
I

US 6,570,875 Bl
7

els on ports S0-1 ... 50-N via port interfaces 120-1 ...
120-N and their associated 1/0 queues, although in the
preferred embodiment, switch engine 100 can forward pack
ets at wire speeds with no intervention from CPU 80.

8
Such tasks are well known to those skilled in the art and are
not depicted in the overall operation of the switch, as
illustrated in FIG. 6, so as not to obscure the invention. Of

Switch engine 100 performs the flow identification and 5

processing operations for forwarding packets received via
port interfaces U0-1 ... UO-N. It accesses flow table 70 to
look up the fmwarding information associated with the
flows. Address registers 105 provide address information to
assist switch engine 100 in locating appropriate flow pro- to
cessing information in flow table 70. The contents of these
registers can be configured by CPU 80 via CPU interface
no, and include the base Ethernet address of ports 50-1 ...
50-N.

note, however, are the unique capabilities of the multipro
tocol switch with respect to multicast group management for
IP, AppleTalk and NetBios networks.

In accordance with an object of the invention, virtual
LANs are automatically created for every IP multicast group
associated with nodes and segments attached to the switch.
Upon powerup (step S2), software processes executing on
CPU 80 cause the multiprotocol switch to send out host
membership query messages (IGMP messages addressed to
224.0.0.1) (step S4). Hosts attached to the switch that belong
to multicast groups send IGMP host membership report

Domain configuration registers n5 provide routing
domain configuration information in accordance with rout
ing domains 81-1 ... 81-R established in configuration table
85. For each port, separate IP and IPX routing domain
identifiers associated therewith are stored in domain con
figuration registers n5, which registers are configured by
CPU 80 via interface no. Routing domain configuration
information for IP and IPX networks is maintained and
updated by processes executing on CPU 80 and stored as
routing domains 81-1 ... 81-R in configuration table 85.
CPU 80 then uses this configuration information to config
ure domain configuration registers n5 via interface 110.

Although shown singly for clarity, the 1/0 queue associ
ated with each of port interfaces 120-1 ... 120-N includes
several queues, each having a corresponding priority level
that can be configured by the software running on CPU 80.
Switch engine 100 forwards packets destined for one of
ports 50-1 ... SO-N using the appropriate queue, in accor
dance with priority rules configured in the flow table. The
number of times in a service interval packets in each queue
will be processed is programmed such that higher priority
queues get serviced more frequently than lower priority
queues. Each flow can be assigned a particular priority level,
and thus have a desired QoS, as will be explained in more
detail below. Priority level configuration registers US pro
vide service level settings for each respective level of
priority corresponding to the 1/0 queues associated with port
interfaces 120-1 ... 120-N.

15 messages. The switch can thus determine all the multicast
groups to which nodes attached to it belong and forward IP
multicast packets within multicast groups appropriately.

The switch then enters into an operational state wherein
switch engine 100 continually monitors for data packets

20 arriving on each of ports 50 via port interfaces 120-1 ...
120-N (step S6). When a packet is received (step S8), it is
processed in accordance with the algorithm further illus
trated in FIG. 7 (step SlO). CPU 80 also periodically sends
out IGMP queries (step SU and step Sl4) to determine all

25 active IP multicast groups to which hosts attached to the
ports of the switch belong and keeps its multicast group table
updated. Moreover, hosts send IGMP packets to join and
leave IP multicast groups. These IGMP packets are inter
cepted by switch engine 100 and sent to CPU 80. CPU 80

30 can therefore have up to date information about IP multicast
group membership.

Packet processing and switching in the multiprotocol
switch of the invention, that can be included in step S10 of

35
FIG. 6 for example, is further illustrated in FIG. 7.

When a packet is received, switch engine 100 first exam
ines the packet header and if the packet is a multicast packet
(step S22), the packet is forwarded to CPU 80 for special
processing to automatically create and/or update VI.AN

40
information (step S24). Whether or not it is a multicast
packet, switch engine 100 keeps the packet for further
processing.

Layer 3+ switching and routing can be disabled for the
system by setting a flag in configuration table 85, for

45 example. In that event, each packet traversing through the
port is processed and switched as a Layer 2 packet, regard
less of the protocol carried by the packet. Accordingly, if
Layer 3+ switching and routing is disabled (as determined in

HG. 5 further illustrates the contents of flow table 70. In
this example, flow table 70 includes address resolution hash
140, address resolution record table 150, protocol entry table
160 and network entry table 170. Flow table 70 further
includes priority tags 190, filter tags 200 and mirror tags
210. The contents of these tables, and their interrelations,
will be descnbed in more detail below in connection with the

50
creation and maintenance of flow table entries according to

step S24), processing branches to step S26.
All data packet headers include the source and destination

Ethernet addresses of the packets. The protocol used by the
communicating hosts can also be determined from the
Ethernet data packet header. For example, Ethernet Type II
packets contain a type field that explicitly indicates the

the invention. Switch engine 100 has read access of the
tables in flow table 70, and CPU 80 has read and write access
to the tables.

The operation of the multiprotocol switch of the present
invention will now be descnbcd in more detail with refer
ence to FIGS. 6 to 14.

After powerup (step S2), and before any packets are
received, flow table 70 is empty. Configuration table 85
contains routing domain, filter, mirror, priority, and VLAN
configurations that have been established already for the
network, and can be updated at any time by a system
administrator via software processes executing on CPU 80.

55 protocol (such as IP, IPX, ARP, RARP and I.Al) that packet
belongs to. Moreover, it is known that different protocols use
different Ethernet frame formats. For example, IP uses
Ethernet II or SNAP packet formats. IPX can use all four
Ethernet formats (depending on configuration),AppleTalk (a

60 trademark of Apple Computer Corp., Cupertino, Calif.) uses
the SNAP packet format and NetBios typically uses the
Ethernet 802.2 LLC format. The protocol carried by the
packet thus can be learned either explicitly or implicitly

In addition to switching and routing packets, the multi
protocol switch of the present invention performs tasks that 65

arc performed by conventional switches and routers such as
mute determination, routing table updates, and the like.

from the packet header.
Layer 4 protocols such as Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP) are built on top
of the Layer 3 IP protocol. In addition to the information

EX 1017 Page 347

US 6,570,875 B1
7

ets on ports 50-1 . . . 50-N via port interfaces 120-1. . .
120-N and their associated I/O queues, although in the
preferred embodiment, switch engine 100 can forward pack-
ets at wire speeds with no intervention from CPU 80.

Switch engine 100 performs the flow identification and
processing operations for forwarding packets received via
port interfaces 120-1. . . 120-N.It accessesflow table 70 to
look up the forwarding information associated with the
flows. Address registers 105 provide address information to
assist switch enginc 100 in locating appropriate flow pro-
cessing information in flow table 70. The contents of these
registers can be configured by CPU 80 via CPU interface
110, and include the base Ethernet address of ports 50-1...
50-N.

Domain configuration registers 115 provide routing
domain configuration information in accordance with rout-
ing domains 81-1 . . . 81-R established in configuration table
85. For each port, separate IP and IPX routing domain
identifiers associated therewith are stored in domain con-
figuration registers 115, which registers are configured by
CPU 80 via interface 110. Routing domain configuration
information for IP and IPX networks is maintained and

updated by processes executing on CPU 80 and stored as
routing domains §1-1 . . . 81-R in configuration table 85.
CPU 80 then uses this configuration information to config-
ure domain configuration registers 115 via interface 120.

Although shown singly for clarity, the I/O queue associ-
ated with each of port interfaces 120-1. . . 120-N includes
several queues, cach having a corresponding priority level
that can be configured by the software running on CPU 80.
Switch engine 100 forwards packets destined for one of
ports 50-1 . . . 50-N using the appropriate queue, in accor-
dance with priority rules configured in the flow table. The
numberof times in a service interval packets in each queue
will be processed is programmed such that higherpriority
queues get serviced more frequently than lower priority
queues, Each flow can be assigned a particular priority level,
and thus have a desired QoS, as will be explained in more
detail below. Priority level configuration registers 125 pro-
vide service level settings for each respective level of
priority corresponding to the I/O queuesassociated with port
interfaces 120-1. . . 120-N.

FIG. 5 furtherillustrates the contents of flow table 70. In

this example, flow table 70 includes address resolution hash
140, address resolution recordtable 150, protocol entry table
160 and network entry table 170. Flow table 70 further
includes priority tags 190, filter tags 200 and mirrortags
210. The contents of these tables, and their interrelations,
will be described in more detail below in connection with the
creation and maintenanceof flow table entries according to
the invention. Switch engine 100 has read access of the
tables in flow table 70, and CPU 80 has read and write access
to the tables.

_ The operation of the multiprotocol switch of the presentinvention will now be described in more detail with refer-
ence to FIGS. 6 to 14.

After powerup (step S2), and before any packets are
Teceived, flow table 70 is empty. Configuration table 85
Contains routing domain,filter, mirror, priority, and VLAN
Configurations that have been established already for the
network, and can be updated at any time by a system
administrator via software processes executing on CPU 80.

In addition to switching and routing packets, the multi-
Protocol switch of the present invention performs tasks that
are performed by conventional switches and routers such as
Toute determination, routing table updates, and the like.

8
Such tasks are well known to those skilled in the art and are
not depicted in the overall operation of the switch, as
illustrated in FIG. 6, so as not to obscure the invention. Of
note, however, are the unique capabilities of the multipro-
tocol switch with respect to multicast group management for
IP, AppleTalk and NetBios networks.

In accordance with an object of the invention, virtual
LANsare automatically created for every IP multicast group
associated with nodes and segments attached to the switch.
Upon powerup (step $2), software processes executing on
CPU 80 cause the multiprotocol switch to send out host
membership query messages (IGMP messages addressed to
224.0.0.1) (step $4). Hosts attached to the switch that belong
to multicast groups send IGMP host membership report
messages. The switch can thus determine all the multicast
groups to which nodes attachedto it belong and forward IP
multicast packets within multicast groups appropriately.

The switch then enters into an operational state wherein
switch engine 100 continually monitors for data packets
arriving on each of ports 50 via port interfaces 120-1 . . .
120-N (step S6). When a packet is received (step S8), it is
processed in accordance with the algorithm further illus-
trated in FIG. 7 (step S10). CPU 80 also periodically sends
out IGMP queries (step S12 and step $14) to determine all
active IP multicast groups to which hosts attached to the
ports of the switch belong and keepsits multicast grouptable
updated. Moreover, hosts send IGMP packets to join and
leave IP multicast groups. These IGMP packets are inter-
cepted by switch engine 100 and sent io CPU 80. CPU 80
can therefore have up to date information about IP multicast
group membership.

Packet processing and switching in the multiprotocol
switch of the invention, that can be included in step S10 of
FIG. 6 for example, is further illustrated in FIG. 7.

Whena packetis received, switch engine 100 first exam-
ines the packet header and if the packetis a multicast packet
(step $22), the packet is forwarded to CPU 80 for special
processing to automatically create and/or update WLAN
information (step S24). Whether or not it is a multicast
packet, switch engine 100 keeps the packet for further
processing.

Layer 3+ switching and routing can be disabled for the
system by setting a flag in configuration table 85, for
example. In that event, each packettraversing through the
port is processed and switched as a Layer 2 packet, regard-
less of the protocol carried by the packet. Accordingly, if
Layer 3+ switching androuting is disabled (as determined in
step $24), processing branchesto step S26.

All data packet headers include the source and destination
Ethernet addresses of the packets. The protocol used by the
communicating hosts can also be determined from the
Ethemet data packet header. For example, Ethemet Type II
packets contain a type ficld that explicitly indicates the
protocol (such as IP, IPX, ARP, RARP and LAT) that packet
belongs to. Moreover,it is known that different protocols use
different Ethernet frame formats. For example, IP uses
Ethernet If or SNAP packet formats. IPX can use all four
Ethernetformats (depending on configuration), AppleTalk (a
trademark of Apple Computer Corp., Cupertino, Calif.) uses
the SNAP packet format and NetBios typically uses the
Ethermet 802.2 LLC format. The protocol carried by the
packet thus can be leamed either explicitly or implicitly
from the packet header.

Layer 4 protocols such as Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) are built on top
of the Layer 3 IP protocol. In addition to the information

EX 1017 Page 347

I
"·

US 6,570,875 Bl
9

above, the headers for these protocols further contain rource
and destination rocket numbers, which can identify indi
vidual applications such as FTP, Telnet, e-mail and HTTP,
running on IP hosts. Specifically, the protocol carried field in
the IP header identifies the protocol carried by the IP 5
datagram. For example, if the protocol carried field has a
value of 6, this indicates that the IP datagram carries a TCP
packet, whereas a value of 17 indicates that a UDP packet
follows the IP header.

10
engine 100 notifies CPU 80 via CPU interface 110 that the
packet is wresolved (step S56). The message to the CPU
contains the source and destination addresses (and possibly
socket numbers), the port on which the packet arrived, and
an indication that the 'source end of the flow was unresolved.
As will be described in more detail below, CPU 80 will
process the packet, and if appropriate, will create entries in
flow table 70 containing forwarding infoxmation and links to
information relating to any pxeviously-configurcd filters,

Toe IPX protocol is also at Layer 3 of the OSI model. 10 priorities, mirrors or VLANs corresponding to the unre
solved ends of the flow. Most Novell NetWare (trademadr; of Novell, Inc. of Provo,

Utah) applicatioos run on top of IPX. IPX headers contain
rource and destination socket numbers which identify appli- If both the source and destination ends of the flow are
catioos running on the hosts, in addition to IPX source and unresolved, switch engine 100 notifies CPU 80 via CPU
destination network and IPX source and destination node interface 110 that the both ends of the flow were umesolved
addresses, which identify end-to-end IPX hosts. Different 15 (step S58). Moreover, switch engine 100 forwards the packet
Novell Netware Layer 4 protocols use the IPX datagram to on all ports indicated by the default broadcast enable entry
send and receive packets. The protocol field in the IPX for this protocol. As will be explained in more detail below,
header indicates which protocol (SAP or RIP) the IPX default entries exist for IP, IPX, and non-lP/IPX types of
datagram is carrying.

20
flows. Switch engine 100 can determine which ports on

As evident from the foregoing, flows of packets associ- which to forward the packet according to the de.fault broad-
atcd with IP and JPX protocols can thus be identified by their cast enable entry, and causes the packet to be foiwarded to
IP/IPX source and destination node and/or socket a default 1/0 queue (typically one with lowest priority)
information, and those associated with other protocols can associated with each of the indicated ports (step S60).
be identified by their source and destination Ethernet

25
After the unresolved packet is broadcast or foiwarded in

addresses. In this example of the invention, flows of packets steps S50 or S60, the destination node, if attached to the
associated with IP and IPX protocols, as well as ARP and switch, will respond. The response packet will be processed
RARP packets, are processed by the multiprotocol switch to as described above and a flow table entry for the responding
support special Layer 3+ processing and/or routing across node will be created by the CPU as in step SS6. At that point,
different networks. Accordingly, as shown in FIG. 7, switch

30
flow table entries for both ends of the flow will have been

engine 100 determines the protocol type from the packet created so that any subsequent packets belonging to that
(step S28). As shown above, this may be explicitly defined flow will be forwarded by switch engine 100 at wire speed.
in the header as in the Ethernet Type D type field or may be CPU pl'OCe8Sing for unresolved IP/IPX or ARP/RARP
implicitly derived from other information in the IP or IPX packets, as initiated in step S48 of FIG. 8 for example, is
header. If the packet is not an IP/IPX or ARP/RARP packet

35
further illustrated in FIG. !I.

(determined in step S30), processing branches to step S26 First, CPU 80 determines whether the source of the flow
and it is processed and switched as a Layer 2 packet, is unresolved, from the message sent by switch engine 100
regardless of the protocol carried by the packet. Otheiwisc, for example (step S70). If so, processing advances to step
processing advances to step S32 and the packet is processed S72, where a flow table entry for the source of the flow is
in accordance with Layer 3+ protocols.

40
created by software executing in CPU 80, in accordance

RG. 8 further illustrates switch engine processing of with any filters, mirror.., and priorities associated with the
Layer 3+ packets, which processing can be included in step source node (that may hue been configured by the network
S32 of FIG. 7 for example. administrator) in flow table 70.

Switch engine 100 first extracts the address information Processing then advances to step S74, where CPU 80
for both the source and destination ends of the flow with 45 determines whether the destination of the flow is unresolved,
which the packet is associated (step S40). As shown above, from the message sent by switch engine 100 for example. If
headers of packets associated with IP and IPX protocols not, then the source was the only unrcsolved portion of the
include IP/IPX source and destination node addresses and flow, and so the packet can be foiwarded in accordance with
may further include socket numbers. the flow table information (step S76).

Switch engine 100 then checks to sec whether entries 50 If the destination of the flow is unresolved, as determined
exist in the flow table for both ends of the flow (step S42). in step S74, processing continues to step S78, where CPU 80
If entries exists for both ends of the flow (detexmined in step determines whether the packet is addressed to the switch.
S44), the packet is forwarded at wire speed in accordance Such packets can include, for example, ARP packets from
with any filters, mirrors, priorities or VI.ANs established in hosts that are attempting to get the Ethernet address of their
the flow table entry (step S46). 55 IP gateway. Since the IP address of the gateway is actually

If flow table entries do not exist for both ends of the flow, associated with a port of the switch, such ARP requests must
the packet is "unresolved." For unresolved IP/IPX and be processed by the switch and responded to appropriately
ARP/RARP packets, switch engine 100 forwards or broad- by, for example, sending an ARP response back to the
casts the packet as best it can under the circumstances. If requesting host containing the Ethernet address of the gate-
only the destination end of the flow was unresolved 60 way interface (step S80). Such packets can also include
(determined in step S48), a flow table entry exists for the responses to ARP requests sent by CPU 80 to determine the
source end of the flow, containing a broadcast enable entry Ethernet address of the host for programming the swap fields
for the source. Accordingly, switch engine 100 forwards the of a flow table entry, as will be described in more detail
packet on the port(s) indicated by the broadcast enable entry below in connection with the processing of steps S88 and
lSSOciated with the source (step S56). 65 S90. The dashed line connecting steps S80 and S!IO in FIG.

If only the source end of the flow is unrerolved, a flow !I thus represents the logical processing flow when an ARP
table entry exists for the destination. In this situation, switch request sent by CPU 80 in step S88 is responded to by the

EX 1017 Page 348

4al

US 6,570,875 B1
9

above, the headers for these protocols further contain source
and destination socket numbers, which can identify indi-
vidual applications such as FTP, Telnet, e-mail and HTTP,
running on IP hosts. Specifically, the protocol carried field in
the IP header identifies the protocol carried by the IP
datagram. Por example, if the protocol carried field has a
value of 6, this indicates that the IP datagram carries a TCP
packet, whereas a value of 17 indicates that a UDP packet
follows the IP header.

The [PX protocol is also at Layer 3 of the OSI model.
Most Novell NefWare (trademark of Novell, Inc. of Provo,
Utah) applications run on top of IPX. IPX headers contain
source and destination socket numbers which identify appli-
cations running on the hosts, in addition to IPX source and
destination network and IPX source and destination node
addresses, which identify end-to-end IPX hosts. Different
Novell Netware Layer 4 protocols use the IPX datagram to
send and receive packets. The protocol field in the IPX
header indicates which protocol (SAP or RIP) the IPX
datagram is carrymeg.

As evident from the foregoing, flows of packets associ-
ated with IP and IPX protocols can thus be identified by their
IP/IPX source and destination node and/or socket
information, and those associated with other protocols can
be identified by their source and destination Ethernet
addresses. In this example of the invention, flows ofpackets
associated with IP and IPX protocols, as well as ARP and
RARP packets, are processed by the multiprotocol switch to
support special Layer 3+ processing and/or routing across
different networks. Accordingly, as shown in FIG. 7, switch
engine 100 determines the protocol type from the packet
(step $28). As shown above, this may be explicitly defined
in the header as in the Ethernet Type II type field or may be
implicitly derived from other information in the IP or IPX
header. If the packet is not an IPAPX or ARP/RARP packet
(determined in step S30), processing branches to step 526
and it is processed and switched as a Layer 2 packet,
regardless of the protocol carried by the packet. Otherwise,
processing advances to step S32 andthe packet is processed
in accordance with Layer 3+ protocols.

FIG. 8 further illustrates switch engine processing of
Layer 3+ packeis, which processing can be included in step
$32 of FIG. 7 for example.

Switch engine 100 first extracts the address information
for both the source and destination ends of the flow with

whichthe packet is associated (step S40). As shown above,
headers of packets associated with IP and IPX protocols
inchide IP/IPX source and destination node addresses and
may further include socket numbers.

Switch engine 100 then checks to sce whether entries
exist in the flow table for both ends of the flow (step S42).
Hfentries exists for both ends of the flow (determinedin step
$44), the packet is forwarded at wire speed in accordance
with any filters, mirrors, priorities or VLANsestablished in
the flow table entry (step S46).

If flow table entries do not exist for both ends ofthe flow,
the packet is “unresolved.” For unresolved IP/IPX and
ARP/RARP packets, switch engine 100 forwards or broad-
Casts the packet as best it can wnder the circumstances. If
Only the destination end of the flow was unresolved
(deicrmined in step S48), a flow table entry exists for the
Source end of the flow, containing a broadcast enable entry
for the source. Accordingly, switch engine 100 forwards the
Packet on the port(s) indicated by the broadcast enable entry
associated with the source (step S56).

If only the source end of the flow is unresolved, a flow
table entry exists for the destination.In this situation, switch

55

60

8

10

engine 100 notifies CPU 80 via CPU interface 110 that the
packet is unresolved (step 556). The message to the CPU
contains the source and destination addresses (and possibly
socket numbers), the port on which the packet arrived, and
an indication that the’source end of the flow was uaresolved.
As will be described in more detail below, CPU $0 will
process the packet, and if appropriate, will create entries in
flow table 70 containing forwarding information and links to
information relating to any previously-configured filters,
priorities, mirrors or VLANs corresponding to the unre-
solved ends of the flow.

If both the source and destination ends of the flow are

unresolved, switch engine 100 notifies CPU 80 via CPU
interface 110 that the both ends of the flow were unresolved

(step S58). Moreover, switch engine 100 forwards the packet
on all ports indicated by the default broadcast enable entry
for this protocol. As will be explained in more detail below,
default entries exist for IP, IPX, and non-IPAPX types of
flows. Switch engine 100 can determine which ports on
which to forward the packet accordingto the default broad-
cast enable entry, and causes the packet to be forwarded to
a default 1/0 queue (typically one with lowest priority)
associated with each of the indicated ports (step S64).

After the unresolved packet is broadcast or forwarded in
steps S50 or S60, the destination node, if attached to the
switch, will respond. The response packet will be processed
as described above and a flow table entry for the responding
node will be created by the CPUas in step $56. At that point,
flow table entries for both ends of the flow will have been

created so that any subsequent packets belonging to that
flow will be forwarded by switch engine 100 at wire speed.

CPU processing for unresolved IPAPX or ARP/RARP
packets, as initiated in step S48 of FIG. 8 for example, is
further illustrated in FIG. 9.

First, CPU 80 determines whether the source of the flow
is unresolved, from the message sent by switch engine 100
for example (step $70). If so, processing advances to step
$72, where a flow table entry for the source of the flow is
created by software executing in CPU 80, in accordance
with any filters, mirrors, and priorities associated with the
source node (that may have been configured by the network
administrator) in flow table 70.

Processing then advances to step S74, where CPU 80
determines whether the destination ofthe flow is unresolved,
from the message sent by switch engine 100 for example. If
not, then the source was the only unresolved portion of the
flow, and so the packet can be forwarded in accordance with
the flow table information (step $76).

If the destination of the flow is uaresolved, as determined
in step $74, processing continues to step S78, where CPU 80
determines whether the packet is addressed to the switch.
Such packets can include, for example, ARP packets from
hosts that are attempting to get the Ethemet address of their
IP gateway. Since the IP address of the gateway is actually
associated with a port of the switch, such ARP requests must
be processed by the switch and responded to appropniately
by, for example, sending an ARP response back to the
requesting host containing the Ethernet address of the gate-
way interface (step S80). Such packets can also include
responses to ARP requests sent by CPU 86 to determine the
Ethernet address of the host for programming the swapfields
of a flow table entry, as will be described in more detail
below in connection with the processing of steps S88 and
$90. The dashed line connecting steps S80 and S90 in FIG.
9 thus represents the logical processing flow when an ARP
request sent by CPU 80 in step S88 is responded to by the

EX 1017 Page 348

I

.. ~,...,{

,;,!

~:i:1-
"·

US 6,570,875 Bl
11

host at the requested IP node, which processing will be
further described below.

If the destination of the flow is unresolved and the packet
is not addressed to tbe switch, a flow table entry needs to be
created for the destination of the flow. First, it must be 5

determined whether the flow requires switching or routing.
This is determined in step S62. If the destination Ethernet
address of the packet is the Ethernet address of the port of
the switch on which tbe packet arrived (as determined from
address registers 105) and the destination IP or IPX address 10

is not the IP/IPX address of the switch, then the packet needs

12
swap field of the entry with the Ethernet address information
determined in the preceding steps (step S96).

Processing for creating flow table entries for unresolved
packets, as performed in steps S72 and S94 of FIG. 9 for
example, is further illustrated in FIG. 10.

First, in step SlOO, CPU 80 extracts the last twelve (least
significant) bits (0-11) of the Ethernet or IP/IPX address that
could not be resolved by switch engine 100. CPU 80 uses
these twelve bits as a bash into flow table 70 to determine
whether an address resolution bash entry exists in address
resolution hash table 140 for the unresolved address (step
S102). The address resolution bash entry is used as a starting
link for all forwarding and other packet processing infor
mation associated with the node corresponding to the unre
solved address.

Separate bash areas are maintained for Ethernet, IP and
IPX address tables. Each bash entry is 32 bits long and bas
a format as shown below (bit positions of each field shown

to be routed. If the destination Ethernet address is not the
Ethernet address of the port of the switch, CPU 80 further
looks up the routing domains configured in tables 81-1 ...
81-R in configuration table 85. If a packet is going from 15

aport in one routing domain to a port in another routing
domain, then the packet will require routing. Otherwise, it is
switched. 1bis is required to support IP multicast routing, as
will be described even further below.

20
in parentheses):

If it is determined in step S62 that the unresolved desti
nation is in another network, the Ethernet address of the
destination needs to be determined to perform routing. That
is, during routing, switch engine 100 needs to replace the
source Ethernet address in the packet with the Ethernet
address of the switch port on which the packet is being 25

forwarded, and the destination Ethernet address of the
packet needs to be replaced by the Ethernet address of the
destination node or the router en route to the destination. It
is this destination Ethernet address that needs to be deter-
mined. 30

If the packet is an IP packet (as determined in step S86),
CPU 80 determines the IP network that the destination
belongs to and determines the port(s) that connect to or
belong to that network. CPU 80 can do this, for example, by

35
cross-referencing the destination IP address with the con
tents of routing table 65 (created statically by an adminis
trator or dynamically learned using routing protocols such as
RIP and OSPF). lf no such network exists, CPU 80 sends an
ICMP redirect message to the host indicating that the

40
network was unreachable. If it finds an entry in routing table
fiS for the network, CPU 80 sends an ARP request packet on
all the ports belonging to that network (step S88). The
destination or next bop sends an ARP response containing its
Ethernet address. Switch engine 100 sends this respoase to

45
CPU 80 (step S48 in FIG. 8). CPU 80 extracts the Ethernet
address contained in the respome packet, and records the
port on which the packet arrived (step S80 and step S90). For
further information regarding binding machine level

: . addrC&Ses with network level addresses using ARP, see
50 , pertlly Douglas E. Comer and David L. Stevens, Inter

'-'fClWOrking with TCP/IP-Vol II: Design, Implementation,
Internals, 1994, Chapter 4, pp. 39-59.

,If the packet is an IPX packet that needs to be routed and
destination address is unresolved (as determined in steps s5
, · and S86), the Ethernet address of the destination is

· using lPX RIP information in routing tables 6S
by CPU 80 (if the destination is a Netware

If the destination is a Netware client, then the
n Ethernet address is already known. In either 60

·the Ethernet address associated with the IPX desti
•ddress. is determined in step S92. For further infor
regarding mute determination and updating using

sec generally IPX Routing Guide, published by Novell

65
80 then creates a flow table entry for the destination

Dow (step S94) and programs the Ethernet address

Hash~
caacd (31)

Rc:cord Oloct
(27-10)

Nll!llber of
Rc:cords (!1-2)

Reconl link No Entrlu
Vi,lid (1) Valid (0)

The Hash Accessed field indicates whether this hash has
been accessed by switch engine 100. This field can thus be
used to age out hashes using the Least Recently Used (LRU)
algorithm. for example. Aging software executing on CPU
80 initially sets this bit on all the bash entries. When a node
associated with this bash entry sends data on the network,
switch engine 100 clears this bit. The aging software can
later and/or periodically delete bash entries that do not have
the Hash Accessed bit cleared.

The Record Offset field contains the address offset from
the Base Record Address of address resolution record table
150 at which the finlt n:cord entry for the group of addresses
that map to this bash is stored. The first address resolution
record entry associated with this hash will thus reside at
location (Base Record Address+Record Offset). The Base
Record Address is stored in a register within address regis
ters 10S. The Record Offset field is originally set to zero, but
CPU 80 updates it with the offset of the address resolution
record entry for this flow, after such entry is stored in address
resolution record table 150, so as to link it to this bash entry.

The Number of Records field indicates the number of
addresses (minus one) that the switch bas learned map to this
hash. This field is originally set to zero, but is updated when
CPU 80 creates additional address resolution record entries
that are linked to this bash.

The Record Link Valid field, when set, indicates that the
data stored at location (Base Record Address+Record
Offset+(Number of Recordsx2)+2) is actually a Link Entry.
Since each hash can only point to 128 address resolution
record entries (7 bit field), this bit can be used to increase the
number of records for this hash value. If this bit is not set,
and the No Entries Valid bit is a1w not set, then the data
stored at (Base Record Address+Record Offset+(Number of
Recordsx2)) is the last possible address resolution record for
this particular bash entry.

The No Entries Valid bit indicates that there are no valid
addresses that map to this hash. This bit is originally set, but
is cleared when CPU 80 creates an address resolution record
corresponding to this hash entry.

Accordingly, in step Sl02, when CPU 80 next determines
whether a valid hash entry exists in address resolution hash

EX 1017 Page 349

US 6,570,875 B1
UW

host at the requested IP node, which processing will be
further described below.

If the destination of the flow is unresolved and the packet
is not addressed to the switch, a flow table entry needs to be
created for the destination of the flow. First, it must be
determined whether the flow requires switching or routing.
This is determined in step S62. If the destination Ethernet
address of the packet is the Ethernet address of the port of
the switch on which the packet arrived (as determined from
address registers 105) and the destination IP or IPX address
is not the IP/IPX address of the switch, then the packet needs
io be routed. If the destination Ethemet address is not the
Ethemet address of the port of the switch, CPU 80 further
looks up the routing domains configured in tables 81-1 . . .
81-R in configuration table 85. If a packet is going from
aport in one routing domain to a port in another routing
domain, then the packet will require routing. Otherwise,it is
switched. This is required to support IP multicast routing, as
will be described even further below.

If it is determined in step S62 that the unresolved desti-
nation is in another network, the Ethemet address of the
destination needs to be determined to perform routing. That
is, during routing, switch engine 100 needs to replace the
source Ethernet address in the packet with the Ethernet
address of the switch port on which the packet is being
forwarded, and the destination Ethernet address of the
packet needs to be replaced by the Ethernet address of the
destination node or the router en route to the destination. It
is this destination Ethernet address that needs to be deter-
mined.

If the packetis an IP packet (as determined in step $86),
CPU 80 determines the IP network that the destination

belongs to and determines the port(s) that connect to or
de belong to that network. CPU 80 can dothis, for example, by
noe cross-referencing the destination IP address with the con-

tents of routing table 65 (created statically by an adminis-
trator or dynamically learned using routing protocols such as
RIP and OSPF). lf no such network exists, CPU 80 sends an
ICMP redirect message to the host indicating thal the
network was unreachable.If it finds an entry in routing table
65 for the network, CPU 80 sends an ARP request packet on
all ihe ports belonging to that network (step S88). The
destination or next bop sends an ARP response containing its
Ethemet address. Switch engine 100 sends this response to
CPU 80 (step S48 in FIG. 8). CPU 88 extracts the Ethernet
address contained in the response packet, and records the

; Porton which the packetarrived (step S80 and step S90). For
B. further information regarding binding machine level

2 addresses with network level addresses using ARP, see
B generally Douglas E. Comer and David L. Stevens, Enter-

Belworking with TCPAP—Vol. Il: Design, Implementation,
and Internals, 1994, Chapter 4, pp. 39-59.

AE the packet is an IPX packet that needs to be routed and
destination address is unresolved (as determined in steps
-and S86), the Ethemet address of the destination is

mined using IPX RIP information in routing tables 65
lained by CPU 80 (if the destination is a Netware

c D Lf the destination is a Netware client, then the
Aation Ethemet address is already known. In cither

‘the Ethemet address associated with the IPX desti-
a addressis determined in step $92. For futher infor-

ne Tegarding route determination and updating using
eS Benerally IPX Routing Guide,published by Novell
as

: ‘e then creates a flow table entry for the destinationme How (;Step S94) and programs the Ethernet address

12

swap field of the entry with the Ethernet address information
determined in the preceding steps (step $96).

Processing for creating flow table entries for unresolved
packets, as performed in steps $72 and $94 of FIG. 9 for
example, is further illustrated in FIG. 10.

First, in step $100, CPU 80 extracts the last twelve (least
significant) bits (0-11) of the Ethemet or IP/IPX address that
could not be resolved by switch engine 100. CPU 80 uses
these twelve bits as a hash into flow table 76 to determine
whether an address resolution hash entry exists in address
resolution hash table 140 for the unresolved address (step
$102). The address resolution bash entry isused as a starting
link for all forwarding and other packet processing infor-
mation associated with the node corresponding to the unre-
solved address.

Separate hash areas are maintained for Ethernet, IP and
IPX address tables. Each hash entry is 32 bits long and bas
a format as shown below (bit positions of each field shown
in parentheses):

Hash Ac Record Offset

ceased G1) (27-10)
Number of

Records (9-2)
Record Link No Entries

Valid (1) Valid (0)

The Hash Accessed field indicates whether this hash has

been accessed by switch engine 100. This field can thus be
used to age out hashes using the Least Recently Used (LRU)
algorithm, for example. Aging software executing on CPU

3 g0 initially sets this bit on all the hash entries. When a node

65

associated with this hash entry sends data on the network,
switch engine 100 clears this bit. The aging software can
later and/or periodically delete hash entries that do not have
the Hash Accessed bit cleared.

The Record Offset field contains the address offset from
the Base Record Address of address resolution record table
150 at which the first record entry for the group of addresses
that map to this bash is stored. The first address resolution
record entry associated with this hash will thus reside at
location (Base Record Address+Record Offset). The Base
Recond Address is stored in a register within address regis-
ters 105. The Record Offsetfield is originally set to zero, but
CPU 80 updates it with the offset of the address resolution
record entry for this flow, after such entry is stored in address
resolution record table 150, so as to link it to this bash entry.

The Number of Records field indicates the number of
addresses (minus one) that the switch has learned mapto this
hash.This field is originally set to zero, but is updated when
CPU 80 creates additional address resolution record entries
that are linked to this bash,

The Record Link Valid field, when set, indicates that the
data stored at location (Base Record Address+Record
Offsets(Number of Recordsx2)+2) is actually a Link Entry.
Since cach bash can only point to 128 address resolution
record entries (7 bit field), this bit can be used to increase the
number of records for this hash value. If this bit is not set,
and tbe No Entries Valid bit is also not set, then the data
stored at (Base Record Address+Record Offset+(Number of
Recordsx2))is the last possible address resolution record for
this particular bash entry.

The No Entries Valid bit indicates that there are no valid
addressesthat mapto this hash. This bitis originally set, but
is cleared when CPU 80 creates an address resolution record
corresponding to this hash entry.

Accordingly, in step S102, when CPU 80 next determines
whether a valid hash entry exists in address resolution hash

EX 1017 Page 349

I

US 6,570,875 Bl
13 14

140 at the position corresponding to the twelve bils of the is located at Base Address+Priority Tag Addr. CPU 80
unresolved address, it inspecls the No Entries Valid field of initially sets the Priority Tag Addr field to zero. If priorities
the entry. If the bit is set, CPU 80 clears it and all other bits are configured for this flow, as will be explained below, a
in the entry, thereby creating a valid hash entry at the priority tag will be configured, priority processing will be
position in address resolution hash 140 corresponding to the 5 enabled by setting a bit in the Protocol Ofli;et entry, and the
unresolved address (step S104). address to the configured priority tag will be programmed in

CPU 80 next increments the Number of Records field in this field to link the priority tag to the address resolution
the hash entry to indicate that an additional address resolu- record entry.
lion record entry for this hash will be created (step S106). If The Mirror Enable field qualifies the mirror tag (tag
the number of records that will exist for this hash exceeds 10 address found in the protocol entry). If this bit is set, mirror
the field size of the Number of Records field, that field is processing is enabled for this flow. CPU 80 initially sets thi">
decremented and the Record Link Valid field bit is set. bit to zero. If mirrors are configured for the flow, as

Processing advances to step S108, where CPU 80 creates explained in more detail below, a mirror tag will be
an entry in address resolution record table 150 for the host configured, and the mirrors will be enabled by setting this
corresponding to the unresolved address. The format of an 15 bit.
address resolution record entry is shown below. After creating the address ccsolution record for the unre-

solved portion of the flow, processing advances to step S100,
where CPU 80 determines how many address resolution

Protorol Offset (31-18) Ethernet Addrcoo bila 15-12,
23-16, 31-26 (17--0)

OR

records now exist for this hash by examining the Number of
20 Records field in tbe hash entry. If this is the first address

resolution record entry created for this hash, CPU 80 simply
stores the address resolution record entry ii created in
address resolution record table 150 at the address corre
sponding to Base Record Address+Record Offset (step Port

Number
'31-23)

l'rloril.y
"fig Addr
(22-19)

Mirror
Enable

(18)

IP/IPX Addr ... bits 15-12,
23-16, 31-26 (17--0)

Ethernet Addr ... bill 25-24,
39-32, 47-40 (17--0)

OR
rP/IPX Addrcaa bill 25-2-4 and

Socket bits 0-15 (17--0)

25 Sll2). It then links this entry to the address resolution hash
entry by storing the address offi.et from the Base Record
Address where the entry is stored in the Record Offset field
of the bash.

CPU 80 fills the Address fields with the remaining 36 bits
30

If it is determined in step SUO that there are more than
of the unresolved address that were not used as the initial one address resolution record entries for this hash, CPU 80
hash. For non-IP/IPX packets, CPU fills these fields with the sorts the existing entries with the newly created entry in
remaining most significant bits of the Ethernet address order of the remaining address bits of the unresolved flow

, .. l,lOlltained in the unresolved entry mcssa.ge from switch address, and stores them accordingly (step S114). The
,,.,ftgine LOO. For IP and IPX packets, CPU 80 fills these fields

35
entries are already linked to the address resolution hash

:·'!lrilh the remaining most significant bits of the IP/IPX entry by the previous programming of the Record Offi.et
· tcldress and the host application socket number. If no special field.
·;,'9ufigurations (filter, mirror or priority) have been config- Processing then advances to step S116, where CPU 80
:pd for the host application, CPU 80 inserts a "don't care" determines whether·any special processing has been config-
P1!e of hex Oxffff for the socket number to indicate that the 4() urcd or is otherwise required for this flow. This includes

t number is not used to identify the IP/IPX flow with determining whether any filters, mirrors, priorities or
ich this entry is associated. Moreover, if the protocol VLANs are associated with this flow. CPU 80 does this, by

as ICMP, IGMP)carrying the packet does not use cross-referencing the flow identification information in the
ct numbers a "don't care" value is used for the socket unresolved packet with the entries in configuration table 85.

Pon Number field indicates the port (59-1 ... 50-N)
·c1i this Ethernet (or IP or IPX) address resides. CPU

this field with the port number contained in the
lved entry message from switch engine 100.
Protocol Offset field indicates the offset from the

·,Protocol Address at which the entries in the Protocol
tbr each protocol associated with this flow are stored.

Protocol Address is stored in a register in address
105. The protocol the packet belongs to is used as

45 If it is determined in step S116 that no filters, mirrors,
priorities, VLANs or swap addresses need to be pro
grammed for this flow (i.e. routing is not configured for the
switch), the address resolution record is linked to a default
set of protocol entries which are all linked in tum to a default

50 network entry (step Sl18). If this is a TCP, UDP or IPX
packet with a socket number, the socket number portion of
the remaining address bits in the address resolution record
entry for this flow will be set to the "don't care" value of
Oxffff. The default network entry will be descnoed in more

55 detail below. . ment from the Protocol Offset to point to the
e°:try. :"3e increroenls for each protocol are Otherwise, if it is determined in step S116 that thi,; flow

~ regi.ster m address registers 105. The address of requires special handling, unique entries in protocol table
m the Protocol Table for the flow associated with 160 and network table 170 for the flow roust be created, and

resolutinn record will thus be Base Protocol processing by CPU 80 continues by first creating a protocol
Protocol Offi.et+Protocol Increment. If and when 60 entry (step S120) .

. etea~es a protocol table entry for this flow, explained The address pointed to by the Protocol Offset field of tbe
.. ail below, CPU 80 fills the Protocol Offset field addccss resolution record indeICs a list of entries in protocol

• ~rotocol entry to this address resolution record. table 160. Different filters, mirrors and priorities can be
~ty ':('~Addr field provides the address to one of established between two nodes and/or processes depending

• pnortty tags l!Jfl. The Base Address for priority 65 on the particular protocol used for coromunication between
u stored in a register in address registers 105. them. The protocol increment for the particular protocol

• the address to the priority tag field for this flow (provided by address registers 105) points to tbe appropriate

EX 1017 Page 350

US 6,570,375 B1
13

140 at the position corresponding to the twelve bits of the
unresolved address, it inspects the No Entries Valid field of
the entry. If the bit is set, CPU 80 clears it and all other bits
in the entry, thereby creating a valid bash entry at the
position in address resolution bash 140 correspondingto the
uuresolved address (step S104).

CPU 80 next increments the Number of Records field in
the hash entry to indicate that an additional address resalu-
tion record entry for this hash will be created (step $106). If
the number of records that will exist for this hash exceeds
the field size of the Number of Records field, that field is
decremented and the Record Link Valid field bit is set.

Processing advances to step $108, where CPU 80 creates
an entry in address resolution record table 150 for the bost
corresponding to the unresolved address. The format of an
address resolution record entry is shown below.

Protocol Offeet (31-18) Ethemet Address bits 15-12,
23-16, 31-26 (17-0)OR

IPAPX Addreas bits 15-12,
23-16, 31-26 (17-0)

Port Priority Mirror Ethemet Address bits 25-24,
Nomher Tag Addr=Enable 39-32, 47-40 (17-0)
CI 19) ary ORIPAPX Addreas bite 25-24 and

Socket bits 0-15 (17-0)

CPU 80 fills the Address fields with the remaining 36 bits
_ of the unresolved address that were not used as the initial

bash. Por non-IP/APX packets, CPU fills these fields with the
«. Wemaining most significant bits of the Ethemet address

_ $ontained in the unresolved entry message from switch
‘engine 100. For IP and IPX packets, CPU 80fills these ficlds

F-with ihe remaining most significant bits of the IPAPX
we. wkdress and the host application socket number. If no special

sonfigurations (filter, mirror or priority) have been config-
y pred for the host application, CPU 80 inserts a “don’t care”

alue of hex Oxfiif for the socket numberto indicate that the
wacket number is not used to identify the IPAPX flow with
Hwhich this entry is associated. Moreover, if the protocol

Amich as ICMP, IGMP)carrying the packet does not use
facckel numbers a “don’t care” value is used for the socketHS

*
i)ef

fae Port Numberfield indicates the port (50-1 . . . 50-N)
gwxhich this Ethemet (or IP or IPX) address resides. CPU

fils this field with the port number contained in the
olved eniry message from switch engine 100.
© Protocol Offset field indicates the offset from the

pe.Protocol Address at which the entries in the Protocol
-for each protocol associated with this flow are stored.
petesc: Protocol Address is stored in a register in address
wets 105. The protocol the packet belongs to is used as
eefement from the Protocol Offset to point to the

Pe entry. The increments for cach protocol are
ment & TCgister in address registers 105. The address of

in the Protocol Table for the flow associated with
pees resolution record will thus be Base Protocol
Bet Protocol Offset+Protocol Increment. If and when
pe Steates a protocoltable entry forthis flow, explained
Pdctail below, CPU 80 fills the Protocol Offset field
pee Protocol entry to this address resolution record.

> onty ‘Tag Addr field provides the address to one of
* inuority tags 190. The Base Addressforpriority

a Stored in a Tegister in address registers 105.
PY,theaddress to the priority tag field for this flow

20

25

a

60

65

14
is Iocated at Base Address+Priority Tag Addr. CPU 80
initially sets the Priority Tag Addr field to zero. If priorities
are configured for this flow, as will be explained below, a
priority tag will be configured, priority processing will be
enabled by setting a bit in the Protocol Offset entry, and the
address to the configured priority tag will be programmed in
this field to link the priority tag to the address resolution
record entry.

The Mirror Enable field qualifies the mirror tag (tag
address found in the protocol entry). If this bit is set, mirror
processing is enafled for this flow. CPU 86 initially sets this
bit to zero. If mirrors are configured for the flow, as
explained in more detail below, a mirror tag will be
configured, and the mirrors will be enabled by setting this
bit.

After creating the address resolution record for the unre-
solved portion ofthe flow, processing advancesto step $100,
where CPU 80 determines how many address resolution
records now exist for this hash by examining the Number of
Records field in the hash entry. If this is the first address
resolution record entry created for this hash, CPU 80 simply
stores the address resolution record entry it creaied mn
address resolution record table 150 at the address oorre-

sponding to Base Record Address+Record Offset (step
$112). It then links this entry to the address resolution bash
entry by storing the address offset from the Base Record
Address where the cntry is stored in the Record Offset field
of the hash.

Lf it is determined in step S110 that there are more than
one address resolution record entries for this hash, CPU 80
sorts the existing entries with the newly created entry in
order of the remaining address bits of the unresolved flow
address, and stores them accordingly (step 5114). The
entries are already linked to the address resolution hash
entry by the previous programming of the Record Offset
field.

Processing then advances to siep S116, where CPU 80
determines whetherany special processing has been config-
ured or is otherwise required for this flow. This includes
determining whether any filters, mirrors, priorities or
VLANsare associated with this flow. CPU 80 does this, by
cross-referencing the flow identification information in the
unresolved packet with the entrics in configuration table 85.

If it is determined in step S116 that no filters, mirrors,
piorities, VLANs or swap addresses need to be pro-
grammed forthis flow (i.e. routing is not configured for the
switch), the address resolution record is linked to a default
set ofprotocol entrieswhich are all linked in turn io a default
network entry (step $118). If this is a TCR, UDP or IPX
packet with a socket number, the socket number portion of
the remaining address bits in the address resolution record
entry for this flow will be set to the “don’t care” value of
Oxffff. The default network entry will be described in more
detail below.

Otherwise, if it is determined in step S116 that this flow
ires special handling, unique entries in protocol table

160 and network table 170 for the flow must be created, and
processing by CPU 8f continues by first creating a protocol
entry (step $120).

The address pointed to by the Protocol Offsetfield of the
address resolution record indexes a list of entries in protocol
table 160. Different filters, mirrors and priorities can be
established between two nodes and/or processes depending
on the particular protocol used for communication between
them. The protocol increment for the particular protocol
(provided by address registers 105) points to the appropriate

EX 1017 Page 350

US 6,570,875 Bl
15

set of filters, etc. for the flow, as indicated by a 32-bit entry
in the protocol table, having the following format:

F1tr Mirror
Addr Addr

(31-27) (26-23)

Filter
Enable

(22)

Priority
Queue
(21-19)

B/W
(18-15)

Priority
Enable

(14)

Network
Offset
(13----0)

5

16
mirror tags 210 which is stored in a register in address
registers 105. The port(s) on which the flow is to be mirrored
is configured in the Mirror Entry of the network entry linked
to this protocol entry (descnbed below).

The Priority Enable field qualifies the priority tag
(addressed by the Priority Tag Addr in the address resolution
record entry corresponding to this flow). If this bit is set, the
flow is processed at a higher priority. CPU 80 initially sets
this bit to zero. If priorities are configured for this flow, a

The Fltr Addr field provides the address to one of the 32
32-bit filter tags 200. The Base Address for filter tags 200 is
stored in a register in address registers 105. Accordingly, the
address to the filter tag for this flow is located at Base
Address+Fltr Addr. CPU 80 initially sets the Fltr Addr field
to zero. If filters are configured for this flow, CPU 80 will
create a filter tag in filter tags 200 and program the address
of the tag within filter tags 200 in this field to link the
configured filter tag to the protocol entry. CPU 80 deter
mines whether any filters are configured for this flow by
cross-referencing the filter tables 76-1 ... 76-F in configu
ration table 85 with the flow identification information for
this side of the flow.

10
priority tag will be configured, priority processing will be
enabled by setting this bit, and the address to the configured
priority tag within priority tags 190 will be programmed in
the Priority Tag Addr field of the address resolution record
entry linked to this protocol entry to link the priority tag to

15
the address resolution record entry.

CPU 80 determines whether any priorities arc configured
for this flow by cross-referencing the priority tables 77-1 ...
77-P in configuration table 85 with the flow identification
information for this side of the flow. If any of the established
priorities correspond to this flow, a priority tag will be

Each 32-bit filter tag contains 8 bits of veto information
and 24 bits of match information. CPU 80 configures filter
tags for each side (source and destination) of the flow to be 25
filtered. If packets belonging to the flow arc to be blocked (as

20 configured for it. Each priority tag contains 1 bit of match
information. If packets belonging to the flow are to be
forwarded with priority, CPU 80 enables priority by setting
the Priority Enable field in the protocol entries of both ends
of the flow, configures a priority tag in priority tags 190, and
links the address resolution records of both ends of the flow
to the same configured priority tag. The level of priority
associated with this flow is determined by the Priority Queue
field and the service level for that queue programmed in
priority configuration registers 125.

in firewalling), CPU 80 configures the filter tags for the
source and destination sides of the flow so that their veto bits
do not match and their match bits do match. For example, if
a firewall is established between a first network having 30

nodes A, B and C and a second network having nodes D, E
and F, CPU 80 may configure the filter tags for nodes A, B
and C such that they have match bits of OxOOOOOl and veto
bits of 0x02, while nodes D, E and Fare configured with
filter tags having match bits of OxOOOOOl and veto bits of 35

0x03. Accordingly, nodes A, B and C will be able to
communicate with each other, but not with nodes D, E and
F, who are also able to communicate with each other. Now
assume that node C in the first network is to be given the
privilege of communicating with nodes in the second net- 40
work. This can be done by changing its match bits to
0x000002. Now node C will be able to communicate with all
nodes in both networks.

The Mirror Addr field provides the address to one of the
16 16-bit mirror tags 210. If the mirror enable bit in the 45

address resolution record linked to this protocol entry is set,
mirroring is enabled for flows to which this node belongs.
!he Base Address for mirror tags 210 is stored in a register
m address registers 105. Accordingly, the address to the
mirror tag for this node is located at Base Address+Mirror 50
Addr.

The Priority Queue field is valid if the Priority Enable bit
is set for the flow. CPU 80 initially sets this field to zero. If
a priority is configured for this flow, CPU fills this field with
the priority level with which all packets belonging to this
flow will be forwarded by the switch. For example, if eight
levels of priority arc supported, there will be eight I/0
queues associated with each port 50-1 ... 50-N, and this
field will indicate which one of the queues into which
packets belonging to this flow will be placed.

Each queue's corresponding priority level is user config
urable. That is, a system administrator can program the
number of times per service interval a queue having that
priority level should be serviced on a system wide basis.
This configuration is stored in priority level configuration
registers 125. One such register exists for each priority
leveVqueue. For example, if a value of 5 is programmed into
priority configuration register for priority level 4, the queue
corresponding to that priority level will be serviced 5 times
in a service interval. The service interval is determined by
adding together all the priority level values programmed into
each priority configuration register. Weighted Fair Queueing
is implemented by servicing the queues with equal priority

CPU 80 determines whether any mirrors are configured after servicing the queues in accordance with established
~ lml: flow by cross-referencing the mirror tables 78-1 . . . priorities (i.e. after all the queues are serviced per the

8-M JD configuration table 85 wilh the flow identification priorities in priority level configuration registers 125, ser-
,, hi!0 rmation for this side of the flow. lf any of the established 55 vice queue 1, once, queue 2 once and so on until all the
·, .llnrrora correspond to this flow, one of the 16 16-bit mirror queues arc serviced). This ensures that even the lowest
; tags ~10 will be configured for it. Each mirror tag field priority queues are serviced once every service interval.
=:ul.JDs 1 bit of match information. CPU 80 initially sets the After creating the protocol entry for this unresolved

., lo be r ~ field to zero. If traffic belonging to the flow is portion of the flow, CPU 80 stores the entry in protocol entry
. COab ~red on another port(s), CPU 80 sets the mirror 60 table 160 at the Protocol Increment associated with the
flow le bit III the address resolution entry for each end of the protocol used by the hosts of this flow, which increment is
of • configures a tag in mirror tags 210, and links both ends referenced to the Protocol Offset for this flow. Then CPU 80

··of~ flow to t?c same tag by filling the Mirror Addr field links the protocol entry with the address resolution record
, CDnfi th respective protocol entries with the address of the entry for this flow by writing the Protocol Offset from the
-~cd ~ in mirror tags 210 (offset from the Base 65 Base Protocol Address where this record is stored in the
~b·)· SWitch ~nginc 100 can thereafter locate the tag by Protocol Offset field in the address resolution record entry

IIling the Mirror Addr field with the Base Address for (step S122).

EX 1017 Page 351

15

set offilters, etc. for the flow,as indicated by a 32-bit entry
in the protocol table, having the following format:

Fitr Mirror Filter Priority B/W Priority Network
Addr Addr Enable Queue (18-15) Enable Offset

(31-27) (26-23) (22) (21-49) (14)=13-0)

The Fitr Addr field provides the address to one of the 32
32-bitfilter tags 200. The Base Address for filter tags 200 is
stored in a register in address registers 105. Accordingly, the
address to the filter tag for this flow is located al Base
Address+Fltr Addr. CPU 80 initially sets the Fltr Addr field
to zero.If filters are configured for this flow, CPU 80 will
createafilter tag in filter tags 200 and program the address
of the tag within filter tags 200 in this field to link the
configured filter tag to the protocol entry. CPU 80 deter-
mines whether anyfilters are configured for this flow by
cross-referencing the filter tables 76-1 . . . 76-F in configu-
ration table 85 with the flow identification information for
this side of the flow.

Each 32-bitfilter tag contains 8 bits of veto information
and 24bits of match information. CPU 80 configures filter
tags for each side (source and destination) of the flow to be
filtered.Ifpackets belonging to the flow are to be blocked (as
in firewalling), CPU 80 configures the filter tags for the
source and destination sides of the flow so that their veto bits

do not match and their match bits do match. For example,if
a firewall is established between a first network having
Qodes A, B and C and a second network having nodes D, E
and F, CPU 80 may configure the filter tags for nodes A, B
and C such that they have match bits of Ox000001 and veto
bits of 0x02, while nodes D, E and F are configured with
filter tags having match bits of 0x000001 and veto bits of
0x03. Accordingly, nodes A, B and C will be able to
communicate with each other, but not with nodes D, E and
F, whoare also able to communicate with each other. Now
assume that node C in the first network is to be given the
Privilege of communicating with nodes in the second net-
work. This can be done by changing its match bits to
0x000002. Now node C will be able to communicate with ail
nodes in both networks.

The Mirror Addr field provides the address to one of the
16 16-bit mirror tags 210. If the mirror enable bit in the
address resolution record linked to this protocol entry is set,
murroring is enabled for flows to which this node belongs.
The Base Address for mirror tags 210 is stored in a register
mM address registers 105. Accordingly, the address to the

anor tag for this node is located at Base Address+MirrorIK.

CPU 80 determines whether any mirrors are configured
‘ for this flow by cross-referencing the mirrortables 78-1...
; 78-M in configuration table 85 with the flow identification

information forthis side ofthe flow. If anyofthe established
,Mirrors correspondto this flow, one of the 16 16-bit mirror
p. tags 210 will be configured for it. Each mirror tag field
f Cotains 1 bit of match information. CPU 80 initially sets the
F to be Addr field to zero. If traffic belonging to the flow is

. enabietee On another port(s), CPU 80 sets the mirrorFE bit in the address resolution entry for each end of the
E of thepeeeures a tag in mirror tags 210, and links both ends
EOF both Ow to the same tag byfilling the Mirror Addr field

E conf Tespective protocol entries with the address of the
rroe in mirror tags 210 (offset from the Base
Fcombin, Witch ngine 100 can thereafter locate the tag by
EB the Mirror Adar field with the Base Address for

25

30

40

65

US 6,570,875 B1
16

mirror tags 210 which is stored in a register in address
registers 105. The port(s) on which the flow is to be mirrored
is configured in the Mirror Entry of the network entry linked
to this protocol entry (described below).

The Priority Enable field qualifies the priority tag
(addressed bythe Priority Tag Addrin the address resolution
record entry corresponding to this flow).If this bit is set, the
flow is processed at a higher priority. CPU 80 initially sets
this bit to zero. If priorities are configured for this flow, a
priority tag will be configured, priority processing will be
enabled by setting this bit, and the address to the configured
priority tag within priority tags 190 will be programmed in
the Priority Tag Addr field of the address resohition record
entry linkedto this protocolentry to link the priority tag to
the address resolution record entry.

CPU 80 determines whetherany priorities are configured
for this flow by cross-referencing the priority tables 77-1...
77-P in configuration table 85 with the flow identification
information forthis side of the flow. If any of the established
priorities correspond to this flow, a priority tag will be
configured for it. Each priority tag contains 1 bit of match
information. If packets belonging to the flow are to be
forwarded with priority, CPU 80 cnables priority by sctting
the Priority Enable field in the protocol entries of both ends
of the flow, configures a priority tag in priority tags 190, and
links the address resolution records of both ends of the flow
to the same configured priority tag. The level of priority
associated with this flow is determinedbythe Priority Queue
field and the service level for that queue programmed in
priority configuration registers 125.

The Priority Queuefield is valid if the Priority Enable bit
is set for the flow. CPU 80 initially sets this field to zero.If
a priority is configuredforthis flow, CPU fills this field with
the priority level with which all packets belonging to this
flow will be forwarded by the switch. For example, if cight
levels of priority are supported, there will be eight 1/O
queues associated with each port 50-1... 50-N, and this
field will indicate which one of the queues into which
packets belonging to this flow will be placed.

Each qucue’s correspondingpriority level is user config-
urable. That is, a system administrator can program the
number of times per service interval a queue having that
priority level should be serviced on a system wide basis.
This configuration is stored in priority level configuration
registers 125. One such register exists for cach priority
level/queue. For example,if a value of 5 is programmed into
Priority configuration register for priority level 4, the queue
correspondingto that priority level will be serviced 5 times
in a service interval. The service interval is determined by
adding togetherall the priority level values programmedinto
eachpriority configuration register. Weighted Fair Queueing
is implemented by servicing the queues with equal priority
after servicing the queues in accordance with established
Priorities (ic. after all the queues are serviced per the
priorities in priority level configuration registers 125, ser-
vice queue 1, once, queue 2 once and so on until all the
queues are serviced). This ensures that even the lowest
priority queues are serviced once every service interval.

After creating the protocol entry for this unresolved
portion of the flow, CPU 89 stores the entry in protocol entry
table 160 at the Protocol Increment associated with the

protocol used by the hosts of this flow, which increment is
referencedto the Protocol Offset for this flow. Then CPU 80
links the protocol entry with the address resolution record
entry for this flow by writing the Protocol Offset from the
Base Protocol Address where this record is stored in the

Protocol Offset field in the address resolution record entry
(step $122).

EX 1017 Page 351

"" ~ 'WO; • • ' • ~. .J,''

. .. ,.~~~.v1.:;.",2~ ~,.,:'l.'1,_;i :,
.

','.1',

EX 1017 Page 352EX 1017 Page 352

US 6,570,875 Bl
17 18

Processing advances to step SU4, where CPU 80 creates
an entry in network entry table 170 for this unresolved
portion of the flow. The Network Offset field points to an
entry in network entry table 170 associated with this flow
and protocol. The base address of the entry will be Base 5
Network Address+Network Offset. The Base Network
Address is stored in a register in address registers 105.

based on routing domains. For example, if there are two IP
routing domains comprised of ports 1 through 15 and 16
through 32 respectively, then there will be one default
network entry for each routing domain. The first one is
associated with all nodes learned on ports 1 through 15 and
will have a Broadcast Enable field containing OxOOOOfflf.
The second is associated with all nodes learned on ports 16
through 32 and will have a Broadcast Enable field contain
ing OxffflOOOO. This ensures that broadcasts from nodes in IP
routing domain 1 will not be sent to nodes in IP routing
domain 2 and vice versa.

Entries in network entry table 170 contain fields that help
configure virtual lANs, fields to configure mirroring, and
fields to store the destination Ethernet address values to

10
swap out the ones in the packet if the packet is being routed.
At least one network entry exists for every address resolu
tion table entry. However, multiple address resolution
entries can share the same network entry. For example, a
default network entry exists for every IP, IPX and non-IP/

15
IPX flow that has no associated filters, mirrors, priorities or
VLANs configured for it, as will be described in more detail
below. Accordingly, for example, all such non-configured IP
flows will have address resolution entries that point to the
same default protocol entry that in tum points to the same

20
default network entry. The format of each network entry is
shown below:

When a flow has one or more of a filter, mirror, priority
or VLAN configured for it, non-default protocol and net
work entries will be created for it. When creating the
network entry for the node, however, CPU 80 first copies the
Broadcast Enable field of the default network entry associ
ated with this flow into the Broadcast Enable field for the
newly created network entry.

CPU 80 dctcmiines whether any VLANs arc configured
for this flow by cross-referencing the VLAN tables 79-1 ...
79-V in configuration table 85 with the flow identification
information for this side of the flow. If any VLANs are
established the node associated with this side of the flow
belongs to any of the established VLANs, a non-default

UD11&Cd

Broadcut Enable Entry (31--0)
Rcacrvcd (31--0)

Reserved (16--24) Swap Addreu Bits 15--0 (15--0)
Swap Addrc:11 Bits 47-16 (31--0)

Mirror Entry (31--0)

The Broadcast Enable field is used to control the ports on
which broadcast and multicast packets, originating from this
node should be forwarded. This field contains 1 bit of match
information corresponding to each port of the switch (32
ports in this example). A 1 in any bit position indicates that
a broadcast packet from the node associated with that
Broadcast Enable field must be forwarded on that port. For
example, if bits 13 and 14 in this field arc set, then broadcast
or multicast packets from a node having a network entry
containing this field will be sent out on ports 14 and 15. CPU
80 initially sets this field to a default value based on the
protocol and routing domain associated with the node.
Accordingly, broadcasts and multicasts originating from a
node will only be forwarded on ports with attached nodes
belonging to the same routing domain, if such a routing
domain exists. If the node belongs to a VLAN configured on
or learned by the switch, CPU 80 sets this field appropriately
to mak_e sure that multicasts are forwarded only on ports
bclongmg to that VI.AN. For example, if nodes attached to
ports 1 and 2 belong to the same VLAN, then the broadcast
enable field for those nodes will be 0x00000003 indicating
that multicast packets from nodes on those ports should be
sent out only on ports 1 and 2.

Every attached node learned by the switch has a network
entry containing an associated 32 bit Broadcast Enable field.

' Separate default network entries having default Broadcast
Enable fields are created for each of the IP, IPX and

, non-IP/IPX protocols. These default network entries are
.: Uscd for nodes that do not have filters, mirrors, priorities or
: ~s configured for them. Respective "dummy'' protocol

altrics are further provided to link between unique address
:ilution record entries and the default network entries. The

.. lo au}! Broadcast Enable field of the default network entry
, indi whi~h non-IP/IPX flows arc linked is set to OxfHlffiI
· uhc cabng that broadcasts must be forwarded on every port.

11
tri default Broadcast Enable fields of the default network

n cs to which IP and IPX flows arc linked arc configured

25 network entry will be configured for it. CPU 80 configures
the Broadcast Enable field in accordance with the estab
lished VLAN by setting the bits corresponding to the port(s)
on which each node belonging to the VLAN is attached.

30
The Mirror Entry field indicates the ports on which the

packets belonging to the flow associated with this network
entry should be mirrored on. CPU 80 initially sets these
fields to zero. As dcscnbed above, if mirrors arc configured
for the flow to which this packet belongs, CPU 80 sets the

35
Mirror Enable bit for both sides of the flow, configures a
mirror tag and points both sides of the flow to the same
mirror tag, and configures the Mirror Entry by setting the
bits corresponding to the port(s) on which packets are to be
mirrored on.

40
The Swap Address Bits fields contains the Ethernet

addresses used for address swapping during packet routing.
For IP and IPX routing, the swap field bits arc filled in with
the Ethernet address associated with the destination node as
described above. When routing a packet, the switch needs to

45
replace the source Ethernet address with the address of the
port through which the packet is being forwarded and the
destination Ethernet address in the packet to be routed with
the address of the next hop router or the end station. Every
node that communicates across networks has a unique

50
network entry associated therewith. The swap field of the
network entry is filled by CPU 80 with the Ethernet address
of the next hop router or the end station as descnbed above
in connection with the processing depicted in FIG. 9. The
Ethernet address is detemiined at the time of entry creation

55
using Address Resolution Protocol (ARP) for IP packets.

After creating the network entry as descnbed above, CPU
80 stores it in network entry table 170, then links it to the
protocol entry for this portion of the flow by writing the
Network Offset relative to the Base Network Address where

60 it is stored in the protocol entry (step SU6).
Toe flow table entry creation processing descnbed above
~ no~ be further_ d~~nbed by way of the following
illustrative and non-limiting examples of the invention.

First, assume that a system administrator sets up a routing
65 dom~ for a ~up of users in a. network containing a

mulhprotocol switch of the present mvention, for example,
the engineering department of a company. Further assume

EX 1017 Page 353

US 6,570,875 B1
17

Processing, advances to step $124, where CPU 80 creates
an entry in network entry table 170 for this unresolved
portion of the flow. The Network Offset field points to an
entry in network entry table 170 associated with this flow
and protocol. The base address of the entry will be Base
Network Address+Network Offset. The Base Network
Address is stored in a register in address registers 105.

Entries in network entry table 170 contain fields that help
configure virtual LANs, fields to configure mirroring, and
fields to store the destination Ethernet address values to
swap out the ones in the packetif the packet is being routed.
At least one network entry exists for every address resolu-
tion table entry. However, multiple address resolution
entries can share the same network entry. For example, a
default network entry exists for every IP, IPX and non-IP/
IPX flow that has no associatedfilters, mirrors, priorities or
VLANsconfiguredforit, as will be described in more detail
below. Accordingly, for example, all such non-configured IP
flows will have address resolution entries that point to the
same dcfault protocol entry that in turn points to the same
default network entry. The format of cach network entry is
shown below:

Broadcast Enable Entry (31-0)
Reserved (31-0)

Reserved (16-24) Swap Adduess Bits 15-0 (15-0)
Swap Address Bits 47-16 (31-0)

Mirror Entry (31-0)

Unused

The Broadcast Enable field is used to control the ports on
which broadcast and multicast packets, originating from this
node should be forwarded. This field contains 1 bit of match
information corresponding to each port of the switch (32
ports in this example). A 1 in anybit position indicates that
a broadcast packet from the node associated with that
Broadcast Enable ficld must be forwarded on that port. For
example,ifbits 13 and 14in this field are set, then broadcast
or multicast packets from a node having a network entry
containing this field will be sent out on ports 14 and 15. CPU
80 initially sets this field to a default value based on the
protocol and routing domain associated with the node.
Accordingly, broadcasts and multicasts originating from a
node will only be forwarded on ports with attached nodes
belonging to the same routing domain, if such a routing
domain exists. If the node belongs to a VLAN configured on
or leamedbythe switch, CPU 88 sets this field appropriately
to make sure that multicasts are forwarded only on ports
belonging to that VLAN.For example,if nodes attached to
ports 1 and 2 belong to the same VLAN,thenthe broadcast
cuable field for those nodes will be Ox00000003 indicating
that multicast packets from nodes on those ports should be
Sent out only on ports 1 and 2.

Every attached node learned by the switch has a network
catry containing an associated 32 bit Broadcast Enable field.
Separate default network entries baving default Broadcast
Enable fields are created for each of the IP, IPX and
non-IP/IPX protocols. These default network entries are

, used for nodes that do not havefilters, mirrors, priorities or

is configured for them. Respective “dummy”protocol

. tatriesare further provided to link between unique address
f ‘Solution record entries and the default network entries. The

Sefault Broadcast Enable field of the default network entry
Ft which non-IP/IPX flows are linked is set to Oxfiffif
g *dicating that broadcasts must be forwarded on every port.

The default Broadcast Enable fields of the default network
b Sutries to which IP and IPX flows arc linked are configured

15

30

40

45

18

based on routing domains. For example, if there are two IP
routing domains comprised of ports 1 through 15 and 16
through 32 respectively, then there will be one default
network entry for each routing domain. The first one is
associated with all nodes learned on ports 1 through 15 and
will have a Broadcast Enable field containing OxOOOOfET.
The secondis associated with all nodes leammed on ports 16
through 32 and will have a Broadcast Enable field contain-
ing Oxffff0000. This ensures that broadcasts from nodesin IP
routing domain 1 will not be sent to nodes in IP routing
domain 2 and vice versa.

When a flow has one or more ofa filter, mirror, priority
or VLAN configured forit, non-default protocol and net-
work entries will be created for it. When creating the
network entry for the node, however, CPU 80first copies the
Broadcast Enablefield of the default network entry associ-
ated with this flow into the Broadcast Enable field for the

newly created network entry.
CPU 80 determines whether any VLANsare configured

for this flow by cross-referencing the VLAN tables 79-1. . .
79-V in configuration table 85 with the flow identification
information for this side of the flow. If any VLANs are
established the node associated with this side of the flow
belongs to any of the established VLANs, a non-default
network entry will be configured for it. CPU 80 configures
the Broadcast Enable field in accordance with the estab-
lished VLAN bysetting the bits corresponding to the port(s)
on which each node belonging to the VLAN is attached.

The Mirror Entry field indicates the ports on which the
packets belonging to the flow associated with this network
entry should be mirrored on. CPU 80 initially sets these
fields to zero. As described above, if mirrors are configured
for the flow to which this packet belongs, CPU 80 sets the
Mirror Enable bit for both sides of the flow, configures a
mirror tag and points both sides of the flow to the same
mirror tag, and configures the Mirror Entry by setting the
bits corresponding to the port(s) on which packets are to be
mirrored on.

The Swap Address Bits fields contains the Ethemet
addresses used for address swapping during packetrouting.
For IP and IPX routing,the swap field bits are filled in with
the Ethernet address associated with the destination node as

described above. When routing a packet, the switch needs to
replace the source Ethernet address with the address of the
port through which the packet is being forwarded and the
destination Ethernet address in the packet to be routed with
the address of the next hop routeror the end station. Every
node that communicates across networks has a unique
network entry associated therewith. The swap field of the
network entry is filled by CPU 80 with the Ethernet address
of the next hop routeror the end station as described above
im connection with the processing depicted in FIG. 9. The
Ethernet address is determined at the time of entry creation
using Address Resolution Protocol (ARP) for IP packets.

After creating the network entry as described above, CPU
80 stores it in network entry table 170, then Links it to the
protocol entry for this portion of the flow by writing the
Network Offsetrelative to the Base Network Address where

it is stored in the protocol entry (step $126).
Theflow table entry creation processing described above

will now be further described by way of the following
illustrative and non-limiting examples of the invention.

First, assumethat a system administrator scts up a routing
domain for a group of users in a network containing a
multiprotocol switch of the present invention, for example,
the engineering department of a company. Further assume

EX 1017 Page 353

- -· .. _,,. ..
:~ s::. -Ji~ ;.,,t-,"' ~~?\.',.·,.;-,

,_ __ _
• ..,., .. -1.,fll

EX 1017 Page 354EX 1017 Page 354

ta dom ew ime. er)

I

US 6,570,875 Bl
19 20

that these usera are connected to ports 1---B of the switch and Next, CPU 80 creates address resolution record entries in
lhat they have been configured with IP addresses in the range address resolution record table 150, fills the Address fields
206.233.77.0 to 206.233.77.255, so that the associated IP with the remaining bits of Ethernet address A and B for the
network is 206.233.77.0 (subnet mask 255255.255.0). host connected to port 8 and 9, respectively, and fills the Port

Once an administrator configures ports 1---B to belong to 5 Number fields with the n:spective ports (8 and 9). CPU 80
routing domain 1 (network address 206233.77.0), CPU 80 links the newly cp::ated address resolution record entries to
creates a default network entry for that domain in network lhe address resolution hash entries by programming the
entry table 170, having a Broadcast Enable field value of Record Offset fields in the hash entries wilh the offsets of the
Ox()()OOOOff, indicating that broadcasts from any of the nodes P::spective address resolution record entries from the Base
attached to ports 1---Bwill be sent out only on ports 1---B. CPU 10 Record Address in the address resolution record table (steps
80 then locates an empty spare in protocol table 160 S108-Sll2).
sufficient to contain entries for all supported protocols and CPU 80 then determines that a filter is associated with this
creates dummy protocol entries that all point to the default flow by comparing the Ethernet addresses of both hosts with
network entry for routing domain 1 created in the previous the filter set up in configuration table 85, so further process-
step. 15 ing is required (step Sl16). CPU 80 first locates empty

If a user connected to port 1 of the switch wishes to open spaces in protocol table 160 sufficient to contain entries for
an FTP session with a user connected to port 2 of lhe switch, all supported protocols and creates respective protocol
and if this is the first communication between them, there entries in the spaces at an offset predetermined for Ethernet
will be no flow table entries for this flow, and the processing protocol (step S120). This offset is also programmed in a
depicted in FIG. 10 will be performed for both, the host 20 register in address registers 105. Initially, all bits in the
connected to port 1 aod the host connected to port 2 one at protocol entries are cleared. However, since a filter is
a time. associated with this flow, CPU 80 sets up filter tags in filter

Toe firat packet of the flow is unresolved and is sent to tags 200 and links the filter tags to the respective protocol
CPU 80 for further processing. CPU 80 creates hash table entries by programming the Fltr Addr fields of the tags with
entries in the IP area of addJ:l!:ss resolution hash 140 at 2S the offsets of the respective tags in filter tags 200.
positions corresponding to the last twelve bits of the IP CPU 80 establishes a filler between the two hosts by
address of both respective hosts, aod clears the No Entries setting the veto bits in their respective filter tags to different
Valid fields in both entries (steps S102 and S104). values and by setting the match bits to the same values. After

Next, CPU 80 creates address resolntion record entries in
30

the flow table entries for this flow have been created, all
address resolution record table 150, fills the Address field-; non-lP/IPX packets between the two hosts will be dropped
with the remaining address bits and a "don't care" value of by switch engine 100. If IP or IPX communications between
Oxfflf for the socket bits, and fills the Port Number fields these hosts are attempted in the future, similar processing
with the respective port numbers. CPU 80 links the newly will be performed to create IP or IPX flow table entries
created addJ:l!:ss resolution record entries to the address which will also cause switch engine 100 to drop all packets
resolution hash entries by programming the Record Offset

35
for such communications.

fields in the hash entries with the offsets of the address CPU 80 then l:inks the protocol entries to the address
n:solution record entries from the Base Record Address in resolution record entries by programming the Protocol Off-
the address resolution record table (steps S108-Sll2). set fields of the address resolution record entries with the

CPU 80 determines that no mirrora, filters, priorities or
40

base addJ:l!:sses of the respective empty spaces located in
VLANs are associated with this flow, and that no routing is protocol table 160 (step Sl22).
required (step Sl16). Accordingly, the default protocol and Next, CPU 80 creates network entries and clears all bits
network entries can be used (step Sl18). CPU 80 links the in them (step S124). Toe Broadcast Enable fields are pro-
dummy protocol entry for TCP to both address i:csolution grammed with a value of OxfflifflI since no VLANs or
record entries by programming the Protocol Offset fields of 45 routing domains have been configured. Finally, CPU 80
both address i:csolution record entries with the base address links the network entries by programming the Network
of the dummy protocol entries located in protocol table 160, Offset fields in the protocol entries with the offsets of the
which dummy protocol entries all point to the default respective network entries from the base of network entry
network entry for routing domain 1. table 170 (step S126).

In a next example, assume that a system administrator 50 In a next example, assume that a system administrator
establishes a firewall that foibids any communications establishes a priority for all HTTP communications with
between hosts having Ethernet address A and Ethernet hosts belonging to an IP subnet being respectively connected
ad~ess B, respectively connected to ports 8 and 9 of the to ports 4-7 of the switch. This priority information is stored
BW!tch. This filtering information is stored in filter tables in one of priority tables 77-1 ... 77-P in configuration table
76-1 · .. 79-F in configuration table 85 and specifies the 55 85 and specifies the IP network addresses, protocol type and
Ethernet addresses, but not the ports. priority level, but not the ports to which the hosts are

If the host having Ethernet address A wishes to send a attached.
non-lP/IPX packet to the host having Ethernet address B, An IP host connected to the switch that wishes to access
and if this is the firat attempted communication between an external Web site uses the default gateway to connect to
them, there will be no flow table entries for this flow, and the 60 it. Toe multiprotocol switch implementing the present
~essing depicted in HG. 10 will be performed for both invention will act as the default gateway. It will have routing
"'-"'IS one at a time. tables established (through traditional routing protocols such
.~ 80 crc~tes hash table entri~ in the Ethem:t area of as RlP and OSPF) to determine which port (16, for example)
Ju resolution hash 140 at positions corresponding to the will provide the best route to the destination Web site and the

t twelve bits of Ethernet address A and B for the hosts 65 port through which the flow should be forwarded. If this is
,, -:~ected ~o ports 8 and 9, respectively, and clears the No the first attempted communication between the host and the

tries Valid fields of both entries (steps S102 and S104). Web site, there will be no :flow table entries for this flow, and

EX 1017 Page 355

cs

US 6,570,875 B1
19

that these users are connected to ports 1-8 of the switch and
that they have been configured with IP addressesin the range
206.233.77.0 to 206.233.77.255, so that the associated 1P

network is 206.233.77.0 (subnet mask 255.255,255.0).
Once an administrator configures ports 1-8 to belong to

routing domain 1 (uctwork address 206.233.77.0), CPU 80
creates a default network entry for that domain in network
entry table 170, having a Broadcast Enable field value of
00000008, indicating that broadcasts from any of the nodes
attached to poris 1-8will be sent out only on ports 1-8, CPU
S80 then locates an empty space in protocol table 160
sufficient to contain entries for alt supported protocols and
creates duromy protocol entries that all point to the default
network entry for routing domain 1 created in the previous
step.

If a user connected to port 1 of the switch wishes to open
an FTP session with a user connected to port 2 of the switch,
and if this is the first communication between them, there
will be no flow table entries for this flow, and the processing
depicted in FIG. 10 will be performed for both, the host
connected to port 1 and the host connected to port 2 one at
a time.

The first packet of the flow is unresolved and is sent to
CPU 86 for further processing. CPU 80 creates bash table
entries in the IP area of address resolution hash 140 at

positions corresponding to the last twelve bits of the IP
address of both respective hosts, and clears the No Entries
Valid ficlds in both entries (steps $102 and S104).

Next, CPU 80 creates address resolution record entries in
address resolution record table 150, fills the Address fields
with the remaining address bits and a “don’t care” value of
Oxffif for the socket bits, and fills the Port Number fields
with the respective port numbers. CPU 80 links the newly
created address resolution record entries to the address

resolution hash entries by programming the Record Offset
fields in the hash entries with the offsets of the address
resolution record entries from the Base Record Address in

the address resolution record table (steps $108-S112).
CPU 80 determines that no mirrors, filters, priorities or

VLANsare associated with this flow, and that no routing is
required (step $116). Accordingly, the default protocol and
network entries can be used (step $118). CPU 80 links the
dummy protocol entry for TCP to both address resolution
tecord entries by programming the Protocol Offset fields of
both address resolution record entries with the base address
of the dummy protocolentries located in protocol table 160,
which dummy protocol entries all point to the default
network entry for rouling domain 1.

In a next example, assume that a system administrator
establishes a firewall that forbids any communications
between hosts having Ethemet address A and Ethernet
address B, respectively connected to ports 8 and 9 of the
Switch. This filtering information is stored in filter tables
76-1... 79-F in configuration table 85 and specifies the
Ethomet addresses, but not the ports.

If the host having Ethernct address A wishes to send a
non-IPAPX packet to the host having Ethernet address B,
and if this is the first attempted communication between
them, there will be no flow table entries for this flow, and the
Processing depicted in FIG. 10 will be performed for both
‘hosts one at a time.

CPU 86 creates hash table cntries in the Ethernet arca of
nates resolution hash 140 at positions correspondingto the

t twelve bits of Ethemet address A and B for the hosts
e. SOnnecied to ports 8 and 9, respectively, and clears the No

Eotries Valid fields of both entries (steps $102 and $104).

16

15

40

65

20
Next, CPU 80 creates address resolution record entries in

address resolution record table 150, fills the Address fields
with the remaining bits of Ethemet address A and B for the
host comnected to port 8 and 9, respectively, andfills the Port
Numberfields with the respective ports (8 and 9). CPU 80
links the newly created address resolution record entries to
the address resolution hash entries by programming the
Record Offsct fields in the hash entries with the offsets of the

respective address resolution record entries from the Base
Record Address in the address resolution record table (steps
$108-S112).

CPU 80 then determines that a filter is associated with this
flow by comparing the Ethemet addresses of both hosts with
the filter set up in configuration table 85, so further process-
ing is required (step S116). CPU 80 first locates empty
spaces in protocol table 160 sufficient to contain entries for
all supported protocols and creates respective protocol
entries in the spacesat an offset predetermined for Ethemet
protocol (step $120). This offset is also programmed in a
register in address registers 105. Initially, all bits in the
protocol entries are cleared, However, since a filter is
associated with this low, CPU 80 sets up filter tags in filter
tags 200 and links the filter tags to the respective protocol
entries by programming the Fitr Addr fields of the tags with
the offsets of the respective tags in filter tags 200.

CPU 80 establishcs a filter between the two hosts by
setting the veto bits in their respective filter tags to different
values and by setting the match bits to the same values. After
the flow table entries for this flow have been created, all
non-IP/IPX packets between the two hosts will be dropped
byswitch engine 100. If [Por IPX comununications between
these hosts are attempted io the future, similar processing
will be performed to create IP or IPX flow table entries
which will also cause switch engine 100 to drop all packets
for such communications,

CPU 80 then links the protocol entries to the address
resolution record entries by programming the Protocol Off-
set fields of the address resolution record entries with the
base addresses of the respective empty spaces located in
protocol table 160 (step $122).

Next, CPU 80 creates network entries and clears all bits
in them (step $124). The Broadcast Enable fields are pro-
grammed with a value of Oxfiffffif since no VLANs or
routing domains have been configured. Finally, CPU 80
links the network entries by programming the Network
Offset fields in the protocol entries with the offsets of the
respective network enties from the base of network entry
table 176 (step $126).

In a next example, assume that a system administrator
establishes a priority for all HITP communications with
hosts belonging to an IP subnet being respectively connected
to ports 4~7 ofthe switch. This priority informationis stored
in one ofpriority tables 77-1 . . . 77-P in configuration table
85 and specifies the IP network addresses, protocol type and
priority level, but not the ports to which the hosts are
attached.

An JP host connected to the switch that wishes to access

an external Web site uses the default gateway to connect to
it. The multiprotocol switch implementing the present
invention will act as the default gateway. Itwill have routing
tables established (through traditional routing protocols such
as RIP and OSPF) to determine which port (16, for example)
will provide the best route to the destination Web site and the
port through which the flow should be forwarded.Ifthis is
the first attempted communication between the host and the
Web site, there will be no flow table entries for this flow, and

EX 1017 Page 355

hat, ol

'
US 6,570,875 B1

21 22
the processing depicted in F1G. 10 will be performed for configuration table 85 and specifies the IP addresses and
both sides of the flow one at a time. proces.s (the socket for Telnet is 23) and mirror port, but not

O'U 80 creates hash table entries in the IP area of address the ports to which the hosts are attached.
re.solution bash 140 at positions corresponding to the last If host A wishes to initiate a Telnet ses.sion with host B,
twelve bits of the IP addresses of the respective hosts, and 5 and if tllis is the first attempted communication between
clears their No Entries Valid fields (steps S102 and S104). them, there will be no flow table entries for this flow, and the

Next, CPU 80 creates addres.s resolution record entries in processing depicted in F1G. 10 will be performed for both
address resolution record table 150, fills the Address fields hosts one at a time.
with the remaining IP address bits and the socket numbers The packet will be sent to CPU 80 as an unresolved flow.
for both nodes, and fills the Port Number fields with the 1° CPU 80 creates bash table entries in the IP area of address
respective ports. CPU 80 links the newly created address resolution hash 140 at positions corresponding to the last
re.solution record entries to the address resolution hash twelve bits of the IP addresses of the respective hosts, and
entries by programming the Record Offset fields in the hash clears the No Entries Valid fields (steps S102 and Sl04).
entries with the offsets of the respective address resolution Next, CPU 80 creates addres.s resolution record entries in
record entries in the addres.s resolution record table (steps 15 address resolution record table 150, fills the Addres.s fields
S108-Sll2). with the remaining IP address bits aod socket bits, and fills

a>U 80 then determines that a priority is associated with the Port Number, fields with the respective ports. O'U 80
this flow by comparing the IP addres.ses and protocol with links the newly created address resolution record entries to
the priority set up in configuration table 85, so further

20
the address resolution hash entries by programming the

processing is required (step Sl16). O'U 80 first locates Record Offset fields in the hash entries with the respective
empty spaces in protocol table 160 sufficient to contain offsets of the address resolution record entries in the address
entries for all supported protocols and creates protocol resolution record table (steps Sl08-Sll2).
entries in the spaces at an offset predetermined for TCP CPU 80 then determines that a mirror is associated with
protocol (since IITfPuscs TO' as a transport protocol) (step

25
this flow by comparing the IP addresses with the mirror set

S1120). This offset is also programmed in a register in up in configuration table 85, so further processing is required
address registers 105. Initially, all bits in the protocol entries (step Sll6). CPU 80 first locales empty spaces in protocol
are cleared. However, since a priority is associated with this table 160 sufficient to contain entries for all supported
flow, CPU 80 creates a tag in Priority Tags 190 having bits protocols and creates protocol entries in the spaces at an
corresponding to the ports of the respective boots set, sets the

30
offset predetermined for IP protocol (steps S120 and S122).

Priority Enable bits in the protocol entries and programs the This offset is also programmed in a. register in address
Priority Tag Addr fields in the addres.s resolution record registers 105. Initially, all bits in the protocol entries are
entries for both ends of the flow with the address of the cleared. However, since a mirror is associated with this flow,
newly created priority tag. Since the priority tags match, CPU 80 creates a tag in Mirror Tags 210 having bits
bidirectional priority is established for the flow. CPU 80 also

35
corresponding to the ports of the respective hosts set, sets the

programs the Priority Queue fields with the 1/0 queue Mirror Enable bit in the address resolution record entries and
corresponding to the priority level configured for the flow in programs Mirror Addr fields for both protocol entries with
priority tables 77-1 ... 77-P. All packets belonging to that the address of the newly created mirror tag in Mirror Tugs
flow arc then queued in the programmed queue number and 210 to create bidirectional mirroring for the flow.
are serviced a number of times per service interval as

40
CPU 80 tben links the protocol entries to the address

i;pecified by the priority configuration register 125 for that resolution record entries by programming the Protocol Off.
queue (which CPU 80 has already programmed in accor- set fields of the address resolution record entries with the
dance with a priority level to service level mapping). base addresses of the respective empty spaces located in

(CPU 80 then links the protocol entries to the address protocol table 160 (step S122).
~lution record entries by programming the Protocol Off- 45 Next, CPU 80 creates networlr entries and sets up the bits
set fields of the address resolution record entries with the in the Broadcast Enable fields in accordance with any
base addresses of the respective empty spaces loca.ted in routing domains and VLANs established. Since a mirror is
protocol table 160 (step S122). required for packets in both directions of the flow, the Mirror

Next, CPU 80 creates network entries and clears all bits Entry fields of both network entries should be programmed.
· (step S124). The Broadcast Enable fields are programmed in 50 O'U 80 sets bit O in the fields so switch engine 100 will send

accordance with any routing domains or VLANs established traffic from A to Band B to A to port 1 in addition to the ports
(i.e. all ports that belong to the same routing domain have associated with A and B. Finally, O'U 80 links the network
ilhe same broadcast enable field and should send broadcast entries by programming the Network Offset fields in the

· ets to each other). Since packets belonging to this flow protocol entries with the offsets of the respective networlr
require routing, swap fields need to be programmed 55 entries from the base of network entry table 170 (step Sl26).
the destination or next hop Ethernet addres.s. CPU 80 FIG. 11 further illustrates address resolution processing
Address Resolution Protocol (ARP) to determine these performed to determine whether packet processing informa-

• and fills in the Swap Address bits fields accord- lion exists in flow table 70 associated with the flow to which
Y-Finally, CPU 80 links the network entries by pro- the packet belongs. which processing can be performed in

g the Network Offset fields in the protocol entries 60 step S42 of F1G. 8 for example.
the offsets of the respective network entries from the As shown in FIG. 11, switch engine 100 first extracts the
of network entry table 170 (step SU6). last twelve bits of the address associated with the unresolved
~al ex~ple, assume that a system administrator end of the flow. For IP and IPX packets for which Layer
A a mirror so that all Telnet sessions between IP 3+switching and routing is enabled, the last twelve bits of
lbc and ~ host B, respectively connected to ports 4 and 65 the IP/IPX address are extracted in step Sl30; for other

. . SWilcb, are mirrored on port 1. This mirror infor- protocols, the last twelve bits of the Ethernet address are
18 stored in one of mirror tables 78-1 ... 78-M in extracted.

EX 1017 Page 356

at

US 6,570,875 Bi
21

the processing depicted in FIG. 10 will be performed for
both sides of the flow one at a time.

CPU 890 creates hash table entries in the IP area of address
resolution hash 140 at positions corresponding to the last
twelve bits of the IP addresses of the respective hosts, and
clears their No Entries Valid fields (steps $102 and $104).

Next, CPU 80 creates address resolution record entnes in
address resolution record table 150, fills the Address fields
with the remaining IP address bits and the socket numbers
for both nodes, and fills the Port Number fields with the
respective ports. CPU 80 links the newly created address
resolution record entries to the address resolution hash
entries by programming the Record Offset fields in the hash
entries with the offsets of the respective address resolution
record entries in the address resolution record table (steps
$108-S112).

CPU 86 then determines that a priority is associated with
this flow by comparing the IP addresses and protocol with
the priority set up in configuration table 85, so further
processing is required (step $116). CPU 86first locates
empty spaces in protocol table 160 sufficient to contain
entries for all supported protocols and creates protocol
entries in the spaces al an offset predetermined for TCP
protocol (since HTTP usesTCP as a transport protocol) (step
$1120). This offset is also programmed in a register in
address registers 105. Initially, all bits in the protocol entries
are cleared, However, since a priority is associated with this
flow, CPU 80 creates a tag in Priority Tags 190 havinghits
corresponding to the ports ofthe respective hosts set, sets the
Priority Enable bits in the protocol entries and programs the
Priority Tag Addr fields in the address resolution record
entries for both ends of the flow with the address of the
newly created priority tag. Since the priority tags match,
bidirectional priority is established for the flow. CPU 80 also
programs the Priority Queue fields with the I/O queue
corresponding to the priority level configured for the flow in
priority tables 77-1 . . . 77-P. All packets belonging to that
flow are then queued in the programmed queue number and
are serviced a number of times per service interval as
specified by the priority configuration register 125 for that
qucuc (which CPU 80 has already programmed in accor-
dance with a priority level to service level mapping).

(CPU 890 then links the protocol entries to the address
resolution record entries by programming the Protocol] Off-
Set fields of ihe address resolution record entries with the

b base addresses of the respective empty spaces located in
. Protocol table 160 (step $122).
.._Next, CPU 80 creates network entries and clears all bits
zs {step S124). The Broadcast Enablefields are programmed in

y, Becordance with any routing domains or VLANsestablished
& fic. all ports that belongto the same routing domain have
gthe same broadcast enable field and should send broadcast
yeAcKcls to cach other). Since packets belonging to this flow

Tequire routing, swap fields need to be programmed
the destination or next hop Ethernet address. CPU 80

wes Address Resolution Protocol (ARP) to determine these
eeresses and fills in the Swap Address bits fields accord-

bly. Finally, CPU 80 links the network entries by pro-
ming the Network Offset fields in the protocol entries
the offsets of the respective network entries from the

ne network entry table 170 (step 5126).
a * final example, assume that a system administrator
ven & mirror so that all Telnet sessions between IP

af the IP host B,respectively connected to ports 4 and
B., Switch, are mirrored on port 1. ‘This mirror infor-

“HIS stored in one of mirror tables 78-1... 78-M in

»,
Pith 55

60

65

22

configuration table 85 and specifies the IP addresses and
process (the socket for Telnet is 23) and mirror port, but not
the ports to which the hosts are attached.

If host A wishesto initiate a Telnet session with host B,
and if this is the first attempted communication between
ihem,there will be no flow table entries for this flow, and the
processing depicted in FIG. 10 will be performed for both
hosts one at a time.

The packetwill be sent to CPU 80 as an unresolved flow.
CPU 88 creates bash table entries in the IP area of address
resolution hash 140 at positions corresponding to the last
twelve bits of the IP addresses of the respective hosts, and
clears the No Entries Valid fields (steps S102 and S184).

Next, CPU 86 creates address resolution record entries in
address resolution record table 150,fills the Address fields
with the remaining IP address bits and socket bits, and fills
the Port Number, fields with the respective ports. CPU 88
links the newly created address resolution record entries to
the address resolution hash entries by programming the
Record Offset fields in the hash entries with the respective
offsets of the address resolution record entries in the address

resolution record table (steps 5108~S112).
CPU 80 then determines that a misor is associated with

this flow by comparing the IP addresses with the mirrorset
up in configuration table 85, so furtherprocessing is required
(step $116). CPU 80 first locates empty spaces in protocol
table 160 sufficient to contain entries for all supported
protocols and creates protocol entries in the spaces at an
offset predetermined for IP protocol(steps $120 and S122).
This offset is also programmed in a register in address
registers 105. Initially, all bits in the protocol entries are
cleared. However, since a mirroris associated with this flow,
CPU 80 creates a tag in Mirror Tags 210 having bits
correspondingto the ports of the respective hosts set, sets the
Mirror Enable bit in the address resolution record entries and
programs Mirror Addr fields for both protocol entries with
the address of the newly created mirror tag in Mirror Tags
210 to create bidirectional mirroring for the flow.

CPU 80 then links the protocol entries to the address
resolution record entries by programming the Protocol Off-
set fields of the address resolution record entries with the
hase addresses of the respective empty spaces located in
protocol table 160 (step $122).

Next, CPU 80 creates network entries and sets up the bits
in the Broadcast Enable fields in accordance with any
routing domains and VLANsestablished. Since a mirror is
required for packets in both directions ofthe flow, the Mirror
Entry fields of both network entries should be programmed.
CPU 80 sets bit 0 in the fields so switch engine 100 will send
traffic from A io B and B to Ato port 1 in addition to the ports
associated with Aand B. Finally, CPU 80 links the network
entries by programming the Network Offset fields in the
protocol entries with the offsets of the respective network
entries from the base of network entry table 170 (step $126).

FIG. Lt farther illustrates address resolution processing
performed to determine whether packet processing informa-
tion exists in flow table 70 associated with the flow to which

the packet belongs, which processing can be performed in
step $42 of FIG. 8 for example.

As shown in FIG. 11, switch engine 100 first extracts the
last twelvebits of the address associated with the unresolved
end of the flow. For IP and IPX packets for which Layer
34switching and routing is cnabled,the last twelve bits of
the IPAPX address are exiracted in step $130; for other
protocols, the Jast twelve bits of the Ethernet address are
extracted.

EX 1017 Page 356

Seer

I

US 6,570,875 Bl
23 24

Toe extracted bits are then used to hash onto the area of source and destination sides of the flow have been obtained,
address resolution hash 140 corresponding to the protocol as descnbed above in connection with the processing illus-
carried by the packet (IP, IPX or other) (step Sl32). If an trated in FIG. ll.
entry exists in address resolution hash 140 for the flow The filter tag bits for the source and destination, if they are
(determined in S134), processing advances to step Sl38. s configured (as denoted by the Filter Enable fields of the
Otherwise, address resolution processing ends with a nega- respective protocol entries), are compared by switch engine
tive result and packet processing control branches to step 100 (step S150). If they match (i.e., the match bits of the
S44 in FIG. 7 (step S136). respective filter tags match and the veto bits do not match),

then the packet is dropped (Sl52). Otherwise, processing
In step S138, switch engine 100 locates in address reso- dv S154 wh th · d 'th h

lull.on record table 150 the address resolution record that is 10 a ances to step ' ere e port associate WI t e
destination is determined from the address resolution recoid

linked to the hash entry found in the previous step. This is entry for the destination side of the flow. If this is a multicast
done by combining the Base Record Address contained in packet, the port(s) on which the packet should be forwarded
address registers 105 with the Record Offset field contained is determined from the Broadcast Enable field of the net-
in the hash entry. work entry for the destination side of the flow.

Processing advances to step S140, where it is determined 15 In step Sl56 switch engine 100 determines whether any
whether an address resolution record entry exists for this end mirrors have been configured for the flow (as indicated by
of the flow. If the number of records linked to the hash entry Mirror Enable bits being set and matching mirror tags for
is only one, switch engine 100 can readily locate the address source and destination). If so, these mirror port(s) are
resolution recoid because the record entry is pointed to by determined in step SlS8.
combining the Base Record Address from address registers 20 Packet forwaiding processing is performed for each des-
105 with the Record Offset indicated in the hash entry as is tination port determined in steps S154 and S1S8. In step
done in the previous step. If, however, the number of linked S160, switch engine 100 first determines whether the packet
address resolution records is more than one (denoted by a needs to be routed to the current destination port. This is
value in the Num Records field of the hash entry being done by comparing the contents of the routing domain
greater than =), switch engine 100 performs a binary 25 configuration registers for the source and destination ports.
search on the linked entries based on the remaining bits of If the source and destination ports are in different routing
the address from which the twelve bits were extracted For domains, the packet needs to be routed. In addition, for
IP/1PX packets, the entry may contain socket numbers along unicast packets, switch engine 100 compares the destination
with addresses (a "don't care" socket value of Oxffflh in an Ethernet address in the packet with the address of the port on
entry matches all socket numbers). 30 which the packet arrived. If the address matches, then the

If an address resolution record does not exist for the packet needs to be routed.
particularflow(determinedinstepS140),addressresolution For packets that do not need to be routed, processing
processing ends with a. negati~ result and packet processing advances to step S170. For packets to be routed, in step
control branches to step S44 m FIG. 8 (step Sl42).

35
S1li2, the source address is swapped with the routing domain

As descnbed above, the address resolution record iden- on which the packet is being forwarded. For unicast packets,
tifies one of the ports (50-1 ... 50-N) to which the host the destination Ethernet addresses of the packet is swapped
U!iOciated with this side of the flow is connected. It also may with the address specified in the swap field of the network
{;Olltain links to entries in protocol entry table 160, and entry associated with the destination of this flow. The switch
thence to network entry table 170 that can alert switch '40 engine extracts the bop count from the packet and if the hop
engine 100 to any filters, priorities, mirrors and VLANs that count is one or zero for IP or 16 for IPX (as determined in
are configured for the flow. step S166), notifies CPU 80 for further processing (step

· In step Sl44, the Protocol Offset field of the address S168). In addition, switch engine 100 decrements (for IP) or
resolution record for this flow is extracted. This field, increments (for IPX) the bop count and recomputes the
combined with the Base Protocol Address provided by ,.5 checksum of the packet (for IP packets only) (step S164).
address registers 105, points to a list of protocol entries for Processing advances to step Sl 70 where, if priority is
this flow in protocol entry table 160. Different protocol enabled for the flow (as indicated by the Priority Enable bit
entries may exist for the flow depending on the protocol in the protocol entry), the priority tags are compared to

; carried by the packet To get the protocol entry for this flow determine if they match. If so, the Priority Queue field of the
'. Ind protocol, switch engine 100 extracts the protocol carried 50 destination is determined from the protocol entry associated
. ·lo' the packet and looks up the Protocol Increment a.ssoci- with the destination of the flow (step S172). Otherwise, a
'.»ed with the protocol in address registers 105. This incre- default queue is used (step S174). The packet is then
~tit is used to pointto a particular entry in the list of entries forwarded to the queue determined for this packet and

led to by the Protocol Otfset field in the preceding step, associated with the current destination port (Sl 76). In a
the protocol entry is thus obtained in step S146. 55 service time interval, the queue is serviced the appropriate

:A pointer to a linked entry in network entry table 170 can number of times as specified in priority configuration reg-
,COlllained within the protocol entry. To get the network isters. If this is the last ~tination P?rt (determined in step

for this flow and protocol, switch engine 100 obtains S178), packet forwarding_ processmg ends and control
.B~ Netwodt Address from address registers 105 arid branches back to step Sl2 m FIG. 6.
bines it with the Network Offset The result points to the 60 Switch engine processiog of Layer 2 packets in the

. d entry in network entry table 170 and the network multiprotocol switch of the present invention, as performed
~r this flow and protocol is thus obtained in step Sl48. in step S26 of ~G. 7 for example, is furt1:1er ill~trated in

.Switch engine processing for forwarding packets accord- FIG. 13. Processmg steps that are shaded differenllate those
lo flow .table information in the multiprotocol switch of w~ch are .prefera~ly ~rformed by CP~ 80 r.ather than
.present mvention, as performed in step S41i of FIG. 8 and 65 switch engme 100 m th!S example of the mvenllon.

S76 ?f FIG. 9 for example, is further illustrated in FIG. Switch engine 100 first e~ac!5 the address information
~ At this point, flow processing information for both the for both the source and destina.tioo ends of the flow with

EX 1017 Page 357

US 6,570,875 B1
23

The extracted bits are then used to hash onto the area of
address resolution hash 140 corresponding to the protacol
carried by the packet (IP, IPX or other) (step S132). if an
entry exists in address resolution hash 140 for the flow
(determined in S134), processing advances to step S138.
Otherwise, address resolution processing ends with a nega-
tive result and packet processing control branches to step
$44 in FIG. 7 (step S136).

In step $138, switch engine 100 locates in address reso-
jJution record table 150 the address resolution recordthat is
linked to the bash entry foundin the previous step. This is
done by combining the Base Record Address contained in
address registers 105 with the Record Offsetfield contained
in the hash entry.

Processing advances to step S140, where it is determined
whether an address resolution record entry exists for this end
of the flow. If the numberof records linked to the bash entry
is only one, switch engine 100 can readily locate the address
resolution record because the record entry is pointed to by
combining the Hase Record Address from address registers
105 with the Record Offset indicated in the hash entry as is
done in the previous step. If, however, the numberof linked
address resolution records is more than one (denoted by a
value in the Num Records field of the hash eutry being

- greater than zero), switch engine 100 performs a binary
search on the linked entries based on the remaining bits of
the address from which the twelve bits were extracted. For

IP/IPXpackets, the entry may contain socket mumbers along
with addresses (a “don’t care” socket value of Oxffffh in an
entry matches ail socket numbers).

If an address resolution record does not exist for the

particular flow (determined in step $140), address resolution
processing ends with a negative result and packet processing

b control branches to step $44 in FIG. 8 (step $142).
. As described above, the address resolution record iden-

tifies one of the ports (50-1 . . . 50-N) to which the host
associated with this side of the flow is connected. It also may
coutain links to entries in protocol entry table 166, and
thence to network entry table 170 that can alert switch
cagine 100 to any filters, priorities, mirrors and VLANsthat
are configured for the flow.

“In step S144, the Protocol Offset ficld of the axdress
resolution record for this flow is extracted. This field,
combined with the Base Protocol Address provided by
address registers 105, paints to a list of protocol entries for

f this flow in protocol entry table 160. Different protocol
q entries may exist for the flow depending on the protocol
E carried by the packet. To get the protocol entry for this flow
f. 4d protocol, switch engine 100 extracts the protocol carried
: by the packet and looks up the Protocol Increment associ-
& Mted with the protocol in address registers 105. This incre-

EWpcutis used to point to a particular entry in the list of entries
peinted to by the Protocol Offsetfield in the precedingstep,
Bux! the protocol entry is thus obtained in step S146.
y ‘Apointer to a linked entry in network entry table 170 can
ar Contained within the protocol entry. To get the network

pity for this flow and protocol, swiich engine 100 obtains
pr.Base Network Address from address registers 105 and

bines it with the Network Offset. Theresultpoints to the
ed entry in network entry table 170 and the network

CS for this flow and protocolis thus obtained in step $148.
y Witch engine processing for forwarding packets accord-

@ to flow table information in the multiprotocol switch of
° Pee, invention, as performed in step $46 ofFIG. 8 and

6 of FIG. 9 for example, is furtherillustrated in FIG.
Pout, flow processing information for both the

25

30

55

60

24
source and destination sides of the flow have been obtained,
as described above in connection with the processing illus-
trated in FIG. 11.

Thefilter tagbits for the source and destination,if they are
configured (as denoted by the Filter Enable fields of the
respective protocol entries), are compared by switch engine
100 (step $150). If they match (ic., the match bits of the
respective filler tags match and the veto bits do not match),
then the packet is dropped (S152). Otherwise, processing
advances to step S154, where the port associated with the
destination is determined from the address resolution record
entry for the destination side of the flow. If this is a multicast
packet, the pori(s) on which the packet should be forwarded
is determined from the Broadcast Enablefield of the net-
work entry for the destination side of the flow.

In step S156 switch engine 100 determines whether any
mirrors have been configured for the flow (as indicated by
Muror Enable bits being se! and matching mirror tags for
source and destination). If so, these mirror port(s) are
determined in step S158.

Packet forwarding processing is performed for each des-
tination port determined in steps $154 and S158. Ia step
$160, switch engine 100 first determines whether the packet
needs to be routed to the current destination port. This is
done by comparing the contents of the routing domain
configuration registers for the source and destination ports.
If the source and destination ports are in different routing
domains, the packet needs to be routed. In addition, for
unicast packets, switch engine 100 compares the destination
Ethemet address in the packet with the address of the port on
which the packet arrived. If the address matches, then the
packet needs to be routed.

For packets that do not need to be routed, processing
advances to step 8170. For packets to be routed, in step
8162,the source address is swapped with the routing domain
on which the packetis being forwarded. For unicast packets,
the destination Ethernet addresses of the packet is swapped
with the address specified in the swap field of the network
entry associated with the destination of this flow. The switch
tngine extracts the hop count from the packet and if the hop
count is one or zero for IP or 16 for IPX (as determined in
step $166), notifies CPU 80 for further processing (step
$168). In addition, switch engine 100 decrements (for IP) or
increments (for IPX} the hop count and recomputes the
checksum of the packet (for IP packets only) (step S164).

Processing advances to step S170 where, if priority is
enabledfor the flow (as indicated by the Priority Enable bit
in the protocol entry), the priority tags are compared to
determineif they match. [f'so, the Priority Queuefield of the
destination is determined from the protocol entry associated
with the destination of the flow (step $172). Otherwise, a
default quene is used (step $174). The packet is then
forwarded to the queue determined for this packet and
associated with the current destination port (S176). In a
service time interval, the queue is serviced the appropriate
sumber of times as specified in priority configuration reg-
isters. If this is the last destination port (determined in step
$178), packet forwarding processing ends and control
branches back to step S12 in FIG, 6.

Switch engine processing of Layer 2 packets in the
multiprotocol switch of the present invention, as performed
in step 526 of FIG. 7 for example, is further illustrated in
FIG. 13. Processing steps that are shaded differentiate those
which are preferably performed by CPU 80 rather than
switch engine 100 in this example of the invention.

Switch engine 100 first extracts the address information
for both the source and destination ends of ihe flow with

EX 1017 Page 357

I

US 6,570,875 Bl
25

which the packet is associated (step S180). As described
above, this includes extracting the source and destination
MAC addresses of the packet.

26
If a node is assigned to a VLAN, when a packet first

arrives from that node, CPU 80 allocate's a network entry
for it (if one does not already exist), determines the ports of
the switch on which other members of the VLAN are Switch engine 100 then checks to see whether entries

exist in the flow table for both ends of the flow (step S182).
If entries exists for both ends of the flow (determined instep
S184), the packet is forwarded at wire speed in accordance
with any filters, mirrors, priorities or VLANs established in
the flow table entry (step S186).

s connected and will put a '1' in bit positions corresponding
to those ports (e.g. bit O for port 1, bit 1 for port 2, etc.). A
node can belong to more than one V1AN and in that case,
the Broadcast Enable field will be updated appropriately
(e.g. it will be a logical "OR" of the two entries). If the

If only the source end of the flow was unresolved
(detennined in step S188), a flow !~le entry exists fo~ the
destination end of the flow, conlajnjng the port associated
with the destination, as well as any broadcast enable entries
that are useful if the packet is a multicast packet.
Accordingly, switch engine 100 forwards the packet on the
port(s) indicated by the flow table entry associated with the
destination (step Sl90).

10 destination address of a packet arriving from a node is a
broadcast address, then it will be unresolved and the switch
engine will use the source address to perform address
resolution and network entry lookup, and then broadcast the
packet according to the Broadcast Enable of the source if

If only the destination end of the flow was unresolved
(detcnnined in step S192), a flow table entry exists for the
source end of the flow, containing a broadcast enable entry
for the source. Accordingly, switch engine 100 forwards the
packet on the port(s) indicated by the broadcast enable entry
associated with the source (step S194).

15 such an entry exists. If the destination address is a multicast
address, then the switch engine uses the destination multi
cast address to perform address resolution and network entry
lookup, and will multicast the packet on ports indicated by
the Broadcast Enable field of the source if such an entry

20 exists.

If both the source and destination ends of the flow arc
25

unresolved (determined in steps S184, S188 and S192),
switch engine 100 notifies CPU 80 via CPU interface 110
that the source address of the packet is unresolved (step
6196). The message to the CPU contains the source and
destination addresses, the port on which the packet arrived,

30
and an indication that the source was unresolved. CPU 80
will then create an entry in flow table 70 containing for
wuding information and links to information relating to any
previously-configured filters, priorities, mirron; or VLANs
~spending to the source end of the flow (step S198), in

35
i manner descnbed above in connection with FIG. 10.

· ': If it is determined in steps S184, S188 and S192 that both
~ of the flow are unresolvcd, the packet is broadcast on

ports. After the unresolved packet is broadcast or for-
. , d in steps S194 or, S200, the destination node, if 40
. · d to the switch, will respond. The response packet

be processed as dcscnbed above and a flow table entry
the responding node will be created by the CPU as in step

& described above, a VIAN can be manually created by
a system administrator by configuring one via software
processes executing on CPU 80, information regarding
which is consequently stored in VLAN tables 79-1 ... 79-V
in configuration table 85. As a further aspect of the
invention, however, VLANs can be automatically created,
updated and maintained by the switch too correspond to
multicast groups instantaneously existing among the hosts
connected to ports of the switch. 1bc following automatic
VLANs are described below automatic VLANs for nodes
using Wmdows DLCJU,C and NelBios (Windows 95 and
Windows NT machines), a.utomatic VLANs for AppleTaJk
nodes (Apple computers), and automatic VLANs for IP
nodes using IP multicasting. It should be noted here that
automatic VLAN creation can be disablcd by the system
administrator by means of setting a flag, for eXll.tllple, in
V1AN tables 79-1 ... 79-V. It should be further noted that
automatic VLAN creation can be performed for other types
of multicast groups in addition to those descnbed below in
accordance with the invention .

When switch engine 100 determines in step S22 that the
packet is a multicast packet, it sends the packet lo CPU 80
for processing. This includes Windows-95/W'mdows-NT
multicast packets, IP multicasts, IGMP reports and queries, . . . At that point, flow table entries for both ends of the

will have been created so that any subsequent packets
· g to that flow will be forwarded by switch engine

1l1 wire speed.

45 and Apple Talk Zone Information Protocol (ZIP) packets.

. omatic VLAN creation and management in accor
with the present invention, as performed in step S24
process illustrated in FIG. 7 for example, is further 50
tcd in FIG. 14.

h engine 100 uses the Broadcast Enable field in the
entry to determine the ports on which broadcast or
packets from a node associated with that network

, to be sent. Every node that belongs to a VLAN 55
twork entry associated with it, and network entries

l'.barcd by multiple nodes. As descnbed above, the
. Enable field is one of the 32-bit fields in the
entry. A 1 in a bit p05ition of the Broadcast Enable

that broadcast or multicast packets from that 60

be forwarded on that port. AO in a bit position of
ast Enable field indicates that broadcast and

packets from the node associated with that net
will not be forwarded on that port. For example,

·Bro&dcast Enable field bit position 16 is 1 and 17 65
.. • broadcast or multicast packet from that node will
·Ollt on port 17, but not on port 18 of the switch.

Windows-95/Windows-NT (trademarks of Microsoft
Corp of Redmond Wash) machines using NetBios protocol
on the top of DLCJU,C use a multicast address of
03:00:00:00:00:01 to other Windows-95/NT machines.
When a packet is sent by Windows-95 clients and NT
servers using this address, switch engine 100 forwards will
forward this packet to CPU 80 via CPU interface 110 with
a message containing the address and the port on which the
packet arrived. When CPU 80 receives this message, pro
cessing will advance to step S210. CPU 80 checks to see
whether an address resolution record entry exists for this
address in flow table 70 (step S212). lf not, it creates address
resolution hash and address resolution record entries for this
multicast address and links them together with a network
table entry it further creates for it. Since CPU 80 knows one
of the ports on which a node using this multicast protocol
resides, it sets the bit corresponding to that port in the
Broadcast Enable field of the newly created network table
entry. For example, if the packet arrived on port S, then CPU
80 sets bit 4 of the Broadcast Enable field to 1. If an entry
already exists, then CPU 80 simply updates the Broadcast
Enable field appropriately (for example, if the Broadcast

•

EX 1017 Page 358

US 6,570,875 Bi
25

which the packet is associated (siep S180). As described
above, this includes extracting the source and destination
MACaddresses of the packet.

Switch engine 100 then checks to sce whether entries
exist in the flow table for boih ends of the flow (step S182).
If entries exists for both ends of the flow (determined instep
$184), the packet is forwarded at wire speed in accordance
with any filters, mirrors, priorities or VLANsestablished in
the flow table entry (siep $186).

If only the source end of the How was unresolved
(determined in step $188), a flow table entry cxisis for the
destination end of the flow, containing the port associated
with the destination, as well as any broadcast enable entries
that are useful if the packct is a multicast packet.
Accordingly, switch cngine 100 forwards the packet on the
port(s) indicated by the flow table entry associated with the
destination (step 5190).

If only the destination end of the flow was unresolved
(determined in step $192), a flow table entry exists for the
source end of the flow, containing a broadcast enable entry
for the source. Accordingly, switch engine 100 forwards the
packet on the port(s) indicated by the broadcast enable entry

: associated with the source (step $194).
bE If both the source and destination ends of the flow are
f6sunresolved (determined in steps $184, S188 and $192),

switch engine 100 notifies CPU 80 via CPU interface 110
: . that the source address of the packet is unresolved (step

 §=©=6 $196). The message to the CPU contains the source and
F, destination addresses, the port on which the packet arrived,

and an indication that the source was unresolved. CPU 80
will then create an entry in flow table 70 containing for-
warding information and links to information relating to any

.. previously-configured filters, priorities, mirrors or VLANs
B corresponding to the source end of the flow (step 5198), inb manner described above in connection with FIG. 10.

If it is determined in steps S184, S188 and S192 that both
stuls of the flow are unresolved, the packet is broadcast on

All ports. After the unresalved packet is broadcast or for-;pe ded in steps $194 or, S200, the destination node, if
p hed to the switch, will respond. The response packet

ull be processed as described above and a flow table entry
x the responding node will be created by the CPU as in step

e) At that point, flow table entries for both ends of the
will bave been created so that any subsequent packets

Onging to that flow will be forwarded by switch engine
pia.at wire speed.

lomatic VLAN creation and management in accor-
eeCO With the present invention, as performed in step S24
eee process illustrated in FIG. 7 for example, is further
paitated in FIG. 14,

prlich engine 100 uses the Broadcast Enable field in the
perk entry to determine the ports on which broadcast or
- packets from a node associated with that network
Feeds to be sent. Every node that belongs to a VLAN

P betwork cntry associated with it, and network entries
Shared by multiple nodes. As described above, the
“ast Enable field is onc of the 32-bit fields in the
x cniry. A 1 in a bit position of the Broadcast Enable
mm bat broadcast or multicast packets from that

forwarded on that port. AO in a bit position of
“cast Enable field indicates that broadcast and
Packets from the node associated with that nct-

will not be forwarded on thai port. For example,
abst Enable field bit position 16 is 1 and 17

Bont Cast or multicast packet from that node will
f°Port 17, but not on port 18 of the switch.

+oue

20

S5

65

26

If a node is assigned to a VLAN, when a packet first
arrives from that node, CPU 80 allocate’s a network entry
forit Gif one does not already exist), determines the ports ofthe switch on which other members of the VLAN are

connected and will put a ‘1’ in bit positions corresponding
to those ports (e.g. bit for port 1, bit 1 for port 2, etc). A
node can belong to more than one VLAN and in that case,
the Broadcast Enable field will be updated appropriately
(€-g. it will be a logical “OR” of the two eatries). If the
destination address of a packet arriving from a node is a
broadcast address, then it will be unresolved and the switch
engine will use the source address to perform address
resolution and network entry lookup, and then broadcast the
packet according to the Broadcast Enable of the source if
such an entry exists. [f the destination address is a multicast
address, then the switch engine uses the destination multi-
cast address to perform address resolution and network entry
lookup, and will multicast the packet on ports indicated by
the Broadcast Enable field of the source if such an entry
exists.

As described above, a WLAN can be manually created by
a system administrator by configuring one via software
processes executing on CPU 80, information regarding
which is consequently stored in VLAN tables 79-1... 79-¥
in configuration table 85. As a further aspect of the
invention, however, VLANs can be automatically created,
updated and maintained by the switch too correspond to
multicast groups instantaneously existing among the hosts
connected to ports of the switch. The following automatic
VLANsare described below automatic VLANs for nodes
using Windows DLC/LILC and NetBios (Windows 95 and
Windows NT machines), automatic VLANs for AppleTalk
nodes (Apple computers), and automatic VLANs for IP
nodes using IP multicasting. It should be neted here that
automatic VLAN creation can be disabled by the system
administrator by means of setting a flag, for example, in
VLAN tables 79-1. . . 79-¥. It should be further noted that

automatic VLAN creation can be performed for other types
of multicast groups in addition to those described below in
accordance with the invention.

When switch engine 100 determines in step S22 that the
packetis a multicast packet, it sends the packet to CPU 80
for processing. This includes Windows-95/Windows-NT
tulticast packets, IP multicasis, IGMP reports and queries,
and AppleTalk Zone Information Protocol (ZIP) packcts.

Windows-95/Windows-NT (trademarks of Microsoft
Corp of Redmond Wash) machines using NetBios protocol
on the top of DLC/LLC use a multicast address of
03:00:00:00:00:01 to other Windows-95/NT machines.
When a packet is sent by Windows-95 clients and NT
servers using this address, switch engine 100 forwards will
forward this packet to CPU 80 via CPU interface 110 with
a message containing the address and the port on which the
packet arrived. When CPU 80 receives this message, pro-
cessing will advance to step S210. CPU 80 checks to see
whether an address resolution record entry exists for this
address in flow table 70 (step $212). If not, it creates address
resolution hash and address resolution record entries for this
multicast address and links them together with a network
table entry it further creates for it. Since CPU 80 knows one
of the ports on which a node using this nmilticast protocol
resides, it sets the bit comesponding to that port in the
Broadcast Enable field of the newly created network table
entry. For example,if the packetarrived on port 5, then CPU
80 sets bit 4 of the Broadcast Enable field to 1. If an entry
already exists, then CPU 80 simply updates the Broadcast
Enable field appropriately (for example, if the Broadcast

EX 1017 Page 358

US 6,570,875 Bl
27

Enable field had a 1 in bit position 5 and if !he packet arrived
on port 2, !hen bit 1 of !he Broadcast Enable field is also set
to 1). The VIAN is automatically built in this manner, one
step at a time with no administrator intervention.

If !he packet is an AppleTalk packet (determined in step 5

S218), processing advances to step S220. In ApplcTalk
networks, a rough equivalent of an IP subnetwork is a zone.
AppleTalk networks use dynamic node address assignment
using a protocol called Apple Address Resolution Protocol
(AARP). Addresses of nodes can thus change from time to

10
time. However, names of nodes do not change frequently.
AppleTalk Name Binding Protocol (NBP) provides a
mechanism for translating names into addresses. One such
name to address mapping function involves maintaining a
mapping between networks and zone names. This is done in
Apple Talk routers through .ZOne Information Protocol (ZIP). l5
Refer to G. S. Sidhu et al., "Inside AppleTalk," pp. 8-1
tbrough 8-24, for more details regarding Ibis protocol.

:lone Information Protocol (ZIP) provides for the follow
ing services: maintenance of network-to-zone-name map
ping of the internet; support for selection of a zone name by 20

a node at startup; and support for various commands that
may be needed by non-router nodes to obtain this mapping.
During startup, an Apple Talk node acquires the name of !he
zone it belongs to. It can either ask the router to put it in a
specific zone or it can ask the router to place it in any zone. 25

This is done through ZIP GctNetinfo requests and responses.
A datalink multicast address called zone multicast address is
associated with a given zone name on a given data link and
is determined by !he ZIP process in ApplcTalk routers. All
tbc nodes that belong to a particular zone use !hat multicast 30
address instead of a broadcast address.

Switch engine 100 snoops AppleTalk ZIP packets by
detecting GetNctlnfo responses and ZIP Notify packets.
These packets contain the multicast address associated with
the zone. When such packets are detected in step S22, they

35
are forwarded to CPU 80 and processing advances to step
S220, where CPU 80 checks to sec whether flow table
entries exist for the multicast address for the zone. If not, it
creates an entry for it and automatically adds the sender
(which in this case would be the ApplcTalk router) and the

· receiver (which is the end node) to a VIAN based on this '40

multicast address provided that automatic VLAN creation is
not disabled. This is done by (step S222) creating an address
resolution hash and address resolution record entries for the

; ~ul!icast address if snch do not exist already, creating and
'_ linking a network table entry thereto, and updating the 45

Broadcast Enable field in the network entry so that subse-
{ qucnt packets addressed to this multicast address are for

Wl~ed on the ports which contain these nodes (sender and
n=cc1vcr) by switch engine 100 at wire speed. If it is

!ermined in step S220 that flow table entries already exist 50

the zone associated with the multicast address, CPU 80
tcs the Broadcast Enable field appropriately if neccs-

28
Class D IP addresses (in the range of 224.0.0.0 through

239.255.255.255) are used for IP multicast networks (refer
to RFC 1112 for more details). IP multicast addresses are
resolved in a manner identical to Ethernet multicast
addresses (i.e. the destination address is used to perform
address lookup). Internet Group Management Protocol
(IGMP) as described in RFC 1112 is used for IP multicast
group administration. IGMP uses IP datagranis as shown in
figure below. If the protocol carried field in the IP header is
2, then the data following the IP header contains IGMP
packet. Switch engine 100 detects IGMP packets in step S22
and passes them along to CPU 80 as descnbed above.

IGMP IGMP
type vcnion

(4 bits) (4 bits)

Unused
(8 bits)

Checksum
(16 bits)

Clau D IP Muiticaat Group Addreaa (32 bits)

There are only two types of IGMP messages: reports and
queries. End stations send reports to join or maintain mem
bership in a multicast group. Routers send queries to locate
active group members. As described above in connection
with FIG. 6, the multiprotocol switch of the present
invention, on powcrup, joins the "all hosts'' multicast group
(224.0.0.1) and periodically sends out IGMP queries to the
"all hosts" multicast address to determine all the multicast
groups !hat arc active on its segments. The group address in
this query is set to 0.0.0.0 to indicate that the switch is
interested in all active IP multicast groups. When a node
receives the query, it will respond with a report indicating
the multicast group it belongs to. Nodes also send IGMP
reports when they leave the multicast group. During the time
a. node belongs to a multicast group, all messages it sends to
other members of the group are addressed with the IP
multicast group address.

Switch engine 100 forwards all IGMP reports and IP
messages sent to IP multicast addresses to CPU 80 (step
S22). In stc:p S228, CPU 80 first determines whether the
message is an IGMP report indicating that a node is leaving
an existing group. If not, CPU 80 determines whether if low
table entries exist for the multicast group associated with the
IP multicast address (either indicated within an IGMP report
or contained as the destination address of the packet) (step
S230). If not, CPU 80 creates (step S232) or updates (stc:p
S234) the VLAN for this IP multicast address, provided that
automatic VLAN creation is not disabled. This is done by
creating address resolution hash and address resolution
record entries for that IP multicast address (if one has not
already been created), creating a network ta.ble entry and
linking it to the address resolution record entry (if not done
already), and updating the Broadcast Enable field.
Thereafter, multicast packets from nodes in the IP multicast , If the packet is an IP multicast packet, processing

IDccs to step S226. VLANs based on IP multicast groups
e~ablishcd using IGMP and IP multicast protocols. The
tiprotocol switch of the present invention performs

. IP spoo_fing in hardware and automatically determines
, multicast groups to which the nodes attached to the

55 group using that multicast address as a destination are
forwarded on all the other ports which have nodes that
belong to that IP multicast group at wire speed by switch
engine 100. If the packet is an IGMP report indicating that
a node is leaving the multicast group, CPU 80 retrieves the

_h belong. The switch creates a VIAN for every IP
t group. The switch also automatically determines

tncmbcrship of each multicast group associated with
~ttacbcd to the switch and maintains the VLAN

nlingly. Thus, IP multicast frames will be forwarded
n segments with users registered to receive them so

liCgJ:nents without group members arc spared of spurious

60 network entry associated with that multicast group and
clears the bit corresponding to the port on which that node
is connected.

Although the present invention has been described in
detail hcrcinabovc with reference to !he preferred cmbodi-

65 ments !hereof, those skilled in the art will appreciate that
various substitutions and modifications can be made to the
examples provided while remaining within the spirit and

EX 1017 Page 359

a

US 6,570,875 B1
27

Enable field had a 1 in bit position 5 andif the packet arrived
on port 2, then bit 1 of the Broadcast Enablefield is also set
to 1). The VLAN is automatically built in this manner, one
stcp at a time with no administrator intervention.

If the packet is an AppleTalk packet (determined in step
$218), processing advances to step S220. In AppleTalk
networks, a rough equivalent of an IP subnetwork is a zone.
AppleTalk networks use dynamic node address assignment
using a protocol called Apple Address Resolution Protocol
(AARP). Addresses of nodes can thus change from time to
time. However, names of nodes do not change frequently.
AppleTalk Name Binding Protocol (NBP) provides a
mechanism for translating names into addresses. One such
name to address mapping function involves maintaining a
mapping between networks and zone namcs. This is done in
AppleTalk routers through Zonc Information Protocol(ZIP).
Refer to G. S. Sidhu et al., “Inside AppleTalk,” pp. 8-1
through 8-24, for more details regarding this protocol.

Zone Information Protocol (ZIP) providesfor the follow-
ing services: maintenance of network-to-zone-name map-
ping of the internet; support for selection of a zone name by
a node at startup; and support for various commands that
may be needed by non-router nodes to obtain this mapping.
During startup, an AppleTalk node acquires the name of the
zone it belongs to. It can either ask the router to put it in a
specific zone or it can ask the router to place it in any zone.
This is done through ZIP GetNetinfo requests and responses.
Adatalink multicast address called zone multicast address is
associated with a given zone nameon a given data link and
is determined by the ZIP process in AppleTalk routers. All
the nodes that belong to a particular zone use that multicast
address instead of a broadcast address.

B Switch engine 100 snoops AppleTalk ZIP packets by
K detecting GetNetinfo responses and ZIP Notify packets.

These packets contain the multicast address associated with
the zone. When such packets are detected in step S22, they
arc forwarded to CPU 80 and processing advances to step
$220, where CPU 80 checks to see whether flow table
entries exist for the multicast address for the zone. If not, it

; Greates an entry for it and automatically adds the sender
§ (which in this case would be the AppleTalk router) and the

- teceiver (which is the end node) to a VLAN based onthis
& multicast address provided that automatic VLAN creation is

: not disabled. This is done by (step S222) creating an address
resolution hash and address resolution record entries for the

: multicast address if such do not exist already, creating and
; inking a network table entry thereto, and updating the

¢ Broadcast Enable field in the network entry so that subse-
B< quent packets addressed to this multicast address are for-

. warded on the ports which contain these nodes (sender and
Teceiver) by switch engine 100 at wire speed. If it is
Ektermined in step $220 that flow table entries already exist

Or the zone associated with the multicast address, CPU 80
piPdatcs the Broadcast Enable field appropriately if neces-

[Jf the packet is an IP multicast packet, processing
ances to step S226. VLANsbased onIP multicast groups

ee.cstablished using IGMP and IP multicast protocols. The
pitiprotocol switch of the present invention performs

P spoofing in hardware and automatically determines
fi Multicast sroups to which the nodes attached to the
et belong. The switch creates a VLAN for every IP

/ t group. The switch also automatically determines
Membership of each multicast group associated with

attached to the switch and maintains the VLAN
p"lingly. Thus, IP multicast frames will be forwarded

" Sepments with users registered to receive them so
ks €Ments without group members are spared of spurious

10

25

30

40

45

50

55

28

Class D IP addresses (in the range of 224.0.0.0 through
239.255.255.255) are used for IP multicast networks (refer
to RFC 1112 for more details). [P multicast addresses are
resolved in a manner identical to Ethernet multicast
addresses (i.¢. the destination address is used to perform
address lookup). Internet Group Management Protocol
(IGMP)as described in RFC 1112 is used for IP multicast
group administration. IGMP uses IP datagrams as shown in
figure below. If the protocol carried field in the IP headeris
2, then the data following the UP header contains IGMP
packet. Switch engine 100 detects IGMP packets in step $22
and passes them along to CPU 80 as described above.

IGMP IGMP Unused Checksum
type version (8 bits) (16 bits)

(4 bits) (4 bite)
Class D IP Muiticast Group Address (32 bits)

There are only two types of IGMP messages: reports and
queries. Endstations send reports to joi or maintain mem-
bership in a multicast group. Routers send queries to locate
active group members. As described above in connection
with FIG. 6, the multiprotocol switch of the present
invention, on powerup,joins the “all hosts” multicast group
(224.0.0.1) and periodically sends out IGMP queries to the
“all hosts” multicast address to determine all the multicast
groups that are active on its segments. The group address in
this query is set to 0.0.0.0 to indicate that the switch is
interested in all active IP multicast groups. When a node
receives the query, it will respond with a report indicating
the multicast group it belongs to. Nodes also send IGMP
Teports when they leave the multicast group. During the time
a node belongs to a multicast group, all messagesit sends to
other members of the group are addressed with the IP
multicast group address.

Switch engine 1) forwards all IGMP reports and IP
messages sent to IP multicast addresses to CPU 80 (step
$22). In step S228, CPU 80 first determines whether the
message is an IGMP report indicating that a node is leaving
an existing group.If not, CPU 80 determines whetherif low
table entries exist for the multicast group associated with the
IP multicast address (cither indicated within an IGMP report
or contained as the destination address of the packet) (step
$230). If not, CPU 80 creates (step $232) or updates (step
$234) the VLAN forthis IP multicast address, provided that
automatic VLAN creation is not disabled. This is done by
creating address resolution hash and address resolution
record entries for that IP multicast address (if one has not
already been created), creating a network table entry and
linking it to the address resolution record entry (if not done
already), and updating the Broadcast Enable field.
Thereafter, multicast packets from nodes in the IP multicast
group using that multicast address as a destination are
forwarded on all the other ports which have nodes that
belong to that IP multicast group at wire speed by switch
engine 100. If the packet is an IGMP report indicating that
a nodeis leaving the multicast group, CPU 80retrievesthe
network entry associated with that multicast group and
clears the bit corresponding to the port on which that node
is connected.

Although the present invention has been described in
detail hereinabove with reference to the preferred embodi-
ments thereof, those skilled in the art will appreciate that
various substitutions and modifications can be madeto the
examples provided while remaining within the spirit and

EX 1017 Page 359

..........

EX 1017 Page 360

- ae
werd SardaeMaa FO WER SY Aoe Le : : om ee . Pe . &

EX 1017 Page 360

I

US 6,570,875 Bl
29

srope of the invention as defined in the appended claims. For
example, many processing steps have been descnbed that
could be ordered or grouped together differently for
efficiency, or could be performed in parallel depending on
implementation. Those skilled in the art will realize that 5
such different implementations are possible after being
taught by the present invention. Accordingly, the examples
of the invention provided herein should be seen as illustra
tive rather than limiting.

I claim:
1. A method for forwarding data packets in a switch

10

having a plurality of ports, said ports being adapted to
transmit and receive data packets from hosts coupled
thereto, said method comprising:

receiving a first data packet at a first port; 1s
firstly extracting flow identification information from said

first data packet, said flow identillcation information
indicating that said first data packet belongs to a first
flow between certain of said hosts;

corresponding said flow identification information with 20
stored configuration information;

creating flow processing information based on said cor
responding stored configuration information, said flow
processing information comprising at least one of a
filter, a mirror, and a priority, said flow processing

25
information further indicating at least a second port,
wherein all data packets belonging to said first flow are
furwarded between said first and second ports, said first
and second ports being associated with said certain
hosts; 30

storing a first record in a flow table containing said flow
processing information;

receiving a second data packet at one of said first and
second ports;

secondly extracting said flow identification information 35

from said second data packet;
locating said stored first record in said flow table based on

said extracted flow identification information; and
preparing to forward said second data packet to the other

of said first and second ports based on said flow -40

processing information contained in said stored first
record,

wherein said steps of firstly and secondly extracting said
flow identification information each includes:
determining a protocol associated with said fust flow; 45

if said protocol is IP or IPX,. extracting Layer 3 header
information as said flow identillcation information;
and

if said protocol is not IP or IPX, extracting Layer 2
header information as said flow identification infor- so
mation .

. · A method as defined in claim 1, further comprising:

. eventing said second data packet from being forwarded
b the other of said first and second ports in accordance
with said filter. 55

·.A method as defined in claim 1, further comprising:

· g said second data packet to the other of said
.,, t ~d second ports; and

g said second data packet on certain other of 60
ports in accordance with said mirror.

.method as defined in claim 1, further comprising:

· g said second data packet to the other of said
.. ~ second ports; and
t;zing tr:tnsmission of said second data packet to 65

~ciated with the other of said first and second
m accordance with said priority,

30
S. A method of forwarding data packets between a plu

rality of switch ports, said method comprising:

receiving a data packet at one of said switch ports;

corresponding flow identification information in said data
packet with stored :flow processing information, said
flow identification information including source and
destination addresses, source and destination sockets,
and a protocol, said stored flow processing information
including a destination port, a filter tag and a broadcast
enable, said corresponding including:
locating an address resolution hash record in an address

resolution bash table according to a portion of said
flow identification information, said address resolu
tion bash record storing a link to an address resolu
tion record;

locating said address resolution record in an address
resolution record table in accordance with said
address resolution hash record, said address resolu
tion record storing said destination port and a link to
a protocol entry;

locating said protocol entry in a protocol entry table in
accordance with said address resolution record and
said protocol, said protocol entry storing a link to
said filter tag and a link to a network entry;

locating said network entry in a network entry table
according to said protocol entry, said network entry
storing said broadcast enable; and

locating said filter tag in a list of filter tags in accor
dance with said protocol entry; and

forwarding said data packet in accordance with said
stored flow processing information.

6. A method according to claim S, wherein said stored
:flow processing information further includes a priority, said
protocol entry further storing said priority.

7, A method according to claim S, further comprising
alerting a CPU if no stored :flow processing information
corresponds to said :flow identillcation information of said
data packet.

8. A method of forwarding data packets between a plu
rality of switch ports, said method comprising:

receiving a data packet at one of said switch ports;
corresponding :flow identification information in said data

packet with stored flow prooessing information, said
flow identification information including source and
destination addresses, source and destination sockets,
and a protocol, said stored flow processing information
including a destination port, a filter tag and a broadcast
enable, said corresponding including:
locating an address resolution hash record in an address

resolution bash table according to a portion of said
flow identillcation information, said address resolu
tion hash record storing a link to an address resolu
tion record;

locating said address resolution record in an address
resolution record table in accordance with said
address resolution hash record, said address resolu
tion record storing said destination port and a link to
a protocol entry;

locating said protocol entry in a protocol entry table in
accordance with said address resolution record and
said protocol, said protocol entry storing a link to
said filter tag and a link to a network entry;

locating said network entry in a network entry table
according to said protocol entry, said network entry
storing said broadcast enable; and

I

EX 1017 Page 361

US 6,570,875 B1
29

scope ofthe invention as defined in the appended claims. For
example, many processing steps have been described that
could be ordered or grouped together differently for
efficiency, or could be performed in parallel depending on
implementation. Those skilled in the art will realize that
such different implementations are possible after being
jaught by the present invention. Accordingly, the examples
of the invention provided herein should be seen as illustra-
tive rather than limiting.

J claim:
1. A method for forwarding data packets in a switch

having a plurality of ports, said ports being adapted to
transmit and receive data packels from hosts coupled
thereto, said method comprising:

receiving a first data packet at a first port;
firstly extracting flow identification information from said

first data packet, said flow identification information
indicating that said first data packet belongs to a first
flow between certain of said bosts;

corresponding said flow identification information with
stored configuration information;

creating flow processing information based on said cor-
responding stored configuration information, said flow
processing information comprising at least one of a
filter, a mirror, and a priority, said flow processing
information further indicating at least a second port,
wherein all dala packets belonging to said first flow are

+g forwarded between said first and second ports, said first
y and second ports being associated with said certain

hosts;
storing a first record in a flow table containing said flow

processing information;
receiving a second data packet at one of said first and

second ports:
secondly extracting said flow identification information

from said second data packet;
locating said stored first record in said flow table based on

said extracted flow identification information; and
Preparing to forward said second data packetto the other

of said first and second ports based on said flow
processing information contained in said stored first
record,

. Wherein said steps of firstly and secondly extracting said
flow identification information each includes:
determining a protocol associated with said first flow;
if said protocol is IP or IPX, extracting Layer 3 header

information as said flow identification information;an

if said protocol is not IP or IPX, extracting Layer 2
’ header information as said flow identification infor-

mation.

pA. A method as defined in claim 1, further comprising:
preventing said second data packet from being forwarded

‘wthe otherof said first and second poris in accordance
F With said filter.

y A method as defined in claim 1, further comprising:
cling said second data packet to the other of said

t and second ports; aud
nding said second data packet on certain other of

* ports in accordance with said mirror.

% ‘method as defined in claim 1, further comprising:
ng said second data packet to the other of said

and second ports; and
stizing transmission of said second data packet to

* 48sociated with the other of said first and second
pS 40 accordance with said priority.

,

10

45

45

55

30
5. A method of forwarding data packets belween a plu-

rality of switch ports, said method comprising:
receiving a data packet at one of said switch ports;
corresponding flow identification information in said data

packet with stored flow processing information, said
flow identification information including source and
destination addresses, source and destination sockets,
and a protocol, said stored flow processing information
including a destination port, a filter tag and a broadcast
enable, said corresponding including:
locating an address resolution hash record in an address

resolution hash table according to a portion of said
flow identification information, said address resolu-
tion hash record storing a link to an address resolu-
tion record;

locating said address resohition record in an address
resolution record table in accordance with said
address resolution hash record, said address resolu-
tion record storing said destination port and a link to
a protocol entry;

locating said protocol entry in a protocol entry table in
accordance with said address resolution record and
said protocol, said protocol entry storing a link to
said filter tag and a link to a network entry;

locating said network entry in a network entry table
according to said protocol entry, said network entry
storing said broadcast enable; and

locating said filter tag in a list offilter tags in accor-
dance with said protocol entry; and

forwarding said data packet in accordance with said
stored flow processing information.

6. A method according to claim 5, wherein said stored
flow processing information further includes a priority, said
protocol entry further storing said priority.

7. A method according to claim 5, further comprising
alerting a CPU if no stored flow processing information
corresponds to said flow identification information of said
data packet.

8. A method of forwarding data packets between a plu-
rality of switch ports, said method comprising:

receiving a data packet at one of said switch ports;
corresponding flow identification informationin said data

packet with stored flow processing information, said
flow identification information including source and
destination addresses, source and destination sockets,
and a protocol, said stored flow processing information
including a destination pont, a filter tag and a broadcast
enable, said corresponding incinding:
locating an address resolution hash record in an address

resolution hash table according to a portion of said
flow identification information, said address resolu-
tion hash record storing a link to an address resolu-
tion record;

locating said address resolution record in an address
resolution record table in accordance with said
address resolution hash record, said address resolu-
tion record storing said destination port and a link ta
a protocol entry;

locating said protocol entry in a protocol entry table in
accorance with said address resolution record and
said protocol, said protocol entry storing a link to
said filter tag and a link to a network entry;

locating said network cntry in a network entry table
according to said protocol catry, said network entry
storing said broadcast! enable; and

EX 1017 Page 361

'
US 6,570,875 Bl

31
locating said filter tag in a list of filter lags in accor

dance with said protocol entry; and
forwarding said data packet in accordance with said

stored flow processing information,
wherein said stored flow processing information further 5

includes a mirror tag, said protocol entry further storing
a link to said mirror tag, said method further compris
ing locating said mirror tag in a list of mirror tags in
accordance with said protocol entry.

9. A method of forwarding data packets between a plu- 10
rality of switch ports, said method comprising:

receiving a data packet at one of said switch ports;
corresponding flow identification in!onD:ation in ~aid da!a

packet with stored flow proccssmg informal.J.on, saJ.d
flow identification information including source and 15
destination addresses, source and destination sockets,
and a protocol, said stored flow processing information
including a destination port, a filter tag and a broadcast
enable, said corresponding including:
locating an address resolution bash record in an address

20
resolution hash table according to a portion of said
flow identification information, said address resolu
tion bash record storing a link to an address resolu-
tion record;

locating said address resolution record in an address
25

resolution record table in accordance with said
address resolution hash record, said address resolu
tion record storing said destination port and a link to
a protocol entry;

locating said protocol entry in a protocol entry table in
30

accordance with said address resolution record and
said protocol, said protocol entry storing a link to
said filter tag and a link to a ne twmk entry;

locating said network entry in a network entry table
according to said protocol entry, said networlc entry

35
storing said broadcast enable; and

locating said filter tag in a list of filter tags in accor
dance with said protocol entry; and

forwarding said data packet in accordance with sai<.i
stored flow processing information,

40
wherein said stored flow processing information further

includes address swapping bits, said network entry
further storing said address swapping bits.

10. A method of forwarding data packets between a
rurality of switch ports, said method comprising: 45

· receiving a data packet at one of said switch ports;
. corresponding flow identification information in said data
· packet with stored flow processing information, said

flow identification information including source and
destination addresses, source and destination sockets, 50

and a protocol, said stored flow processing information
•· including a destination port, a filter tag and a broadcast
, enable, said corresponding including:

locating an address resolution hash record in an address
resolution hash table according to a portion of said 55

flow identification information said address resolu
t!on hash record storing a link'to an address resolu
hon record·

ting said 'address resolution record in an address
resolution record table in accordance with said 60

~ resolution hash record, said address resolu
tion record storing said destination port and a link to
a ~rotocol entry;

ting said protocol entry in a protocol entry table in
. •~rdaace with said address resolution record and 65

'\ ~ protocol, said protocol entry storing a link to
. &lid filter tag and a link to a network entry;

32
locating said network entry in a network entry table

according to said protocol entry, said network entry
storing said broadcast enable; and

locating said filter tag in a list of filter tags in accor
dance with said protocol entry; and

forwarding said data packet in accordance with said
stored flow processing information,

wherein said forwarding step includes routing said data
packet to another network by swapping said source and
destination addresses of said data packet in accordance
with said address swapping bits.

11. An apparatus for forwarding data packets in a switch

having a plurality of ports, said ports being adapted to
transmit and receive data packets from hosts coupled

thereto, said apparatus comprising:

means for receiving a first data packet at a first port;

means for firstly extracting flow identification informa
tion from said first data packet, said flow identification
information indicating that said first data packet
belongs to a first flow between certain of said hosts;

means for corresponding said flow identification informa
tion with stored configuration information;

means for creating flow processing information based on
said corresponding stored configuration information,
said flow processing information comprising at least
one of a filter, a mirror, and a priority, said flow
processing information further indicating at least a
second port, wherein all data packets belonging to said
first flow are forwarded between said first and second
ports, said first and second ports being associated with
said certain hosts;

means for storing a first record in a flow table containing
said flow processing information;

means for receiving a second data packet at one of said
first and second ports;

means for secondly extracting said flow identification
information from said second data packet;

means for locating said stored first record in said flow
table based on said extracted flow identification infor
mation; and

means for preparing to forward said second data packet to
the other of said first and second ports based on said
flow processing information contained in said stored
first record,

wherein said means for firstly and secondly extracting
said flow identification information each includes:
means for determining a protocol associated with said

first flow;
means, operative if said protocol is IP or IPX, for

extracting Layer 3 header information as said flow
identification information; and

means, operative if said protocol is not IP or IPX, for
extracting Layer 2 header information as said flow
identification information.

U. An apparatus as defined in claim 11, further compris
ing:

means for preventing said second data packet from being
forwarded to the other of said first and second ports in
accordance with said filter.

EX 1017 Page 362

US 6,570,875 B1
31

locating said filter tag in a list of filter tags in accor-
dance with said protocol entry; and

forwarding said data packet in accordance with said
stored flow processing information,

wherein said stored flow processing information furtber
includesamirrortag, said protocolentry further storing
a link to said mirror tag, said method further compris-
ing locating said mirror tag in a list of mirror tags in
accordance with said protocol entry.

9, A method of forwarding data packets between a plu-
rality of switch ports, said method comprising:

receiving a data packet at onc of said switch ports,
corresponding flow identification informationin said data

packet with stored flow processing information, said
flow identification information including source and
destination addresses, source and destination sockets,
and a protocol, said stored flow processing information
including a destination port, a filter tag and a broadcast
enable, said corresponding including:
locating an address resolution hash record in an address

resolution hash table according to a portion of said
flow identification information, said address resolu-
tion hash record storing a link to an address resolu-
tion record;

locating said address resolution record in an address
resolution record table in accordance with said
address resolution hash record, said address resolu-
tion record storing said destination port and a link to
a protocol entry;

locating said protocol entry in a protocol entry table in
accordance with said address resolution record and
said protocol, said protocol entry storing a link to
said filter tag and a link to a network entry;

locating said network entry in a uctwork entry table
according to said protocol entry, said network entry
storing said broadcast enable; and

locating said filter tag in a list of filter tags in accor-
dance with said protocol entry; and

forwarding said data packet in accordance witb said
stored flow processing information,

wherein said stored flow processing information further
includes address swapping bits, said network entry
further storing said address swapping bits.

be 10. A method of forwarding data packets between a
Z plurality of switch ports, said method comprising:
f ‘ceiving a data packet at one of said switch ports;
¥ coresponding flow identification information in said data

packet with stored flow processing information, said
flow identification information including source and
destination addresses, source and destination sockets,
and @ protocol, said stored flow processing information

f includingadestination port,a filter tag and a broadcast
7 enable, said corresponding including:

locating an address resolution hash record in an address
Tesolution hash table according to a portion of said
flow identification information, said address resolu-
tion hash record storing a link to an address resolu-
ton record;

ting said address resolution record in an address
4 Tesolution record table in accordance with said

, * resolution hash record, said address resolu-
{Gon record storing said destination port anda link to

2 Protocol entry;
Pocating said protocol entry in a protocol entry table in
f *Scordance with said address resolution record and

z said Protocol, said protocol entry storing a link to
r filter tag andalink to a network entry;

a

5AO

0

10

45

50

55

65

32
locating said network entry in a network entry table

according to said protocolentry, said network entry
storing said broadcast enable; and

locating said filter tag inalist offilter tags in accor-
dance with said protocol entry; and

forwarding said data packet in accordance with said
stored flow processing information,

wherein said forwarding step includes routing said data
packet to another network by swapping said source and
destination addresses of said data packet in accordance
with said address swappingbits.

11. An apparatus for forwarding data packets in a switch
having a plurality of ports, said ports being adapted to
transmit and receive data packets from hosts coupled
thereto, said apparatus comprising:

means for receiving a first data packet at a first port;
means for firstly extracting flow identification informa-

tion from said first data packet, said flow identification
infonmation indicating that said first data packet
belongs toafirst flow between certain of said hosts;

means for corresponding said flow identification informa-
tion with stored configuration information;

means for creating flow processing information based on
said corresponding stored configuration information,
said flow processing information comprising at least
one of a filter, a mirror, and a priority, said flow
processing information further indicating al least a
second port, wherein all data packets belonging to said
first flow are forwarded betweensaid first and second

ports, said first and second ports being associated with
said certain hosts;

means for storing a first record in a flow table containing
said flow processing information;

means for receiving a second data packet at one of said
first and second ports;

means for secondly extracting said flow identification
information from said second data packet;

means for locating said stored first record in said flow
table based on said extracted flow identification infor-
mation; and

means for preparing to forward said second data packetto
the other of said first and second ports based on said
flow processing information contained in said stored
first record,

wherein said means for firstly and secondly extracting
said flow identification information each includes:
mncans for determining a protocol associated with said

first flow;
Means, operative if said protocol is IP or IPX, for

extracting Layer 3 header information as said flow
identification information; and

means, operative if said protocol is not IP or IPX, for
extracting Layer 2 header information as said flow
identification information.

12. An apparatus as defined in claim 11, further compris-
ing:

means for preventing said second data packet from being
forwardedto the other of said first and second ports in
accordance with said filter.

EX 1017 Page 362

'
,. • • l

US 6,570,875 Bl
33

13. An apparatus as defined in claim ll, further compris

ing:
means for forwarding said second data packet to the other

of said first and second ports; and
5

means for forwarding said second data packet on certain
other of said ports in accordance with said mirror.

14. An apparatus as defined in claim ll, further compris-

ing:

34
means for forwarding said second data packet to the other

of said first and second ports; and

means for prioritizing transmission of said second data
packet to hosts associated with the other of said first
and second ports in accordance with said priority.

• • • • •

EX 1017 Page 363

US 6,570,875 B1
33 34

43. An apparatus as defined in claim 11, further compris- means for forwarding said second data packetto the other
ing: of said first and second ports; and

means for forwarding said second data packetto the other
of said first and second ports; and means for prioritizing transmission of said second data

means for forwarding said second data packet on certain packet to hosts associated with the other of said first
other of said ports in accordance with said mirror. and second ports in accordance with said priority.

14. An apparatus as defined in claim 11, further compris-
in2 * e * . ®

EX 1017 Page 363

(12) United States Patent
Jorgensen

(54) Il'-FLOW CLASSIFICATION IN A WIRELESS
POINT TO MULTI-POINT (PrMP)
TRANSMISSION SYSTEM

(75) Inventor: Jacob W. Jorgensen, Folsom, CA (US)

(73) Assignee: MaUbu Networks, Inc., El Dorado
Hills, CA (US)

(•) Notice: Subject to any disclaimer, the tellll of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/350,156

(22) Filed: Jul. 9, 1999

(60)

(51)
(52)
(58)

(56)

Related U.S. Application Data
Provisional application No. 60/092,452, filed on Jul. 10,
1998.

Int. CJ.7 .. H04Q 7/24
U.S. CJ. 370/338; 370/328
Field of Search 370/338, 328,

370/329,230, 229,231,465,466,468,
232, 235; 455/455, 575, 525, 422, 426,

430, 437, 440, 11.1, 456, 404

References Cited

U.S. PATENT DOCUMENTS

4,742,512 A
4,907,224 A
5;:lJ'a.,222 A

5/1988 Akashi et al.
3/1990 Scoles ct aL 370/85.2
U1994 Fattouche ct al.

(List continued on next page.)

FOREIGN P.KfENT DOCUMENTS

2064975
702 462 Al
841 763 Al
848 563 A2

7/1999
3/1996 H04B/7/08
5/1998••.....• H04B/7/26
6/1998•• H04Q/7/20

(List continued on next page.)

424 4141,

11
US006452915Bl

(10) Patent No.:
(45) Date of Patent:

US 6,452,915 Bl
Sep.17,2002

OTIIER PUBUC.lffiONS

Bianchi, et al. "C.-PRMA: A Centralized Packet Reservation
Multiple Access for Local W1reslcss Communications" in
IEEE Transactions on Vehicular Technology, vol. 46, No. 2
pp. 422--436, May 1997.

(List continued on next page.)

Primary Examiner-Douglas Olms
Assistant Examiner-Ricardo M. Pizarro
(74) Attorney, Agent, or Finn-Venable; Ralph P. Albrecht

(57) ABSTRACT

An IP flow classification system is used in a wireless
telecommunications system. The IP flow classification sys
tem groups IP flows in a packet-centric wireless point to
multi-point telecommunications system. The classification
system includes: a wireless base station coupled to a first
data network; one or more host workstations coupled to the
first data network; one or more subscriber customer premise
equipment (CPE) stations in wireless communication with
the wireless base station over a shared bandwidth using a
packet-centric protocol; and one or more subscnoer woik
stations coupled to each of the subscriber CPE stations over
a second network; a resource allocation device optimizes
end-user qlllllity of service (QoS) and allocates shared
bandwidth among the subscnber CPE stations; an analyzing
and scheduling device analyzes and schedules internet pro
tocol (IP) flow over the shared wireless bandwidth. The
analyzing device includes the above IP flow classifier that
classifies tbe IP flow. The classifier can include a device for
associating a packet of an existing IP flow with the IP flow.
The classifier can include a QoS grouping device that groups
a packet of a new IP flow into a QoS class grouping. The
QoS grouping device can include a determining device that
determines and takes into account QoS class groupings for
the IP flow. The QoS grouping device can include an
optional differentiated services (Dill' Serv) device that takes
into account an optional Dill' Servs field priority marking for
the IP flow.

163 Claims, 41 Drawing Sheets

TCP/UDP

IP

PPP IP SEC

••••••• ••••• u

fl!

IWUN[/RF

EX 1017 Page 364

&

(12)

4)

(*)

(73)

(*)

@)

(22)

)

Gl)
G2)
(8)

(56)

United States Patent

0
(0) Patent No.: US 6,452,915 BI
 Jorgensen (45) Date of Patent: Sep. 17, 2002

IP-FLOW CLASSIFICATION IN A WIRELESS OTHER PUBLICATIONS

PONSMISSION Sn Bianchi, et al. “C~PRMA: A Centralized Packet Reservation
Inventor: Jacob W. Jorgensen, Folsom, CA (US)

Assignee: Malibu Networks, Inc., El Dorado
Hills, CA (US)

Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
US.C. 154(b) by 0 days.

Notice:

Appl. No.: 09/350,156

Filed: Jul. 9, 1999

Related U.S. Application Data

Provisional application No. 60/092,452, filed on Jul. 10,1998.

Tint. Cb? eeeeee cccecseerecstnaesenenecanegnenanes Hi04Q 7/24
US. Ch we 370/338; 370/328
Field of Search ... woe SHY338, 328,

370/329, 230,
232, 235; 455/455, 575, 525, 422, 426,

430, 437, 440, 11.1, 456, 404

References Cited

US. PATENT DOCUMENTS

4,742,512 A 5/1988 Akashi et al.
4,907,224 A 3/1990 Scoles ct ab. ose S70/BS.2
5,282,222 A 1/1994 Fattoucheetal.

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

2064975 TAI9O
702 452 Al=3/1996
841763 Al=55/1998
848 563 A2=6/1998

.... B04B/7/08
« HO04B/7/26

HO4Q/7/20

(List continued on next page.)

Multiple Access for Local Wiresless Communications” in
IEEE Transactions on Vehicular Technology, vol. 46, No. 2
pp. 422-436, May 1997.

(List continued on next page.)

Primary Examiner—Douglas Olms
Assistant Examiner—Ricardo M. Pizarro

(74) Attorney, Agent, or Firm—-Venable; Ralph P. Albrecht

(57) ABSTRACT

An IP flow classification system is used in a wireless
telecommunications system. The IP flow classification sys-
tem groups IP flows in a packet-centric wireless point to
coulti-point telecommunications system. The classification
system includes: a wireless base station coupled to a first
data network; one or more host workstations coupledto the
first data network; ope or more subscriber customer premise
equipment (CPE) stations in wireless communication with
the wireless base station over a shared bandwidth using a
packet-centric protocol; and one or more subscriber work-
Stations coupled to each of the subscriber CPE stations over
a second network: a resource allocation device optimizes
end-user quality of service (QoS) and allocates shared
bandwidth among the subscriber CPE stations; an analyzing
and scheduling device analyzes and schedules internet pro-
tocol (IP) flow over the shared wireless bandwidth. The
analyzing device includes the above IP flow classifier that
classifies the IP flow. The classifier can include a device for
associating a packet of an existing IP flow with the IP flow.
The classifier can include a QoS grouping device Lbat groups
a packet of a new IP flow into a QoS class grouping. The
QoS grouping device can include a determining device that
deiermines and takes into account QoS class groupings for
the IP flow. The QoS grouping device can include an
optional differentiated services (Diff Serv) device that takes
into account an optional Diff Servs field priority marking for
the IP flow.

163 Claims, 41 Drawing Sheets

LT eat
coeeeee

EX 1017 Page 364

I

US 6,452,915 Bl
Page 2

U.S. PJITENT DOCUMENTS

5,420,851 A 5/1995 Scshadri ct al. 370/29
5,493,569 A 2/1996 Buchholz ct al 370/85.7
5,497,504 A 3/1996 Acampora ct al.
5,499,243 A 3/1996 Hall
5,515,363 A 5/1996 Ben-Nun ct al.
5,581,544 A 12/1996 Hamad et al.
5,602,836 A 2/1997 Papadopoulos ct al•. 370/280
5,613,198 A 3/1997 Ahmadi ct al.
5,648,969 A 7/1997 Pasternak ct al.
5,717,689 A 2/1998 Ayanoglu
5,724,513 A 3/1998 Ben-Nun ct al.
5,7'29,542 A 3/1998 Dupont
5,732,077 A 3/1998 Whitehead
5,742,847 A 4/1998 Knoll ct al.
5,752,193 A 5/1998 Scholcficld ct al.
5,757,7~ A 5/1998 Eng ct al.
5,7fr7,077 A 7/1998 Kuehnel ct al.
5,7fr7,08fJ A 7/1998 Hulyalkar ct al.
5,793,416 A 8/1998 Rostokcr ct al.
5,828,677 A 10/1998 Sayccd ct al.
5,831,971 A 11/1998 Bonomi ct al.
5,838,670 A 11/1998 Hillstrom
5j',41,777 A 11/1998 Cohen
5,864,540 A 1/1999 Bonomi ct al.
5,907,822 A 5/1999 Prieto, Jr.
5,930,472 A • 7/1999 Smith•.....•..•.. 713/200
5,936,949 A 8/1999 Pasternak ct al.
5,956,330 A 9/1999 Kerns
5,970,059 A 10/1999 Ahopclto ct al.
5,970,062 A 10/1999 Bauchot
5,974,028 A 10/1999 Ramalaishnan
5,974,085 A • 10/1999 Smith •••.••••...•.•........... 375/222
6,002,935 A 12/1999 Wang
6,005,868 A 12/1999 Ito
6,016,311 A 1/1000 Gibert ct al.
6,021,158 A 2/2000 Schurr ct al.
6,031,832 A 2/2000 Turina
6,031J',45 A 2/2000 Walding
6,038,230 A 3/1000 Ofck
6,038,452 A 3/1000 Strawczynski
6,041,051 A 3/1000 Doshi ct al.
6,046,980 A • 4/1000 Packer 370/230
6,052,594 A 4/1000 Chuang et al.
6,058,114 A 5/1000 Seth= ct al.
6,064,649 A 5/1000 Johnston
6,075,7fr7 A 6/2000 Bobttk ct al.
6,075,792 A 6/1000 Ozluturk
6,081,536 A 6/1000 Gorsuch ct al.
6,084,867 A 7/1000 Meier
6,091,959 A • 7 /100() Soussi••..•.•......•... 455/456
6,092,113 A 7 /1000 Mac.shima
6,097,722 A 8/2000 Graham ct al.
6,097,733 A 8/2000 Basu ct al.
6,104,721 A 8/2000 Hsu
6,111,863 A 8/200() Rostokcr ct al.
li,115,357 A 9/2000 Packer ct al.

· 6,115,370 A 9/1000 Struhsakcr ct al.
6,115,390 A 9/1000 Chuah

'.6,151,300 A 11/1000 Hunt ct al.
!6,151,li28 A ll/1000 Xu ct al.
6,154,643 A 11/1000 Cox
'li,160,793 A 12/2000 Ghani ct al.

,163,532 A 12/2000 Taguchi ct al.
,195,565 Bl 2/2001 Dempsey ct al.

, ,620 Bl 3/2001 Sen ct al.
~ 15,71i9 Bl 4/2001 Ghani ct al.

19,713 Bl 4/2001 Ruutu et al.
\6.163,209 B2 • 7 /2001 Reed 455/456
.G.272,333 Bl • 8/2001 Smith .••.................•••.• 455/456

10/2001 Monin ct al.

EP
WO
WO
WO
WO
WO

6,320,846 Bl 11/2001 lamp ct al.
6,330,451 Bl 12/2001 Sen ct al.

FOREIGN PATENT DOCUMENTS

917 317 Al
W0%/10320
WO 98/37670
WO 99/26430
WO 00722626
WO 00/79722

5/1999
4/1996
8/1998
5/1999

11/2000
12/2000

........... H04U11/28

.•.....•.... H04Q/7/22

........... H04Ul1/56

....•..•.... H04Q/7/20

OTIIER PUBLICXIlONS

Kim et al. "The AT&T Labs Broadband Fixed Wireless Field
Experiment", IEEE Communications Magazine, OcL 1999,
pp. 56--62.

lcra ct al. "Wrreless Broadband Applications: The Telcser
vice Model and Adaptive QoS Provisioning'', IEEE Com
munications Magazine, Oct. 1999, pp. 71-75.

Celidonio et al. "A Wedcband Two-Layer Radio Access
Network Using DECT Technology in the Uplink'', IEEE
Communications Magazine, Oct. 1999, pp. 76-81.

Yoon et al. "A Wireless Local Loop System Based on
Wideband CDMA Tecboology'', IEEE Communications
Magazine, Oct. 1999, pp. 128-135.

Balakrisbman et al. "Improving Reliable Transprot and
Handoff Performance in Cellular Wrreless Networks'', http://
www.cs.berkely.edu/--ss/papers/wunet/html/wincLhml.,
Computer Science Div., Dept. of Electrical Engineering and
Computer Science, Univ. of California at Berkeley, Berke
ley, CA 94720-1776, Nov. 1995, pp. 1-18.

"A Cellular Wrreless Local Area Network with QoS Guar
antees for Heterogeneous Traffic", Authur(s): Sunghyun
Choi and Kang G. Shin, Technical Report CSE-TR-300-96,
Aug. 1996, pp. 1-24.

"The GSM System", Authors: Michel Mouly, Marie-Ber
nadette Pautet, pp. 272-277, XP-002154762.

"A Comparison of Mechanisms for Improving TCP Perfor
mance over Wireless Links" Author(s): Hari Balakrishnan,
Venkata N. Padmanabhan, Srinvasan Seshan, and Randy H.
Katz; XF000134405 IEEE/ACM Transactions on Network
ing, vol. 5, No. 6, Dec. 1997, pp. 756-769.

"Improving TCP/IP Performance Over Wireless Networks'';
Author(s): Hari Balakrishnan, Srinivasan Seshan, Elan
Amire and Randy H. Katz; In Proc. 1" ACM Int'l Conf. On
Mobile Computing and Networking (Mobicom), Nov. 1995,
XP-002920962.

International Search Report; Date: Dec. 14, 2000; Interna
tional Appln. No. PCT/US 00/18531 for (36792-164878).

International Search Report; Date: Feb. 14, 2000; Interna
tional Appln. No. PCT/US 00/18584 for (36792-164879).

International Search Report; Date: Dec. 14, 2000; Interna
tional Appln. No. PCT/US 00/18585 for (36792-164880).

International Search Report; Date: Dec. 22, 2000; Interna
tional Appln. No. PCT/US 00/18666 for (36792-164881).

* cited by examiner

EX 1017 Page 365

US 6,452,915 B1
Page 2: eee

U.S. PATENT DOCUMENTS

5,420,851 A
5,493,569 A

a 5,497,504 A
5,499,243 A
5,515,363 A
5,581,544 A
5,602,836 A
5,613,198 A
5,648,969 A
5,717,689 A
5,724513 A
5,729,542 A
5,732,077 A
5,742,847 A
5,752,193 A
5,757,708 A
5,787,071 A
5,787,080 A

c 5,793,416 A
5,828,677 A
5,831,971 A

a 5,838,670 A
a 5,841,777 A
.- 5,864,540 A

5,907,822 A
5,930,472 A
5,936,949 A
5,956,330 A
5,970,059 A
5,970,062 A
5,974,028 A
5,974,085 A
6,002,935 A
6,005,868 A
6,016,311 A
6,021,158 A
6,031,832 A
6,031,845 A
6,038,230 A
6,038,452 A
6,041,051 A
6,045,980 A
6,052,594 A
6,058,114 A
6,064,649 A
6,075,787 A
6,075,792 A
6,081,536 A
6,084,867 A
6,091,959 A
6,092,113 A
6,097,722 A
6,097,733 A

K 6,104,721 A
| 6,111,863 A

e 6,115,357 A
B. 6,115,370 A
F., 6,115,390 A
6,151,300 A
$5,151,628 A

£5:154,643 A

»

.

