HINT "Ha:Dump"

rpcCall PROI'OCOL
DESCRIPTION

"Protocol format for RPC call"
::- { RPCVersion-Uint3:Z. Procedure-,:pcProcedure,

Crodentia!AuthFlavor-rpcAuthFlavor, Crcdentia!Length-uint3:Z.
Crodonlials=rpcCredcntialo,
VcrifierAuthFlavor•,pcAuthFlavor, VerifierLength-Uint32,
Vcrifie,:..,:pcVcrilierData, Encap=rpcEncap, Data=,:pcCal!Dala }

- RPCRcply

,:pcReplyStatus FIEID
SYNTAX INT(32) { ,:pcAcceptodReply(O), ,:pcDeniedRcply(l) }

,:pcRcplyData FlElD
SYNIJt.X BYIESTIUNG(0 .. 40000)
ENCAP rpcReplyStatus
FLAGS SAMELAYER
DISPLAY-HINT "HexDump"

rpcReply PROI'OCOL
DESCRIPTION

"Protocol format for RPC reply"
::• { ReplyStatus-rpcRcplyStatus, Data-rpcRcplyData }
,pcAcceptStatu.o FIEID

SYNTAX INT(32) { Succe .. (O), ProgUnavail(l), ProgMismatch(2),
ProcUnavai1(3), GarbagoArgs(4), Sy.tomError(S)

,:pcAccoptEncap FIEW
SYNTAX BYTESI'RING(O)
FLAGS NOSHOW

,pcAcceptData F!EW
SYNTAX
ENCAP
DISPLAY-HINT

BYIESTIUNG(0 .. 40000)
,:pcAcccptEocap
"HexDump"

86

EX 1018 Page 411

US 6,665,725 Bl
87

-continued

rpcAcceptedRcply PROfOCOL
::= { VcrificrAuthF1avor-rpcAuthF1avor, VerifierLength-Ulnt32,

Verificr=rpcVerificrData, Stabla-rpc.AcccptStatus,
Enca~IJ)CAcccptEncap, Data-rpcAcccptData }

IJ)CDcniedstatus FIEID
SYNTAX INT(32) { IJ>CVcraionMiamatch(O), rpcAuthError(l) }

rpcAuthStatus FIELD
SYNTAX INT(32) { Okay(O), BadCrcdcntial(l), RcjcctedCrcdcnlial(2),

BadVerificr(3), RcDectcdVerificr(4), TooWcol:(5),
InvalidR.csponse(6), Failed(?) }

rpcDeniedReply PROfOCDL
::= { Status=rpcDcnicdStatus, AuthStatus=rpcAuthStatus }

- RPC Transactioos

rpcBindLookup PROIUCOL
SUMMARIZE

"Default'':
"RPC GetPort Prog=$Prog, Ve,..SVer, Proto=$Protocol"

::- { Proil"'rpcProgram, Vcr-Uint32, Protocol-Uint32 }
IJ>CBindLookupRcply PROfOCOL

SUMMARIZE
"Default''

"RPC GetPortRcply Port...$Port"
::- { Port,.Ulnt32 }

NFS.pd! - Network File System (NFS) definitions

Description:
This file contains the packet definitiona for the Network File
S)'ilcm.

Copyright:
Copyright (c) 1994-1998 Apptitude, Inc.

(formerly Tcchhically Elite, Inc.)
All rights reserved.