*
+

5/1995
2/1996
3/1996
3/1996
5/1996

12/1996
2/1997
3/1997
7/1997
2/1998
3/1998
3/1998
3/1998
4/1998
5/1998
35/1998
7/1998
7/1998
8/1998

10/1998
11/1998
11/1998
11/1998

1/1999
5/1999
1/1999
8/1999
9/1999

10/1999
10/1999
10/1999
10/1999
12/1999
12/1999

1/2000
2/2000
2/2000
2/2000
3/2000
3/2000
3/2000
4/2000
4/2000
5/2000
3/2000
6/2000
6/2000
6/2000
7/2000
7/2000
7/2000

12/2000

T2001

Seshadri et al. ..
Buchholz et al...

Beo-Nun et al.
Hamadetal.
Papadopoulosetal. 370/280Ahmadi etal.
Pasternak etal.
Ayanoglu
Ben-Nun etal.
Dupont
Whitehead
Knoll et al.
Scholefield et al.
Enget al.Kuehne! et al.
Hulyatkar etal.Rostoker etal.
Sayeed et al.
Bonomi etal.
Billstr6m
Cohen
Bonomi etal.
Prieto, Jr.
Smith
Pasternak
Kems
Ahopelto et al.
Bauchot
Ramakrishnan
Smith
WangIto
Gibert et al.
Schurr etal.
Turina
WaldingOfek
Strawezynski
Doshi et al.
Packer crccesseecscesenceseo ee 370/230
Chuanget al.
Sethuram et al.
Johnston
Bobeck etal.
Ozluturk
Gorsuch et al
Meier
SOUSSIccccnsenesceeeeenee 455/456
Maeshima
Graham et al.
Basu et al.
Hsu
Rostoker etal.
Packeret al.
Struhsaker et al.
Chuah
Hunt et al.
Xu ct al.
Cox
Ghani et al.
Taguchi etal.
Dempseyet al.Sen et al.
Ghani et al.
Ruutu et al.
Reed....
Smith ...
Monin etal.

sveee 455/456
taeae 455/456

6,320,846 Bl 11/2001 Jampetal.
6,330,451 B1 12/2001 Sen etal.

FOREIGN PATENT DOCUMENTS

EP 917 317 Al 5/1999 ..eeeeeee HOFL/12/28
wo WO 96/10320 AI1996 ceseeseerees H04Q/7/22
wo WO 98/37670 8/1998. HO041/12/56
wo WO 99/26430 S/1999 —ssssereeseee H04Q/7/20
wo WO 00722626 11/2000
wo ‘WO 00/79722 12/2000

OTHER PUBLICATIONS

Kim etal. “The AT&T Labs Broadband Fixed Wireless Field

Experiment”, IEEE Communications Magazine, Oct. 1999,
pp. 56-62.

Tera et al. “Wireless Broadband Applications: The Teleser-
vice Model and Adaptive QoS Provisioning”, IEEE Com-
munications Magazine, Oct. 1999, pp. 71~75.

Celidonio et al. “A Wedeband Two-Layer Radio Access
Network Using DECT Technology in the Uplink”, IEEE
Communications Magazine, Oct. 1999, pp. 76-81.

Yoon et al. “A Wireless Local Loop System Based on
Wideband CDMA Technology”, IEEE Communications
Magazine, Oct. 1999, pp. 128-135.

Balakrishman et al. “Improving Reliable Transprot and
Handoff Performance in Cellular Wireless Networks”, http://
www.cs.berkely.edu/~ss/papers/wunet/html/winet.bml.,
Computer Science Div., Dept. of Electrical Engineering and
Computer Science, Univ. of Califomia at Berkeley, Berke-
ley, CA 94720-1776, Nov. 1995, pp. 1-18.
“A Cellular Wireless Local Area Network with QoS Guar-
antees for Heterogencous Traffic”, Authur(s): Sunghyun
Choi and Kang G. Shin, Technical Report CSE-TR-300-96,
Aug. 1996,pp. 1-24.

“The GSM System”, Authors: Michel Mouly, Marie—Ber-
nadette Pautet, pp. 272-277, XP-002154762.

“A Comparison of Mechanismsfor Improving TCP Perfor-
mance over Wireless Links” Author(s): Hari Balakrishnan,
Venkata N. Padmanabhan,Srinvasan Seshan, and Randy H.
Katz; XF000734405 IEEE/ACM Transactions on Network-
ing, vol. 5, No. 6, Dec. 1997, pp. 756-769.

“Improving TCP/IP Performance Over Wireless Networks”;
Author(s): Hari Balakrishnan, Srinivasan Seshan, Elan
Amire and Randy H. Kaiz; In Proc. 1**ACM Int’l Conf. On
Mobile Computing and Networking (Mobicom), Nov. 1995,
XP-002920962.

International Search Report; Date: Dec. 14, 2000; Interna-
tional Appin. No. PCT/US 00/18531 for (36792-164878).

International Search Report; Date: Feb. 14, 2000; Interna-
tional Appin. No. PCT/US 00/18584 for (36792-164879).

International Search Report; Date: Dec. 14, 2000; Interma-
tional Appin. No. PCT/US 00/18585 for (36792-164880).

International Search Report; Date: Dec. 22, 2000; Interna-
tional Appin. No. PCT/US 00/18666 for (36792-164881).

* cited by examiner

ed Perensrea eaeee irreeklenisiheoeaa

EX 1017 Page 365

FIG.1 B

FIG.1 C

104 106

End Office

108
~~

/110
~

-- (EO) ---

' ' ' ' ' ' '

,;
/

,;
/

/

114

144 FIG.1 A
142

D~;A~ . NElWORK
(o=~-1

~ WORKSTATION
154 D 138 1M

~ ~ l=Vl\1\/
CONFERENCE

MONITOR

,;

,;
,;

,;

146

ID
w-
WORKSTATION

158
'::ID
CONFERENCE

CAMERA

Lr
CONFERENCE

MONITOR

148
~

150
,---

i + ' .

Cj
•
~ .
~ = ;"
=

.w
~"
~ s

[
.....
=
;!:

0
rJ':J

t
N
\C
1--1
Ul

t::d

_,, ___ ~ ---- .. - ~

EX 1017 Page 366

 yusyed“SN
7007‘LT“dag

fpJoTways

TaSt6‘zsr'9SO

EX 1017 Page 366

102c

129b 112b
Vo\ _ _ J

~

1020

200 -
GltG !:,"WIIGH ,-'LU'.3 ---- ~

! 1)1? ffl/ / ·-· -~-- -- 214 . -· ···-"

0~11aa
••]

DIAL-UP
WORKSTATIO~ 204 g-._..,
~
Modem 130a A

---202

----------- ----------
EO L104<J

SWITCH
108o ED 110a

-..,__11So
Fox

Switch

FIG.2A

0 •
'00 •
~ = "'4'-
("I:) = "'4'-

,;,:.
~ ,,
....
....:I
"'
N = s

,;,:.
=-1"/1
~
N
c:,
,I:,.

d
r;r.,
c:,,,..

~
~
Ul

~
1-'"

EX 1017 Page 367

ah

200

102¢ CLEC SWICH ~~209 <> ~Af” h 210 O) i
B POP 132d

1290 112b m2 Y LJRF TOWER

126b RF SUBSCRIBER .

RORKSTATION
! : nf ig}_304

pees CUENT SERVER “

CLIENT _é .
Celtutor Tower

it ee SS7 SIGNALING NETWORK}. 1 x
- a . 1100S = Suileh

(ft) 1160
Fox

FIG.2A

 quaqed“S01
2002‘LI“das

Tp30ZPays

IdSI6‘zsP'9SA

EX 1017 Page 367

·~

e •
00 •

230 ~
~

114
t'O 250 I 71 - = ~

r:r.i
~

"!='
~....:a
N
0
0
N

r:r.i =-~
~
~

=
,&:,,.

c
2J8J "--/ V I V -·· I "-...__/

00
, O'I

):..
242 !.11

N
'tc

FIG.28 """" !.11

l:d

""""

_.I ·-- ~-----~~--·--· ~-
EX 1017 Page 368

 quae°*S*f)
7002‘LT‘dag

TrJ0¢90S

TdST6‘7SP'9SA

EX 1017 Page 368

_,,,..--,,,,......,,,,,,,..

~

102b EO
SWITCH '104b

.,,,,,,,.. .,,,,,,,...,.... .,,.---
;

;

.,...

; .,...

--
;

;
;

;

TELEPHONY 1 288b
GATEWAY

136o

138a 128a
~

CLIENT WORKSTATION

'

CLIENT WORKSTATION

FIG.2C

............

' ' '

', ',
.....

' ' '

............
..........

28Bc TELEPHONY
GATEWAY

140c

286 -
~

.....
'-"'

10
. EO 1 ,.-/

8c SWITCH 10c

Cj
• en •
~ = i

Cl,)
~ ,,
I-Jo

~
N = e

~
('!I

a
~

s.
e

~
=-,

!
'""' O"t

t::d
'""'

••
EX 1017 Page 369

CUENT WORKSTATION

FIG.2C

TELEPHONY
288|CATEWAY

yuazeg‘Sl
Z007‘LI“dag

Th30&INS

TaST6‘7SP‘9SN

EX 1017 Page 369

FIG.2D

~- ----------
TELEPHONY
GATEWAY

1041> '---~~__,

298_/

296 -
~

------...............
.........

...............

288c TELEPHONY EO GATEWAY 108c SWITCH

' ' ,

-....£'

0 •
rl:i. •
~ a.
('fl

= """
Cl.l

~ ,_.
--.l
" w
$
w

r.,;i

;
"'
I.II
Q
.t. ,_.

~
O"I

~
t
U1

t.:d

~I

EX 1017 Page 370

CPE TELEPHONY

SUBSCRIBER GATEWAY
STATION

16d =a RF J x pea i -FAX Canon |B SYENT WOK ROUTERLFh136 Oe5 O\ mim=& S20, ‘Blistiner :

oO)ES SRaonBono aS
120d 990d - 02 et Ste 124e

hanes |S as298 ANTENNA CPE Eh 116¢
Subscriber aX

Station OS122e 0 Gun
FIG.2D sent cuENT “120

yuazed“Sl
7007‘LI“das

TpJOSBoys

Idst6‘zsp'9SN

EX 1017 Page 370

FIG.3A

Service
Provider

Backbone
\

_/~

292e

306f

,..;;,:.

~
V)
•

;p
ffi'
"""'

r:,;

,f!
.:-1
~
B

[
<:ii'\
,:,
;!:

~ r.n

t
~
\Cl
lo""
th
t:d
lo""

EX 1017 Page 371

oS

yuayed“SN

maC

SST fanLIN ny IS Wireless 3
<4 Tif Subscribers 8NX PL Nea

K rs
2S

142 Provider Ss
Backbone

FIG. JA \ Network Router S
S
an
oIp=,

EX 1017 Page 371

120d

122d

FIG.38

Subscriber
CPE 294d / 306d
Station ,

124d r-

CPE
1000

Subscriber :

292d 290d

~ Workstation 1
-----, I

LAN ~ ---~

322d

Wireless / 302
Bose Station

142

320

Closs 5
CO Switch

IP Telephony
Gateway

Router

Host Workstation
136a

140d

---300

104b
I

288b

~ • r:.,;. .
~
~
~ =

r;/)
~

"!'
~
N
Q
Q
N

r;/)

=--~
~ -~
=
~

c::
C'l'.l
c:,,,.,

~
N
'tc ,...
VI

t::d ,...

.,

... -
EX 1017 Page 372

Subscriber

CPE. 294d 306d Wireless - sae
Station Base Station

 Class 5

CO Switch

Wireless

R (Including Cable

IP Telephony
Gateway

120d

Subscriber
J Workstation

Router

Host Workstation
1360

quayeg“Sf
7007‘LT“das

TrJO£90S

TaSi6‘zsp'9SN

EX 1017 Page 372

.~''
~ •
00 •

424 414b 425 i =

(DATA AND) }•12 r.J':J

D APPLICATIONS MULTIMEDIA ~
~

I:i

}410
"'

A 430 TCP/UDP p tJ =
G N R = N

NM 0
}408 0 s IP 228

V
I s I r.J':J
s i:r

T PPP IP SEC L I }406 i
I L 0 cc
C I N =

}404
....

s MAC Loyer N ~

G ~

' '"''"""''420" .. "''/ .. cf"''
~,, . · 419

(402 I) _.418 PHY c
16QAM/QPSK IJ IMMUNE/RF

00
~

~
t RF SIGNAL l) I J

N

FIG.4
"T .. , "' \C

~
Ul

= ~

EX 1017 Page 373

APPLICATIONS (DATAAND

POAANOZOroO

ee

YY

(owenfant—_[

FIG.4 #8

2007“LT“das

TpJOgPETS

THST6‘zSP'9SN

EX 1017 Page 373

120d

512a

510a

508a

520a

504a

FIG.SA

Subscriber
Workstation

294d WINGS CPE
I

Subscriber CPE

-~····· .,

302 WINGS 5000 136a HOST

Wireless Base Station (Host Workstation

500
,-

512f

510f

508f

520f

504f

0 .
rJ).
•
"'C
~
ft)

=

l:ll
~

~
~

.. ...:i
N = = N

l:ll
::r'
~

a
-= =
~
~

Cj
00

.. "' .i:,.
O'l
~ ..
\C
lo-
O'l

cc
lo-

EX 1017 Page 374

120d pubscriber 994q —~‘WINGS CPE 302 WINGS 5000 136q HOST roa
Subscriber CPE Wireless Base Station Host Workstation

512a = —=-+ icati 4| 5121
520a a tSSI
504a / cere[fromm[, Pt 504f10 Base T 10 Bose TeT)wows|

Tt_

504d

 qusyeg“Sf

7007‘LT‘dag

TrJo69S

TaSt6‘zsr'9Sn

EX 1017 Page 374

.. ·1
~ •
r.r:i. •

522 ~
~

526 528 530 /
....
('t)

532 = No
120d

Parse TCP Determine If Determine Allow TCP 00

Whether Subject
t'>

Outgoing Duplicate Message To Pass 'i='
Packet Was

Header Acknowledgment Through Without ~-..J

Contents Message Successfully Modification N

Outgoing = Transmitted =
TCP

N

Message 534 536 538
00

Upon Receipt Of =-t'>
~

Wait for Successful Link -....
Suppress Successful Link Loyer Re- =

Transmission Of Layer Re- Transmission = '""
TCP Message Transmission Of Acknowledgment A

Lost Packet Resume Normal
TCP Messages

FIG.58

EX 1017 Page 375

Transmission Of =

quae‘S'
7007‘LT“das

TpJOOF29048

1aSt6‘zsr‘9SN

EX 1017 Page 375

Ingoing
TCP

Message

Parse TCP
Outgoing
Header

Contents

546
No

Determine If
Duplicate

Acknowledgment
Message

....... ~'~. ':,·: ..

550

Determine
Whether Subject

Packet Was
Successfully
T ransmitled

Suppress
Transmission Of
TCP Message

FIG.5C

548

Allow TCP
Message To Poss
Through Without

Modification

552

Wait For
Successful Link

Layer Re-
T ronsmission Of

lost Pocket

,,
0 •
00 •
~

540 ~

"""' /
('ti = """'

r:,:;

~
,,....:a
N = = N

554 556
r:,:;

Upon Receipt Of ="
! Successful Link

Loyer Re-
Q T ronsmission

Acknowledgment ,&:;,.
Resume Normal
TCP Messages

EX 1017 Page 376

136a 142
302

542

i
ima)

Ingoing
TCP

Message

 Determine

Whether Subject
Packet Was

Successfully
Tronsmitted

Parse TCP

Outgoing
Determine if

Duplicate
Acknowledgment

Message
Heoder

Contents

Suppress
Transmission Of

TCP Messoge

FIG.OC

Allow TCP

Message To Pass
Through Without

Modification

Upon Receipt Of
Successtul Link

Wait For

Successful Link Layer Re-
Loyer Re- Transmission

Transmission Of Acknowledgment
Lost Packet Resume Normal

TCP Messages

yuajed*S°N
7007‘LT“dag

TyJoTLPONS

TasT6‘zs¢'9Sa

EX 1017 Page 376

iii'.-I

142

~

~~
c3E3

::z:

FIG.6

I.J..J u
~
0:::

~
~

600

_,--/
604

Dow~link 606

Downlink ~ Flow Scheduler PRIMMA MAC
PRIMMA MA~ Downlink

----~ Flow Analyzer l . ..L. _ SAR And Framer-----, 624

Uplinkf T t_ Uplink
PRIMMA MAC (Uplink ~ IP Flow
SAR And 636 PRIMMA MAC 532Analyzer
Framer IP Flow Scheduler

l
634

306d
292d

e •
00 •

"'= =
~ =

r:l'.l

~
I>-'

.. -.J
N

8
N

~
~

~
I>-'
N

s.
~
I>-'

~
.. r:1'1

~
~
~
Ul

c=
~

-·~- - - - --.-.::_ -•--- ----• - .";· ... •• ---.·.--. -~--~:i;..:..; ."-.;...----:;_-;_ ----:.: ~:~' .:"':...--. • -··--·' --N ~

-'=···-··,

EX 1017 Page 377

FIG.6

INTERFACE

 Downlink
. a PRIMMA MAC poe Downlink

Downlink—(IP Flow Scheduler) pRIMMA MAC
 IP Flow Analyzer SAR And Framer

Ps

PRIMMA MAC Uplink IP Flow
SAR And 656 pRIMMA WAC 63Analyzer
Framer IP Flow Scheduler

634

 yuazeg*S*(}
2007“LI“dag

TrJ9ZTPays

TaST6‘°7S¢'9SA

EX 1017 Page 377

FIG.7

~702 ·~-
- Source And Destination IP Addresses

- IP TOS (Type Of Service)

- IP TTL {Time To Live)

- Protocol

• I UDP Header Fields: r-7°
4

- Source And Destination Port Numbers
~706 ·~-

- Source And Destination Port Numbers

- Window Size

- Urgent Pointer

- flogs (SYN, !SN, PSH, RST, FIN)

- MSS (Maximum Segment Size)

• [RTP, RTCP Header Fields: ~ 70B

-·~----------------

700 -
~

~
00 •

i

1
~

~ s

~ a
~

=
~

d
r:,).

(:I'\

~
N
'to
;-
01

t:d
;-

.. 1.

EX 1017 Page 378

FIG./

*

702
IP Header Fields:

- Source And Destination IP Addresses

— IP TOS (Type Of Service)

— IP TIL (Time To Live)

— Protocol

UDP Heeder Fields: i
—~ Source And Destination Port Numbers

TCP Header Fields: 708
— Source And Destination Port Numbers

Window Size

Urgent Pointer

Flags (SYN, ISN, PSH, RST, FIN)
MSS {Moximum Segment Size)

RIP, RICP Header Fields: 708

|

}

 yuajeg“Sl
7007‘LT“das

TpJo€120S

TaSt6‘zsr'9$n

EX 1017 Page 378

~
00 •

800 ~
306o '.I _) ~ \ & r ~ ~ 818a 1,.~ ,rva t"t)

602 AAA. ene -~~ A ""o:i.:li'o. a.

320

~ ~ 'v\VsUtiScriber N-2 ,,.J

2, _Jj_g~~Jki~J~~ ~-§'
812 ·s20c (

PRIMMA MAC
IP Flow Analyzer IP Flow Scheduler

FIG.BA
• ~ WINGS 5000

302

00
ti)

"S'
~
;-,J
N = = N

00 =-t\)

~
~
.i::,.

a,
.i::,.
~

~
,..'1'1

~
N
\C>
I-,
Ul

== ;-

EX 1017 Page 379

PMc rio.’ nn
eo

=
th

800 mel
Subscribe &Roplicokons vo i
hthSEAL 5-,

¥
=joo.
nmhe
a]

5

Be
PRIMMA MAC BS wn
Frome Over Be, 3

RF Medio BS =
812 2

=

Example IP Flow Priorities:
*b“| Latency—sensitive UDP <3~181 2a

High-prioty C>~1812bintermediate-priority ¢=>~4812¢
PRIMMA MAC PRIMA MAC PRIMA MAC ritial IMP ‘Screens ¢=>~1812d aLatency—neutrel <=> eIP Flow Analyzer IP Flow Scheduler SAR And Framer OFFpat FIPSMIP,Ele. 1812F a

WINGS 5000 Low-priority <=>~4812g oi
FIG.BA 302 2

mn

awpart

EX 1017 Page 379

636

FIG.SB

640
I

Uplink IP Flow Reservotion Scheduler

634

PRIMMA MAC
IP Flow Scheduler

~ WINGS 5000
302

632

I SQ"_ _.!!::___%!!!7~---.c

306o
_,,,,,-/

306c
_,,,,,-/

820c

830

/

812
I

Example IP Flow Priorities:

812a
812b
812c
812d
812e
812f
812g

~ •
rJ'.J. .
~ = ;--
=
""""

C'-l

~
~

,.....;a
N = s

C'-l
I='
~

a
~
!JI

s.
~
~

e
00
O'\

~
N
\0
~
lll
c=
~

_..jiil

EX 1017 Page 380

640

Uplink IP Flow Reservation Scheduler Applicationsttt.

CPE IP Flow
Analyzer

SubscriberN

81

}p i N p Be ys Pr 55Wi a EullEabies
HX\ | wees ties:

> B17¢ ~819¢ ~820¢ f

ip Latency-sensitive UDP <>
CPE IP Flow pigh“priorly =1 Scheduler 815d intermediate-priority <=Bige ~ J Initial ITIP Screens «4

PRIMMA MAC PRIMMA MAC PRIMMA MAC CPE IP Flow Jat 817d
SAR & Fromer IP Flow Scheduler IP Flow Analyzer .

Latency-neutral ¢=5

Cc WINGS 5000 ——————~ 632 buries 819d
FIG.8B 302 sobs B0d

FTP,SMTP, Etc. >

tions 3 306e ~ 3060

OETAi\Se\YY>

Low-priorily <>

juayeg“S'
2007“LI“das

TpJOST390g

TdST6‘zsr‘'9SA

EX 1017 Page 380

·"I '.> ;

0 •
900 tr. •

~
'""d = """' ft) = """'

SLA-Bosed r:.r1
306o ~

~

Prioritization 302 CPE-1 """ i ~

P1 ..._ 902a
N

I I = = - N

P2 ..._ 904a
P3 ..._906o

,·--::::~f{:Qs02b - CPE-2 r:.r1
P4 ..._ 908a =" n>

n> -.,_.
='I

=
,II..

306c """
I I

CPE-3 ·-··--------- I \\\~_A~, "'L
To Network ,
Backbone I ~ ,...;.--- 9UOD I c::

i::,.:i EP6d ~

n 1.
Ul
N
"'

FIG.9 WINGS 5000 \Cl
lo-
Ul

c=
lo-

EX 1017 Page 381

 142 140d

FIG.9

SLA~Based

Prioritization

Pi~ 9020
P2-~ 9040

p3 ~ 9060

~p4_~- 9080

902c 904c 906¢ 908¢

To Network
Backbone

WINGS 5000

woayed‘SA|

Z007‘LT‘das

TrJOOT19908

TaSt6‘zsr'9Sn

EX 1017 Page 381

320 1002
-'-

Q.I u
..E Bidirectional CL1 . - ~

.s Data Freme
.... .

" ..
! FIFO

---- • JOOS 'I

QoS/SI.A IC

Rules Engine
And Processor ~ 1014

' ~)
IP Flow Buffers I

1018 ')>

)
~

SRAM
~ . .

Radio Cell
Buffer

~

"

FIG.10

1000

,-J

1004

... SAR

>.). .)I 310
.
. Flash

1012 . RAM

l ',,
.

~

' ~ 10)6

PRIMMA
MAC Scheduler IP Interface n . V .

c ASIC .
y

'- 290

0 • r:,;;
•

i = """'

00

~
:-1

~

~
!
-..I

s,

"" ,...

?i
Q',

~
'te
Joo
tll

t:.1:1
Joo-

EX 1017 Page 382

320 1002 1004

8
5 Bidirectional
= K-24 Dato Frame SAR

=

ne :
2 Qos(sla Coro Co Flashules Engine

And Processor $ Cy —==> RAM| 1016
IP Flow Buffers

1018 I PRIMMA
H MAC Scheduler Keo _SCOC*SP ‘Inerface 290

SRAM oe ASIC
naaa [oo
te ———————

FIG.10

yuayed“SD.|
Z007‘LT‘dag

IpJoLTFOUS

TaST6‘7SP'9SA

EX 1017 Page 382

1706 1108 ,--
QoS And SlA Administration System OAM&P ,-------,

Qos Performance Service Level SNMP Proxy Client SNMP
Monitoring and Control Agreements For WAP Proxy Clients

Module 1106a Module 1106b 1108a For CPE 1108b

Policy Manager Enfl)'P.tiO~ ~ S~tem Operations, Adm[njst~otion,
Module Adm1mstrot1on Management And Prov1s1omng

1106c Module 1106d • Module 1108c
-------r.----~---•,1:'t,O ~ '- - -;

1102......._ I ~ a, I }} .>• • _)10

- "RR"" -IP Flow Control WAN Interface Moncgement .----------.
Wireless Transmission TCP Rate Control &: ~ WAN Ingress/Egress WAN
Tronceiver Queuing Control Class Of Service " Queuing Control lnterface/orts

And Module 11020 Module 1102b Mocfule 1104o (T1,T3,0C311104b

lfic K:= Wireless PRIMMA IP Flow Identification Firewall And . WAA .
Module MAC Loyer and Anolys1s D~~o" Security Trafftc Shaping

EnQine 1102c Module 1102d 1104c 1104d

,, ' ' 1110

'""' Customer emfn:: logging '\ { ~-;, ,» Directo~ Enabled Networking , ..) It
Account Logging &: Tronsoction Que!)' &: DEN

Dotobase Management Processing Control DEN QoS Management &:
Module 1110a Module 1110b 1112a Provisionino1112b

FIG
Billing_ & Account User IP-Based VPN

Control Authentication OEN JPSEC Control &: 1112d
Module 1110c Module 1110d 1112c Administration

1100 -

om
r

i =

00

~
~
;-a

8
N

[
~
QC

e.
,S:,,.
~

d
11.l

"'
~
'tc
i,-
Ul
t:d
lo-

EX 1017 Page 383

290

 Wireless

FIG. 11

QoS And SLA Administration

Qos Performance service Level
Monitoring and Control} Agreements

Module 11060 Module 1106b

System OAMEP
i SNMPseo Chent Proxy Clients

110Ba||_ For CPE 1108b

; Encryption System Operations, Administration,PolicyMonager Administration Mfonagemen| And Provisioning
1106c Module 1106d Module 11

IP Flow Control WAN interface Monogement
Transmission TCP Rate Controf & WAN Ingress/Egress WAN

Queuing Cantrol Closs Of Service Queuing Control interface Ports
Module 11020 Module _1102b Moduie 14040||(71,13,0C3) 1104b

Wireless PRIMMA {IP Flow Identification
ayer ond Analysis

Engine 1102¢ Module 1102d

Firewall And 1 nS .Securit roishopin1104. Hed

Directary Enabled Networking
DEN

DEN QoS Management &
11126||Provisioning 11126

1P—Bosed VPN
Control & 1112¢DEN PSEC 196 Administration 2

Customer Billing And Logging
Account Logging & |{Tronsaction Query &

Datebase Management|} Processing Control
Module “11100 Module 11106

Billing, & Accaunt Usercontro! Authenlicction
Module 1110¢ Module 1110

320

t

juared‘Sil
ZO0T‘LT“das

TrJOST390u8

IdSI6‘tsP9SA

EX 1017 Page 383

Downstream T ronsmission SubF rome
__..r1202

1206 1208 1210 12120 1212b 1212c 1212d 1212e 1212f 1212g 1212h 1212i 1212j 1212k 12121

1214
__.r1204

1216 1218a 1218b 1218c 1218d 1218e 1218f 1218g 1218h 1218i 1218j 1218k 12181 1218m

US1 US2 US3 US4 US5 US5 US7 USa USg US,o US11 US12 USn

DAB RRB

Upstream Transmission SubFrame

FIG.12A

-- -·.- .-. ·- --- ----- =---=-=-·· --_· --_- .-·:.. ___ .:---;_:---_-------- -
:_ ______ --=...::;.;,_ _____ :::=.,=----- _ _ _ --~;... --:: -~:_::---.6t· . :

. . ,

I

EX 1017 Page 384

_ a

Se
a
5S

oC
Downstream Transmission SubFrame | _71002 So

1206 1208 1210 12120 1212b 1212c 1212d 212 1212F 1212g 1212h 12121 1212} 1212k 12121
r $

FDB|DS;|DS2|DS3|DS4 DSg|DS7 DSg|DSyq} DS44} DS,, a
L =

UAB ARB

771204 .
1214 1218k 1218] 1218m e

DAB RRB

Upstream Transmission SubFrame c
2
>

FIG.12A =
. te

in
ow~_

= aoe ae aa = SS a
EX 1017 Page 384

TDMA Slot

12220

;226a
-

Control
Packet

r
Data Slot

1224o

/,,)228

Frame Size

;222b
/"

~226b 1226c
'

:.::•1·=·:-·.·~·,f!,:,.; \• !··~ t\',(.-,......... •• • •••• " ••

Data - Doto
Pocket Packet

.... \ •• ~ ~-~ J.•,\\~·~~· ·············~·-·· ...
(\.
)

122J 12241>

Inter-slot
Guard Time

<i229

FIG.128

-
1222c

~

• • •

/~

1222d 1
1226d
)

·t•\•·\·~··•., , ... :,,•,•,\•,,•
~~ta

Packet
,- , .. ,. •• , y

\

+
Radio Header
and Trailer

0 •
Cl)_
•

~ ;-
=

i::t.l

~
~

~-..,J

§

~
ti>
~

~
2.
i!:

~
00

="

~
'to
~
lll

t::d
~

EX 1017 Page 385

TBMA Slot

Petesgloransnroe

Control
Packet

Frame Size

inter—slot

Guard Time

Gon

FIG.12B

Radio Header
and Trailer

 yuazed“S'

7007‘LT2S

TrJo07PONS

TaStI6‘zsr'9SO

EX 1017 Page 385

T ronsmitter
turnaround
time

Downstream slots transmissions
(variable number per frame up to 16)

---~~~~~~----~ 1212

(l
1230 n 1210 12120 1212b 1212c 1212d 1212e 1212f 1212g 1212h 1212i 1212j 1212k 12121

~---'"---"~~....-'---'-~ ~~
l FOB OS 1 DS2 DS.3 DS4 DS5 DSs DS7 DSa DSg OS 1 O DS 11 DSm l . ..L..L..J...1...L-L U...i...&..---L.---L.--'--_._ _ _._ _ _.__....__ _ _._ _ _.__ _ _.___..i...._..1.,J..__,

Frame Descriptor Block for current frame

Acknowledgment Request Block - Acknowledgment of subscriber
requests for reservations requests from previous later frames

Upstream Acknowledgment Block - Acknowledgments from base
to subscribers for receipt of upstream slots in previous subframe

FIG.12C

Ji# .:! ;e: tm:::·_, .

1232 CCB
L....--1

Command
and Control
Block -
OAM&P
commands
sequenced by
subscriber per
frame, and
frame sync

••
0 • 00 •

EX 1017 Page 386

 Downstreom slots transmissions

(voriable number per frame up to 16) Alaa
1212 —

Transmitter
turnaround

time
1230 ~ 1206 §=1208=1210 12120 1212b 1212c 1212d 1212e 1212F 12%2g 1212h 1212) 1212] 1212k 12121

r

{

i
i

1ap2608CCB

Command

Frame Descriptor Block for current frome and Control
Block -
OAM&P

Acknowledgment Request Block - Acknowledgment of subscriber commends
requests for reservations requests from previous Icter frames sequenced by

subscriber per
Upstream Acknowledgment Block - Acknowledgments from base frame, and
to subscribers for receipt of upstream slots in previous subframe frame sync

FIG.12C

 aeaenTYnOvd Ree we or Fe ht pannel oe tae

yuazeg“S71|
2007‘LT‘dag

TpJ9TZ998

TdsT6‘7sr'9SN

Bene eee eo TLDS ea

EX 1017 Page 386

' "'=
.1210 1212a f212b 7212c 1212d 1212e 1212f 1212g 1212h 1212i 1212j 1212k 12121 =

~ = r , ARB FOB DS1 DS2 DS3 DS4 DS5 DS5 OS7 DSa DSg DS10 DS11 DSm
L..i...i..~....i-a..i...i...i...&...-.,__ _ __,___"--__,__....____. _ __._ _________ .,____...__,

j
-

CCB

)12060)1206b \1206c)1206d)1206e r12os,
1206g ,1206h
) } -

....
1232

rl.l

~
~

~...;a

~ = N

rl.l

UAB1 UAB2 UAB3 UAB4 UAB5 UAB5 UAB7 UAB,, =-It
N

J 1234a 1234b

N
Q
.f.:o,.
~

Preamble Subscriber IP-Flow Slot Seq. CRC
ID Identifier Number

2 2*8 8 4 16

FIG.12D

EX 1017 Page 387

71202
j 292k 12121 yuaeg‘S12!

2007‘LT“dag

ThJO7P9NS
FIG.12D TdST6‘ZSP'9SA

EX 1017 Page 387

_.r~
f206 1208 1210 1212a 1212b 1212c 1212d 1212e 1212f 1212g 1212h 1212i 1212j 1212k 12121

FOB DS1 DS2 DS3 DS4 DS5 DS5 DS7 DSa 0Sg DS1 DS11 DSm

1208b

1234o 1234b

Preamble

2

Subscriber
ID
2*8

1208c 1208d 1208e

AR83 ARB 4 ARB 5

IP-Flow Slot Seq.
Identifier Number

8 4

FIG.12E

CRC

16

1208f
1208g

CCB

1208h

ARBn

~ •
00. •

1232

EX 1017 Page 388

 Preamble|Subscriber

ID
2 248

 \P—~Flow

identifier
8

Sot Seq.|
Number

4 16

FIG.12E

i 1212)

7take
212k 1212

 Z007‘LT“dagyuajeg“SN

Tp38€7ONS

Tagst6‘zsp'9$0

EX 1017 Page 388

1206 1208 1210 1212a 1212b 1212c 1212d 1212e 1212f 1212g 1212h 1212i 1212j 1212k 12121

/i~
-

)1236b)1236c)1236d
~

Preamble Number of IP Flow ID IP Flow 10
downstream slob for downstream for downstream

reservation 1 reservation 2
2 2 2 2

FIG.12F

)1236e

IP Flow ID
for downstream

reservation m
2

)1236f)1236g

(

)
Contention slot
count, next upstream
subframe
4

CCB

e •
00
•

1232

12

e-

EX 1017 Page 389

CCB

Preamble Number of IP Flow ID IP Flow iD iP Flow iD
downstream slotq/or downstream|for downstream {for downstream

‘esenen { resenauon 2 "seren m

Contention slot

count, next upstream
subfrome
4

FIG.12F

woz‘Ltdogye‘*S°
TpJ9PZPONS

TaS16‘%SP'9SN

EX 1017 Page 389

1238a 1238b 1238c 1238d

MAC linked-list Reservation request Compressed Compressed
sequence number index number IP-Flow IP-Flow

Identifier Priority and Type
4 8 8 4

FIG.12G

~----_---c';,....=.....-;,..~-~ -- ------ ---------

1238e 1234e

Slot Payload CRC

512•8 16

~ = ;-
=

r,:i

~
~

..,.....:J
N s
r,:i

=-a
N
Cl!

=
~
~

(j
00
Cl'\

~
N
\C
~
Ol

C:
~

EX 1017 Page 390

MAC linked-list|Reservation request{ Compressed Compressed Slot Poyload
sequence number|index number IP-Flow IP-Flow

Identifier Priority and Type
4 8 8 4

512*8

FIG.12G

quayed°S'0 |
2007‘LI‘das

TrJ9SZAAS

TaST6‘zSP‘9SA

EX 1017 Page 390

1206

........r.1202

1208 1210 12120 1212b 1212c 1212d 1212e 1212f 1212g 1212h 1212i 1212j 1212k 12121
r-....+-,....,....,l"""'T"""f-r-r---,--'-....-"'"--T--T--...-----,r--"..._.-"'--,--'-....-"'"--T---'--r--"--r--"-...-,
I
I
' ARB FOB DS1 DS2 DS3 OS4 DS5 DS5 DS7 DSa 0Sg DS,o DS11 DS m l_..... --.. _______.. ___________________ _

r1240a 1240b
I ~1240c ~1240d ~1240e r1240f

)1234e - \ I

Mode Profile Control data DotoBlock 1 DotoBlock 2 DotaBlock n CRC
Command Command Index

4 4 2 B 8 8 16

FIG.12H

00
ti> ,,

1232
"
~ = N

00 =-ft)

~
N
0-.

= ""' .1:1,.

EX 1017 Page 391

1202

1206 1208 1210 12120 1212b 1212c 1212d 12126 1212F 12129 1212h 12421 1212} 1212k 12121

Pree

FIG.12H

juayeg‘s'l|
2007‘LT“das

TrJO97ONS

TdST6‘ZSP9SN

Transmitter
tu mo round
time

Upstream slot transmissions
(variable number per frame up to 16)

1230 n 1214 1216 1218a 1218b 1218c 1218d 1218e 121Bf 1218g 1218h 121Bi 1218j 1218k 12181 1218m

~~~~-----"--""'----'--~~,-.-t-..,-..-1-.......--,i.._ 

I US1 US2 US3 US4 US5 US5 US7 USa USg US10 US11 US12 USn 

l..i...i...J...1....1...1. ........ ...1-.11--.--'---'-- ........ --'---.J.--"'---..___....__.1..---JI....---I--.J.--..L---I 

1242 

Reservation Request Block - Requests from subscribers for 
transmission reservations in later frames with dynamically adjustable 
number of contention slots 

Downstream Acknowledgment Block - Acknowledgments from subscribers 
to base for receipt of downstream slots in previous downstream subframe 

FIG.12I 

ODB 
L....-J 

Operations Dato 
Block-
OAM&P doto 
from subscribers 
sequenced by 
subscriber per 
frame 

EX 1017 Page 392

Upstream slot tronsmissions
(variable number per frome up to 16)

time
1230 _ 1214=1216«=12180 1218b 1218¢ 1218d 1218e 1218F 1218 1218h 1218) 1218)

 \{
'
u

 
Reservotion Request Block - Requests from subscribers for
transmission reservations in loter fromes with dynamically odjustoble
number of contention slots

Downstream Acknowledgment Block - Acknowledgments from subscribers
to bose for receipt of downstream slots in previous downstream subfrome

FIG.121

7eh
Transmitter
tumaround

1218k 12181 1218m

0B
|

Operations Data
Block—
OAM&P dote
from subscribers

sequenced by
subscriber per
frame

 
 jueqeg“SN

t00Z‘ZT‘das

Ip3°£7W89q§

TdSI6‘Z%SP'9Sn

EX 1017 Page 392



I
r 

1214 

_.r.1204 

1216 121Bo 1218b 1218c 1218d 1218e 1218f 1218g 1218h 1218i 1218j 1218k 12181 1218m 

RRB US 1 US2 US3 US4 US5 US5 US7 USe USg US 1 US11 US12 USn 

L ............................... ......-..----------_.......------------------.__..--
ODB 

1214f 121-1,g )1214<1 )1214b ?214c ~214d ?214e \ ,1214n 
) J -

DAB1 DAB2 DAB3 DAB4 DAB5 DA85 DAB7 DA80 

I 12Me 

Preamble Subscriber IP-Flow Slot Seq. CRC 
ID Identifier Number 

2 2*8 8 4 16 

CPE Acknowledging Receipt of Slot T ronsmitted from Bose 

FIG.12J 

0 • r.,;. 
• 
~ 
~ ..... 
ft) 

242 = ..... 

r:ri 

~ 
lo-
-..;J 
"' N = = N 

00 
=r' 
~ 

~ 
N 
Qe 

a. 
.s:,. 
lo-

EX 1017 Page 393

 
 
 iD

28 8 4

CPE Acknowledging Receipt of Slot Tronsmitted from Bose

 Identifier Number

 

FIG.12J

i 1218}

 

ia
1218k 1218] 1218m

242

yuayeg‘S'0.|
 

 

7007‘LT“das

TpJ087ONS

Tast6‘zsp'9Sa

EX 1017 Page 393



1214 

~16a 

RR81 

~1204 

1216 1218o 12f8b 12f8c 1218d 1218e 1218f 1218g 1218h 1218i 1218j 1218k 121811218m 

US 1 US2 US3 US4 US 5 US 6 US7 US8 US 9 US10 US11 US 12 USn 

1216b 1216c 1216d 1216e 

RR85 

1216g 
1216f 

RR(t RRB7 

ODB 

1216h 

RRB0 

1242 

There ore o variable number of 
contention slots available. 

1234<1 1234b 1234e CPE' s randomly choose one of 
the available contention slots. 
Any collisions ore detected by 
the Base, which then increments 
the number of available 
contention slots in the next 
upstream frame. 

Preamble 

2 

Subscriber 
ID 
2*8 

IP-Flow 
Identifier 

8 

QoS Dato 
Class 

4 

IP-Flow Priorit 
and Type 

4 

CPE Requesting a Reservation for Upstream T ronsmission of Slot 

FIG.12K 

CRC 

16 

EX 1017 Page 394

 
 
 

71204
1214 1216 12180 1218b 1218c 1218d 1218e 121Bf {218g 1218h 1218) 1218] 1218k 12181 1218m

 

  
  Preamble|Subscriber|IP-Flow Q0SJiP—Flow Priorit

rn ne mes and™
CPE Requesting o Reservation for Upstream Transmission of Slot

FIG.12K

1216qet_tsh 

There are a varicble number of
contention slots available.

CPE's randomly choose one of
the available contention slots.

Any collisions ore detected by
the Base, which then increments
the number of avoilable
contention slots in the next

upstream frame.

yuayeg“Sl'
2007‘LI“das

TrJ967948

TdST6‘7SP'9SA

EX 1017 Page 394



~ . 
00 • 

1246 1238b 1238c 1238d 1238e 1234e ) } ) ) ~ } 
CPE linked-list Reservation request Compressed Compressed Slot Payload CRC 
sequence number indeic number IP-Flow IP-Flow 

Identifier Priority end Type 
4 8 8 4 512·8 16 

FIG.12L 

EX 1017 Page 395

 
 

CPE linked~list|Reservation request{ Compressed Compressed
sequence number|index number P-Flow IP-Flow

Identifier Priority ond Type
4 8 8 4 

FIG. 12L

Slot Payload

51298

 

2007‘LT‘dagjuajeg‘Ss
Tr0O¢1994S

TaST6‘zsp'9$a

 
EX 1017 Page 395



• 

-

1214 1216 1218a1218b 1218c 1218d 1218e 1218f 1218g 1218h 1218i 1218j 1218k 12181 1218m 

1234a 
( 

~ 
Preamble 

2 

System 
Mode 
4 

1234b 
I 

~1248a ~1248b 
~ 

Subscriber System State Performance 
ID Doto 

2*8 28 20 

1250b 1250c 

System 
Status 

4 

System 
Resources 

8 

System 
Power 
4 

FIG.12M 

------ --~-~------~--=-~='=-=--· - - -

~1248c 

Antenna 
Doto 
8 

System 
T emperoture 

8 

-

r1234c 
~1248d 

CRC Sync 
Pattern 

16 4 . 

0 • 
~ • 
1-'d = ..... 
~ = ..... 

1242 

r;r., 

~ .... 
~-.J 
N = = N 

r;r., 
1:1" 
~ 

~ 
~ .... 
= '"" ,I:,. .... 

- - ··--1 -:I;",. -- -· ---'l't---. -·-···fi-: ---:-==--=-----· ----- --- _·_-.: _.= _ _ ~ .. ---=-~-~::_:_-F-_'_~.:,. -~.:::.:_=-::---------·------ --.- - - - -- - ::::-:-.--::-__-:-_-:_-_ __ .... _ _:_-=- : 
--- -

- - - ·-· - --

EX 1017 Page 396

quajeg“S'0
2007‘LI‘das 
TrJoTE3909S125068

1250a 1250b

 THSI6‘7SP'9SA

 
 

 
EX 1017 Page 396



1214 1216 121Bo1218b 1218c 1218d 1218e 1218f 1218g 1218h 1218i 1218j 1218k 12181 1218m 
r...,....,..l"""f-r-i--,r...,.-+'"T'"'I"'"-.....-.........,~~--------........,__._-_.__.,.._..._,._.. ___ .........,,..........._,__ 
I 

I RRB US1 US2 US3 US4 US5 US5 US7 USa USg US10 US11 US12 USn 
I 
I 
............................... ....._. ____ ...._ __ ...__ ________________ ......._ _______ _ 

r1234o 
- \ 

Preamble 

2 

Number 
Com Repeats 

8 

,1234b 
)1248a )1248b \ 

Subscriber System State Performance 
ID 

2•a 

1252b 

Number 
FrameSlips 

a 

Doto 
28 20 

1~~/ 
WaitState 

Index 
4 

FIG.12N 

~1248c r12J4c 
~08 i248d 

Antenna CRC Sync 
Data Pattern 
8 16 4 

~ • 00 . 
;;= ..... 
~ 

1242 = ..... 

r;r.i 
~ ,, 
~ 

~...;J 

N = = N 

r;r.i 

=-~ 

a 
~ 
N 

= .... 
.s:.. 
~ 

EX 1017 Page 397

 

Number Number WaitStote

ComRepeats|FrameSlips; Index
8 B 4

FIG.12N

008

yuayed“S01.| 

  
 

7007‘LT“das

Te30Ze1990S

THST6‘7SP'9SO

EX 1017 Page 397



1214 1216 1218a1218b 1218c 1218d 1218e 1218f 1218g 1218h 1218i 1218j 1218k 12181 1218m 

r RRB US 1 US 2 US 3 US4 US5 US5 US7 US a USg US10 US 11 US12 USn 
L....._ .......... _.__....._.....-_....__ _______ __....__ ___ _._ _________ _.___, 

,1234a 
-

Preamble 

2 

,1234b 
)1248a 

~ 
Subscriber System State 

ID 
2 8 

)1248b )1248c 

Performance Anlenno 
Dato 
20 

PeokGoin 
Index 
4 

Doto 
8 

AvgGoin 
Index 
4 

FIG.120 

r1234c 
~DB )1248d 

CRC Sync 
Pattern 

16 4 

~ • 00 • 
~ = ..... 
ti) = ..... 

1242 

tZI 

~ 
lo-

.. ....:i 
N = s 

tZI =-t'II 
t'II .... 
t 
c::> 

""' .'1>, 
~ 

EX 1017 Page 398

rere"

PeokGain|AvgGain
Index Index

4 4

FIG.120

 
ODB

 

 
 

 

z00z‘LT“dagyuayeg‘“S‘0
Tr36CEWEYS

TaST6‘zSP'9SN.

EX 1017 Page 398



e • 
1204 /1300 rJj 

Current MAC 5 • 
"'C = upstream sub-frame ..... r1J« r, 

.,A,., 'l = N 
..... 

N-1 I lI~ftMUili:Jft:JJM! te1J~~-- r.,). 

~ 
""'" "'-...1 
N 

8 
N , 

I 

............ ,.._..,._, .,.,,..... ·-· --
w 

r.r.i 
/:I" 
ti> 

rln""'-' r,n,.l,,.J flnw" 
~ 

~ 
e .... 
.t:,. 

Closs-2 pocket flows ., I ""'" -1322 ---........ \ ~Ui 
HTIP, non-reoltime 1308 
video streams, etc. · 

Downstream reservation FIFO D'H Closs-1 pocket flows 1 
~ 

FIG.13 I ~, for IP latency sensitive Reoltime interactive 
. . {Closs-1) pocket flows voice, video, etc. Cl", 

"' 
~ 
~ 

"' -c 
~ 
Ul 
t:= 
~ 

EX 1017 Page 399

1342

FIG.13

Class~3_downstream reservation FIFQ
downstreg

HUeT Closs~3 packet flow queues 
LI4336

Class-2 downstrengem_ reservation FIFO
i

 

  

1306

Next MAC

subframe upstrea
So

1344

pd
MAC upstream subframes:

( Current MAC j
sub~frome

TEEEBEEETOKN-TRReservations

granted 604,634,1566,1666 Ne3 Heee

 Upstream reservation resis —) WHfrom subscriber CPE's

 
   
  

 
    

bam CPE upstream flow requests: 312
: bey Bie Scheduler aH Closs—3 ket fiSS oro pockel flows1 1. 1339 330 SMTP {Emoil), FIP, eteI310A

Lotency sensitive (Class~1)
downstream reservation FIFO 1372 HH Class-2 packet flows
aaa. HTTP, non-realtime 1308

T video streams, etc.Re

MW Downstream reservation FIFO a — 1 packet flows4 for IP lotency sensitive ecltime interactive
abeaeg (Closs-1) pocket flows voice, video, etc.  

1348 qayg 1324

sees en entncmaiimen Te

8

   
 

 

———
 

 
 
 

iL2AY

 
o
4

s
o
~7

7007‘LT‘dag

TPJ0bEJaIaqg

TaST6‘7SP'9SO

. EX 1017 Page 399



.j(l AQJl!ilJt\JASQO)iif,UC:PW"'·'ili,m._0!'*:iPidlfifli'"!!''. , ':'''' .. r·'"·.· 

Frame-to-frame 
time interval · 

1402'-'-N 

1404--._N+! 
.... 
~ 1405__..N+2 
:::s 

! 1408--N+J 
u 
C: 

~ 1410-NH 
~ 
a, 1412"""---N+S 
E 
J: 1414--._N+6 

1416..f'N+x 

FIG.14 

MAC Frame Scheduler 
(Current Frome = N) 

·1484 

472 r 1476 
1470\.14741'478 

0 • 
00 . 
;p ..... 
('t) = ..... 

00 

~ .... 
~ 

~ 

ga 
a 
~ 
(Ii 

a. 
e 

d 
rl.l 
c,,.. 

~ 
t 
lo-

"" = lo-

EX 1017 Page 400

 

 
 

566, 1666

Slot—to—slot ime nta,heDownlink SubFromes (Carere=). Uplink SubFromesJ Eramet“ffA.orUMLif\WWNS 3ranearinPRIAwyiGSo 3
oe areaLAPA BeS25 CACTIUNLet TRS

a woe] TUTTYpeTE a2 Ms TTEELTE s= Mt HRTEMeC
weve (LEVELEETLTEEMEEEEETEE

1 Ges oh 28 1432 a3 aha Ne) Net se te2 a Sear 3
FI G. 1 4 of isochronous advonce reservations 1908 S

  
EX 1017 Page 400



FIG.15A - . ·-
/Iv\/£ I ;;JU't) 

Doto 
Network Packet Header Identification 

1510) (1520 
I 

Extract data Packet 
IP Packet Characterization 
~ Buffering from packet 

Flow header fields 
System ?530 1526? '{ 7 (l:>:l~ 

Jio Existing Look for 
~ 

Determine 
IP-Flow J's motch with if packet ¢¢ Identification 'V existing V is too -old 

Dalo Table IP-flaw if so, delete 

lf 1524 ~,.NO 
1532 f1536 

Analyze 

11 .. A 

Look-up Look-up 
Packet IP-Flaw Subscriber 

~eadec fields ~ ~ ·<-r--x .. 
Look up v application's CPE ID 

QoS associated 
Add IP-Flow source requirements with IP-Flow 
identification application 
data if new type 
flow 1r' fr (11534 ,r(,538 

Source IP-Flow Subscriber 

156L 
Application 

QoS CPE IP 
Packet 

Requirement Address 
Header 

Data Table Table Table 

~1500 

Packet IP-Flow Presentation 
Classification 

~540 r1546 

Associate Add packet 

> pocket with :: ¢¢ lo IP-Flaw 
Queue proper 

IP-Flow 

rl::>tl 1548, ( 1:>!)IJ 

Provide 
Classify Initialize IP-Flow 

" ~ V packet intc new QoS-Class 
QoS-Class IP-Flow to Frame 

Scheduler 

fr~SM v 1ss2._ 1r 
~ ¢ Make 

QoS IP-Flow 
Closs available to 
IP-Flow Frame 
Table Scheduler 

604 

A , ... ... 

1562 
\. 7' 

.. "' V 

::;) 

IP-Flow 
QoS 

Class 1579 
~ 

.......... 

V Queuing ~ Processer 
157' z 
~ 

157( ,._,.. 

:> 
/'I.-
~ 

0 • 
00 • 
~ = ""'" tD = ""'" 

er:, 

~ 
"""" :,l 

~ 

er:, 
=-a 
!,lo) 

°" s. 
A 

"""" 

d 
t'l'.l 
="' 

~ 
\C ...... 
th 
t::i:, 
...... 

EX 1017 Page 401

Data
Network]|Packet Header Identification

15201510

Packet Pocket

IP Hon, Butea recckel Characterization Classification
Flow header fields

System 530

320 .
r VYES Determine Associate Add packet

Py motch with Sy if pocket mS > co,|pocket with ES oy to oeweue 
 

1424509 1904, FIG. 15A 1506 1508 802 quae“S01
  
  

 
    

  
  

 
 existing

IP-Flaw
proper
\P-—-Flow 

 
 

 
 

Provide
IP—Flow
QoS-Closs
to Frame
Scheduler

 Look-up
Subscriber

CPE ID
ossacialed

 
 
 

Clossify initialize
Fay packet into  
    
 

  
 

Add \P-Flow
identification
date if new

  
 

 
 

 
 

 
 Subscriber

CPE IP
Address

 
 
 
 

 

Application
Pocket
Header

Dole Table

 
 

 Scheduler
 
 

 
 

2007‘LT"das

Tr309¢BAGS

TaSi6‘tsp'9Sa

EX 1017 Page 401



IC .... *" ~ 

_...,,,._, 

FIG.158 

MAC 
Downlink 

Subframe Scheduler 

1566 

604 

1578 
Link Loyer 
Acknowledgment i-....r----._j 

(ARO) Processor Requests for 
retransmissions 

~562 MAC Downlink Subframes 
Frame n 1568a 

from CPE 

IP-Flow 
QoS Closs 
Queuing 
Processor 

IP-Flow QoS Class Queues 
Closs 1 1564o 
Closs 2 t564b 
Closs 3 1564c 
Class 4 156.fd 
Closs 5 1564e 

1574, Closs m 1564f 

Frame n+1 1 
Frame n+2 1568c 
Frame n+3 1568d 
Frame n+4 1568e 
Frame n+5 1568f 
Frame n+6 1568g 
Frame n+7 1568h 

Hierarchical Class-Based Frame n+8 1568i 
Priority Processor v ... _......_ __ ~- t-~F .... ra_m.;.e..;.n;...+.;.9 ..;.1.;.;568~· ..J 

Frame n+ 1568k 

CPE IP-Flow 

Completed 
Downlink 
Subframe 
sent to wireless 
modem far 
transmission 

Frames advance 
in this direction 
with passage 
of time 

VPN DEN Doto Tobie 
Queue CPE IP-flow 

1576 

Wireless 
Access 
Point 
(WAP) 
Antenna 

294d 

S 
Depth Status 1582 1580~0ueue Depth 

ervice Level Agreement Processor 11 {SLA) Priority Doto Messages 1108 
Table L-~~~~.-..!=============~~15~7~0~~~~1npe:!u!!._t~da~to~fro~m~OA~M~&P~Mo~d~ul:..e~~~~~ OAM&P 

RF 
T ronsceiver 
Subscriber 
Antenna 

120d 

Subscriber 
Workstotion 

. 
00 • 

r:r.i 

~ 
~ 

"' ..... 
N = s 

00 

f 
~ 
~ ..... 
e .... 
.i;;.. 
~ 

EX 1017 Page 402

 

 
 

604 1560 wn
604 FIG.15B ee :

~
Be
oe

Link Layer 1576 a
AcknowledgmentK3Wireless

Downlink (ARQ) Processor Requests for Medium
Subframe Scheduler retronsmissions n. MAC Downlink Subframes from CPE 290d S2d 3

— =
-—K Ze Transceiver BClass | 1564 mam 4 N m . =

=p Te Tre| SR Tis
r—>} Frome nt3 15680 Access

Closs 3 1564¢ LK! Subframe Point
Class 4 15640 EI Frame n+4 1968e||cent to wireless WAP wCloss 5 1564e x1 Frame nt5 1568||modem for (wi ) S

Plow Close a 1564 = Frame nt+6 15609||tronsmission enna S
<= Queuing. Frome n+7_1568h >i> Frome nt+8 15681 cpp 120d >Processor CK Frames> advance : vn

—>1_Frame n#9 1968}|is this direction Subscriber
[FromenpT56RK]yi StatonC—>Frome ntp 1568k|yap, passage 7of time

VPN DEN Dots Table CPE POW pnt C1

Queue CPE iP—Flow j 294d ca— Depth Stotus 1580Queue Depth Subscriber wa

an csilal Processor Messages ie WorkstotionjOre A

Tobie input doto from CANEP Module OAMaP 2
mn

oo-_

       

f

EX 1017 Page 402
Me
 



CPE - -- !'~"- IOU't) I ,u. I un 1wo1. 16081 .-....,,r-UJ£ ( 

Subscnl>er Packet Header Identification 
Workstation 1610) c1620 

I p ket Extract data Packet Pa~k;t • IP-Flaw Presentation 
Subscriber ... ac . f k t Characterization Class1f ,cat,on 

;; Buffering rom pac e 
Work- header fields 
Station r1646 

\ 1626:i ,;!. 7 (lti~ ~630 (1640 > 1662 

120d Existing look for YES Determine Associate Add packet 
IP-Flow A malch with ~ if pocket ~ ,...J',.,. > packet with - .....1'.. ,....-1' to IP-Flow ... " p f 

Id t'f' t· "v' ,/ · '-i/ - '--V '-V o v I low en 1 1ca ron existing ¥ 1s too old proper ueue O S 
Data Table JP-flow if so, delel! JP-Flow Cl~ss 

4'>-1624 ~ J,, NO 1632 f1636 rl04l 1648) rlti:xl Queuing 
IJ . Proccessor 

L'::,. Malyze look-up Look-up Provrde 
U, Pocket. IP-Flow Subscriber Classify Initialize IP-flow u link 
~ Header fields ~ application's ~ CPE 10 ::;: pocket into ~ new QoS-Closs ~ rfome 

Add IP-Flow look up QoS associated QoS-Closs IP-Flow to frame Scheduler 
identification so,~rcet· requirements with IP-Flow Scheduler 

. oppico 10n 
data 1f new type 

now fr 1 r r11 iJ4 {h1638 1 t (16~ v 1ss2\ fr 
ApSorcr IP-Flow Subscriber IP-Flow ~ ¢ 1:~;?,w " ~ 

1628 p~~i~tion QoS CPE IP QoS available to -
-.....-. Header Requirement Address Class Table Frame 

Octa Tobie Table Tobie Scheduler 

~ 
r:r.. • 

~ 
ffi" 
f"'I'-

IZl 

~ .... 
:-1 
g 
N 

~ 
! 
w 
QC 

e, 
""" .... 

~ 
~ 

~ 
~ 

~ 
O'I 

= ,... 

EX 1017 Page 403

CPE
Subscriber
Workstation

Subscriber

Work-
Station

120d

Packel Header Identification
16201610

Packet

{Buffering  
 

Extract dota

from packet
header fields

 

 ry match with
existing
IP~Flow

CTHeader fields
Add P—Flow|“20K ¥Psource
identification nn
dato if new application

 
  

 
 

Source

Application
Packet
Header

Data Toble

 

 
 

1604.

(P-Flow

E application’s >
Qo

FIG.16A 1606),

Pocket
 

 
 Characterization

 
 

associated
with IP—Flow
 
 
 

 
 

 
  
  

 

 
 

 
 
 

 
 
 

 
 
  

 
 
 
 
 

 

 
 

Packet
Clessification

 
 

Associate

packet with
proper
IP—Flow  
 

 
Classify

ret packet intoe> 

1608
~~~ 1800

IP-Flow Presentation

Initialize
QoS~Class
lo Frame
Scheduler

Scheduler

64

quazed‘S*1)|
2007*L1"das

IpJOBEWINS

TaST6‘zSsP'9SA

EX 1017 Page 403

.,~;c...-,""

.,632 634 1650
~ FIG.168 S ,----,_

I 1678 I
IP-Flow
Presenta-

tion 1646

i
Add
packet

.1',
to
IP-Flaw
Queue

hTv

~50
Provide
IP-Flow
QoS-Class~
to Frame
Scheduler

r1662
,7)

1666
Link Loyer

. Acknowledgment ",... ____ __,......,.....,
MAC Uplink (ARO) Processor oto messages

Subframe Scheduler about non-
(Scheduling first-time reservations and repeat . receipt. of. uplink 292

reservations for lost ockets MAC Uplink Subframes transmission 290d
IP- Flow QoS F 1668a acknowledgments rome n from CPE

Closs 1 1664o Frame n+1 1668b
Closs 2 1664b Frame n+2 1668c Cal!1pleted Subscr'ber

1668d Uplink 1

Closs 3 1664c Frame n+3 Subframe CPE
Closs 4 1664<1 Frame n+4 1668e reservations sent Station

IP-Flow
QoS Closs
Queuing
Processor

Closs 5 1664e Frame n+5 1668f to wireless (294d
Closs m 1664f Frame n+6 1668g modem for

1674 Frame n+7 1668h transmission

. . Frame n+B 1668i
H1er9rc_h1cal Closs-Based F +g 1668. Frames advance

Pnonty Processor rame n j in this direction

d

:Jif521
Make IP
Flow

Frame n+p 1668k with passage
of time Subscriber

VPN DEN Doto Table CPE IP-Flow Workstation

available ~
to
Frame
Scheduler

Queue CPE IP-Flow
Depth Status 1682 Queue Depth

Service Level Agreement Processor Messages
(SLA) Priority Doto

Table 1670 Input dato from OAM&P Module OAM&P

-------- -·-------·--- - -

=~· ·---··-. ~ -- --· .. , --- - -~--·---·

0 .
rJ'J. •

~ ;-
=

'J'.J
I'll ,, ...
:-1
N = = N

'J'.J =-I'll
I'll -~
\,C

=
.&::,. ...

d
00
c=-..

~
N
\C
"""" Ul

c=
""""

··c.ff ·~:_--- -·· ·--·· fE. ii

EX 1017 Page 404

 Link Loyer
Acknowledgment
(ARQ) Processor

IP—-Flow
Presento—

MAC Uplink
Subframe Scheduler

Scheduling first-time reservations ond repeat
reservations for lost packets

Date messages
about non.
receipt of uplink

MAC Uplink Subfromes transmission
acknowledgments

 ~_—

Ne Flow Qos am Frome n 16680|trom CPF
Class 1 16640 Ye Frame nt] 1668b Co icedmpleted

Closs 2 1664b =e Frame n+2 1668 Uplink
Class 3 1664¢ a XY Frome n+3 16686||subframe
Class 4 a L—>_Frome n+4 1668e_||reservations sent166k Ey Frome n45 1608! ,Closs 5 1664e [> XK] rome_n to wireless

S Cl Class m 1664f ry eK Frame n+6 1668q||modemforaass om Frome n+7 1666n_||tronsmission
Processor 1 Frome n+8 1668: F7 rames advance

&—S Frome nt9 1668)|oe eteK| in this direction
1672 T—L_Frome_ntp 1668k_} with passageof time Subscriber

K VPN DEN Dota Toble CPE IP-Flow Workstation
Queue CPE IP—Flow

7 Depth Status 1682 Queue Depth
Service Level Agreement Processor Messages

Ka (SLA) Priority Data
Table

Input data from OAM&P Module

 yuajed‘S‘l
7002‘LT‘das

TrJo6€PYG

THST6‘ZSP'9SO.

EX 1017 Page 404

1712a

1710a

1708a

1706a

1704a

FIG.17

.

(
120d

\ •

Subscriber
Workstation

D
Application LI

I

I TCP/UDP
I J - -

IP J -
J -

Ethernet
J -

10 Bose T
, ...

(.
1702a

£1Jt!J2tJ£Q I £JS 2)£ !..I a >Jt&::-· ----·---·-

306d

294d
)

302

~ ~reless Bose Station II
i Subscriber

11
11 WINGS I 11

I CPE 11 Downlink I 11
I 11
I

D
11 D trrewoll I 11

I 11 & IPsec I 11
I 11 Security I II

! 11 Gateway 'I

1708e ,[1 1f1
1708d 1708c (} } ~

[

(i
, - - -- -

IP I IP LI IP I IP

17Q6c I
11osb L 1706d 1706e I

Encryption J Encryption I IP sec J - - -· -- -
1104b I 1704c I 1704d 1104e I

Ethernet J MAC MAC WAN .) ,,

10 Bose T I Wireless J j Wireless Wireline J . (I l l (l (& I
' I ' \ '

1702b 1702c 290d 1702e

---=--=--- ----s.~--" "- -

I
I
I
I
I
I
I
I
I
I
I
I
I
!

0
• r:.r:.

__./1700
.
~

IP Flow Oirectio~J6a
~ =

Host
Firewall & IPsec
Security
Gateway

1~
(1708g

\ ! -
I IP IP I
I 11osf

IP sec J
1706G 11

-I 1104f
WAN

11049 I
Ethernet

jWireline 10 Bose rj
r l c l (l
' "

1702g

Host
Workstation

D
-
Application

J -
TCP/UDP ,

I.,

IP I
,ii,

~

Ethernet j

10 Bose T J
(l (

' '

1702h

1712h

1710h

00
~

"!='
.;-J
N = s

00 r
~

-1708h ~

1706h

-1704h

e.
""

cj
00
Cl'.

~
N
~
~
Ul

cc
~

=-~-.j
EX 1017 Page 405

Subscriber
CPE

1706c

le Ene ption
1/04
MAC

302

Wireless Base Station

WINGS

Downlink
Firewall
& IPsec

Security
Gateway

yuayed‘Sn
IP Flow Directionae

awn 7007‘LI“das

Tr3°OpONS

Tdste‘zsr’9sa

EX 1017 Page 405

18120

1810a

1808a

1806a

1804a

FIG.18

.

.

Cj
•

J06d

(- 294d " 302
~1800

'Cl).
•

~ 120d (
\ IP Flow Direction)----(------------

~36a

....
~ =

-

11
II

Subscriber : I
WDorkstotion 1 !

11
11
II
11
II
I I
11

Application
I

TCP/UDP
I

IP I

,r,
IP

11

Subscriber Wl~GS ! !
CPE Uphnk : I

D
Firewall ::
& IPsec l:
S 't 11 ecun y 11 II

Gateway 1
1 11

i~
,

IP

: 1806b 1806c i

IPsec f J
I I

Ethernet I 1804b 1804c
Ethernet MAC ~

1J
-~ I

10 Bose T 10 Base T • Wireless L
I & & I (& (
' ' I '

18020 1802b 1802c

11
I I
11

Wireless l I

D
Bose I I
Station l l

I I
II
11
11
11
11

1806e
1806d

(, 18Q6e
(t

IPsec IPsec
1

1804d 1704e
MAC WAN j

I

Wireless Wireline J
(' l H

\ '
290d 1802e

Host
firewall & !Psec
Security
Gateway

,} (1808g

\ ' \ l
IP IP

1806f 1806G IPsec .

1804f

I
Host :

Workstation :

D!
I

Appficotion

TCP/UDP I~

IP 1]
I

I•
I

WAN
1so4g I

Ethernet . Ethernet L
Wireline _ 10 Bose rj . 10 Bose r[J
f I I i I f ' j (

' ' " ' '

1802g
1802h

-1812h

1810h

·1808h

1806h

·1804h

r,:i

~
:-J

§

r
A
e.
A

~
$I'

~
'to
~
tll

t:1:1
~

-=w•iri:::; - "~·~" ~

EX 1017 Page 406

306d

 1800

120d podd 302 a

S IP. Flow Direction) —————2-______________- A{i

Subscriber Subscriber WINGS Wireless Host
Workstotion cpp Uplink Bose Workstation

t
1i

Firewall : Host i
& |Psec Station Firewall & [IPsec i
Security Security t
Goteway Goteway

se |TCP/UDPaoe i~—TB0er|tHerene6rta[ee[foeite Ethernet Ethernet
=ree[oomfoam|Lee

1802a 1802e 1802g

FIG.18

quayeg“SN
7007‘LT“das

ThJTby90g8

TaSI6‘z7Sp'9SA

EX 1017 Page 406

US 6,452,915 Bl
1

IP-l<'LOW CLASSIFICATION IN A WIRELESS
POINT TO MULTI-POINT (PTMP)

TRANSMISSION SYSTEM

This application claims benefit of priority from U.S. 5
Provisional Patent Application No. 60/0CJ2,452, filed Jul. 10,
1998.

CROSS-REFERENCE TO OTIIER
APPLICKilONS

Toe following applications of common assignee contain 10
common disclosure:
U.S. patent application Ser. No. 09/349,477 entitled "Trans

mission O:mtrol Protocol/Internet Protocol (TCP/IP)
Packet-Centric Wireless Point to Multi-Point (PtMP)
Transmission System Architecture," filed Jul. 9, 1999, 15

U.S. patent application Ser. No. 09/349,480 entitled "Qual
ity of Service (QoS)-Aware Wireless Point to Multi
Point (PtMP) Transmission System Architecture," filed
Jul. 9, 1999.

U.S. patent application Ser. No. 09/350,126 entitled 20

"Method for Providing Dynamic Bandwidth Allocation
Based on IP-Flow Characteristics in a Wireless Point to
Multi-Point (PIMP) Transmission System," filed Jul. 9,
1999.

U.S. patent application Ser. No. 09/350,118 entitled 25

"Method for Providing for Quality of Service (QoS)
Based Handling of IP-Flows in a Wireless Point to
Multi-Point Transmission System," filed Jul 9, 1999,

U.S. patent application Ser. No. 09/347,356 entitled "IP
Flow Identifica.tion in a Wrreless Point to Multi-Point 30

Transmission System," filed Jul. 9, 1999.

2
Flows into Wireless System Resource Allocations in a
Wireless Point to Multi-Point (PtMP) Transmission
System," filed Jul. 9, 1999.

U.S. patent application entitled Ser. No. 09/350,162
"Method of Operation for the Integration of Differentiated
services (Diff-serv) Marked IP-Flows into a Quality of
Service (QoS) Priorities in a Wireless Point to Multi-Point
(PtMP) Transmission System," filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/349,975 entitled
"Method for the Recognition and Operation of Vutual
Private Networks (VPNs) over a Wrreless Point to Multi
Point (PtMP) Transmission System," filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/350,173 entitled "Tune
Division Multiple Access/rune Division Duplex {'JDMN
IDD) Transmission Media Access Control (MAC) Air
Frame," filed Jul 9, 1999.

U.S. patent application Ser. No. 09/349,482 entitled
"Application-Aware, Quality of Service (QoS)
Sensitive, Media Access Control (MAC) Layer," filed Jul.
9, 1999.

U.S. patent application Ser. No. 09/349,478 entitled "Trans
mission Control Protocol/Internet Protocol (TCP/IP)
Packet-Centric WJTClcss Point to Point (PtP) Transmission
System Architecture," filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/349,474 entitled "Trans
mission Control Protocol/Internet Protocol (TCP/IP)
Packet-Centric Cable Point to Multi-Point (PtMP) Trans
mission System Architecture," filed Jul. 9, 1999.

BACKGROUND OF TIIE INVENTION

1. Field of the Invention
U.S. patent application Ser. No. 09/350,150 entitled "IP

Flow Characterization in a Wrreless Point to Multi-Point
(PIMP) Transmission System," filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/349,476 entitled "IP
Flow Prioritization in a Wireless Point to Multi-Point
(PtMP) Transmission System," filed Jul. 9, 1999.

The present invention relates generally to telecommuni
cations and, more particularly, to a system and method for
implementing a QoS aware wireless point-to-multi-point

35 transmission system.

U.S. patent application Ser. No. 09/350,170 entitled
"Method of Operation for Providing for Service Level
Agreement (SLA) Based Prioritization in a Wireless Point 40

to Multi-Point (PtMP) Transmission System," filed Jul. 9,
1999.

U.S. patent application Ser. No. 09/349,481 entitled
"Method for Transmission Control Protocol (TCP) Rate
Control With Llnk-Layer Acknowledgments in a Wrreless 45
Point to Multi-Point (PtMP) Transmission System," filed

1 . Jul. 9, 1999.
U.S. patent application Ser. No. 09/350,159 entitled "Trans

mission Control Protocol/Internet Protocol (TCP/IP)-
! ~ntric QoS Aware Media.Access Control (MAC) Layer so

. m a Wireless Point to Multi-Point (PIMP) Transmission
,, · System," filed Jul. 9, 1999.
~.S. patent application Ser. No. 09/34 7,857 entitled "Use of
_f ·Priority-Based Scheduling for the Optimization of
' Latency and litter Sensitive IP Flows in a Wrreless Point 55
l" ,-to Multi-Point 'lransmission System," filed Jul. 9, 1999.
,1,. s .. P_at_ent app~cation Ser. No. 09/349,475 entitled "T=e
• D1V1S10n Mult1ple Aoccss/fime Division Duplex {'JDMN

1DD) AccelSS Method for a Wireless Point to Multi-Point
Trarusmission System," filed Jul. 9, 1999. 60

;. :S. pa!ent application entitled Ser. No. 09/349,483 "Res
crya~on Based Prioritization Method for Wrreless Trans-

2. Related Art
Telecommunication nctworlc.s such as voice, data and

video networks have conventionally been customized for the
type of traffic each is to transport. For example, voice traffic
is very latency sensitive but quality is less important, so
voice networks am designed to transport voice traffic with
limited latency. Traditional data traffic, such as, e.g., a
spreadsheet, on the other band is not latency sensitive, hut
error-free delivery is required. Conventional telecommuni
cations networks use circuit switching to achieve acceptable
end user quality of service (QoS). Wilh !he advent of new
packet switching high bandwidth data networks, different
types of traffic can be transported over a data network.
Specifically, conveigenoe of separate voioe, data and video
networks into a single broadband telecommunications net
woik is enabled. To ensure end user satisfaction, a system is
desired that provides QoS for various types of traffic to be
Iran.sported.

Wrreless networks present particular challenges over their
wircline counterparts in delivering QoS. For example, wire
less networks traditionally exhibit high bit error rates {BER)
due to a number of reasons. Conventional wireless networks
also implement circuit switched connections to provide
reliable communications channels. However the use of cir
cuit switched connections allocates bandwidlh between
communicatiog nodes whether or not traffic is constantly
being transferred between the nodes. Therefore, circuit
switched connections use communications bandwidth rather

' . llltSsion of Latency and Jitter Sensitive IP-Flows in a
Wueless Point to Multi-Point Transmission System," filed
Jul. 9, 1999. ·t ~a.tent application Ser. No. 09/349,479 entitled "Trans

,, lion of Internet-Prioritized lntemet Protocol (IP)-

65 inefficiently.
Packet switching makes more efficient use of available

bandwidlh than docs traditional circuit switching. Packet

EX 1017 Page 407

é

US 6,452,915 Bl
1

IP-FLOW CLASSIFICATION IN A WIRELESS
POINT TO MULTT-POINT (PTMP)

TRANSMISSION SYSTEM

This application claims benefit of priority from U.S. 5
Provisional Paieat Application No. 60/092,452,filed Jul. 10,
1998.

CROSS-REFERENCE TO OTHER
APPLICATIONS

The following applications of commonassignee contain 1°
common disclosure:
US.patent application Ser. No. 09/349,477 entitled “Trans-

mission Control Protocol/Intemet Protocol (TCP/IP)
Packet-Centric Wireless Point to Multi-Point (PIMP)
Transmission System Architecture,” filed Jul. 9, 1999, 15

U.S. patent application Ser. No. 09/349,480 entitled “Qual-
ity of Service (QcS)—Aware Wireless Point to Multi-
Point (PIMP) Transmission System Architecture,” filed
Jul. 9, 1999,

U.S. patent application Ser. No. 09/350,126 entitled 20
“Method for Providmg Dynamic Bandwidth Allocation
Based on IP-Flow Characteristics in a Wireless Point to
Multi-Point (PIMP) Transmission System,” filed Jul. 9,
1999.

U.S. patent application Ser. No. 09/350,118 entitled 25
“Method for Providing for Quality of Service (QoS)-—
Based Handling of IP-Plows in a Wireless Point to
Multi-Point Transmission System,”filed Jul 9, 1999,

US. patent application Ser. No. 09/347,356 entitled “IP-
Flow Identification in a Wireless Point to Multi-Point 30
Transmission System,” filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/350,150 entitled “IP-
Flow Characterization in a Wireless Point to Multi-Point

(PIMP) Transmission System,” filed Jul. 9, 1999.
USS. patent application Ser. No. 09/349,476 entitled “IP. 35

Flow Prioritization in a Wireless Point to Multi-Point
(PIMP) Transmission System,” filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/350,170 entitled
“Method of Operation for Providing for Service Level
Agreement (SLA) Based Prioritization in a Wireless Point 40

0Multi-Point (PIMP) Transmission System,”filed Jul. 9,99,

P OULS. patent application Ser. No. 09/349,481 entitled
“Method for Transmission Control Protocol (TCP) Rate
Control With Link-Layer Acknowledgments in a Wireless 45
Point to Multi-Point (PIMP) Transmission System,”filed

f° ul. 9, 1999.
& U.S. patent application Ser. No. 09/350,159 entitled “Trans-

mission Control Protocol/intemet Protocol (TCP/TP)—
Centric QoS Aware Media Access Control (MAC) Layer 50
in a Wireless Point to Multi-Point (PIMP) Transmission

E| Sysiem,” filed Jul. 9, 1999.
«LS.patent application Ser. No. 09/347,857entitled “Use of
4 Priority-Based Scheduling for the Optimization of

p° Latency and Hitter Sensitive IP Flows in a Wireless Point 55
4o Multi-Point Transmission System,” filed Jul. 9, 1999.

7S.patentapplication Ser. No. 09/349,475cntitled “Time
Division Multiple Aocess/Time Division Duplex (TDMA/

* TDD)Access Method for a Wireless Point to Multi-Point
f. Transmission System,” filed Jul. 9, 1999. 60

FS. patent application catitled Ser. No. 09/349,483 “Res-
Bo “Vation Based Prioritization Method for Wireless Trans-
emission of Latency and Jitter Sensitive IP-Flows in a
B. Wireless Point to Multi-Point Transmission System,”filed

Jui. 9, 1999, 65

Be S. patent application Ser. No. 09/349,479entilled “Trans-
lation of Intemet-Prioritized Internet Protocol (JP}—

2

Flows into Wireless System Resource Allocations in a
Wireless Point to Multi-Point (PIMP) Transmission
System,” filed Jul 9, 1999.

U.S. patent application catitled Ser. No. 09/350,162
“Method of Operation for the Integration of Differentiated
services (Diff-serv) Marked IP-Flows into a Quality of
Service (QoS) Priorities in a Wireless Point to Multi-Point
(PIMP) Transmission System,” filed Jui. 9, 1999.

U.S. patent application Ser. No. 09/349,975 entitled
“Method for the Recognition and Operation of Virtual
Private Networks (VPNs) over a Wireless Point to Muiti-
Point (Pi{MP) Transmission System,”filed Jul. 9, 1999.

US. patent application Ser. Ne. 09/350,173 entitled “Time
Division Multiple Access/Time Division Duplex (TDMA/
TDD) Transmission Media Access Control (MAC) Air
Frame,” filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/349,482 entitled
“Application—Aware, Quality of Service (QoS)
Sensitive, Media Access Control (MAC) Layer,”filed Jul,
9, 1999,

US.patent application Ser. No. 09/349,478 entitled “Trans-
mission Control Protocolnternet Protocol (TCP/IP)
Packet-Centric Wireless Point to Point (PtP) Transmission
System Architecture,” filed Jul. 9, 1999.

U.S. patent application Ser. No. 09/349,474 entitled “Trans-
mission Control Protecolflatemnet Protocol (TCPAP)
Packet-Centric Cable Point to Multi-Point (Pt{MP) Trans-
mission System Architecture,” filed Jul. 9, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to telecommuni-
cations and, more particularly, to a system and method for
implementing a QoS aware wireless point-to-multi-point
transmission system.

2. Related Art

Telecommmmunication networks such as voice, data and
video networks have conventionally been customized for the
type of traffic each is to transport. For example, voice traffic
is very latency sensitive but quality is kess important, so
voice networks are designed to transport voice traffic with
limited latency. Traditional data traffic, such as, ¢g., a
spreadsheet, on the other hand is not latency sensitive, but
error-free delivery is required. Conventional telecommuni-
cations networks use circuil switching to achieve acceptable
end user quality of service (QoS). With the advent of new
packet switching high bandwidth data networks, different
types of traffic can be transported aver a data network.
Specifically, convergenoc of separate voice, data and video
networks into a single broadband telecommunications net-
work is cnabled. To ensure end user satisfaction, a system is
desired that provides QoS for various types of traffic to be
transported.

Wireless networks present particular challenges overtheir
wirclioe counterparts in delivering QoS. For example, wire-
less networks traditionally exhibit high bit error rates (BER)
dus to a number of reasons. Conventional wireless networks
also implement circuit switched connections to provide
reliable communications channels. However the usc ofcir-
cuit switched connections allocates bandwidth between
communicating nodes whether or nottraffic is constantly
being. uansferred between the nodes. Therefore, circuit
switched connections use communications bandwidth rather
inefficiently.

Packet switching makes more efficient use of available
bandwidth than does traditional circuit switching. Packet

EX 1017 Page 407

• ~ ...

US 6,452,915 Bl
3

switching breaks up traffic into so-called "packets" which
can then be transported from a source node to a destination
for reassembly. Thus a particular portion of bandwidth can
be shared by many sources and destinations yielding more
efficient use of bandwidth.

A wireless broadband access telecommunications system
5

4
FIG. 1A is a block diagram providing an overview of a

standard telecommunications network providing local
exchange carrier services within one or more local access
and transport areas;

FIG. IB depicts an exemplary network including work
stations coupled to a data network;

FIG. lC illustrates a conventional video network, such as
for exaniple a cable television (CAIV) network;

is desired which can provide a QoS capability that is
comparable to that delivered by wireline broadband access
devices. Conventionally, one of the barriers to the deploy
ment of wireless broadband access systems has been the
absence of acceptable QoS characteristics, while at the same
time delivering bandwidth sufficient to qualify as broad
band. Delivery of raw bandwidth over wireless media with
out acceptable QoS would not benefit end users. Likewise,

10
FIG. 2A is a block diagram illustrating an overview of a

standard telecommunications network providing both local
exchange carrier and interexchange carrier services between
subscnbers located in different local access and transport

the delivery of a high level of QoS at the cost of sufficient 15

bandwidth would also not benefit endusers.
Conventional efforts to provide wireless broadband

access systems have not granted sufficient priority to QoS as
a guiding principle in architecting the wireless systems,
resulting in sub-optimal designs. With the rapid emergence 20

of the Internet, the packet switching paradigm, and trans
mission control protocol/internet protocol (TCP/IP) as a
universal data protocol, it has become clear that a new
wireless system design has become necessary.

What is needed then is an IP-centric wireless broadband 25

access system with true QoS capabilities.

SUMMARY OF TIIE INVENTION

areas;
FIG. 2B illustrates a signaling network in detail;
FIG. 2C illustrates an exemplary network carrying voice,

data and video traffic over a data network;
FIG. 2D depicts a network including a point-to-multipoint

wireless network coupled via a router to a data network;
FIG. 3A depicts an exemplary perspective diagram of a

point-to-multipoint network;
FIG. 3B depicts a block diagram further illustrating a

wireless point-to-multipoint network;
FIG. 4 depicts a wireless Internet protocol network access

architecture of the present invention;
FIG. SA depicts Internet protocol flows from a subscnber

host to a wireless base station, and through a wireline
connection to a destination host;

FIG. SB illustrates a functional flow diagram including an
example functional description of a transmission control
protocol adjunct agent performing an outgoing transmission
control protocol spoof function;

The present invention is directed to an IP flow classifi-
30

cation system used in a wireless telerommunications sys
tem. More specifically, the IP flow classification system
groups IP flows in a packet-centric wireless point to multi
point telecommunications system.

FIG. SC illustrates a functional flow diagram including an
35 exemplary functional description of a transmission control

protocol adjunct agent performing an incoming transmission
control protocol spoof function;

The classification system includes: a wireless base station
coupled to a first data network; one or more host worksta
tions coupled to the first data network; one or more sub
scnber customer premise equipment (CPE) stations in wire
less communication with the wireless base station over a
shared bandwidth using a packet-centric protocol; and one
or more subscnber workstations coupled to each of the
subscriber CPE stations over a second network; a resource
allocation device opt:inm.es end-user quality of service
(QoS) and allocates shared bandwidth among the subscriber
CPE stations; an analyzing and scheduling device analyzes
and schedules internet protorol (IP) flow over the shared
wireless bandwidth. The analyzing device includes the
above IP flow classifier that classifies the IP flow.

FIG. 6 illustrates a block diagram representing scheduling
of mixed Internet protocol flows;

40 FIG. 7 illustrates packet header field information which
can be used to identify Internet protocol flows and the
quality of service requirements of the Internet protocol
flows;

45
FIG. BA is a block diagram summarizing an exemplary

downlink analysis, prioritization and scheduling function;
FIG. BB is a block diagram summarizing an exemplary

uplink analysis prioritization and scheduling function;
FIG. 9 illustrates how a downlink flow scheduler can take

into account a service level agreement in prioritizing a frame
slot and scheduling resource allocation;

In one embodiment, the classifier includes a means for
associating a packet of an existing IP flow with the IP flow. 50

The classifier can include a QoS grouping device that groups
l packet of a new IP flow into a QoS class grouping. The
QoS grouping device can include a determining device that
determines and takes into account QoS class groupings for
the IP flow. The QoS grouping device can include an 55

?Ptional differentiated services (Diff Serv) device that takes
mto account an optional Diff Servs field priority marking for
the IP flow. The QoS grouping device can also include an
optional type of service (TOS) device that takes into account
any optional type of service (TOS) field priority marking for 60
said IP flow.

The cross-referenced applications are incorporated herein
by reference in their entireties.

FIG. 10 depicts an embodiment of an inventive media
access control hardware architecture;

FIG. 11 is an exemplary software organization for a
packet-centric wireless point to multi-point telecommunica
tions system;

FIG. UA illustrates an exemplary time division multiple
access media access control air frame;

FIG. UB illustrates an exemplary structure for a time
division multiple access/time division duplex air frame;

FIG. UC illustrates an exemplary downstream transmis
sion subframe;

BRIEF DESCRIPTION OF THE FIGURES

The present invention will be descnbed with reference to
the accompanying figures, wherein:

FIG. UD illustrates an exemplary upstream acknowledg-
65 ment block field of a downstream transmission subframe;

FIG. UE illustrates an exemplary acknowledgment
request block field of a downstream transmission subframe;

:1· ,:

EX 1017 Page 408

US 6,452,915 B1

3

switching breaks up traflic into so-called “packets” which
can then betransported from a source nodeto a destination
for reassembly. Thus a particular portion of bandwidth can
be shared by many sources and destinations yielding more
eficient use of bandwidth.

Awireless broadband access telecommunications system
is desired which can provide a QoS capability that is
comparable to that delivered by wireline broadband access
devices. Conventionally, one of the barriers to the deploy-
ment of wireless broadband access systems has been the
absence of acceptable QoScharacteristics, while at the same
time delivering bandwidth sufficient to qualify as broad-
band. Delivery of raw bandwidth over wireless media with-
out acceptable QoS would not benefit end users. Likewise,
the delivery of a high level of QoS at the cost of sufficient
bandwidth would also not benefit endusers.

Conventional efforts to provide wireless broadband
access systems have not granted suflicient priority to QoS as
a guiding principle in architecting the wireless systems,
resulting in sub-optimal designs. With the rapid emergence
of the Internet, the packet switching paradigm, and trans-
mission control protocol/internet protocol (TCP/IP) as a
universal data protocol, it has become clear that a new
wireless system design has become necessary.

What is needed thenis an IP-centric wireless broadband

access system with true QoS capabilities.
SUMMARYOF THE INVENTION

The present invention is directed to an IP flow classifi-
cation system used in a wireless telecommunications sys-
fem. More specifically, the IP flow classification system
groups IP flows in a packet-centric wireless point to multi-
point telecommunications system.

Theclassification system includes: a wireless base station
coupled to a first data network; one or more host worksta-
tions coupled to the first data network; one or more sub-
scriber customer premise equipment (CPE)stations in wire-
less communication with the wireless base station over a

shared bandwidth using a packet-centric protocol; and one
or more subscriber workstations coupled to each of the
subscriber CPE stations over a second network; a resource
allocation device optimizes end-user quality of service
(QoS)andallocates shared bandwidth amongthe subscriber
CPEstations; an analyzing and scheduling device analyzes
and schedules internet protocol (IP) flow over the shared
wircless bandwidth. The analyzing device includes the
above IP flow classifier that classifies the IP flow.

In one embodiment, the classifier includes a means for
associating a packet of an existing IP flow with the IP flow.
Theclassifier can include a QoS grouping device that groups
a packet of a new IP flow into a QoSclass grouping. The
QoS groupingdevice can include a determining device that
determines and takes into account QoS class groupings for
the IP flow. The QoS grouping device can include an
Optional differentiated services (Diff Serv) device that takes
into accountan optional Diff Servsfield priority marking for
the IP flow. The QoS grouping device can also include an

. Optional type of service (TOS) device that takes into account
any optional type of service (TOS)field priority marking for
said IP flow.

The cross-referenced applications are incorporated herein
byreference in their entireties.

BRIEF DESCRIPTION OF THE FIGURES

Thepresent invention will be described with reference to
the accompanying figures, wherein:

50

65

4

FIG. 1A is a block diagram providing an overview of a
standard telecommunications network providing local
exchange carrier services within one or more local access
and transport areas;

FIG. 1B depicts an exemplary network including work-
stations coupled to a data network;

FIG. 1Cillustrates a conventional video network, such as
for example a cable television (CATV) network;

FIG.2A is a block diagram illustrating an overview of a
standard telecommunications network providing both local
exchangecarrier and interexchange carrier services between
subscribers located in different local access and transport
areas;

FIG. 2B illustrates a signaling network in detail;
FIG.2C illustrates an exemplary network carrying voice,

data and video traffic over a data network;

FIG.2D depicts a network including a point-to-multipoint
wireless network coupled via a router to a data network;

FIG. 3A depicts an exemplary perspective diagram of a
point-to-multipoint network;

FIG. 3B depicts a block diagram further illustrating a
wireless point-to-multipoint nctwork;

FIG.4 depicts a wireless Intemet protocol network access
architecture of the present invention;

FIG.5A depicts Internet protocol flows from a subscriber
host to a wireless base station, and through a wireline
connection to a destination host;

FIG.5B illustrates a functional flow diagram including an
example functional description of a transmission control
protocol adjunct agent performing an outgoing transmission
control protocol spoof function;

FIG.5C illustrates a functional flow diagram including an
exemplary functional description of a transmission control
protocol adjunct agent performing an incoming transmission
contro] protocol spoof function;

FIG.6 illustrates a block diagram representing scheduling
of mixed Interct protocol flows;

FIG.7 illustrates packet headerfield information which
can be used to identify Internet protocol flows and the
quality of service requirements of the Internet protocol
flows;

FIG. 8A is a block diagram summarizing an exemplary
downlink analysis, prioritization and scheduling function;

FIG. 8B is a block diagram summarizing an exemplary
uplink analysis prioritization and scheduling function;

FIG. 9 illustrates how a downlink flow scheduler can take

into accounta service level agreementinprioritizing a frame
slot and scheduling resource allocation;

FIG. 10 depicts an embodiment of an inventive media
access control hardware architecture;

FIG. 11 is an exemplary software organization for a
packet-centric wireless point to multi-point telecommunica-
tions system;

FIG. 12Aillustrates an exemplary time division multiple
access media access control air frame;

FIG. 12B illustrates an exemplary structure for a time
division multiple access/time division duplex air frame;

FIG.12Cillustrates an exemplary downstream transmis-
sion subframe;

FIG. 12Dillustrates an exemplary upstream acknowledg-
ment block field of a downstream transmission subframe;

FIG. 12E illustrates an exemplary acknowledgment
requestblock field of a downstream transmission subframe;

EX 1017 Page 408

• ..

US 6,452,915 Bl
5

FIG.12F illustrates an exemplary frame descriptor block
field of a downstream transmission subframe;

FIG. 12G illustrates an exemplary downstream media
access control payload data unit of a downstream transmis
sion subframe;

FIG. 12H illustrates an exemplary command and control
block of a downstream transmission subframe;

FIG. 121 illustrates an exemplary upstream transmission
subframe;

FIG. 121 illustrates an exemplary downstream acknowl
edgment block of an upstream transmission subframe;

FIG. 12K illustrates an exemplary reservation request
block of an upstream transmission subframe 1204;

FIG. UL illustrates an exemplary media access control
payload data unit of an upstream transmission subframe;

FIGS. UM, UN and 120 illustrate an exemplary opera
tions data block of an upstream transmission subframe;

FIG. 13 illustrates how an exemplary flow scheduler for
the present invention functions;

FIG. 14 is an exemplary two-dimensional block diagram
of an advanced reservation algorithm;

FIG. 15A is an exemplary logical flow diagram for a
downlink flow analyzer;

FIG. 15B is an exemplary logical flow diagram for a
downlink flow s:heduler;

FIG. 16A is an exemplary logical flow diagram for an

s

6
routing roftware or a dedicated routing device such as
various models from CISCO of San Jose, Calif., ASCEND
of Alameda, Calif., NETOPIAofAlameda, Calif., or 3COM
of Santa Clara, Calif.

In the alternative, a virtual private networking protocol,
such as the point-to-point tunneling protocol (PPIP), can be
used to create a "tunnel" between a remote user and a
corporate data network. A tunnel permits a network: admin
istrator to extend a virtual private network from a server

10 (e.g., a Windows NT server) to a data network (e.g., the
Internet).

Although the invention is desenbed in terms of this
example environment. it is important to note that description
in these terms is provided for purposes of illustration only.

15 It is not intended that the invention be limited to this
example environment or to the precise inter-operations
between the above-noted devices. In fact. after reading the
following description, :i1 will become apparent to a person
skilled in the relevant art how to implement the invention in

20 alternative environments.

25

II. Definitions
Table 1 below defines common telecommunications ter

minology. These terms are used throughout the remainder of
the description of the invention.

TABLE 1

Term Definition

uplink flow analyzer;
30

FIG. 16B is an exemplary logical flow diagram for m
uplink flow scheduler;

a=u tandem (AT) An l(f is a cwa * switch used 1o switch calls
between EO. in a L>ill'L An .!IT provideo
llUbscribem a=u to the IXC., to provide long
distance calling aervia:a. An °"""" tandem is

FIG. 17 illustrates Internet protocol flow in a downlink
direction, including Internet protocol security encryption;
and

FIG. IS illustrates an uplink direction of Internet protocol
security support.

In the figures, like reference numbers generally indicate
identical, functionally similar, and/or structurally similar
elements. The figure in which an element first appears is
indicated by the leftmost digit(s) in the reference number.

DETAILED DESCRIPTION OF 1HE
PREFERRED EMBODIMENTS

I. An Example Environment
The present invention is described in terms of an example

enviromnent. The example environment uses a fixed wire
less point-to-multi-point (PtMP) connection to transmit
packelizcd data information including for example, IP
lelephony, video, data, received from a telecommunications
curler. As used herein, a telecommunications carrier can
include US domestic entities (see Definitions below at
section II) such as, e.g., ILECs, CLECs, IXCs, NGTs and
~a:d Service Providers (ESPs), as well as global enti
ties such as PTTs and NEs, recognized by those skilled in the
~- In addition, as used herein a telecommunications system
mcludes domestic systems used by entities such as, e.g.,
lLECs, ClECs, IXCs and Enhanced Service Providers
(FSPs), as well as global systems recognized by those
skilled in the art.

_In the preferred embodiment, the traffic arrives from a
Wide area network (WAN) connection.

Data traffic is received from a data network through a
network: router and can be demodulated from internet pro
tocol (IP) format to, for example, the point-to-point protocol
(PPP). Network routers can include, for example, a general
Pllrpose computer, such as the SUN workstation ruuning

35

bc"1Ct (B) clwmcia

40
called party

calling party

45
a:n!nl office (CO)

clua 1 awilch

cbm 3 &wilch
50

cbsa 4 swilch

55 clan 5 1wilclt

compctitiwLEC
(Cl.EC)

60

competitive access
provider, (CAPS)
costomcr premises
equipment (CPE)

65

a netwodc node. Other network noda can
include, fur c:nmplc, a ClEC, or other enhano:d
aerw:u provider (ESP), an internatioDAI
gat,:wny or globnl point-of-prcacnce (GPOP),
or an intelligent periphcml (IP).
Beater (B) cbllnnet. arc digil,tl clwmclA used
lo cmry both digital voice &nd wgilal daln
infoilll!ltion. Au ISDN bearer chan.ael is 64,000 bits
per IICCO!ld, which can carry PCM-digitized
voice or data.
The called pmy iii the caller receiving • call
sent over a .network at the deatiJ::tation or
termination end.
Tho calling party is the caller placing a call
<JVer 11ny kind of network from the origination end.
A CO i,, a facility that howe& 11D ED homed.
EO. an: often called CDs.
A cl.us 1 awilcl!ing oJ!icc, the Ri:gional Center
{RC), is tho higbut level of loC3.1 and Jong distance
IWilching, or "office of lllt resort" lo
complete a ca.II.
A cl.us 3 awilching oJ!icc wu a Primary C',,nlcr
(PC); an aca:as tandem (,tu) has class 3
funcl.iowity.
A class 4 nritching oJ!icc wu a Toll C',,nlcr
(TC) if operators were present or e!Ac a
Toll Point (I'P); an nca,a,i tandem (,tu) has cwo 4
functiooolity.
A class 5 •witching office is an end office (ED)
or the lowest level of local 11nd Jong distana:
nrilching, a local central offia:. Tho awitcn
closest lo the end J1Ubscribcr.
CLECs arc telecommunication.! services pIOVid=
of local 1crviccs that can compete with Il.ECs.
!nterprise and CcnJmy 21 are enmpl.,., A CLEC
may or may not handle IXC ocrvicea u well.
Tol.igent and Wmstar are examplca.

CPE refcno to devices ,esidmg on the pn:miu• of •
customer and U>ed to connc:<:t to a telephone
netwurlt, including ordinary telcplroncs, lo,y
telephone 1ystem1, PBx., video oonfemnci.ng
devices and modems.

,,
·, ,,
,,,

,.'/

i' ~! j

l I
•t
H
I

'! !
.j;
'I'

I'' :! ::

i'

l
EX 1017 Page 409

US 6,452,915 B1
§

FIG. 12Fillustrates an exemplary frame descriptor block
field of a downstream transmission subframe;

FIG. 12G illustrates an exemplary downstream media
access control payload data unit of a downstream transmis-
sion subframe;

FIG. 12H illustrates an exemplary command and control
block of a downstream transmission subframe;

FIG. 12) illustrates an exemplary upstream transmission
subframe;

FIG. 12J illustrates an exemplary downstream acknow!l-
edgment block of an upstream transmission subframe;

FIG. 12K illustrates an exemplary reservation request
block of an upstream transmission subframe 1204;

FIG. 12L illustrates an exemplary media access control
payload data unit of an upstream transmission subframe;

FIGS. 12M, 12N and 120 illustrate an exemplary opera-
tions data block of an upstream transmission subframe;

FIG.13 illustrates how an exemplary flow scheduler for
ihe present invention functions;

FIG. 14 is an exemplary two-dimensional block diagram
of an advanced reservation algorithm,

FIG. 15A is an exemplary logical flow diagram for a
downlink flow analyzer;

FIG. 15B is an exemplary logical flow diagram for a
downlink flow scheduler;

FIG. 16A is an excmplary logical flow diagram for an
uplink flow analyzer;

FIG. 16B is an exemplary logical flow diagram for an
uplink flow scheduler;

FIG. 17 illustrates Internet protocol flow in a downlink
direction, including Internet protocol security encryption;
and

FIG.18 illustrates an uplink direction of Internet protocol
security support.

In the figures, like reference numbers generally indicate
identical, functionally similar, and/or structurally similar
tlements. The figure in which an clementfirst appears is
indicated by the leftmost digit(s) in the reference number.

DETAILED DESCRIPTION OF ‘THE
PREFERRED EMBODIMENTS

I. An Example Environment
The present invention is described in terms of an example

cavironment, The example environment uses a fixed wire-
less point-to-multi-point (PIMP) connection to transmit
packetized data information including for example, IP
telephony, video, data, received from a telecommunications
Cartier. As used herein, a telecommunications carrier can
include US domestic entities (see Definitions below at
Section 1) such as, ¢.g., ILECs, CLECs, IXCs, NGTs and
Enhanced Service Providers (ESPs), as well as global enti-
lies such as PTTs and NEs, recognizedby those skilled in the
at. In addition, as used herein a telecommunications system
wcludes domestic systems used by entities such as, ¢.g.,
ILECs, CLECs, IXCs and Enhanced Service Providers
(ESPs), as well as global systems recognized by those
Skilled in the art.

Jn the preferred embodiment, the traffic arrives from a
Wide area network (WAN) connection.

Data traffic is received from a data network through a
network router and can be demodulated from internet pro-
tocol (IP) formatto, for example, the point-to-point protocol
(PPP). Network routers can include, for example, a general
Purpose computer, such as the SUN workstation nuoning

10

20

as

40

45

50

65

6

routing software or a dedicated routing device such as
various models from CISCO of San Jose, Calif, ASCEND
ofAlameda, Calif., NETOPIAofAlameda, Calif, or 3COM
of Santa Clara, Calif.

In the alternative, a virtual private networking protocol,
such as the point-to-point tunneling protocol (PPTP), can be
used to create a “tunnel” between a remote user and a

corporate data network. A tunnel permits a network admin-
istrator to extend a virtual private network from a server
(¢.g.. a Windows NT server) to a data network (e.g., the
Internet).

Although the invention is described in terms of this
example environment, it is insportant to note that description
in these terms is provided for purposesof illustration only.
It is not inlended that the invention be limited to this

example environment or to the precise inter-operations
between the above-noted devices. In fact, after reading the
following description, it will become apparent to a person
skilled in the relevant art bow to implement the invention in
altermative environments.
Tf. Definitions

Table 1 below defines common telecommunications ter-

minology. These terms are used throughout the remainder of
the description of the invention.

TABLE 1
Teon Definition

acezas tandem (AT} An AT is 2 class ¥%4 switch used to switch calis
between BOs in a LATA. An AT provides
subscribers access to the IXCs, io provide long
distance calling services. An access tandem isa& network node, Other network nodes can
include, for example, a CLEC, or other enhanced
services provider (ESP), an international
gatewny or global point-of-presence (GPOP),
or an intelligent peripher (1),

bearer (B) channela Bearer (8) channels are digital channels naed
to carry both digitel voice and digital data
information. An ISDN bearer channel is 64,000 bits
per second, which can carry PCM-digitizedvoice or data.

called party The called party is tor caller receiving # callsent over a network at the destination or
termination end,

calling party The calling party is the caller placing a cali
over any kind of network from the origination end.

central office (CO) ACO is a facility that houses an EO homed.EOs are often called 0s.
class 1 switch Avclass 1 awitching office, the Regional Center

(RO),is the highest level of local and long distance
ewitching, or “office of last resort” to
complete a call.
A class 3 awitching office was a Primary Center
(PC); an access tandem (AT) bas class 3functional

class 3 awitch

A class 4 switching office was a Toll Center
(TC) if operators were present or else a
‘Toll Point (TP); an acocas tandem (AT) has class 4
functionality.
A class 5 switching office is an end office (EO)
or the lowest level of local and long distance
switching, » local central office. The awitchclosest to the end subscriber.
CLECs are telecommunications services providers
of local services that can compete with ILECs.
Interprise and Century 21 are examples, A CLEC
may or may not handle [XC services as well.
‘Feligent and Winstar are examples.

class 4 switch

clase 5 ewitch

competitive LEC
(CLEC)

competitive access
providers (CAFES)
cusiomier premises CPErefers to devices residing on the premises of 2
equipment (CFE) customer and used to connect to a telephone

network, including ordinary telephones, key
telephone systema, PBXs, video conferencingdevices and modems,

EX 1017 Page 409

••

digitized data (or
digital data)

0g,eos end office

end office (EO)

US 6,452,915 Bl
7

TABLE !-continued

Definition

Digiliud data refcn to analog da!a tut bu
been aampled into a binary ropre11entation (i.e.,
oompriaing ocquenccs of O'a !ltld l'•).
Digiliud du a leas ausceptiblc lo noise and
attenuation diltortiona bccauac ii ii more cuily
rcgcnellltcd to rcconstroct Ille original sigrw.
Tbc egress EO ill the node or destination EO with
• direct a>nncction to the called party, the
termination poinL The ca.lled party ill "homed"
to the egress EO.
Egrcll rcfera to the connection from a ca.lled party
or termination at the datination end of a network,
to the aerving wire a:nter (SWC).
An EO is a cl.us 5 mtch med lo swiJcb local calls
within a LATA. Subacribcra of the LEC are
connected ("homed") IO I!Os, meaning that EO.
are the lut firilchea lo which the 1111bocribe11
a.re conncdcd.
A network 1ervi<:es pmvideL

1 + dialing u uaed in US domulic calling for
accaa to any long diatance aorrier u required
under the u:nna of the modified fuw judgment
(MF]) requiring diveslitnre of the Regional
Bell Operating Companies (RBOCa) from lhcir
parent compo.ny, MltT.
A GPOP tt!en to the location where international
telecommnnications f.acilil:ic.a and domcatio lilcililia,
intenacc, an international gateway POP.
ll.ECa ""' traditional lEQ in the US, whu:h are
the Regional. Bell Opct:tling Companies (RBOCa).
Bell South and us w .. 1 are cnmplca. ILEC =
alm atand for an independent LEC mch u • GTE.
The ingrcu EO is the node or 11CtVing wire a:lltcr
(SVC) with a direct connection lo the calling party,
the origination point. The calling party ia "homed"
to the ingreaa EO.
1ngr ... rcfcn lo tbe connection from a ca.lling
party or origination.
An ISDN Buie Rate lmerlloce (BRI) line provides
2 bearer B channel.I and 1 data D line (known ..
"2B+D" over one or t,,u pairs) lo a
mbscriber.
ISDN a a netwoik: that providu a 1111!dard for
communicatio .. (voice, data and 1igoaling),
end-1:o-end digilal truJsmiaion cin:uitt!,
out-of-bud aignaling, and a fealmes
lignifu:ant lnlC>Unl: of bandwidth.
An intcr-u:iachlne tnmk ()'.MT) a a circuit between
two commonly-connected awitcbca.
IXC. are US domestic loag dislloncc tcle
communicatiom acrvkca providers. M&T,
MC, Sprint, arc examples.
IP is part of the TCP /IP prolOCDl.o. It ia uacd
to recognize incoming mauges, route onlgoing

mcuagu, and bcp Incl< of Internet node addn:uea
(using a number lo apecify a TCP/IP boat on
the lntemet). IP c:orreaponda to the nct,,uik:
layer of OSI.

An ISP ia • company that provides Internet
access to oubscribcm.
An ISDN Primary Rate Intetf.ace {PRI) line provides
the ISDN cquiwlent of a TI cirruit. The PRI
delivered to a a1atomcr'1 prcmiaca am provide

23B+D (in North America) ar 30B+D (in Europe)
channel• ranning at 15'44 mcgabila per second
and 2.048 megabits per second, respectively.
I.EC. are local tclecommunicaliona acrviccs
providers. Bell Atlantic and US West arc nampleo.

A l.lJA a a n,gion in wbicli a LEC offers
1ervica. There arc over 160 l.,tJ.Aa of lhcsc local

5

10

15

20

25

30

35

40

45

so

55

60

65

8

IA.BIB 1-contiaued

Tc= Definition

(LATA) googntpbical ...,.. within the United Slates.
local area network A lAN ia • co!llllillllIUcationo network providing
(LAN) collllCction.s between computers and pcriphcfl!.l

d<viccs (e.g., printcra and modems) over•
,<lat[..,)y short di;itancc (e.g., within a building)
under 1tandardiud control.

modified final Modified final judgment (Mfl) the decision
judgment (MF.I) rtquiring dive1tiltu:e of the Rcgioru,I Bell ()pm.ting

Companiu (Rl300,) from their parent comp!ltly,
AT&T.

network node A network node a a generic term for the rcsourcca
in a telccom:municationa network, including
twitches, DACS, n::gcneratora, etc. Network nodes
CS1entially include all non-circuit
(tram,port) devioes. Other nctwoik: node. Clll

include, for e:umple, equipment of a a.EC,
or other enhanced acrvice provider (ESP),
a point-of-prCICllce (POP), an intenu,lional
gateway or global point-of-preaeooe (GPOP).

new entrant (NE) A new generation glob111 telccommlllli,;:ations.
nextgcnCt:ttion A nlfW telccommurucatio .. ,ervu:c1 provider,
telephone (NGT) especially IP telephony providera. Example•

arc 1.e..,1 3 and Qwest.
packeti:ted voice or One CDmple of pacb:ti:ted voice is voice over
voice over a intcmct protocol (VOiP). Voice over packet
backbone n,fem lo the carrying of telephony or voice

traffic over a data network, e.g. voice over
fnmc,. voice over~ voice over Internet
Prolocol (IP), over virtual private
netwom (VPN1), voi<:c over a backbone, etc.

Pipe or dedicated A pipe or dcmcatcd communications facility
communicntions cotl!ICClll an ISP to the internet.
facility
point of preaena: A POP n,fera to the location within a LATA
(POP) wherc the IXC and I.EC facilities intecb.ce.
point-to-point A virtual private networking protocol, point-
lllnncling protocol to--point tunneling protocol {PPTP), can be med
{PI'fP) to create a 06 tl.uu\el"' between a remot.e

nscr and a data network. A tunnel permits a
network adminiltmtor to extend a virtwll private
netwoik: (VPN) from a acrvcr (e.g., a Windows NT
llCfVCr) to • data nct,,uik: (e.g., the Intcmct).

point-to-point (PPP) PPP is a protocol permilti:ng • computer to
protocol Cl!abl.ish • connection with the lntcrnct uaing

a modem. PPP mpporta high-quality gnphical
front eruh, lilo, Ne!Ba!pc.

poatal telephone State regolatcd telephone mmpanies, ma.ny of which
telegraph (PTI) src being deregolatcd. NIT ia an cumple.
private branch A PBX a a private 1witch located on the

cacbange {PBX) prellll5C! of a oaer. The user a typically •
private company which desires to provide
mlching locally.

private line with a A private line is a duect cban:nel ipccifically

dial tone dedicated to 1. cuatomer'a use between two
lfleciliced point&. A priv>te line .,;cI, a dial
tone can connect a PBX or an ISP'• aca:a,
ooncentnlor to an end office (e.g. a channelized Tl
or PRI). A private line can also be known u a
leued line.

public 1wilched The PSTN ia the worldwide switched voice network.
telephone netwoik:

(PSTN)
n,gional Bell RBOC::. arc the Bell opemling companies providing
operating a,mpan.i,:s LEC ICtvices after being dive,ted from AT.t:T.
(RBOCa)
aignaling sy.,tcm 7 SS7 ia • type of common channel i:nwofficc

(SS7) signaling (CCIS) used widely throughout the world.
The SS7 network provides the aignaling functions
of indicating the arrival of calls, trammilting
rooting and destination lignals, and monitoring
line and circuit atatus.

fk• lfn!!1

'I
1:

EX 1017 Page 410

digitized data (or
digital data}

egress end office

ogieae

end office (EO)

global point of

B presence (GPOP)
incumbent LEC

US 6,452,915 B1
7

TABLE 1-continued

Definition

Digitized dats refers to analog data that has
been acmmpled into a binary representation (Lc.,
comprising sequences of O's and 1’s).
Digitized data is leas susceptible to noise and
attenuation distortions because it is more easily
regenerated to reconstruct the original signal.
‘The cgresa EQ is the node or destination EO with
a direct connection te the called party, the
termination point. The called party is “homed”
to the egress EO.
Egress refers to the connection from a called party
ox termination at the destination ead of a network,
to the serving wire conler (SWC).Ax EO is a clasa 5 switch used to switch local calls
within a LATA. Subscribers of the LEC are
connected (“homed”) to BOs, meaning that EOsare the last switches to which the subscribers
ate commected.
A nsbwork services provider.

1 + dialing as used in US domestic calling for
access to atty long distance carrier as required
under the terma of the modified final judgment
(MFT) requiring divestiture of the Regional
Bell Operating Companies (RBOCs) from their
parcot company, ATAT.
A GPOPrefers to the location where international
telecommmnications facilities and domestic facilities
interface, an intemational gateway POP.
LLECs are traditional LECs in the US, which are
the Regional Bell Operating Companies (RBOCs).
Bell South and US West are sxamples, ELEC can
also mand for an independest LEC mch es a GTE.
The ingress HO is the node or serving wire center
(SVC) with a direct connection to the calling party,
the origination point. The calling party is “homed”
to the ingress EO.
Ingress refers to the connection from a calling
patty or ongination.
Ax ISDN Basic Rate Intesface (HRD line provides
2 bearer B channels and i data D line (coown as
“2B+17” over one or two pats) tosubscriber.
ISDNis » network that provides a standard for
communications (voice, data and signaling),
end-to-end digital transmission circuits,
out-of-bead signaling, and a feabures
significant amount of bandwidth.
An intermachine trank (IMT) is « clreuit between
two commonly-connected switches.
EXCs are US domestic long distance tele-
communications services providers. AT&T,
MCA,Sprint, are examples.
TP is part of the TCPAP protocols,It is used
to reeognize incoming messages, route ontgoing
messages, and keep track of Internet node addresses
(using a number to specify a TCP/IP boat on
the Intemet), (P corresponds to the network
layer of OSI,
Aa ISP is 2 company that provides Internetaccess to subscribers.
An ISDN Primary Rate Interface (PRI) line providies
the ISDN equivalent of a TI cirouit. The PRE
delivered to « customer’s premises can provide
23B+D (in North America) or 30B+D (in Evrope)
channels ronming at 1.544 megabits per second
and 2.048 megabits per second, respectively.
LECs are local telocomumumications services
providers. Bell Atlantic and US West arc examples.
A LATA is a region in which a LEC offers
services. There are over 160 LATAs of these local

10

4

30

35

45

50

55

60

8

TABLE 1-continued

‘Tem Definition

(LATA) geographical areas within the United States.
local area network =A LAN is @ commmuunications network providing
(AN) connections betwesn computers and peripheral

devices (e.g., printers and modems) over a
relatively short distance (c.g., within a building)under standardized controj.

modified final Modified final judgment (MFT) was the decision
judgment (MFI) requiring diveatiture of the Regional Bell Operating

Companies (RBOCs) from their paren! company,AT&T.
network node A network node is a generic term for the resources

in a telecommunications network, including
twitches, DACS, mgeperators, sic. Network nodes
saeentially include all non-ciscuit
(transport) devices. Other network nodes can
include, for example, equipment of a CLEC,
or other enhanced service provider (ESP),
a point-of-presence (POP), an international
gateway or global point-of-prescnce (GPOP).

mew entrant (NE) =A new generation global telecommunications.
next generation Anew telecommunications services provider,
telephone (NGT) especially IP telephony providers. Examples

are Level 3 and Qwest.
packetized voice or One example of packetized voice is voice over
voice over a internet protocol (VOIP). Voice over packet
backbone refers to the carrying of telephony or voice

traffic over a dats network, c.g. voice over
frame, voice over ATM, voice over Internet
Protocol {IP}, over virtual private
networks (VPNs), voice over a backbone, etc.

Pipe or dedicated —A pipe or dedicated communications facilitycommunications connects an ISP to the internet.
facility
point of presence=A POP refera to the location withia a LATA
(POP) where the JKC and LEC facilities interface.
point-to-point A virtual private networking protocol, point-
mancling protocol —_to-point tunneling protocol (PPTP), can be used
(PPTP) to create » “tunnel” between a remote

uscr and 9 data network. A tunnel pormiis a
network administrator to extend a virtual private
network (VPN) from a server (e.g, a Windows NT
server) to a data network (c.g., the Intemet).

point-to-point (PPP) PPP is a protocol permitting 1 computer to
protocol establish a connection with the Internet using

a modem. PPP supports high-quality graphical
front ends, like Netscape.

postal telephone State regulated telephone companies, many of which
telegraph (PTT) sre being deregulated. NETis an example.
private branch APBXis « private switch located on the
exchange (PBX) premises of a user, The user is typically a

prvaic company which desires to provide
switching locally.

private line with a A private line is = direct channel specifically
dial tone dedicated ta a customer's use between two

specificed points A private Line with a dial
tone can Connect a PBX or an ISP’s access
concentrator to an end office (e.g. « channelized TI
or PRI). A private line can also be known asa
leased Line.

public switched The PSTN is the worldwide switched voice network.
telephone network
(PSTN)
regional Bell RBOCs are the Bell operating companies providing
operating compacies LEC services after being divested fom AT&T.
{RBOCa) .
signaling system 7:~~SS? is a type of commonchannel interoffice
($57) signaling (CCIS) used widely throughout the world.

‘The SS7 network provides the signaling functions
of indicating thearrival of calls, transmitting
ronting and destination signals, and monitoringline and circuit status,

EX 1017 Page 410

/

US 6,452,915 Bl

Term

~tching hierarchy

or office
cluaifiation

ielecommunicationa

m. Introduction

9

TABLE 1-continued

Definition

An office clas.s is a functional ranking of a
telephone central oflicc switch depending on
t.11Dnmilsion requirements and hierarchical
relationship lo other 1wilching cente11. Prior lo
AT&T'• divestiture of the RBOCs, an office
clauification wu the number a.signed lo offices
according to their hierarclual function in the
U.S. public nvilched network (PSIN). 1be follow
ing clau numbero ore used: class 1 - R.cginnal
Center (RC), cloas 2 - Sectional Center (SC),
clau 3 - Primary Center (PC), class 4 -
Toll Center (rC) if operators ue present or else
Toll Point (I'P), class 5 - End Oflice (EO)
a local central office. Any one center hanclles
traffic from one to two or more centers lower
in the hienuchy. Since divutiture and
with more intelligent 10ftwore in 1wilching
oflicco, these designations have become
lesa firm. The class 5 lwilch waa the closest
to the end 1nbl!Criber. Technology has
diltributed technology clooer lo the end user,
dufuling traditional definitiona of network
<Witching hierarcbiea and the clau of 1wilches.
A LEC, a CIBC, on IXC, on Enhanced Service
Provider (ESP), an intelligent peripheral (IP),
on international/global point-of-presence
(GPOP), i.e~ any provider of telecommunii:atiow;
acrvia:a.
TCP is on end-to-end protocol that open.tel at the
transport and 1CAioos layers of OSI, providing
delivery of data bytes between prOCCSICS running
in h01t computers via oeparation and oeqnencing of
!Ppoclo::ts.
TCP/IP ii a protocol that provides commonications
between interconnected networks. The TCl'/lP
protocol ii widely used on the Ioternet, which
is a netwm:k comprising 1everal Luge networks
connected by hi,gh--speed connection1.
A trnnlr. connects on acceas tandem (>a) to on
end oflicc (EO).
A WAN ii a data network that el<!ends a UN over
the circuita of a telccommunicatimm carricL
'Ille carrier is typical]y a common carrier.
A bridging swilch or a router is used to
connect the UN to the WAN.

:(A Quality of Service (QOS) in a Wireless Environment
•. The concept of quality of service (QoS) is one of the most
.lliflicult and least understood topics in data networking.
Although a co=on term in data networking, there are
, any different usages and definitions for QoS, leading to
.. ~ion regarding an exact meaning in precise or quanti
:tive terms. Even further confusion is found when attempts
,. made to measure or specify numeric quantities sufficient
.. allow comparison of equipment or network performance

th respect to QoS.
·:nie confusion about QoS in general data networking is

ferr~d and magnified when applied to wireless data
1!111Illcations. Wrreless transmission bas a higher inher-

. ~~terror rate (BER) than does wireline transmission. The
~on of, e.g., a point-to-multipoint (PIMP) topology for

. hple users sharing a wireless medium makes it desirable
_:at QoS be defined in a manner that specifically addresses
. ~ultiple complicating factors in wireless data co=u
cations
·. T~ P~vide a non-ambiguous definition of QoS that

lies to wireless data co=unications, the nature of the
lem that QoS is meant to solve is helpful. Many of the
le.~ of data communications over wireless arc unique
distmct from those of wireline data communications,
c some are in fact shared. For wireless broadband access

10
systems, the problems of quality delivery are somewhat
more complex than for the wireline analog. Like its wireline
counterpart, the problems encountered in wireless delivery
of data include, e.g., slow peripheral access, data errors,

5 "drop-outs," unnecessary retransmissions, traffic
congestion, out-of-sequence data packets, latency, and jitter.
In addition to these problems, wireless delivery adds prob
lems including, e.g., high inherent bit error rates (BERs),
limited bandwidth, user contention, radio interference, and

10 TCP traffic rate management. A QoS-aware wireless system
is desired to address all these problems.

There are a number of ways in which users or subscribers
to a data network experience difficulties. One network
difficulty is due to a lack of network availability. Depending

15 on the access technology being used, this can include a
"modem no-answer'' condition, "network busy'' condition,
or a sudden unexpected "drop" of a network connection.
These conditions would not be descnbed as being consistent
with high QoS. Once network connectivity is achieved, slow

20 traffic caused by congestion, local access bottlenecks, and
network failures can be experienced as slow web page
loading, slow file transfers, or poor voice/video quality in
streaming multimedia applications. Poor quality in stream
ing multimedia applications can instead result from high

25 "jitter," or large and rapid variations in latency, leading to
interruptions, distortion, or termination of session. Many
different conditions can lead to actual data errors, which in
some contexts can be catastrophic, such as in the file transfer
of a spreadsheet. It is desirable that these problems of a data

30 co=unications network be minimi7.ed or eliminated.
1. Quality

In data networking, quality usually implies the process of
delivering data in a reliable and timely manner. What is
reliable and timely is dependent on the nature of the traffic

35 being addressed. These terms may include references to
limitations in data loss, expectations of data accuracy, limi
tations of data latency variations (also known as jitter), and
limitations of data retransmissions and !imitations of data
packet order inversions. Therefore, QoS is a complex

'40 concept, which can require a correspondingly complex
mechanism to implement it.

QoS can be a relative term, finding different meanings for
different users. A casual user doing occasional web
browsing, but no file transfer protocol (FIP) file downloads

45 or real time multimedia sessions may have different a
different definition of QoS than a power user doing many
FIP file downloads of large database or financial files,
frequent H.323 video conferencing and IP telephony calls .
Also, a user can pay a premium rate (ie. a so-called service

50 level agreement (SIA)) for high network availability, low
latency, and low jitter, while another user can pay a low rate
for occasional web surfing only, and on weekends only.
Therefore, perhaps it is best to understand QoS as a
continuum, defined by what network performance charac-

55 teristic is most important to a particular user and the user's
SIA Maximizing the end-user experience is an essential
component of providing wireless QoS .
2. Service

In data networking, a service can be defined as a type of
60 connection from one end of a network to another. Formerly,

this could have been further defined to be protocol specific,
such as, e.g., IBM's systems network architecture (SNA),
Novell's IPX, Digital's DECnet. However, it appears that
TCP/IP (i.e. including user datagram protocol(UDP)) bas

65 evolved to become the overwhelming protocol of choice,
and will continue to be in the foreseeable future. Therefore,

- service can be defined to be a particular type of TCP/IP

EX 1017 Page 411

9

TABLE 1-continued
NEEEE

Term Definition

gwitching hierarchy An office class is a functional ranking of a
or office telephonecentral office switch depending on
classification transmission requirements and hierarchical

relationship to other switching centers. Prior to
AT&T's divestihure of the RBOCs, an office
classification was the number assigned to offices
according to their hierarchical function in the
U.S.public switched network (PSTN). The follow-
ing class numbers are used: class 1 = Regional
Center (RC), class 2 = Sectional Center (SC),
class 3 = Primary Center (PC), class 4 =
Toll Center (TC) if operators are present or else
Toll Point (TP), class 5 = End Office (EO)
a local central office. Any one center handlestraffic from one to two or more centers lower
in the hierarchy. Since divestiture and
with more intelligent software in switching
Officea, these designations have becomeless firm. The class 5 switch was the closest
to the end subscriber. Technology has
distributed technology closer to the end user,
diffusing traditional definitions of network
switching hierarchies and the class of switches.

telecommunications A LEC, a CLEC, an [XC, an Enhanced Service
- caricr Provider (ESP), an intelligent peripheral (IP),

an international/global point-of-presence
(GPOP), ie., any provider of telecommunicationsservices.
TCP is an end-to-cnd protocol that operates at the
transport and sessions layers of OSI, providing
delivery of data bytes between processes running
in host computers via separation and sequencing of
TP packets.
TCP/IP is a protocol that provides communicationsbetween interconnected networks. The TCP/IP
protocol is widely used on the Internet, which
is a network comprising several Jarge networks
connected by high-speed connections.
A tronk connects an access tendem (AT) to an
end office (EO).A WAN is a data network that extends a LAN over
the circuits of a telecommunications cartic
The carrier is typically s commoncarrier.
A bridging switch or a router is used toconnect the LAN to the WAN.

415

20

transmission control
B protocol (TCP)

ww

, trancmission controlprotocol/internet
protocol (TCP/IP)

E tusk 35
i Wide area network

(WAN)

f Ul. Introduction
fA. Quality of Service (QOS) in a Wireless Environment
.The conceptof quality of service (QoS)is one of the most 45
Ndifficult and least understood topics in data networking.
p Although a common tenu in data networking, there are
pyoany different usages and definitions for QoS, leading to
}yonfusion regarding an exact meaning in precise or quanti-
Eitive terms. Even further confusion is found whenattempts

© made to measure or specify numeric quantities sufficient
' allow comparison of equipmentor network performance

r ith respect to QoS.
‘The confusion about QoS in general data networking is

ferred and magnified when applied to wireless data
. Mmunications, Wireless transmission has a higher inher- 55
i bit error rate (BER) than does wireline transmission. The

Pdition of, e.g., a point-to-multipoint (PLMP) topology for
prultiple users sharing a wireless medium makesit desirable

at Qos be defined in a mannerthat specifically addresses
prc tiple complicating factors in wireless data commu- 60pecations.

To Provide a non-ambiguous definition of QoS that
PPplies to wireless data communications, the nature of the
problem that QoS is meant to solve is helpful. Manyofthe

“ms of data communications over wireless are unique 65
distinct from those of wireline data communications,

prune some are in fact shared. For wireless broadband access

aaPa
F

math

US 6,452,915 B1
10

systems, the problems of quality delivery are somewhat
more complex than for the wircline analog. Like its wircline
counterpart, the problems encountered in wireless delivery
of data include, e.g., slow peripheral access, data errors,
“drop-outs,” unnecessary retransmissions, traffic
congestion, out-of-sequence data packets, latency, and jitter.
In addition io these problems, wireless delivery adds prob-
lems including, ¢.g., high inherent bit error rates (BERs),
limited bandwidth, user contention, radio interference, and
TCP traffic rate management. A QoS-aware wireless system
is desired to address all these problems.

There are a number of ways in which users or subscribers
to a data network experience difficulties. One network
difficulty is due to a lack of network availability. Depending
on the access technology being used, this can include a
“modem no-answer” condition, “network busy” condition,
or a sudden unexpected “drop” of a network connection.
These conditions would not be described as being consistent
with high QoS. Once network connectivity is achieved, slow
traffic caused by congestion, local access bottlenecks, and
network failures can be experienced as slow web page
loading, slow file transfers, or poor voice/video quality in
streaming multimedia applications. Poor quality in stream-
ing multimedia applications can instead result from high
“jitter,” or large and rapid variations in latency, leading to
interruptions, distortion, or termination of session. Many
different conditions can lead to actual data errors, which in
somecontexts can be catastrophic,such as in the file transfer
of a spreadsheet. It is desirable that these problems of a data
communications network be minimized or eliminated.
1. Quality

In data networking, quality usually implies the process of
delivering data in a reliable and timely manner. Whatis
reliable and timely is dependent on the nature ofthe traffic
being addressed. These terms may include references to
limitations in data loss, expectations of data accuracy,limi-
tations of data latency variations (also known as jitter), and
limitations of data retransmissions and limitations of data
packet order inversions. Therefore, QoS is a complex
concept, which can require a comespondingly complex
mechanism to implementit.

QoScan be a relative term,finding different meanings for
different users. A casual user doing occasional web
browsing, but no file transfer protocol (FTP) file downloads
or real time multimedia sessions may have different a
different definition of QoS than a power user doing many
FIP file downloads of large database or financial files,
frequent H.323 video conferencing and IP telephonycalls.
Also, a user can pay a premium rate (ie. a so-called service

0 level agreement (SLA)) for high network availability, low
latency, and low jitter, while another user can pay a low rate
for occasional web surfing only, and on weekends only.
Therefore, perhaps it is best to understand QoS as a
continuum, defined by what network performance charac-
teristic is most important to a particular user and the user’s
SLA. Maximizing the end-user experience is an essential
componentof providing wireless QoS.
2. Service

In data networking, a service can be defined as a type of
connection from one end of a network to another. Formerly,
this could have been further defined to be protocol specific,
such as, ¢.g., IBM’s systems network architecture (SNA),
Novell’s IPX, Digital’s DECnet. However, it appears that
TCP/IP (i.e. including user datagram protocol(UDP)) has
evolved to become the overwhelming protocol of choice,
and will continue to be in the foreseeable future. Therefore,

- service can be defined to be a particular type of TCP/IP

EX 1017 Page 411

US 6,452,915 Bl
11

connection or transmission. Such service types might
include, e.g., FTP file transfers, e-mail traffic, hypertext
transfer protocol (HITP) traffic, H323 videoconferencing
ses.sions. It is desirable that a QoS mechanism deal with
these differing types of service, in addition to dealing with 5

the different types of quality as discussed previously.
3. QOS as a Mechanism

QoS can be thought of as a mechanism to selectively
allocate scarce networking, transmission and communica
tions resources to differentiated classes of network traffic 10

with appropriate levels of priority. Ideally, the nature of the
data traffic, the demands of the users, the conditions of the
network, and the characteristics of the traffic sources and
destinations all modify how the QoS mechanism is operating
at any given instant. Ultimately, however, it is desirable that 15
the QoS mechanism operate in a manner that provides the
user with optimal service, in whatever manner the user
defines it.

' •. Circuit-Switched QoS
In legacy networks created primarily for voice traffic by 20

telephone companies, data transmission was accomplished
with reference to a circuit-centric definition of QoS. In this
definition, QoS implied the ability to carry asynchronous
(i.e. transmission of data through start and stop sequences
without the use of a common clock) as well as isochronous 25

(i.e.consistent timed access of network bandwidth for time
sensitive voice and video) traffic. Circuit-switched QoS was
accomplished by dedicating an end-to-end circuit for each
connection or service, whether it was voice (sec FIG. IA) or

, data. The circuit-centric QoS mechanism was sinlply the 30

$' provision of this circuit for exclusive use by the user. Of
', course, this approach dedicates the circuit, all transmission
'. channels associated with the circuit, and the transport media
, itself to a single user for the entire duration of the session,
, regudless of whether data is actually being transmitted 35

, cw:ry instant of the session. It was generally believed that
, only in this manner could true QoS be achieved. Therefore,
,, traditional designs for wireless broadband access systems
. (see FIG. 2A) also used this approach, dedicating a wireless

radio channel to each particular data connection, regardless 40

, of the application or whether indeed any data was being
; transmitted at any given moment. This circuit-centric
· approach to QoS is fairly expensive, in terms of the cost of

lhe equipment, and the utilization factors for the transmis-

12
acteristics of the traffic that is being carried by the PJM
mechanism and the high inherent BER of wireless, true QoS
can not be provided. PJM QoS mechanisms do not address
the unique challenges associated with wireless communica
tion.
c. Packet-Switched QoS

Packet-switching is revolutionizing data communications,
so conventional circuit-switch and AIM networking con
cepts and their legacy QoS mechanisms are in need of
update. With packet-switched data communications, one
cannot dedicate a circuit to a particular data communications
session. Indeed, a strength of packet-switching lies in route
flenbility and parallelism of its corresponding physical
network. Therefore, the QoS mechanism cannot work in the
same manner as the legacy circuit-centric QoS mechanism
did.

Simply providing "adequate" bandwidth is not a sufficient
QoS mechanism for packet-switched networks, and cer
tainly not for wireless broadband access systems. Although
some IP-flows are "bandwidth-sensitive," other flows are
latency- and/or jitter-sensitive. Real time or multimedia
flows and applications cannot be guaranteed timely behavior
by simply providing excessive bandwidth, even if it were not
cost-prohibitive to do so. It is desirable that QoS mecha
nisms for an IP-centric wireless broadband access system
recognize the detailed flow-by-flow requirements of the
traffic, and allocate system and media resources necessary to
deliver these flows in an optimal manner.
d. Summary-QoS Mechanisms

Ultimately, the end-user experience is the final ubiter of
QoS. It is desirable that an IP-centric wireless broadband
access system assign and regulate system and media
resources in a manner that can maximize the end-user
experience. For some applications such as an initial screen
of a Web page download, data transmission speed is the best
measure of QoS. For other applications, such as the down-
load or upload of a spreadsheet, the best measure of QoS can
be the minimization of transmission error. For some
applications, the best measure of QoS can be the optimiza
tion of both speed and error. For some applications, the
timely delivery of packets can be the best measure of QoS.
It is important to note that fast data transmission may not be
the same as timely delivery of packets. For instance, data
packets that are already "too old" can be transmitted rapidly,

- sion media itself.
l,i. Asynchronous Transfer Mode (~ QoS
·: With ~ networking, telephone companies could con
tinue to provide a circuit-centric QoS mechanism with the

45 but by being too old can be of no use to the user. The nature
of the data application itself and the desired end-user expe
rience then can provide the most reliable criteria for the QoS
mechanism. It is desired that an IP-centric wireless broad-

, ~~lisbment of permanent virtual connections (PVCs) (i.e.
:•.virtual path or channel connection (VPC or VCC) provi- 50

llOned for indefinite use) and switched virtual connections
'.~VCs) (i.e. a logical connection between endpoints estab
lished by an~ network on demand based upon signaling
~essagcs received from the end user or another network) in
. llllalogous manner to the legacy voice circuit mechanism. 55
Hov.:ever, several new concepts were needed, including
-~JSSion policy, traffic shaping, and mechanisms such as,
,-t.g., leaky-buckets, in order to handle traffic that was now
:a(~egoriz.ed as variable bit rate (VBR), constant bit rate
, CBR), and unspecified bit rate (UBR). 60

. Virtual circuits were to be established for data transmis-
. 11«.>n sessions, again regardless of the data application or
:ether data was being transmitted at any given moment.
tile though~ provide~ QoS for broadb'.'°d _network traffic,
;1'ER underiymg assumptions of PJM design mclude the low 65

: f characteristic of wirelinc networks, not the high BER
.,n the wireless medium. Without a recognition of the char-

band access system provide a QoS mechanism that can
dynamically optimize system behavior to each particular IP
flow, and can also adapt to changes with changing network
load, congestion and error rates.
4. Service Guarantees and Service Level Agreements
(SLAs)

Service guarantees can be made and service level agree
ments (SLAs) can be entered into between a telecommuni
cations service provider and a subscriber whereby a speci
fied level of network availability can be described, and
access charges can be based upon the specified level.
Unfortunately, it is difficult to quantify the degree of net
work availability at any given time, and therefore this
becomes a rather crude measure of service performance. It
is desired that data delivery rate, error nte, retransmissions,
latency, and jitter be used as measures of network
availability, but measuring these quantities on a real-time
basis can be beyond the capability of conventional network
service providers (NSPs).

r11

I.

t1;
I.
i,

: 11
: !,
J1)
',I

,'-

I
1 ·
I
I
I

'

EX 1017 Page 412

il

connection or transmission. Such service types might
include, ¢.g., FTP file transfers, e-mail traffic, hypertext
transfer protocol (HTTP) traffic, H.323 videoconferencing
sessions. It is desirable that a QoS mechanism decal with
these differing types of service, in addition to dealing with
the different types of quality as discussed previously.
3. QOS as a Mechanism

QoS can be thought of as a mechanism to selectively
allocate scarce networking, transmission and communica-
tions resources to differentiated classes of network traffic
with appropriate levels of priority. Ideally, the nature of the
data traffic, the demands of the users, the conditions of the
petwork, and the characteristics of the trafic sources and
destinations all modify how the QoS mechanism is operating
at any given instant. Ultimately, however,it is desirable that
the QoS mechanism operate in a mannerthat provides the
user with optimal service, in whatever manner the user
definesit.
a. Circuit-Switcbed QoS

In legacy networks created primarily for voice traffic by
telephone companies, data transmission was accomplished

_ with reference to a circuit-centric definition of QoS. In this
E definition, QoS implied the ability to carry asynchronous
} (ie. transmission of data through start and stop sequences

without the use of a commonclock) as well as isochronous
(i.c.consistent timed access of network bandwidth for time-

» sensitive voice and video) traffic. Circuit-switched QoS was
' accomplished by dedicating an end-to-end circuit for cach

connectionor service, whether it was voice (see FIG. 1A)or
p. data. The circuit-centric QoS mechanism was simply the

provision of this circuit for exclusive use by the user. Of
E course, this approach dedicates the circuit, all transmission
; channels associated with the circuit, and the transport media

F itself to a single user for the entire duration of the session,
regardless of whether data is actually being transmitted

§. every instant of the session. It was generally believed that
? Only in this manner could true QoS be achieved. Therefore,

E. traditional designs for wireless broadband access systems
B (sec FIG.2A)also used this approach, dedicating a wireless
f radio channel to each particular data connection, regardless
fof the application or whether indeed any data was being
- kansmitted at any given moment. This circuit-centric
proach to QoS is fairly expensive,in terms ofthe cost of

the equipment, and the utilization factors for the transmis-; Sion mediaitself.

b. Asynchronous Transfer Mode (ATM) QoS
: With ATM networking, telephone companies could con-

p tinue to provide a circuit-centric QoS mechanism with the
F Gstablishment of permanentvirtual connections (PVCs) (i.¢.
(¥virtual path or channel connection (VPC or VCC) provi-
Sioned for indefinite use) and switched virtual connections
ASVCs) (i.e. a logical connection between endpoints estab-
lished by an ATM network on demand based upon signaling

‘Sages received from the end user or another network) in
A analogous mannerto the legacy voice circuit mechanism.

However, several new concepts were needed, including
arimission Policy, traffic shaping, and mechanismssuchas,

FE., leaky-buckets, in order to handle traffic that was now
 Sategorized as variable bit rate (VBR), constant bit rate
(CBR), and unspecified bit rate (UBR).
fo Circuits were to be established for data transmis-
F8ton sessions, again regardless of the data application or
Wether data was being transmitted at any given moment.
b< though ATM provides QoS for broadband network traffic,
petaderlying assumptions of ATM design include the low
of theacteristic of wireline networks, not the high BER
pf the wireless medium. Without a recognition of the char-

20

25

30

35

40

4wa

50

65

US 6,452,915 B1
12

acteristics of the traffic that is being carried by the ATM
mechanism andthe high inherent BER ofwireless, true QoS
can not be provided. ATM QoS mechanisms do not address
the unique challenges associated with wireless communica-tion.
c. Packet-Switched QoS

Packet-switching is revolutionizing data communications,
so conventional circuit-switch and AIM networking con-
cepts and their legacy QoS mechanisms are in need of
update. With packet-switched data communications, one
cannot dedicate a circuit to a particular data communications
session. Indeed, a strength of packet-switching lies in route
flexibility and parallelism of its corresponding physical
network. Therefore, the QoS mechanism cannot work in the
same manner as the legacy circuit-centric QoS mechanism
did.

Simply providing “adequate” bandwidth is not a sufficient
QoS mechanism for packet-switched networks, and cer-
tainly not for wireless broadband access systems. Although
some IP-flows are “bandwidth-sensitive,” other flows are
latency- and/or jitter-sensitive. Real time or multimedia
flows and applications cannot be guaranteed timely behavior
by simply providing excessive bandwidth, even if it were not
cost-prohibitive to do so. It is desirable that QoS mecha-
nisms for an IP-centric wireless broadband access system
recognize the detailed flow-by-flow requirements of the
traffic, and allocate system and media resources necessary to
deliver these flows in an optimal manner.
d. Summary—QoS Mechanisms

Ultimately, the end-user experience is the final arbiter of
QoS.It is desirable that an [P-centric wireless broadband
access syStem assign and regulate system and media
resources in a manner that can maximize the end-user

experience. For some applications such as an initial screen
of a Web page download, data transmission speed is the best
measure of QoS. For other applications, such as the down-
loadorupload of a spreadsheet, the best measure of QoS can
be the minimization of transmission error. For some

applications, the best measure of QoS can be the optimiza-
tion of both speed and error. For some applications, the
timely delivery of packets can be the best measure of QoS.
It is importantto note that fast data transmission may not be
the same as timely delivery of packets. For instance, data
packets that are already “too old” cau be transmitted rapidly,
but by being too old can be of no use to the user. The nature
of the data applicationitself and the desired end-user expe-
rience then can provide the mostreliable criteria for the QoS
mechanism. Jt is desired that an IP-centric wireless broad-
band access system provide a QoS mechanism that can
dynamically optimize system behavior to each particular IP
flow, and can also adapt to changes with changing network
load, congestion and error rates.
4. Service Guarantees and Service Level Agreements
(SLAs)

Service guarantees can be made and service level agree-
ments (SLAs) can be entered into between a telecommuni-
cations service provider and a subscriber whereby a speci-
fied level of network availability can be described, and
access charges can be based upon the specified level.
Unfortunately, it is difficult to quantify the degree ofnet-
work availability at any given time, and therefore this
becomes a rather crude measure of service performance.It
is desired that data delivery rate, errorrate, retransmissions,
latency, and jitter be used as measures of network
availability, but measuring these quantities on a real-time
basis can be beyondthe capability of conventional network
service providers (NSPs).

EX 1017 Page 412

US 6,452,915 Bl
13 14

Another level of service di'iCrlmination desired by net- defeat the intent of queuing. Excessive queuing can have
work service providers is a service level agreement (SI.A) detrimental effects on traffic by delaying time sensitive
that provides for differing traffic rates, network availability, packets beyond their useful time frames, or by increasing the
bandwidth, error rate, latency and jitter guarantees. It is KIT (Round Trip Time), producing unacceptable jitter or
desired that an IP-centric wireless broadband access system 5 even causing tbe time-out of data transport mechanisms.
be provided that can provide for SLAs, enabling service Therefore, it is desired that queuing be used intelligently and
providers to have more opportunities for service differen- sparingly, without introducing undue delay in delay-
tia.tion and profitability. sensitive traffic such as real-time sessions.
5. Class of Service and Quality of Service In a wireless environment where time division multiple

In order to implement a practical QoS mechanism, it is 10 acccs.s (IDMA), forward error detection (FEC), and other
desired that a system be able to differentiate between types such techniques can be necessary, it is desirable that queuing
of traffic or service types so that differing levels of system be used merely to enable packet and radio frame processing.
resources can be allocated to these types. It is customary to However, in the case of real-time flows, tbe overall added
speak of "classes of service" as a means of grouping traffic delay in real-time traffic can preferably be held to below
types that can receive similar treatment or allocation of 15 approximately 20 milliseconds.
system and media. resources. The use of queue management as the primary QoS

Currently, there are several methods that can be used in mechanism in providing QoS-based differentiated services
wireline network devices to implement differentiated service is a simple and straight forward method for wireless broad-
classes. Example methods include traffic shaping, admission band systems. However, wireless systems a.re usually more
control, IP precedence, and differential congestion manage- 20 bandwidth constrained and therefore more sensitive to delay
ment. It is desired that an IP-centric wireless broadband than their wireline counterparts. For this reason, it is desir-
access system use all of these methods to differentiate traffic able that QoS-based differentiated services be provided with
into classes of service, to map these classes of service mechanisms that go beyond what simple queuing can do.
against a QoS matrix, and thereby to simplify the operation However, some queuing can still be required, and the
and administration of the QoS mechanism. 25 different queuing methods are now discussed.

B. QoS and IP-Centric Wireless Environment 2. First in, First out (FIFO) Queuing
In a point-to-multipoint (PIMP) wireless system like the First in, first out (FIFO) queuing can be used in wireless

present invention, it is desirable that the QoS mechanism systems, like wireline systems, in buffering data packets
cope not only with wireline networking considerations, but when the downstream data channel becomes temporarily
also with considerations particular to tbe wireless environ- 30 congested. H temporary congestion is caused by bursty
ment. As stated earlier, it is desired that the inherent BER of traffic, a FIFO queue of re1SOnable depth can be used to
wireless be handled. The high BER can require that error smooth the fiow of data into the congested communications
detection, correction, and re-transmission be done in an segment. However, if the congestion becomes severe in
efficient manner. It is desired that a BER handling mecba- extent, or relatively long in duration, FIFO can lead to the
nism a1so wmk efficiently witli the re-transmission a.Igo- 35 discarding of packets as the FIFO queues are filled to
rithms of TCP/IP so as to not cause further unnecessary capacity, and the network is not capable of accepting addi-
degradation of bandwidth utilization. An additional cha!- tional packets causing discarding of packets, i.e. so-called
Ienge of wireless is contention among users for limited "packet-tossing." Although this can have a detrimental effect
wireless bandwidth. It is desirable that the system handle on QoS in and of itself, the discarding of packets may cause
service requests from multiple users in a radio medium '40 future problems with traffic fiow as the TCP protocol causes
subject to interference and noise, which can make efficient the retransmission of lost packets in the proper sequence,
allocation of radio bandwidth difficult. further exacerbating the problem. "The problem of packet

As discussed above, the change from circuit-switched and discards can be minimized by increasing the size of the FIFO
ATM data networks to packet-switched data networks bas buffers so that more time can pass before discards occur.
impacted the definition of QoS mechanisms. The present 45 Unfortunately, eventually the FJFO can become large
invention provides a novel QoS mechanism in a point-to- enough that packets can become too old and the round-trip
multi-point IP-centric wireless system for packet-switched time (RTI) can increase to the poiot that the packets are
network traffic. In order for the system to provide optimal useless, and the data connection is virtually lost.
QoS performance, it desirable that it include a novel In a wireless broadband environment, the requirement for
approach to QoS mechanisms. The use of QoS as the 50 FIFO queuing is partially dependent upon the type of RF
underlying guide to system architecture and design consti- access method being used. For time division multiple
lutes an important, substantial and advantageous difference access/time division duplex (IDM.NIDD), it can be desir-
of the IP-ceotric wireless broadband access system of the able that data be queued even for collecting enough data for
present invention over existing wireless broadband access the construction of data frames for transmission. Frequency
systems designed with traditional circuit-centric or ATM cell 55 division multiple access (FDMA) and code-division mul-
circuit-a:ntric approaches such as those used by Teligent and tiple access (CDMA) a.re not as "sequential" in nature as
Wmstar. 'IDMA, and therefore have less of a requirement for FIFO

C. IP-Centric Wrrele.ss Broadband Access QoS and Queu- queuing. However, generally for all wireless access
ing Disciplines techniques, noise and interference are factors that can lead
1. Managing Queues 60 to retransmissions, and tberefore further delays and conse-

Queuing is a commonly accepted tool required fur quent adverse effect on QoS.
manipulating data communications flows. In order for Using FJFO queuing, shared wireless broadband systems
packet headers to be examined or modified, for routing can uniformly delay a.11 traffic. This can seem to be the
decisions to made, or for data flows to be output on "fairest" method, but it is not necessarily the best method if
appropriate ports, it is desirable that data packets be queued. 65 the goal is to provide high QoS to users. By using different
However, queuing introduces, by definition, a delay in the types of queue management, a. much better base of overall
traffic streanis that can be detrimental, and can even totally QoS can be achieved.

EX 1017 Page 413

If

US 6,452,915 Bl
15

3. Priority Queuing
The shared wireless broadband environment can include

a constricted bandwidth segment as data is transmitted over
the RF medium. Therefore, regardless of access technique,
these systems can require some amount of queuing. 5

However, using FIFO queuing can result in a constant delay
to all traffic, regardless of the priority or type of traffic. Most
data communications environments can consist of a mixture
of traffic, with combinations of real time interactive data, file
and data downloads, web page access, etc. Some of these 10

types of traffic arc more sensitive to delay, and jitter, than
others. Priority queuing simply reorders data packets in the
queue based on their relative priorities and types, so that data
from more latency- and jitter-sensitive traffic can be moved

16
D. IP-Centric Wireless Broadband Access QoS and TCP/

IP
1. TCP/IP

The TCP/IP protocol stack has become the standard
method of transmitting data over the Internet, and increas
ingly it is becoming a standard in virtual private networks
(VPNs). The TCP/IP protocol stack includes not only inter
net protocol (IP), but also transmission control protocol
(fCP), user datagram protocol (UDP), and internet control
message protocol (ICMP). By assuming that the TCP/IP
protocol stack is the standard network protocol for data
communications, the creation of a set of optimal QoS
mechanisms for the wireless broadband data environment is
more manageable. QoS mechanisms can be created that can

to the front of the queue. 15 span the entire extent of the network, including both the
wireline and the wireless portions of the network. These
mechanisms can integrate in a smooth and transparent
manner with TCP rate control mechanisms and provide

Unfortunately, if there is downlink data channel
congestion, or congestion caused by an overabundance of
high priority traffic, the condition of "buffer starvation" can
occur. Because of the relative volume of high priority
packets oonsuming a majority of buffer space, little room is 20

left for lower priority packets. These lower priority packets
can experience significant delays while system resources are
devoted to the high priority packets. In addition to low
priority packets being held in buffers for long periods of
time, or never reaching the buffera, resulting in significantly 25
delayed data flows for these packets, the actual applications
corresponding to these low priority packets can also be
disrupted, and stop working. Because of the nature of this
queuing approach, overall latency and jitter and RTT for
lower priority packets can be unpredictable, having an 30

adverse effect on QoS.
If queue sizes are small, reordering data within the queues

can have little beneficial effect on the QoS. In fact, process
ing required to examine packet headers in order to obtain the
information necessary to reorder the queues may itself add 35
significant delay to the data stream. Therefore, particularly
for wireless broadband data environments, priority queuing
can be not much better than FlFO queuing as a QoS
mechanism.

end-to-end QoS mechanisms that are adaptive to both the
wireline and wireless portions of the network. Of course,
segments of the wireline network that are congested or are
experiencing other transport problems cannot be solved by
a wireless QoS mechanism. However, a wireless QoS
mechanism can optimize data flows in a manner that can
enhance the end user experience when there is no severe
wireline network congestion or bottleneck: present.
2. Differentiation by Class

Data traffic can be handled based on classes of service, as
discussed above. To differentiate traffic by class, data traffic
(or a sequence of data packets associated with a particular
application, function, or purpose) can be classified into one
of several classes of service. Differentiation can be done on
the basis of some identifiable information contained in
packet headers. One method can include analyzing several
items in, e.g., an IP packet header, which can serve to
uniquely identify and associate the packet and other packets

4. Classed Based Queuing
By allocating queue space and system resources to pack

ets based on the class of the packets, buffer starvation can be
avoided. Each dass can be defined to include of data flows
with certain similar priorities and types. All classes can be
given a certain minimum level of service so that one high 45

priority data flow cannot monopolize all system resources.
With the classification approach, because no data flow is
ever completely shut off, the somce application can receive
information about the traffic rate, and can be able to provide
TCP-mediated transmission rate adjustment supporting 50

smooth traffic flow.

from that packet flow with a particular application, function
or purpose. As a minimum, a source IP address, a source
TCP or UDP port, a destination IP address, and a destination

40 IP or UDP port can serve to associate packets into a common
flow, i.e. can be used to classify the packets into a class of
service.

By creating a finite and manageable number of discrete
classes of service, multiple IP flows can be consolidated and
handled with a given set of QoS parameters by ~e QoS
mechanisms. These classes can be defined to provide com
mon and useful characteristics for optimal management in
the combined wireline and wireless network segments.

3. Per-Flow Differentiation
A finite and discrete set of classes of service, can enable

QoS mechanisms to be less compute-intensive, to use less
memory, fewer state machines, and therefore have better
scaleability than having individual QoS mechanisms (or sets

Although this approach can work better than FIFO queu
ing in wireless broadband systems, latency and jitter sensi
tive flows can still be adversely affected by high priority
flows of large volume.
5. Weighted Fair Queuing

55 of parameters) for each individual IP flow. However, in a
network access device such as, e.g., a point to multi-point
(PtMP) wireless broadband access system, the total number
of simultaneous IP flows typically will not exceed the range

A weighted fair queuing method can attempt to provide
low-volume flows with guaranteed queuing resources, and
can then allow remaining flows, regardless of volume or
priority, to have equal amounts of resource. Although this 60

can prevent buffer starvation, and can lead to somewhat
better latency and jitter performance, it can be difficult to
attain stable performance in the face of rapidly changing RF
downlink channel bmdwidth availability.

Providing a high quality of service can require a QoS 65
mechanism that is more sophisticated than simple queue
management.

of 1000, and therefore the amount of processing overhead
that could be required could permit a per-flow QoS differ
entiation without resorting to classes of service. However,
class of service consolidation of IP flows provides advan
tages related to marketing, billing and administration.

Prior to the present invention, per-flow differentiation has
not been used in a wireless environment (including radio
frequencies transmitted over ooaxial cables and satellite
communications).

EX 1017 Page 414

errraeoeemmaemanate
some

F.

US 6,452,915 Bl
15

3. Priority Queuing
The shared wireless broadband environment can include

a constricted bandwidth segmentas data is transmitted over
the RF medium. Therefore, regardless of access technique,
these systems can require some amount of queuing.
However, using FIFO queuing can result in a constant delay
to all traffic, regardless of the priority or type of traffic. Most
data communications euvironments can consist of a mixture
of traffic, with combinationsofreal timeinteractive data, file
and data downloads, web page access, etc. Some of these
typesof traffic are more sensitive to delay, and jitter, than
others. Priority queuing sicaply reorders data packets in the
queue based ontheir relative priorities and types, so that data
from more latency- and jitter-sensitive traflic can be moved
to the front of the queue.

Unfortunately, if there is downlink data channel
congestion, or congestion caused by an overabundance of
highpriority traffic, the condition of “buffer starvation” can
occur. Because of the relative volume of high priority
packets consuming a majority of buffer space,little room is
left for lower priority packets. These lower priority packets
can experience significant delays while system resources are
devoted to the high priority packets. In addition to low
priority packets being held in buffers for long periods of
time, or never reaching the buffers, resulting in significantly
delayed data flows for these packets, the actual applications
corresponding to these low priority packets can also be
disrupted, and stop working. Because of the nature of this
queuing approach, overall latency and jitter and RITfor
lower priority packets can be unpredictable, having an
adverse effect on QoS.

Ifqueue sizes are small, reordering data within the queues
can havelittle beneficial effect on the QoS. In fact, process-
ing required to examine packet headers in order to obtain the
information necessary to reorder the queues mayitself add
significant delay to the data stream. Therefore, particularly
for wireless broadband data environments, priority queuing
can be not much better than FIFO queuing as a QoS
mechanism.
4. Classed Based Queuing

By allocating queue space and system resources to pack-
ets based on the class of the packets, buffer starvation can be
avoided. Each class can be defined to include ofdata flows

with certain similar priorities and types. All classes can be
given a certain minimum level of service so that one high
priority data flow cannot monopolize all system resources.
With the classification approach, because no data flow is
ever completely shut off, the source application can receive
information about the traffic rate, and can be able to provide
TCP-mediaicd transmission rate adjustment supporting
smooth traffic flow.

Although this approach can work better than FIFO queu-
ing in wireless broadband systems, latency andjitter sensi-
tive flows can still be adversely affected by high priority
flows of large volume.
5. Weighted Pair Queuing

A weighted fair queuing method can attempt to provide
low-volume flows with guaranteed queuing resources, and
can then allow remaining flows, regardless of volume or
priority, to have equal amounts of resource. Although this
can prevent buffer starvation, and can lead to somewhat
better latency and jitter performance, it can be difficult to
attain stable performance in the face ofrapidly changing RF
downlink channel bandwidth availability.

Providing a high quality of service can require a QoS
mechanism that is more sophisticated than simple queue
management.

45

25

5§

16
D. IP-Centric Wireless Broadband Access QoS and TCP/

iP
1. TCPAP

The TCPAP protocol stack has become the standard
method of transmitting data over the Intemet, and increas-
ingly it is becoming a standard in virtual private networks
(VPNs). The TCP/IP protocol stack includes not only inter-
net protocol (IP), but alse transmission control protocol
(TCP), user datagram protocol (UDP), and internet control
message protocol (ICMP). By assuming that the TCP/IP
protocol stack is the standard network protocol for data
communications, the creation of a set of optimal QoS
mechanisms for the wireless broadband data environmentis
more manageable. QoS mechanisms can be created that can
span the entire extent of the network, including both the
wireline and the wireless portions of the network, These
mechanisms can integrate in a smooth and transparent
manner with TCP rate control mechanisms and provide
end-to-end QoS mechanisms that are adaptive to both the
wireline and wireless portions of the network. Of course,
segments of the wireline network that are congested or are
experiencing other transport problems cannot be solved by
a wireless QoS mechanism. However, a wireless QoS
mechanism can optimize data flows in a manner that can
enhance the end user expericnce when there is no severe
wireline network congestion or bottleneck present.
2. Differentiation by Class

Data traffic can be handled based on classes of service, as
discussed above. To differentiate traffic by class, data traffic
(or a sequence of data packets associated with a particular
application, function, or purpose) can be classified into one
of several classes of service. Differentiation can be done on
the basis of some identifiable information contained in
packet headers. One method can include analyzing several
items in, e.g., an IP packet header, which can serve to
uniquely identify and associate the packet and other packets
from that packet flow with a particular application, function
or purpose, As a mininrum, a source IP address, a source
TCPor UDPport, a destination IP address, and a destination
IP or UDPport can servete associate packets inlo a common
flow, ic. can be used to classify the packets into a class of
service.

By creating a finite and manageable numberof discrete
classes of service, multiple IP flows can be consolidated and
handled with a given set of QoS parameters by the QoS
mechanisms. These classes can be defined to provide com-
mon and useful characteristics for optimal management in
the combined wireline and wireless network segments.
3. Per-Flow Differentiation

A finite and discrete set of classes of service, can enable
QoS mechanisms io be less compute-intensive, to use less
memory, fewer state machines, and therefore have better
scaleability than having individual QoS mechanisms (or sets
of parameters) for each individual IP flow. However, in a
network access device such as, ¢.g., a point to multi-point
(PIMP) wireless broadband access system, the total aumber
of simultancous IP flows typically will not exceed the range
of 1000, and therefore the amount of processing overhead
that could be required conid permit a per-flow QoS differ-
entiation without resorting to classes of service. However,
class of service consolidation of IP flows provides advan-
tages related to marketing,billing and administration.

Prior to the present invention, per-flow differentiation has
not been used in a wireless environment (including radio
frequencies transmitted over coaxial cables and satellite
communications).

EX 1017 Page 414

snusesti

-= arcmrmnranrnnenaaetnaee

US 6,452,915 Bl
17 18

4. Using [P Precedence for Class of Service Proactive Reservation-based Intelligent Multimedia-aware
IP precedence bits in a type of service (IP 'IDS) field, as Media Access (PRIMMA) layer, available from Malibu

described in Internet Engineering Task Force (IETI)l992b, Networks Inc., of Calabasas, Calif., can also schedule all
can theoretically be used as a means to sort IP flows into packet transmissions across the wireless medium on the
classes of service. IETF RFC1349 proposed a set of 4-bit s basis of, e.g., IP fiow type, service level agreements (SI.As),
definitions with 5 different meanings: minim.iz.e delay; maxi- and QoS considerations.
miz.e throughput; maximize reliability; minimiu monetary 6. TCP Congestion Avoidance in an IP-Centric Wireless
cost; and normal service. System

These definitions could add significantly to networks, a. Network Congestion Collapse, Global Synchronization
routers and access devices in differentiating different types 10 and IP-Centric Wireless TCP Congestion Avoidance
of flow so that resources could be appropriately allocated, Tue inherently high bit error rate (BER) of wireless
resulting in improved QoS. However, the proposal has not transmission can make an occurrence of problems known as
been widely used. Several proposals in the IETF could make congestion collapse or global synchronization collapse more
use of this field, along with resource reservation protocol likely than in a wirelioe environment. When multiple TCP
(RSVP), to improve network handling of packets. 15 senders simultaneously detect congestion because of packet

Although the type of service (TOS) field has been an loss, the TCP senders can all go into TCP slow start mode
integral romponent of the TCP/IP specification for many by shrinking their transmission window sizes and by pausing
years, the field is not commonly used. Absent appropriate momentarily. The multiple senders can then all attempt to
bits in the field being set by a source processor, the access retransmit the lost packets simultaneously. Because they can
devices, the network and network routers cannot implement 20 all start transmitting again in rough synchrony, a possibility
QoS mechanisms. of creating congestion can arise, and the cycle can start all
5. TCP-Mediated Transmission Rate Mechanisms over again.

Tue manner in which TCP governs transmission rate can In the wireless environment, an occurrence of burst noise
be incorporated and managed by an IP-centric wireless QoS can cause packet loss from many IP streams simultaneously.
mechanism. If a TCP mechanism is not managed, any 25 Tue TCP transmission rate mechanisms of the TCP senders
wireless QoS mechanism can be overwhelmed or countered can =e that packet loss was due to congestion, and they
by wireless bandwidth factors. Before addressing the spe- can all back-off in synchrony. When the TCP senders restart,
ci.fic wireless factors that can impact TCP transmission the senders can restart in rough synchrony, and indeed can
speed, a review of TCP transmission rate mechanism is now create real congestion in the wireless link segment. This
needed. JO cyclical behavior can continue for some time, and can

TCP can control transmission rate by "sensing" when possioly cause unpredictable system performance. This can
packet loss occurs. Because TCP/IP was created primarily be due in part to overflowing system queues which can cause
for wireline environment with its extremely low inherent more packets to be dropped and can cause more unproduc-
BER, such as those found over fiber optic lines, any packet live retransmissions. This can degenerate into a "race" state
loss is assumed by TCP to be due to aetwoi:k rongestion, not 35 that could take many minutes before re-establishing stabil-
loss through bit error. Therefore, TCP assumes that the ity; this can have an obvious negative impact on QoS.
transmission rate exceeded the capacity of the network, and In the wireline world, random early detection (RED) can
responds by slowing the rate of transmission. However, be used to circumvent global synchronization. By randomly
packet loss in the wireless link segment is due primarily to selecting packets from randomly selected packet flows
inherently high BER, not congestion. Tue difference turns 40 before congestion collapse occurs, global synchronization
out to be IKJt insubstantial. can be avoided. Queues can be monitored, and when queue

TCP can initially ca.use the transmission rate to ramp-up depth exceeds a preset limit, RED can be activated, activat-
at the beginning of a packet flow, and is called slow-start ing a synchronously the TCP senders' transmission rate
mode. The rate can be continuously increased until there is controllers. This can avoid the initial congestion which
a loss or time-out of the packet-receipt acknowledgment 45 would otherwise result in collapse and then global synchro-
message. TCP can then "back-off", can decrease the trans- nization.
mission window size, and then can retransmit lost packets in Instead of purely random packet disea.rds, the packets to
the proper order at a significantly slower rate. TCP can then be discarded can be done with consideration to packet
slowly increase the transmission rate in a lioear fashion, priority or type. While still random, the probability of
which can be called congestion-avoidance mode. 50 discard for a given flow can be a function of the by packet

If multiple users share a wireless radio link as with the priority or type. In a wireless system, weighted random early
present invention, the inherently high BER of the medium detection (WRED) can be used without the concern of
could potentially cause frequent packet loss leading to retransmission and TCP rate reset by preferentially selecting
unproductive TCP retransmission in congestion avoidance UDP packets of real time lP flows such as streaming audio,
mode. Because wireless bandwidth can be a precious 55 and H.323 flows with a more critical packet Trme-to-live
commodity, a IP-centric wireless QoS mecha.nism prefer- parameter. These IP flows are more sensitive to latency and
ably provides fur packet retransmission without invoking jitter, and less sensitive to packet loss.
TCP retransmission and consequent and unnecessary "whip- In the wireless environment, with an appropriately
sawing" of the transmission rate. This, along with several designed MAC layer, packet loss due to BER that might
other factors, makes desirable creation of an IP-centric 60 otherwise trigger congestion collapse and global synchro-
wircle!i.$ media access control (MAC) layer. One function of nization can best be managed with local retransmission of
an IP-eentric MAC layer can be to mediate local retrans- lost packets according to the present invention and without
mission of lost packets without signaling TCP and unnec- RED and the unnecessary retransmission of pa.ckcts by the
ei;.<;arily altering the TCP transmission speed. A primary task TCP sender and the resulting reset of TCP transmission rate.
of the IP-centric wireless MAC layer is to provide for shared 65 Tue IP-centric wireless system separately manages the TCP
access to the wireless medium in an orderly and efficient transmission window of the TCP sender remotely by trans-
manner. The MAC layer according to the present invention, milting a packet receipt-acknowledgment before the TCP

L
EX 1017 Page 415

US 6,452,915 Bl
19

sender detects a lost packet and initiates retransmission
along with an unnecessary reset of the transmission rate.
This IP-centric wireless system TCP transmission window
manager communicates with the MAC layer in order to be
aware of the status of all packets transmitted over the 5

wireless medium.
b. The Effect of Fractal Self-Similar Network Traffic Char
acteristics vs. Poisson Distributions on Network Congestion

20
QoS requirements. By using the present invention, provid
ing a QoS mechanism that is application-specific rather than
circuit-specific, scarce wireless bandwidth can be conserved
and dynanrically allocated where needed by the QoS mecha
nisms associated with each application type.

B. QoS and IP-Centric Wrreless Media Access Control
1. Proactive Reservation-based Intelligent Multimedia
aware Media Access (PRIMMA) MAC Layer

The present invention's proactive reservation-based intel
ligent multimedia-aware media access (PRIMMA) media
access control (MAC) layer provides an application switch
ing function of the IP-centric wireless QoS mechanism.
Once the nature and QoS requirements of each IP stream are
determined by other portions of the system, this information
is communicated to the PRIMMA MAC layer so that tbe IP
flows of each application can be switched to appropriate
destinations in a proper priority order.
2. PRIMMA IP Protocol Stack Vertical Signaling

For IP streams that originate from a local user's CPE,

Conventionally, it has been believed that network traffic
can be modeled with a Poisson distribution. Using this 10

distribution leads to the conclusion, through system
simulations, that the sum of thousands of individual traffic
flows with Poisson distributions results in a uniform overall
network traffic distribution. In other words, the overall
network can "average-out" the burstiness of individual traf- 15
fie flows. Using this model, network congestion behavior,
burst behavior, and dynamic traffic characteristics have been
used to create conventional congestion avoidance strategies,
design queue buffer sizes in network devices, and traffic and
capacity limita lion predictions.

More recent studies have demonstrated that TCP/IP-based
traffic causes networks to behave in a fractal, or self-similar
fashion. With this model, when the burstiness of individual
traffic flows is summed for the entire network, the entire
network becomes bursty. The bursty nature of network 25

traffic flow is seen over all time scales and flow scales of the
network. This has huge implications both in design of an
IP-centric wireless broadband system according to the
present invention, and in the design of congestion avoidance
strategies in the network as a whole. With this new perspec- 30

live on network behavior, it has become clear that network
routers, switches and transmission facilities in many cases
have been "under-engineered." This under-engineering has
led to a further exacerbation of the congestion behavior of

20 application-level information about the nature of the appli
cation can be used by the system to assign appropriate QoS
mechanism parameters to the IP stream. For IP streams that
originate from a non-local host, information about the IP

the network. 35
The implications for IP-centric wireless system architec

ture and design range from queue buffer capacity to local
congestion avoidance strategies. Because wireless systems
have the added burden of a high inherent BER, the effect of
network-wide congestion behavior on local (wireless media '40

channel) congestion avoidance strategics must be properly
gauged and countered. For this reason, it is desirable that
congestion avoidance algorithms of the IP-centric wireless
system be crafted to optiniize traffic flow with new math
ematical and engineering considerations that until very 45

recently were not apparent or available to system designers.
With these considerations in mind, IP-centric wireless

system design cannot be done with the conventional wireline
system design approaches without resulting in very low
system performance characteristics. With traditional design 50

approaches of a circuit-centric wireless system, bandwidth
utilization, real time multimedia quality, and overall system
QoS provide for a dramatically lower end-user experience.

streams for use in configuring the appropriate QoS mecha
nism parameters can be extracted from packet headers. The
information about the IP streams is communicated "verti-
cally" in the protocol stack model from the application layer
(i.e. OSI level 7) to the PRIMMA MAC layer (i.e. OSI level
2) for bandwidth reservation and application switching
purposes.Although this violates the conventional practice of
providing isolation and independence to each layer of the
protocol stack, thereby somewhat limiting the degree of
interchangeability for individual layers of the stack, the
advantages far outweigh the negatives in an IP-centric
wireless broadband access system.
3. PRIMMA IP Flow Control and Application Switching

Based on a specific set of QoS requirements of each IP
application flow in the IP-centric wireless system, applica
tions arc switched in a "proactive" manner by appropriate
reservations of bandwidth over the wireless medium. The
wireless transmission frames in each direction are con-
structed in a manner dictated by the individual QoS require
ments of each IP flow. By using QoS requirements to build
the wireless transmission frames, optimal QoS performance
can result over the entire range of applications being handled
by the system. For example, latency and jitter sensitive IP
telephony, other H.323 compliant IP streams, and real-time
audio and video streams can be given a higher priority for
optimal placement in the wireless transmission frames. On
the other hand, hypertext transport protocol (HITP) traffic,
such as, e.g., initial web page transmissions, can be given
higher bandwidth reservation priorities for that particular
application task. Other traffic without latency, jitter, or
bandwidth requirements such as, e.g., file transfer protocol 7. Application-Specific Flow Control in an IP-Centric Wm:

less System 55 (FTP) file downloads, email transmissions, can be assigned
a lower priority for system resources and placement in the
wireless transmission frame.

With a range of data flows, each having different
bandwidth, latency and jitter requirements, for the achieve
ment of high QoS as perceived by the end user, it is desirable
that the IP-centric wireless system be able to manage QoS
mechanism parameters over a wide range, and in real time. 60

The QoS mechanism must be able to alter system behavior
to the extent that one or more data flows corresponding to
specific applications be switched on and off from appropri-
ate end users in a transparent manner. This approach is in
contrast to other QoS mechanisms that seek to achieve high 65

QoS by establishing circuit-centric connections from end to
end without regard for an underlying application's actual

4. PRIMMA TCP Transmission Rate Agent
Wireless end users are separated from a high speed, low

BER wireline backbone by a lower speed, high BER wire
less segment which can be subject to burst error events.
TCP/IP traffic that traverses the wireless segment can expe
rience frequent packet loss that, without intervention, can
create congestion collapse and global synchronization as
previously discussed. Therefore, it is desirable that the
present invention's IP-centric wireless system make use of
a TCP transmission rate agent that can monitor packet loss

!'.:
;.:
i

EX 1017 Page 416

US 6,452,915 B1
19

sender detects a lost packet and initiates retransmission
along with an unnecessary reset of the transmission rate.
This IP-centric wireless system TCP transmission window
manager communicates with the MAClayer in order to be
aware of the status of all packets transmitted over the
wireless medium.
b. The Effect of Fractal Self-Similar Network Traffic Char-
acteristics vs. Poisson Distributions on Network Congestion

Conventionally, it has been believed that network traffic
can be modeled with a Poisson distribution. Using this
distribution leads to the conclusion, through system
simulations, that the sum of thousands of individual traffic
flows with Poisson distributions results in a uniform overall
network traffic distribution. In other words, the overall
network can “average-out”the burstiness of individual traf-
fic flows. Using this model, network congestion behavior,
burst behavior, and dynamictraffic characteristics have been
used to create conventional congestion avoidance strategies,
design queue buffer sizes in network devices, and traffic and
capacity limitation predictions.

Morerecentstudies have demonstrated that TCP/IP-based
traffic causes networks to behavein a fractal, or self-similar
fashion. With this model, when the burstiness of individual
traffic flows is summed for the entire network, the entire
network becomes bursty. The bursty nature of network
traffic flow is seen overall time scales and flow scales of the

network. This has huge implications both in design of an
[P-centric wireless broadband system according to the
present invention, and in the design of congestion avoidance
strategies in the network as a whole. With this new perspec-
tive on network behavior, it has become clear that network
routers, switches and transmission facilities in many cases
have been “under-cngineered.” This under-engineering has
led to a further exacerbation of the congestion behavior of
the network.

The implications for [P-centric wireless system architec-
ture and design range from queue buffer capacity to local
congestion avoidance strategies. Because wireless systems
have the added burden of a high inherent BER, the effect of
network-wide congestion behavior on local (wireless media
channel) congestion avoidance strategies must be properly
gauged and countered. For this reason, it is desirable that
congestion avoidance algorithms of the [P-centric wireless
system be crafted to optimize traffic flow with new math-
cmatical and engineering considerations that until very
Tecently were not apparent or available to system designers.

With these considerations in mind, IP-centric wireless
system design cannotbe done with the conventional wireline
system design approaches without resulting in very low
system performance characteristics. With traditional design
approaches of a circuit-centric wireless system, bandwidth
utilization, real time multimedia quality, and overall system
QoS provide for a dramaticaily lower end-user experience.
7. Application-Specific Flow Control in an IP-Centric Wire-
less System

With a range of data flows, each having different
bandwidth, latency andjitter requirements, for the achieve-
ment of high QoS as perceived bythe enduser,it is desirable
that the IP-centric wireless system be able to manage QoS
mechanism parameters over a wide range, andin real time.
The QoS mechanism mustbe able to alter system behavior
'o the extent that one or more data flows corresponding to
Specific applications be switched on and off from appropri-
ate end users in a transparent manner. This approachis in
Contrast to other QoS mechanisms that seek to achieve high
QoSbyestablishing circuit-centric connections from end to
end without regard for an underlying application’s actual

20

25

30

35

40

so

35

20

QoS requirements. By using the present invention, provid-
ing a QoS mechanism thatis application-specific rather than
circuit-specific, scarce wireless bandwidth can be conserved
and dynamically allocated where needed by the QoS mecha-
nisms associated with each application type.

B. QoS and IP-Centric Wireless Media Access Control
1. Proactive Reservation-based Intelligent Multimedia-
aware Media Access (PRIMMA) MAC Layer

Thepresentinvention’s proactive reservation-based intel-
ligent multimedia~-aware media access (PRIMMA) media
access control (MAC) layer provides an application switch-
ing function of the IP-centric wireless QoS mechanism.
Qnce the nature and QoS requirements ofeach IP stream are
determined by other portionsofthe system,this information
is communicated to the PRIMMA MAClayer so that the IP
flows of each application can be switched to appropriate
destinations in a proper prionty order.
2. PRIMMA IP Protocol Stack Vertical Signaling

For IP streams that originate from a local user’s CPE,
application-level information about the nature of the appli-
cation can be used by the system to assign appropriate QoS
mechanism parameters to the IP stream. For IP streamsthat
originate from a non-local host, information about the IP
streams for use in configuring the appropriate QoS mecha-
nism parameters can be extracted from packet headers. The
information about the IP streams is communicated “verti-

cally” in the protocol stack mode] from the application layer
(ic. OST level 7) to the PRIMMA MAClayer(ic. OS] level
2) for bandwidth reservation and application switching
purposes. Although this violates the conventional practice of
providing isolation and independence to each layer of the
protocol stack, thereby somewhat limiting the degree of
interchangeability for individual layers of the stack, the
advantages far outweigh the negatives in an IP-centric
wireless broadband access system.
3. PRIMMA IP Flow Control and Application Switching

Based on a specific set of QoS requirements of each IP
application flow in the IP-centric wireless system, applica-
tions are switched in a “proactive” manner by appropriate
reservations of bandwidth over the wireless medium. The
wireless transmission frames in each direction are con-
structed in a mannerdictated by the individual QoS require-
ments of each IP flow. By using QoS requirements to build
the wireless transmission frames, optimal QoS performance
can result over the entire range ofapplications being handled
by the system. For example, latency and jitter sensitive IP
telephony, other H.323 compliant IP streams, and real-time
audio and video streams can be given a higher priority for
optimal placement in the wireless transmission frames. On
the other hand, hypertext transport protocol (HTTP)traffic,
such as, ¢.g., initial web page transmissions, can be given
higher bandwidth reservation priorities for that particular
application task. Other traffic without latency, jitter, or
bandwidth requirements suchas, ¢.g., file transfer protocol
(FTP)file downloads, email transmissions, can be assigned
a lowerpriority for system resources and placementin the
wireless transmission frame.

4. PRIMMA TCP Transmission Rate Agent
Wireless end users are separated from a high speed, low

BER wireline backbone by a lower speed, high BER wire-
less segment which can be subject to burst error events.
TCP/IP traffic that traverses the wireless segment can expe-
rience frequent packetloss that, without intervention, can
create congestion collapse and global synchronization as
previously discussed. Therefore, it is desirable that the
present invention’s IP-ccntric wireless system make use of
a TCP transmission rate agent that can monitor packetloss

EX 1017 Page 416

I
i
i
f

US 6,452,915 Bl
21 22

different LATAs. Telecommunications network 200 is a
more detailed version of telecommunications network 100.
Calling party 102a and called party 110a are coupled lo EO
switches 104a and 108a, respectively. In other words, call-

over the wireless segment, and can manage the remote TCP
transmission rate function by recreating and transmitting any
lost packet acknowledgments. The PRIMMA MAC layer
can itself retransmit a.ny lost packets over the wireless
medium.

The IP-centric wireless TCP transmission rate agent or
"adjunct" can also flow-control the IP streams when
necessary, and in accordance with the QoS requirements of
the IP flows. All IP-centric wireless TCP transmission rate
agent functionality can be transparent to both local and
remote hosts and applications.

s ing party 102a is bomed to ingress EO 104a in a first LATA,
whereas called party 110a is homed to an egress EO 108a in
a second LATA Calls between subscnbers in different
LATAs arc long distance calls that arc typically routed to
IXCs. Sample IXCs in the United States inc!udeAI'&T, MCI

10 and Sprint.

F. Telecommunications Networks
1. \bice Network
a. Simple Voice Network

HG. 1A is a block diagram providing an overview of a 15

standard telecommunications network 100 providing local
exchange carrier (LEC) services within one or more local
access and transport areas (LATAs). Telecommunications
network 100 can provide a switched voice connection from
a calling party 102 to a called party 110. FIG. 1A is shown 20

to also include a private branch exchange 112 which can
provide multiple users access to LEC services by, e.g., a
private line. Calling party 102 and called party 110 can be
ordinary telephone equipment, key telephone systems, a
private branch exchange (PBX) 112, or applications running 25

on a host computer. Network 100 can be used for modem
access as a data connection from calling party 102 to, for
example, an Internet service provider (ISP) (not shown).
Network: 100 can also be used for access to, e.g., a private
data network. For example, calling party 102 can be an 30

employee wodcing on a notebook computer at a remote
location who is accessing his employer's private data net
work: through, for example, a dial-up modem connection.

HG. 1A includes end offices (EOs) 104 and 108. EO 104
is called an ingress EO because it provides a connection 35

from calling party 102 to public switched telephone network
(PSTN) facilities. EO 108 is called an egress EO because it
provides a connection from the PSTN facilities to a called
party 110. In addition to ingress EO 104 and egress EO 108,
the PS1N facilities associated with telecommunications -40
network 100 include an aceess tandem (Al) (not shown) at
points of presence (POPs) 132 and 134 that can provide
access to, e.g., one or more inter-exchange carriers (IXCs)
106 for long distance traffic, see FIG. 2A Alternatively, it
would be apparent to a person having ordinary skill in the art 45

that IXC 106 could also be, for example, a CL.EC, or other
enhanced service provider (ESP), an international gateway
or global point-of-presence (GPOP), or an intelligent periph
eral (IP).

FIG. 1A also includes a private branch exchange (PBX) 50

112 coupled to EO 104. PBX 112 couples calling parties 124
and 126, fax 116, client computer 118 and associated modem
130, and local area network 128 having client computer 120
and server computer 122 coupled via an associated modem
130. PBX 112 is a specific example of a general class of 55

telecommunications devices located at a subscriber site,
commonly referred to as customer premises equipment
(CPE).

Network 100 also includes a common channel interactive
signaling (CCIS) network for call setup and call tear down. 60

Specifically, HG. 1 includes a Signaling System 7 (SS7)
signaling network 114. Signaling network 114 will be
descnbed further below with reference to FIG. 2B.
b. Detailed Voice Network

FIG. 2A is a block diagram illustrating an overview of a 65
standard telecommunications network 200, providing both
LEC and IXC carrier services between subscribers located in

Telecommunications network 200 includes access tan
dems (Al) 206 and 208. AI' 206 provides connection to
points of presence (POPs) 132a, 132b, 132c and 132d. IXCs
106a, 106b and 106c provide connection between POPs
132a, 132b and 132c (in the first LATA) and POPs 134a,
134b and 134c (in the second LATA). Competitive local
exchange carrier (CL.EC) 214 provides an alternative con
nection between POP 132d and POP 134d. POPs 134a,
134b, 134c and 134d, in tum, are connected to AI' 208,
which provides connection to egress EO 108a. Called party
110a can receive calls from EO 108a, which is its homed
EO.

Alternatively, it would be apparent to a person having
ordinary skill in the art that an AI' 206 can also be, for
example, a CLEC, or other enhanced service provider
(ESP), an international gateway or global point-of-presence
(GPOP), or an intelligent peripheral.

Network 200 also includes calling party 102c homed to
CLEC switch 104c. Following the 1996 Telecommunica
tions Act in the U.S., CLECs gained permission to compete
for access within the local RBOCs territory. RBOCs are now
referred to as incumbent local exchange carriers (ILECs).
i. Fixed Wireless CLECs

Network200 further includes a fixed wireless CL.EC 209.
Example fixed wireless CLECs are Teligent Inc., of Vienna,
Va., WinStar Communications Inc., Advanced Radio Tele
com Corp. And the Biz'Tel unit ofTeleport Communications
Group Inc. Fixed wireless CLEC 209 includes a wireless
transceiver/receiver radio frequency (RF) tower 210 iu com-
munication over an RF link to a subscnber transciever RF
tower 212. Subscnber RF tower 212 is depicted coupled to
a CPE box. PBX 112b. PBX 112b couples calling parties
124b and 126b, fax 116b, client computer 118b and associ
ated modem 130b, and local area network 128b having client
computer 120b and server computer 122b coupled via an
associated modem 130b.

Network 200 also includes called party 110a, a fax 116a,
client computer 118a and associated modem 130a, and
cellular communications RF tower 202 and associated cel
luJar subscnber called party 204, all coupled to EO 108a, as
shown.

EO 104a, 108a and AI' 206, 208 are part of a switching
hierarchy. EO 104a is known as a class 5 office and AI' 208
is a class 3/4 office switch. Prior to the divestiture of the
regional Bell Operating Companies (RBOCs) from M&T
following the modified final judgment, an office cl3!56ifica-
tion was tbe number assigned to offices according to their
hierarchical function in the U.S. public switched network
(PSTN). An office class is a functional ranking of a tele
phone central office switch depending on transmission
requirements and hierarchical relationship lo other switch-
ing centers. A class 1 office was known as a Regional Center
(RC), the highest level office, or the "office of last resort" to
complete a call. A class 2 office was known as a Sectional
Center (SC). A class 3 office was known as a Primary Center
(PC). A class 4 office was known as either a Toll Center (TC)
if operators were present, or otherwise as a Toll Point (TP).

,i!

'l"
!,I
11
:I,

'I'
H ',i

,, ..
'" 1

EX 1017 Page 417

|

US 6,452,915 B1
21

over the wireless segment, and can manage the remote TCP
transmission rate function by recreating and transmitting any
lost packet acknowledgments. The PRIMMA MAClayer
can itself retransmit any lost packets over the wireless
medium.

The [P-centric wireless TCP transmission rate agent or
“adjunct” can also flow-control the IP streams when
necessary, and in accordance with the QoS requirements of
the IP flows. All IP-centric wireless TCP transmission rate

agent functionality can be transparent to both local and
remote hosts and applications.

¥, Telecommunications Networks
1. Voice Network
a. Simple Voice Network

FIG. 1A is a block diagram providing an overview of a
standard telecommunications network 100 providing local
exchange carrier (LEC) services within one or more Jocal
access and transport areas (LATAs). Telecommunications
network 100 can provide a switched voice connection from
a calling party 102 to a called party 110. FIG. 1A is shown
to also include a private branch exchange 112 which can
provide multiple users access to LEC services by, ¢.g., a
private line. Calling party 102 and called party 110 can be
ordinary telephone equipment, key telephone systems, a
private branch exchange (PBX) 112,or applications running
on a host computer. Network 100 can be used for modem
access as a data connection from calling party 102 to, for
example, an Internet service provider (ISP) (net shown).
Network 100 can also be used for access to, ¢.g., a private
data network. For example, calling party 102 can be an
employee working on a notebook computer at a remote
location who is accessing his employer’s private data net-
work through, for example, a dial-up modem connection.

FIG. 1A inclndes end offices (EOs) 104 and 108. EO 104
is called an ingress EO because it provides a connection
from calling party 102 to public switched telephone network
(PSTN) facilities. EO 108 is called an egress EO because it
provides a connection from the PSTN facilities to a called
party 110.In additionto ingress LO 104 and egress EO 108,
the PSTN facilities associated with telecommunications
network 100 include an access tandem (AT) (not shown) at
points of presence (POPs) 132 and 134 that can provide
access to, €.g., One Or More inter-exchange carriers (IXCs)
106 for long distance traffic, see FIG. 2A. Alternatively, it
would be apparent to a person having ordinary skill in the art
that EXC 106 couldalso be, for example, a CLEC,or other
eohanced service provider (ESP), an international gateway
or global point-of-presence (GPOP),oran intelligentperiph-
eral (IP).

FIG. 1A also includes a private branch exchange (PBX)
112 coupled to EO 104. PBX 112 couples calling parties 124
and 126,fax 116,client computer 118 and associated modem
130, and local area network 128 having client computer 120
and server computer 122 coupled via an associated modem
130. PBX 112 is a specific example of a general class of
telecommunications devices located at a subscriber site,
commonly referred to as customer premises equipment
(CPE).

Network 100 also includes a common channel interactive

signaling (CCIS) network for call setup and call tear down.
Specifically, FIG. 1 includes a Signaling System 7 (S87)
signaling network 114. Signaling network 114 will be
described further below with reference to FIG. 2B.
b. Detailed Voice Network

FIG. 2A is a block diagram illustrating an overview of a
Standard telecommunications network 200, providing both
LEC and IXC carrier services between subscribers located in

26

w

35

40

45

55

60

65

22
different LATAs. Telecommunications network 200 is a
more detailed version of telecommunications network 100.
Calling party 1024 and called party 1102 are coupled to EO
switches 104a and 1084, respectively. In other words, call-
ing party 102a is homed to ingress EO 104¢ in a first LATA,
whereas called party 1102 is homedto an egress EO 108a in
a second LATA. Calls between subscribers in different

LATAs are Jong distance calls that are typically routed to
IXCs. Sample EXCs in the United States include AT&T, MCI
and Sprint.

Telecommunications network 200 includes access tan-

dems (AT) 206 and 208. AT 206 provides connection to
points ofpresence (POPs) 1324, 1325, 132c and 132d. IXCs
1064, 1066 and 106c provide connection between POPs
1322, 132b and 132c Gn the first LATA) and POPs 1342,
1346 and 134c (in the second LATA). Competitive local
exchange carrier (CLEC) 214 providesan alternative con-
neclion between POP 132d and POP 134d POPs 134a,
1346, 134c¢ and 134d, in tum, are connected lo AT 208,
which provides connection to egress EO 108. Called party
1102 can receive calls from EO 1082, which is its homed
EO.

Altematively, it would be apparent to a person having
ordinary skill in the art that an AT 206 can also be, for
example, a CLEC, or other enhanced service provider
(ESP), an international gateway or global point-of-presence
(GPOP), or an intelligent peripheral.

Network 200 aiso includes calling party 102c homed to
CLEC switch 104c. Following the 1996 Telecommunica-
tious Act in the U.S., CLECs gained permission to compete
for access within the local RBOCs territory. RBOCs are now
referred to as incumbent local exchange carriers (ILECs).i. Fixed Wireless CLECs

Network200 further includes a fixed wireless CLEC 209.
Example fixed wireless CLECs are Teligent Inc., of Vienna,
Va., WinStar Communications Inc., Advanced Radio Tele-
com Corp. And the BizTel unit ofTeleport Communications
Group Inc. Fixed wireless CLEC 209 includes a wireless
transceiver/receiver radio frequency (RF) tower 210 in com-
msunication over an RE liak to a subscriber transciever RF
tower 212. Subscriber RF tower 212 is depicted coupled to
a CPE box, PBX 1126. PBX 112b couples calling parties
1246 and 126b, fax 1165, client computer 1185 and associ-
ated modem 130, and local area network 128b havingclient
computer 120b and server computer 122b coupled via an
associated modem 130b.

Network 200 also includescalled party 110s, a fax 116a,
client computer 1184 and associated modem 1304, and
cellular communications RF tower 202 and associated cel-
Jular subscriber called party 204, all coupled to EO 1084, as
shown.

EO 1042, 108a and AT 206, 208 are part of a switching
hierarchy. EO 104a is known as 2 class 5 office and AT 208
is a class 3/4 office switch. Prior to the divestiture of the
regional Bell Operating Companies (RBOCs) from AT&T
following the modified final judgment, an office classifica-
tion was the number assigned to offices according to their
hierarchical function in the U.S. public switched network
(PSTN). An office class is a functional ranking of a tele-
phone central office switch depending on transmission
requirements and hierarchical relationship to other switch-
ing centers. A.class 1 office was known as a Regional Center
(RO),the highest leveloffice, or the “office of last resort” to
compleie a call. A class 2 office was known as a Sectional
Center (SC). Aclass 3 office was known as a Primary Center
(PC). Aclass 4 office was known as either a Toll Center (TC)
if operators were present, or otherwise as a ‘Toll Point (TP).

EX 1017 Page 417

US 6,452,915 Bl
23

A class 5 office was an End Office (EO), i.e., a loc.a.1 central
office, the lowest level for local and long distance switching,
and was the closest to the end suhscnber. Any one center
handles traffic from one or more centets lower in the
hierarchy. Since divestiture and with more intelligent soft- 5
ware in switching offices, these designations have become
less finn. Technology bas distributed functionality closer to
the end user, diffusing traditional definitions of network
hierarchies and the class of switches.

24
machine tmnk (IMI). AT208 and EO 108a are connected by
a trunk which can be an lMl:

Referring to FIG. 1A, EO 104 and PBX 112 can be
connected by a private line with a dial tone. A private line
can also connect an ISP (not shown) to EO 104, for example.
A private line with a dial tone can be connected to a modem
bay or access converter equipment at the ISP. Examples of
a private line arc a channelized Tl or integrated services
digital network QSDN) primary rate interface (PRI). An ISP

ii. Connectivity to Internet Service Providers (ISPs)
In addition to providing a voice connection from calling

party 102a to called party 110a, the PS1N can provide
calling party 102a a data connection to an ISP (i.e. similar
to client 118b).

10 can also attach to the Internet by means of a pipe or
dedicated communications facility. A pipe can be a dedicated
communications facility. A private line can handle data
modem traffic to and from an ISP.

Network 200 can also include an Internet service provider
QSP) (not shown) which could include a server computer 15

122 coupled to a data network 142 as will be discussed
further below with reference to FIG. lB. The Internet is a
well-known, worldwide network comprising several large
netwodcs connected together by data links. These links can
include, for example, Integrated Digital Services Network 20

Trunks can handle switched voice traflic and data traffic.
For example, trunks can include digital signals DS1-DS4
transmitted over Tl -T4 carriers. Table 2 provides typical
carriers, along with their respective digital signals, number
of channels, and bandwidth capacities.

'I:ABLE 2
(ISDN), Tl, T3, FDDI and SONET links. Alternatively, an ------------------
internet can be a private network interconnecting a plurality Number of Designation Bandwidth in Megabit>
of LANs and/or WANs, such as, for example, an intranet. An Digital •ignal channel• of carrier per iecond (Mbp,)

ISP can provide Internet access services for subscribers such
as client 118b. 25

To establish a connection with an ISP, client 118b can use
a host computer connected to a modem (modulator/
demodulator) 130b. The modem can modulate data from the
host computer into a form (traditionally an analog form) for
transmission to the LEC facilities. 1.ypically, the LEC facili- 30

ties convert the incoming analog signal into a digital form.

DSO
DS1
DS2
DS3
DS4

24
96

672
4032

Nono
TI
Tl
T3
T4

0.064
I.544
6.312

44.736
274.176

Altc:rnativcly, trunks can include optical carricts (OCs),
such as OC-1, OC-3, etc. Table 3 provides typical optical
carriers, along with their respective synchronous transport
signals (STSs), rru designations, and bandwidth capacities.

In one embodiment, the data is converted into the point-to
point protocol (PPP) format. (PPP is a well-known protocol
!bat permits a computer to establish a connection with the
Internet using a standard modem. It supports high-quality, 3S _________ 'IAB __ LE_J ________ _

graphical user-interfaces.) As those skilled in the art will FJecirlal International

recognize, other formats are available, including, e.g., a signal, or Thlccommu-
transmission control program, intc:met protocol (TCP /IP) 1yacluonous iili:ationa .Bandwidth
packet format, a user datagram protocol, internet protocol Optical carmr (OC) lmllport Uuwn (rIU) in Meg,,hils
(UDP/IP) packet format, an asynchronous transfer mode 40 ___ •igt,al ____ oignal_. __ (STS) __ 1_•an_i0_01_0 1Y __ l"'_r IICCO!l __ d_(Mbp_•_)

(ATM) cell packet format, a serial line interrace protocol
(SUP) protocol format, a point-to-point (PPP) protocol
format, a point-to-point tunneling protocol (PPTP) format, a
NETBIOS extended user interface (NETBEUI) protocol
format, an Appletalk protocol format, a DECnet, BANYAN/ 45

VINES, an internet packet exchange (IPX) protocol format,
and an internet control message protocol (ICMP) protocol
format.

OC-1
QC-3
OC-9
OC-12
OC-18
OC-24
OC-36
OC-48

STS-1
STS-3
STS-9
STS-12
STS-18
STS-24
STS-36
SI'S-48

STM-1
STM-3
STM-4
STM-6
SfM-8
STM-12
SfM-16

Sl.84
155.52
466.56
622.08
933.12

1244.16
1866.24
2488.32

iii. Communications Links As noted, a private line is a connection that can carry data
NotethatFIGS.lA,2Aandothcrfigurcsdescribcdhercin 50 modem traffic. A private line can be a direct channel

include lines which may refer to communications lines or specifically dedicated to a customer's use between two
which may refer to logical connections between network specified points. A private line can also be known as a leased
nodes, or systems, which a.re physically implemented by line. In one embodiment, a private line is an ISDN/primary
telecommunications carrier devices. These carrier devices rate interface QSDN PRI) connection. An ISDN PRI con-
include circuits and network nodes between the circuits 55 ncction can include a single signal channel (called a data or
including, for example, digital access and cross-connect D channel) on a Tl, with the remaining 23 channels being
system (DACS), regeneratots, tandems, copper wires, and used as bearer or B channels. (Bearer channels are digital
fiber optic cable. It would be apparent to persons having channels !bat bear voice and data information.) If multiple
ordinary skill in tbe art that alternative communications lines ISDN PRI lines are used, the signaling for all of the lines Cllll

can be used to connect one or more tc:lecommunications 60 be carried over a single D channel, freeing up the remaining
systems devices. Also, a telecommunications canier as lines to carry only bearer channels.
defined here, can include, for example, a LEC, a CLEC, an iv. Telecomm~ca!ions Traffic
!XC, an Enhanced Service Provider (ESP), a global or TelccommumcatJ.ons traffic can be sent and received from
international services provider such as a global point-of- any network node of a telecommunications carrier. A tele-
prcsence (GPOP), and an intelligent peripheral. 65 communications carrier can include, for example, a LEC, a

EO 104a and AT 206 arc connected by a trunk. A tmnk Cl.EC, an IXC, an~ an Enhanced Service Provider (ESP). In
connects an .KI' to an EO. A trunk can be called an inter an embodiment, this traffic can be received from a network

•

..
EX 1017 Page 418

US 6,452,915 B1

23

Aclass 5 office was an End Office (£0), ie., a local central
ollice, the lowest level for local and long distance switching,
aod was the closest to the end subscriber. Any one center
handles traffic from one or more centers lower in the
hierarchy. Since divestiture and with more intelligent soft-
ware in switching offices, these designations have become
less firm. ‘Technology has distributed functionality closer to
the end user, diffusing traditional definitions of network
hierarchies and the class of switches.
ii. Connectivity to Internet Service Providers (ISPs)

in addition to providing a voice connection from calling
party 102s to called party 1102, the PSTN can provide
calling party 102a a data connection to an ISP (ic. similar
to client 1285).

Network 200 can also include an Internet service provider
GSP) (not shown) which could include a server computer
122 coupled to a data network 142 as will be discussed
further below with reference to FIG. 1B. The Intemetis a
well-known, worldwide network comprising several lange
networks connected together by data links. These links can
include, for example, Integrated Digital Services Network
(SDN), T1, T3, FDDI and SONETlinks. Alternatively, an
internet can be a private network interconnecting a plurality
of LANs and/or WANs, such as, for example, an intranet. An
ISP can provide Internet access services for subscribers such
as client 118d.

To establish a connection with an ISP, client LI8b can use
a host computer connected to a modem (modulator/
demodulator) 1306. The modem can modulate data from the
host computer into a form (traditionally an analog form) for
transmission to the LEC facilities. Typically, the LEC facili-
ties convert the incoming analog signal into a digital form.
In one embodiment, the data is converted into the point-to-
point protocol (PPP) format. (PPP is « well-known protocol
that permits a computer 10 establish a connection with the
Internet using a standard modem.It supports high-quality,
graphical user-interfaces.) As those skilled in the art will
recognize, other formats are available, including, ¢.g., a
transmission control program, internet protocol (TCP/IP)
packet format, a user datagram protocol, internet protocol
(UDPAP) packet format, an asynchronous transfer mode
{AYM)cell packet fonmat, a serial line interface protocol
(SLIP) protocol format, a point-to-point (PPP) protocol
format, a point-to-point tunneling protocol (PPTP) format, a
NETBIOS extended user interface (NETBEUI) protocol
format, an Appletalk protocol format, a DECnet, BANYAN/
VINES,an internet packet exchange (IPX) protocol format,
and an intemet control message protocol (ICMP) protecol
format,
ii. Communications Links

_ Note that FIGS. 1A, 2Aand otherfigures described herein
include Hines which may refer to communications lines or
which may refer to logical connections between network
nodes, or systems, which are physically implemented by
telecommunications carrier devices. These carrier devices
include circuits and network nodes between the circuits
including, for example, digital access and cross-connect
System (DACS), regenerators, tandems, copper wires, and
fiber optic cable. It would be apparent to persous having
ordinary skill in the art that alternative communications lines
can be used to connect one or more telecommunications
Systems devices. Also, a telecommunications carrier as
defined here, can include, for example, a LEC, a CLEC, an
IXC, an Enhanced Service Provider (ESP), a global or
international services provider such as a global point-of-
presence (GPOP), and an intelligent peripheral.

EO 104a and AT 206 are connected by a trunk. A trunk
Connecis an AT to an EO. A trunk can be called an inter

30

40

“5

60

45

24

machine trank (IMT). AT 208 and EO 1082 are connected by
a trunk which can be an IMT.

Referring to FIG. 1A, EO 104 and PBX 112 can be
connected by a private line with a dial tone. A private line
can also connect an ISP (not shown) to EO 104, for example.
Aprivate line with a dial tone can be comnected to a modem
bay or access converter equipment at the ISP. Examples of
a private line are a channelized T1 or integrated services
digital network (SDN) primary rate interface (PRI). An ISP
can also attach to the Internet by means of a pipe or
dedicated communications facility. Apipe can be a dedicated
communications facility. A private line can handle data
modem traffic to and from an ISP.

Trunks can handle switched voice traffic and data traffic.

For example, trunks can include digital signals DS1-DS4
transmitted over T1 ~T4 carriers. Table 2 provides typical
carriers, along with their respective digital signals, number
of channels, and bandwidth capacities.

TABLE 2

Number of Designation Bandwidth in Megabits
Digital signa!=channcls of carrier per second (Mbps)

Ds 1 None 0,064
DSi 24 TI 1544
DS2 96 T2 6.312
DS3 672 v3 44.736
ps4 4032 T4 ZI4AATE

Alternatively, trunks can inchide optical carriers (OCs),
such as OC-1, OC-3, etc. Table 3 provides typical optical
carriers, slong with their respective synchronous transport
signals (STSs), ITU designations, and bandwidthcapacities.

 TABLE 3

Electrical International
signal, or=Télecommne-

syochronous nications Bandwidth
Optical carrier (OC) tansport=Union (ITU) in Megabits

signal signal (STS) terminology per xecond (Mbps)
OC STS-1 $1.84
OC-3 STS-3 STM-1 155.52
oCc9 STS-9 STM-3 466.56
00-12 STS-12 STM4 622.08
oc-1g STS-18 STM-6 933.12
Ot-24 STS-24 STM-8 1244.16
OC-36 SYTS-36 STM-12 1866.24
oc4g STS-48 STM-16 2488.32

As noted, a private line is a connection that can carry data
modem traffic. A private line can be a direct channel
specifically dedicated to a customer’s use between two
specified points. Aprivate line can also be known as a leased
line. In one embodiment, a private line is an ISDN/primary
rate interface (SDN PRI) connection. An ISDN PRI con-
nection can include a single signal channel (called a data or
D channel) on a Tl, with the remaining 23 channels being
used as bearer or B channels. (Bearer channels are digital
chanoels that bear voice and data information.) If multiple
ISDN PRI lines are used, the signaling for all of the lines can
be carried over a single D channel, freeing up the remaining
lines to carry only bearer channels.
iv. Telecommunications Traffic

Telecommunications traffic can be sent and received from
any network node of a telecommunications carrier, A tele-
communications carrier can include, for example, a LEC, a
CLEC,an IXC, and an Enhanced Service Provider (ESP). In
an embodiment, this traffic can be received from a network

EX 1017 Page 418

US 6,452,915 Bl
25 26

node which is, fur example, a class 5 switch, such as EO In the SS7 network, there are unique links between the
104a, or from a class 3/4 switch, such as AT 206. different network elements. Table 4 provides definitions for
Alternatively, the network system can also be, for example, common SS7 links.
a CLEC, or other enhanced service provider (ESP), an Referring to FIG. 2B, mated STP pairs are connected by
international gateway or global point-of-presence (GPOP), s Clinks. For example, STPs 222,224, mated STPs 226,228,
or an intelligent peripheral. and mated STPs 230, 232 are connected by C links (not

Voice traffic refei:s, for example, to a switched voice labeled). SSPs 236,238 and SSPs 240,242 are connected by
connection between calling party 102a and called party F links 262 and 264.
110a. It is important to oote tbt this is on a point-to-point Mated STPs 222, 224 and mated STPs 226, 228, which
dedicated path, i.e., that bandwidth is allocated whether it is 10 are at the same hierarchical leve 1 are connected by B links
being used or not. A switched voice connection is estab- "
lished between calling party 102a and EO 104a, then to AT 270, 272, 244 and 282. Mated STPs 222, 224 and mated
206 then over an IXC's network such as that of IXC 106a STPs 230,232, which are at different hierarchical levels, are
to AT 208 and then 1o EO 108a and over a trunk to called connected by D links266,268,274 and 276. Similarly, mated
partyll0a.Inanotherembodiment,AT206or1XC106acan STPs 226,228 and mated STPs 230,232, which are at
also be, for example, a Cl.EC, or other enhanced service 15 different hierarchical levels, are connected by D links 278,
provider (ESP), an international gateway or global point- 280, 246 and 248.
of-presence (GPOP), or an intelligent peripheral. SSPs 236,238 and mated STPs 222, 224 are connected by

It is possible that calling party 102a is a computer with a A links 254 and 256. SSPs 240, 242 and mated STPs 226,
data connection to a server over the voice network. Data 228 are connected by A links 258 and 260.
traffic refei:s, for example, to a data connection between a 20 SSPs 236,238 can also be connected to mated STPs 230,
calling party 102a (using a modem) and a server 122b that 232 by E links (not shown). Finally, mated STPs 230,232
could be part of an ISP. A data connection can be established, are connected to SCP 234 by A links 250 and 252.
e.g., between calling party 102a and EO 104a, then to AT For a more elaborate description of SS7 network
206, then to Cl.EC 214, then over a fixed wireless Cl.EC topology, the n:ader is referred to Russell. Travis, Signaling
209 link to PBX 112b to a modem 130b associated with 25 System #7, McGraw-Hill, New York, N.Y. 10020, ISBN
server 122b. 0-07-054991-5, which is incoIJX)rated herein by reference in
c. Signaling Network its entirety.

FIG. 2B illustrates signaling network 114 in greater detail.
Signaling network 114 is a separate network used to handle li\.BLE 4
the set up, tear down, and supervision of calls between 30 --------------------
calling party 102 and called party 110. Signaling network ss 7 link Dellnitions
114 in the given example is the Signaling System 7 (SS7) ___ ._0_10_gy ________________ _

network. Signaling network 114 includes service switching
points (SSPs) 236,238,240 and 242, signal transfer points

Aa::cu (A) linb

(STPS) 222, 224,226,228,230 and 232, and service control 35 Bridge (B) 1inb
point (SCP) 234. Croo., (C) 1inb

In the SS7 nctworlc, the SSPs are the portions of the

A linkli connect SSPs to STPo, or SCP1 to srPs,
prowling network aa:ea• and dalllb""' """"""
through !he STP•.
B linkli connect mated SfP• to other mated srPs.
C linlc, connect the STP1 in a mated pair to one
another. DuriDg normal condiliona, only network
management mCMagco am acnt over C fuik:s. backbone switches providing SS7 functions. The SSPs can

be, for example, a combination of a voice switch and an SS7
switch, or a computer connected to a voice switch. The SSPs 40

communicate with the switches using primitives, and create
packets for transmission over the SS7 network.

JJiagon.al (D) link.I D linb connect lb• m..ted STPa at a primMy
hiernrcliical level to mated Sil'I at a secondary
hienirchical level.

EOs 104a, 108a and ATs 206, 208 can be respectively Fully uaociatcd
represented in SS7 signaling network 114 a.s SSPs 236,238, (F) linb

E 1inb wnocct SSP1 to remote mated SfP&,
and are med in the event that the A linb to
home mated Sil's arc congeated.
F links provide direct connections between local
SSPs (bypal:ling S'Il's) in the event !here is much
traffic between SSPs, or if a direct connection to 1.11

srP ia not available. P links ;m: used only for call
actup and call tcardown.

240 and 242. Accordingly, the connections between EOs 45

104a, 108a and Xis 206,208 (prcsented as dashed lines) can
be represented by connections 254, 256, 258 and 268. The
types of these links are dcscn"bed below.

d. SS7 Signaled Call Flow
To initiate a call in an SS 7 telecommunications network,

a calling party using a telephone connected to an ingress EO
switch, dials a telephone number of a called party. The
telephone number is passed from the telephone to the SSP at
the ingress EO of the calling party's local exchange carrier
(LEC). First, the SSP can process triggei:s and internal route
rules based on satisfaction of certain criteria. Sewnd, the
SSP can initiate further signaling messages to another EO or
access tandem (Al), if necessary. The signaling information
can be passed from the SSP to STPs, which route the signals

The STPs act as routers in the SS7 network, typically
being provided as adjuncts to in-place switches. The STPs 50

route messages from originating SSPs to destination SSPs.
Architecturally, STPs can and are typically provided in
"mated pairs" to provide redundancy in the event of con
gestion or failure and to share resources (i.e., load sharing is
done automatically). As illustrated in FIG. 28, STPs can be 55

arranged in hierarchical levels, to provide hierarchical rout
ing of signaling messages. For example, mated STPs 222,
224 and mated STPs 226,228 are at a first hierarchical level,
while mated SiPs 230, 232 are at a second hierarchical
level.

SCPs provide database functions. SCPs can be used to
provide advanced features in an SS7 network, including
routing of special service numbers (e.g., 800 and 900
numbers), storing information regarding subscriber services,
Providing calling card validation and fraud protection, and 6S

offering advanced intelligent network (AIN) services. SCP
234 is connected to mated STPs 230 and 232.

60 between the ingress EO and the terminating end office, or
egress EO. The egress EO has a port designated by the
telephone number of the called party. The call is set up as a
direct connection between the EOs through tandem switches
if oo direct trunking exists or if direct trunking is full. If the
call is a long distance call, i.e., between a calling party and
a called party located in different local access transport areas
(LATAs), then the call is connected through an inter

a

11.
Ii

ii
I

I
1
I
!

EX 1017 Page 419

US 6,452,915 B1

25
node which is, for example, a class 5 switch, such as EO
1042, or from a class 3/4 switch, such as AT 206,
Alternatively, the network system can also be, for example,
a CLEC, or other enhanced service provider (ESP), an
international gateway ot global point-of-presence (GPOP),
or an intelligent peripheral.

Voice traffic refers, for example, to a switched voice
connection between calling party 102a and called party
1102. [1 is important to note that this is on a point-to-point
dedicated path, Le., that bandwidth is aliocated whetherit is
being used or not. A switched voice connection is estab-
lished betweencalling party 102¢ and EO 104a, then to AT
206 then over an IXC’s network such as that of IXC 1064
to AT 208 and then to EO 108@ and over a trunk to called
party 1102. Io another embodiment, AT 206 or IXC 1064 can
also be, for example, a CLEC, or other enhanced service
provider (ESP), an international gateway or global point-
of-presence (GPOP),or an intelligent peripheral.

it is possible that calling party 102a is a computer with a
data connection to a server over the voice network. Data
traffic refers, for example, to a data comection between a
calling party 102¢ (using a modem) and a server 1225 that
could bepart of an ISP. Adata connection can be established,
e.g., between calling party 102a and EO 1a, then to AT
206, then to CLEC 214, then over a fixed wireless CLEC
209 link to PBX 2125 to a modem 130b associaied with
server 122b.

c. Signaling Network
FIG.2B illustrates signaling network 114 in greater detail.

Signaling network 114 is a separate network used to handle
the set up, tear down, and supervision of calis between
calling party 102 and called party 110. Signaling network
114 in the given exampleis the Signaling System 7 (SS7)
network. Signaling network 114 includes service switching
points (SSPs) 236, 238, 240 and 242, signal transfer points
(STPS)222, 224, 226, 228, 230 and 232, and service control :
point (SCP) 234.

Tn the SS7 network, the SSPs are the portions of the
backbone switches providing SS7 functions. The SSPs can
be, for example, a combination of a voice switch and an SS7
switch, or a computer connected to a voice switch. The SSPs
communicate with the switches using primitives, and create
packets for transmission over the SS7 network.

EOs 1042, 108a and ATs 206, 208 can be respectively
represented in SS7 signaling network 114 as SSPs 236, 238,
240 and 242. Accordingly, the connections between EOs
1044, 1082 and ATs 206, 208 (presented as dashed lines) can
be represented by connections 254, 256, 258 and 268. The
types of these links are described below.

The STPs act as routers in the SS7 network, typically
being provided as adjuncts to in-place switches. The STPs
route messages from originating SSPs to destination SSPs.
Architecturally, STPs can and are typically provided in
“mated pairs” ta provide redundancy in the event of con-
gestion orfailure and to share resources(i.¢., load sharingis
done automatically). As illustrated in FIG. 2B, STPs can be
arranged in hierarchical levels, to provide hierarchical rout-
ing of signaling messages. For example, mated STPs 222,
224 and mated STPs 226, 228 are ata first hierarchical level,

paile mated STPs 230, 232 are at a second hierarchicalvel.

SCPs provide database functions. SCPs can be used to
Provide advanced features in an SS7 network, including
routing of special service numbers (c.g., 800 and 900
nunbers), storing information regarding subscriber services,
providing calling card validation and fraud protection, and
offering advanced intelligent network (AIN) services. SCP
234 is connected to mated STPs 230 and 232.

26

25

30

65

26
In the SS7 network, there are unique links between the

different network elements, Table 4 provides definitions for
common SS7 links.

Referring to FIG. 2B, mated STP pairs are connected by
C links. For example, STPs 222, 224, mated STPs 226, 228,
and mated STPs 230, 232 are connected by C links (not
labeled). SSPs 236, 238 and SSPs 240, 242 are connected by
F links 262 and 264.

Mated STPs 222, 224 and mated STPs 226, 228, which
are at the same hierarchical level, are connected by B links
270, 272, 244 and 282. Mated STPs 222, 224 and mated
STPs 230, 232, which are at different hierarchical levels, are
connected by D links 266,268,274 and 276. Similarly, mated
STPs 226, 228 and mated STPs 230, 232, which are at
different hierarchical levels, are connected by D links 278,
280, 246 and 248.

SSPs 236, 238 and mated STPs 222, 224 are connected by
A links 254 and 256. SSPs 240, 242 and mated STPs 226,
228 are connected by A links 258 and 260.

SSPs 236, 238 can also be connected to mated STPs 230,
232 by E links (not shown). Finally, mated STPs 230, 232
are connected to SCP 234 by A links 250 and 252.

For a more elaborate description of SS7 network
topology, the readeris referred to Russell, Travis, Signaling
System #7, McGraw-Hill, New York, N-Y. 10020, ISBN
0-07-054991-5, which is incorporated herein by reference in
its entirety.

TABLE 4
SS7 link
terminology Definitions

Access (A) links A links connect SSPs to STPs, or SCPa to STPs,
providing network acceas and database access
through the STPs.

Bridge (B) likes B links connect mated STPs to other mated STPs.
Cyoss (C) links € links connect the STPs in « mated pair to one

another, During sormal conditions, only network
management messages are sent over C links.

Dingonal (D) links D links connect the mated SIPs at a primary
hicrarchical level to: mated STP at a secondaryhierarchical level.

Extended (H) nla E links connect SSPs to remote mated STPs,and are used in the event that the A links to
home mated STPs are congested.

y F links provide direct connections between local
(F) links SSP(bypassing STPs) in the event there ia much

traffic between SSPs, or if a direct comnection to an
STP is not available. F links are used only for cali
actop and call teardown.

d. 887 Signaled Call Flow
To initiate a call in an SS7 telecommunications network,

a calling party using a telephone connected to an ingress EO
switch, dials a telephone number of a called party. The
telephone numberispassed from the telephoneto the SSP at
the ingress EO of the calling party’s local exchange carrier
(LEC). First, the SSP can process triggers and internal route
ules based on satisfaction of certain criteria. Second, the
SSP can initiate further signaling messages to another EO or
access tandem (AT), if necessary. The signaling information
can be passed from the SSP to STPs, which route the signals
between the ingress EO and the terminating end office, or
egress EO, The egress EO has a port designated by the
telephone numberof the called party. The call is set up asa
direct connection between the EOs through tandem switches
if no direct trunking exists or if direct trunking is full. If the
call is a long distance call, ic., between a calling party and
acalled party located in different local access transport areas
(LATAs), then the call is connected through an inter

EX 1017 Page 419

aang

eae

ee,

"oweAHA

i

A
ll
of

•

US 6,452,915 Bl
27

exchange carrier (IXC) switch. Such a long distance call is
commonly referred to as an inter-LAIAcall. LECs and IXCs
a.re collectively referred to as the public switched telephone
network (PS'IN).

Passage of the Telecommunications Act of 1996, autho- 5

rizing competition in the local phone l'lCrvice market, has
permitted CLEO; to compete with ILECs in providing local
exchange services. This competition, however, has still not
provided the bandwidth necessary to handle the large vol
ume of voice and data communications. This is due to the 10

limitatioos of circuit switching technology which limits the
bandwidth of the equipment being used by the LEO;, and to
the high costs of adding additional equipment.
e. Circuit-Switching

28
switching, many dilferent calls can share a communication
channel rather than the channel being dedicated to a single
call. Du.ring a voice call, for instance, digitized voice infor-
mation might be transferred between the callers only 60% of
the time, with silence being transferred the other 40% of the
time. With a circuit switched connection, the voice call
could tie-up a communications channel that could have 50%
of its bandwidth, unused because of the silence. For a data
call, information might be transferred between two comput
ers only 10% of the time. With the data call, 90% of the
channel's bandwidth may go unused. In contrast, a packet-
switched connection would permit the voice call, the data
call and possibly other call information to all be sent over the
same channel.

Circuit switching dedicates a channel to a call for the
du.ration of the call. Thus, using circuit switching, a large
amount of switching bandwidth is required to handle the
high volume of voice calls. This problem is compounded by
the use of voice circuits to carry data communications over

Packet switching breaks a media stream into pieces
15 known as, for example, packets, cells or frames. Each packet

can then be encoded with address information for delivery to
the proper destination and can be sent through the network.
The packets can be received at the destination and the media

the same equipment that were designed to handle voice 20

communications.
i. Time Division Multiplexed (IDM) Circuit Switching

stream is reassembled into its original form for delivery to
the recipient. This process is made possible using an impor
tant family of communications protocols, commonly called
the Internet Protocol (IP).

In a packet-switched network, there is no single, unbroken
physical connection between sender and receiver. The pack
ets from many different calls share network bandwidth with
other transmissions. The packets can be sent over many
different routes at the same time toward the destination, and
can then be reassembled at the receiving end. The result is
much more efficient use of a telecommunications network's

'IDM circuit switching creates a full-time connection or a
dedicated circuit between any two attached devices for the
du.ration of the connection. IDM divides the bandwidth 2.S
down int fixed time slots in which there can he multiple time
slots, each with its own fixed capacity, available. Each
attached device on the IDM network is assigned a fixed
portion of the bandwidth using one or more time slots
depending on the need for speed. When the device is in
transmit mode, the data is merely placed in this time slot
without any extra overhead such as processing or transla
tions. Therefore, IDM is protocol transparent lo the traffic
being carried. Unfortunately, however, when the device is
not sending data, the time slots remain empty, thereby 35

wasting the use of the bandwidth. A higher-speed device on

30 bandwidth than could be achieved with circuit-switching.

the network can be slowed down or bottled up waiting to
transmit data, but the capacity that sits idle cannot be
allocated to this higher priority device for the du.ration of the
transmission. IDM is not well suited for the bursts of data 40

that arc becoming the norm for the data needs in today's
01ganization.
2. Data Network

b. Routers
Data network 142 can include I plurality of network

routers 140. Network routers are used to route information
between multiple networks. Routers act as an interface
between two or more networks. Routers can fiod the best
path between any two netwoiks, even if there are several
different networks between the two networks.

Network routers can include tables descnbing various
network domains. A domain can be thought of as a local area
network (LAN) or wide area network (WAN). Information
can be transferred between a plurality of I.ANs and/or
WANs via network routers. Routers look at a packet and
determine from the destination address in the header of the
packet, the destination domain of the packet. If the router is
not directly connected to the destination domain, then the
router can route the packet lo the router's def.ault router, i.e.
a router higher in a hierarchy of routers. Since each router
has a default router to which it is attached, a packet can be
transmitted through a series of routers to the destination
domain and to the destination host bearing the packet's final
destination address.
C. Local Area Networks (I.ANs) and Wide Area Networks
(WANs)

A local area network (LAN) can be thought of as a

FIG. 1B depicts an example network 148 including work
stations 144 and 146 coupled to data network 142. Data 45

network 142 can act as a wide area network (WAN) for
coupling a plurality of local area networks (LANs) together.
Network 148 includes an example local area network includ
ing a plurality of host computers such a.s, e.g., client work
station 138 and server 136, coupled together by wiring 50

including network interface cards (NICs) and a hub, such as,
e.g., an Ethernet hub. The I.AN is coupled to data network
142 by a network router 140 which permits data traffic to be
routed to workstations 144 and 146 from client 138 and
server 136. 55 plurality of host computers interconnected via network

interface cards (NICs) in the host computers. The NlCs are
connected via, for example, copper wires so as to permit
communication between the host computers. Examples of
I.ANs include an ethemet bus network, an ethcmet switch

1. Packet-Switching
Ualike voice networks 100 and 200 descnbed above witb

r~erence to FIGS. 1A and 2A which transport traffic over
Circuit-switched connections, data network 148 transports
traffic using packet switching. 60 network, a token ring network, a fiber digital data intercon

nect (FDDI) network, and an AJ'M network. Gmently, intemets, intranets, and similar public or pri
vate data networks that interconnect computers gcnerall y
Use packet switching technology. Packet switching provides
for more efficient use of a communication channel than does
circuit switching. Packet switched networks transport pack- 65
ets of information which can include various types of data
SUCh as, e.g., digitized voice, data, and video. With packet

A wide area network (WAN) is a network connecting host
computers over a wide area. In order for host computers on
a particular IAN to communicate with a host computer on
another I.AN or on a WAN, network interfaces intercon
necting the lANs and WANs must exist. An example of a
network interface is a. router discussed above.

EX 1017 Page 420

US 6,452,915 Bl
27

exchange carrier (XC) switch. Such a long distance call is
commonly referred to as an inter-LATAcall. LECs and IXCs
are collectively referred to as the public switched telephone
network (PSTN).

Passage of the Telecommunications Act of 1996, eutho-
rizing competition in the local phone service market, has
permitted CLECs to compete with ILECs in providing local
exchange services. This competition, however, has still not
provided the bandwidth necessary to handle the large vol-
ume of voice and dala communications. This is duc to the

limitations of circuit switching technology which limits the
bandwidth of the equipment being used by the LECs, and to
the high costs of adding additional equipment.
e. Circuit-Switching

Circuit switching dedicates a channel to a call for the
duration of the call. Thus, using circuit switching, a large
amount of switching bandwidth is required to handle the
high volumeofvoice calls. This problem is compounded by
the use of voice circuits to carry data communications over
the same equipment that were designed to handle voice
communications.

i, Time Division Multiplexed (TDM) Circuit Switching
TDMcircuit switching creates a full-time connection or a

dedicated circuit between any two attached devices for the
duration of the connection. TDM divides the bandwidth
down int fixed time slots in which there can be multiple time
slots, cach with its own fixed capacity, available. Each
attached device on the TDM network is assigned a fixed
portion of the bandwidth using one or more time slots
depending on the need for speed. When the device is in
transmit mode, the data is merely placed in this time slot
without any extra overhead such as processing or transla-
tions. Therefore, TDM is protocoltransparentfo the traffic
being carried. Unfortunately, however, when the device is
not sending data, the time slots remain empty, thereby
wasting the use of the bandwidth. A higher-speed device on
the network can be slowed down or bottled up waiting to
transmit data, but the capacity that sits idle cannot be
allocated to this higher priority device for the duration ofthe
transmission. TDM is not well suited for the bursts of data

that are becoming the nomn for the data needs in today’s
Organization.
2. Data Network

FIG. LB depicts an example network 148 including work-
Stations 144 and 146 coupled to data network 142. Data
network 142 can act as a wide area network (WAN) for
coupling a plurality of local area networks (LANs)together.
Network 148 includes an example local area network includ-
ing a plurality of host computers such as, ¢.g., client work-
station 138 and server 136, coupled together by wiring
including network interface cards (NICs) and a hub,suchas,
¢g., an Ethernet hub. The LAN is coupled to data network
142 by a network router 140 which permits data traffic to be
routed to workstations 144 and 146 from client 138 and
Server 136.

a. Packet-Switching
Unlike voice networks 100 and 200 described above witb

teference to FIGS. 1A and 2A which transport traffic over
circuit-switched connections, data network 148 transporis
traffic using packet switching.

Currently, internets, intranets, and similar public or pri-
Vaile data networks that interconnect computers generally
Use packet switching technology. Packet switching provides
for More ¢fficient use of a communication channel than does
Cucuit switching, Packet switched networks transport pack-
1s of information which can include various types of data
Such as, ¢.g,, digitized voice, data, and video. With packet

29

25

30

40

~om

35

60

28

switching, many different calls can share a communication
channel rather than the channel being dedicated to a single
call. During a voice call, for instance, digitized voice infor-
mation might be transferred between the callers only 60% of
the time, with silence being transferred the other 40% ofthe
time. With a circuit switched connection, the voice call
could tie-up a communications channelthat could have 50%
of its bandwidth, unused because of the silence. For a data
call, information might be transferred between two comput-
ers only 10% of the time. With the data call, 90% of the
channel’s bandwidth may go unused.In contrast, a packet-
switched connection would permit the voice call, the data
call and possibly other call information to all be sent over the
same channel.

Packet switching breaks a media stream into pieces
known as, for example, packets, cells or frames. Each packet
can then be encoded with address information for delivery to
the proper destination and can be sent through the network.
The packets can bereceived at the destination and the media
stream is reassembled into its original form for delivery to
the recipient. This process is made possible using an impeor-
tant family of communications protocols, commonlycalled
the Internet Protocol (IP).

In a packet-switched network, there is no single, unbroken
physical connection between sender and receiver. The pack-
ets from many different calls share network bandwidth with
other transmissions. The packets can be sent over many
different routes at the same time toward the destination, and
can then be reassembled at the receiving end. The result is
touch more efficient use of a telecommmnications network’s

bandwidth than could be achieved with ciccnit-switching.
b. Routers

Data network 142 can include a plurality of network
routers 140. Network roulers are used to route information

between multiple networks. Routers act as an interface
s between two or more networks. Routers can find the best

path between any two networks, even if there are several
different networks between the two networks.

Network routers can include tables describing various
network domains. A domain can be thonghtof as a local area
network (LAN) or wide area network (WAN). Information
can be transferred between a plurality of LANs and/or
‘WANsvia network routers. Routers look at a packet and
determine from the destination address in the header of the

packet, the destination domain of the packet. [f the router is
not directly connected to the destination domain, then the
router can route the packet to the router's default router,ic.
a router higher in a hierarchy of routers. Since cach router
has a default router to which it is attached, a packet can be
transmitted through a series of routers to the destination
domain and to the destination host bearing the packet's final
destination address.

C. Local Area Networks (LANs) and Wide Area Networks
(WANs)

A local area network (LAN) can be thought of as a
plurality of host computers interconnecied via network
interface cards (NICs) in the host computers. The NICsare
connected via, for example, copper wires so as to pennit
communication between the host computers. Examples of
LANsinclude an ethemet bus network, an ethemet switch
network, a token ring network, a fiber digital data intercoa-
nect (FDDI) network, and an ATM network.

Awide area network (WAN) is a network connecting host
computers over a wide area. In order for host computers on
a particular LAN to communicate with a host computer on
another LAN or on a WAN,network interfaces intercon-
necting the LANs and WANsmust exist. An example of a
network interface is a router discussed above.

EX 1017 Page 420

US 6,452,915 Bl
29 30

Anetwork designed to interconnect multiple IANs and/or ensure that a reliable data stream is sent and delivered. At the
WANs is known as an internet (with a lower case "i''). An sending end, TCP puts a byte count header on infurmation
internet can transfer data between any of a plurality of that will be delivered to the IP protocol layer and encapsu-
networks including both 1.ANs and WANs. Communication lates it as part of the packet. The receiving end, when it gets
occurs between host computers on one IAN and host s packets is responsible for resequencing the packets and
computers on another I.AN via, for example, an internet ensuring its accuracy. If all of the IP flow is not received
protocol (JP) protocol. The IP protocol is used to assign each correctly, the byte count acknowledgment or nonacknowl-
bost computer of a network:, a unique IP address enabling edgment message can be sent back to the sending end,
packets to be transferred over the internet to other host prompting the sending end to n:send the bytes necessary to
computers on other IANs and/or WANs that are connected 10 fill in the remaining portions of the packet flow. TCP buffers
to the internet. An internet can comprise a router intercon- additional packets until after resending the nona.cknowl-
necting two or more networks. edged packet.

The "Internet'' (with a capital "I") is a global internet 3. VKleo Network
interconnecting networks all over the world. The Internet FJG.1Cillustrates a conventional video networli:150 such
includes a global network of computers which intercommu- 15 as, e.g., t cable television (CtITV) network. Video network
nicate via the internet protocol (IP) family of protocols. 150 can include video network 160 coupled to various video

An "intranet" is an internet which is a private network that capture, distnbution links and video output monitors. Video
uses internet software and internet standards, such as the input devices can include, e.g.., conference cameras 154 and
internet protocol (IP). An intranct can be reserved for use by 158. Video output devices can include, e.g., televisions 152
parties who have been given the authority necessary to use 20 and 156. Video network 160 can include a variety of head
that network. end (i.e. the serving end of the cable) and distnbution link
d. Switching vs. Routing equipment such as, e.g., coaxial cable television (CtITV)

Routing is done at the middle network architecture levels and national television standard code (NTSC) tuner equip-
on such protocols as IPX or TCP/IP. Switching is done at a men! for multiplexing various video signals. Standard cable
lower level, at layer 2 of the OSI model, i.e. the media access 25 systems have an immense amount of bandwidth available to
control (MAC) layer. them.
e. TCP/IP Packet-Centric vs. ATM Circuit-Centric Data It is important to note that CATV is a wireless commu-
Nctworks nication method. The frequencies of many video signals are

Asynchronous Transfer Mode (ATM) is a fixed-size cell distnbuted along the cable at the same time. A television
switched circuit-centric data. network. ATM implements 30 tuner selects a particular channel by tuning into a specific
virtual circuits (VCS), virtual paths (Vi's) and transmission frequency or a "frequency band."
paths (TPs). A circuit-centric network like ATM sets up Although t cable television CATV video network often
virtual circuits between source and destination nodes which includes only one physical cable, a number of channels can
provide QoS by dedicating the virtual circuit to a specific simultaneously be present on the cable. This accomplished
traffic type. 35 by sharing the frequency spectrum of the cable and assign-

Some networks are packet-centric networks. Unlike a ing different frequency ranges to different channels using
circuit-<:entric network, a packet-centric network does not frequency division multiplexing (FDM). A broadband cable
use dedicated circuits through which to transfer packets. communiClltions system can operate exactly like a CATV
TCP/IP performs a packetization of user data to be sent system. A counter to this FDM technique is division of the
between and among the various systems on the IP network. '40 cable not divided into frequency bands but into time slots
When a luge file is sent down the protocol stack, the IP using lime-division multiplexing (IDM). With IDM, each
functinn is responsible for segmentation and packetization transmitting video station can grab the entire bandwidth of
of the data. Then a header is placed on the packet for the cable, but only for a very short period of time. The cable
delivery to the data link. The routing and switching of this is currently capable of carrying up to 750 MHz. FDM
data is handled at the IP (i.e. network) layer. IP is in a sense '4.5 techniques can be used to divide the channels into a number
a dumb protocol. When a packet is prepared for transmission of dedicated logical channels. Innovations have allowed a
across the medium, IP does not specifically route the call time division multiple access (IDMA) within an FDM
across a specific channel. Instead, it places a header on the channel.
packet and lets the network deal with it. Therefore, the A cable system can allow multiplexing on two separate
outward bound packets can take various routes to get from so diniensions to achieve data channels over a cable. The
a source to a destination. This means that the packets are in channels can be separated by FDM, and in a frequency band
a datagram form and not sequentially numbered as they arc the channel can then be shared via IDMA among multiple
in other protocols. IP makes its best attempt to deliver the users. The most common of the IDMA access methods on
packets to the destination network interface; but it makes no broadband cable is CSMA/CD developed by XEROX for
llSSllrnlceS that data will arrive, that data will be free of 55 Ethernet.
errors, and that nodes along the way will concern themselves Using a single cable, a midsplit arrangement can accom-
with the accuracy of the data and sequencing, or come back modate two-way simultaneous transmission. Another way to
and alert the originator that something is wrong in the accomodate this is to use a dual cable system.
delivery mechanism. It is possible that in IP routing of a Broadband is inherently an analog signaling method.
packet, the packet can be sent along the network in a loop, 60 Because video cameras, e.g., are also analog devices, a
so IP has a mechanism in its header information to allow a signal from a video camera (or video recorder) can be
certain number of "hops" or what is called "time to live" on directly transmitted onto a broadband cable channel in
the network. Rather than pcmrit an undeliverable pack to red/green/blue (RGB) format.
loop around the network, IP has a counter mechanism that G. Convergence of Voioc/Data/Vidco Networks
decrements every time the packet passes through a network 6S Recognizing the inherent efficiency of packet-switched
node. If the counter expires, the node will discard the packet. data networks such as the Internet, attention has recently
Working together with IP is TCP which provides controls to focused on the digitization and transmission of voice, data,

Ir

r
I' ,,
I.

1;
i,

i!
1:

I
!

I

'i

EX 1017 Page 421

US 6,452,915 B1
29

Anetwork designed to interconnect multiple LANs and/or
WANsis known as an internet (with a lower case “i”). An
internet can transfer data between any of a plurality of
networks including both LANs and WANs, Communication
occurs between host computers on one LAN and host
computers on another LAN via, for example, an internet
protocol (IP) protecol. The IP protocolis used to assign cach
host computer of a network, a unique JP address enabling
packets to be transferred over the internet to other host
computers on other LANs and/or WANs that are connected
to the internet. An internet can comprise a router intercon-
necting two or more networks.

The “Internet” (with a capital “F’) is a global internet
interconnecting networks all over the world. The Internet
includes a global network of computers which intercommu-
nicate via the internet protocol (IP) family of protocols.

An “intranet”is an internet which is a private network that
uses internet software and internet standards, such as the
internet protocol (IP). An intranet can be reserved for use by
parties who have been given the authority necessary to use
that network.
d. Switching vs. Routing

Routing is done at the middle network architecture levels
on such protocols as IPX or TCPAP. Switching is done at a
lowerlevel, at layer 2 of the OSE model, i.c. the media access
control (MAC) layer.
e. TCPAP Packet-Centric vs. ATM Circuit-Ceniric Data
Networks

Asynchronous Transfer Mode (ATM) is a fixed-size cell
switched circuit-centric data network. ATM implements
virtual circuits (VCS), virtual paths (VPs) and transmission
paths (TPs). A circuit-centric network like ATM sets upvirtual circuits between source and destination nodes which

provide QoS by dedicating the virtual circuit to a specific
traffic type.

Some networks are packet-centric networks. Unlike a
circuit-centric network, a packet-centric network does not
use dedicated circuits through which to transfer packets.
TCPAP performs a packetization of user data to be sent
between and among the various systems on the IP network.
Whena large file is sent down the protocol stack, the IP
function is responsible for segmentation and packetization
of the data. Then a header is placed on the packet for
delivery to the data link. The routing and switching of this
data is handled at the IP (.c. network) layer. IP is in a sense
a dumbprotocol.When a packetis prepared for transmission
across the medium, IP does uot specifically route the call
across a specific channel. Instead, it places a header on the
packet and lets the network deal with it. Therefore, the
outward bound packets can take various rontes to get from
& source to a destination. This means that the packets are in
a datagram form and not sequentially numbered as they are
in other protocols. [P makes its best atiempt to deliver the
packets to the destination network interface; but it makes no
assurances that data will arrive, that data will be free of
errors, and that nodes along the way will concern themselves
with the accuracy ofthe data and sequencing, or come back
and alert the originator that something is wrong in the
delivery mechanism. It is possible that in IP routing of a
packet, the packet can be sent along the network in a loop,
so IP has a mechanism in its header information to allow a

certain number of “hops” or whatis called “time to live” on
the network. Rather than permit an undeliverable pack to
loop around the network, IP has a counter mechanism that
decrements every time the packet passes through a network
Aode,If the counter expires, the node will discard the packet.
Working together with IP is TCP which provides controls to

20

25

30

35

40

4S

$6

55

60

30
ensure thal a reliable data stream is sent and delivered. At the
sending end, TCP puts a byte count header on information
that will be delivered to the IP protocol layer and encapsu-
latesit as part of the packet. The receiving end, whenit gets
packets is responsible for resequencing the packets and
ensuring its accuracy. If all of the IP flow is not received
corecily, the byte count acknowledgment or nonacknow!l-
edgment message can be sent back to the sending end,
prompting the sending end to resend the bytes necessary to
fil in the remaining portions of the packet flow. TCP buffers
additional packets until after resending the nonacknowl-
edged packet.
3. Video Network

FIG. 1€ illustrates a conventional video network 150 such

aS, ¢.g,, a cable television (CATV) network. Video network
150 can include video network 160 coupled to various video
capture, distribution links and video output monitors. Video
input devices can include, e.g., conference cameras 154 and
158. Video outpui devices can include, e.g., televisions 152
and 156. Video network 160 can include a variety of head
end (i.e. the serving end of the cable) and distribution link
equipment such as, ¢.g., coaxial cable television (CATV)
and national television standard code (NTSC) tuner equip-
ment for multiplexing various video signals. Standard cable
systems have an immense amount of bandwidth available to
them.

It is important to note thal CATY is a wireless commu-
nication method. The frequencies of many video signals are
distributed along the cable at the same time. A television
tuner selects a particular channel by tuning into a specific
frequency or a “frequency band.”

Although a cable television CATV video network often
includes only one physical cable, a number of channels can
simultancously be present on the cable. This accomplished
by sharing the frequency spectrum ofthe cable and assign-
ing different frequency ranges to different channels using
frequency division multiplexing (FDM). A broadband cable
communications system can operate exactly like a CATV
system. A counter to this FDM techniqueis division of the
cable not divided into frequency bands but into time slots
using time-division multiplexing (TDM). With TDM,each
transmitting video station can grab the entire bandwidth of
the cable, but only for a very short period of time. The cable
is currently capable of carrying up to 750 MHz. FDM
techniques can be used to divide the channels into a number
of dedicated logical channels. Innovations have allowed a
time division multiple access (TDMA) within an FDMchannel.

4 cable system can allow multiplexing on two separate
dimensions to achieve data channels over a cable. The

channels can be separated by FDM,and in a frequency band
the channel can then be shared via TOMA among multiple
users. The most common of the TDMA access methods on
broadband cable is CSMA/CD developed by XEROX for
Ethemet.

Using a single cable, a midsplit arrangement can accom-
modate two-way simultancous transmission. Another way to
accomodate this is to use a dual cable system.

Broadband is inherently an analog signaling method.
Because video cameras, ¢.g., are also analog devices, a
signal from a video camera (or video recorder) can be
directly transmitted onto a broadband cable channel in
red/green/blue (RGB) format.

G. Convergence of Voice/Data/Video Networks
Recognizing the inherent cfliciency of packet-switched

data networks such as the Internet, atiention has recently
focused on the digitization and transmission of voice, data,

EX 1017 Page 421

US 6,452,915 Bl
31

video and other information over converged packet
switched data networks. In order to deliver a high quality of
service (QoS) end-user experience, the data networks
attempt to provide mechanisms to deliver the different types
of information timely and with appropriate bandwidth to 5
provide an acceptable end-user experience.

HG. 2C illustrates an example network 286 carrying
voice, data and video traffic over a data network. Network
286 includes calling party 102b homed to EO 104b, where
EO 104b is linked to a telephony gateway 288b. Network
286 also includes called party 110c homed to EO 108c,

10

where EO 108c is linked to a telephony gateway 288c. EOs
104b and 108c and telephony gateways 288b and 288c can

32
Routers 140a, 140b, 140c, 140d, 140e, 140/and 140gcan

be connected to one another via physical media such as, for
example, optical fiber link connections, and copper wire
connections. Routers 140a-g transfer information between
one another and intercommunicate according to routing
protocols.

Data network 142 could be implemented using any data
network such as, e.g., IP networks, ATM virtual circuit
centric networks, frame relay networks, X.25 networks, and
other kinds of LANs and WANs. Other data networks could
be used interchangeably for data network 142 such as, for
example, FDDI, Fast Ethernet, or an SMDS packet switched
network. Frame relay and A1M are connection-oriented,
circuit-centric services. Switched multi-megabyte data ser-

be linked to signaling network 114. Telephony gateways
288b and 288c can also be coupled to data network 142 via
routers 140b and 140c, respectively. 15 vice (SMDS) is a connection-oriented mass packet service

that offers speeds up to 45 Mbps. Still referring to FIG. 2C, telephony gateways 288b and
288c can be used to packctm: voice traffic and signaling
information into a form appropriate for transport over data
network 142. It would be apparent to those skilled in the art
that telephony gateways 288b and 288c can include various 20

computer devices designed for controlling, setting up and
tearing down calls. \bice calls delivered over the data
network can include, e.g., voice over packet (VoP), voice
over data (\bD), voice over internet protocol (VoIP), voice
over asynchronous transfer mode (VoA'.IM), voice over 25

frame (VoF). An example of a telephony gateway 288b and
288c is a media gateway control protocol (MGCP) compli
ant gateway available from various vendors such as, e.g.,
Lucent, of Parsippany, NJ., and CISCO of Palo Alto, Calif.
It is important to note that other network devices such as a 30

softswitch available from several member companies of the
SoftSwitch Consortium, including Level 3 Communications
of Louisville, Colo., could also be necessary to enable
transport of, e.g., VoIP.

Network 286 is depicted to include other devices coupled 35
to data network 142. First, an H323 compliant video
conferencing system 289 is illustrated including a camera
1S4g and television 1S2g and router 140g. Second, a local
area network (LAN) 128a including a client workstation
138a and a server 136a arc coupled to data network 142 via 40

nctwoik router 140a. Similarly, LAN 128/ having a client
workstation 138/ and a server 136/ are coupled via network
router 140{ to data network 142.

Data Network 142 can provide for routing of packets of
information through network routing devices from source 45

locations to destination locations coupled to data network
142. For example, data network 142 can route internet
protocol (IP) packets for transmission of voice and data
traffic from telephony gateway 288b to telephony gateway
288c. Data Network 142 represents any art-recognized 50

packet centric data network. One well-known data network

1. Example Data Networks
a. Asynchronous Transfer Mode (ATM)

A1M is a high-bandwidth, low-delay, fixed-si7.ed cell
based multiplexing network technology. Bandwidth capac
ity is segmented into 53-byte cells, having a header and
payload fields. A1M uses fixed-length cells with the belief
that the fixed length cells can be switched more easily in
hardware than variable size packets and thus should result in
faster transmissions in certain environments.

The tUM environment sets up virtual circuits in a circuit
centric manner. Thus, A1M segments variable length IP
packet flows into fixed size cells using a segmentation and
resequencing algorithm (SAR).

Each A1M cell contains a 48-bytc payload field and a
5-bytc header that identifies the so-called "virtual circuit" of
the cell. A1M is thought suitable for high-speed combina
tions of voice, data, and video services. Currently, A1M
access can perform at speeds as high as 622 Mbps or higher.
A1M has recently been doubling its maxinrnm speed every
year.

A1M is defined by a protocol standardized by the Inter-
national Telecommunications Union (11U-1), American
National Standards Institute (ANSI), ETSI, and the A1M
FoIUill. A1M comprises a nuniber of building blocks, includ
ing transmission paths, virtual paths, and virtual channels.
Asynchronous transfer mode (ATM) is a cell based switch
ing and multiplexing technology designed to be a general
purpose connection-oriented transfer mode for a wide range
of telecommunications services. ATM can also be applied to
LAN and private network technologies as specified by the
A'.IMForum.

A1M handles both connection-oriented traffic directly or
through adaptation layers, or connectionless traffic through
the use of adaptation layers. A1M virtual connections may
operate at either a constant bit rate (CBR) or a variable bit
rate (VBR). Each A1M cell sent into an A1M network
contains a small header including information that estab
lishes a virtual circuit-centric connection from origination to

is the global Internet. Other examples include a private
intranct, a packet-switched network, a frame relay network,
and an asynchronous transfer mode (A1M) circuit-centric
network.

In an example embodiment, data network 142 can be an
55 destination. All cells are transferred, in sequence, over this

virtual connection. A1M provides either permanent or
switched virtual connections (PVCs or SVCs). A1M is
asynchronous because the transmitted cells need not be

IP packet-switched network. A packet-switched network
such as, e.g., an IP network, unlike a circuit-switched
network, does not require dedicated circuits between origi
nating and terminating locations within the packet switched 60

network. The packet-switched network instead breaks a
message into pieces known as packets of information. Such
packets can then be encapsulated with a header which
designates a destination address to which the packet must be
routed. The packet-switched network then takes the packets 65
and routes them to the destination designated by the desti
nation address contained in the header of the packet.

periodic as time slots of data are required to be in synchro
nous transfer mode (STM).

A1M uses an approach by which a header field prefixes
each fixed-length payload. The A1M header identifies the
virtual channel (VC). Therefore, time slots arc available to
any host which has data ready for transmission. If no hosts
arc ready to transmit, then an empty, or idle, cell is sent.

A1M permits standardi7.ation on one network architecture
defining a multiplexing and a switching method. Synchro-

EX 1017 Page 422

..
' A• 1

US 6,452,915 Bl
33 34

nous optical network (S0NE1) provides the basis for physi- switched. Devices which perform VC ronnections are corn-
eal transmission at very high-speed rates. ATM can also manly called VC switches because of the analogy to tele-
supporl multiple quality of service (QoS) classes for differ- phone switches. A1M devices which connect VPs are com-
ing application requirements by providing separate virtual manly referred to as VP cross-<:0nnects, by analogy with the
circuits for different types of traffic, depending on delay and 5 transmission network. The analogies arc intended for
loss performance. XfM can also support LAN-like access to explanatory reasons, but should not be taken literally. An
available bandwidth. XfM cell-switching machine need not be 11:stricted to

Cells are mapped into a physical transmission path, such switching only VCs and cross-connection to only VPs.
as the North American DS1, DS3, and SONET; European, At the XfM layer, users arc provided a choice of either a
El, E3, and E4; IDJ-T STM standards; and various local 10 virtual path connection (VPC) or a virtual channel connec-
fiber and electrical transmission payloads. All information is tion (VCC). Vlltual path connections (VPCs) arc switched
multiplexed and switched in an A1M network via these based upon the virtual path identifier (VPI) value only. Users
fixed-length cells. of a VPC can assign VCCs within a VPI traosparently, since

Toe ATM cell header field identifies cell type, and priority, they follow the same route. Virtual channel connections
and includes six portions. An XfM cell header includes a 15 (VCCs) are switched upon a combined VPI and virtual
generic flow control (GFC), a virtual path identifier (VPI), a channel identifier (VCI) value.
virtual channel identifier (VCI), a payload type (PI), a call Both VPis and VCis are used to route calls through a
loss priority (CLP), and a header error check (HEC). VPl network. Note that VPI and VCI values must be unique on
and VCl hold local significance only, and identify the a specific transmission path (TP).
destination. GFC allows a multiplexer to control the rate of 20 It is important to note that data network 142 can be any
an ATM terminal. PT indicates whether the cell contains user of a number of other data-type networks, including various
data, signaling data, or maintenance information. CLP indi- packet-switched data-type networks., in addition to an ATM
cates the relative priority of the cell, i.e., lower priority cells network.
are discarded before higher priority cells during congested b. Frame Relay
intervals. HEC detects and corrects errora in the header. 2S Alternatively, data network 142 can be a frame relay

Toe ATM cell payload field is passed through the network network. It would be apparent to persons having ordinary
intact, with no error checking or correction. ATM relies on skill in the art, that a frame mlay network could he used as
higher-layer protocols to perform error checking and cor- data network 142. Rather than transporting data in A1M
rection on the payload. For example, a transmission control cells, data could be transported in frames.
protocol (TCP) can be used to perform error correction 30 Frame mlay is a packet-switching protocol used in WANs
functions. The fixed cell size simplifies. the implementation that has become popular for LAN-to-LAN connections
of ATM switches and multiplexera and enables implemen· between 11:mote locations. Formerly frame relay access
tations at high speeds. would top out at al,out 1.5 Mbps. Today, so-called "high-

When using ATM, longer packets cannot delay shorter speed" frame relay offers around 45 Mbps. This speed is still
packets as in other packet-switched networks, because long 35 relatively slow as compared with other technology such as
packets are separated into many fixed length cells. This XI'M.
feature enables ATM to carry CBR traffic, such as voice and Frame relay services employ a form of packet-switching
video, in conjunction with VBR data traffic, potentially analogous to a streamlined version of X.25 networks. Toe
having very long packets, within the same network packets are in the form of frames, which are variable in

ATM switches take traffic and segment it into the fixed- <I() length. Toe key advantage to this approach it that a frame
length cells, and multiplex the cells into a single bit stream relay network can accommodate data packets of various
for transmission across a physical mediU!D. As an example, sizes associated with virtually any native data protocol. A
different kinds of traffic can be transmitted over an XfM frame relay network is completely protocol independent. A
network including voice, video, and data traffic. Video and frame relay network embodiment of data network 142 does
voice traffic are very time-sensitive, so delay cannot have 45 not undertake a lengthy protocol conversion process, and
significant variations. Data, on the other hand, can be sent in therefore offers faster and less-expensive switching than
either connection-oriented or connectionless mode. In either some alternative networks. Frame 11:Iay also is faster than
case, data is not nearly as delay-sensitive as voice or video traditional X.25 networks because it was designed for the
traffic. Data traffic, as e.g., spread sheet data requires accu· reliable circuits available today and performs less-rigorous
rate transmission. Therefore, Al'M conventionally must dis- 50 error detection.
criminate between voice, video, and data traffic. Voice and c. Internet Protocol (IP)
video traffic requires priority and guaranteed delivery with In an embodiment, data network 142 can be an internet
bounded delay, while data traffic requires, simultaneously, protocol (IP) network over an A:I'M network. It would be
assurance of low loss. In a converged data network, data apparent to those skilled in the art, that an internet protocol
traffic can also carry voice traffic, making it also time- 55 (IP) network over various other data link layer network
dependent. Using ATM, in one embodiment, multiple types suchas, e.g., Ethernet, could he used as data network 142.
of traffic can be combined over a single A1M virtual path Rather than transporting data in fixed length A1M circuit-
(VP), with virtual circuits (VCs) being assigned to separate centric cells, data could be transported in variable length IP
data, voice, and video traffic. datagram packet-centric packets as segmented by TCP. The

A transmission path can include one or more VPs. Each 60 IP data network can lie above any of a number of physical
VP can include one or more VCs. Thus, multiple VCs can be networks such as, for example, a SONET optical network.
trunked over a single VP. Switching can be performed on a 2. Vlltual Private Networks (VPNs)
transmission path, VPs, or at the level of VCs. A virtual private network (VPN) is a wide area commu-

Toe capability of ATM to switch to a virtual channel level nications network operated by a telecommunications carrier
is similar to the operation of a private or public branch 65 that provides what appears to be dedicated lines when used,
exchange (PBX) or telephone switch in the telephone world. but that actually includes trunks shared among all customers
In a PBX switch, each channel within a trunk group can be as in a public network. Just as a VPN can be provided as a

EX 1017 Page 423

US 6,452,915 Bl

33

nous optical network (SONET) providesthe basis for physi-
cal transmission at very high-speed rates. ATM can also
support multiple quality of service (QoS) classes for differ-
ing application requirements by providing separate virtual
circuits for different types of traffic, depending on delay and
loss performance. ATM can also support LAN-like access to
available bandwidth.

Cells are mapped into a physical transmission path, such
as the North American DS1, DS3, and SONET, European,
F1, E3, and E4; ITU-T STM standards; and various local
fiber and electrical transmission payloads. All information is
multiplexed and switched in an ATM network via these
fixed-length cells.

The AIM cell headerfield identifics cell type, and priority,
and includes six portions. An ATM cell beader includes a
generic flow control (GFC), a virtual path identifier (VPD, a
virtual channel identifier (VCI), a payload type (PT), a cal]
loss priority (CLP), and a header error check (HEC). VPI
and VCI hold local significance only, and identify the
destination. GFC allows a multiplexer to control the rate of
an. ATM terminal. PTindicates whether the cell contains user
data, signaling data, or maintenance information. CLP indi-
cates the relative priority of the cell, i.e., lowerpriority cells
are discarded before higher priority cells during congested
intervals. HEC detects and corrects errors in the header.

The ATM cell payload field is passed through the network
intact, with no error checking or correction. ATM relies on
higher-layer protocols to perform error checking and cor-
rection on the payload. For example, a transmission control
protocol (TCP) can be used to perform enor conection
functions. The fixed cell size simplifies the implementation
of ATM switches and multiplexers and enables implemen-
tations at high speeds.

When using ATM, longer packets cannot delay shorter
packets as in other packet-switched uctworks, because long
packets are separated into many fixed length cclls. This
feature enablesATM to carry CBRtraffic, such as voice and
video, in conjunction with VBR data traffic, potentially
having very long packets, within the same network.

AIM switches take traffic and segmentit into the fixed-
length cells, and multiplex the cells into a single bit stream
for transmission across a physical medium. As an example,
different kinds of traffic can be transmitted over an AIM
network including voice, video, and data traffic. Video and
voicetraffic are very time-sensitive, so delay cannot have
significant variations. Data, on the other hand, can be sent in
either connection-oriented or connectionless mode. In cither
case, data is not nearly as delay-sensitive as voice or video
traffic. Data traffic, as ¢.p., spread sheet data requires accu-
rate transmission. Therefore, ATM conventionally must dis-
criminate between voice, video, and data traffic. Voice and
video traffic requires priority and guaranteed delivery with
bounded delay, while data traffic requires, simultaneously,
assurance of low loss. In a converged data network, data
traffic can also carry voice traffic, making it also time-
dependent. Using ATM,in one embodiment, multiple types
of traffic can be combined over a single ATM virtual path
(VP), with virtual circuits (VCs) being assigned to separate
data, voice, and video traffic.

A transmission path can include one or more VPs. Each
VP can include one or more VCs. Thus, multiple VCs can be
trunked over a single VP. Switching can be performed on a
transmission path, VPs, or at the level of VCs.

Thecapability ofATM to switch to a virtual channel level
is similar to the operation of a private or public branch
exchange (PBX) ortelephoneswitch in the telephone world.
In a PBX switch, each channel within a trunk group can be

20

2s

30

40

60

65

34

switched. Devices which perform WC connections are com-
monly called VC switches because of the analogy to tele-
phone switches. ATM devices which connect VPs are com-
monly referred to as VP cross-connects, by analogy with the
transmission network. The analogies are iniended for
explanatory reasons, but should not be taken literally. An
ATM celi-switching machine need not be restricted to
switching only VCs and cross-connection to only VPs.

At the ATM layer, users are provided a choice of either a
virtual path connection (VPC) or a virtual channel coonec-
tion (VCC). Virtual path connections (VPCs) are switched
based upon the virtual path identifier (VPI) value only. Users
ofa VPC can assign VCCs within a VPI transparently, since
they follow the same route. Virtual channel connections
(VCCs) are switched upon a combined VPI and virtual
channel identifier (VCT) value.

Both VPIs and VCIs are used to route calls through a
network. Note that VPI and VCI values must be unique on
a specific transmission path (TP).

It is important to note that dala network 142 can be any
of a number ofother data-type networks,including various
packet-switched data-type networks, in addition to an ATM
network.

b. Frame Relay
Alternatively, data network 142 can be a frame relay

network. It would be apparent to persons having ordinary
skill in the art, that a frame relay network could be used as
data network 142. Rather than transporting data in ATM
cells, data could be transported in frames.

Frame relay is a packet-switching protocol used in WANs
that has become popular for LAN-to-LAN connections
between remote locations. Formerly frame relay access
would top out af about 1.5 Mbps. Today, so-called “high-
speed” frame relay offers around 45 Mbps.This speedis still
relatively slow as compared with other technology such as
AIM.

Frame relay services employ a fonn of packet-switching
analogous to a streamlined version of X.25 networks. The
packets are in the form of frames, which are variable in
length. The key advantage to this approach it that a frame
relay network can accommodate data packets of various
sizes associated with virtually any native data protocol, A
frame relay network is completely protocol independent. A
frame relay network embodiment of data network 142 does
not undertake a lengthy protocol conversion process, and
therefore offers faster and less-expensive switching than
some altemative networks. Frame relay also is fasier than
traditional X25 networks because it was designed for the
reliable circuits. available today and performs less-rigoraus
trror detection.

c. Internet Protocol (IP)
Tn an embodiment, data network 142 can be an internet

protocol (IP) network over an ATM actwork. It would be
apparent to those skilled in the art, that an intemet protocol
(iP) network over various other data link layer network
suchas, ¢.g., Ethernet, could be used as data network 142.
Rather than transporting data in fixed length ATM circuit-
centric cells, data could be transported in variable length IP
datagram packet-centric packets as segmented by TCP. The
IP data network can lie above any of a number of physical
networks such as, for example, a SONEToptical network.
2. Virtual Private Networks (VPNs)

A virtual private network (VPN) is a wide area commu-
nications network operated by a telecommunications carrier
that provides what appears to be dedicated lines when used,
but that actually includes trunks shared among all customers
as in a public network. Just as a VPN can be provided as a

EX 1017 Page 423

'
ii

1i

••

US 6,452,915 Bl
35

service through a wireline network, a VPN can be provided
in a wireless network. A VPN can allow a private network
to be configured within a public network.

VPNs can be provided by telecommunications carriers to
customers to provide secure, guaranteed, long-distance
bandwidth for their WANs. These VPNs generally use frame
relay or switched multi-megabyte data service (SMDS) as a
protocol of choice because those protocols define groups of
users logically on the network without regard to physical
location. A1M has gained favor as a VPN protocol as
companies require higher reliability and greater bandwidth
to handle more complex applications. VPNs using ATM
offer networks of companies with the same virtual security
and QoS as WANs designed with dedicated circuits.

The Internet has created an alternative to VPNs, at a much
lower cost, i.e. the virtual private Internet. The virtual
private Internet (VPI) lets companies connect disparate
LANs via the Internet. A user installs either a software-only
or a hardware-software combination that creates a shared,
secure iotranet with VPN-style network authorizations and
encryption capabilities. A VPI normally uses browser-based
administration interfaces.
3. H.323 Video Conferencing

The H323 Recommendation for video conferencing will
now be briefly overviewed. The H323 standard provides a
foundation for, for example, audio, video, and data commu
nications across IP-based networks, including the Internet.
By complying with the H323 Recommendation, multimedia
products and applications from multiple vendors can
interoperate, allowing users to communicate without con
cern for compatibility. H323 promises to be the foundation
of future IAN-based products multimedia applications.

36
ponents are required: Q.931 for call signaling and call setup,
a component called Registration/Admission/Status (RAS),
which is a protocol used to communicate with a gatekeeper;
and support for RTP/RTCP for sequencing audio and video

5 packets.
Optional components in an H323 terminal are video

codecs, T.120 data conferencing protocols, and MCU capa
bilities.

A gateway is an optional clement in an H.323 conference.
10 An H323 gateway can provide many services, the most

common being a translation function between H.323 con
ferencing endpoints and other terminal types. This function
includes translation between transmission formats (i.e.
H.225.0 to H.221) and between communications procedures

15 (i.e. H.245 to H.242). In addition, a gateway also translates
between audio and video codecs and performs call setup and
clearing on both the LAN side and the switched-circuit
network side.

In general, the purpose of the H323 gateway is to reflect
20 characteristics of a LAN endpoint to an SCN endpoint and

vice versa. The primary applications of gateways are likely
to be establishing links with analog PSTN terminals, estab
lishing links with remote H.320 compliant terminals over
ISDN-based switched-circuit networks, and establishing

25 links with remote H.324-compliant terminals over PSTN
networks.

Gateways are not required if connections to other net
works arc not needed, since endpoints may directly com
municate with other endpoints on the same LAN. Terminals

30 communicate with gateways using the H.245 and Q.931
protocols.

With the appropriate transcoders, H.323 gateways 5806
can support terminals that comply with H310, H.321,
H322, and V.70.

Many gateway functions are left to the designer. For
example, the actual number of H.323 terminals that can
communicate through the gateway is not subject to stan
dardization. Sinrilarly, the number of SCN connections, the
number of simultaneous independent conferences

H323 is an umbrella recommendation from the Interna
tional Telecommunications Union (ITU) that sets standards
for multimedia communications over Local Area Networks
(IANs) that do not provide a guaranteed Quality of Service 35
(QoS). These networks dominate today's corporate desktops
and include packet-switched TCP/IP and IPX over Ethernet,
Fast Ethernet and Token Ring network technologies.
Therefore, the H323 standards arc important building
blocks for a broad new range of collaborative, IAN-based
applications for multimedia communications.

40 supported, the audio/video/data conversion functions, and
inclusion of multipoint functions are left to the mannfac
turcr. By incorporating H323 gateway technology into the
H323 specification, the nu has positioned H.323 as the
means to hold standards-based conferencing endpoints

The H323 specification was approved in 1996 by the
ITU's Study Group 16. Version 2 was approved in January
1998. The standard is broad in scope and includes both
stand-alone devices and embedded personal computer tech
nology as well as point-to-point and multipoint conferences.
H323 also addresses call control, multimedia management,
and bandwidth management as well as interfaces between
LANs and other networks.

H323 is part of a series of communications standards that
enable videoconferencing across a range of networks.
Known as H.32:X, this series includes H.320 and H.324,
which address ISDN and PSTN communications, respec
tively.

The H.323 architecture defines four major components for
network-based communications, including terminals,
gateways, gatekeepers, and multipoint control units
(MCUs).

Terminals are client endpoints on the LAN that provide
rc~-time, two-way communications. All terminals support
voice communications; video and data are optional. H.323
si:,ccifics the modes of operation required for different audio,
Video, and/or data terminals to work together. H.323 is the
6~dard of next generation Internet phones, audio confcr
cncmg terminals, and video conferencing technologies.

All_ H323 terminals also support H.245, which is used to
negotiate charmcl usage and capabilities. Three other com-

45 together.
The gatekeeper is the most important component of an

H323 enabled network. It can act as the central point for all
calls within its zone and provides call control services to
registered endpoints. In many ways, an H323 gatekeeper

50 acts as a virtual switch.
Gatekeepers perform two important call control functions.

The first is address translation from LAN aliases for temri
oals and gateways to IP or IPX addresses, as defined in the
RAS specification. The second function is bandwidth

55 management, which is also designated within RAS. For
instance, if a network manager has specified a threshold for
the number of simultaneous conferences on the IAN, the
gatekeeper can refuse to make any more connections once
the threshold is reached. The effect is to limit the total

60 conferencing bandwidth to some fraction of the total avail
able; the remaining capacity is left for e-mail, file transfers,
and other LAN protocols. A collection of all terminals,
gateways, and multipoint control units which can be man-

65

aged by a single gatekeeper are known as an H323 Zone.
An optional, but valuable feature of a gatekeeper is its

ability to route H.323 calls. By routing a call through a
gatekeeper, it can be controlled more effectively. Service

I

i"
I
I

1.:

...
ii

EX 1017 Page 424

US 6,452,915 B1
35

service through a wireline network, a VPN can be provided
in a wireless network. A VPN can allow a private network
to be configured within a public network.

VPNscan be provided by telecommunicationscarriers to
customers to provide secure, guaranteed, long-distance
bandwidth for their WANs. These VPNsgenerally use frame
relay or switched multi-megabyte data service (SMDS)as a
protocol of choice because those protocols define groups of
users logically on the network without regard to physical
location. ATM has gained favor as a VPN protocol as
companies require higher reliability and greater bandwidth
to handle more complex applications, VPNs using ATM
offer networks of companies with the samevirtual security
and QoS as WANsdesigned with dedicated circuits.

TheInternet has created an alternative to VPNs, at a much
lower cost, i.e. the virtual private Internet. The virtual
private Intemet (VPI) lets companies connect disparate
LANsvia the Intemet. A userinstalls either a software-only
or a hardware-software combination that creates a shared,
secure intranet with VPN-style network authorizations and
encryption capabilities. A VPI normally uses browscr-based
administration interfaces.

3. H.323 Video Conferencing
The H.323 Recommendation for video conferencing will

now bebriefly overviewed. The H.323 standard provides a
foundation for, for example, audio, video, and data commu-
nications across IP-based networks, including the Internet.
By complying with the H.323 Recommendation, multimedia
products and applications from multiple vendors can
interoperate, allowing users to communicate without con-
cern for compatibility. H.323 promises to be the foundation
of future LAN-based products multimedia applications.

H.323 is an umbrella recommendation from the Interna-

tional Telecommunications Union (ITU) thatsets standards
for multimedia communications over Local Area Networks

(LANs)that do not provide a guaranteed Quality of Service
(QoS). These networks dominate today’s corporate desktops
and include packet-switched TCP/IP and IPX over Ethemet,
Fast Ethernet and Token Ring network technologies.
Therefore, the H.323 standards are important building
biocks for a broad new range of collaborative, LAN-based
applications for multimedia communications.

The H.323 specification was approved in 1996 by the
ITU’s Study Group 16. Version 2 was approved in January
1998. The standard is broad in scope and includes both
stand-alone devices and embedded personal computer tech-
nology as well as point-to-point and multipoint conferences.
1.323 also addresses call control, multimedia management,
and bandwidth management as well as interfaces between
LANsand other networks.

H.323 is part of a series of communications standards that
enable videoconferencing across a range of networks.
Known as H.32X, this series includes H.320 and H.324,

paich address ISDN and PSTN communications, respec-Vvely.

The H.323 architecture defines four major components for
betwork-based communications, including terminals,
gateways, gatekeepers, and multipoint control units
(MCUs).

Terminals are client endpoints on the LAN that provide
Teal-time, two-way communications. All terminals support
voice communications; video and data are optional. H.323
Specifics the modes ofoperation required for different audio,
Video, and/or data terminals to work together. H.323 is the
standard of next gencration Internct phones, audio confer-
‘ocing terminals, and video conferencing technologies.

All1.323 terminals also support H.245, which is used to
Ocgotiate channel usage and capabilities. Three other com-

20

25

40

45

60

65

36

ponents are required: Q.931 for call signaling and call setup,
a component called Registration/Admission/Status (RAS),
whichis a protocol used to communicate with a gatekeeper;
and support for RTP/RTCP for sequencing audio and video
packets.

Optional components in an H.323 terminal are video
codecs, T.120 data conferencing protocols, and MCU capa-
bilitics.

A gatewayis an optional element in an H.323 conference.
An H.323 gateway can provide many services, the most
common being a translation function between H.323 con-
ferencing endpoints and other terminal types. This function
includes translation between transmission formats (i.e.
H.225.0 to H.221) and between communications procedures
(i.e. H.245 to H.242). In addition, a gateway also translates
between audio and video codecs and performs call setup and
clearing on both the LAN side and the switched-circuit
network side.

In general, the purpose of the H.323 gatewayis to reflect
characteristics of a LAN endpoint to an SCN endpoint and
vice versa. The primary applications of gateways arc likely
to be establishing links with analog PSTN terminals, estab-
lishing links with remote H.320 compliant terminals over
ISDN-based switched-circuit networks, and establishing
links with remote H.324-compliant terminals over PSTN
networks.

Gateways are not required if connections to other net-
works are not needed, since endpoints may directly com-
rounicate with other endpoints on the same LAN.Tenninals
communicate with gateways using the H.245 and Q.931
protocols.

With the appropriate transcoders, H.323 gateways 5806
can support tenninals that comply with H310, H.321,
4.322, and V.70.

Many gateway functions are left to the designer. For
example, the actual number of H.323 terminals that can
communicate through the gateway is not subject to stan-
dardization. Similarly, the number of SCN connections, the
number of simultaneous independent conferences
supported, the audio/video/data conversion functions, and
inclusion of multipoint functions are left to the manufac-
turer. By incorporating H.323 gateway technology into the
H.323 specification, the ITU has positioned H.323 as the
means to hold standards-based conferencing endpoints
together.

The gatekeeper is the most important component of an
H.323 enabled network.It can act as the central point forall
calls within its zone and provides call control services to
registered endpoints. In many ways, an H.323 gatekeeper
acts as a virtual switch.

Gatekeepers perform two importantcall control functions.
Thefirst is address translation from LAN aliases for termi-
nals and gateways to IP or IPX addresses, as defined in the
RAS specification. The second function is bandwidth
mapagement, which is also designated within RAS. For
instance, if a network managerhas specified a threshold for
the number of simultaneous conferences on the LAN,the
gatekeeper can refuse to make any more connections once
the threshold is reached. The effect is to limit the total
conferencing bandwidth to somefraction of the total avail-
able; the remaining capacity is left for c-mail, file transfers,
and other LAN protocols. A collection of all terminals,
gateways, and multipoint control units which can be man-
aged by a single gatekeeper are known as an H.323 Zone.

An optional, but valuable feature of a gatckeeperis its
ability to route H.323 calls. By routing a call through a
gatekeeper, it can be controlled more effectively. Service

EX 1017 Page 424

US 6,452,915 Bl
37

providers need this ability in order to bill for calls placed
through their network. This service can also be used to
re-route a call to another endpoint if a called endpoint is
unavailable. In addition, a gatekeeper capable of routing
H.323 calls can help make decisions involving balancing 5
among multiple gateways. For instance, if a call is routed
through a gatekeeper, that gatekeeper can then re-route the
call to one of many gateways based on some proprietary
routiog logic.

While a gatekeeper is logically separate from H.323
10 endpoints, vendors can incorporate gatekeeper functionality

into the physical implementation of gateways and MCUs.
A gatekeeper is not required in an H.323 system.

However, if a gatekeeper is present,. terminals must make
use of the services offered by gatekeepers. RAS defines
these as address translation, admissions control, bandwidth 15
control, and zone management.

Gatekeepers can also play a role in multipoint connec
tions. To support multipoint conferences, users would
employ a gatekeeper to receive H.245 control channels from
two terminals in a point-to-point conference. When the 20

conference switches to multipoint, the gatekeeper can redi
rect the H.245 Control Channel to a multipoint controller,
the MC. A gatekeeper need not process the H.245 signaling;

38
140d to data network 142. It is important to note that
network 296 includes network 286 from FIG. 2C, plus PIMP
wireless network 298. PIMP wireless network 298 enables
customer premise equipment (CPE) at a subscnber location
to gain access to the various voice, data and video resources
coupled to data network 142 by means of wireless connec-
tivity over a shared bandwidth. The wireless Pt:MP network
298 is a packet switched network which is TCP/IP packet
centric (i.e. no dedicated circuit is created in delivering a
communication IP flow) and QoS aware.

Specifically, PIMP wireless network 298 includes a wire
less access point (WAP) 2l)Od coupled to router 140d by,
e.g., a wireline connection. A wireless access point 290e can
be similarly coupled to router 140e by a wireline connection.
WAP 290d is in wireless communication, such as, e.g., radio
frequency (RF) communication, with one or more wireless
transciever subscriber antennae 292d and 292e. It would be
apparent to those skilled in the art that various wireless
communication methods could be used such as, e.g.,
microwave, cellular, spread spectrum, personal communi
cations systems (PCS), and satellite.

In an alternative embodiment,. RF communication is
accomplished over cable television (CXIV) coaxial cable.
As those skilled in the relevant art will nnderstand, a coaxial
cable functions as a waveguide over which RF waves it only needs to pass it between the terminals or between the

terminals and the MC.
LANs which contain gateways could also contain a gate

keeper to translate incoming E.164 addresses into Transport
Addresses. Because a Z.One is defined by its gatekeeper,
H.323 entities that contain an internal gatekeeper can require

25 propagate. Accordingly, it is possible fur the communica
tions link between RF transceiver subscriber antenna 292d
and WAP 290d to be a coaxial cable. Therefore, a coaxial
cable connection is analogous to a wireless connection, and

a mechanism to disable the internal function so that when 30

there are multiple H.323 entities that contain a gatekeeper on
a LAN, the entities can be configured into the same 2'.one.

The Multipoint Control Unit (MCU) supports oonferences
between three or more endpoints. Under H.323, an MCU
consists of a Multipoint Controller (MC), which is required, 35

and zero or more Multipoint Processors (MP). The MC
handles H.245 negotiations between all terminals to deter
mine common capabilities for audio and video processing.
The MC also controls conference resourc.cs by detennining
which, if any, of the audio and video streams will be -40

multicast.
The MC does not deal directly with any of the media

streams. This is left to the MP, which mixes, switches, and
processes audio, video, and/or data bits. MC and MP capa
bilities can exist in a dedicated component or be part of other '45
H.323 components.

is referred to as an alternative form of wireless connection
in the present invention.

In another alternative embodiment, RF communication is
accomplished over a satellite connection, such as, e.g., a low
earth orbit (LEO) satellite connection or a high earth orbit
satellite. Taking the example of an lEO satellite connection,
WAP 290d and RF transceiver subscriber antenna 292d
functinn as satellite gateways, with the additional function-
alities described in the present invention.

As would be apparent to those skilled in the art,. although
the present invention has been descnbed in the context of a
point-to-multi-point network, the invention is eqnally appli
cable to a point-to-point network environment.

Referring to FIG. 3A, in an embodiment of the invention,
WAPs 21JOd and 290e can be ooupled to a wireless base
station 302 where "IP flow'' traffic can be queued, analyzed,
characterized, classified, prioritized and scheduled, as
described more fully below with reference to the ensuing
figures.

Referring to FIG. 3B, one embodiment of the invention,
antennae 292d and 292e are coupled to subscnber customer
premise equipment (CPE) stations 294d and 294e, respec
tively (aL<;0 referred to asCPEs294d, 294e). Subscriber CPE
stations 294d and 294e are coupled to various other CPE
equipment via wireline or wireless connections. For
example, CPE stations 290d and 290e can be coupled to

The present invention supports multicast for wireless base
station 302, including providing: compatibility with RFC
1112, 1584; recognition and support of multicastiag
applications, including: multimedia, teleconferencing, 50

database, distnbuted computiog, real-time workgroups; sup
port of broadcasting function over wireless link; preserves
bandwidth, retains QoS latency performance; support of
IPv6 IGMP and IPv4 IGMP multicast; group membership
query, group membership report messages.

Approved in January of 1998, version 2 of the H.323
standard addresses deficiencies in version 1 and introduces
Dew functionality within existing protoa.Jls, such as Q.931,
H.245 and H225, as well as entirely new protoools. The
most significant advances were in security, fast call setup, 60

supplementary services and T.120/H.323 integration.

5S voice calling parties 124d, U4e, 126d and 126e, fax
machines 116d and l16e, video conferencing equipment
including video monitors 152d and 152e, and cameras 154d
and 154e, host computers including client computers 120d

G. Packet-Centric QoS-Aware Wireless Point-to
MultiPoint (PtMP) Telecommunications System
1. Wireless Point-to-MultiPoint Telecommunications Sys
tem

FIG. 2D depicts network 296 including a point-to
multipoint (Pt.MP) wireless network 298 coupled via router

and 120e and servers 122d and 122e. Various legacy devices
such as PBXs can be coupled to CPEs 294d and 294e. In
addition, next generation technologies such as Ethernet
phones available from Selsius, a subsidiary of CISCO Sys
tems from San Jose, Calif. and other Internet appliances can
be coupled via LAN connections to CPEs 294d and 294e.

65 Other video conferencing equipment as well as H.323 com
pliant conferencing equipment can also be coupled to CPEs
294d and 294e.

EX 1017 Page 425

Ill ,,,

US 6,452,915 Bl
39

In an embodiment of the invention, either of antennae
292d and 292e can communicate with both WAPs 290d and
290e for alternate or backup wireless communications paths.

Returning to FIG. 3A, it depicts an example perspective
diagram 300 of a PtMP network of the present invention. 5

Diagram 300 includes a wireless base station 302 shown in
wireless co=unication with subscriber locations 306a,
306b, 306c, 306d, 306e, 306[, 306g, 306h, 306i and 306j.
Specifically, wireless base station 302 communicates via
wireless access point 290d to subscnber antennae 292a-j of 10

subscnber locations 306a-j.
Wireless base station 302 is coupled at interface 320 to

network router 140d by, e.g., a wireline connection. Network
router 140d is coupled to data network 142 which includes
various other network routers 140b for routing traffic to 15

other nodes on data network 142 such as, e.g., telephony
gateway 288b.

Returning to FIG. 3B, it depicts block diagram 310 further
illustrating the wireless PtMP of the present invention.
Diagram 310 includes wireless base station 302 coupled at 20

interface 320 to data network 142. Also coupled to data
network 142 are router 140d and telephony gateway 288b
which is in turn coupled to a class central office (CO) switch
at EO 104b. IP telephony gateway 288b can terminate
telephony traffic to PS1N facilities by, e.g., translating 25

packets into time domain multiplexed (IDM) standard tele
phone signals. Wireless base station 302 is in communica
tion with wireless CPE 294d at subscnber location 306d via
antenna WAP 290d and 292d. It would be apparent to those
skilled in the art that other configurations of CPE 294d are 30

possible, such as, e.g., one or more host computers with no
telephone devices, one or more telephones with no host
computers, one or more host computers and one or more
telephone devices, and one or more H323 capable video
conferencing platfomis which could include a host computer 35

with monitor and camera.

40
by changing frequency levels depending on the noise level
of a given frequency. Physical layer 402 can include the
radio frequency (RF) signal 415.
b. Data link Layer

Data link layer 404 lies on top of physical layer 402. Data
link layer 404 can include a media access control (MAC)
layer 414 which is depicted graphically in diagram 400 as
MAC layer portion 414a and proactive reservation-based
intelligent multi-media access (PRIMMA) technology por
tions 414b and 414c. Arrows 426,428 and 430, respectively,
illustrate that MAC layer 414 can read header information
from data and multimedia applications 425, TCP/UDP 427
and IP 429 layers to analyze and schedule an IP packet of an
"IP flow." IP packets of the IP flow are identified by
analyzing the header information to determine QoS require
ments of the IP flow, so that the IP flow can be characterized,
classified, presented, prioritized and scheduled.
c. Network Layer
1. Internet Protocol QP)

Network layer 408 is the Internet protocol QP) 429. As
will be discussed further below and as already discussed
above with reference to data network 142, IP is a standard
protocol for addressing packets of information. Referring
now to FIG. 7, IP header fields 702 can include, e.g., source
and destination IP addresses, IP type of service (TOS), IP
time to live (TIL), and protocol fields. IP is a datagram
protocol that is highly resilient to network failures, but does
not gnarantee sequence delivery. Routers send error and
control messages to other routers using the Internet control
message protocol (ICMP). ICMP can also provide a function
in which a user can send a "ping" (echo packet) to verify
reachability and round trip delay of an IP-addresse host.
Another OSI layer 3 protocol is address resolution protocol
(ARP) which can directly interface to the data link layer.
ARP maps a physical address, e.g., an Ethernet MAC
address, to an IP address.
2. Internet Protocol QP)v4 and 1Pv6

IP 429 of network layer 408 can be, e.g., an IP version 4
QPv4) or an IP version 6 QPv6). 1Pv6 (sometimes called

CPE 294d is shown with several telephone devices 124d
and 126d, e.g., analog phones, and host computers, client
120d and server 122d. Client 120d and server 122d can be
coupled to CPE 294d via a LAN connection such as, e.g., an
Ethernet IAN, or via a legacy V35 device 322d providing
a high speed data connection. Other Internet appliances
capable of attachment to a data network can also be coupled
to CPE294d.

40 next-generation internet protocol or IPng) is a backward
compatible extension of the current version of the Internet
protocol, 1Pv4. 1Pv6 is designed to solve problems brought
on by the success of the Internet (such as running out of
address space and router tables). 1Pv6 also adds needed

2. Networking Protocol Stack Architecture-Wireless IP
Network Access Architecture (WINAAR)

FIG. 4 depicts the wireless IP network access architecture
(WINAAR) 400 of the present invention. Architecture 400
illustrates the networking protocol stack which is a version
of a TCP/IP protocol stack enhanced to support IP-centric,
QoS over a packet switched, shared bandwidth, wireless
PtMP connection. Toe networking protocol stack will be
descnbed in tenns of the Open Systems Interconnect (OSI)
7 layer networking protocol stack standard which includes
physical layer (OSI layer 1) 402, data link layer (OSI layer
2) 404, network layer (OSI layer 7) 406 and 408, transport
layer (OSI layer 4) 410 and applications layer (OSI layer 7)
412.
a. Physical Layer

In an example embodiment, physical layer 402 can be
implemented using several wireless application specific
integrated circuits (wASICs), an off-the-shelf 16QAM/
QPSK 416 ASIC; an Interference Mitigation and Multipath
~egation QMMUNE)/RF 418 algorithm ASIC for minimiz
mg and/or eliminating harmful interference; and a frequency
hopping (FH) 419 ASIC for providing dynamic and adaptive
multi-channel transmission that optimizes data link integrity

45 features, including circuiting security, auto-configuration,
and real-time services sinrilar to QoS. Increased Internet
usage and the allocation of many of the available IP
addresses has created an urgent need for increased address
ing capacity. 1Pv4 uses a 32-byte number to form an address,

50 which can offer about 4 billion distinct network addresses.
In comparison, 1Pv6 uses 128-bytes per address, which
provides for a much larger number of available addresses.
3. Resource Reservation Protocol (RSVP)

IP 429 of network layer 408 can have RSVP enhance-
55 ment. Developed to enhance 1Pv4 with QoS features, RSVP

is supposed to let network managers allocate bandwidth
based on the bandwidth requirements of an application.
Basically, RSVP is an emerging communications protocol
that is hoped to signal a router to reserve bandwidth for

60 real-time transmission of data, video, and audio traffic.
Resource reservation protocols that operate on a per

connection basis can be used in a network to elevate the
priority of a given user temporarily. RSVP runs end to end
to communicate application requirements for special han-

65 dling. RSVP identifies a session between a client and a
server and asks the routers handling the session to give its
communications a priority in accessing resources. When the

EX 1017 Page 426

US 6,452,915 B1
39

In an embodiment of the invention, either of antennae
292d and 292e can communicate with both WAPs 290d and

290¢ for alternate or backup wireless communications paths.
Returning to FIG. 3A, it depicts an example perspective

diagram 300 of a PIMP network of the present invention.
Diagram 300 includes a wireless base station 302 shown in
wireless communication with subscriber locations 306a,
306b, 306c, 306d, 306e, 306, 306g, 306h, 306: and 306).
Specifically, wireless base station 302 communicates via
wireless access point 290d to subscriber antennae 292a—j of
subscriber locations 306a-j.

Wireless base station 302 is coupled at interface 320 to
network router 140dby, ¢.g., a wireline connection. Network
router 140d is coupled to data network 142 which includes
various other network routers 1405 for routing traffic to
other nodes on data network 142 such as,e.g., telephony
gateway Z88b.

Returning to FIG. 3B,it depicts block diagram 310 further
illustrating the wireless PtMP of the present invention.
Diagram 310 includes wireless base station 302 coupled at
interface 320 to data network 142. Also coupled to data
network 142 are router 140d and telephony gateway 288b
whichis in turn coupledto a class central office (CO) switch
at EO 104d. IP telephony gateway 288b can terminate
telephony traffic to PSTN facilities by, ¢.g., translating
packets into time domain multiplexed (TDM) standard tele-
phonesignals. Wireless base station 302 is in communica-tion with wircless CPE 294d at subscriber location 306d via

antenna WAP 290d and 292d. It would be apparentto those
skilled in the art that other configurations of CPE 294d are
possible, such as, ¢.g., one or more host computers with no
telephone devices, one or more telephones with no host
computers, one or more host computers and one or more
telephone devices, and one or more H.323 capable video-
conferencing platforms which could include a host computer
with monitor and camera.

CPE 294d is shown with several telephone devices 124d
and 126d, ¢.g., analog phones, and host computers, client
120d and server 122d. Client 120d and server 122d can be

coupled to CPE 294d via a LAN connection such as, €.g., an
Ethermet LAN,or via a legacy V.35 device 322d providing
a high spced data connection. Other Intemet appliances
capable of attachmentto a data network can also be coupled
to CPE 294d.

2. Networking Protocol Stack Architecture—Wireless IP
Network Access Architecture (WINAAR)

FIG.4 depicts the wireless IP network access architecture
(WINAAR) 400 of the present invention. Architecture 400
illustrates the networking protocol stack which is a version
of a TCP/IP protocol stack enhanced to support IP-centric,
QoS over a packet switched, shared bandwidth, wireless
PiMPconnection. The networking protocol stack will be
described in terms of the Open Systems Interconnect (OSI)
7 layer networking protocol stack standard which includes
physical layer (OSI layer 1) 402, data link layer (OSIlayer
2) 404, network layer (OSIlayer 7) 406 and 408, transport

ayer (OSI layer 4) 410 and applications layer (OSI layer 7)
a. Physical Layer
_ In an example embodiment, physical layer 402 can be
mmplemented using several wireless application specific
integrated circuits (wASICs), an off-the-shelf 16QAM/
QPSK 416 ASIC;an Interference Mitigation and Multipath
Negation (IMMUNE)/REF 418 algorithm ASIC for minimiz-
ing, and/or eliminating harmful interference; and a frequency
hopping (FH) 419 ASICfor providing dynamic andadaptive
toulti-channel transmission that optimizes data link integrity

10

25

40

45

an nr

40

by changing frequency levels depending on the noise level
of a given frequency. Physical Jayer 402 can include the
radio frequency (RF) signal 415.
b. Data Link Layer

Data link layer 404 lics ontop ofphysical layer 402. Data
link layer 404 can include a media access control (MAC)
layer 414 which is depicted graphically in diagram 400 as
MAClayer portion 414a and proactive reservation-based
intelligent multi-media access (PRIMMA)technology por-
tions 414b and 414c. Arrows 426, 428 and 430, respectively,
iltustrate that MAC layer 414 can read header information
from data and multimedia applications 425, TCP/UDP 427
and IP 429 layers to analyze and schedule an IP packet of an
“IP flow.” IP packets of the IP flow are identified by
analyzing the header information to determine QoS requize-
ments of the IP flow,so that the IP flow can be characterized,
classified, presented, prioritized and scheduled.
c. Network Layer
1. Intemet Protocol (IP)

Network layer 408 is the Internet protocol (IP) 429. As
will be discussed further below and as already discussed
above with reference to data network 142, IP is a standard
protocol for addressing packets of information. Referring
now to FIG. 7, IP headerfields 702 can include, e.g., source
and destination IP addresses, IP type of service (TOS), IP
time to live (TTL), and protocol fields. IP is a datagram
protocolthat is highly resilient to network failures, but does
not guarantee sequence delivery. Routers send error and
control messages to other routers using the Internet control
message protocol] (ICMP). ICMPcan also provide a function
in which a user can send a “ping” (echo packet) to verify
reachability and round trip delay of an IP-addresse host.
Another OSIlayer 3 protocol is address resolution protocol
(ARP) which can directly interface to the data link layer.
ARP maps a physical address, e.g., an Ethernet MAC
address, to an IP address.
2. Internet Protocol (IP)v4 and IPv6

IP 429 of network layer 408 can be, ¢.g., an IP version 4
(Pv4) or an IP version 6 (IPv6). IPv6 (sometimes called
next-generation intemet protoco] or IPog) is a backward-
compatible extension of the current version of the Intemet
protocol, IPv4. IPv6 is designed to solve problems brought
on by the success of the Internet (such as running out of
address space and router tables). [Pv6 also adds needed
features, including circuiting security, auto-configuration,
and real-time services similar to QoS. Increased Intemet
usage and the allocation of many of the available IP
addresses has created an urgent need for increased address-
ing capacity. [Pv4 uses a 32-byte numberto form an address,
which can offer about 4 billion distinct network addresses.

In comparison, IPv6 uses 128-bytes per address, which
provides for a much larger numberof available addresses.
3. Resource Reservation Protocol (RSVP)

IP 429 of network layer 408 can have RSVP evhance-
ment. Developed to enhance IPv4 with QoS features, RSVP
is supposed to let network managers allocate bandwidth
based on the bandwidth requirements of an application.
Rasically, RSVF is an emerging communications protocol
that is hoped to signal a router to reserve bandwidth for
real-time transmission of data, video, and audiotraffic.

Resource reservation protocols that operate on a per-
connection basis can be used in a network to elevate the

priority of a given user temporarily. RSVP runs end to end
to communicate application requirements for special hau-
dling. RSVP identifies a Session between a client and a
server and asks the routers handling the session to give its
communications a priority in accessing resources. Whenthe

EX 1017 Page 426

aALLEAMENcinema

US 6,452,915 Bl
41

session is completed, the resources reserved for the session
are freed for the use of others.

RSVP unfortunately offers only two levels of priority in

42
control. Instead, RTP relies on resource reservation proto
cols such as RSVP, communicating dynamically to allocate
appropriate bandwidth.

RTP adds a time stamp and a header that distinguishes its signaling scheme. Packets are identified at each router
hop as either low or high priority. However, in crowded
networks, two-level classification may not be sufficient. In
addition, packets prioritized at one router hop might be
rejected at the next.

s whether an IP packet is data or voice, allowing prioritization
of voice packets, while RSVP allows networking devices to
reserve bandwidth for carrying unbroken multimedia data
streams.

Accepted as an IEfF standard in 1997, RSVP does not
attempt to govern who should receive bandwidth, and ques- 10

lions remain about what will happen when several users all
demand a large block of bandwidth at the same time.
Currently, the technology outlines a first-come, first-served
response to this situation. The IE1F has formed a task force

Real-time Control Protocol (RTCP) is a companion pro
tocol to RTP that analyzes network conditions. RTCP oper
ates in a multi-cast fashion to provide feedback to RTP data
sources as well as all session participants. RTCP can be
adopted to circumvent datagram transport of voice-over-IP
in private IP networks. With RTCP, software can adjust to

to consider the issue. 15 changing network loads by notifying applications of spikes,
or variations, in network transmissions. Using RTCP net
work feedback, telephony software can switch compression
algorithms in response to degraded connections.

Because RSVP provides a special level of service, many
people equate QoS with the protocol. For example, Cisco
currently uses RSVP in its 1Pv4 -based internetwork router
operating system to deliver 1Pv6 -type QoS features.
However, RSVP is only a small part of the QoS picture 20

because it is effective only as far as it is supported within a
given client/server connection. Although RSVP allows an
application to request latency and bandwidth, RSVP does
not provide for congestion control or network-wide priority
with the traffic flow management needed to integrate QoS 25

across an enterprise. Further, RSVP does not address the
particular challenges related to delivering packets over a
wireless medium.

The present invention supports RSVP by providing: (1)
compat.J.bility with RFC 2205; (2) recognition and support of 30

RSVP messages, including: Path messages, Reservation
(Resv), Path teardown messages, Resv teardown messages,
Path error messages, Resv error messages, and Confirmation
messages; (3) recognition and support of RSVP objects,
including: Null, Session, RSVP _Hop, Trme_ Values, Style, 35

Flowspec, Sender_Template, Sender_Tspec, Adspec,
Error_Spec, Policy_Data, Integrity, and Scope, Resv_
Confirm; (4) configurable- translation of RSVP Flowspecs
for QoS resource allocation in wireless base station 302.

The present invention provides support of DiffServ and '40

RSVP/int-serv by providing: (1) support of RFC 2474 and
2475; (2) DiffServ in the core of Internet; (3) RSVP/int-serv
for hosts and edge networks; (4) admission control capabil-
ity for DiffServ compatibility; (5) differentiated services
(DSs) (a field marking supported for use by DiffServ, and 45

translation in to a wireless base station 302 resource
allocation); and (6) support for binding of multiple end-to
end sessions to one tunnel session.

5. IP Multi-Casting Protocols
IP 429 of network layer 408 can also support multi

casting protocols. Digital voice and video comprise of large
quantities of data that, when broken up into packets, must be
delivered in a timely fashion and in the right order to
preserve the qualities of the original content. Protocol devel
opments have been foaised on providing efficient ways to
send content to multiple recipients, transmission referred to
as multi-casting. Multi-casting involves the broadcasting of
a message from one host to many hosts in a one-to-many
relationship. A network device broadcasts a message to a
select group of other devices such as PCS or workstations on
a LAN, WAN, or the Internet. For enmple, a router might
send information about a routing table update to other
routers in a network.

Several protocols are being inlplemented for IP multi
casting, including upgrades to the Internet protocol itself.
For example, some of the changes in the newest version of
IP, 1Pv6, will support different forms of addressing for
uni-cast (point-to-point communications), any cast
(communications with the closest member of a device
group), and multi-cast. Support for IP multi-casting comes
from several protocols, including the Internet group man-
agement protocol (IGMP), protocol-independent multi-cast
(PIM) and distance vector multi-cast routing protocol
(DVMRP). Queuing algorithms can also be used to ensure
that video or other multi-cast data types arrive when they are
supposed to without visible or audible distortion.

Real-time transport protocol (RTP) is currently an IE1F
draft, designed for end-to-end, real-time delivery of data
such as video and voice. RTP works over the user datagram 4. Real-time Transport Protocol (RTP) and Real-time Con

trol Protocol (RTCP) so protocol (UDP), providing no guarantee of in-time delivery,
quality of service (QoS), delivery, or order of delivery. RTP
works in conjunction with a mixer and translator and sup
ports encryption and security. The real-time control protocol

TCP of transport layer 410 can have a RTP and RTCP
enhancement. Real-time transport protocol (RTP) is an
emerging protocol for the Internet championed by the audio/
video transport workgroup of the IE1F. Referring to FIG. 7,
RTP and RTCP header fields 708 can include several sub ss
fields of information. RTP supports real-time transmission of
interactive voice and video over packet-switched networks.
RTP is a thin protocol that provides content identification,
packet sequencing, timing reconstruction, Joss detection,
and security. With RTP, data can be delivered to one or more 60
destinations, with a limit on delay.

RTP and other Internet real-time protocols, such as the
Internet stream protocol version 2 (St2), focus on the effi
ciency of data transport. RTP and other Internet real-time
protocols like RTCP are designed for communications ses- 65
sions that are persistent and that exchange large amounts of
data. RTP does not handle resource reservation or QoS

(RTCP) is a part of the RTP definition that analp.es network
conditions. RTCP provides mandatory monitoring of ser
vices and collects information on participants. RTP commu-
nicates with RSVP dynamically to allocate appropriate
bandwidth.

Internet packets typically move on a first-come, first-serve
basis. When the network becomes congested, Resource
Reservation Protocol (RSVP) can enable certain types of
traffic, such as video conferences, to be delivered before Jess
time-sensitive traffic such as E-mail for potentially a pre
mium price. RSVP could change the Internet's pricing
structure by offering different QoS at different prices. Using
SI.As, different QoS levels can be provided to users at CPE
loc-ation stations depending on SIA subscription level.

EX 1017 Page 427

US 6,452,915 Bl
43

The RSVP protocol can be used by a host, on behalf of an
application, to request a specific QoS from the network for
particular data streams or flows. Routers can use the RSVP
protocol to deliver QoS control requests to all necessary
network nodes to establish and maintain the state necessary 5

to provide the requested service. RSVP requests can
generally, although not necessarily, result in resources being
reserved in each node along the data path.

RSVP is not itself a routing protocol. RSVP is designed
to operate with current and future uni-cast and multi-cast 10

routing protocols. An RSVP process consults the local
routing database to obtain routes. In the multi-cast case for
example, the host sends IGMP messages to join a multi-cast
group and then sends RSVP messages to reserve resources
along the delivery paths of that group. Routing protocols 15

determine where packets are forwarded. RSVP is concerned
with only the QoS of those packets as they are forwarded in
accordance with that routing. The present invention delivers
QoS-aware wireless PtMP access to users over a shared
wireless bandwidth, and can take into account priority 20

information provided within packet headers of packets in IP
flows received for transmission over the wireless base
station's bandwidth.

44
PPTP, L2F requires a special L2F-co~liant router (which
can require changes to a LAN or WAN infrastructure), runs
at a lower level of the network protocol stack and does not
require TCP/IP routing to function. I2F also provides addi
tional security for user names and passwords beyond that
found in PPTP.
3. Layer 2 Tunneling Protocol (12TP)

The layer 2 tunneling protocol (12TP) combines specifi
cations from I2F with PPTP. In November 1997, the IE1F
approved the I21P standard. Cisco is putting I2TP into its
Internet operating system software and Microsoft is incor
porating it into WINDOWS NT 5.0. A key advantage of
L2TP over IPsec, which covers only TCP/IP
communications, is that I2TP can carry multiple protocols.
I2TP also offer.; transmission capability over non-IP net
works. I2TP however ignores data encryption, an important
security feature for network administrator.; to employ VPNs
with confidence.
4. IPsec

IP flows using the security encryption features of IPsec
422 are supported by the present invention. The integration
of IPsec 422 flows of WINAAR architecture 400 are
described below in the downlink and uplink directions with
reference to FIGS.17Aand 178, respectively. Wireless base
station 302 supports prioritization of IPsec encrypted d. VPN Networks (Example Optional Protocols) at Network

Layer
Also at network layer 406 are depicted example optional

virtual private network (VPN) protocols point to point
protocol (PPP) 420 and IPsec 422, discussed below.

25 streams by placing the iS firewall at the wireless base station
and unencrypting the datastrcam and packet header infor
mation prior to identification analysis. Through the wireless
transmission medium, the frame stream already includes

A plurality of protocol standards exist today for VPNs.
For exaniple, IP security (IPsec), point-to-point tunneling 30

protocol (PPTP), layer 2 forwarding protocol (12F) and
layer 2 tunneling protocol (12TP). The IE1F has proposed
a security architecture for the Internet protocol (IP) that can
be used for securing Internet-based VPNs. lPsec facilitates
secure private sessions across the Internet between organi- 35
zational firewalls by encrypting traffic as it enters the Inter
net and decrypting it at the other end, while allowing
vendors to use many encryption algorithms, key lengths and
key escrow techniques. The goal of IPsec is to let companies
mix-and-match the best firewall, encryption, and TCP/IP '40

protocol products.
IPsec is designed to link two LANs together via an

encrypted data stream across the Internet.
1. Point-to-Point Tunneling Protocol (PPTP)

Point-to-point tunneling protocol (PPTP) provides an 45

alternate approach to VPN security than the use of IPsec.
Unlike IPsec, which is designed to link two LANs together
via an encrypted data stream across the Internet, PPTP
allows user.; to connect to a network of an organization via
the Internet by a PPTP server or by an ISP that supports 50

PPTP. PPTP was proposed as a standard to the IE1F in early
1996. Firewall vendor.; are expected to support PPTP.

PPTP was developed by Microsoft along with 3Com,
Ascend and US Robotics and is currently implemented in
WINDOWS NT SERVER 4.0, WINDOWS NT WORK- 55

STAflON 4.0, WINDOWS 95 via an upgrade and WIN
DOWS 98, available from Microsoft Corporation of
Redmond, Wash.

The "tunneling" in PPTP refer.; to encapsulating a mes
sage so that the message can be encrypted and then trans- 60

milted over the Internet. PPTP, by creating a tunnel between
the server and the client, can tie up processing resources.
2. Layer 2 Forwarding (12F) Protocol

Developed by Cisco, layer 2 forwarding protocol (12F)
resembles PPTP in that it also encapsulates other protocols 65
inside a TCP/IP packet for transport across the Internet, or
any other TCP/IP network, such as data network 112. Unlike

encryption of the frame data and implements frequency
hopping.

IPsec provides for secure data transmission for, e.g.,
VPNs and eCommerce security. IPsec is compatible with
RFC 2401-2407. IPsec is supported with IPv4 and IPv6, and
also IPsec tunnel mode. Wireless base station 302 security
protocol support includes authentication header (AH) and
encapsulating security payload (ESP). Wireless base station
302 supports IPsec authentication (MOS), encryption
algorithms, and automatic key management (IKE and
ISAKMP/Oaldey). Wireless base station 302 provides for a
choice of transport mode or tunnel mode and selectable
granularity of security service, such as, e.g., providing a
single encrypted tunnel for all traffic between two hosts, or
providing separate encrypted tunnel for each TCP connec
tion between hosts.
e. Transport Layer
1. Transmission Control Protocol/Internet Protocol (TCP/IP)
and User Datagram Protocol/Internet Protocol (UDP/IP)

As already discussed, internet protocol (IP) has become
the primary networking protocol used today. This success is
largely a part of the Internet, which is based on the trans
mission control protocol/internet protocol (TCP/IP) family
of protocols. TCP/IP is the most common method of con
necting PCs, workstations, and server.;. TCP/IP is included
as part of many software products, including desktop oper
ating systems (e.g., Microsoft's Windows 95 or Windows
NT) and LAN operating systems.

The most pervasive LAN protocol to date, has been
IPX/SPX from Novell's NetWare network operating system
(NOS). However, IPX/SPX is losing ground to TCP/IP.
Novell now incorporates native IP support into NetWare,
ending NetWare's need to encapsulate IPX packets when
carrying them over TCP/IP connections. Both UNIX and
Windows NT server.; can use TCP/IP. Banyan's VINES,
IBM's OS/2 and other LAN server operating systems can
also use TCP/IP.

Transport layer four 410 can include transmission control
protocol (TCP) or user datagram protocol (UDP) 427 part of

EX 1017 Page 428

I

US 6,452,915 Bl
45

the standard TCP/UDP/IP protocol family suite of network
ing protocols. As will be discussed further below and as
already mentioned briely above with reference to data
network 142, TCP is a standard protocol for segmenting
traffic into packets, transmitting, reassembling and retrans- 5
mitting packets of information between a source and desti
nation IP address. Referring now to FIG. 7, TCP header
fields 706 can include, e.g., source and destination port
numbecs, window size, urgent pointer, flags (SYN, ISN,
PSH, RST, FIN), and maximum segment size (MSS). Both

10 TCP and UDP provide a capability for the TCP/IP host to
distinguish among multiple applications through port num
bers. TCP can provide for a reliable, sequenced delivery of
data to applications. TCP can also provide adaptive flow
control, segmentation, and reassembly, and prioritization of
data flows. UDP only provides unacknowledged datagram 15

capability. The recently defined real time protocol (RTP),
RFC 1889, can provide real time capabilities in support of
multimedia applications, for example.

TCP uses a window-based flow control. Each TCP source
has a dynamically changing transmit window that deter- 20

mines how many packets it can transmit during each suc
cessive round-trip time (RTI). The TCP source can continue
increasing its transmit window if no packets were lost within
the last RTT. Once congestion is detected, the source TCP
throttles back its transmission, i.e. it "backs-off," via a 25

multiplicative decrease. An increasing width of the so-called
TCP window versus time corresponds to increasingly longer
bursts of packets. TCP's window flow-<:antrolled protocol
exlnbits this effect of increasing throughput and buffer
utilization until terminated by loss, followed by a period of 30

rapid backoff.
TCP works over IP to provide end-to-end reliable trans

mission of data across data network 142. TCP controls the
amount of unacknowledged data in transit by dynamically
reducing either window size or segment size. The reverse is 35

also true in that increased window or segment size values
achieve higher throughput if all intervening network cle
ments have low error rates, support the larger packets, and
have sufficient buffering to support larger window sizes.

46
Referring back to block diagram 600 of FIG. 6, illustrated

therein are the downlink and uplink flows between interface
320 and wireless base station antenna 290d. An IP flow, as
descnbed herein, refecs to a series of related packets of data
transmitted from a source to a destination post computer. IP
flow 630 from data network 142 (over interface 320) com-
prises Internet IP flows 608, VPN IP flows 610, and realtime
IP flows 6U. IP flow 630 is in the downlink direction.

Downlink IP flow analyzer 602 (hereinafter downlink
flow analyzer 602) analyzes Internet IP flow 608, VPN IP
flow 610 and realtime IP flow 6U. IP flow analyzer 602 is
descnbed further below with reference to FIGS. SA and
1SA IP flow analyzer 602 receives packets and analyzes
packet header fields to identify new or existing IP flows. IP
flow analyzer 602 can also characterize QoS requirements
for the IP flow depending on packet header field contents. IP
flow analyzer 602 can classify the IP flow and associate a
given packet with other packets from an existing IP flow and
can group together IP flows with similar QoS requirements.
IP flow analyzer 602 can also present the IP flows to a flow
scheduler.

Downlink PRIMMA MAC IP flow scheduler 604
(hereinafter downlink flow scheduler 604) schedules
received IP flows 608, 610, and 612 for transmission in the
downlink direction. Downlink flow scheduler 604 can pri
oritize the different classes of IP flows. For example, sched-
uler 604 can reserve slots in downlink frames for latency
sensitive IP flows; for FTP type IP flows 608, scheduler 604
can allocate large amounts of bandwidth for file transfer; and
for e-mail type IP flows 608, a lower priority can be given
to packets. In prioritizing allocation of wireless bandwidth
frame slots, downlink flow scheduler 604 can take into
account the fact that an IP flow 630 is a VPN IP flow 610
from a virtual private network (VPN), such as, e.g., a remote
branch office tieing into a corporate network. All traffic from
a VPN can be given a higher priority or specific types of
VPN traffic can request particular service levels. Downlink
flow scheduler 604 can prioritize realtime IP flows 612 such
that their arrival at CPEs 294 at CPE subscnber locations

f. Application Layer 40 306 will occur as required.
Applications layer seven 4U can include applications 426

such as, e.g., over TCP, hypertext transport protocol
(HITP), file transfer protocol (FTP), TELNET remote ter
minal login, and simple simple mail transfer protocol
(SMTP); and over UDP, simple network management pro- 45

locol (SNMP), RPC, NFS, and TFTP. Other applications can
also run over the network stack such as, e.g., a world wide
web browser such as NETSCAPE NAVIGATOR available
from AOL of Reston, Va, a spreadsheet application program
such as LOTUS 123 available from IBM of Armonk, N.Y. or 50

a video teleconferencing program such as MS NetMeeting
available from MICROSOFT of Redmond, Wash. Packets
transmitted from such applications could require special
handling and prioritization to achieve an appropriate end
user QoS. 55
3. PRIMMA-System IP Flow Prioritization
a. Scheduling of Mixed IP Flows

FIG. 6 illustrates block diagram 600 representing sched
uling of mixed IP flows. Block diagram 600 shows the
scheduling of wireless base station 302. The functionality of 60

block diagram 600 includes PRIMMA management of
Internet, VPN, and realtime IP flows. Referring back to FIG.
3A, wireless IP flows arc coming from data network 142 via
network router 140d to interface 320 of wireless base station
302. IP flows are then scheduled for transmission from 65
wireless base st.Ilion 302 via antenna 290d through sub
SCnber location 306d via antenna 292d.

Downlink PRIMMA MAC segmentation and resequenc
ing (SAR) and framer 606 (hereinafter downlink SAR and
framer 606) segments and frames the data packets of
received IP flows into frames for transmission over the
wireless medium to CPEs 294 at CPE subscnber locations
306. For example IP flow 616, 624 can be transmitted to
CPE 294d at CPE subscnber location 306d, via base station
antenna 290d over a wireless medium to subscnber antenna
292d and CPE 294d at CPE subscriber location 306d. In the
present invention, the term wireless medium is used to
broadly encompass not only propagation of RF transmis-
sions over cellular communications, but also RF transmis
sions over satellite communications and cable (e.g., coaxial
cable) communications.

In the uplink direction, IP flow 626 from CPE 294d at
CPE subscnber station 306d is received at wireless base
station antenna 290d. IP flow 626 can include Internet IP
flow 618, VPN IP flow 620 and realtime IP flow 622. Uplink
IP flow analyzer 632 (hereinafter uplink flow analyzer 632)
analyzes Internet IP flow 618, VPN IP flow 620 and realtime
IP flow 622. Uplink flow analyzer 632 is descnbed further
below with reference to FIGS. SB and 1SB. In one
embodiment, the functionality of IP flow analyzer 632
occurs at the CPE 294d at subscnber CPE location 306d and
sends a request to transmit data up to wireless base station
302, including information about an IP flow for which CPE
294d would like to schedule an uplink slot.

111111

l'
'1 ,'

!

ll
EX 1017 Page 429

US 6,452,915 Bl
45

the standard TCP/UDP/IP protocol family suite of nctwork-
ing protocols. As will be discussed further below and as
already mentioned briely above with reference to data
network 142, TCP is a standard protocol for segmenting
traffic into packets, transmitting, reassembling and retrans-
mitting packets of information between a source and desti-
nation IP address. Referring now to FIG. 7, TCP header
fields 706 can include, e.g., source and destination port
numbers, window size, urgent pointer, flags (SYN, ISN,
PSH,RST, FIN), and maximum segment size (MSS). Both
TCP and UDPprovide a capability for the TCP/IP host to
distinguish among multiple applications through port num-
bers. TCP can provide for a reliable, sequenced delivery of
data to applications. TCP can also provide adaptive flow
control, segmentation, and reassembly, and prioritization of
data flows. UDP only provides unacknowledged datagram
capability. The recently defined real time protocol (RTP),
RFC 1889, can provide real time capabilities in support of
multimedia applications, for example.

TCP uses a window-based flow control. Each TCP source
has a dynamically changing transmit window that deter-
mines how many packets it can transmit during each suc-
cessive round-trip time (RIT). The TCP source can continue
increasingits transmit windowifno packets were lost within
the last RTT. Once congestion is detected, the source TCP
throttles back its transmission, ie. it “backs-off,” via a
multiplicative decrease. An increasing width of the so-called
TCP window versus time corresponds to increasingly longer
bursts of packets. TCP’s window flow-controlled protocol
exhibits this effect of increasing throughput and buffer
utilization until terminated by loss, followed by a period of
rapid backoff.

TCP works over IP to provide end-to-end reliable trans-
mission of data across data network 142. TCP controls the

amount of unacknowledged data in transit by dynamically
reducing either window size or segment size. The reverse is
also true in that increased window or segmentsize values
achieve higher throughputif all intervening network ele-
ments have low error rates, support the larger packets, and
have sufficient buffering to support larger window sizes.
f. Application Layer

Applications layer seven 412 can include applications 426
such as, e.g., over TCP, hypertext transport protocol
(HTTP),file transfer protocol (FTP), TELNET remote ter-
minal login, and simple simple mail transfer protocol
(SMTP); and over UDP, simple network managementpro-
tocol (SNMP), RPC, NFS, and TFTP. Other applications can
also run over the network stack such as, e.g., a world wide
web browser such as NETSCAPE NAVIGATORavailable

from AOLofReston,Va., a spreadsheetapplication program
such as LOTUS123 available from IBM ofArmonk, N-Y. or
a videoteleconferencing program such as MS NetMeeting
available from MICROSOFT of Redmond, Wash. Packets
transmitted from such applications could require special
handling andprioritization to achieve an appropriate end-
user QoS.
3. PRIMMA-System IP Flow Prioritization
a. Scheduling of Mixed IP Flows

FIG.6 illustrates block diagram 600 representing sched-
uling of mixed IP flows. Block diagram 600 shows the
scheduling ofwireless base station 302. The functionality of
block diagram 600 includes PRIMMA management of
Internet, VPN,andrealtime IP flows. Referring back to FIG.
3A, wireless IP flows are coming from data network 142 via
Detwork router 140d to interface 320 of wireless base station

302. IP flows are then scheduled for transmission from
Wireless base station 302 via antenna 290d through sub-
Scriber location 306d via antenna 292d.

 20

25

30

35

55

60

65

46
Referring back to block diagram 600 of FIG.6, illustrated

therein are the downlink and uplink flows between interface
320 and wireless base station antenna 290d. An IP flow, as
described herein,refers to a series of related packets of data
transmitted from a source to a destination post computer. IP
flow 630 from data network 142 (over interface 320) com-
prises Internet IP flows 608, VPN IP flows 610, and realtime
IP flows 612. IP flow 630 is in the downlink direction.

Downlink IP flow analyzer 602 (hereinafter downlink
flow analyzer 602) analyzes Intemmet IP flow 608, VPN IP
flow 610 and realtime IP flow 612. IP flow analyzer 602 is
described further below with reference to FIGS. 8A and

15A. IP flow analyzer 602 receives packets and analyzes
packet headerfields to identify new or existing IP flows. IP
flow analyzer 602 can also characterize QoS requirements
for the IP flow depending on packet headerfield contents. IP
flow analyzer 602 can classify the IP flow and associate a
given packet with other packets from an existing IP flow and
can group together IP flows with similar QoS requirements.
IP flow analyzer 602 can also present the IP flows to a flow
scheduler.

Downlink PRIMMA MAC IP flow scheduler 604

(hereinafter downlink flow scheduler 604) schedules
received IP flows 608, 610, and 612 for transmission in the
downlink direction. Downlink flow scheduler 604 can pri-
oritize the different classes of IP flows. For example, sched-
uler 604 can reserve slots in downlink frames for latency
sensitive IP flows; for FTP type IP flows 608, scheduler 604
can allocate large amounts of bandwidth forfile transfer; and
for ¢-mail type IP flows 608, a lower priority can be given
to packets. In prioritizing allocation of wireless bandwidth
frame slots, downlink flow scheduler 604 can take into
account the fact that an IP flow 630 is a VPN IP flow 610

from a virtual private network (VPN), such as, ¢.g., a remote
branchoffice tieing into a corporate network. All traffic from
a VPN can be given a higher priority or specific types of
VPNtraffic can request particular service levels. Downlink
flow scheduler 604 can prioritize realtime IP flows 612 such
that their arrival at CPEs 294 at CPE subscriber locations
306 will occur as required.

Downlink PRIMMA MACsegmentation and resequenc-
ing (SAR) and framer 606 (hereinafter downlink SAR and
framer 606) segments and frames the data packets of
received IP flows into frames for transmission over the
wireless medium to CPEs 294 at CPE subscriber locations

306. For example IP flow 616, 624 can be transmitted to
CPE 294d at CPE subscriberlocation 306d, via base station
antenna 290d over a wireless medium to subscriber antenna
292d and CPE 294d at CPE subscriber location 306d. In the

present invention, the term wireless medium is used to
broadly encompass not only propagation of RF transmis-
sions over cellular communications, but also RF transmis-
sions oversatellite communications and cable(e.g., coaxial
cable) communications.

In the uplink direction, IP flow 626 from CPE 294d at
CPE subscriber station 306d is received at wireless base
station antenna 290d. IP flow 626 can include Internet IP

flow 618, VPN IP flow 620 and realtime IP flow 622. Uplink
IP flow analyzer 632 (hereinafter uplink flow analyzer 632)
analyzes Intemet IP flow 618, VPN IP flow 620 and realtime
IP flow 622. Uplink flow analyzer 632 is described further
below with reference to FIGS. 8B and 15B. In one
embodiment, the functionality of IP flow analyzer 632
occurs at the CPE 294d at subscriber CPE location 306d and
sends a request to transmit data up to wireless base station
302, including information aboutan IP flow for which CPE
294d would like to schedule an uplink slot.

EX 1017 Page 429

US 6,452,915 Bl
47

Uplink PRIMMA MAC IP flow scheduler 634
(hereinafter uplink flow scheduler 634) can schedule the
requested IP flow. In one embodiment, the functionality of
scheduler 634 can be performed at CPE 294d at subscriber
CPE location 306d. In another embodiment, the functional- 5

ity of scheduler 634 can be performed at the wireless base
station 302. An advantage of placing uplink flow scheduler
634 at the wireless base station is that this provides effi
ciencies particularly in a point-to-multi-point architecture. It
is more efficient to have one centralized scheduler at the base 10

station 302 rather than to place multiple uplink flow sched
ulers 634 at CPEs 294 of subscnber CPE locations 306.

48
transmission over a wireless medium to a subscriber CPE
station 294 at subscnber CPE location 306 with an advanced
reservation algorithm. The rules are determined by inputs to
the downlink flow scheduler based on, e.g., a hierarchical
class-based prioritization, a virtual private network (VPN)
directory enabled data priority (such as, for example, direc-
tory enabled networking (DEN)), and a service level agree
ment priority. The advanced reservation algorithm for use in
scheduling, e.g., isochronous traffic, is described with
respect to FIG. 14 below.

SAR and framer 606 breaks up, sequences, and frames the
data packets for wireless transmission from WAP 2911d over
the wireless medium to a wireless transceiver subscnber
antenna 292. Illustrated in block diagram 800 are a number

Uplink PRIMMA MAC segmentation and resequencing
(SAR) 11.Ild framer 636 (hereinafter SAR and framer 636) can
segment and frame the data packets of IP flows into frames
for transmission over the wireless medium from CPE 294 at
CPE subscriber locations 306 to wireless base station 302
for further transmission over data network 142. IP flow 626
from CPE 294d at CPE subscnber location 306d can be
transmitted to base station antenna 290d over a wireless
medium such as, e.g., RF communication, cable modem and
satellite communication, from subscriber antenna 292d
coupled to CPE 294d at CPE subscnber location 306d.

15 of subscnber applications 820a-820e running on devices
such as, e.g., subscriber workstation Ulld (not shown),
connected to subscriber CPE stations 294a-e (not shown)
located at subscnber CPE locations 306a-306e. Each sub-
scriber CPE location 306 can house one or more subscnber

20 CPE stations 294, and each subscriber CPE station 294 can
receive and transmit one or more IP data flows to and from
one or more subscnber workstations UO. In fact, each
application connected to a single CPE station can receive or

b. Summary of Downlink and Uplink Subframe Prioritiza
tion 25

transmit multiple IP data flows.
Referring to subscriber CPE location 306a of FIG. 8A, a

CPE SAR and framer 814a resequences the received data
and transmits it through CPE flow scheduler 816a, and CPE
IP flow analyzer 818a, to subscriber application 820a. CPE
IP flow schedulers 816a-816e can perform the same func-

Block diagram 800 of FIG. SA summarizes an exemplary
downlink analysis, prioritization and scheduling function.
Similarly, block diagram 830 of FIG. 8B summam.es an
exemplary uplink analysis prioritization and scheduling
function. Block diagram 800 and 830 are more detailed
views of the function of block diagram 600 of FIG. 6.

30 lion as downlink flow scheduler 604 for uplink traffic.
Similarly, CPE IP flow analyzers 818a-818e perform the
same function as downlink flow analyzer 602. Beginning with block diagram 800 (of FIG. 8A), it depicts

how IP flow prioritization and scheduling of a shared
wireless bandwidth is performed in the downlink path, from
data network 142---to router 140d-to interface 320-to
wireless base station 302-WAP 290d--ovcr a wireless
medium-to wireless transceiver subscnbcr antenna 292d-

In an embodiment of the invention, in downlink mode,
CPE IP flow schedulers 816a-816e and CPE IP flow ana-

35 lyzers 818a-818e perform no function.

to subscnber CPE station 294d at subscnber CPE location
306d.

IP flow analyzer 602 performs the function of identifying, 40

characterizing, classifying, and presenting data packets to a
downlink frame scheduler. The functions of identifying,
characterizing, classifying and presenting the data packets
are described with respect to FIG. 15A

During identification, it is determined whether a data 45

packet of an incoming IP data flow is known to the system,
i.e. is an "existing IP flow'', or rather is the first data packet
of a new IP data flow, based on fields in a packet header
section. Identification can also include, e.g., determining the
source of the packet in order to extrapolate the type of 50

information in the packet payload.
During characterization, a new data packet (of a new IP

data flow) previously unknown to the system is character
ized based on the packet header information to determine the
QoS requirements for the IP data flow, and to identify the 55
subscnbcr CPE station that will receive the IP data flow.

During classification, the new IP data flow is classified
into a communications priority class. Classification can also
include grouping together packets from different IP flows
having similar characteristics into a single class. Example 60

class groupings of IP flows 630 are illustrated as IP classes
810a-810g.

During presentation, the new IP data flow is initialized
and presented to a downlink flow scheduler 604.

Downlink flow scheduler places the data packets of an IP 65

data flow into a class queue based on class queue priorities,
and using a set of rules, schedules the data packets for

Block diagram 800 illustrates the logical functions per
formed on the downlink path, not necessarily the physical
locations of these functions.

The functions of subscriber applications 820a-820e, and
CPE SAR and framers 814a-814e can be performed in the
actual subscnber CPE stations 294 connected over a wire
less connection to wireless base station 302.

Block diagram 800 lists an exemplary set of priorities SU
used by downlink flow scheduler 604 to place received data
packets into priority class queues. listed are the following
set of example priorities: latency-sensitive UDP prority
8Ua, high priority 8Ub, intermediate priority 812c, initial
hypertext transfer protocol (HTfP) screens priority 8Ud,
latency-neutral priority 8Ue, file transfer protocol (FfP),
simple mail transfer protocol (SMTP) and other e-mail
traffic priority 8Uf and low priority 8Ug. Persons skilled in
the art will recognize that many different priority classes arc
possible, depending upon the QoS requirements of the
end-users. Latency-sensitive UDP priority data can refer to
data that has the highest priority because it is sensitive to
jitter (i.e., time synchronization is important) and latency
(i.e., the amount of time passage between IP data flows in
reverse directions). High priority 8Ub can refer to, e.g.,
premium VPN service, and a high priority SI.A service.
Intermediate priority 8Uc can refer to, e.g., a value VPN
service level and an intermediate level SI.A service. HTfP
screens priority 8Ud can refer to the download of HTfP
data, for example, an initial HTI'P screen, which is impor
tant for making an Internet user feel as if he has a great deal
of bandwidth available for his Internet session. Latency
neutral priority 8I2e can refer to data that is neutral to
latency; such as, e.g., e-mail traffic. FI'P, SM'IP priority 8Uf

:!1111

I,

JI
EX 1017 Page 430

US6,452,915 B1

47
Uplink PRIMMA MACIP flow scheduler 634

(bereinafter uplink flow scheduler 634) can schedule the
requested IP flow. In one embodiment, the functionality of
scheduler 634 can be performed at CPE 2944 at subscriber
CPElocation 306d. In another embodiment, the functional-
ity of scheduler 634 can be performedat the wireless base
station 302. An advantage of placing uplink flow scheduler
634 at the wireless base station is that this provides effi-
ciencies particularly in a point-to-multi-point architecture.It
is moreefficient to have one centralized schedulerat the base

station 302 ratherthan to place multiple uplink flow sched-
wers 634 at CPEs 294 of subscriber CPE locations 306.

Uplink PRIMMA MACsegmentation and resequencing
(SAR)and framer636 (hereinafter SAR and framer 636) can
segment and frame the data packets of IP flows into frames
for transmission overthe wireless medium from CPE 294 at
CPE subscriber locations 306 to wireless base station 302
for further transmission over data network 142. IP flow 626
from CPE 294d at CPE subscriber location 306d can be
transmitted to base station antenna 290d over a wireless
medium suchas, e.g., RF communication, cable modem and
satellite communication, from subscriber antenna 292d
coupled to CPE 294d at CPE subscriber location 306d.
b. Summary of Downlink and Uplink SubFramePrionitiza-tion

Block diagram 800 of FIG. 8A summarizes an exemplary
downlink analysis, prioritization and scheduling function.
Similarly, block diagram 830 of FIG. §B summarizes an
exemplary uplink analysis prioritization and scheduling
function. Block diagram 800 and 830 are more detailed
views of the function of block diagram 600 of FIG.6.

Beginning with block diagram 800 (of FIG. 8A),it depicts
how IP flow prioritization and scheduling of a shared
wireless bandwidth is performed in the downlink path, from
data network 142—1o router 140d—to interface 320—to
wireless base station 302—WAP 290d—over a wireless
medium—to wireless transceiver subscriber antenna 292d—
to subscriber CPE station 294d at subscnber CPE location
306d.

IP flow analyzer 602 performs the function of identifying,
characterizing, classifying, and presenting data packets to a
downlink frame scheduler. The functions of identifying,
characterizing, classifying and presenting the data packets
are described with respect to FIG. 15A.

During identification, it is determined whether a data
packet of an incoming IP data flow is known to the system,
i.e. is an “existing IP flow”, or ratheris the first data packet
of a new IP data flow, based onfields in a packet header
section. Identification can also include, ¢.g., determining the
source of the packet in order to extrapolate the type of
information in the packet payload.

During characterization, a new data packet (of a new IP
data flow) previously unknown to the system is character-
ized based on the packet header information to determine the
QoS requirements for the IP data flow, and to identify the
subscriber CPE station that will receive the IP data flow.

During classification, the new IP data flowis classified
into a communicationspriority class. Classification can also
include grouping together packets from different IP flows
having similar characteristics into a single class. Example
class groupings of IP flows 630 are illustrated as IP classes
8102-810.

During presentation, the new IP data flow is mitialized
and presented to a downlink flow scheduler 604.

Downlink flow scheduler places the data packets of an IP
data flow into a class queue based on class queuepriorities,
and using a set of rules, schedules the data packets for

20

35

40

48
transmission over a wireless medium to a subscriber CPE
station 294 at subscriber CPElocation 306 with an advanced
reservation algorithm. The rules are determined by inputs to
the downlink flow scheduler based on, e.g., a hierarchical
class-based prioritization, a virtual private nctwork (VPN)
directory enabled data priority (such as, for example, direc-
tory enabled networking (DEN)), and a service level agree-
mentpriority. The advanced reservation algorithm for use in
scheduling, ¢.g., isochronous traffic, is described with
respect to FIG. 14 below.

SAR and framer 606 breaks up, sequences, and framesthe
data packets for wireless transmission from WAP 290d over
the wireless medium to a wireless transceiver subscriber
antenna 292. Illustrated in block diagram 800 are a number
of subscriber applications 820e—820e running on devices
such as, ¢.g., subscriber workstation 120d (not shown),
connected to subscriber CPE stations 294a-e (not shown)
located at subscriber CPE locations 3064-3062. Each sub-
scriber CPE location 306 can house one or more subscriber
CPEstations 294, and each subscriber CPE station 294 can
receive and transmit one or more IP data flows to and from
one or more subscriber workstations 120. In fact, each
application connected to a single CPE station can receive or
transmit multiple EP data flows.

Referring to subscriber CPE location 306a of FIG. 8A, a
CPE SAR and framer 814a resequences the received data
and transmits it through CPE flow schcduler 8164, and CPE
TP flow analyzer 818, to subscriber application 8202. CPE
IP flow schedulers 816a-816e can perform the same func-
tion as downlink flow scheduler 604 for uplink traffic.
Similarly, CPE IP flow analyzers 818a—818e perform the
same function as downlink flow analyzer 602.

In an embodimentof the invention, in downlink mode,
CPE IP flow schedulers 816a—-816e and CPE IP flow ana-

lyzers 8182—818e perform no function.
Block diagram 800 illustrates the logical functions per-

formed on the downlink path, not necessarily the physical
locations of these functions.

The functions of subscriber applications 820a-820e, and
CPE SAR and framers 8142—-814¢ can be performed in the
actual subscriber CPE stations 294 connected over a wire-
less connection to wireless base station 302.

Block diagram 800 lists an exemplary sctofprioritics 812
used by downlink flow scheduler 604 to place received data
packets into priority class queues. Listed are the following
set of example priorities: latency-sensitive UDP prority
812a, high priority 8126, intermediate priority 812c, initial
hypertext transfer protocol (HTTP) screens prionty 812d,
latency-neutral priority 812e, file transfer protocol (FTP),
simple mail transfer protocol (SMTP) and other e-mail
traffic priority 812f and lowpriority 812g. Persons skilled in
the art will recognize that manydifferentpriority classes are
possible, depending upon the QoS requirements of the
end-users. Latency-scnsitive UDPpriority data can refer to
data that has the highest priority because it is sensitive to
jitter (ie., time synchronization is important) and latency
(.c., the amountof time passage between IP data flows in
reverse directions). High priority 8126 can refer to, e.g.,
premium VPN service, and a high priority SLA service.
Intermediate priority 812c can refer to, ¢.g., a value VPN
service level and an intermediate level SLA service. HTTP
screens priority 812d can refer to the download of HTTP
data, for example, an initia! HTTP screen, which is impor-
tant for making an Internet userfeel as if he has a great deal
of bandwidth available for his Internet session. Latency-
neutral priority 812e can refer to data that is neutral to
latency, such as, ¢.g., ¢-mail traffic. FTP, SMTP priority B12f

EX 1017 Page 430

iN

;

111111

US 6,452,915 Bl
49 so

data includes data that is insensitive lo latency and jitter but In another embodiment, however, their respective func-
requires a large amount of bandwidth to be downlo~ed lions can be perfonned in the actual subscriber CPE stations.
accurately because of the size of a transmission. Finally, low In the reservation scheduling function of this
priority data 812g can refer to data that can be transmitted embodiment, each subscriber CPE station requests the res-
over a long period of time, as when one network device 5 ervation of frame slots for its uplink transmissions using a
transmits its status information to another network device on reservation request block (RRB) of the TDMA airframe,
a 24 hour basis. described further below with reference to FIGS. 12A-120,

Block diagram 830 (of FIG. 8B) depicts how IP flow before it is pennitted to communicate in the uplink path with
analysis, prioritization and scheduling of the shared wireless interface 320. After the reservation request, uplink flow
bandwidth is performed in the uplink path, from subscriber scheduler 634 transmits, as indicated by line 640, to the
CPE station 2!14d-to wireless transceiver subscnlier 10 requesting subscriber CPE station 294 a description of one
antenna 292d-over the wireless medium-to WAP 290d- or more slots which the CPE station 294 can use to transmit
to wireless base station 302-to interface 320-to router its uplink data packets from source subscnber workstations
140d--to data network 140. 120, over the wireless medium, which are directed toward

Block diagram 830 includes uplink flow analyi:er 632, destination host workstations 136, over data network 142.
uplink flow scheduler 634 and uplink SAR and framer 636. 15 c. Service Level Requests
These components are sinillar in function to downlink: flow FIG. !I illustrates how PRIMMA MAC IP flow scheduler
analyzer 602, downlink: flow scheduler 604 and dowuliok 604 can also take into account a Service l.J:vel Agreement in
SAR and framer 606, but instead analyze, schedule and prioritizing frame slot scheduling and resource allocation.
sequence and frame data packets being transmitted from FIG. !I depicts SLA-mediated IP flow management diagram
subscnlier WOikstations 120 of subscriber CPE stations 2114 20 900 including prioritization of uplink traffic being traosmit-
(at subscnber CPE locations 306a-306e) over the wireless led to wireless base station 302 from CPE subscnlier loca-
medium, and transmit the data packets to interlace 320 for lions 306a, 306b, 306c and 306d. For example, suppose
transmission to data network 142. subscribers of telecommunications services have subscnbed

Illustrated in FIG. SB are subscriber applications to one of four SLA levels, Pl 902a, P2 904a, P3 906a and
820a-820e, which are the same applications shown in FIG. 25 P4 908a. In the illustrated example, suppose IP flows 902b
8A. Also shown therein are CPE IP flow analy:r.ers are being sent to a subscnber at CPE location 306a and have
8l!la-81!le, CPE IP flow schedulers 817a-817e, and CPE an SIA priority level of Pl 902a. Similarly, IP flows 904b,
SAR and framers 81Sa-81Se. These components function 906b and 908b arc being sent IO subscnliers at CPE locations
analogously to subscriber applications 820a-820e, CPE IP 306b, 306c and 306d and have SIA priority levels of P2
flow analyzers 818a-818e, CPE IP flow schedulers 30 904a, 906a and 908a, respectively. PRIMMA MAC sched-
816a-816e, and CPE SAR and framers 814a-814e. uler 604, 634 of wireless base station 302 can take into
However, these components function to analyze, schedule account SLA-based priorities in allocating available band-
and transmit IP flows in the uplink path, from subscriber width to the subscriber CPE IP flows 902b, 904b, 906b and
CPE stations (at subscriber CPE locations 306a-306e) to 908b. In the example illustration, IP flow 902b can be
wireless base station 302 for routing to destination host 3S allocated frame slot 902c based on SIA priority 902a.
workstations 136 (not shown). Frame slots 904c, 906c and 908c can be similarly scheduled

As noted, multiple applications can be connected to one taking into account SIA priorities. Uplinked IP flow traffic
or more subscnber CPE stations at suhscnlier CPE locations can then be transmitted no to data network 142.
306a-306e. To prevent rollisions between multiple appli- SLA-based prioritization can provide a valuable means
cations ronteoding for a. fixed number of bandwidth alloca- 40 for a telecommunications provider to provide differentiated
lions fur uplink communication, in one embodiment of the services to a variety of customers. For example, it is possible
present invention a reservation scheduling system is used. that low priority traffic from a subscnber wbo has plll'Chased
The bandwidth allocations for data packets are called frame a premium SIA service agreement, can be scheduled at a
slots, and are described below with respect to FIGS. higher priority than high priority traffic from a subscnber
12A-12Q, 14, 16A and 16B. 45 which has only signed up for a value level or low cost SLA

Block diagram 830 illustrates the logical functions per- service priority.
formed on the uplink path, not necessarily the physical d. Identification of Headers
locations of these functions. FIG. 7 illustrates packet header field infonnation 700

For example, in one embodiment, the analysis function of which can be used to identify IP flows and the QoS require-
IP flow analyzer 632 which identifies a packet for uplink, so ments of the IP flows. Specifically, IP header fields 702 can
charactcrii:es and classifies the packet, can occur in a pre- include, e.g., sou= and destination IP addresses, helpful in
ferred embodiment in CPE IP flow analyzers 81!la-8l!le at providing application aware preferential xesonrce allocation;
the CPE subscriber stations 2!14o-2!14e (not shown) at IP type of service {TOS), a useful field for assisting
subscriber locations 306a-306e. PRIMMA MAC in classifying a packet or IP flow; IP time

Also, one embodiment, the functions of CPE IP flow 55 to live (TIL), a useful field for anticipating application
schedulers 817a-817f for scheduling uplinks subframe slots packet discards; and protocol fields which can be used in
can be performed in wireless base station 302 for each of the identifying IP flows.
subscriber CPE stations 294 connected over the wireless Packet header information 700 also includes UDP header
connection to wireless base station 302. fields 704. Included in UDP packet header fields 704 are

In Ibis embodiment, the scheduling function is performed 60 sou= and destination port numbers.
at uplink flow scheduler 634 at wireless base station 302 Packet header information 700 also includes TCP header
based on classification information provided to the wireless fields 706. Included in TCP packet header fields 706 are
base station 302 through an uplink IP flow reservation soUICC and destination port numbers; TCP sliding window
request from the CPE station. By placing all scheduling size; urgeot pointer; SYN, ISN, PSH, RST and FIN flags;
function at the wireless base station 302, overall system 65 and maximum :segment size (MSS).
quality of service can be optimized by centralizing the Packet header information 700 also includes realtime
control of scheduling. prolocol RTP and RTCP header fields 708.