RCS:
$Id: NFS.pdl,v 1.3 1999/0l/Z6 15:15:59 skip Exp $

nfsString FIELD
SYNTAX I..SfRING(4)

nfsHandle FIELD
SYNL'.X BYTESTRING(32)
DISPLAY..IIlNT "16xln "

nfsData FIELD
SYNL'.X BYTESTRING(0-100)
DISPLAY-IIlNT "HaDump"

uAA.cccu PROIUCOL
SUMMARIZE

"Default'':
"NFS Acccsa $Filename"

::,. { Handle-nfsHandle, F"tlcnam.....C.Slring }
nfsStatus FIELD

SYNTAX INT(32) { OK{O), NoSuchFile(2) }
nfsAcccssRcply PRaroc:OL

SUMMARIZE
"Default'':

"NFS Acces1Reply $Status"
::- { Status=nf.sStatus }
nfsMode FIELD

SYNTAX UNSIGNED INT(32)
DISPLAY-HINT "4o"

nfsCrcate PROTOCOL
SUMMARIZE

"Default'':
"NFS Create $Filename"

::- { Hnndle=nfsHandle, F"tlename"'11fsString. Filler-lnt8, Modc-nfsModc,
Uid=Int32, Gid-Int32, Size-Int32, AcccsaT1D1e-lnl64, ModT1D1e=Inl64 }

nfsF"tleTypc FIELD
SYNTAX INT(32) { Rcgular(l), Direclory(2) }

nfsCrcateRcply PROfOCOL
SUMMARIZE

"Default'':
"NFS CreateRcply $Statw;"

::,= { Status=nf.sStatus, Handle-nfsHandlc, FileTypc-nfsFilcTypc,
Modc-nfsModc, links-Ulnt32, Uid=Int32, Gid=Int32, Sizc=Int32,
BlockSizc•lnt32, NumBlocks=Inl64, FilcSysld-Ulnt32, Filcld=Uint32,
AcccssTime-Int64, ModTime=lnt64, lnodcChangcT1D1e=ln164 }

nfsRcad PROTOCOL

88

EX 1018 Page 412

j

SUMMARIZE
"Default'':

89

-continued

"NFS Read OlfJetoo$otfset Length..$Length"

US 6,665,725 Bl

::- { Length-Int32, Handlc,,.nt'sll.u,d]e, Offiiet•Ulnt64, Count•Int32 }
nf.aReadReply PRaI'OCOL

SUMMARIZE
"Default'':

"NFS ReadRcply $Status"
::= { Statua-nf.status, FileType-nfsFdeType,

Mode,,,nhMode, Linb,.Uint32, Uid=lnt32, Gid-Int32, Size=Int32,
BlockSi==Int32, NumBlocb,.Jnt64, FileSysld,,.Ulnt32, Ftlcld=Ulnt32,
A=Tune-[nt64, ModT"IIlle-l.nl64, lnodeCbangcTtme-fnt64 }

nfsWrile PROOUCOL
SUMMARIZE

"Default'':
"NFS Write Ofr.et-.$0lfset"

::• { Ihndlc-nfaHandle, 01[se1;,,lnt32, Data-nfsO.ta }
nfsWrileReply PROTOCOL

SUMMARIZE
"Default'';

"NFS WrileReply $Statua"
:;,,, { Statua-nr.sc.tus, FileType-nfsFileType,

Mode-n.fuMode, lii:iks-Ulnt32, Ui,Mnt.32, Gid•Int32, Siz.e-Int32,
BlockSize-[nt.32, NumBlocb-Int64, FileSyald-Ulnt32, Ftleld-Ulnt32,
Access'I'imc-Jnt64, ModTIIlle-lnt64, InodcClw!geTtmo-lnt64 }

nfsReadOir PR<.7IOOJL
SUMMARIZE

"Default'':
"NFS RcadDit'

::• { Handlc-nfsHandle, Coolcii,.,[nt32, Count,.Jnt32 }
nli!ReadOirReply PROI"OCOL

SUMMARIZE
"Default''

"NFS RcadDirReply $Stalm"
::- { Statua-niiSt.atus, Dala""llfsData }
nf&GetFtlcAllr PROTOCOL

SUMMARIZE
"Default'' :

"NFS GclAtt:('
,,_ { Handl""'4lfaHa.ndle }
nfaGctFdeAttrRoply PROTOa>L

SUMMARIZE
"Default":

"NFS GctAttrReply $Stallll SFileType"
::,.. { Stalm•nlilStatus, Filclyp.....nr.FdeType,