EX 1017 Page 431

US 6,452,915 Bl
51

It would be apparent to those skilled in the art that other
packet header fields could be useful in identifying an IP flow.
The fields have been given by way of example and are not
intended to be an exhaustive list of useful packet header
fields. Other fields, such as, e.g., fields from IP v6 relating
to differentiated services (DIFF SERV) could also be useful
to IP flow analyzer 602 and 632 of wireless base station 302.

e. TOMA MAC Air Frame

FIGS. 12A-120 illustrate an exemplary time domain
multiple access (IDMA) media access control (MAC) trans
mission air frame. The fields dcscnlled herein merely refer
to one embodiment for the present invention, and are not
limiting lo the numerous implementations of the present
invention.

FIG. 12A illustrates an entire TDMA MAC transmission
air frame. Air frame 1202 includes downstream transmission
subframe 1202 and upstream transmission subframe 1204.

The IDMA MAC air frame of FIG. 12A includes
upstream acknowledgment block (UAB) 120(;, acknowledg
ment request block (ARB) 1208, frame descriptor block
(FOB) 1210, data slot (DS), 12:lla, DS2 1212b, DS3 1212c,
DS 4 12lld, DS 5 1212e, DS 6 l2l2f, DS., 1212g. DS8 1212h,
DSg 1212~ DS 10 1212.i DS 11 1212k, DS_ 1212~ down
stream acknowledgment block (DAB) 1214, reservation
request block (RRB) 1216, UA1 1218a, UA.z 1218b, U.Ag
1218c, UA4 1218U, UAs 1218e, UA,. 1218/, UA, 1218g,
UA,. 1218h, U.Ag 1218~ UA 10 1218j, UA11 1218k, UA 12
12181, and UA,. 1218m.

In the embodiment described herein, the type of TDMA
used is IDMNtime division duplex (IDMA/TDD). In
TOMA/IDD, for one interval of time, transmission is from

5

10

15

20

25

30

MAC
Air

Frame Slot.,

0 1-3

0 0

0 0

0 0

0 upto
16

0 0

52

TABLE 5-continued

Bloclc/
SubF111Jlle Name Description

ODB/ Opcratioll!I OA&MP data from
Upstream Data Block ~

acquenccd by
a mbscriber CPE
,tation per fmnc

UAB/ Up1lrcam Ack:nowle.dgmcnta
Down.ltrcam Acknowledgment from wireless

Block hue atation
lo aubscribcr CPE
atalion, of ma:ipt of
upstn:am ,lots in
• previous l!Ubframe

ARB/ Aclmowlcdgment Aclmowlcdgment» of
Downstream Request Block oubsctibcr CPE

requeata of lni\'Ulg
received reaervation
requeatA in a prcviou.a
oubframe

FD/ F'llmc Descriptor Deacribca the contents
Downatream Block for of lhc down11trea.m

current framo lmllmiuion oubframc
DS1-DS1J Downstream Slot Daill llota in the

Dawnatream Tunsmiooion down.ctrcam aubframe,
whi.ch i.a vmable
per fn:me (op to 16 in
one embodiment)

CCB/ Comm2nd and OA&MP commands
Down.,tream COntrol Block acqucnoed by

IJllblcribcr.,
per munc and frame
aynchrnniution

a CPE station 294 to a wireless base station 302, and in
another instance of time, it i,.., from a wireless base station 35

302 to a CPE station 194. Any number of slots can be used
for the uplink or for the downlink. The number of slots is
dynamically asfilgned for both the uplink and the downlink.
However, because the downlink data rate is usually higher
than the uplink data rate, more slots are assigned to the 40

downlink. Although distnllution of slots between the down
link and uplink is dynamically assigned, the total number of
slots for a frame is fixed in this embodiment.

FIG. 12B is a symbolic illustration of an exemplary
TDMA/IDD air frame 1220 of tbe present invention.
IDMA/TDD air frame structure 1220 depicts a frame of
frame size 1228, which can be, e.g., 16 slots or 32 slots. It
would be apparent to those skilled in the art that frame
structures 1220 having other numbers of slots could be used
without departing from tbe spirit and scope of the invention.
Frame structure 1220 includes, e.g., various TDMA slots
1222a, 1222~ 1222c and 1222d. Within each TDMA slot
1222tH:, can be included a data slot 1224a, 1224b, 1224c
and 1224d which in turn can contain a control packet 1226a,
or a data packet 1226b-d, respectively.

MAC
Air

Frame

0

0

0

Slot..

l-8

l-8

up to
16

TABLES

Blod:/
SubF..me NlllIIC

DAB/ Downmcam
Upatn:am Aclcnowledgment

Request Block

RRB/ Rcserwation
Upatn:am Request Block

US1-US,J Upstream Slot
Upsueam Trani!mis1ions

Ack:nowlcdgmcnts
from .lllbt!cribcra CPI!
,t.ation:t lo wireleos
bue station of
receipt of do,..,,.tn:am
•Iota in previous
downstream aubmune
Requesr. from mb
ocribcr Cl'E oaitioll!I
for trnnamiMion
rc.,ervatio:M in
later !mmes
with dynamu:ally
adjuatablc number of
contentiollll •lots
Data alolll in the up
atn:am IIUbfmme,
which i.a a vnriablc
number per frame
(up lo 16 in one
embodiment)

45 tA; :tfu~~=n: ~ ~so! t~~=~:~
as noted, using tbe resource allocation methodologies of the
present invention it is poss11lle to dynamically allocate a
subset oftbe entire number ofIDMAslots 1222 to an uplink
direction, where all tbe uplink TDMA slots are known

50 collectively as an uplink subframe or an upstream transmis
sion subframe 1204, and to dynamically allocate a subset of
the entire number of '.IDMA slots 1222 to a downlink
direction, where all the downlink TOMA slols arc known
collectively as a downlink subframe or an downlink trans-

55 mission subframe 1202. Using the resource allocation
method of the present invention, it is pOSSillle to allocate all
TDMA slots 1222 to a given upstream or downstream
direction. It is further pOSMble to allocate all data slols 1224
to a single CPE station. 'The wireless base station 302 has a

60 state machine, and knows the state of each CPE station 294
having a connection therewith (i.e., having an IP flow
recognized by the wireless base station 294).

Downstream transnrission subframe 1202 and upstream
transmission subframe 1204 arc descnlled in detail below.

65 1. Downstream Transmilision Subframe
FIG. 12C depicts an exemplary downstream transmission

subframe 1202. The downstream transmission subframe of

i•
''
j

I\
·I
i',

EX 1017 Page 432

US 6,452,915 B1

51
It would be apparentto those skilled in the art that other

packet headerfields could be useful in identifying an IP flow.
The fields have been given by way of example and are not
intended to be an exhaustive list of useful packet beader
fields. Other fields, such as, ¢.g., fields from IP v6 relating
to differentiated services (DIFF SERV) could also be useful
to IP flow analyzer 602 and 632 ofwireless base station 302.
e. TDMA MAC Air Frame

FIGS. 12A-120 illustraic an exemplary time domain
multiple access (TDMA) media access control (MAC)trans-
mission air frame. The fields described herein merely refer
to one embodiment for the present invention, and are not
limiting to the numerous implementations of the present
invention.

FIG.12A illustrates an entire TOMA MACtransmission
air frame. Air frame 1202 includes downstream transmission
subframe 1202 and upstream transmission subframe 1204,

The TDMA MAC air frame of FIG. 12A includes

upstream acknowledgment block (UAB) 1206, acknowledg-
ment request block (ARB) 1208, frame descriptor block
{FDB)1210,data slot (DS), 12124, DS, 1212b, DS, 12126,
DS, 1212¢, DS, 1212¢, DS, 1212f DS, 1212g, DS, 1212h,
DS, 1212, DS,, 1212j, DS,, 1212k DS, 12121 down-
stream acknowledgment block (DAB) 1214, reservation
request block (RRB) 1216, UA, 12184, UA, 12185, UA,
1218c, UA, 1218U, UA, 121Be, UA, 1218f UA, 1218¢,
UA, 1218h, UA, 1218% UA,, 1218), UA,, 1218 UA,,
1218), and UA, 1218m.

In the embodiment described herein, the type of TDMA
used is TDMA/time division duplex (TDMA/TDD). In
TDMA/TDD,for onc interval of time, transmission is from
a CPE station 294 to a wireless base station 302, and in
another instance of time, it is from a wireless base station
302 to a CPE station 194. Any numberof slots can be used
for the uplink or for the downlink. The number ofslots is
dynamically assigned for both the uplink and the downlink,
However, because the downlink data rate is usually higher
than the uplink data rate, more slots are assigned to the
downlink. Although distribution of slots between the down-
link and uplink is dynamically assigned, the total number of
slots for a frameis fixed in this embodiment.

 TABLE 5

MAC
Air Block/

Frame Slots SubFmme Name Pescription
0 1-8 DAB/=Downstream Acknowledgmesis

Upstream «Acknowledgment from subscribers CPE
Request Block _—_atations to wirelesshase station of

receipt of downstream
slots in previousdownstream subframe

Q 1-8 RRBY Reservation Requests from sub-
Upstream Request Block —seriber CPE stationsfor transmission

Teanrvations in
later frames
with dynamically
adjustable number ofcontentions slots

Q upto US,-US,.f Upstream Slot Data slots in the up-
16 Upstream ‘Transmissions wiream subframe,which is a variable

number per frame
(up to 16 in one
embodiment)

5

as

50

SS

52

TABLE 5-continued

MAC
Air Block

Frame Slots SubFramc Name Description

0 1-3 ODB/ Operations OASMP daia fom
Upstream Data Block subscribers

sequenced by
2 subscriber CPE
station per frame

oO 0 UAB/=Upstream Acknowledgments
Downstream Acknowledgment from wirelessBlock base station

to subscriber CPE
stations of receipt of
upsicam slots in
a previous subframe

Q Q ARB/ Acknowledgment Acknowledgments of
Downstream Request Block subscriber CPE

requests of havingreceived reservation
tequeats in 2 previoussubframe

9 6 FD) Frame Descriptor Describes the contentsDownstream Block for of the downstream
current frame tranamission. rabframe

Q upto DS,-DS,,{ Downstreem Siot Date slots in the
16 Downstream Transmission downsteam subframe,

which is variable
pet frame (up to 16 in
one embodiment)

Q Q CCB/ Conmumandand OA&MP commands
Downstream Control Block sequenced bysubscribers

per fame and frame
syachronization

FIG. 12B is a symbolic illustration of an exemplary
TDMA/TDD air frame 1220 of the present invention.
TDMA/TDD air frame structure 1220 depicts a frame of
frame size 1228, which can be, e.g., 16 slots or 32 slots. It
would be apparent to those skilled in the art that frame
structures 1220 having other mumbers of slots could be used
without departing from the spirit and scope of the invention.
Frame structure 1220 includes, ¢.g., various TDMA slots
1222a, 1222b, 1222c and 1222d. Within cach TDMAslot
1222a-c, can be included a data slot 1224a, 1224b, 1224c
and 1224d which in tum can contain a control packet 12262,
or a data packet 12265-d, respectively.

In the present embodiment the sum of all TDMA slots
1222 within a frame of frame size 1228 is fixed. However,
as noted, using the resource allocation methodologies of the
present invention it is possible to dynamically allocate a
subset of the entire number ofTOMAslots 1222 to an uplink
direction, where all the uplink TDMA slots are known
collectively as an uplink subframe or an upstream transmis-
sion subframe 1204, and to dynamically allocate a subset of
the entire number of TDMA slots 1222 to a downlink
direction, where all the downlink TDMA slots are known
collectively as a downlink subframe or an downlink trans-
mission subframe 1202. Using the resource allocation
method of the present invention,it is possible to allocate all
TDMA slots 1222 to a given upstream or downstream
direction. It is further possible to allocate all data slots 1224
to a single CPE station. The wireless base station 302 has a
state machine, and knows the state of cach CPE station 294
having a connection therewith (i.c., having an IP flow
recognized by the wireless base siation 294).

Downstream transmission subframe 1202 and upstream
transmission subframe 1204 are described in detail below.
1. Downstream Transmission Subframe

FIG. 12C depicts an exemplary downstream transmission
subframe 1202. The downstream transmission subframe of

EX 1017 Page 432

US 6,452,915 Bl
53 54

FlG. 12C includes transmitter turnaround time 1230, UAB FDB 1210 includes a preamble subslot 1236a, number of
1206, ARB 1208, FDB 1210, a variable number of DSs per downstream slots subslot, 1236b, IP-flow ID for upstream
frame (e.g., 16) 1212, and command and control block reservation 1 subslot 1236c, IP-flow ID for upstream reser-
(CCB) 1232. The DS transmissions 1212 include DS1 vation 2 subslot 1236d, IP-flow ID for upstream reservation
1212a, DS2 1212b, D~ 1212c, DS4 l2l2d, DS5 1212e, DS6 5 n subslot 1236e, and contention slot count for next upstream
1212£ DS7 121:,E, DS8 1212h, DS9 1212i, DS10 1212j, DS11 subframe subslot 1236.f.
1212k, and DS,,, 12121. In FDB 1210, the fields are defined as follows: preamble

FIG. l2D depicts an exemplary UAB 1206 of a down- subslot 1236a includes data used for link integrity purposes;
stream transmission subframe 1202. The downstream trans- number of downstream slots subslot 1236b includes the
mission subframe of FIG. l2D includes UAB 1206, ARB number of downstream slots (DSs), IP-flow ID for down-
1208, FDB 1210, DS1 1212a, DSz 1212b, DS3 1212c, DS4

10 stream reservation subslot 1236c includes an IP flow iden-
1212d, DS5 1212e, DS6 1212!, DS7 1212g, DS,.1212h, DS9 tification for DS 1 ; IP-flow ID fur downstream reservation
1212i, DS10 1212j, DS11 1212k, DS., 1212l and CCB 1232. subslot 1236d includes a second IP flow identification for

UAB 1206 includes subslots UAB1 1206a, UAB2 1206b, DS~ IP-flow ID for downstream reservation n subslot 1236e
UAB3 1206c, UAB,. 1206d, UAB5 1206e, UAB6 1206!, includes another IP flow identification for DS.,; contention
UAB7 1206g, and UAB,. 1206h. UAB 1 1206a includes a 15 slot count for next upstream subframe subslot 1236/ pro-
preamble 1234a, subscriber ID 1234b, IP-flow identifier vides a count for the next available upstream subframe.
1234c, slot sequence number 1234d, and cyclical redun- FIG. 12G depicts an exemplary downstream MAC pay-
dancy check (CRC) 1234e. load data unit (PDU). The downstream MAC PDU includes

1be UAB field is an acknowledgment by a wireless base information regarding the actual structure of the payload.
station 302 to a CPE station 294 that the slots (e.g., 20 The downstream MAC PDU of FIG. 12G includes MAC
USi-VS 1J of an upstream transmission subframe have been linked list sequence number 1238a (the sequence number of
received. The reader is referred to the discussion of the the MAC linked list), reservation request index number
upstream transmission subframe below. 1238b (an index to the downstream IP flow), compressed

In subslot UAB1 1206a of ARB 1206: preamble 1234a IP-flow identifier 1238c, compressed IP-flow priority and
includes data used for link integrity purposes; subscnber ID 25 type 1238d (identifying the priority and type of a com-
1234b identifies which CPE station 294 is making the pressed IP flow), slot payload 1238e (the amount of data in
reservation request; IP-flow identifier 1234c identifies the IP I downstream data slot), and CRC 1234e (error checking
data flow; quality of service data class 1234a identifies the information).
priorityclassoftbeIPdataflow,ifknowntotbeCPEstation FIG. 12H depicts an exemplary CCB of a downstream
294; IP-flow priority and type 1234b is an indicator of a new transmission subframe 1202. 1be CCB comprises OAM&P
IP data flow; and CRC 1234e, which stands for cyclic 30

redundancy code, provides enor checking bits for subslot commands sequenced by subscnber CPE station 294 per
RRB1 1216a. frame and frame synchronization. CCB 1232 includes a

FIG. 12E depicts an exemplary ARB 1208 of a down- mode command subslot 1240a (includes options of what
stream transmission subframe 1202. The downstream trans- mode the CPE station is to take), profile command subslot
mission subframe of FIG. 12E includes UAB 1206, ARB 35 1240b (includes specific system commands, such as a patch
1208, FDB 1210, DS1 1212a, DSz 1212b, D~ 1212c, DS4 for a module), control data :index subslot 1240c (:including
1212d, DS5 1212e, DS6 1212/, D~ 1212g. DS,. 1212h, DS9 download locations and memory requirements or other
1212i, DS10 1212j, DS11 1212k; DS,,, 1212l and CCB 1232. information needed by the CPE stations to download data),

ARB 1208 includes subslots ARB1 1208a, ARB2 1208b, datablock 1 subslot 1240d (includes specific system data),
ARB3 120&:, ARB,. 1208d, ARB5 1208e, ARB6 1208!, 40 datablock 2 subslot 1240e (same), datablock n subslot ~
ARB7 1208g. and ARB,. 1208h. ARB 1 1208a includes a (same), and CRC subslot 1234e (error checking
preamble 1234a, subscriber ID 1234b, IP-flow identifier information).
1234c, slot sequence number 1234d, and CRC 1234e. 2. Upstream Transmission Subframe

The ARB field is an acknowledgment by a wireless base FIG. 121 depicts an exemplary upstream transmission
station 302 to a CPE station 294 that the wireless base -45 subframe 1204. The upstream transmission subframe of
station 302 has received an upstream reservation request FIG. 121 includes transmitter turnaround time 1230, DAB
from the CPE station 294. The reader is referred to the 1214, RRB 1216, a variable number of USs per frame, e.g.,
discussion of the upstream transmission subframe below. 16, 1218, and operations data block (ODB) 1242, consisting

In subslot ARB1 1208a of ARB 1208: preamble 1234a of OAM&P data from subscribers, sequenced by subscnber
includes data used for link integrity purposes; subscnber ID 50 per frame. Toe US transmissions 1218 include US1 1218a,
1234b identifies which CPE station 294 is making the US2 1218b, US3 l2l8c, US4 l2l8d, US5 1218e, US6 1218/,
reservation request; IP-flow identifier 1234c identifies the IP US7 1218g; US8 1218h, USg 1218i, US10 1218j, US11
data fiow;quality of service data class 1234a identifies the 1218k; US12 1218l and US,, 1218m.
priority class of the IP data flow, if known to the CPE station FIG. UK depicts an exemplary RRB 1216 of an upstream
294; IP-flow priority and type 1234b is an indicator of a new 55 transmission subframe 1204. The upstream transmission
IP data flow; and CRC 1234e, which stands for cyclic subframe of FIG. 12K also shows DAB 1214, RRB 1216,
redundancy code, provides error checking bits for subslot US11218a, US2 1218b, US3 l2l8c; US,.1218d, US5 1218e,
~~ ~~~~~~~~~~

FIG. 12F depicts an exemplary FDB 1210 of a down- US11 1218k, US12 1218; US,, 1218m, and ODB 1242.
stream transmission subframe 1202. The downstream trans- 60 RRB 1216 includes subslots RRB 1 1216a, RRB2 1216b,
mission subframe of FIG. 12F includes UAB 1206, ARB RRB3 1216c, RRB4 1216d, RRBs 1216e, RRB6 1216!,
1208, FDB 1210, DS1 1212a, DSz 1212b, D~ 1212c, DS4 RRB7 1216g, and RRB'! 1216h. RRB1 1216a includes a
1212d, DS5 1212e, DS

6
1212!, DS7 1212g-, DS,. 1212h, DS9 preamble 1234a, sub~ber ID 1234b, IP-flow identifier

1212i, DS10 1212j, DS
11

1212k, DS,,. 12124 and CCB 1232. 1234c, quality of service data class 1244a, IP-flow priority
The FDB includes detailed information pertaining to the 65 and type 1244b, and CRC 1234e.

slots (e.g., DS2-Dg 16) of the downstream transmission A CPE station 294 uses one of the subslots (RRB1 1216a,
subframe. RRB2 1216b, RRB3 1216c, RRB,. 1216d, RRB 5 1216e,

EX 1017 Page 433

,r·

US 6,452,915 Bl
55

RRB6 1216!, RRB7 1216g, and RRB" 1216h) of RRB 1216
to make a reservation request, which is a request by the CPE
station 294 for bandwidth in a future uplink transmission
subframe. If two CPE stations 294d, 294e attempt to access
the same subslot in RRB 1216, which can occur because 5

their pscudorandom number generators select the same
subslot, then a "collision" occurs and the data is not readable
by wireless base station 302. The two CPE stations 294d,
294e are required to try again.

56
wireless, such as, e.g., radio, bandwidth in response to QoS
requirements of IP-flows than any prior method.

As noted, RRB1 1216a includes the following fields: a
preamble 1234a, subscriber ID 1234b, IP-flow identifier
1234c, quality of service data class 1244a, IP-flow priority
and type 1244b, and CRC 1234e. In subslot RRB 1 1216a of
RRB 1216: preamble 1234a includes data used for link
integrity purposes; subscriber ID 1234b identifies which
CPE station 294 is making the reservation request; IP-flow
identifier 1234c identifies the IP data flow;quality of service
data class 1234a identifies the priority class of the IP data
flow, if known to the CPE station 294; IP-flow priority and
type 1234b is an indicator of a new IP data flow; and CRC
1234e, which stands for cyclic redundancy code, provides
error checking bits for subslot RRB 1 1216a. Optionally, an
additional field can be provided in subslot RRB 1 1216a
which includes the number of data packets CPE station 294
will transmit in its IP data flow.

Reservation request slots can be provided on an IP flow 10

basis. Rather than allocate a reservation request slot to every
CPE subscriber station, a default number (e.g., 5) are made
available as contention slots. If collisions are detected by a
greater number of requesting subscribers than the number of
reservation request slots, then the slots allocated can be 15
dynamically varied to provide additional RRB slots.
(Collisions are analogous to CSMNCD collisions in
Ethernet, where colliding devices on an Ethernet network
attempt to retransmit over the bus architecture by retrying at

FIG. l2J depicts an exemplary DAB 1214 of an upstream
transmission subframe 1204, where a CPE acknowledges

20 receipt of a slot from base. The DAB is an acknowledgment
from a subscnber CPE station 294 to the wireless base

a random time.)
The radio contention method of the present invention

builds upon aspects of the "Slotted Aloha" method devel
oped by L. Roberts in 1972, as a refinement of the "Aloha"
method developed by N. Abramson in the early 1970's, and
so-called bit-mapped reservation protocols. Like the Slotted 25

Aloha method, the present invention provides for discrete
slots for transmission of data, rather than allowing the
transmission of data at any point. However, instead of
transmitting the actual "payload" of data, the present inven
tion advantageously transmits only a "reservation request" 30

describing the actual data payload contents. Also, the num
ber of slots for reservation requests can advantageously be
dynamically altered according to the frequency of detected
collisions in the recent past.

Unlike various Carrier Sense Multiple Access (CSMA) 35

techniques previously used in wireless, both persistent and
non-persistent, the present method advantageously does not
require that subscriber CPE station 294d "sense" the carrier
(the radio channel) before transmission. Instead, a subscriber
CPE station 294d selects a "subslot'' to transmit through a 40

pseudo-random number selection, without a prior carrier
sense. If a collision is detected, the subscriber CPE station
294d will try again in the next frame using the pseudo
random number process.

Instead of using a bit-map protocol for the resolution of 45

contention, as is used in some reservation protocols, the
wireless base station can explicitly grant reservation
requests. The standard bit-map protocol can require that all
stations can receive signals from all other stations so that the
subsequent order of transmission can be implicitly deter- 50

mined from the resulting bit-map pattern. The present
method advantageously does not require the receipt of
~rvation request signals from other CPE subscnber sta
tion,, 294d. This is advantageous because, at higher frequen
<:ies (such as, e.g., 2 GHz to 30 GHz) where there may be 55

line-of-sight and distance constraints, the requirement for
receipt of the transmissions of other CPE subscriber stations
2?4d could unduly constrain the topology, locations and
distances of CPE subscriber stations.

Advantageously, by allowing the wireless base station 60

302 to explicitly grant the requested reservation, other
factors such as relative or dynamie CPE subscnber station
294d (or IP-flow) priority factors can be considered.
Therefore, the present invention's reservation protocol with
a dynamically adjustable number of contention subslots and 65

explicit wireless base station reservation grants, allows a
more optimal means of providing for the allocation of

station that downstream slots have been received in a
previous subframe.

The DAB 1214 includes subslots DAB 1 1214a, DABz
1214b, DAB.a 1214c, DAB 4 1214d, DAB 5 1214e, DAB 6

1214!, DAB 7 1214g, and DAB" 1214h. Subslot DAB 1

1214a includes a preamble 1234a, subscriber ID 1234b,
IP-flow identifier 1234c, slot sequence number U34d, and
CRC 1234e. (These fields have the same information as
descnbed with respect to the RRB.)

FIG. UL depicts an exemplary MAC PDU upstream slot.
The MAC PDU upstream slot of FIG. 12L includes a CPE
linked-list sequence number 1246, reservation request index
number 1236b, compressed IP-flow identifier 1238c, com
pressed IP-flow priority and type 1238d, slot payload I238e,
and CRC 1234e. The upstream MAC PDU is similar to the
downstream MAC PDU, but is used instead for upstream
subframe payload information.

FIGS. UM, UN and 120 depict an exemplary ODB 1242
in detail. This field is used to store information regarding the
connection between the wireless base station 302 and the
CPE station 294. ODB 1242 includes preamble 1234a
(including link integrity data), subscriber ID 1234b
(identifies which CPE station 294 is making the reservation
request), system state U48a (information about the status of
the CPE station 294), performance data 1248b (how full the
buffer statistics, cpe processor performance statistics, sys
tem state), antenna data 1248c (information pertaining to the
antenna), CRC 1234e (error checking information) and
synchronization pattern 1248d (error checking information).

Referring to FIG. UM, system state subslot 1248a com
prises system mode I2S0a (the mode of the CPE station,
e.g., command mode, operations mode, or initialization
mode of the system), system status I2S0b (the status of the
CPE station), system resources I2S0a (the mode of the CPE
station), system power 1250b (the mode of the CPE station),
system temperature 1250a (the temperature of the CPE
station). The CPE stations 294 are required to take turns
using ODB 1242 to transmit their information.

Referring to FIG. UN, performance data 1248a com
prises the number of comrepeats 1252a (the number of
repeats of communication attempts), number of frameslips
I2S2b (the number of frames that have slipped), waitstate
index 1252c (an index to the waiting state).
f. Exemplary Class-based Frame Prioritization

FIG. 13 shows block diagram 1300, illustrating how an
exemplary flow scheduler for the present invention functions

' I

Ii
I ·, ,,
:

1i

I

'.
i

EX 1017 Page 434

US 6,452,915 B1

55

RRB, 1216f, RRB, 1216g, and RRB,, 1216h) of RRB 1216
to make a reservation request, whichis a request by the CPE
station 294 for bandwidth in a future uplink transmission
subframe.If two CPEstations 294d, 294e attempt to access
the same subslot in RRB 1216, which can occur because
their pseudorandom number generators select the same
subslot, then a “collision” occurs and the data is not readable
by wireless base station 302. The two CPEstations 294d,
294e are required to try again.

Reservation requestslots can be provided on an IP flow
basis. Rather than allocate a reservation requestslot to every
CPEsubscriber station, a default number(e.g., 5) are made
available as contentionslots. If collisions are detected by a
greater cumberofrequesting subscribers than the number of
reservation request slots, then the slots allocated can be
dynamically varied to provide additional RRB slots.
(Collisions are analogous to CSMA/CD collisions in
Ethernet, where colliding devices on an Ethemet network
attempt to retransmit over the bus architecture byretrying at
a random time.)

The radio contention method of the present invention
builds upon aspects of the “Slotted Aloha” method devel-
oped by L. Roberts in 1972,as a refinement ofthe “Aloha”
method developed by N. Abramson in the early 1970's, and
so-called bit-mapped reservation protocols. Like the Slotted
Aloha method, the present invention provides for discrete
slots for transmission of data, rather than allowing the
transmission of data at any point. However, instead of
transmitting the actual “payload” ofdata, the present inven-
tion advantageously transmits only a “reservation request”
describing the actual data payload contents. Also, the num-
ber of slots for reservation requests can advantageously be
dynamically altered according to the frequency of detected
collisions in the recentpast.

Unlike various Carrier Sense Multiple Access (CSMA)
techniques previously used in wireless, both persistent and
non-persistent, the present method advantageously does not
require that subscriber CPE station 294d “sense” the carrier
(the radio channel) before transmission. Instead, a subscriber
CPEstation 294d sclects a “subslot” to transmit through a
pseudo-random number selection, without a prior carrier
sense. If a collision is detected, the subscriber CPE station
294d will try again in the next frame using the pseudo-
random numberprocess.

Instead of using a bit-map protocol for the resolution of
contention, as is used in somereservation protocols, the
wireless base station can explicitly grant reservation
Tequests. The standard bit-map protocol can require that all
Stations can receive signals from all otherstations so that the
subsequent order of transmission can be implicitly deter-
mined from the resulting bit-map pattern. The present
method advantageously does not require the receipt of
Teservation request signals from other CPE subscriber sta-
tions 294d This is advantageous because,at higher frequen-
Cies (such as, e.g., 2 GHz to 30 GHz) where there may be
line-of-sight and distance constraints, the requirement for
Teceiptof the transmissions of other CPE subscriberstations
294d could unduly constrain the topology, locations and
distances of CPE subscriberstations.

Advantageously, by allowing the wireless base station
302 to explicitly grant the requested reservation, other
factors such as relative or dynamie CPE subscriberstation
294d (or IP-flow) ptiority factors can be considered.
Therefore, the present invention’s reservation protocol with
4 dynamically adjustable numberof contention subslots and
explicit wireless base station reservation grants, allows a
More optimal means of providing for the allocation of

20

25

40

56

wireless, such as, ¢.g., radio, bandwidth in response to QoS
requirements of IP-flows than any prior method.

As noted, RRB, 1216a includes the following fields: a
preamble 1234a, subscriber ID 12345, IP-flow identifier
1234c, quality of service data class 1244a, IP-flow priority
and type 1244b, and CRC 1234e¢.In subslot RRB, 1216a of
RRB 1216: preamble 1234a includes data used for link
integrity purposes; subscriber ID 1234b identifies which
CPEstation 294 is making the reservation request; IP-flow
identifier 1234c identifies the IP data flow;quality of service
data class 1234aidentifies the priority class of the IP data
flow, if known to the CPE station 294; IP-flow priority and
type 12345is an indicator of a new IP data flow; and CRC
1234e, which stands for cyclic redundancy code, provides
error checking bits for subslot RRB, 1216a. Optionally, an
additional field can be provided in subslot RRB, 1216a
which includes the nucuber of data packets CPE station 294
will transmit in its IP data flow.

FIG. 123 depicts an exemplary DAB 1214of an upstream
transmission subframe 1204, where a CPE acknowledges
receipt of a slot from base. The DAB is an acknowledgment
from a subscriber CPE stalion 294 to the wireless base
station that downstream slots have been received in a

previous subframe.
The DAB 1214 includes subslots DAB, 12142, DAB,

1214b, DAB, 1214c, DAB, 1214¢, DAB, 1214e, DAB,
1214f DAB, 1214g, and DAB, 1214h. Subslot DAB,
1214a includes a preamble 1234a, subscriber ID 12345,
IP-flow identifier 1234c, slot sequence number 1234d, and
CRC 1234¢e. (These fields have the same information as
described with respect to the RRB.)

FIG. 12L depicts an exemplary MAC PDUupstream slot.
The MAC PDU upstream slot of FIG. 12L includes a CPE
linked-list sequence number 1246,reservation request index
number 1236b, compressed IP-flow identifier 1238c, com-
pressed IP-flow priority and type 1238d, slot payload 1238¢,
and CRC 1234e. The upstream MAC PDUis similar to the
downstream MAC PDU,but is used instead for upstream
subframe payload information.

FIGS. 12M,12N and 120 depict an exemplary ODB 1242
in detail. This field isused to store information regarding the
connection between the wireless base station 302 and the

CPE station 294. ODB 1242 includes preamble 1234a
(including link integrity data), subscriber ID 12345
(identifies which CPE station 294 is making the reservation
request), system state 1248(information aboutthe status of
the CPE station 294), performance data 1248b (bowfull the
buffer statistics, cpe processor performance statistics, sys-
tem state), antenna data 1248c (information pertainingto the
antenna), CRC 1234e (emor checking infonmation) and
synchronization pattern 1248d (error checking information).

Referring to FIG. 12M,system state subslot 12482 com-
prises system mode 1250a (the mode of the CPE station,
¢.g., command mode, operations mode, or initialization
modeof the system), system statns 1250b (the status of the
CPEstation), system resources 1250a (the mode of the CPE
station), system power 1250b (the mode of the CPEstation),
system temperature 1250a (the temperature of the CPE
station). The CPE stations 294 are required to take turns
using ODB 1242 to transmit their information.

Referring to FIG. 12N, performance data 12484 com-
prises the number of comrepeats 1252a (the number of
repeats of communication attempts), number of frameslips
1252b (the number of frames that have slipped), waitstate
index 1252c (an index to the waiting state).
f. Exemplary Class-based Frame Prioritization

FIG. 13 shows block diagram 1300, illustrating how an
exemplary flow scheduler for the present invention functions

EX 1017 Page 434

I 1111
II'

I

';i

US 6,452,915 Bl
57 58

to schedule products. Block diagram 1300 includes: flow F1G. 14 is an exemplary two-dimensional block diagram
scheduler 604, 634 (which is a combination of downlink 1400 of the advanced reservation algorithm. F1G. 14
flow scheduler 604 and uplink flow scheduler 634), down- includes MAC subframe scheduler 1566, 1666, frames cur-
link transmission subframe U02 (i.e., the next MAC down- rent frame, n 1402, and future frames, n+l 1404, n+21406,
stream subframe), uplink transmission subframe U04 (i.e., 5 n+3 1408, n+4 1410, n+5 14U, n+6 1414 ... n+x 1416,
the current MAC upstream subframe). Block diagram 1300 representing frames of data packets to be transmitted at
also includes the following downstream components: down- times n, n+l, n+2 ... n+x. Each frame is divided into a
stream reservation first-in-first-out queue 1322, class 1 variable length downlink subframe U02 and a variable
downstream queue 1302, class 2 downstream queue 1304, length uplink subframe U04. The lengths of downlink
and class 3 downstream queue 1306. Block diagram 1300 10 subframe U02 and uplink subframe U04 together comprise
also includes the following upstream reservation compo- the length of an entire frame.
nents: current upstream subframe 1344 (with the current Each frame n 1402 includes a number of slots
upstream subframe U04 about to be stored in it), previous (1418-1478). Slots 1418-1446 comprise the downlink sub-
upstream subframes 1346, 1348, 1350, class 1 upstream frame U02, and slots 1448-1478 comprise the uplink sub-
reservation request queue 1308, class 2 upstream reservatinn 15 frame U04. In one embodiment., the slots arc fixed in length,
request queue 1310, and class 3 upstream reservation with each slot capable of storing a single data packet. The
request queue 13U. total number of frame slots in a frame remains constant. For

In the downlink path, an IP flow QoS class queuing example, if a given frame includes 64 frame slots, the slots
processor (described below with respect to F1GS. 15A and can be allocated dynamically in either the uplink or down-
15B) queues the received data packets into class 1 pack.et 20 link directions, such as, e.g., 32 up and 32 down, 64 up and
flow queues 1324, 1326 and 1328, class 2 packet flow O down, 0 up and 64 down. Block diagram 1400 can be
queues 1330, 1332, 1334, and class 3 pack.et flow queues thought of as a two dimensional matrix with each slot having
1336, 1338, 13441 and 1342. a time value (i.e., a slot-to-slot time interval), e.g., 0.01 ms,

Based on inputs from a hierarchical class-based priority and each frame having a total frame interval time value (i.e.,
processor, a virtual private network (VPN) directory enabled 25 a frame-to-frame time interval), e.g., 05 ms.
(DEN) data table and a service level agreement (SI.A) In the present invention, an advanced n:servation algo-
priority data table (descnbed below with respect to F1GS. rithm assigns future slots to data packets based on the
15A and 15B), the class 1, class 2, and class 3 packet flow priority of the IP data flow with which the packet is
queues are respectively assigned to class 1 downstream associated. Exemplary priorities arc descnbed above with
queue 1302, class 2 downstream queue 1304, and class 3 30 respect to F1GS. 8A and SB. For calls that are sensitive to
downstream queue 1306. F1ow scheduler 604, 634 schedules jitter, meaning calls that are time sensitive, it is important to
these downlink data packets onto the downlink transmission maintain an isochmnous (i.e., in phase with respect to time)
subframe U02. connection. With such signals, it is important that the data be

In one embodiment, additional processing is used to dispersed in the same slot between frames, or in slots having
minimize latency and jitter. For example, suppose the data 35 a periodic variation between frames. For example, vertical
packets of class 1 packet flow queue 1324 require jitter-free reservation 1480 shows a jitter sensitive signal receiving the
and latency-free delivery, i.e., delivery of packets must be at same slot for downlink communications in each frame.
constant time intervals and in real-time. Packet flow queue Specifically. tbe signal is assigned slot 1422 in frames
1324 creates, e.g., 4 equal time spaced slot reservations in 1402-1416. If the frame-to-frame ioterval is 0.5 ms, then a
future frames, as shown in class 1 downstream queue 1302 ,40 slot will be provided to the IP flow every 05 ms. As another
and descnbed with respect to F1G. 14 below. The reserva- example, diagonal n::servation 1482 shows a jitter sensitive
tions are fed to downstream reservation first-io-tirst-out signal receiving a slot varying by a period of one between

· queue 1322, and are scheduled onto a future downstream sequential frames. Specifically, the signal is assigned slot
,: .frame 1202 by flow scheduler 604, 634. 1440 in frame 1402, slot 1438 in slot 1404, ... slot 1426 in
· \!., In the uplink path, reservation requests for future 45 frame 1416, to create a "diagonal." If the frame-to-frame

~cam slots arrive at wireless base station 302 as part of interval is 0.5 ms and the slot-to-slot interval is 0.01 ms, then
.& current upstream subframe U04 received from CPE a slot can be provided to the IP flow every 05 minus 0.01,

iber stations 294 over the wireless medium. Current equals 0.49 rmns. Thus, to decrease the frame interval, a
arn subframe 1344 can temporarily store reservation diagonal reservation of positive slope can be used. To obtain

ests for analysis and scheduling of uplink packets in 50 an increased frame interval, a diagonal of negative slope
nl with the description of F1G. SB above. Previous such as, e.g., oegative slope diagonal uplink reservation

am subframes 1346, 1348, 1350 include upstream 1486. The diagonal reservation 1482 can also be more
~lion requests awaiting upstream frame slot alloca- pronounced (i.e., using a greater or lesser slope), depending
m future upstream subframes 1204. Reservation on the period between sequential frames desired. Reserva-

est blocks (RRBs), described further above with refer- 55 lion patterns 1480, 1482, 1484 and 1486 are useful patterns
~ FIG.12 * • • , ioclude a request for a number of slots for jitter sensitive communications. Also illustrated is a

\ smgle IP flow with an IP flow ideotifier # and class of vertical reservation 1486, similar to vertical reservation
-.':flow. The upstream reservation requests (by IP flow and 1480, useful for a jitter sensitive communicatioo in the

) arc queued ooto class 1 upstream reservation request uplink direction.
1308, class 2 upstream reservation request queue 60 For latency sensitivity, one or more slots can be guaran-

, and class 3 upstn:am reservation request queue 13U teed in each frame. For example, for a call that is lateocy
· . IP flow QoS class queuing processor (descnbed below sensitive, but not jitter sensitive, each frame can be assigned

Tespect to FIGS.16Aand 16B). F1ow scheduler 604 and one (or more) slots for communications. However, the
i and 634 and 1666, uses these downstream reservations slot(s) need not be periodic between frames, as with jitter
:PS~eam reservation requests to assign slots to data 65 sensitive calls. The greater tbe number of slots allocated per
ts m the next downstream transmission subframe 1202 frame to an IP flow. the greater total bandwidth per frame

-~trcam transmission subframe U04, respectively. rate for the IP flow.

EX 1017 Page 435

US 6,452,915 B1
57

a to schedule products. Block diagram 1300 includes: flow
scheduler 604, 634 (which is a combination of downlink
flow scheduler 604 and uplink flow scheduler 634), down-
link transmission subframe 1202 (i.e., the next MAC down-
stream subframe), uplink transmission subframe 121M (i.c.,
the current MAC upstream subframe). Block diagram 1300
also includes the following downstream components: down-
stream reservation first-in-first-out queue 1322, class 1
downstream queus 1302, class 2 downstream queue 1304,
and class 3 downstream queue 1306. Block diagram 1300
also includes the following upstream reservalion compo-
nents: current upstream subframe 1344 (with the current
upsiream subframe 1204 aboutto be stored in it), previous
upstream subframes 1346, 1348, 1350, class 1 upstream
reservation request queue 1308,class2 upstream reservation
request queue 1310, and class 3 upstream reservation
request queue 1312,

In the downlink path, an IP flow QoS class queuing
processor (described below with respect to FIGS. 15A and
158) queucs the received data packets into class 1 packet
flow queves 1324, 1326 and 1328, class 2 packet flow
queues 1330, 1332, 1334, and class 3 packet flow queues
1336, 1338, 1340 and 1342.

Based on inputs from a hierarchical class-based priority
processor, avirtualprivate network (VPN) directory enabled
(DEN) data table and a service level agreement (SLA)
priority data table (described below with respect to FIGS.
15A and 158), the class 1, class 2, and class 3 packet flow
queues are respectively assigned to class 1 downstream
queue 1302, class 2 downstream queue 1304, and class 3
downstream queve 1306. Flow scheduler 604, 634 schedules
these downlink data packets onto the downlink transmission
subframe 1202.

In one embodiment, additional processing is used to
minimize latency andjitter. For example, supposc the data
packets of class 1 packet flow quene 1324 require jitter-free

"and latency-free delivery, i-¢., delivery ofpackets must be at
constant time intervals and in real-time. Packet flow queue
1324 creates, e.g., 4 equal time spaced slot reservations in

; future frames, as shown in class 1 downstream queue 1302
. and described with respect to FIG. 14 below, The teserva-

tions are fed to downstream reservation first-in-first-out

; Queue 1322, and are scheduled onto a future downstream
§ frame 1202 by flow scheduler 604, 634.

q Ms To the uplink path, reservation requests for future
. Upstream slots arrive at wireless base station 302 as part of
5. current upstream subframe 1204 received from CPE
psubscriber stations 294 over the wircless medium. Current
pepstream subframe 1344 can temporarily store reservation

ests for analysis and scheduling of uplink packets in
mecord with the description of FIG. 8B above. Previous
ppsrcam subframes 1346, 1348, 1350 include upstream

pase ation Tequesis awaiting upstream frame slot alloca-
OS in future upstream subframes 1204. Reservation

Mest blocks (RRBs), described further above with refer-
BOFIG. 12** ©|include a request for a numberofslots

‘& single IP flow with an IP flow identifier # and class of
ow. The upstream reservation requests (by IPflow and

-~) are queued onto class 1 upstrcam reservation request
So 1308, class 2 upstream reservation request queue
wld and class 3 upstream reservation request queue 1312
i IP flow QoS class queuing processor (described below
m Tspect to FIGS, 16Aand 16B). Flow scheduler604 and
. + and 634 and 1666, uses these downstream reservations
ppstream reservation requests to assign slots to data

1s in the next downstream transmission subframe 1202
upstream transmission subframe 1204, respectively.

58

FIG. 14 is an exemplary two-dimensional block diagram
1400 of the advanced reservation algorithm. FIG. 14
includes MAC subframe scheduler 1566, 1666, frames cur-
reat frame, n 1402, and future frames, n+1 1404, n+2 1406,

5 n+3 1408, n+4 1410, 045 1412, 046 1414... n4x 1416,
representing frames of data packets to be transmitted at
times n, o+1, 142... n+x. Each frame is divided into a
variable length downlink subframe 1202 and a variable
length uplink subframe 1204. The lengths of downlink

10. subframe 1202 and uplink subframe 1204 together comprise
the length of an entire frame.

Each frame o 1402 includes a number of slots

(1418-1478). Slots 1418-1446 comprise the downlink sub-
frame 1202, and slots 1448-1478 comprise the uplink sub-

15 frame 1204, In one embodiment, the slots are fixed in length,
with each slot capable of storing a single data packet. The
total numberof frameslots in a frame remains constant. For
example, if a given frame includes 64 frameslots, the slots
can be allocated dynamically in either the uplink or down-

20 link directions, such as, ¢.g., 32 up and 32 down, 64 up and
0 down, 0 up and 64 down. Block diagram 1400 can be
thought of as a two dimensional matrix with cach slot having
a time value (ic., a slot-to-slot time interval), ¢.g., 0.01 ms,
and each frame having a total frameinterval time value (e.,

25 a frame-to-frame time interval), e.g., 0.5 ms.
In the present invention, an advanced reservation algo-

rithm assigns future slots to data packels based on the
priority of the IP data flow with which the packet is
associated. Exemplary priorities are described above with

30 respect to FIGS. 8A and 8B. For calls that are sensitive to
jitter, meaning calls that are time sensitive,it is important to
maintain an isochronous (i.c., in phase with respect to time)
connection. With such signals,it is importantthat the data be
dispersed in the sameslot between frames, or in slots having

35 a periodic variation between frames. For example, vertical
reservation 1480 shows a jitter sensitive signal receiving the
same slot for downlink communications in each frame.

Specifically. the signal is assigned slot 1422 in frames
1402-1416. If the frame-to-frame interval is 0.5 ms, then a

40 slot will be provided to the IP flow every 0.5 ms. As another
example, diagonal reservation 1482 showsajitter sensitive
sigual receiving a slot varying by a period of one between
sequential frames. Specifically, the signal is assigned slot
1440 in frame 1402,slot 1438 in slot 1404, . . . slot 1426 in

45 frame 1416, to create a “diagonal.” If the frame-to-frame
interval is 0.5 ms and the slot-to-slot interval is 0.01 ms, then
a slot can be provided to the IP flow every 0.5 minus 0.01,
equals 0.49 mms. Thus, to decrease the frame interval, a
diagonal reservation ofpositive slope can be used. To obtain

50 an increased frame interval, a diagonal of negative slope
such as, ¢.g., negative slope diagonal uplink reservation
1486. The diagonal reservalion 1482 can also be more
pronounced(i.¢., using a greater or lesser slope), depending
on the period between sequential frames desired. Reserva-

55 tion patterns 1480, 1482, 1484 and 1486 are useful patterns
for jitter sensitive communications. Also illustrated is a
vertical reservation 1486, similar to vertical reservation
1480, useful for a jitter sensitive communication in the
uplink direction.

60 ‘Forlatency sensitivity, onc or more slots can be guaran-
teed in cach frame. For example, for a call that is latency
sensitive, but not jitter sensitive, cach frame can be assigned
one (or more) slots for communications. However, the
slot(s) need cot be periodic between frames, as with jitter

65 sensitive calls, The greater the numberofslots allocated per
frame to an IP flow, the greater total bandwidth per frame
rate for the IP fow.

EX 1017 Page 435

US 6,452,915 Bl
59 60

For calls that are Jess latency sensitive, fewer slols per IP data flow, and identifies the subscriber CPE station
frame can be assigned for the communication. For example, associated with the subscriber workstation that will receive
a communication that is less latency sensitive can receive a the IP data flow. Packet classification component 1506
guaranteed bandwidth of one slot every four frames. A call classifies the new IP data flow into a communications
that is even less latency sensitive can receive, e.g., a single s priority class, grouping the packet together with similar type
slot every ten frames. IP flows. IP data flow presentation 1508 initializes the new

Using these principles, the advanced reservation algo- IP data flow and prescnlS it to downlink flow scheduler (i04.
rithm can assign the slots from highest priority to lowest Downlink flow scheduler 604 places the data packets of
priority, exhausting the number of available slolS in future an IP data flow into a class queue, and based on a set of rules,
frames. IP data flows that arc both jitter and latency sensitive 10 schedules the data pacielS for transmission over the wireless
can be assigned slots with periodic patterns fust (e.g., medium to a subscriber CPE station using, e.g., an advanced
patterns 1480, 1482, 1484 and 1486), followed by flows that reservation algorithm. The rules can be determined by inputs
are highly latency sensitive (but not jitter sensitive), et to the downlink flow scheduler from a hierarchical class-
cetera, until the flows of lowest latency sensitivity are based priority processor module 1574, a virtual private
assigned to slots. Prioritiution of different classes of IP 15 network (VPN) directory enabled (DEN) data table 1572,
flows by scheduler 604, 634, 1566, 1666 is described further and a service level agreement (SIA) priority data table
below with reference to FIGS. 15A, 15B, 16A and 16B. 1570. The advanced reservation algorithm is described fur-
g. Downlink SubFrame Prioritization thcr above with respect to FIG. 14.
1. Overview 3. Identification

FIGS. 15Aand 15B are exemplary logical flow diagrams 20 Packet header identification component 1502 identifies
for analysis and scheduling of the shared wireless bandwidth the IP flow received from data. network 142 at data interface
for the downlink direction. The logical flow pertains to IP 320 based on the packet header.
packet flows arriving from data. network 140, at the wireless An IP flow packet stream from data. network 142, includ-
base station 302, for transmission down to a subscriber CPE ing packets from various IP flows (where each IP flow is
station 294d over the wireless medium. FIG. 15A is an 25 associated with a single data "call") is received at packet
exemplary logical flow diagram 1500 for downlink IP ana- header identification component 1502. An IP flow can
lyzer 602. FIG. 15B is an exemplary logical flow diagram include packetized data including any type of digital infor-
1560 for the downlink flow scheduler 604. mation such as, e.g., packetized voice, vidc:o, audio, data, IP

Toe functional components for FIGS. 15A and 15B are flows, VPN flows, and real time flows. Toe IP flow is
explained by way of method modules, which can be viewed 30 transmitted over data network 142 from, e.g., a. host work-
as physical units (e.g., comprising software, hardware, or a station 136d and arrives at interface 302 of wireless base
combination the root) or logical vehicles (e.g., used for station 320. Interface 302 transmilS the packets of the IP
explanatory purposes only). 1bose skilled in the art will flow lo packet header identification component 1502. At
recognize that the modules are used only to explain an module 1510, the received packets are buffered into a
exemplary embodiment, and are not to be considered lim- 35 storage area. At module 1520, the contents of the packet
iting. header fields arc extracted and parsed.

Toe exemplary logical flow diagram 1500 for downlink IP For IP flows known to the system, so-called "existing IP
flow analyzer of FIG. 15A includes packet header identifi- flows," there arc entries in a table 1526. An IP flow is in the
cation component 1502, packet characterization component system if there is an existing characterized IP data call. In
1504, packet classification component 1506, and IP flow 40 module 1522, it is determined if there is a match between the
presentation component 1508. Toe functions of these com- incoming packet and an existing IP flow call in an entry in
ponents arc explained in dctul below. existing IP flow identification table 1526. If so, then the IP

In one embodiment, downlink IP flow analyzer 602 is flow is known to the system, and control passes to module
physically located in wireless base slation 302, although 1530 of the packet characterization component 1504.
those skilled in the art will n:cognize that the same func- 45 If not, meaning that the IP flow is a new IP data flow, then
tionality can be located remotely from wireless base station control passes to module 1524, where the packet header
302. fields are analyzed. Module 1524 analyzes the packet header

FIGS. 2D, 3A and 3B are helpful to the reader for an source field and determines from source application packet
understanding of the downlink IP flow analyzer. header data table 1528 the type of source application making
2. Introduction so the data call or transmitting the IP packet. Toe application

IP flow analyzer 602 performs the function of identifying, can be any of the applications descnbed with respect to FlG.
characterizing, classifying, and presenting data packets to a 2D or known to those skilled in the art. Examples include a
downlink frame scheduler (i04_ 'The functions of identifying, file transfer protocol (FIP) download from another client
characterizing, classifying and presenting the data packets workstation 138£ an IP voice telephony call (over telephony
are respectively performed by packet header identification ss gateway 288b), a voice telephony call from a caller 124d
component 1502, packet characterization component 1504, (connected over a modem), an e-mail from a IAN 128a
packet classification component 1506 and IP flow presenta- attached host workstation 136a, a fax machine call, and a
lion component 1508 of downlink IP flow analyzer 602. conference call from multiple callers 124d and 126d

Packet header identification component 1502 determines (connected over a modem), to name a few. If the IP flow is
whether a data packet of an incoming IP data flow is part of 60 not known to the system, then the IP flow is given an IP flow
ID 1P flow that is known to the system, or is the first data identifier number, and control passes to module 1526 where
Packet of a new IP data flow, based on the rontents of fields the IP flow identifier number is added to the existing IP flow
of the packet header section. Packet header identification identification table 1526.
CO!°ponent 1502 also identifies, e.g., the source of the packet Once the type source application has been determined by
~g the packet header field contents. Packet characteriza- 65 packet header information or by another means, such a.s
lion COmponcnt 1504 characterizes a new data packet (of a direct application identification, then control passes from
new lP da!a flow) to determine the QoS requircmenls for the module 1524 to module 1532 of the packet characterization

EX 1017 Page 436

US 6,452,915 BL
59

For calls that are less latency sensitive, fewer slots per
framecan be assigned for the communication. For example,
a communication that is less latency sensitive can receive a
guaranteed bandwidth of one slot every four frames, A call
that is even less latency sensitive can receive, e.g., a single
slot every ten frames.

Using these principles, the advanced reservation algo-
rithm can assign the slots from highest priority to lowest
pliority, exhausting the number of available slots in future
frames. IP data flows that are both jitter and latency sensitive
can be assigned slois with periodic patterns first (c.g.,
patterns 1480, 1482, 1484 and 1486), followed by flows that
ace highly latency sensitive (but not jitter sensitive), et
cetera, until the flows of lowest latency sensitivity are
assigned to slots. Prioritization of different classes of IP
flows by scheduler 604, 634, 1566, 1666 is described further
below with reference to FIGS. 15A, 15B, 16A and 16B.
g- Downlink SubPrame Prioritization
1. Overview

FIGS, 15A and 15B are exemplary logical flow diagrams
for analysis and scheduling ofthe shared wireless bandwidth
for the downlink direction. The logical fiow pertains to IP
packet flows arriving from data network 140,at the wireless
base station 302, for transmission down to a subscriber CPE
station 294d over the wireless medium. FIG. 15A is an
exemplary logical flow diagram 1500 for downlink IP ana-
lyzer 602. FIG. 15B is an exemplary logical flow diagram
1560 for the downlink fiow scheduler 604.

The functional componenis for FIGS. 15A and 15B are
explained by way of method modules, which can be viewed
as physical units (¢.p., comprising software, hardware, or a
combination thereof) or logical vehicles (e.g., used for
explanatory purposes only). Those skilled in the art will
recognize that the modules are used only to explain an
exemplary embodiment, and are not to be considered lim-
iting.

The exemplary logical flow diagram 1500 for downlink IP
flow analyzer of FIG. 15A includes packet header identifi-
cation component 1502, packet characterization component
1504, packet classification component 1506, and IP flow
presentation component 1508. The functions of these com-
ponents are explained in detail below.

In one embodiment, downlink IP flow analyzer 602 is
physically located in wireless base station 302, although
those skilled in the art will recognize that the same func-

onality can be located remoiely from wireless base station
FIGS. 2D, 3A and 3B are helpful to the reader for an

understanding of the downlink IP flow analyzer.
2. Introduction

IP flow analyzer 602 performs the function ofidentifying,
characterizing, classifying, and presenting data packets to a
downlink frame scheduler 604. The functions ofidentifying,
characterizing, classifying and presenting the data packets
are respectively performed by packet header identification
component 1502, packet characterization component 1504,
Packetclassification component 1506 and IP flow presenta-
ton componcsot 1508 of downlink IP fow analyzer 602.

Packet header identification component 1502 determines
whether a data packet of an incoming IP data flow is part of
20 IP flow that is known to the system, or is the first data
Packet of a new IP data flow, based on the contents of fields
of the packet header section. Packet header identification
Somponent 1502 also identifies, c.g,, the source of the packet
WSing ibe packet headerfield contents. Packet characteriza-

, Fon component 1504 characterizes a new data packet (of a
Rew IP data flow) to determine the QoS requirements for the

20

25

3§

40

45

alcy

60

65

60
JP data flow, and identifies the subscriber CPE station
associated with the subscriber workstation that will receive
the IP data flow. Packet classification component 1506
classifies the new IP data flow into a communications

pdority class, grouping the packet together with similar type
IP flows. IP data flow presentation 1508 initializes the new
IP data flow and presents it to downlink flow scheduler 604.

Downlink flow scheduler 604 places the data packets of
an IP data flow into a class queue, and based on asct of rules,
schedulesthe data packets for transmission over the wireless
medium to a subscriber CPE station using, ¢.g., an advanced
reservation algorithm. The rules can be determined by inputs
to the downlink flow scheduler from a hierarchical class-
based priority processor module 1574, a virtual private
network (VPN) directory enabled (DEN) data table 1572,
and a service level agreement (SLA) priority data table
1570. The advanced reservation algorithm is described fur-
ther above with respect io FIG. 14.
3. Identification

Packet header identification component 1502 identifiesthe IP flow received from data network 142 at data interface

320 based on the packet header.
An IP flow packet stream from data network 142, includ-

ing packets from various IP flows (where cach IP flow is
associated with a single data “call”) is received at packet
header identification component 1502. An JP flow can
include packetized data including any type ofdigital infor-
mation such as, ¢.g., packelized voice, video, audio, data, IP
fiows, VPN flows, and real time flows. The IP flow is
transmitted over data network 142 from, c.g, a host work-
station 136d and arrives at interface 302 of wireless base

station 320. Interface 302 transmits the packets of the IP
flow to packet header identification component 1502. At
module 1510, the received packets sre buffered into a
storage area. At micdule 1520, the contents of the packet
headerfields are extracted and parsed.

For IP fiows known to the system, so-called “existing IP
flows,” there are entries in a table 1526. An IP flow is in the
system if there is an existing characterized IP data call. In
module 1522,it is detenmined if there is a match between the
incoming packet and an existing IP flow call in an entry in
existing IP flow identification table 1526. If so, then the IP
flow is known to the system, aud control passes to module
1530 of the packet characterization component 1504.

If not, meaning that the IP flow is a new IP data flow, then
control passes to module 1524, where the packet header
fields are analyzed. Module 1524 analyzes the packet header
source field and determines from source application packet
headerdata table 1528 the type of source application making
the data call or transmitting the IP packet. The application
can be any ofthe applications described with respect to FIG.
2D or knownto those skilled in the art. Examples include a
file transfer protocol (FTP) download from another client
workstation 138f an IP voice telephony call (over telephony
gateway 288b), a voice iclephony call from a caller 124d
(comnected over a modem), an e-mail from a LAN 1282
attacbed host workstation 136a, a fax machine call, and a
conference call from multiple callers 124d and 126d
(comnected over a modem), io name a few. If the IP flow is
not known to the system, then the IP flow is given an IP flow
identifier number, and control passes to module 1526 where
the IP flow identifier numberis added to the existing IP flow
identification table 1526.

Once the type source application has been determined by
packet header information or by another means, such as
direct application identification, then control passes from
module 1524 to module 1532 of the packet characterization

EX 1017 Page 436

US 6,452,915 Bl
61 62

component 1504. In order to identify the type of source For the new IP flow, control passes to module 1542 from
application of the IP flow, any type of service (fOS) or module 1536 of the packet characterization component
differentiated service (DiffServ) field can also be analyzed. 1504. In module 1542 the packet is classified into a QoS
4. Characterization class by performing a table lookup into IP flow QoS class

Packet characterization component 1504 characterizes 5 table module 1544, where the types of QoS classes are
new IP flows and passes them to packet classification stored depending on the QoS requirements for packets.
component 1506 for classification. Similar IP flows, (i.e., IP flows having similar QoS

For an existing IP flow, control passes to module 1530 requirements) can be grouped together in module 1542. In
from module 1522 of the packet header identification com- classifying packets and IP flows, QoS class groupings, any
ponent 1502. If in module 1522 it is determined that the IP
data flow is known to the system, in module 1530 it is 10 DiffScrv priority markings, and any TOS priority marlcings
determined whether the packet is old (i.e., stale). This can can be taken into account. From the module 1542, control
include, e.g., determining from a time-to-live field (afield in passes to module 1548 of IP flow presentation component
the IP packet header) the age of the packet, and comparing 1508.
the field to a threshold age value. If the packet is determined 6. IP Flow Presentation
to be stale, it can be discarded. Based on the age of the 15 IP flow presentation component 1508 prepares and pre-
packet, client application discards can be anticipated. sents the IP flow packets to downlink flow scheduler 604.
Otherwi,;e, control can pass to module 1540 of the packet For existing IP flows, control pas.'ICS to module 1546 from
classification component 1506. module 1540 of the packet classification component 1540.

For a new IP flow, control passes to module 1532 from In module 1546 the packet is added to the associated existing
module 1524 of the packet header identification component 20 IP flow queue, which is the queue for the current IP flow.
1502. If in module 1524 it is determined that the IP flow is From module 1546, control passes to IP flow QoS class
not known to the system, in module 1532 the QoS require- queuing processor module 1562 of downlink: flow scheduler
ments for the application are determined using the source 604.
application information identified in modules 1524 and For the new IP flow, control passes to module 1548 from
1528. Module 1532 performs this operation by looking up 25 module 1542 of the packet classification component 1506.
the QoS requirements for the identified source application in In module 1548, this new IP flow can be initialized for
the QoS requirement table 1534. Different applications have presentation to module 1552. In module 1550, the IP flow
different QoS requirements in order to provide an acceptable QoS class is presented to frame scheduler 604 to be placed
end-user experience. For example, bandwidth allocation in an appropriate class queue. Module 1552 presents the IP
(i.e., allocating an appropriate amount of bandwidth) is 30 flow (in particular, the data packet) and IP flow identifier to
important to an application performing FI'P file transfer
downloads, and not jitter (i.e., time synchronizing the IP flow QoS class queuing processor module 1562 of
received data) and latency (i.e., the amount of time passage downlink flow scheduler 604.
between responses). On the other hand,jitter and latency are 7. Downlink: Flow Scheduler
important to voice telephony and conference calls, while The exemplary logical flow diagram 1560 for the down-
bandwidth allocation is not. 35 link flow scheduler 604 of FIG. 15B comprises IP flow QoS

After processing by module 1532, in module 1536 a class queuing processor module 1562, MAC downlink sub-
destination CPE subscnber station ID lookup from sub- frame scheduler module 1566, hierarchical class-based pri-
scnber CPE IP address table 1538, is performed for the IP ority processor module 1574, VPN DEN data table module
flow. Each subscn'ber CPE station 294d can have one or 1572, SLA priority data table 1570, CPE IP How queue
more applications, running on one or more suhscnber work- 40 depth status pro=r 1582 and link layer acknowledgment
stations 1204 homed to it. Accordingly, the IP flows can be processor module 1578.
directed ID one or more applications on one or more sub- Downlink flow scheduler 604 of FIG. 15B also includes
scriber workstations of one or more CPE stations 294d. A QoS class queues as follows: class 1, 1564a; class 2, 1564b;
subscnber workstation can be any device coupled ID a class 3, 1564<:; class 4, 1564d; class 5, 1564e; and class 6,
subscnber CPE station 294d. Module 1536 looks up the IP -45 1564.t and MAC downlink: subframes: frame n, 1568a;
flow in table 1538, to determine the identity of the subscriber frame n+ 1, 1568b; frame n+ 2, 1568c; frame n+3, 1568d; ...
CPE station 294d that will receive the packets of the new IP frame n+p, 1568k.
flow from data network 142. Control then passes from In one embodiment, downlink flow scheduler 604 is
module 1536 to module 1542 of the packet classification physically located in wireless base station 302, although
component 1506. so those skilled in the art will recognize that the same func-
S. Classification tionality can be located remotely from wireless base station

'· Packet classification component 1506 classifies the IP 302.
flow and passes it to IP flow presentation component 1508 Downlink flow scheduler 604 is used to schedule the
for presenunent. downlink subframe. An entire frame can be divided into an

. For an existing IP flow, control passes to module 1540 55 uplink portion (called an uplink subframe) for transmitting
:' \from module 1530 of the packet characterization component uplink frames, and a downlink portion (called a downlink

1504. If in module 1530 it is determined that the packet is subframe) for transmitting downlink frames.
· !1<Jt stale, then in module 1540 the packet is associated with Also illustrated on FIG. 15B arc WAP antenna, the
:_ :US existing IP flow. As illustrated in FIG. 15A, the packet wireless medium, 290d, RF transceiver subscnber antenna
·. l>mcess:d herein was determined to be a portion of an IP 60 292d, subscriber CPE station 294d and subscnber worksta-

.tlow known to the system. Therefore, the QoS processing of lion 120d. WAP antenna 290d and RF transceiver subscnber
,: 'lnodulcs 1532, 1536 and 1542 are unnecessary, because the antenna 292d respectively provide a wireless connection
:\Qos requirements of the present packet arc assumed to be between wireless base station 302 (where downlink flow

same as for its IP flow. In another embodiment,. all scheduler 604 resides in one embodiment) and subscnber
, lckets are characterized and classified From module 1540, 65 CPE station 294d, which can transmit an IP flow to an

. lrol can continue with module 1546 of IP flow presen· application running on subscnber workstation 120d. WAP
on 1508. . antenna 290d serves as a wireless gateway for data network

EX 1017 Page 437

US 6,452,915 Bl
61

- component 1504. In order to identify the type of source
application of the IP flow, any type of service (TOS) or
differentiated service (DiffServ) field can also be analyzed.4, Characterization

Packet characterization component 1504 characterizes
new IP flows and passes them to packet classification
component 1506 for classification.

For an existing IP flow, control passes to module 1530
from module 1522 of the packet header identification com-
ponent 1502. If in module 1522 it is determined that the IP
data flow is known to the system, in module 1530 it is
determined whether the packet is old (ie., stale). This can
include, ¢.g., determining from a time-to-live field (a field in
the IP packet header) the age of the packet, and comparing
the field to a threshold age value. If the packetis determined
to be stale, it can be discarded. Based on the age of the
packet, client application discards can be anticipated.
Otherwise, control can pass to module 1540 of the packet
classification component 1506.

For a oew IP flow, control passes to module 1532 from
module 1524 of the packet header identification component
1582. If in module 1524 it is determined that the IP flow is

; not known to the system, in module 1532 the QoS require-
cS ments for the application are determined using the source

, application information identified in modules 1524 and
1528. Module 1532 performs this operation by looking up
the QoS requirements for the identified source application in
the QoS requirement table 1534.Different applications have
different QoS requirements in order to provide an acceptable
end-user experience. For example, bandwidth allocation
(i.c., allocating an appropriate amount of bandwidth) is
important to an application performing FTP file transfer
downloads, and not jitter (ic., time synchronizing the
received data) and latency(i-c., the amount of time passage
between responses). On the other hand,jitter and latency are
important to voice telephony and conference calls, while
bandwidth allocation is not.

After processing by module 1532, in module 1536 a
destination CPE subscriber station ID 1 from sub-
scriber CPE IP address table 1538, is performed for the IP
flow. Each subscriber CPE station 294d can have one or
more applications, running on one or more subscriber work-
stations 120d, homed to it. Accordingly, the IP Bows can be
directed to one or more applications on one or more sub-
scriber workstations of one or more CPE stations 294d. A

subscriber workstation can be any device coupled to a
Subscriber CPE station 294d. Module 1536 looks up the IP
flow in table 1538, to determinethe identity ofthe subscriber
CPEstation 294d that will receive the packets of the new IP
flow from data network 142. Control then passes from
module 1536 to module 1542 of the packet classification
component 1506.
3. Classification

Packet classification component 1506 classifies the IP
flow and passesit to IP flow presentation component 1508presentment,

P For an existing IP flow, control passes to module 1540
: from module 1530ofthe packet characterization component

1504. If in module 1530 it is determined that the packet is
p Tol stale, then in module 1540 the packetis associated with
; tS existing IP flow. As illustrated in FIG. 15A, the packet
y Processed herein was determined to be a portion of an IP
p. Ow known to the system. Therefore,ibe QoS processing of

Wodules 1532, 1536 and 1542 are unnecessary, because the
S requirements of the present packet are assumed to be

, Same as for its IP flow. In another embodiment, all
pe sckels are characterized and classified. From module 1540,
Fttrol can continue with module 1546 of IP flow presen-on 1508. .

Fit

25

40

50

55

60

65

62
For the new IP flow, contro] passes to module 1542 from

module 1536 of the packet characterization component
1504. In module 1542 the packetis classified inte a QoS
class by performing a table lookup into IP flow QoS class
table module 1544, where the types of QoS classes are
stored depending on the QoS requirements for packets.
Similar IP flows, (i.c., IP flows having similar QoS
requirements) can be grouped together in module 1542. In
classifying packets and IP flows, QoS class groupings, any
DiffServ priority markings, and any TOS priority markings
can be taken into account. From the module 1542, contro!
passes to module 1548 of IP flow presentation componeat
1508.
6. IP Flow Presentation

IP flow presentation component 1508 prepares and pre-
sents the IP flow packets to downlink flow scheduler 604.

For existing IP flows, control passes to module 1546 from
module 1540 of the packet classification component 1540.
In module 1546 the packetis added to the associated existing
IP flow queue, which is the queue for the current IP flow.
From module 1546, control passes to IP flow QoS class
queuing processor module 1562 of downlink flow scheduler
604

For the new IP flow, control passes to module 1548 from
module 1542 of the packet classification component 1506.
In module 1548, this new IP flow can be initialized for
presentation to module 1552. In module 1550, the IP flow
QoS class is presented to frame scheduler 604 to be placed
in an appropriate class queue. Module 1552 presents the IP
flow (in particular, the data packet) and IP flow identifier to
IP flow QoS class queuing processor module 1562 of
downlink flow scheduler 604.
T. Downlink Flow Scheduler

The exemplary logical flow diagram 1560 for the down-
link flow scheduler 604 ofFIG. 15B comprises IP flow QoS
class queuing processor module 1562, MAC downlink sub-
frame scheduler mocule 1566, hierarchical class-based pri-
ority processor module 1574, VPN DEN data table module
1572, SLA priority data table 1570, CPE IP flow queve
depth status processor 1582 and link layer acknowledgment
processor module 1578.

Downlink flow scheduler 604 of FIG. 153 also includes

QoSclass queuesas follows: class 1, 1564a; class 2, 15645;
class 3, 1564c; class 4, 1564d; class 5, 15642;and class 6,
1564f; and MAC downlink subframes: frame n, 1568;
frame n+1, 15685; frame 042, 1568c; frame +3, 1568d; ...
frame n+p, 1568k.

In one embodiment, downlink flow scheduler 604 is
physically located in wireless base station 302, although
those skilled in the art will recognize that the same func-
tionality can be located remotely from wireless base station
302.

Downlink flow scheduler 604 is used to schedule the
downlink subframe. An entire frame can be divided into an
uplink portion (calied an uplink subframe) for transmitting
uplink frames, and a downlink portion (called a downlink
subframe) for transmitting downlink frames.

Also illustrated on FIG. 15B are WAP antenna, the
wircless medium, 290d, RF transceiver subscriber antenna
292d, subscriber CPE station 294d and subscriber worksta-
tion 120d. WAP antenna 290d and RF transceiver subscriber
antenna 292d respectively provide a wireless connection
between wireless base station 302 (where downlink flow
scheduler 604 resides in one embodiment) and subscriber
CPE station 294d, which can transmit an IP flow to au

application running on subscriber workstation 120d. WAP
antenna 290d serves as a wireless gateway for data network

EX 1017 Page 437

•

US 6,452,915 Bl
63 64

142, and RF transceiver subscnber antenna serves as a a predetermined number of packets from each of the classes
wireless gateway for subS(..nber CPE station 294d. The 1564a-1564/ according to priorities 1570, 1572 and 1574. ln
connection is also illustrated in FIGS. 2D and 3B. another embodiment, the subframes are scheduled according

IP flow QoS class queuing processor module 1562 to the inventive advanced reservation algorithm method
receives the packets from IP flow presentation component s descnbed with respect to FIGS. 13 and 14 for isochronous
1508. Module 1562 then creates class qneues l564a-1564f, reservations. ln yet another embodiment, the subframes are
which is a variable number of qneues, and places the packets scheduled according to a combination of known methods
in these class queues. How packets a.re placed in class and the advanced reservation algorithm method of the

queues 15640-1564/ is determined by the inputs to module P~:•s:::·can then be sent to WAP antenna 290d for
1562. 10 wireless transmission over the wireless medium to RF

Module 1562 can receive inputs from hierarchical class- transceiver subscriber antenna 292d coupled to subscnber
based priority processor module 1574, VPN DEN data table CPE station 294d, which in tum can send the packets
1572 and service level agreement (SI.A) priority data table contained in the subframes to subscnberworkstation 120d at
1570. The queuing function of module 1562 can be based on CPE subscriber location 306d. The subframes can be sched-
these inputs. 15 uled from highest priority to lowest priority.

SIA priority data table 1570 can use predetermined Hierarchical class-based priority (HCBP) processor mod-
service level agreements for particnlar customers to affect ule 1574 receives as input the subframes that have been
the qneuing function. A customer can be provided a higher scheduled and transmitted from WAP antenna 290d. By
quality of telecommunications service by, for example, maintaining awareness of the status of the packets (i.e., by
payiog additional money to receive such premium service. 20 knowing which packets have been sent oot), HCBP proces-
An algorithm running on module 1562 can increase the sor module 1574 knows which packets from which class
qneuing priority for messages transmitted to such customers. queues 1564a-1564/ must yet be schedllled.

Virtual private network (VPN) directory enabled net- Every once in a while, a packet is lost through, e.g., noise.
working (DEN) data table 1572 can provide prioritization When this situation arises, the subscriber CPE station 294d
for a predetermined quality of service for a VPN for a 25 sends a retransmit request 1576 to WAP 290d, which trans-
company that pays for the VPN function. A VPN is under- mits the reqnest to link layer acknowledgment (ARQ) pro-
stood by those skilled in the relevant art to be a private cessor 1578. ARQ processor 1578 informs MAC downlink
network, including a guaranteed allocation ofbaodwidth on subframe scheduler 1566 of this condition, which in turn
the network, provided by the telecommunications service reschedules the reqnested packets from the appropriate class
provider. VPN DEN data table 1572 permits module 1562 to 30 queues 1564a-1564/ for retransmission. Link layer
provide higher quality of service for customer-purchased acknowledgment ARQ processor 1578 also awaits positive
VPNs. As with SIA priority data table 1570, the qneuing acknowledgments from subscriber CPE station 294d, to
priority can be increased for such VPNs. For example, a determine that the data packets have been properly received.
platinum level VPN's lowest priority IP flow classes could Only after receiving a positive receipt acknowledgment does
also be given a higher priority than a high priority brass level 35 MAC downlink subframe scheduler 1566 remove the packet
VPN. from class queues 1564a-1564f

Both SIA priority data table 1570 and VPN DEN data Each subscriber CPE station 294d bas a limited amount of
table 1572 receive input from operations, administration, memory available for received data packets in an IP flow.
maintenance and provisioning (OAM&P) module ll08. When, for example, the devices coupled to the subscnber
This is a module that is kept off-line, and includes storage 40 CPE station 294d (e.g., subscnber workstation 120d) stop
and revision of administrative information regarding new receiving IP data flows (e.g., subscriber workstation 120d
customers, or updates of information pertaining to existing goes down), the CPE data packet queues in CPE subscnber
customers. For example, the SIA priority of the customers station 294d are quickly filled up. In this scenario, subscnber
and VPN information is updated from OAM&P module CPE station 294d transmits a CPE IP flow qneue depth
1108. 45 message 1580 indicating that the queue is filled up, which

Hierarchical class-based priority processor module 1574 can be received by CPE IP flow queue depth status processor
is a module that operates under the principles of hierarchical 1582. CPE queue depth processor 1582 informs MAC
class-based quelling. Hierarchical class-based queuing was downlink subfranie schedlller 1566 of this condition, which
created by Sally Floyd and Van Jacobson, considered early stops scheduling downlink subframes directed to subscnber
architects of tbe Internet. 50 CPE station 294d. Processor 1582 can also send messages to

Hierarchical class-based quelling classifies different types MAC downlink subfranie scheduler 1566 to flush particnlar
of IP flows using a tree structure at the edge access device IP flows from class queues 1564a-1564f
routers. Each branch of the tree signifies a different class of h. Uplink SubFrame Prioritization
IP flows, and each class is dedicated a set limited amount of 1. Overview
bandwidth. In this manner, different classes of flows are ss FIGS. 16A and lfiB are exemplary logical flow diagrams
guaranteed minimum bandwidth, so that no single IP data for the uplink. The logical flow pertains to analysis and
flow within a class, and no single class of IP flows, can use scheduling of shared wireless bandwidth to IP packet flows
up all available bandwidth. The present invention adds a from a subscnber workstation 120d coupled to a subscnber
~rioritization feature enabling class based priority rescrva- CPE station 294d, being transmitted over the wireless
tio~ to be made using the hierarchical class queue concept, 60 medium up to the wireless base station 302, and on to data
as discussed above with respect to FIGS. 13 and 14. network 142 for transmission to a destination host worksta·

MAC downlink subframe scheduler 1566 is a processor tion 136a. FIG. lfiA is an exemplary logical flow diagram
IDodule that takes the packets queued in class queues 1600 for uplink IP flow analyzer 632. FIG. 16B is an
1564a-1564f, and can make frame slot reservations to fill up e:xt:mplary logical flow diagram 1660 for the uplink flow
SUb
15

frames l568a-I568k based on priorities 1570, 1572 and 65 scheduler 634.
74, which is a variable number of frames. In one The functional components for FIGS. lfiA and 16B are

embodiment, each subfranie is scheduled (filled) with up to explained by way of method modules, which can be viewed

EX 1017 Page 438

US 6,452,915 Bl
65

as physical units (e.g., comprising software, hardware, or a
combination thereof) or logical vehicles (e.g., used for
explanatory purposes only). Those skilled in the art will
recogniz.e that the modules are used only to explain an
exemplary embodiment, and are not to be considered fun
itiog.

Toe exemplary logical flow diagram HiOO for uplink IP
flow analyzer 632 of FIG. 16A includes packet header
identification component 1602, packet characterization
component lli04, packet classification component 1606, and
IP flow presentation romponent 1608. The functions of these
components are explained in detail below.

66
downlink. lo other words,. uplink flow scheduler 634 deter
mines the reservation slots based on the queue class priority
and based on a set of rules, schedules tbe reservations for
uplink transmissions from subscriber CPE station 2!14d

s using, e.g., an advanced reservation algorithm. The rules are
determined by inputs to the uplink flow scheduler 634 from
a hierarchical class-based priority processor module 1674, a
virnial private network (VPN) directory enabled (DEN) data
table 1672, and a service level agreement (SIA) priority

10 data table 1670. The advanced reservation algorithm is
descnbed with respect to FIG. 14.
3. Identification

lo one embodiment, uplink IP flow analyzer 632 is Packet header identification component 1602 identifies
physically located in wireless base station 302, although the IP flow received from a subscriber CPE station 2!14d
those skilled in the art will recognize that the same func- 15 based on the packet's header contents.
tionality can be located remotely from wireless base station A stream of packets, also known as packets from several
302. In a preferred embodiolent of the present invention, the IP flows (i.e. each IP flow is associated with a single "call")
function ofIP flow analyzer 632 is performed at a subscriber is received at packet header identification component 1602.
CPE station 2!14d desiring an uplink reservation slot for The IP flow in one embodiment is transmitted to subscnber
uplinking a packet/IP flow up to base station 302. A reser- 20 CPE station 2!14d from one or more subscriber workstations
vation r:equest block (RRB) request detailing the IP flow 120d for uplink to host computers 136a coupled to wireless
identifier, number of packets and classification of the IP flow base station 302 by data network 142. Subscriber CPE
can be created then by IP flow analyzer 632 and can be station 294d can transmit the data packets of the IP flow to
uplinked via preferably a contention RRB slot for schedul- packet buffer module 1610 of packet header identification
ing by uplink frame scheduler 634 in future uplink subframe 25 component 1602. In one embodiment, packet header iden-
slots up at wireless base station 302. tification component is within CPE subscriber station 294d.

FIGS. 2D, 3A and 3B are helpful to the reader for an A1 module 1610, the received packets are buffered in a
understanding of the uplink IP flow analyzer. storage area for transfer to header extraction module 1620.
2. Introduction At module 1620, the packet header files are extracted and

IP flow analyzer 632 performs the function of identifying, 30 parsed to obtain the contents of the packet header fields.
characterizing, classifying, and presenting data packets to an Relevant fields can include, e.g., source, destination, type
uplink frame scheduler 634. The functions of identifying, of service (TOS) and differentiated service (DiffServ)
characterizing, classifying and presenting the data packets markings, if any exist.
can be respectively performed by packet header identifica- For IP flows known to the system, there are entries in
tion component 1602, packet characterization component 35 existing IP flow identification table 1626. An IP flow is in the
1604, packet classification component 1606 and IP flow system if a previous packet of the IP flow of tbe existing IP
presentation component 1608 of uplink IP flow analyzer data call bas already been identified. In module 1622, it is
632. determined if there is a match between the incoming IP flow

Packet header identification component 1602 determines and an entry in table 1626. If so, then the IP flow is known
whether a packet of m incoming IP flow is known to the 40 to the system, and control passes to module 1630 of the

, system (i.e. is an existing IP flow), or if it is the first data packet characterization component 1604.
· packet of a new IP data flow, and determines the source If the IP flow i'i not an existing flow known to the system,

application based on fields in the header section of the meaning that the IP flow is a new IP flow, then control passes
packet. Identification 1602 can include buffering packets to module 1624, where the packet header fields are analyzed
and extracting and parsing the header contents. Packet 45 to identify the source application of the IP flow.

'. characterization component 1604 characterizes a new data Packet header analysis module 1624 determines from
packet (ofa new IP flow) to determine the QoS requirements source application packet header table 1628 the type of

>!or the IP flow based on the source application, and to source application making the IP flow. The application can
identify the subscriber CPE station that will receive the IP be any of the types of applications described with respect to
tlow. Packet classification component 1606 classifies the so FIG. 2D or known to those skilled in the art. Exaoiples

. new !1' data flow into one of several priority classes. include a file transfer protocol (Fil>) download from another
tf:lassification 1606 can include, e.g., grouping packets hav- client workstation 138/, a voice telephony call from a caller

s.imilar QoS requirements. IP data flow presentation 124d (connected over a modem), a fax machine call, and a
"OSinitializestbenewIPdataflowandprescntsittoupliok conference call from multiple callers 124d and 126d

scheduler 634. 55 (connected over a modem), to name a few. If the IP flow is
'.'Each time a subscriber CPE station 294d attempts to a new IP flow, then the identification information about tbe

.municate in the uplink direction with wireless base new IP flow is added to table 1626, and control passes from
n 3112, it requests a reservation by inserting an RRB in analysis module 1624 to module 1632 of the packet char-

Uplink subframe. Uplink frame scheduler 634 then acterization component 1604.
~ the reservation request in a future uplink subframe 60 4. C..1Jaraderization

notifies the CPE station 294d of the reservation. In a Packet characterization component 1604 characterizes the
· . signal, uplink flow scheduler 634 located prefer- IP flow and passes it to packet classification component

-Y at Wlreless base station 302, transmits a reservation slot 1606 for classification.
•11. Particular future frame for the r:equesting subscriber If the IP flow is an existing IP flow, control passes to

station 2!14d to trammit its uplink data. Uplink flow 65 module 1630 from module 1622 of the packet header
diller 634 assigns the reservation based on the same identification component 1602. If in module 1622 it is

Ciers as the downlink flow scheduler 604 uses in the determined that the IP data flow is known to the system, in

I ,,

EX 1017 Page 439

US 6,452,915 BI
65

as physical units (e.g., comprising software, hardware, or a
combination thereof) or logical vehicles («.g., used for
explanatory purposes only). Those skilled in the art will
recognize that the modules are used only to explain an
exemplary embodiment, and are noi to be considered lim-
iting.

The exemplary logical ow diagram 1600 for uplink IP
flow analyzer 632 of FIG. 16A includes packet header
identification component 1602, packet characterization
component 1604, packetclassification component 1606, and
IP fow presentation component 1608. The functions of these
components are explained in detail below.

In one embodiment, uplink IP flow analyzer 632 is
physically located in wireless base station 302, although
those skilled in the art will recognize that the same fuunc-
tionality can be locaied remotely from wireless base station
302. In a preferred embodimentof the present invention, the
function of IP Bow analyzer 632is performed at a subscriber
CPE station 294d desiring an uplink reservation slot for
uplinking a packet/IP flow up to base station 302. A reser-
vation request block (RRB) request detailing the IP flow
identifier, mumber of packets and classification of the IP flow
can be created then by IP flow analyzer 632 and can be
uphnked via preferably a contention RRB slot for schedul-
ing by uplink frame scheduler 634 in future uplink subframe
slots up at wireless base station 302.

FIGS. 2D, 3A and 3B are helpful to the reader for an
understanding of the uplink IP flow analyzer.
2. Introduction

IP flow analyzer 632 performs the function ofidentifying,
characterizing, classifying, and presenting data packets to an
uplink frame scheduler 634, The functions of identifying,
characterizing, classifying and presenting the data packets
van be respectively performed by packet header identifica-
tion component 1602, packet characterization component
1604, packet classification component 1606 and IP flow

Presentation component 1608 of uplink IP flow analyzer32.

Packet header identification component 1602 determines
- whether a packet of an incoming IP flow is known to the

system (ic. is an existing IP flow), orif it is the first data
packet of a new IP data flow, and determines the source
application based on fields in the header section of the

f packet. Identification 1602 can include buffering packets
s and extracting and parsing the header contents. Packet

: Characterization component 1604 characterizes a new data
f packet (of a new IP flow)to determinethe QoS requirements
for the IP flow based on the source application, and to

identify the subscriber CPE station that will receive the IP
pflow. Packet classification component 1606 classifies the
picw IP data flow into one of several priority classes.
¢ Classification 1606 can include, ¢.g,, grouping packets hav-

‘ag similar QoS requirements. IP data flow presentation
A603 initializes the new JP data flow and presentsit to uplink
ow scheduler 634.

eminunicate in the uplink direction with wireless base
pation 302,it requests a reservation by inserting an RRB in

uplink subframe. Uplink frame scheduler 634 then
2 dules the reservation requestin a future uplink subframe

Rotifies the CPE station 294d of the reservation. In a
nuunk signal, uplink flow scheduler 634 located prefer-

} y at Wireless base station 302, transmits a reservation slot
.* Particular future frame for the requesting, subscriber
FE station 294d to transmit its uplink data. Uplink flow

t 634 assigns the reservation based on the same
neters as the downlink flow scheduler 604 uses in the

20

3

30

ve3

ao

4s

SS

60

65

66

downlink. In other words, uplink Bow scheduler 634 deter-
mines the reservation slots based on the queueclass priority
and based on a set of mies, schedules the reservations for
uplink transmissions from subscriber CPE station 294d
using, ¢.g., an advanced reservation algorithm. The rules are
determined by inputs to the uplink flow scheduler 634 from
a hierarchical class-based priority processor module 1674, a
virtual private network (VPN) directory enabled (DEN) data
table 1672, and a service level agreement (SLA) priority
data table 1670. The advanced reservation algorithm is
described with respect to FIG. 14.
3. Identification

Packet header identification component 1602 identifies
the IP flow received from a subscriber CPE station 294d
based on the packet’s header contents.

Astream of packets, also known as packets from several
IP fiows (i.c. cach IP flow is associated with a single “call”)
is received at packet header identification component 1602.
The IP flow in one embodimentis transmitted to subscriber
CPEstation 294d from one or more subscriber workstations

120dfor uplink to host computers 136¢ coupled to wireless
base station 302 by data network 142. Subscriber CPE
station 294d can transmit the data packets of the IP flow to
packet buffer module 1610 of packet header identification
component 1602. In one embodiment, packet header iden-
tification componentis within CPE subscriberstation 294d.
At module 1610, the received packets are buffered in a
storage area for transfer to header extraction module 1620.
At module 1620, the packet header files are extracted and
parsed to obtain the contents of the packet header fields.

Relevantfields can include, ¢.g., source, destination, type
of service (TOS) and differentiated service (DiffServ)
markings, if any exist.

For IP flows known to the system, there are entries in
¢xisting IP flow identification table 1626. An IP fiow is in the
system if a previous packet of the IP flow of the existing IP
data call has already been identified. In module 1622,it is
determinedif there is a match between the incomingIP flow
and an entry in table 1626. If so, then the IP flow is known
to the system, and control passes to module 1630 of the
packet characterization component 1604.

If the IP flow is not an existing flow known to the system,
meaningthat the IP flow is a new IP flow, then control passes
to module 1624, where the packet header fields are analyzed
to identify the source application of the IP flow.

Packet header analysis module 1624 determines from
source application packet header table 1628 the type of
source application making the IP flow. The application can
be any of the types of applications described with respect to
FIG. 2D or known to those skilled in the art. Examples
includea file transfer protocol (FTP) download from another
client workstation 138f a voice telephony call from a caller
124d (connected over a modem), a fax machine call, and a
conference call from multiple callers 124d and 126d
(connected over a modems), to name a few. If the [P fow is
a new IP flow, then the identification information about the
new IP flow is added to table 1626, and control passes from
analysis module 1624 to module 1632 of the packet char-
acterization component 1604.
4, Characterization

Packet characterization component 1604 characterizes the
IP flow and passes it to packet classification component
1606 for classification.

if the IP flow is an cxisting IP flow, control passes to
module 1630 from module 1622 of the packet header
identification component 1602. If in module 1622 it is
determined that the IP data flow is known to the sysiem,in

EX 1017 Page 439

i

ooweregentteeiHRdeltee

-
US 6,452,915 Bl

67
module 1630 it is determined whether the packet is old (i.e.,
stale). This can include determining from a time-to-live field
(a field in the IP packet header) the age of the packet, and
comparing the field to a threshold age value. If the packet is
determined to be st.a.le, it is discarded. Module 1630 can 5
anticipate application packet discards. From module 1630,
control passes to module 1640 of the packet classification
component 1606.

If the IP flow is new, control passes to module 1632 from
module 1624 of the packet header identification component
1602. lfin module 1624 it is determined that the application

10

associated with the IP flow application is not known to the
system, in IP flow QoS requirements lookup module 1632
the QoS requirements for the application associated with the
IP flow are determined. Module 1632 performs this opera
tion by looking up the application in IP flow QoS require- 15
men! table 1634. Different applications have different
requirements. For example, bandwidth allocation (ie., allo
cating an appropriate amount of bandwidth) is important to
an application performing FfP downloads, and not jitter
(i.e., time synchronizing the received data) and latency (i.e., 20
the amount of time passage between responses). On the
other hand, jitter and latency are important to voice tele
phony and conference calls, and bandwidth allocation is not.

After processing by module 1632, control passes to mod
ule 163b. In CPE subscriber station identifier (ID) lookup 25
module 1636 a subscnber CPE ID lookup is performed for
the new IP data flow. Each subscriber CPE station 294d can
h.tve one or more applications, running on one or more ·
subscnber workstations 120d, homed to it. Accordingly, one
or many subscnbers can generate or receive llD IP flow
directed from or at a subscriber CPE station 294d. A 30

subscnber workstation 120d can be any device coupled to a
subscnber CPE station 294d. Module 1636 looks up the CPE
station identifier for the IP flow in lllble 1638, to provide the
CPE ID in the reserntion request block (RRB). Control then
passes from module 1636 to module 1648 of the packet 35
classificlllion component 1606.
5. Classification

68
For existing IP flows, control passes to module 1646 from

module 1640 of the packet classification component 1640.
In module 1646, the packet is added to the IP flow queue,
which is the queue for the current existing IP flow. In one
embodiment, this can include preparation of a RRB. From
module 1646, control passes to module 1662 of uplink flow
scheduler 634. In one embodiment, this can include uplink
of the RRB from CPE 294d to wireless base station 302.

For ll new IP flow, control passes lo module 1648 from
module 1642 of the packet classification component 1606.
In initialize IP flow module 1648, this new IP flow is
initialized for presentation to module 1652. Module 1652
presents the IP dllla flow (in particular, the reservation
request block data packet) to module 1662 of uplink flow
scheduler 634. In module 1650, the QoS class for the IP flow
is presented to scheduler 634, preferably by inclusion in a
RRB.
7. Uplink Flow Scheduler

The exemplary logical flow diagram for the uplink flow
scheduler 634 of FIG. 16B comprises IP flow QoS class
queuing processor module 1662, MAC uplink subframe
scheduler module 1666, hlerarchical class-based priority
processor module 1674, VPN DEN d.tta table module 1672,
SIA priority data table 1670, CPE IP flow queue depth
statw; processor 1682 and link layer acknowledgment pro
cessor module 1678.

Uplink flow scheduler 634 of FIG.16B also includes QoS
class queues for class 1, 1664a; class 2, 1664b; class 3,
1664c; class 4, 1664d; cl.LSS 5, 1664e; and class 6, 1664/;
and

MAC uplink subframes: frllIDc n 1668a; frllmc n+l,
1668b; frllffic n+2, 1668c; frame n+3, 1668d, ... frame n+p,
1668k:

In one embodiment, uplink flow scheduler 634 is physi
cally located in wireless b.LSC station 302, although those
skilled in the art will recognize that the same functionality
can be located remotely from wireless base station 302. For
example. in another embodiment, uplink flow scheduler 634
can be located at CPE station 294d and is in communication

Packet classification component 1606 classifies the IP
flow and passes it to IP flow presentation component 1608
for presentment.

For existing IP flows, control passes to module 1640 from
module 1630 of the p.tckct characterization component
1604. If in module 1630 it is determined that the packet is
not stale, then in module 1640 the packet is associated with

40 with other CPE stations 294 and the wireless b.LSC station
302.

Uplink flow scheduler 634 is used to schedule the uplink

its IP flow. As illustrated in FIG. 16A, the p.tcket processed 45

herein was determined to be a portion of an IP flow known

subframe. The entire frllmc is divided into an uplink portion
(called an uplink subfrllIDc) for transmitting uplink frames,
and a downlink portion (called a downlink subframe) for
transmitting downlink frames.

to the system. Therefore, the QoS processing of modules
1632, 1636 and 1642 are unnecessary, because the QoS
requirements of the present packet are the same as for its IP
flow.

For new IP flows, control passes to module 1642 from
module 1636 of the packet characterization component
1604. In module 1642 the packet is classified or grouped into
a QoS class by performing an IP flow QoS requirement table
1644 lookup where the QoS classes are stored depending on
the QoS requirements for packets. From module 1642,
control passes to module 1648 of IP flow presentation
component 1608.
6. IP Flow Presentation

Illustrated in FIG. 16B arc WAP antenna 290d, the
wireless medium, RF transceiver subscnber antenna 292d,
subscnber CPE station 294d and subscnber workstation

50 120d. WAP 290d and RF transceiver subscnber antenna
292d respectively provide a wireless connection between
wireless base station 302 (where uplink flow scheduler 634
resides in one embodiment) and subscnber CPE station
294d, which can transmit upstream an IP flow from an

55 application running on client computer 120d. WAP 290d
serves as a wireless gateway for data network 142, and RF
transceiver subscnbcr antenna 292d serves as a wireless
gateway for subscnbcr CPE station 294d to uplink the IP
flow packet dllla.

IP flow presentation component 1608 prepares and pre- 60

:scats the IP data flow packets to flow scheduler 634. In one
embodiment of the uplink direction, a reservation request
block (RRB) is crellted and uplinked via a contention slot to
the wireless b.LSC station 302 for scheduling by IP flow
SChcduJer 634. In llDDlhcr embodiment, the scheduler is
located at the CPE station 294d so no reservation request is
needed.

Also illustrded in FIG. l6B is data interface 320, which
provides a connection from uplink flow scheduler 634 for
sending uplinked IP flow packets on to data router 140d of
data network 142 and on to a destination host computer
136a. These connections arc also illustrated in FIGS. 2D and

65 3B.
The previous frllIDc includes an uplink reservation request

which is received by the wireless b.tse station from a

EX 1017 Page 440

US 6,452,915 Bl
69 70

1236h of F1G.12F. The uplink slots can then be inserted by
CPE station 294d into the uplink subframe as scheduled. The
frame slots are then transmitti:d up from CPE station 294d
to wireless base station 302 and are then sent on as packets
to their destination addresses. For example, from wireless
base station 302 the packets can be transmitted over data
network 142 to a host computer 136a.

subscriber CPE station 294d. At this)Xlinl, the reservation
request block has been identified, characterized, classified,
and presented, preferably at the CPE station 294d, and has
been transmitted to uplink flow scheduler 634 from uplink
flow analyzer 632 at the CPE 294d. In particular, the 5

reservation request block is presented to IP flow QoS class
queuing processor module 1662 from module 1650. Module
1662 informs MAC uplink subframe scheduler 1666 of the
reservation.

After the uplink packets are received by the wireless base
station 302, the wireless base station 302 sends an upstream

10 acknowledgment data block (UAB) message back down to
the transmitting subscriber CPE station 294d, to acknowl
edge receipt of the transmitted data packets.

In turn, MAC uplink subframe scheduler 1666 uses a slot
in the subframe to acknowledge receipt of the request called
the acknowledgment request block (ARB). An exemplary
slot used to convey the frame, slot, and IP flow identifier for
this reservation is described with respect to FIG. 12. Sched
uler 1666 transmits in this reservation slot the CPE identi
fication data. along with which future slot(s) and frame(s)
the requesting subscnber CPE station 294d is permitted to
use for uplink of the requested data packet IP flow trans
missions.

Every once in a while, a packet is lost through noise or
other interference in the wireless medium. When this situ-

15 ation arises, the subscriber CPE station 294d determines that
it has not received a UAB data acknowledgment, so it sends
a retransmit request requesting another uplink reservation
slot to wireless base station 302 via WAP 290d, which
transmits the request to link layer acknowledgment (ARQ)

20 processor 1678. ARQ processor 1678 informs MAC uplink
subframe scheduler 1666 of the need of retransmission (i.e.
the need of a frame slot reservation for resending the uplink
packet). CPE subscriber station 294d can also send to ARQ

The future slot(s) in the future frame(s) are assigned, e.g.,
based on inputs from hierarchical class-based priority pro
cessor module 1674, VPN DEN data table 1672 and service
level agreement (SLA) priority data table 1670. These
comJXlnents function in a similar manner to hierarchical
class-based priority processor module 1574, VPN DEN data 2S
table 1572 and service level agreement (SLA) priority data
table 1570, descnbed with respect to the dowolink flow
scheduler 604.

processor 1678, other data messages about nonreceipt of
uplink transmission acknowledgments. The ARQ 1678 can
forward such messages on to the uplink subframe scheduler
1666. The uplink subframe scheduler 1666 in turn resched
ules the requested uplink reservation from the appropriate
class queues 1664a-1664.f. Alternatively, in another
embodiment, link layer acknowledgment processor 1678
can also send a positive UAB acknowledgment to the
subscnber CPE station 294d, to indicate tht.t the data packets
have been properly received. Thus uplink scheduler 1666 in
addition to scheduling fust time reservations, also can

When IP flow QoS class queuing processor module 1662
receives packets of an existing or new IP flow from IP flow 30

presentation module 1608, it then creates class queues
1664a-1664/, which is a variable number of queues, and
places the packets in these class queues. In a preferred
embodiment there are between 3 and 10 classes. These
queues hold reservation request packets for scheduling.
Packets are placed in class queues 1664a-1664f according to
the contents of the reservation request block for input to
module 1662.

35 schedule repeat reservations for lost packets.

Module 1662 receives inputs from hierarchical class
based priority processor module 1674, VPN DEN data table
1672 and service level agreement (SLA) priority data table
1670. The queuing function of module 1662 is based on
these inputs. These com)Xlnents function analogously to
their COUDterparts in the downlink flow scheduling method.
SIA priority data table 1670 and VPN DEN data table 1672
receive input from operations, administration, maintenance
and provisioning (OAM&P) module DOit OAM&P module
ll08 provides updates to priorities when, e.g., a subscriber
modifies its service level agreement or a VPN subscription
is changed.

Each subscriber CPE station 294d bas a limited amoUDt of
memory space available for queuing packets received from
subscnber workstations 120d awaiting reservation slots of
uplink from the CPE 294d to wireless base station 302.

'4() When, for example, the the queue of subscriber CPE station
294d becomes full from a backup of packets awaiting
upstream reservations, IP data flows can potentially be lost,
or packets may become stale. In this scenario, subscriber
CPE station 294d transmits a CPE IP flow queue depth

45 message 1680 lo the wireless base station 302 indicating that
the queue is filled up, which can be received by CPE IP flow
queue depth status processor 1682. Processor 1682 can
inform MAC uplink subframe scheduler 1666 of this
condition, which can, e.g., increase temporarily the priority

50 of IP flows at subscnber CPE station 294d to overcome the
backlog or can, e.g., stop transmitting additional downlink
packets to the CPE station 294d until the queue depth
backlog is decreased to an acceptable level again. Processor

MAC uplink subframe scheduler 1666 takes the requests
queued in class queues 1664a-1664f, and schedules reser
vations of slots in frames 1668a-1668k; which is a variable
number of frames. In one embodiment, each frame is
scheduled with up to a predetermined number limit or 55
percentage limit of packets from each of the classes
1664a-1664J. The requests can be scheduled as shown in
FIG. 13, taking into account certain priorities. In another
embodiment, the frames are scheduled according to the
inventive advanced reservation algorithm method for sched
uling isochronous type traffic described with respect to FIG.
14. In yet another embodiment, the frames are scheduled
according to a combination of known methods and the
advanced reservation algorithm method of the present inven
tion.

1682 can also send messages to MAC uplink subframe
scheduler 1666 to flush reservation requests from the sub
scnber CPE station 294d in class queues 1664a-1664f.
4. TCP AdjUDct Agent

TCP is a reliable transport protocol tuned to perform well
in traditional networks where congestion is the primary

60 cause of packet loss. However, networks with wireless links
incur significant losses due to bit-errors. The wireless envi
ronment violates many assumptions made by TCP, causing
degraded end-to-end performance. See for example,
Balakrisbnan, H., Sesban, S. and Katz, R. H., "Improving

65 Reliable Transport and Handoff Performance in Cellular
Wireless Networks," University of California at Berkeley,
Berkeley, Calif., accessible over the Internet at URL, http://

The reservation slot schedule can then be sent down to the
CPE stations 294 using, e.g., FOB slots such as 1236g and

EX 1017 Page 441

US 6,452,915 B1
69

subscriber CPE station 294d. At ibis point, the reservation
request block has been identified, characterized, classified,
and presented, preferably at the CPE station 294d, and has
been transmitted to uplink flow scheduler 634 from uplink
flow analyzer 632 at the CPE 294d. In particular, the
reservation request block is presented to IP flow QoS class
queuing processor module 1662 from module 1650. Module
1662 informs MAC uplink subframe scheduler 1666 of the
reservation.

In turn, MACuplink subframe scheduler 1666 uses a slot
in the subframe to acknowledge receipt of the requestcalled
the acknowledgment request block (ARB). An exemplary
slot used to convey the frame,slot, and IP flow identifier for
this reservation is described with respect to FIG. 12. Sched-
uler 1666 transmits in this reservation slot the CPE identi-
fication data, along with which future slot(s) and frame(s)
the requesting subscriber CPE station 294d is permitted to
ust for uplink of the requested data packet IP flow trans-
missions.

The future slot(s) in the future frame(s) are assigned,e.g.,
based on inputs from hierarchical class-based priority pro-
cessor module 1674, VPN DEN data table 1672 and service
level agreement (SLA) priority data table 1670. These
components function in a similar manner to hierarchical
class-based priority processor module 1574, VPN DEN data
table 1572 and service level agreement (SLA) priority data
table 1570, described with respect to the downlink flow
scheduler 604.

When IP flow QoS class queuing processor module 1662
receives packets of an existing or new IP flow from IP flow
presentation module 1608, it then creates class queues
16642-1664f, which is 4 variable number of queves, and
places the packeis in these class queues. In a preferred
embodiment there are between 3 and 10 classes. These
queues hold reservation request packets for scheduling.
Packets are placed in class queves 16642-1664faccording to
the contents of the reservation request block for input to
module 1662.

Module 1662 receives inputs from hierarchical class-
based priority processor module 1674, VPN DEN data table
1672 and service level agreement (SLA) priority data table
1670. The queuing function of module 1662 is based on
these inputs. These components function analogously to
their counterparts in the downlink flow scheduling method.
SLA priority data table 1670 and VPN DEN data table 1672
receive input from operations, administration, maintenance
and provisioning (OAM&P) module 1108. OAM&P module
1108 provides updates to priorities when, ¢.g., a subscriber
modifies its service level agreement or a VPN subscription
is changed.

MACuplink subframe scheduler 1666 takes ihe requests
queued in class queues 1664a—-1664f, and schedules reser-
vations of slots in frames 1668a—1668% which is a variable
number of frames. In one embodiment, each frame is
Scheduled with up to a predetermined number limit or
Percentage limit of packets from cach of the classes
1664a~-1664f. The requests can be scheduled as shown in
FIG. 13, taking into account certain priorities. In another
embodiment, the frames are scheduled according to the
inventive advanced reservation algorithm method for sched-
uling isochronous type traffic described with respect to FIG.
14. In yet another embodiment, the frames are scheduled
according to a combination of known methods and the

ananeed reservation algorithm method of the present inven-n,

The reservation slot schedule can then be seat down to the

CPEstations 294 using, c.g., FDB slots such as 1236g and

25

30

35

0

50

35

60

6oh

70

1236h of FIG. 12F. Theuplink slots can then be inserted by
CPEstation 2944 into the uplink subframe as scheduled. The
frame slots are then transmitted up from CPE station 294d
to wireless base station 302 and are then sent on as packets
to their destination addresses. For example, from wireless
base station 302 the packets can be transmitted over data
network 142 to a host computer 1362,

After the uplink packets are received by the wircless base
station 302,the wireless basc station 302 sends an upsircam
acknowledgment data block (UAB) message back down to
the transmitting subscriber CPE station 294d, to acknowl-
edge receipt of the transmitied data packets.

Every once in a while, a packet is lost through noise or
other interference in the wireless medium. When this situ-
ation arises, the subscriber CPE station 294d determines that
it has not received a UAB data acknowledgment, so it sends
a retransmit request requesting another uplink reservation
slot to wireless base station 302 via WAP 290d, which
transmits the request to link layer acknowledgment (ARQ)
processor 1678. ARQ processor 1678 informs MAC uplink
subframe scheduler 1666 of the need of retransmission (i.e.
the need of a frame slot reservation for resending the uplink
packet). CPE subscriber station 294d can also send to ARQ
processor 1678, other data messages about nonreceipt of
uplink transmission acknowledgments. The ARQ 1678 can
forward such messageson to the uplink subframe scheduler
1666. The uplink subframe scheduler 1666 in turn resched-
ules the requested uplisk reservation from the appropriate
class queucs 1664a~1664f. Alternatively, in another
embodiment, link layer acknowledgment processar 1678
can also send a positive UAB acknowledgment to the
subscriber CPE station 294d, to indicate that the data packets
have been properly received. Thus uplink scheduler 1666 in
addition to scheduling first time reservations, also can
schedule repeat reservations for lost packets.

Each subscriber CPE station 294d has a limited amount of
memory space available for queuing packets received from
subscriber workstations 120d awaiting reservation slots of
uplink from the CPE 294d to wireless base station 32.
When, for example, the the queue of subscriber CPEstation
294d becomes full from « backup of packets awaiting
upstream reservations,IP data flows can potentially be lost,
or packets may become stale. In this scenario, subseriber
CPE station 294d transmits a CPE IP flow queue depth
message 1680 to the wireless base station 302 indicatingthat
the queueis filled up, which can be received by CPE IP flow
queue depth status processor 1682, Processor 1682 can
inform MAC uplink subframe scheduler 1666 of this
condition, which can, ¢.g., increase temporarily the priority
of IP flows at subscriber CPE station 294d to overcomethe
backlog or can, ¢.g., stop transmitting additional downlink
packets to the CPE station 294d until the quene depth
backlog is decreased to an acceptable level again. Processor
1682 can also send messages to MAC uplink subframe
scheduler 1666 to flush reservation requests from the sub-
scriber CPE station 294d in class queues 1664a-1664f.
4, TCP Adjunct Agent

TCP is a reliable transport protocol tuned to perform well
in traditional networks where congestion is the primary
cause ofpacket loss. However, networks with wireless links
incur significant losses due to bit-errors. The wireless envi-
roument violates many assumptions made by TCP, causing
degraded end-to-end performance. See for example,
Balakrishnan, H., Seshan, S. and Katz, R. H., “Improving
Reliable Transport and Handoff Performance in Cellular
Wireless Networks,” University of California at Berkeley,
Berkelcy, Calif., accessible over the Intemet at URL, hitp://

EX 1017 Page 441

US 6,452,915 B1
71 72

www.cs.berkeley.edu/-ss/papers/winet/htmVwinet.html, a protocol stack at the wireless base station having an
dealing more directly with handoffs and bit errors in a example TCP adjunct agent, then through a wireline con-
narrowband wireless environment, the contents of which are nection and through a protocol slack to a destination host.
incorporated by reference. Attempts to address this problem The adjunct TCP agent modifies operation of a TCP sliding
have modified TCP in order to overcome it. However, this is s window algorithm at the transmitting TCP and in coopera-
not a commercially feasible means of overcoming this tion with proactive reservation-based intelligent multi-
challenge. It is impracticable to implement any solution that media access technology (PRIMMA) media access control
requires a change to the standard operation of TCP. (MAC) enables local retransmission over the wireless

The present invention uses an enhanced MAC layer wbich medium in accord with the present invention.
interfaces with a TCP adjunct agent to intercept TCP layer 10 Specifically, flow 500 illustrates IP packet flow from
requests to manipulate the TCP layers at either a source or subscriber workstation 120d, through CPE subscriber station
destioation end of a transmission, to modify TCP behavior 2114d at CPE subscnbcr location 306d, then over a wireless
at the source and destination of the TCP/IP transmission transmission medium to wireless base station 302, and
which includes an intermediary wireless link. Packets can be eventually over a wireline link over data network 142 to host
queued at the wireless base station awaiting receipt 15 workstation 136a.
acknowledgment and the base station can perform local TCP adjunct agent 510e makes sure transport is reliable
retransmissions acr= the wireless link to overcome packet by modifying operation of the TCP sliding window algo-
loss caused by high bit-error rates. Communication over rithm at the transmitting TCP in a manner that optiniizes the
wireless links is characterized by limited bandwidth, high window for the wireless medium. TCP adjunct agent 510e
latencies, sporadic bigh bit-error rates and temporary dis- 20 advantageously is transparent to indm.try standard protocols
connections which must be dealt with by network protocols as agent 510e does not require modification of the standard
and applications. TCP/UDP layer of client subscriber workstation 120d or

Reliable transport protocols such as TCP have been tuned host workstation 136a.
for traditional wired line networks. TCP performs very well Flow 500 includes IP flows from application layer 512a,
on such networks by adapting to end-to-end delays and 25 down the protocol stack through TCP/UDP layer 510a,
packet losses caused by congestion. TCP provides reliability through IP layer 508a, then through point-to-point (PPP)
by maintaining a running average of estimated round-trip layer 520a, then through data link Ethernet layer 504a, then
delay and mean deviation, and by retransmitting any packet through lOBaseT Ethernet netwozk interface card (NIC)
whose acknowledgment is oot received within four tinies the physical layer 502a, over a wire line connection to lOBaseT
deviation from the average. Due to the relatively low bit- 30 Ethernet NIC physical layer 502b of subscnber CPE 294d.
error rates over wired networks, all packet losses are cor- Subscnber CPE 294d flows packets coming in from NIC
rectly assumed to be caused by congestion. 502b, back up its protocol stack through Ethernet layer

In the presence of the high bit-error rates characteristic of 504b, through PPP layers 520b and 520c, back down
wireless environments, TCP reacts to packet losses as it through PRIMMA MAC 504c to wireless physical layer
would in the wired environment, ie. it drops its transmission 35 502c including antenna 292d, then over the wireless medium
window size before retransmitting packets, initiates conges- to antenna 2!10d of wireless base station 302.
tion control or avoidance mechanisms (e.g., slow start) and Wireless base station 302 flows packet IP fiows up from
resets its retransmission timer. These measures result in an antenna 290d at physical layer 502d through PRIMMA
unnecessary reduction in the link's bandwidth utilization, MAC layer 504~ through PPP layer 520a, through IP layer
thereby causing a significant degradation in performance in 40 508d to TCP acljunct agent 510e, which can flow IP flows
the form of poor throughput and very high interactive down through IP layer 508e, through PPP layer 520e,
delays. through wide area network (WAN) layer 504e, through

The present invention maintains packets in class queues wireline physical layer 502e, through interface 320, over
awaiting acknowledgment of receipt from the subscriber routers 140d, through data network 142, via wireline con-
CPE stations. Unacknowledged data slots can then be resent '45 nections to wireline layer 501,f of WAN host workstation
by having the wireless base station perform local retrans- 136a.
missions to the subscriber CPE station. By m.ing duplicate Host workstation 136a flows IP flows from wireline layer
acknowledgments to identify a packet loss and performing 5021, up through its protocol stack through WAN layer 5041,
local retransmissions as soon as the loss is detected, the through PPP layer 521V, through IP layer 5081, to TCP/UDP
wireless base station can shield the sender from the iuber- so layer 5lfV and on to application layer 512f
ently high bit error rate of the wireless link. In particular, TCP/UDP layers 510a and 510/ act to provide such
transient situations of very low communication quality and transport functions as, e.g., segmentation, managing a trans-
temporary disconnectivity can be hidden from the sender. mission window, resequencing, and requesting retransmis-

For transfer of data from a CPE subscriber host to a sion of lost packet flows. Normally TCP layers 510a and
wireless base station host, missing packets are detected at ss 510/ would send a window of packets and then await
the wireless base station and negative acknowledgments can acknowledgment or requests for retransmission. A TCP
be generated for them. The negative acknowledgments can sliding window algorithm is normally used to vary the
request that the packet be resent from the CPE subscriber transmission flow to provide optimized transport and to back
host (the sender). The CPE subscriber host can then process off when congestion is detected by receipt of requests for
the negative acknowledgment md retransmit corresponding 60 retransmission. Unfortunately in the wireless environment,
missing packets. Advantageously, no modifications to the due to high bit error rates, not all packets may reach the
~nder TCP or receiver TCP is necessary, since the present destination address, not because of congestion, but rather
invention places TCP aware functionality in the MAC layer. because of high bit error rates, so as to prompt a retrans-

FIG. SA illustrates fiow 500 depicting IP flows from a mission request from the destination IP host to the source.
SOUrce TCP at a subscnber host, down a protocol stack for 6S Rather than slow transport, TCP adjunct agent 510e modifies
lr~mission through a CPE subscriber station, through a operation of the TCP sliding window algorithm to optimize
'IVireless medium to a wireless base station, up and through operation over wireless. PRIMMA MAC layer 504d inter-

EX 1017 Page 442

r

US 6,452,915 Bl
73 74

acts with TCP adjunct agent 51 Oe permitting the agent to Thus, TCP adjunct agent 510e of the present invention can
intercept, e.g., retransmission requests, from TCP layer 510a modify operation of the TCP sliding window algorithm io a
of subscnoer workstation 120d iotended for host 136a, and manner that is optimal for the wireless medium, without
allowing the wireless base station to retransmit the desired requiring any change to commercially available TCP layers
packets or flows to subscnoer workstation 120d rather than s 510a and 510/ at the receiver and sender hosts. In an
forwardiog on the retransmission request lo host 136a, since embodiment, TCP adjunct agent 510e obviates the need for
the packets could still be stored in the queue of PRIMMA any modification of the TCP layers at either the sending (i.e.
504d and would not be discarded until an acknowledgment transmitting) host or client. In another embodiment the host
of receipt is received from the subscriber CPE. Since and client TCP layers are unaware of the modification of
retransmission can be performed according to the present 10 operation by the TCP adjunct agent, i.e. it is transparent to
invention at the PRIMMA MAC data link layer, i.e. layer 2, source and destination TCP layers. In another embodiment,
retransmission can occur from the base station to the CPE TCP adjunct agent 5Ule intercepts retransmission requests
subscnoer, rather tban requiring a retransmission from all between a TCP layer of the client computer coupled to the
the way over at the transmitting source TCP which would subscnoer CPE station and the TCP layer of the host
cause TCP to backoff its sliding window algorithm. Thus, by 15 workstation coupled to the data network.
having wireless baBe station 302 retransmit until receipt is FIG. SB illustrates functional flow diagram 522 including
acknowledged over the wireless link, the inherently high bit an example functional description of TCP adjunct agent
error rate can be overcome, while maintaining an optimal S10eperforminganoutgoingTCPspooffunction.Referring
TCP window. lo FIGS. SB and SA. diagram 522 assumes that a TCP layer

Recall, a TCP transmitter transmits a TCP sliding window 20 S10/ at a transmitting host 136a has transmitted a windowful
block of packets and alters the size of the window upon of packet data to subscriber workstation 120d, and awaits
detection of congestion. The TCP transmitter transports a acknowledgment. Diagram 522 illustrates receipt of an
block of packets in a window, and then awaits acknowledg- outgoing TCP message S24 in TCP adjunct agent S10e at
meat from the receiver. If transmission is going smoothly, wireless base station 302 which bas been sent from sub-
i.e. no congestion or lost packets occur, then the transmitter 25 scriber workstation 120d via subscriber CPE station 294d.
TCP ramps up the transmission rate. This increased trans- In step 526, the TCP header contents of outgoing TCP
mission rate continues until the transmitting TCP detects message 524 is parsed in order to reveal the contents of the
congestion or packet loss. When notified of congestion, the message being sent from subscriber workstation 120d
transmitting TCP stops transmitting, backs off and sends a through the wireless network toward the transmitting host
smaller block (i.e. a smaller window) of packets. 30 136a.

TCP adjunct agent modi.fies normal TCP operation by In step S28, it is determined whether the TCP header
tricking the transmitting TCP and its transmitting window contents includes a duplicate acknowledgment message
algorithm. The TCP adjunct agent prevents the transmitter from the CPE station. Receiving a duplicate a.cknowledg-
from being notified of loss, i.e. receiving congestion meat request from the CPE subscn"ber location could be
notification, from the receiving TCP by, e.g., preventing 35 indicativeofalostmessageinthewirelessmedium,orareal
duplicate retransmission requests. Since the transmitting congestion problem. If in step 528 the TCP packet is
TCP does not receive such notification, it does not modify determined to be a duplicate acknowledgment message, then
lhe TCP sliding window and transmission continues at the processing can oontinue with step S32, if not, then process-
higher rate. ing can continue with step 530.

In the event that real congestion occurs, i.e. if the TCP -40 In step S30, it is determined that there was real
adjunct agent recognizes packets really were lost, then the congestion, i.e., this was not a duplicate acknowledgment
TCP adjunct agent can let the retransmission request go message caused by retrausmission attempts at the wireless
through to the transmitting TCP. This is advantageously link layer. Thus, in step S30, tbe TCP message is permitted
accomplished because the MAC link layer of the present to pass through TCP adjunct 510ewitbout modification, and
invention is in communication with the higher protocol 45 cancontinuethroughfiow500toTCPlayerS1~ofFIG.5A.
layers, it is application aware, transport aware and network In step S32, since there was a duplicate acknowledgment
aware. In this case, because the MAC layer is transport layer detected in step 528, it is determined whether the packet was
aware, PRIMMA MAC layer 504d communicates with the successfully trausmitted, or not. Step S32 is performed via
TCP adjunct agent 510e at layer 4. Since the MAC requires intercommunication between TCP adjunct agent S10e and
acknowledgment of receipt of wireless transmissions sent to 50 PRIMMA MAC layer 504d. This is an example of the
the CPE subscnber station 294d for every packet sent from interactivity between PRIMMA MAC and higher layer
the wireless base station 302, the MAC layer S04d knows protocols illustrated as line 428 in FIG. 4. PRIMMA MAC
Whether an inter-TCP layer communication, e.g., a request layer S04d can identify whether a packet was successfully
for retransmission, is sent from a client computer TCP at the sent from wireless base station 302 to CPE station 294d
CPE station is created because the lost packet wa.,; lost in 55 sioce, as illustrated in FIG. 1SB, requests for retransmission
wireless transmission, or because of real congestion. 1576 are received from CPE station 294d al link layer

If PRIMMA MAC 504d does not receive an acknowledg- acknowledgment (ARQ) processor 1578 to MAC downlink
meat from S04c, then the PRlMMA MAC 504d of wireless subframe scheduler 1566 alerting the scheduler 1566 lo
base station 302 can retransmit the contents of the lost retransmit the lost packet in a future frame 1568. If in step
packet lo the subscriber CPE station 294d. If the PRIMMA 60 S32, it is determined that the packet was successfully
MAC S04c of tbe subscnoer CPE station 294d acknowl- transmitted, then processing can continue with step 530, as
edges i:eccipt and still requests a retransmission, then real described above. If however it is determined that the packet
congestion could have occurred and the PRIMMA MAC was not successfully transmitted, then processing continues
504d of the wireless base station 302 can let the TCP adjunct with step 534.
&gent 510e know that it should allow the retransmission 65 In step S34, since the packet was oot successfully
request to be sent to the transmitting TCP S10f of host transmitted, TCP adjunct agent S10e can suppress tra.nsmis-
Workstation 136a. sioo of TCP message 524 since it can be assumed that the

Iii
EX 1017 Page 443

ooo

;

i
E

US 6,452,915 B1
73

acts with TCP adjunct agent 510e permitting the agent to
intercept, ¢.g., retransmission requests, from TCP layer 5104
of subscriber workstation 120d intended for bost 1364, and
allowing ihe wireless base station to retransmit the desired
packets or flows to subscriber workstation 120d rather than
forwarding on the retransmission request to host 1364, since
the packets could still be stored in the quence of PRIMMA
504d and would not be discarded until an acknowledgment
of receipt is received from the subscriber CPE. Since
retransmission can be performed according to the present
invention at the PRIMMA MACdatalink layer,ic. layer 2,
retransmission can occur from the base station to the CPE

subscriber, rather than requiring a retransmission from all
the way overat the transmitting source TCP which would
cause TCP to backoff its sliding window algorithm. Thus, by
having wireless base station 302 retransmit until reocipt is
acknowledged over the wireless link, the inherently bigh bit
error rate can be overcome, while maintaining an optimal
TCP window.

Recall, a TCP transmitter transmits a TCP sliding window
block of packets and alters the size of the window upon
detection of congestion. The TCP transmitter transports a
block of packets in a window, and then awaits acknowledg-
ment from the receiver. If transmission is going smocthly,
Le, 00 congestion orlost packets occur, then the transmitter
TCP ramps up the transmission rate, This increased trans-
mission rafe continues until the transmitting TCP detects
congestion or packet loss. When notified of congestion, the
transmitting TCP stops transmitting, backs off and sends a
smaller block (Le. a smaller window) of packets.

TCP adjunct agent modifies normal TCP operation by
tricking the wansmitting TCP and its transmitting window
algorithm. The TCP adjunct agent prevents the transmitter
from being notified of loss, ic. receiving congestion
notification, from the receiving TCP by, ¢.g., preventing
duplicate retransmission requesis. Since the transmitting
TCP does not receive such notification, it docs not modify
the TCP sliding window and transmission coptinues at the
higher rate.

In the event that real congestion occurs, ic. if the TCP
adjunct agent recognizes packets really were lost, then the
TCP adjunct agent can let the retransmission request po
through to the transmitting TCP. This is advantageously
accomplished because the MAC lnk layer of the present
invention is in communication with the higher protocol
layers, it is application aware, transport aware and network
aware. In this case, because the MAClayeris transport layer
aware, PRIMMA MAClayer 504d communicates with the
TCP adjunct agent 510¢ at layer 4. Since the MAC requires
acknowledgment of receipt of wireless transmissions sent to
the CPE subscriber station 294d for every packet sent from
the wireless base station 302, the MAC layer 504d knows
whether an inter-TCP layer communication, ¢.g., a request
for retransmission,is sent from a client computer TCP at the
CPE station is created because the lost packet was lost in
wireless transmission, or because of real congestion.

If PRIMMA MAC 504d does not receive an acknowledg-
ment from Sic, then tho PRIMMA MAC504d ofwireless
base station 302 can retransmit the contents of the lost
Packet to the subscriber CPE station 294d. If the PRIMMA
MAC 5i4c of the subscriber CPE station 294d acknowl-
tdges receipt and still requests a retransmission, then real
Songestion could bave occurred and the PRIMMA MAC
504d ofthe wireless base station 302 can let the TCP adjunct
‘gent 510¢ know that it should allow the retransmission
Tequest to be sent to the transmitting TCP SLO0f of host
Workstation 1364,

5

2s

ag

60

65

74

Thus, TCP adjunct agent 510¢ of the present invention can
modify operation of the TCP sliding window algorithm in a
manner that is optimal for the wireless medium, without
requiring any change to commercially available TCP layers
5102 and SLOf at the receiver and sender hosts. In an
embodiment, TCP adjunct agent 510obviates the need for
any modification of the TCP layers at either the sending(i.e.
transmitting) host or clicat. In another embodimentthe host
and client TCP layers are unaware of the modification of
operation by the TCP adjunct agent, ic. it is transparent to
source and destination TCP layers. In another embodiment,
TCP adjunct agent 510¢ intercepts retransmission requests
between a TCP layer of the client computer coupled to the
subscriber CPE station and the TCP layer of the host
workstation coupled to the data network.

FIG.5B illustrates functional flow diagram 522 including
an example functional description of TCP adjunct agent
510e performing an outgoing TCP spooffunction. Referring
to FIGS. SB and 5A, diagram 522 assumes that a TCP layer
510f at a transmitting host 136a has transmitted a windewful
of packet data to subscriber workstation 120d, and awaits
acknowledgment. Diagram 522 illustrates receipt of an
outgoing TCP message 524 in TCP adjunct agent 510¢ at
wireless base station 302 which has been sent from sub-
scriber workstation 120d via subscriber CPE station 294d.

In step 526, the TCP header contents of outgoing TCP
message 524 is parsed in order to reveal the contents of the
message being sent from subscriber workstation 120d
through the wireless network toward the transmitting host
1362.

In step 528, it is determined whether the TCP header
contents includes a duplicate acknowledgment message
from the CPE station. Receiving a duplicate acknowledg-
ment request from the CPE subscriber location could be
indicative of a lost message in the wireless medium,or a real
congestion problem. If in step S28 the TCP packet is
determined to be a duplicate acknowledgment message, then
processing can continue with step 532, if not, then process-
ing can continue with step 530.

In step 530, it is determined thal there was real
congestion, i.¢c., this was mot a duplicate acknowledgment
message caused by retransmission attempts at the wireless
link layer. Thus, in step 530, the TCP messageis permitted
fo pass through TCP adjunct $102 without modification, and
can continue through flow 500 to TCP layer S510fofFIG. SA.

In step 532, since there was a duplicate acknowledgment
detected in step 528,it is determined whether the packet was
successfully transmitted, or not. Step 532 is performed via
intercommunication between TCP adjunct agent 510¢ and
PRIMMA MAClayer 504d This is an example of the
interactivity between PRIMMA MAC and higher layer
protocols illustrated as line 428 in FIG. 4. PRIMMA MAC
layer 504d can identify whether a packet was successfully
sent from wireless base station 302 to CPE station 294d
since,a¢ illustrated in FIG. 15B, requests for retransmission
1576 are received from CPE station 294d at link layer
acknowledgment (ARQ) processor 1578 to MAC dowalink
subframe scheduler 1566 alerting the scheduler 1566 to
retransmit the lest packet in a future frame 1568.If in step
532, it is determined that the packet was successfully
transonitted, then processing can continue with step 530, as
described above. If howeverit is deternzined that the packet
was not successfully transmitted, then processing continues
with step 534.

In step 534, since the packet was not successfully
transmitted, TCP adjunct agent 510¢ can suppress transmis-
sion of TCP message 524 since it can be assumed that the

EX 1017 Page 443

US 6,452,915 Bl
75

packet was lost in the wireless medium. Processing can
continue with step 536.

76

In step 536, TCP adjunct agent 510e can wait for notifi
cation from PRIMMA MAC 504d that a successful link
layer retransmission of the lost packet was received at link 5

layer acknowledgment processor 1578. From step 536,
processing can continue with step 538.

In step 552, since the packet was not successfully
transmitted, TCP adjunct agent SlOe can suppress transmis
sion of TCP message 542 since it can be assumed that the
packet was lost in the wireless medium. Processing can
continue with step 554.

In step 554, TCP adjunct agent 510e can wait for notifi
cation from PRIMMA MAC 504d that a successful link
layer retransmission of the lost packet was received at link
layer acknowledgment processor 1678. From step 554,

In step 538, upon receipt of acknowledgment of a suc
cessful PRIMMA MAC 504d link layer retransmission, then
normal TCP messages can be resumed.

In another step (not shown), TCP adjunct agent and
PRJMMA MAC layers can set a limit of a threshold number
of retransmission attempts, and if that threshold is reached,
then processing can continue with step 530 to permit the
TCP message to pass without modification.

FlG. SC illustrates functional flow diagram 540 including
an example functional description of TCP adjunct agent
510e performing an incoming TCP spoof function. Referring

10 processing can continue with step 556.
In step 556, upon receipt of acknowledgment of a suc

cessful PRIMMA MAC 504d link layer retransmission, then
normal TCP messages can be resumed.

In another step (not shown), TCP adjunct agent and
15 PRIMMAMAC layers can set a limit of a threshold number

of retransmission attempts, and if that threshold is reached,
then processing can continue with step 548 to permit the
TCP message to pass without modification.

to FIGS. SC and SA. diagram 540 assumes that a TCP layer
510a at a transmitting subscnoer worlrstation 120d has 20

transmitted a windowful of packet data to host 136a, and
awaits acknowledgment Diagram 544 illustrates receipt of

5. Wrreless QoS Aware PRIMMA Media Access Control
(MAC) Hardware Architecture

FIG.10 illustratively depicts an embodiment of PRIMMA
MAC hardware architecture 1000. Architecture 1000 shows
data network 142 coupled by a wireline bidirectional con-an incoming TCP message 542 in TCP adjunct agent 510e at

wireless base station 302 which has been sent from host
workstation 136a via data network 142 for transmission over 25

the wireless medium to subscnbcr CPE 294d to subscriber
workstation 1211d.

nection to WAN interface 320.
WAN interface 320 is bidirectionally linked to a bidirec-

tional data frame FIFO 1002 which is bidirectionally
coupled to both segmentation and tcsequencing (SAR) 1004
and QoS/SLA rules engine and processor 1008. In step 544, the TCP header contents of ingoing TCP

message 542 fa parsed in order to reveal the contents of the
message being sent from host 136a through the wireless 30

networlc toward the transmitting subscriber workstation
120d.

QoS/SLA rules engine and processor 1008 is also bidi
rectionally coupled to IP flow buffers 1014 and flash random
access memory (RAM) 1010.

SAR 1004 is bidirectionally coupled to IP flow buffers
1014, flash RAM 1010, QoS/SLA rules engine and proces
sor 1008 and PRIMA MAC scheduler ASIC 1012.

In step 546, it is determined whether the TCP header
contents includes a duplicate acknowledgment message
from host 136a. Receiving a duplicate acknowledgment
request from the host could be indicative of a lost message
m the wireless medium, or a real congestion problem. If in
step 546 the TCP packet is determined to be a duplicate
acknowledgment message, then processing can contmue
with step 550, if not, then processing can continue with step
548.

In step 548, it is determined that there was real
congestion, i.e., this was not a duplicate acknowledgment
message caused by retransmission attempts at the wireless
link layer. Thus, m step 548, the TCP message is permitted
to pass through TCP adjunct 510e without modification, and
can continue through flow 500 to TCP layer 510a of FIG.
SA.

In step 550, since there was a duplicate acknowledgment
detected in step 546, it can be determined whether the packet
was successfully transmitted, or not. Step 550 can be per
formed via intercommunication between TCP adjunct agent
510e and PRIMMAMAC layer 504d. This is an example of
the interactivity between PRIMMA MAC and higher layer
protocols illustrated as line 428 in FIG. 4. PRIMMA MAC
layer 504d can identify whether a packet was successfully
sent from CPE station 294d to wireless base station 302, as
illustrated in FlG. 16B, requests for retransmission 1676 are
received from CPE station 294d at link layer acknowledg
ment (ARQ) processor 1678 to MAC downlink subframe
scheduler 1666 alerting the scheduler 1666 to retransmit the
lost packet in a future frame 1668. If in step 550, it is
determined that the packet was successfully transmitted,
then processing can continue with step 548, as descnbed
above. If however it is determined that the packet was not
sueccssfully transmitted, then processing continues with
step 552.

35 PRIMA MAC scheduler ASIC 1012 is also bidirectionally
coupled to an RF interface 290, a static RAM (SRAM) radio
cell buffer 1018 and IP blow buffer 1014.
6. Wireless Base Station Software Organization

FIG. ll is an exemplary software organization for a
'4-0 packet-centric wireless point to multi-point telecommunica

tions system. The software organization of FIG. ll includes
wireless transceiver and RF application specific integrated
circuit (ASIC) module 290, IP fiow control component U02,
WAN mterface management component ll04, QoS and SLA

45 administration component 1106, system and OAM&P com
ponent nos, customer billing and logging component mo,
directory enabled networking (DEN) component lll2, and
wireless base station 320.

IP flow control module ll02 includes transmission queu-
so mg control module ll02a, TCP rate control and class of

service module ll02b, wireless PRIMMA MAC layer
engine ll02c and IP flow identification and analysis module
ll02d.

WAN interface management component ll04 includes
55 WAN ingress/egress queuing control module ll04a, WAN

interface ports (e.g., for Tl, T3, OC3 ports) 1104b, firewall
and security module ll04c, and WAN traffic shaping module
ll04d. .

The IP Flow control component ll02 and WAN interface
60 management component ll04 represent the "core" of the

system, where the packet processing, MAC layer
scheduling, TCP proxy agent, and WAN UF control func
tions are located. Much of the activities of the "non-core"
components dcscnbed above support and control these core

65 components.
QoS and SLA administration component ll06 includes

mcludcs QoS performance monitoring and control module

EX 1017 Page 444

US 6,452,915 Bl
77 78

1106a, service level agreements module 1106b, policy man- access protocol (I.DAP)-compliant (I.DAP is available from
ager module 1106c and encryption administration module MICROSOFT of Redmond, Wash.) manner which allows
1106d. remote administration, provisioning and management. The

The QoS and SLA administration component 1106 pro- present invention is also IDAP version 2 compliant. The
vides the static data needed by the system in order to 5 present invention also complies with the X.500 standard
properly group particular IP-flows into QoS classes. promulgated by the international telecommunications union/
Typically, during the provisioning phase of installing the telecommunications section (ITIJ/1), and with the RFC
system, the service provider will (remotely) download per- 1777.
tinent information about the subscnoer CPE station 294, In one embodiment, DEN provides policy-based network
including the subscriber CPE stations's SI.A, any policy- 10 management, IPsec compatible network security, and IPsec
based information (such as hours of operation or peak data based VPNs. The DEN of the wireless base station 302 is
transmission rate allowance.). Encryption keys or planned to be common information model (CIM) 3.0 com-
"strengtbs" can also be downloaded, which may be sub- pallole (once the specification is finalized). The wireless
scnber CPE station or service provider specific. base station 302 can provide native DEN support and

System OAM&P component 1108 includes SNMP proxy 15 supports directory based DEN QoS mechanisms including
client for WAP module 1108a, SNMPproxy clients for CPE reservation model (i.e. RSVP, per-flow queuing), and
module 1108b, and system operations, admioistration, man- precedence/priority/differentiated model (i.e. packet
agement and provisioning module 1108c. marking). Wireless base station 302 can plan support of

The OAM&P component 1108 allows remote service DEN network policy QoS, and until DEN is complete, can
personnel and equipment to monitor, control, service, 20 support internal QoS and network extensions.
modify and repair the system. System performance levels 6. IPsec Support
can be automatically monitored, and system traps and traces IPsec is introduced above with reference to FIG. 4. IPsec
can be set. Subscriber complaints can be addn!ssed with the provides a standard method of encrypting packets. In VPN
use of remote test and debug services rontrolled by OAM&P tunnel mode, an entire header can be encoded, i.e. encrypted.
component 1108. System capacity limits can be monitored, 25 In order for the present invention to be able to implement its
and proactive provisioning of additional WAN connectivity packet-centric, QoS aware prioritization, during identi.fica-
can occur, as the result of automatic trend analysis functions lion of a packet/IP flow, the wireless base station needs to be
in OAM&P component 1108. able to analyze the contents of header fields of the packets.

CUstomer billing and logging module 1110 includes Therefore, analysis of unencrypted packets is desirable.
account logging and database management module 110a, 30 The present invention already encrypts the data stream
transaction query and processing control module 1110b, prior to transmitting frames over the wireless medium, so
billing and account rontrol module We, and user authen- IPsec does not really need to be nsed over the wireless link
tication module 1110d. to provide for encrypted transmission. Where a service

The customer billing and logging component 1110 allows provider finds it desirable to use IPsec, IPsec can be used for
the service provider to receive account, billing and transac- 35 authentication and secure encapsulation of the header and
tion information pertaining to subscnbers in the system. For payload, or just the payload data. IPsec is normally inte-
service providers who bill on the basis of usage, cumulative grated at a firewall. H a service provider desires to imple-
system resource utilization data can be gathered. For specific ment the present invention and IPsec, then the present
types of activities (eg. video conferencing, multi-casting, invention should be implemented behind the firewall, i.e. the
etc.) there may be special billing data that is collected and 40 firewall can be moved to the wireless base station. This
transmitted to the service provider. This component also permits ending the IPsec stream at the base station which can
controls the availability of the system to subscnbem through provide the base station access to packet header fields.
the operation of the subscnlx:r authentication function. Once FIG. 17 illustrates IP flow in the downlink direction
a subscnoer is authorized to use the system, a new sub- including IPsec encryption. Similarly, FIG. 18 illustratively
scriber authentication entry is made (remotely) by the ser- 45 depicts an uplink direction of IPsec support of the present
vice provider. likewise, a subscnlx:r can be denied further invention.
access to the system for delinquent payment for services, or FIG. 17 illustrates downlink flow 1700 depicting down-
for other reasons. The service provider can also remotely link direction IP flows from a source host workstation 136a,
query lhe system for specific account-related transactions. down a protocol stack which supports IPsec, for transmis-

Directory Enabled Networking (DEN) romponent 1112 50 sion up and through wireless base station 302 which is
includes DEN QoS 1112a module, DEN management aod coupled to data network 142, through encryption layers, then
provisioning 1112b module, DEN IPSEC module 1112c and through the wireless link to subscnlx:r CPE 294d, up and
IP-based VPN control and administration module 1112d. through a protocol stack at tbe subscnoer CPE 294d, then

1be DEN component 1112 allows the service provider the through a wireline connection to data network 142 and up
~eans to input into the system relevant information regard- S5 through the protocol stack to the destination subscnoer
mg the operation of DEN-based VPN's of subscribers. workstation 120d at subscnber location 306d.
Subscnoer VPNs need to be "initialized" and ''provisioned" Specifically, flow 1700 illustrates IP packet flow from
SO that the system properly allocates system resources to host wmkstation 136a, through wireless base station 302,
s_ubscnoers with these VPNs, and provides for the rerogni- then over a wireless transmission link to subscriber CPE
lion and operation of these VPNs. Data from DEN compo- 60 294d, and over a wireline link to subscriber workstation
~t ~ am utilized by the system to apply the appropriate 120d.
Ptlonties to IP-flows of the subject subscribers. Host workstation 136a flows IP flows down from appli-

lbe invention's packet-centric wireless base station sup- cation layer 171.2h, down through TCP/UDP layer 1710h,
P<>rts directory enabled networking (DEN), a MICROSOFT, through W layer 1708h, through optional PPP layer 1706h,

! INTEL and asco standard for providing a standard struc- 6S through Ethernet layer 1705h, down through lOBaseT layer
~e for how distnouted sites manage IP flows. "The present 1702h, over data network 142 to lOBaseT layer 1702g, then
lllvention prioritizes VPN traffic in a lightweight directory up through Ethernet 1704g, up its protorol stack through

'II J l

; i
I I'

I

i,
!

I

EX 1017 Page 445

77

1106a, service level agreements module 11060, policy man-
ager module 1106c and encryption administration module
1106d.

The QoS and SLA administration component 1106 pro-
vides ibe static dala needed by the system in onder to
properly group particular IP-flows into QoS classes.
Typically, during the provisioning phase of installing the
system, the service provider will (remotely) download per-
tinent information about the subscriber CPE station 294,
including the subscriber CPE stations’s SLA, any policy-
based information (such as bours of operation or peak data
transmission rate allowance.). Encryption keys or
“strengths” can also be downloaded, which may be sub-
seriber CPE station or service provider specific.

System OAM&P component 1108 includes SNMP proxy
client for WAP module 11082, SNMP proxy clients for CPE
module 11685, and system operations, administration, man-
agement and provisioning module 1108.

The OAM&P component 1108 allows remote service
personnel and equipment to monitor, control, service,
modify and repair the system. System performance levels
can be automatically monitored, and system traps and traces
can be set, Subscriber complainis can be addressed with the
use of remote test and debug services controlled byOCAM&P
component 1108. System capacity limits can be monitored,
and proactive provisioning of additional WAN connectivity
can occur, as the result of automatic trend analysis functions
in OAM&P component 1108.

Customer billing and logging module 1110 includes
account logging and database management module 140s,
transaction query and processing control module 1110,
billing and account control module Lic, and user authen-
tication module 110d.

The customerbilling and logging component 1110 allows
the service provider to receive account, billing and transac-
tion information pertaining to subscribers in the system. For
service providers who bill on the basis ofusage, cumulative
system resource utilization data can be gathered. Forspecific
types of activities (eg. video conferencing, multi-casting,
etc.) there may be special billing data that is collected and
transmitted to the service provider. This component also
controls the availability of the system to subscribers through
the operation of the subscriber authentication function. Once
a subscriber is authorized to use the system, a new sub-
Scriber authentication entry is made (remotely) by the ser-
vice provider. Likewise, a subscriber can be denied further
access to the system for delinquent payment for services, or
for other reasons. The service provider can also remotely
query the system for specific account-related transactions.
_ Directory Enabled Networking (DEN) component 1112
includes DEN QoS 1112a module, DEN management and
Provisioning 1112b module, DEN IPSEC module 1112c and
IP-based VPN control and administration module 11124.

: The DEN component 1112 allows the service provider the
. Means to input into the system relevant information regard-

mg the operation of DEN-based VPN’s of subscribers.
Subscriber VPNs need10 be “initialized” and “provisioned”

f. SO that the system properly allocates system resources to
p Subscribers with these VPNs, and provides for the recogai-
y. Hon and operation of these VPNs. Data from DEN compo-

- Dent 1112 are utilized by the system to apply the appropriate
E Priorities to IP-flows of the subject subscribers.

invention’s packet-centrc wireless base station sup-
|. Poris directory enabled networking (DEN), a MICROSOFT,
INTEL and CISCOstandard for providing a standard struc-

p ture for how distributed sites manage IP flows. The present
§ ®¥ention prioritizes VPN traffic in a lightweight directory

415

20

a

x

40

50

eo

65

US 6,452,915 Bi
78

access protocol (LDAP)-compliant (LDAP is available from
MICROSOFT of Redmond, Wash.) manner which allows
remote administration, provisioning and management. ‘The
present invention is also LDAP version 2 compliant. The
present invention also complies with the X.500 standard
promulgated by the international telecommunications union/
telecommunications section (ITU/T), and with the RFC
1777.

In one embodiment, DEN provides policy-based network
management, IPsec compatible network security, and [Psec
based VPNs. The DEN of the wireless base station M2 is

planned to be common information model (CIM) 3.0 com-
patible (once the specification is finalized). The wireless
base station 302 can provide native DEN support and
supports directory based DEN QoS mechanisms including
reservation model (ic. RSVP, per-flow queuing), and
precedence/priority/differentiated model (i.e. packet
marking). Wireless base station 302 can plan support of
DEN network policy QoS, and until DEN is complete, can
support internal QoS and network extensions.
6. IPsec Support

[Psec is introduced above with reference to PIG, 4. [Psec
provides a standard method of encrypting packets. In VPN.
tunnel mode, an entire header can be encoded, Le. encrypted.
In orderfor the present invention to be able to implementits
packet-centric, QoS aware prioritization, during identifica-
tion of a packet/IP flow, the wireless base station needs to be
able to analyze the contents of header fields of the packets.
Therefore, analysis of unencrypted packets is desirable.

The present invention already encrypts the data stream
prior to transmitting frames over the wireless medium, so
IPsec does not really need to be used over the wireless link
to provide for encrypted transmission. Where a service
provider finds it desirable io use IPsec, IPsec can be used for
authentication and secure encapsulation of the header and
payload, or just the payload data. IPsec is normally inte-
grated at a firewall. If a service provider desires to imple-
ment the present invention and IPsec, then the present
invention should be implemented behind the firewall, i.c. the
firewall can be moved to the wireless base station. This

permits ending the IPsec stream at the base station which can
provide the base station access to packet header fields.

FIG. 17 illustrates IP flow in the downlink direction
including [Psec encryption. Similarly, FIG. 18 illustratively
depicts an uplink direction of IPsec support of the present
invention.

FIG. 17 illustrates downlink flow 1700 depicting down-
link direction IP fiows from a source host workstation 1362,
down a protocol stack which supports IPsec, for transmis-
sion up and through wireless base station 302 which is
coupled to data network 142, through encryptionlayers, then
through the wireless link to subscriber CPE 294d, up and
through @ protocol stack at the subscriber CPE 294¢, then
through a wireline connection to data network 142 and up
through the protocol stack to the destination subscriber
workstation 120d at subscriber location 306d.

Specifically, flow 1700 illustrates IP packet flow from
bost workstation 1364, through wireless base station 302,
then over a wireless transmission link to subscriber CPE
294d, and over a wireline link to subscriber workstation
120d.

Host workstation 1364 flows IP flows down from appli-
cation layer 17124, down through TCP/UDP layer 17104,
through IP layer 1708h, through optional PPP layer 1706h,
through Ethemet layer 17054, down through 10BaseTlayer
1702h, over data network 142 to 10BaseTlayer 1702g, then
up through Ethernet 1704g, up its protocol stack through

EX 1017 Page 445

US 6,452,915 Bl
79

·aI ppp layer 1706g to IP layer 1708g and 1708h, back
ougb Internet firewall and !Psec security gateway

·down through WAN layer 1704!, to wireline layer
1

data network 142 to wireline physical layer 1702e.
line physical layer 1702e of wireless base station

IP flows up the protocol stack through WAN layer
ough IPsec security gateway 1706e and firewall to

· rk layer 1708e and 1708d and then down through
tioo layer 1706d, PRIMMA MAC layer 1704d and

wireless link to subscriber CPE 2'4d.
n'ber CPE 2'4d flows packet IP flows up from
292d at physical wireless layer 1702c up through

· yer 1704c, through encryption layer 1706c, through
rs 1708b and 1708c, then down through optional
D6b to Ethernet layer 1704b to lOBaseT connection

,, lOBaseT connection.
· r workstation 120d flows IP flows up from

If layer 1702a up through its protocol stack through
· 1ayer 1704a, through optional PPP layer 1706a,
1Player 1708a, to TCP/UDP layer 1710a and on up

80
Host workstation 136a flows IP fiows up from lOBaseT

layer 1802h up through its protocol stack through Ethernet
layer 1805h, through optional PPP layer 1806h, through IP
layer 1808h, to TCP/UDP layer 1810h and on to application

5 layer 1812h.
IV. Conclusion

While various embodiments of I.he present invention have
been descnbed above, it should be understood that they have
been presented by way of example only, and not limitation.

10 Thus, I.he breadth and scope of the present invention should
not be limited by any of the above-descnbed exemplary
embodiments, but should be defined only in acoordance with
the following claims and their equivalents.

What is claimed is:
15 1. An IP flow classification system that groups IP flows in

a packet-centric wireless point to multi-point telecommuni
cations system, said classification system comprising:

a wireless base station ooupled to a first data network;
one or more host workstations coupled to said first data

20 network;
· lion layer 1712a.
1B illustrates uplink flow 1800 depicting uplink one or more subscnber customer premise equipment
" IP flows from a source TCP at subscnber woik- (CPE) stations in wireless communication with said

at CPE location 306d, down a protocol stack for wireless base station over a shared bandwidth using a
·• n through Ethernet coupled CPE subscriber sta- 25 packet-centric protocol; and
'through wireless medium to wireless base station one or mote subscriber workstations coupled to each of

'and through a protocol stack at the wireless base said subscriber CPE stations over a second network;
. which supports IPsec, then through a wircline resource allocation means optimizing end-user quality of

· to data octwork 142 and through a protocol stack service (QoS) and allocating shared bandwidth among
' · ·on host. 30 said subscnber CPE stations; and

y, flow 1800 illustrates IP packet flow from means for analyzing and scheduling an internet protocol
.wotkstation 120d, through subscnber CPE 2'4d, (IP) flow over said shared wireless bandwidth, wherein

· a wireless transmission medium to wireless base said analyzing means comprises:
. , and eventually over a wireline link to host a classifier that classifies said IP flow.
· 136a. 35 2. The system of claim 1, wherein said classifier com-

includes IP flows from application layer prises:
the protocol stack through TCP/UDP layer means for associating a packet of an existing IP flow with

ugh IP layer 1808a, then through optional point- said IP flow.
) layer 1806a, then through data link Ethernet 3. The system of claim 1, wherein said classifier com-

, then through lOBaseT Ethernet netwoik inter- 40 prises:
(NIC) physical layer 1802a, over a wire line

· to lOBaseT Ethernet NIC physical layer 1802b QoS grouping device that groups a packet of a new IP
r CPE 2'4d. flow into a QoS class grouping.

4. The system of claim 3, wherein said QoS grouping
r CPE 294d flows packets coming in from NIC device comprises:

. up its protocol stack through Ethernet layer -45
ugh optional ppp layer 1806b to IP layer 1B08b determining device that determines and takes into account

. back down through an Internet firewall and lPsec QoS class groupings for said IP flow .
. way 1806c, down through PRIMMA MAC S. The system of claim 4, wherein said QoS grouping

less physical layer 1802c including antenna device comprises:
.. vcr the wireless medium, such as, e.g., RF so optional differentiated services (DilI Serv) device that
.lion, cable RF, and satellite link, to antenna 290d takes into account an optional Diff Servs field priority

station 302 at wireless physical layer 1802d. maiking for said IP flow.
·. ISe station 302 flows packet IP flows up from 6. The system of claim 4, wherein said QoS grouping
~ at physical wireless layer 1802d up through device comprises:

• , through IPsec layers 1806d and 1806d, 55 optional type of service (fOS) device that takes into
-~psulate packets and encrypt them. From account any optional type of service field priority

~6e, IP flows ca.n flow down through WAN marking for said IP flow .
. d through wircline physical layer 1802e over 7. The system according to claim 1, wherein said packet-

t_:!42. centric protocol is transmission control protocol/internet
J'"}'8ical layer 1802/ flows IP flows up the 60 protocol (fCP/IP).

through WAN layer 1804[through JPsec 8. The system according to claim 1, wherein said packet-
1806/ and firewall to IP network layer centric protocol is user datagram protocol/internet protocol

and then down through optional PPP layer (UDP/IP).
t layer 1804h and down through lOBaseT 9. The system accordiog to claim l, wherein said shared

. tbmugh interface 320 over routers 140d 65 wireless bandwidth comprises a wireless communication
_network 142, via WU::!ine connections t~ medium comprising at least one of:

ll layer 1802h of host workstation 136a. a radio frequency (RF) communications medium;

EX 1017 Page 446

US 6,452,915 Bl
81

a cable communications medium; and

a satellite communications medium.
10. The system according to claim 9, wherein said wire

less communication medium further comprises, a telecom
munications access method including at least one of:

a time division multiple access (IDMA) access method;

a time division multiple access/time division duplex
(fDMNIDD) access method;

5

a code division multiple access (CDMA) access method; 1o
and

a frequency division multiple access (FDMA) access
method.

11. The system according to claim 1, wherein said first
data network comprises at least nae of:

a wireline network;

a wireless network;

15

82
determining means for determining a source application

type.
21. Tue system according to claim 18, wherein said data

extraction device comprises:
an IP version determiner; and
a paISer operative to parse said packels.
22. The system according lo claim 18, wherein said packet

field analyzer comprises:
a source application type determiner operative to deter

mine a source application type of said packets.
23. The system according to claim 20, wherein said

determining means comprises at least one of:
means for storing and retrieving a source application for

a source address from a source application table;
means for determining a source application from a type of

service (1US) packet field; and
means for determining a source application from a dif

ferentiated services (Di.lIServ) header field. a local area network (LAN); and
a wide area network (WAN). 20

24. The system according to claim 17, wherein said
identifier device comprises: 12. The system according to claim l, wherein said second

means for storing and retrieving an existing IP flow to and
from an IP llow identification data table.

network comprises at least one of:
a wireline network;
a wireless network;
a local area network (LAN); and

a wide area network (WAN).

25. The system according to claim 16, wherein said

25
characteri7.cr comprises:

older determining means for determining whether an age
of a packet is older than a threshold age;

13. The system according to claim 1, wherein said
resource allocation means optimizes end-user internet pro-
tocol (IP) quality of service (QoS). 30

14. The system according lo claim 1, wherein said
resource allocation means is application aware.

15. The system according to claim 1, wherein said IP llow
includes at least one of:

a transmission control protocol/internet protocol (TCP/IP) 35

flow, and

means for anticipating client application IP flow discards
based on said age of said packet;

QoS determining means for determining a QoS require
ment for said IP flow; and

means for determining a subscnber identification for one
of said one or more subscriber CPE stations associated
with said IP flow.

26. The system according to claim 25, wherein said older
determining means comprises:

means for analyzing a tinie to live (TIL) packet field for
determining said age of said packet

a user datagram protocol/internet protocol (UDP /IP) llow.
16. The system according to claim 1, wherein said ana

lyzing and scheduling means further comprises at least one
of:

an identifier operative to identify said IP flow,

27. Tue system according lo claim 25, wherein said QoS
40 determining means determines said QoS requirement based

on at least one of:

a characterizer operative to characterize said IP flow, and
a prioritizer device operative to prioritize said IP flow.
17. The system according to claim 16, wherein said

45
identifier comprises:

a source address;
a destination address; and
a UDP port number,
wherein said QoS determining means comprises:
means for storing and retrieving a QoS requirement for an

IP flow from an IP flow QoS requirement table.
an analyzer device operative to analyze one or more

header and payload packet fields; and
an identifier device operative to identify a new and an

existing IP flow.

28. Tue system according to claim l, wherein said clas-
50 sifter comprises:

classifying means for classifying a packet of a new IP
flow into a QoS clas.s grouping of a previously classi
fied IP flow.

18. The system according to claim 17, wherein said
analyzer device comprises:

a buffer operative to buffer packels of a plurality of IP
llows;

a data extraction device operative to extract data from said 55

one or more header and payload packet fields of each
of said packets; and

a packet field analyzer device operative to analyze said
header and payload packet fields.

60
19. Tue system according to claim 18, wherein said data

extraction device comprises:

means for determining whether a packet of said IP flow is
of version IPv.4 or IPv.6; and

means for pa!Sing said packet of said IP flow.
20. Tue system according to claim 18, wherein said packet

field analyzer comprises:

65

29. Tue system according to claim 28, wherein said
classifying means comprises:

means for determining and taking into account QoS class
groupings of said previously classified IP flow.

30. Tue system according lo claim 29, wherein said
classifying means comprises:

means for taking into account any optional differentiated
services (DilI Serv) field priority marking for said
previously classified IP flow.

31. The system according to claim 29, wherein said
classifying means comprises:

means for taking into account any optional type of service
(TOS) field priority marking for said previously clas
sified IP flow.

; I

EX 1017 Page 447

US 6,452,915 B1

$1
a cable communications medium; and
a satellite communications medium.
10. The system according to claim 9, wherein said wire-

Jess communication medium further comprises, a telecom-
munications access method including at least one of:

a time division multiple access (TDMA) access method;
a time division multiple accessjAime division duplex

(TDMA/TDD)access method;
a code division multiple access (CDMA)access method;

and

a frequency division multiple access (FDMA) access
method.

11. The system according to claim 1, wherein said first
data network comprises at least one of:

a wireline network;
a wireless network;

a Jocal area network (LAN); aad
a wide area network (WAN).
12. The system according to claim 1, wherein said second

network comprises at Jeast one of:
a wireline network;
a wireless network;
a local area network (LAN); and
a wide area network (WAN).
13. The system according to claim 1, wherein said

resource allocation means optimizes end-user internet pro-
tocol (IP) quality of service (QoS).

14, The system according to claim 1, wherein said
resource allocation meaus is application aware.

15. The system according to claim 1, wherein said IP flow
includes at least one of:

a transmission control protocol/internet protecol (TCP/IP)
flow, and

a user datagram protocol/intemet protocol (UDP/IP) flow.
16. The system according to claim 1, wherein said ana-

lyzing and scheduling means further comprises at least one
of:

an identifier operative to identify said IP flow,
a characterizer operative to characterize said IP fow, and
a prioritizer device operative to prioritize said IP flow.
17. The system according to claim 16, whercin said

identifier comprises:
an analyzer device operative to analyze one or more

header and payload packetfields; and
an identifier device operative to identify a new and an

existing IP flow.
18. The system according to claim 17, wherein said

analyzer device courprises:
a buffer operative to buffer packets of a plurality of IP

flows;
a data extraction device operative to extract data from said

one or more header and payload packetfields of cach
of said packets; and

a packet field analyzer device operative to analyze said
header axl payload packetfields.

19. The system according to claim 18, wherein said data
extraction device comprises:

means for determining whether a packet of said IP flow is
of version IPv.4 or IPv.6; and

means for parsing said packet of said IP flow.
20. The system accordingto claim 18, wherein said packet

field analyzer comprises:

15

20

45

30

82

determining means for determining a source applicationtype.

21.The system according to claim 18, whercin said data
extraction device comprises:

an IP version determiner; and

a parser Operative to parse said packeis.
22. The system accordingto claim 18, wherein said packet

field analyzer comprises:
a source application type determiner operative to deter-

mine a source application type of said packets.
23. The system according to claim 20, wherein said

determining means comprises at least one of:
means for storing and retrieving a source application for

a source address from a source application table;
means for determining a source application from a type of

service (TOS) packet field; and
means for determining a source application from a dif-

ferentiated services (DiffServ) headerfield.
24, The system according to claim 17, wherein said

identifier device comprises:
means for storing and retrieving an existing IP flow to and

from an IP flow identification data table.
25. The system according to claim 16, wherein said

characterizer comprises:
older determining means for determining whether an age

of a packet is older than a threshold age;
means for anticipating client application IP flow discards

based on said age of said packet;
QoS determining means for determining a QoS require-

ment for said IP flow; and
means for determining a subscriber identification for one

of said one or more subscriber CPEstations associated
witb said IP flow.

26. The system according to claim 25, wherein said older
determining means comprises:

means for analyzing a time to live (TTL) packet field for
determining said age of said packet.

27. The system according to claim 25, wherein said QoS
determining meaus determines said QoS requirement based
on at least one of:

a source address;
a destination address; and
a UDPport number,
wherein said QoS determining means comprises:
means for storing and retrieving a QoS requirementfor an

LP flow from an IP flow QoS requirement table.
28. The system according to claim 1, wherein said clas-

sifier conmprises:
classifying means for classifying a packet of a new IP

flaw into a QoS class grouping ofa previously classi-
fied IP flow.

29. The sysiem according to claim 28, wherein said
classifying means comprises:

means for determining and taking into account QoSclass
groupings of said previously classified IP flow.

30. The system according to claim 29, wherein said
classifying means comprises:

means for taking into account any optional differentiated
services (Diff Serv) field priority marking for said
previously classified IP flow.

31. The system according to claim 29, wherein said
classifying means comprises:

means for taking into account any optional type ofservice
(TOS) field priority marking for said previously clas-
sified IP Bow.

EX 1017 Page 447

US 6,452,915 Bl
83

32. Toe system according to claim 16, wherein said
prioritizer device comprises:

means for taking into account hierarchical class based
priorities (HCBPs) for said IP flow.

33. Toe system according to claim 16, wherein said 5

prioritizer device comprises:

means fur taking into account vir1ual private network
(VPN) priorities fur said IP flow.

34. Toe system according to claim 16, wherein said
prioritizer device comprises: 10

means for taking into account service level agreement
(SLA) based priorities for said IP :flow.

35. Toe system according to claim 16, wherein said
prioritizer device comprises:

15
means fur taking into account any type of service (TOS)

priorities for said IP flow.
36. Toe system according to claim 16, wherein said

prioritizer device comprises:
means for taking into account any differentiated services 20

(DillServ) priorities for said IP flow.
37. Toe system according to claim 16, wherein said

identifier romprises:
packet analyzing means for analyzing one or more header

and payload packet fields in said IP flow; and 25

distinguishing means for distinguishing between a new
and an existing IP flow.

38. Toe system according to claim 37, wherein said packet
analyzing means is located at each of said one or more
subscn"ber CPE stations for an uplink wireless communica- 30

tion from said each of said one or more subscriber CPE
stations to said wireless bai;c station.

39. Toe system according to claim 37, wherein said
distinguishing means is located at each of said one or more
subscnber CPE stations for an uplink wireless communica- 35
tion from said each of said one or more subscober CPE
stations to said wireless base station.

40. Toe system according to claim 37, wherein said packet
analyzing means is located at said wireless base station for
a downlink wireless communication from said wireless base '40

station to each of said one or more subscnber CPE stations.
41. Toe system according to claim 37, wherein said

distinguishing means is located at said wireless base station
for a downlink wireless communication from said wireless
base station to each of said one or more subscriber CPE 45
stations.

42. The system according to claim 37, wherein said packet
analyzing means comprises:

means for buffering packets of a plurality of IP flows;
extracting means for extracting data from said packet 50

fields of each of said packets; and

84
46. The system according to claim 44, wherein said

detennining means comprises:
means for determining a source application from a type of

service (TOS) packet field.
47. Toe system according to claim 44, wherein said

detennining means comprises:
means for detennining a source application from a dif

ferentiated services (DifIServ) packet field.
48. Toe system according to claim 44, wherein said

detennining means comprises:
means for determining a source application from infor

mation provided by a direct application conduit
49. The system according to claim 37, wherein said

distinguishing means comprises:
means for storing and retrieving identification informa

tion for an existing IP flow to and from an IP flow
identification data table.

50. The system according to claim 16, wherein said
identifier romprises:

determiniog means for determiniog whether said IP flow
is known to the system based on a packet received over
said shared wireless bandwidth; and

source identifying means for identifying a source appli
cation having transmitted said received packet.

51. The system according to claim 50, wherein said
determining means is located at said wireless base station for
a downlink wireless communication from said wireless base
station to said one or more subscnber CPE stations.

52. The system according to claim 50, wherein said
detennining means is located at each of said one or more
subscriber CPE stations for an uplink wireless communica
tion from said each of said one or more subscnber CPE
stations to said wireless base station.

53. The system according to claim 50, wherein said
identifying means is located at said wireless base station for
a downlink wireless communication from said wireless base
station to said one or more subscnber CPE stations.

54. Toe system according to claim 50, wherein said
identifying means is located at each of said one or more
subscnber CPE stations for an uplink wireless communica
tion from said each of said one or more subscnber CPE
stations to said wireless base station.

55. The system according to claim 50, wherein said
determining means comprises:

means for buffering said packet;
means for extracting identification information from one

or more header and payload packet fields of said
packet;

means for performing a lookup of an existing IP flow
identifier using said identification information in an
existing IP flow data table to determine whether the IP
flow is known to the system. second analyzing means for analyzing said packet fields.

43. Toe system according to claim 42, wherein said
extracting means comprises:

means for determining whether said packets are a packet
version IPv.4 or IPv.6; and

56. The system according to claim 50, wherein said source

55
identifying means comprises:

means for parsing said packet fields of said plurality of IP
flows.

44. The system according to claim 42, wherein said 60

second analyzing means comprises:
determining means for determining a source application

type.
45. The system according to claim 44, wherein said

determining means comprises:
means for storing and retrieving a source application type

to and from a source application table.

65

means for buffering said packet;
means fur extracting information from one or more header

and payload packet fields of said packet;
means for performing a lookup of & source application

type using said information in a source application data
table to identify said source application.

57. Toe system according to claim 16, wherein said
characterizer comprises:

age detennining means for determining whether an age of
a packet is older than a threshold age.

58. The system according to claim 57, wherein said age
detennining means comprises:

q

I
I

j

: I

ll
EX 1017 Page 448

US 6,452,915 B1

83
32. The system according to claim 16, wherein said

prioritizer device comprises:
means for taking into account hierarchical class based

priorities (HCBPs) for said IP flow.
33. The system according to claim 16, wherein said

prioritizer device comprises:
means for taking into account virtual private network

(VPN) priorities for said IF flow.
34. The system according to claim 16, wherein said

prioritizer device comprises:
means for taking into account service level agreement

(SLA) based priorities for said IP flow.
35. The system according to claim 16, wherein said

prioritizer device comprises:
means for taking into account any type of service (TOS)

priorities for said IP flow.
36. The system according to claim 16, wherein said

prioritizer device comprises:
meansfor taking into account any differentiated services

(@ifServ) priorities for said IP flow.
37. The system according to claim 16, wherein said

identifier comprises:
packet analyzing means for analyzing one or more header

and payload packet fields in said LP flow, and
distinguishing means for distinguishing between a new

and an existing LP flow.
38. The system accordingto claim 37, wherein said packet

analyzing means is located at each of said one or more
subscriber CPE stations for an uplink wireless communica-
tion from said each of said one or more subscriber CPE
stations to said wireless base station.

39. The system according to claim 37, wherein said
distinguishing means is located at each of said one or more
subscriber CPE stations for au uplink wireless communica-
tion from said each of said one or more subscriber CPE
stations to said wireless base station.

40. The system according to claim 37, wherein said packet
analyzing means is located at said wireless base station fora downlink wireless communication from said wireless base
Station to cach of said one or more subscriber CPE stations.

41. The system according to claim 37, wherein said
distinguishing means is located at said wireless base station
for a downlink wireless communication from said wireless
base station to each of said one or more subscriber CPE
stations.

42. The system according to claim 37, wherein said packet
analyzing means comprises:

means for buffering packets of a plurality of IP flows;

5

10

is

20

25

30

35

40

4s

extracting means for extracting data from said packet *
fields of cach of said packets; and

second analyzing means for analyzing said packet fields.
43. The system according to claim 42, wherein said

extracting means comprises:
means for determining whether said packets are a packet

version LPv.4 or [Pv.6; and
means for parsing said packetfields of said plurality of IP

flows.

44. The system according to claim 42, wherein said
Second analyzing means comprises:

determining means for determining a source application
Type.

45. The system according to claim 44, wherein said
determining means comprises;

Means for storing and retrieving a source application type
to and from a source application table.

55

65

84

46. The system according to claim 44, wherein said
determining means coniprises:

means for determining a source application from a type of
service (TOS) packetfield..

47. The system according to claim 44, wherein said
determining means comprises:

means for determining a source application from a dif-
ferentiated services (DiffServ) packet field.

48. The system according to claim 44, wherein said
determining means comprises:

means for determining a source application from infor-
mation provided by a direct application conduit.

49. The sysiem according to claim 37, wherein said
distinguishing means comprises:

means for storing and retrieving identification informa-
tion for an existing IP flow to and from an IP flaw
identification data table.

50. The system according to claim 16, wherein said
identifier comprises:

determining means for determining whether said IP low
is known to the system based on a packetreceived over
said shared wireless bandwidth; and

source identifying means for identifying a source appli-
cation having transmitted said received packet.

Sl. The sysiem according to claim 50, wherein said
determining means is located at said wireless base station for
a downlink wireless communication from said wireless base
Station to said one or more subscriber CPE stations.

$2. The system according to claim 50, wherein said
determining meaus is located at each of said one or more
subscriber CPE stations for an uplink wireless communica-
tion from said each of said one or more subscriber CPE
stations to said wireless base station.

53. The system according to claim 50, wherein said
identifying means is located at said wireless base station for
a downlink wireless communication from said wireless base
station to said one or more subscriber CPEstations.

54. The sysiem according to claim 50, wherein said
identifying means is located at cach of said ome or more
subscriber CPE stations for an uplink wireless communica-
tion from said cach of said one or more subscriber CPE
stations to said wireless base station.

SS, The system according to claim 50, wherein said
determining means comprises:

means for buffering said packet;
means for extracting identification information from one

or more header and payload packet ficlds of said
packet;

means for performing a lookup of an existing IP flow
identifier using said identification information in an
existing IP flow data table to determine whether the IP
flow is known to the system.

56. The system according to claim $0, wherein said source
identifying means comprises:

means for buffesing said packet;
means for exiracting information from one or more header

and payload packet fields of said packet;
means for performing a lookup of a source application

type using said information in a source application data
table to identify said source application.

57, The system according to claim 16, wherein said
characterizer comprises:

age determining means for determining whether an age of
a packet is older than a threshold age.

58. The system according to claim 57, wherein said age
determining means comprises:

EX 1017 Page 448

US 6,452,915 Bl
85

means for analyzing a time to live (TIL) packet field for
determiaing said age of said packet.

59. The system according to claim 57, wherein said age
determining means comprises;

means for anticipating application IP flow discards based 5
on said age of said packet.

60. The system according to claim 16, wherein said
characterizer comprises:

86
73. The system according to claim 71, wherein said virtual

private network (VPN) prioritizer grants preferential priority
to at least one of:

said VPN IP :flows of a particular IP flow type, and

said VPN IP flows from a type of VPN.
74. The system according to claim 73, wherein said type

of VPN comprises:

a directory enabled networking (DEN) table management
QoS determining means for determiaing a QoS require

ment for said IP flow if said IP flow is a new IP flow.
61. The system according to claim 16, wherein said

characterizer comprises:

10
scheme type.

75. The system according to claim 16, wherein said
prioritizer device comprises:

means for determining a subscriber CPE identification for
said one or more subscnber CPE stations associated
with said IP flow if said IP flow is a new IP flow.

15

62. The system according to claim 60, wherein said QoS
determining means comprises:

a service level agreement (SIA) based prioritizer opera
tive to prioritize said IP flow based on an SIA level of
a subscriber source of said IP flow.

76. The system according to claim 75, wherein said SIA
level comprises at least one of a premium level, a standard
level and a value level

means for determining QoS requirements based on at least
one of:

77. 1ne system according to claim 16, wherein said
20 prioritizer device comprises:

a source address,
a destination address, and
a UDP port number.

a type of service (fOS) prioritizer that prioritizes said IP
:flow based on a TOS marking of a packet of said IP
:flow.

63. The system according to claim 60, wherein said QoS
determining means comprises:

means for storing and retrieving a QoS requirement for an
IP flow from an IP flow QoS requirement table.

78. The system according to claim 16, wherein said
25 prioritizer device comprises:

a differentiated services (DiffServ) prioritizer that priori
tizes said IP flow based on a Dif!Serv marking of a
packet of said IP flow. 64. The system according to claim 16, wherein said

classifier comprises:
means for associating a packet of an existing IP flow with

said IP flow.

79. The system according to claim 16, wherein said
30 prioritizer device comprises:

65. The system according to claim 16, wherein said
classifier comprises:

a weighted fair priority (WFP) prioritizer that ensures fair
distribution of said shared bandwidth, that sets reser
vation policy limits based on IP flow priorities.

a QoS grouping device operative to group a packet of a
new IP flow into a QoS class grouping.

66. The system according to claim 3, wherein said QoS
grouping device comprises:

80. The system according to claim 75, wherein said SIA
35 based prioritizer comprises:

a determining device operative to determine and take into
account QoS class groupings for said IP :flow.

67. The system according to claim 66, wherein said QoS 40

grouping device comprises:

an optional differentiated services (Diff Serv) device
operative to take into account an optional Dilf Servs
field priority marking for said IP flow.

68. The system according to claim 66, wherein said QoS 45

grouping device comprises:
an optional type of service (TOS) device operative to take

into account any optional type of service (fOS) field
priority marking for said IP :flow.

50
69. The system according to claim 16, wherein said

prioritizer comprises:
a hierarchical class based priority (HCBP) prioritizer

operative to prioritize said IP flow based on a HCBP
priority of said IP flow. 55

70. The system according to claim 69, whereinsaidHCBP
prioritizer comprises:

a class based priority limits operative to establish limits
for each of said HCBP priorities.

71. The system according to claim 16, wherein said 60

prioritizer device comprises:
a virtual private network (VPN) prioritizer operative to

prioritize a plurality of IP flows based on their somce
being a VPN.

72. The system according to claim 71, wherein said virtual 65

private network (VPN) prioritizer grants preferential priority
to said plurality of IP flows associated with said VPN.

means for analyzing said SIA level for said IP flow.
81. The system according to claim 80, comprising:

means for prioritizing said IP flow based on one or more
subscriber-defined parameters.

82. The system according to claim 75, wherein said SIA
level comprises at least one of:

a premium service level;

a normal service level; and

a value service level.
83. The system according to claim 75, wherein said SIA

level is used to provide at least one of:

differing traffic rates between SIA subscribers;

network availability for said SIA subscnbers;

increased bandwidth fur said SIA subscnbers;

decreased error rates for said SIA subscnbers;

latency guarantees for said SIA subscnbers; and
jitter guarantees for said SIA subscribers.
84. The system according to claim 1, wherein said

resource allocation means comprises:
assigning means for assigning future slots of a transmis

sion frame to a data packet in the transmission frame
for transmission over said wireless medium.

85. The system according to claim 84, wherein said
assigning means comprises:

means for applying an advanced reservation algorithm;

first reserving means for reserving a first slot for a first
data packet of said IP flow in a future transmission
frame based on said advanced reservation algorithm;
and

" ,.
! i

i
I,

I
i

i
i

l i
, I

I

I

I' l:
':

EX 1017 Page 449

US 6,452,915 B1

35

means for analyzing a time to live (TTL) packet field for
determining said age of said packet.

59. The system according to claim 57, wherein said age
determining means comprises:

means for anticipating application IP flow discards based
on said age of said packet.

60. The system according to claim 16, wherein said
characterizer comprises:

QoS determining means for determining a QoS require-
ment for said IP flow if said IP flow is a new IP flow.

61. The system according to claim 16, wherein said
characterizer comprises:

means for determining a subscriber CPE identification for
said one or more subscriber CPE stations associated
with said IP flow if said IP flow is a new IP flow.

62. The system according to claim 60, wherein said QoS
determining means comprises:

means for determining QoS requirements based onat leastone of:
a source address,
a destination address, and
a UDPport number.

63. The system according to claim 60, wherein said QoS
determining means comprises:

means forstoring and retrieving a QoS requirement for an
IP flow from an IP flow QoS requirementtable.

64, The sysiem according to claim 16, wherein said
classifier comprises:

means for associating a packet of an existing IP flow with
said IP flow.

65. The system according to claim 16, wherein said
classifier comprises:

a QoS grouping device operative to group a packet of a
new IP flow into a QoS class grouping.

66. The system according to claim 3, wherein said QoS
grouping device comprises:

a determining device operative to determine and iake into
account QoS class groupings for said IP flow.

67. The system according to claim 66, wherein said QoS
grouping device comprises:

an optional differentiated services (Diff Serv) device
operative to take into account an optional Diff Servs
field priority marking for said IP flow.

68. The system according to claim 66, wherein said QoS
grouping device comprises:

an optional type of service (TOS)device operative to take
into account any optional type of service (TOS) field
priority marking for said IP flow.

69. The system according to claim 16, wherein said
prioritizer comprises:

a hierarchical class based priority (HCBP) prioritizer
operative fo prioritize said IP flow based on a HCBP
priority of said IP flow.

70. The system according to claim 69, wherein said HCBP
Pricritizer comprises:

a class based priority limits operative to establish limits
for cach of said HCBPpriorities.

Tl. The system according to claim 16, wherein said
Prioritizer device comprises:

& virtual private network (VPN) prioritizer operative to
Prioritize a plurality of IP flows based on their source
being a VPN.

72. The system according to claim 71, wherein said virtual
Private network (VPN) prioritizer grants preferential priority
to said plurality of IP flows associated with said VPN.

290

30

35

40

45

56

55

60

65

86

73. The system according toclaim 71, wherein said virtual
private network (VPN) ptioritizer grants preferential priority
to at least one of:

said VPN IP flows of a particular IP flow type, and
said VPN IP flows from a type of VPN.
74, The system according to claim 73, wherein said type

of VPN comprises:
a directory enabled networking (DEN) table management

scheme type.
75. The system according to claim 16, wherein said

prioritizer device comprises:
a service level agreement (SLA) based prioritizer opera-

tive to prioritize said IP flow based on an SLA level af
a subscriber source of said IP dow.

76. The system according to claim 75, wherein said SLA
level comprises at least one of a premium level, a standard
level and a value level.

77. The system according to claim 16, wherein said
prioritizer device comprises:

a type of service (TOS) priorifizer that prioritizes said IP
flow based on a TOS marking of a packet of said IP
flow.

78. The system according to claim 16, wherein said
prioritizer device comprises:

a differentiated services (DiffServ) prioritizer that priori-
tizes said IP flow based on a DiffServ marking of a
packet of said IP flow.

79. The system according to claim 16, wherein said
pricritizer device comprises:

a weighted fair priority (WEP) prioritizer that ensures fair
distribution of said shared bandwidth, that sets reser-
vation policy limits based on IP flow priorities.

80. The system according to claim 75, wherein said SLA
based prioritizer comprises:

means for analyzing said SLA level for said IP flow.
81. The system according to claim 80, comprising:
means for prioritizing said IP flow based on one or more

subscriber-defined parameters.
82. The system according fo claim 75, wherein said SLA

level comprises at least one of:
a premium service level;
a normal service level; and
a value service level.

83. The system according to claim 75, wherein said SLA
level is used to provide at least one of:

differing traffic rates between SLA subscribers,
network availability for said SLA subscribers;
increased bandwidth for said SLA subscribers;
decreased error rates for said SLA subscribers;

latency guarantees for said SLA subscribers; and
jitter guarantees for said SLA subscribers.
84. The system according to claim 1, wherein said

resource allocation means comprises:
assigning means for assigning future slots of a transmis-

sion frame to a data packet in the transmission frame
for transmission over said wireless medium.

85. The system according to claim 84, wherein said
assigning means comprises:

means for applying an advanced reservation algorithm;
first reserving means for reserving a first slot for a first

data packet of said IP flow in a future transmission
frame based on said advanced reservation algorithm;
and

EX 1017 Page 449

:

i

US 6,452,915 Bl
87 88

said scheduler is operative to prioritiz.e said IP flow and
operative to take into account said IP priority header
identification information.

second reserving means for reseIVing a second slot for a
second data packet of said IP flow in a transmission
frame subsequent in time to said future transmission
frame based on said advanced reservation algorithm,

wherein said second data packet is placed in said second
slot in an isochronous manner to the placement of said
first data packet in said first slot.

101. The system according to claim 100, wherein said
s IP-priority packet IP flow identification information com

prises a determiner operative to determine and to take into
account QoS class groupings for said IP flow.

86. The system according to claim 85, wherein there is a
periodic variation between the placement of said first data
packet in said first slot and the placement of said second data
packet in said second slot.

102. The system according to claim 100, wherein said
IP-priority packet IP flow identification information com-

10 prises a TOS prioritizer operative to account for any optional
type of service (TOS) field priority marking.

87. The system according to claim 85, wherein there is an
aperiodic variation between the placement of said first data
packet in said first slot and the placement of said second data
packet in said second slot.

88. The system according to claim 85, wherein said
advanced reservation algorithm determines whether said IP
flow is jitter-sensitive.

89. The system according to claim 1, wherein said
resource allocation means comprises:

means for accounting for hierarchical class based priori
ties (HCBPs) for said IP flow.

90. The system according to claim 1, wherein said
resource allocation means comprises:

15

20

means for accounting for virtual private network (VPN) 25

priorities for said IP flow.
91. The system according to claim 1, wherein said

resource allocation means comprises:

103. The system according to claim 102, wherein said
type of service (TOS) field priority marking is compatible
with Internet Engineering Task Force (IETF) RFC 1992b.

104. The system according to claim 103, wherein said
type of service (TOS) field priority marking is compatible
with IETF RFC 1349.

105. The system according to claim 104, wherein said
marking comprises:

a m:inimiz.e delay marking;

a maximiz.e throughput marking;
a maximiz.e reliability marking;
a m:inimiz.e monetary cost marking; and
a normal service marking.
106. The system according to claim 100, wherein said

IP-priority packet header IP flow identification information
comprises a DifEServ prioritizer operative to account for any
optional differential service (Diff Serv) field priority mark-means for accounting for service level agreement (SI.A)

based priorities for said IP flow. 30 ing.
92. The system according to claim 1, wherein said

resource allocation means comprises:
means for accounting for any type of service (TOS)

priorities for said IP flow.
93. The system according to claim 1, wherein said 35

resource allocation means comprises:
means for accounting for any differentiated services

(DiffServ) priorities for said IP flow.
94. The system according to claim 85, further comprising:
means for providing a periodic variation between the 40

placement of said first data packet in said first slot and
the placement of second data packet in said second slot.

95. The system according to claim 85, further comprising:
means for providing an aperiodic variation between the

45
placement of said first data packet in said first slot and
the placement of second data packet in said second slot.

96. The system according to claim 85, wherein said
, advanced reservation algorithm comprises:

means for determining whether said IP flow is jitter- 50
sensitive.

. 97 · The system according to claim 85, comprising: means
f?: providing no periodic variation between successive
· rvations of succeeding slots.

, 98. The system according to claim 85, comprising: 55
, means for providing a periodic variation between succes
•, sive reservations of succeeding slots.
:99. The system according to claim 85, wherein said

d reservation algorithm comprises:
,tncans for determining whether said IP flow is jitter- 60
1 · SCnsitive.
.200._ The system according to claim 16, wherein said

)'Zmg and scheduling means comprises an analyzer and
eduler

, "-'herein ~d analyrer is operative to identify IP-priority 65

: pa~ket IP flow identification information and to classify
said IP flow, and

107. The system according to claim 106, wherein said Diff
Serv field priority marking is compatible with Internet
Engineering Task Force (IETF) RFC 2474.

108. The system according to claim 106, wherein said Diff
Serv field priority marking is compatible with IETF RFC
2475.

109. The system according to claim 100, wherein said
IP-priority packet header IP flow identification information
comprises means for taking into account any resource res
ervation protocol (RSVP) messages and objects.

110. The system according to claim 109, wherein said
RSVP protocol messages include any of the following:

path messages;
reservation (Resv);
path teardown messages;
resv teardown messages;
path error messages; and
confirmation messages.
lll. The system according to claim 109, wherein said

RSVP protocol objects include any of the following:
null;
se~ion;
RSVP_Jmp;
time_values;
style;
flowspec;
sender_template;
sender_Tspec;
Adspec;
Error_Spec;
Policy_data;
Integrity;
Scope; and
Resv_Confirm.

II
It

1:
1:
I, ,, ,,

!I

ii

I
I
I

EX 1017 Page 450

87

second reserving means for reserving a secondslot for a
second data packet of said IP flow in a transmission
frame subsequent in time to said future transmission
frame based on said advanced reservation algorithm,

wherein said second data packet is placed in said second
slot in an isochronons mannerto the placement of said
first data packet in said firstslot.

86. The system according to claim 85, wherein there is a
periodic variation between the placementofsaid first data
packetin saidfirst slot and the placementof said second data
packet in said secondslot.

87. The system according to claim 85, wherein there is an
aperiodic variation between the placementofsaid first data
packetin said first slot and the placement of said second data
packet in said secondslot.

88. The system according to claim 85, wherein said
advanced reservation algorithm determines whether said IP
flow is jitter-sensitive.

89. The system according to claim 1, wherein said
resource allocation means comprises:

means for accounting for hierarchical class based priori-
ties (HCBPs) for said IP flow.

90. The system according to claim 1, wherein said
resource allocation means comprises:

means for accounting for virtual private network (VPN)
priorities for said IP flow.

91. The system according to claim 1, wherein said
resource allocation means comprises:

means for accounting for service level agreement (SLA)
based priorities for said IP flow.

92. The system according to claim 1, wherein said
resource allocation Means comprises:

means for accounting for any type of service (TOS)
priorities for said IP flow.

93. The system according to claim 1, wherein said
resource allocation Means comprises:

means for accounting for any differentiated services
(DiffServ) priorities for said IP flow.

94. The system according to claim 85,further comprising:
Means for providing a periodic variation between the

placementof said first data packet in said first slot and
the placementofsecond data packetin said secondslot.

95. The system accordingto claim 85, further comprising:
Means for providing an aperiodic variation between the

placementofsaid first data packet in said first slot and
the placementof seconddata packetin said secondslot.

96. The system according to claim 85, wherein said
f advanced reservation algorithm comprises:

means for determining whether said IP flow is jitter-Sensitive.

97. The system according to claim 85, comprising: means
49° providing no periodic variation between successive
Aeservations of succeeding slots.

98. The system according to claim 85, comprising:
Means for providing a periodic variation between succes-

Sivc reservations of succeeding slots.
b:99. The system according to claim 85, wherein said

[d reservation algorithm comprises:
pecans for determining whether said IP flow is jitter-* | Sensitive.

F 100. The system according to claim 16, wherein said
yzing and scheduling means comprises an analyzer and

MCheduler,
; Wherein Said analyzeris operative to identify [P-priority
‘Packet IP flow identification information and to classify

Said IP flow, and

5

10

15

20

55

65

US 6,452,915 B1
88

said scheduler is operative to prioritize said IP flow and
operative to take into account said IP priority header
identification information.

101. The system according to claim 100, wherein said
IP-priority packet IP flow identification information com-
prises a determiner operative to determineandto take into
account QoS class groupings for said IP flow.

102. The system according to claim 100, wherein said
IP-priority packet IP flow identification information com-
prises a TOSprioritizer operative to accountfor any optional
type of service (TOS)field priority marking.

103. The system according to claim 102, wherein said
type of service (TOS) field priority marking is compatible
with Internet Engineering Task Force (IETF) RFC 1992b.

104. The system according to claim 103, wherein said
type of service (TOS)field priority marking is compatible
with IETF RFC 1349.

105. The system according to claim 104, wherein said
marking comprises:

a minimize delay marking;
a maximize throughput marking;
a maximize reliability marking;
a Minimize monetary cost marking; and
a normal service marking.
106. The system according to claim 100, wherein said

IP-priority packet header IP flow identification information
comprises a DiffServ prioritizer operative to account for any
optional differential service (Diff Serv) field priority mark-
ing.

107. The system accordingto claim 106, wherein said Diff
Serv field prionty marking is compatible with Intemet
Engineering Task Force (ETF) RFC 2474.

108. The system according to claim 106, wherein said Diff
Serv field priority marking is compatible with IETF RFC
2475.

109. The system according to claim 100, wherein said
IP-priority packet header IP flow identification information
comprises means for taking into account any resource res-
ervation protocol (RSVP) messages and objects.

110. The system according to claim 109, wherein said
RSVP protocol messages include any of the following:

path messages;
reservation (Resv);
path teardown messages;
Tesv teardown messages;
path error messages; and
confirmation messages.
111. The system according to claim 109, wherein said

RSVP protocol objects include any of the following:
null;
session;
RSVP__hop;
time__values;
style;
flowspec;
sender_template;
sender_Tspec;
Adspec;
Enror__Spec;
Policy_data;
Integrity;
Scope; and
Resv_Confirm.

EX 1017 Page 450

•• . •'

US 6,452,915 Bl
89

112. The system according to claim 106, wherein said
RSVP marking is compatible with Internet Engineering Task
Force (IETF) RFC 2205.

U3. The system according to claim 33, comprising:

means for analyzing said virtual private network (VPN)
priorities for said IP flow.

U4. The system according to claim ll3, comprising:
means for prioritizing all VPN IP flows.

90
US. The system according to claim 1, wherein said

wireless base station is a wireless access point.
129. The system according to claim 126, wherein said

resource allocation means comprises a coaxial cable
5 resource allocator for allocating shared bandwidth between

said wireless base station and said subscnber CPE stations.
130. The system according to claim U9, wherein said

coaxial cable resource allocator optimizes end-user internet
protocol (IP) quality of service (QoS). ll5. The system according to claim ll3, comprising:

means for prioritizing said IP flow based on one or more
10 131. The system according to claim U6, wherein said

coaxial cable communications medium comprises a radio
frequency data communication over a coaxial cable, wherein
one or more cable modems modulate and demodulate sig
nals transmitted over said coaxial cable communications

subscnber-<lefined parameters.
U6. The system according to claim 33, wherein said VPN

comprises a directory enabled networking (DEN) table
management scheme.

ll7. The system according to claim 33, wherein said VPN
is implemented using a point-to-point tunneling protocol
(PPTP).

US. The system according to claim 1, wherein said
system is used in a point to point {PIP) telecommunications
system.

ll9. The system according to claim ll8, wherein said
shared wireless bandwidth comprises a wireless communi
cation medium comprising at least one of:

a radio frequency (RF) communications medium;
a cable communications medium; and
a satellite communications medium.
UO. The system according to claim 119, wherein said

wireless communication medium further comprises, a tele
communications access method including at least one of:

a time division multiple access (IDMA) access method;
a time division multiple access/time division duplex

(IDMNIDD) access method;

15 medium.
132. The system according to claim 131, wherein said

cable modem is DOC/SYS compliant.
133. The system according to claim 130, wherein said

end-user IP QoS optimized coaxial cable resource allocator
20 system comprises:

25

30

an IP flow identifier;
an IP flow characterizer;
an IP flow classifier; and
an IP flow prioritizer.
134. The system according to claim 129, wherein said

coaxial cable communications medium comprises, a tele
communications access method including at least one of:

a time division multiple access (IDMA) access method;
a time division multiple access/time division duplex

(IDMNIDD) access method;
a code division multiple access (CDMA) access method;

and

a code division multiple access (CDMA) access method; 35
and

frequency division multiple access (FDMA) access
method.

135. The system according to claim U6, wherein said first
a frequency division multiple access (FDMA) access

method.
Ul. The system according to claim 118, wherein said fust

data network comprises at least one of:
a wireline network;
a wireless network;

40

data network comprises at least one of:
a wireline network;
a wireless network;
a local area network (IAN); and
a wide area network (WAN).
136. The system according to claim 126, wherein said

second network comprises at least one of: a local area network (IAN); and
a wide area network (WAN).
U2. The system according to claim 118, wherein said 45

a wireline network;
a wireless network;

&econd network comprises at least one of:
a wireline network;
a wireless network;
a local area network (IAN); and
a wide area network (WAN).
123. The system according to claim 118, said resource

ation means comprises a resource allocator that allo-
es shared bandwidth between said wireless base station

one of said subscnber CPE stations.
U4. The system according to claim U3, wherein said

~cc allocator optimizes end-user internet protocol (IP)
1ty of service (QoS).

US. The system according to claim U3, wherein said

a local area network (LAN); and
a wide area network (WAN).
137. The system according to claim 129, wherein said

50 coaxial cable resource allocator is application aware.
138. The system according to claim U9, wherein the

system is used in a point to point (PtP) network.
139. The system according to claim 1, wherein said

resource allocation means is a part of a media access control
55 (MAC) layer.

cc allocator is application aware. 60

U6. !he system according to claim 1, wherein said
,,Stem IS a broadband coaxial cable telecommunications

tem wherein said wireless medium comprises a coaxial

140. The system according to claim 9, wherein said
wireless communication medium further comprises a tele
communications access method comprising a time division
multiple access/time division duplex (IDMA/TDD) access
method aod wherein the system further comprises a TDMN
TDD media access control (MAC) transmission frame,

le communications medium.
. · U7: The system according to claim 1, wherein the system 65

a \VJrcless local area network (LAN) point to multi-point
) system.

comprising:
one or more dynamically allocatable IP flow control slots

for providing IP flow control information over a wire
less medium between said wireless base station and
said one or more subscriber customer premises equip-
ment (CPE) stations; and

"

'ii
EX 1017 Page 451

39
412. The system according to claim 106, wherein said

RSVPmarking is compatible with Internet Engineering Task
Force (IETF) RFC 2205.

113. The system according to claim 33, comprising:
means for analyzing said virtual private network (VPN)

priorities for said IP flow.
114. The system according to claim 113, comprising:
means forprioritizing all VPN IP flows.
115. The system according to claim 113, comprising:
means for prioritizing said IP flow based on one or more

subscriber-defined parameters.
116. The system according to claim 33, wherein said VPN

comprises a directory enabled networking (DEN) table
management scheme.

117. The system accordingto claim 33, whercin said VPN
is implemented using a point-to-point tunneling protocol
(PPTP). . .

118. The system according to claim 1, wherein said
system is used in a point to point (PtP) telecommunications
system.

119. The system according to claim 118, wherein said
shared wireless bandwidth comprises a wireless commmuni-
cation medium comprising atleast one of:

a radio frequency (RF) communications medium;
a cable communications medium; and
a satellite communications medium.

120. The system according to claim 119, wherein said
wireless communication medium further comprises, a tele-
communications access method including atleast one of:

a time division multiple access (TDMA) access method;
a time division multiple access/time division duplex

(TDMA/TDD)access method;
a code division multiple access (CDMA) access method;

and

a frequency division multiple access (FDMA) access
method.

121, The system according to claim 118, wherein said first
data network comprises at least one of:

a wireline network;
a wireless network;
a local area network (LAN); and
a wide area network (WAN).

k’ 122. The system according to claim 118, wherein said
y Second network comprises at least one of:

a wireline network:
a wireless network:
a local area network (LAN); and

,. & wide area network (WAN).
123. The system according to claim 118, said resource
location means comprises a resource allocator that allo-

ates shared bandwidth between said wireless base station
peful one of said subscriber CPEstations.

; 124. The system according to claim 123, wherein said
f SOUurce allocator optimizes end-user internet protocol (IP)

Malily of service (QoS).
k 125. The system according to claim 123, wherein said

ce allocator is application aware.
126. The system according to claim 1, wherein said

pysicm is a broadband coaxial cable telecommunications
Bem wherein said wireless medium comprises a coaxial
pole Communications medium.

E 127. The system according to claim 1, wherein the system
& * wireless local area network (LAN) pointto multi-point
PMP) system.

wn

10

35

50

55

60

65

US 6,452,915 B1
90

128. The system according to claim 1, wherein said
wireless base station is a wireless access point.

129. The system according to claim 126, wherein said
resource allocation means comprises a coaxial cable
resource allocator for allocating shared bandwidth between
said wireless base station and said subscriber CPEstations.

130. The system according to claim 129, wherein said
coaxial cable resource allocator optimizes end-user internet
protocol (IP) quality of service (QoS).

131. The system according to claim 126, wherein said
coaxial cable communications medium comprises a radio
frequency data communication over a coaxial cable, wherein
one or more cable modems modulate and demodulate sig-
nals transmitted over said coaxial cable communications
medium.

132. The system according to claim 131, wherein said
cable modem is DOC/SYS compliant.

133. The system according to claim 130, wherein said
end-user IP QoS optimized coaxial cable resource allocator
system compriscs:

an IP flow identifier;
an IP flow characterizer;
an IP flow classifier; and
an IP flow prioritizer.
134. The system according to claim 129, wherein said

coaxial cable communications medium comprises, a tcle-
communications access method including atleast one of:

a time division multiple access (TDMA) access method;
a time division multiple access/time division duplex

(IDMA/TDD)access method;
a code division multiple access (CDMA)access method;and

frequency division multiple access (FDMA) access
method.

135. The system accordingto claim 126, wherein said first
data network comprises at least one of:

a wireline network;
a wireless network;
a local area network (LAN); and
a wide area network (WAN).
136. The system according to claim 126, wherein said

second network comprises at least one of:
a wireline network;
a wireless network;
a local area network (LAN); and
a wide area network (WAN).
137. The system according to claim 129, wherein said

coaxial cable resource allocator is application aware.
138. The system according to claim 129, wherein the

system is used in a point to point (PtP) nctwork.
139. The system according to claim 1, wherein said

resource allocation means is a part of a media access control
(MAC) layer.

140. The system according to claim 9, wherein said
wireless communication medium further comprises a tele-
communications access method comprising a time division
multiple access/time division duplex (TDMA/TDD)access
method and wherein the system further comprises a TOMA/
TDD media access control (MAC) transmission frame,
comprising:

one or more dynamically allocatable IP flow controlslots
for providing IP flow control information over a wire-
less medium between said wireless base station and

said one or more subscriber customer premises equip-
ment (CPE)stations; and

EX 1017 Page 451

US 6,452,915 Bl
91

one or more dynamically allocatable IP flow data slots for
providing IP flow data information over said wireless
communication medium between said wireless base
station and said one or more subscnber customer
premises equipment (CPE) stations.

141. The system according to claim 140, wherein said
control slots comprise at least one of:

a downstream acknowledgment slot;
a reservation request slot;
an operations data slot;
an upstream acknowledgment slot;
an acknowledgment request slot;
a frame descriptor slot; and
a command and control slot.

5

IO

92
a frame descriptor block for transmitting one or more

reservation slots in said downlink subframe defining
where each of said one or more subscriber CPE stations
requesting a reservation will place uplink data thereof.

151. The system according to claim 140, wherein said IP
flow control slots comprise at least one of:

a downstream acknowledgment slot;
an operations data slot;
an upstream acknowledgment slot;
an acknowledgment request slot; and
a frame descriptor slot.

142. The system according to claim 140, wherein said 15

data slots comprise at least one of:

152. The system of claim 1, further comprising a TCP
adjunct system that prevents operation of a transmission
control program (TCP) sliding window algorithm that con
trols a-TCP transmission rate in said packet-centric wireless
point to multi-point telecommunications system, said TCP

uplink data slots for transmission in an uplink direction
from each of said one or more subscnbcr CPE stations

adjunct system comprising:

to said wireless base station; and
20

downlink data slots for transmission in a downlink direc
tion from said wireless base station to each of said one

a TCP adjunct agent that takes into account application
awareness, guarantees cnduser quality of service
(QoS), and prevents operation of a TCP sliding window
algorithm that controls a TCP transmission rate in a

or more subscriber CPE stations.
143. The system according to claim 140, wherein said

time division multiple access/time division duplex (IDMN
25

1DD) transmission media access method involves:

manner that optimizes for a wireless communication
medium.

153. The system of claim 152, wherein said TCP adjunct
agent obviates modification of a source TCP layer at a first
of said one or more host workstations and a destination TCP
layer at one of said one or more subscnber workstations.

a downlink subframe for use over said wireless medium
from said wireless base station and said one or more
subscnber customer premises equipment (CPE) sta
tions; and

an uplink subframe for use over said wireless medium
from said subscnber CPE stations to said wireless base
station,

wherein a bandwidth is dynamically allocated between
said downlink subframe and said uplink subframe for
transmission of Internet protocol (IP) flow information
so as to optimi7.c end-user IP quality of service (QOS).

144. The system according to claim 143, wherein multiple
slots in said downlink subframe arc scheduled for one of said
one or more subscnbcr CPE stations for a single internet
protocol (IP) flow.

145. The system according to claim 143, wherein multiple
slots in said downlink subframe are scheduled for one of said
one or more subscriber CPE stations for a plurality of
Internet protocol (IP) flows.

146. The system according to claim 143, wherein multiple
slots in said uplink subframe are scheduled for one of said
one or more subscnber CPE stations for a single internet
protocol (IP) flow.

154. The system of claim 153, wherein said source and
30 destination TCP layers are unaware of operation modifica

tion by said TCP adjunct agent.
155. The system of claim 152, wherein said TCP adjunct

agent is configured to intercept retransmission requests
between a TCP layer of one of said subscriber workstations

35 coupled to a first subscriber CPE station and a TCP layer of
al least one of a host workstation and said wireless base
station.

156. An IP flow classification system that groups IP flows
in a packet-centric wireless point to multi-point telecommu-

40 nications system, said classification system comprising:

45

a wireless base station coupled to a first data network;
one or more host workstations coupled to said first data

network;
one or more subscnber customer premise equipment

(CPE) stations in wireless communication with said
wireless base station over a shared wireless bandwidth
using a packet-centric protocol over a wireless com
munication medium;

147. The system according to claim 143, wherein multiple 50
slots in said uplink subframe are scheduled for one of said
one or more subscriber CPE stations for a plurality of
internet protocol (IP) flows.

one or more subscnber workstations coupled to each of
said subscriber CPE stations over a second network;

a resource allocator operative to optimi7.e end-user quality
of service (QoS) and allocating shared bandwidth
among said subscriber CPE stations; and 148. The system according lo claim 143, further compris

ing:
one or more dynamically allocatable reservation request

contention slots for addressing contentions between
reservation requests for available slots in said uplink
subframe between said wireless base station and each

55

of said one or more subscnber CPE stations for trans- 60

mission of IP flows.

an analyzer and scheduler operative to analyze and sched-
ule an internet protocol (IP) flow over said shared
wireless bandwidth, wherein said analyzer and sched
uler comprises:
a classifier that classifies said IP flow.

157. The system of claim 156, wherein said classifier
comprises:

an association device that associates a packet of an
existing IP flow with said IP flow.

158. The system of claim 156, wherein said classifier

149. The system according to claim 143, wherein said
contention slots arc dynamically allocated according to the
frequency of detected collisions between said reservation
requests. 65 comprises:
. 150. The system according to claim 143, further compris
mg:

QoS grouping device that groups a packet of a new IP
flow into a QoS class grouping.

EX 1017 Page 452

US 6,452,915 Bl
93

159. The system of claim 158, wherein said QoS grouping
device comprises;

determining devia: that determines and takes into account
QoS class groupings for said [P flow.

160. The system of claim 159, wherein said QoS grouping
device comprises:

optional differentiated services (Diff Serv) device that
takes into account an optional Diff Servs field priority
marlcing for said [P flow.

161. The system of claim 159, wherein said QoS grouping
device comprises:

94
optional type of service (I'OS) device that takes into

account any optional type of service (TOS) field pri
ority marking for said [P flow.

162. The system according to claim 156, wherein the
5 wireless point to multi-point telecommunications system is

a wireless local area network (LAN) system.
163. The system according to claim 156, wherein the

wireless point to multi-point telecommunications system is

10
a wireless wide area network (WAN) system.

• + • + +

EX 1017 Page 453

12) United States Patent
Goyal et al.

:54) MEfflOD AND APPARATUS FOR
PROVIDING QUALITY OF SERVICE USING
mE INTERNET PROTOCOL

(75) Inventors: Pawan Goyal, Mountain View, CA
(US); Gisli Hjalmtysson, Gillette, NJ
(US)

(73) Assignee: AT&T Corp., New York, NY (US)

(*) Notice; Subject to any disclaimer, the term of this
patent is extended or adjusted uilder 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/288,617

(22) Filed: Apr. 9, 1999

Related U.S. Application Data
(60) Provisional application No. 60;081,479, filed on Apr. 10,

1998.

(51) Int. a. 7
... :. ••••• G06F 13100

(52) U.S. Cl • 709/238; 7®(}.36; 7®/246;
370(}.36

(58) Fleld of Search 709/230, 232,
709/234,235,236,237,238,245,246,

250, 311; 370/230, 231, 235, 236

(56) References Cited

U.S. PATENT DOCUMENTS

5,9'l0,705 A • 7/1999 Lyon et al 370/400

102 HOST 108

11111111111111111 IID 1111111111111111111111111 llll 111111111111111111
US006466985Bl

(10) Patent No.: US 6,466,985 Bl
Oct. 15, 2002 (45) Date of Patent:

5,963,555 A • 10/1999 Takase et al 370/395
6,084,855 A • 7(1.000 Soirinsuo et al 370(1.35

• cited by examiner

Primary Examiner-Viet D. Vu

(57) AB.STRACT

A method aod apparatus for communicating information in
a network is described. A packet for the information is
generated at a first network device. Toe first network device
assigns a flow label to the packet. Toe flow label indicates
that the packet is part of a particular sequence of packets.
Toe first network device also assigns a direction to the
packet by, for example, setting a bit in the flow label. Toe
packet is then sent to a second network device througb at
least one intermediate network device. This process is
continued for the entire sequence of packets. Toe interme
diate network device actually routes the packets to the
second network device. The intermediate network device
receives the packets al an input port. A flow label is
identified for each packet. The intermediate network device
determines whether a flow table has an entry for the flow
label. If there is no present entry for the flow label in the flow
table, an entry for the flow label is created. If there is an
entry for the flow label, ao output port associated with the
flow label is obtained. The intermediate network device then
sends the packet to the output port. This continues at each
intermediate network device until each packet reaches the
second network device.

15 Claims, 2 Drawing Sheets

110 HOST 106

tt----i NElWORK 1---1 NElWORK --
DEVICE DEVICE

NElWORK DEVICE 112

HOST 104

_____ _.1911
EX 1017 Page 454

oea

5B

») United States Patent (0) Patent No: US 6,466,985 BI
Goyal etal. (45) Date of Patent: Oct. 15, 2002

54) METHOD AND APPARATUS FOR 5,963,555 A * 10/1999 Takase et al... 370/395
PROVIDING QUALITY OF SERVICE USING 6,084,855 A * 7/2000 Soirinsuo ef al.0.0... 370/235
THE INTERNET PROTOCOL

* cited by examiner

(75) Inventors: Pawan Goyal, Mountain View, CA
(US); Gisli Hjalmtysson, Gillette, NJ
(US) 6D ABSTRACT

(73) Assignee: AT&T Corp., New York, NY (US) A method and apparatus for communicating information m
a actwork is described. A packet for the information is

(*) Notice: Subject to any disclaimer, the term of this gencratedat a first nctwork device. The first network device
patent is extended or adjusted under 35 assigns a flow label to the packet. The flow label indicates

Primary Examiner--Viet D. Va

U.S.C. 154{b) by 0 days. that the packet is part of a particular sequence of packets.
The first network device also assigns a direction to the

(21) Appl. No.: 09/288,617 packet by, for example, setting a bit in the flow label. The
packet is then sent to a second network device through at

(22) Filed: Apr. 9, 1999 least. one intermediate network device. This process is
. continued for the entire sequence of packets. The interme-

Related U.S. Application Data diate network device actually routes the packets to the
{60} Provisional application No. 60/081,479, filed on Ap10, second network device. The intermediate network device

1998. receives the packets al an input port. A flow label is
(S1) Mt. CH onesies GOSE 13/00 identified for cach packet. The intermediate network device
(52) US. Ch. eeeeeeeeereneen 709/238; 709/236; 709/246; determines whether a flow table bas an entry for the flow

370/236 label. If there is no preseat entry for the flow labelin the flow
(58) Field of Searchcccccccsnecere: we 709/230, 232, table, an entry for the flow label is created.If there is an

709/234, 235, 236, 237, 238, 245, 246, entry for the flow label, an output port associated with the
250, 311; 370/230, 231, 235, 236 flow label is obtained. The intermediate network devicethen

sends the packet to the output port. This continues at each

(56) References Cited intermediate network device until cach packet reaches thesecond network device.
U.S. PATENT DOCUMENTS

5,920,705 A * 7/1999 Lyon et al. oo.F70/A09 15 Claims, 2 Drawing Sheets

102 106

DEVICE

NETWORK DEVICE 112

104

EX 1017 Page 454

U.S. Patent

102 HOST

200

ROUTER

206

Oct. 15, 2002 Sheet 1 of 2

202

FIG. 1
100

108 110

NElWORK
DEVICE

NElWORK
DEVICE

NElWORK DEVICE 112

HOST 104

FIG. 2
212

204
1/0

I/0

FMM r-218 1/0

[TABLES r 208 1/0

I/0

I/0

212

US 6,466,985 Bl

HOST 106

216

EX 1017 Page 455

U.S. Patent Oct. 15, 2002 Sheet 1 of 2 US 6,466,985 BL

FIG. 1 !
i TNE

;
i i

NETWORK NETWORK i
DEVICE DEVICE i
an iH/

NETWORK DEVICE |
|

sereneoonremnantne

esrenn
EX 1017 Page 455

••

US 6,466,985 Bl
1

METIIOD AND APPARATUS FOR
PROVIDING QUAUTY OF SERVICE USING

THE INTERNET PROTOCOL

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
, Application No. 60/081,479, filed Apr. 10, 1998, entitled

"Provision of Quality Services Using the Internet Protocol,"
· the entire disclosure of which is hereby incorporated by

reference.

HEW OF THE INVENTION

Toe embodiments of the invention relate to communica
tions in general. In particular, the embodiments of the

· invention relate to a method and apparatus for providing
quality of service: using the Internet Protocol (]P).

BACKGROUND OF TIIE INVENTION

With the explosive growth of the Internet and new net
work applications almost ei:clusively written for the Internet
Protocol (IP), it has become essential to optimize protocols
· and network management for the IP. Originally designed for
data. networking, the Internet is increasingly being used for

· audio and video applications. Whc:ll:as using a single net
. work level technology may potentially simplify network
<mtnagement, providing sufficient service: quality for multi
' media applications over the Internet ll:mains a significant
, challenge:. After almost a decade of emphasis on resource:
·:mic:rvations and end-to-end Quality of Service (QoS), as
part of both the design of Asynchronous Transfer Mode
.(ATM) networks and standardization of the Resource Res
ervation Protocol (RSVP), there is now a significant back
lash against these state rich, fine grained QoS models. This

:is in part based on the observation that rather than unavail
.\1bility of bandwidth, service inslability is ca.using problems
·.to multimedia applications. Current efforts on differentiated
'llervices are an attempt to develop a service model that
'improves the service quality of the Internet while acting at
;. aggregate levels. However ensuring stable service level
Rqllirc:s richer traffic management :lilcilities than currently
;available in the Internet.

The two most essential characteristics of the IP that have
amtnbuted to its success and distinguish it from connection
oriented networks are the softness of state inside the
· twork, and the aggregation properties of this state. Apart

m the routing database, for best effort destination based
ting, (cached) state is used pDll:ly for performance:
lDCemcnt, but is not essential for correctly delivering

_ackets to destination. In particular this state can be lost, or
ved at routers discretion without affecting the validity

. te elsewhere in the network. With single class desti
tion based rooting, prefix matching effectively aggregates

,. e forwarding information for multiple destinations into a
entry per prefix. Even with nodal service differentia
oS bits) this property is retained.

2
time-scale of (load) change becomes that of connection
duration, rather than that of routing updates and packet
interarrivals. Whereas traditional methods exploit mecha
nisms for connectivity and reservations to achieve quality of

s service and implement traffic management, the coupling of
these distinct mechanisms has contnbuted to the perceived
complexity of connection oriented networks.

In view of the foregoing, it can be appreciated that a
substantial need exists for introducing the QoS advantages

10 of connection-oriented networks into connectionless net
works (e.g., using IP) without losing the advantages given
by connectionless networks.

SUMMARY OF TIIE INVENTION
15

One embodiment of the invention comprises a method
and apparatus for communicating information in a network.
A packet for the information is generated at a first network
device such as an end system. The first network device
assigns a flow label to the packet. The flow label indicates

20
that the packet is part of a particular sequence of packets.
The first network device also assigns a dill:ction to the
packet by, for example, setting a bit in the flow label. The
packet is then sent to a second network device (e.g., another

25
cod system) through at least one intermcdia te nc: twork
device (e.g., a router or switch). This process is continued
for the entire sequence of packets for a given flow.

The intermediate network device actually routes the pack
ets to the second network device. The intermediate network

30 device receives the packets at an input port. A flow label is
identified for each packet. The intermediate network device
determines whether a flow !able has an entry for the flow
label. If there is no pll:sent entry for the flow label in the flow
table, an entry for the flow label is created. If there is an

35 entry for the flow label, an output port associated with the
flow label is obtained. The intermediate network device then
sends the packet to the output port. This continues at each
intermediate network device until each packet of a given
flow reaches the second network device.

40 With these and other advantages and fratures of the
invention that will become hereinafter apparent, the nature
of the invention may be more clearly understood by ll:fer
encc: to the following detailed description of the invention,
the appended claims and to the several drawings attached

45 herein.

BRIEF DESCRIPTION OF TIIE DRAWINGS

FIG. 1 is a block diagram of a network suitable for
practicing one embodiment of the invention.

50 FIG. 2 is a block diagram of a router suitable for prac-
ticing one embodiment of the invention.

FIG. 3 is a block flow diagram of the steps performed by
a first network device in acoordance with one embodiment

55 of the invention.

FIG. 4 is a block flow diagram of the steps performed by
an intermediate network device in accordance with one
embodiment of the invention .

. ~'In contrast, the strengths of the state rich telephony
ork, and derived connection-oriented models (e.g., 60 DETAILED DESCRIPTION

,, . , are their service: quality assurances. In part, the The embodiments of the invention are dill:cted to enhanc-
ality assurances are achieved through resource ll:serva- ing the consistency in service quality on the Internet.

and tight channel scheduling, based on declared or Whereas the soft-state and scalability have been key to the
. d user objectives. In part, the consistent quality is success of the Internet, its service: quality is wanting. The

. C~cd through network management; exploiting intra- 65 embodiments borrow some of the concepts frnm connection-
' ~';1.Il knowledge about network load and conditioas. In oriented networks, without compromising on the essential

tion connection oriented models enhance: stability, as the characteristics of IP. The embodiments are optimiz.ed for

lllfi
i{

i

• • I
'1 !

:,·. ''
! 'II'
Ii H ' t ,,
i If

i' !II !
j ;;

: !,

,,_
1, • .._

EX 1017 Page 456

US 6,466,985 B1
1

METHOD AND APPARATUS FOR
PROVIDING QUALITY OF SERVICE USING.

THE INTERNET PROTOCOL,

CROSS-REFERENCE TO RELATED
APPLICATION

& ‘This application claims the benefit of U.S. Provisional
| Application No. 60/081,479,filed Apr. 10, 1998, entitled
E “Provision of Quality Services Using the Internet Protocol,”

dhe entire disclosure of which is hereby incorporated by
; reference.

FIELD OF THE INVENTION

k The embodiments of the invention relaie to communica-
F gions in general. In particular, the embodiments of the
§ invention relate to a method and apparatus for providing
E quality of service using the Internet Protocol (IP).

BACKGROUND OF THE INVENTION

With the explosive growth of the Internet and new net-
p work applications almost exclusively written for the Internet

F Protocol (IP), it has become essential to optimize protocols
F-and network managementfor the IP. Originally designed for
f. dala networking, the Internet is increasingly being used for
- audio and video applications. Whereas using a single net-
| work level technology may potentially simplify network
management, providing sufficient service quality for multi-
F. media applications over the Internet remains a significant
K. challenge. After almost a decade of emphasis on resource

‘reservations and end-to-cad Quality of Service (QoS), as
k part of both the design of Asynchronous Transfer Mode
-(ATM) networks and standardization of the Resource Res-
E.ervation Protocol (RSVP), there is now a significant back-
"lash against these state rich, fine grained QoS models. This
is in part based on the observation that rather than unavail-
“ability of bandwidth, service instability is causing problems
to multimedia applications, Currentefforts on differentiated
“services are an attempt to develop a service model that

- maproves the service quality of the Intemet while acting at
aggregate levels. However ensuring stable service level
Riequires richer traffic managementfacilities than currently
pavailable in the Internet.

f, The two most essential characteristics of the IP that have
Contributedto its success and distinguish it from connection
poticnted networks are the softness of state inside the
Pactwork, and the aggregation properties of this state. Apart
Arora tbe Touting database, for best effort destination based
pouting, (cached) state is used purely for performance
Pohancement, but is not essential for correctly delivering
packets to destination. In pasticular this state can be lost, or
removed at routers discretion without affecting the validity
Pi state cisewhere in the network. With single class desti-
p*tion based ronting, prefix matching effectively aggregates

gee forwarding information for multiple destinations into a
ptgle entry per prefix. Even with nodal service differentia
#50 (ToS bils) this property is retained.
bin Contrast, the strengths of the state rich telephony
Bbtwork, and derived connection-oriented models (c.g.,
Bey ate their service quality assurances. In part, the
pitality assurances are achi¢ved through resource reserva-
zo mS and tight channel scheduling, based on declared or
Ered user objectives. In part, the consistent quality is
p. ueved through network management; exploiting intra-
Pemain knowledge about network load and conditions. In

tion connection oriented models enhance stability, as the

2

time-scale of (load) change becomes that of connection
duration, rather than that of routing updates and packet
interarrivals. Whereas traditional methods exploit mecha-
nisms for connectivity and reservations to achieve quality of

5 service and implementtraffic management, the coupling of
these distinct mechanisms has contributed to the perceived
complexity of connection oriented networks.

In view of the foregoing, it can be appreciated that a
substantial need exists for introducing the QoS advantages

19 of connection-oriented networks into conncctionless net-
works (e.g., using [P) without losing the advantages given
by connectionless networks.

SUMMARYOF THE INVENTION

Qne embodiment of the invention comprises a method
and apparatus for communicating information in a network.
Apacket for the information is generated at a first network
device such as an end system. The first network device
assigns a flow label to the packet. The flow label indicates
that the packet is part of a particular sequence of packets.
The first network device also assigns a direction to the
packet by, for example, setting a bit in the flow label, The
packetis then sent to a second network device (¢.g., another
end system) through at least one intermediate network
device (e.g., a rouler or switch). This process is continued
for the entire sequence of packets for a given flow.

The intermediate network device actually routes the pack-
ets to the second network device. The intermediate network

39 device receives the packets at an input port. A flow label is
identified for cach packet. The intermediate network device
determines whether a flow table has an entry for the flow
Jabel. If there is no present entry for the flow label in the flow
table, an entry for the flow Jabel is created. If there is an

ag entry for the flow label, an output port associated with the
flow labelis obtained. The intermediate network device then
sends the packet to the output port. This continucs at each
intermediate network device until cach packet of a given
flow reaches the second network device.

40 With these and other advantages and features of the
invention that will become hereinafter apparent, the nature
of the invention may be more clearly understood by refer-
ence to the following detailed description of the invention,
the appended claims and to the several drawings attached

as herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a network suitable for
practicing one embodiment of the invention.

FIG. 2 is a block diagram of a router suitable for prac-
ticing one embodiment of the invention.

FIG.3 is a block flow diagram of the steps performed by
a first network device in accordance with one embodiment

ss_ Of the invention.
FIG.4 is a block flow diagram ofthe steps performed by

an intermediate network device in accordance with one
embodiment of the invention.

DETAILED DESCRIPTION

The embodiments of the invention are directed to enhanc-

ing the consistency in service quality on the Internet.
Whereas the soft-state and scalability have been key to the
sucoess of the Internet, its service quality is wanting. The

65 embodiments borrow some of the concepts from connection-
oriented networks, without compromising on the essential
characteristics of IP. ‘The embodiments are optimized for

is

20

50

EX 1017 Page 456

US 6,466,985 Bl
3

carrying IP "flows," and may be implemented as part of
lower level (layer 2) protorols, including .KIM or Multipro
tocol Label Switching (MPLS). One particular advantageous
embodiment of the invention creates the capability of run
ning the IP directly on top of the optical layer of a network.

The embodiments of the invention provide QoS capability
using the IP, particularly as set forth in Request For Com
ments (RFC) 1883 titled "Internet Protocol, Version 6 (IPv6)
Specification," dated December 1995 ("IPv6"), which is
incorporated by reference herein. By introducing QoS char
acteristics using the IP, the need for carrying IP datagrams in
lower layer protocol units A A:rM cells) is avoided. This
reduces network complexity by removing a network layer,
which in turn simplifies network and service management.
Furthermore, using IP also avoids the complexity of map
ping customer requests (at the network interface) onto
requests on the physical backbone infrastructure that may
have coa:flicting service models.

4
consistency) and in processing (admission control, and
negotiations). Thus, it is desirable that forwarding path of a
flow be stable. Stable forwarding paths also enable other
optimizations. For example, though explicit routes can be

5 specified in every IPv6 packet, significant bandwidth sav
ings can be accrued when stability of a flow path can be
as,;umed, as with using, for example, the concept of route
pinning. 1be same concept applies more generally to exten
sion headers.

10 In addition, the embodiments of the invention offer the
advantage of symmetric and reverse path routing. Symmet
ric routing is desirable because it simplifies algorithms and
provides benefits to some services. Reverse path routing is
necessary for flow level control where it must be poSSlble to
send oontrol messages on the reverse forwarding path. Part

15 of the complexity of RSVP is due lo mechanisms to provide
a control path on the reverse data path. Explicit labeling of
flows will enable routing symmetry.

The embodiments of tbe invention provide the fundamen
tal strengths of connections while retaining the softness of
state and aggregation properties of connectionless networks.
The embodiments of the invention makes use of flows that
can be designated as "special" or "distinguished" through
the use of a unique identifier or label for each flow. A
distinguished flow can then be pinned to a route, support

The embodiments of the invention explicitly identify a
group of IP packets as belonging to a "flow:• and ensures 20

that packets of a flow traverse the same sequence of routers.
This creates some unique advantages, such as load
balancing, enhanced management and accountability, the
ability to assign attributes to a flow, amortizing costly (in
terms of bandwidth) operations over a sequence of packets,
and providing symmetric and reverse path routing.

25 reverse path routing, and may have associated (QoS)
attnbutes.

A new flow can be established by using a previously
undeclared flow name. Assignment of a name declares the
intent to use this flow for something special, and enables the

30 end-system to refer to tbe flow for later attribute assignment.

A first advantage is load balancing. In current IP, all the
packets from a source intended for a given destination
traverse the same path. This technique does not optimally
utilize the network resources. Furthermore, if a link on the
path gets overloaded, a router may reroute either all or part
of the traffic to a given destination. This leads to either
routing instability or route fluttering, neither of which is
desirable for a large class of applications. This can be

35
overoome using "route pinning." Route pinning involves
ensuring that packets for a particular flow traverse the same
sequence of intermediate network devices (e.g., routers).
Route pinning enables the network to better utilize its
resources and avoid the route-flapping problem while ame-

40
liorating routing instability.

A second advantage is that the embodiments of the
invention enhance management and accountability within
the network. Recording of network usage, whether for
billing or off-line diagnostic analysis, is an important part of ,i5
providing network services. This is particularly important in
a network that provides some assurance regarding quality.
Labeled Hows traversing a fixed path enable this function
ality.

An unknown flow name is interpreted as a request for a new
flow.

In addition to the flow name, the fust packet of a flow
(effectively the flow-request) contains a datagram of a
network level protocol for which the network: node can do
routing (e.g., IPv6). Although subsequent packets may oon-
tain arbitrary datagrams, softness of state is achieved when
all the transferred packets a.re of such "known" protocol. In
that case, if the state is lost, the next packet of the named
flow is processed as if it were the fust packet of a new flow.
To optim:i.zc the transport network for IPv6, the network
nodes simply support IPv6 routing. The flows defined herein
incur no call setup delay. Moreover, adopting (or assuming)
a "use it or loose it" state invalidation policy, there is no need
for explicit tear-down. A flow may be uni- or bidirectional.

There are four aspects of constructing a flow: (1) declar
ing a name; (2) pinning the route, (3) enabling reverse path
routing, and (4) assigning attributes (such as QoS).
Abstractly, current network nndes maintain two tables, a

A third advantage is that certain attributes, such as QoS
1.ttnbutcs, can be as.signed to designated flows. For a number
of reasons, it may be desirable to assign attributes to
distinguished flows, fur example to reserve resources along
the path. This requires a mechanism to declare a path as
"special" and then to descnbe (and poSSlbly negotiate) the
path attributes. RSVP is designed for this purpose. The use
of RSVP with the current IP (e.g., IPv4), however, is
Particularly complex without some mechanism to declare a
path as "special."Th:isproblem is overcome somewhat using
the flow label already defined fur IPv6.

50 routing table and a forwarding table. In the case of a
traditional router the forwarding table com:sponds to the
routing cache. On an ATM switch or an MPIS Label Switch
Router (LSR), the forwarding table is respectively the Vir
tual Channel (VC) lookup table or the label lookup table. To

A fourth advantage is that costly operations in terms of
bandwidth can be amortized over a. sequence of packets.
Assignment of flow attributes (for example, reservations),
requires some mechanism to establish state and share that
state across sequence of datagrams. State sharing fails if the
!orwarding path is not stable across multiple packets. Install
mg state is expensive, both in latency (end-to-end

55 support the flows used in the embodiments of the invention,
a traditional router would be augmented with an additional
forwarding table for mapping flow names to flow state
(including the output port), as discussed in more detail with
reference to FlG. 2.

60 A flow request may be interpreted as an implicit request
for route pinning. If not, route pinning may be requested
subsequently in a separate message. Without route pinning,
the entry in the flow cache simply points to the correspond
ing entry (in the regular cache) for the destination address.

65 When route pinning is requested this entry is copied and thus
becomes independent of changes in the default destination
based route.

I

i

!

llll

I
11

I

r

EX 1017 Page 457

US 6,466,985 B1
3

carrying IP “flows,” and may be implemented as part of
lowerlevel (layer 2) protocols, including ATM or Multipro-
tocol Label Switching (MPLS). One particular advantageous
embodiment of the invention creates the capability of run-
ning the IP directly on top of the optical layer of a network.

‘The embodiments of the invention provide QoS capability
using the IP, particularly as set forth in Request For Com-
meats (REC) 1883titled “Internet Protocol, Version 6 (IPv6)
Specification,” dated December 1995 (“IPv6”), which is
incorporated by reference herein. By introducing QoS char-
acteristics using the IP, the need for carrying IP datagramsin
jower layer protocol units A ATM cells) is avoided. This
reduces network complexity by removing a network layer,
which in turn simplifies network and service management.
Furthermore, using IP also avoids the complexity of map- 5
ping customer requests (at the network interface) onto
requests on the physical backbone infrastructure that may
have conflicting service models.

The erbodiments of the invention explicitly identify a
group of IP packets as belonging to a “flow,” and ensures
that packets of a flow traverse the same sequence of routers.
This creates some unique advantages, such as load
balancing, enhanced management and accountability, the
ability to assign attributes to a flow, amortizing costly (in
terms of bandwidth) operations over a sequence of packeis,
and providing symmetric and reverse path routing.

A first advantage is load balancing. In current IP, all the
packets from a source intended for a given destination
traverse the same path. This technique does not optimally
utilize the network resources. Furthermore,if a link on the
path gets overloaded, a router may reroute either all or part
of the traffic to a given destination. This leads to either
touting instability or route fluttering, neither of which is
desirable for a large class of applications. This can be
overcome using “route pinning.” Route pinning involves
ensuring that packets for a particular flow traverse the same
sequence of intermediate network devices (¢.g., routers).
Route pinning enables the network to better utilize its
resources and avoid the route-flapping problem while ame-
liorating routing instability.

A second advantage is that the embodiments of the
invention enhance management and accountability within
the network. Recording of network usage, whether for
billing oroff-line diagnostic analysis, is an important part of
providing network services. This is particularly important in
a network that provides some assurance regarding quality.

Tabeled flows traversing a fixed path enable this function-ity.

A third advantage is that certain attributes, such as QoS
attributes, can be assigned to designated flows. For a number
Of reasons, it may be desirable to assign attributes to
distinguished flows, for example to reserve resources along
the path. This requires a mechanism to declare a path as
“special” and then to describe (and possibly negotiate) the
Path attributes. RSVP is designed for this purpose. The use
of RSVP with the current IP (e.g., IPv4), however, is
Particularly complex without some mechanism to declare a
Path as “special.” This problem is overcome somewhat using
the flow label already defined for IPv6.

A fourth advantage is that costly operations in terms of
bandwidth can be amortized over a sequence of packets.
Assignment of flow attributes (for example, reservations),Tequires some mechanism to establish state and share that

Stale across sequence of datagrams. State sharing fails if the
forwardingpath is not stable across multiple packets. Install-
ing static is expensive, both ia latency (end-to-end

60

65

4

consistency} and in processing (admission control, and
negotiations). Thus, it is desirable that forwarding path of a
flow be stable. Stable forwarding paths also enable other
optimizations. For example, though explicit routes can be
specified in every IPv6 packet, significant bandwidth say-
ings can be accrued when stability of a flow path can be
assumed, as with using, for example, the concept of route
pinning. The same concept applies more generally to exten-sion headers.

In addition, the embodiments of the invention offer the
advantage of symmetric and reverse path routing. Symmet-
ric routing is desirable because it simplifies algorithms and
provides benefits to some services. Reverse path routing is
necessary for flow level control where it must be possible to
send control messages on the reverse forwarding path. Part
of the complexity of RSVP is due to mechanisms to provide
a control path on the reverse data path. Explicit labeling of
flows will enable routing symmetry.

The embodiments of the invention provide the fundamen-
tal strengths of connections while retaining the softness of
state and aggregation properties of connectionless networks.
The embadiments of the invention makes use of flows that
can be designated as “special” or “distinguished” through
the use of a unique identifier or label for cach flow. A
distinguished flow can then be pinned to a route, support
reverse path routing, and may have associated (QoS)attributes.

A new flow can be established by using a previously
undeclared flow name. Assignment of a name declares the
intent to use this flow for something special, and enablesthe
emi-system to refer to the flow for later attribute assignment.
An unknown fiowname is interpreted as a request for a newflow.

In addition to the flow name, the first packet of a flow
{effectively the flow-request) contains a datagram of a
network level protocol for which the network node can do
routing (¢.g., [Pv6). Although subsequent packeis may con-
tain arbitrary datagrams, softness of state is achieved when
all the transferred packets are of such “known”protocol. In
that case, if the state is lost, the next packet of the named
flow is processed as if it were the first packet of a new flow.
To optimize the transport network for IPv6, the network
nodes simply support IPv6 routing. The flows defined berein
incur no call setup delay. Moreover, adopting (or assuming)
a “use it or loose it”state invalidation policy,there is no need
for explicit teardown. A flow may be uni- or bidirectional.

There are four aspects of constructing a flow: (1) declar-
ing a name; (2) pinning the route, (3) enabling reverse path
routing, and (4) assigning attributes (such as QoS).
Abstractly, current network nodes maintain two tables, a
routing table and a forwarding table. In the case of a
traditional router the forwarding table corresponds to the
routing cache. On an_ATM switch or an MPLS Label Switch
Router (LSR), the forwarding table is respectively the Vir-
tual Channel (VC) lookup table or the label lookuptable. To
support the flows used in the embodimentsof the invention,
a traditional router would be augmented with an additional
forwarding table for mappieg flow names to flow state
Gucluding the output port), as discussed in more detail withreference to FIG. 2.

A flow request may be interpreted as an implicit request
for route pinning. If not, route piening may be requested
subsequently in a separate message. Without route pinning,
the entry in the flow cache simply points to the correspond-
ing entry (im the regular cache) for the destination address.
Whenroute pinning is requested this entry is copied and thus
becomes independent of changes in the default destination
based route.

EX 1017 Page 457

(y

US 6,466,985 Bl
5

Reverse path routing on a flow requires the node to record
the incoming port as a part of the flow forwarding state. In
addition _this. information must be conveyed to the output
port. TbJS given, however, reverse path routing may be
achieved either by constructing a new path in the reverse 5
direction (ie., a path association} or by a naming convention
allowing a name to he resolved in the reverse path name
space.

Other flow attnbutes are signaled separately, and can be

:::=~ ':t\i~ci;:::~~ut~~n~~o~=:~
10

Flows maintain a control mapping separate from the for
warding map, thus supporting control paradigms allowing
service specific controllers, potentially installed on demand,
to process the attribute messages.

To aggregate state, a node (e.g., a backbone bonier node)
15

may aggregate smaller flows and tunnel the aggregate flow
to a particular node in the network (an egress router for
example). After exiting the tunnel, the data packets would
then be routed to their respective destinations as if they had
originated at the tunnel end. To construct the tunnel, the

20

router precedes the user packets with a "tunnel request"
packet, a datagram of the "known" protocol, distinguished
as a tunnel request. In the case of the IP as the known
protocol, explicit routing conld be specified using the source
routing option (extension header for IPv6). Of course this is 25

complementary to the use of normal tunneling, which them
selves might exploit flows as well.

The IPv6 flow label can be used to implement a flow in
an IPv6 network. To define a name an end·system sets a

30
locally unique flow label on a packet intended for that flow.
Hop-by-hop extension headers are used to assign attributes
to the route. For example, the bop-by-hop router alert
extension can be used, although additional extension head
ers are possible as well.

For network centric flows in 1Pv6, a router may identify
35

a sequence of packets whose flow label is not set and
aggregate them into a tunneled flow. The tunnel request
packet is ao 1Pv6 datagram carrying the assigned flow label.
The router then sets the flow label of subsequent packets, 40
which are then nullified on exit from the tunnel To aggre
gate labeled flows we use traditional IP tunneling with flows.

The embodiments of the invention modify the current
definition of the IPv6 flow label for reverse path forwarding.
The first bit of the flow label specifies whether it is source 45
or destination unique, with a zero (0) implying a destination
unique flow label, and a one (1) declaring a source unique
flow label. To send on the reverse path, the receiver flips the
first bit of the flow label. Since the source and destination are
also swapped (as compared to the received packet), the same 50
address is used with the flow label to uniquely identify the
flow.

6
pushed on lhe stack at the entry of the tunnel, and popped off
on exit. As the tunnel end may in effect be a multiplexing
point (i.e., a virtual termination of many tunnels) the tunnel
label must be assigned by the tunnel tellllination node
(downstream allocation), to ensure that the enclosed labels
further down on lhe stack are uniquely resolved. To avoid
subsequent round trip delays, however, the first request may
yield two labels, allowing the entry point node to maintain
a cache one label for subsequent tunnel construction.

Referring now in detail to the drawings wherein like parts
are designated by like reference numerals throughout, there
is illustrated in FIG. 1 a network suitable for practicing one
embodiment of the invention. FIG. 1 illustrates ao exem
plary network 100 having multiple hosts and multiple inter
mediate network devices connected as shown. Network 100
shown in FIG. 1 represents one possible network configu-
ration and will be used to descnbe the operation of the
invention. Specifically, three intermediate network devices
108, llO and 112 a.re coupled to one another as shown. FIG.
1 also illustrates three host devices 102, 104 and 106. Each
host is coupled to a particular intermediate network device
using an interface 120 (not shown). Interface 120 may be
any type of interface circuit, including a networlr, capable of
coupling one or more hosts to an intermediate network
device. Alternatively, interface 120 may be omitted. and the
host (or hosts) coupled directly to the intermediate network
device. To simplify the illustration, only one host device is
shown coupled to each intermediate network device. Those
skilled in the art will appreciate that mnltiple hosts may be
coupled to a single intermediate network device and a single
host may be coupled to mnltiple intermediate network
devices.

It can be appreciated that the particular configuration
shown in FIG. 1 is chosen as an example only and is not
limitive of the type of network on which the present inven
tion can work. The number of configurations that networks
can take a.re virtually limitless and techniques for setting up
these configurations are well known to those skilled in the
art. The embodiments of the present invention can operate
on any of these possible configurations.

Furthermore, both the host device and intermediate net-
work device can represent several types of devices. An
example of a host device would be an end system (ES). An
FS is a device attached to a network or subnetwork that is
used to support end-user applications or selVices (e.g., a
personal computer). An example of an intermediate network
device would be a router, ATM switch or LSR. In this
embodiment of the invention, a router is used as an example
to demonstrate the principles described herein. Furthermore,
the router utilizes 1Pv6 to route individual packets between
hosts or end systems.

FIG. 2 is a block schematic diagram of a router suitable
for practicing one embodiment of the invention. A router 200

Implementing the flow concept in MPI.S is similar to that
for 1Pv6. A sender uses a label to define a flow name. As
labels ;ue "link local" this amounts to upstream label allo
cation. Flow pinning is implemented as with 1Pv6. Annbutes
are signaled using hop-by-hop router alerts. Reverse path is
accomplished in a manner similar to 1Pv6, that is, dividing
the namespace on each link into two, with a direction
distinguished by the leading bit. It is aL,;o possible, however,
to use a separate llow name to associate the reverse path to
the corresponding label path. Furthermore, this flow asso
ciation might be maintained only at the higher level, and not

55 is capable of incoiporating the teachings of the present
invention and includes a routing engine 202 having a
processor 204 and a storage device 206. Storage device 206
may be any suitable computer readable memory device,
such as one or more dynamic random access memory

be explicit at the label path level. This could for example be
the case if running 1Pv6 over MPLS.

The embodiments of the invention aggregate separate
flows to a tunnel in MPLS by using a label stack. A label is

60 (DRAM) devices, disk drives, or other mechanism for
storing data.

Routing engine 202 includes in storage device 206 vari
ous computer program segments that when executed by a
processor (e.g., processor 204) performs the functionality

65 for the various embodiments of the invention. In one
embodiment of the invention, the computer program seg
ments 1l!"e combined into a single flow management module

EX 1017 Page 458

• II

US 6,466,985 Bl
7 8

(FMM) 218. It can be appreciated, however, that the func. packet is received al a first input port of an intermediate
lions performed by this module can be separated into more network device at step 402. A flow label for the first packet
modules, or be distnbuted throughout the system, and still is identified at step 404. Whether a flow table has an entry
fall wit:hm the scope of the invention. Furthermore, although for the flow label is determined at step 406. An entry for the
this embodiment of the invention implements the function- 5 flow label is created if no present entry at step 408. An
alityofthis module in software, it can be appreciated that the output port associated with the flow label is obtained from
functionality of this module may be implemented in the table at step 410. The first packet is sent to the output port
hardware, software, or a combination of hardware and at step 412.
software, using well-known signal processing techniques. An entry for the flow label is added to the flow table if

Routing engine 202 includes also includes various tables 10 there is no present entry at step 408. Whether the flow label
208 and databases 210 contained within storage device 206. has an associated routing attribute is determined. A pointer
Tables 208 and databases 210 maintain information neces· associated with the flow label is stored in the flow table, the
sary for router 200 to properly forward data. Tables 208 may pointer pointing to an output port in a routing table for the
include a Routing Table and a Flow Table. Databases 210 intermediate network device, if the flow label does not have
may include a Link State Database and a Forwarding 15 a routing attnbute associated with it.An output port from the
Database. Routing engine 202 is capable of calculating paths routing table is stored in the flow table associated with the
through a network based on information contained in tables flow label, if the flow label does have a routing attribute
208 and databases 210, as well as the functionality provided associated with it.
by FMM 218. The steps described with reference to FIG. 4 may be better

Input/Output (I/0) interfaces 212 are coupled to routing 20 understood using the following example. In this embodi-
engine 202 and provide a physical connection to one or more ment of the invention, the intermediate network device is
network links 216. 1/0 interfaces 212 may be any suitable router 200. Router 200 receives a first packet at a first input
means for controlling communication signals between port. FMM 218 of router 200 identifies a flow label for the
objects using a desired set of protocols, services and oper- first packet. FMM 218 searches a flow table stored with
a.ting procedures, such as IPv6. In this embodiment of the 25 tables 208 to determine whether the flow table has an entry
invention, I/0 interfaces 212 are bidirectional, that is, sig- for the flow label. FMM 218 creates an entry for the flow
nals can be sent and received using any particular 1/0 label if no entry is currently in the flow table for the flow
interface. Those skilled in the art, however, will recognize label. FMM 218 then obtains an output port associated with
that uni--directioo interfaces can also be used and fall within the flow label from the table. Routing engine 202 sends the
the scope of the invention. Furthermore, those skilled in the 30 first packet to the output port.
art will understand that the communication signals may be Router 200 performs the above steps with each packet that
received over any suitable medium such as twisted-pair it receives. Packets received subsequent to the fust packet
wire, co-axial cable, fiber optics, radio-frequencies, and so and having the sanie flow label would be processed more
forth. efficiently since an entry for the flow label will already be

Processor 204 may be any general purpose microproces-
35

present. lf a packet does oot have a flow label, FMM 218 can
sor having sufficieot speed to implement the functionality be progranimed to ignore the packet in terms of processing
dcscnbed herein, such as the Peotium®, Pentium Pro, or it for flow control, or to assign a flow label if oecded for
Pentium II p~rs made by Intel Corporation. more efficient routing (e.g., such as for tunneling).

It can be appreciated that although router 200 is used as 40 If there is no entry for the flow label present in the flow
an example to dcscnbe this embodimeot of the invention, table, FMM 218 creates an entry. FMM 218 determines
those skilled in the art will appreciate that various types of whether any attributes have been assigned to the flow label,
routers and other intermediary network devices may be used such as route pimling. If a route pimling attnbute has not
with the inveotion described herein. beeo assigned to the :flow label, a pointer associated with the

FIG. 3 is a block flow diagram of the steps performed by 45 flow label is stored in the flow table. The pointer points to
l first network device in accordance with ooe embodiment an output port in the routing table for router 200. If a route
of the invention. As sbown in FIG. 3, a packet for the pimling attnbute has been assigned to the flow label, by
information is generated at a first network device at step 302. FMM 218 or the first network device, FMM 218 copies the
Allow label is assigned to the packet at step 304.Adirection output port stored in tbe routing table having the same
is assigned to the packet usil\ the flow label at step 306. The 50 destination as the first packet in the flow table. The output
packet is sent to a second network device through the port is associated with the flow label. In this manner,
network at step 308. subsequent packets sharing the sanie flow label will traverse

. With respect to step 306, an example of assigning a the path designated by the routing table if route pimling is
direction includes a flow label having a plurality of bits. The not set, or will traverse the sanie path as the first packet if
first network device would indicate the direction for the 55 route pinning is set. In the latter case, a stable forwarding

'- packet by modifying the flow label. The first bit of the flow pa.th is maintained since each packet within a flow will
/ la~ specifies whether it is :source or destination unique, traverse the same sequence of routers.

With a. zero (0) implying a destination unique flow label, and To enable reverse path forwarding, the first input port
I. one (1) declaring a source unique flow label. To send on where the first packet was received must also be stored in the
~e reverse path, the receiving network device flips the first 60 flow table in association with the flow label for the first
bit of the flow label. Since the source and destination are also packet. If router 200 receives a second packet, FMM 218
swapped (as compared to the received packet), the same identifies a flow label for the second packet. Further, FMM
address is used with the flow label to uniquely identify the 218 also determines a direction for the second packet by

~ flow. exaniining the first bit of the flow label. If the first bit of the
~G. 4 is a block llow diagram of the steps performed by 6S flow label indicates that the second packet is from the second

an mtermediate network device in accordance with one network device back to the first network device, then routing
CIDbodiment of the invention. As shown in FIG. 4, a first engine 202 sends the packet to the I/0 interface port where

EX 1017 Page 459

7

'M) 218. It can be appreciated, however, that the func-
tions performed by this module can be separated into more
modules, or be distributed throughout the system, and stili
fall within the scope ofthe invention. Furthermore, although
this embodiment of the invention implements the function-
alityof this module in software,it can be appreciated that the
functionality of this module may be unplemented in
hardware, software, or a combination of hardware and
software, using well-known signal processing techniques.

Routing engine 202 includes also includes various tables
208 and databases 210 contained within storage device 206.
Tables 208 and databases 210 maintain information neces-
sary for router 200 to properly forward data. Tables 208 may
include a Routing Table and a Flow Table. Databases 210
may include a Link State Database and a Forwarding
Database. Routing engine 202 is capable of calculating paths
through a network based on information contained in tables
208 and databases 210, as well as the functionality provided
by FMM 218.

Input/Output @/O)interfaces 212 are coupled to routing
engine 202 and provide a physical connection to one or more
network links 216. 1/O interfaces 212 may be any suitable
means for controlling communication signals between
objects using a desired set of protocols, services and oper-
ating procedures, such as IPvé6. In this embodimentof the
invention, 1/O interfaces 212 are bidirectional, that is, sig-
nals can be sent and received using any particular I/O
interface. Those skilled in the art, however, will recognize
that uni~direction interfaces can also be used and fall within

the scope ofthe invention. Furthermore, those skilled in the
art will understand that the conmmunication signals may be
teceived over any suitable medium such as twisted-pair
wire, co-axial cable, fiber optics, radio-frequencies, and so
forth.

E Processor 204 may be any general purpose microproces-
BKsor having sufficient specd to implement the functionality
f.- described herein, such as the Pentium®, Pentium Pro, or

Pentium II processors made by Intel Corporation.

an example to describe this embodiment of the invention,
those skilled in the art will appreciate that various types of

E* routers and other intermediary network devices may be used
* with the invention described herein.

FIG. 3 is a block flow diagram ofthe steps performed by
& first network device in accordance with one embodiment

y Of the invention. As shown in FIG. 3, a packet for the
F. information is generated at a first network device at step 302.
. Aflow labelis assigned to the packetat step 304. Adirection
- 1S assigned to the packet the flow label at step 306. The
© Packet is sent to a second network device through the
. 6«Actwork at step 308.

_ _ With respect to step 306, an example of assigning a
direction includes a flow label having a plurality of bits. The
first network device would indicate the direction for the

E. Packet by modifying the flow label. Thefirst bit of the flow
/ label specifies whether it is source or destination unique,

e. With a zero (0) implying a destination unique flow label, and
* &one (1) declaring a source unique flow label. To send on

the Téverse path, the receiving network device flips the first
bit of the flow label. Since the source and destination are also

; Swapped (as compared to the received packet), the same
: ares is used with the flow label to uniquely identify the« BOW,

;_HIG. 4 is a block flow diagram of the steps performed by
py an intermediate network device in accordance with one
. mbodiment of the invention. As shown in FIG. 4,afirst

a

25

35

It can be appreciated that although router 200 is used as 40

45

35

60

éua

US 6,466,985 BI
8

packet is received af a first input port of an intermediate
network device at step 402. A flow label for the first packet
is identified at step 404, Whether a flow table has an entry
for the flow label is determined at step 406. An entry for the
flow label is created if no present entry at step 408. An
output port associated with the flow label is obtained from
the table at step 410. Thefirst packetis sentto the output port
at step 412.

An entry for the flow label is added to the flow table if
there is no present ¢atry at step 408. Whether the flow label
has an associated routing attribute is determined. Apointer
associated with the flow labelis stored in the flow table, the
pointer pointing to an output port in a routing table for the
intermediate network device, if the flow label does not have
a routing attribute associated with itAn output port from the
routing table is stored in the flow table associated with the
flow label, if the flow label docs have a routing attribute
associated with it.

The steps described with reference to FIG. 4 maybe better
understood using the following example. In this embodi-
ynent of the invention, the intermediate network device is
router 200. Router 200 receives a first packet at a first input
port. FMM 218 of router 200 identifies a flow label for the
first packet. FMM 218 searches a flow table stored with
tables 208 to determine whether the flow table has an entry
for the flow label. FMM 218 creates an entry for the flow
label if no entry is currently in the flow table for the flow
label. FMM 218 then obtains an output port associated with
the flow label from the table. Routing engine 202 sends the
first packet to the output port.

Router 200 performs the above steps with each packet that
it receives. Packets received subsequent to the first packet
and having the same flow label would be processed more
efficiently since an entry for the flow label will alrcady be
present. If a packet does not have a flow label, FMM 218 can
be programmed to ignore the packet in terms of processing
it for flow control, or to assign a flow label if needed for
more efficient routing (e.g., such as for tunneling).

If there is no entry for the flow label present in the flow
table, FMM 218 creates an entry. FMM 218 deiermines
whether any attributes have been assignedto the flow label,
such as route pinning. If a route pinning attribute has not
been assigned to the flow label, a pointer associated with the
flow label is stored in the flow table. The pointer points to
an outputport in the routing table for router 200. If a route
pinning attribute has been assigned to the flow label, by
FMM 218 orthe first network device, FMM 218 copies the
output port stored in the routing table having the same
destination as the first packet in the flow table. The output
port is associated with the flow label. In this manner,
subscquentpackets sharing the same fiow label will traverse
the path designated by the routing table if route pinning is
not set, or will traverse the same path as the first packet if
route pinning. is set. In the latter case, a stable forwarding
path is maintained since each packet within a flow will
traverse the same sequence of routers.

To cnable reverse path forwarding, the first input port
where the first packet was received mustalso be sfored in the
flow table in association with the flow label for the first

packet. If router 200 receives a second packet, FMM 218
identifies a flow label for the second packet. Further, FMM
218 also determines a direction for the second packet by
examining the first bit of the flow label. If the first bit of the
flow label indicates that the second packet is from the second
network device back to the first network device, then routing
engine 202 sends the packet to the I/O interface port where

EX 1017 Page 459

II
·~/

US 6,466,985 Bl
9 10

the first packet was initially received. This can be accom- As part of neighborhood discovery each node informs its
plished since l/0 interfaces 2U are bidirectional. Those upstream neighbor of the label space it is willing to accept.
skilled in the art could appreciate that reverse path routing 11 is assumed that by standardization some small number of
could also he implemented using unidirectional ports if labels may be taken for granted (say 1 or 10). The upstream
necessary. 5 node may subsequently ask for the namespace to be

Toe embodiments of the invention can also apply the expanded (this is done on signaling connections from
aggregation properties already currently used in IPv4 and controller, to controller).
{Pv6 for individual packets to the concept of flows. For Labels are assigned for one-way connections by default.
example, if router 200 receives a second packet at an input New extensions allow for bidirectional label assignment.
port, it first identifies its flow label. Then it determines 10 This can be done either by mechanisms to make a label valid
whether the first packet and the second packet should be both ways, or alteroatively by associating a new label path
a.ggregated based on their flow labels and either associated going on a reverse route with a particular existing forward
a.ttnbutes or intelligence of routing engine 202. If the first path.
and second packets should be aggregated, they are aggre- To create a new label path from a source (S) to a
gated using conventional tunneling techniques. l5 destination (D), S creates a datagram (or otherwise the

The use of flows in MPIS is similar to IPv6, with specific protocol transfer unit of the protocol used on the default
modifications to take advantage of the underlying mecha- (signaling) path), allocates a new label and issues a path-
nisms for MPlS. This embodiment of the invention assumes request communicating a path request, the new label and the
a "neighbor discover protocol" that can (be augniented to) datagram.
carry capability information such as label space. It also 20 The path n:quest could be a new router alert option (an
assumes that the network can do routing on demand inside extension header in 1Pv6), or could be communicated
the label network (this is virtually implied by on demand implicitly either on a signaling channel, or by interpreting a
routes). new (unknown) label as a path request. The last one offers

There are two types of allocations in this embodiment of
25

particular advantages and is described in more detail below.
the invention. The first is upstream allocated on-demand With respect to the aew label, potentially more tlian a
label paths of time sub-types: (1) without any acknowledg- single label will be pushed on the stack, for example when
meats (acks); (2) with hop-by-hop ack's; and for tunnels. constructing a tunnel. The aew label(s) may be pushed oa
The second general allocation type is downstream allocated top of already existing labels.
on-demand label paths. These are allocated using, for

30
The datagram may encode infurmation about routes (e.g.,

example, the methods and apparatus set forth in U.S. patent explicit routes), type of service, or desired service quality as
application Ser. No. 09/015,496, filed on Jan. 29, 1998, the richness of the protocol on the default path allows.
entitled" An Architecture For lightweight Signaling In KIM An intermediate node receiving a path-request processes
Networks", the entin: disclosure of which is hereby incor- the message as follows. First, a new label entry is created in
porated by refereace. One of the down sides of downstream 35 its forwarding table(s) unique on the pair (input port, label).
allocation as compared to upstream allocation is that witli This could be achieved by having a separate forwarding
tunnels the hop-by-hop latency (over the tunnel) may be O table per input port. Note that input port here may be an
(end-to-end) latency. One solution could be to place an IPv4 abstract input port, e., an end of a tunnel. The forwarding
header into a single A::rM cell. function on the enclosed datagram is then performed, yield-

In both the upstream allocation and downstream 40 ing an output port determination. A new label is allocated on
allocation, the label path setup can be accomplished in the the outgoing port. The label forwarding table is then
follow:ing steps: (1) the end system initiates path setup; (2) updated, recording the outgoing port and outgoing label. The
the path (channel, featherweight flow); (3) can subsequently request is then forwarded to the appropriate output port. If
assign additional parameters to the flow. One solution is to an acknowledgment is requested, then the intermediate node
use a higher level protocol for routing and forwarding of 45 replies with an ack. If ack's are requested, the information
non-switched packets could be a semi-static and negotiated as part of neighbor

As part of boot strapping nodes exchange capabilities and discovery. This could also, however, be done on demand by
setup a default path that is subsequently used for out of band having the datagrams carry path construction attribute
signaling. If a node understands multiple higher level pro- objecls.
tocols (i.e., can route using the rules of many protocols) e.g., 50 If a bidirectional path is requested then instead of replying
IPv4, IPv6, KIM UNI, a dilfen:at signaling path can be with an just an ack, a label is allocated a label on the reverse
established for each of these protocols. path, the forwarding table is updated, the reverse label is

The label distribution protocol uses a short label, which is recorded, and an ack is sent using the new upstream label.
valid for a limited time and created on demand. This Some of the poS15ible errors include "RejecL--Mnt on a
provides manageability, as the forwarding map can be 55 well-known (signaling) channel." This would also include a
customized based on network conditions, tile need of the reason code.
flow, and so forth. Softness of state is maintained for those To implement flows with a soft state, label paths can be
protocol types for which a default path (and/or a signaling created for arbitrary data streams. For example, an access
channel) is defined, and whose protocol data units carry node from a frame-n:lay netwoik to a !SR network capable
enough information to establish (recover) the forwarding 60 of routing IP datagrams only, would simply create a label
state. This follows as the default paths per protocol assume path by creating and sending an IP datagram as a path
that the !SR per protocol processing is sufficient to reach n:quest, and encapsulating the frame-relay packets. When
inside the MPI.S encapsulation and parse the {header) new (unknown) labels an: interpreted as label n:quesls,
informationneededto(re)create the state.As a consequence, however, tile state constituting labels paths used by well
no explicit signaling is needed. The soft state is relatively 65 know protocols (ie., one for which the I.SR cloud can do
efficient, as it is "use it or loose it," thus averting the need routing) becomes soft. This happens because the state may
for keep-alive messages to maintain the state. be locally managed, and in particular Jost, as the next

'~ EX 1017 Page 460

9

the first packet wasinitially received. This can be accom-
plished sioce 1/O interfaces 212 are bidirectional. Those
skilled in the art could appreciate that reverse path routing
could also be implemented using unidirectional poris if
necessary.

The embodiments of the invention can also apply the
aggregation properties already currenily used in IPv4 and
Tev6 for individual packets to the concept of flows. For
example, if router 200 teceives a second packet at an input
port, it first identifies its flow label. Then it determines
whether the first packet and the second packet should be
aggregated based on their flow labels and either associated
attributes or intelligence of routing engine 202. If the first
and second packets should be aggregatcd, they are aggre-
gated using conventional tunneling techniques.

‘The use offlows in MPLS is sinsilar to [Pv6, with specific
modifications to take advantage of the underlying mecha-
nisms for MPLS.This embodimentof the invention assumes
a “neighbor discover protocol” that can (be augmented to)
carry capability information such as label space. Jt also a
assumes that the network can do routing on demand inside
the label network (this is virtually implied by on demand
routes).

There are two types of allocations in this embodiment of
the invention. The first is upstream allocated on-demand
label paths of three sub-types: (1) without any acknowledg~-
ments (acks); (2) with hop-by-hop ack’s; and for tunnels.
The second general allocation type is downstream allocated
on-demand label paths, These are allocated using, for
example, the methods and apparatus set forth in U.S. patent
application Ser. No. 09/015,496, filed on Ian. 29, 1998,
entitled “AnArchitectureForLightweight Signaling In ATM
Networks”, the entire disclosure of which is hereby incor
porated by reference. One of the down sides of downstream
allocation as compared fo upstream allocation is that with
tunnels the hop-by-bop latency (overthe tunnel) may be O
(end-to-end) latency. One solution could beto place an IPv4
header into a single ATM cell,

In both the upstream allocation and downstream
allocation, the label path setup can be accomplished in the
following steps: (1) the end system initiates path setup; (2)
the path (channel, featherweight flow); (3) can subsequently
assign additional parameters to the flow. One solution is to
use a higher level protocol for routing and forwarding of
non-switched packets

As part of boot strapping nodes exchange capabilities and
setup a default path that is subsequently used for out of band
signaling. If a node understands multiple higher level pro-
tocols (i.e., can route using the rules of many protocols) e.g.,
IPv4, IPv6, ATM UNI, a different signaling path can be
establishedfor each of these protocols.

The label distribution protocol uses a short label, which is
valid for a limited time and created on demand. This

provides manageability, as the forwanling map can be :
customized based on network conditions, the need of the
flow, and so forth. Softuess of state is maintained for those
Protocol types for which a default path (and/or a signaling
channe}) is defined, and whose protocol data units carry
cnough information to establish (recover) the forwarding
State. This follows as the default paths per protocol assume
thai the LSR per protocol processing is sufficient to reach
inside the MPLS encapsulation and parse the {header}
information needed to (re)create thestate. As a. consequence,
no explicit signaling is needed. The soft state is relatively
efficient, as it is “use it or loose it,” thus averting the need
for keep-alive messages to maintain the state.

40

4vy

60

65

US 6,466,985 B1
10

As part of neighborhood discovery each node informsits
upstream neighbor of the label space it is willing to accept.
lt is assumed that by standardization some small number of
labels may be taken for granted (say 1 or 10). The upstream
node may subsequently ask for the namespace to be
expanded (this is done on signaling connections from
controller, to controller).

Labels are assigned for one-way connections by default.
New extensions allow for bidirectional label assignment.
This can be done either by mechanisms to make a labelvalid
both ways, or alternatively by associating a new label path
going on a reverse route with a particular existing forward
path.

To create a new label path from a source (S) to a
destination (D), S creates a datagram (or otherwise the
protocol transfer unit of the protocol used on the default
(signaling) path), allocates a new label and issues a path-
request communicating a path request, the new label and the
datagram.

The path request could be a new router alert option (an
extension header in IPv6), or could be comamunicated
implicitly either on a signaling channel, or by interpreting a
new (unknown) label as a path request. The lasi one offers
particular advantages and is described in more detail below.

With respect to the new label, potentially more than a
single label will be pushed on the stack, for example wheo
constructing a tunnel. ‘The new label(s) may be pushed on
top of already existing labels.

The datagram may encode information about routes (e.z.,
explicit routes), type of service, or desired service quality as
the richness of the protocol on the default path allows.

An intermediate node receiving a paih-request processes
the messageas follows. First, a new label entry is created in
its forwarding table(s) unique on the pair (input port, label).
This could be achieved by having a separate forwarding
table per input port. Not that input port here may be an
abstract input por, ¢., an end of a tunnel. The forwarding
function on the enclosed datagram is then performed, yield-
ing an output port determination. Anew label is allocated on
the outgoing port. The label forwarding table is then
updated, recording the outgoing port and outgoing label. The
request is then forwarded to the appropriate output port. If
an acknowledgmentis requested, then the intermectiate node
replies with an ack. If ack’s are requested, the information
could be a semi-static and negotiated as part of neighbor
discovery. This could also, however, be done on demand by
having the datagrams carry path construction attribute
objects.

Ifa bidirectional path is requested then instead of replying
with an just an ack, a label is allocated a label on the reverse
path, the forwarding table is updated, the reverse label is
recorded, and an ack is sent using the new upstream label.

Some of the possible errors include “Reject—-sent on a
well-known (signaling) channel.” This would also include a
reason code.

To implement flows wilb a soft state, label paths can be
created for arbitrary data streams. For example, an access
node from a frame-relay network to a LSR network capable
of routing IP datagrams only, would simply create a label
path by creating and sending an IP daiagram as a path
request, and encapsulating the frame-relay packets. When
new (unknown) labels are interpreted as label requests,
however, the state constituting labels paths used by well
know protocols (i.c., one for which the LSR cloud can do
routing) becomes soft. This happens because the state may
be Jocally managed, and in particular lost, as the next

EX 1017 Page 460

US 6,466,985 Bl
11 12

datagram arriving with a label that is no longer recognized forwarded without processing the "Adspec" does not serve
will serve as a path request and effectively reconstruct the a useful purpose in this case. The reserve messages,
state. In this case there is no call setup delay. Moreover, by however, must be processed at every branch point of a
adopting (or assuming) a "use it or loose it" state invalida- multicast flow. This is achieved using bidirectional flows
lion policy, there is no need for explicit tear-down. 5 and a blocking router alert option. Point-to-point

RSVP is designed to support reservations for individual connections, however, can exploit the in-band signaling for
end-to-end flows 00 the Internet, in particular IPv 4. An reservation messages, thus allowing the reservations to be
RSVP session is identified by a destination address and processed in parallel. Other RSVP messages, for errors,

tear-down, and confirmation are processed by the RSVP
transport level protocol, and optionally the destination processor in a standard manner, but are transmitted in-band
("generafued") port. A session is further classified into flows 10 on the established flow. The RSVP processor must in addi-
by receiver specified filters. Whereas in principle these lion process a tear-down commands from the forwarding
filters may be applied to any fields in the IP- or protocol level engine, to invalidate reservation state for flows that have
header (even potentially application level headers), current become invalid (at the forwarding level).
specifications and implementations of RSVP limit filters lo Using the support for bidirectional flows, forwarding 00
a source address, and optionally the source port Reserva- l5 the reverse path may be moved out of the RSVP control
lions are on simplex streams and are exclusively receiver process, and handled at forwarding level. To allow for
initiated. softness of the reservation state and to allow for adjustments

A destination address may be a multicast address, with the in reservations in multicast flows as membership (and thus
multicast session having multiple senders and receivers topology) changes, state refresh may still be needed. The
(multipoint-to-multipoint). Receiver initiated reservations 20 stability of the connections, however, can be exploited and
may result in different reservations in different segments of therefore the need for frequent state refresh may be reduced.
the distnbution of the multicast (variegated multicast trees). In particular, it is fcasiole to have the data traffic refresh the
Moreover, in multicast sessions with multiple senders, state, limiting refresh only to "kcep-alives" during extended
receivers may use the three different reservation "styles" inactivity. This is particularly true for point-to-point flows.
(one of wild-<:ard, fixed, or shared exclusive) to make 25 The need for state refresh is further reduced if the route of
reservations at even a :finer level of the flow than specified the flow is pinned. Therefore, removing the connectivity
by the filters. issues from the RSVP processing, and benefiting from the

The two principal messages of QoS management in RSVP stability caused by connections, RSVP is simplified and may
arc the path message, sent from senders towards receivers, be more optimized for common cases (e.g., point-to-point
and the reservation messages, sent from receivers towards 30 flows) while retaining the essential qualities of RSVP.
senders. Path messages establish flow identification state It is worthy to note that any reference in the specification
along the downstream path. This state includes filters and the to "one embodiment" or "an embodiment" means that a
traffic description (T-spec). Messages are processes at each particular feature, strocture, or characteristic described in

V
hot~ before fotsrw(Rarding. R) esedrvati

1
onsS~gnifi~ages carry

1
~r- 35 connemboecdimtioennWJt

0
·fthththce ;:.r:1enbotio.dimn .. Thenteisappinecarluandedcesinoaftthleeastphroasene

a 100 reques -specs , an sty es. 1 cant comp enty =•
is incorporated into RSVP to ensure that the RSVP signaling "in one embodiment" in various places in the specification
messages are forwarded to the same path (forward and are not necessarily all referring to the same embodiment.
reverse) as data is being forwarded. To make the RSVP state Although various embodiments are specifically illustrated
"soft" and to cope with route changes and changes in the

40
and descnocd herein, it will be appreciated that modi:fica-

topology of multicase distnbution trees, pa.th state and tions and variations of the present invention are covered by
reservation state must be refreshed periodically. the above teachings and within the purview of the appended

Implementing RSVP using this embodiment of the inven- claims without departing from the spirit and intended scope
tion simplifies RSVP in several ways. First, this embodiment of the invention. For example, although a router was used in
of the invention already docs a flow classification, thus 45 certain embodiments of the invention, those skilled in the art
subsuming most of the filtering mechanisms of RSVP. In will appreciate that the principles described herein can also
addition to the benefit of separation of mechanisms, using be applied to other network devices such as JXI'M switches
this embodiment of the invention allows for rich filtering at or LSRs.
the edge of the network (to classify the incoming data- What is claimed is:
stream into flows), but very simple flow identification 50 1. A method for communicating information in a network,
(e~licit, or very trivial) inside the network. Filtering of finer comprising:
gnmed subflows and RSVP reservation styles that apply on generating a packet for the information at a first network
subflows (fixed, or shared exclusive) could be implemented device;
by performing a nodal classification, or by defining a new assigning a flow label to said packet;
~w for each of the subflows. This embodiment of the 55 assigning a direction to said packet using said flow label,
mvention supports variegated trees similar to that of RSVP. and wherein said flow label is reverse path forwarding

RSyP messages are effectively signaled in-band on the enabled; and
established flow, distinguished with router alert option (hop- sending said packet to a second network device through
by-hoP extension header). Whereas this could be the stan- the network.
dard router alert options, the new "CC' extension header 60 2. The method of claim 1, wherein said flow label is
could also be used, further improving efficiency by allowing comprised of a plurality of bits, and wherein said step of
the RSVP messages to be forwarded on the output ports assigning said direction comprises the step of setting one of
before nodal processing takes place. Toe latter is a departure said bits in said flow label.
from current RSVP semantics. Using this embodiment of the 3. A method for communicating information in a network,
mvention, the RSVP path message serves to advertise the 65 comprising:
T-sJJ':c, and possibly a :filter for subflnw classification. The receiving a :first packet at a first input port of an interme-
PfCVUlus hoP information is not needed. As the message is diate network device;

EX 1017 Page 461

DRweeeyesmee
p
}§in
;'

US 6,466,985 B1
i

datagram arriving with a labelthat is no longer recognized
will serve as a path request and effectively reconstruct the
state. Ia this case there is no call setup delay. Moreover, by
adopting (or assuming) a “use it or loose it” state invalida-
tion policy, there is no need for explicit tear-dowa.

RSVP is designed to support reservations for individual
end-to-end flows on the Intemet, in particular IPv4. An
RSVP session is identified by a destination address and
transport level protocol, and optionally the destination
(“generalized”) port. Asessionis further classified into flows
by recciver specified filters. Whereas in principle these
filters may be applied to any fields in the IP- or protocol level
header (even potentially application level headers), current
specifications and implementations of RSVP limitfilters to
a source address, and optionally the source port. Reserva-
tions are on simplex streams and are exclusively receiver
initiated.

Adestination address may be a multicast address, with the
multicast session having multiple senders and receivers
(multipoint-to-multipoint). Receiver initiated reservations
mayresult in different reservations in different segments of
the distribution ofthe multicast (variegated multicast trees).
Morcover, im multicast sessions with multiple senders,
receivers may use the three different reservation “styles”
(one of wild-card, fixed, or shared exclusive) to make
reservations at even a finer level of the flow than specified
by the filters.

The twoprincipal messages of QoS managementin RSVP
are the path message, sent from senders towards receivers,
and the reservation messages, sent from receivers towards
senders. Path messages establish flow identification state
alongthe downstream path. This state includes filters and the
traffic description (T-spec). Messages are processes at each
hop before forwarding. Reservations messages carry reser-
vation requests (R-specs), and styles. Significant complexity
is incorporated into RSVP to ensure that the RSVP signaling
Messages are forwarded to the same path (forward and
reverse) as data is being forwarded. To make the RSVP state

Oo

12

forwarded without processing the “Adspec” does not serve
a useful purpose in this case. The reserve messages,
however, must be processed at every branch point of a
multicast flow. This is achieved using bidirectional flows
and a blocking router alert option. Point-to-point
connections, however, can exploit the in-band signaling for
reservation messages, thus allowing the reservations to be
processed in parallel. Other RSVP messages, for errors,
tear-down, and confirmation are processed by the RSVP
processor in a standard manner, but are transmitted in-band
on the established flow. The RSVP processor must in addi-
tion process a tear-down commands from the forwarding
engine, to invalidate reservation state for flows that have
becomeinvalid (at the forwarding level).

Using the support for bidirectional flows, forwarding on
the reverse path may be moved out of the RSVP control
process, and handled at forwarding level. To allow for
softness of the reservation state andto allow for adjustments
in reservations in multicast hows as membership (and thus
topology) changes, state refresh may still be necded. The
stability of the connections, however, can be exploited and
therefore the need for frequentstate refresh may be reduced.
Jn particular, it is feasible to have the data traffic refresh the
state, limiting refresh only to “keep-alives” during extended
inactivity. This is particularly true for point-to-point flows.
The need for state refresh is further reduced if the route of

the flow is pinned. Therefore, removing the connectivity
issues from the RSVP processing, and benefiting from the
stability caused by connections, RSVP is simplified and may
be more optimized for common cases (¢.g., point-to-point

* flows) while retaining the essential qualities of RSVP.

“soft” and to cope with route changes and changes in the 40
topology of multicase distribution trees, path state and
reservation state must be refreshed periodically.

_ Implementing RSVP using this embodimentof the inven-
tion simplifies RSVP in several ways. First, this embodiment
of the invention already does a flow classification, thus
subsuming most of the filtering mechanisms of RSVP. In
addition to the benefit of separation of mechanisms, using
this embodimentof the invention allows for rich filtering at
the edge of the network (to classify the incoming data-
Steam into flows), but very simple flow identification
(cxplicit, orvery trivial) inside the network.Filtering of finer
Bfained subflows and RSVP reservation styles that apply on
subflows (fixed, or shared exclusive) could be implemented
by performing a nodal classification, or by defining a new
flow for each of the subflows. This embodiment of the
invention supports variegated trees similar to that of RSVP.

RSVP messagesare effectively signated in-band on the
established flow,distinguished with routeralert option (hop-
by-hop extension beader). Whereas this could be the stan-
dard router alert Options, the new “CC” extension header
could also be used, further improvingefficiency by allowing
the RSVP messages to be forwarded on the output ports
before nodal processingtakes place. Thelatter is a departure
from current RSVP semantics. Using this embodimentofthe
imvention, the RSVP path message serves to advertise the
T-spec, and possibly a filter for subfiow classification. The
Previous hop information is not needed. As the message is

45

60

It is worthy to note that any reference in the specification
to “one embodiment” or “an embodiment” means that a
particular feature, structure, or characteristic described in
connection with the embodimentis included in at Jeast one
embodiment of the invention. The appearances ofthe phrase
“in one embodiment” in various places in the specification
are not necessarily all referring to the same embodiment.

Altbongh various embodiments are specifically ihustrated
and described herein, it will be appreciated that modifica-
tions and variations of the present invention are covered by
the above teachings and within the purview of the appended
claims without departing from the spirit and intended scope
of the invention. For example, although a router was used in
certain embodiments of the invention, those skilled in the art
will appreciate that the principles described herein can also
be applied to other network devices such as ATM switches
or LSRs.

Whatis claimedis:
1. Amethod for communicating information in a network,

comprising:
generating a packet for the information ata first network

device;
assigning a flow label to said packet;
assigning a direction to said packet using said flow label,

and wherein said flow label is reverse path forwarding
enabled; and

sending said packet to a second network device through
the network.

2. The method of claim 1, wherein said flow label is
comprised of a plurality of bits, and wherein said step of
assigning said direction comprises the step of setting one ofsaid bits in said flow label.

3. Amethod for communicating information in a network,
comprising:

receiving a first packetat a first input port of an interme-
diate network device;

EX 1017 Page 461

..

US 6,466,985 Bl
13

identifying a flow label for said first packet;

determining whether a flow table has an entry for said
flow label;

creating an entry for said flow label if no entry is present;

obtaining an output port associated with said flow label
5

from said table; and

sending said first packet to said output port.
4. The method of claim 3, wherein said step of creating an

entry comprises the steps of: 10

adding an entry for said flow label to said flow table;

determining whether said flow label has an associated
routing attnbute;

storing a pointer associated with said flow label in said
flow table, said pointer pointing to an output port in a 15

routing table for said intermediate network device, if
said flow label does not have a routing attribute asso
ciated with it; and

storing said output port from said rooting table in said
20

flow table associated with said flow label, if said flow
label does have a routing attnbute associated with it.

S. The method of claim 3, further comprising the step of
storing said first input port in said flow tab le associated with
said flow label. 25

6. The method of claim S, wherein said input and output
ports for said intermediate network device are bidirectional,
further comprising the steps of:

receiving a second packet at a second input port of said
intermediate network device; 30

identifying a flow label for said second packet;

determining a direction for sakl second packet using said
flow label; and

obtaining said first input port associated with said flow
label from said flow table; and 3s

sending said first packet to said first input port.
7. The method of claim 3, further comprising the steps of:

receiving a second packet at an input port of said inter-
mediate network device; 40

identifying a flow label for said first packet;

determining whether said first and second packets should
be aggregated; and

aggregating said first and second packets in accordance
with said determination. 45

8. A method for requesting a connection-oriented packet
. flow between a first network device and a second network

device in a packet network, comprising

allocating a flow label to the packet flow that has not been
50

previously declared;

assigning the flow label to a header in a first packet of the
packet flow;

14
adding any desired flow attnbutes to the header, and

sending the packet to the second network device through
the networlc, where in the flow label that has not been
previously declared is interpreted by the second net
work device as a request for a new packet flow and the
second network device can utilizes the flow attnbutes
in establishing state for the packet flow, and wherein
the flow label includes an indication of direction for the
flow.

9. The method of claim 8 wherein the second network
device treats the flow label as a request to pin the route
between the first network device and the second network
device.

10. The method of claim 8 wherein the second network
device may send another packet in a reverse path by using
a second flow label including a different indication of
direction for the flow.

11. The method of claim 10 wherein the flow attnbutes
reflect quality of service attn'butes for tbe packet flow.

12. A network router comprising:

a processor;

a plurality of input/output (I/0) interfaces connected to
the processor; and

one or more storage devices, connected to the processor,
further comprising a routing table, a flow table, and a
computer program which when executed by the pro
cessor performs a method of establishing a packet flow
between the network router and a second network
router comprising the steps of:
recejving a. packet from the second networlc router with

a flow label that has not been previously declare;
interpreting the flow label as a request for a new packet

flow between the networlc router and the second
network router; and

creating an entry for the flow label in the flow table, and
wherein the flow label includes an indication of direc
tion for the flow.

13. The network router of claim 12 wherein the request for
a new packet flow is treated by the network router as an
implicit request for route pinning between the network
router and the second network router.

14. The network router of claim 12 wherein the network
router may send mother packet in a reverse path to tbe
second network router by using a second flow label includ
ing a different indication of direction for the flow .

15. The network router of claim 14 wherein the packet
includes quality of service attnbutes for the packet flow and
wherein the network router can establish state based on the
quality of service a.ttributes.

• • • * *

I! 1r,:~

1:
ii

li1
1i !I :

1

:/, I
! I I,

Ii' ! .
I j

l 1
[I
1: I
ii
1,

EX 1017 Page 462

13

identifying a flow label for said first packet;
determining whether a flow table has an entry for said

flow label;

creating an entry for said flow label if no entry is present;
obtaining an outpul port associated with said flow label

from said table; and
sending said first packet to said output port.
4. The method of claim 3, wherein said step ofcreating an

entry compriscs the sleps of:
adding an entry for said flow label to said flow table;
determining whether said flow label has an associated

routing attribute;
storing 4 pointer associated with said flow label in said

flow table, said pointer pointing to an output port in a
routing table for said intermediate network device, if
said flow label docs not have a routing attribute asso-
ciated with it; and

storing said outpul port from said routing table in said
flow table associated with said flow label, if said flow
label does have a routing aliribute associated with it.

5. The method of claim 3, further comprising the step of
storing said first input port in said flow table associated with
said flow label.

6. The method of claim 5, wherein said input and output
ports for said intermediate network device are bidirectional,
further comprising the steps of:

receiving a second packet at a second input port of said
intermediate network device;

identifying a flow label for said second packet;
determining a direction for said second packetusing said

flow label; and

obtaining said first input port associated with said flow
label from said flow table; and

sending said first packet to said firsi input port.
7. The method of claim 3, further comprising the steps of:
receiving a second packet at an input port of said inter-

mediate network device;

identifying a flow label for said first packet;
determining whethersaid first and second packets should

be aggregated; and
aggregating said first and second packets in accordance

with said determination.

8. A method for requesting a connection-oriented packet
p flow between a first network device and a second network

device in a packet network, comprising
allocating a flow label to the packet How that has not been

previously declared;
assigning the flow label to a headerinafirst packetofthe

packet flow;

US 6,466,985 B1
14

adding any desired flow attributes to the header, and
sending the packet to the second network device through

the network, where in the flow label that has not been
previously declared is interpreted by the second net-
work device as a request for a new packet flow and the
second network device can utilizes the flow attributes

in establishing state for the packet flow, and whercin
the flow label includes an indication of direction for the
flow.

§. The method of claim 8 wherein the second network

device treats the fiow label as a request to pin the route
between the first network device and the second network
device.

10. The method of claim 8 wherein the second network

device may send another packet in a reverse path by using
a second flow label including a different indication of
direction for the fiow.

LL. The method of claim 10 whercin the fiow attributes

20 reflect quality of service attributes for the packet flow.
12. A network router comprising:
a processor;

a plurality of input/output (1/0) interfaces connected to
the processor, and

10

15

one or more storage devices, connected to the processor,
further comprising a routing table, a flow table, and a
computer program which when executed by the pro-
cessor performs a method of establishing a packet flow
between the network router and a second network

router comprising the steps of:
Tecciving a packet from the second network router with

a fiow label that has not been previously declare;
interpreting the flow Jabel as a request for a new packet

flow between the network router and the second
network router; and

creating an entry for the fiow label in the flow table, and
wherein the flow labe] includes an indication of direc-
tion for the flow.

13. The network routerofclaim 12 wherein the request for
a new packet flow is treated by the network router as an
implicit request for route pinning between the network
router and the second network router.

14. The network router of claim 12 wherein the network

router may send anolher packet in a reverse path to the
second network router by using a second flow label inchud-
ing a different indication of direction for the flow.

15. The network router of claim 14 wherein the packet
includes quality of service attributes for the packet flow and
wherein the network rovier can establish state based on the

quality of service attributes.

30

40

45

* * * * *

EX 1017 Page 462

(12) United States Patent
Muller et al.

(54) IDGH PERFORMANCE NETWORK
INTERFACE

(75) Inventors: Shimon Muller, Sunnyvale, CA (US);
Denton E. Gentry, Jr., Fremont,. CA
(US); John E. Watkins, Sunnyvale, CA
(US); Linda T. Cheng, San Jose, CA
(US)

(73) Assignee: Sun Microsystems, Inc., Santa Oara,
CA(US)

(*) Notice: Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.C.154(b) byOdays.

(21) Appl. No.: 09{1.59,765

(22) Filed: Mar. 1, 1999

(51) Int. Cl.7 ··-·· G06F 13/00
(52) U.S. Cl 709/250; 709/232; 709/236;

709/238; 370/235; 370/392; 370/401
(58) Field of Search•........ 709/106, 201,

709/230, 232, 235, 236, 238, 245, 246,
250, 249; 370/231, 235, 389, 392, 396,

401

(56)

EP
EP
EP
EP
WO
WO
WO
WO
WO
WO

References Cited

U.S. PATENT DOCUMENTS

5,414,704 A 5/1995 Spinney ••••••..•••.•.•.••.••.• TIO/OJ

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0 447 7'15 9/1991 ...•••...•. 006F/15/16
0 573 739 12/1993 ...•...•... HOUJ12/56
0 853 411 7/1998••....• H04I.J29/06
0 865 180 9/1998 H041Jl2/56

W095/14269 5/1995 •...••.•...•. 006F/7/08
W097/28505 8/1997 006F/13/14
W099/00737 1/1999 .•....•...• 006F/13/00
WO 99/00945 1/1999 H041J12/46
WO 99/00948 1/1999 ..•....•... H041Jl2/56
W099/00949 1/1999 .•.......•. H041Jl2/56

1111111111~1 I 11~111111~~ 11111 IHI 11111111 llli 11111111111 II
US006453360Bl

(10) Patent No.: US 6,453,360 Bl
Sep.17,2002 (45) Date of Patent:

OTIIER PUBUCATIONS

Peter Newman, et al., "IP Switching and Gigabit Routers,"
IEEE Communications Magazine, vol. 335, No. 1, Jan.
1997, pp. 64-69.

(List continued on next page.)

Primary Examiner-Viet D. Vu
(74) Attorney, Agent, or Firm-Park, Vaughan & Fleming
ll.P

(57) ABSTRACT

A high perfonnance network interface is provided for
receiving a packet from a network and transferring it to a
host computer system. A header portion of a received packet
is parsed by a parser module to determine the packet's
compatibility with, or conformance to, one or more pre
selected protocols. If compab.ble, a number of processing
functions may be perfonned to increase the efficiency with
which the packet is handled. In one function, a re-assembly
engine re-assembles, in a re-assembly buffer, data portions
of multiple packets in a single communication flow or
connection. Header portions of such packets are stored in a
header buffer. An incompatible packet may be stored in
another buffer. In another function, a packet batching mod
ule determines when multiple packets in one flow arc
transferred to the host computer system, so that their header
portions are processed collectively rather than being inter
spersed with headers of other flows' packets. In yet another
function, the processing of packets through their protocol
stacks is distnbuted among multiple processors by a load
distributor, based on their communication flows. A flow
database is maintained by a flow database manager to reflect
the creation, tennination and activity of flows. A packet
queue stores packets to await transfer to the host computer
system, and a control queue stores information concerning
the waiting packets. If the packet queue beromes saturated
with packets, a random packet may be discarded. An inter
rupt modulator may modulate the rate al which interrupts
associated with packet arrival events are issued to the host
computer system.

62 Claims, 49 Drawing Sheets-

---· ..

C
0 . .
k-.
T • T • .

-"'

HElWORKIN1BIFACERECENECIRCUft'1!XI

.
:
" 0

' .

EX 1017 Page 463

 AUS006453360.

ti2) United States Patent (0) Patent No: US 6,453,360 BL
 Muller et al. (45) Date of Patent: Sep. 17, 2002

(54) HIGH PERFORMANCE NETWORK OTHER PUBLICATIONSINTERFACE
Peter Newman, et al., “IP Switching and Gigabit Routers,”

(75) Tnventors: Shimon Muller, Sunnyvale, CA (US); IEEE Communications Magazine, vol. 335, No. 1, Jan.
Denton E. Gentry, Jr, Fremont, CA 1997, pp. 64-69.
(US); John E. Watkins, Sunnyvale, CA ;
(US); Linda T. Cheng, Sau Jose, CA (List continued on next page.)
(us)

, . Primary Examiner-—Viet D. Vu
(73) Assignee: Sun Microsystems, Inc., Santa Clara, (74) Attorney, Agent, or Firm—Park, Vaughan & Fleming

CA (US) LLP

(*) Notice: Subject to any disclaimer, the term of this=G7) ABSTRACT

peesawbroow under 35 A high performance network interface is provided for
receiving a packet from a network and transferring if to a
host computer system. Aheader portion of a received packet

(21) Appl. No.: 09/259,765 is parsed by a parser module to determine the packet’s

2D) Filed: Mar. 1, 1999 compatibility with, or conformance to, one or more pre-(22) ° as selected protocols. If compatible, a number of processing
(SD) Tate CI?oecesesesscsesesecsesennensnenscannneete GO6F 13/00 functions may be performedto increase the efficiency with
(62) . 709/250, 709/232, 709/236; which the packet is handled. In one function, a re-assembly

709/238; 370/235; 370/392; 370/401 engine re-assembles, in a re-assembly buffer, data portions
(58) Field of Search oc...csssssssasssesseeen 709/106, 201, of multiple packets in a single communication flow or

709/230, 232, 235, 236, 238, 245, 246, connection. Header portions of such packets are stored in a
250, 249; 370/231, 235, 389, 392, 396, header buffer. An incompatible packet may be stored in

401 anotber buffer. In another function, a packet batching mod-
ule determines when multiple packets in one flow are

(56) References Cited transferred to the host computer system,so that their header
portions are processed collectively rather than being inter-

US. PATENT DOCUMENTS spersed with headers of other flows’ packets. In yet another
5,414,704 A 5/1995 Spinney esscscsssesscssesceee 370/60 function, the processing of packets through their protocol

: stacks is distributed among multiple processors by a load
{List continued on next page.) distributor, based on their communication flows. A flow

database is maintained by a flow database managerto reflect

FOREIGN PATENT DOCUMENTS the creation, termination and activity of flows. A packet
EP O 447 725 9/1991, GOGF/IS/G queue stores packets to await transfer to the host computer
EP 0 573 739 12/1993 HO4L/12/56 system, and a control queve siores information conceming
EP 0 853 411 TA998 eaeeee HOAL/29/06 the waiting packets. If the packet queue becomessaturated
EP 0 865 180 9998... HOAL/I2/56 with packets, a random packet may be discarded. An inter-
ye Wo oyvas0s snooy Gosknana rupi modulator may modulate the rate af which interrupts
Wo WO 99/00737 1/1999 ” GO6/13/00 associated with packet arrival events are issued to the bost
Wo WO 99/00945 1/1999 " HOAL246©Computer system.
Wo WO 99/00948 YI999 seceeeee HOFL/12/56
wo WO 99/00949 TW/L99D —eenrsnsere HO4L/12/56 62 Claims, 49 Drawing Sheets-

WETWORK IITERFACE RECEIVE CIRCUIT 100 '

weewemn

 -L
<Envethamiewmon«vox

weeNOE
EX 1017 Page 463

US 6,453,360 Bl
2

U.S. PATENT DOCUMENTS

5,566,170 A • 10/1996 Bakke ct al. . •..........••• 370/3<n.
5,583,940 A l2/1996 Vidrascu ct al. 380/49
5,684,954 A 11/1997 Kaiserswertb ct al 395/200.2
5,748,905 A 5/1998 Hauser ct al. 395/200.79
5,758,089 A 5/1998 Gentry ct al 395/200.64
5,778,180 A 7/1998 Gentry ct al 395/200.42
5,778,414 A 7/1998 Winter ct al 711/5
5,7frl).55 A 7/1998 Parlan et al 395/200.63
5,793,954 A 8/1998 Baker ct al 395/200.8
5,870,394 A 211999 Oprca 370/392
6,014,567 A • 1/2000 Budka 455/453
6,044,079 A • 3/2000 Calvignac et al .•.•.....•. 370/395
6,094,435 A • 7/2000 Ho:ffmml ct al 370/414
6,Hi3,539 A • 12/2000 Alexander ct al 370/3<n.
6,172,980 Bl • 1/2001 Flanders ct al. 370/401
6,246,683 Bl • 6/2001 Connery ct al. 370/3<n.
6).53,334 Bl • 6/2001 Amdahl ct al. ••.............. 714/4

OTIIER PUBLICATIONS

Francois Le Faucheur, "IETF Multiprotocol Label Switch
ing (MPI.S) Architectme," IEEE International Conference,
Jun. 22, 1998, pp. 6-15.
F. Hallsall,. "Data Co!D.lIIUDications, Computer Networks
and Open Systems", Electronic Systems Engineering Series,
1996, pp. 451-452.
R. Cole, et al., "IP Over AJ"'M': A Framework Document,"
IETF Online, Apr. 1996, pp. 1-31.
Tuong Shoon Chan and Ian Gorton, Parallel Architecture
Support for High-Speed Protocol Processing, Feb. 1, 1997,
Microprocessors and Microsystes, GB, IPC, vol. 20, No. 6,
pp. 325-339.
Pending U.S. palent application Ser. No. 09/259,445,
entitled "Method and Apparatus for Distributing Network:
Processing on a Multiprocessor Computer; by Shimon
Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3481-JTF).
Pending U.S. patent application Ser. No. 09/260,367,
entitled "Method and Apparatus for Suppressing Interrupts
in a High-Speed Network Environment," by Denton Gentry,
filed Mar. 1, 1999 (Attorney Docket SUN-P3482-JTF).
Pending U.S. patent application Ser. No. 09/259,736,
entitled "Method and Apparatus for Modulating Interrupts in
a Network: Interface," by Denton Gentry et al., filed Mar. 1,
1999 (Attorney Docket SUN-P3483-JTF).

Pending U.S. patent application Ser. No. 09/260,618,
entitled "Method and Apparatus for Classifying Network
Traffic in a High Performance Network Interface," by Shi
mon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3486-JTF).

Pending U.S. patent application Ser. No. 09/259,932,
entitled "Method and Apparatus for Managing a Network
Flow in a High Performance Network Interface;• by Shimon
Muller et al., filed Mar. l, 1999 (Attorney Docket
SUN-P3487-JTF).

Pending U.S. patent application Ser. No. 09/260,324,
entitled "Method and Apparatus for Dynamic Packet Batch
ing with a High Performance Network Interface," by Shi
mon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3488-JTF).

Pending U.S. patent application Ser. No. 09/258,952,
entitled "Method and Apparatus for Early Random Discard
of Packets," by Shimon Muller et al., filed Mar. 1, 1999
(Attorney Docket SUN-P3490--JTF).

Pending U.S. patent application Ser. No. 09/260,333,
entitled "Method and Apparatus for Data Re-Assembly with
a High Performance Network Interface," by Shimon Muller
et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3507-JTF).

Pending U.S. patent application Ser. No. 09/258,955,
entitled "Dynamic Parsing in a High Performance Network
Interface," by Denton Gentry, filed Mar. 1, 1999 (Attorney
Docket SUN-P3715-JTF).

Pending U.S. patent application Ser. No. 09/259,936,
entitled "Method and Apparatus for Indicating an Interrupt
in a Network: Interface," by Denton Gentry ct al., filed Mar.
1, 1999 (Attorney Docket SUN-P3814-JTF).

Sally Floyd & Van Jacobson, Random Early Detection
Gateways for CongestiOfl Avoidance, Aug., 1993, IEEE/
ACM Transactions on Networking.

U.S. patent application Ser. No. 08/893,862, entitled
"Mechanism for Reducing Interrupt Overhead in Device
Drivers," filed Jul. 11, 1997, inventor Denton Gentry.

• cited by examiner

IH

' i'

I:

l
EX 1017 Page 464

US 6,453,360 Bi

Page 2

US. PATENT DOCUMENTS

5,566,170 A * 10/1996 Bakke et al. 370/392
5,583.940 A 12/1996 Vidrascu et all. 380/49
5,694,954 A 11/1997 Kaiserswerth ef al. ... 395/200.2
5,748905 A 5/1998 Hauser et al. as... 395/200.79
5,758,089 A 5/1998 Gentry et al. 395/200.64
S,77R180 A 7/1998 Gentry et al.0... 395/200.42
S,7IBAI4 A A998 Winter et al. ceccoreccssrsesoee T1ys
5,187.255 A 7/1998 Parlanet al. 395/200.63
5,193.954 A 8/1998 -Baker et al. 395/200.8
5,870,394 A 2/1999 Oprea ... a» 370/392
6,014,567 A“ 1/2000 Budka van 455/483
604,079 A * 3/2000 Calvignac et al. .. 370/395
6,094,435 A * 7/2000 Hoffman et al. 370/414
6,163,539 A * 12/2000 Alexander et al. .. 3707392
6172980 Bl * 1/2001 Flanders et al... 370/401
6,245,683 Bi * 6/2001 Connery et al. .. 370/392
6,253,334 Bi * 6D01 Amdabl et alo... 74/4

OTHER PUBLICATIONS

Francois Le Faucheur, “IETF Multiprotocol Label Switch-
ing (MPLS) Architecture,” IEEE International Conference,
Jun. 22, 1998, pp. 6-15.
FE. Halisall, “Daia Communications, Computer Networks
and Open Systems”, Electronic Systems EngineeringSeries,
1996, pp. 451-452.
R. Cole, et al., “IP Over ATM: A Framework Document,”
IETF Online, Apr. 1996, pp. 1-31.
Toong Shoon Chan and Ian Gorton, Parallel Architecture
Supportfor High-Speed ProtocolProcessing, Feb. 1, 1997,
Microprocessors and Microsystes, GB, IPC, vol. 20, No. 6,
pp. 325-339.
Pending U.S. patent application Ser. No. 09/259,445,
entitled “Method and Apparatus for Distributing Network
Processing on a Multiprocessor Computer,” by Shimon
Muller et al. filed Mar. 1, 1999 (Attorney Docket
SUN-—P3481-JTF).
Pending U.S. patent application Ser. No. 09/260,367,
entitled “Method and Apparatus for Suppressing Interrupts
in a High-Speed Network Environment,” by Denton Gentry,
filed Mar, 1, 1999 (Attomey Docket SUN-P3482-JTF).
Pending U.S. patent application Ser. No. 09/259,736,
entitled “Method and Apparatus for Modulating Interrupts in
4 Network Interface,” by Denton Gentry et al., filed Mar. 1,
1999 (Attorney Docket SUN-P3483-JTF).

Pending U.S. patent application Ser. No. 09/260,618,
entitled “Method and Apparatus for Classifying Network
‘Traffic in a High Performance Network Interface,” by Shi-
mon Muller et al., filed Mar. 1, 1999 (Aftorney Docket
SUN-P3486_JTF).

Pending U.S. patent application Ser. No. 09/259,932,
entitled “Method and Apparatus for Managing a Network
Flow in a High Performance Network Interface,” by Shimon
Muller et al, filed Mar. 1, 1999 (Attorney Docket
SUN-P3487-ITE).

Pending U.S. patent application Ser. No. 09/260,324,
entitled “Method and Apparatus for Dynamic Packet Batch-
ing with a High Performance Network Interface,” by Shi-
moo Muller et al, filed Mar. 1, 1999 (Attorney Docket
SUN-P3488-JTF).

Pending U.S. patent application Ser. No. 09/258,952,
entitled “Method and Apparatus for Early Random Discard
of Packets,” by Shimon Muller ct al., filed Mar. 1, 1999
(Attomey Docket SUN-P3490-JTF).

Pending U.S. patent application Ser. No. 09/260,333,
entitled “Method and Apparatus for Data Re-Assembly with
a High Performance Network Interface,” by Shimon Muller
et al, filed Mar 1, 1999 (Attomey Docket
SUN-P3507-JTF),

Pending U.S. patent application Ser. No. 09/258,955,
entitled “Dynamic Parsing in a High Performance Network
Interface,” by Denton Gentry, filed Mar. 1, 1999 (Attorney
Docket SUN-P3715JTF).

Pending U.S. palent application Ser. No. 09/259,936,
entitled “Method and Apparatus for Indicating an Interrupt
in a Network Interface,” by Denton Gentry ctal, filed Mar.
1, 1999 (Attommey Docket SUN-P3814-JTP).

Sally Floyd & Van Jacobson, Random Early Detection
Gateways for Congestion Avoidance, Aug., 1993, IEEE/
ACM Transactions on Networking.

U.S. patent application Ser No. 08/893,862, entitled
“Mechanism for Reducing Interrupt Overhead in Device
Drivers,” filed Jul. 11, 1997, inventor Denton Gentry.

* cited by examiner

EX 1017 Page 464

H
0
s
T

C
0
M
p
u
T
E
R

s
y
s
T
E
M

OMA ENGINE
120

NETWORK INTERFACE RECEIVE CIRCUIT 100

DYNAMIC
PACKET

BATCHING FLOW
MODULE DATABASE

122 110

CONTROL LOAD
QUEUE DISTRIBUTOR

118 112

PACKET
QUEUE

116

CHECKSUM
GENERATOR

114

FIG. 1A

--

FLOW DATABASE
MANAGER 108

HEADER PARS.ER
106

INPUT PORT
PROCESSING

MODULE
104

N
E
T
w
0
R
K

1
0
2

I
I

Cj
• tr;.
•

i a
'7.1
('!/

'i'
-.J
"'
N = s

'7.1 =-a
Q,.
l,C)

d
"Cr.,

Cl'\

m
~
Cl'\ =
t:d
i,-.

.. II

= .. .=-=:: EX 1017 Page 465

ZmMAn<0WMACVEOOAHWOX
DYNAMIC ~~PACKET

BATCHING FLOW
IATCHING DATABASE

OY 110

CONTROL
QUEUE

118

LOAD
DISTRIBUTOR

112

DMA ENGINE

4120

CHECKSUM
GENERATOR

114

FIG. 1A

FLOW DATABASE
MANAGER 108

HEADER PARSER
108

INPUT PORT
PROCESSING

MODULE
104

quayeg“SN
2007“LT“dag

6PJ9T9gS

Ta09¢’es¢‘9SO

~ EX1017 Page465

U.S. Patent Sep.17,2002 Sheet 2 of 49 US 6,453,360 Bl

RECEIVE PACKET AT IPP
MODULE FROM NElWORK

132

PARSE PACKET:
GENERATE FLOW KEY,

RETRIEVE HEADER INFO
134

STORE/UPDATE FLOW IN
FLOW DATABASE; ASSIGN

OPERATION CODE
136

ASSIGN PROCESSOR
NUMBER FOR MUL Tl
PROCESSOR SYSTEM

138

NOTIFY HOST COMPUTER
OF PACKET TRANSFER

148

STORE PACKET IN HOST
MEMORY

146

SEARCH FOR RELATED
PACKET(S)

144

YES

POPULATE PACKET AND
CONTROL QUEUES

140

FIG. 18

ii 11
, t u~
·111 ,.

·!
' 1,

i I I
I I

' I

I
I
l
I:

EX 1017 Page 466

U.S. Patent Sep. 17, 2002

RECEIVE PACKET AT IPP
MODULE FROM NETWORK

132

PARSE PACKET:

GENERATE FLOW KEY,
RETRIEVE HEADER INFO

134

 STORE/UPDATE FLOW IN

FLOW DATABASE; ASSIGN
OPERATION CODE

136

ASSIGN PROCESSOR
NUMBER FOR MULTI-
PROCESSOR SYSTEM

138

Sheet 2 of 49 US 6,453,360 B1

NOTIFY HOST COMPUTER
OF PACKET TRANSFER

148

STORE PACKET IN HOST
MEMORY

146

SEARCH FOR RELATED

NO

PACKET
READY TO BE

TRANSFERRED?
142

POPULATE PACKET AND
CONTROL QUEUES

140
FIG. 1B

EX 1017 Page 466

oe

U.S. Patent

HEADER PORTION
204

Sep. 17,2002 Sheet 3 of 49 US 6,453,360 Bl

LAYER ONE HEADER
210

LAYER TWO HEADER
212

LAYER THREE HEADER
214

LA YER FOUR HEADER
216

DATA PORTION
202

: ~~- :
I I ----------------------------------~

PACKET200

FIG. 2

EX 1017 Page 467

U.S. Patent Sep. 17,2002 Sheet 3 of 49 US 6,453,360 B1

LAYER ONE HEADER
210

LAYER TWO HEADER
212

HEADER PORTION
204

LAYER THREE HEADER

LAYER FOUR HEADER
216

DATA PORTION
202

TRAILER 206 i

PACKET 200

FIG. 2
EX 1017 Page 467

U.S. Patent Sep.17,2002 Sheet 4 of 49 US 6,453,360 Bl

HEADER PARSER 106

I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l

-------- I

FLOW ~-
DATABASE
MANAGER rr--

1
I
I
I
l
I
I
I
I
I
I
I
I
I
I

HEADER MEMORY
302

INSTRUCTION MEMORY
306

PARSER
304

L--------------------~-------~

FIG. 3

I
I
I
I
I

;-_;__ IPP
\--;-MODULE

I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I -----1-\ IPP -;v" MODULE
I
I
I
I
I
I
I
l
I
I
I
l
I
I
I

--'

EX 1017 Page 468

U.S. Patent Sep. 17, 2002 Sheet 4 of 49 US 6,453,360 BI

HEADER MEMORY IPP
302 MODULE

INSTRUCTION MEMORY

FLOW ALDATABASE
MANAGER I~

IPP
MODULE

FIG. 3

EX 1017 Page 468

U.S. Patent

START
400

Sep.17,2002

COPY PACKET HEADER
402

Sheet 5 of 49 US 6,453,360 Bl

o_T_H_E_ru_u_N_K_N_o_w_N_-~()

>--N-0-------.i•()

FIG. 4A

'1
I

''

'' I•

.

\I
EX 1017 Page 469

 COPY PACKET HEADER
402

ETHERNET ETHERNET OR
802.3 HEADER?

408

VERIFY
LLC SNAP

ENCAPSULATION?
410

 IPv4 OR IPv6

HEADER?
412

FIG. 4A

U.S. Patent Sep. 17, 2002 Sheet 5 of 49 US 6,453,360 BI

EX 1017 Page 469

U.S. Patent Sep.17,2002 Sheet 6 of 49 US 6,453,360 Bl

YES YES

PROCESS 1Pv4 HEADER
416

PROCESS 1Pv6 HEADER
420

NO J~ '""'.>----v
YES

PROCESS TCP HEADER
424

GENERATE FLOW KEY
426

GENERATE CONTROL INDICATOR
428

END
432

SET NO_ASSIST FlAG FOR
PACKET

430

FIG. 48

EX 1017 Page 470

U.S. Patent Sep. 17, 2002 Sheet 6 of 49 US 6,453,360 B1

PROCESS |Pv6 HEADER
420

SET NO_ASSIST FLAG FOR
PACKET

430

FIG. 4B

EX 1017 Page 470

FLOW DATABASE 110 -----------------' ..--------------,--------..,,,.,,,,---,FLOW.,..'-------.--=~-------~
TCP FLOW VALIDITY FLOW IP SOURCE

ADDRESS 510
IP DESTINATION TCP SOURCE
ADDRESS 512 PORT 514

I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I

ASSOCIATIVE PORTION 502

DESTINATION O INDICATOR 520 SEQUENCE
PORT516 # 522

FLOW ACTIVITY
INDICATOR 524

N

506 ~ ASSOCIATED PORTION 504

FIG. 5

EX 1017 Page 471

 U.S.Patent

| FLOWACTIVITY| INDICATOR 524

FLOW
SEQUENCE

#522

FLOW VALIDITY
INDICATOR 520

 FLOW?
FLOW DATABASE 110

DESTINATION
FORT 516

TCP3
aeywe2aa.

Frz
o>Eehewoaaat2woe”BoOw428<

Sep.17,2002

 Sheet7of49US6,453,360B1ASSOCIATED PORTION 504

5

508

FIG

ASSOCIATIVE PORTION 502

EX 1017 Page 471

U.S. Patent Sep.17,2002

START
600

RECEIVE SEARCH
REQUEST

602

NO

Sheet 8 of 49 US 6,453,360 Bl

SEARCH FLOW DATABASE
;,.-~~~~~----f"! 606

YES

RETRIEVE FLOW# AND
FLOW DATA

610

YES

FIG. 6A

EX 1017 Page 472

| U.S. Patent Sep. 17,2002 Sheet 8 of 49 US 6,453,360 B1

REGEIVE SEARCH
REQUEST

802

NO
FLAGGED FOR NO

ASSISTANCE?
604

SEARCH FLOW DATABASE
606

 MATCH FLOW
KEY IN DATABASE?

608

RETRIEVE FLOW # AND
FLOW DATA

610

ATTEMPT

TO ESTABLISH
CONNECTION?

614

DOES PACKET
CONTAIN DATA?

612

FIG. 6A
EX 1017 Page 472

-

U.S. Patent Sep.17,2002

UPDATE FLOW SEQUENCE
NUMBER & ACTIVITY

INDICATOR; SET FLOW
VALIDITY INDICATOR

622

SELECT OPCODE 4 FOR
PACKET

624

NO

NO

NO

Sheet 9 of 49 US 6,453,360 Bl

FIG. 68

TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
628

TEAR DOWN FLOW;
SELECT OPCODE 3 FOR

PACKET
626

IJ

I

'

I
:1

EX 1017 Page 473

U.S. Patent Sep. 17, 2002 Sheet 9 of 49 US 6,453,360 BL

FLOW
SEQUENCE

NUMBERS MATCH?
616

TEAR DOWN FLOW;
SELECT OPCODE2 FOR

PACKET
628

TEAR DOWN FLOW,
SELECT OPCODE 3 FOR

PACKET
626

MORE DATA
TO FOLLOW?

620

UPDATE FLOW SEQUENCE

NUMBER & ACTIVITY
INDICATOR; SET FLOW
VALIDITY INDICATOR

622

SELECT OPCODE 4 FOR

PACKET
624

FIG. 6B

EX 1017 Page 473

U.S. Patent Sep.17,2002 Sheet 10 of 49 US 6,453,360 Bl

NO

TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
632

SELECT OPCODE O FOR
PACKET

644

~

UPDATE AS REQUIRED:
FLOW SEQUENCE#',

ACTIVITY INDICATOR,
VALIDITY INDICATOR

642

REPLACE FLOW:
YES

SET FLOW SEQUENCE#;
>---------i't SET ACTIVITY INDICATOR;

YES
'f--

FIG. 6C

SET FLOW VALIDITY
634

SELECT OPCODE 7 FOR
PACKET

636

TEAR DOWN FLOW;
SELECT OPCODE 1 FOR

PACKET
640

EX 1017 Page 474

U.S. Patent

MORE DATA
TO FOLLOW?

630

TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
632

Sep. 17, 2002 Sheet 10 of 49

REPLACE FLOW:

SET FLOW SEQUENCE#;
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY
634

SELECT OPCODE7 FOR
PACKET

636

SELECT OPCODE 0 FOR
PACKET

644

UPDATE AS REQUIRED:
FLOW SEQUENCE #

ACTIVITY INDICATOR,
VALIDITY INDICATOR

642

TEAR DOWN FLOW;
SELECT OPCODE 1 FOR

PACKET
640

FLAGS OKAY?
638

FIG. 6C

US 6,453,360 BL

EX 1017 Page 474

U.S. Patent Sep. 17,2002

NO

RETRIEVE LOWEST FLOW#
HAVING AN INVALID FLOW

INDICATOR
648

~ YES v--

Sheet 11 of 49 US 6,453,360 Bl

FIG. 6D

YES

RETRIEVE FLOW# OF
LEAST RECENTLY ACTIVE

FLOW
650

NO

NO

NO

EX 1017 Page 475

Sep. 17, 2002| U.S. Patent Sheet11 of 49

NO

FLOW
DATABASE FULL?

646

RETRIEVE LOWEST FLOW #
HAVING AN INVALID FLOW

INDICATOR
648

DOES PACKET
CONTAIN DATA?

652

MOREDATA
TO FOLLOW?

654

FIG. 6D

RETRIEVE FLOW # OF
LEAST RECENTLY ACTIVE

US 6,453,360 BIL

FLOW
650

NO

NO

EX 1017 Page 475

U.S. Patent Sep.17,2002

ADD FLOW:
SET FLOW SEQUENCE#;

SET ACTIVITY INDICATOR;
SET FLOW VALIDITY

660

SELECT OPCODE 6 FOR
PACKET

662

SELECT OPCODE 5 FOR
PACKET

668

Sheet 12 of 49 US 6,453,360 Bl

FIG. 6E

YES

REPLACE FLOW:
SET FLOW SEQUENCE#;

SET ACTIVITY INDICATOR;
SET FLOW VALIDITY

664

SELECT OPCODE 7 FOR
PACKET

666

8

EX 1017 Page 476

U.S. Patent Sep. 17, 2002 Sheet 12 of 49 US 6,453,360 B1

YES

NO FLOW
. DATABASE FULL?

658

ADD FLOW: REPLACE FLOW:

SET FLOW SEQUENCE#, SET FLOW SEQUENCE#;
SET ACTIVITY INDICATOR; SET ACTIVITY INDICATOR;

SET FLOW VALIDITY SET FLOW VALIDITY
660 664

SELECT OPCODE6 FOR
PACKET

662

SELECT OPCODE 7 FOR
PACKET

666

SELECT OPCODE 5 FOR
PACKET -

668
FIG. 6E

EX 1017 Page 476

..

U.S. Patent Sep. 17,2002 Sheet 13 of 49 US 6,453,360 Bl

START END

700 720

RECEIVE AND PARSE PROCESS PACKET
PACKET 718

702

'

I,

LOAD DISTRIBUTOR ALERT SELECTED

RECEIVES FLOW KEY PROCESSOR

704 716

'

I,

PACKET INFORMATION

HASH FLOW KEY STORED FOR PROCESSING

706 BY SELECTED PROCESSOR
714

~

I,

PERFORM MODULUS
OPERATION ON HASH ALERT HOST COMPUTER

VALUE 712
708.

~

·•I
.ii
,I

STORE PACKET AND
PROCESSOR NUMBER

H
':1

'\
710

FIG. 7

EX 1017 Page 477

U.S. Patent

RECEIVE AND PARSE
PACKET

LOAD DISTRIBUTOR
RECEIVES FLOW KEY

HASH FLOW KEY

PERFORM MODULUS
OPERATION ON HASH

VALUE
708 °

Sep. 17, 2002

STORE PACKET AND
PROCESSOR NUMBER

Sheet 13 of 49 US 6,453,360 B1

PROCESS PACKET
718

 ALERT SELECTED
PROCESSOR

716

PACKET INFORMATION
STORED FOR PROCESSING
BY SELECTED PROCESSOR

714

 ALERT HOST COMPUTER
712

710

FIG. 7

EX 1017 Page 477

U.S. Patent

ENTRYB 0~

READ
POINTER

810

WRITE
POINTER

812

...
~

... -

Sep.17,2002 Sheet 14 of 49 US 6,453,360 Bl

PACKET QUEUE 116 PACKET

PACKET PORTION 802 ·1
r------------------*------- 0

FILLER 802a
-- CHECKSUM - - - PACKET DIAGNOSTIC AND STATUS-

VALUE LENGTH INFORMATION
804 806 808

255

FIG. 8

EX 1017 Page 478

U.S. Patent Sep. 17, 2002 Sheet 14 of 49 US 6,453,360 BI

PACKET QUEUE 116 PACKET

ENTRY 800 PACKET PORTION 802

READ pentane ee

POINTER : FILLER 802a
810 “SHECKSUM 7 DIAGNOSTIC AND STATUS

VALUE INFORMATION
B04 BOB

WRITE
POINTER

812
FIG. 8

EX 1017 Page 478

U.S. Patent

ENTRY9
00~

_..
D REA

POI NTER
9 14

----ITE WR
POI

9
NTER
16

Sep.17,2002

CPU#
NO_

ASSIST 902
904

I I
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
l I
I I
I I
I I
I I
I l
I I
I I
I I
I I
I I
I I
I I
I I
l I

Sheet 15 of 49 US 6,453,360 Bl

CONTROL QUEUE 118 PACKET

OP. PAYLOAD PAYLOAD OTHER '!
CODE OFFSET SIZE STATUS 0
906 908 910 912

I I I
I I !
l I I
I I I
I I I
I I I
I I I
I I l
I I I N

I I I
I I I
I I I
I I I
I I I
l I I
I I I
I I l
I I I
I I I
I I I
I I I
I I I
l I I
I I I
I I I
I I I
I I I 255

FIG. 9

EX 1017 Page 479

U.S. Patent Sep. 17, 2002 Sheet 15 of 49 US6,453,360 B1

CONTROL QUEUE 118 PACKET

. PAYLOAD OTHER
CODE OFFSET SIZE STATUS

908 908 910 912

FIG. 9

EX 1017 Page 479

DMA ENGINE 120
r ----- - --- ----------------------~
I
I
I
I
I
I
I
I
I
I
I
I

.
FLOW RE-
ASSEMBLY

TABLE I+--- l r-
~

······--·---·1

1004

FREE RING HEADER
MANAGER - TABLE

H I
1012 1006

I+--

! I

DYNAMIC
PACKET

BATCHING
MODULE

122

!
0 : --------, I FREE I

I I I ••• ············-···J
S I

T :
I
I

g f--1\J
M \---v1
p :
U I

T j
E I

R \
I
I
I
I
I
I
I
I
I
I
I

: DESCRIPTOR I
I CACHE I ~

I 1012a I ________ J

4

1 COMPLETION]
: DESCRIPTOR 1
I CACHE I
I 1014a I ---- ___ J

~

COMPLETION
RING MANAGER

1014

;1

I
MTU TABLE I

1008 +-- I ___,. DMAMANAGER I
1002 I

Jl-.l--
JUMBO
TABLE l,t-- I

1010 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- I

l I

I--- I

FIG. 10

CONTROL
QUEUE

118

PACKET
QUEUE

116

EX 1017 Page 480

DMA ENGINE 120

FLOW RE-
ASSEMBLY

TABLE
|| yuazeg“S|

}
i
i

! |i
DYNAMIC

\ 1004 PACKET
BATCHING

i FREE RING | MODULE
MANAGER 422 on{ 1012 1] &

H | | | =
° oneREE | beneJ 5
r | MTU TABLE ! Ss

1008 DMA MANAGER Ss
I 1902 i

c ' L__CONTROL
oO QUEUE

148oo f
U =
T ' *
E i 1ida g,
R j Po

1 eo)j

\ COMPLETIONRING MANAGER
i 4044
|

~ PACKET coQUEUE TH

| 116 a
! | éUe eaest wee eeaegwennee nm

tea
FIG. 10 =

odjudg

EX 1017 Page480

U.S. Patent Sep.17,2002 Sheet 17 of 49 US 6,453,360 Bl

PACKET
FLOW RE-ASSEMBLY TABLE 1004

VALIDITY
NEXT ADDRESS

FLOW RE-ASSEMBLY
INDICATOR BUFFER INDEX

1106 1104
1102

#!
0

I I
I I
I I
I I
I I
I I
I I
I I
I I
I f
I ! 63

HEADER TABLE 1006

VALIDITY
NEXT ADDRESS

HEADER BUFFER
INDICATOR INDEX

1116 1114
1112

MTU TABLE 1008

VALIDITY
NEXT ADDRESS MTU BUFFER INDEX

INDICATOR
1124 1122 1126

JUMBO TABLE 1010

VALIDITY
NEXT ADDRESS

JUMBO BUFFER
INDICATOR INDEX

1136 1134 1132

FIG. 11

EX 1017 Page 481

U.S. Patent Sep. 17, 2002 Sheet 17 of 49 US 6,453,360 B1

PACKET

FLOW RE-ASSEMBLY TABLE 1004 # |VALIDITY FLOW RE-ASSEMBLY

INDICATOR NEXTwees BUFFER INDEX
1106 4102

63

HEADER TABLE 1006

VALIDITY HEADER BUFFER

INDICATOR NEXTae INDEX1146 4112

MTU TABLE 1008
VALIDITY

INDICATOR
1126

NEXT ADDRESS MTU BUFFER INDEX
1124 41122

JUMBO TABLE 1010

VALIDITY JUMBO BUFFER

INDICATOR NEXT AOURESS INDEX
1136 4132

FIG. 11

EX 1017 Page 481

I
I

. i

I
I

I
I

FREE DESCRIPTOR
RING

I
I

I
I

I
I

I
I

I

I
I

I
I

1200 ,--~ ~-,

I
I

I

I
I

I

RING INDEX I
1204

\

FREE DESCRIPTOR 1202

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

BUFFER IDENTIFIER
1206

\
\

\
\

\
\

\
\

\
\

\
\

\

FIG. 12A

\
\

'

FREE BUFFER ARRAY 1210

ARRAY INDEX
FIELD 1212

BUFFER IDENTIFIER FIELD 1214

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

---__ -·
.. //

• '
' ,,/

~ • - - -- - - • -·. « ·-~· --- ••

EX 1017 Page 482

FREE DESCRIPTOR
RING
1200

RING INDEX
1204

FREE DESCRIPTOR 1202

FIG. 12A

A

FREE BUFFER ARRAY 1210

RRAY INDEX
FIELD 1212

BUFFER IDENTIFIER FIELD 1214

yuayeg*S'0
Z00Z‘LT‘das

6PJST9US

Tqo9¢‘esr'9SN

EX 1017 Page 482

RELEASE& DESCRIPTOR SPLIT FLAGS DATA OFFSET DATA BUFFER DATA SIZE
TYPE 1238 1236

1234 INDEX 1232 1230

HEADER HEADER BUFFER HEADER SIZE NEXT BUFFER
OFFSET 1246 INDEX 1244 1242 INDEX 1240

LAYER THREE PROCESSOR NO_ASSIST OPERATION FLOW
HEADER OFFSET IDENTIFIER NUMBER

1258 1256
SIGNAL 1254 CODE 1252 1250

OWNERSHIP PACKET
CHECKSUM

OTHER 1266 INDICATOR LENGTH VALUE 1260 1264 1262

FIG. 128

-

I
I

I

I
I

/

/

I
I

/

COMPLETION DESCRIPTOR 1222

/
I

I

/
/

/ COMPLETION
DESCRIPTOR RING

1220 .---~--,

EX 1017 Page 483

1236

HEADER HEADER BUFFER HEADERSIZE NEXT BUFFER
OFFSET 1248 INDEX 1244 1242 INDEX 1240

LAYER THREE PROCESSOR FLOW

HEADER OFFSET|IDENTIFIER SlGhArtoed Conetas NUMBER
1258 1256 4250

OWNERSHIP1PAGKET ’

OTHER 1266 INDICATOR LENGTH|Ohhaoeg|7”
4264 1262 e

DESCRIPTOR attraes DATA OFFSET|DATABUFFER|DATASIZE|~~<_
TYPE 1238 1234 INDEX 1232 4230

FIG. 12B

COMPLETION DESCRIPTOR 1222

 COMPLETION
DESCRIPTOR RING

1220

yuaeg‘Sl
2007‘1‘dag

6FJ061PIGS

Td09¢"esp’9sSa

Tor mamemnermans mat ests aru emitter mehREThetmemtttneinen a

EX 1017

Page 483

U.S. Patent

START
1300

Sep.17,2002

PACKET STORED IN DATA
QUEUE

1302

READ PACKET ENTRY
FROM CONTROL QUEUE

1304

FETCH FLOW NUMBER
1306

Sheet 20 of 49 US 6,453,360 Bl

FIG. 13

EX 1017 Page 484

U.S. Patent Sep. 17, 2002

START
1300

PACKET STORED IN DATA
QUEUE

1302

READ PACKET ENTRY
FROM CONTROL QUEUE

1304

FETCH FLOW NUMBER1306

YES

YES
Sheet 20 of 49 US 6,453,360 BL

NO

YES OPERATION
CODE5?

1318

YES

YES

FIG. 13

EX 1017 Page 484

· U.S. Patent Sep.17,2002 Sheet 21 of 49 US 6,453,360 Bl

NO
"">-~~~~~~~PREPARE HEADER BUFFER

1402

YES

COPY PACKET INTO
HEADER BUFFER

1404

WRITE COMPLETION
DESCRIPTOR

1406

YES

INVALIDATE HEADER
BUFFER

1410

NO

FIG. 14

UPDATE HEADER BUFFER
TABLE

1412

END
1499

I

i
, I

I,

I ;I

EX 1017 Page 485

 Y U.S. Patent Sep.17,2002 Sheet 21 of 49 US6,453,360 B1

HEADER
BUFFER VALID?

1400

PREPARE HEADER BUFFER
1402

COPY PACKET INTO
HEADER BUFFER

1404

WRITE COMPLETION
DESCRIPTOR

1406

UPDATE HEADER BUFFER
TABLE

1412

HEADER
BUFFER FULL?

1408

INVALIDATE HEADER
BUFFER

1410

FIG. 14

EX 1017 Page 485

Sep.17,2002 Sheet 22 of 49 US 6,453,360 Bl

NO
>--------.i PREPARE HEADER BUFFER

1502

YES

WRITE COMPLETION
DESCRIPTOR

1508

INVALIDATE FLOW RE
ASSEMBLY BUFFER

1510

YES

INVALIDATE HEADER
BUFFER

1516

NO

YES

FIG. 15

COPY PACKET INTO
HEADER BUFFER

1504

NO

WRITE COMPLETION
DESCRIPTOR

1512

UPDATE HEADER BUFFER
TABLE

1518

END
1599

I

I

I',
I,

Ii
I

i

,i ,,

11 I ,

r !I:
, I
'I
!11,
11111 :1,

:1

1

/'

II I

/:!I
, ,
I

EX 1017 Page 486

HEADER
BUFFER VALID?

1500

PREPARE HEADER BUFFER
1502

COPY PACKET INTO
HEADER BUFFER

1504

FLOW
RE-ASSEMBLY

BUFFER VALID?
1506

WRITE COMPLETION
DESCRIPTOR

1508

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1810

WRITE COMPLETION
DESCRIPTOR

1512

HEADER
BUFFER FULL?

1514

UPDATE HEADER BUFFER
TABLE

1518

INVALIDATE HEADER
BUFFER

1516

FIG. 15

B U.S. Patent—Sep.17,2002 Sheet 22 of 49 US 6,453,360 BI

EX 1017 Page 486

•

U.S. Patent Sep.17,2002 Sheet 23 of 49

YES

NO

YES

NO

C2)

FIG. 16A

US 6,453,360 Bl

WRITE COMPLETION
DESCRIPTOR

1602

INVALIDATE FLOW RE
ASSEMBLY BUFFER

1604

.I
iii
I!.
I I
ii
I
I:

I I

II

I!
EX 1017 Page 487

FLOWRE-ASSEMBLY MRETOR
BUFFER VALID? oR

1600

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1604

SMALL PACKET?
1606

JUMBO PACKET?
1608

FIG. 16A

| U.S. Patent Sep. 17,2002 Sheet 23 of 49 US 6,453,360 B1

EX 1017 Page 487

U.S .. Patent Sep.17,2002 Sheet 24 of 49 US 6,453,360 Bl

YES

COPY PACKET INTO
HEADER BUFFER

1614

WRITE COMPLETION
DESCRIPTOR

1616

YES

INVALIDATE HEADER
BUFFER

1620

NO
PREPARE HEADER BUFFER

~~~~~~~~ 1612 

NO 

FIG. 168 

UPDATE HEADER BUFFER 
TABLE 

1622 

END 
1699 

I' 

'' 

,I 
,! . 

I 
, I 

EX 1017 Page 488

 
 

U.S. Patent Sep. 17, 2002 Sheet 24 of 49 US 6,453,360 BI

NO
 

  
  

 
  

 
 

HEADER
BUFFER VALID?

1610

PREPARE HEADER BUFFER
1612 

COPY PACKET INTO
HEADER BUFFER

1614

WRITE COMPLETION
DESCRIPTOR

1616

 

 
   

UPDATE HEADER BUFFER
TABLE

1622

 
 

  

 
HEADER

BUFFER FULL?
1618
  

 

INVALIDATE HEADER
BUFFER

1620

END
1699

FIG. 16B

EX 1017 Page 488

   



U.S. Patent Sep.17,2002 

YES 

COPY PACKET INTO MTU 
BUFFER 

1634 

WRITE COMPLETION 
DESCRIPTOR 

1636 

YES 

INVALIDATE MTU BUFFER 
1640 

Sheet 25 of 49 

NO 

NO 

FIG. 16C 

US 6,453,360 Bl 

PREPARE MTU BUFFER 
1632 

UPDATE MTU BUFFER 
TABLE 

1642 

END 
1699 

ii 

I 

EX 1017 Page 489

 
U.S. Patent Sep. 17, 2002 Sheet 25 of 49 US 6,453,360 B1 
 
 
 

MTU
BUFFER VALID?

1630

 

 
  
 

  

 
 

PREPARE MTU BUFFER
1632

COPY PACKET INTO MTU
BUFFER

1634

WRITE COMPLETION
DESCRIPTOR

1636

UPDATE MTU BUFFER
TABLE

1642
 
 
 

 

 
 

MTU
BUFFER FULL?

1638  
INVALIDATE MTU BUFFER

1640

 
FIG. 16C

EX 1017 Page 489



U.S. Patent Sep.17,2002 

NO 

TRANSFER PACKET INTO 
JUMBO BUFFER 

1658 

WRITE COMPLETION 
DESCRIPTOR 

1660 

INVALIDATE JUMBO 
BUFFER 

1668 

NO 

YES 

YES 

Sheet 26 of 49 US 6,453,360 Bl 

PREPARE JUMBO BUFFER 
1652 

TRANSFER FIRST PART OF 
PACKET INTO CURRENT 

JUMBO BUFFER 
1662 

TRANSFER REMAINDER OF 
PACKET INTO SECOND 

JUMBO BUFFER 
1664 

WRITE COMPLETION 
DESCRIPTOR 

1666 

END 
1699 

FIG.16D 

EX 1017 Page 490

 
| U.S. Patent

 

c3

 
 
 
 

NO
 JUMBO

BUFFER VALID?
4650

YES

 

  
 
 

SPLIT JUMBO YES
BUFFERS?

1654

NO

 

 
  
  

 

 PACKET
JOO LARGE FOR

ONE BUFFER?
1656

YES

NO

TRANSFER PACKET INTO
JUMBO BUFFER

1658 
WRITE COMPLETION

DESCRIPTOR
1660

INVALIDATE JUMBO
BUFFER

1668

FIG. 16D

Sep. 17, 2002 Sheet 26 of 49

PREPARE JUMBO BUFFER
1652 

TRANSFER FIRST PART OF
PACKET INTO CURRENT

JUMBO BUFFER
1662

  
  
 

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1664

  
  
 

WRITE COMPLETION
DESCRIPTOR

1666

END
1699

 

US 6,453,360 B1

EX 1017 Page 490

 



U.S. Patent Sep.17,2002 Sheet 27 of 49 US 6,453,360 Bl 

YES 

TRANSFER PACKET 
HEADER INTO HEADER 

BUFFER 
1674 

NO 

TRANSFER PACKET DATA 
INTO JUMBO BUFFER 

1678 

WRITE COMPLETION 
DESCRIPTOR 

1680 

NO 
PREPARE HEADER BUFFER 

>-~~~~~--.i 1672 

YES TRANSFER FIRST PART OF 
PACKET DATA INTO JUMBO 

~~~~~~~+1 BUFFER 

FIG. 16E

1682

TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1684

WRITE COMPLETION
DESCRIPTOR

1686

EX 1017 Page 491

U.S. Patent —Sep.17,2002 Sheet 27 of 49 US6,453,360 B1

NO
 HEADER

BUFFER VALID?
1670

PREPARE HEADER BUFFER

 1672
YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1674

PACKET TRANSFER FIRST PART OF
TOO LARGE FOR PACKET DATA INTO JUMBO

ONE BUFFER? BUFFER
1676 1682

TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1684

TRANSFER PACKET DATA
INTO JUMBO BUFFER

1678

WRITE COMPLETION

DESCRIPTOR
1686

WRITE COMPLETION
DESCRIPTOR

1680

Cé

7

FIG. 16E

EX 1017 Page 491

U.S. Patent Sep.17,2002 Sheet 28 of 49 US 6,453,360 Bl

YES

INVALIDATE HEADER
BUFFER

1692

INVALIDATE JUMBO
BUFFER

1688

FIG. 16F

NO

UPDATE HEADER BUFFER
TABLE

1694

: .·11 f Ii

EX 1017 Page 492

U.S. Patent Sep. 17, 2002 Sheet 28 of 49 US6,453,360 B1

INVALIDATE JUMBO
BUFFER

1688

YES NO

HEADER
BUFFER FULL?

1690

INVALIDATE HEADER
BUFFER

1692

UPDATE HEADER BUFFER
TABLE

1694

FIG. 16F

EX 1017 Page 492

Sep.17,2002 Sheet 29 of 49 US 6,453,360 Bl

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1704

NO
PREPARE HEADER BUFFER

">-~~~~~~-M 1702

NO

FIG. 17A

PREPARE FLOW RE
ASSEMBLY BUFFER

1708

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1710

WRITE COMPLETION
DESCRIPTOR

1712

INVALIDATE FLOW RE
ASSEMBLY BUFFER

1714

,j
, I
. !

EX 1017 Page 493

U.S. Patent

YES

YES

HEADER
BUFFER VALID?

1700

1704

RE-ASSEMBLY
BUFFER VALID?

1706

D2

Sep. 17, 2002

NO

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
NO

FIG. 17A

Sheet 29 of 49

PREPARE HEADER BUFFER
1702

PREPARE FLOW RE-
ASSEMBLY BUFFER

1708

 TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1710

WRITE COMPLETION
DESCRIPTOR

712

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1714

US 6,453,360 B1

EX 1017 Page 493

U.S. Patent Sep.17,2002 Sheet 30 of 49 US 6,453,360 Bl

NO

TRANSFER PAYLOAD INTO
FLOW RE-ASSEMBLY

BUFFER
1718

WRITE COMPLETION
DESCRIPTOR

1720

YES

INVALIDATE ENTRY IN
FLOW RE-ASSEMBLY

BUFFER TABLE
1728

FIG. 178

TRANSFER FIRST PORTION
OF PAYLOAD INTO FLOW
RE-ASSEMBLY BUFFER

1722

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

1724

WRITE COMPLETION
DESCRIPTOR

1726

EX 1017 Page 494

U.S. Patent Sep. 17, 2002 Sheet 30 of 49 US 6,453,360 B1

TCP
PAYLOAD TOO

LARGE FOR
BUFFER?

1716

TRANSFERFIRST PORTION
OF PAYLOADINTO FLOW
RE-ASSEMBLY BUFFER

1722

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

1724

TRANSFER PAYLOAD INTO
FLOW RE-ASSEMBLY

BUFFER
1718

WRITE COMPLETION
DESCRIPTOR

1726

WRITE COMPLETION
DESCRIPTOR

1720

INVALIDATE ENTRYIN
FLOW RE-ASSEMBLY

BUFFER TABLE
1728

FIG. 17B

EX 1017 Page 494

U.S. Patent Sep.17,2002

YES

INVALIDATE HEADER
BUFFER

1732

Sheet 31 of 49 US 6,453,360 Bl

NO

UPDATE HEADER BUFFER
TABLE

1734

FIG. 17C

EX 1017 Page 495

U.S. Patent Sep. 17, 2002 Sheet 31 of 49 US 6,453,360 B1

YES NO
 HEADER

BUFFER FULL?
1730

INVALIDATE HEADER
BUFFER

1732

UPDATE HEADER BUFFER
TABLE

1734

FIG. 17C

EX 1017 Page 495

J.S. Patent Sep.17,2002 Sheet 32 of 49 US 6,453,360 Bl

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1804

NO
"".>--~~~~~~PREPAREHEADERBUFFER

1802

YES

FIG. 18A

EX 1017 Page 496

J.S. Patent Sep. 17, 2002 Sheet 32 of 49 US 6,453,360 B1

HEADER

BUFFER VALID?
1800

PREPARE HEADER BUFFER
1802

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1804

 FLOW
RE-ASSEMBLY

BUFFER VALID?
1806

FIG. 18A
EX 1017 Page 496

U.S. Patent Sep.17,2002 Sheet 33 of 49

PREPARE FLOW RE
ASSEMBLY BUFFER

1810

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1812

WRITE COMPLETION
DESCRIPTOR

1814

UPDATE FLOW RE
ASSEMBLY BUFFER TABLE

1816

FIG.188

US 6,453,360 Bl

II
: .