Mode-nfsMode, Linb,.Ulnt32, Uid-Int32, Gid-Int32, Size-lnt32,
BlockSize-Int32, NumBlocb-Int64, FilcSysld•Ulnt32, Ftleld-Ulnt32,
~Tl11lo-Int64, Mod'.llme-Int64, lnodcCbangc'Ilme-Int64 }

nf&Readl.in.k PROTOCOL
SUMMARIZE

"Default":
"NFS Ru.di.ink"

::= { Hao.dle-nfaHud!e }
nfJRoadLinkRcply PROTOCOL

SUMMARIZE
"Default'':

"NFS ReadLlnkReply Path=$Path"
::,. { SWu.1•rusStalus, Path-nfilString }
nf.tMount PROTOCOL

SUMMARIZE
"Default'':

"NFS Mount $Path"
::• { Path-nr..tring
nfsMountRcply PROTOCOL

SUMMARIZE
"Default'':

"NFS MountReply $MountS!atus"
::• { Mow!ISltatu...nr..status, Handle-nf.,Handle }
nf.aStatF, PRa:rocoL

SUMMARIZE
"Dcflult'':

"NFS StatFs"
::• { Handlo-nfsHa.nd!o }
nli!StatFsReply PROI"OCOL

SUMMARIZE
"Default":

"NFS SlatFsReply $Slntus"
::• { Status=nf.slalus, Transfe.Size=Ulnt32, BlockSizo-Uint32,

Tota1Bloc:b•Ulnt32, FreeB1ocb-U1nt32, Avai1Blocb-utnt32 }

90

EX 1018 Page 413

nfsRemoveDir PROfOCOL
SUMMARIZE

"Defaulr':

91

"NFS RmDir $Name"

-continued

::- { Handlc,,,nf,,Handle, Namc,onfiString }
nfaRemoveDirRcply PRO'IOCOL

SUMMARIZE
"Default":

"NFS RmDirReply $Status"
::= { Status-nfiStatus }
nfsMah:Dir PRO'IOCOL

SUMMARIZE
"Dcfaulr':

"NFS MkDir $Name"
::• { Handlo-nfsHandle, Namc-nfsString }
nfsMah:DirReply PRO'IOCOL

SUMMARIZE
"Defaulr':

"NFS MkDirReply $Status"
::• { Status-nfsStatus }
nfaRemove PRO'IOCOL

SUMMARIZE
"Defaulr':

"NFS Remove $Name"
::• { Handle=naHandle, Name=n&string }
nfaRemoveRcply PRO'IOCOL

SUMMARIZE
"Defaulr':

"NFS RemoveRcply $Statua"
::= { Status=nfiStatus

US 6,665,725 Bl

mTP.pdl - Hypcrtat TIOnsfer Protocol (HITP) definitions

Description:
Thia file containll the packet definitions for the Hypertext Transfer
Protocol

Copyright:
Copyright (c) 1994-1999 Apptitude, Inc.
(formerly "Icchnically Elilc, Inc.)
All rights reserved.

- RCS:
$Id: mTP.pdl,v 1.13 1999/04/13 15:47:57 &kip EJ:p $

httpData F1ELD

• 4)"

SYN"D\X
LENGTH

BYillS"IRlNG(l .. 1500)
"($ipLength - ($ipHcadmLenglh • 4)) - ($tcpHcadcrLcn

DISPLAY-HINT "'Ien"
FIAGS NO LABEL

http PROfOCOL
SUMMARIZE

"$hUpData m(GEifmTPl
0

HEADi.POSff':
"mTP $btteData"

"$hUpData m/ (DdJatcl
0

[Ss]crvef[Ll)ast-{Mm),diliedf':
"lITll' $btteData"

"$httpData m/ (Cc),ntcnt-f' :
"HITP $btteData"

"$hUpData m/ <HI'ML>f' :
"lITll' (IITML document J'

"$hUpData m(GIFf' :
"HITP (GIF image]'

"Defirulr':
"lITll' [Data J'

DESCRIPTION
"Protocol format for HITP."