I
I

EX 1017 Page 497

U.S. Patent Sep. 17, 2002 Sheet 33 of 49 US 6,453,360 BI

PREPARE FLOW RE-
ASSEMBLY BUFFER

1810

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1812

WRITE COMPLETION
DESCRIPTOR

1814

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

1816

Le)

FIG. 18B

EX 1017 Page 497

U.S. Patent Sep.17,2002 Sheet 34 of 49

YES

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1820

WRITE COMPLETION
DESCRIPTOR

1822

US 6,453,360 Bl

NO

RELEASE FLOW IN FLOW
RE-ASSEMBLY BUFFER

TABLE
1826

UPDATE FLOW RE
ASSEMBLY BUFFER TABLE

1828

FIG. 18C

EX 1017 Page 498

wr

U.S. Patent

YES

TABLE
1826

Sep. 17, 2002

RELEASE FLOW IN FLOW
RE-ASSEMBLY BUFFER

Sheet 34 of 49

 TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1820

WRITE COMPLETION
DESCRIPTOR

1822

 FLOW
RE-ASSEMBLY
BUFFER FULL?

1824

FIG. 18C

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

US 6,453,360 B1

NO

 1828

EX 1017 Page 498

-
:t'

U.S. Patent Sep.17,2002 Sheet 35 of 49 US 6,453,360 Bl

YES

INVALIDATE HEADER
BUFFER TABLE

1840

TRANSFER FIRST PORTION
OF PACKET PAYLOAD INTO

RE-ASSEMBLY BUFFER
1830

TRANSFER REMAINING
PACKET PAYLOAD INTO

SECOND BUFFER
1832

WRITE COMPLETION
DESCRIPTOR

1634

UPDATE FLOW RE
ASSEMBLY BUFFER TABLE

1836

NO

UPDATE HEADER BUFFER
1842

END
1899

FIG. 18D

EX 1017 Page 499

U.S. Patent Sep. 17, 2002 Sheet 35 of 49 US 6,453,360 B1

E3

TRANSFER FIRST PORTION
OF PACKET PAYLOAD INTO

RE-ASSEMBLY BUFFER
1830

TRANSFER REMAINING
PACKET PAYLOAD INTO

SECOND BUFFER
1832

WRITE COMPLETION
DESCRIPTOR

1834

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

1836

E4

NO
 HEADER

BUFFER FULL?
1838

INVALIDATE HEADER
BUFFER TABLE

1640

UPDATE HEADER BUFFER
1842

END
1899

FIG. 18D

EX 1017 Page 499

..

U.S. Patent Sep.17,2002 Sheet 36 of 49 US 6,453,360 Bl

PREPARE MTU BUFFER
1906

WRITE COMPLETION
DESCRIPTOR

1910

YES

INVALIDATE MTU BUFFER
1914

NO

NO

NO

FIG.19A

NO

YES

TRANSFER PACKET INTO
MTUBUFFER

1908

UPDATE MTU BUFFER
TABLE

1916

END
1999

EX 1017 Page 500

U.S. Patent Sep. 17, 2002 Sheet 36 of 49

! YES

NO

SMALL PACKET? JUMBO PACKET?
1900 1902

YES
NO

Fr |

 NO

MTU
BUFFER VALID?

1904

PREPARE MTU BUFFER
1806

YES

WRITE COMPLETION
DESCRIPTOR

1910

TRANSFER PACKET INTO
MTU BUFFER

1908

MTU
BUFFER FULL?

1912

UPDATE MTU BUFFER
TABLE

1916

INVALIDATE MTU BUFFER
1914

END
1989

FIG. 19A

US 6,453,360 BL

EX 1017 Page 500

U.S. Patent Sep.17,2002 Sheet 37 of 49 US 6,453,360 Bl

TRANSFER PACKET INTO
HEADER.BUFFER

1924

WRITE COMPLETION
DESCRIPTOR

1926

INVALIDATE HEADER
BUFFER

1930

NO
>--------.i PREPARE HEADER BUFFER

1922

NO

FIG. 198

UPDATE HEADER BUFFER
TABLE
1932

EX 1017 Page 501

U.S. Patent Sep. 17, 2002 Sheet 37 of 49 US 6,453,360 BI

HEADER
BUFFER VALID?

1920

PREPARE HEADER BUFFER
1922

TRANSFER PACKET INTO

HEADER,BUFFER
1924

WRITE COMPLETION
DESCRIPTOR

1926

UPDATE HEADER BUFFER
TABLE
1932

HEADER
BUFFER FULL?

1928

&
t
5
t

INVALIDATE HEADER
BUFFER

1930

FIG. 19B

EX 1017 Page 501

U.S. Patent Sep.17,2002 Sheet 38 of 49 US 6,453,360 Bl

NO

TRANSFER PACKET INTO
JUMBO BUFFER

1948

WRITE COMPLETION
DESCRIPTOR

1950

INVALIDATE JUMBO
BUFFER

1958

NO

YES

PREPARE JUMBO BUFFER
1942

YES TRANSFER FIRST PORTION
OF PACKET INTO CURRENT

>-------~ JUMBO BUFFER

FIG. 19C

1952

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1954

WRITE COMPLETION
DESCRIPTOR

1956

EX 1017 Page 502

U.S. Patent Sep. 17, 2002 Sheet 38 of 49 US 6,453,360 BL

NO
JUMBO

BUFFER VALID? PREPARE ‘ton BUFFER1940

YES

YES
SPLIT JUMBO

PACKETS?
1944

 Fa

NO

TRANSFER FIRST PORTION
OF PACKET INTO CURRENT

JUMBO BUFFER
1952

PACKET
TOO LARGE FOR

ONE BUFFER?
1946

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1954

 TRANSFER PACKET INTO
JUMBO BUFFER

1948

 WRITE COMPLETION
DESCRIPTOR

1956

WRITE COMPLETION
DESCRIPTOR

1950

INVALIDATE JUMBO END
BUFFER 18991968

FIG. 19C

EX 1017 Page 502

-..

U.S. Patent Sep.17,2002 Sheet 39 of 49 US 6,453,360 Bl

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1964

NO

TRANSFER PACKET DATA
INTO JUMBO BUFFER

1968

WRITE COMPLETION
DESCRIPTOR

1970

NO
PREPARE HEADER BUFFER

>-~~~~~~--.i 1962

YES

FIG. 19D

TRANSFER FIRST PORTION
OF PACKET DATA INTO

CURRENT JUMBO BUFFER
1972

TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1974

WRITE COMPLETION
DESCRIPTOR

1976

EX 1017 Page 503

U.S. Patent Sep. 17, 2002

FS i

NO
 HEADER

BUFFER VALID?
1960

YES

Sheet 39 of 49 US 6,453,360 B1

PREPARE HEADER BUFFER
1962

 TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1964

 PACKET
TOO LARGE FOR

ONE BUFFER?
1966

YES

NO

TRANSFER PACKET DATA
INTO JUMBO BUFFER

1968

WRITE COMPLETION
DESCRIPTOR

1970

TRANSFER FIRST PORTION
OF PACKET DATA INTO

CURRENT JUMBO BUFFER
1972

TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1974

WRITE COMPLETION
DESCRIPTOR

1976

FIG. 19D

EX 1017 Page 503

U.S. Patent Sep.17,2002 Sheet 40 of 49

YES

INVALIDATE HEADER
BUFFER

1982

INVALIDATE JUMBO
BUFFER

1978

END
1999

FIG. 19E

US 6,453,360 Bl

NO

UPDATE HEADER BUFFER
TABLE

1984

EX 1017 Page 504

U.S. Patent Sep. 17,2002 Sheet 40 of 49 US 6,453,360 B1

INVALIDATE JUMBO
BUFFER

1978

YES NO HEADER
BUFFER FULL?

1980

UPDATE HEADER BUFFER

INVALIDATE HEADER
BUFFER TABLE

1982 1984

FIG. 19E

EX 1017 Page 504

~ Patent Sep.17,2002 Sheet 41 of 49 US 6,453,360 Bl

NO
~------.w PREPARE HEADER BUFFER

2002

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
2004

PREPARE FLOW RE
ASSEMBLY BUFFER

2010

YES

FIG. 20A

WRITE COMPLETION
DESCRIPTOR

2008

EX 1017 Page 505

ic Patent —Sep.17,2002 Sheet 41 of 49 US 6,453,360 BI

NO
 HEADER

BUFFER VALID?
2000

PREPARE HEADER BUFFER

2002

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
2004

 FLOW

RE-ASSEMBLY
BUFFER VALID?

2006

WRITE COMPLETION
DESCRIPTOR

2008
NO

PREPARE FLOW RE-
ASSEMBLY BUFFER

2010
Gi

FIG. 20A

EX 1017 Page 505

U.S. Patent Sep.17,2002 Sheet 42 of 49 US 6,453,360 Bl

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
2012

WRITE COMPLETION
DESCRIPTOR

2014

UPDATE FLOW RE
ASSEMBLY BUFFER TABLE

2016

YES

INVALIDATE HEADER
BUFFER

2020

NO

FIG. 208

UPDATE HEADER BUFFER
TABLE
2022

EX 1017 Page 506

®U.S. Patent—sep.17,2002 Sheet 42 of 49 US 6,453,360 B1

 TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
2072

 WRITE COMPLETION

DESCRIPTOR
2014

 UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

2016

UPDATE HEADER BUFFER
TABLE
2022

HEADER
BUFFER FULL?

2018

 INVALIDATE HEADER

BUFFER
2020

FIG. 20B
EX 1017 Page 506

U.S. Patent Sep.17,2002 Sheet 44 of 49

YES

INVALIDATE PACKET
ENTRY IN MEMORY

2204

INCREMENT READ
POINTER

2206

SEARCH MEMORY FOR
RELATED PACKET

2208

ALERT HOST COMPUTER
2210

FIG. 22A

NO

US 6,453,360 Bl

EX 1017 Page 507

U.S. Patent Sep. 17, 2002 Sheet 44 of 49 US 6,453,360 BL

TRANSFER
PACKET TO HOST?

2202

INVALIDATE PACKET
ENTRY IN MEMORY

2204

INCREMENT READ
POINTER

2206

SEARCH MEMORY FOR
RELATED PACKET

2208

ALERT HOST COMPUTER

2210

FIG. 22A

eeEEEEEE

EX 1017 Page 507

•

U.S. Patent Sep.17,2002 Sheet 45 of 49

START
2220

NO

GENERATE NEXT ENTRY
2226

INCREMENT WRITE
POINTER

2228

FIG. 228

US 6,453,360 Bl

NO

YES

EX 1017 Page 508

U.S. Patent Sep. 17, 2002 Sheet 45 of 49 US 6,453,360 B1

CREATE NEW
ENTRY?

2222

MEMORY FULL?
2224

GENERATE NEXT ENTRY
2226

INCREMENT WRITE
POINTER

2228

FIG. 22B

EX 1017 Page 508

•

U.S. Patent Sep.17,2002 Sheet 46 of 49 US 6,453,360 Bl

INSTRUCTION CONTENT 2306
INSTR. INSTR. (EXTRACTION MASK, COMPARE VALUE, OPERATOR,

NO. NAME SUCCESS OFFSET, SUCCESS INSTRUCTION, FAILURE OFFSET,
2302 2304 FAILURE INSTRUCTION, OUTPUT OPERATION, OPERATION ARGUMENT,

OPERATION ENABLER. SHIFT, OUTPUT MASK}

0 WAIT OxFFFF, OxOOOO, NP, 6, VLAN, 0, WAIT, CLR_REG, Ox3FF, 1, 0, OxOOOO

1 VLAN OxFFFF, Ox8100, EQ, 1, CFI, 0, 802.3, IM_CTL, OxOOA, 3, 0, OxFFFF

2 CFI Ox1000, Ox1000, EQ, 0, DONE. 1,802.3, NONE, OxOOO, 0, 0, OxOOOO

3 802.3 OxFFFF, Ox0600, LT, 1, LLC_1. O, IPV4_1, NONE, OXOOO, 0, 0, OxOOOO

4 LLC_1 OxFFFF, OxAAAA, EQ, 1, LLC_2, 0, DONE, NONE, OxOOO, 0, 0, OxOOOO

5 LLC_2 OxFFOO, Ox0300, EQ, 2, IPV4_1, 0, DONE, NONE, OxOOO, 0, 0, OXOOOO

6 IPV4_1 OxFFFF, Ox0800, EQ, 1, IPV4_2, O, IPV6_1, LD_SAP, Ox100, 3, 0, OxFFFF

7 IPV4_2 OxFFOO, Ox4500, EQ, 3, IPV4_3, 0, DONE, LD_SUM, OxOOA, 1, 0, OxOOOO

B IPV4_3 Ox3FFF, OxOOOO, EQ, 1, IPV4_4, 0, DONE, LD_LEN, Ox03E, 1, 0, OxFFFF

9 IPV4_4 OxOOFF, Ox0006, EQ, 7, TCP _1, 0, DONE, LD_FID, Ox182, 1, 0, OxFFFF

10 IPV6_1 OxFFFF, Ox86DD, EQ, 1, IPV6_2, 0, DONE, LD_SUM, Ox015, 1, OxOOOO

11 IPV6_2 OxFOOO, Ox6000, EQ, 0, IPV6_3, 0, DONE, IM_R1, Ox114, 1, 0, OxFFFF

12 IPV6_3 OXOOOO, OxOOOO, EQ, 3, IPV6_4. 0, DONE, LD_FID, Ox484, 1, 0, OxFFFF

13 IPV6_4 OxFFOO, Ox0600, EQ, 18, TCP _1, 0, DONE, LD_LEN, Ox03F, 1, OxFFFF

14 TCP_1 OxOOOO, OxOOOO, EQ, 0, TCP _2, 4, TCP _2, LD_SEQ, Ox081, 3, 0, OxFFFF

15 TCP_2 OxOOOO, OxOOOO, EQ, 0, TCP _3, 0, TCP _3, ST_FLAG, Ox145, 3, 0, Ox002F

16 TCP_3 OxOOOO, OxOOOO, EQ, 0, TCP_ 4, 0, TCP_ 4, LD _R 1, Ox205, 3, OxB, OxFOOO

17 TCP_4 OxOOOO, OxOOOO, EQ, 0, WAIT, 0, WAIT, LD_HDR, OxOFF, 3, 0, OxFFFF

18 DONE OxOOOO, OxOOOO, EQ, 0, WAIT, 0, WAIT, IM_CTL, Ox001, 3, OxOOOO

PROGRAM 2300

FIG. 23

EX 1017 Page 509

U.S. Patent Sep. 17, 2002 Sheet 46 of 49 US 6,453,360 B1

4 INSTRUCTION CONTENT2306
; INSTR.|INSTR. (EXTRACTION MASK, COMPARE VALUE, OPERATOR,

; NO. NAME SUGCESS OFFSET, SUCCESS INSTRUCTION, FAILURE OFFSET,
2302 2304 FAILURE INSTRUCTION, OUTPUT OPERATION, OPERATION ARGUMENT,

OPERATION ENABLER, SHIFT, OUTPUT MASK)

fo WAIT OxFFFF, 0x0000, NP, 6, VLAN, 0, WAIT, CLR_REG,Ox3FF, 1, 0, 0x0000
N OxFFFF, 0x8100, EQ, 1, CFI, 0, 802.3, IM_CTL, 0x00A, 3, 0, OxFFFF

I

0x1000, 0x1000, EQ, 0, DONE,1, 802.3, NONE, 0x000,0, 0, Ox0000

OxFFFF, 0x0600, LT, 1, LLG_1, 0, IFV4_1, NONE, 0x000,0, 0, 0x0000

LLC_1 OxFFFF, OxAAAA, EQ, 1, LLC_2, 0, DONE, NONE, 0x000,0, 0, 0x0000

LLO_2 OxFFOO, 0x0300, EQ, 2, IPV4_1, 0, DONE, NONE,0x000, 0, 0, 0x0000

IPV4_1

VLA

CF

802.3

OxFFFF, 0x0800, EQ,1, IPV4_2, 0, IPV6_1, LD_SAP,0x100, 3, 0, OxFFFF

OxFF 00, 0x4500, EQ, 3, IPV4_3, 0, DONE, LD_SUM,Ox00A, 1, 0, 0x0000

IPV4_3 Ox3FFF, 0x0000, EQ,1, IPV4_4, 0, DONE, LD_LEN, 0x03E, 1, 0, OxFFFF

1

2

3

5

6

IPV4_4

IPVE_4

15

16

OxO0FF, 0x0006, EQ, 7, TCP_1, 0, DONE, LD_FID, 0x182, 1, 0, OxFFFF

OxFFFF, Ox86DD, EQ,1, IPV6_2, 0, DONE, LD_SUM, 0x015, 1, 0x0000
 OxF000, 6x6000, EQ, 0, IPV6_3, 0, DONE, IM_R1, 0x114,1, 0, OxFFFF
 Ox0000, 0x0000, EQ,3, IPV6_4, 0, DONE, LD_FID, 0x484, 1, 0, OxFFFF

IPV6_3

(PV6_4 OxFFO0, 0x0600, EQ, 18, TCP_4, 0, DONE, LD_LEN, 0x03F, 1, OxFFFF

TCP_1 0x0000, 0x0000, EQ, 0, TCP_2, 4, TCP_2, LD_SEQ, 0x081, 3, 0, OxFFFF

0x0000, 0x0000, EQ, 0, TCP_3, 0, TCP_3, ST_FLAG,0x145, 3, 0, 0x002F
 TCP_2

 TCP_3 0x0000, 0x0000, EQ, 0, TCP_4, 0, TCP_4, LD_R14, 0x205, 3, OxB, OxFO00

0x0000, 0x0000, EQ, 0, WAIT, 0, WAIT, LD_HDR, OxOFF,3, 0, OxXFFFF

0x0000, 0x0000, EQ, 0, WAIT, 0, WAIT, IM_CTL, 0x004, 3, 0x0000

PROGRAM 2300

FIG. 23
EX 1017 Page 509

PACKET
QUEUE

2400

~

TO HOST
COMPUTER
~

--

I
I
I
I

PROBABILITY

INDICATORB
2412

00000000

REGION ZERO
2402

I
I
I
I

0 KB 4 KB

PROBABILITY

INDICATORB
2414

00000001

REGION ONE
2404

~
I
I
I
I

B KB

TRAFFIC
INDICATOR

2408

FIG. 24

·,,

PROBABILITY

B
NDICATOR

2416

1

FROM

REGION TWO
NETWORK -

2406 ~

I I
I I
I I
I I I COUNTER I

12 KB 16 KB 2410

0 •
00. •
~
~
("O

=

r.,,

?
~

;-.I
N s
r.,,
=r'
~

~

""" ~

=
""" ~

d
00.
~

~ w w
~ =
o= ,_.

·--:::;. - --

-~

.!I

EX 1017 Page 510

PROBABILITY PROBABILITY PROBABILITY

INDICATOR INDICATOR . INDICATOR
2412 2414 2416

PACKET

2400

FROM
NETWORKTO HOST

COMPUTER

 REGION ONE REGION TWO
2404 2406

REGION ZERO
2402

COUNTER
2410

TRAFFIC
INDICATOR

2408

FIG. 24

yuaye“S"{)
7007“LT‘das

6bJOLpPONS

Tao9¢‘esp’9SN

EX 1017 Page 510

U.S. Patent Sep.17,2002 Sheet 48 of 49

START
2500

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS

2502

CONFIGURE PROBABILITY
INDICATOR{$)

2504

SELECT CRITERIA FOR
NON-OISCARDABLE

PACKETS, IF ANY
2506

INITIALIZE COUNTER
2508

RECEIVE PACKET FROM
NETWORK

2510

FIG. 25A

US 6,453,360 Bl

EX 1017 Page 511

U.S. Patent Sep. 17, 2002 Sheet 48 of 49 US 6,453,360 BI

START
2500

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS

2502

CONFIGURE PROBABILITY

INDICATOR(S)
2504

SELECT CRITERIA FOR
NON-DISCARDABLE

PACKETS,IF ANY
2506

INITIALIZE COUNTER
2508

RECEIVE PACKET FROM
NETWORK

2510

 YES NO

IS
PACKET

DISCARDABLE?
2512

FIG. 25A

EX 1017 Page 511

STORE PACKET
2522

Sep.17,2002 Sheet 49 of 49

DETERMINE ACTIVE
REGION

2514

COMPARE COUNTER AND
PROBABILITY INDICATOR

2516

INCREMENT COUNTER
2518

FIG. 25B

US 6,453,360 Bl

DISCARD PACKET
2524

EX 1017 Page 512

i RAIAOS i es aeecw veeaRAY ; etSecoinaceeleeeeena

F U.S. Patent —Sep.17,2002 Sheet 49 of 49 US 6,453,360 BL

5

Br \ A
x.
aa

4 DETERMINE ACTIVE
. REGION
a 2514

, COMPARE COUNTER AND
PROBABILITY INDICATOR

Bi 2516

INCREMENT COUNTER

a 2518

DISCARD PACKET
2524

STORE PACKET
2622

FIG. 25B

EX 1017 Page 512

US 6,453,360 Bl
1

HIGH PERFORMANCE NETWORK
INTERFACE

D\BLE OF CONTENTS
BACK.GROUND
SUMMARY
BRIEF DESCRIPTION OF TIIE FIGURES
DETAILED DESCRIPTION

Introduction
One Embodiment of a High Performance Network Inter-

face Circuit
An Illustrative Packet
One Embodinlent of a Header Parser
Dynamic Header Parsing Instructions in One Embodi-

ment of the Invention
One Embodiment of a Flow Database
One Embodiment of a Flow Database Manager
One Embodiment of a Load Distnbutor
One Embodiment of a Packet Queue
One Embodiment of a OJntrol Queue
One Embodiment of a DMA Engine
Methods of Transferring a Packet Into a Memory Buffer

by a DMA Engine

A Method of Transferring a Packet with Operation Code
0

A Method of Transferring a Packet with Operation Olde
1

A Method of Transferring a Packet with Operation Code
2

A Method of Transferring a Packet with Operation Olde
3

2
transmitted by an originating endstation and is separately
received and proce&Sed by a destination endstation. In
addition, each packet may, in a bus topology network for
example, be received and processed by numerous stations

5 located between the originating and destination endstations.
One basic problem with packet networks is that each

packet must be processed through multiple protocols or
protocol levels (known collectively as a "protocol stack'') on
both tbe origination and destination endstations. When data

10 transmitted between stations is longer than a certain mininlal
length, the data is divided into multiple portions, and each
portion is carried by a separate packet. The amount of data
that a packet can carry is generally timited by the network
that conveys the packet and is often expressed as a maxi-

15 mum transfer unit (MTIJ). The original aggregation of data
is sometimes known as a "datagram," and each packet
carrying part of a single datagram is processed very simi
lar! y to the other packets of the data gram.

OJmmunication packets are generally processed as fol-
20 lows. In the origination endstation, each separate data por

tion of a datagram is processed through a protocol slack.
During this processing multiple protocol headers (e.g., TCP,
IP, Ethernet) are added to the data portion to form a packet
that can be transmitted across the network. The packet is

25 received by a network interface circuit, which transfers the
packet to the destination endstation or a host computer that
serves the destination endstation. In the destination
endstation, the packet is processed through the protocol
stack in the opposite direction as in the origination endsta-

30 tion. During this processing the protocol headers are
removed in the opposite order in which they were applied.
The data portion is thus recovered and can be made available
to a user, an application program, etc.

Several related packets (e.g., packets carrying data from
A Method of Transferring a Packet with Operation Olde 35 one datagram) thus undergo substantially the same process

s in a serial manner (i.e., one packet at a time). The more data

A Method of Transferring a Packet with Operation Code
4

A Method of Transferring a Packet with Operation Code
6 or 7

: One Embodiment of a Dynamic Packet Batching Module
Early Random Packet Discard in One Embodiment of the

Invention
CLAIMS

BACK.GROUND

This invention relates to the fields of computer systems

that must be transmitted, the more packets must be sent, with
each one being separately handled and processed through
the protocol stack in each direction. Naturally, the more

40 packets that must be processed, the greater the demand
placed upon an endstation's processor. The number of
packets that must be processed is affected by factors other
than ju.st the amount of data being sent in a datagram. For
example, as the amount of data that can be encapsulated in

45 a packet increases, fewer packets need to be sent. As stated
above, however, a packet may have a maximum allowable
size, depending on the type of network in use (e.g., the
maximum transfer unit for standard Ethernet traffic is

· and computer networks. In particular, the present invention
i-,lates to a Network Interface Circuit (NIC) for processing
, munication packets exchanged between a computer
,network and a host computer system. 5o
·. ":.l:he interface between a oomputer and a network is often
•:bottleneck for communications passing between tbe com-

approximately 1,500 bytes). The speed of the network also
affects the number of packets that a NIC may handle in a
given period of time. For example, a gigabit Ethernet

.. Plller and the network. While computer performance (e.g.,
PIX>ccssor speed) has increased exponentially over the years
·'!Jd .<X>mputer network transmission speeds have undergone
.~ increases, inefficiencies in the way network interface
,.~ts handle communications have become more and
:~evident.With each incremental increase in computer or
, ck speed, it becomes ever more appaient that the

crfa.ce between the computer and the network cannot keep
• These inefficiencies involve several basic problems in

_,the Way communications between a network and a computer
·~ handled.

:, 'Ibday's most popular forms of networks tend to be
ct-based. These types of networks, including the Inter

. illld many local area networks, transmit information in
', ,fonn of packets. Each packet is separately created and

network operating at peak capacity may require a NIC lo
receive approximately 1.48 million packets per second.
Thus, the number of packets to be processed through a

55 protocol stack may place a significant burden upon a com
puter's processor. The situation is exacerbated by the need to
process each packet separately even though each one will be
processed in a substantially similar manner.

A related problem to the disjoint processing of packets is
60 the manner in which data is moved between "lIBer space"

(e.g., an application program's data storage) and "system
space" (e.g., system memory) during data transmission and
receipt. fusently, data is simply copied from one area of
memory assigned to a user or application program into

65 another area of memory dedicated to the processor's m;e.
Because each portion of a datagram that is transmitted in a
packet may be copied separately (e.g., one byte at a time),

EX 1017 Page 513

US 6,453,360 B1

1 2

. HIGH PERFORMANCE NETWORK transmitted by an originating endstation and is separately
INTERFACE received and processed by a destination endstation. In

addition, each packet may, in a bus topology network for
‘TABLE OF CONTENTS example, be received and processed by numerous stations

BACKGROUND 5 located between the onginating and destination endstations.
SUMMARY One basic problem with packet octworks is that each
BRIEF DESCRIPTION OF THE FIGURES packet must be processed through multiple protocols or
DETAILED DESCRIPTION protocollevels (mown collectively as a “protocol stack”) on Introduction both the origination and destination endstations. When data

One Embodimentof a High Performance Network Inter- 10 transmitted between stationsis longer than a certain minimal
length, the data is divided into multiple portions, and each

 face Circuit Ah, U

An Ulustrative Packet portion is carried by a separate packet. The amountof data
One Embodiment of a Header Parser that a packet can carry is generally limited by the network

 that conveys the packet and is often expressed as a maxi-

mum transfer unit (MTU). The original aggregation of data

Dynamic Header Parsing Instructions in One Embodi-

ment of the Invention 1s ® n
One Embodiment of a Flow Database is sometimes known as a “datagram,” and each packet
One Embodiment of a Flow Database Manager carrying part of a single datagram is processed very simi-
Ove Embodiment of a Load Distributor larly to the other packets of the datagram.
One Embodiment of a Packet Quene Communication packets are generally processed as fo!-
One Embodiment of a Control Queue 29 lows. In the origination endstation, each separate data por-
One Embodiment of a DMA Engine tion of a datagram is processed through a protocol stack.
Methods of Transferring a Packet Into a Memory Buffer During this processing multiple protocol headers (¢-g., TCP,

by a DMA Engine TP, Ethernet) are added to the data portion to form a packet
A Method of Transferri Packet with tion Cod that can be transmitted across the network, The packet is0 of Transferring a Packet with Operation ° 95 received by a network interface circuit, which transfers the . - . . acket to the destination endstation or a bost computer that
A Method of Transferring a Packet with Operation Code serves the destination endstation. In the destination

. . . endstation, the packet is processed through the protocol
A Method of Transferring a Packet with Operation Code stack in the opposite direction as in the origination endsta-

2 30 lion. During this processing the protocol headers are
A Method of Transferring a Packet with Operation Code removed in the opposite order in which they were applied.

3 The data portion is thus recovered and can be made available
AMcithod of Transferring a Packet with Operation Code —t0. a user, an application program,etc.

4 Several related packets (e.g., packets carrying data from
A Method of ‘Transferring a Packet with Operation Code 35 one datagram) thus undergo substantially the same process

5 in a serial manner(i.¢., one packet at a time). The more data
. . : . ~ that must be transmitted, the more packets must be sent, withA Method

‘ at ° of Transferring a Packet with Operation Code each one being separately handl dp d throu:
“One Embodimentof a Dynamic Packet Batching Module the protocol stack im cach direction. Naturally, the more
Early Random Packet Discard in One Embodimentof the *° packets that must be p . os sed, the greater the demand

F Inventivn placed upon an endstation’s processor. The number of
Ss packets that must be processed is affected by factors other

than just the amountof data being sent in a datagram. For
BACKGROUND example, as the amount of data that can be encapsulated in

- . . a5 apacket increases, fewer packets need to be sent. As stated
f This invention relates to the fields of computer systems above, however, a packet may bave a maximum allowable
¥ weComputer networks. In particular, the present invention—_—sige, depending on the type of network in use (e.g., the
f Fyiates to a Network Inierface Circuit (NIC) for processing©maximum transfer unit for standard Ethernet traffic is
pegmmunucation packets exchanged between a computer approximately 1,500 bytes). The speed of the network also
ppetwork and a host computer system. 50 affects the number of packets that a NIC may bandle in a

F dhe interface between a computer and a ustwork is often given period of time. For example, a gigabit Ethernet
abottleneck for communications passing between the com- network operating at peak capacity may require a NIC to

ePutcr sud ihe network. While computer performance (e.g., receive approximately 1.48 million packets per second.
p PtOcessor speed) has increased exponentially over the years©Thus, the number of packets to be processed through a
. "and computer network transmission speeds have undergone 55 protocol stack may place a significant burden upon a com-

p Stinilar increases, ineflicienciesin the way network interface puter’s processor. Thesituation is exacerbated by the need to
p“ircuits handle communications have become more and process each packet separately even though cach one will be

evident. With cach incremental increase incomputeror processed in a substantially similar manner.

aad speed,itbecomes ever more apparent that the Arelated problem to the disjoint processing of packets is
Gace. “Thee: be computerand the network cannot keep 69 the manner in which data is moved between “user space”
thewa ese inefficiencies involve several basic problems in —(e.g., an application program’s data storage) and “system

, anc atnications between a network and a computer space” (e.g., system memory) during data transmission andy * receipt. Presently, data is simply copied from one area of
‘Teday’s most popular forms of networks tend to be memory assigned to a user or application program into

tt-based, These types of networks, including the Inter- 65 another arca of memory dedicated to the processor’s use.
and many local area networks, transmit information in Because cach portion of a datagram thatis transmitted in a
form of packets. Each packet is separately created and packet may be copied separately (e.g., one byte at a time),

EX 1017 Page 513

-

US 6,453,360 Bl
3

there is a nontrivial amount of processor lime required and
frequent transfers can consume a large amount of the
memory bus' bandwidth. lliustratively, each byte of data in
a packet received from the network may be read from the
syi;tem space and written to the user space in a separate copy 5
operation, and vice versa for data transmitted over the
networ.k. Although system space generally provides a pro
tected memory area (e.g., protected from manipulation by
user programs), the copy operation does nothing of value
when seen from the point of view of a network interface

10
circuit. Instead, it risks over-burdening the host processor
and retarding its ability to rapidly accept additional network
traffic from the NIC. Copying each packet's data separately
can therefore be very inefficient, particularly in a high-speed
network environment.

15
In addition to the inefficient transfer of data (e.g., one

packet's data at a time), the processing of headers from
packets received from a network is also inefficient. Each
packet carrying part of a single datagram generally has the
same protocol headers (e.g., Ethernet, IP and TCP), although 20
there may be some variation in the values within the packets'
headers for a particular protocol. Each packet, however, is
individually processed through the same protocol stack, thus
requiring multiple repetitions of identical operations fur
related packets. Successively processing unrelated packets

25
through different protocol stacks will likely be much less
efficient than progressively processing a number of related
packets through one protocol stack at a lime.

Another basic problem concerning the interaction
between present network interface circuits and host com- 30
puter systems is that the combination often fails to capitalize
on the increased processor resources that are available in
multi-processor computer systems. In other words, present
attempts to distnbute the processing of network packets
(e.g., through a protocol stack) among a number of protocols 35
in an efficient manner are generally ineffective. In particular,
the peTformance of present NICs docs not come close to the
expected or desired linear performance gains one may
expect to realize from the availability of multiple processors.
In some multi-processor systems, little improvement in the "°
processing of network traffic is realized from the use of more
than 4-6 processors, for example.

In addition, the rate at which packets are transferred from
a network interface circuit to a host computer or other
communication device may fail to keep pace with the rate of 45

packet arrival at the network interface. One element or
another of the host computer (e.g., a memory bus, a
processor) may be over-burdened or otherwise unable to
ac:cept packets with sufficient alacrity. In this event one or
more packets may be dropped or discarded. Dropping pack- 50
els may cause a network entity to re-transmit some traffic
Ind, if too many packets are dropped, a network connection
may require re-initialization. Further, dropping one packet
0 ~ type of packet instead of another may make a significant
diJierence in overall network traffic. If, for example, a 55
cont~! packet is dropped, the corresponding network con
llCCll~>n may be severely affected and may do little to
lllevia.te the packet saturation of the network interface
circuit because of the typically small siz.e of a control packet.
Therefore, unless the dropping of packets is performed in a 60

manner that distributes the effect among many network
connections or that makes allowance for certain types of
packets, network traffic may be degraded more than neces
sary.
to 1:hus, present NICs fail to provide adequate performance 65

. 1ntcrconnect today's high-end computer systems and
high-speed Detworks. In addition, a network interface circuit

4
that cannot make allowance for an over-burdened host
computer may degrade the computer's performance.

SUMMARY

A high performance network interface is provided for
receiving a packet from a network and transferring it to a
host computer system. In various embodinients of the
invention, the high performance network interface is con
figured to implement one or more enhanced operations in
order ID efficiently handle a range of packet arrival rates
without unduly burdening the host computer syi;tem.

One such operation is the re-assembly of data from
multiple packets in one communication flow, circuit or
connection. In particular, data portions of such packets may
be re-assembled by transferring or copying them into a
single host memory area, or buffer, that is of a pre
determined size (e.g., one memory page). The re-assembled
data may then be provided to the destination entity in an
efficient manner, such as a single copy or memory transfer.

Another operation for increasing the efficiency of han
dling network traffic in an embodiment of the invention is
the batch processing of packet headers through an appro
priate protocol stack. In this operation, a host computer
system is alerted to the transfer, into host memory, of two or
more packets from the same communication flow. When so
alerted, the host computer may delay processing a first
packet in the flow in order to await receipt of a second. The
packets' headers may then be processed collectively, or in
rapid sequence, rather than interspersing the processing of
the packets with packets from other flows.

In yet another operation, the processing of packets or
packet headem through their protocol stacks may be distrib
uted among two or more processors in a multi-processor
host computer system. In a load distnbution operation in one
embodiment of the invention, an identifier of the processor
that is to process a packet is generated from a packet's :flow
key. In this embodiment, a :flow key is assembled from
identifiers of the packet's source and destination entities
extncted from the packet's header portion. By using the
packet's flow key, which uniquely identifies a particular
communication flow all packets in the same flow will be sent
to the sanie processor. One method of generating the pro
cessor identifier is to perform a hashiog function on the flow
key and then take the modulus of that result over the number
of processors in the host computer system.

In one embodiment of the invention a high performance
network interface includes a header parser module. When a
packet is received from a network, the header parser module
parses a header portion of the packet. The header parser
module executes a series of parsing instructions configured
in accordance with a set of selected communication proto
cols for conveying packets across the network. While pars
ing the packet, the header parser module compares a value
extracted from a header field with an expected value in order
to test the received packet for compallbility with the selected
protocols. Instruction.<; for operating the header parser mod
ule may be stored in a rewriteable memory so that the
module may be reconfigured to parse packets conforming to
virtually any communication protocol.

Besides parsing a packet to determine its compatibility
with a set of protocols, a header parser module in one
embodiment of the invention retrieves values from one or
more fields in the packet's headers. The extracted values
may be used to enable or assist one of the enhanced
operations. In particular, in this embodinient a header parser
module extracts identifiers of the packet's source and des-

EX 1017 Page 514

US 6,453,360 Bl
s

tination entities. These identifiers may be combined to form
a flow key for the purpose of identifying the communication
flow, circuit or connection in which the packet was sent. In
this embodiment, each separate datagram sent from a source
entity to a destination entity may comprise a separate flow. 5

After a header pa:rser module parses a packet i:eceived
from a network, the header parsc:r module passes the pack
et's flow key and, possibly, other information extracted from
the packet, to a flow database manager. The flow database
manager maintains a flow database to manage the commu-

10
nication flows received at the network interface. Within a
flow database, a number of flow keys may he stored and
indexed by flow numbers. The database is updated accord
ingly as flows are initiated and terminated and as flow
packets are received.

From information received from a header parser module 15

in this embodiment, the flow database manager assigns an
operation code to tbe packet. Other modules of the network
interface may use the operation code to determine tbe
suitability of the packet for one or more of tbe enhanced
operations descnbed above or to identify a method of 20

performing an operation. For example, the received packet's
operation code may reveal whether the packet is companble
with the set of selected protocols, whether the packet con
tains data, whether the packet's data can be re-assembled
with other flow packets, whether a flaw is to be set up or torn 25

down, etc.
In one embodiment of the invention, the bigb perfor

mance network interface includes a packet queue in which
to store a packet received from a network prior to its transfer
to a host computer system. The network interface may also 30

include a control queue or other data structures (e.g.,
registers) in which lo store data extracted from a packet
and/or information concerning the extracted data, such as an
operation code or flow number. Information stored in one or
both of tbe packet and control queues may also include a 35
checksum generated by a checksum module, a processor
identifier generated by a load distnbutor module, offsets to
specific portions of the packet, flags concerning statuses or
conditions of the packet, etc.

In another embodiment of the invention, a DMA engine is 40

provided for transferring a packet from a packet queue into
1. host memory area, such as a buffer, in the host computer
systcm. The DMAengine may draw upon information in the
packet queue or a a:mtrol queue, such as an operation code,
lo determine which buffer or buffers to store a packet in. For 45

example, a packet's header may be stored in a header buffer
while its data portion is stored in a re-assembly buffer.
Packets less than a specified size may also be stored in a
header buffer. A packet that is not compatible with the
selected protocols may be stored, intact, in a non-re- so
assembly buffer. In one embodiment, buffers are of a pre
determined size that incrc ascs tbe efficiency of memory
transfers or copies, such as one memory page.

In yet another embodinient of the invention, a high
performance network interface includes a dynamic packet 55

~atcbing module for notifying a host computer when mul
tiple packets in one communication are being transferred to
!he computer. In this embodiment, a packet batching module
mcludes a memory for storing flow numbers or flow keys of
~pie packets to be transferred to the host computer. 60

n a packet is transferred or about to be transferred, the
, ~ack:ct batching module searches its memory for other
t•ckets having the same flow number or flow key as the
• l.nsf.crred packet. The host computer is notified accord-

• fugly and may delay processing one packet in a flow in order li5

fl proeess it in conjunction with another packet in the same
ow.

6
The network interface may notify the host computer

system of the arrival or transfer of a packet by configuring
and releasing a descriptor that identifies where the packet is
stored. In another embodiment, a high performance network
interface issues an alert, such as an interrupt, to the host
computer system. Interrupts issued by the neiwork interface
may be modulated, particularly as the rate of packets arriv
ing from a network increases, so as lo limit the number of
interrupts or the frequency with which they are issued. In
one method of modulating interrupts, after a first interrupt is
issued further interrupts may be disabled until a specified
number of packets have been received and/or a pre
determined period of time elapses. In another method of
modulating interrupts, interrupts may be disabled while
software operating on the host computer polls tbe network
interface to determine if a packet bas been received or
transferred. Packet and time counters may also be used in
this method in order lo allow interrupts to be generated in the
event that the polling software is blocked or fails.

In one embodiment of the invention, if the rate at which
a host computer accepts packets from a high-speed network
interface does not keep pace with the rate at which packets
are received at the network interface, a packet may be
dropped. In this embodiment a method is provided for
randomly selecting a packet to be discarded, before or after
the packet is stored in a packet queue.A packet queue in this
embodiment is logically separated into multiple regions or
divisions, which may overlap. A probability indicator is
associated with each region to indicate the probability of
dropping a packet when the level of traffic stored in the
queue is within the region. When the level of traffic is within
a particular region, the probability indicator for that region
is applied each time a discardable packet is to be stored in
the packet queue. The region's probability indicator thus
indicates whether to discard the packet or allow it to be
stored in the queue. All packets may be considered
discardablc, or some packets (e.g., control packets, packets
in a certain flow, packets adhering to a particular protocol)
may be considered non-<liscardablc. In one embodinient of
the invention, the network interface inclndes a counter that
is incremented through a limited range of values as discard
able packets are received for storage in tbe queue. In this
embodiment, a probability indicator consists of a set of
numbers (e.g., a mask) lo indicate, for each value in tbe
range of counter values, whether or not to discard a packet.

DESCRIP'IlON OF TI-IE FIGURES

FIG. lAis a block diagram depicting a network interface
circuit (NIC) for receiving a packet from a network in
accordance with an embodiment of the present invention.

FIG. lB is a flow chart demonstrating one method of
operating the NIC of FIG. lA to transfer a packet received
from a network to a host computer in accordance with an
embodiment of tbe invention.

FIG.2 is a diagram of a packet transmitted over a network
and received at a network interface circuit in one embodi
ment of the invention.

FIG. 3 is a block diagram depicting a header parser of a
network interface circuit for parsing a packet in accordance
with an embodiment of the invention.

FIGS. 4A-4B comprise a flow chart demonstrating one
method of parsing a packet received from a network at a
network interface circuit in accordance with an embodiment
of the present invention.

FIG. 5 is a block diagram depicting a network interface
circuit flow database in accordance with an cmbodinient of
the invention.

EX 1017 Page 515

US 6,453,360 Bl
7

FIGS. 6A....fiE comprise a flowchart illustrating one
method of managing a network interface circuit flow data
base in accordance with an embodiment of the invention.

HG. 7 is a flow chart demonstrating one method of
distributing the processing of network packets among mul- s
tiple processors on a host computer in accordance with an
embodiment of the invention.

HG. 8 is a diagram of a packet queue for a network
interface circuit in accordance with an embodiment of the
invention.

HG. 9 is a diagram of a control queue for a network
interface circuit in accordance with an embodiment of the
invention.

10

HG. 10 is a block diagram of a DMA engine for trans- 15
ferring a packet received from a network to a host computer
in accordance with an embodiment of the invention.

8
adapted for use with other protocols and in communication
devices other than a NIC.

The program environment in which a present embodiment
of the invention is executed illustratively incorporates a
general-purpose computer or a special purpose device such
a band-held computer. Details of such devices (e.g.,
processor, memory, data storage, input/output ports and
display) are well known and are omitted for the sake of
eiarity.

It should also be understood that the techniques of the
present invention might be implemented using a variety of
technologies. For example, the methods descnbed herein
may be implemented in software running on a program
mable microprocessor, or implemented in hardware utilizing
either a combination of microprocessors or other specially
designed application specific integrated circuits, program-
mable logic devices, or various combinations thereof. In
particular, the methods descnbed herein may be imple
mented by a series of computer-executable instructions
residing on a storage medium such as a carrier wave, disk

HG.11 includes diagrams of data structures for managing
the storage of network packets in host memory buffers in
accordance with an embodiment of the invention. 20 drive, or other computer-readable medium.

HGS. 12A-12B are diagrams of a free descriptor, a
completion descriptor and a free buffer array in accordance
with an embodiment of the invention.

HGS. 13-20 are flow charts demonstrating methods of
transferring a packet received from a network to a buffer in 25

a. host computer memory in accordance with an embodiment
of the invention.

HG. 21 is a diagram of a dynamic packet batching
module in accordance with an embodiment of the invention.

30
HGS. 22A-22B comprise a flow chart demonstrating one

method of dynamically searching a memory containing
information concerning packets awaiting transfer to a host
computer in order to locate a packet in the same communi
cation flow as a packet being transferred, in accordance with 35

an embodiment of the invention.

FIG. 23 depicts one set of dynamic instructions for
parsing a packet in accordance with an embodiment of the
invention.

• FIG. 24 depicts a system for randomly discarding a packet 40

from a network interface in accordance with an embodiment
· of the invention.

·.' ·. · FIGS. 25A-2SB comprise a flow chart demonstrating one
, .method of discarding a packet from a network interface in

accordance with an embodiment of the invention. 45

DETAIIED DESCRIPTION
' i The following description is presented to enable any

'.person skilled in the art to make and use the invention, and so >~ pro~ded in the context of particular applications of the
~ lnve~tmn and their requirements. Various modifications to
~ disc!osed embodiments will be readily apparent to those
· ed m the art and the general principles defined herein
~~y be applied to other embodiments and applications 55
'~tho~t departing from the spirit and soope of the present
~~ntmn. Thus, the present invention is not intended to be

:~led to tbe embodiments shown, but is to be accorded the
scope consistent with the principles and features

loscd herein.
60 1c In P~cula.r, embodiments of the invention are descnbed

, lo:W. m the form of a netwodl: interface circuit (NIC)
~lVlng communica1ion packets formatted in accordance
·'.l. certain communication protocols compatible with the
¥Plcrnet. One skilled in the art will recognize, however, that 65

-Present invention is not limited to communication pro-
ls compatible with the Internet and may be readily

Introduction
In one embodiment of the present invention, a networlc

interface circuit (NIC) is configured to receive and process
communication packets exchanged between a host computer
system and a network such as the Internet. In particular, the
NIC is configured to receive and manipulate packets for-
matted in accordance with a protocol stack (e.g., a combi
nation of communication protocols) supported by a network
coupled to the NIC.

A protocol stack may be described with reference to the
seven-layer ISO-OSI (International Standards Organization
Open Systems Interconnection) model framework. Thus,
one illustrative protocol stack includes the Transport Control
Protocol (TCP) at layer four, Internet Protocol (IP) at layer
three and Ethernet at layer two. For purposes of discussion,
the term "Ethernet" may be used herein to refer collectively
to the standardiz:ed IEEE (Institute of Electrical and Elec
tronics Engineers) 8023 specification as well as version two
of the non-standardized form of the protocol. Where differ
ent fonns of the protocol need to be distinguished, the
standard form may be identified by including the "802.3n
designation.

Other embodiments of the invention are configured to
work with communications adhering to other protocols, lx>th
known (e.g., AppleTalk, IPX (Internetwork Packet
Exchange), etc.) and unknown at the present time. One
skilled in the art will recognize that the methods provided by
this invention are easily adaptable for new communication
protocols.

In addition, the processing of packets descnbed below
may be performed on communication devices other than a
NIC. For example, a modem, switch, router or other com
munication port or device (e.g., serial, parallel, USB, SCSI)
may be similarly configured and operated.

In embodiments of the invention descnoed below, a NIC
receives a packet from a network on behalf of a host
computer system or other communication device. The NIC
analyzes the packet (e.g., by retrieving certain fields from
one or more of its protocol headers) and takes action to
increase the efficiency with which the packet is transferred
or provided to its destination entity. Equipment and methods
discussed below for increasing the efficiency of processing
or transferring packets received from a network may also be
used for packets moving in the reverse direction (i.e., from
the NIC to the network).

One technique that may be applied to incoming network
traffic involves examining or parsing oae or more headers of

EX 1017 Page 516

ee on ae z B va Pe Pe : " , ‘
Td eae eeaeeee

7

FIGS. 6A-6E comprise a flowchart illustrating one
method of managing a network interface circuit flow data-
base in accordance with an embodimentof the invention.

FIG. 7 is a flow chart demonstrating one method of
distributing the processing of network packets among mnul-
tiple processors on a host computer in accordance with an

Ee embodiment of the invention.
FIG. 8 is a diagram of a packet queue for a network

interface circuit in accordance with an embodiment of the
inveation.

F FIG. 9 is a diagram of a control queue for a network
FE interface circuil in accordance with an embodiment of the

invention.

FIG. 10 is a block diagram of a DMA engine for trans-
ferring a packet received from a network to a bos! computer
in accordance with an embodimentof the invention.

FIG.11 includes diagrams ofdata strictures for managing
the storage of network packets in host memory buffers in
accordance with an embodiment of the invention.

FIGS. 12A-12B are diagrams of a fiee descriptor, a
completion descriptor and a free buffer array in accordance
with an erabodimentof the invention.

FIGS. 13-20 are flow charts demonstrating methods of
transfering a packet received from a network to a buffer in
a host computer memory in accordance with an embodiment
of the invention.

FIG. 21 is a diagram of a dynamic packet batching
module in accordance with an embodiment of the invention.

FIGS. 22A-22B comprise a Now chart demonstrating one
method of dynamically searching a memory containing
information concerning packets awaiting transfer to a host
computer in order to locate a packet in the same communi-
cation flow as a packet being transferred, in accordance with
an embodiment of the invention.

AG. 23 depicts one set of dynamic instructions for
Parsing a packet in accordance with an embodimentof theinvention.

+ FIG.24 depicts a system for randomly discarding a packet
F from a network interface in accordance with an embodiment

, - OF the invention.

b ” FIGS. 25A-25B comprise a flow chart demonstrating one
F, method of discarding a packet from a network interface in
& aCCOrdance With an embodimentof the invention.

. : DETAILED DESCRIPTION
: The following description is presented to enable anyFpecsoia] Skilled in the art to make and use the invention, and
8 provided in the context of particular applications of the

Anvention and their requirements. Various modifications to
disclosed embodiments will be readily apparentio those
lied in the art and the general principles defined herein

gay be applied to other embodiments and applications
E Without departing from the spirit and scope of the present

f 20¥ention. Thus, the present invention is not intended to be
i ted to the embodiments shown,but is to be accorded theae Scope consistent with the principles and features
Fitisclosed herein. pee
iePutticular, embodiments ofthe invention are described
belowin the form of a network interface circuit ic

paecciving communication packets formatted in accordance
ye Certain communication protocols compatible with the
apternet, One skilled in the art will recognize, however, that
Be” Present invention is not limited te communication pro-
Wcols compatible with the Internet and may be readily

10

30

40

45

50

65

; US 6,453,360 Bi
8

adapted for use with other protocols and in communication
devices other than a NIC.

The program environmentin which a present embodiment
of the invention is executed illustratively incorporates a
general-purpose computer or a special purpose device such
a hand-held computer. Details of such devices (e.g.,
processor, memory, data storage, input/output ports and
display) are well known and are omitted for the sake of
clanty.

It should also be understood that the techniques of the
present invention might be implemented using a variety of
technologies. For example, the methods described herein
may be implemented in software running on a program-
mable microprocessor, or implemented in hardware utilizing
either a combination of microprocessors or other specially
designed application specific integrated circuits, program-
mable logic devices, or various combinations thereof. In
particular, the methods described herein may be imple-
mented by a series of computer-executable instructions
residing on a storage medium such as a carrier wave, disk
drive, or other computer-readable medium.
Introduction

In one embodiment of the present invention, a network
interface circuit (NIC) is configured to receive and process
communication packets exchanged between a host computer
system and a network such as the Internet. In particular, the
NIC is configured to receive and manipulate packets for-
matted in accordance with a protocol stack (e.g., a combi-
nation of communication protocols) supported by a network
coupled to the NIC.

A protocol stack may be described with reference to the
seven-layer ISO-OS] ({oternational Standards Organization-
Open Systems Interconnection) model framework. Thus,
one illustrative protocol stack includes the Transport Control
Protocol (TCP) at layer four, Internet Protocol (IP) at layer
three and Ethernet at layer two. For purposes of discussion,
the term “Ethernet” may be used herein to refer collectively
to the standardized IEEE (Institute of Electrical and Elec-
tronics Engineers) 802.3 specification as well as version two
of the non-standardized form of the protocol. Where differ-
ent forms of the protocol need to be distinguisbed, the
standard form may be identified by including the “802.3”
designation.

Other embodiments of the invention are configured to
work with communications adheringto otherprotocols, both
known (e.g., AppleTalk, IEX (Internetwork Packet
Exchange), etc.) and unknown at the present time. One
skilled in the art will recognize that the methods provided by
this invention are easily adaptable for new communication
protocols.

In addition, the processing of packets described below
may be performed on communication devices other than a
NIC. For cxample, a modem, switch, router or other com-
munication port or device (e.g., serial, parallel, USB, SCSD
may be similarly configured and operated.

In embodiments of the invention described below, a NIC
receives a packet from a network on behalf of a host
computer system or other communication device. The NIC
analyzes the packet (c.g., by retricving cerlain ficlds from
one or more of its protocol headers) and takes action to
increase the efficiency with which the packetis transferred
or providedto its destination entity. Equipment and methods
discussed below for increasing the efficiency of processing
or transferring packets received from a network may also be
used for packets moving in the reverse direction (i.¢., from
the NIC to the network).

One technique that may be applied to incoming network
traffic involves examining or parsing ove or more headers of

EX 1017 Page 516

}

/
:
!

US 6,453,360 Bl
9

an incoming packl:t (e.g., headers for the layer two, three and
four protocols) in order to identify the packet's :source and
destination entities and possibly retrieve certain other infor
mation. Using identifiers of the communicating entities as a
key, data from multiple packets may be aggregated or 5
re-assembled. Typically, a datagram sent to one destination
entity from one source entity is transmitted via multiple
packeL,;. Aggregating data from multiple related packets
(e.g., packets carrying data from the same datagram) thus
allows a datagram to be re-assembled and collectively 10

transferred to a host computer. The datagram may then be
provided to the destination entity in a bighly efficient man
ner. For example, rather than providing data from one packet
at a time (and one byte at a time) in separate "copy"
operations, a "page-flip" operation may be performed. In a 15

page-flip, an entire memory page of data may be provided to
the destination entity, posstbly in exchange for an empty or
unused page.

In another technique, packets received from a network are
placed in a queue to await transfer to a host computer. While 20

awaiting transfer, multiple related packets may he identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (e.g., one at a time).

Yet another technique involves submitting a number of 25
' related packets to a single proc=>r of a multi-pTOce&'SOr

host computer system. By distributing packets conveyed
, between different pairs of source and destination entities
.= :among different processors, the processing of packets
· through their respective protocol stacks can he distributed 30
· while still maintaining packets in their correct order.

The techniques discussed above for increasing the effi-
pency with wbich packets are processed may involve a

· combination of hardware and software modules located on
·, '& netwmk interface and/or a bost computer system. In one 35

.. particular cmboiliment., a parsing module on a host comput
~r's NIC parses header portions of packets. Illustratively, the
parsing module comprises a microsequencer operating

'.Jla:Ording to a set of n:placeable instructions stored as
. pticro-a:ide. Using information extracted from the packets, -4{)

· "'1Ultiple packets from one source entity to one destination
·,nl,ity may be identified.Ahaniware re-assembly module on
. the NIC may then gather the data from the multiple packl:ts.
~t,Dother hardware module on the NIC is configured to
~ related packets awaiting transfer to the host com- -45

l' :so that they may he processed through an appropriate
tocol stack collectively, rather than serially. The

. · ~mbled data and the packet's headers may then he
. ed to the host computer so that appropriate :software

. e.g.; a device driver for the NIC) may process the headers 50
deliver the data to the destination entity.

:'Wh':I'C the host computer includes multiple processors, a
. td distnbutor (which may also he implemented in hard-

. on the NIC) may select a processor to process the
\caders of the multiple packets througli a protocol stack. 55

·-.·In. another embodiment of the invention, a system is
ided for randomly discarding a packet from a NIC when

le NIC is saturated or nearly saturated with packets await
g. lr.uisfer to a bost computer.
. Embodinient of a High Performance Network Interface 60

·1

··!'FIG.IA depicts NIC 100 configured in accordance with
fflUstrative embodiment of the invention. A brief descrip
.of the operation and interaction of the various modules

N.I~ 100 in this embodiment follows. Descriptions incor- 65

• g much greater detail are provided io subsequent
ns.

10
A communication packet may be received at NIC 100

from network 102 by a medium access control (MAC)
module (not shown in FIG. IA). The MAC module performs
low-level processing of the packet such as reading the
packet from the network, performing some error checking,
detecting packet fragments, detecting over-sized packets,
removing the layer one preamble, etc.

Input Port Processing (IPP) module 104 then receives the
packet. The IPP module stores the entire packet in packet
queue 116, as received from the MAC module or network,
and a portion of the packet is copied into header patSCr 106.
In one embodiment of the invention IPP module 104 may act
as a coordinator of sorts to prepare the packet for transfer to
a host computer system. In such a role, IPP module 104 may
receive information concerning a packet from various mod
ules of NIC 100 and dispatch such information to other
modules.

Header parser 106 parses a header portion of the packet lo
retrieve various pieces of information that will be used to
identify related packets (e.g., multiple packets from one
same source entity for one destination entity) and that will
affect subsequent processing of the packets. In the illustrated
embodinlent., header pan.er 106 communicates with ftow
database manager (FDBM) 108, which manages flow data
base (FDB) 110. In particular, header parser 106 submits a
query to FDBM 108 to determine whether a valid commu
nication flow (descnbed below) exists between the source
entity that sent a packet and the destination entity. The
destination entity may comprise an application program, a
communication module, or some other element of a bost
computer system that is to receive the packet.

In the illustrated embodiment of the invention, a commu
nication flow comprises one or more datagram packets from
one source entity to one destination entity. A flow may be
identified by a flow kl:y assembled from source and desti
nation identifiers retrieved from the packet by header parser
106. In one embodiment of the invention a flow key com
prises address and/or port ioforrnation for the source and
destination entities from the packet's layer three (e.g., IP)
and/or layer four (e.g., TCP) protocol headers.

For purposes of the illustrated embodiment of the
invention, a communication ftow is similar to a TCP end
to-end connection but is generally shorter in du.ration. In
particular, in this embodiment the duration of a flow may be
limited to the time needed to receive all of the packets
associated with a single datagram passed from the source
entity to the destination entity .

Thus, for purposes of :flow management., header parser
106 passes the packet's flow key to flow database manager
108. The header parser may also provide the flow database
manager with other information concerning the packet that
was retrieved from the packet (e.g., length of the packet) .

Flow database manager 108 searches FDB 110 in
response to a query received from header parser 106.
lliustratively, flow database 110 stores information concern
ing each valid communication flow involving a destination
entity served by NIC 100. Thus, FDBM 108 updates FDB
110 as necessary, depending upon the information received
from header parser 106. In addition, in this embodinient of
the invention FDBM 108 associates an operation or action
code with the received packet. An operation code may be
used to identify whether a packet is part of a new or existing
:flow, whether the packet includes data or just control
information, the amount of data within the packet, whether
the packet data can be re-assembled with related data (e.g.,
other data in a datagram sent from the source entity to the
destination entity), etc. FDJlM 108 may use information

EX 1017 Page 517

a ; AP puteige eae

US 6,453,360 B1
9

an incoming packet(c.g., headers for the layer two, three and
four protocols) in orderto identify the packet’s source and
destination entities and possibly retrieve certain other infor-
mation. Using identifiers of the comnmmicatingentities as a
key, data from multiple packets may be aggregated or
re-assembled. Typically, a datagram sent io one destination
entity from one source entity is transmitted via multiple
packets. Agpregating data from multiple related packets
(c.g., packets carrying data from the same datagram) thus
allows a datagram to be re-assembled and collectively
transferred to a host computer. The datagram may then be
provided to the destination entity in a highly efficient man-
ner. For example, rather than providing data from one packet
at a time (and one byte at a time) in separate “copy”
operations, a “page-flip” operation may be performed. In a
page-flip, an entire memory page of data may be provided to
the destination entity, possibly in exchange for an empty or
unused page.

In another technique,packets received from a network are
placed in a queueto await transfer to a host computer. While
awaiting transfer, multiple related packets may be identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (¢.g., one ai a time).

Yet another technique involves submitting a number of
related packets to a single processor of a multi-processor

. host computer system. By distributing packets conveyed
between diflerent pairs of source and destination cntities
among different processors, the processing of packets

; through their respective protocol stacks can be distributed
’ while still maintaining packets in their correct order.

f The techniques discussed above for increasing the effi-
§. fiency with which packets are processed may invotve a
f combination of hardware and software modules located on

», network interface and/or a host computer system. In one
: particular embodiment, a parsing module on a host comput-

& £r’s NIC parses header portions ofpackets. [lustratively, the
parsing module comprises a microsequencer operating

F’according to a set of replaceable instructions stored as.
: @MictoO-Code. Using information extracted from the packets,

f Multiple packets from one source entity to one destination
f Sutity may be identified.Ahardware re-assembly module on

pthe NIC maythen gather the data from the multiple packets.
BAnother hardware module on the NIC is configured to
Eescognizc related packets awaiting transfer to the host com-
eputer so that they may be processed through an appropriate
Protocol stack collectively, rather than serially. The

assembled data and the packet’s headers may then be
ovided to the host computer so that appropriate software

©.g., a device driver for the NIC) may process the headers
id deliver the data 10 the destination entity.

ere the host computer includes multiple processors, a
: ad distributor (which may also be implemented in hard-
Ware on the NIC) may sclect a processor to process the

of the multiple packets through a protocol stack.
j#'n another embodiment of the invention, a system is
a0 idedfor randomly discarding a packet from a NIC when
F C is saturated or ncarly saturated with packets await-
wee transfer to a host computer.

a Embodiment of a High Performance Network Interface

#iFIG. 1A depicts NIC 100 configured in accordance with

ustrative embodiment of the invention. Abrief descrip-
oe -of the operation and interaction of the various modules

F NIC 100 in this embodiment follows. Descriptions incor-
Rating much preater detail are provided in subsequentons.

20

25

40

wa a

60

éBe

10
A communication packet may be received at NIC 100

from network 102 by a medium access control (MAC)
module (not shown in FIG. 14). The MAC module performs
low-level processing of the packet such as reading the
packet from the network, performing some error checking,
detecting packel fragments, detecting over-sized packets,
removing the layer one preamble, etc.

Input Port Processing (IPP) module 104 then receives the
packet. The IPP module stores the entire packet in packet
queue 116, as received from the MAC module or network,
and a portion of the packetis copied into header parser 106.
In one embodimentof the invention IPP module 104 mayact
as a coordinator of sorts to prepare the packet for transfer to
a host computer system. Io such a role, TPP module 104 may
receive information concerning a packet from various mod-
ules of NIC 100 and dispatch such information to other
modules.

Headerparser 106 parses a header portion of the packetto
retrieve various pieces of information that will be used to
identify related packets (e.g., multiple packets from one
same source entity for one destination entity) and that will
alfect subsequent processing of the packets. In the Mustrated
embodiment, header parser 106 communicates with flow
database manager (FDBM) 108, which manages flow data-
base (FDB) 110. In particular, header parser 106 submits a
query to FDBM 108 to determine whether a valid commu-
nication flow (described below) exists between the source
entity that sent a packet and the destination entity. The
destination entity may comprise an application program, a
communication module, or some other element of a host
computer system that is to receive the packet.

In the illustrated embodimentof the invention, a commu-
nication flow comprises one or more datagram packets from
one source entity to one destination entity. A flow may be
identified by a flow key assembled from source and desti-
nation identifiers retrieved from the packet by header parser
106. In one embodiment of the invention a flow key com-
prises address and/or port information for the source and
destination entities from the packet’s layer three (¢.g., IP)
and/or layer four (¢.g., TCP) protocol headers.

For purposes of the illustrated embodiment of the
invention, a communication flow is similar to a TCP end-
to-end connection but is generally shorter in duration. In.
particniar, in this embodimentthe duration of a flow may be
limited to the time needed to receive all of the packets
associated with a single datagram passed from the source
entity to the destination entity.

Thus, for purposes of flow management, header parser
106 passes the packet's flow key to flow database manager
108. The header parser may also provide the flow database
manager with other information conceming the packet that
was retrieved from the packet(c.g., length of the packet).

Flow database manager 108 searches FDB 110 in
fesponse to a query received from header parser 106.
Tilustratively, flow database 110 stores information concern-
ing cach valid communication flow involving a destination
entity served by NIC 100. Thus, FDBM 108 updates FDB
110 as necessary, depending upon the information received
from header parser 106. In addition, in this embodiment of
the invention FDBM 108 associates an operation or action
code with the received packet. An operation code may be
used to identify whether a packet is part of a new or existing
flow, whether the packet includes data or just control
information, the amount of data within the packet, whether
the packet data can be re-assembled with related data (¢.g.,
other data in a datagram sent from the sourceentity to the
destination entity), etc. FDBM 108 may use information

EX 1017 Page 517

eteeeeeee ONEe

US 6,453,360 Bl
11

retrieved from the packet and provided by header parser 106
to select an appropriate operation code. The packet's opera·
lion code is then passed back to lhe header parser, along with
an index of the packet's flow within FDB 110.

In one embodiment of the invention the combination of 5

header parser 106, FDBM 108 and FDB 110, or a subset of
these modules, may be known as a traffic classifier due to
their role in cla.s.mying or identifying network traffic
received at NIC 100.

In the illustrated embodiment, header parser 106 also 10

passes the packet's flow key lo load distributor ill. In a host
computer system having multiple processors, load distnbu
tor 1U may determine whicb processor an incoming packet
is to be routed to for processing through the appropriate
protocol stack. For example, load distributor 1U may ensure 15

that related packets are routed to a single processor. By
sending all packets in one communication flow or end-to
end connection lo a single processor, the correct ordering of
packets can be enforced. Load distnbutor 1U may be
omitted in one alternative embodiment of the invention. In 20

another alternative embodiment, header parser 106 may also
communicate directly with other modules of NIC 100
besides the load distributor and flow database manager.

Thus, after header parser 106 parses a packet FDBM 108
alters or updates FDB no and load distnbutor 1U identifies 25

a processor in the host computer system to procci;s the
packet. After these actions, the header parser passes various
information back to IPP module 104. Illustratively, this
infonnation may include the packet's flow key, an index of
the packet's flow within flow dlttabasc no, an identifier of 30

a processor in the host computer system, and various other
data concerning the packet (e.g., its length, a length of a
packet header).

Now the packet may be stored in packet queue n6, which
holds packets for manipulation by DMA (Direct Memory 35
Access) engine 120 and transfer to a host computer. In
addition to storing the packet in a packet queue, a corre
sponding entry for the packet is made in control queue ns
and information concerning the packet's flow may also be
passed to dynamic packet batcbing module 122. Control '4-0

~ queue ns contains related control information for each
: paeket in packet queue n6.

Packet batching module 122 draws upon information
·: ~ming packets in packet queue n6 to enable the batch

.(1.e., collective) processing of headers from multiple related 45

~packets. In one embodiment of the invention packet batch
·mg module 122 alerts the host computer to the availability
·of headers from related packets so that they may be pro
·CCSScd together.

Although the processing of a packet's protocol headers is 50

. lierforrned by a processor on a host computer system in one
· embodiment of the invention, in another embodiment the
_protocol headers may be processed by a processor located on

,, C 100. In the former embodiment, software on the host
:'computer (e.g., a device driver for NIC 100) can reap the 55
·ldvantages of additional memory and a replaceable or
_).lpgradeable processor (e.g., the memory may be supple-
'• nled and the processor may be replaced by a faster
' odel).
· During the storage of a packet in packet queue n6, 60

·• ksum generator 114 may perform a checksum opera-
. The checksum may be added to the packet queue as a
er to the packet illustratively, checksum generator 114
en.tes a checksum from a portion of the packet received

, Ill network 102. In one embodiment of the invention, a 65
... um is generated from the TCP portion of a packet
.g;, the TCP header and data). If a packet is not formatted

12
according to TCP, a checksum may be generated on another
portion of the packet and the result may be adjusted in later
processing as necessary. For example, if the checksum
calculated by checksum generator 114 was not calculated on
the correct portion of the packet, the checksum may be
adjusted to capture the correct portion. This adjustment may
be made by software operating on a host computer system
(e.g., a device driver). Checksum generator 114 may be
omitted or merged into another module of NIC 100 in an
alternative embodiment of the invention.

From the information obtained by header parser 106 and
the flow information managed by flow database manager
108, the host computer system served by NIC 100 in the
illustrated embodiment is able to process network traffic
very efficiently. For example, data portions of related pack
ets may be re-assembled by DMA engine 120 to form
aggregations that can be more efficiently manipulated. And,
by assembling the data into buffers the size of a memory
page, the data can be more efficiently transferred to a
destination entity through "page-flipping," in which an
entire memory page filled by DMA engine UO is provided
at once. One page-flip can thus tue the place of multiple
copy operations. Meanwhile, the header portions of the
re-assembled packets may similarly be processed as a group
through their appropriate protocol stack.

As already dcscn"bed, in another embodinlent of the
invention the processing of network traffic through appro
priate protocol stacks may be efficiently distributed in a
multi-processor host computer system. In this embodiment,
load distnbutor 112 assigns or distnbutcs related packets
(e.g., packets in the same communication flow) to the same
processor. In particular, packets having the same source and
destination addresses in their layer three protocol (e.g., IP)
headers and/or the same source and destination ports in their
layer four protocol (e.g., TCP) headers may be sent to a
single processor.

In the NIC illustrated in FIG. 1A, the proa:ssing enhance
ments discussed above (e.g., re-assembling data, batch pro
cessing packet headers, distributing protocol stack
processing) are possible for packets received from network
102 that are formatted according to one or more pre-selected
protocol stacks. In this embodiment of the invention net·
work 102 is the Internet and NIC 100 is therefore configured
to process packets using one of several protocol stacks
compallble with the Internet. Packets not configured accord
ing to the pre-selected protocols are also processed, but may
not receive the benefits of the full suite of processing
efficiencies provided to packets meeting the pre-selected
protocols.

For example, packets not matching one of the pre-selected
protocol stacks may be distnbuted for processing in a
multi-processor system on the basis of the packets' layer two
(e.g., medium access control) source and destination
addresses rather than their layer three or layer four
addresses. Using layer two identifiers provides less granu
larity to the load distnbution procedure, thus possibly dis
tnbuting the processing of packets less evenly than if layer
three/four identifier.; were used.

FIG. lB depicts one method of using NIC 100 ofFIG. lA
to receive one packet from network 102 and transfer it to a
host computer. State 130 is a start state, possibly character
ized by the initialization or resetting of NIC 100.

In state 132, a packet is received by NIC 100 from
network 102. As already descnbed, the packet may be
formatted according to a variety of communication proto
cols. Toe packet may be received and initially manipulated
by a MAC module before being passed to an IPP module.

EX 1017 Page 518

ee aoeSe

hiaLee)Ttlecka aece

US 6,453,360 B1
it

retrieved from the packet and provided by header parser 106
to select an appropriate operation code. The packet's opera-
tion cade is then passed backto the headerparser, along with
an index of the packet’s flow within FDB 110.

In onc embodiment of the invention the combination of 5
header parser 106, FDBM 108 and FDB 110,or a subset of
these modules, may be known as a traffic classifier duc to
their role in classifying or identifying network waffic
received at NIC 100.

In the illustrated embodiment, header parser 106 also 10
passes the packet’s flow keyto load distributor 112. In a host
computer system having multiple processors, load distribu-
tor 112 may determine which processor an incoming packet
is to be routed to for processing through the appropriate
protocol stack. For example, load distributor 112 may ensure

_ that related packets are routed to a single processor. By
; sending all packets in one communication flow or end-to-

fF end connection to a single processor, the correct ordering ofpackets can be enforced. Load distributor 112 may be

another altemative embodiment, header parser 106 may also
communicate directly with other modules of NIC 100
besides the load distributor and flow database manager.

Thus, after header parser 106 parses a packet FDBM 108

a processor in the host computer system to process the
packet. After these actions, the header parser passes various
information back to IPP module 104. Iliustratively, this
information may include the packet’s flow key, an index of

a processor in the host computer system, and various other
data concerning the packet (¢.g., its length, a length of a
packet header).

Now the packet may be stored in packet queue 116, which

Access) engine 120 and transfer to a host computer. In
addition to storing the packet in a packet queuc, a corre-
Spondingentry for the packet is made in control queue 118
and information concerning the packet’s flow may also be

a queus 118 contains related control information for cach
4 Packet in packet queue 116.

Packet batching module 122 draws upon information
SOncerning packets in packet queue 116 1o enable the batch

ackeis. In one embodimentof the invention packet batcb-
pg module 122 alerts the host computer to the availability
fof headers from related packets so thal they may be pro-
essed together.

p Performed by a processoron a host computer system in one
embodiment of the invention, in another embodiment the

b Protocol headers may be processed by a processor located on
‘NIC 100. In the former embodiment, software on the host

Eadvantages of additional memory and a replaceable or
EMpgradcable processor (e.g., the memory may be supple-

ode, and the processor may be replaced by a faster
um generator 114 may perform a checksum opera-

The checksum may be added to the packet queue as a
et to the packet. [lusiratively, checksum generator 114

w“Derates a checksum from a portion of the packet received

Rion

pecksum is generated from the TCP portion of a packet
» the TCP header and data). If a packetis not formatted

Me w

ontitted in one alternative embodiment of the invention. In 20

alters or updates FDB 110 and load distributor 112 identifies 25

the packet’s flow within flow database 110, an identifier of 30

holds packets for manipulation by DMA (Direct Memory 3s

4 passed to dynamic packet batching module 122. Control 40

<., Collective) processing of headers from multiple related 45

Although the processing of a packet’s protocol headers is 50

mputer (e.g, a device driver for NIC 100) can reap the 55

; During the Storage of a packet in packet queue 116, «60

Bom network 162. In one embodiment of the invention, a 65

12

according to TCP, a checksum may be generated on another
portion of the packet and the result may be adjusted in later
processing as necessary. For example, if the checksum
calculaied by checksum generator 114 was not calculated on
the correct portion of the packet, the checksum may be
adjusted to capture the correct portion. This adjustment may
be made by software operating on a host computer system
(e.g., a device driver). Checksum generator 114 may be
omitted or merged into another module of NIC 100 in an
alternative embodiment of the invention.

From the information obtained by header parser 106 and
the flow information managed by flow database manager
108, the host computer system served by NIC 100 in the
illustrated embodiment is able to process network traffic
very efficiently. For example, data portions of related pack-
ets may be re-assembled by DMA engine 120 to form
aggregations that can be more efficiently manipulated. And,
by assembling the data into buffers the size of a memory
page, the dala can be more efficiently transferred to a
destination entity through “page-flipping,” in which an
entire memory page filled by DMA engine 120is provided
at once. One page-flip can thus take the place of multiple
copy operations. Meanwhile, the header portions of the
re-assernbled packets may similarly be processed as a group
through their appropriate protocol stack.

As already described, in another embodiment of the
invention the processing of network traffic through appro-
priate protocol stacks may be efficiently distributed in a
multi-processor host coraputer system. In this embodiment,
jJoad distributor 112 assigns or distributes related packets
(¢.g., packets in the samc communication flow) to the same
processor. In particular, packets having the same source and
destination addresses in their layer three protocol (e.g., IP)
headers and/or the same source and destination ports in their
layer four protocol (c.g., TCP) headers may be sent to a
single processor.

In the NICillustrated in FIG. 1A, the processing enhance-
ments discussed above(c.g., re-assembling data, batch pro-
cessing packet headers, distributing protocal stack
processing) are possible for packets received from network
102 that are formatted according to one or more pre-selected
protocol stacks. In this embodiment of the invention nei-
work 102is the Internet and NIC 100 is therefore configured
to process packets using one of several protocol stacks
compatible with the Internet. Packets not configured accord-
ing to the pre-selected protocols are also processed, bul may
not receive the benefits of the full suite of processing
efficiencies provided to packets meeting the pre-selected
protocals.

For example, packets not matching one of the pre-selected
protocol slacks may be distributed for processing in a
multi-processor sysiem on the basis of the packets’ layer two
(c.g., medium access control) source and destination
addresses rather than their layer three or layer four
addresses. Using layer two identifiers provides less granu-
larity to the load distribution procedure, thus possibly dis-
tributing the processing of packets less evenly than if layer
three/four identifiers were used.

FIG. 1B depicts one method ofusing NIC 100 of FIG. 1A
to receive one packet from network 102 and transferit to a
host computer. State 130is a start slate, possibly character-
ized by the initialization or resctting of NIC 100.

In slate 132, a packet is received by NIC 100 from
network 102. As already described, the packet may be
formatted according to a variety of communication proto-
cols. The packet may be received and initially manipulated
by a MAC module before being passed to an IPP module.

EX 1017 Page 518

Sea

_ _,_ ,.,-::..._

.-r-..;_;<7,l,.M....,.."""--~ ... ,.~!'"''h'-•-r~,'""~:"""'l'J"~'l>iif , ,.,.,.,114 ~..- • .-.---·,·

US 6,453,360 Bl
13

In state 134, a portion of the packet is copied and passed
to header parser 106. Header parser 106 then parses the
packet to extract values from one or more of its headers
and/or its data. A flow key is generated from some of the
retrieved information to identify the communication flow
that includes the packet. The degree or extent to which the
packet is parsed may depend upon its protocols, in that the
header parser may be configured to parse headers of different
protocols to different depths. In particular, header parser 106
may be optimized (e.g., its operating instructions
configured) for a specific set of protocols or protocol stacks.
If the packet conforms to one or more of the specified
protocols it may be parsed more fully than a packet that does
not adhere to any of the protocols.

In state 136, information extracted from the packet's
headers is forwarded to flow database manager 108 and/or
load distributor ill. The FDBM uses the information to set

14
One skilled in the art of computer systems and networking

will recognize that the procedure descnbed above is just one
method of employing the modules of NIC 100 to receive a
single packet from a network and transfer it to a host

5 computer system. Other suitable methods are also contem
plated within the scope of the invention.
An Illustrative Packet

Fl G. 2 is a diagram of an illustrative packet received by
NIC 100 from netwoik 102. Packet 200 comprises data
portion 202 and header portion 204, and may also contain

10 trailer portion 206. Depending upon the network environ
ment traversed by packet 200, its maximum size (e.g., its
maximum transfer unit or MTU) may be limited.

In the illustrated embodiment, data portion 202 comprises
data being provided to a destination or receiving entity

15 within a computer system (e.g., user, application program,
operating system) or a communication subsystem of the
computer. Header portion 204 comprises one or more head
ers prefixed to the data portion by the source or originating up a flow in flow database 110 if one does not already exist

for this communication flow. If an entry already exists for
the packet's flow, it may be updated to reflect the receipt of 20

a new flow packet. Further, FDBM 108 generates an opera
tion code to summarize one or more characteristics or
conditions of the packet. The operation code may be used by
other modules of NIC 100 to haodle the packet in an
appropriate manner, as described in subsequent sections. 25

The operation code is returned to the header parser, along
with an index (e.g., a flow number) of the packet's flow in
the flow database.

entity or a computer system comprising the source entity.
Each header normally corresponds to a different communi
cation protocol.

In a typical netwoik environment, such as the Internet,
individual headers within header portion 204 arc attached
(e.g., prepcnded) as the packet is processed through different
layers of a protocol stack (e.g., a set of protocols for
communicating between entities) on the transmitting com-
puter system. For example, FIG. 2 depicts protocol headers
210, 212, 214 and 216, corresponding to layers one through
fuur, respectively, of a suitable protocol stack. Each protocol In state 138, load distributor l12 assigns a processor

number to the packet, if the host computer includes multiple
processors, and returns the processor number to the header
processor. IDustrativcly, the processor number identifies
which processor is to conduct the packet through its protocol
stack on the host computer. State 138 may be omitted in an
alternative embodiment of the invention, particularly if the
host computer consists of only a single processor.

30 header contains information to be used by the receiving
computer system as the packet is received and processed
through the protocol stack. IDtimately, each protocol header
is removed and data portion 202 is retrieved.

As descnaed in other sections, in one embodiment of the
35 invention a system and method are provided for parsing

packet 200 to retrieve various bits of information. In this
embodiment, packet 200 is parsed in onJer to identify the
beginning of data portion 202 and to retrieve one or more

In state 140, the packet is stored in packet queue 116. As
the contents of the packet are placed into the packet queue,
checkl.-um generator 114 may compute a checksum. The
checksum generator may be informed by IPP module 104 as 40

to which portion of the packet to compute the checksum on.
The computed checksum is added to the packet queue as a
trailer to the packet In one embodiment of the invention, the
packet is stored in the packet queue at substantially the same
time that a copy of a header portion of the packet is provided
to header parser 106.

values for fields within header portion 204. Illustratively,
however, layer one protocol header or preamble 210 corre
sponds to a hardware-level specification related to the cod-
ing of individual bits. Layer one protocols are generally only
needed for the physical process of scoding or receiving the
packet across a conductor. Thus, in this embodiment of the

45 invention layer one preamble 210 is stripped from packet
200 shortly after being received by NIC 100 and is therefore
not parsed. Allio in state 140, control information for the packet is

stored in control queue 118 and information concerning the
packet's flow (e.g., flow number, flow key) may be provided
to dynamic packet batching module U2.

In state 142, NIC 100 determines whether the packet is
ready to be transferred to host computer memory. Until it is
~dy to be transferred, the illustrated procedure waits.
. When the packet is ready to be transferred (e.g., the

{>&Cket is at the bead of the packet queue or the host
~puter receives the packet ahead of this packet in the
packet queue), in ISlate 144 dynamic packet batching module
W determines whether a related packet will soon be
transferred. If so, then when the present packet is transferred
!P host memory the host computer is alerted that a related
~t will soon follow. The host computer may then
pmcess the packels (e.g., through their protocol stack) as a
gIQup.
· In state 146, the packet is transferred (e.g., via a direct

, ~emory access operation) to host computer memory. And,
·.. IJl state 148, the host computer is notified that the packet was
; transferred. 11ie illustrated procedure then ends at state 150.

Toe extent to which header portion 204 is parsed may
depend upon how many, if any, of the protocols represented

50 in the header portion match a set of pre-selected protocols.
For example, the parsing procedure may be abbreviated or
aborted once it is determined that one of the packet's headers
corresponds to an unsupported protocol.

Jn particular, in one embodiment of the invention NIC 100
55 is couligured primarily for Internet traffic. Thus, in this

embodiment packet 200 is extensively parsed ouly when the
layer two protocol is Ethernet (either traditional Ethernet or
8023 Ethernet, with or without tagging for Vutual Local
Area Networks), the layer three protocol is IP (Internet

60 Protocol) and the layer four protocol is TCP (fransport
Control Protocol). Packets adhering to other protocols may
be parsed to some (e.g., lesser) extent. NIC 100 may,
however, be configured to support and parse virtually any
communication protocol's header. Illustratively, the protocol

65 headers that are parsed, and the extent to which they arc
parsed, are determined by the oouliguration of a set of
instructions for operating header parser 106.

EX 1017 Page 519

htTNLRNoF - ~ <0 fee te he .

erepaeantinrreevimentin Naaoma 7 ph PR ie gmSmape,
wee we mee

sata g Megan 8H aes
emma, st reeras ame sme, oe

US 6,453,360 B1
13

In state 134, a portion of the packet is copied and passed
to header parser 106. Header parser 106 then parses the
packet to extract values from one or more ofits headers
and/or its data. A flaw key is generated from some of the
retrieved information to identify the communication fiow
that includes the packet. The degree or extent to which the
packetis parsed may depend upon its protocols, in that the
header parser may be configured to parse headers ofdifferent
protocols to different depths. In particular, headerparser 106
may be optimized (c.g., its operating instructions
configured) for a specific set of protocols or protocol stacks,
If the packet conforms to one or more of the specified
protocols it may be parsed more fully than a packet that does
not adhere to any of the protocols.

In state 136, information extracted from the packet’s
headers is forwarded to flow database manager 108 and/or
load distributor 112. The FDBM uses the information to set

up a flow in flow database 110 if onc does not already exist
for this communication flow. If an entry already exists for
the packet’s flow,it may be updated to reflect the receipt of
anew flow packet. Further, FDBM 108 generates an opera-
tion code to summarize one or more characteristics or
conditions of the packet. The operation code may be used by
other modules of NIC 100 to handle the packet in an
appropriate manner, as described in subsequent sections.
The operation code is returned to the header parser, along
with an index (¢.g., a flow number) of the packet’s flow in
the flow database.

In state 138, load distributor 112 assigns a processor
number to the packet,if the host computer includes multiple
processors, and retums the processor aumber to the header
processor. Tlbustratively, the processor number identifies
which processoris to conductthe packet through its protocol
stack on the host computer. State 138 may be omitted in an
alternative cmbodiment of the invention,particularly if the
host computer consists of only a single processor.

In state 140, the packetis stored in packet queue 116. As
the contents of the packet are placed into the packet queue,
checksum generator 114 may compute a checksum. The
checksum generator may be informed by IPP module 104 as
io which portion ofthe packet to compute the checksum on.
The computed checksum is added to the packet queue as a
trailer to the packet. In one embodimentofthe invention, the
packetis stored in the packet queue at substantially the same
time that a copy of a beader portion of the packet isprovided
to header parser 106.

Also in state 140, control information for the packet is
Stored in control queue 118 and information oonceming the
packet’s flow (¢.g,, low number, low key) may be provided
to dynamic packet batching module 122.

In state 142, NIC 100 determines whether the packet is
ready to be transferred to bost computer memory. Untilit is
teady to be transferred, the illustrated procedure waits.

. When the packet is ready to be transferred (c.g., the
F,, Packet is at the bead of the packet queue or the host
f;. Somputer receives the packet abead of this packet in the

< Packet queue),in state 144 dynamic packet batching module
122 determines whether a related packet will soon be
transferred. Lf so, then when the present packet is transferred
{© host memory the host computer is alerted that a related

f- Backet will soon follow, The host computer may then

7 trou the packets (e.g,, through their protocol stack) as a
H . In state 146, the packet is transferred (e.g., via a direct

p’ Memory access operation) to bost computer memory. And,
fe 80 Slate 148,the host computer is notified that the packet was
E fansferred. ‘The illustrated procedure then ends at state 150.

20

25

4a

50

65

14
One skilled in the art of computer systems and networking

will recognize that the procedure described aboveisjust one
method of employing the modules of NIC 100 to receive a
single packet from a network and transfer it to a host
computer system. Other suitable methods are also contem-
plated within the scope of the invention.
An IDustrative Packet

FIG. 2 is a diagram of an illustrative packet received by
NIC 166 from network 102. Packet 200 comprises data
portion 202 and header portion 204, and may also contain
trailer portion 206. Depending upon the network environ-
ment traversed by packet 200, its maximum size (¢.g., its
maximum transfer unit or MTU) may be limited.

Tn the illustrated embodiment, data portion 202 comprises
data being provided to a destination or receiving entity
within a computer system (e.g., user, application program,
operating system) or a communication subsystem of the
computer. Header portion 204 comprises one or more head-
ers prefixed to the data portion by the source or originating
entity or a computer system comprising the source entity.
Each header normally corresponds to a different communi-
cation protocol.

In a typical network environment, such as the Internet,
individual headers within header portion 204 are attached
(€.g., prepended)as the packet is processed through different
layers of a protocol slack (e.g., a set of protocols for
communicating between entities) on the transmitting com-
puter system. For example, FIG. 2 depicts protocol headers
210, 212, 214 and 216, correspondingto layers one through
four, respectively, ofa suitable protocol stack. Each protocol
header contains information to be used by the receiving
computer system as the packet is received and processed
through the protocol stack. Ultimately, each protocol header
is removed and data portion 202 is retrieved.

As described in other sections, in one embodimentof the
invention a system and method are provided for parsing
packet 200 to retrieve various bits of information. In this
embodiment, packct 200 is parsed in order to identify the
beginning of data portion 202 and to retrieve one or more
values for fields within header portion 204. [lustratively,
however, layer one protocol header or preamble 210 corre-
sponds to a hardware-level specification related to the cod-
ing of individual bits. Layer one protocols are generally only
needed for the physical process of sending or receiving the
packet across a conductor. Thus,in this embodiment of the
invention layer one preamble 210 is stripped from packet
200 shortly after being received by NIC 100 and is therefore
not parsed.

The extent to which header portion 204 is parsed may
depend upon how many,if any, of the protocols represented
in the header portion match a set of pre-selected protocols.
For example, the parsing procedure may be abbreviated or
aborted once it isdetermined that one of the packet’s headers
corresponds to an unsupported protocol.

In particular, in one erabodimentof the invention NIC 100
is configured primarily for Internet traffic. Thus, in this
embodiment packet 200 is extensively parsed only when the
layer two protocol is Ethernet (cither traditional Ethernet or
802.3 Ethemet, with or without tagging for Virtual Local
Area Networks), the layer three protocol is IP (intemet
Protocol) and the layer four protocol is TCP (Transport
Control Protocol). Packets adhering to other protocols may
be parsed to some (¢.g., lesser) extent. NIC 100 may,
however, be configured to support and parse virtually any
comrnunication protocol’s header. [llustratively, the protocol
headers that are parsed, and the extent to which they are
parsed, are determmned by the configuration of a set of
instructions for operating header parser 106.

Pg eRrneniesester stemjamgur we a

Terenas oiiotnme 5ad

EX 1017 Page 519

US 6,453,360 Bl
15

A~ described above, the protocols corresponding to head
ers 212,214 and 216 depend upon the network environment
in which a packet is sent. The protocols also depend upon the
communicating entities. For example, a packet received by
a network interface may be a control packet exchanged 5

between the medium access controllers for the source and
destination computer systems. In this case, the packet would
be likely to include minimal or no data, and may not include
layer three protocol header 214 or layer four protocol header
216. Control packets are typically used for various purposes 10

related to the management of individual connections.
Another communication flow or connection could involve

two application programs. In this case, a packet may include
headers 212, 214 and 216, as shown in FIG. 2, and may also
include additional headers related to higher layers of a 15

protocol stack (e.g., session, presentation and application
layers in the ISO-OSI model). In addition, some applications
may inclnde header.; or header-like information within data
portion 202. For example, for a Network File System (NFS)
application, data portion 202 may include NFS headers 20

related to individual NFS datagrams. A datagram may be
defined as a collection of data sent from one entity to
another, and may comprise data transmitted in multiple
packets. In otber words, the amount of data constituting a
datagram may be greater than the amount of data that can be 25
included in one packet

One skilled in the art will appreciate that the methods for
parning a packet that are described in the following section

16
through the contents of header memory 302 and retrieve
specific information. In particular, specifications of commu
nication protocols are well known and widely available.
Thus, a protocol header may be traverned byte by byte or
50me other fashion by referring to the protocol specifica
tions. In a present embodiment of the invention the parsing
algorithm is dynamic, with information retrieved from ooe
field of a header often altering the manner in which another
part is parsed.

For example, it is known that the Type field of a packet
adhering lo the traditional, form of Ethernet (e.g., vernion
two) begins at the thirteenth byte of the (layer two) header.
By comparison, the Type field of a packet following tbe
IEEE 802.3 version of Ethernet begins at the twenty-first
byte of the header. The 1ype field is in yet other locations if
the packet forms part of a Virtual Local Area Network
(VLAN) communication (which illustratively involves tag
ging or encapsulating an Ethernet header). Thus, in a present
embodiment of the invention, the values in certaio fields are
retrieved and tested in order to ensure that the information
needed from a header is drawn from the correct portion of
the header. Details concerning the form of a VLAN packet
may be found in specifications for the IEEE 8023p and
IEEE 8023q forms of the Ethernet protocol.

The operation of header parser 106 also depends upon
other differences between protocols, such as whether the
packet uses version four or vernion six of the Internet
Protocol, etc. Specifications for versions four and six of IP
may be located in IETF (Internet Engineering Task Force) are readily adaptable for packets formatted in accordance

with virtually any communication protocol. 30 RFCs (Request for Comment) 791 and 2460, respectively.
One Embodiment of a Header Parser

FlG. 3 depicts header pa:rser 106 of FIG. lAin accotdance
with a present embodiment of the iovention. Illustratively,
header parner 106 comprises header memory 302 and parser
304, and parser 304 comprises instruction memory 306. 35

Although depicted as distinct modules in FIG. 3, in an
altemative embodiment of the invention header memory 302
and instruction memory 306 are contiguous.

In the illustrated embodiment,. parser 304 parses a header
1>tored in header memory 302 according to instructions 40

stored in instruction memory 306. The instructions are
designed for the parsing of particular protocols or a particu-
lar protocol stack, as discussed above. In one embodiment of
lhe invention, instruction memory 306 is modifiable (e.g.,
the memory is implemented as RAM, EPROM, EEPROM or 45
lhe like), so that new or modified pan;ing instructions may
!>t downloaded or otherwise installed. Instructions for pars
mg a packet are further discussed in tbe following section.

In FIG. 3, a header portion of a packet stored in IPP
module 104 (shown in FIG. IA) is copied into header 50

memory 302. ffiustratively, a specific number of bytes (e.g.,
U4) at the beginniog of the packet are copied. In an
altemative embodiment of the invention, tbe portinn of a
packet that is copied may be of a different size. The
Particular amount of a packet copied into header memory 55

302 should be enough to capture one or more protocol
~aden;, or at least enough information (e.g., whether
IDC~ded in a header or data portion of the packet) to retrieve
!fie information descnoed below. The header portion stored
m ~ader memory 302 may not inclnde the layer one header, 60

Which may be removed prior to or in conjunction with the
Packet beiog processed by IPP module 104.

After a header portion of the packet is i;tored in header
memory 302, parser 304 parses the header portion according

, lo the instructions stored in instruction memory 306. In the 65

:J;rcsently de.scnbed embodiment, instructions for operating
r 304 apply the formats of selected protocols to step

The more protocols that a.re "known" by parser 304, the
more protocols a packet may be tested for, and the more
complicated tbe par5ing of a packet's header portion may
become. One skilled in the art will appreciate that the
protocols that may be parsed by parser 304 are limited only
by the instructions according to which it operates. Thus, by
augmenting or replacing tbe parsing instructions stored in
instruction memory 306, virtually all known protocols may
be handled by header parser 106 and virtually aoy informa
tion may be retrieved from a packet's headers.

If. of course, a packet header does not conform to an
expected or suspected protocol, the pari;ing operation may
be terminated. In this case, the packet may not be suitable for
one more of the efficiency enhancements offered by NIC 100
(e.g., data re-assembly, packet batching, load distribution).

Illustratively, the information retrieved from a packet's
headers is nsed by other portions of NIC 100 when process
ing that packet. For example, as a result of the packet parsing
performed by parser 304 a flow key is generated to identify
the communication flow or communication connection that
comprises the packet. Illuslratively, the flow key is
assembled by concatenating one or more addrei;ses corre
sponding to one or more of the communicating entities. In
a present embodiment,. a flow key is formed from a combi
nation of tbe source and destination addrei;ses drawn from
the IP header and the source and destination ports taken from
the TCP header. Other indicia of the communicating entities
may be used, such as the Ethernet source and destination
addresses (drawn from the layer two header), NFS file
handles or source and destination identifier.; for other appli
cation datagrams drawn from the data portion of the packet.

One skilled in the art will appreciate that the communi-
cating entities may be identified with greater resolution by
using indicia drawn from the higher layers of the protocol
stack associated with a packet. Thus, a combination of IP
and TCP indicia may irlentify the entities with greater
paru .. 1llarity than layer two infonn.1t1ou,

EX 1017 Page 520

e

US 6,453,360 B1
15

As described above, the protocols corresponding to head-
ers 212, 214 and 216 depend upon the network environment
in which a packet is seat. ‘Ihe protocols also depend uponthe
communicating entities. Kor example, a packet received by
a network interface may be a control packet exchanged
between the medium access controllers for the source and
destination computer systems. In this case, the packet would
belikely to include minimal or no data, and may not include
layer three protocol header 214orlayer four protocol header
216, Control packets are typically used for various purposes
related to the management of individual connections.

Another communication flow or connection could involve

two application programs.In this case, a packet may include
headers 212, 214 and 216, as shown in FIG. 2, and mayalso
include additional headers related to higher layers of a
protocol stack (e.g., session, presentation and application
layers in the ISO-OSI model). In addition, some applications
may include headers or header-like information within data
portion 202. For example, for a Network File System (NFS)
application, data portion 202 may include NFS headers
related to individual NFS datagrams. A datagram may be
defined as a collection of data sent from one entity to
another, and may comprise dala transmitted in multiple
packets. In oiher words, the amount of data constituting a
datagram maybe greater than the amount of data that cau be
included in one packet.

One skilled in the art will appreciate that the methods for
parsing a packet that are described in the following section
are readily adaptable for packets formatted in accordance
with virtually any communication protocol.
One Embodiment of a Header Parser

FIG.3 depicts header parser 106 ofFIG. 1Ain accordance
with a present embodimentof the invention. [lustratively,
header parser 106 comprises header memory 302 and parser
304, and parser 304 comprises instruction memory 306.
Although depicted as distinct modules in FIG. 3, in an
alternative embodimentof the invention header memory 302
and instruction memory 306 are contiguous.

In the illustrated embodiment, parser 304 parses a header
stored in header memory 302 according to instructions
Stored in instruction memory 306. The instructions are
designed for the parsing of particular protocols or a particu-
Jar protocol stack, as discussed above. In one embodimentof
the invention, instruction memory 306 is modifiable (c.g.,
the memory is implemented as RAM, EPROM, EEPROM or
the like), so that new or modified parsing instructions may
be downloaded or otherwise installed. Instructions for pars-
ing a packet are further discussed in the following section.

In FIG. 3, a header portion of a packet stored in IPP
module 104 (shown in FIG. LA) is copied into header
memory 302. [Mustratively, a specific numberof bytes(c.g,
114) at the beginning of the packet are copied. In an
alternative embodiment of the invention, the portion of a
Backet that is copied may be of a different size. The
Particular amount of a packet copied into header memory
302 should be enough to capture one or more protocol
headers, or at least cnough information (c.g., whether
included in a header ordata portion of the packet) to retrieve
the information described below. The header portion stored
in header memory 302 maynotincludethe layer one header,
which may be removed prior to or in conjunction with the
Packet being processed by IPP module 104.

Afier a header portion of the packet is stored in header
& Memory 302, parser 304 parses the header portion according

f. ' the instructions stored in instruction memory 306. In the
Presently described embodiment, instructions for operating

T 304 apply the formats of selected protocols io step

20

25

30

35

45

60

16

through the contenis of header memory 302 and retrieve
specitic information. la particular, specifications of commu-
nication protocols are well known and widely available.
Thus, a protocol header may be traversed byte by byte or
some other fashion by referring to the protocol specifica-
tions. In a present embodimentof the invention the parsing
algorithm is dynamic, with information retrieved from one
field of a header often altering the manner in which another
part is parsed.

For example,it is known that the Type field of a packet
adhering to the traditional, form of Ethemet(e.g., version
two) begins at the thirteenth byte of the (layer two) header.
By comparison, the Type field of a packet following the
IEEE 802.3 version of Ethernet begins at the twenty-first
byte of the header. The Type field is in yet other locations if
the packet forms part of a Virtual Local Area Network
(VLAN) communication (which illustratively involves tag-
ging or encapsulating an Ethernet header). Thus, in a present
embodimentof the invention, the values in certain fields are
retrieved and tested in order to ensure that the information

needed from a headeris drawn from the correct portion of
the header. Details concerning the form of a VLAN packet
may be found in specifications for the IEEE 802.3p and
TEEE 802.3q fonusof the Ethemet protocol.

The operation of header parser 106 also depends upon
other differences between protocols, such as whether the
packet uses version four or version six of the Intemet
Protocol, etc. Specifications for versions four and six of IP
may be located in IETF (nternet Engineering Task Force)
RFCs (Request for Comment) 791 and 2460, respectively.

The more protocols that are “known” by parser 304, the
more protocols a packet may be tested for, and the more
complicated the parsing of a packet’s header portion may
become. One skilled in the art will appreciate that the
protocols that may be parsed by parser 304 are limited only
by the instructions according to whichit operates. Thus, by
augmenting or replacing the parsing instructions stored in
instruction memory 306, virtually all known protocols may
be handled by header parser 106 and virtually any informa-
tion may be retrieved from a packet’s headers.

If, of course, a packet header does not conform to an
expected or suspected protocol, the parsing operation may
be terminated. In this case, the packet may not be suitable for
one more of the efficiency enhancements offered by NIC 100
(e.g., data re-assembly, packet batching, load distribution).

Iilustratively, the information retrieved from a packet’s
headers is used by other portions of NIC 100 when process-
ing that packet. For example, as a result of the packet parsing
performed by parser 304 a flow key is generated to identify
the communication flow or communication connection that

comprises the packet. Illustratively, the flow key is
assembled by concatenating one or more addresses corre-
sponding to one or more of the communicating entities. In
a present embodiment, a flow key is formed from a combi-
nation of the source and destination addresses drawn from
the IP beader andthe source and destination ports taken from
the TCP header. Otherindicia of the communicating entities
may be used, such as the Ethernet source and destination
addresses (drawn from the layer two header), NFS file
handles or source and destination identifiers for other appli-
cation datagrams drawn from the data portion of the packet.

Onc skilled in the art will appreciate that the communi-
cating entities may be identified with greater resolution by
using indicia drawn from the higher layers of the protocol
stack associated with a packet. Thus, a combination of IP
and TCP indicia may identify the entities with greater
particularity than layer two information,

EX 1017 Page 520

|

i

US 6,453,360 Bl
17

Besides a flow key, parser 304 also generates a control or
status indicator to summarize additional information con·
cerning the packet. In one embodiment of the invention a
control indicator includes a sequence number (e.g., TCP
sequence number drawn from a TCP header) to ensure the 5

com;ct ordering of packets when re-assembling their data.
Toe control indicator may also reveal whether certain flags
in the packet's headers arc set or cleared, whether the packet
contains any data, and, if the packet contains data, whether
the data exceeds a certain size. Other data are also suitable 10

for inclusion in the control indicator, limited only by the
information that is available in the portion of the packet
parsed by parser 304.

In one embodiment of the invention, header parser 106
provides the flow key and all or a portion of the control 15

indicator to flow database manager 108. As discussed in a
following section, FDBM 108 manages a database or other
data structure containing information relevant to communi
cation flows passing through NIC 100.

In other embodiments of the invention, parser 304 pro- 20
duces additional information derived from the header of a
packet for use by other modules of NIC 100. For example,
header parser 106 may report the offi;ct,. from the beginning
of the packet or from some other point,. of the data or
payload portion of a packet received from a network. As 25

&scribed above, the data portion of a packet typically
· follows the header portion and may be followed by a trailer

·· · portion. Other data that header parser 106 may report
include the location in the packet at which a checksum

.. operation should begin, the location in the packet at which 30

·. the layer three and/or layer four headers begin, diagnostic
data,. payload information, etc. The term "payload" is often
w.ed to refer to the data portion of a packet. In particular, in

18
in an allcmative embodiment multiple copy and/or parsing
operations may be performed on a single packet. In
particular, an initial header portion of the packet may be
copied into and parsed by header parser 106 in a first
evolution, after which another header portion may be copied
into header parser 106 and parsed in a second evolution. A
header portion in one evolution may partially or completely
overlap the header portion of another evolution. In this
manner, extensive headers may be parsed even if header
memory 302 is of limited size. Similarly, it may require
more than one operation to load a full set of instructions for
parsing a packet into instruction memory 306. illustratively,
a first portion of the instructions may be loaded and
executed, after which other instructions are loaded.

With reference now to FIGS. 4A-4B, a flow chart is
presented to illustrate one method by which a header parser
may parse a header portion of a packet received at a network
interface circuit from a network. In this implementation, the
header parser is configured, or optimized, for parsing pack
ets conforming to a set of pre-selected pro loco ls (or protocol
stacks). For packets meeting these criteria, various informa-
tion is retrieved from the header portion to assist in fue
re-assembly of the data portions of related packets (e.g.,
packets comprising data from a single datagram). Other
enhanced features of the network interb.ce circuit may also
be enabled.

The information generated by the header parser includes,
in particular, a flow key with which to identify the commu·
nication flow or communication connection that comprises
the received packet. In one embodiment of the invention,
data from packets having fue same flow key may be iden-
tified and re-assembled to form a datagram. In addition,
headers of packets having the same flow key may be
processed collectively through their protoml stack (e.g., ·. one embodiment of the invention header parser 106 provides

,)l payload oflsct and payload size to control queue 118. 35 rather than serially).
· , In appropriate cin::umstanccs, header parser 106 may also
'..report (e.g., to IPP module 104 and/or control queue 118)

.- that the packet is not formatted in accordance with the
protocols that parser 304 is configured to manipulate. This

.'fcport may take the form of a signal (e.g., the No__A.&sist -1-0
·.15ignal described below), alert, flag or other indicator. The
· Jiignal may be raised or issued whenever the packet is found
:"P reflect a. protocol other than the pre-selected protocols that

wmpat.Jble with the processing enhancements dcscnbed
ve (e.g., data re-assembly, batch processing of packet 45

ders, load distribution). For example, in one embodiment
.the invention parser 304 may be configured to parse and

· ntly process packets using TCP at layer four, IP at
yer three and Ethernet at layer two. In this embodiment, an
· .(Internetwork Packet Exchange) packet would not be 50

en:d compaoble and IPX packets therefore would not
ga.tben:d for data re-assembly and batch processing.

':he oonclusion of parsing in one embodiment of the
nhon, the various pieces of information descnbed above

disseminated to appropriate modules of NIC 100. After 55

. ,(and as described in a following section), flow database
.. ager 108 determines whether an active flow is associ
. ~th the flow key derived from the packet and sets an

. ~bon code to be used in subsequent processing. In
tion, IPP module 104 transmits the packet to packet 60
c ":6. IPP module 104 may also receive some of the

ation extracted by header parser 106, and pass it to
r module of NIC 100.

. • the embodiment of the invention depicted in FIG. 3, an
header portion of a received packet to be parsed is 65

ed and then parsed in one evolution, after which the
r P.in;er turns its attention to another packet. However,

In another embodiment of the invention, information
retrieved by the header parser is also used to distnbute llie
processing of network traffic received from a network. For
example, multiple packets having the same flow key may be
submitted to a single processor of a multi-processor host
computer system.

In the method illustrated in FIGS. 4A-4B, the set of
pre-i;.elected protocols corresponds to communication pro
tocols frequently transmitted via the Internet. In particular,
the set of protocols that may be extensively parsed in this
method include the following. At layer two: Ethernet
(traditional version), 802.3 Ethernet, Ethernet VI.AN
(Virtual Local Arca Network) and 802.3 Ethernet VI.AN. At
layer three: IPv4 (with no options) and 1Pv6 (with no
options). Finally, at layer four, only TCP protocol headers
(with or without options) are parsed in the illustrated
method. Header parsers in alternative embodiments of the
invention parse packets formatted through other protocol
stacks. In particular, a NIC may be configured in accordance
with the most common protocol stacks in use on a given
network, which may or ma.y not include the protocols
compatible with the header parser method illustrated in
FIGS. 4A-4B .

As described below, a received packet that does not
correspond to the protocols parsed by a given method may
be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet bas been
formatted can only be determined, in the present method, by
e:nmining certain header field values, the determination that
a packet does not conform to the selected set of protocols
may be made at virtually any time during the procedure.
Thus, the illustrated parsing method bas as one goal the

..l

I
EX 1017 Page 521

= oa
as : foe
CR Se oe MLS ATEStaTHI mE aE Ss aeRO itd eae me ~

; 17

Besides a flow key, parser 304 also generates a control or
status indicator to summarize additional information con-
cerning the packet. In ove embodiment of the invention a
control indicator includes a sequence number (c.g., TCP
sequence number drawn from a TCP header) to cnsure the
correct ordering of packets when re-assembling their data.
The control indicator may also reveal whethercertain flags
in the packet’s headers are set or cleared, whether the packet
contains any data, and, if the packet contains data, whether
the data exceeds a certain size. Other data are also suitable
for inclusion in the control indicator, limited only by the
information that is available in the portion of the packet
parsed by parser 304.

In one embodiment of the invention, header parser 106
provides the flow key and all or a portion of the control
indicator to flow database manager 108. As discussed in a
following section, FOEM 108 manages a database or other

F. data structure containing information relevant to communi-
- §6cation flows passing through NIC 100.

In other embodiments of the invention, parser 304 pro-
' duces additional information derived from the header of a
' packet for use by other modules of NIC 100, For example,

header parser 106 may report the offset, from the beginning
. of the packet or from some other point, of the data or

payload portion of a packet received from a network. As
¥ described above, the data portion of a packet typically

F follows the header portion and may be followed by a tratier
| portion. Other dafa that header parser 106 may report

include the location in the packet at which a checksum
- Operation should begin, the location in the packet at which

B the layer three and/or layer four headers begin, diagnostic
y data, payload information, etc. The term “payload” is often
.. used to refer to the data portion of a packet. In particular,in
‘ one embodiment of the invention header parser 106 provides
. & payload offset and payload size to control queue 118.

+ In appropriate circumstances, header parser 106 may also
_ tepart (¢.g., to IPP module 104 and/or contro! queve 118)

} that the packet is not formatted in accordance with the
:, Protocols that parser 304 is configured io manipulate. This
f'feport may take the form of a signal (c.g., the No__Assist
: Signal described below), alert, flag or other indicator. The
B-signal may be raised or issued whenever the packetis found
x.te reiicct a protocol other than the pre-selected protocols that

compatible with the processing enhancements described
pAbove (c.g., data re-assembly, batch processing of packet
pecadcrs, load distribution). For example,in onc embodiment

the invention parser 304 may be configured to parse and
icently process packets using TCP at layer four, IP ai

yer three and Ethernetat layer two.In this embodiment, an
eX (Internetwork Packet Exchange) packet would not be
peasidered compatible and IPX packets therefore would not
gathered for data re-assembly and batch processing,

the conclusion of parsing in one embodiment of the
pY=ntion, the variouspieces of information described above
B: disseminated to appropriate modules of NIC 100. After
pit(and as described in a following section), flow database

ager 108 determines whether an active flow is associ-
with the flow key derived from the packet and sets an
ation code to be used in subsequent processing. In
tion, IPP module 104 transmits the packet to packet

me 116. IPP module 104 may also receive some of the
peimation extracted by header parser 106, and pass it to
wither module of NIC 100.
r the embodimentoftheinvention depicted in FIG.3, an

Seafeadet portion of a received packet to be parsed is
ea and then parsed in one evolution, after which the
F _ * Parser turns its attention to another packet. However,

C1
a

2s

30

35

40

85

US 6,453,360 BI
18

in an allernative crnbodiment multiple copy and/or parsing
operations may be performed on a single packet. In
particular, an initial header portion of the packet may be
copied into and parsed by header parser 106 in a first
evolution, after which another header portion may be copicd
into header parser 106 and parsed in a second evolution. A
header portion in one evolution may partially or completely
overlap the header portion of another evolution. In this
manner, extensive headers may be parsed even if header
memory 302 is of limited size. Similarly, it may require
more than one operation to load a full set of instructions for
parsing a packet into instruction memory 306.[ustratively,
a first portion of the instructions may be loaded and
executed, after which other instructions are loaded.

Witb reference now to FIGS. 4A-4B, a flow chart is
presented to illustrate one method by which a header parser
may parse a headerportion ofapacket received at a network
interface circuit from a network. In this implementation, the
headerparser is configured, or optimized, for parsing pack-
ets conformingto a set ofpre-selected protocols (or protocol
stacks). For packets meeting these criteria, various informa-
tion is retrieved from the header portion to assist in the
re-assembly of the data portions of related packets (e-g.,
packets comprisingdata from a single datagram). Other
enhanced features of the network interface circuit may also
be enabled.

The information generated by the header parser includes,
in particular, a ow key with whichto identify the commu-
nication flow or communication connection that comprises
the received packet. In one embodiment of the invention,
data from packets having the same flow key may be iden-
tified and re-assembled to form a datagram. In addition,
headers of packets having the same flow key may be
processed collectively through their protocol stack (¢.g.,
rather than serially).

In another embodiment of the invention, information
retrieved by ihe header parseris also used to distribute the
processing of network traffic received from a network. For
examiple, roultiple packets having the same flow key may be
submitted to a single processor of a multi-processor host
computer system.

In the method illustrated in FIGS. 4A-4B, the set of
pre-selecied protocols comesponds to communication pro-
tocols frequently transmitted via the Intemet. In particular,
the set of protocols that may be extensively parsed in this
method include the following. At layer two: Ethernet
(traditional version), 802.3 Ethernet, Ethernet WLAN
(Virtual Local Area Network) and 802.3 Ethemet VLAN.At
layer three: IPv4 (with oo options) and IPv6é (with no
options). Finally, at layer four, only TCP protocol headers
(with or without options) are parsed in the illustrated
method. Header parsers in alternative embodiments of the
invention parse packets formatted through other protocol
stacks. In particular, a NIC may be configured in accordance
with the most common protocol stacks in use on a given
network, which may or may oot include the protocols
compatible with the header parser method illustrated in
FIGS. 4A-4B.

As described below, a received packet that does sot
correspond to the protocols parsed by a given method may
be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet has been
formatted can only be determined, in the present method, by
examining certain headerfield values, the determination that
a packet docs not conform to the selected set of protocols
may be made at virtually any time during the procedure.
Thus, the illustrated parsing method has as onc goal the

EX 1017 Page 521

US 6,453,360 Bl
19 20

identification of packets not meeting the formatting criteria is examined. If the CFI bit is set (e.g., equal to one), the
for re-assembly of data. illustrated procedure jumps to state 430, after which it exits.

Various protocol header fields appearing in headers for the In this embodiment of the invention the CFI bit, when set,
selected protocols are discussed below. Communication indicates that the format of the packet is not compatible with
protocols that may be compatible with an embodiment of the 5 (i.e., does not comply with) the pre-selected protocols (e.g.,
present invention (e.g., protocols that may be parsed by a the layer two protocol is not Ethernet or 802.3 Ethernet). If
header parser) are well known to persons skilled in the art the CFI bit is clear (e.g., equal to zero), the pointer is
and are described with great particularity in a number of incremented (e.g., by four bytes) to position it at the next
references. They therefore need not be visited in minute field that must be examined.
detail herein. In addition, tbe illustrated method of parsing a 10 In state 408, the layer two header is further tested.
header portion of a packet for the selected protocols is Although it is now known whether this is or is not a
merely one method of gathering the information described VIAN-tagged header, depending upon whether state 408
below. Other paising p=dures capable of doing so are was reached throngh state 406 or directly from state 404,
equally suitable. respectively, the header may reflect either the traditional

In a present embodiment of the invention, the illustrated 15 Ethernet format or tbe 8023 Ethernet format. At the begin-
procedure is implemented as a combination of hardware and ning of state 408, the pointer is either at the twelfth or
software. For example, updau:able micro-code instmctions sixteenth byte of the header, either of which may correspond
for performing the procedure may be executed by a microse- to a Length field or a Type field. In particular, if the two-byte
quencer. Alternatively, such instmctions may be fixed (e.g., value at the position identified by the pointer is less than
stored in read-only memory) or may be eJ(CCllted by a 20 0600 (hexadecin1al), then the packet corresponds to 802.3
processor or microprocessor. Ethernet and the pointer is understood to identify a Length

In FIGS. 4A-4B, state 400 is a start state during which a field. Otherwise, the packet is a traditional (e.g., version
packet is received by NIC 100 (shown in FlG. lA) and initial two) Ethernet packet aod the pointer identifies a Type field.
processing is performed. NIC 100 is coupled to the Internet If the layer two protocol is 802.3 Ethernet, the procedure
for purposes of this procedure. Initial processing may 25 continues at state 410. lf the layer two protocol is traditional
include basic error checking and the removal of the layer one Etbcrnet, tbe Type field is 11::stcd for the hexadecimal values
preamble. After initial processing, tbe packet is held by IPP of 0800 and 08DD. If the tested field has one of these values,
module 104 (also sbown in FIG. lA). In one embodiment of then it has also been determined that the packet's layer three
the invention, state 400 comprises a logical loop in which protocol is the Internet Protocol. In this case tbc illustrated
the header parser remains in an idle or wait state until a 30 procedure continues at state 412. Lastly, if the field is a Type
packet is received. field having a value other than 0800 or 86DD (hexadecimal),

In state 402, a header portion of the packet is copied into then the packet's layer three protocol does not match the
memory (e.g., header memory 302 of FIG. 3). In a present pre-selected protocols according to which the header parser
embodiment of tbe invention a predetermined number of was configured. 'Therefore, the procedure continues at state
bytes at the beginning (e.g., 114 bytes) of the packet are 35 430 and then ends.
copied. Packet portions of different sizes are copied in lo one embodiment of the invention the packet is exam-
alternative embodiments of the invention, the sizes of which ined in state 408 to determine if it is a jumbo Ethernet frame.
are guided by the goal of copying enongh of the packet to This determination would likely be made prior to deciding
capture and/or identify the necessary header information. whether the layer two header conforms to Ethernet or 8023
Illustratively, the full packet is retained by IPP module 104 40 Ethernet. lliu.stratively, tbe jumbo frame determination may
while the following parsing operations are performed, be made based on the size of the packet, which may be
although the packet may, a.ltematively, be stored in packet reported by IPPmodule 104 or a MAC module. If the packet
queue ll6 prior to the completion of parsing. is a jumbo frame, the procedure may continue at state 410;

Also in state 402, a pointer to be used in parsing the otherwise, it may resume at state 412.
packet may be initialized. Because the layer one preamble 45 In state 410, the procedure verifies that the layer two
was removed, the header portion copied to memory should protocol is 802.3 Ethernet with LLC SNAP encapsulation. In
begin with the layer two protocol header. Illustratively, particular, the pointer i"I advanced (e.g., by two bytes) and
therefore, the pointer is initially set to point to the twelfth the six-byte value following the Length field in the layer two
byte of the layer two protocol header and tbc two-byte value header is retrieved and examined. If the header is an 8023
at the pointer position is read. As one skilled in the art will 50 Ethernet header, the field is the LLC_SNAP field and
r~gnize, these two bytes may be part of a number of should have a value ofAAAA03000000(hexadecimal). The
different fields, depending upon which protocol constitutes original specification for an LLC SNAP header may be
layer two of tbe packet's protocol stack. For example, these found in the specification for IEEE 802.2. If the value in tbe
two bytes may comprise tbe Type field of a traditional packet's LLC_SNAP field matches the expected value the
Ethernet header, the Length field of an 8023 Ethernet header 55 pointer is incremented another six bytes, the two-byte 8023
or the TPID (Tag Protocol IDentifier) field of a VIAN- Ethernet Type field is read and the procedure continues at
lagged header. state 412. If the values do not match, then the packet docs

In state 404, a first examination is made of the layer two not conform to the specified protocols and the procedure
header to determine if it comprises a VIAN-tagged layer enters state 430 and then ends.
two protocol header. illustratively, this determination 60 In state 412, the pointer is advanced (e.g., another two
depends upon whether the two bytes at the pointer position bytes) to locate the beginning of the layer three protocol
store the hexadecimal value 8100. If so, tbc pointer is header. This pointer position may be saved fur later use in
probably located at the TPID field of 1. VIAN-tagged quickly identifying the beginning of this header. The packet
header. If not a VI.AN header, tbc procedure proceeds to is now known to conform to an accepted layer two protocol

i
,\ Sb.te 408. 65 (e.g., traditional Ethernet, Ethernet with VIAN tagging, or

If, however, the layer two header is 1. VLAN-tagged 8023 Ethernet with LLC SNAP) and i-; 110w checked to
lw.ader, in state 406 tbc CF! (Canooical Format Indicator) bit • ell5UIC that the packet's layer three protocol is IP. As

EX 1017 Page 522

US 6,453,360 Bl
21 22

:!iscusscd above, :in the illustrated embodiment only packets source port and destination port values are saved. The TCP
conforming to the IP protocol am extensively processed by sequence number, which is used to ensure the correct
the header parser. re-assembly of data from multiple packets, is also saved.

lliustratively, if the value of the Type field in the layer two Further, the values of several components of the Flags
header (retrieved :in state 402 or state 410) is 0800 5 field-illustratively, the URG (urgent), PSH (push), RST
(hexadecimal), the layer three protocol is expected to be IP, (reset), SYN (synch) and FIN (finish) bils-are saved. As
version four. If the value is 86DD (hexadecimal), lhe layer will be seen in a later section, in one embodiment of the
three protocol is expected to be IP, ver..ion six. Thus, the invention these flags signal various actions to be performed
Type field is tested in state 412 and the procedure continues or statuses to be considered in the handl:ing of the packet.
at state 414 or state 418, depending upon wbelher the 10 Other signals or statuses may be generated in state 424 to
hexadecimal value is 0800 or 86DD, respectively. reflect information retrieved from the TCP header. For

In state 414, the layer three header's conformity with
version :fbur of IP is verified. In one embodiment of the example, the point from which a checksum operation is to
invention the Version field of lbe layer three header is tested begin may be saved (illustratively, the beginning of the TCP
to ensure that it contains the hexadecimal value 4, corre- header); the ending point of a checksum operation may also
sponding to version four of IP. If in state 414 the layer three 15 be saved (illustratively, the end of the data portion of the
header is confirmed to be IP version four, the procedure packet). An offset to the data portion of lhe packet may be
continues at state 416; otherwise, the procedure proceeds to identified by multiplying the value of the Header Length
state 430 and then ends at state 432. field of the TCP header by four. The size of the data portion

In state 416, various pieces of infonnation from the IP may then be calculated by subtracting the offset to the data
header are saved. This information may include the OIL (IP 20 portion from the size of the entire TCP segment.
Header Length), Total Length, Protocol and/or Fragment In state 426, a flow key is assembled by concatenating the
Offset :fields. The IP source address and the IP destination IP source and destination addresses and the TCP source and
addresses may also be stored. The source and destination destination ports. As already described, the flow key may be
address values are each four bytes long in ver..ion four of IP. used to identify a communication flow or communication
These addresses arc used, as descnbed above, to generate a 25 connection, and may be used by other modules of NIC 100
llow key that identifies the communication llow in which to process network traffic more efficiently. Although the
this packet was sent. The Total Length field stores the size sizes of the source and destination addresses di.trer between
of the IP segment of this packet, which illustratively com- IP versions four and six (e.g., four bytes each versus sixteen
prises the IP header, the TCP header and the packet's data bytes each, respectively), in the presently described embodi-
portion. The TCP segment size of the packet (e.g., the size 30 ment of lhe invention all flow keys are of uniform size. In
of the TCP header plus the size of the data portion of the particular, in this embodiment they are thirty-six bytes long,
packet) may be calculated by subtracting twenty bytes (the including the two-byte TCP source port and two-byte TCP
size of the IP version four header) from the Total Length destination port. Flow keys generated from IP, version four,
value. After state 416, the illustrated procedure advances to packet headers are padded as necessary (e.g., with twenty-
state 422. :;s fuur clear bytes) to fill the flow key's allocated space.

In state 418, the layer three header's conformity with In state 428, a control or status indicator is assembled to
version six of IP is verified by testing the Version field for provide various information to one or more modules of NIC
the hexadecinial value 6. If the Version field does not contain 100. In one embodiment of the invention a control indicator
this value, the illustrated procedure proceeds to state 430. includes the packet's TCP sequence number, a flag or

In state 420, the values of the Payload Length (e.g., the 40 identifier (e.g., one or more bits) indicating whether the
size of the TCP segment) and Next Header :field are saved, packet contains data (e.g., whelher the TCP payload size is
plus the IP source and destination addresses. Source a.nd greater than zero), a llag indicating whether the data portion
destination addresses are each sixteen bytes long in version of the packet exceeds a pre-determined size, and a flag
six of IP. indicating whether certain entries in the TCP Flags field are

In state 422 of the illustrated procedure, it is determined 45 equivalent to pre-determined values. The latter llag may, for
~:ther the IP header (either version four or version six) example, be used to inform another module ofNIC 100 that
mdicates that the layer four header is TCP. lliustratively, the components of the Flags field do or do not have a particular
Protocol field of a version four IP header is tested while the configuration. After state 428, the illustrated procedure ends
Next Header field of a version six header is tested. fu either with state 432.
case, the value should be 6 (hexadecimal). The pointer is 50 State 430 may be entered at several dilferent points of the
then. incremented as necessary (e.g., twenty bytes for IP illustrated procedure. This state is entered, for example,
version four, forty bytes for IP version six) to reach the when it is determined that a header portion that is being
beginning of the TCP header. If it is determined in state 422 parsed by a header parser does not conform to the pre-
that the layer four header is not TCP, the procedure advances selected protocol stacks identified above. As a result, much
to state 430 and ends at end state 432. 55 of the information described above is not retrieved. A

In. one embodiment of the invention, other fields of a practical consequence of the inability to retrieve this infor-
VefSlon four lP header may be tested in state 422 to ensure matinn is that it then cannot be provided to other modules of
that the packet meets the criteria for enhanced processing by NIC 100 and the enhanced processing described above and
NIC 100. For example, an lHL field value other than 5 in following sections may not be performed for this packet.
(hexadecinial) indicates that IP options arc set for this 60 In particular, and- as discussed previously, in a present
packet, in which case the parsing operation is aborted. A embodiment of the invention one or more enhanced opera-
fragmentation field value other than zero indicates that the IP lions may be performed on parsed packets to increase the
~gtnent of the packet is a fragment, in which case parsing efficiency with which they are processed. Illustrative opera-
IS also aborted. In either case, the procedure jumps to state lions that may be applied include the re-assembly of data
430 and then ends at end state 432. 65 from related packets (e.g., packets containing data from a i" fu state 424, the packet's TGP header is parsed and single da!agralll), batch processing of packet headers

l'.1t1irions data arc collected from it. In particular, the TCP through " protocol stack, load distributiun or load sharing of

EX 1017 Page 523

US 6,453,360 Bl
23

protocol stack processing, efficient transfer of packet data to
a destination entity, etc.

In the illustrated procedure, in state 430 a flag or signal
(illustratively termed No_Assist) is set or cleared to indicate
that the packet prcscnUy held by IPP module 104 (e.g., 5

which was just processed by the header parser) does not
conform to any of the pre-selected protocol stacks. This flag

24
ing sections. In particular, packets from one datagram that
are configured accor:ding to a selected protocol may be
re-assembled for efficient transfer in a host computer. In
addition, header portions of such packets may be processed
collectively rather than serially. And, the processing of
packets from different datagrams by a multi-processor host
computer may be shared or distributed among the proces
sors. Therefore, one objective of a dynamic header parsing
operation is to identify a protocol accor:ding to which a

or signal may be relied upon by another module ofNIC 100
when deciding whether to perform one of the enhanced
operations.

Another flag or signal may be sct or cleared in state 430
10 received packet has been formatted or determine whether a

packet header conforms to a particular protocol.
to initialize a checksum parameter indicating that a check
sum operation, if performed, should start at the beginning of
the packet(e.g., with no offset into the packet). Illustratively,
incompatible packets cannot be parsed to determine a more 15
appropriate point from which to begin the checksum opera
tion. After state 430, the procedure ends with end state 432.

After parsing a packet, the header parser may distribute
information generated from the packet to one or more
modules of NIC 100. For example, in one embodinlent of I.he 20

invention the flow key is provided to flow database manager
108, load distnbutor ll2 and one or both of control queue
118 and packet queue 116. Illustratively, tbe control indica-
tor is provided to flow database manager 108. This and other
c:ontrol information, such as TCP payload size, TCP payload 25

. offiict aod the No_Assist signal may be returned to IPP
~. module 104 and provided to control queue 118. Yet addi

tional control and/or diagnostic information, such as offsets
· Jo the layer three and/or layer four headers, may he provided
: -to IPP module 104, packet queue 116 and/or control queue 30

ill.8. Checksum infoIIDation (e.g., a starting point and either
-an ending point or other means of identifying a portion of the
·packet from which to compute a checksum) may be pro
.!Y:ided to checksum generator 114.
!• As discussed in a following section, although a received 35

kct is parsed on NIC 100 (e.g., by header parser 106), the
cts are still processed (e.g., through their respective

tocol stacks) on the host computer system in the illus
embodiment of the invention. However, after parsing

acket in an alternative embodiment of the invention, NIC 40

also performs one or more subsequent processing steps.
.example, NIC 100 may include one or more protocol

rs for processing one or more of the packet's
I headers.

amic Header Parsing Instructions in One Embodiment 45
e Invention
one embodinicnt of the present invention, header parser

JI~ a packet received from a network according to a
: sequence of instmctions. The instructions may be

d lD the header parser's instruction memory (e.g., 50

. , SRAM, DRAM, flash) that is re-programmable or
· an otherwise be updated with new or additional
· lions. In one embodiment of tbe invention software
ting on a host computer (e.g., a device driver) may
o.d a set of parsing instructions for storage in the 55
parser memory.
number and foIIDat of instructions stored in a header

's instruction memory may be tailored to one or more
c rrotocols or protocol stacks. An instruction set

for one collection of protocols, or a program 60

from that instruction set, may therefore be
. or replaced by a different instruction set or program.
~ts received at the network inter.fllce that are for-

in a.ccordance with the selected protocols (e.g~
ible" packets), as determined by analyzing or pars- 65

)Jllckets, various enhancements in the handling of
· lraffic.!Jecome pos..'iible as descnbed in the follow·

FIG. 23, discussed in detail shortly, presents an illustrative
series of instructions for parsing the layer two, three and four
headers of a packet to determine if they are Ethernet, IP and
TCP, respectively. The illustrated instructions comprise one
possible program or microcode for performing a parsing
operation. As one skilled in the art will recognize, after a
particular set of parsing instructions is loaded into a parser
memory, a number of different programs may be assembled.
FIG. 23 thus presents merely one of a number of programs
that may be generated from the stored instructions. The
instructions presented in FIG. 23 may be performed or
executed by a microsequencer, a processor, a microproces
sor or other similar module located within a network inter
face circuit.

In particular, other instruction sets and other programs
may be derived for different communication protocols, and
may be expaoded to other layers of a protocol stack. For
example, a sci of instructions could be generated for parsing
NFS (Network File System) packets. Illustratively, these
instructions would be configured to parse layer five and six
headers to determine if they are Remote Procedure Call
(RPC) and External Data Representation (XDR), respec
tively. Other instructions could be configured to parse a
portion of I.he packet's data (which may be considered layer
seven). An NFS header may be considered a part of a
packet's layer six protocol header or part of the packet's
data.

One type of instruction executed by a microsequencer
may be designed to locate a particular field of a packet (e.g.,
at a specific offset within I.he packet) and compare the value
stored at that offset to a value associated with that field in a
particular communication protocol. For example, one
instruction may require the microsequencer to examine a
value in a packet header at an offset that would correspond
to a 1ype field of an Ethernet header. By comparing the
value actually stored in the packet with the value expected
for the protocol, the microsequencer can determine if the
packet appears to conform to the Ethernet protocol.
Illustratively, the next instruction applied in the parsing
program depends upon whether the previous comparison
was successful. Thus, the particular instructions applied by
the microsequencer, and the sequence in which applied,
depend upon which protocols are represented by the pack
et's headers.

The microsequencer may test one or more field values
within each header included in a packet. The more fields that
are tested and that are found to comport with the format of
a known protocol, the greater the certainty that the packet
conforms to that protocol. As one skilled in the art will
appreciate, one communication protocol may be quite dif-
ferent than another protocol, thus requiring examination of
different parts of packet headers for different protocols.
Illustratively, the parsing of one packet may end in the event
of an error or because it was determined that the packet
being parsed does or does not conform to the protocol(s) the
instructions ;ue Jc.~igne<l for. l

I
EX 1017 Page 524

Beae

23

protocolstack processing, efficienttransfer of packet data to
a destination entity, etc.

In the illustrated procedure, in state 430 a flag or signal
(illustratively termed No__Assist) is setor clearedto indicate
that the packet presenily beld by IPP module 104 (e.z.,
which was just processed by the header parser) does not
conform to any of the pre-sclected protocol stacks. This flag
or signal may be relied upon by another module ofNIC 100
when deciding whether to perform one of the enhanced
operations.

Another flag or signal may be set or cleared in state 430
to initialize a checksum parameter indicating that a check-
sum operation, if performed, should start at the beginning of
the packet(e.g., with no offset into the packet). Illustratively,
incompatible packets cannot be parsed to determine a more
appropriate point from which to begin the checksum opera-
tion. After state 430, the procedure ends with end state 432.

After parsing a packet, the header parser may distribute
information generated from the packet to one or more
modules of NIC 100. For example,in one embodiment ofthe
invention the flow key is provided to flow database manager
108, load distributor 112 and one or both of control queue
118 and packet queue 116. Ilustratively, the control indica-

B toris provided to flow database manager 108. This and other
f. control information, such as TCP payload size, TCP payload

. Offsct and the No_Assist signal may be retumed to IPP
module 104 and provided to control queue 118. Yet addi-

.. tional control and/or diagnostic information, such as offsets
30 the layer three and/or layer four headers, may be provided

E40 IPP module 104, packet queve 116 and/or control queve
418. Checksum information (c.g., a starting point and either
Fan ending point or other means ofidentifying a portion ofthe
-Packet from which to compute a checksum) may be pro-

f vided to checksum generator £14.
ks As discussed in a following section, although a received
bPacketisparsed on NIC 100 (e.g., by header parser 106), the
Packets arc still processed (c.g., through their respective

tocol stacks) op the host computer system in the illus-
embodiment of the invention. However, after parsing

Packetin an alternative embodimentofthe invention, NIC
pAO also performs one or more subsequent processing steps.
por.cxample, NIC 100 may include ove or more protocol
Puccssors for processing one or more of the packet’s

Otocol headers.

Woamic Header Parsing Instructions in One Embodiment
Rihe Invention

rR One embodimentofthe present invention, header parser
Fe Parses a packet received from a nctwork according to a

pAMUC sequence of instructions. The instructions may be
din the header parser’s insttuction memory (e.g.,

» SRAM, DRAM,flash) that is re-programmable or
* an otherwise be updated with new or additional

‘tons. In one embodiment of the invention software
r Bing on a host computer (c.g., a device driver) may

load a set of parsing imstructions for storage in the
ye Parser memory.

Bere Dumber and format of instructions stored in a header
S instruction memory maybe tailored to one or more
€ protocols or protocol stacks. An instruction set

vd for one collection of protocols, or a program
‘Tucled from that instruction set, may therefore be
ye OF replaced by a differentinstruction set or program.

peackets received at the network interface that are for-
FY mM accordance with the selected protocols (c.g.,

ible” packets), as determined by analyzing or pars-
mepackeis, various enhancements in the handling of

age allic-become possible as described in the follow-

Rit)

Ce Oemg

US 6,453,360 B1
24

ing sections. In particular, packeis from one datagram that
are configured according to a selected protocol may be
re-assembled for efficient transfer in a host computer. In
addition, header portions of such packets may be processed

5 collectively rather than serially. And, the processing of
packets from different datagrams by a multi-processor host
computer may be shared ordistributed among the proces-
sors. Therefore, onc objective of a dynamic header parsing
operation is to identify a protocol according to which a
received packet has been formatted or determine whether a
packet header conforms to a particular protocol.

FIG. 23, discussed in detail shortly, presents an illustrative
series of instructions for parsing the layer two,three and four
headers of a packet to determine if they are Ethernet, IP and

15 TCP, respectively. The illustrated instructions comprise one
possible program or microcode for performing a parsing
operation. As one skilled in the art will recognize, after a
particular set of parsing instnictions is loaded into a parser
memory, a nucober of different programs may be assembled.

20 ¥IG. 23 thus presents merely onc of a number of programs
that may be generated from the stored instructions. The
instructions presented in FIG, 23 may be performed or
executed by a microsequencer, a processor, a microproces-
sor or other similar module located within a network inter-

25 face circuit.

In particular, other instruction sets and other programs
may be derived for different communication protocols, and
may be expanded to other layers of a protocol stack. For
example, a set of instructions could be generated for parsing

30 NES (Network File System) packets. [lustratively, these
instructions would be configured to parse layer five and six
headers to determine if they are Remote Procedure Call
(RPC) and External Data Representation (XDR), respec-
tively. Other instructions could be configured to parse a

35 portion of the packet’s data (which may be considered layer
seven). An NFS header may be considered a part of a
packet’s layer six protocol header or part of the packet’s
data.

One type of instruction executed by a microsequencer
40 may be designedto locate a particular field of a packet(e.g.,

al a specific offset within the packet) and compare the value
stored at that offset to a value associated with that field in a
particular communication protocol. For example, one
instruction may require the microsequencer to examine a

45 value in a packet header at an offset that would correspond
to a Type field of an Ethemet header. By coraparing the
value actually stored in ihe packet with the valuc expected
for the protocol, the microsequencer can determine if the
packet appears to conform to the Ethemet protocol.

50 Tlustratively, the next instruction applied in the parsing
program depends upon whether the previous comparison
was successful. Thus, the particular instructions applied by
the microsequencer, and the sequence in which applied,
depend upon which protocols are represented by the pack-

55 ¢t’s headers.

The microsequencer may test one or more field values
within each header included in a packet. The more fields that
are tested and that are found to comport with the format of
a known protocol, the greater the certainty that the packet

60 conforms to that protocol. As one skilled in the art will
appreciate, one conmmunication protocol may be quite dif-
ferent than another protocol, thus requiring examination of
different parts of packet headers for different protocols.
Ilustratively, the parsing of one packet may end in the event

65 of an error or because it was determined thai the packet
being parsed does or docs not conform to the protocol(s) the

. instructions are designed for.

1a

EX 1017 Page 524

Sera

I
i

|

ERANNORDhadiinme

US 6,453,360 Bl
25

Each instruction in FIG. 23 may be identified by a number
and/or a name. A particular instruction may perform a
variety of tasks other than comparing a header field to an
expected value. An instruction may, for example, call
another instruction to examine another portion of a packet
header, initialize, load or configure a register or other data
structure, prepare for the arrival and parsing of another
packet, etc. In particular, a register or other storage structure
may be configured in anticipation of an operation that is
performed in the network interface after the packet is parsed.
For example, a program instruction in FIG. 23 may identify
an output operation that may or may not be performed,
depending upon the success or failure of the comparison of
a value extracted from a packet with an expected value. An
output operation may store a value in a register, configure a
register (e.g., load an argument or operator) for a post
pmang operation, clear a register to await a new packet, etc.

A pointer may be employed lo identify an offset into a
;packet being parsed. In one embodiment, such a pointer is
,initially located at the beginning of the layer two protocol
; header. In another embodiment, however, the pointer is

· ted at a specific location within a particular header (e.g.,
immediately following the layer two destination and/or

addresses) when parsing commences. Illustratively,
pointer is incremented through the packet as the parsing

pcedure executes. In one alternative embodiment,
er, offsets to areas of interest in the packet may be

putcd from one or more known or computed locations.
"tin the parsing program depicted in FIG. 23, a header is
·· ·gated (e.g., the pointer is advanced) in increments of

bytes (e.g., sixteen-bit words). In addition, where a
· cular field of a header is compared to a known or

cd value, up to two bytes are extracted at a time from
field. Further, when a value or header field is copied for

rage in a register or other data structure, the amount of
that may be copied in one operation may be expressed

. ultiplcs of two-byte units or in other units altogether
, individual bytes). This unit of measurement (e.g., two
s) may be increased or decreased in an alternative

• · nt of the invention. Altering the unit of measure
. t may alter the precision with which a header can be

or a header value cao be extracted.
the embodiment of the invention illustrated in FIG. 23,
,of instructions loaded into the header parser's instruc

mory comprises a number of possible operations to
oancd while testing a packet for compatibility with
• protocols. Program 2300 is generated from the
on :;ct. Program 2300 is thus merely one possible
, microcode or sequence of instructions that can be
from the available instruction set.

· embodiment, the loaded instruction set enables the
. ~ g s~en operations that may be performed on a

that JS being parsed. Specific implementations of
ations in program 2300 arc discussed in additional

· These instructions will be understood to be
~ve in nature and do not limit the composition of

00 sets in other embodiments of the invention. In
• any su~t of these operations may be employed in

parsmg program or microcode. Further, multiple
may employ the same operation and have dif-

-REG operation allows the selective initialization
or other data structures used in program 2300

ibly, data structures used in {W1Ctions performed
t is Parsed. Initialization may comprise storing

Ji!ero.Anumberof illustrative registers that may be
by a CLR__REG operation are identified in the
per;itiom,.

5

10

15

20

25

30

35

-40

45

50

55

60

65

26
A ID_FID operation copies a variable amouot of data

from a particular offset within the packet into a register
configured to store a packet's flow key or other flow
identifier. This register may be termed a FLOWID register.
The effect of an ID _FID operation is cumulative. In other
words, each time it is invoked for one packet the generated
data is appended to the flow key data stored previously.

A ill_SEQ operation copies a variable amount of data
from a particular offset within the packet into a register
configured to store a packet's sequence number (e.g., a TCP
sequence number). This register may be assigned the label
SEQNO. This operation is also cumulative-the second and
subsequent invocations of this operation for the packet cause
the identified data to be appended to data stored previously.

A ill_C'TI.. operation loads a value from a specified
offset in the packet into a CONTROL register. The CON-
1ROLregistermay comprise a control indicator discussed in
a previous section for identifying whether a packet is
suitable for data re-assembly, packet batching, load distri-
bution or other enhanced functions of NIC 100. In particular,
a control indicator may indicate whether a No_Assist flag
should be raised for the packet, whether the packet includes
any data, whether the amount of packet data is larger than a
predetermined threshold, etc. Thus, the value loaded into a
CONTROL register in a lD_C'TI.. operation may affect the
post-parsing handling of the packet.

A I.D_SAP operation loads a value into the CONTROL
register from a variable offset within the packet. The loaded
value may comprise the packet's ethertype. In one option
that may be associated with a ill_SAP operation, the offset
of the packet's layer three header may also be stored in the
CONTROL register or elsewhere. As one skilled in the art
will recognize, a packet's layer three header may immedi-
ately follow its layer two ethertype field if the packet
conforms to the Ethernet and IP protocols.

A I.D_Rl operation may be used to load a value into a
temporary register (e.g., named Rl) from a variable offset
within the packet. A temporary register may be used for a
variety of tasks, such as accumulating values to determine
the length of a header or other portion of the packet. A
I.D__IU operation may also cause a value from another
variable offset to be stored in a second temporary register
(e.g., named R2). The values stored in the R1 and/or R2
registers during the parsing of a packet may or may not be
cumulative.

A I.D__l.3 operation may load a value from the packet
into a register configured to store the location of the packet's
layer three header. This register may be named I.30FFSET.
In one optional method of invoking this operation, it may be
used to load a fixed value into the 130FFSET register. As
1DOther option, the ID__l.3 operation may add a value
stored in a temporary register (e.g., Rl) to the value being
stored in the I.30FFSET register.

Aill_SUM operation stores the starting point within the
packet from which a checksum should be calculated. The
register in which this value is stored may be named a
CSUMSTARI' register. In one alternative invocation of this
operation, a fixed or predetermined value is stored in the
register. As another option, the lD_SUM operation may
add a value stored in a. temporary register (e.g., Rl) to the
value being stored in the CSUMSTART register.

A lDJIDR operation loads a value into a register
configured to store the location within the packet at which
the header portion may be split. The value that is stored may,
for example, be used during the transfer of the packet to the
host computer to ston: a data portion of the packet in a

. ~,.p~r.tte location tha1Hhe header i,o,1fon. Tht:)oaded value

! !

EX 1017 Page 525

aMe

, 25
Fach instruction in FIG. 23 may be identified by a number

and/or a name, A particular instruction may perform a
variety of tasks other than comparing a header field to an
expected value. An instruction may, for example, call
another instruction to examine another portion of a packet
header, initialize, load or configure a register or other data
structure, prepare for the arrival and parsing of another
packet, etc. In particular,a register or other storage structure
may be configured in anticipation of an operation that is
performed in the network interface after the packetis parsed.
For example, a program instruction in FIG. 23 may identify
an output operation that may or may not be performed,
depending upon the success or failure of the comparison of
a value extracted from a packet with an expected value. An
output operation may siore a value in a register, configure a
register (c.g., load an argument or operator) for a post-

F parsing operation, clear a register to await a new packet, etc.
A pointer may be employed to identify an offset into a

spacket being parsed. In one embodiment, such a pointer is
‘anitially located at the beginning of the layer two protocol

f header. In another embodiment, however, the pointer is
Esaituated at a specific location within a particular header (.g.,
Finmediately following the layer two destination and/or
Meource addresses) when parsing commences. IIlustratively,

Mibe poinier is incremented through the packet as the parsing
rocedure cxecutes. In one altemative embodiment,
owever, offsets to arcas of interest in the packet may be
Sexnputed from one or more known or computed locations.
On the parsing program depicted in FIG. 23, a header is
mavigated (c.g., the pointer is advanced) in increments of

p> bytes (¢.g., sixteen-bit words). In addition, where a
Buticular field of a header is compared to a known or
epccted value, up to two bytes are extracted at a time from

Mt field. Further, when a value or headerfield is copied for
erage in a register or other data structure, the amountof
pta that may be copied in one operation may be expressed
BeMmultiples of two-byte units or in other units altogether
fe.. individual bytes). This unit of measurement(e.g. two
Mes) may be increased or decreased in an alternative

Beeodiment of the invention. Altering the unit of measure-
Rat may alter the precision with which a header can be

d or a headex valuc can be extracted.

ve theembodiment of the invention illustrated in FIG. 23,
eof instructions loaded into the header parser’s instruc-
Peicmory comprises a number of possible operations to
Reciooned while testing a packet for compatibility with
eo protocols. Program 2300 is generated from the
pestion sct. Program 2300 is thus merely one possible

ani, microcode or sequence of instructions that can be
#4 from the available instruction sct.
“~ embodiment, the loaded instruction set enables the

Sixtcen operations that may be performed on a
that 38 being parsed. Specific implementations of
peralions in program 2300 are discussedin additional

ren low, These instructions will be understood to be
Alive in nature and do not limit the composition of

400 sets in other embodiments of the invention. In
many subset of these operations may bs employedin
: Parsing program or microcode. Further, multiple
mus Tay employ the same operation and have dif-

p-®_REG operation allows the selective initialization
“tS or other data structures used in program 2300
“bly, daia structures used in functions performed

et is parsed. Initialization may comprise storing
2°t0. Anumberofillustrative registers that may be

by a CLR_REG operation are identified in the
Operations. ~~ -

i

i

1s

25

as

40

65

- srparaic location than the header postion. Theloadedvalue .

tabled.had nn

US6,453,360 Bi
26

A LD_FID operation copies a variable amount of data
from a particular offset within the packet into a register
configured to store a packet’s flow key or other flow
identifier. This register may be termed a FLOWID register.
The effect of an LID__FID operation is cumulative. In other
words, cach time it is invoked for one packet the generated
data is appended to the flow key data stored previously.

A LD_SEQ operation copies a variable amount of data
from a particular offset within the packet into a register
configured to store a packet’s sequence number(e.g., a TCP
sequence number). This register may be assigned the label
SEQNO.This operation is also cumulative—the second and
subsequent invocations of this operation for the packet cause
the identified data to be appended 1o data stored previously.

A LD_CTL operation loads a value from a specified
offset in the packet into a CONTROLregister. The CON-
TROLregister may comprise a control indicator discussed in
a previous section for identifying whether a packet is
suitable for data re-assembly, packet batching, load distr-
bution orother enhanced functions ofNIC 100. In particular,
a control indicator may indicate whether a No__Assist Hag
should be raised for the packet, whether the packet includes
any data, whether the amount of packet data is larger than a
predetermined threshold, cic. Thus, the value loaded into a
CONTROLcegister in a LD_CTL operation mayaffect the
post-parsing handling of the packet.

ALD_SAP operation loads a value into the CONTROL
register from a variable offset within the packet. The loaded
value may comprise the packet’s ethertype. In one option
that may be associated with a LD_SAP operation,the offset
of the packet's layer three header may also be stored in the
CONTROLregister or elsewhere. As one skilled in the art
will recognize, a packet’s layer three header may immedi-
atcly follow its layer two ethertype field if the packet
conforms to the Ethemet and IP protocols.

ALD_RL1 operation may be used to load a value into a
temporary register (c.g., named R1) from a variable offset
within the packet. A temporary register may be used for a
variety of tasks, such as accummulatiog values to determine
the length of a header or other portion of the packet. A
LD_R1 operation may also cause a value from another
variable offset to be stored m a second temporary register
(c.g., named R2). The values stored in the RL and/or RZ
registers during the parsing of a packet may or may not be
cumulative.

A LD_I3 operation may load a value from the packet
into a register configured to store the location of the packet’s
layer three header. This register may be named LSOFEBSET.
In one optional method of invokingthis operation, it may be
used to load a fixed value into the LJOFFSETregister. As
another option, the LD_J3 operation may add a value
stored in a temporary register (e.g., R1) to the value being
stored in the L3OFFSET register.

ALD_SUM operation stores the starting point within the
packet from which a checksum should be calculated. The
register in which this value is stored may be named a
CSUMSTARTregister. In one alternative invocation of this
operation, a fixed or predetermined valuc is stored in the
register. As another option, the LDSUM operation may
add a value stored in a temporary register (c.g., RI) to the
value being stored in the CSUMSTARTregister.

A LD_HDR operation loads a value into a register
configured to store the location within the packet at which
the header portion may be split. The value that isstored may,
for example, be used during the transfer of the packet to the
host computer to store a data portion of the packet in a

=

EX 1017 Page 525

a

i4
i

- . """'""'· .• ,.,, -·--l'-.,,..,.,.-,...;.-:::;- -,~-~- -· -.-,.

: _·;-~--~~---..;;w,,.~;''q'~:~ .. - .'."i;.:::,6={,.~ ~r- .,,., ._.." -• _,... ,._-::""''7 >\."

US 6,453,360 Bl
27

may thus identify the beginning of the packet data or the
beginning of a particular header. In one invocation of a
[D_J{l)R operation, the stored value may be computed
from a present position of a parsing pointer descnbed above.
In another invocation, a fixed or predetermined value may be
store. As yet another alternative, a value stored in a tempo
rary register (e.g., Rl) and/or a constant may be added to the
loaded value.

A LD_LEN operation stores the length of the packet's
payload into a register (e.g., a PAYLOADIEN register).

An IM_FID operation appends or adds a fixed or prede
termined value to the existing contents of the FLOWID
register described above.

An IM_SEQ operation appends or adds a fixed or pre
determined value lo the contents of the SEQNO register
descnbed above.

An IM_SAP operation loads or stores a fixed or prede
termined value in the CSUMSTART register descnbed
above.

An IM_JU operation may add or load a predetermined
value in one or more temporary registers (e.g., Rl, R2).

An IM_CTL operation loads or stores a fixed or prede
termined value in the CONTROL register described above.

A ST_FLAG operation loads a value from a specified
offset in the packet into a HAGS register. The loaded value
may comprise one or more fields or flags from a packet
header.

One skilled in the art will recognize that the labels
assigned to the operations and registers descnbed above and
elsewhere in this section are merely illustrative in nature and
in no way limit the operations and parsing instructions that
may be employed in other embodiments of the invention.

Instructions in program 2300 comprise instruction nwn·
ber field 2302, which contains a number of an instruction
within the program, and instruction name field 2304, which
contains a name of an instruction. In an alternative embodi
ment of the invention instruction number and instruction

' name fields may be merged or one of them may be omitted.
Instruction content field 2306 includes multiple portions

for executing an instruction. An "extraction mask" portion
of an instruction is a two-byte mask in hexadecimal notation.

; An extraction mask identifies a portion of a packet header to
··be copied or extracted, starting from the current packet offset

28
output operation needs to be performed before another
substantive portion of header data is extracted with an
extraction mask other than OxOOOO.

A "compare value" portion of an instruction is a two-byte

5 hexadecimal value with which the extracted packet contents
are to be compared. Tbe compare value may be a value
known to be stored in a particular field of a specific protocol
header. The compare value may comprise a value that the
extracted portion of the header should match or have a

10
specified relationship to in order for the packet to be
considered compatible with the pre-selected protocols.

An "operator" portion of an instruction identifies an
operator signifying bow the extracted and compare values
are to be compared Illustratively, EQ signifies that they are
tested for equality, NE signifies that they are tested for

15 inequality, LT signifies that the extracted value must be less
than the compare value for the comparison to succeed, GE
signifies that the extracted value must be greater than or
equal to the compare value, etc. An instruction that awaits
arrival of a new packet to be parsed may employ an

2.0 operation of NP. Other operators for other functions may be
added and the existing operators may be assigned other
monikers.

A "success offset'' portion of an instruction indicates the
number of two-byte units that the pointer is to advance if the

25 comparison between the extracted and test values succeeds.
A "success instruction" portion of an instruction identifies
the next instruction in program 2300 to execute if the
comparison is successful.

Similarly, "failure offset" and "failure instruction" por-
30 tions indicate the number of two-byte mrits to advance the

pointer and the next instruction to execute, n:spectively, if
the comparison fails. Although offsets are expressed in units
of two bytes (e.g., sixteen-bit words) in this embodiment of
the invention, in an alternative embodiment of the invention

35 they may be smaller or larger units. Further, as mentioned
above an instruction may be identified by number or name.

Not all of the instructions in a program are necessarily
used for each packet that is parsed. For example, a program
may include instructions to test for more than one type or

"° version of a protocol at a particular layer. In particular,
program 2300 tests for either version four or six of the IP
protocol at layer three. The instructions that are actually
executed for a given packet will thus depend upon the format
of the packet. Once a packet has been parsed as mnch as (e.g., the current position of the parsing pointer).

.' Illustratively, each bit in the packet's header that corre
'·sponds to a one in the hexadecimal value is copied for
:,eornparison to a comparison or test value. For example, a
· due of OxFFOO in the extraction mask portion of an

ction signifies that the entire first byte at the current
adret offset is to be copied and that the contents of the 50

: nd byte are irrelevant. Similarly, an extraction mask of
,Ox3FFF signifies that all but the two most significant bits of

first byte are to be copied. A two-byte value is con
cted from the extracted contents, using whatever was
ied from the packet. Illustratively, the remainder of the

45 pOSS1"ble with a given program or it has been determined that
the packet does or does not conform to a selected protocol,
the parsing may cease or an instruction for halting the
parsing procedure may be executed Illustratively, a next
instruction portion of an instruction (e.g., "success instruc
tion" or "failure instruction") with the value "DONE" indi
cates the completion of parsing of a packet. A DONE, or

ue is padded with zeros. One skilled in the art will
reciate that the format of an extraction mask (or an

tput mask, descn"bed below) may be adjusted as necessary
· .. reflect little endian or big endian representation.

O?C or more instructions in a parsing program may not
. any data extracted from the packet at the pointer

ho~ to be able to perform its output operation. These
f;uCtions may have an extraction mask value of OxOOOO lo
ca~ that although a two-byte value is still retrieved from

c PDmter position, every bit of the value is masked off.
an extraction mask thus yields a definite value of zero.
type of instruction may be used when, for example, an

similar, instruction may be a dummy instruction. In other
words, "DONE" may simply signify that parsing to be
terminated for the present packet. Or, like instruction eigh-

ss teen of program 2300, a DONE instruction may lake some
action to await a new packet (e.g., by initializing a register).

The remaining portions of instruction content field 2306
are used to specify and complete an output or other data
storage operation. In particular, in this embodiment an

60 "output operation" portion of an instruction corresponds to
the operations included in the loaded instruction set. Thus,
for program 2300, the output operation portion of an instruc
tion identifies one of the sixteen operations descn"bed above.
Toe output operations employed in program 2300 are further

65 descn"bed below in conjunction with individual instructions.
An "operation argwnent'' portion of an instruction com

prises one or more arguments or fields to be stored, loaded

EX 1017 Page 526

ote

US 6,453,360 BI
27

may thus identify the beginning of the packet data or the
, beginning of a particular header. In one invocation of a
: LD_HDR operation, the stored value may be computed

from apresent position of a parsing pointer described above.
| In another invocation,a fixed or predetermined value may be

store. As yet another alternative, a value stored in a tempo-
rary register (e.g., RD) and/or a constant may be addedto the
loaded valuc.

A LD_LENoperation stores the length of the packet’s
payload into a register (e.g., a PAYLOADLEN register).

Ano IM__FID operation appends or adds a fixed or prede-
termined value to the existing contents of the FLOWID
register described above.

Ao IM_SEOQ operation appends or adds a fixed or pre-
determined value to the contents of the SEQNO register
described above.

Ao IM_SAP operation loads or stores a fixed or prede-
tenpined value in the CSUMSTART tegister described
above.

An IM__R4 operation may add or load a predetermined
value in one or more temporary registers (e.g., R1, R2).

Ao IM_CTL operation loads or stores a fixed or prede-
termined value in the CONTROLregister described above.

AST_FLAG operation loads a value from a specified
offset in the packet into a FLAGS register. The loaded value
may comprise one or more fields or flags from a packet
beader.

One skilled in the art will secognize that the labels
assigned to the operations and registers described above and
elsewhere in this section are merely illustrative in nature and
in no way limit the operations and parsing instructionsthat
may be employed in other embodiments of the invention.

: Instructions in program 2300 comprise instruction num-
,. ber field 2302, which contains a number of an instruction

within the program, and instruction name field 2304, which
F. contains a name of an instruction. In an alternative embodi-

ment of the invention instruction number and instruction
name ficlds may be merged or one of them may be omitted.

Instruction content field 2306 includes multiple portions
E. for exccuting an instruction. An “extraction mask” portion
f ofan instruction is a two-byte mask in hexadecimal notation.
y: An extraction mask identifies a portion of a packet header to
F be copied orextracted, starting from the currentpacketoffset
F (¢.., the current position of the parsing pointer).

, Wustratively, cach bit in the packet’s header that corre-
F’Sponds to a one in the hexadecimal value is copied for
E-Comparison to a comparison or test. value. For example, a
pValue of OxET00 in the extraction mask portion of an
[instruction signifies that the entire first byte at the current
packet offset is to be copied and that the contents of the

ond byte are inelevant. Similarly, an extraction mask of
Yx3FEF signifies that all but the two most significantbits of
Fie first byte are to be copied. A two-byte value is con-
F'fucted from the extracted contents, using whatever was

Uptedfrom the packet. Hlustratively, the remainder of the
mluc is padded with zeros. One skilled in the art will
PPreciate thal the format of an extraction mask (or an
futput mask, described below) may be adjusted as necessary

b reflectlittle endian or big endian representation.
d One OF more instructions in a parsing program may not
P“aure any data extracted from the packet at the pointer
E cation to be able to perform its output operation. These
pStructions may have an extraction mask value of0x0000 to
f'Cate that although a two-byte value is still retrieved from
© pointer position, every bit of the value is masked off.

Be. <7 20 extraction mask thus yields a definite value of zero.
S type ofinstruction may be used when, for example, an

ey

20

25

35

a

45

6

65

28

output operation needs to be performed before another
substantive portion of header data is extracted with an
extraction mask other than 00000.

A “compare value” portion of an instruction is a two-byte
hexadecimal value with which the extracted packet contents
are to be compared. The compare value may be a value
known to be stored in a particular field of a specific protocol
header. The compare value may comprise a value that the
extracted portion of the header sbould match or have a
specified relationship to in order for the packet to be
considered compatible with the pre-selected protocols.

An “operator” portion of an instruction identifies an
operator signifying how the extracted and compare values
are to be compared. Iilustratively, EQ signifies that they are
tested for equality, NE sigmifies that they are tested for
inequality, LT signifies that the extracted value must be less
than the compare value for the comparison to succeed, GE
signifies that the extracted value must be greater than or
equal to the compare value, etc. An instruction that awaits
arrival of a new packet to be parsed may employ an
Operation ofNP, Other operators for other functions may be
added and the existing operators may be assigned other
monikers.

A “success offset” portion of an instruction indicates the
numberoftwo-byte units that the pointer js to advance if the
comparison between the extracted and test values succeeds,
A “success instruction” portion of an instruction identifies
the next instruction in program 2300 to execute if the
comparison is successful.

Similarly, “failure offset” and “failure instruction” por-
tions indicate the number of two-byte woits to advance the
pointer and tbe next instruction to execute, respectively, if
the comparisonfails. Although offsets are expressed in units
of two bytes (¢.g., Sixteen-bit words) in this embodiment of
the invention, in an alternative embodimentof the invention
they may be smaller or larger units. Further, as mentioned
above an instruction may be identified by number or name.

Notall of the instructions in a program are necessarily
used for each packet that is parsed. For example, a program
may include instructions to test for more than one type or
version of a protocol at a particular layer. In particular,
program 2300 tests for either version four or six of the IP
protocol at layer three. The instructions that are actually
executed for a given packet will thus depend upon the format
of the packet. Once a packet has been parsed as much as
possible with a given program orit has been determined that
the packet does or does not conform to a selected protocol,
the parsing may cease or an instaiction for halting the
Parsing procedure may be executed. Illustratively, a next
instruction portion of an instruction (e.g., “success instruc-
tion” or “failure instruction”) with the value “DONE”indi-
cates the completion of parsing of a packet. A DONE, or
similar, instraction may be a dummy instruction. In other
words, “DONE” may simply signify that parsing to be
terminated for the present packet. Or, like instruction cigh-
teen of program 2300, a DONEinstruction may take some
action to await a new packet(e.g., by initializing a register).

The remainiog portions of instruction content ficld 2306
are used to specify and complete an output or other data
Storage operation. In particular, in this embodiment an
“output operation” portion of an instruction corresponds to
the operations included in the loaded instruction sct. Thus,
for program 2300, the output operation portion of an instruc-
tion identifies one of the sixteen operations described above.
The output operations employed in program 2300 are further
described below in conjunction with individual instructions.

Aa “operation argument” portion of an instruction com-
prises one or more arguments orfields to be stored, loaded

eR a nt were ae¥ eh OMEeeatatamataca ttea

EX 1017 Page 526

US 6,453,360 Bl
29 30

re-initialization of registers, may be used with an operation
argument of zero to effectively perform no output. ln
particular, an operation argnment of zero for the CLR_REG
operation indicates that no registers are to be reset. In an

,therwise used in conjunction with the instruction's
ul operation. lliustratively, the operation argument por
takes the form of a multi-bit hexadecimal value. For
,am 2300, operation arguments are eleven bits in size.
rrgument or portion of an argument may have various
nings, depending upon the output operation. For
nple, an operation argument may comprise one or more
erical values to be stored in a register or to be used to
te or delimit a portion of a header. Or, an argument bit

s alternative embodiment of the invention the operation
enabler portion of an instruction could be set to a value (e.g.,
zero) indicating that the output operation is never to be
performed.

The format and sequence of instructions in FIG. 23 will
comprise a flag to signal an action or status. In

cular, one argument bit may specify that a particular
;ter is to be reset; a set of argument bits may comprise
ff.set into a packet header to a value to be stored in a
;ter, etc. Illu.slratively, the off.set specified by an opera
argument is applied to the location of the parsing pointer
lion before the pointer is advanced as specified by the
icahle success off.set or failure offset. Toe operation
ments used in program 2300 are explained in further
il below.

10 be understood to represent just one method of parsing a
packet to determine whether it conforms to a particular
communication protocol. In particular, the instructions are
designed to exannine one or more portions of one or more
packet headers for comparison to known or expected values

15 and to configure or load a register or other storage location
as necessary. As one skilled in the art will appreciate,
instructions for parsing a packet may take any of a number
of furms and be performed in a variety of sequences without

n "operation enabler" portion of an instruction content 20

specifies whether or when an instruction's output
ation is to be performed. In particular, in the illustrated
odiment of the invention an instruction's output opera
may or may not be performed, depending on the result
ie comparison between a value extracted from a header 25

the compare value. For example, an output enabler may
et to a first value (e.g., zero) if the output operation is
:r to be performed. It may take different values if it is to
,erformed only when the comparison docs or docs not
;fy the operator (e.g., one or two, respectively). An 30

·ation enabler may take yet another value (e.g., three) if
always to be performed.
"shift" portion of an instruction comprises a value

:ating how an output value is to be shifted. A shift may
tecessary because different protocols sometime require 3S
es to be furmatted differently. In addition, a value
:ating a length or location of a header or header field
· require shifting in order to reOect the appropriate
;nitude represented by the value. For example, because
:ram 2300 is designed to use two-byte units, a value may ~
I to be shifted if it is to reflect other units (e.g., bytes).

exceeding the scope of the invention.
With reference now to FIG. 23, instructions in program

2300 may be described in detail. Prior to execution of the
program depicted in FIG. 23, a parsing pointer is situated at
the beginning of a packet's layer two header. The position of
the parsing pointer may be stored in a register for easy
reference and update during the parsing procedure. In
particular, the position of the parsing pointer as an off.set
(e.g., from the beginning of the layer two header) may be
w.ed in computing the position of a particular position
within a header.

Program 2300 begins with a WAIT instruction (e.g.,
instruction zero) that waits for a new packet (e.g., indicated
by operator NP) and, when one is received, sets a parsing
pointer to the twelfth byte of the layer two header. This off.set
to the twelfth byte is indicated by the success off.set portion
of the instruction. Until a packet is received, the WAIT
instruction loops on itself. In addition, a CLR_JIBG opera-
tion is conducted, but the operation enabler settiog indicates
that it is only conducted when the comparison succeeds
(e.g., when a new packet is received).

Toe specified CLR_REG operation operates according to
the WAH instruction's operation argnment (i.e., Ox:3FF). In
this embodiment, each bit of the argument corresponds to a
register or other data structure. Toe registers initialized in
this operation may include the following: ADDR (e.g., to

lift value in a present embodiment indicates the number
>ositions (e.g., bits) to right-shift an output value. In
.her embodiment of the invention a shift value may
cscnt a different shift type or direction.
inally, an "output mask" specifics how a value being
ed in a register or other data structure is to be formatted.
stated above, an output operation may require an
acted, computed or assembled value to be stored. Similar

4S store the parsing pointer's address or location), FLOWID
(e.g., to store the packet's flow key), SEQNO (e.g., to store
a TCP sequence number), SAP (e.g., the packet's ethertype)
and PAYLOADLEN (e.g., payload length). Toe following

he extraction mask, the output mask is a. two-byte so
adecimal value. For every position in the output mask
contains a one, in this embodiment of the invention the

esponding bit in the two-byte value identified by the
mt operation and/or operation argument is to be stored.
example, a value of OxFFFF indicates that the specified 5S

-byle value is to be stored as is. Illustratively, for every
ition in the output mask that contains a zero, a zero is
ed. Thus, a value of OxFOOO indicates that the most
tificant fuur bits of the first byte are to be stored, but the
of the stored value is irrelevant, and may be padded with 60
JS.

In output operation of "NONE" may be used to indicate
there is no output operation to be performed or stored,

vhich case other instruction portions pertaining to output
f be ignored or may comprise specified values (e.g., all 6S

>s). In the program depicted in FIG. 23, however, a
R,____R:eo output operation, which allows the selective

registers configured to store certain off.sets may also be reset:
FLOWOFF (e.g., off.set within FLOWID register), SEQOFF
(e.g., offset within SEQNO register), I..30FFSET (e.g.,
off.set of the packet's layer three header), HDRSPLlT (e.g.,
location to split packet) and CSUMSTART (e.g., starting
locatinn for computing a checlrsum). Also, one or more
status or control indicators (e.g. CONTROL or FLAGS
register) for reporting the status of one or more flags of a
packet header may be reset. In addition, one or more
temporary registers (e.g., Rl, R2) or other data structures
may also be initialized. These registers are merely illustra
tive of the data structures that may be employed in one
embodiment of the invention. Other data structures may be
employed in other embodiments for the same or different
output operations.

Temporary registers such as R1 and/or R2 may be used in
program 2300 to track various headers and header fields.
One skilled in the art will recognize the number of posstble
combinations of communication protocols and the e.lfect of

EX 1017 Page 527

US 6,453,360 B1
31 32

those various combinations on the structure and format of a two bytes and a second part is tested in instruction LLC_l.
packet's headers. More information may need to be exam- If instruction LLC_J succeeds, the parsing pointer is
ined or gathered from a packet conforming to one protocol advanced four bytes to reach what should be a Type field and
or set of protocols than from a packet confurming to another execution continues with instruction IPV4J. If either test
protocol or set of protocols. For example, if extension s fails, however, the parsing procedure exits. In the illustrated
headers are used with an Internet Protocol header, values embodiment of the invention, no output operation is per-
from those extension headers and/or their lengths may need formed while testing the LLC SNAP field.

10 be stored, which values arc not needed if extension In instruction IPV4_1 (e.g., instruction six), the parsing
headers are not U5Cd. When calculating a particular offset, pointer should be at an Ethernet Type field. 1bis field is
such as an offset to the beginning of a packet's data portion 10 examined to determine if the layer three protocol appears to
for example, multiple registers may need to be maintained correspond to version four of the Internet Protocol. If this
and their values combined or added. In this example, one test is successful. (e.g., the Type field contains a hexadecimal
register or temporary register may track the size or format of value of 0800), the pointer is advanced two bytes to the
an extension header, while another register tracks the base IP beginning of the layer three header and execution of pro-
header. 15 gram 2300 continues with instruction IPV4_l. If the test is

Instruction VLAN (e.g., instruction one) examines the unsuccessful, then execution continues with instruction
two-byte field at the parsing pointer position (possibly a IPV6_1. Regardle&"I of the test results, the operation enabler
Type, Length or TPID field) for a value indicating a VI.AN- value (e.g., three) indicates that the specified LD_SAP
tagged header (e.g., 8100 in hexadecimal). If the header is output operation is always performed .

. VLAN-tagged, the pointer is incremented a couple of bytes 20 As descnbed previously, in a LD_SAP operation a pack-
" (e.g., one two-byte unit) and execution continues with et's ethertype (or Service Access Point) is stored in a
-' instruction CFI; otherwise, execution continues with instruc- register. Part of the operation .ugument of OxlOO, in par-
. tinn 802.3. In either event, the instruction's operation ticular the right-most six bits (e.g., zero) constitute an offset
• i::nabler indicates that an IM .. _CIL operation is always to be lo a two-byte value comprising the ethertype. The offset in
·:performed. 25 this example is zero because, in the present context, the

As descn"bed above, an IM_C'Il. operation causes a parsing pointer is already at the 1ype field that contains the
",control register or other data structure to be populated with ethertypc. In the presently descnbed embodiment, the
one or more flags to report the status or condition of a remainder of the operation argument constitutes a flag

acket. As descnoed in the previous section, a control specifying that the starting position of the layer three header
~tor may indicate whether a packet is suitable for 30 (e.g., an offset from the beginning of the packet) is also to

ohanced processing (e.g., whether a No__Assist signal be saved (e.g., in the I..30FFSET register). In particular, the
· 'uld be generated for the packet), whether a packet beginning of the layer three header is known to be located

des any data and, if so, whether the si7.e of the data immediately after the two-byte Type field.
·on exceeds a specified threshold. Toe operation argu- Instruction IPV4_l (e.g., instruction seven) tests a sus-
t OxOOA for instruction VLAN comprises the value to be 35 pected layer three version field to ensure that the layer three

in the control register, with individual bits of the protocol is version four of IP. In particular, a specification for
ent corresponding to particular flags. lliustratively, version four of IP specifies that the first four bits of the layer

., associated with the conditions just descnbed may be three header contain a value of Ox4. If the test fails, the
·. to one, or true, in this IM_CIL operation. parsing procedure ends with instruction DONE. If the test
; Instruction CFI (e.g., instruction two) exantines the CFI '40 succeeds, the pointer advances six bytes and instruction

or flag in a layer two header. If the CFI bit is set, then the IPV 4_3 is called .
., t is not suitable for the processing enhancements Toe specified LD_SUM operation, which is only per-

ibed in other sections and the parsing procedure ends formed if the comparison in instruction IPV4_2 succeeds,
1alling instruction DONE (e.g., instruction eighteen). If indicates that an offset to the beginning of a point from
. rCFI bit is not set, then the pointer is incremented another 45 which a checksum may be calculated should be stored. In

le of bytes and execution continues with instruction particular, in the presently described embodiment of the
.3. As explained above, a null output operation (e.g., invention a checksum should be calculated from the begin-
. i:m") indicates that no output operation is perfonned. In ning of the TCP header (assuming that the layer four header
lion, the output enabler value (e.g., 2:ero) further ensures is TCP). The value of the operation argument (e.g., OxOOA)

. ·no output operation is performed. so indicates that the checksum is located twenty bytes (e.g., ten
. instruction 8023 (e.g., instmction three), a Jype or two-byte increments) from the current pointer. Thus, a value
gth field (depending on the location of the pointer and of twenty bytes is added to the parsing pointer position and
at of the packet) is examined to determine if the the result is stored in a register or other data stmcture (e.g.,

's layer two fonnat is traditional Ethernet or 802.3 the CSUMSTART register).
t. If the value in the header field appears to indicate 55 Instruction IPV4_3 (e.g., instruction eight) is designed to

Ethernet (e.g., contains a hexadecimal value less than determine wbether the packet's IP header indicates IP frag-
, ry, the pointer is incremented two bytes (to what should mentation. If the value extracted from the header in accor-
_lln !,LC SNAP field) and execution continues with dance with the extraction mask does not equal the compari-

ti_on LLC_1 Otherwise, the layer two protocol may son value, then the packet indicates fragmentation. If
idered traditional Ethernet and execution continues 60 fragmentation is detected, the packet is considered unsuit-

tion IPV4 1. Instruction 8023 :in this embodi- able for the processing enhancements described in other
?f the invention does not include an output operation. sections and the procedure exits (e.g., through instruction
mstructions LLC_l and LLC~ (e.g., instructions DONE). Otherwise, the pointer :is incremented two bytes
~ five), a suspected layer two LLC SNAP field is and instruction IPV4_4 is called after performing a

to ensure that the packet conforms to the 802.3 65 LD_LEN operation.
iset Protocol. In instruction lLC_l, a first part of the In accordance with the LDJ.EN operation, the length of

tested and, if sua:cssful, the pointer is incremented the IP segment is saved. Toe illustrated operation argument

EX 1017 Page 528

US 6,453,360 Bi
31

tbose various combinations on the structure and format of a
| packet's headers. More infonnation may need to be exam-
| 4ned or gathered from a packet conformingto one protocol
£ or set afprotocols than from a packet conforming to another

‘ protocol or set of protocols. For example, if extension
headers are used with an Internet Protocol header, values
from those extension headers and/or their lengths may need
to be stored, which values are not needed if extension
headers are not used. When calculating a particular offset,

such as an offset to the beginning of a packet's data portion
F for example, multipic registers may need to be maintained

and their values combined or added. In this example, one
register or temporary register maytrack the size or format of

 anextension header, while anotherregister tracks the base IP
Fi header.
a Instruction VLAN (e.g., instruction one) examines the
i two-byte field at the parsing pointer position (possibly a

‘Type, Length or TPIDfield) for a value indicating a VLAN-
L tagged header (c.g., $100 in hexadecimal). If the headeris
&. VLAN-tagged, the pointer is incremented a couple of bytes
: (e.g, one two-bytc unit) and execution continues with
' instraction CFI, otherwise, execution continues with iustruc-
i tion 802.3. In either event, the imstruction’s operation
Eenabler indicates that an IM__CTL operationis always to be
; performed.
'6As described above, an IM_CTL operation causes a

control register or other data structure to be populated with
Rone or more flags to report the status or condition of a
packet. As descnbed in the previous section, a control
Bindicaior may indicate whether a packet is suitable for
Kenhanced processing (e.g., whether a No_Assist signal
‘Shduld be generated for the packet), whether a packet

judes any data and, if so, whether the size of the data
gition exceeds a specified threshold. The operation argu-

ot OxO0A for instruction VLAN comprisesthe value to be
bred in the control register, with individual bits of the
Bument corresponding to particular flags. Ilustratively,

associaied with the conditions just described may be
to one, or tme, in this IM__CTL operation.

Instruction CFI (e.g., instraction two) examines the CFI
or flag in a layer two header. If the CFI bitis set, then the

1 is not suitable for the processing enhancements
ibed in other sections and the parsing procedure ends

*alling instruction DONE (c.g., instruction cighteen). If
bitis not set, then the pointer is incremented another

tple of bytes and execution continues with instruction
3. As explained above, a null output operation (.g.,

FONE”) indicates that no output operation is performed. In
dition, the output enabler value (c.g., zero) further ensures

BO output operation is performed.
‘struction 802.3 (e.g., instruction three), a Type or

pth field (depending on tbe location of the pointer and
at of the packet) is examined to determine if the

’s layer two formatis traditional Ethernet or 802.3
inet. If the value in the header field appears to indicate

a Ethernet (¢.g., contains a hexadecimal value less than
B), the pointer is incremented two bytes (to whatshould
ta LLC SNAP field) and execution continucs with

ewtion LLC1. Otherwise, the layer two protocol may
ie nsidered traditional Ethernet and execution continues
a instruction IPV4__1. Instruction 802.3 in this embodi-

me. OF the invention does not include an output operation.
. instructions LLC_1 and LLC_2 (¢.g., instructions
Fand five), a suspected layer two LLC SNAP ficld is

> wa io ensure that the packet conforms to the 802.3
Ret protocol. In instruction LLC_1, a first part of the

F ‘ested and, if successful, the pointeris incremented

:

15

20

x»

40

45

50

65

32

two bytes and a second part is tested in instruction LLC_2.
If instruction LLC_2 succeeds, the parsing pointer is
advancedfour bytes to reach what should be a Type field and
execution continues with instruction IPV4__1. If either test
fails, however, the parsing procedure exits. In the illustrated
embodiment of the invention, no output operation is per-
formed while testing the LLC SNAP field.

In instruction IPV4_1 (c.g., instruction six), the parsing
pointer should be at an Ethemet Type field. This field is
examined to determine if the layer three protocol appears to
correspond to version four of the Internet Protocol. If this
test is successful (¢.g., the Type field contains a hexadecimal
value of 0800), the pointer is advanced two bytes to the
beginning of the layer three header and execution of pro-
gram 2300 continues with instruction IPV4_2. If the test is
unsuccessful, then execution continues with instruction
IPV6_1. Regardless ofthe test results, the operation enabler
value (e.g., three) indicates that the specified LD_SAP
outpul operation is always performed.

As described previously, in a LD_SAP operation a pack-
et’s ethertype (or Service Access Point) is stored in a
register. Part of the operation argument of 0x100, in par-
ticular the right-most six bits (¢.g., zero) constitute an offset
to a two-byte value comprising the ethertype. The offset in
this example is zero because, in the present context, the
parsing pointer is already at the Type field that contains the
ethertype. In the presently described embodiment, the
remainder of the operation argument constitutes a fag
specifying that the starting position of the layer three header
(¢.g,, an offset from the beginning of the packet) is also to
be saved (e.g., in the LJOFFSET rmgister). In particular, the
beginning of the layer three header is known to be located
immediately after the two-byte Type field.

Instruction IPV4__2 (¢.g., instriction seven) tests a sus-
pecied layer three version field to ensure thatthe layer three
protocolis version four of IP, In particular, a specification for
version four of IP specifies that the first four bits of the layer
three header contain a value of Ox4. If the test fails, the
parsing procedure ends with instruction DONE.If the test
succeeds, the pointer advances six byies and instruction
IPV4__3 is called.

The specified LD_SUM operation, which is only per-
formed if the comparison in instruction IPV4_2 succeeds,
indicates that an offset to the beginning of a point from
which a checksum may be calculated should be stored. In
particular, in the presently described embodiment of the
invention a checksum should be calculated from the begin-
ning of the TCP header (assuming that the layer four header
is TCP). The value ofthe operation argument (e.g., OxODA)
indicates thai the checksum is located twenty bytes (e.g., ten
two-byte increments) from the current pointer. Thus, a value
of twenty bytes is added to the parsing pointer position and
the result is stored in a register or other data structure (e.g.,
the CSUMSTARTregister).

Instruction 1PV4__3 (¢.g., instruction eight) is designed to
determine whether the packet’s IP header indicates IP frap~
mentation. If the value extracted from the header in accor-

dance with the extraction mask does not equal the compari-
son value, then the packet indicates fragmentation. If
fragmentation is detected, the packet is considered unsuit-
able for the processing enhancements described in other
sections and the procedure exits (¢.g., through instruction
DONE). Otherwise, the pointer is incremented two bytes
and instruction IPV4_4 is called after performing a
LD_LENoperation.

In accordance with the LD_LEN operation,the length of
the IP segmentis saved. The illustrated operation argument

EX 1017 Page 528

US 6,453,360 Bl
33

(e.g., Ox03E) comprises an offset to the Total Length field
where I.his value is located. Io particular, the least-significant
six bits constitute the offset. Because the pointer has already
been advanced past this field, the operation argument com
prises a negative value. One skilled in the art will recognize 5

that this binary value (e.g., 111110) may be used to represent
the decimal value of negative two. Thus, the present offset
of the pointer, minus four bytes (e.g., two two-byte units), is
saved in a register or other data structure (e.g., the PAY
LOAD LEN register). Any other suitable method of rc:pre- 10

sentiog a negative offset may be used. Or, the IP segment
length may be saved while the pointer is at a location
preceding the Total Length field (e.g., doring a previous
instruction).

In instruction IPV4_4 (e.g., instruction nine), a one-byte 15
Protocol field is examined to determine whether the layer
four protocol appears to be TCP. If so, the pointer is
advanced fourteen bytes and execution continues with
instruction TCP _l; otherwise the procedure ends.

The specified ill_FID operation, which is only per- 20
formed when the comparison in instruction IPY4_4

•succeeds, involves retrieving the packet's flow key and
storing it in a register or other location (e.g., the FLOWID
register). One skilled in the art will appreciate that in order

,for the comparison in instruction IPV 4_ 4 to be successful,. 25

. ltbe packet's layer three and four headers must conform to IP
_!(version four) and TCP, respectively. If so, then the entire
,low key (e.g., IP soun:e and destination addresses plus TCP
·f*ource and destination port numbers) is stored contiguously
·' the packet's header portion. 1n particular, the flow key 30

· mprises the last portion of the IP header and the initial
rtion of the TCP header and may be extracted in one

, ation. The operation argument (e.g., Ox182) thus com-
'prises two values needed to locate and delimit the flow key.

tratively, the right-most six bits of the argument (e.g., 35
) identify an offset from the pointer position, in two-

•· nnits, to the begimling of the flow key. The other five
'ts of the ugument (e.g., Ox06) identify the size of the flow
, ; in two-byte units, to be stored.
. instruction IPV6_1 (e.g., instruction ten), which fol- 40

the failure of the comparison performed by instruction
4_1, the parsing pointer should be at a layer two 1ype
.· If this test is successful (e.g., the Type field holds a
decimal value of 86DD), instruction IPV6_l is

ed after a ill_SUM operation is performed and the 45
ter is incremented two bytes to the begimiing of the
three protocol. If the test is unsuccessful, the procedure

34
IP segment size) of an IP, version four, header includes the
size of the version fow: header. However, the Payload
Length field (e.g., IP segment size) of an IP, version six,
header does not include the size of the version six header.
Thus, the size of the version six header, which is identified
by the right-most eight bits of the output argument (e.g.,
Ox14, indicating twenty two-byte units) is saved.
illustratively, the remainder of the argument identifies the
data structure in which to store the header length (e.g.,
temporary register Rl). Because of the variation in size of
layer three headers between protocols, in one embodiment
of the invention the header size is indicated in different units
to allow greater precision. In particular, in one embodinient
of the invention the size of the header is specified in bytes
in instruction IPV6_l, in which case the output argument
could be OxI28.

Instruction IPV6_3 (e.g., instruction twelve) in this
embodiment does not examine a header value. In this
embodiment, the combination of an extraction mask of
OxOOOO with a comparison value of OxOOOO indicates that an
output operation is desired before the next exaniination of a
portion of a header. After the LDJID operation is
performed, the parsing pointer is advanced six bytes to a
Next Header field of the version six IP header. Because the
extraction mask and comparison values are both OxOOOO, the
comparison should never fail and the failure branch of
instruction should never be invoked.

As descnbed previously, a ill _FID operation stores a
flow key in an appropriate register or other data structure
(e.g., the FLOWID register). Illustratively, the operation
argument of Ox484 comprises two values for identifying and
delimiting the flow key. 1n particular, the right-most six bits
(e.g., 0x04) indicates that the flow key portion is located at
an offset of eight bytes (e.g., four two-byte increments) from
the current pointer position. The remainder of the operation
argument (e.g., Ox12) indicates that thirty-six bytes (e.g., the
decimal equivalent of Oxl2 two-byte units) are to be copied
from the computed offset. 1n the illustrated embodiment of
the invention the entire flow key is copied intact, including
the layer three sow:ce and destination addresses and layer
four soun:e and destination ports.

In instruction IPV6_ 4 (e.g., instruction thirteen), a StL<;-

pected Next Header field is examined to determine whether
the layer four protocol of the packet's protocol stack appears
to be TCP. If so, the procedure advances thirty-six bytes
(e.g .• eighteen two-byte units) and instruction TCP_L is
called; otherwise tbe procedure exits (e.g., through instruc
tion DONE). Operation ill_LEN is performed if the value
in the Next Header field is 0x06. As descnbed above, this . , indicated ill_SUM operation in instruction IPV6_1

to the operation conducted in instruction IPV4_l
tilizes a different argument. Again, the checksum is to

. a.ted from the beginning of the TCP header
. g the layer four header is TCP). The specified
'!1 ~ent (e.g., 0x0I5) thus comprises an offset to

g of the TCP header-twenty-one two-byte

so operation stores the IP segment size. Once again the argu
ment (e.g., 0x03F) comprises a negative offset, in this case
negative one. This offset indicates that the desired Payload
Length field is located two bytes before the pointer's present
position. Thus, the negative offset is added to the present

. .ahead. The indicated offset is added to the present
r position and saved in a register or other data struc

c.g., _the CSUMSTART register).
. ction IPV6_2 (e.g., instruction eleven) tests a sus
laycr three version field to further ensure that the

,ibtcc protocol is version six of IP. If the comparison
~ Pusing procedure ends with the invocation of

on DONE. If it succeeds, instruction IPY6_3 is
.. 'Operation Il'11LJU, which is performed only when

, a.rison succeeds in I.his embodiment, saves the
~ the IP header from a Payload Length field. As one

the art will !ppreciate, the TotalJ-<'ngth field (e.g.

ss pointer offset and the result saved in ao appropriate register
or other data structure (e.g., the PAYLOADLEN register).

In instructions TCP J, TCP _l, TCP _3 and TCP_ 4
(e.g., instructions fourteen through seventeen), no header
values-other than certain flags specified in the instruction's

60 output operations--are examined, but various data from the
packet's TCP header are saved. In the illustrated
embodiment, the data that is saved includes a TCP sequence
number, a TCP header length and one or more flags. For each
instruction, the specified operation is performed and the next

65 instruction is called. As descnbed above, a comparison
between the comparison value of OxO(X){) and a null extrac
+;on value. as used in each of these instructions. will never

EX 1017 Page 529

US 6,453,360 B1
33

(e.g., 0x03E) comprises an offset to the Total Length field
where this value is located.In particular,the least-significant
six bits constitute the offset. Because the pointer has alrcady
been advanced past this field, the operation argument com-
prises a negative valuc. One skilled in the art will recognize
thatthis binary value (¢.g., 111110) may be used to represent
the decimal value of negative two. Thus, the presentoffset
of the pointer, minus four bytes (¢.g., two two-byte units), is
saved in a register or other data structure (¢.g., the PAY-
LOADLEN register). Any other suitable method of repre-
senting a negative offset may be used. Or, the IP segment
length may be saved while the pointer is at a location
preocding the Total Length ficld (c.g., during a previous
instruction).

In instruction IPV4__4 (.g., instruction nine), a one-byte
Protocol field is examined to determine whether the layer
four protocol appears to be TCP. If so, the pointer is
advanced fourteen bytes and execution continues with
instruction TCP__t; otherwise the procedure ends.

The specified LD_FID operation, which is only per-
f 6«°formed when the comparison in instruction IPV4__4

- ‘succeeds, involves retrieving the packet’s flow key and
storing it in a register or other location (c.g., the FLOWID

& register). One skilled in the art will appreciate that in order
F. for ihe comparison in instruction IPV4_4 to be successful,
P ithe packet’s layer three and four headers must conform to IP
version four) and TCP, respectively. If so, then the entire

Eaflow key (e.g., IP source and destination addresses plus TCP
f feource and destination port numbers) is stored contiguously

the packet’s header portion. In particular, the flow key
omprises. the last portion of the IP header and the initial

Psportion of the TCP header and may be extracied in one
Bipcration. ‘The operation argument (e.g., 0x182) thus com~-

b prises two values needed to locate and delimit the flow key.
Milustratively, the right-most six bits of the argument (¢.g.,
202) identify an offset from the pointer position, in two-

y'e uniis, to the beginning of the flow key. The other five
ils of the argument(¢.g., 0x06) identify the size of the flow
Mey; in two-byte units, to be stored.

ween lostruction IPV6__1 (¢.g., instruction ten), which fol-
Pes the failure of the comparison performed by instruction

4_1, the parsing pointer should be at a layer two Type
“If this test is successful (e.g, the Type field holds a

pYadecimal value of 86DPD), instruction IPV6_2 is
uted aficr a LD_SUM operation is performed and the

Fuicr is incremented two bytes to the beginning of the
BX three protocol. If the test is unsuccessful, the procedure

:t§
t

i

indicated LD__SUM operationin instruction PV6_1
to the operation conducted in instruction IPV4__2

metilizes » different argument. Again, the checksum is to
, ated from the beginning of the TCP header
peiing the layer four header is TCP). The specified
F400 argument(e.g., Ox0L5) thus comprises an offset to
Peginning of the TCP header—twenty—one two-byte

B ahead. The indicated offset is added to the present
e*r position and saved in a register or other data struc-
HO.g., lhe CSUMSTARTregister).
Mruction IPV6__2 (e.g., instruction eleven) tests a sus-
rd layer three version field to further ensure that the
three protocol is version six of IP. If the comparison
the parsing procedure ends with the invocation of
Petion DONE. If it succeeds, instruction IPV6_3 is
Operation IM_R1, which is performed only when
Ry -P&ftson succeeds in this embodiment, saves the
Bet the IP header from a Payload Length field. As one
Pea the art will appreciate, the Total Length field (c.g.gS 2

_ wr

20

25

x

40

45

60

65

34

IP segmentsize) of an IP, version four, header includes the
size of the version four header. However, the Payload
Length field (.g., LP segment size) of an IP, version six,
header does not include the size of the version six header.
‘Thus, the size of the version six header, which is identified
by the night-most sight bits of the output argument (e.g.,
0x14, indicating twenty two-byie units) is saved.
Tllustratively, the remainder of the argumentidentifies the
data structure in which to store the header length (e.g.,
temporary register R1). Because of the variation in size of
layer three headers between protocols, in one embodiment
ofthe invention the headersize is indicated in different units

to allow greater precision. In particular, in one embodiment
of the invention the size of the header is specified in bytes
in instruction IP'V6__2, in which case the output argument
could be 0x128.

Instruction IPV6_3 (€.g., instruction twelve) in this
embodiment does not examine a header value. In this
embodiment, the combination of an extraction mask of
0x0000 with a comparison value of 0x0000 indicates that an
output operation is desired before the next examination of 4
portion of a header. After the LDFID operation is
performed, the parsing pointer is advanced six bytes to a
Next Headerfield of the version six IP header. Because the
extraction mask and comparison values arc both 0x0000, the
comparison should never fail and the failure branch of
instruction should never be invoked.

As described previously, a LD_FID operation stores a
flow key in an appropriate register or other data structure
(eg., the FLOWID register). Ilustratively, the operation
argument of Ox484 comprises two values for identifying and
delimiting the flow key. In particular, the right-most six bits
(e.g., 0x04) indicates that the flow key portion is located at
an offset of eight bytes (e.g., four two-byte increments) from
the currentpointer position. The remainder of the operation
argument (e.g., 0x12) indicates that thirty-six bytes (c.g., the
decimal equivalent of0x12 two-byte units) are to be copied
from the computed offset. In the illustrated embodiment of
the invention the entire flow key is copied intact, including
the layer three source and destination addresses and layer
four source and destination ports.

In instruction IPV6_4 (¢.g., instruction thirteen), a sus-
pected Next Headerficld is examined to detenmine whether
the layer four protocol of the packet’s protocol stack appears
to be TCP. If so, the procedure advances thirty-six bytes
(¢.g., eighteen two-byte units) and instruction TCP_L. is
called; otherwise the procedure exits (e.g., through instruc-
tion DONE). Operation LD__LEN is performed if the value
in the Next Headerfield is Ox06. As described above, this
operation stores the IP segment size. Once again the argu-
ment (¢.g., 0x03) comprises a negative offset, in this case
negative one. This offset indicates that the desired Payload
Length field is located two bytes before the pointer’s present
position. Thus, the negative offset is added to the present
pointer offset and the result saved in an appropriate register
or other data structure (¢.g., the PAYLOADLEN register).

In instructions TCP_1, TCP_2, TCP_3 and TCP_4
(c-g., instructions fourteen through seventeen), no header
values—other than certain flags specified in the instruction’s
output operations—are examined, but various data from the
packet’s TCP header are saved. In the illustrated
embodiment, the data that is saved includes a TCP sequence
number, a TCP header length and one or more flags. For cach
instruction,the specified operation is performed and the next
instruction is called. As described above, a comparison
between the comparison valve of 0x0000 and a null extrac-
tion value, as used in cach of these instructions. will never

eieo)tteeeeea

EX 1017 Page 529

Btani
iHi
|

US 6,453,360 Bl
3S 36

fail. After instruction TCP_ 4, !he parsing procedure returns tion. In particular, output operation LD_CI'l., with an
to instruction WAIT to await a new packet. operation argument ofOxOOl indicates that a No_A:isist flag

For operation ID_SEQ in instruction TCP_.l, the opera- is to be set (e.g., to one) in the control register descnbed
tion argument (e.g., OxOSl) comprises two values to identify above in conjunction with instruction VLAN. The
and extract a TCP sequence number. The right-most six bits 5 No__Assist flag, as descnbed elsewhere, may be used to
(e.g., OxOl) indicate that the sequence number is located two inform other modules of the network interface that the
bytes from the pointer's current position. The rest of the present packet, is unsuitable for one or more processing
ai:gument (e.g., Ox:2) indicates the number of two-byte units enhancements described elsewhere.
that must be copied from !hat position in order to capture the It will be recognized by one skilled in !he art that the
sequence number. lliustratively, the sequence number is 10 illustrated program or microcode merely provides one
stored in !he SEQNO register. method of parsing a packet. Other programs, comprising the

For operation ST_FI.AG in instruction TCP _2, the same instructions in a different sequence or different instruc-
operation argument (e.g., Oxl45) is used lo configure a lions altogether, with similar or dissimilar formats, may be
register (e.g., !he FIAGS register) with flags to be used in employed to examine and store portions of headers and lo
a post-parsing task. The right-most six bits (e.g., Ox05) 15 configure registers and other data structures.
constitute an offi;et, in two-byte units, to a two-byte portion The efficiency gains to be realized from the application of
oftbe TCP header that contains flags that may affect whether the enhanced processing described in following sections
the packet is suitable for post-parsing enhancements more than offi;et the time required to parse a packet with the
descnbed in other sections. For example, URG, PSH, RST, illustrated program. Further, even though a header parser
SYN and FIN flag..<; may be located at the offi;et position and 20 parses a packet on a NJC in a current embodiment of the
be used to configure the register. The output mask (e.g., invention, !he packet may still need to be processed through
0x002F) indicates that only particular portions (e.g., bits) of its protocol stack (e.g., to remove the protocol headers) by
lhe TCP header's Flags field are stored. a processor on a host computer. Doing so avoids burdening

OperationLD__.lUofinstructionTCP_3issimilarto the !he oommunication device (e.g., network interface) with
operation conducted in instruction IPV6_l. Here, an opera- 25 such a task.
lion argument of 0:1205 includes a value (e.g., the least- One Embodiment of a Flow Database
significant six bits) identifying an offi;et of five two-byte FIG. 5 depicts flow database (FOB) no according to one

· units from the cum:nt pointer position. That location should embodiment of the invention. lliustratively FDB no is
include a Header Length field to be stored in a data structure implemented as a CAM (Content Addressable Memory)

· identified by !he remainder of the argument (e.g., temporary 30 using a re-writeable memory component (e.g., RAM,
tcgister Rl). The output mask (e.g., Ox:FOOO) indicates that SRAM, DRAM). In this embodiment, FDB no comprises
only the first four bits are saved (e.g., the Header Length associative portion 502 and associated portion 504, and may

,.~ld is only four bits in size). be indexed by flow number 506 .
. ,· As one skilled in the art may recognize, the value The scope of the invention does not limit the form or
,extracted from the Header Length field may need to be 35 structure of flow database no. In alternative embodiments
fd.iusted in order to reflect the use of two-byte units (e.g., of the invention virtually aoy form of data structure may be

bit words) in the illustrated embodiment. Therefore, employed (e.g., database, table, queue, list, array), either
'acconiance with !he shift portion of instruction TCP _3, monolilhic or segmented, and may be implemented in hard-

value extracted from the field and configured by the ware or software. The illustrated form of FDB no is merely
lput mask (e.g., OxFOOO) is shifted to the right eleven 40 one manner of maintaining useful information concerning
· 'lions when stored in order to simplify calculations. communication flows throngh NIC 100. As one skilled in the
Operation LD_lIDR of instruction TCP __ 4 causes the art will recognize, the structure of a CAM allows highly

· of an offset to the first byte of packet data following efficient and fast associative searching.
TCP header. As described in a later section, packets that In the illustrated embodiment of the invention, the infor-
compatible with a pre-selected protocol stack may be 45 mation stored in FDB no and the operation of flow database

. led at some point into header and data portions. manager (FDBM) 108 (descnbed below) permit functions
• • g an offi;et to !he data portion now makes it easier to such as data re-assembly, batch processing of packet

the packet later. lliustratively, the right-most seven bits headers, and other enhancements. These functions are dis-
OxOFF operation argument comprise a first element of cussed in detail in other sections but may be briefly

• to the data. One skilled in !he art will recognize the so described as follows.
ttcm (e.g., 1111111) as equating to negative one. Thus, One form of data re-assembly involves the re-assembly or

~t value equal to the current parsing pointer (e.g., the combination of data from multiple related packets (e.g.,
m the ADDR register) minus two bytes--whicb packets from a single communication flow or a single

• the beginning of the TCP header-is saved. The datagram). One method for the batch processing of packet
der of the argument signifies that the value of a 55 headers entails processing protoool headers from multiple

data structure (e.g., temporary register Rl) is to related packets through a protocol stack oollectively rather
~ to Ibis offset. In this particular context, tbe value than one packet at a time. Another illustrative function of
ln) ~e previous instruction (e.g., the length of the TCP NJC 100 involves !he distnbution or sharing of such proto-

lS added. These two values combine to form an col stack processing (and/or other functions) among proces-
to the. beginning of the packet data, which is stored in 60 sors in a multi-processor host computer system. Yet another
ropnate register or other data structure (e.g., the possible.function of NJC 100 is to enable !he transfer of
PLr.r register). re-assembled data to a destination entity (e.g., an application
_Y, and as mentioned above, instruction DONE (e.g., program) in an efficient aggregation (e.g., a memory page),

• ~n eighteen) indicates the end of parsing of a packet thereby avoiding piecemeal and highly inefficient transfers
lt IS determined that the packet docs not conform to 65 of one packet's data at a time. Thus, in Ibis embodiment of

. ~ore of the protocols associated with the illustrated the invention, one purpose of FDB llO and FDBM 108 is to
ns. This may be considered a "clean-up" ir>«truc- generate infonnation for the use of NJC 100 and/or a host

EX 1017 Page 530

telleean
a weerotLitor|

35

fail. After instruction TCP_4, the parsing procedure returns
to instruction WAIT to await a new packet.

For operation LD__SEQin instruction TCP__1, the opera-
tion argument(e.g., Ux081) comprises twovalues to identify

q and extract a TCP sequence number. The right-mosi six bits
; (c.g., 0x01) indicate that the sequence numberis located two

bytes from the pointer’s current position, The rest of the
argument (¢.g,, Ox) indicates the number of two-byte units
that must be copied from that position in order to capture the
sequence number. Iltustratively, the sequence oumber is
stored in the SEQNO register.

For operation ST_FLAG in instruction TCP_2, the
operation argument (¢.g., Ox145) is used to configure a
register (¢.g., the FLAGS register) with flags to be used in
a post-parsing task. The nght-most six bits (¢.g., 0x05)
constitute an offset, in two-byte units, to a two-byte portion
of the TCP header that contains flags that may affect whether
the packet is suitable for post-parsing enhancements
described in other sections. For example, URG, PSH, RST,
SYN and FIN flags may be located at the offset position and
be used to configure the register. The output mask (¢.g.,
0x002F) indicates that only particular portions (c.g., bits) of
the TCP header’s Flags field are stored.

Operation LD__R1 ofinstruction TCP__3 is similar to the
operation conducted in instruction IPV6__2. Here, an opera-
tion argument of 0x205 includes a value (e.g., the least-

& significant six bits) identifying an offset of five two-byie
F units from the current pointer position. That location should
F include a Header Length field to be stored in a data structure

} identified by the remainderof the argument(e-g., temporary
F register R4). The output mask (c.g., OxF00O) indicates that

& only the first four bits are saved (c.g., the Header Length
f field is only four bits in size).
BY As one skilled in the art may recognize, the value
Fexiracted from the Header Length field may need to be
Lédjusted in order to reflect the use of two-byte units (c-g.,
ae O bit words) in the illustrated embodiment. Therefore,
pMiaccordance with the shift portion of instruction TCP_3,
ehe value extracted from the field and configured by the
putput mask (e.g., OxF000) is shifted to the right eleven

ons when stored in order to simplify calculations.
r ‘Operation LD_HDR of instruction TCP_4 causes the
ding of an offset to the first byte ofpacket data following

Bc TCP header. As described inalater section, packets that
PY cOnmipatible with a pre-selected protocol stack may be

arated al some point into header and data portions.
iS an offset to the data portion now makes it casier to

the packetlater. lustratively, the right-mostsevenbits
eC OxOFF operation argument comprise a first clementof

OiSct to the data. One skilled in the art will recognize the
Pattern (.p., 1111111) as equating to negative onc. Thus,

pofiset value equal to the current parsing pointer(e.g., the
© in the ADDR register) minus two bytes—which
es the beginning of the TCP beader—is saved. The

der of the argument signifies that the value of a
m data structure (¢.g., temporary register R1) is to

dided to this offset. In this particular context, the value
fe in the previous instruction (c.g., the length of the TCP
Per) is added. These two values combine to form an

to the beginning ofthe packet data, which is stored in
PPropniate register or other dala structure (€.g., the

BS SPLIT register).
peauy, and as mentioned above, imstruction DONE (c.g.,

“ton cighteen) indicates the end ofparsing of a packet
i is determined that the packet does not conform to

Y More of the protocols associated with the illustrated
eons. This may be considered a “clean-up” iestruc-

5

20

25

30

«0

4s

56

5:re

6

6s

cers

US 6,453,360 Bi
36

tion. In particular, output operation LD_CTL, with an
operation argument of0x00] indicates that a No__Assist flag,
is to be set (c.g., to one) in the control register described
above in conjunction with iastruction VLAN. The
No_Assist flag, as described elsewhere, may be used to
inform other modules of the network interface that the

present packet, is unsuitable for one or more processing
enhancements described elsewhere.

It will be recognized by one skilled in the art that the
illustrated program or microcode merely provides one
method ofparsing a packet. Other programs, comprising the
same instructions in a different sequence or different instuc-
tions altogether, with similar or dissimilar formats, may be
employed to examine and store portions of headers and to
configure registers and other data structures.

The efficiency gainsto he realized from the application of
the enhanced processing described in following sections
more than offset the time required to parse a packet with the
illustrated program. Further, even though a header parser
parses a packet on a NIC in a curent embodiment of the
invention, the packei maystifl need to be processed through
its protocol stack (e.g., to remove the protocol headers) by
@ processor on a host computer. Doing so avoids burdening
the communication device (¢.g., network interface) with
such a task.
One Embodiment of a Flow Database

FIG. 5 depicts flow database (PDB) 116 according to one
embodiment of the invention. Illustratively FDB 110 is
implemented as 2 CAM (Content Addressable Memory)
using a re-writeable memory component (e.g., RAM,
SRAM, DRAM).In this embodiment, FDB 110 comprises
associative portion 502 and associated portion 504, and may
be indexed by flow oumber 506.

The scope of the invention does not limit the form or
structure of flow database 110. In alternative embodiments
of the invention virtually any form of data structure may be
employed (e.g., database, table, queue, list, array), either
monolithic or segmented, and may be implemented in hard-
ware or software. The illustrated form ofFDB 110 is merely
one manner of maintaining useful infomation concerning
communication flows through NIC 100.As one skilled in the
art will recognize, the structure of a CAM allows highly
efficient and fast associative searching.

In the illustrated embodimentof the invention, the infor-
mation stored in FDB 110 andthe operation offlow database
manager (FDBM) 108 (described below) permit functions
such as data re-assembly, batch processing of packet
headers, and other enhancements. These functions are dis-
cussed in detail in other sections but may be briefly
described as follows.

Oneform of data re-assermbly involves the re-assembly or
combination of data from multiple related packets (c.g.,
packets from a single communication flow or a single
datagram). One method for the batch processing of packet
headers entails processing protocol headers from multiple
related packets through a protocol stack collectively rather
than one packet at a time. Another illustrative function of
NIC 100 involves the distribution or sharing of such proto-
col stack processing (and/or other functions) among proces-
sors in a multi-processor host computer system. Yet another
possible function of NIC 100 is to enable the transfer of
re-assembled data to a destination entity (¢.g., an application
program) in an efficient aggregation (c.g., a memory page),
thereby avoiding piecemeal and highly inefficient transfers
of one packet’s data at a time. Thus, in this embodiment of
the invention, one purpose of FDB 116 and FDBM 108 is to
generate information for the use of NIC 100 and/or a host

marina iaie

EX 1017 Page 530

“ee

. ---!II! ···-r

US 6,453,360 Bl
37 38

computer system in enabling, disabling or performing one or Flow activity indicator 524 in the illustrated embodiment
more of these functions. reflects the recency of activity of a flow or, in other words,

,Associative portion 502 of FDB no in FIG. 5 stores the the age of a flow. In this embodiment of the invention flow
flow key of each valid flow destined for an entity served by activity indicator 524 is associated with a counter, such as a
NIC 100. Thus, in one embodiment of the invention asso- 5 flow activity counter (not depicted in FIG. 5). The flow
ciative portion 502 includes IP source address 510, IP activity counter is updated (e.g., incremented) each time a
destination address SU, TCP source port 514 and TCP packet is received as part of a flow that is aheady stored in
destination port 516. As described in a previous section these flow database no. The updated counter value is then stored
fields may be extracted from a packet and provided to in the flow activity indicator field of the packet's flow. The

FDBM 108 by header parser 106. flow activity counter may also be incremented each time a 10
first packet of a new flow that is being added to the database

Although each destination entity served by N1C 100 may is received. In an alternative embodiment, a flow activity
participate in multiple communication flows or end-to-end counter is only updated fur packets containing data (e.g., it
TCP connections, only one flow at a time will exist between is not updated for control packet.,;). In yet another alternative
a particular source entity and a particular destination entity. embodiment, multiple counters are used for updating flow
Therefore, each flow key in associative portion 502 that 15 activity indicators of different flows.
corresponds to a valid flow should be unique from all other Because it can not always be determined when a com-
valid flows. In alternative embodiments of the invention, munication flow has ended (e.g., the final packet may have
associative portion 502 is composed of different fields, been lost), the flow activity indicator may be used to identify
reflecting alternative flow key forms, which may be deter- flows that are obsolete or that should be tom down for some
mined by the protocols parsed by the header parser and the 20 other reason. For example, if flow database no appears to
information used to identify communication flows. be fully populated (e.g., flow validity indicator 520 is set for

Associated portion 504 in the illustrated embodiment each flow number) when the first packet of a new flow is
comprises flow validity indicator 520, flow sequence num- received, the flow having the lowest flow activity indicator
ber .522 and flow activity indicator 524. These fields provide may be replaced by the new flow.
information concerning the flow identified by the flow key 25 In the illustrated embodiment of the invention, the size of
stored in the corresponding entry in associative portion 502. fields in FDB no may differ from one entry to another. For

. The fields of associated portion 504 may be retrieved and/or example, IP source and destination addresses arc four bytes
updated by FDBM 108 as descnbed in the following section. large in version four of the protocol, but are sixteen bytes

Flow validity indicator 520 in this embndiment indicates large in version six. In one alternative embndiment of the
whether the associated flow is valid or invalid. Illustratively, 30 invention, entries for a particular field may be uniform in

: the flow validity indicator is set to indicate a valid flow wben size, with smaller entries being padded as necessary.
;-.~e fust packet of data in a flow is received, and may be reset In another alternative embodiment of the invention, fields
•)O reassert a flows validity every time a portion of a llow's within FDB no may be merged. In particular, a flow"s flow

"datagram (e.g., a packet) is correctly received key may be stored as a single entity or field instead of being
, Flow validity indicator 520 may be marked invalid after 35 stored as a number of separate fields as shown in FIG. 5.

last packet of data in a flow is received. The flow validity Similarly, flow validity indicator 520, flow sequence number
· ator may also be set to indicate an invalid flow when- 522 and flow activity indicator 524 are depicted as separate

·11ver a flow is to be tom down (e.g., terminated or aborted) entries in FIG. 5. However, in an alternative embodiment of
~ some reason other than the receipt of a final data packet. the invention one or more of these entries may be combined .
. or example, a packet may be received out of order from 40 In particular, in one alternative embodiment flow validity

packets of a datagram, a control packet indicatiog that indicator 520 and flow activity indicator 524 comprise a
transfer or flow is being aborted may be received, an single entry having a firstvalue(e.g., zero) when the entry's

~empt may be made to re-establish or re-synchronize a associated flow is invalid As long as the flow is valid,
, ow (in which case the original flow is terminated), etc. In however, the combined entry is incremented as packets are
, .e embodiment of the invention flow validity indicator 520 4S received, and is reset to the first value upon termination of
: a single bit, flag or value. the flow.
;,-Flow sequence number 522 in tbe illustrated embodiment In one embodiment of the invention FDB no contains a

prises a sequence number of the next portion of data that maximum of sixty-four entries, indexed by flow number
'.expected in the associated flow. Because the datagram 506, thus allowing the database to track sixty-four valid

, ing sent in a flow is typically received via multiple 50 flows at a time. In alternative embodiments of the invention,
kets, the flow sequence number provides a mechanism to more or fewer entries may be permitted, depending upon the

. ure that the packets are received in the correct order. For size of memory allocated for flow database no. In addition
le, in one embodiment of the invention NIC 100 to flow number 506, a flow may be identifiable by its flow

~mbles data from multiple packets of a datagram. To key (stored in associative portion 502).
rm this re-assembly in the most efficient manner, the 55 In the illustrated embodiment of the invention, flow

. ets need lo be received in order. Thus., flow sequence database no is empty (e.g., all fields arc filled with zeros)
_ber 522 stores an identifier to identify the next packet or when N1C 100 is initialized When the first packet of a flow
0 n of data that should be received. is received header parser 106 parses a header portion of the

... one embodiment of the invention, flow sequence num- packet.As described in a previous section, the header parser

. 522 corresponds to the TCP sequence number field 60 assembles a flow key lo identify the flow and extracts other
in TCP protocol headers. As one skilled in the art will information concerning the packet and/or the flow. The flow

. . · , a packet's TCP sequence number identifies the key, and other information, is passed to flow database
n of the packet's data relative to other data being sent manager 108. FDBM 108 then sea.cches FDB no for an

datagram. For packets and flows involving protocols active flow associated with the flow key. Because the
. r. than TCP, an alternative method of verifying or 65 database is empty, there is no match.
, the receipt of data in the correct order may be In this example, the flow key is therefore stored (e.g., as
, loyed, flow number zero) by copying the IP source address, JP

.: l

EX 1017 Page 531

E‘3 ~ oo Seeam oe sin ste oe ale om ey 7 +
MecenKpiSiratnenee tate ee cmpaEtae Sop

37

computersystem in enabling, disabling or performing one or
more of these functions.

Associative portion 502 of FDB 1210 in FIG. 5 stores the
flow key of cach valid flow destined for an entity served by

: NIC 100. Thus, in one embodiment of the invention asso-
ciative portion 502 includes IP source address 510, IP
destination address 512, TCP source port 514 and TCP
destination port $16.As described in a previous section these
fislds may be extracted from a packet and provided to
FDBM 108 by header parser 106.

Although each destination entity served by NIC 100 may
participate in multiple communication flows or end-to-end
"TCP connections, only one flow at a time will exist between
a particular source entity and 2 particular destination entity.
Therefore, cach flow key in associative portion S02 that
corresponds to a valid flow should be unique from all other
valid flows. In alternative embodiments of the invention,
associative portion 502 is composed of different fields,

f. reflecting alternative flow key forms, which may be deter-
Ko mined by the protocols parsed by the header parser and the

information used to identify communication flows.
Associated portion 504 in the ilustrated embodiment

comprises flow validity indicator 520, flow sequence num-
| ber 822 andflow activity indicator 524. These fields provide
” information concerning the flow identified by the flow key

f stored in the corresponding entry in associative portion 502.
i; .. The fields of associated portion 504 may be retricved and/or

* updated by FDBM 108 as described in the following section.
R6©-Flow validity indicator 520 in this embodiment indicates
. whetherthe associated flow is valid or invalid. Mlustratively,

the flow validity indicatoris set to indicate a valid flow when
dhe first packetofdata in a flow is received, and may be reset

By to reassert a flow’s validity every time a portion of a flow’s
& datagram (e.g., a packet) is correctly received.
&, Flow validity indicator $20 may be marked invalid after
jthe last packet of data in a flow is received. The flow validity
indicator may also be set to indicate an invalid flow when-

Beaver a flow is to be torn down (¢.g., terminated or aborted)
for some reason other than the reccipt of a final data packet.
stor example, a packet may be received out of order from

ther packets of a datagram, a control packet indicating that
ma data transfer or flow is being aborted may be received, an
itternpt may be made to re-establish or rée-synchronize a
Flow (in which case the original flow is terminated), etc. In
fane enobodiment of the invention flow validity indicator 520
BS a single bit, flag or value.
F-Flow sequence number 522 in the illustrated embodiment
pon prises a sequence numberofthe next portion of data that
Bhcxpecied in the associated flow. Because the datagram

i& Sent in a flow is typically received via multiple
Packets, the flow sequence numberprovides a mechanism to

poure that the packets are received in the correct order. For
eemple, in one embodiment of the invention NIC 100
Rassembles data from multiple packets of a datagram. To
yOrm this re-assembly in the most efficient manner, the

pexcls need to be received in order. Thus, flow sequence
Bnber522 stores an identifier to identify the next packet or
y4On of data that should be received.

=i One embodimentof the invention, low sequence num-
ee 522 Corresponds to the TCP sequence number field
ged in TCP protocol headers. As one skilled in the art will
Bvpmze, a packet’s TCP sequence number identifies the
nition of the packet’s data relative to other data being sent

datagram. For packets and flows involving protocols
g°" than TCP, an altemative method of verifymg or
NUting the receipt of data in the correct order may be
BPloyed.

wrt pe ae Swern ge ae ne

10

20

25

x

35

40

65

eee akeOeaabeg OES

US 6,453,360 B1
38

Flow activity indicator 524 in the illustrated embodiment
reflects the recency of activity of a flow or, in other words,
the age of a flow. In this embodimentofihe invention flow
activity indicator 524 is associated with a counter, such as a
flow activity counter (not depicted in FIG. 5). The flow
activity counter is updated (e.g., incremented) each time a
packet is received as part of a flow that is already stored in
flow database 110. The updated countervalue is then stored
in the flow activity indicator field of the packet’s flow. The
flow activity counter may also be incremented cach time a
first packet of a new flow that is being added to the database
is received. In an alternative embodiment, a flow activity
counter is only updated for packets containing data (e.g., it
is nol updated for control packets). In yet another alternative
embodiment, multiple counters are used for updating flow
activity indicators of different flows.

Because it can not always be determined when a com-
munication flow has ended (¢.g., the final packet may have
been lost), the flow activity indicator may be used to identify
flows that are obsolete or that should be torn down for some

other reason. For example, if flow database 110 appears to
be fully populated. (¢.g., flow validity indicator 520is set for
each flow number) when the first packet of a new flow is
received, the flow having the lowest ow activity indicator
may be replaced by the new flow.

In the illustrated embodimentof the invention, the size of
fields in FDB 110 may differ from one entry to another. For
example, IP source and destination addresses are four bytes
large in version four of the protocol, but are sixteen bytes
large ia version six. In one altemative embodiment of the
invention, entries for a particular field may be uniform in
size, with smaller entries being padded as necessary.

In anotheralternative embodimentofthe invention, fields
within FDB 110 may be merged. In particular, a flow’s flow
key maybe stored as a single entity or field instead ofbeing
stored as a number of separate fields as shown in FIG.5.
Siznilarly, flow validity indicator 520, flow sequence number
522 and flow activity indicator 524 are depicted as separate
entries in FIG. 5. However, in an alternative embodiment of
the invention one or more of these entries maybe combined.
In particular, in one altemative embodiment flow validity
indicator 520 and flow activity indicator 524 comprise a
single entry having a first value (¢.g., zero) when the entry’s
associated flow is invalid. As long as the flow is valid,
however, the combined entry is incremented as packets are
received, and is reset to the first value upon termination of
the flow.

In one embodimentof the invention FDB 110 contains a
maximum of sixty-four entries, indexed by flow oumber
506, thus allowing the database to track sixty-four valid
flows at a time. In alternative embodiments of the invention,
more or fewer entries may be permitted, depending upon the
size of memory allocated for flow database 110. In addition
to fow number 506, a flow may be identifiable by its flow
key (stored in associative portion 502).

In the illustrated embodiment of the mvention, flow
database H10 is empty (c.g., all fields are filled with zeros)
when NIC 100 is initialized. When the first packet of a flow
is received header parser 106 parses a header portion of the
packet. As described in a previous section, the header parser
assembles a flow key to identify the flow and extracts other
information conceming the packet and/or the flow. The flow
key, and other information, is passed to flow database
manager 108. FDBM 108 then searches FDB 110 for an
active flow associated with the flow key. Because the
database is empty, there is no match.

Io this example, the flow key is therefore stored (c.g., as
flow number zero) by copying the IP source address, IP

fii

EX 1017 Page 531

US 6,453,360 Bl
39 40

destination address, TCP soun;e port and TCP destination this embodiment, flow validity indicator S20 comprises one
Port into the corresp_on~ing fields. _Flow validity indicator bit, flow saiuence number S22 is allocated four bytes and
520 is then set to mdicate a valid flow, flow saiuence flow activity indicator 524 is also allocated four bytes.
number 522 is derived from the TCP saiuence number As one skilled in the art will recognize from the embodi-
(illustratively provided by the header parser), and flow s ments descnbed above, a flow is similar, bul: not identical, to
activity indicator 524 is set to an initial value (e.g., one), an end-to-end TCP connection.A TCP connection may exist
which may be derived from a counter. One method of for a relatively extended period of time, sufficient to transfer
generating an appropriate flow sequence number, which may multiple datagrams from a source entity to a destination
be used to verify that the next portion of data n:ccived for the entity. A flow, however, may exist only for one datagram.
flow is received in order, is to add the TCP sequence number 10 Thus, during one end-to-end TCP connection, multiple ftows
and the size of the packet's data. Depending upon the may be set up and tom down (e.g., once for each datagram).
configuration of the packet (e.g., whether the SYN bit in a As descnbed above, a flow may be set up (e.g., added lo
Flags field of the packet's TCP header is set), however, the FDB no and marked valid) when NIC 100 detects the first

: sum may need to be adjusted (e.g., by adding one) to portion of data in a datagram and may be tom down (e.g.,
· correctly identify the next expected portion of data. 15 marlced invalid in FDB no) when the last portion of data is

i:
Ii• r

'. As described above, one method of generating an appm- received. Illustratively, each flow set up during a single
priate initial value for a flow activity indicator is to copy a end-to-end TCP connection will have the same ft.ow key
.poonter value that is incremented for each packet received as because the layer three and layer four address and port

·. part of a flow. For example, for the fin,t packet received after identifiers used to form the flow key will remain the same.
NIC 100 is initialized, a flow activity counter may be 20 In the illustrated embodiment, the size of flow database

'uim:mented to the value of one. 1bis value may then be no (e.g., the number of flow entries) determines the maxi-
stored in flow activity indicator 524 for the associated ft.ow. mum number of flows that may be interleaved (e.g., simul-
'l'he next packet received as part of the same (or a new) flow taneously active) at one time while enabling the functions of
· the rounter to be incremented to two, which value is data re-assembly and batch processing of protocol headers.

in the flow activity indicator for the associated ft.ow. 25 In other words, in the embodiment depicted in FIG. 5, NIC
. this example, no two flows should have the same flow. 100 can set up sixty-four flows and receive packets from up

· ·ty indicator except at initialization, when they may all to sixty-four different datagrams (i.e., sixty-four flows may
zero or some other predetermined value. be active) without tearing down a flow. If a maximum

Upon receipt and parsing of a later packet received at NJC number of flows through NJC 100 were known, flow data-
00, the flow database is searched for a valid flow matching 30 base no could be limited to the corresponding number of

t packet's flow key. illustratively, only the flow keys of entries.
· · e flows (e.g., those flows for which flow validity The flow data.base may be kept small because a flow only

· ator520isset)aresearched.Altematively,allflowkeys lasts for one datagram in the presently described embodi-
., all entries in associative portion 502) may be searched ment and, because of the bursty nature of pack.et traffic, a
•· match is only reported if its flow validity indicator 35 datagram's packets are generally received in a short period

. • tesa valid flow. With a CAM such as FDB 110 in FIG. of tinie. The short duration of a flow COlllpensates for a
w keys and flow validity indicators may be searched in limited number of entries in the flow database. In one

. lei. embodinlent of the invention, if FDB no is filled with active
1lf .• later packet rontains the next portion of data for a flows aod a new flow is commenced (i.e., a first portion of

VlOUS flow (e.g., flow number zero), that flow is updated 40 data in a new datagram), the oldest (e.g., the least recently
riately. In one embodiment of the invention this active) flow is replaced by the new one.
updating flow saiuence number 522 and increment- In an alternative embodiment of the invention, flows may

,flow activity indicator 524 to reflect its recent activity. be kept active for any number of datagrams (or other
' • validity indicator 520 may also be set to indicate the measure of network traffic) or for a specified length or range

of the flow, although it should already indicate that 4S of time. For example, when one datagram ends its flow in
flow is valid. FDB no may be kept "open" (i.e., not tom down) if the

n_e":' flows arc identified, they arc added to FDB no database is not full (e.g., the flow's entry is not needed for
.• similar manner to the first flow. When a flow is a different flow). This scheme may further enhance the
. ated or tom down, the associated entry in FDB 110 is efficient operation of NJC 100 if another datagram having
• a.t~d.. In one embodiment of the invention, flow 50 the same flow key is received. In particular, the overhead

.. ty ~dicator 520 is merely cleared (e.g., set to rem) fur involved in setting up another flow is avoided and more data
ated flow. In another embodiment, one or more re-assembly and packet batching (as described below) may

of a terminated flow are cleared or set to an arbitrary be performed. Advantageously, a flow may be kept open in
termined value. Because of the bursty nature of flow database no until the end-to-end TCP connection that

rli: packet traffic, all or most of the data from a 55 encompasses the flow ends.
am :is generally received in a short amount of time. One Embodinlent of a Flow Database Manager

• ~ach valid flow in FDB no normally only needs to be FIGS. 6A--'E depict one method of operating a flow
bined fur a short period of time, and its entry can then database manager (FDBM), such as flow database manager

d to store a different flow. 108 of FIG. 1A, for managing flow database (FDB) no.
lo the liniited amount of memory available for :flow 60 illustratively, FDBM 108 stores and updates flow infonna-

;:: 110 in one embodiment of the invention, the size of lion stored in flow database 110 and generates an operation
Id may be limited. In this embodiment, sixteen bytes code for a packet received by NIC 100. FDBM 108 also tears
lied for IP source address 510 and sixteen bytes are down a flow (e.g., replaces, removes or otherwise invali-

cd for IP destination address 512. For IP addresses dates an entry in FDB 10) when the flow is temiinated or
r than sixteen bytes in length, the extra space may be 65 aborted.

with zeros. Further, TCP source port 514 and TCP Ia one embodiment of the invention a packet's operation
boa port 516 are each allocated tv.'O bytes: Also in <.<,de refieots the packet's (:ompatibility witb p;,:i qete~ined

EX 1017 Page 532

"OWE righ " os 7 WE it
iio ieLLLL Atay

US 6,453,360 Bi
39 40

destination address, TCP source port and TCP destination this embodiment, flow validity indicator 520 comprises one
: port into the corresponding fields. Flow validity indicator bil, flow sequence number 522 is allocated four bytes and

§ 520 is then set to indicate a valid flow, flow sequence flow activity indicator 524is also allocated four bytes.
- mumber 522 is derived from the TCP sequence number As one skilled in the art will recognize from the embodi-

{illustratively provided by the header parser), and flow s ments descnbed above,a flow is similar, but not identical, to
activity indicator 524 is set to an initial value (e.g., one), an end-to-end TCP connection. ATCP connection may exist
which may be derived from a counter. One method of_for a relatively extended period of time, sufficient to transfer

: generating an appropriate flow sequence number, which may multiple datagrams from a source entity to a destination
¥ be used to verify that the next portion ofdata received for the entity. A flow, however, may exist only for one datagram.
R flow is received in order, is to add the TCP sequence number 10 Thus, during one end-to-end TCP connection, multiple flows

and the size of the packet’s data. Depending upon the=may be set up and torn down (e.g., once for each datagram).
configuration of the packet (¢.g., whether the SYN bitin a As described above, a flow may be set up (.g., added to
Flags field of the packet’s TCP header is set), however, the FDB 110 and marked valid) when NIC 100 detects the first

; gum may need to be adjusted (e.g, by adding one) to—_portion of data in a datagram and may be torn down (c.g.,
; correctly identify the next expected portion of data. 15 marked invalid ia FDR 110) when the last portion of data is i
’* As described above, one method of generating an appro- received. Illustratively, cach flow set up during a single F
f priate initial value for a flow activity indicator isto copy a=end-to-end TCP connection will have the same flow key f

pounter value that is incremented for each packet received as because the layer three and layer four address and port bi
:part of a flow. For example,for thefirst packet received after—_identifiers used to form the flow key will remain the same. i
‘NIC 100 is initialized, a flow activity counter may be 20 In the illustrated embodiment, the size of flow database i i
Rincremented to the value of onc. This value may then be —110 (¢.g., the number of flow entries) determines the maxi- Ih
pstored in flow activity indicator 524 for the associated flow.|mum numberofflows that may be interleaved (c.g., simul- |
aThe next packet received as part of the same (oranew) flow taneously active) at one time while enabling the functions of 1
btauses the counter to be incremented to two, which value is—data re-assembly and batch processing of protocol headers.

d in the flow activity indicator for the associated flow. 25 In other wonts, in the embodiment depicted in FIG. 5, NIC
wi this example, no two flows should have the same flow. 100 can set up sixty-four flows and receive packets from up

Brtivity indicator except at initialization, when they mayall to sixty-four different datagrams (.c., sixty-four Bows may
, zero or some other predetermined value. be active) without tearing down a flow. If a maximum
fUpon receipt and parsing of a later packet received at NIC numberof flows through NIC 100 were known,flow data-
R00, the flow database is searched for a valid flow matching 30 base 110 could be limited to the corresponding oumber of
pai packci’s flow key. Ilustratively, only the flow keys of entries.

i * flows (c.g., those flows for which flow validity The flow database may be kept small because a flow only
ator 526 is set) are searched. Alternatively,all flow keys lasts for one datagram in the presently described embodi-
all cntries in associative portion 502) may be searched=ment and, because of the bursty nature of packettraffic, a

& match is only reported if its flow validity indicator 35 datagram's packets are generally received in a short period
Beucates a valid flow. With a CAM such as FDB 126 in FIG. of time. The short duration of a flow compensates for a

ow keys and flow validity indicators may be searched in limited number of entries in the flow database. In one
mpralicl. embodiment of the invention, if FDB 110is filled with active

aEa later packet contains the next portion of data for a flows and a new flow is commenced (i.c., a first portion of
pevious flow (e.g., flow numberzero), that flow is updated 40 data in a new datagram), the oldest(¢.g., the least recently

Opnaicly. In one embodiment of the invention this active) flow is replaced by the new one.
updating flow sequence number 522 and increment- In analiernative embodimentof the invention, flows may

WW activity indicator 524 to reflect its recent activity. be kept active for any number of datagrams (or other
validity indicator 520 may also be set to indicate the measure ofnetwork traffic) or for a specified length or range

of the flow,although it should already indicate that 45 of time. For example, when one datagram ends its flow in
‘ow Is valid. FDB 110 may be kept “open” {i.c., not torn down) if the 4
new flows are identified, they are added to FDB 110—_database is notfull (e.g., the flow’s entry is not needed for q
Similar manner to the first flow. When a flow is a different flow). This scheme may further enhance the

inated or tors down, the associated entry in FDB 110is efficient operation of NIC 100 if another datagram having f
padi ated. In one embodiment of the invention, flow so the same flow key is received. In particular, the overhead |

Bruty indicator $20 is merely cleared (e.g., set ta zero) for —_involved in setting up anotherflow is avoided and more data '
B. “rminaied flow. In another embodiment, one or more —_re-assembly and packet batching (as described below) may 4
, ~ ofa terminated flow are cleared orset to an arbitrary be performed. Advantageously, a flow may be kept open in f

nen termined value. Because of the bursty nature of flow database 110 until the end-to-end TCP connection that
work packet traffic, all or most of the data from a 55 encompasses the flow ends.
eam Js generally received in a short amount oftime. One Embodiment of a Flow Database Manager

eso

SaneLemmnucemmennaumnear
ernieeinen

arae

y? ach valid flow in FDB 110 normally only needs to be FIGS. 6A-6E depict one method of operating a flow rE
tained for a short period of time, and its entry can then—_database manager (FDBM), such as flow database manager ne

PeSCd to store a different flow. 108 of FIG. 1A, for managing flow database (FDB) 10. '
ue to the limited amount of memory available for flow 0 Ilustratively, FDBM 108 stores and updates flow informa-

asc 110 in one embodimentof the invention,the size of tion stored in flow database 110 and generates an operation
_ field may be limited. In this embodiment, sixtecn bytes code for a packet received by NIC 100. FDBM 108 also tears
pevocated for IP source address 510 and sixteen bytes are down a flow (e.g., replaces, removes or otherwise invali-
sated for IP destination address 512. For IP addresses dates an cnfry in FOB 10) when the flow is terminated or
Mrthan sixteen bytes in length, the extra space may be 65 aborted.

mae With zeros, Farther, TCP source port 514 and TCP In one embodimentof the invention a packet’s operation
mameON port 516 are cach allocated two bytes: Also in cadereflects the packet’s compatibitity with pre determined

EX 1017 Page 532

ee

US 6,453,360 Bl
41 42

criteria for performing one or more functions of NIC 100 In slate 614, the flow database manager determines
(e.g., data re-assembly, batch processing of packet headers, whether the packet constitutes an attempt lo reset a com-
load distnbution). In other words, depending upon a pack- munication connection or flow. Illustratively, this may be
et's operation code, other modules of NIC 100 may or may determined by examioing the state of a SYN bit in one of the
not perform one of these functions, as descnbed in following 5 packet's protocol headers (e.g., a TCP header). In one
sections. embodiment of the iovention the value of one or more

In another embodiment of the invention, an operation control or flag bits (such as the SYN bit) are provided lo the
code iodicates a packet status. For example, an operation IDBM by the header parser. As one skilled in the art will
code may indicate that a packet: contains no data, is a control recognize, one TCP entity may attempt lo reset a commu-

packet, contains more than a specified amount of data, is the 10 == 0 t;rc%1e:'::~:~f =~n~·~:~:::;~~~)
first packet of a new flow, is the last packet of an existing and send a first portion of data along with the re-connection
flow, is out of order, contains a certain flag (e.g., in a request. This is the situation the flow database manager
prolOCOl header) that does not have an expected value (thus attempts to discern in state 614. If the packet is part of an
possibly indicating an exceptional circumstance), etc. attempt to re-connect or reset a flow or connection, the

The operation of flow database manager 108 depends 15 procedure continues at state 630 (FIG. 6C).
upon packet information provided by header parser 106 and In stale 616, flow database manager 108 compares a
data drawn from flow database 110. After FDBM 108 sequence number (e.g., a TCP sequence number) extracted
processes the packet information and/or data, control infor- from a packet header with a sequence number (e.g., flow
mation (e.g., the packet's operation code) is stored in control sequence number 522 of FIG. 5) of the next expected portion

·, queue 118 and IDB 110 may be altered (e.g., a new flow 20 ofdataforthisllow.Asdiscussedinaprevioussection,tbese
. may be entered or an existing one updated or tom down). sequence numbers should correlate if the packet contains the
· With reference now to FIGS. 6A-6E, state 600 is a start Dow's next portion of data. If the sequence DUIDbers do not
stale in which IDBM 108 awaits information drawn from a match, the procedure continues at state 628.

'·packet received by NIC 100 from network 102. In state 602, In state 618, IDBM 108 determines whether certain flags
.header parser 106 or another module of NIC 100 notifies 25 extracted from one or more of the packet's protocol headers

BM 108 of a new packet by providing the packet's flow match expected values. For example, in one embodiment of
·. y and some control information. Receipt of this data may the invention the URG, PSH, RST and FIN flags from the
.. interpreted as a request to search IDB 110 lo determine packet's TCP header are expected to be clear (i.e., equal to

ther a flow having this flow key already exists. zero). If any of these flags an: set (e.g., equal to one) an
· In one embodiment of the invention the control informa- 30 exceptional condition may exist, thus making it possible that

··on passed to FDBM 108 includes a sequence number(e.g., one or more of the functions (e.g., data re-assembly, batch
. TCP sequence number) drawn from a packet header. Toe processing, load distribution) offered by NIC 100 should not
· trol information may also indicale the status of certain be performed for this packet. As long as the flags are clear,

in the packet's headers, whether the packet includes the procedure continues at state 620; otherwise the proce-
. a and, if so, whether the amount of data exceeds a certain 35 dure continues at state 626.
· . In this embodiment, FDBM 108 also receives a In state 620, the flow database manager determines

'-.Assist signal for a packet if the header parser deter- whether more data is expected during this flow.As discussed
· that the packet is not formatted accotding lo one of the above, a flow may be limited in duration to a single

-selected protocol stacks (i.e., the packet is not datagram. Therefore, in stale 620 the IDBM determines if
. mpatible"), as discussed in a previous section. 40 this packet appears to be the final portion of data for this

tratively, the No_Assist signal indicates that one or flow's datagram. illustratively, this detemrination is made on
functions of NIC 100 (e.g., data re-assembly, batch the basis of the amount of data included with the present

· g, load-balancing) may not be provided for the packet. As one skilled in the art will appreciate, a datagram
et. comprising more dala than can be carried in one packet is

. state 604, FDBM 108 determines whether a No_Assist 45 sent via multiple packets. Toe typical manner of disserni-
. ll was as.,;erted for the packet. If so, the procedure nating a datagram among multiple packets is to put as much

ds lo state 668 (FIG. 6E). Otherwise, FDBM 108 data as possible into each packet. Thus, each packet except
. es IDB 110 for the packet's flow key in state 606. In the last is usually equal or nearly equal in size to the
;,embodiment of the invention only valid flow entries in maximum transfer unit (MfU) allowed for the network over
.• W database are searched. As discussed above, a flow' s so which the packets are sent. Toe last packet will bold the
,. 1;11ay be reflected by a validity indicator such as flow remainder, usually causing it to be smaller than the MTIJ.

mdicator 520 (shown in FIG. 5). If, in stale 608, it Therefore, one manner of identifying the final portion of
rmined that tbe packet's flow key was not found in the data in a flow's datagram is to examine the size of each

, or that a match was found but the associated flow packet and compare it to a figure (e.g., MTU) that a packet
t Vali_d, the procedure advances to state 646 (FIG. 60). 55 is expected to exceed except when carrying the last data

. 4 valid match is found in tbe flow database, in stale 610 portion. It was described above that control information is
~~w number (e.g., the flow database index for the received by IDBM 108 from header parser 106. An indi-

~ entry) of the matching flow is noted and flow cation of the size of the data carried by a packet may be
ali~n stored in FDB 110 is read. illustratively, this included in this information. In particular, header parser 106
at10n includes flow validity indicator 520, flow 60 in one embodiment of the invention is configured to com-
~ number 522 and flow activity indicator 524 pare the size of each packet's data portion to a pre-selected
m FIG. 5). value. In· one embodiment of the invention this value is

SI.ate 6U, FDBM 108 determines from information programmable. This value is set, in the illustrated embodi-
from header parser l 06 whether the packet contains ment of the invention, to the maximum amount of data a

Yload data. If not, the illustrated procedure proceeds 65 packet can carry without exceeding MIU. In one alternative
638 (FIG. 6C); otherwise the procedure continues to embodiment, the value is set lo an amount somewhat less

, 4 than the maximum amount of data that can be carried.
·1,

.~

'j
• I

' 1

EX 1017 Page 533

ekteealte
etts)7 eeee

eeSeteee

US 6,453,360 B1
41

criteria for performing one or more functions of NIC 100
(c.g, data re-assembly, batch processing of packet headers,
load distribution). Io other words, depending upon a pack-
et’s operation code, other modules of NIC 100 may or may
not perform one of these functions, as described in following 5
sections.

In another embodiment of the invention, an operation
code indicates a packet status. For example, an operation
code may indicate that a packet: contains no data, is a control
packet, contains more than a specified amount of data, is the 10
first packet of a new flow, is the last packet of an existing
flow, is out of order, contains a certain flag (e.g. in a
protocol header) that docs not bave an expected value (thus
possibly indicating an exceptional circumstance),etc.

The operation of flow database manager 108 depends 15
upon packet information provided by header parser 106 and
| daia drawn from flow database 110. After FDBM 108

. processes the packet information and/or data, control infor-
mation (¢.g., the packet’s operation code) is stored incontrol

; queue 118 and FDB 110 may be altered (c.g., a new flow 20
_ tay be entered or an existing one updated or torn down).
.. With reference now to FIGS. 6A-6E, state 600 is a startF, state in which FDBM 1068 awaits information drawn from a
packet reccived by NIC 100 fom network 102.In state 602,

‘header parser 106 or another module of NIC 100 notifies 25
PEDBM 108 of a new packet by providing the packet’s flow
pkey and some control information. Receipt of this data may

interpreted as a request to search FDB 110to detennine
wwhether a flow having this flow key already exists.
B, In one embodimentof the invention the control informa- 30

jon passed to FDBM 108 includes a sequence number(c.g.,
e TCP sequence umber) drawn from a packet header. The
Rontrol information mayalso indicate the status of cortain

gs in the packet’s headers, whether the packet includes
ata ancl, if so, whether the amountof dala exceeds a certain 35
zc. In this embodiment, FOBM 108 also receives a
Assist signal for a packet if the header parser deter-

es that the packetis not formatted according to one of the
pe-selected protocol stacks (i.c., the packet is not
Bmpatibic”), as discussed in a previous section. 40
Bustratively, the No_Assist signal indicates that one or
gore functions of NIC 100 (c.g., data re-asscmbly, batch

Eo . ing, load-balancing) may not be provided for theecket,

pa state 604, FDBM 108 determines whether a No__Assist 45
al was asserted for the packet. If so, the procedure

ds to state 668 (FIG. 6E). Otherwise, FOBM 108
ches FDB 110 for the packet’s flow key in state 606. In
Fombediment of the invention only valid flow entries in

w database are searched. As discussed above, a flow’s 50
ty maybe reflected by a validity indicator such as flow

‘ indicator 526 (shown in FIG. 5). H, in state 608,it
“rmined that the packet’s flow key was not found in the

» or that a match was found but the associated flow
ot valid, the procedure advances to state 646 (FIG. 6D). 55
ft& valid match is found in the flow database,in state 610

How number (¢.g., the flow database index for the
wrung entry) of the matching flow is noted and flow

nation stored in FDB 110 is read. Ilustratively, this

Bor
Ce number 522 and flow activity indicator 524

PR tn FIG. 5).
Bm Sale 612, EDBM 108 determines from information
ped from header parser 106 whetherthe packet contains

7 se os (FIG.6C); otherwise the procedure continues tore

AOation includes ow validity indicator 520, flow oo

ey Yload data,If not, the illustrated procedure proceeds 65

42

In state 614, the flow database manager determines
whether the packet constitutes an attempt to reset a com-
munication connection or flow. IMustratively, this may be
determined by examining the state of a SYN bil in one of the
packet’s protocol headers (e.g., a TCP header). In one
embodiment of the invention the value of one or more

control or flag bits (such as the SYN bit) are provided to the
FDBM by the header parser. As one skilled in the art will
recognize, one TCP entity may attempt to reset a commn-
nication flow or connection with another entity (e.g,
because of a problem on oneofthe entity’s hast computers)
and send a first portion of data along with the re-connection
request. This is the situation the flow database manager
attempts to discern in state 614. If the packet is part of an
attempt to re-conpect or reset a flow or connection, the
procedure continues al state 630 (FIG. 6C).

In state 616, flow database manager 108 compares a
sequence oumber (¢.g., a TCP sequence number) extracted
from a packet header with a sequence number (¢.g., flow
sequence number §22 of FIG. 5) of the next expected portion
ofdata for this flow. As discussed in a previous section, these
sequence numbers should correlate if the packet contains the
flow’s next portion of data. If the sequence numbers do not
match, the procedure continues at state 628.

In state 618, FDBM 108 determines whether certain flags
extracted from one or more of the packet’s protocol headers
match expected values. For example, in one cmbodiment of
the invention the URG, PSH, RST and FIN flags from the
packet’s TCP header are expected to be clear (ic., equal to
zero). If any of these flags are set (c.g., equal to one) an
exceptional condition may exist, thus making it possible that
one or more of the functions (¢.g., data re-assembly, batch
processing,load distribution) offered by NIC 100 should not
be performed for this packet. As long as the flags are clear,
the procedure continues at state 620; otherwise the proce-
dure continues at stale 626.

In state 620, the flow database manager determines
whether more data is expected duringthis flow. As discussed
above, a flow may be limited in duration to a single
datagram. Therefore, in slate 620 the FDBM determines if
this packet appears to be the final portion of data for this
flow’s datagram. Ilustratively, this determination is made on
the basis of the amount of data included with the present
packet. As one skilled in the art will appreciate, a datagram
comprising more data than can be carried in onc packet is
Sent via multiple packets. The typical manner of dissemi-
nating a datagram among nrultiple packets is io put as much
data as possible into cach packet. Thus, cach packet except
the last is usually equal or nearly equal in size to the
maximum transfer wait (MTU) allowed for the nctwork over
which the packets are sent. The last packet will hold the
remainder, usually causing it to be smaller than the MTU.

Therefore, one manner of identifying the final portion of
data in a flow’s datagram is to examine the size of cach
packet and compare it to a figure (e.g., MTU)that a packet
is expected to exceed except when carrying the last data
portion. It was described above that control information is
received by FDBM 108 from header parser 106. An indi-
cation of the size of the data carried by a packet may be
included in this information. In particular, header parser 106
in one embodiment of the invention is configured to com-
pare the size of each packet’s data portion to a pre-selected
value. In one embodiment of the invention this value is
programmable. This value is sct, in the illustrated embodi-
ment of the invention, to the maximum amount of data a
packet can carry without exceeding MTU. In oncallernative
embodiment, the valuc is set to an amount somewhat less
than the maximum amount of data that can be carried.

wnI|eleren-pemgaal

EX 1017 Page 533

US 6,453,360 Bl
43

Thus, in state 620, flow database manager 108 determines
whether the received packet appears lo cany the final
portion of data for the How's datagram. If not, the procedure
continues to state 626.

In state 622, it has been ascertained that the packet is 5

cornpatible with pre-selected protocols and is suitable for
one or more functions offered by NIC 100. In particular, the
packet has been formatted appropriately for one or more of
the functions discussed above. FDBM 108 has determined
that the received packet is part of an existing flow, is 10

compatible with the pre-selected protocols and contains the
next portion of data for the flow (but not the final portfon).
Further, the packet is not part of an attempt to re-set a
flow/connection, and important flags have their expected
values. Thus, flow database no can be updated as follows. 15

The activity indicator (e.g., flow activity indicator 524 of
FIG. 5) for this flow is modified to reflect the recent flow
activity. In one embodiment of the invention flow activity
indicator 524 is implemented as a counter, or is associated

· with a counter, that is incremented each time data is received 20

· for a flow. lo another embodiment of the .invention, an
· a.ctivity indicator or counter is updated every time a packet
having a flow key matching a valid flow (e.g., whether ornot
the packet includes data) is received.

In the illustrated embodiment, after a flow activity indi- 25

· cator or counter is incremented it is examined to determine
if it "rolled over" to zero (i.e., whether it was incremented

ast its maximum value). If so, the counter and/or the flow
activity indicators for each entry in flow database no are set

zero and the current How's activity indicator is once again 30

mented. Thus, in one embodiment of the invention the
lling over of a flow activity counter or indicator ca:w;es the

, -initialization of the flow activity mechanism for flow
, aba.se n 0. Thereafter, the counter is incremented and the

, :W activity indicators are again updated as descnbed 35

viously. One skilled in the art will recognize that there are
any other suitable methods that may be applied in an

. bodiment of the present invention to indicate that one
' was active more recently than another was.

"Also in state 622, flow sequence number 522 is updated. <40

·• tratively, the new flow sequence number is determined
adding the size of the new! y received data to the existing

, sequence number. Depending upon the configuration of
'packet (e.g., values in its headers), this sum may need to
t.djusted. For exarople, this sum may indicate simply the 45

amount of data received thus far for the How's data-
. · Therefore, a value may need to be added (e.g., one
) in order to indicate a sequence number of the next byte

ta for the datagram. As one skilled in the art will
· , other suitable methods of ensuring that data is 50

. ."ved in order may be used in place of the scheme
ibed here.

44
base no. Tearing down a flow comprises removing or
invalidating a flow in flow database no. The re-assembly of
data is discussed in a following section descnbing DMA
engine 120.

lo the illustrated embodiment of the invention, operation
code 4 is selected in state 624 for packets in the present
context of the procedure (e.g., compatible packets carrying
the next, but not last, data portion of a flow). Thus, the
existing flow is not tom down and there is no need to set up
a new flow. As descnbed above, a compal.Ible packet in this
embodiment is a packet con.forming to one or more of the
pre-selected protocols. By changing or augmenting the
pre-selected protocols, virtually any packet may be compat
ible in an alternative embodiment of the invention.

Returning now to FIGS. 6A-6E, after state 624 the
illustrated procedure ends at state 670.

In state 626 (reached from state 618 or state 620),
operation code 3 is selected for the packet. Illustratively,
operation code 3 indicates that the packet is compal.Ible and
matches a valid fl.ow (e.g., the packet's flow key matches the
flow key of a valid flow in FDB no). Operation code 3 may
also signify that the packet contains data,. does not constitute
an attempt to re-synchronize or reset a communication
flow/connection and the packet's sequence number matches
the expected sequence number (from flow database no).
But, either an important flag (e.g., one of the TCP flags
URG, PSH, RST or FIN) is set (determined in state 618) or
the packet's data is less than the threshold value described
above (in state 620), thus iodicating that no more data is
likely to follow this packet in this flow. Therefore, the
existing flow is tom down but no new flow is created.
Illustratively, the flow may be tom down by clearing the
How's validity indicator (e.g., setting it to zero). After state
626, the illustrated procedure ends at state 670.

In state 628 (reached from state 616), operation code 2 is
selected for the packeL 1n the present conten, operation
code 2 may indicate that the packet is compatible, matches
a valid flow (e.g., the packet's flow key matches the flow key
of a valid flow in FDB no), contains data and does not
constitute an attempt to re-synchronize or reset a commu
nication flow/coDDection. However, the sequence number
extracted from the packet (in state 616) does not match the
expected sequence number from flow database no. This
may occur, for example, when a packet is received out of
order. Thus, the existing flow is tom down but no new flow
is established. Illustratively, the flow may be tom down by
clearing the flow' s validity indicator (e.g., setting it to zero).
After slllte 628, the illustrated procedure ends at state 670.

State 630 is entered from state 614 when it is determined
that the received packet constitutes an attempt to reset a
communication flow or connection (e.g., the TCP SYN bit is
set). In state 630, flow database manager 108 determines
whether more data is expected to follow. As explained in
conjunction with state 620, this determination may be made

ally, in state 622 in one embodiment of the invention,
validity indicator 520 is set or reset to indicate the
s validity.

11, in state 624, an operation code is as&iciated with
. ket. In the illustrated embodiment of the invention,

lltion oodes comprise codes generated by fl.ow database
~r 108 and stored in control queue 118. lo this

55 on the basis of control information received by the flow
database manager from the header parser. If more data is
expected (e.g., the aniount of data in the packet equals or
exceeds a threshold value), the procedure continues at stale

• , Iment, an operation code is three bits in size, thus 60

fo: eight operation codes. Operation codes may
·a.variety of other forms and ranges in alternative

ents. For the illustrated embodiment of the
ntion! T~LE 1 describes each operation code in terms

cntena that lead to each code's selection and the 65
ltions of that selection. For purposes of TABLE 1,
Up a flow.comprises inserting a flow into flow data-

634.
In state 632, operation code 2 is selected for the packet.

Operation code 2 was also selected in state 628 in a different
context. In the present context, operation code 2 may
indicate that the packet is compal.Ible, matches a valid fl.ow
and contains data. Operation code 2 may also signify in this
context that the packet constitutes an attempt to
re-synchronize or reset a communication flow or connection,
but that no more data is expected once the flow/connection

,.

,/1.',,1, ,I:\•
r1I ·

~:
i

EX 1017 Page 534

a
MiBS. stereFC5GRREekee;

5 43

Thus, in state 620, flow database manager 108 determines
& §6whether the received packet appears to carry the final
b portion of datafor the flow’s datagram.Ifnot, the procedure

continues to state 626.
In state 622, it bas been ascertained that the packet is

compatible with pre-selected protocols and is suitable for
one or more functions offered by NIC 100. In particular, the

F packet has been formatted appropriately for one or more of
; the functions discussed above. FDBM 108 has determined

that the received packet is part of an existing flow, is
: compatible with the pre-selected protocols and contains the

next portion of data for the flow (but not the final portion).
Further, the packet is not part of an attempt to re-set a
filow/connection, and important flags bave their expected
values. Thus, flow database 116 can be updated as follows.

The activity indicator (e.g., flow activity indicator 524 of
- FIG. 5) for this flow is modified to reflect the recent flow

, activity. In one embodiment of the invention flow activity
- indicator 524 is implemented as a counter, or is associated

F.with acounter, that is incremented cach time datais received
h for a flow. In another embodiment of the invention, an

" activity indicator or counter is updated every time a packet
B having a flow key matching a valid flow (e.g., whether ornot
B the packet includes data) is received.
F In the illustrated embodiment, after a flow activity indi-

cator or counter is incremented it is examined to determine

yif it “rolled over”to zero (ic., whether it was incremented
[past its maximum value). If so, the counter and/or the flow
Lactivity indicators for each entry in flow database 110 are set
pio zero and the current flow’s activity indicatoris once again
mneremented. Thus, in one smbodiment of the invention the
broiling over of a flow activity counter or indicator causes the
re-initialization of the flow activity mechanism for flow

Bratabase 110. Thereafter, the counter is incremented and the
Msw activity indicators are again updated as described
Previously. Ove skilled in the art will recognize thatthere are
Many other suitable methods that may be applied in an

bodiment of the present invention to indicate that one
F Ww was active more recently than another was.
B*Also in siate 622, flow sequence number 522 is updated.
aMhistratively, the new flow sequence number is determined
ie, cling the size of the newly received data to the existing

Pow sequence number, Depending upon the configuration of
‘packet (e.g., values in its headers), this sum may need to
‘Gdjusted. For example, this sum may indicate simply the

“ amount of data received thus far for the flow’s dala-
ii.Therefore, a value may need to be added (e.g., one
2] in orderto indicate a sequence numberof the noxt byte
Gata for the datagram. As one skilled in the art will
Bnize, other suitable methods of ensuring that data is

sived in order may be used in place of the scheme
ibed here.

ally, in state 622 in one embodimentof the invention,
¥ validity indicator 520 is set or reset to indicate the

B'S validity.
Bben, in siate 624, an operation code is associated with

me Packet. In the illustrated embodiment of the invention,
exation codes comprise codes generated by flow database

ger 168 and stored in control queue 118. In this
“iment, an Operation code is tbree bits in size, thus

ng for eight operation codes. Operation codes may
hs. Variety of other forms and ranges in aliemative
; ments. For the illustrated embodiment of the
Sntion, TABLE 1 describes each operation code in terms

: Sriletia that lead to cach code’s selection and the
Bo Cations of that selection. For purposes of TABLE 1,

~ 8 Up a flow.comprises inserting a flow into flow data-

3
FS

a.

US6,453,360 Bi
44

base 110. Tearmg down a flow comprises removing or
invalidating a flow in flow database 110. The re-assembly of
data is discussed in a following section describing DMA
engine 120.

5 In the illustrated embodimentofthe invention, operation
code 4 is selected in state 624 for packets in the present
context of the procedure (c.g., compatible packets carrying
the next, but not last, data portion of a flow). Thus, the
existing flow is not torn down andthere is no needto set up

10 anew flow. As described above, a compatible packetin this
embodiment is a packet conforming to one or more of the
pre-selected protocols. By changing or augmenting the
pre-selected protocols, virtually any packet may be compat-
ible in an alternative embodimentof the invention.

15~=-Returning now to FIGS. G6A-6E, after state 624 the
illustrated procedure ends at state 670.

In state 626 (reached from state 618 or state 620),
operation code 3 is selected for the packet. Mlustratively,
operation code 3 indicates that the packet is compatible and

20 matchesa valid flow (c.g., the packet’s flow key matches the
flow key of a valid flow in FDB 110). Operation code 3 may °
also signify that the packet contains data, does not constitute
an attempt to re-synchronize or reset a communication
flow/connection and the packet’s sequence number matches

25 the expected sequence number (from flow database 116).
But, either an important flag (c.g., one of the TCP flags
URG, PSH, RSTor FIN) is set (determined in state 618) or
the packet’s data is less than the threshold value described
above (in state 620), thus indicating that no more data is

30 likely to follow this packet in this flow. Therefore, the
existing flow is torn down but no new flow is created.
Illustratively, the flow may be tom down by clearing the
flow’s validity indicator (e.g., setting it to zero). After state
626, the illustrated procedure ends at state 678.

35 In slate 628 (reachedfrom state 616), operation code 2 is
sclected for the packet. In the present contest, operation
code 2 may indicate that the packet is compatible, matches
avalid flow (¢.g., the packet’s flow key maiches the flow key
of a valid flow in FDB 110), contains data and does not

40 constitute an attempt to re-synchronize or reset a commu-
nication flow/convection. However, the sequence number
extracted from the packet (in state 616) does not match the
expected sequence number from flow database 116. This
may oceur, for example, when a packet is received out of

45 order. Thus, tbe existing flow is torn down but no new flow
is established. Ilustratively, the flow may be tom down by
clearing the flow’svalidity indicator (c.g., setting it to zero).
Affer state 628, the illustrated procedure ends at state 670.

State 630 is entered from state 614 whenit is determined
SO that the received packet constitutes an attempt to reset a

communication flow or connection (e.g,, the TCP SYN bit is
set). In state 630, flow database manager 108 determines
whether more data is expected to follow. As explained in
conjunction with state 620, this determination may be made

55 on the basis of control information received by the flow
database manager from the header parser. If more data is
expected (e.g., the amount of data in the packet equals or
exceeds a threshold value), the procedure continues at state
634.

60=In state 632, operation code 2 is selected for the packet.
Operation code 2 was also sclected in state 628 in a different
context. In the present context, operation code 2 may
indicate that the packet is compatible, matches a valid flow
and contains data. Operation code 2 mayalso signify in this

65 context that the packet constitutes an attempt to
re-synchronizt or reset 4 communication flow or connection,
but that no more data is expected once the flow/connection

EX 1017 Page 534

Eeeerie

eee

...
' ~ ' ' '

US 6,453,360 Bl
45 46

is reset. 'lberefore, the existing llow is lorn down and no new lion all llow activity indicators in the database are set lo wro
flow is established. Illustratively, the flow may be torn down and the current flow is again incremented. The flow's
by clearing the flow's validity indicator (e.g., setting it to validity indicator may also be reset, as well as the flow's
zero). After state 632, the illustrated procedure ends at state sequence number.
670. s In state 644, operation code O is selected for the packet.

In state 634, llow database manager 108 responds to an Illustratively, operation code O indicates that the packet is
attempt to reset or re-syncbroniw a communication flow/ compatible, matches a valid flow, and that the packet does
connection whereby additional data is expected. Thus, the not contain any data. The packet may, fur example, be a
existing flow is torn down and replaced as follows. The conlrol packet. Operation code O further indicates that none
existing flow may be identified by the flow number retrieved 10 of the flags; checked by header parser 106 and described
in stale 610 or by the packet's flow key. The flow's sequence above (e.g., URG, PSH, RST and FIN) are set. Thus, the
number (e.g., flow sequence number 522 in HG. 5) is sci to existing flow is not tom down and no new flow is estab-
the next expected value. illustratively, this value depends lished. After state 644, the illustrated procedure ends at end
upon the sequence number (e.g., TCP sequence number) state 670.
retrieved from the packet (e.g., by header parser 106) and the 15 State 646 is entered from state 608 if the packet's flow key
amount of data included in the packet. In one embodiment does not match any of the flow keys of valid flows in the
of the invention these two values are added to determine a flow database. In state 646, FDBM 1118 determines whether
new flow sequence number. As discussed previously, this flow database llO is full and may save some indication of
sum may need to be adjusted (e.g., by adding one). Also in whether the database is full. In one embodiment of the
state 634, the flow activity indicator is updated (e.g., 20 invention the flow database is considered full when the
incremented). As explained in conjunction with state 622, if validity indicator (e.g., flow validity indicator 520 of FIG. 5)
the flow activity indicator rolls over, the activity indicators is set for every flow number (e.g., for every flow in the
for all flows in the database are set to zero and the present database). If the database is full, the procedure continues at
flow is again incremented. Finally, the flow validity indica- state 650, otherwise it continues at state 648.
tor is set to indicate that the flow is valid. 25 In state 648, the lowest flow number of an invalid flow

In state 636, opention code 7 is selected for the packet (e.g., a flow for which the associated .flow validity indicator
In the present context, operation code 7 indicates that the is equal to zero) is determined illustratively, this flow
packet is compati"ble, matches a valid flow and contains data. number is where a new flow will be stored if the received
Operation code 7 may further signify, in this context, that the packet warrants the creation of a new flow. After state 648,
packet constitutes an attempt to re-synchronize or reset a 30 the procedure continues at state 652.
communication flow/connection and that additional data is In state 650, the .flow number of the least recently active
expected once the flow/connection is reset. In effect, flow is determined As discussed above, in the illustrated
therefore, the existing flow is tom down and a new one (with embodiment of the invention a flaw's activity indicator (e.g.,
the same flow key) is stored in its place. After state 636, the flow activity indicator 524 of HG. S) is updated (e.g.,
illustrated procedure ends at end state 670. 35 incremented) each time data is received for a flow.

State 638 is entered after state 612 when it is determined Therefore, in this embodiment the least recently active flow
that the received packet contains no data. This often indi- can be identified as the flow having the least recently
catcs that the packet is a control packet. In state 638, flow updated (e.g., lowest) flow activity indicator. Illustratively, if
database manager 108 determines whether one or more flags multiple flows have flow activity indicators set to a common
extracted from the packet by the header parser match 40 value (e.g., wro), one flow number may be chosen from
expected or desired values. For example, in one embodiment them at random or by some other criteria. After state 650, the
of the invention the TCP flags URG, PSH, RST and FIN procedure continues at state 652.

. must be clear in order for DMA engine 120 to re-assemble In state 652, flow database manager 108 determines
1 data from multiple related packets (e.g., packets having an whether the packet contains data. Illustratively, the control

identical flow key). As discussed above, the TCP SYN bit 45 information provided to FDBM 108 by the header parser
m~y also be examined. In the present context (e.g., a packet indicates whether the packet has data. If the packet does not
WI.th no data), the SYN bit is also expected to be clear (e.g., include data (e.g., the packet is a control packet), the
to store a value of zero). If the flags (and SYN bit) have their illustrated procedure continues at state 668.

· . .expected values the procedure continues at state 642. If, In state 654, flow database manager 108 determines
Wever, any of these flags are set, an exceptional condition 50 whether the data received with the present packet appears to

· ay exist, thus making it possible that one or more functions contain the final portion of data for the associated datagram/
ffered by NIC 100 (e.g., data re-assembly, batch flow. As descn"bed in conjunction with state 620, this deter-

(ln:ICC!;sin" g, load distribution) are llDSllitable for this packet, mination may be made on the basis of the amount of data
which case the procedure proceeds to state 640. included with the packet. If the amount of data is less than
In state 640, operation code 1 is selected for the packet. 55 a threshold value (a prograrmnable value in the illustrated

tratively, operation code 1 indicates that the packet is embodiment), then no more data is expected and this is
patible and matches a valid flow, but does not contain likely to be the only data for this flow. In Ibis case the

Y data and one or more important flags or bits in the procedure continues at state 668. If, however, the data meets
et's header(s) are set. Thus, the existing flow is torn or exceeds the threshold value, in which case more data may

and no new flow is established. Illustratively, the flow 60 be expected, the procedure proceeds to state 656.
Y be torn down by clearing the flaw's validity indicator In state 656, the values of certain flags are examined .

. g., setting it to zero). After state 640, the illustrated These.llagsmayinclude,forexample,theURG,PSH,RST,
ure ends at end state 670. FIN bits of a TCP header. If any of the examined flags do not

sln state 642, the flow's activity indicator is updated (e.g., have their expected or desired values (e.g., if any of the flags
Dlented) even though the packet contains no data. As 65 are set), an exceptional condition may exist making one or
ibed above in conjunction with state 622, if the activity more of the functions of NIC 100 (e.g., data re-assembly,
ator rolls over, in a present embodiment of the inven- batch -processing, load distribution) llDSllitable for this

EX 1017 Page 535

eae uae ony we wh at aes Eo rae BRP

45

js reset. Therefore, ihe existing flow is tom down and no new
flowis established. Ilustratively, the flow may be torn down
by clearing the flow’s validity indicator (e.g., setting i1 to
zero). After state 632, the illustrated procedure ends at staic
670.

In state 634, flow database manager 108 responds to an
altempl to reset or re-synchronize a communication flow/
connection whereby additional data is expected. Thus, the
existing flow is torn down and replaced as follows. The
existing flow may be identified by the flow number retrieved
in state 610 or by the packet’s flow key. The flow’s sequence
number(e.g., flow sequence number 522 in FIG.5) is set to
the next expected value. Ilustratively, this value depends
upon the sequence number (e.g., TCP sequence number)
retrieved fromthe packet (e.g., by header parser 106) and the
amount of data included in the packet. In one embodiment
ofthe invention these two values are added to determine a
new flow sequence number. As discussed previously, this
sum may need to be adjusted (c.g., by adding one). Also in
state 634, the flow activity indicator is updated (c.g.,
incremented). As explained in conjunction with state 622, if
the flow activity todicator rolls over, the activity indicators
for all flows in the database are sct to zero and the present
flow is again incremented.Finally, the flow validity indica-
tor is set to indicate that the flow is valid.

In state 636, operation code 7 is selected for the packet.
In the present context, operation code 7 indicates that the
packet is compatible, matches a valid flow and contains data.
Operation code 7 may furthersignify, in this context, that the
packet constitutes an attempt to re-syuchronize or reset a
communication flow/connection and that additional data is
expected once the flow/connection is reset. In effect,
therefore, the existing flow is tom down and a new one (with
the same flow key) is stored in its place. After state 636, the
illustrated procedure ends at end state 670.

State 638 is entered after state 612 when it is determined

F’ that the received packet contains no data. This often indi-
| ates that the packet is a control packet. In state 638, flow

database manager 108 determines whether one or more flags
extracted from the packet by the header parser match

, ¢xpected or desired values. For example, in one embodiment
+ of the invention the TCP flags URG, PSH, RST and FIN
, Must be clear in order for DMA engine 120 to re-assemble

data from multiple related packets (c.g., packets having an
F identical flow key). As discussed above, the TCP SYN bit
B May also be examined. In the present context (e.g., a packet

b With no data), the SYN bit is also expected to be clear (e.g,
p be store a value ofzero).If the flags (and SYN bit) have their
pSxpected values the procedure continues at state 642. If,
pmowever, any of these flags are set, an exceptional condition
pay exist, thus makingitpossible that one or more functions
offered by NIC 100 (e.g., data re-assembly, batch

Occssing, load distribution) are unsuitable for this packet,
im which case the procedure proceeds to state 640.

in state 640, operation code 1 is selected for the packet.
uStratively, operation code 1 indicates that the packetis

pOmipatible and matches a valid flow, but does not contain
Boy data and one or more important flags or bits in the
packel’s header(s) are sct. Thus, the existing flow is torn
RW and no new flow is established. [ustratively,the flow
pay be tora down by clearing the flow’s validity indicator
e'8-» Seiting it to zero). After state 640, the illustrated

mocedure ends at end state 670.
“ln state 642, the flow’s activity indicatoris updated (c.g,

fr etented) even though the packet contains no data. As
Ctibed above in conjunction with state 622, if the activity
"ator rolls over, in a present embodimentof the inven-

4

20

30

xA

40

85

US 6,453,360 B1
46

tion all fow activity indicators in the database are sct to zero
and the current flow is again incremented. The flow’s
yalidity indicator may also be reset, as well as the flow’s
sequence number.

In state 644, operation code 6 is selected for the packet.
Wustratively, operation code © indicales that the packet is
compatible, matches a valid flow, and that the packet docs
not contain any data. The packet may, for example, be a
contro] packet. Operation code 0 further indicates that none
of the flags checked by header parser 106 and described
above (e.g., URG, PSH, RST and FIN) are set. Thus, the
existing flow is not torn down and no new flow is estab-
lished. After state 644,the illustrated procedure ends at end
state 670.

State 646 is entered from state 608 if the packet's flowkey
does not match any of the flow keys of valid flows in the
flow database. In state 646, FDBM 108 determines whether
flow database 110 is full and may save some indication of
whether the database is full, In one embodiment of the
invention the flow database is considered full when the
validity indicator(e.g., flow validity indicator 520 of FIG.5)
is set for every flow mumber (e.g., for every flow in the
database). Ef the database is full, the procedure continues at
state 650, otherwise it conlinues at state 648.

In state 648, the lowest flow number of an invalid flow
{e.g., a flow for which the associated flow validity indicator
is equal to zero) is determined. Llwstratively, this flow
number is where a new flow will be stored if the received

packet warrants the creation of a new flow. After state 648,
the procedure continues at state 652.

In state 650, the flow numberof the least recently active
flow is determined. As discussed above, in the illustrated
embodimentofthe invention a flow’s activity indicator(e.g.,
flow activity indicator 524 of FIG. §) is updated (eg.,
incremented) cach tine data is received for a flow.
Therefore, in this embodiment the least recently active low
ean be identified as the flow having the least recently
updated (¢.g., lowest) flow activity indicator. [llustratively,if
multiple flows have flow activity indicators set to a common
value (¢.g., zero), one flow oumber may be chosen from
them at random or by someother criteria. After state 650, the
procedure continuesat state 652.

In state 652, flow database manager 108 determines
whether the packet contains data. [lustratively, the control
information provided to FDBM 108 by the header parser
indicates whether the packet has data. [f the packet does not
include data (c.g., the packet is a control packet), the
illustrated procedure continues at state 668.

In state 654, flow databasc manager 108 determines
whether the data received with the present packet appears to
contain the final portion of data for the associated datagram/
flow. As described in conjunction with state 620, this deter-
mination may be made on the basis of the amount of data
included with the packet. If the amountof data is less than
a threshold value (a programmable value in the illustrated
embodiment), then no more data is expected and this is
likely to be the only data for this flow. In this case the
procedure continues at state 668. If, however, the data meets
or exceeds the threshold value, in which case more data may
be expected, the procedure proceeds to state 656.

In slate 656, the values of certain flags are examined.
These flags may include, for example, the URG, PSH, RST,
FIN bits of a TCP header.If any of the examined flags do not
have their expected or desired values (c.g., if any of the fags
are set), an exceptional condition may exist making one or
more of the functions of NIC 100 (c.g., data re-assembly,
baich processing, load distribution) unsuitable for this

EX 1017 Page 535

I

US 6,453,360 Bl
47

packet. In this case the procedure continues at state 668;
otherwise the procedure proceeds to state 658.

In state 658, the flow database manager retrieves the
information stored in state 646 concerning whether flow
database 110 is full. If the database is full, the procedure 5

continues at state 664; otherwise the procedure continues at
state 660.

In state 660, a new flow is added to flow database 110 for
the present packet. lliustn.tively, the new flow is stored at the
flow number identified or retrieved in state 648. The addition 10

of a new flow may involve setting a sequence number (e.g.,
flow sequence number 522 from FIG. 5). Flow sequence
number 522 may be generated by adding a sequence number
(e.g., TCP sequence number) retrieved from the packet and
the amount of data included in the packet. As discussed 15

above, this sum may need to be adjusted (e.g., by adding
one).

Storing a new flow may also include initializing an
activity indicator (e.g., flow activity indicator 524 of FIG. 5).
In one embodiment of the invention this initialization 20

involves storing a value retrieved from a counter that is
incremented each tinle data is received for a flow.
Illustratively, if the counter or a flow activity indicator is
incremented past its maximum storable value, the counter
and all flow activity indicators are cleared or reset. Also in 25

state 660, a validity indicator (e.g., flow validity indicator
520ofFIG. 5) is set to indicate that the flow is valid. Finally,
the packet's flow key is also stored in the flow database, in
the entry corresponding to the assigned flow number.

In state 662, operation code 6 is selected for the packet. 30

'L Illustratively, operation code 6 indicates that the packet is
compatible, did not match any valid flows and contains the

;fust portion of data for a new flow. Further, the packet's flags
;have their expected or necessary values, additional data is
,expected in the flow and the flow database is not full. Thus, 35

', peration code 6 indicates that there is no existing flow to
· down and that a new flow has been stored in the flow
,atabase. After state 662, the illustrated procedure ends at
,it&te 670.
i' · In state 664, an existing entry in the flow database is 40

~laced so that a new flow, initiated by the present packet,
be stored. Therefore, the flow number of the least
ntly active flow, identified in state 650, is retrieved. This

48
In state 668, operation code 5 is selected for the packet.

State 668 is entered from various states and operation code
5 thus represents a variety of possible conditions or situa
tions. For example, operation code 5 may be selected when
a No_Assist signal is detected (in state 604) for a packet.
As discussed above, the No_Assist signal may indicate that
the corresponding packet is not compatible with a set of
pre-selected protocols. In this embodinlent of the invention,
incompatible packets are ineligible for one or more of the
various functions of NIC 100 (e.g., data re-assembly, batch
processing, load distribution).

State 668 may also be entered, and operation code 5
selected, from state 652, in which case the code may indicate
that the received packet does not match any valid flow keys
and, further, contains no data (e.g., it may be a control
packet).

State 668 may also be entered from state 654. In this
context operation code 5 may indicate that the packet does
not match any valid flow keys. It may further indicate that
the packet contains data, but that the size of the data portion
is less than the threshold discussed in conjunction with state
654. In this context, it appears that the packet's data is
complete (e.g., comprises all of the data for a datagram),
meaning. that there is no other data to re-assemble with this
packet's data and therefore there is no reason to make a new
entry in the database for this one-packet flow.

Finally, state 668 may also be entered from state 656. In
this context, operation code 5 may indicate that the packet
does not match any valid flow keys, contains data, and more
data is expected, but at least one flag in one or more of the
packet's protocol headers does not have its expected value.
For example, in one embodiment of the invention the TCP
flags URG, PSH, RST and FIN are expected to be clear. If
any of these flags arc set an exceptional condition may exist,
thus making it possible that one of the functions offered by
NIC 100 is unsuitable for this packet.

As 'D\BLE 1 reflects, there is no flow to tear down and no
new flow is established when operation code 5 is selected.
Following state 668, the illustrated procedure ends at state
670.

One skilled in the art will appreciate that the procedure
illustrated in FIGS. 6A-6E and discussed above is but one
suitable procedure for maintaining and updating a flow
database and for determining a packet's suitability for QW may be replaced as follows. The sequence number of

existing flow (e.g., flow sequence number 522 of FIG. 5)
:replaced with a value derived by combining a sequence

ber extracted from the packet (e.g., TCP sequence
ber) with the size of the data portion of the packet. This

45 certain processing functions. In particular, different opera
tion codes may be utilized or may be inlplemented in a
different manner, a goal being to produce information for
later processing of the packet through NIC 100.

• ?3ay need to be adjusted (e.g., by adding one). Then the
_g flaw's activity indicator (e.g., flow activity indicator

~ JS replaced. For example, the value of a flow activity
,ter may be copied into the flow activity indicator, as

? a!'<>vc. The flaw's validity indicator (e.g., flow
~dicator 520 of FIG. 5) is then set to indicate that

_ OW 1S valid. Finally, the flow key of the new flow is

~te 666, operation code 7 is selected for the packet.
lion code 7 was also selected in state 636. In the

. t_ context, operation code 7 may indicate that the
JS compatible, did not match the flow key of any valid

Mid contains the fust portion of data for a new flow.
. r, the packet's flags have compatible values and

, al data is expected in the flow. Lastly, however, in
ntext operation code 7 indicates that the flow database
~.an existing entry was tom down and the new one .:n its place. After state 666, the illustrated procedure

,- end state 670.

Although operation codes are assigned for all packets by
50 a flow database manager in the illustrated procedure, in an

alternative procedure an operation code assigned by the
FDBM may be replaced or changed by another module of
NIC 100. This may be done to ensure a particular method of
treating certain types of packets. For example, in one

55 embodinient of the invention IPP module 104 assigns a
predetemiined operation code (e.g., operation code 2 of
TABLE 1) to jumbo packets (e.g., packets greater in size
than MTIJ) so that DMA engine UO will not re-assemble
them. In particular, the IPP module may independently

60 detemiine that the packet is a jumbo packet (e.g., from
information provided by a MAC module) and therefore
assign the predctemiined code. Illustratively, header parser
106 and FDBM 108 perform their normal functions for a
jumbo packet and IPP module 104 receives a first operation

65 code assigned by the FDBM. However, the IPP module
replaoes that code before storing the jumbo packet ~od
information ·concerning the packet. In one altemallve

' .. ~' ".. . ' . ·~~

:,;J~~'.:••.

" '1·: (
: I

! I

t
i

EX 1017 Page 536

47

packet. In this case the procedure continues at state 668;
otherwise the procedure proceeds to state 658.

In state 658, the flow database manager retrieves the
information stored in state 646 conceming whether flow
database 110 is full. If the database is full, the procedure
continues at state 664; otherwise the procedure continues at
state 660.

In state 660, a new flow is addedto flow database 110 for
the presentpacket. Ilustratively, the new flow is storedat the
flow number identified or retrieved in state 648. The addition
of a new flow may involve setting a sequence number(e.g.,
flow sequence number 522 from FIG. 5). Flow sequence
number 522 may be generated by adding a sequence number
(¢.g., TCP sequence number) retrieved from the packet and
the amount of data included in the packct. As discussed
above, this sum may need to be adjusted (e.g., by addingone).

Oring a new flow may also include initializing an
activity indicator(e.g., flow activity indicator 524 of FIG.5).
In one embodiment of the invention this initialization
involves storing a value retrieved from a counter that is
incremented each time data is received for a flow.
Ilustratively, if the counter or a flow activity indicator is

" incremented past its maximum storable value, the counter
aod all flow activity indicators are cleared or reset. Also in

‘ state 660, a validity indicator (c.g., flow validity indicator
520 of FIG. 5)is set to indicate that the flow is valid. Finally,

p the packet’s flow key is also stored in the flow database, in
F the entry corresponding to the assigned flow number.

In state 662, operation code 6 is selected for the packet.
-Iustratively, operation code 6 indicates that the packet is
S compatible, did not match any valid flows and contains the
first portion of data for a new flow. Further, the packet’s flags

Rhave their expected or necessary values, additional data is
Frexpected in the flow and the flow database is notfull. Thus,
Foperation code 6 indicates that there is no existing flow to

ficar down and that a new flow has been stored in the flow

fdatabase. Alter state 662, the illustrated procedure ends at

In state 664, an existing entry in the flow database is
laced so that a new flow, initiated by the present packet,

n be stored. Therefore, the flow number of the least
cently active flow, identified in state 650,is retrieved. This

pOW may be replaced as follows. The sequence number of
pc existing flow (e.g., flow sequence number 522 of FIG.5)
Breplaced with a valuc derived by combining a sequence

mber extracted from the packet (e.g., TCP sequence
mmber) with the size of the data portion of the packet. This
pa May need to be adjusted (e.g... by adding one). Then the

8 flow’s activity indicator (c.g., flow activity indicator
4s replaced. For example, the value of a flow activity

er may be copied into the flow activity indicator, as
Wissed above. The flow’s validity indicator (e.g., flow
i, indicator 520 of FIG.5) is then set to indicate that
ee OW Is valid. Finally, the flow key of the new flow isrid.

4 State 666, operation code 7 is selected for the packet.
Mation code 7 was also selected in state 636. In the

At context, operation code 7 may indicate that the
Fe 18 Compatible, did not matchthe flow key of anyvalid

me acd contains the first portion of data for a new flow.
pcr, the packet's flags have compatible values and
Bonal data is expected in the flow. Lastly, however, in

intext Operation code 7 indicatesthat the flow database
So(aD existing entry was tom down and the new one

yr in its place. After state 666, the illustrated procedure
‘at end state 670.

5

15

25

30

40

5oS

60

65

US 6,453,360 B1
48

In state 668, operation code 5 is selected for the packet.
State 668 is entered from various states and operation cade
5 thus represents a variety of possible conditions or situa-
tions. For example, operation code 5 may be selected when
a No__Assist signal is detected (in state 604) for a packet.
As discussed above, the No__Assist signal may indicate that
the corresponding packet is not compatible with a set of
pre-selected protocols. In this embodimentof the invention,
incompatible packets are ineligible for one or more of the
various functions of NIC 100 (e.g., data re-assembly, batch
processing,load distribution).

State 668 may also be entered, and operation code 5
selected, from state 652, in which case the code mayindicate
that the received packet does not match any valid flow keys
and, further, contains no data (e.g., it may be a control
packet).

State 668 may also be entered from state 654. In this
context operation code 5 mayindicate that the packet does
not match any valid flow keys. It may furtherindicate that
the packet contains data, but that the size of the data portion
is less than the threshold discussed in conjunction with state
654. In this context, it appears that the packet’s data is
complete (¢.g., comprises all of the data for a datagram),
meaning. that there is no other data to re-assemble with this
packet’s data and therefore there is no reason to make a new
entry in the database for this one-packet flow.

Finally, state 668 may also be entered from state 656. In
this context, operation code 5 mayindicate that the packet
does not match any valid flow kcys, contains data, and more
data is expected, but at least one flag in onc or more ofthe
packet’s protocol headers does not have its expected value.
For example, in one embodiment of the invention the TCP
flags URG, PSH, RST and FIN are expected to beclear. If
any ofthese flags are set an exceptional condition mayexist,
thus making it possible that one of the functions offered by
NIC 100 is unsuitable for this packet.

As TABLE1reflects, there is no flow to tear down and no
new flow is established when operation code5is selected.
Following state 668, the illustrated procedure ends atstate670.

One skilled in the art will appreciate that the procedure
illustrated in FIGS. 6A—6E and discussed above is but one
suitable procedure for maintaining and updating a flow
database and for determining a packet’s suitability for
certain processing functions. In particular, different opera-
tion codes may be utilized or may be implemented in a
different manner, a goal being to produce information for
later processing of the packet through NIC 100.

Although operation codes are assigned for all packets by
a flow database managerin the illustrated procedure, in an
alternative procedure an operation code assigned by the
FDBM maybe replaced or changed by another module of
NIC 100. This may be done to ensure a particular method of
treating certain types of packets. For example, in one
embodiment of the invention IPP module 104 assigns a
predetermined operation code (e.g., operation code 2 of
TABLE 1) to jumbo packets (c.g., packets greater in size
than MTU) so that DMA engine 120 will not re-assemble
them. In particular, the IPP module may independently
determine that the packet is a jumbo packet (¢.g., from
information provided by 2 MAC module) and therefore
assign the predetermined code. Illustratively, header parser
106 and FDBM 108 perform their normal functions for a
jumbopacket and IPP module 104 receives a first operation
code assigned by the FDBM. However, the IPP module
replaces that code before storing the jumbo packct and
information concerning the packet. In one alternative

EX 1017 Page 536

-

US 6,453,360 Bl
49

embodiment header parser 106 and/or flow database man
ager 108 may be configured to recognize a particular type of
packet (e.g., jumbo) and assign a predetermined operation
code.

so
system as well as other computer systems communicating
with the host system via the network.

The operation codes applied in the embodiment of the 5
invention illustrated in FIGS. 6A-6E are presented and
explained in the following TABLE 1. ThBLE 1 includes
illustrative criteria used to select each operation code and
illustrative results or effects of each code.

As one skilled in the art will appreciate, simply distnb
uting packets among processors in a sci of processors (e.g.,
such as in a round-robin scheme) may not be an efficient
plan. Such a plan could easily result in packets being
processed out of order. For example, if two packets from one
communication flow or connection that are received at a
network interface in the correct order were submitted to two

TABLE 1

Op.
Code Cril<;rill for Selection

O Comp>lible control packet with
clear filtl}'I; • flow .,.. previously
ulllbliobcd for thi., flow key.

1 Compatible control pack:ct with at
least one llag or SYN bi! set; a
llow""" prc:viou.,ly .. tabliohcd.

Rc&ult of Opemlion Code

Do not set up a new flow;
Do not tear down existing
flow;
Do not rc.....cmble dot.a
(packet contniM no dot.a).
Do not set up a new flow;
Toor down existing !low;
Do no rc-asoemble data packet
contains no data).

2 Compo1ible packet whole aequcncc Do not oet np a new flow;
number docs not match .equcnce Tear down aisling flow;
number in flow database, or SYN Do not re-uaemble packet
bit is 1Ct (indicating attempt to re- data.
eatablish a connectinn) but there is
no more data to come; a fl.ow wu
previously eatab&hed.
Or
Jumbo packcL

3 A o,mpatible po<ht canying a Do not 1Ct up a new flow;
11.wil portion of flow data, or a flag Tear down cmting flow;
is act (but pad:ct is in sequence, Re....,.cmblc data with
unlib, operation code 2); a flow prcvioul pacuts.
wu proviou.,ly eatablisbcd.
Receipt of nat compatible poc:ltet Do l10t set up a new flow;
in ""J.UCna:; a !low WU prcvioua}y IJo not tear down cmting
established. llow;

Re-u,cmble dat.a with other
pacuts.

S Paclu:t amnot be re--usemblcd Do not act up a flow;
because: incompatible, a !lag is act, There is no flow to tear down;
paclc<t conta.in,, oo dala or there i,, Do not rc-uacmblc.
no more data to come. No flow
-.... previously cslab&hed.
F'mt compatible packet of a new
How; no flow ...,. prcvioualy
catablil.hcd.

· Fust compal.ib]c pacla:t of a new
!low, bu! flow dalllbuc ia tull; no
flow W1lll previowily catablishcd.
0,

Comparible packc~ SYN bi! is set
and additional data will fullow: •
flow"""' previously utabliohed.

Set 1lp a new flow;
There ia no flow lo teal' down;
Re-uocmble dalll with pockets
to follow.
Replace <>Iisling llow;
Rc-...,cmblc data with pacurs
to follow.

Embodiment of a Load Distnbutor
one embodiment of the invention, load distributor 112
les the proces.sing of packets through their protocol

t_o be distributed among a number of processors.
lively, load distnlrutor 112 generates an identifier

,. processor number) of a processor to which a packet
· _be submitted. The multiple processors may be located
thin a host computer system that is served by NIC 100. In

10 different processors, the second packet may be processed
before the first. This could occuc, for example, if the
processor that received the first packet could not immedi
ately process the packet because it was busy with another
task. When packets are processed out of order a recovery

15 scheme mu.st generally be initiated, thus introducing even
more inefficiency and more delay.

Therefore, in a present embodiment of the invention
packer.s Ire distributed among multiple processors based
upon their flow identities. As described above, a header

20 parser may generate a flow key from layer three (e.g., IP)
and layer four (e.g., TCP) source and destination identifiers
retrieved from a packet's headers. The flow key may be used
to identify the communication flow to which the packet
belongs. Thus, in this embodiment of the invention all

25 packets having an identical flow key are submitted to a
single processor. As long as the packets are received in order
by NIC 100, they should be provided to the host computer
and processed. in order by their assigned processor.

lliustratively, multiple packets sent from one source entity
30 to one destination entity will have the same flow key even

if the packets are part of separate datagrams, as long as their
11.yer three and layer four identifiers remain the same. As
discussed above, separate flows are set up and tom down for
each datagram within one TCP end-to-end connection.

35 Therefore, just as all packets within one flow are sent to one
processor, all packets within a TCP end-to-end connection
will also be sent to the same processor. This belps ensure the
correct ordering of packets for the entire connection, even
between datagrams.

Depending UJXln the network environment in which NIC
100 operates (e.g., the protocols supported by network 102),
the flow key may be too large to use as an identifier of a
processor. In one embodiment of the invention described
above, for example, a flow key measures 288 bits.

45 Meanwhile, the number of processors participating in the
load-balancing scheme may be much smaller. For example,
in the embodiment of the invention descnbed below in
conjunction with FIG. 7, a maximum of sixty-four proces
sors is supported. Thus, in this embodiment only a six-bit

50 number is needed to identify the selected processor. The
larger flow key-may therefore be mapped or hashed into a
smaller range of values.

FIG. 7 depicts one method of generating an identifier
(e.g., a processor number) to specify a processor to process

55 a packet received by NIC 100, based on the packet's flow
key. In this embodiment of the invention, network 102 is the
Internet and a received packet is formatted according to a
compatible protocol stack (e.g., Ethernet at layer two, IP at

-.alternative embodiment, one or more processors for

1
ating packets through a protocol stack are located on 60

00.

layer three and TCP al layer four).
State 700 is a start state. In state 702 a packet is received

by NIC 100 and a header portion of the packet is parsed by
header par.scr 106 (a method of parsing a packet is described
in a previons section). In state 704, load distributor 112
receives the packet's flow key that was generated by header

1th?ut an effective method of sharing or distributing the
g bl.l.lden, one processor could become overloaded

. Were required lo process all or most network traffic
• Vcd at Nie 100, particularly in a high-speed network

mnent The resulting delay in processing network
COuld deteriorate operations on the host computer

65 parser 106.
Because a packet's flow key is 288 bits wide in this

embodiment, in state 706 a hashing function is performed to

EX 1017 Page 537

byRK

US 6,453,360 B1
49

embodiment header parser 106 and/or flow database man-
ager 108 may be configuredto recognize a particular type of

B packet(¢.g., jumbo) and assign a predetermined operationcode.
The operation codes applied in the embodiment of the

invention illustrated in FIGS. 6A-6E are presented and
explained in the following TABLE 1. TABLE 1 includes
illustrative criteria used to select each operation code and
jDustrative results or effects of each code.

TABLE teimaittinenttmnnrnemtcenermnemectt

Op.
Code Criteria for Selection Result of Operation Code

QO Compatible control packet with De not set up a new flow;
clear flags; a flow was previously Do not tear down existing
established for this flow key. flow,Do aot re-assemble data

(packet contains np data).
1 Compatible control packet with at Do not set up a new flow,

Jenst one flag or SYN bit set; a Tear down exisiing fow;
flow was previously established. Do 0 re-assemble data packet

containa no data).
2 Compatible packet whose sequence Do not set up a new flow;

number does not match sequence Tear down existing flow,
mumber in flow database, or SYN Do not re~assemble packet
bit is set (indicating aticanpt to re- data.
establish a connection) but there is
ao more data to come; a flow was
previously established.Or
Jianbo packet.

3 Acompatible packet carrying a Do not set up a new flow;
+ final portion of flow data, or a flag Tear down existing flow,

is act (but packet is in sequence, _Re-assemble data with
nalike operation code 2); 2 flow previous packets.
wrs previously established.

f «4 Receipt of mext compatible packet Do not set up a new flow,
. in sequence; a flow was previously Do not tear down cxisting

established. flow;
Re-nsscmble data with other
packets.

3 Packet cannot be re-assembled Do not set up 2 flow;
because: incompatible, a fing is set, There is no flow to tear down;packet contains no dain or there is Do not reassemble.
5O more data to come. No flow
was previously established.

First compatible packet of a new
flow; no flow was previouslyeutablished.

Kirst compatible packet of a new
flow, but flow database is full; no

Set up 2 new flow;
There is 20 flow to tear down;
Re-assemble data with packetsto follow.
Replace existing flow;
Re-assemble data with packetsta follow.

al was previously established.

_ Compatible packet, SYN bit is set
and additional data will follow, 2
flow was previously established.E

Be Embodiment of a Load Distributor
Bln one embodiment of the invention, load distributor 112

Beles the processing of packets through their protocol
me“ fo be distributed among a number of processors.

‘tratively, load distributor 112 generates an identifier
2 processor number) of a processor to which a packet

‘be submitted. The nrultiple processors may be located
Bithin a bost computer system thal is served by NIC 100. In
p* alternative embodiment, one or more processors for
. oepackets through a protocolstack are located onx

. ithout an effective method of sharing or distributing the
a.*Sing burden, one processor could become overloaded

2 Were required to process all or most network waffic
Brived at NIC 100, particularly in a high-speed network

bument. The resulting delay in processing network
ould deteriorate operations on the host computer

16

35

45

50

55

60

85

50

system as well as other computer systems communicating
with the host system via the network,

As one skilled in the art will appreciate, simply distrib-
uting packets among processors in a set of processors (e.g.,
such as in a round-robin scheme) may not be an efficient
plan. Such a plan could easily result in packets being
processed out oforder. For example,if two packets from one
communication ow or connection that are received at a
network interface in the correct order were submitted to two

different processors, the second packel may be processed
before the first. This could occur, for example, if the
processor that received the first packet could not immedi-
atcly process the packet because it was busy with another
task. When packets are processed out of order a recovery
scheme roust generally be initiated, thus inwoducing even
more inefficiency and more delay.

Therefore, in a present embodiment of the invention
packets are distributed among multiple processors based
upon their flow identities. As described above, a header
parser may generate a flow key from layer three (¢.g., IP)
and layer four (e.g., TCP) source and destination identifiers
retrieved from a packet’s headers. The flow key may be used
to identify the communication flow to which the packet
belongs. Thus, in this embodiment of the invention all
packets having an identical flow key are submitted to a
single processor, As long as the packets are received in order
by NIC 100, they should be provided to the host computer
and processed in order by their assigned processor.

Iitustratively, multiple packets sent from one source entity
to one destination entity will have the same flow key cven
if the packets are part of separate datagrams, as long as their
layer three and layer four identifiers remain the same. As
discussed above, separate Hows are sct up and torn down for
each datagram within one TCP end-to-end connection.
Therefore, just as ail packets within one flow are sent to one
processor, all packets within a TCP end-to-end connection
will also be seni to the same processor. This belps ensure the
correct ordering of packets for the entire connection, even
between datagrams.

Depending upon the network environment in which NIC
100 operates (.g., the protocols supported by network 102),
the flow key may be too large to use as an identifier of a
processor. In one embodiment of the invention described
above, for example, a flow key measures 288 bits.
Meanwhile, the number of processors participating in the
load-balancing scheme may be much smaller. For example,
in the embodiment of the invention described below in
conjunction with FIG. 7, a maximum of sixty-four proces-
sors is supported. Thus, in this embodiment only a six-bit
number is needed to identify the selected processor. The
larger flow key-may therefore be mapped or hashed into a
smaller range of values.

FIG. 7 depicts one method of generating an identifier
(¢.g., a processor number) to specify a processor to process
a packet received by NIC 100, based on the packet’s low
key. In this embodiment of the invention, nctwork 102 is the
Internet and a received packet is formatted according to a
compatible protocolstack (¢.g., Etbernet at layer two, IP at
layer three and TCP at layer four).

State 700 is a start slate. In state 702 a packet is received
by NIC 160 and a header portion of the packet is parsed by
header parser 106 (a method of parsing a packet is described
in a previous section). In state 704, load distributor 112
receives the packet’s flow key that was generated by header
parser 106.

Because a packet’s flow key is 288 bits wide in this
embodiment, in sate 706 a bashing function is performed to

EX 1017 Page 537

1111

US 6,453,360 Bl
51 52

generate a value that is smaller in magnitude. The hash queue for each packet may include a pointer to a buJier
operation may, for example, comprise a thirty-two bit CRC containing the packet, the packet's TCP checksum, offsets of
(cyclic redundancy check) function such as ATM one or more protocol headers, etc. In addition, each proces-
(.Asynchronous Transfer Mode)Adaptation Layers (AAI.5). sorparticipating in theload distnbution scheme may have an
AAL5 generates thirty-two bit numbers that are fairly evenly s associated queue for processing network packets. In an
distnbuted among the 232 possible values. Another suitable alternative embodiment of the invention, multiple queues
method of hashing is the standard Ethernet CRC-32 func. may be used (e.g., for multiple priority levels or for different
tion. Other bash functions that are capable of generating protocol stacks).
relatively small numbers from relatively large flow keys, lliustratively, one processor on the host computer system
where the numbers generated are well distributed among a 10 is configured to receive all alerts and/or interrupts associated
range of values, are also suitable. with the receipt of network packets from NIC 100 and to

With the resulting bash value, in state 708 a modulus alert the appropriate software routine or device driver. This
operation is performed over the number of processors avail- initial processing may, alternatively, be distnbuted among
able for distributing or sharing the processing. Illustratively, multiple processors. In addition, in one embodiment of the
software executing on the host computer (e.g., a device 15 invention a portion of the retrieval and manipulation of
driver for NIC 100) programs or stores the number of descriptor contents is performed as part of the handling of
processors such that it may be read or retrieved by load the interrupt that is generated when a new packet is stored
distributor 1l2 (e.g., in a register). The number of processors in the descriptor ring. The proce&'iOr selected to process the
available for load balancing may be all or a subset of the packet will perform the remainder of the retrieval/
number of processors installed on the host computer system. 20 manipulation procedure.
In the illustrated embodiment, the number of processors In state 716, the processor designated to process a new
available in a host computer system is programmable, with packet is alerted or woken. In an embodiment of the inven-
a maximum value of sixty-four. The result of the modulus tion operating on a Solaris™ workstation, iodividual pro-
operation in thisembodiment, therefore, is the number of the cesses executed by the processor are configured as
processor(e.g., from zero to sixty-three) to which the packet 25 "threads." A thread is a process running in a nonnal mode
is to be submitted for processing. In this embodiment of the (e.g., not at an interrupt level) so as to have minimal impact
invention, load distributor ll2 is implemented in hardware, on other processes executing on the workstation. A normal
thus allowing rapid execution of the bashing and modulus mode process may, however, execute at a high priority.
functions. In an alternative embodiment of the invention, Alternatively, a thread may run at a relatively low interrupt
virtually any number of processors may be accommodated. 30 level.

In state 710, the number of the processor that will process A thread responsible for processing an incoming packet
the packet through its protocol stack is stored in tbe host may block itself when it has no packets to process, and
computer's memory. Illustratively, state 710 is perfonned in awaken when it has work to do. A "condition variable" may
parallel with the storage of the packet in a host memory be a-;ed to indicate whether the thread has a packet to
bufl'er. As descnbed in a following section, in one embodi- 35 process.. lliustratively, the condition variable is set to a first
ment of the invention a descriptor ring in the host comput- value when the thread is to process a packet (e.g., when a

. , er's memory is constructed to hold the processor number packet is received for processing by the processor) and is set
and possibly other information concerning the packet (e.g., to a second value when there are no more packets to process.
a pointer to the packet, its siu, its TCP checksum). In the illustrated embodiment of tbe invention, one condition

A descnptor ring in this embodiment is a data structure ,io variable may be associated with each processor's queue.
comprising a number of entries, or "descriptors," for storing In an alternative embodiment, the indicated processor is
information to be used by a network interface circuit's host alerted in state 716 by a "cross-processor call." A cross-
computer system. In the illustrated embodiment, a descriptor processor call is ooe way of communicating among proces-
temporarily stores packet infonnation after the packet has sors whereby one processor is interrupted remotely by
been received by NIC 100, but before the packet is pro- 45 another processor. Other methods by which one processor
:esscd by the host computer system. The information stored alerts, or dispatches a process to, another processor may be
m a descriptor may be used, for example, by the device used in place of threads and cross-processor calls .

. driver for NIC 100 or for processing the packet through its In state 718, a thread or other process on the selected
· protocol stack. processor begins processing the packet that was stored in the

In state 712, an interrupt or other alert is :i&<;ued to the host so processor's queue. Methods of processing a packet through
computer to inform it that a new packet has been delivered its protocol stack are well known to those skilled in the art
from NIC 100. In an embodiment of the invention in which and need not be descnbed in detail. The illustrated procedure
Nie_ 100 is coupled to the host computer by a PCI then ends with end state 720.

· (Penphcral Component Interconnect) bus, the INTA signal In one alternative embodiment of the invention, a high-
may be asserted across the bus. A PCI controller in the host 55 speed network interface is configured to receive and process
t11:Ceives the signal and the host operating system is alerted JUM (Asynchronous Transfer Mode) traffic. In this
(e.g., via an interrupt). embodiment, a load distnbutor is implemented as a set of

_ In state 714, software operating on the host computer instructions (e.g., as software) rather than as a hardware
(e.g., a device driver for NIC 100) is invoked (e.g., by the module. As one skilled in the art is aware, ATM traffic is
host computer's operating system interrupt handler) to act 60 connection-oriented and may be identified by a virtual
llJ?o? a newly received packet. The software gathers iafor- connection identifier (VCI), which corresponds to a virtual
mation from one or more descriptors in the descriptor ring circuit established between the packet's source and destina-
lnd places information needed to complete the processing of tion entities. Each packet that is part of a virtual circuit

· t:'Ch new packet into a queue for the specified processor includes the VCI in its header.
(i.e., according to the processor number stored in the pack- 65 Advantageously, a VCI is relatively small in size (e.g.,
et'sdescriptor). lllustratively, each descriptor corresponds to sixteen bits). In this alternative embodiment, therefore, a
a. sep3Iate packet. The information stored in the. processor packet's VCI may be used in place of a flow key for the

I

!

i

I

.Ji,

11:

1
1;
I,

I
I' ,,

,,
;•
I

1:
I,

l:

EX 1017 Page 538

51

geacrate a value that is smaller in magnitude. The hash
operation may, for example, comprise a thirty-two bit CRC
(cycle redundancy check) function such as ATM
(Asynchronous TransferMode) Adaptation Layer 5 (AALS).
AALS generatesthirty-two bit numbers thatare fairly evenly
distributed among the 2° possible values. Another suitable
method of hashing is the standard Ethemet CRC-32 func-
tion. Other hash functions that are capable of generating
relatively small numbers from relatively large flow keys,
where the qumbers generated are well distributed among a
range of values, are also suitable.

With the resulting hash value, in state 708 a modulus
operation is performed over the number of processors avail-
able for distributing or sharing the processing. Ilustratively,
software executing on the host computer (e.g., a device
driver for NIC 100) programs or stores the number of
processors such that it may be read or retrieved by load
distributor 112 (.g., in a register). The numberofprocessors
available for load balancing may be all or a subset of the
number ofprocessors installed on the host computer systern.
In the illustrated embodiment, the number of processors
available in a host computer system is programmable, with
a maximum value ofsixty-four. The result of the modulus
operation in this embodiment, therefore, is the number of the
processor (¢.g., from zero to sixty-threc) to which the packet
is to be submitted for processing. In this embodiment of the
invention, load distributor 112 is implemented in hardware,
thus allowing rapid execution of the hashing and modulus
functions. In an alternative embodiment of the invention,
virtually any number of processors may be accommodated.

In state 710, the number of the processor that will process
the packet through its protocol stack is stored in the host

y gomputer’s memory. Dhistratively, state 710 isperformed in
parallel with the storage of the packet in « host memory
buffer. As described in a following section, in one embodi-
ment of the invention a descriptor ring in the host comput-
er’s memory is constructed to hold the processor number
and possibly other information conceming the packet (e.g.,

E a pointer io the packct, its size, its TCP checksum).
A descriptor ring in this embodiment is a data structure

comprising a numberofentries, or “descriptors,” for storing
. information to be used by a network interface circuit’s host

computer system.In the illustrated embodiment, a descriptor
s. temporarily stores packet information after the packet has
| been received by NIC 100, but before the packet is pro-
[cessed by the host computer system. The information stored
| in2 descriptor may be used, for example, by the device
| driver for NIC 100 or for processing the packet through its
F Protocolstack.

f. In state 712,an interrupt orotheralert is issued to the hast
computer to inform it that a new packet has been delivered

, from NIC 100.In an embodimentofthe iaveation in which
F NIC100 is coupled to the host computer by a PCI

(Peripheral Component Interconnect) bus, the INTA signal
f Maybe asserted across the bus. A PCI controllerin the host

feceives the signal and the bost operating system is alerted
{¢-g., via an intermupt).

F In state 714, software operating on the host compuler
(e.g. a device driver for NIC 100) is invoked (e.g., by the

Computer's operating system interrupt handler) to act
“pon a newly reocived packet. The software gathers infor-
®ation from one or more descriptors in the descriptor ring
and places information neededto complete the processing of

b Sach new packet info a queue for the specified processor
p \LC., according to the processor number stored in the pack-

et’s descriptor). [Mustratively, each descriptor corresponds to
F * Separate packet. The information stored in the. processor

25

40

45

30

SS

60

65

US6,453,360 B1
§2

queue for each packet may inchide a pointer to a buffer
containing the packet, the packet’s TCP checksum,offsets of
one or more protocol headers, etc. In addition, cach proces-
sor participating ia the load distribution scheme may have an
associated queue for processing network packets. In an
altemmative embodiment of the invention, multiple queues
may beused (¢.g., for multiple priority levels orfor different
protocol stacks).

Ulustratively, one processor on the host computer system
is configured to receive all alerts and/or interrupts associated
with the receipt of network packets from NIC 100 and to
alert the appropriate software routine or device driver. This
initial processing may, alternatively, be distributed among
multiple processors. In addition, in one embodiment of the
invention a portion of the retrieval and manipulation of
descriptor contents is performed as part of the handling of
the interrupt that is generated when a new packetis stored
in the descriptor ring. The processorselected to process the
packet will perform the remainder of the retrieval/
manipulation procedure.

In state 716, the processor designated to process a new
packet is alerted or woken. In an embodimentof the inven-
tion operating on a Solaris™ workstation, individual pro-
cesses executed by the processor are configured as
“threads.” A thread is a process ruuning in a normal mode
(c.g., not at an intermpt level) so as to have minimal impact
on other processes executiug on the workstation. A nonmal
mode process may, however, execuic at a high priority.
Alternatively, a thread may mun ata relatively low internzptlevel.

A thread responsible for processing an incoming packet
may block itself when it has no packets to process, and
awaken whenit has work to do. A“condition variable” may
be used to indicate whether the thread has a packet to
process. Illustratively, the condition variable is set to a first
value when the thread is to process a packet (e.g., when a
packetis received for processing by the processor) andis set
to a second value when there are no more packets to process.
To the illustrated embodimentof tbe invention, one condition
variable may be associated with cach processor's queue.

In an altemative embodiment, the indicated processoris
alerted in state 716 by a “cross-processor caJL” A cross-
processor call is one way of communicating among proces-
sors whereby one processor is interrupted remotely by
another processor. Other methods by which one processor
alerts, or dispatches a process to, another processor may be
used in place of threads and cross-processorcalls.

In state 718, a thread or other process on the selected
processor begins processing the packet that was stored in the
processor's queue. Methods of processing a packet through
its protocol stack are well known to those skilled in the art
and need not be describedin detail. The illustrated procedure
then ends with end state 720.

In one alternative embodiment of the invention, a high-
speed network interface is configured to receive and process
ATM (Asynchronous Transfer Mode) traffic. In this
embodiment, a load distributor is implemented as a set of
instructions (¢.g., as software) rather than as a hardware
module. As one skilled in the art is aware, ATM traffic is
connection-oriented and may be identified by a virtual
connection identifier (VCI), which corresponds to a virtual
circuit established between the packet’s source and destina-
tion entities. Each packet that is part of a virtual circuit
includes the VCI in its header.

Advantageously, a VCI is relatively small in size (c.g.,
sixteen bits). In this alternative embodiment, therefore, a
packet’s VCI may be used in place of a flow key for the

EX 1017 Page 538

“RT

US 6,453,360 Bl
53

pwpose of distnbuting or sharing the burden of processing
packets through their protocol stacks. Illustratively, traffic
from different VCis is sent to different processors, but, to
ensure correct ordering of packets, all packets having the
same va are sent to the same processor. When an A1M 5

packet is received at a network interface, the VCI is retrieved
from its header and provided to the load distributor. The
modulus of the Va over the number of processors that are
available for load distribution is then computed. Similar to
the illustrated embodiment, the packet and its associated 10

processor number are then provided to the host computer.
As descnbed above, load distnbution in a present embodi

ment of the invention is performed on the basis of a packet's
layer three and/or layer four source and destination entity
identifiers. In an alternative embodiment of the invention, 15

however, load distribution may be performed on the basis of
layer two addresses. In this alternative embodiment, packets
having the same Ethernet source and destination addresses,
for example, are sent to a single processor.

As one of skill in the art will recognize, however, this may 20

result in a processor receiving many more packets than it
would if layer three and/or layer four identifiers were used.
For example, if a large amount of traffic is received through
a router situated near (in a logical sense) to the host
computer, the source Ethernet address for all of the traffic 25

may be the router's address even though the traffic is from
a multitude of different end users and/or computers. In
contrast, if the host computer is on the same Ethernet
:segment as all of the end users/computers, the layer two
source addresses will show greater variety and allow more 30

eft'ective load sharing.
Other methods of distnbuting the processing of packets

received from a network may differ from the embodiment
illustrated in FIG. 7 without exceeding the scope of the
invention. In particular, one skilled in the art will appreciate 35
that many alternative procedu:res for assigning a flow's
packets to a processor and delivering those packets to the
processor may be employed.
One Embodiment of a Packet Queue

As descnbed above, packet queue I 16 stores packets 40

received from IPP module 104 prior to their re-assembly by
DMA engine UO and their transfer to the host computer
system. FIG. 8 depicts packet queue 116 according to one
embodiment of the invention.

In the illustrated embodiment, packet queue 116 is imple- 45

mented as a FIFO (First-In First-Out) queue containing up to
256 entries. Each packet queue entry in this embodiment
stores one packet plus vmous information concerning the
packet. For example, entry 800 includes packet portion 802
plus a packet status portion. Because packets of various sizes 50

aie stored in packet queue 116, packet portion 802 may
include filler 802 a to supplement the packet so that the
packet portion ends at an appropriate boundary (e.g., byte,
word, double word).

Filler 802a may comprise random data or data having a 55

specified pattern. Filler 802a may be distinguished from the
stored packet by the pattern of the filler data or by a tag field.

Illustratively, packet status infurmation includes TCP
checksum value 804 and packet length 806 (e.g., length of
the packet stored in packet portion 802). Storing the packet 60

length may allow the packet to be easily identified and
retrieved from packet portion 802. Packet status information
may also include diagnostic/status information 808.
Diagnostic/status information 808 may include a flag indi
cating that the packet is bad (e.g., incomplete, received with 65

an error), an indicator that a checksum was or was not
computed for the packet, an indicator that the checksum has

54
a certain value, an offset to the portion of the packet on
which the checksum was computed, etc. Other flags or
indicators may also be included for diagnostics, filtering, or
other purposes. In one embodiment of the invention, the
packet's flow key (descnbed above and used to identify the
flow comprising the packet) and/or flow number (e.g., the
corresponding index of the packet's flow in flow database
110) are included in diagnostic/status infurmation 808. In
another embodiment, a tag field to identify or delimit filler
802 a is included in diagnostic/status infurmation 808.

In one alternative embodiment of the invention, any or all
of the packet status infurmation descnbed above is stored in
control queue 118 rather than packet queue 116.

In the illustrated embodiment of the invention packet
queue 116 is implemented in hardware (e.g., as random
access memory). In this embodiment, checksum value 804 is
sixteen bits in size and may be stored by checksum generator
114. Packet length 806 is fourteen bits large and may be
stored by header parser 106. Finally, portions of diagnostic/
status information 808 may be stored by one or more of IPP
module 104, header parser 106, flow database manager 108,
load distnbutor lU and checksum generator 114.

Packet queue 116 in FIG. 8 is indexed with two pointers.
Read pointer 810 identifies the next entry to be read from the
queue, while write pointer 812 identifies the entry in which
the next received packet and related information is to be
stored. As explained in a sub.sequent section, the packet
stored in packet portion 802 of an entry is extracted from
packet queue 116 when its data is to be-reassembled by
DMA engine UO and/or transferred to the host computer
system.
One Embodiment of a Control Queue

In one embodiment of the invention, control queue 118
stores control and status information concerning a packet
received by NIC 100. In this embodiment, control queue 118
retains information used to enable the batch processing of
protocol headers and/or the re-assembly of data from mul
tiple related packets. Control queue 118 may also store
information to be used by the host computer or a series of
instructions operating on a host computer (e.g., a device
driver for NIC 100). The information stored in control queue
118 may supplement or duplicate information stored in
packet queue 116.

FIG. 9 depicts control queue 118 in one embodiment of
the invention. The illustrated control queue contains one
entry for each packet stored in packet queue 116 (e.g., up to
256 entries). In one embodiment of the invention each entry
in control queue 118 corresponds to the entry (e.g., packet)
in packet queue 116 having the same number. FIG. 9 depicts
entry 900 having various fields, such as CPU number !I02,
No....Assist signal 904, operation code 906, payload offset
IJOS, payload si7.e 910 and other status information 9U. An
entry may also include other status or control information
(not shown in FIG. 9). Entries in control queue 118 in
alternative embodiments of the invention may comprise
different information.

CPU (or processor) number 902, discussed in a previous
section, indicates which one of multiple processors on the
host computer system should process the packet's protocol
headers. Illustratively, (.'PU number 902 is six bits in si7.e.
No_Assist signal 904, also descnbcd in a preceding section,
indicates whether the packet is compatible with (e.g., is
formatted according to) any of a set of pre-selected protocols
that may be parsed by header parser 106. No_Assist signal
904 may comprise a single flag (e.g. one bit). In one
embodiment of the invention the state or value ofNo_Assist
signal 904 may be used by flow database manager 108 to

'.HI

l

J
'I

1,

I
!

EX 1017 Page 539

US6,453,360 Bl

53

purpose ofdistributing or sharing ibe burden of processing
packets through their protocol stacks. Ilustratively,traffic
from different VCls is sent to different processors, but, to
ensure correct ordering of packets, all packets having the
same VCI are sent to the same processor. When an ATM
packet is received at a network interface, the VCI is retrieved
from its header and provided to the load distributor. The
modulus of the VCI over the number of processors that are
available for load distribution is then computed. Similar to
the illustrated embodiment, the packet and its associated
processor numberare then provided to the host computer.

As described above,load distribution in a present embodi-
ment of the invention is performed on the basis of a packet’s
layer three and/or layer four source and destination entity
identifiers. In an alternative embodiment of the invention,
however, load distribution may be performed on the basis of
layer two addresses. In this alternative embodiment, packets
having the same Ethemet source and destination addresses,
for example, are sent to a single processor.

Asoue ofskill in the art will recognize, however,this may
result in a processor receiving many more packets than it
would if layer three and/or layer four identifiers were used.
For example, if a large amountoftraffic is received through
a router situated near (in a logical sense) to the host
computer, the source Ethernet address for all of the traflic
may be the router’s address even though the traffic is from
a multitude of different end users and/or computers. In
contrast, if the bost computer is ou the same Ethernet
segment as all of the end users/computers, the layer two
source addresses will show preater variety and allow more
effective load sharing.

Other methods of distributing the processing of packets
recejved from a network may differ from the embodiment
illustrated in FIG. 7 without exceeding the scope of the
invention. [In particular, one skilled in the art will appreciate
that many alternative procedures for assigning a flow’s
Packets to a processor and delivering those packets to the
processor may be employed.
One Embodiment of a Packet Queve

As described above, packet qucus 1 16 stores packets
received from IPP module 104 prior to their re-assembly by
DMA engine 120 andtheir transfer to the host computer
system. FIG. 8 depicts packet queue 116 according to one
embodiment of the invention.

In the illustrated embodiment, packet queue 116 is imple-
mented as a FIFO (First-In First-Out) queue containing up to
256 entries. Each packet queue entry in this embodiment
Stores One packet plus various information concerning the
packet. For example, entry 800 includes packet portion 802
plus a packetstatus portion. Because packets ofvarious sizes
are stored in packet queue 116, packet portion 802 may
include filler 802 a to supplement the packet so that the
packet portion ends at an appropriate boundary (c.g., byte,
word, double word).

Filler 802a may comprise random data or data having a
specified pattern. Filler 882@ may be distinguished from the
Stored packet by the pattern of the filler data or by a tag field.

Ilustratively, packet status information includes TCP
checksum value 804 and packet length 806 (e.¢., length of
the packet stored in packet portion 802). Storing the packet
Ieagth may allow the packet to be easily identified and
Tetrieved from packet portion 802. Packet status information
may also include diagnostic/siatus information 808.
Diagnostic/status information 808 may include a flag indi-
Cating that the packet is bad (e.g., incomplete, received with
a2 error), an indicator that a checksum was or was not
computed for the packet, an indicatorthat the checksum has

25

cc

35

40

45

53

65

54

a certain value, an offset to the portion of the packet on
which the checksum was computed, etc. Other flags or
indicators may also be included for diagnostics, filtering, or
other purposes, In one embodiment of the invention, the
packet’s flow key (described above and used to identify the
flow comprising the packet) and/or flow number(e.g., the
corresponding index of the packet’s flow in flow database
110) are included in diagnostic/status information 808. In
another embodiment, a tag field to identify or delimit filler
802 a is included in diapnostic/status information 808.

In onealternative embodimentof the invention, any or all
of the packet status information described aboveis stored in
control queve 118 rather than packet queue 116.

In the illustrated embodiment of the invention packet
queue 116 is implemented in hardware (c.g., as random
access memory).In this embodiment, checksum value 804 is
sixteen bits in size and may be stored by checksum generator
114. Packet length 806 is fourteen bits large and may be
stored by header parser 106. Finally, portions of diagnostic/
status information §98 maybe stored by one or more of IPP
module 104, header parser 106, flow database manager 108,
load distributor 112 and checksum generator 114.

Packet queue 116 in FIG. 8 is indexed with two pointers.
Readpointer $10 identifies the next entry to be read from the
queue, while write pointer $12 identifies the entry in which
the next received packet and related information is to be
stored. As explained in a subsequent section, the packet
stored in packet portion 802 of an entry is extracted from
packet queve 116 when its data is to be-reassemubled by
DMA engine 120 and/or transferred to the bost computer
system.
One Embodiment of a Control Queue

In one ermmbodiment of the invention, control queue 118
stores control and status information conceming a packet
received by NIC £00. In this embodiment, control queue 118
retains information used to enable the batch processing of
protocol headers and/or the re-assembly of data from norel-
tiple related packets. Control queue 118 may also store
information to be used by the host computer or a series of
instructions operating on a host computer (e.g., a device
driver forNIC 100). The information stored in control queue
118 may supplement or duplicate information stormed in
packet queue 116.

FIG. 9 depicts control queve 118 in one embodiment of
the invention. The illustrated control queue contains one
entry for each packet stored in packet queue 116 (e.g., up to
256 entries). In one embodimentof the invention cach entry
in control queue 118 corresponds to the entry (¢.g., packet)
in packet queue 116 having the same aumber. FIG, 9 depicts
entry 900 having various fields, such as CPU number 902,
No__Assist signal 904, operation code 906, payload offset
908, payload size 910 and other status information 912. An
entry may also include other status or control information
(not shown in FIG. 9). Entries in control queue 118 in
alternative embodiments of the invention may comprise
different information.

CPU(or processor) number 902, discussed in a previous
section, indicates which one of multiple processors on the
host computer system should process the packet’s protocol
headers. Lllustratively, CPU number 902 is six bits in size.
No__Assist signal 904, also described in a preceding section,
indicates whether the packet is compatible with (c.g,, is
formatted according to) any ofa set ofpre-selected protocols
that may be parsed by header parser £06. No__Assist signal
904 may comprise a single flag (e.g. one bil). In one
embodimentof the inventionthe state or value of No__Assist
signal 904 may be used by how database manager 108 to

EX 1017 Page 539

US 6,453,360 Bl
55

determine whether a packet's data is re-assembleable and/or
whether its headers may be processed with those of related
packets. In particular, the FDBM may use the No_Assist
signal in determining which operation code to assign to the
packet. s

Operation code 906 provides information to DMA engine
1.20 to assist in the re-asi;cmbly of the packet's data. A~
descnbed in a previous section, an operation code may
indicate whether a packet includes data or whether a pack
et's data is suitable for re-asi;cmbly. Illustratively, operation 10

code 906 is three bits in size. Payload offset 908 and payload
size 910 correspond to the off.set and size of the packet's
TCP payload (e.g., TCP data), respectively. These fields may
be seven and fourteen bits laige, respectively.

In the illustrated embodiment, other status information 15

912 includes diagnostic and/or status information concern
ing the packet. Status information 912 may include a starting
position for a checksum calculation (which may be seven
bits in size), an off.set of the layer three (e.g., IP) protocol
header (which may also be seven bits in size), etc. Status 20

information 912 may also include an indicator as to whether
the size of the packet exceeds a first threshold (e.g., whether
the packet is greater than 1522 bytes) or falls under a second
threshold (e.g., whether the packet is 256 bytes or less). This
information may be useful in re-assembling packet data. 25
Illustntively, these indicators comprise single-bit flags.

In one alternative embodiment of the invention, status
information 912 includes a packet's flow key and/or flow
number (e.g., the index of the packet's flow in flow database
llO). The flow key or flow number may, for example, be 30

" 1ISCd for debugging or other diagnostic purposes. In one
embodiment of the invention, the packet's flow number may
be stored in status information 912 so that multiple packets

'· in a single flow may be identified. Such rela.ted packet may
then be collectively transferred to and/or processed by a host 35

, · computer.
FIG. 9 depicts a read pointer and a write pointer for

indexing control queue 118. Read pointer 914 indicates an
ontry to be read by DMA engine 120. Write pointer 916
indicates the entry in which to store information concerning '4()

, the next packet stored in packet queue 116.
. In an alternative embodiment of the invention, a second

; read pointer (not shown in FIG. 9) may be 1ISCd for indexing
..):ootrol queue 118. As descn"bed in a later section, when a
· -packet is to be transferred to the host computer, information 45

· dnwn from entries in the control queue is searched to
•· determine whether a related packet (e.g., a packet in the
:·. &ame flow as the packet to be transferred) is also going lo be
·1nnsferred. If so, the host computer is alerted so that

loco} headers from the related packets may be processed 50
. llectively. In this alternative embodiment of the invention,
··,elated packets are identified by matching their flow num
, (or flow keys) in status information 912. The second t:d pointer may be used to look ahead in the control queue

, packets with matching flow numbers. 55

· In one embodiment of the invention CPU number 902
· Y be stored in the control queue by load distnbutor 112
"" No__Assist signal 904 may be stored by header parser

· .vu. Operation code 906 may be stored by flow database
ilil:iger 108, and payload off.set 908 and payload size 910 60

~ay be stored by header parser 106. Portions of other status
Ofrnlltion may be written by the preceding modules and/or

rs, such as IPP module 104 and checksum generator 114.
one Particular embodiment of the invention, however,
Y of these items of information are stored by IPP module 65
or some other module acting in somewhat of a coordi-

tor role.

56
One Embodiment of a DMA Engine

FIG. 10 is a block diagram of DMA (Direct Memory
Access) engine 120 in one embodiment. of the invention.
One purpose of DMA engine 120 in this embodiment is lo
transfer packets from packet queue 116 into buffers in host
computer memory. Because related packets (e.g., packets
that are part of one flow) can be identified by their flow
numbers or flow keys, data from the related packets may be
transferred together (e.g., in the same buffer). By using one
buffer for data from one flow, the data can be provided lo an
application program or other destination in a highly efficient
manner. For example, after the host computer receives the
data, a page-flip operation may be performed to transfer the
data lo an application's memory space rather than perform
ing numerous copy. operations.

With reference back to FIGS. lA-B, a packet that is to be
transferred into host memory by DMA engine 1.20 is stored
in packet queue 116 after being received from network 102.
Header parser 106 parses a header portion of the packet and
generates a flow key, and flow database manager 108 assigns
an operation code to the packet. In addition, the communi
cation flow that includes the packet is registered in flow
database 110. The packet's flow may be identified by its flow
key or flow number (e.g., the index of the flow in flow
database 110). Finally, information concerning the packet
(e.g., operation code, a packet size indicator, flow number)
is stored in control queue llS and. possibly, other portions
or modules of NIC 100, and the packet is transferred to the
host computer by DMA engine 120. During the transfer
process, the DMAengine may draw upon information stored
in the control queue to copy the packet into an appropriate
bul.Ier, as described below. Dynamic packet batching module
122 may also use information stored in the control queue, as
discussed in detail in a following section.

With reference now to FIG. 10, one embodiment of a
DMA engine is presented. In this embodiment, DMA man
ager 1002 manages the transfer of a packet,. from packet
queue 116, into one or more buffers in host computer
memory. Free ring manager 1012 identifies or receives
empty buffers from host memory and completion ring man
ager 1014 releases the buJiers to the host computer, as
described below. The free ring manager and completion ring
managers may be controlled with logic contained in DMA
manager 1002. In the illustrated embodiment, flow
re-assembly table 1004, header table 1006, MIU table 1008
and jumbo table 1010 store information concerning buffers
used to store different types of packets (as descn"bed below).
Information stored in one of these tables may include a
reference to, or some other means of identifying, a buffer. In
FIG. 10, DMA engine 120 is partially or fully implemented
in hardware.

Empty buffers into which packets may be stored a.re
identified via a free descriptor ring that is maintained in host
memory. As one skilled in the art is aware, a descriptor ring
is a data structure that is logically arranged as a circular
queue. A descriptor ring contains descriptors for storing
information (e.g., data, flag, pointer, address). In one
embodiment of the invention, each descriptor stores its
index within the free descriptor ring and an identifier (e.g.,
memory address, pointer) of a free buffer that may be used
to store packets. In this embodiment a buffer is identified in
a descriptor by its address in memory, although other means
of identifying a memory buffer are also suitable. In one
embodiment of the invention a descriptor index is thirteen
bits large, allowing for a maximum of 8,192 descriptors in
the ring, and a buffer address is sixty-four bits in size.

In the embodiment of FIG. 10, software that executes on
a host computer, such as a device driver for NIC 100,

ii ..

EX 1017 Page 540

US 6,453,360 B1
$5

determine whether a packet’s data is re-assembleable and/or
whether its headers may be processed with those ofrelated

. packets. In particular, the FDBM may use the No_Assist
| signal in determining which operation codeto assign fo the
; acket.
f P Operation code 906 provides information to DMA engine

120 io assist in the re-assembly of the packet’s data. As
described in a previous section, an operation code may

E jndicate whether a packet includes data or whether a pack-
; fs data is suitable for re-assembly. Uustratively, operation

code 906 is three bits in size. Payload offset 908 and payload
size 910 correspond to the offsel and size of the packet’s
TCP payload (c.g., TCPdata), respectively. These fields may
be seven and fourtcenbits large, respectively.

912 includes diagnostic and/or status information concem-
ing the packet. Status information 912 mayinclude a starting
position for a checksum calculation (which may be seven
bits in size), an offset of the layer three (¢.g., IP) protocol

_ headerhich may also be seven bits in size), etc. Status
.. information 912 mayaiso include an indicator as to whether

P =the size of the packet exceedsafirst threshold (e.g., whether
the packet is greater than 1522 bytes) or falls under a second
threshold (c.g., whether the packet is 256 bytes or less). This
information may be useful in re-assembling packet data.
Ilustratively, these indicators comprise single-bit flags.

In one alternative embodiment of the invention, status
information 912 includes a packet’s flow key and/or low
nunober(¢.g., the index of the packet’s flow in flow database
110). The flow key or flow number may, for example, be

. used for debugging or other diagnostic purposes. In one
embodimentof the invention,the packet’s ow number may
be stored in status information 912 so that multiple packets
in a single flow may be identified. Such related packet may

_ then be collectively transferred to and/or processed by a host
computer.

FG. 9 depicts a read pointer and a write pointer for
indexing control queue 118. Read pointer 914 indicates an
entry to be read by DMA engine 120. Write pointer 916
indicates the entry in which to store information concerning
the next packet stored in packet queve 16.

: . In an alternative embodimentof the invention, a second
- Tead pointer (not shown in FIG. 9) may be used for indexing
‘.. ontrol queue 118. As described in a later section, when a
Packetis to be transferred to the host computer, information

> Grawn from entries in the control queue is searched to
B deicrmine whether a related packet (e.g., a packet in the

» ®ame flow as ibe packetto be transferred) is also going to be
f transferred. If so, the host computer is alerted so that
Protocol headers from therelated packets may be processed
Mollectively, In this alternative embodimentofthe invention,
prelate packets are identified by matching their flow num-
y (cr flow keys) in status information 912. The second
Ycad pointer may be used to look ahead in the control queue

Packets with matching flow numbers.
ee fo One embodiment of the invention CPU number 902
Hmuay be stored in the control queue by load distributor 112

peal No_Assist signal 904 may be stored by header parser
E 06. Operation code 906 may be stored by flow database
Manager 108, and payload offset 908 and payload size 910
ffuzybe stored by header parser 106. Portions ofother status
. ‘Station may be written by the preceding modules and/or

Een, TS, Such as [PP module 104 and checksum generator 114.One particular embodiment of the invention, however,
Hanyof these items of information are stored by IPP module
Pe 4 of some other module acting in somewhat of a coordi-
eMator role,

anit

o

In the illustrated embodiment, other status information 1

20

2s

30

40

45

50

55

60

56
One Embodiment of a DMA Engine

FIG. 10 is a block diagram of DMA (Direct Memory
Access) engine 120 in one embodiment. of the invention.
One purpose of DMA engine 120 in this embodimentis to
transfer packets from packet queve 116 inio buffers in host
computer memory. Because relaied packets (e.g., packets
thal are part of one flow) can be identified by their flow
numbers or flow keys, data from the related packets may be
transferred together(e.g., in the same buffer). By using one
buffer for data from one flow, the data can be provided fo an
application program or other destination in a highly efficient
manner. For example, after the host computer receives the
data, a page-flip operation may be performed to transfer the
data to an apphication’s memory space rather than perform-
ing numerous copy. operations.

With reference back to FIGS. 1A-B,a packet that is to be
transferred into host memory by DMA engine 120 is stored
in packet queue 116 after being received from network 102.
Header parser 106 parses a headerportion of the packet and
generates a flow key, and flow database manager 108 assigns
an operation code to the packet. In addition, the communi-
cation flow that includes the packet is registered in flow
database 110. The packet’s flow maybe identified byits flow
key or flow number (¢.g., the index of the flow in flow
database 110). Finally, information concerning the packet
(¢.g., operation code, a packet size indicator, flow number)
is stored in control queue 118 and, possibly, other portions
or modules of NIC 100, and the packetis transferred to the
host computer by DMA engine 120. During the transfer
process, the DMAcagine may draw upon information stored
in the control queue to copy the packet into an appropriate
buffer, as described below. Dynamic packet batching module
122 may also use information stored in the control queue, as
discussed in detail in a following section.

With reference now to FIG. 10, one embodimentof a
DMAengineis presented. In this embodiment, DMA man-
ager 1002 manages the transfer of a packet, from packet
queue 116, info one or more buffers in host computer
memory. Free ring manager 1012 identifies or receives
empty buffers from host memory and completion ning mao-
ager 1014 releases the buffers to the host computer, as
described below. The free ring manager and completion ring
Managers may be controlled with logic contained in DMA
manager 1002. In the illusirated embodiment, flow
re-assemibly table 1004, header table 1006, MTU table 1008
and jumbo table 1010 store information concerning buffers
used to store different types ofpackets (as described below).
Information stored in one of these tables may include a
reference 10, or some other means of identifying, a buffer. In
FIG. 10, DMA engine 120is partially or fully implemented
in hardware.

Empty buffers into which packets may be stored are
identified via a free descriptor ring that is maintained in host
memory. As one skilled in the art is aware, a descriptor ning
is a data structure that is logically arranged as a circular
queue. A descriptor ring contains descriptors for storing
information (e.g., data, flag, pointer, address). In one
embodiment of the invention, each descriptor stores its
index within the free descriptor ring aud an identifier (e.g.,
memory address, pointer) of a free buffer that may be used
to store packets. In this embodiment a buffer is identified in
a descriptor byits address in memory, although other means
of identifying a memory buffer are also suitable. In one
embodiment of the invention a descriptor index is thirteen
bits large, allowing for a maximum of 8,192 descriptors in
the ring, and a buffer address is sixty-four bits in size.