::- { Data-hltpData }
http FLOW

C'ONNEcnON { INHERITI!D }
PAYLOAD { INCUJDE-HEADER, DATA-Data, LENGTH=256 }
SDUl!S

"SO: CHECKC'ONNECT, GOTO Sl
DEFAULT NEXT SO

Sl: WAIT 2, GOTO S2, NEXT Sl
DEFAULT NEXT SO

S2: NATCH
'\n\r\n' 900 0 0 255 0, NEXT S3

92

EX 1018 Page 414

S3:

US 6,665,725 Bl
93

-continued

'\n\n'
'POST JWB?'
'.hta Hnl'/1.0'
'jdbc:sybue:Tds'
'PCN-The Poin'
't:BW-C-'
DEFAUIT NEXT S3

MATCH
'ln\l\n'
'ln\n'
'Content-Type:'
'PCN-The Poin'
't:BW-C-'
DEFAUIT NEXT SO"

900 0 0 255 0, NEXT 53
50 0 0 127 1, CHILD aybascWcboql
SO 4 0 127 1, CHILD aybascidbc
SO 4 0 127 1, CHILD aybucTds

500 4 1 255 0, ClllLD poinlcast
100 4 1 255 0, CHILD back.web

50 0 0 0 0, NEXT S3
SO O O O 0, NEXT S3

800 0 0 255 O, CHILD mime
500 4 1 255 0, CHILD poinlcast
100 4 1 255 0, CHILD backweb

sybaseWebsql FLOW
STJU"E-BASED

sybascJdbc FLOW
STATE-BASED

sybaseTw FLOW
STATE-BASED

pointcast FLOW
STATE-BASED

backwcb FLOW
STATE-BASED

mime FLOW
STATE-BASED
STATES

•so: MATCH
'application' 900 0 0 1 0, CHILD mimcApplication
'audio' 900 0 0 1 0, CHILD mimcAudio
'image' SO O O 1 0, CHILD mimelmage
'text' 50 0 0 1 0, CHILD mimeTcrt
'video' 50 0 0 1 0, CHILD mime Video
'I-world' 500 4 1 255 O, CHIID mimcXworld

DEFAUIT GOTO SO"
mimcApplication FLOW

ST/JE-BASED
mimcAudio FLOW

STATE-BASED
ST/JES

"SO: MATCH
'basic' 100 0 0 1 O, CHIID pdBuicAudio
'midi' 100 0 0 1 0, Cllll.D pdMidi
'mpcg' 100 0 0 1 0, CHIID pdMpeg2Audio
'vnd.m-realaudio' 100 0 0 1 0, Cllll.D pdRcalAudio
'wav' 100 0 0 1 o, ClllLD pdWav
'x-ailf' 100 0 0 1 O, ClllLD pdAiJI
':,:-midi' 100 0 0 1 0, ClllLD pdMidi
'x-mpcg' 100 0 0 1 0, CHIID pdMpeg2Audio
'x-mpgu,l' 100 0 0 1 0, CHIID pdMpcg3Audio
'x-pn-rcalaudio' 100 0 0 1 0, CHIID pdRcalAudio
'x-wav' 100 0 0 1 0, CHIID pdWav

DEFAUIT GCYfO SO"
mimclmage FLOW

STATE-BASED
mimcTcII FLOW

STATE-BASED
mimeVulco FLOW

STATE-BASED
mimcXworld FLOW

STATE-BASED
pdBasicAudio FLOW

STATE-BASED
pdMidi FLOW

STATE-BASED
pdMpeg2Audio FLOW

STATE-BASED
pdMpeg3Audio FLOW

STJU"E-BASED
pdRca!Audio FLOW

STATE-BASED
pdWav FLOW

STATE-BASED

pdAilf FLOW
STJU"E-BASED

94

EX 1018 Page 415

1

l

US 6,665,725 Bl
95

What is claimed is:
1. A method of performing protocol specific operations on

a packet passing through a connection point on a computer
network, the method comprising:

(a) receiving the packet: 5

(b) receiving a set of protocol descriptions for a plurality
of protocols that conform to a layered model, a protocol
description for a particular protocol at a particular layer
level including:
(i) if there is at least one child protocol of the protocol 10

at the particular layer level, the-one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par
ticular layer level information at one or more loca- 15

lions in the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
information is stored related to any child protocol of
the particular protocol, and 20

(iii) if there is at least one protocol specific operation to
be performed on the packet for the particular proto
col at the particular layer level, the one or more
protocol specific operations to be performed on the
packet for the particular protocol at the particular 25

layer level; and
(c) performing the protocol specific operations on the

packet specified by the set of protocol descriptions
based on the base protocol of the packet and the 30
children of the protocols used in the packet,

the method further comprising:
storing a database in a memory, the database generated

from the set of protocol descriptions and including a
data structure contaming mformation on the possible 35

protocols and organized for locating the child protocol
related mformation for any protocol, the data structure
contents indexed by a set of one or more indices, the
database entry indexed by a particular set of index
values including an indication of validity, 40

wherein the child protocol related mformation includes a
child recognition pattern,
wherein step (c) of performing the protocol specific opera
tions includes, at any particular protocol layer level starting
from the base level, searchmg the packet at the particular 45

protocol for the child field, the searching including indexing
the data structure until a valid entry is found, and
whereby the data structure is configured for rapid searches
using the index sel

2. A method according to claim 1, wherein the protocol 50

descriptions are provided in a protocol description language,
the method further comprising:

96
5. A method according to claim 4, wherein the data

structure is compressed according to a compression scheme
that takes advantage of the sparseness of valid entries in the
data structure.

6. A method according to claim 5, wherein the compres
sion scheme combines two or more arrays that have no
conflicting common entries.

7. A method according to claim 1, wherein the data
structure includes a set of tables, each table identified by a
fust index, at least one table for each protocol, each table
further indexed by a second index being the child recogni
tion pattern, the data structure further including a table that
for each protocol provides the location in the packet where
the child protocol related information is stored, such that
finding a valid entry in the data structure provides the
location in the packet for finding the child recognition
pattern for an identified protocol.

8. A method according to claim 7, wherein the data
structure is compressed according to a compression scheme
that takes advantage of the sparseness of valid entries in the
set of tables.

9. A method according to claini 8, wherein the compres
sion scheme combines two or more tables that have no
conflicting common entries.

10. A method of performing protocol specific operations
on a packet passing through a connection point on a com
puter network, the method comprising:

(a) receiving the packet;
(b) receiving a set of protocol descriptions for a plurality

of protocols that conform to a layered model, a protocol
description for a particular protocol at a particular layer
level including:
(i) if there is at least one child protocol of the protocol

at the particular layer level, the-one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par-
ticular layer level mformation at one or more loca
tions In the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
mformation is stored related to any child protocol of
the particular protocol, and

(iii) if there is at least one protocol specific operation to
be performed on the packet for the particular proto
col at the particular layer level, the one or more
protocol specific operations to be performed on the
packet for the particular protocol at the particular
layer level: and

(c) performing the protocol specific opera.lions on the
packet specified by the set of protocol descriptions
based on the base protocol of the packet and the
children of the protocols used in the packet,

compiling the PDL descriptions to produce the database.
3. A method according to claim 1, wherein the data

structure comprises a set of arrays, each array identified by
a first index, at least one array for each protocol, each array
further indexed by a second index being the location in the
packet where the child protocol related information is
stored, such that finding a valid entry in the data structure
provides the location in the packet for finding the child
recognition pattern for an identified protocol.

wherein the protocol specific operations include one or more
parsing and extraction operations on the packet to extract

55 selected portions of the packet to form a function of the
selected portions for identifying the packet as belonging to
a conversational flow.

4. A method according to claim 3, wherein each array is
further indexed by a third index being the size of the region
in the packet where the child protocol related mformation is
stored, such that finding a valid entry in the data structure
provides the location and the sm: of the region in the packet
for finding the child recognition pattern.

U. A method according to claim 10, wherein step (c) of
performing protocol specific operations is performed recur-

60 sively for any children of the children.
U. A method according to claim 10, wherein which

protocol specific operations are performed is step (c)
depends on the contents of the packet such that the method
adapts to different protocols according to the contents of the

65 packet.
13. A method according to claim 10, wherein the protocol

descriptions are provided in a protocol description language.

EX 1018 Page 416

l

j US 6,665,725 Bl
97

14. A method according lo claim 13, further comprising: 17. A method of performing protocol specific operations
98

compiling the POL descriptions to produce a database and on a packet passing through a connection point on a com-
store the database in a memory, the database generated puter network, the method comprising:
from the set of protocol descriptions and including a (a) receiving the packet;
data structure containing information on the possible 5 (b) receiving a sel of protocol descriptions for a plurality
protocols and organized for locating the child protocol of protocols that conform to a layered model, a protocol
related information for any protocol, the data structure description for a particular protocol at a particular layer
contents indexed by a set of one or more indices, the level including:
database entry indexed by a particular set of index (i) if there is at least one child protocol of the protocol
values including an indication of validity, 10 at the particular layer level, the one or more child

wherein the child protocol related information includes a protocols of the particular protocol at the particular
child recognition pattern, and layer level, the packet including for any particular
wherein the step of performing the protocol specific opera- child protocol of the particular protocol at the par-
lions includes, at any particular protocol layer level starting ticular layer level information at one or more loca-

protoco or the chilltrem, the seJc lng mctuoiiig mdexinL protocol,
from th~base level, searching the ~11cket at the particular "'15 lions in the packet related to the particular child

the data tructure until a valid entry is found, (ii) the one or more locations in the packet where
whereby the data structure is configured for rapid searches information is stored related to any child protocol of
using the index set. the particular protocol, and

15. A method according to claim 10, further comprising: 20 (iii) if there is at least one protocol specific operation to
looking up a flow-entry database comprising at least one be performed on the packet for lhe particular proto-

flow-entry for each previously encountered conversa- col at the particular layer level, the one or more
tional flow, the looking up using at least some of the protocol specific operations to be performed on the
selected packet portions and determining if the packet packet for the particular protocol at the particular
matches an flow-entry in the flow-entry database 25 layer level; and

if the packet is of an existing flow, classifying the packet (c) performing the protocol specific operations on the
as belonging to the found existing flow; and packet specified by the set of protocol descriptions

if the packet is of a new flow, storing a new flow-entry for
the new flow in the flow-entry database, including
identifying information for future packets to be iden
tified with the new flow-entry;

wherein for at least one protocol, the parsing and extraction
operations depend on the contents of one or more packet
headers.

16. A method according to claim 10, wherein the protocol
specific operations further include one or more state pro
cessing operations that are a function of the state of the flow
of the packet.

based on the base protocol of the packet and the
children of the protocols used in the packet,

30 wherein the packet belongs to a conversational flow of
packets having a set of one or more states, and wherein the
protocol specific operations include one or more state pro
cessing operations that arc a function of the state of the
conversational flow of the packet, the state of the conver-

35 sational flow of the packet being indicative of the sequence
of any previously encountered packets of the same conver
sational flow as the packet.

..

EX 1018 Page 417

EX 1018 Page 418

33
34

35
36

37

40

41

42

NrJei'o~'.'tL;AIMS
:,r,::;._.,, • .., ... : •. , -,J. '.;.: ', . ~

t.:.:,i; .. ,., -RejJJCt~q.. ':-: . N Non-elected
•.• :.,~.;,;.; ·Allowed I '. Interference

-. , · rough num~ral) ... Canceled A Appeal
.. · · · Restricted O Objected

Claim Date -- Claim Dale

'ii 'iii.

~ :§1
il: 0

ti·&
C: ,::
il: 0 -

51 101
52 11l:i
53

54

10:: nr m: 104

am R
57

58

59

60
61

62

63

64

65

66

67

68

69

70

71

72
73

74

75

76

n
78

79

80

81

= 82

183

84

85 m 86

87

I 1881

89

90

91

92

I
99

0(

If more than J 50 claims or 10 actions
staple additional sheet here

(LEFT INSIDE)

=i= ,-

=tl 108

109 I I

10 I I

111

12

113

114
115 I

116

117

118

119

13) tt 1211 I

1221 I
12:;

124

125 '

26

127
128 '
~29
30

"h31

3~

~33
13<

13f
3E -
37

38

139

~40

14

14~

143

14' EEE 45 Ei1 46

~
149
15d /

EX 1018 Page 419

/ I

.. J

/

SEARCHED SEARCH NOTES
(INCLUDING SEARCH STRATEGY)

Class Sub. Date Exmr. Date Exmr.

--i D q 'Lo) S"/ZJ{OJ 4eJ I/
bOb

weST 5'/Z1/o3 tA10
- ~

llb
'lA1

141
ii(

(0)
ii;
2G

)

370. 4:iq
l3.
11 ~ ' J

~d.cdt.1 dau Ur.lW e/10/09 k'.,1)

__ ,-:il,.(
!J..rv- ~re! ;;,1/oJ uo

'

INTERFERENCE SEARCHED
Class Sub. Date Exmr.

- ior?f 210 b}8/o3 uo J
-

;4c.

t 1 37D 4~

(RIGHT OUTSIDE)

EX 1018 Page 420

I!
\)
t'

PATENT APPLICATION
1m~1111111~1m 1i111i11111111~11

09609179

'444$;"*:<:~-:'_ ~-::·

.JC851l :J, S, p ,7'·, ·,
a~!b~t:S l

lllll~J,~f JIPlh.11
INITIAL$?)?Ad I~

-\.

CONTENTS
Date Received
(Incl. C. of M.)

or
Date Malled

tf-Jt -62
[/fh
lo--\;,~!>

b-'2-'1~

,~lcz..cf o...\\oW• '7 /o/ / o-:,
tt:vx'd:t (!_ l~-t:..) f3t2- ".1-\l\-D3

:~}ir~~ ~
14. __ ~-""-------~ ----
15. _________ ----

' 16. _________ ----

17. _________ ----

18. __ ~------ ----

19.__,_ ________ ----

20. _________ ----

21. _________ ----

22. _________ ----

23. _________ ----

24. _________ ----

' 25. _________ ----

26. _________ ----

27. _________ ----

28. _________ ----

29. _________ ----

J
30.

,I
31.

' 32.

33.

34.

35.

36.

37.

38.

39.

4b.

41.

Date Received
(Incl. C. of M.)

or
Date Mailed

42. _________ ----

43. ________ _

44. _________ ----

45. __________ ----

46. _________ ----

47. _________ ----

48. _________ ----

49. _________ ----

50. _________ __; __ _

S1. _________ ---~

52. _________ ----

53. _________ ----

54. _________ ----

55. _________ ----

56. _________ ----

57._~------- ----

58. _________ ----

59. _________ ----

60. _________ ----

61. _________ ----

62. _________ ----

63. --------- -----=---
64. _______ ~-- ----

65. _________ ----

66. _________ ----

67. _________ ----

68. _________ ----

69. _________ ----

70. ------,----- ----

71. _________ ----

72. _________ ----

73. _________ ----

74. _________ ----

75. _________ ----

76. _________ ----

77. _________ ----

78. _________ ----

79. _________ ----

80. _________ ----

81 .. _________ ----

82. __________ ----

(LEFT OUTSIDE)

EX 1018 Page 421