In the embodiment of FIG. 10, software that executes on
a bost computer, such as a device driver for NIC 100,

EX 1017 Page 540

a

ae

US 6,453,360 Bl
57 58

maintains a free bu.ffer array orother data structure (e.g., Ii.st, in size. However, bu.ffers and the packets stored in the
table) for storing references to (e.g., addresses of) the buffers buffers may be divided into multiple categories based on
identified in free descriptors. As descriptors are retrieved packet size and whether a. packet's data is being
from the ring their bu.ffer identifiers are placed in the array. re-assembled. Re-assembly refers to the accumulation of
Thus, when a buffer is needed for the storage of a packet, it 5 data from multiple packets of a single flow into one bu.ffer
may be identified by its index (e.g., cell, element) in the free for efficient transfer from kernel space to user or application
buffer array. Then, when the buffer is no longer needed, it spaee within host memory. In particular, re-assembleable
may be released to the host computer by placing its array packets may be defined as pa.ckets that conform to a pie-
index or reference in a completion descriptor. A packet selectedprotocol(e.g.,aprotocol thatisparseable by header
stored in the bu.ffer can then be retrieved by accessing the

O
parser 106). By filling a memory page with data for one

bu.ffer identified in the specified element of the array. Thus, 1 destination, page-flipping may be performed to provide a
in this embodiment of the invention the size of a descriptor page in kernel space to the application or user space. A
index (e.g., thirteen bits) may. not limit the number of packet's category (e.g., whether re-assembleable or non-re-
bu.ffers that may be assigned by free ring manager 1012. In assembleable) may be determined from information
particular, virtually any number of bu.ffers or descriptors retrieved from the control queue or flow database ma.nager.
could be managed by the software. For example, in one. 15 In particular, and as described previously, an operation code
alternative embodinlent of the invention bu.ffer identifiers may be used to determine whether a packet contains a
may be stored in one or more linked lists after being re-assembleable portion of data.
retrieved from descriptors in a free descriptor ring. When the In the illustrated embodiment of the invention, data por-
buffer is released to the host computer, a reference to the lions of related, re-a.ssembleable, packets are placed into a
bead of the buffer's linked list may be provided. The list 20 first category of bu.ffers-which may be termed re-assembly
could then be navigated to locate the particular bu.ffer (e.g., buffers. A second category of bu.ffers, which may be called
by its address). header bu.ffers, stores the headers of those packets whose

As one skilled in the art will appreciate, the inclusion of data portions are being re-assembled and may also store
a limited number of descriptors in the free descriptor ring small packets (e.g., those less than or equal to 256 bytes in
(e.g., 8,192 in this embodiment) means that they may be 25 size). A third category of bu.ffers, MTU buffers, stores
re-used in a round-robin fashion. In the presently described non-re-assembleable packets that are larger than 256 bytes,
embodiment, a descriptor is just needed Jong enough to but no larger tha.n MTU size (e.g., 1522 bytes). Finally, a
retrieve its buffer identifier (e.g., address) and place it in the fourth category of bu.ffers, jumbo bu.ffers, stores jumbo
free buffi:r array, after which it may be re-used relatively packets (e.g., large packets that are greater than 1522 bytes
quickly. In other embodiments of the invention free descrip- 30 in size) that are not being re-assembled. illustratively, a
tor rings hl.ving different numbers of free descriptors may be jumbo packet may be stored intact (e.g., its headers and data
used, thus allowing some control over the rate at which free portions kept together in one buffer) or its headers may be
descriptors must be re-used. stored in a header buffer while its data portion is stored in an

In one alternative embodiment of the invention, instead of appropriate (e.g., jumbo) non-re-assembly buffer.
using a separate data structure to identify a buffer for storing 35 In one alternative embodiment of the invention, no dis-
a packet, a bu.ff er may be identified within DMAengine 120 tinction is made between MTIJ and jumbo pa.ckets. Thus, in
by the index of the free descriptor within the free descriptor this alternative embodiment, just three types of bu.ffers are
ring that referenced the bu.ffer. One drawback to this scheme used: re-assembly and header bu.ffers, as descnbed above,
when the ring contains a limited number of descriptors, plus non-re-assembly buffers. Illustratively, all non-small
however, is that a particular buffer's descriptor may need to 40 packets (e.g., larger than 256 bytes) that are not
be re-used before its buffer has been released to the host re-assembled are placed in a non-re-assembly bu.ffer.
computer. Thus, either a method of avoiding or skipping the In another alternative embodiment, jumbo packets may be
re-use of such a descriptor must be implemented or the re-a.ssembled in jumbo bu.ffers. In particular, in this embodi-
bu.ffer referenced by the descriptor must be released before ment data portions of packets smaller than a predetermined
the descriptor is needed again. Or, in another alternative, a 45 size (e.g., MTU) are re-assembled in normal re-assembly
free descriptor ring may be of such a large size that a lengthy bu.ffers while data portions of jumbo packets (e.g., packets
or even virtoally infinite period of time may pass from the greater in size than MTU) are re-assembled in jumbo
time a free descriptor is first used until it needs to be re-used. buffers. Re-assembly of jumbo packets may be particularly

Thus, in the illustrated embodiment of the invention free effective for a communication flow that comprises jumbo
ring manager 1012 retrieves a descriptor from the free 50 frames of a size such that multiple fraD1es can :fit in one
descriptor ring, stores its bu.ffer identifier (e.g., memory buffer. Header portions of both types of packets may be
address) in a free bu.ff er array, and provides the array index stoxed in one type of header bu.ffer or, alternatively, different
and/or bu.ffer identifier to flow re-assembly table 1004, header bu.ffers may be used for the headers of the different
header table 1006, MTU table 1008 or jumbo table 1010. types of re-assembleable packets.

Free ring manager 1012 attempts to ensure that a buffer is 55 In yet another alternative embodiment of the invention
always available for a packet. Thus, in one embodiment of bu.ffers may be of varying sizes and may be identified in
the invention free ring manager 1012 includes descriptor different descriptor rings or other data structures. For
cache 1012 a confignred to store a number of descriptors exaniple, a first descriptor ring or other mechanism may be
(e.g., up to eight) at a time. Whenever there are less than a used to identify bu.ffers of a first size for storing large or
threshold number of entries in the cache (e.g., five), addi- 60 jumbo packets. A second ring may store descriptors refer-
tional descriptors may be retrieved from the free descriptor encing buf[ers for MTU-sized packets, and another ring may
ring. Advantageously, the descriptors are of such a size (e.g., contain descriptors for identifying page-sized bu.ffers (e.g.,
sixteen bytes) that some multiple (e.g., four) of them can be for data re-assembly).
efficiently retrieved in a. sixty-four byte cache line transfer A buffer used to store portions of more than one type of
from the host computer. 65 packet-such as a header bu.ffer used to store headers and

Returning now to the illustrated embodiment of the small packets, or a non-re-assembly bu.ffer used to store
invention, each bu.ffer in host memory is one memory page MTU and jumbo packets-may be termed a "hybrid" bu.ff er.

EX 1017 Page 541

US 6,453,360 Bl
59

Diustratively, each time a packet or a portion of a packet

60
completion ring. One reason that a separate ring is employed
to release used buffers to the host computer is that buffers
may not be released in the order in which they were taken.
In one embodiment of the invention, a buffer (especially a

is stored in a buffer, completion ring manager 1014 popu
lates a descriptor in a completion descriptor ring with
information concerning the packet. Included in the informa
tion stored in a completion descriptor in this embodiment is
1 nUlllber or reference identifying the free buffer array cell

s flow re-assembly buffer) may not be released until it is full.

, or element in which an identifier (e.g., memory address) of
Alternatively, a buffer may be released at virtually any time,
such as when the end of a communication flow is detected.
Free descriptors and completion descriptors are further
descnbed below in conjunction with FIG. 12.

1 buffer in which a portion of the packet is stored. The
information may also include an off.set into the buffer {e.g.,
to the beginning of the packet portion), the identity of

: ,nether free buffer array entry that stores a buffer identifier
10 Another reason that separate rings are used for free and

for a buffer containing another portion of the packet, a size
• of the packet, etc. A packet may be stored in multiple buffers,
• for example, if the packet data and header are stored

completion descriptors is that the number of completion
descriptors that are required in an embodiment of the
invention may exceed the number of free descriptors pro·
vided in a free descriptor ring. For example, a buffer . ,qiarately (e.g., the packet's data is being re-assembled in a

i:e-:assembly buffer while the packet's header is placed in a
header buffer). In addition, data portions of a jumbo packet
, or a re-assembly packet may span two or more buffers,
, depending on the size of the data portion.
', A distinction should be kept in mind between a buffer
identifier { e.g., the memory address of a buffer) and the entry

15 provided by a free descriptor may be used to store multiple
headers and/or small packets. Each time a header or small
packet is stored in the header buffer, however, a separate
completion descriptor is generated. In an embodiment of the
invention in which a header buffer is eight kilobytes in size,

· in the free buffer array in which the buffer identifier is stored .
. in particular, it has been described above that when a

20 a header buffer may store up to thirty-two small packets. For
each packet stored in the header buffer, another completion
descriptor is generated.

mory buffer is released to a host computer it is identified
:IP the host computer by its position within a free buffer array
{pr other suitable data structure) rather than by its buffer 25

ntificr. Toe host computer retrieves the buffer identifier
m the specified array element and accesses the specified

r lo locate a packet :stored in the buffer. As one skilled

FIG. 11 includes diagrams of illustrative embodiments of
flow re-assembly table 1004, header table 1006, MllJ table
1008 and jumbo table 1010. One alternative embodiment of
the invention includes a non-re-assembly table in place of
MllJ table 1008 and jumbo table 1010, corresponding to a
single type of non-re-assembly buffer for both M1U and
jumbo packets. Jumbo table 1010 may also be omitted in the art will appreciate, identifying memory buffers in

pletion descriptors by the buffers' positions in a free
)dfcr array can be more efficient than identifying them by

· memory addresses. In particular, in FIG. 10 buffer
ntifiers are sixty-four bits in size while an index in a free

30 another alternative embodiment of the invention in which
jumbo buffers arc retrieved or identified only when needed.
Because a jumbo buffer is used only once in this alternative
embodiment, there is no need to maintain a table to track its
use. r array or similar data structure will likely be f.a:r

aller. Using array positions thus saves spare compared to 35

, · buffer identifiers. Nonetheless, buffer identifiers may
used to directly identify buffers in an alternative embodi
nt of the invention, rather than filtering access to them

gh a free buffer array. However, completion descriptors
uld have to be correspondingly larger in order to ac:com- '40

ate them.
A completion descriptor may also include one or more
gs indicating the type or size of a packet, whether the

acket data should be re-assembled, whether the packet is
last of a datagram, whether the host computer should 45

ay processing the packet to await a related packet, etc. As
d in a following section, in one embodiment of the

ention dynamic packet batching module 122 determines,
the time a packet is transferred to the host computer,
ther a related packet will he sent shortly. If so, the host so
putcr may be advised to delay processing the transferred

and await the related packet in order to allow more
nt processing.

:A packet's completion descriptor may be marked appro
ely when the buffer identified by its buffer identifier is 55

:be released to the host computer. For example, a flag may
,.!!Ct in the descriptor to indicate that the packet's buffer is
lllg released from OMA engine 120 to the host computer
SO~are operating on the host computer (e.g., a driver

!ted with NIC 100). In one embodiment of the 60

Vcntion, completion ring manager 1014 includes comple·
de&;riptor cache 1014a. Completion descriptor cache

iD14a _may store one or more completion descriptors for
Clive transfer from DMA engine 120 to the host com-
~ e

· lbus, empty buffers are retrieved from a free ring and
d buffers are released to the host computer through a

Flow re-assembly table 1004 in the illustrated embodi
ment stores information concerning the re-assembly of pack
ets in one or more communication flows. For each flow that
is active through DMA engine 120, separate flow
re-assembly buffers may be used to store the flow's data.
More than one buffer may be used for a particular flow, but
each flow has one entry in flow re-assembly table 1004 with
which to track the use of a buffer. As described in a previous
section, one embodiment of the invention supports the
interleaving of up to sixty-four flows. Thus, flow
re-assembly buffer table 1004 in this embodiment maintains
up to sixty-four entries. A flow's entry in the flow
re-assembly table may match its flow number { e.g., the index
of the flow's flow key in flow database 110) or, in an
alternative embodiment, an entry may be used for any flow.

In FIG. 11, an entry in flow re-assembly table 1004
includes flow re-assembly buffer index 1102, next address
1104 and validity indicator 1106. Flow re-assembly buffer
index 1102 comprises the index, or position, within a free
buffer array or other data structure for storing buffer iden
tifiers identified in free descriptors, of a buffer for storing
data from the associated flow. Illustratively, this value is
written into each completion descriptor associated with a
packet whose data portion is stored in the buffer. This value
may be used by software operating on the host computer to
access the buffer and process the data. Next address 1104
identifies the location within the buffer (e.g., a memory
address) at which to store the next portion of data.
Illustratively, this field is updated each time data is added to
the buffer. Validity indicator 1106 indicates whether thc
entry is valid. lllu.stratively, each entry is set to a valid state
(e.g., stores a first value) when a first portion of data is stored
in the flow's re-assembly buffer and is invalidated (e.g.,

i
'

EX 1017 Page 542

US 6,453,360 BI
59

[lustratively, each time a packet or a portion of a packet
E js stored in a buffer, completion ring manager 1014 popu-
. Jates a descriptor in a completion descriptor ring with

information concerning the packet. Included in the informa-
F tion stored in a completion descriptor in this embodimentis
Eg number or reference identifying the free buffer array cell
E or element in which an identifier (c.g., memory address) of
Ey buffer in which a portion of the packet is stored. The

E information may also include an offset into the buffer (e.g.,
Rio the beginning of the packet portion), the identity of
. another free buffer array entry that stores a bufferidentifier

S for a buffer containing another portion of the packet, a size
F of the packet, ctc. Apacket may be stored in multiple buffers,

} for example, if the packet data and header are stored
b separatcly (¢.g., the packet’s data is being re-assermbled in a

re-assembly buffer while the packet’s header is placed in a
B feader buffer). In addition, data portions of a jumbo packet
Por a re-assemibly packet may span two or more buffers,
E depending on the size of the data portion,
!, A distinction should be kept in mind between a buffer
identifier (e.g., the memory address ofa buffer) and the entry

- in the free buffer array in which the buffer identifieris stored.
In particular, it has been described above that when a
Pimemory buffer is released to a host computerit is identified

4p the host computerbyits position within a free buffer array
for other suitable data structure) rather than by its buffer

Figentifier. The host computer retrieves the buffer identifier
birom the specified array clement and accesses the specified

uffer to locate a packet stored in the buffer. As one skilled
hin the art will appreciatc, identifying memory buffers in
Brompiction descriptors by the buffers’ positions in a free
Meuffcr array can be more efficient than identifying them by
heir memory addresses. In particular, in FIG. 10 buffer
Sdcntifiers are sixty-four bits in size while an index in a free
PRaffer array or similar data structure will likely be far
Smaller. Using array positions thus saves space compared to
busing buffer identifiers. Nonetheless, buffer identifiers may
fe used to directly identify buffers in an alternative embodi-
Rncnt of the invention, rather than filtering access to them

ough a free buffer array. However, completion descriptors
pwould have to be correspondingly larger in order to accom-
[odate them,

; A completion descriptor may also include one or more
fps indicating the type or size of a packet, whether the
packet data should be re-assembled, whether the packet is
pc last of a datagram, whether the host computer should
meay processing the packet to await a related packet, etc. As

p bed in a following section, in one embodimentof the
vention dynamic packet batching module 122 determines,

Be the time a packet is transferred to the host computer,
Phethcr a related packet will be sent shortly. If so, the host
eMputcr may be advised to delay processing the transferred
mexet and await the related packet in order to allow more

lent processing.
mA packet's completion descriptor may be marked appro-
a cly when the buffer identified by its buffer identifier is
pbc Teleased to the host computer. For example, a flag may

pesct in the descriptor to indicate that the packet’s buffer is
plug released trom DMA engine 120 to the host computer

‘tware operating on the bost computer (¢.g., a driver
ated with NIC 160). In one embodiment of the

nition, completion risg manager 1014 includes comple-
iesetiptor cache 1014a. Completion descriptor cache

‘may store one or more completion descriptors for

me transfer from DMA engine 120 to the host com-

>Thus, empty buffers are retrieved from a free ring and

ed buffers are released to the host computer through a

Vy

10

25

30

40

4:oH

55

63

60

completion ring. One reasonthata separate ring is employed
to release used buffers to the hast computer is that buffers
may not be released in the order in which they were taken.
In one embodiment of the invention, a buffer (especially a
flow re-assembly buffer} may not be released until itis full.
Alternatively, a buffer may be released at virtually any time,
such as when the end of a communication flow is detected.

Free descriptors and completion descriptors are further
described below in conjunction with FIG. 12.

Another reason thal separate rings are used for free and
completion descriptors is that the number of completion
descriptors that are required in an embodiment of the
invention may exceed the numberof free descriptors pro-
vided in a free descriptor ring. For example, a buffer
provided by a free descriptor may be used to store multiple
headers and/or small packets. Each time a header or small
packetis stored in the header buffer, however, a separate
completion descriptor is generated. In an embodimentof the
invention in which a header bufferis eight kilobytes in size,
a header buffer may store up to thirty-two small packets. For
each packet stored in the header buffer, another completion
descriptor is generated.

FIG. 11 includes diagrams of illustrative embodiments of
flow re-assembly table 1004, header table 1006, MTU table
1008 and jumbo table 1010. One alternative embodiment of
the invention includes a non-re-assembly table in place of
MTU table 1006 and jumbotable 1010, corresponding to a
single type of non-re-assembly buffer for both MTU and
jumbo packets. Jumbo table 1010 may also be omitted inanother alternative embodiment of the invention in which

jumbo buffers are retrieved or identified only when needed.
Because a jumbo buffer is used only once in this alternative
embodiment, there is no need to maintain a table to track itsUse.

Flow re-assembly table 1004 in the illustrated embodi-
ment stores information concerningthe re-assembly of pack-
eis in one or more corarmunication flows. For each flow that
is active through DMA engine 120, separate flow
re-assembly buffers may be used to store the flow’s data.
More than one buffer may be used for a particular flow, but
each flow has one entry in flow m-assembly table 1004 with
which to track the use of a buffer. As described in a previous
section, one embodiment of the invention supports the
interleaving of up to sixty-four Hows. Thus, flow
re-assembly buifer table 144 in this embodiment maintains
up to sixty-four entries. A flow’s entry in the flow
re-assembly table may matchits flow number(c.g., the index
of the flow’s flow key in flow database 110) or, io an
aliernative embodiment, an entry may be used for any flow.

In FIG, 11, an entry in flow re-assembly table 1004
includes flow re-assembly buffer index 1102, next address
1104 and validity indicator 1106. Flow re-assembly buffer
index 1102 comprises the index, or position, within a free
buffer array or other data structure for storing buffer iden-
tifiers identified in free descriptors, of a buffer for storing
data from the associated flow. [ustratively, this value is
written into cach completion descriptor associated with a
packet whose data portion is stored in the buffer. This value
may be used by software operating on the host computer to
access the buffer and process the data. Next address 1104
identifies the location within the buffer (¢.g., a memory
address) at which to store the next portion of data.
Dlustratively, this ficld is updated cach timedata is addedto
the buffer. Validity indicator 1106 indicates whether the
entry is valid. Hlustratively, each entry is set to a valid state
(¢.g., stores a first value) whena first portion of datais stored
in the flow’s re-assembly buffer and is invalidated (c.g.

Cee teantoeanne

EX 1017 Page 542

• Ill
/!,··.,
fl'

f

!
US 6,453,360 Bl

61 62
, 1,tores a second value) when the buffer is full. When an entry Illustratively, each validity indicator stores a fust value
, is invalidated, the buffer may be released or returned lo the (e.g., one) to indicate validity, and a second value (e.g., zero)

host computer (e.g., because it is full). to indicate invalidity. In the illustrated embodiment of the
Header table 1006 in the illustrated embodiment stores invention, each index field is thirteen bits, each address field

information concerning one or more header buffers in which 5 is sixty-four bits and the validity indicators are each one bit
. packet headers and small packets are stored. In the illus- in size.

ttalcd embodiment of the invention, only one header buffer Tables 1004, 1006, 1008 and 1010 may take other forms
. is active at a time. That is, headeis and small packets are and remain within the scope of the invention as contem-

stored in one buffer until it is released, at which time a new plated. For example, these data structures may take the form
buffer is used. In this embodiment, header table 1006 10 of arrays, lists, databases, etc., and may be implemented in

•, includes header buffer index 1112, next address 1114 and hardware or software. In the illustrated embodiment of the
validity indicator 1116. Similar 10 flow re-assembly table invention, header table 1006, MTIJ table 1008 and J'umbo
1004, header buffer index 1lU identifies the cell or element
in the free bufli:r array that contains a buffer identifier for a table 1010 each contain only one entry at a time. Thus, only
header buffer. Next address 1114 identifies the location one header buffer, MW buffer and jumbo buffer are active
within the header buffer at which to store the next header or 15 (e.g., valid) at a time in this embodiment. In an alternative
.small packet. This identifier, which may be a counter, may embodiment of the invention, multiple header buffem, MW
;beupdatedeachtimeaheaderorsmallpacketisstoredinthe buffers and/or jumbo buffers may be used (e.g., valid) at
, header buffer. Validity indicator 1116 indicates whether the once.
header buffer table and/or the header buffer is valid. This In one embodiment of the invention, certain categories of

';indicator may be set to valid when a first packet or header 20 buffers (e.g., header, non-re-assembly) may store a pre-
is stored in a header buffer and may be invalidated when it determined number of packets or packet portions. For
,is released to the host COD1puter. example, where the memory page size of a host computer

MIU table 1008 stores information concerning one or processor is eight kilobytes, a header buffer may store a
re MW buffers for storing MW packets (e.g., packets maximum of thirty-two entries, each of which is 256 bytes.

~er than 256 bytes but less than 1523 bytes) that are not 25 lliustratively, even when one packet or header is Jess than
· g re-assembled. MW buffer index 1122 identifies the 256 bytes, the next entry in the buffer is stored at the next
e buffer array element that contains a buffer identifier 256-byte boundary. A counter may be associated with the

e.g., address) of a buffer fur storing MTIJ packets. Next buffer and decremented (or incremented) each time a new
1124 identifies the location in the current MTU entry is stored in the buffer. After thirty-two entries have

r at which lo store the next packet. Validity indicator 30 been made, the buffer may be released.
6 indicates the validity of the table entry. The validity In one embodiment of the invention, buffeIS other than
· tor may be set to a valid state when a fust packet is header buffers may be divided into :fixed-size regions. For

, in the MIU buffer and an invalid stale when the buffer example, in an eight-kilobyte MW buffer, each MW
to be released to the host computer. packet may be allocated two kilobytes. Any space remaining

bo table 1010 stores infonnalion concerning one or 35 in a packet's area after the packet is stored may be left
jumbo buffers for storing jumbo packets (e.g., packets unused or may be padded.
r than 1522 bytes) that are not be:ing re-assembled. In one alternative embodiment of the :invention, entries in

bo buffer index 1132 identifies the clement within the a header buffer and/or non-re-assembly buffer (e.g., MTIJ,
.e buffer array that stores a buffer identifier corresponding jumbo) are aligned for more efficient transfer. In particular,
a jumbo buffer. Next address 1134 identifies the location -40 two bytes of padding (e.g., random bytes) are stored at the

· :the jumbo buffer at which to store the next packet. Validity beginning of each entry in such a buffer. Because a packet's
' · ator 1136 :indicates the validity of the table entry. layer two Ethernet header :is fourteen bytes long, by adding

atively, the validity indicator is set to a valid state two pad bytes each packet's layer three protocol header
a first packet is stored in the jumbo buffer and is set (e.g., IP) will be aligned with a sixteen-byte boundary.

',ln invalid state when the buffer is to be released to the 45 Sixteen-byte alignment, as one skilled in the art will
computer. appreciate, allows efficient copying of packet contents (such
the embodiment of the invention depicted in FIG. 11, as the layer three header). Toe addition of two bytes may,

cket larger than a specified size (e.g., 256 bytes) is not however, decrease the size of the maximum packet that may
mbled if it is incompatible with the pre-selected be stored in a header buffer (e.g., to 254 bytes).
Is for NIC 100 (e.g., TCP, IP, Ethernet) or if the 50 As explained above, counters and/or padding may also be

tis too large (e.g., greater than 1522 bytes). Although used with non-re-assembly buffers. Some non-re-
. types of buffers (e.g., MTIJ and jumbo) are used for assembleable packets (e.g., jumbo packets) may, however,
\.re-~mbleable pa.clmts in this embodiment, in an be split into separate header and data portions, with each

. live embndiment of the invention any number may be portion being stored in a separate buffer-filmilar to the
~. including one. Packets less than the specified size are 55 re-assembly of flow packets. In one embodiment of the

Y not re-assembled. Instead, as descnbed above, invention padding is only used with header portions of split
,am stored intact in a header buffer. packets. Thus, when a non-re-assembled (e.g., jumbo)
the embodiment of the invention depicted in FIG. 11, packet is split, padding may be applied to the header/small
.&lress fields may store a memory address, offset, buffer in which the packet's header portion is stored bot not

~r. COUnter or other means of identifying a position 60 to the non-re-assembly buffer in which the packet's data
a buffer. Advantageously, the next address field of a portion is stored. When, however, a non-re-assembly packet

or table entry is initially set to the address of the buffer is stored with its header and data together in a non-re-
.;: lo store packets of the type associated with the table assembly buffer, then padding may be applied to that buffer .

. r re-assembly table 1004, the particular tlow). As the In another alternative embodiment of the invention, a
• ,16 _Populated, the address is updated to identify the 65 second level of padding may be added to each entry in a

n m the buffer at which to store the next packet or buffer that stores non-re-assembled packets that are larger
of a packet. than 256 bytes (e.g., MW packets and jumbo packets that

EX 1017 Page 543

. 61
Se, sires asecond valuc) when the buffer is full. When an entry

F is invalidated, the buffer may be released or returned to the
post computer (¢.g., because it is full).

Header table 1006 io the illustrated embodiment stores
+ information conceming one or more headerbuffers in which

+ packet headers and small packets are stored. In the illus-
} trated embodiment of the invention, only one header buffer
F is active at a time. That is, headers and small packets are

stored in one buffer until it is released, at which time a new
E buffer is used. In this embodiment, header table 1006
k includes header buficr index 1112, next address 1114 and

validity indicator 1116. Similar to flow re-assembly table
F 4004, header buffer index 1112 identifies the cell or element
E in the free buffer array that contains a buffer identifier for a
B. header buffer. Next address 1114 identifies the location
S within the header buffer at which to store the next header or

F small packet. This identifier, which may be a counter, may
b.. be updated each time a header or small packetis stored in the
i header buffer. Validity indicator 1116 indicates whether the

header buffer table and/or the header buffer is valid. This
Bindicator may be set to valid when a first packet or header
E is stored in a header buifer and may be invalidated when it
Has released to the host computer.

MTU table 1008 siores information concerning one or
more MTU buffers for storing MTU packets (e.g., packets

Sarger than 256 bytes but less than 1523 bytes) that are not
Rbeing re-assembled. MTU buffer index 1122 identifies the
Efree buffer array element that contains a buffer identifier
{c.g., address) of a buffer for storing MTU packets. Next
faddress 1124 identifies the location in the current MTU
Buffer at which to store the next packet. Validity indicator
1126 indicates the validity of the table entry. The validity
Biidicator may be set to a valid state when a first packet is
miored in the MTU buffer and an invalid state when the buffer
Reto be released to the host computer.
SeJumbo table 1010 stores information concerning one or

more jambo buffers for storing jumbo packets (c.g., packets
than 1522 bytes) that are not being re-assembled.

Bumbo buffer index 1132 identifies the clement within the

ime buffer array that stores a buffer identifier corresponding
Po # jumbo buffer. Next address 1134 identifies the location

P-the jumbo buffer at which to store the next packet. Validity
prKcator 1136 indicates the validity of the table entry.
% usiratively, the validity indicator is set to a valid state
pico a first packet is stored in the jumbo buffer and is setya0 Invalid state when the buffer is to be released to the
Bea Computer,

Hin the embodiment of the invention depicted in FIG. U1,
weeckct larger than a specified size (e.g. 256 bytes) is not

: bled if it is incompatible with the pre-selected
miocols for NIC 100 (.g., TCP, IP, Ethemet) or if the

are! Is too large (¢.g., greater than 1522 bytes). Although
@ types of buffers (c.g, MTU and jumbo) are used for
erc-assembleable packets in this embodiment, in an
pt lative embodimentof the invention any number may be

mt, including one, Packets less than the specified size are
'Y not re-assembled. Instead, as described above,

wre stored intact in a header buffer.
the embodimentof the invention depicted in FIG. 11,
address fields may store a momory address, offsct,

.. Counter or other means of identifying a position
pun a buffer. Advantageously, the next address field of a

3 OF table entry is initially set to the address of the buffer
Paned to store packets ofthe type associated with thetable

Be forre-assemblytable 1004, the particular flow). As the

t3

3S populated, the address is updated to identify the
eA im the buffer at which to store the next packet or

N of a packet.

:
eit)

US 6,453,360 B1
62

Ilustratively, each validity indicator stores a first value
(e.g, one) to indicate validity, and a second value (€.g., zero)
to indicate invalidity. In the illustrated embodiment of the
jovention, each index field is thirteen bits, cach address field

5 is sixty-four bits and the validity indicators are each one bitin size.

Tables 1004, 1006, 1008 and 1010 may take other forms
and remain within the scope of the invention as contem-
plated. For example, these data structures may take the form

i0 of arrays,lists, databases, cic., and may be implemented in
hardware or software. In the illustrated embodiment of the

invention, header table 1006, MTU table 1008 and jumbo
table 1010 cach contain only one entry at a time. Thus, only
one header buffer, MTU buffer and jumbo buffer are active
(c.g., valid) at a time in this embodiment. In an alternative
embodimentof the invention, multiple header buffers, MTU
buffers and/or jumbo buffers may be used (e.g., valid) atonce.

In one embodiment of the invention,certain categories of
buffers (c.g. header, non-re-assembly) may store a pre-
determined number of packets or packet portions. For
example, where the memory page size of a host computer
processor is cight kilobytes, a header buffer may store a
maximum of thirty-two entries, cach of which is 256 bytes.
Ilustratively, even when one packet or headeris less than
256 bytes, the next entry in the buffer is stored at the next
256-byte boundary. A counter may be associated with the
buffer and decremented (or incremented) each time 2 new
entry is stored in the buffer. After thirty-two entries have
been made, the buffer may be released.

In one embodiment of the invention, buffers other than
header buffers may be divided into fixed-size regions. For
example, in an eight-kilobyte MTU buffer, each MTU
packet maybe allocated two kilobytes. Any space remaining
in a packet's area after the packet is stored may be left
unused or may be padded.

In one alternative embodimentof the invention, entries in
a header buffer and/or non-re-assembly buffer (e.g., MTU,
jumbo) are aligned for more efficient transfer. In particular,
two bytes of padding (c.g., random bytes) arc stored at the
beginning of cach entry in such a buffer. Because a packet’s
layer two Ethemet header is fourteen bytes long, by adding
two pad bytes each packet’s layer three protocol header
(e.g., IP) will be aligned with a sixteen-byte boundary.
Sixteen-byte alignment, as one skilled in the art will
appreciate, allows cflicieat copying of packet contents (such
as the layer three header). The addition of two bytes may,
however, decrease the size of the maximum packet that may
be stored in a header buffer (e.g., to 254 bytes).

As explained above, counters and/or padding may also be
used with non-re-assembly buffers. Some non-re-
assembicable packets (c.g., jumbo packets) may, however,
be split into separate header and data portions, with each
portion being stored in a separate buffer—similar to the
re-assembly of flow packets. In one embodiment of the
invention padding is only used with header portions of split
packets. Thus, when a non-te-assembled (€.g., jumbo)
packet is split, padding may be applied to the header/small
buffer m which the packet’s header portion is stored but not
io the non-re-assembly buffer in which the packet’s data
portion is stored. When, however, a non-re-assembly packet
is stored with its header and data together in a non-re-
assembly buffer, then padding may be applied to that buffer.

In another alternative embodiment of the invention, a
second level of padding may be added to cach entry in a
buffer that stores non-re-assembled packets that are larger
than 256 bytes (c.g., MIU packets and jumbo packets that

20

23

30

a0

4s

55

6

65

EX 1017 Page 543

US 6,453,360 Bl
63 64

are not split). In this alternative embodiment, a cache line of a device driver). An entry in free buffer array 1210 in this
storage (e.g., sixty-fo11r bytes for a Solaris™ workstation) is embodiment .includes array index field 1212, which may be
skipped in the buffer before storing each packeL The extra used to identify the entry, and buffer identifier field 1214.
padding area may be u.sed by software that processes the Each entry's buffer identifier field thus stores a buffer
packets and/or their completion descriptors. The software 5 identifier retrieved from a free descriptor in free descriptor
may use the extra padding area for routing or as temporary ring 1200.
storage for information needed in a secondary or later phase In one embodiment of the invention, free ring manager
of processing. 1012 of DMA engine 120 retrieves descriptor 1202 from the

For example, before actually processing the packet, the ring and stores buffer identifier 1206 in free buffer array
software may store some data that promotes efficient multi- 10 1210. The free ring manager also passes the buffer identifier
tasking in the padding area. The information is then avail- lo flow re-assembly table 1004, header table 1006, M1U
able when the packet is finally extracted from the buffer. In table 1008 or jumbo table 1010 as needed. In another
particular, in one embodiment of the invention a network embodiment the free ring manager extracts descriptors from
interface may generate one or more data values to identify the free descriptor ring and stores them in a descriptor cache
multicast or alternate addresses that correspond to a layer 15 until a buffer is needed, at which time the buffer's buffer
two address of a packet received from a network. The identifier is stored in the free buffer array. In yet another
multicast or alternate addresses may be stored in a network embodiment, a descriptor may he used (e.g., the buffer that
interface memory by software operating on a host computer it references may be used to store a packet) while still in the
(e.g., a device driver). By storing lhe data value(s) in the cache.
padding, enhanced routiog functions can be performed when 20 In one embodiment of the invention descriptor 1202 is
the host computer processes the packet. sixteen bytes in length. In this embodiment, ring index 1204

Reserving sixty-four bytes at the beginning of a buffer is thirteen bits in size, buffer identifier 1206 (and buffer
also allows header information to be modified or prepended identifier field 1214 in free buffer array 1210) is sixty-four
if necessary. For example, a regular Ethernet header of a bits, and the remaining space may store other information or
packet may, because of routing requirements, need to be 25 may not be used. The size of array index field 1212 depends
replaced with a much laiger FDDI (Fiber Distnbuted Data upon the dintensions of array 1210; in one embodintent the
Interface) header. One skilled in the art will recognize the field is thirteen bits in size.
size disparity between these headers. Advantageously, the Completion descriptor ring l220 is also maintained .in
rc:scrved padding area may be used for the FDD1 header host memory. Descriptors in completion ring l220 are
rather than allocating another block of memory. 30 written or configured when a packet is transferred to the host

In· a present embodiment of the invention DMA engine computer by DMA engine 120. The information written to a
120 may determine which category a packet belongs in, and descriptor, such as descriptor 1222, is used by software
which type of buffer to store the packet in, by examining the operating on the host computer (e.g., a driver aswciated with
packet's operation code. As described in a previous section, NIC 100) to procc&S the packet. IDustratively, an ownership
an operation code may be stored in control queue 118 for 35 indicator (described below) in the descriptor indicates
each packet stored in packet queue 116. Thus, when DMA whether DMA engine 120 has finished using the descriptor.
engine 120 detects a packet in packet queue 116, it may fetch For example, this field may be set to a particular value (e.g.,
the corresponding information in the control queue and act zero) when the DMA engine finishes using the descriptor
appropriately. and a different value (e.g., one) when it is available for use

An operation code may indicate whether a packet is 40 by the DMAengine. However, in another embodintent of the
compatible with the protocols pre-selected for NIC 100. In invention, DMA engine 120 issues an interrupt to the host
an illustrative embodintent of the invention, only compatible computer when it releases a completion descriptor. Yet
packets are eligible for data re-assembly and/or other another means of alerting the host computer may be
~nhanccd operations ofrered by NIC 100 (e.g., packet batch- employed in an alternative embodiment. Descriptor 1222, in
mg or load distribution). An operation code may also reflect 45 one embodiment of the invention, is thirty-two bytes in
the size of a packl::t (e.g., less than or greater than a length.
predetermined size), whether a packet contains data or is a In the illustrated embodinient of the invention, informa-
control packet, and whether a packet initiates, continues or lion stored in descriptor 1222 concerns a transferred packet
e';1<1s a flow. In this embodiment of the invention, eight and/or the buffer it was stored in, and includes the following
different operation codes are used. In alternative embodi- so fields. Data size 1230 reports the amount of data in the
ments of the invention more or less than eight codes may be packet (e.g., in bytes). The dat:t size field may contain a zero
nsed. 'D\BLE 1 lists operation codes that may be used in one if there is no data portion in the packet or no data buffer (e.g.,
embodiment of the invention. flow re-assembly buffer, non-re-assembly buffer, jumbo

FI.GS. 12A-12B illustrate descriptors from a free descrip- buffer, M1U buffer) was used. Data buffer index 1232 is the
tor nng and a completion descriptor ring in one embodiment 55 index, within free buffer array 1210, of the buffer identifier
of~ invention. FIG. l2Aalso depicts a free buffer array fur for the flow re-assembly buffer, non-re-assembly buffer,
&toang buffer identifiers retrieved from free descriptors. jumbo buffer or MTIJ buffer in which the packet's data was

Fr~ descriptor ring 1200 is maintained in host memory stored. When the descriptor corresponds to a small packet
; lnd JS populated with descriptors such as free descriptor fuJly stored in a header buffer, this field may store a zero or
'. µ02. Illustratively, free descriptor 1202 comprises ring 60 remain unused Data offset 1234 is the oflset of the packet's
t llldex 1204, the index of descriptor 1202 in free ring 1200, data within the flow re-assembly buffer, non-re-assembly

lnd buffer identifier 1206. A buffer identifier in this embodi- buffer, jumbo buffer or MTIJ buffer (e.g., the loc:ttion of the
lllen! is a memory address, but may, alternatively, comprise first byte of data within the data buffer).
~ Pomter or any other suitable means of identifying a buffer In FIG. UB, flags field 1236 includes one or more flags

- . ~ host memory. 65 concerning :t buffer or packet. For example, if a header
' In the illnsttated cml~>&ment,. free buffer array 1210 is buffer or data is being released (e g,. hecau.v. it is fuJJ),-;,.

lrncted by software operating on a host computer (e.g., release header or release data flag, respectively, is set. A

EX 1017 Page 544

US 6,453,360 Bl
65 66

release flow flag may be used to indicate whether a flow has, (e.g., IP) header. With this value, software operating on the
at least temporarily, ended. In other words, if a release flow host computer may easily strip of[one or more headers or
flag is set (e.g., stores a value of one), this indicates that there header portions.
are no other packets waiting in the packet queue that are in Checksum value 1260 is a checksum computed for this
the same flow as the packet associated with descriptor 1222. 5 packet by checksum generator 114. Packet length 1262 is the
Otherwise, if this flag is not set (e.g., &ores a value of zero), length (e.g., in bytes) of the entire packet.
software operating on the host computer may queue this Ownership indicator 1264 is used in the presently
packet to await one or more additional flow packets so that descnbed embodiment of the invention to indicate whether
they may be processed collectively. A split flag may be NIC 100 or software operating on the host computer "owns"
included in flags field 1236 to identify whether a packet's 10 completion descriptor 1222. In particular, a first value (e.g.,
contents (e.g., data) spans multiple buffers. Illustratively, if zero) is placed in tbe ownership indicator field when NIC
the split flag is set, there will be an entry in next data buffer 100 (e.g., DMA engine 120) has completed configuring the
index 1240, described below. descriptor. Illustratively, this first value is understood to

Descriptor type 1238, in the presently descnbed embodi- indicate that the software may now process the descriptor.
ment of the invention, may take any of three values. A first 15 When finished processing the descriptor, the software may
value (e.g., one) indicates that DMA engine 120 is releasing store a second value (e.g., one) in the ownership indicator to
aftowbufferforaflowthatisstale(e.g.,oopackethasbeen indicate that NIC 100 may now use the descriptor for

. received in the flow for some period of time). A second value another packet.
(e.g., two) may indicate that a non-rc-assembleable packet One skilled in the art will recognize that there are numer-
was stored in a buffer.Alhird value (e.g., three)maybeuscd 20 ous methods that may be used to inform host software that
to indicate that a flow packet (e.g., a packet that is part of a a descriptor has been used by, or returned to, DMA engine
llow through NIC 100) was stored in a buffer. 120. In one embodiment of the invention, for example, one
: .,. Next buffer index 1240 stores an index, in free buffer or more registers, pointers or other data structures are
array 1210, of an entry containing a buffer identifier com:- maintained to indicate which completion descriptors in a
N'OOding to a buffer storing a subsequent portion of a packet 25 completion descriptor ring have or have not been used. In
' the entire packet, or its data, conld not fit into the first particolar, a head register may be used to identify a first of
· igned buffer. The offset in the next buffer may be assumed a series of descriptors that arc owned by host software, while

be zero. Header size 1242 reports the length of the header a tail register identifies the last descriptor in the series. D MA
g., in bytes). The header size may be set to zero if the engine 120 may update these registers as it configures and
~r buffer was not used for this packet (e.g., the packet 30 releases descriptors. Thus, by examining these registers the
;l'IOt being re-assembled and is not a small packet). Header host software and the DMA engine can determine how many
,: r index 1244 is the index, in free buffer array 1210, of descriptors have or have not been used

buffer identifier for the header buffer used to store this Finally, other information, flags and indicators may be
et's header. Header offset 1246 is the offset of the stored in other field 1266. Other information that may be

. t's header within the buffer (e.g., header buffer) in 35 stored in one embodiment of the invention includes the
the header was stored. The header offset may take the length and/or ofiset of a TCP payload, flags indicating a

ofa numberofbytesinto the buffer at which the header small packet (e.g., less than 257 bytes) or a jumbo packet
. be_ found. Alternatively, the ofiset may be an index value, (e.g., more than 1522 bytes), a flag indicating a bad packet
. ttmg the index position of the header. For example, in {e.g., CRC error), a checksum starting position, etc.
_embodiment of the invention mentioned above, entries '4() In alternative embndinients of the invention only infor-
header buffer are stored in 256-byte units. Thus, each mation and flags needed by the host computer (e.g., driver
begins at a 256-byte boundary regardless of the actual software) are included in descriptor 1222. Thus, in one
the entries. The 256-byte entries may be numbered or alternative embndinient one or more fields other than the
d within the buffer. following may be omitted: data size 1230, data buffer index

.the illustrated embodiment, flow number 1250 is the 45 1232, data offset 1234, a split flag, next data buffer index
t's flow number (e.g., the index in flow database 110 1240, header size 1242, header buffer index 1244, header
.p_acket's flow key). Flow nUD1ber 1250 may be used offset 1246 and ownership indicator 1264.
tify packets in the same flow. Operation code 1252 is In addition, a completion descriptor may be organized in

g~nerated by flow database manager 108, as virtually any form; the order of the fields of descriptor 1222
• d m a previous section, and used by DMA engine so in FIG. 12 is merely one possible configuration. It is

M
the packet and transfer it into an appropriate advantageous, however, to locate ownership indicator 1264

• ethods of transferring a paclret depending upon its towards the end of a completion descriptor since this indi-
. code are described in detail in the following cator may be used to inform host software when the DMA

.• No_Assist signal 1254, also descnbed in a previous engine has finished populating the descriptor. If the owner-
may. be set or raised when the packet is not 55 ship indicator were placed in the beginning of the descriptor,
~e Wlth the protocols pre-selected for NIC 100. One the software may read it and attempt to use the descriptor

· mcompatibility is that header parser 106 may not before the DMA engine has finished writing to it.
_Iy parse the packet, in whicb case the packet will One skilled in the art will recognize tbat other systems and

· ~e the subsequent benefits. Processor identifier methods than those descnbed in this section may be imple-
h may be generated by load distnbutor 1l2, 60 mented to identify storage areas in which to place packets

· a. host computer system proa:ssor for processing being transfem:d from a network to a host computer without
, · As described in a previous section, load distnbu- exceeding the scope of the invention.

mpts to share or distnbute the load of processing Methods of Transferring a Packet into a Memory Buffer by
P.~ts among multiple processors by having all a DMA Engine

one flow processed by the same processor. 65 FIGS. 13-20 arc flow charts descnbing procedures for
header offset 1258 reports an offset within the transferring a packet into a host memory buffer. In these

first byte of the packet's layer three protocnl r=dur("<;, a pacl:t:t',; rrper,!inn code helps determine

EX 1017 Page 545

 eraweeeLEAD Sa OShkfee

US 6,453,360 Bi
65

release flow flag may be used to indicate whether a Bow has,
at least temporarily, ended. In oiher words,if a release flow
flag is set (e.g., stores a value ofone), this indicatesthat there
are no other packets waiting in the packet queuethat are in
the same flow as the packet associated with descriptor 1222.
Otherwise,if this flag is not set (e.g., stores a value ofzero),
software operating on the host computer may queue this
packet to await one or more additional flow packets so that
they may be processed collectively. A split flag may be
included in flags ficld 1236 to identify whether a packet's
contents (¢.g., data) spans multiple buffers. [lustratively,if
the split flag is set, there will be an entry in next data buffer
jndex 1240, described below.

Descriptor type 1238, in the presently described embodi-
meat of the invention, may take any of three values. A first

B. value (c.2., onc) indicates that DMA engine 120 is releasing
a flow buffer for a flow that is stale (¢.g., no packet has been
k, received in the flow for some periodof time). A second valne

' (e.g, two) may indicate that a non-re-assembleable packet
E was stored in a buffer. Athird value (e.g., three) may be used

f. to indicate that a flow packel(e.g., a packet that is part of a
flow through NIC 100) was stored in a buffer.
Next buffer index 1240 stores an index, in free buffer

Rarray 1210, of an entry containing a buffer identifier corre-
pspondingto a buffer storing a subsequent portion of a packet

the entire packet, or its data, could not fit into the first
gned buiter, The offset in the next buffer may be assumed

i be zero. Header size 1242 reports the length of the header
&. in bytes). The header size may be set to zero if the

Peader buffer was not used for this packet (c.g., the packet
. t being re-assembled and is not a small packet). Header

© index 1244 is the index, in free buffer array 1210, of
buffer identifier for the header buffer used to store this

Saeket’s header. Header offset 1246 is the offset of the

’s beader within the buffer {c.g., header buffer) in
Raich the header was stored. The headeroffset may take the
ft ofa number of bytes into the buffer at which the header
mpbcfound. Alternatively, the offset may be an indexvalue,

petting the index position of the header. For example, in
Seembodiment of the invention mentioned above, entries

‘ vheader buffer are stored in 256-byte units. Thus, each
Bey begins at a 256-byte boundary regardless of the actual

pot the entries. The 256-byte entries may be numbered or
Seed within the buffer.

5 the illustrated embodiment, flow number 1250 is the
t's flow number(c.g., the index in flow database 110

3 Packet’s flow key). Flow number 1250 may be used
Bntify packets in the same flow. Operation code 1252 is
BS generated by flow databasc manager 108, as
Boed in a previous section, and used by DMA engine
ge Pcocess the packet and transfer il into an appropriate

Methods of transferring a packet depending uponits
n code are described in detail im the following

m.No_Assist signal 1254,also described in a previous
Fx Maybe set or raised when the packet is not

7 ble with the protocols pre-selected for NIC 100. One
compatibility is that header parser 106 may not

HY Parse the packet, in which case the packet will
‘ive the subsequent benefits. Processor identifier
hich may be generated by load distributor 112,

% host computer system processor for processing
- As described in a previous section, load distribu-

pFempts to share or distribute the load ofprocessing
p Packets among multiple processors by having all

Hin One flow processed by the same processor.
headeroffset 1258 reports an offset within the

first byte of the packel’s layer three protocnl

5

16

235

%

40

45

56

6s

66

(e.g. IP) header. With this valuc, software operating on the
host computer may casily strip off one or more headers or
header portions.

Checksum value 1266 is a checksum computed for this
packet by checksum generator 114. Packet length 1262 is the
length (c.g., in bytes) of the entire packet.

Ownership indicator 1264 is used in the presently
described embodiment of the invention to indicate whether

NIC 100 or software operating on the host computer “owns”
completion descriptor 1222. In particular, a first value (e.z.,
zero) is placed in the ownership indicator field when NIC
100 (e.g., DMA engine 128) has completed configuring the
descriptor. Hlustratively, this first value is understood to
indicate that the software may now process the descriptor.
When finished processing the descriptor, the software may
store a second value(e.g., one) in the ownership indicator to
indicate that NIC 100 may now use the descriptor for
another packet.

One skilled in the art will recognize that there are numer-
ous methods that may be used to inform host software that
a descriptor bas been used by, or returned to, DMA engine
120. In one embodiment of the invention, for example, one
oF more registers, pointers or other data structures are
maintained to indicate which completion descriptors in a
completion descriptor ring have or have not been used. In
particular, a head register may be used to identify a first of
a series ofdescriptors that are owned by host software, while
a tail register identifies the last descriptor in the series. DMA
engine 120 may update these registers as it configures and
teleases descriptors. Thus, by examining these registers the
host software and the DMAengine can determine how many
descriptors have or have not been used.

Finally, other information, flags and indicators may be
stored in other field 1266. Other information that may be
stored in one embodiment of the invention includes the

length and/or offset of a TCP payload, flags indicating a
small packet (e.g., less than 257 bytes) or a jumbo packet
(e.g., more than 1522 bytes), a flag indicating a bad packet
{e.g., CRC error), a checksum starting position, etc.

In alternative embodiments of the invention only infor-
mation and flags needed by the host computer (¢.g., driver
software) are included in descriptor 1222. Thus, in one
alternative embodiment one or more fields other than the
following may be omitted: data size 1230, data buffer index
1232, data offset 1234, a split flag, next data buffer index
1240, header size 1242, header buffer index 1244, header
offset 1246 and ownership indicator 1264.

In addition, a completion descriptor may be organized in
virtually any form; the order of the fields of descriptor 1222
in FIG. 12 is merely one possible configuration. I is
advantageous, however, to locate ownership indicator 1264
towards the end of a completion descriptor since this indi-
cator may be used to inform host software when the DMA
engine has finished populating the descriptor. Lf the owner-
ship indicator were placed in the beginning of the descriptor,
the software may read it and attempt to use the descriptor
before the DMA engine has finished writing to it.

Oneskilled in the art will recognize that other systems and
methods than those described in this section may be imple-
mented to identify storage areas in which to place packets
being transferred from a network to a host computer without
exceeding the scope of the invention.
Methods of Transferring a Packet into a Memory Buffer by
a DMA Engine

FIGS. 13-20 are flow charts describing procedures for
transferring a packet into a host memory bulfer. In these
procedures, a packet’s operation code helps determine

EX 1017 Page 545

US 6,453,360 Bl
67 68

which buffer or buffers lhe packet is stored in.An illustrative packet's flow number may be provided to any of a number
selection of operation codes that may be U5ed in this of NIC modules (e.g., IPP module 104, packet batching
procedure are listed and explained in TABLE 1. module U2, OMA engine 120, control queue 118) after

The illustrated embodimenls of the invention employ four being generated by flow database manager 108. The flow
categories of host memory buffers, the sizes of which are 5 number may also be stored in a separate data structure (e.g.,
programmable. The buffer sizes are programmable in order a register) until needed by dynamic packet batching module
to accommodate various host platforms, but are pro· U2 and/or OMA engine 120. In one embodiment of tbe
grammed to be one memory page in size in present embodi- invention OMA engine 120 retrieves a packet's flow number
menls in order to enhance the efficiency of handling and from dynamic packet batching module 122. In an alternative
processing network traffic. For example, the embodimenls 10 embodiment of the invention, the flow number may be
discussed in this section are directed to the nse of a host retrieved from a different location or module.
computer system employing a SPARCTM processor, and so Then, in states 1308--1318, OMA engine 120 determines
each buffer i,; eight kilobytes in size. These embodimenls are the appropriate manner of processing the packet by exam-
easily adjusted, however, for host computer systems ining the packet's operation code. The operation code may,
employing memory pages having other dimensions. 15 for example, indicate which buffer the engine should transfer

One type of buffer is for re-assembling data from a flow, the packet into and whether a flow is to be set np or tom
another type is for headers of packets being re-assembled down in flow re--assembly buffer table 1004.
and for small packets (e.g., those less than or equal to 256 The illustrated prooedure continues at state 1400 (FIG.
bytesinsize)thatarenotre-assembled.Athirdtypeofbulfer 14) if the operation code is 0, state 1500 (FIG. 15) for
stores packets up to MTU size (e.g., 1522 bytes) that are not 20 operation code l, 5tate 1600 (FIG.16) for operation code 2,
~assembled, and a fourth type stores jumbo packets that are state 1700 (FIG. 17) for operation code 3, 5tate 1800 (FIG.
greater than MTU size and which are not re-3.llSembled. 18) for operation code 4, state 1900 (FIG. 19) for operation
These buffers are called flow re-assembly, header, Mru and code 5 and state 2000 (FIG. 20) for operation codes 6 and
jumbo buffers, n:spectively. 7.

The procedun:s described in this section make use of free 25 A Method of Tramferring a Packet with Operation 0
descriptors and completion descriptors as depicted in FIG. FIG. 14 depicts an illustrative procedure in which OMA
12. In particular, in these procedures free descriptors engine 120 transfers a packet associated with operation code
retrieved from a free descriptor ring store buffer identifiers O to a host memory buffer. As reflected in TABLE 1,
(e.g., memory addrcsses, pointers) for identifying buffers in operation code O indicates in this embodiment that the
which to store a portion of a packet. A used buffer may be 30 packet is compatible with the protocols that may be parsed
returned to a host computer by identifying the location by NIC 100. As explained above, compatible packets are
within a free bufferarray or other data structure used to store eligible for re-assembly, such that data .from multiple pack-
the buffer's buffer identifier. One skilled in the art will ets of one flow may be stored in one buffer that can then be
recognize that these procedures may be readily adapted to efficiently provided (e.g., via a page-flip) to a ll5er or
work with alternative methods of obtaining and returning 35 program's memory space. Packets having operation code 0,
buffers for storing packets. however, are small and contain no flow data for re-assembly.

FIG. 13 is a top-level view of the logic controlling OMA They are thus likely to be control packels. Therefore, no new
engine 120 in this embodiment of the invention. State 1300 flow is set up, no existing flow is torn down and the entire
is a start state. packet may be placed in a header buffer.
, In state 1302, a packet is stored in packet queue l16 and 40 In state 1400, DMA engine 120 (e.g., OMA manager

:; ~ated information is stored in control queue 118. One 1002) determines whether there is a valid (e.g., active)
. embodiment of a packet queue is depicted in FIG. 8 and one header buffer. Illustratively, this determination is made by
· embodiment of a control queue is depicted in FIG. 9. OMA examining validity indicator 1116 of header buffer table
\' i;,ngine 120 may detect the existence of a packet in packet 1006, which manages the active header buffer. If the validity
: ·9ueue 116 by comparing the queue's read and write pointers. 45 indicator is set (e.g., equal to one), then there is a header
;. ~ long as they do not reference the same entry, then it is buffer ready to receive this packet and the procedure con-
~rstood that a packet is stored in the queue. Alternatively, tinues at state 1404.

engine 120 may examine control queue l18 to deter- Otherwise, in state 1402 a header buffer is prepared or
whether an entry exists there, which would indicate initialized for storing small packets (e.g., packets less than

a packet is stored in packet queue l16. As long as the 50 257 bytes in size) and headers of re-assembled packets (and,
trol queue's read and write pointers do not reference the pOSS1bly, headers of other packets-such as jnmbo packets).
e entry, then an entry is stored in tbe control queue and In the illustrated embodiment, this initialization process

acket must be stored in the packet queue. involves obtaining a free ring descriptor and retrieving its
;;In S':3-te 1304, the packet's associated entry in the control buffer identifier (e.g., its reference to an available host

. e is read. Illustratively, the control queue entry includes 55 memory buffer). The buffer identifier may then be 5tored in
• packet's operation code, the status of tbe packet's a data structure such as free buffer array 1210 (shown in
~._A:ssist signal (e.g., indicating whether or not the packet FIG. 12A). As described above, in one embodiment of the

·· <;ompatJ.ble with a pre-selected protocol), one or more inventioo free ring manager 1012 maintains a cache of
~ators concerning the size of the packet (and/or ils data descriptors referencing empty buffers. Thus, a descriptor

. rtion), etc. 60 may be retrieved .from this cache and ils buffer allocated to
Instate 1306, DMAengine 120 retrieves the packet's flow header buffer table 1006. If the cache is empty, new descrip-

?Cr. As described previously, a packet's flow number is tors may be retrieved from a free descriptor ring in host
mdex of the packet's flow in flow database llO. A memory to replenish the cache. •
. et's flow number may, as descn'bed in a following When a new buffer identifier is retrieved from the cache
on, be provided to and used by dynamic packet batching 65 or from the free descriptor ring, the buffer identifier's

e 122 to enable the collective processing of headers position in the free buffer array is placed in header buffer
related packets. In one embodiment of the invention, a index 1112 of header buffer table 1006. Further, an initial

EX 1017 Page 546

a &
K

Pree .
Mase. t

US 6,453,360 B1
67

which buffer or buffers the packet is stored in, An illustrative
selection of operation codes that may be used in this
procedure are listed and explained in TABLE 1.

‘The illustrated embodiments of the invention employ four
categories of host memory buffers, the sizes of which are
programmable,‘The buffer sizes ar¢ programmable in order
to accommodate various host platforms, but are pro-
grammedto be one memory page in size in present embodi-
ments in order to enhance the efficiency of handling and
processing network traffic. For example, the embodiments
discussed in this section are directed w the use of a host
compuier system employing a SPARC™ processor, and so
each bufferis cight kilobytes in size. These embodiments are
easily adjusted, however, for host computer systems
employing memory pages having other dimensions.

One type of buffer is for re-assembling data fromaflow,
another type is for headers of packets being re-assembled
and for small packets (¢.g., those less than or equal to 256
bytes in size) that are not re-assembled.Athird type of buffer
stores packets up to MTU size (e.g., 1522 bytes) that are not

: re-assembled, and a fourth type stores jumbopackets thatare
* greater than MTU size and which are not re-assembled.

These buffers are called flow re-assembly, header, MTU and
jambobuffers, respectively.

The procedures describedin this section make use of free
descriptors and completion descriptors as depicted in FIG.
12. In particular, in these procedures free descriptors
retrieved from a free descriptor ring store buffer identifiers

F (c.g, memoryaddresses, pointers) for identifying buffers in
_ which to store a portion of a packet. A used buffer may be

returned to a host computer by identifying the location
within a free buffer array or other data structure used to store
the buffer’s buffer identifier. Onc skilled in the art will

recognize that these procedures may be readily adapted to
F’ work with altemmative methods of obtaining and returning

- buffers for storing packets,
. FIG. 13 is a top-level view of the logic controlling DMA
; cogine 120 in this embodimentof the invention. State 1300

y. is a slari Slate.
: + In state 1302, a packet is stored in packet queue 116 and

BE. associated information is stored in control queue 118. One
f smbodimentof a packet queue is depicted in FIG. 8 and one
j- embodiment of a control queue is depicted in FIG, 9. DMA
R SMgine 120 may detect the existence of a packet in packet

, Queue 116 by comparing the queue’s read and write pointers.
As long as they do not reference the same entry, then it is
waderstood thata packetis stored in the queue. Alternatively,

ReGMA engine 126 may examine control queue 118 to deter-
Mine whether an entry exisis there, which would indicate
that a packet is stored in packet queue 146. As long as the

proatrol queuc’s read and write pointers do not reference the
me entry, then an entry is stored in the control queue and
packet mustbe stored in the packet queue.
in Slate 1304,the packet’s associated entry in the control

¢ is read. Ilustratively, the control queue entry includes
Packet’s operation code, the status of the packet's

‘0_Assist signal (c.g., indicating whether or not the packet
Compatible with a pre-selected protocol), one or more

¢ ion) concerning the size of the packet (and/orits datalon}, ele.

In state 1306, DMA engine 120 retrieves the packet’s flow
miimber. As described previously, a packet’s flow sumber is

e index of the packet’s flow in flow database 110. A
ket’s flow number may, as described in a following
on, be provided to and used by dynamic packet batching

¢ 122 to enable the collective processing of headers
an telated packets, In one embodimentof the invention, a

5

35

za

25

30

40

45

55

60

68

packet’s flow number may be provided to any of a cumber
of NIC modules (¢.g., IPP module 104, packet batching
module 122, DMA engine 120, control queue 118) after
being generated by flow database manager 108. The flow
number may also be stored in a separate data structure (¢.g.,
ategister) until needed by dynamic packet batching module
122 and/or DMA engine 120. In one embodiment of the
invention DMA engine 120 retrieves a packet’s flow number
from dynamic packet batching module 122. In an alternative
embodiment of the invention, the flow number may be
retrieved from a different location or module.

Then, in states 1308-1318, DMA engine 120 determines
the appropriate manner of processing the packet by exam-
ining the packet's operation code. The operation code may,
for example, indicate which buffer the engine should transfer
the packet into and whether a flow is to be set up or torn
down in flow re-assembly buffer table 144.

The illustrated procedure continues at state 1400 (FIG.
14) if the operation code is 0, state 1500 (FIG. 15) for
operation code J, state 1600 (FIG. 16) for operation code 2,
state 1700 (FIG. 17) for operation code 3,state 1800 (FIG.
18) for operation code 4,state 1900 (FIG. 19) for operation
code 5 and state 2000 (FIG. 20) for operation codes 6 and
7.

A Method of Transferring a Packet with Operation 0
FHiG. 14 depicts an illustrative procedure in which DMA

engine 120 transfers a packet associated with operation code
0 to a host memory buffer. As refiecied in TABLE 1,
operation code 0 indicates in this embodiment that the
packet is compatible with the protocols that may be parsed
by NIC 100. As explained above, compatible packets are
eligible for re-assembly, such that data from multiple pack-
ets of one flow may be stored in one buffer that can thea be
efficiently provided (¢.g., via a page-flip) to a user or
program’s memory space. Packets having operation code 0,
however, are small and contain no flow data for re-assembly.
They are thus likely to be control packets. Therefore, no new
flow is set up, no existing flow is torn down and the entire
packet may be placed in a header buffer.

In state 1400, DMA engine 120 (c.g, DMA manager
1002) determines whether there is a valid (¢.g., active)
header buffer. Illustratively, this determination is made by
examining, validity indicator 1116 of header buffer table
1006, which manages the active header buffer. If the validity
indicator is set (¢.g., equal to one), then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1404.

Otherwise, in state 1492 a header buffer is prepared or
initialized for storing smail packets (e.g., packets less than
257 bytes in size) and headers of re-assembled packets (and,
possibly, headers of other packets—such as jumbo packets).
In the illustrated embodiment, this initialization process
involves obtaining a free ring descriptor and retrieving its
buffer identifier (e.2., its reference to an available host
memory buffer). The buffer identifier may then be stored in
a data structure such as free buffer array 1210 (shown in
FIG. 12A). As described above, in one embodimentof the
invention free ring manager 1012 maintains a cache of
descriptors referencing empty buffers. Thus, a descriptor
moay be retrieved from this cache and its buffer allocated to
header buffer table 1006. If the cache is empty, new descrip-
tors may be retrieved from a free descriptor ring in best
memory to replenish the cache. .

When a new buffer identifier is retrieved from the cache
or from the free descriptor ring, the buffer identifier’s
position in the free buffer array is placed in header buffer
index 1412 of header buffer table 1006. Further, an initial

so Raat Phd a2csSeeeSERia Pucea

EX 1017 Page 546

US 6,453,360 Bl
69 70

storage location in the buffer identifier (e.g., its starting the setting of the ownership indicator, a release header flag
address) is stored in next address field 1114 and validity can be set before the descriptor is reclaimed by the host
indicator 1116 is set to a valid stale. computer, thus avoiding the use of another descriptor.

In state 1404, the packet is copied or transferred (e.g., via In state 1408, it is determined whether the header buffer
a DMA operation) into the header buffer at the address or s is full. In this embodiment of the invention, where each
location specified in the next address field of header buffer buffer is eight kilobytes in size and entries in the header
table 1006. As descnbcd above, in one embodiment of the buffer are no larger than 256 bytes, up to thirty-two entries
invention pad bytes are inserted before the packet in order to may be stored in a header buffer. Thus, a counter may be
align the beginning of the packet's layer three (e.g., IP) used to keep track of entries placed in each new header

buffer and the buffer can be considered full when thirty-two
header with a sixteen-byte boundary. In addition, a header 10 entries are stored. Other methods of detennining whether a
buffer may be logically partitioned into cells of predeter- buffer is full are also suitable. For example, after a packet is
mined size (e.g., 256 bytes), in which case the packet or stored in the header buffer a new next address field may be
padding may begin at a cell boundary. calculated and the difference between the new next address

In state 1406, a completion descriptor is written or con- field and the initial address of the buffer may be compared
figured to provide information to the host computer (e.g., a 15 to the size of the buffer (e.g., eight kilobytes). If less than a
software driver) for processing the packeL In particular, the predetennined number of bytes (e.g., 256) are unused, the
header buffer index (e.g. the index within the free buffer buffer may be considered full.
array of the buffer identifier that references the header If the buffer is fu1l, in state 1410 the header buffer is
buffer) and the packet's offi;el in the header buffer are placed invalidated to ensure that it is not used again. ffiuslratively,
in the descriptor. Illustratively, the offi;et may identify lhe 20 this involves setting the header buffer table's validity indi-
location of the cell in which the header is stored, or it may cator to invalid and communicating this status to the host
identify the first byte of the packet. The size of the packet is computer via a descriptor. In this embodiment of the inven-
a.lso stored in the descriptor, illustratively within a header tion a release header flag in the descriptor is set. If lhe
me field. A data size field within the descriptor is setto zero descriptor that was written in state 1406 was already

-:to indicate that the entire packet was placed in the header 25 released (e.g., its ownership indicator field changed),
~er (e.g., there was no data portion to store in a separate another descriptor may be used in this state. If another
'data buffer). A release header flag is set in the descriptor if descriptor is used sinlply to report a full header buffer, the
. ' header buffer is full. However, the header buffer may not descriptor's header size and data size fields may be set to
be tested to see if it is full until a later state of this procedure. zero to indicate that no new packet was transferred with this

such an embodiment of the invention, lhe release header 30 descriptor.
ag may be set (or cleared) at that time. If the header buffer is oot full, then in state 1412 the next

.!'As described in a later section,. in one embodiment of the address field of header buffer table 1006 is updated to
vention 1t release flow flag may also be set, depending indicate the address at which to store the next header or

dynamic packet blllcbing module 122. For example, if small packet. The processing associated with a packet hav
packet batching module determines that another packet 35 ing operation code O then ends with end state 1499. In one

, ·~e same flow will soon be transferred to the host embodinient of the invention, the ownership indicator field
puter, the release flow flag will be cleared (e.g., a 2.ero of a descriptor that is written in state 1406 is not changed,
be stored). This indicates that the host computer should or an interrupt is not issued, until end state 1499. Delaying

nt the next flow packet before processing this one. Then, the notification of the host computer allows the descriptor to
· collectively processing multiple packets from a single 40 be updated or modified for as long as possible before turning

, the packets can be processed more efficiently while it over to the host.
· · g less processor time. A Method of Transferring a Packet with Operation Code 1
lhe descriptor type field, a value is stored to indicate FIG. 1S depicts an illustrative procedure in which DMA

a flow packet was transferred to host memory. Ahia, a engine 120 transfers a packet associated with operation code
~ cien:nined value (e.g., zero) is stored in the ownership 45 1 to a host memory buffer . .As reflected in TABLE 1, in this
. tor field to indicate that DMAengine 120 is done using embodiment operation code 1 indicates that the packet is
.descriptor and/or is releasing a packet to the host compallble with the protocols that may be parsed by NIC

.r. Illustratively, the host computer will detect the 100. A packet having operation code 1, however, may be a
~ m the ownership indicator (e.g., from one to zero) control packet having a particular flag set. No new flow is set

. .the stored information to process the packet. In one so up, but a flow should already exist and is to be tom down;
~ embodiment of the invention, DMA engine 120 there is no data to re-assemble and the entire packet may be

. In lllterrupt or other signal to alert lhe host computer stored in a header buffer.
?Cscriptor is being released. In another alternative In state 1500, DMA engine 120 (e.g., DMA manager

ent, the host computer polls the NIC to determine 1002) determines whether there is a valid (e.g., active)
a packet has been received and/or transferred. In yet 55 header buffer. Illustratively, this detennination is made by

~temative embodiment, the descriptor type field is examining validity indicator 1116 of header buffer table
to inform the host computer that the DMA engine is 1006, which manages the active header buffer. If the validity
ng a descriptor. In this alternative embodiment, when indicator is set, then there is a header buffer ready to receive

• ~ro value is placed in the descriptor type field the this packet and the procedure continues at state 1504.
tnputer may understand that lhe DMA engine is 60 Otherwise, in state 1502 a new header buffer is prepared

the descriptor. or initialized for storing small packets and headers of
Present embodiment of the invention, the ownership re-assembled packets. Illustratively, this initialization pro-
r ~Id is not changed until DMA engine 120 is cess involves obtaining a free ring descriptor from a cache
'With any other processing involving this packet or maintained by free ring manager 1012 and retrieving its

making all entries in the descriptor. For example, 65 reference to an empty buffer. If the cache is empty, new
, d below a header buffer or other buffer may be descriptors may be retrieved from the free descriptor ring in
, be full at some time. after state 1406. By delaying host memory to replenish the cache.

EX 1017 Page 547

HagWReee PMERIPE te a

{

i
t:

ailtatedallloe

US 6,453,360 B1
69

storage location in the buffer identifier (c.g., its starting
address) is stored in next address field 1114 andvalidity
indicator 1116 is set to a valid state.

In state 1404, the packet is copied or transferred (c.g., via
a DMA operation) into the beader buffer at the address or
location specified in the next address field of header buffer
table 1006. As described above, in one embodiment of the
invention pad bytes are inserted before the packet in order to
align the beginning of the packet’s layer three (¢.g., IP)
header with a sixteen-byte boundary. In addition, a header
buffer may be logically partitioned into cells of predeter-
mined size (e.g., 256 bytes), in which case the packet or
padding may begin at a cell boundary.

In state 1406, a completion descriptor is written or con-
figured to provide information to the host computer (e.g., a
software driver) for processing the packet. In particular, the

F’ header buffer index (e.g. the index within the free buffer
- array of the buffer identifier that references the header

buffer) and the packet’s offset in the header buffer are placed
y in the descriptor. [llustratively, the offset may identify the
& location of the cell in which the beader is stored, or it may

- identify the first byte of the packet. The size of the packet is
also stored in the descriptor, llustratively within a header
size field. Adata size field within the descriptoris set to zero

‘to indicate that the entire packet was placed in the header
} buffer (e.g., there was no data portion to store in 2 separate
“data buffer). A release headerflag is set in the descriptor if

Pathe header buffer is full. However, the header buffer may not
Ebe tested to sce if it is full until a later state of this procedure.
min such an embodiment of the invention, the release header
plag may be set (or cleared) at that time.
RAs described in a later section, in one embodimentof the
puvention a release fiow flag may also be set, depending
Mipon dynamic packet batching module 122. For example, if
pee packet batching module determines that another packet

Mi the same flow will soon be transferred to the host
Ei puter, the releasc flow flag will be cleared (e.g., a zero
Pill be stored). This indicates that the host computer should
ewait the next flow packet before processingthis onc. Then,
p collectively processing mmultiple packets from a single
Bw, the packets can be processed more efficiently while
piukring less processor lime.

in the descriptor type field, a value is stored to indicale
a flow packet was transferred to host memory. Also, a

evctormined value (e.g., zero) is stored in the ownership
calor field to indicate that DMAcngine 120 is done using
P-dcscripior and/or is releasing a packet to the host
sputer, [lustratively, the host computer will detect the

in the ownership indicator (e.g., from one to zero)
8¢ the stored information to process the packet. In one
ud tive embodimentof the invention, DMA engine 120

a> #0 1oterrupt or other signal to alert the host computer
desctiptor is being released. In another alternative

Bement, the host computer polls the NIC to determine
cr .@ Packet has been received and/or transferred. In yet
Bet alicrnative embodiment, the descriptor type field is

§,> inform the host computer that the DMA engine is
Dg a descriptor. In this alternative embodiment, when
2210 value is placed in the descriptor type field the

Re oliputer may understand that the DMA engine is
eng the descriptor.

Present embodiment of the invention, the ownership
geeld is not changed until DMA engine 120 is

- With any other processing involving this packet or
d makingall entries in the descriptor. For example,

ibed below a header buffer or other buffer may be
" be full at sometime. after slate 1406. By delaying

20

25

30

40

40

SS

ca)

85

70

the setting of the ownership indicator, a release header flag
can be set before the descriptor is ceclaimed by the host
computer, thus avoiding the use of another descriptor.

In state 1408,it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, up to thirty-two entries
may be stored in a header buffer Thus, a counter may be
used to keep track of entries placed in each new header
buffer and the buffer can be considered full when thirty-two
entries are stored. Other methods of determining whether a
buffer is full are also suitable. For example,after a packet is
stored in the header buffer a new next address field may be
calculated and the difference between the new next address
field and the initial address of the buffer may be compared
to the size of the buffer (¢.g., cight kilobytes). If less than a
predetermined number of bytes (e.g., 256) are unused, ihe
buffer may be considered full.

If the buffer is full, in state 1410 the header buffer is
invalidated to ensure thatit is not used again. Wustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer via a descriptor. In this embodiment of the inven-
tion a release header flag in the descriptor is set. If the
descriptor that was written in state 1406 was already
released (c.g., its ownership indicator field changed),
another descriptor may be used in this state. If another
descriptoris used simply to report a full header buffer, the
descriptor’s header size and data size fields may be sci to
zero to indicate that no new packet was transferred with this
descriptor.

If the header buffer is not full, then in state 1412 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet. The processing associated with a packet hav-
ing operation code 0 then ends with end state 1499. In one
embodiment of the invention, ihe ownership indicatorfield
of a descriptor that is written in stale 1406 is not changed,
or an interrupt is not issued, until end state 1499. Delaying
the notification of the host computer allows the descriptor to
be updated ormodified for as long as possible before turning,
it over to the host.
A Method of Transferring a Packet with Operation Code 1

FIG. 15 depicts an illustrative procedure in which DMA
engine 126 transfers a packet associated with operation code
1 to a host memory buffer. As reflected in TABLE1, in this
embodiment operation code 1 indicates that the packet is
compatible with the protocols that may be parsed by NIC
100. A packet having operation code 1, however, may be a
control packet having a particular flag set. No new flow is set
up, but a flow should already exist and is to be tom down;
there is no data to re-assemble and the entire packet may be
Stored in a header buffer.

In state 1500, DMA engine 120 (e.g. DMA manager
1002) determines whether there is a valid (¢.g., active)
header buffer. Illustratively, this determination is made by
examining validity indicator 1116 of header buffer table
1006, which managesthe active header buffer. If the validity
indicatoris set, then there is a header buffer ready to receive
this packet and the procedure continues at state 1504.

Otherwise, in state 1502 a new header buffer is prepared
or initialized for storing small packets and beaders of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference {0 an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

EX 1017 Page 547

PER Bt cee ig seSg, a 7 cores

US 6,453,360 Bl
71

When a new descriptor is obtained from the cache or from
the free descriptor ring, its buffer identifier (e.g., pointer,
address, index) is stored in free buffer array lllO and its
initial storage location (e.g., address or cell location) is
stored in next address field 1114 of header buffer table 1006. s
The index or position of the buffer identifier within the free
buffer array is stored in header buffer index llll. Finally,
validity indicator 1116 is set to a valid state.

In state 1504 the packet is copied into the header buffer at
the address or location specified in the next address field of 10

header buffer table 1006. As described above, in one
embodinient of the invention pad bytes arc inserted before
the packet in order to align the beginning of the packet's
layer three (e.g., IP) header with a sixteen-byte boundary.
And, the packet (with or without padding) may be placed 1s
into a pre-defined area or cell of the buffer.

In the illustrated embodiment, operation code 1 indicates
that tbe packet's existing flow is to be tom down. Thus, in
stale 1506 it is determined whether a flow re-assembly buffer
is valid (e.g., active) for this flow by examining the flow's 20
~ty indicator in flow re-assembly buffer table 1004. If,

. example, the indicator is valid, tben there is an active
. · er storing data from one or more packets in this flow.
, tratively, the flow is tom down by invalidating the flow

•t&Sembly buffer and relellSing it to the host computer. If 25
re is no valid flow re-assembly buffcr for this flow, the

ted procedun: continues at state 15U. Otherwise, the
proceeds to state 1588.

72
buffer are no larger than 256 bytes, a counter is used to keep
track of entries placed into each new header buffer. The
buffer is considered full when thirty-two entries a.re stored.

If the buffer is full, in state 1516 the header buffer is
invalidated. lliustratively, this involves setting the header
buffer table's validity indicator to invalid and communicat
ing this status to the host computer via the descriptor
configured in state 1508 or state 1512. In this embodiment
of the invention a release header flag in the descriptor is set
to indicate that the header buffer is full.

If the header buffer is not full, then in state 1518 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet.

The processing associated with a packet having operation
code 1 then ends with end state 1599. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero), issuing an interrupt, or some other
mechanism.

One skilled in the art will appreciate that in an alternative
embodiment of tbe invention a change in the descriptor type
field to any value other than the value (e.g., zero) it bad when
DMA engine UO was using it, may constitute a surrender of
"ownership'' of the descriptor to the host computer or
software operatiog on the host computer. The host computer
will detect the change in the descriptor type field and
subsequently use the stored information to process the
packet. · state 1508, a completion descriptor is configured to

lSC the flows re-assembly buffer and to provide infor-
· on to the host computer for processing the current

· In particular, the header buffer index and the offset

30 A Method of Transferring a Packet with Operation Code 2

• first byte of the packet (or location of the packet's cell)
the header buffer are placed in the descriptor. The

-within tbe free buffer array of the entry containing the 35
mbly buffer's buffer identifier is stored in a data index
f the descriptor. The size of tbe packet is stored in a
size field and a data size field is set to zero to indicate
separate buffer was used for storing this packet's
release header flag is set in tbe descriptor if the 40

. · buffcr is full and a release data flag is set to indicate
· more data will be placed in this flows pn:scnt

. bly buffer (e.g., it is being released). In addition, a
:flow flag is set to indicate that DMA engine 120 is
down the packet's flow. The header buffer may not 4S

. to see if it is full until a later state of this procedun:.
~ embodiment of the invention, the release header

be set at that time.
tc 1510, the fiow's entry in flow re-assembly buffer,

004 is invalidated. After state 1510, the procedure so
at state 1514.

• 1512, a completion descriptor is confignred with
n somewhat different than that of state 1508. In

, the header buffer index, the offset to this packet
header buffer and the packet size are placed ss

. same descriptor fields as above. The data siz.e field
as above, but no data index needs to be stored

1
IISC data flag is set (e.g., because there is no flow
Y ~r to release). A release header flag is still

FIGS. 16A-16F illustrate a procedure in which DMA
engine 120 transfers a packet associated with operation code
2 to a host memory buffer. As reflected in ThBLE 1,
operation code 2 may indicate that the packet is compatible
with the protocols that may be parsed by NIC 100, but that
it is out of sequence with another packet in the same flow.
It may also indicate an attempt to re-establish a flow, but that
no more data is likely to be received after this packet. For
operation code 2, no new flow is set up and any existing flow
with the packet's flow number is to be tom down. The
packet's data is not to be re-assembled with data from other
packets in tbe same flow.

Because an existing flow is to be tom down (e.g., the
How's re-assembly buffer is to be invalidated and released to
the host computer), in state 1600 it is determined whether a
flow re-assembly buffer is valid (e.g., active) for the flow
having the ftow number that was read in state 1306. This
determination may be made by examining the validity
indicator in the flow's entry in flow re-llSSCmbly buffer table
1004. IDustratively, if the indicator is valid then there is an
active buffer storing data from one or more packets in the
flow. If there is a valid flow re-assembly buffer for this flow,
the illustrated procedure continues at state 1602. Otherwise,
the procedure proceeds to state 1606.

In state 1602, a completion descriptor is written or con-
figured to release the existing flow re-assembly buffer. In
particular, the flow re-assembly buffer's index (e.g., the
location within the free buffer array that contains the buffer
identifier corresponding to the flow re-assembly buffer) is

nptor if the header buffer is full and a release
again set to indicate that DMA engine UO is

lhe packet's flow. Also, the descriptor type
lo a Yillue indicatmg thatUMAengim: .120

packet into host memory.

60 written to the descriptor. ln this embodiment of the
invention, no offset needs to be stored in the descriptor's
data offset field and the data size field may be set to zero
hc,;·~usc no nc:w data was stored in the r.:-assembly buffer.

,_it is determined whether the header buffer 6S

Similarly, the header buffer is not yet being released, there
fore the: header index and hea.der offset fields of the dcscrip-

• '11 .. • ,. • • • ~

EX 1017 Page 548

US 6,453,360 B1
71

When a new descriptoris obtained from the cache or from
the free descriptor ring, its buffer identifier (¢.g., pointer,

7 address, index) is stored in free buffer aay 1210 and its
initial storage location (e.g. address or cell location) is
stored in next address field 1114 of header buffer table 1006.
The index or position of the buffer identifier within the free
buffer array is stored in header buffer index 1112. Finally,
validity indicator 1116 is set to a valid state.

In state 1504 the packet is copied into the headerbuffer at
the address or location specified in the next address field of
header buffer table 1006. As described above, in one
embodiment of the invention pad bytes are inserted before
the packet in order to align the beginning of the packet’s
layer three (c.g., IP) header with a sixteen-byte boundary.

E And, the packet (with or without padding} may be placed
. into a pre-defined area or cell of the buffer.
. In the Dlustrated embodiment, operation code 1 indicates

. that the packet's existing flow is to be torn down. Thus, in
& staic 1506 it is determined whether a flow re-assembly buffer

:. is valid (c.g., active) for this flow by examining the flow’s
Pwalidity indicator in flow re-assembly buffer table 1004. If,
tfor example, the indicator is valid, then there is an active
feaficr storing data from one or more packets in this flow.
WHustratively, the flow is tora down by invalidating the flow

assembly buffer and releasing it to the bost computer. If
We is no valid flow re-assembly buffer for this flow, the

Bustrated procedure continues at state 1512. Otherwise, the
proceeds to state 1506.

- xin statc 1508, a completion descriptor is configured to
Bicasc the flow’s re-assembly buffer and to provide infor-
Bion to the host computer for processing the current
ket. In particular, the header buffer index and the offset
pre first byte of the packet (or locationofthe packet’s cell)
fin the header buffer are placed in the descriptor, The
pxsvithin the free buffer array of the entry containing the

‘sembly buffer’s buffer identificr is stored in a data index

the descriptor. The size of the packet is stored in a
er size field and a data size ficld is set to zero to indicate

Ree? Separate buffer was used. for storing this packet’s
BYA release header flag is set in the descriptor if the
eer buffer is full and a release data flag is sel to indicate

po more data will be placed in this flow’s present
pemably buffer (c.g., it is being released). In addition, a
B flow fiag is set to indicate that DMA engine 120 is
me'down the packet's flow. The header buffer may not

Feo to see if it is full until a later state ofthis procedure.
eran embodiment of the invention, the release header

be set at that time.

ae CAG

o4
is invalidated. After state 1510, the procedure

SS at state 1514,

ate £512, 2 completion descriptor is configured with
400 somewhat different than that of state 1508. In

fer, the header buffer index, the offsetto this packet
Bhe header buffer and the packet size are placed
gr Same descriptorfields as above. The data size field
yO, as above, but no data index needs to be stored
peoase data flap is set (¢.g., because there is no low
poly buffer to releasc). A release header flagis still

“ptor if the header buffer is full and a release
ey *£2in set to indicate that DMA engine 126 is

m the packet’s flow. Also, the descriptor type
“tio a yalue indicating that JIMA cagine 120

POW packet into host memory.
+ it is determined whether the header buffer

aed

Bate 1510, the flow’s entry in flow re-assembly buffer.

15

20

20

40

60

65

72

buffer are no larger than 256 bytes, a counteris used to keep
track of entries placed into each new header buffer. The
buffer is considered full when thisty-two entries are stored.

Lf the buffer is full, in state 1516 the header buffer is
invalidated. Ilustratively, this involves setting the header
buffer table’s validity indicator to invalid and communicat-
ing this status to the host computer via the descriptor
configured in state 1508 or state 1512. In this embodiment
of the invention a release header flag in the descriptoris set
to indicate that the header buffer is full.

Lf the header buffer is not full, then im state 1518 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet.
The processing associated with a packet having operation

code 1 then ends with end state 1599. In this end state, the
descriptor used for this packet is turned over to the bost
computer by changing its ownership indicator field (¢.g.,
from one to zero), issuing an interrupt, or some other
mechanism.

Oneskilled in the art will appreciate that in an alternative
embodimentof the invention a change in the descriptor type
field to any value other than the value (e.g., zero) it had when
DMA engine 120 was using it, may constitute a surrender of
“ownership” of the descriptor to the host computer or
software operating on the bost computer. The host computer
will detect ihe change in the descriptor type ficld and
subsequently use the stored information to process the
packet. .
A Method of Transferring a Packet with Operation Code 2

FIGS. 16A-16F illustrate a procedure in which DMA
engine 120transfers a packet associated with operation code
2 to a host memory buffer. As reflected in TABLE 1,
operation code 2 may indicate that the packet is compatible
with the protocols that may be parsed by NIC 100, but that
it is out of sequence with another packet in the same flow.
It may also indicate an attemptto re-establish a flow,but that
no more data is likely to be received after this packet. For
operation code 2, no new flow is set up and any existing flow
with the packet’s flow qumber is to be tom down. The
packet’s data is noi to be re-assembled with data from other
packets in the same flow.

Because an existing fiow is to be tom down (c.g.the
flow’s re-assembly buffer is to be invalidated aud released to
the host computer), in state 1600 it is determined whether a
flow re-assembly buffer is valid (¢.g., active) for the flow
having the flow number that was read in state 1306. This
determination may be made by examining the validity
indicatorin the flow’s entry in flow re-assembly buffer table
1004. Ilustratively, if the indicator is valid then there is an
active buffer storing data from one or morc packets in the
flow. If there is a valid flow re-assemblybuffer for this flow,
the illustrated procedure continues at state 1602. Otherwise,
the procedure proceeds to state 1606.

In state 1602, a completion descriptoris written or con-
figured to release the existing flow re-assembly buffer. In
particular, the flow re-assembly buffer’s index (¢.g., the
location within the free buffer array that contains the buffer
identifier corresponding to the flow re-assembly buffer) is
writien to the descriptor. In this embodiment of the
invention, no offset needs to be stored in the descriptor’s
data offset ficld and the data size field may be set to zero
because no new data was stured ia the re-assembly buffer.
Similarly, the header buffer is not yet being released, there-
fore the header index and headeroffset fields of the descrip-

EX 1017 Page 548

US 6,453,360 Bl
73

Illustratively, the descriptor's release header flag is
cleared (e.g., a zero is stored in the flag) because the header
buffer is not to be released. The release data flag is set (e.g.,
a one is stored in the flag), however, because no more data
will be placed in the released flow re-assembly buffer. 5
Fwther, a release flow flag in the descriptor is also set, to
indicate that the flow associated with the released flow
re-assembly buffer is being tom down.

The descriptor type field may be changed to a value
indicating that DMA engine UO is releasing a stale flow

10
buffer (e.g., a flow re-assembly buffer that has not been used
for some time). Finally, the descriptor is turned over to the
host computer by changing its ownership indicator field or
by issuing an interrupt or using some other mechanism. In
one embodiment of the invention, however, the descriptor is
not released to the host computer until end state 1699. 15

Then, in state 1604, the flow re-assembly buffer is invali
dated by modifying validity indicator 1106 in the flow's
entry in flow re-assembly buffer table 1004 appropriately.

In state 1606, it is determined whether the present packet
is a small packet (e.g., less than or equal to 256 bytes in 20

size), suitable for storage in a header buffer. If so, the
illustrated procedure proceeds to state 1610. Information
stored in packet queue 116 and/or control queue 118 may be
used to make this determination.

In state 1608, it is determined whether the present packet 25

is a jumbo packet (e.g., greater than 1522 bytes in size), such
that it should be stored in a jumbo buffer. If so, the illustrated
procedure proceeds to state 1650. If not, the procedure
continues at state 1630.

In state 1610 (reached from state 1606), it has been 30

determined that the present packet is a small packet suitable
for storage in a header buffer. Therefore, DMA engine UO
(e.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. Illustratively, this determi
nation is made by examining validity indicator 1116 of 35

! header buffer table 1006, which manages the active header
· · buffer. If the validity indicator is set, then there should be a

header buffer ready to receive this packet and the procedure
continues at state 1614.

~. Otherwise, in state 16U a new header buffer is prepared 40

or initialized for storing small packets and headers of
re-assembled packets. This initialization process may

' involve obtaining a free ring descriptor from a cache main
tained by free ring manager lOU and retrieving its reference
to an empty buffer. If the cache is empty, new descriptors 45

·: may be retrieved from the free descriptor ring in host
·: memory to replenish the cache.
_hl' '·When a new descriptor is obtained from the cache or from
}~e~_frce descriptor ring, the buffer identifier (e.g., pointer,
(PlllllfCSS, index) contained in the descriptor is stored in a free 50

er array. The buffer's initial address or some other
·cator of the first storage location in the buffer is placed

next address field l114 of header buffer table 1006. The
er identifier's position or index within the free buffer

. ~y is stored in header buffer index llU, and validity 55

ator 1116 is set to a valid state.
In state 1614 the packet is copied or transferred (e.g., via
'~ operation) into the header buffer at the address or

on specified in the next address field of header buffer
le ~006. As descnbed above, in one embodiment of the 60

~hon pad bytes are inserted before the header in order
11:ign the beginning of the packet's layer three protocol
·, IP) header with a sixteen-byte boundary. In addition,

. _Packet may be positioned within a cell of predetermined
(e.g., 256 bytes) within the header buffer. 65

1h state 1616, a completion descriptor is written or con-
to provide necessary information to the host com-

74
puter (e.g., a software driver) for processing the packet. In
particular, the header buffer index (e.g. the position within
the free buffer array of the header buffer's buffer identifier)
and the packet's offset within the header buffer are placed in
the descriptor. Illustratively, this offset may serve to identify
the first byte of the packet, the first pad byte before the
packet or the beginning of the packet's cell within the buffer.
The size of the packet is also stored in the descriptor in a
header size field. A data size field within the descriptor may
be set to zero to indicate that the entire packet was placed in
the header buffer (e.g., no separate data portion was stored).
A release header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. A release data flag is cleared
(e.g., set to a value of zero), because there is no separate data
portion being conveyed to the host computer.

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re
asscmbleablc packet into host memory. And, a predeter
mined value (e.g., zero) is stored in the descriptor's own
ership indicator field to indicate that DMA engine UO is
releasing a packet to the host computer and turning over
ownership of the descriptor. In one embodiment of the
invention the ownership indicator field is not changed until
end state 1699 below. In one alternative embodiment of the
invention, DMA engine 120 issues an interrupt or other
signal to alert the host computer that a descriptor is being
released.

In state 1618, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer arc no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1620 the header buffer is
invalidated to ensure that it is not used again. illustratively,
this involves setting the header buffer table's validity indi
cator to an invalid state and communicating this status to the
host computer. In this embodiment of the invention, a
release header flag in the descriptor is set. The illustrated
procedure then ends with end state 1699.

If the header buffer is not full, then in state 1622 the next
address field of header buffer table 1006 is updated to
indicate the address or cell boundary at which to store the
next header or small packet. The illustrated procedure then
ends with end state 1699.

In state 1630 (reached from state 1608), it has been
detemtined that the packet is not a small packet or a jumbo
packet. The packet may, therefore, be stored in a non-re
assembly buffer (e.g., an MfU buffer) used to store packets
that are up to MfU in size (e.g., 1522 bytes). Thus, in state
1630 DMA engine UO detemtines whether a valid (e.g.,
active) MIU buffer exists. Illustratively, this determination
is made by exaniining validity indicator 1U6 of MIU buffer
table 1008, which manages an active MIU buffer. If the
validity indicator is set, then there is an MTU buffer ready
to receive this packet and the procedure continues at state
1634.

Otherwise, in state 1632 a new MIU buffer is prepared or
initialized for storing non-re-asscmbleablc packets up to
1522 bytes in size. Illustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager lOU and retrieving its
reference to an empty buffer (e.g., a buffer identifier). If the

EX 1017 Page 549

— 0 RNTeSieeSamETEIRERERE — ws ARCS PME eR Serre RYFrey FOOTE en
ae ee Tmt amdlenm MR

US6,453,360 B1
73

Illustratively, the descriptor’s release header flag is
cleared (c.g., a zero is stored in the flag) because the header
bufferis not to be released. The release data flagis set (e.g.,
a one is stored in the flag), however, because no more data
will be placed in the released flow re-assembly buffer.
Further, a release flow flag in the descriptoris also set, to
indicate that the flow associated with the released flow
te-assembly buffer is being torn down.

The descriptor type field may be changed to a value
indicating that DMA engine 120 is releasing a stale flow
buffer (¢.g., a flow re-assembly buffer that has not been used
for sometime). Finally, the descriptor is turned overto the
host computer by changing its ownership indicator field or
by issuing an interrupt or using some other mechanism. In
one embodimentof the invention, however, the descriptor is
not released to the host computer until end state 1699.

Then,in state 1604,the flow re-assembly bufferis invali-
dated by modifying validity indicator 1106 in the flow’s
entry in flow re-assembly buffer table 1004 appropriately.

In state 1606,it is determined whether the present packet
is a small packet (e.g., less than or equal to 256 bytes in
size), suitable for storage in a header buffer. IF so, the
illustrated procedure proceeds to state 1610. Information
stored in packet queue 116 and/or contro] queue 118 may be
used to make this determination.

In state 1608,it is determined whether the present packet
is a jumbo packet(e.g., greater than 1522 bytes in size), such
thatit should be stored in a jumbo buffer. If so, the illustrated
procedure proceeds to state 1650. If not, the procedure
continues at state 1630.

In state 1610 (reached from state 1606), it has been
determined that the present packetis a small packet suitable
for storage in a header buffer. Therefore, DMA engine 120
(c.g., DMA manager 1002) determines whether there is a
valid (¢.g., active) header buffer. [llustratively, this determi-
nation is made by examining validity indicator 1116 of

|. headerbuffer table 1006, which manages the active header
‘, buffer. If the validity indicatoris set, then there should be a
, header buffer readyto receive this packet and the procedure
» continues at state 1614.
é Otherwise, in state 1612 a new headerbuffer is prepared
| or initialized for storing small packets and headers of

Te-assembled packets. This initialization process may
involve obtaining a free ring descriptor from a cache main-

p.. tained byfree ring manager 1012 andretrievingits reference
to an empty buffer. If the cache is empty, new descriptors
May be retrieved from the free descriptor ring in host
memory to replenish the cache.

“When a new descriptoris obtained from the cache or from
nthe free descriptor ring, the buffer identifier (c.g., pointer,
pMcdress, index) contained in the descriptoris stored in a free
peatier array. The buffer’s initial address or some other
pencicator of the first storage location in the buffer is placed

earnextaddress ficld 1114 of header buffer table 1006. The
ailer identifier’s position or index within the free buffer
fay 1s stored in header buffer index 1112, and validity

i ‘ator 1116is set to a valid state.
»

state 1614 the packet is copied or transferred (c.g., via
MA. Operation) into the header buffer at the address or

P 00 specified in the next address field of header buffer
Pbk 1006. As described above, in one embodimentofthe
vention pad bytes are inserted before the header in order
E Stign the beginning of the packet’s layer three protocol

B-» IP) header with a sixteen-byte boundary. In addition,
Packet may be positioned within a cell of predetermined

th £8. 256 bytes) within the header buffer.
Slate 1616, a completion descriptor is written or con-

to provide necessary information to the host com-

20

25

30

5D

65

74

puter (e.g., a software driver) for processing the packet. In
particular, the header buffer index (e.g. the position within
the free buffer array of the header buffer’s buffer identifier)
andthe packet’soffset within the header buffer are placed in
the descriptor. Ilustratively, this offset mayserve to identify
the first byte of the packet, the first pad byte before the
packet or the beginning of the packet’s cell within the buffer.
The size of the packet is also stored in the descriptor in a
header size fieid. A data size field within the descriptor may
beset to zero to indicate that the entire packet was placed in
the header buffer (e.g., no separate data portion was stored).
A release header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tesied
to seeif it is full until a later state of this procedure. In such
ag embodimentof the invention, the release headerflag may
be set (or cleared) at that time. A release data flag is cleared
(¢.g., set to a value of zero), because there is no separate data
portion being conveyed to the host computer.

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (c.g., zero) is stored in the descriptors own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and tuming over
ownership of the descriptor. In one embodiment of the
invention the owncrship indicatorfield is not changed until
cod state 1699 below. In one alternative embodimentof the

invention, DMA engine 120 issues an interrupt or other
signal to alert the host computer that a descriptor is being
Teleased.

In state 1618, it is determined whether the header buffer
is full. In this embodiment of the invention, where cach
buffer is cight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1620 the header buffer is
invalidated to ensure that it is not used again. Mlustratively,
this involves setting the header buffer table’s validity indi-
catorto an invalid state and communicatingthis status to the
host computer. In this embodiment of the invention, a
release header flag in the descriptor is set. The illustrated
procedure then ends with end state 1699.

If the header buffer is not full, then in state 1622 the next
address field of header buffer table 1006 is updated to
indicate the address or cell boundary at which to store the
next header or small packet. The illustrated procedure then
ends with end state 1699.

In state 1630 (reached from state 1608), it has been
determinedthat the packetis not a small packet or a jumbo
packet. The packet may, therefore, be stored in a non-re-
assembly buffer (e.g., an MTU buffer) used to store packets
that are up to MTU im size (e.g., 1522 bytes). Thus,in state
1630 DMA engine 120 determines whether a valid (e.g.,
active) MTU buffer exists. lustratively, this determination
is made by examining validity indicator 1126 of MTU buffer
table 1008, which manages an active MTU buffer. If the
validity indicator is set, then there is an MTU buffer ready
to receive this packet and the procedure continuesat state
1634.

Otherwise, in state 1632 a new MTU bufferis prepared or
initialized for storing non-re-asscmbleable packets up to
1522 bytes in size. Hlustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer (¢.g., a buffer identifier). If the

2 ape
STNee TS NALat deepen eget, Fe TdPepe maeeT

EX 1017 Page 549

• ,,~.'

US 6,453,360 Bl
75 76

cache is empty, new descriptors may be retrieved from the setting the MTU buffer table's validity indicator to invalid
free descriptor ring in host memocy to replenish tbe cache. and communicating this status lo the host computer. In this

When a new descriptor is obtained from the cache or from embodiment of the invention, a release data flag in the
the free descriptor ring, the buffer identifier (e.g., pointer, descriptor is set. The illustrated procedure then ends with
address, index) contained in tbe descriptor is stored in the 5 end state 16!>!>.
free buffer array. The buffers initial address or some other If the MTU buffer is not full, then in slate 1642 the next
indication of the first storage location in the buffer is placed address field ofMTU buffer table 1008 is updated to indicate
in next address field 1124 ofM11J buffer table 1008. Further, the address or location (e.g., cell boundary) at which lo store
the position of the buffer identifier within the free buffer the next packet. The illustrated procedure then ends with end
array is stored in MTU buffer index 1122 and validity 10 state 169!>.
indicator 1126 is set to a valid stale. In state 1650 (reached from state 1608), it has been

In state 1'34 the packet is copied or transferred (e.g., via determined that the packet is a jumbo packet (e.g., that it is
a DMA operation) into the MTU buffer al the address or greater than 1522 bytes in size). In this embodiment of the
location specified in the next address field. As described invention jumbo packets are stored in jumbo buffers and, if
above, in one embodiment of the invention pad bytes may be 15 splitting of jumbo packets is enabled (e.g., as determined in
inserted before tbe header in order lo aligo the beginning of stale 1654 below), headers of jumbo packets are stored in a
the packet's layer three protocol (e.g., IP) header with a header buffer. DMA engine 120 determines whether a valid
sixteen-byte boundary. In another embodiment of the inven- (e.g., active) jumbo buffer exists. Illustratively, this a deter-
tion packets may be aligned in an MTU buffer in cells of mination is made by exantining validity indicator 1136 of
predefined size (e.g., two kilobytes), similar to entries in a 20 jumbo buffer table 1010, which manages the active jumbo
header buffer. buffer. If the validity indicator is set, then there is a jumbo

In state 1636, a rompletion descriptor is written or ron- buffer ready to receive this packet and the procedure con-
figored to provide necessary information to the host com- tinues at state 1654. As explained above, a jumbo buffer

. puter (e.g., a software driver) for processing the packet. In table may not be used in an. embodiment of the invention in
particular, the MTU buffer index (e.g. the free buffer array 25 which a jumbo buffer is used only once (e.g., to store just
element that contains the buffer identifier for the MTU one, or just part of one, jumbo packet).

', bu:ffer) and offset (e.g., the offset of the first byte of this Otherwise, in state 1652 a new jumbo buffer is prepared
.packet within the MTU buffer) are placed in the descriptor or initialized for storing a non-re-assembleable packet that is
:in data index and data o:!Iset fields, respectively. The size of larger than 1522 bytes. This initialiution process may
~e packet is also stored in the descriptor, illustratively 30 involve obtaining a free ring descriptor from a cache main-
• 'thin a data size field. A header size field within the tained by free ring manager 1012 and retrieving its reference

· tor is set to zero to indicate that the entire packet was to an empty buffer (e.g., a buffi:r identifier). If the cache is
d in the MTU buffer (e.g., no separate header portion empty, new descriptors may be retrieved from the free

,i1s stored in a header buffer). A release data flag is set in the descriptor ring in host memocy to replenish the cache.
·ptor if the MTU buffer is full. However, the MTU 35 Whcnanewdescriptorisobtainedfromthecacheorfrom
r may not be tested to see if it is full until a later state the free descriptor ring, its buffer identifier (e.g., pointer,

this procedure. In such an embodiment of the invention, address, index) is stored in a free buffer array (or other data
release data flag may be set (or cleared) at that time. A structure). The buffer's initial address or other indication of

leasebeaderflagiscleared(e.g.,settozero),because there the first storage location in the buffer is placed in next
, no separate header portion being conveyed to the host ,io address field 1134 of jumbo buffer table 1010. Also, the

puter. location of the buffer identifier within the free buffer array
.Further, the descriptor type field is changed to a value is stored in jumbo buffer index 1132 and validity indicator
. ·eating that DMA engine 120 transferred a non-re- 1136 is set to a valid state.

bleable packet into host memocy. Also, a predeter- Then, in state 1654 DMA engine 120 determines whether
value (e.g., 7.Cro) is stored in the descriptors own- 45 splitting of jumbo buffers is enabled. If enabled, the header

· indicator field to indicate that DMA engine 120 is of a jumbo packet is stored in a header buffer while the
a packet to the host computer and turning over packet's data is stored in one or more jumbo buffe[S. If not

rsbip of the descriptor. In a present embodiment of the enabled, the entire packet will be stored in one or more
ntion the owne£Sbip field is not set until end state 1699 jumbo buffe£S. Illustratively, splitting of jumbo packets is

, w. In one alternative embodiment of the invention, so enabled or disabled according to the configuration of a
engine 120 issues an interrupt or other sigoal to alert programmable indicator (e.g., flag, bit, register) that may be

host computer that a descriptor is being released, or set by software operating on the host romputer (e.g., a
. unicates this event to the host computer through the device driver). If splitting is enabled, the illustrated proce·

tor type field. dure ronrinues at state 1670. Otherwise, the procedure
state 1638, it is determined whether the M11J buffer is 55 continues with state 1656 .

• In this embodiment of the invention, where each buffer In state 1656, DMA engine 120 determines whether the
ght kilobytes in si:re and entries in the MTU buffer are packet will fit into one jumbo buffer. For example, in an
~ two kilobytes, a counter may be used to keep track embodiment of the invention using eight kilobyte pages, if

, tries placed into each new header buffer. The buffi:r the packet is la,:ger than eight kilobytes a second jumbo
. be considered full when a predetermined number of 60 buffer will be needed to store the additional contents. If the

~e.g., four) are stored. In an alternative embodiment packet is too large, the illustrated procedure continues at
. , mvention DMA engine 120 determines bow much state 1662.
• space within the buffer has yet to be used. If no space In state 1658, the packet is copied or transferred (e.g., via
, , or if less than a predetermined amount of space is a DMA operation) into the current jumbo buffer, at the
:vlilable, the buffer may be considered full. 65 location specified in the next address field l134 of jumbo

MTu buffer is full, in state 1640 it is invalidated to buffer table 1010. When the packet is transferred intact like
that it is not used again. Illustratively, this involves this; padding may be added to align a header portion of the

EX 1017 Page 550

US 6,453,360 Bl
77

ct with a sixteen-byte boundary. One skilled in the art
appreciate that the next address field may not need to be
·1ed to account for this new packet because the jumbo
r will be released. In other words, in one embodiment

,.. invenlioo a jumbo buffer may be used just once (e.g., s
one packet or a portion of one packet).

state 1660, a completion descriptor is written or con-
to release the jumbo buffer and to provide informa-

to the host computer for processing the packet. The
buffer index (e.g., the position within the free buffer

10
• . of the buffer identifier for the jumbo buffer) and the

of the packet within the jumbo buffer are placed in the
• tor. Illustratively, these values are stored in data

:and data offset fields, respectively. The size of the

78
Further, the descriptor type field is changed to a value

indicating that DMA engine UO transferred a non-re
asscmbleable packet into host memory. Finally, a predeter
mined value (e.g., zero) is stored in the descriptor's own
ership indicator field, or some other mechanism is
employed, to indicate that DMA engine UO is releasing a
packet to the host computer and turning over ownership of
the descriptor. In one embodiment of the invention, the
descriptor is not released to the host computer until end state
1699 below.

In state 1668, the jumbo buffer entry or entries in jumbo
buffer table 1010 are invalidated (e.g., validity indicator
1136 is set to invalid) to ensure that they are not nsed again.
In the procedure descnbed above a jumbo packet was stored . ,. (e.g., the packet length) may be stored in a data size

15 in, at most, two jumbo buffers. In an alternative embodiment
.lieader si7.e field is cleared (e.g., a zero is stored) to of the invention a jumbo buffer may be stored across any

that the header buffer was not used (e.g., the header number of buffers. The descriptor(s) configured to report the
t stored separately from the packet's data). Because transfer of such a packet is/are constmcted accordingly, as

is no separate packet header, header index and header will be obvious to one skilled in the art.
elds are not used or are set to zero (e.g., the values 20 After slate 1668, the illustrated procedure ends with end

· their fields do not matter). A release header flag is state 1699.
and a release data flag is set to indicate that no more In state 1670 (reached from state 1654), it has been

be placed in this jumbo buffer (e.g., because it is determined that the present jumbo packet will be split to
leased). store the packet header in a header buffer and the packet data
· the descriptor type field is changed to a value 25 in one or more jumbo buffers. Therefore, DMA engine UO

that DMA engine UO transferred a non-re- (e.g., DMA manager 1002) determines whether there is a
le packet into host memory. And, a predeter- valid (e.g., aetive) header buffer. Illustratively, this deterrni-

alue (e.g., zero) is stored in the descriptor's own- nation is made by e:umining validity indicator lll6 of
: ·cator field to indicate that DMA engine UO is header buffer table 1006, which manages the active header

a packet to the host computer and turning over 30 buffer. H the validity indicator is set, then there is a header
· of the descriptor. In an alternative embodiment, buffer ready to receive this packet and the procedure con-

. · tor may be released by issuing an interrupt or tinues at state 1674.
, n. In yet another embodiment, changing the Otherwise, in state 1672 a new header buffer is prepared

type field (e.g., to a non-zero value) may signal or initialized for storing small packets and headers of other
of the descriptor. In one embodiment of the 35 packets. Illustratively, this initialization process involves

' ·.the ownership indicator is not set until end state obtaining a free ring descriptor from a cache maintained by
w. After state 1660, the illustrated procedure free ring manager IOU and retrieving its reference to an

. state 1668. empty buJlcr. If the cache is empty, new descriptors may be
. ,1662, a first portion of the packet is stored in the retrieved from the free descriptor ring in host memory to
. g., valid) jumbo buffer, at the location identified in 40 replenish the cache .

. next address field 1134. Then. because the full When a new descriptor is obtained from the cache or from
not fit into this buffer, in state 1664 a new jumbo the free descriptor ring, the buffer identifier (e.g., pointer,

arcd and the remainder of the packet is stored address, index) contained in the descriptor is stored in a free
r. buffer array. The buffer's initial address or some other

:666, a completion descriptor is written or con- 45 indication of the first storage location or cell in the buffer is
• conte~ts are siniilar to those descnbed in state placed in next address field 1114 of header buffer table 1006.

descnptor must reflect that two jumbo buffers Also, the index of the buffer identifier within the free buffer
.. store the packet. array is stored in header buffer index llU and validity

. JUmbo buffer index (e.g., the index, within the indicator lll6 is set to a valid state.
Y, of the buffer identifier that identifies the so In state 1674 the packet's header is copied or transferred

.) and the offset of the packet within the first (e.g., via a DMA operation) into the header buffer at the,
. are placed in the descriptor, as above. The size address or location specified in the next address field of
. (e.g., the packet length) is stored in a data size header buffer table 1006. As descnbed above, in one

embodiment of the invention pad bytes are inserted before
,size field is cleared (e.g., a zero is stored) to 55 the header in order to align the beginning of the packet's
the header buffer was not used (e.g., the header layer three protocol (e.g., IP) header with a sixteen-byte

separately from the packet's data). Because boundary. In addition. the packet's header may be positioned
Jlante packet header, header index and header within a cell of predetermined size (e.g., 256 bytes) within

not used (e.g., the values stored in their fields the buffi:r.

der flag is cleared and a release data flag is
that no more data will be placed in these

. (e.g., because they a.re being released).
t packet flag is set to reflect the use of a second
.~ the index (within the free buffer array) of

. er for the second buffer is stored in a next

60 In state 1676, DMA engine UO determines whether the
packet's data (e.g., the TCP payload) will fit into one jumbo
buffer. II the packet is too large, the illustrated procednre
continues at sta.te 1682.

In state 1678, the packet's data is copied or transferred
65 (e.g., via a DMAoperation) into the current jumbo buffer, at

~,. loc:itior ,;pecified :in th, ne.n address. field 1134 of jumbo
l,uJicr iablr, lOlO. One :.killed in the art will appreciate that

I
I

EX 1017 Page 551

reTees Pe a = htes
RELeadilalae

" .
pinlinedt

77

L xct with a sixteen-byie boundary. One skilled in the art
Bi appreciate that the next addressficld may not need to be
Listed to account for this new packet because the jumbo

rc will be released. In other words, in one embodiment
invention a jumbo buffer may be used just once (e.g.,

store one packet or a portion of one packet).
la state 1660, a completion descriptor is written or con-

ed to release the jumbo buffer and to provide informa-
Bio the host computer for processing the packet. The
Bo buffer index (c.g., the position within the free buffer
Ry of the buffer identifier for the jumbo buffer) and the

ict of the packet within the jumbo buffer are placed in the
Eriptor. Ilusiratively, these values are stored in data
BX and data offset fields, respectively. The size of the

fet (e.g., the packei length) maybe stored in a data size

Plicader size ficld is cleared (e.g., a zero is stored) to
that the header buffer was not used (c.g., the header

ot stored separately from the packet’s data). Because
5 ix no separate packet header, header index and header
ificlds arc not used or are set to zero (c.g., the values
Sin their ficlds do not matter). A release header flag is
Bd and a release data flag is set to indicate that no more

fill be placed in this jumbo buffer (¢.g., because it is
Bec leased).
,-the descriptor type field is changed to a value
Bing that DMA engine 120 transferred a non-re-
BWeable packet into host memory. And, a predeter-
Fwaluc (¢.g., zero) is stored in the descriptor’s own-
indicator field to indicate that DMA engine 120 is

Be &@ packet to the host computer and tuming over
ip of the descriptor. In an alicrnative embodiment,

MXtiptor may be released by issuing an interrupt or
rt. In yet another embodiment, changing the

type field (¢.g., to a non-zero value) may signal
se Of the descriptor. In one cmbodiment of the

Bi.ihe ownership indicator is not set until end state
meiow. Afier state 1660, the ilustrated procedurei Slate 1668.

ye 1662,a first portion of the packetis stored in the
+ Valid) jumbobuffer, at the location identified in

fs next address field 1134. Then, because the full
il notfit into this buffer, in state 1664 a new jumbo
pr pared and the remainder of the packet is storedAler,

66, 2 completion descriptor is written or con-
Contents arc similar to those described in state

Bis descriptor must reflect that two jumbo buffers
ed Slore the packet.
presjumbo buffer index (c.g., the index, within the

¥, of the buifcr identifier that identifies the
) and the offset of the packet within the first
are placedin the descriptor, as above. The size

* (€g., the packet length) is stored in a data size

coos

pisize ficld is cleared (e.g., a zero is stored) to
the header buffer was not used (e.g., the header

m.~ Scparaisly from the packet’s data). Because
PtParaic packci header, header index and header
: not used (c.g., the values storedin their fields
awader flag is cleared and a release data flag is
Bc that no more data will be placed in these
tS (€.8., because they are being released).
mitpacket flag is set to reflect the use of a second

fe: 82d the index (within the free buffer array) of
Hier for the second buffer is stored in a next

15

28

w»

35

40

4S

55

60

63

US 6,453,360 Bl

iaol

78
Further, the descriptor type field is changed to a value

indicating that DMA engine 120 transferred a non-re-
assembleable packet into bost memory. Finally, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field, or some other mechanism is
employed, to indicate that DMA engine 120is releasing a
packet to the host computer and tuming over ownership of
the descriptor. In one embodiment of the invention, the
descriptoris notreleased to the host computer until end state
1699 below.

In state 1668, the jumbo buffer entry or entries in jumbo
buffer table 1010 are invalidated (¢.g., validity indicator
1136is sct to invalid) to ensure that they are not used again.
To the procedure described above a jumbo packet was stored
in, at most, two jumbo buffers. In an altemative embodiment
of the invention a jumbo buffer may be stored across any
number of buffers. The descriptor(s) configured to report the
transfer of such a packet is/are constructed accordingly, as
will be obvious to one skilled in the art.

After state 1668, the illustrated procedure ends with end
state 1699.

In state 1670 {reached from state 1654), it has been
determined that the present jumbo packet will be split to
store the packet header in a header buffer and the packet data
in one or more jumbo buffers. Therefore, DMA engine 120
(e.g.. DMA manager 1002) determines whether there is a
valid (¢.g., active) beader buffer. Iustratively, this determi-
nation is made by examining validity indicator 1116 of
headerbuffer table 1006, which manages the active header
buffer. If the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-finues at state 1674.

Otherwise, in state 1672 a new header buffer is prepared
or initialized for storing small! packets and headers of other
packets, Illustratively, this initialization process involves
obtaining a free ring descriptor from a cache maintained by
free ring manager 1032 and retricving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or some other
indication of the first storage location or cell in the buffer is
placed in next address field 1114 of header buffer table 1006.
Also,the index of the buffer identifier within the free buffer
array is stored in header buffer index 1112 and validity
indicator 1116 is set to a valid state.

In state 1674 the packet’s header is copied or transferred
(«.g., via a DMA operation) into the header buffer at the,
address or location specified in the next address ficld of
header buffer table 1006. As described above, in one
embodiment of the invention pad bytes are inserted before
the header in order to align the beginning of the packet’s
layer three protocol (c.g., IP) header with a sixtcen-byte
boundary.In addition, the packet’s header may be positioned
within a cell of predetermined size (e.g., 256 bytes) within
the buffer.

In state 1676, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload) will fit into one jumbo
buffer. If the packet is too large, the illustrated procedure
continues at state 1682.

In state 1678, the packet’s data is copied or transferred
(c.g., via a DMA operation) into the current jumbo buffer,at
the location specified in the next addressfield 1134 ofjumbo -
bufler sable. .080. One skiifed in the art will appreciate that

EX 1017 Page 551

NeeaREAROAIE

US 6,453,360 Bl
79

the next address field may not need to be updated to account
· : for this new packet because tbe jumbo buffer will be
. , relea.sed. In other words, in one embodiment of the invention
· ·· a jumbo buffer may be used just once (e.g., to store one
··: packet or a portion of one packet).
'· In state 1680, a completion descriptor is written or con-

. t figured to release the jumbo buffer and to provide informa
. lion to the host computer for processing the packet. The

· header buffer index (e.g. the index of the header buffer's
· · bufferidentifier within the free buffer array) and offset of the
Mlackct's header within the buffer are placed in the descriptor
· · header index and header offset fields, respectively.

Dlustratively, this offset may serve to identify the first byte
·:at the header, the first pad byte before the header or the
' · ation of the cell in which the header is stored. The jumbo

er index (e.g., the position or index within the free buffer
;,array of the buffer identifier that identifies the jumbo buffer)
· the offset of the first byte of the packet's data within the

bo buffer are placed in data index and data offset fields,
pcctively. Header size and data size fields are used to
n: the size of the packet's header (e.g., the offset of the

ayload within the packet) and data (e.g., payload size),
pcctivcly.

··'A release header flag is set in the descriptor if the header
er is full. However, the header buffer may not be tested

flCC if it is full until a later state of this procedure. In such
·embodiment of the invention, the release header flag may
set (or cleared) at that time. A n:lease data flag is also set,

use no more data will be placed in the jumbo buffer
. ., it is being released to the host computer).

e descriptor type field is changed to a value indicating
t'. DMA engine 120 transferred a non-rc-assembleablc

ct into host memory. Also, a predetermined value (e.g.,
~ is stored in the descriptor's ownership indicator field

·cate that OMA engine 120 is releasing a packet to the
computer and turning over ownership of the descriptor.
e embodiment of the invention the ownership indicator

·1 changed until end state 1699 below. ln an alternative
· ent, the descriptor may be released by issuing an

rupt or otbcr alert. In yet another alternative
iment, changing the descriptor type value may signal

lease of the descriptor.
•. r state 1680, the illustrated procedure proceeds to

688.
:~te 1682, a first portion of the packet's data is stored
. pn:sent (e.g., valid) jumbo buffer, at the location

ed in the buffer's next address field 1134.
.· ause all of the packet's data will not fit into this buffer,
Ile 1684 a new jumbo buffer is prepared and the

r of the packet is stored in that buffer.
1686, a completion descriptor is written or con

. The contents are similar to those described in states
but this descriptor must reflect that two jumbo buffers

to store the packet. The header buffer index (e.g.
ex of the free buffer array element containing the

. buffer's buffer identifier) and offset (e.g., the location
... Pack:t's header within the header buffer) are placed
:~escnptor in header index and header offset fields,

·-. ely. The jumbo buffer index (e.g., the index, within
. buffer array, of the buffer identifier that references
. bo buffer) and the ofiset of the first byte of the
· data within the jumbo buffer are placed in data
·Ind data offset fields, respectively. Header size and

fields arc used to store the size of the packet's
(e.g., as measured by the offset of the packet's
:\'mm the start of the packet) and data (e.g., p<1ylo•d

lively.

80
A release header flag is set in the descriptor if the header

buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the n:lcase header flag may

5 be set (or cleared) at that time. A release data flag is also set,
because no more data will be placed in the jumbo buffer
(e.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a second jumbo buffer
was used, and the location (within the fn:e buffer array or
other data structure) of the second buffer's buffer identifier

10 is stored in a next index field
The descriptor type field is changed to a value indicating

that DMA engine 120 transferred a non-re-assembleable
packet into bost memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptor's ownership indicator

15 field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention the owner
ship indicator is not changed until end state 1699 below.

In state 1688, the jumbo buffer's entry in jumbo buffer
20 table 1010 is invalidated (e.g., validity indicator 1136 is set

to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodiment of the invention
a jumbo packet may be stored across any number of buffers.

25 The descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1690, it is determined whether the header buffer
is full. In this embodiment of the invention, where each

30 buffer is eight kilobytes in size and entries in the header
buffer arc no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer may be considered full when thirty-two entries
are stored.

35 If the buffer is full, in state 1692 the header buffer is
invalidated to ensure that it is not used again. illustratively,
this involves setting the header buffer table's validity indi
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release

40 header flag in the descriptor is set. The illustrated procedure
then ends with end state 1699.

If the header buffer is not full, then in state 1694 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

45 small packet. The illustrated procedure then ends with end
state 1699.

In end state 1699, a descriptor may be turned over to the
host computer by changing a value in the descriptor's
descriptor type field (e.g., from one to 7.ero), as described

50 above. illustratively, the host computer (or software operat
ing on the host computer) detects the change and under
stands that DMA engine 120 is returning ownership of the
descriptor to the host computer.
A Mchtod of Transferring a Packet with Operation Code 3

55 FIGS.17A-17 C illustrate one procedure in which DMA
engine 120 transfers a packet associated with operation code
3 to a host memory buffer. As reflected in TABLE 1,
operation code 3 may indicate that the packet is compallble
with a protocol that can be parsed by NIC 100 and that it

60 carries a final portion of data for its flow. No new flow is set
up, but a flow should already exist and is to be tom down.
The packet's data is to be re-assembled with data from
previous flow packets. Because the packet is to be
re-assembled, the packet's header should be stored in a

65 header buffer and its data in the flow's re-assembly buffer.
H,c j]r,w·s active re-assernh!y buffet: may he identified by
the tlow's entry in flow re-assembly buffer table 1004.

EX 1017 Page 552

F 79
§=the next address field maynot need to be updated to account

‘ for this new packet because the jumbo buffer will be
released. In other words, in one embodimentofthe invention

b - a jumbo buffer may be used just once (€.g., to store one
'« packet or a portion of one packet).

“In state 1680, a completion descriptor is written or con-
§ ‘ figured to release the jumbo buffer and to provide informa-
. tion to the bost computer for processing the packet. The
|, header buffer index (e.g. the index of the header buffer’s
: buffer identifier within the free buffer array) andoffset of the

é ppacket’s headerwithin the buffer are placed in the descriptor
gan header index and header offset fields, respectively.

fy, Illustratively, this offset may serve to identify the first byte
By-of the header, the first pad byte before the header or the
Mlocation of the cell in which the header is stored. The jumbo
bs Suffer index (e.g., the position or index within the free buffer
array of the buffer identifier that identifies the jumbo buffer)

id the offset of the first byte of the packet’s data within the
gxobo buffer are placed in data index and data offsetfields,

tively. Header size and data size fields are used to
ore the size of the packet’s header (e.g., the offset of the

Mayload within the packet) and data (e.g. payload size),
pectively.
‘A release header flag is set in the descriptorif the header

poffer is full. However, the header buffer may not be tested
Ryece if it is full until a later state of this procedure. In such

embodimentof the invention, the release header flag may
& set (or cleared) at that time. A release dataflagis also set,

usc no more data will be placed in the jumbo buffer

Be- it is being released to the host computer).¢ descriptor type field is changed to a value indicating
mt‘DMA engine 120 transferred a non-re-assembleable
peket inlo host memory. Also, a predetermined value (e.g.,
fo) is stored in the descriptor’s ownership indicatorfield
mnidicate that DMA engine 120is releasing a packetto the

St computer and turning over ownership of the descriptor.
pene embodiment of the invention the ownership indicator

t changed until end state 1699 below. In an alternative
iment, the descriptor may be released by issuing an

Tupt or other alert. In yet another alternative
podiment, changing the descriptor type value may signal

metelcase of the descriptor.

Msoe 1680, the illustrated procedure proceeds to
State 1682,a first portion of the packet’s datais stored

© present (c.g., valid) jumbo buffer, at the location
ed in the buffer’s next address field 1134.

tause all of the packet’s data will notfit into this buffer,
fc 1684 a new jumbo buffer is prepared and the
iider of the packet is stored in that buffer.

F 1686, a completion descriptor is written or con-
ei. The contentsare similar to those described in states

butthis descriptor mustreflect that two jumbobuffers
Sed to store the packet. The headerbuffer index(c.g.

Rccx of the free buffer array element containing the
et buffer’s buffer identifier) and offset (c.g., the location

Spacket’s header within the header buffer) are placed
“descriptor in header index and headeroffset fields,

ly. The jumbobuffer index (c.g., the index, within
. cr array, of the buffer identifier that references
hbo buffer) and the offset of the first byte of the

pS data within the jumbo buffer are placed in data
5 and data offset ficlds, respectively. Header size and

® fields are used to store the size of the packet’s
B(g., as measured by the offset of the packet’s

mathe Start of the packet) and data (¢.g., payload
tively. -

CSP

15

20

25

30

35

40

4:aA

50

60

65

US6,453,360 B1
80

Arelease headerflag is set in the descriptorif the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodimentofthe invention, the release headerflag may
be set (or cleared)at that time. A release data flag is also set,
because no more data will be placed in the jumbo buffer
(¢.g., it is being released to the host computer). Further, a
split packetflag is set to indicate that a second jumbo buffer
was used, and the location (within the free buffer array or
other data structure) of the second buffer’s buffer identifier
is stored in a next index field

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(¢.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention the owner-
ship indicator is not changed until end state 1699 below.

In state 1688, the jumbo buffer’s entry in jumbo buffer
table 1010 is invalidated (e.g., validity indicator 1136is set
to invalid) to ensure thatit is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers.In an alternative embodimentofthe invention
a jumbo packet may be stored across any numberof buffers.
The descriptor that is configured to report the transfer of
such a packetis constructed accordingly, as will be obvious
to one skilled in the art.

In state 1690, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is cight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new headerbuffer.
The buffer may be considered full when thirty-two entries
are stored.

If the buffer is full, in state 1692 the header buffer is
invalidated to ensure thatit is not used again. Ilustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
headerflag in the descriptoris set. The illustrated procedure
then ends with end state 1699.

If the header buffer is not full, then in state 1694 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet. The illustrated procedure then ends with end
State 1699.

In end state 1699, a descriptor may be tumed overto the
host computer by changing a value in the descriptor’s
descriptor type field (e.g., from one to zero), as described
above. [lustratively, the host computer (or software operat-
ing on the bost computer) detects the change and under-
stands that DMA engine 120 is retuming ownership ofthe
descriptor to the host computer.
A Mehtod of Transferring a Packet with Operation Code 3

FIGS. 17A-17Cillustrate one procedure in which DMA
engine 120 transfers a packet associated with operation code
3 to a host memory buffer. As reflected m TABLE 1,
operation code 3 may indicate that the packet is compatible
with a protocol that can be parsed by NIC 100 andthatit
carries a final portion of data for its flow. No new flow is set
up, but a flow should already exist and is to be tom down.
The packet’s data is to be re-assembled with data from
previous flow packets. Because the packet is to be
re-assembled, the packet’s header should be stored in a
header buffer and its data in the flow’s re-assembly buffer.
ihe flow's active re-assewhly bnffer may be identified by
the flow’s entry in flow re-assembly buffer table 1004.

-7 , aT aShteatlieeaes an red BsSaali +mars]aeCs)ec

EX 1017 Page 552

US 6,453,360 B1
81

In state 1700, DMA engine 120 (e.g., DMA manager
) determines whether there is a valid (e.g., active)

der buffer. Illustratively, this determination is made by
ining validity indicator 1116 of header buffer table

82

, which manages the active header buffer. If the validity s
'cator is set (e.g., equal to one), then it is assumed that

is a header buffer ready to receive this packet and the

In state 1712, a completion descriptor is written or con
figured to release the flow's re-assembly buffer and to
provide information to the host computer for processing the
packet. In particular, the header buffer index (e.g., the index,
within the free buffer array, of the header buffer's identifier)
and the offset of the packet's header within the header buffer
are placed in the descriptor. Illustratively, this offset serves
to identify the :first byte of the header, the :first pad byte
preceding the header or the cell in wbich the header is stored.

edure continues at state 1704.
·Otherwise, in state 1702 a new header buffer is prepared
/initialized for storing small packets and headers of
·assembled packets. Tbis initialization process may
· Ive obtaining a free ring descriptor from a cache main-

by free ring manager lOU and retrieving its buffer

10 The flow re-assembly buffer index (e.g., the index, within
the free buffer array, of the flow re-assembly buffer's
identifier) and the offset of the packet's data within that
buffer are also stored in the descriptor. ·· tifier (e.g., a reference to an available memory buffer).

cache is empty, new descriptors may be retrieved from
:free descriptor ring in host memory to replenish the 15

The size of the packet's data (e.g., the size of the packet's
TCP payload) and header (e.g., the offset of the TCP payload
within the packet) portions are stored in data size and header

tratively, when a new descriptor is obtained from the size fields, respectively. The descriptor type field is given a
or from the free descriptor ring, the buffer identifier value that indicates that a flow packet has been transferred

pointer, address,. index) contained in the descriptor is to host memory. A release header flag may be set if the
in a free buffer array. The buffer's initial address or 20 header buffer is full and a release data flag may be set to

other indication of the :first storage location or cell in indicate that no more data will be placed in this flow
, er is placed in next address field 1114 of header re-assembly buffer (e.g., because it is being released). In
table 1006. Further, the index of the buffer identifier addition, a. release flow flag is set to indicate that DMA

· the free buffer array is stored in header buffer index engine 120 is tearing down the packet's flow. The header
validity indicator 1116 is set to a valid state. 25 buffer may not be tested to see if it is full until a later state

te 1704 the packet's header is ropied or transferred of this procedun:. In such an embodiment, the release header
,.. header buffer at the address or location specified in flag may be set (or cleared) at that time.

address field of header buffer table 1006. As Then, in state 1714, the flow re-assembly buffer is invali-
.d above, in one embodiment of the invention pad dated by modifying validity indicator 1106 in the flows

be inserted before the header in order to align the 30 entry in flow re-assembly buffer table 1004 appropriately.
. of the packet's layer three protocol (e.g., IP) After state 1714, the procedure continues at state 1730.

{with a sixteen-byte boundary. In addition, the header In state 1716, DMA engine 120 determines whether the
positioned within a cell of predetermined size (e.g., packet's TCP payload (e.g., the packet's data portion) wi11 fit ,

... s) within the header buffer. into the valid flow re-assembly buffer. If not, the illustrated
illustrated embodiment, operation code 3 indicates 35 procedure continues at state 1722 .

. existing flow :is to be torn down (e.g., the flow In state 1718, the packet data is copied or transferred (e.g.,
bly buffer is to be invalidated and released to the via a DMAoperation) into the flow's re-~mbly buffer, at

uter). Thus, in state 1706 it is determined whether the location :specified in the next address field 1104 of the
.,;~mbly buffer is valid (e.g., active) for this flow flow's entry in flow re-assembly table 1004. One skilled in
. llllllg the validity indicator in the flow's entry in 40 the art will appreciate that the next address field may or may
-~mbly buffer table 1004. Illustratively, if the not be updated to account for this new packet because the
•• lS valid then there should be an active buffer re-assembly buffer is being released.

ta from one or more packets in this flow. If there In state 1720, a completion descriptor is written or con-
flow re-assembly buffer for this flow, the illustrated figured to n:lease the flow's re-assembly buffer and to

continues at state 1712. Otherwise, the procedure 4S provide information to the host computer for processing the
.to state 1708. packet. The header buffer index (e.g., the location or index,
.1708, a new flow re-assembly buffer is prepared within the lice buffer array, of the header buffer's identifier)
, packet's data. Illustratively, a free ring descrip- and the offset of the packet's beaderwithin the header buffer
.• ed from ll cache maintained by free ring manager are placed in the descriptor. The flow re-assembly buffer
its reference to an empty bufier is retrieved If the so index (e.g., tbe location or index within the free buffer array
:'1P1Y, new descriptors may be retrieved from the of the flow re-assembly buffer's identifier) and the offset of
plor ring in host memory to replenish the cache. the packet's data within that buffer are also stored in the
DICV.: descriptor is obtained from the cache or from descriptor.

tor ring, the buffer identifier (e.g., pointer, The size of the packet's data (e.g., the size of the packet's
.cx)contained in the descriptor is stored in a free ss TCP payload) and header(e.g., the offsetoftheTCPpayload

. · The buffer's initial addn:ss or other indication within the packet) are stored in data size and header size
, &lorage location is placed in next address field fields, respectively. The descriptor type field is given a value
fl flow's entr:Y in flow re-assembly buffer table that indicates that a flow packet has been transferred to host

ow's ~ntry m tbe re-assembly buffer table may memory. A release header flag is set if the header buffer is
·. by Its flow number. The location within the 60 full and a release data flag is set to indicate that no more data

array . of the buffer identifier is stored in will be placed in this flow re-assembly buffer (e.g., because
. buffer mdex 1102, and validity indicator 1106 is it :is being released). As explained above, the header buffer

state. may not be tested to see if it is full until a later state of this
710, the packet's data is copied or transferred procedure, at which time the n:lease header flag may be set.

MA operation) into the address or location 6S Finally, a release flow flag is set to indicate that DMAengine
next address fic;Jd of the flow's entry in flow 120 is tearing down the packet's flow. After state 1720, the

llffer table 1004. · . . illw,tratcd procedure rc:51ffllC-~ at state 1728.

·r Ii

ii
! ,,
·:,

1:~~
I

EX 1017 Page 553

ceaeekstcad ic ca Nakfae OR AL

$1 $2

f In state 1700, DMA engine 120 (e.g, DMA manager Yn state 1712, a completion descriptor is written or con-
002) determines whether there is a valid (c.g., active) figured to release the flow’s re-assembly buffer and to
Beader buifer. Ulustratively, this detcrmisation is made by_provide information io the host computer for processing the
famiuing validity indicator 1116 of header buffer table packet. In particular, the header bufler index (c.g., the index, :
006, which mateoeanaeve ooik buljer- If the valiaty 5 within the free buffer array, of the header buffer’s identifier)RMidicator is set (¢-£., one), then i 35 assumed tha and the offset of the packet’s header within the header buffer

yere is a headerbufferreadyto receive this packet and the are placed in the descriptor, Iusiratively, this offset serves
Bocedure continues at stare 1704. : to identify the first byte of the header, the first pad byte 4

therwise, in state 1702 a new header buffer is prepared preceding the header or the cell in which the headeris stored. a
F initialized for storing smallpackets and headers of 10 The flow re-assembly buffer index (e.g., the index, within

assembled packels. This initialization process may the free buffer array, of the flow re-assembly buffer’s ;
Rvolve obtaining a free ring descriptor from a cache main- identifi d th a of the packet’s dat within thatined by free ring manager 1012 andretrieving its buffer balk er) lwo tes a in th deaxt ' ata wi a

tifier (e.g., 4 teference to an available memory buffer). The are oS ore! i “ ip! or ve of th ketBie cache is empty, new descriptors may be retrieved from he size of the packet's data (c.g., the sizeofthe packet's :
Hfree descriptor ring in host memory to replenish the 15 TCP payload) and header (¢.g., the offset of the TCP payload h

a within the packet) portions are stored in data sive and header
stratively, when a new descriptoris obtained from the _—sizeficlds, respectively. The descriptor type ficld is given a
or from the free descriptor ring, the buffer identifier value that indicates that a flow packet has been transferred

ae, pointer, address, index) contained in the descriptor is to host memory. A release header flag may be setif the
ed in a free buffer array. The buffer’s initial address or 20 header buffer is full and a release data flag may be set to
kcother indication ofthe first storage location or cellin indicate that no more data will be placed in this flow
buiicr is placed in next address field 1114 of header re-assembly buffer (¢.g., because it is being released). In
er table 1006. Further, the index of the buffer identifier addition, a release flow flag is set to indicate that DMA
Bn the free buffer artay is stored in header buffer index engine 120 is tearing down the packet’s flow. The header
Band validity indicator 1116 is sct to a valid state. 25 buffer may not be tested to see if it is full until a later state

© ‘ mumope packet's header is copied or transferred _—of thiseGIn Slearea)embodiment, the release headerBie header buffer ai the address or location specified in_—flag maybe set(or cle: at that time.
ext address ficld of header buffer table 1006. As Then, in state 1714, the flow re-assermbly buffer is invali-
Bed above, in one embodiment of the invention pad dated by modifying validity indicator 1166 in the flow’s

Bepoay be inserted before the header in orderto align the 30 entry in flow re-assembly buffer table 1004 appropriately.
ping of the packet’s layer three protocol (eg, IP) After state 1714, the procedure continues at state 1730.

US 6,453,360 Bi

wm

fewith a sixteen-byie boundary.In addition,the beader In state 1716, DMA engine 120 determines whether the
be positioned within a ceil of predetermined size (e.g., packet’s TCP payload (¢.g., the packet’s data portion) will fit _
ies) within the header buffer. into the valid flow cc-assembly buffer. If not, the illustrated
Bic illustrated embodiment, operation code 3 indicates 35 procedure continues at slate 1722.
Bi. existing flow is to be tom down (e.g., the flow In state 1718, the packet data is copied or transferred (¢.g.,
Brobly buffer is to be invalidated and released to the via a DMA operation) into the flow’s re-assembly buffer, at
Rinputer). Thus, in state 1706it is determined whether the location specified in the next address field 1104 of the

assembly buffer is valid (c.g., active) for this low—_flow’s entry in flow re-assembly table 1004. One skilled in
nining the validity indicator in the flow’s entry in 40 the art will appreciate that the next address field may or may
assembly buffer table 1004. Illustratively, if the not be updated to account for this new packet because the

At is valid then there shouid be an active buffer re-assembly buffer is being released.
iE fa from one or more packets in this flow. If there In state 1720, a completion descriptor is written or con-
4 flow re-assembly bufferfor this flow, the ilustrated figured to release the flow’s re-assembly buffer and to
Bo Continues at state 1712. Otherwise, the procedure 45 provide information to the host compater for processing the
Ret state 1798. packet. The header buffer index (¢.g., the location or index,
1708, a new flow re-assembly buffer is prepared_within the free buffer array, of the header buffer’s identifier)

8 packet's data, Ilusiratively, a free ring descrip- _and the offset of the packet's header within the header buffer
ned from a cache maintainedby free ring manager are placed in the descriptor. The flow re-assembly buffer
ts reference to an empty bufler is retrieved. If the so index (¢-g., the location or index within the free buffer amay
iupty, new descriptors maybe retrieved from the_of the flow reassembly buffer’s identifier) and the offset of

peP'orring in bost memory to ceplenish the cache. _the packet’s data within that buffer are also stored in the
new deseripior is obtained from the cache or from—_descriptor.

B<Upior ring, the buffer identifier (e.g., pointer, Thesize of the packet’s data (¢.g., the size of the packet’s
Elex) contained in the descriptoris stored in a free 55 TCP payload) and header(c.g., the offset ofthe TCP payload

- The buffer’s initial address or other indication within the packet) are stored in data size and header size
: Storage location is placed in next address field fields, respectively. The descriptor type field is given a value
&ea $ entry in flow re-assembly buffer table _that indicates that a flow packet has been transferred to host

S entry in the re-assembly buffer table may=memory. A release headerflag is set if the header buffer is
a

E d by its flow number. The location within the 60 full anda release data flag is set to indicate that no more data
mR: Mray of the buffer identifier is stored in will be placed in this flow re-assembly buffer (c.g., because
7 4 buffer index 1102,and validity indicator 110Gis —_it is being released). As explained above, the header buffer
At Slate. may not be tested to sec if it is full until a later state of this

=“ 710, the packei’s data is copied or transferred procedure, at which time the release headerflag may be set.
;29MA operation) into the address or location 65 Finally, arclease flow flag is sct to indicate that DMAengine
eC Dext address field of the flow’s entry in flow 120 istearing down the packet’s flow. After state 1720, the

a

a

ns

pouifer table 1004. itlusitated procedure resumes at state 1728.

EX 1017 Page 553

US 6,453,360 Bl
83 84

In state 1722, a first portion of the packet's payload (e.g., computer by changing its ownership indicator field (e.g., ' 'i·
data) is stored in the flow's present (e.g., Vl!lid) re-assembly from one tozero).Altematively,some other mechanism may
buffer, at the location identified in the buffer's next address be used, such as issuing an interrupt or changing the

I ,'
' .,
!, 'j;'

field 1104. descriptor' descriptor type field. Illustratively, the descriptor
Because the full payload will not fit into this buffer, in 5 type field would be changed to a value indicating that DMA

state 1724 a new flow re-assembly buffer is prepared and the engine 120 transferred a flow packet into host memory.
remainder of the payload is stored in that buffer. In one In one alternative embodiment of the invention an opti-
embodiment of the invention information concerning the mization may be perfonned when processing a packet with
first buffer is stored in a completion descriptor. This infor- operation eode 3. This optimization takes advantage of the
mation may include the position within the free buffer array 10 knowledge that the packet contains the la.st portion of data
of the first buffer's buffer identifier and the offset of the first for its flow. In particular, instead of loading a descriptor into
portion of data within the buffer. The flow's entry in flow flow re-assembly buffer table 1004 the descriptor may be
re-assembly buffer table 1004 may then be updated fur the used where it is--in a descriptor cache maintained by free

. i;econd buffer (e.g., store a first address in next address field ring manager 1012.
UM and the location of buffer's identifier in the free buffer 15 For example, instead of retrieving a buffer identifier from
may in re-assembly buffer index 1102). a descriptor and storing it in an array in state 1708 above,

.. j
' . I:
!",1

· In state 1726, a completion descriptor is written or con- only to store one packet's data in the identified buffer before
jj.gured. The contents arc similar to those described for states releasing it, it may be more efficient to use the descriptor
,1712 and 1720 but this descriptor must reflect that two without removing it from the cache. In this embodiment,
·re-assembly buffers were used. 20 when a completion descriptor is written the values stored in
1 Thus, the header buffer index (e.g., the position within the its data index and data offset fields are retrieved from a

buffer array of the buffer identifier corresponding to the descriptor in the descriptor cache. Similarly, when the first
der buffer) and the offset of the packet's header within portion of a code 3 packet's data fits into the flow's active

e header buffer are placed in the descriptor, a.s above. The buffer but a new one is needed just for the remaining data,
flow re-assembly buffer index (e.g., the position, within 25 a descriptor in the descriptor cache may again be used

free buffer array, of the buffer identifier corresponding to without first loading it into a free buffer array and the flow
· first flow re-assembly buffer used to store this packet's re-assembly buffer table. In this situation, the completion
yload) and the offset of the packet's first portion of data descriptor's next index field is retrieved from the descriptor
thin that buffer arc also stored in the descriptor. in the descriptor cache.
· size of the packet's data (e.g., the size of the packet's 30 A Method of Transferring a Packet with Operation Code 4
. payload) and header (e.g., the offset of the TCP payload FIGS. 8A-18D depict an illustrative procedure in which
thin the packet) arc stored in data size and header size DMA engine 120 transfers a packet associated with opera-

respectively. The descriptor type field is given a value tion code 4 to a host memory buffer. As reflected in TABLE
indicates that a flow packet has been transferred to host 1, operation code 4 in this embodiment indicates that the
ory. A release header flag is set if the header buffer is 35 packet is compatible with the protocols that may be parsed

. and a release data flag is set to indicate that no more data by NIC 100 and continues a flow that is already established.
be placed in this flow re-assembly buffer.A release flow No new How is set up, the existing flow is not to be tom

}s set to indicate that DMA engine 120 is tearing down down, and the packet's data is to be re-assembled with data
.packet's flow. from other flow packets. Because the packet is to be

use two re-assembly buffers were used, a split packet 40 re-assembled, the packet's header should be stored in a
is set and the index, within the free buffer array, of the header buffer and its data in the flow's re-assembly buffer.

ly buffer's buffer identifier is stored in a next index In state 1800, DMA engine 120 determines whether there
Additionally, because the packet contains the final is a valid (e.g., active) header buffer. Illustratively, this

, n of data for the flow, a release next data buffer flag determination is made by examining validity indicator 1116
, . be set to indicate that the second flow re-assembly 45 of header buffer table 1006, which manages the active

r JS being released. header buffer. H the validity indicator is set, then there
, .tate 1728, the flow's entry in flow re-assembly buffer should be a header bu:IIer ready to receive this packet and the

004 is invalidated to ensure that it is not used again. procedure continues at state 1804 .
. ate 1730, it is determined whether the header buffer Otherwise, in state 1802 a new header buffer is prepared
_ In _this embodiment of the invention, where each so or initialized for storing small packets and headers of
1S eight kilobytes in size and entries in the header re-assembled packets. Illustratively, this init:iali7.ation pro-

no larger than 256 bytes, a counter is used to keep cess involves obtaining a free ring descriptor from a cache
·~f entries placed into each new header buffer. The maintained by free ring manager 1012 and retrieving its

18 considered full when thirty-two entries are stored. reference to an empty buffer. H the cacbe is empty, new
c buffer is full, in state 1732 the header buffer is 55 descriptors may be retrieved from the free descriptor ring in
_led to ensure that it is not used again. Illustratively, host memory to replenish the cache.
~es setting the header buffer table's validity indi- When a new descriptor is obtained from the cache or from
Invalid and communicating this status to the host the free descriptor ring, the buffer identifier (e.g., pointer,

fer. In this embodiment of the invention a release address,. index)-eontained in the descriptor is stored in a free
11.ag in the descriptor is set. 60 buffer may. The buffer's initial address or some other

header buffer is not full, then in state 1734 the next indication of the first storage location in the buffer is place
field of header buffer table 1006 is updated to in next addJess field 1114 of header buffer table 1006. Also,
the address at which to store the next header or the position or index of the buffer identifier within the free
cket. buffer array is stored in header buffer index 1112 and valid;ty

ssing associated with a packet having operali.un o5 . indicator 1116 is set ~ a. valid .$talc. . ·
· ::i::uds with end state 1799. In this end stat.:, the ·- In stiiie.1804 the packet's header is copied or transferred
''iiscd for this packet is turned over to the host into the header buffer at the address or location specified in

EX 1017 Page 554

B*,

fice buffer array of the buffer identifier co

US 6,453
83

In state 1722,a first portion of the packet's payload (e.g.,
data) is stored in the flow’s present(c.g., valid) re-assombly
buffer, at the location identified in the buffer’s next address
field 1104.

Because the full payload will not fit into this buffer, in 5
slate 1724 anew flow re-assembly buffer is prepared and the
remainder of the payload is stored in that buffer. In one
embodiment of the invention information concerning the
first buffer is stored in a completion descriptor. This infor-

; mation may includethe position within the free buffer array 10
of the first buffer’s buffer identifier and the offset of the first

. portion of data within the buffer. The flow’s entry in flow
re-assemmbly buffer table 1004 may then be updated for the

E second buffer (¢.g., store a first address in next address field
& 1104 and the location of buffer’s identifier in the free buffer 15

atray in re-assembly buffer index 1102).
In state 1726, a completion descriptor is written or con-

‘figured. The contents are similar to those described forstates
"1712 and 1720 but this descsiptor musi reflect that two
Ric-asscmbly buffers were used, 20

3 Thus, the header buffer index (c.g., the position within the
rresponding to the

Seader buffer) and the offset of the packet’s header within
ite header buffer are placed in the descriptor, as above. The
ist flow re-assembly buffer index (e.g., the position, within 25
he free buffer aay, of the buffer identifier comesponding to
Re first flow re-assembly buffer used to store this packet’s
fayload) and the offset of the packet’s first portion of data

thin that buffer are also stored in the descriptor.
F-ihe size of the packet’s data {e.g., the size of the packet’s 30
FCP payload) and header(¢.g., the offset of the TCP payload
fithin the packet) are stored in data size and header size
Bids, respectively. The descriptor type field is given a value
Bit indicates that a How packet bas been transferred to host

merory. A release header flag is set if the header buffer is 35
and a release data flag is set to indicate that no more data
be placed in this flow re-assembly buffer, Arelease flow

esiS set to indicate that DMA engine 120is tearing down
me packct’s flow.

pecause two re-assembly buffers were used, a split packet 40
aS Sct and the index, within the free buffer array, of the
ge crbly buffer’s buffer identifier is sinred in a next index

ee Additionally, because the packet contains the final
mon of data for the flow, a release next data buffer flag
also be set to indicate that the second flow re-assembly 45

Bet is being released.
state 1728, the flow’s entry in flow re-assembly buffer

E 10K}4 is invalidated to ensure thatit is not used again.
Bslate 1736,it is determined whether the header buffer

in ‘this embodiment of the invention, where each 50
38 cight kilobytes in size and entries in the header

© Ro larger ihan 256 bytes, a counter is used to keep
4 of entries placed into each new header buffer. The
a. 'S considered full when thirty-two entries are stored.

be buffer is full, in state 1732 the header bulfer is 55
Seated fo ensure that it is not used again. [lustratively,
BVOlves setting the header buffer table’s validity indi-

2 Invalid and communicating this status to the host
Be ter. In this embodiment of the invention a release

B flag in the descriptoris set. 60
a; header buffer is not full, then in state 1734 the next
Re fcld of header buffer table 1006 is updated to

E sa address at which to store the next header orpaCK et.

BOcssing associated with a packet having operation5
Bectcuds with end state 1799. In this end state, the

e Used for this packet is turned over to the hostF

360 Bl
84

computer by changing its ownership indicator field (e.g.,
from one to zero). Alternatively, some other mechanism may
be used, such as issuing an interrupt or changing the
descriptor’ descripior type field. [lustratively, the descriptor
type field would be changed to a value indicating that DMA
engine 120 transferred a flow packet into host memory.

In one alternative embodiment of the invention an opti-
mization may be performed when processing a packet with
operation code 3. This optimization takes advantage of the
knowledge that the packet contains the last portion of data
forits flow. In particular, instead of loading a descriptorinto
flow re-assembly buffer table 1004 the descriptor may be
used where it is—in a descriptor cache maintained by free
ring manager 1012.

For example, instead of retrieving a buffer identifier from
a descriptor and storing it in an array in state 1708 above,
only to store one packet’s data in the identified buffer before
releasing it, it may be more efficient to use the descriptor
without removing it from the cache. In this embodiment,
when a completion descriptor is written the values stored in
its data index and data offset fields are retrieved from a
descriptor in the descriptor cache. Similarly, when the first
portion of a code 3 packet’s data fits into the flow’s active
buffer but a mew one is needed just for the remaining data,
a descriptor in the descriptor cache may again be used
withoutfirst loading it into a free buffer array and the flow
te-assembly buffer table. In this situation, the completion
descriptor’s next index field is retrieved from the descriptor
in the descriptor cache.
A Method of Transferring a Packet with Operation Code 4

FIGS. 8A—18D depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera-
tion code 4 to a hast memory buffer, As reflected in TABLE
1, operation code 4 in this embodiment indicates that the
packet is compatible with the protocols that may be parsed
by NIC 100 and continues a flow thatis already established.
No new flow is set up, the existing flow is not to be tom
down, and the packet’s data is to be re-assembled with data
from other flow packets. Because the packet is in be
re-assembled, the packet’s header should be stored in a
header buffer andits data in the flow’s re-assembly buffer.

In state 1800, DMA engine 120 determines whetherthere
is a valid (c.g., active) header buffer. Illustratively, this
determination is made by examining validity indicator L116
of header buffer table 1006, which manages the active
header buffer. If the validity indicator is set, then there
should be a header buffer ready to receive this packet and the
procedure continues at state 1804.

Otherwise, in state 1802 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (c.g., pointer,
address, index)contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indication of the first storage location in the buffer is place
in next address field 1114 of header buffer table 1006. Also,
the position or index of the buffer identifier within the free
buffer array is stored in header bufferindex 1112 and validity
Andicator1116is set 19 a valid.state. -
Yn state 1804 the packet's header is copied or transferred
into the header buffer at the address or location specified in

EX 1017 Page 554

scapesanna)mgaya

EX 1017 Page 555

ie osLoee oreaia

US 6,453,360 B1
$5

the next address field of header buffer table 1006. As
descnbed above, in one embodiment of the invention pad
bytes are inserted before the header in orderto align the
beginning of the packet’s layer three protocol (e.g., IP)
header with a sixtcen-byte boundary. In addition, the pack-
et’s header may be positioned within a cell of predetermined
size (c.g., 256 bytes) within the buffer.

In the illustrated embodiment, operation code 4 indicates
that an existing flow is to be continued. Thus, in state 1806
it is determined whether a flow re-assembly buffer is valid
(e.g., active) for this flow by examiningthe validity indicator
in the flow’s entry in flow re-assembly buffer table 1004.
Iifustratively, if the indicator is valid then there is au active
buffer storing data from one or more packets in this flow. If
there is a valid flow re-assembly buffer for this flow, the
illustrated procedure continues at state 1808. Otherwise, the
procedure proceeds to state 1810.

In state 1808,it is determined whether the packet’s data
: (e.g., its TCP payload) portion is too large for the current

flow re-assembly buffer. If the data portion is too large, two
flow re-assembly buffers will be used and the illustrated
procedure proceeds to state 1830. Otherwise, the procedure
continues at state 1820.

In state 1810, because it was found (in state 1806) that
y §©6there was no valid flow re-assembly buffer for this packet,
La n¢w flow re-assembly buffer is prepared. Ilustratively, a

z -free ring descriptor is obtained from a cache maintained by
p :free ring manager 1012 andits reference to an empty buffer
B18 retrieved. If the cache is empty, new descriptors may be

F -retrieved from the free descriptor ring in host memory to

p<: When a new descriptor is obtained from the cache or from
“ithe free descriptor ring, the buffer identifier (e.g., pointer,

Ryeddress, index) contained in the descriptoris stored in a free

‘he flow’s entry in the table may be recognized byits flow
piumber. The location of the buffer identifier in the free buffer

Wrayis stored in re-assembly buffer index 1102, and validityator 1106 is set to a valid state.

Wen state 1812, the packet’s data is copied or transferred
eg, Via a DMAoperation) into the address or location

geccified in the next address field of the flow’s entry in flow
assembly buffer table 1004.
MO State 1814, a completion descriptor is written or con-

d bo Provide information to the host computer for
sing the packet. In particular, the header buffer index

»the index within the free buffer array of the buffer
potificr that identifies the header buffer) and the offset of
packet's header within the header buffer are placedin the

eptor. Ilustratively, this offset may serve to identify the
byte of the header, the first pad byte preceding the

or the header’s cell within the headerbuffer. The flow
msscmbly buffer index (e.g., the index within the free
per array of the buffer identifier that identifies the flow

Bscinbly buffer) and the offset of the packel’s data within
Auer are also stored in the descriptor.
aSize of the packet’sdata (c.g., the size of the packet’s

Yload) andheader(e.g., the offset of the TCP payload
im the packet) are stored in data size and header size

Be tespectively. The descriptor type field is given a value
paling that 2 flow packet has becn transferred to host

FY. A release headerflag is set if the header bufferis
me &rclease data flag is not set, because more data will

f“ in this flow re-assembly buffer. The header bufferge 0c tested to secif it is full until a later state of this

2s

Hw

35

40

4s

55

86

procedure. In such an embodiment, the release headerflag
may be set (or cleared)at that time.

In one embodiment of the invention a release flow flag
mayalso beset, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determinesthat another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared (c.g., a zero will be stored). This indicates that the
host computer should await the next flow packet before
processing this one. By collectively processing multiple
packets from a single flow, the packets can be processed
more efficiently and less processor time is required. If,
however, no other packets in the sameflow are identified, the
release flow flag maybe set (e.g., a one is stored) to indicate
that the host computer should process the flow packets it has
received so far, without waiting for more.

In state 1816, the flow’s entry in flow re-assembly buffer
table 1004 is updated. In particular, next address field 1104
is updated to identify the location in the re-assembly buffer
at which the next flow packet’s data should be stored.After
state 1816, the illustrated procedure continuesat state 1838.

In state 1820 (reached from state 1808), it is known that
the packet’s data, or TCP payload, will fit within the flow’s
cuxrent re-assembly buffer. Thus,the packet data is copied or
transferred into the buffer at the location identified in next

address field 1104 of the flow’s entry in flow re-assembly
buffer table 1004.

In state 1822, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header buffer index
(e.g., the index within the free buffer array of the buffer
identifier that identifies the header buffer) and the offset of
the packet’s header within the header buffé&r are placed in
the descriptor. The flow re-assembly buffer index (e.g., the
index within the free buffer array of the buffer identifier that
identifies the flow re-assembly buffer) and the offset of the
packet’s data within that buffer are also stored in the
descriptor.

The size of the packet’s data (c.g., the size of the packet’s
TCPpayload) and header(c.g., the offset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a fow packet has been transferred to host
memory. A release header flag is set if the header buffer is
full but a release data flag is set only if the flow re-assembly
buffer is now full. The header and flow re-assembly buffers
maynotbe tested to see if they are full until a later state of
this procedure. In such an embodiment, the flags may be set
(or cleared) at that time.

In one embodiment of the invention a release flow flag
mayalso be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determinesthat another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared. This indicates that the host computer should await
the next flow packet before processingthis one. By collec-
tively processing multiple packets from a single flow, the
packets can be processed more efficiently and Jess processor
time is required. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 1824,the flow re-assembly buffer is examined to
determineif itis full. In the presently described embodiment
of the invention this test is conducted byfirst determining
how muck data(c.g., how nianybytes) has heen storedin ihe
buffer. [lustratively, the flow’s next address field and the

WA OR APete

EX 1017 Page 555

EX 1017 Page 556

seatee _
TELSLdFgeign meeeniie

wen. Sarat

SITCORRSDE emrtRReRaneiMMtoe? a Imayts© TE MEE ee
yet

US 6,453,360 B1
87

amount of data stored from this packet are summed. Then,
the initial buffer address (e.g., before any data was stored in
it) is subtracted from this sum. This value, representing how
muchdata is now stored in the buffer, is then compared to
the size of the buffer (.g., eight kilobytes).

If the amountof data currently stored in the buffer equals
the size ofthe buffer,thenit is full. In the presently described
embodimentofthe inventionit is desirable to completely fill
flow re-assembly buffers. Thus, a flow re-assembly bufferis
not considered full until its storage space is completely
populated with flow data. This scheme enables the efficient
processing of network packets.

jf the flow re-assembly buffer is full, in state 1826 the
buffer is invalidated to ensure it is not used again.
Illustratively, this involves setting the header buffer table’s
validity indicatorto invalid and communicatingthis status to
the host computer. In this embodiment oftbe invention, a
release data flag in the descriptoris set. After state 1826, the
procedure continues at state 1838.

If the flow re-assembly bufferis notfull, then in state 1828
next address ficld 1104 in the flow’s entry in flow
re-assembly buffer table 1004 is updated to indicate the
address at which to store the next portion of flow data. After
state 1828, the procedure continues at state 1838.

In state 1830 (reached from state 1808),it is known that
the packet’s data will not fit into the flow’s current
re-assembly buffer. Therefore, some of the data is stored in
the current buffer and the remainder in a new bnffer. In
particular, in state 1830 a first portion of data (c.g., an
amountsufficientto fill the buffer) is copied or transferred
into the current flow re-assembly buffer.

In state 1832, a new descriptor is loaded from a descriptor
B cache maintained by free ring manager 1012.Its identifier of

a new buffer is retrieved and the remaining data from the
packetis stored in the new buffer. In one embodiment of the

E; invention,after the first portion of data is stored information
K from the flow’s entry in flow re-assembly table 1004 is

f. stored in a completion descriptor. Illustratively, this infor-
p mation includes te-assembly buffer index 1102andthe offset

F of the first portion of data within the full buffer. Then the
f new descriptor can be Joaded—its index is stored in
 re-assembly buffer index 1102 and an initial address is stored&: in next address 1104.

; In state 1834, a completion descriptor is written or con-
Ffipured to provide information to the host computer for
[Processing the packet. In particular, the beader buffer index
B{e.g., the location of the header buffer’s buffer identifier
FWithin the free buffer array) and the offset of the packet’s
xs eader within the header buffer are placed in the descriptor.
ethe flow re-assembly buffer index (¢.g., the location of the
POW re-assembly buffer’s buffer identifier within the free
Buffer array) and the offset of the packet's data within that
tuffer are also stored in the descriptor.

&: The size ofthe packet’s data (¢.g., the size of the packet’s
P payload) and header (¢.g., the offset of the TCP payload

within the packet) are stored in data size and headersize
Tespectively. The descriptor type field is given a value

icating that a flow packet has been transferred to host
eeinory. A release headerflag is set if the header buffer is

Bi itd a release data flag is set because the first flow
assembly buffer is being released. The header buffer may
Pt be tested to sec if it is full until a later state of this
pecdure. In such an embodiment, the release header flag
. be set (or cleared) at that time.

Cause two re-assembly buffers were used, a split packet
w 10 the descriptor is set and the index, within the free

iptor ring, of the descriptor that references the second
mbly buffer is stored in a next index field.

}

25

40

65

88

In one embodimentof the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determinesthat another packet in the sameflow will soon be
transferred to the host computer, the release flow flag will be
cleared. This indicates that the host computer should await
the next flow packet before processing this one. By collec-
tively processing multiple packets from a single flow, the
packets can be processed more efficiently and less processor
time is required. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 1836, next address field 1104 in the flow’s entry
in flow re-assembly buffer table 1004 is updated to indicate
the address in the new buffer at which to store the next
portion of flow data.

In state 1838,it is determined whether the header buffer
js full. In this embodiment of the invention, where cach
buifer is cight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1840 the header buffer is
invalidated to ensure that it is not used again. IHustratively,
this involvessetting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set.

If the headerbuffer is not full, then in state 1842 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small] packet.

The processing associated with a packet having operation
code 4 then ends with end state 1899. In this endstate, the
descriptor used for this packet is tumed over to the host
computer by changing its ownership indicator field (c.g.,
from one to zero). In one alternative embodiment of the
invention, DMA engine 120 issues an interrupt or uses other
means to alert the host computer that a descriptor is being
released.

In one alternative embodiment of the invention the opti-
mization described above for packets associated with opera-
tion code 3 may be performed when processing a packet
with operation code 4. This optimization is useful, for
example, when a code 4 packet’s data is too large to fit in the
current flow re-assembly buffer. Instead of loading a new
descriptorfor the second portion ofdata, the descriptor may
be used where it is—in a descriptor cache maintained byfree
ring manager 1012. This allows DMA engine 126to finish
transferring the packet and turn overthe completion descrip-
tor before adjusting flow re-assembly buffer table 1004 to
reflect a new buffer.

In particular, instead of loading information from a new
descriptor in state 1832 above, it may be more efficient to
use the descriptor without removingit from the cache. Io this
embodiment a new buffer for storing a remainder of the
packet’s data is accessed by retrievingits buffer identifier
from a descriptor in the free ring manager’s descriptor
cache. Thedata is stored in the buffer and, after the packet’s
completion descriptor is configured and released, the nec-
essary informationis loaded into the flow re-assembly table
as described above.

Ilustratively, re-assembly buffer index 1102 stores the
buffer identifier’s index within the free buffer array, and an
initial memory address ofthe buffer, taking into account the
newly stored data, is placed in next address 1104.

EX 1017 Page 556

EX 1017 Page 557

ANRRES”

US 6,453,360 B1
89

A Method of Transferrmg a Packet with Operation Code 5
FIGS. 19A-19E depict a procedure in which DMAengine

120 transfers a packet associated with operation code 5 to a
host memory buffer. As reflected in TABLE 1, operation
code 5 in one embodimentof the invention mayindicate that
a packet is incompatible with the protocols that may be
parsed by NIC 100. It may also indicate that a packet
contains all of the data for a new flow (c.g., no more data will
be received for the packet’s flow). Therefore, for operation
code 5, no new flow is set up and there should not be any
flow to tear down. The packet’s data, if there is any, is not
to be re-assembled.

In state 1900, it is determined whether the present packet
is a small packet(e.g., less than or equal to 256 bytesin size)
suitable for storage in a header buffer. If so, the illustrated
procedure proceeds to state 1920.

Otherwise, in state 1902 it is determined whether the
present packet is a jumbo packet (c.g., greater than 1522
bytesin size), such that it should be stored in a jumbobuffer.
If so, the illustrated procedure proceeds to state 1940. Ef not,
the procedure continues at state 1904.

Instate 1904, it has been determined that the packet is not
a small packet or a jumbo packet. The packetmay, therefore,
be stored in a non-re-assembly buffer used to store packets
that are no greater in size than MTU (Maximum Transfer
Unit) in size, which is 1522 bytes in a present embodiment.
This buffer may be called an MTU buffer. Therefore, DMA
engine 120 determines whether a valid (c.g., active) MTU
buffer exists. Illustratively, this determination is made by
cxamining validity indicator 1126 ofMTU buffertable 1008,
which manages the active MTU buffer. If the validity
indicatoris set, then there should be a MTU buffer ready to
receive this packet and the procedure continuesat state1908.

Otherwise, in state 1906 a new MTU bufferis prepared or
initialized for storing non-re-assembleable packets up to
1522 bytes in size. Ilustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
suffer identifier (e.g., a reference to an empty host memory
suffer). If the cache is empty, new descriptors may be
‘etieved from the free descriptor ring in host memory to
‘eplenish the cache.

Whena new descriptor is obtained from the cache or from
he free descriptor ring, the buffer identifier (e.g., pointer,
\ddress, index) contained in the descriptoris stored ina free
vuffer array. The buffer’s initial address or some other
ndication ofthe first storage location in the buffer is placed
B next address field 1124 of MTU buffer table 1008. The

vuffer identifier’s index or position within the free buffer
uray is stored in MTU buffer index 1122, and validity
ndicator 1126 is set to a valid state.

Th state 1908 the packet is copied or transferred (e.g., via
: DMA operation) into the MTU buffer at the address or
Ocation specified in the next address field of MTU buffer
able 1008. As described above, in one embodimentofthe
vention pad bytes may be inserted before the header in
order to align the beginning of the packet’s layer three
wrotocol (e.g., IP) header with a sixtcen-byte boundary. In
iddition, the packet may be positioned within a cell of
napetermined size (c.g., two kilobytes) within the MTUuiter.

_ lp state 1910, a completion descriptor is written or con-
igured to provide necessary information to the host com-
miter for processing the packet. In particular, the MTU
luffer index (c.g. the location within the free buffer array of

20

25

35

40

50

60

65

be buffer identifier for the MTU buffer) and offset (e.g., the *

90

offset to the packet or the packet’s cell within the buffer) are
placed in the descriptor in data index and dataoffsetfields,
respectively. The size of the packet is siored in a data size
field. A header size field within the descriptor maybesetto
zero to indicate thatthe entire packet was placed in the MTU
buffer (c.g., n0 separate header portion was stored in a
header buffer). A release data flag is set in the descriptor if
the MTU bufferis full. The MTU buffer may not, however,
be testedto sec if it is full until a later state of this procedure.
In such an embodimentof the invention,the release data flag
may be set (or cleared) at that time. A release header flag
maybecleared (c.g., not set), because there is no separate
header portion being conveyed to the host computer.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into bost memory. Also, a predeter-
mined value (.g., Zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and tuming over
ownership of the descriptor. In one embodiment of the
invention, the ownership indicator is not set until end state
1999 below. In an alternative embodiment of the invention,
the descriptor may be released by issuing an interrupt or
other alert. In yet another alternative embodiment, changing
the descriptor’s descriptor type field may signal the descrip-
tor’s release.

In state 1912, DMA engine 120 determines whether the
MTU buffer is full. In this embodiment of the invention,
where each bufferis eight kilobytes in size, each entry in the
MTU buffer may beallotted two kilobytes of space and a
counter may be used to keep track of entries placed into an
MTU buffer. The buffer may be considered full when a
predetermined numberofentries (e.g., four) are stored. In an
alternative embodimentof the invention entries in an MIU
buffer may or may not be allocated a certain amount of
space, in which case DMA engine 120 may calculate how
much storage space within the buffer has yet to be used.If
no space remains,orif less than a predetermined amount of
space is still available, the buffer may be consideredfull.

If the MTU buffer is full, in state 1914 the buffer is
invalidated to ensure that it is not used again. Miustratively,
this involves setting the MTU buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer,In this embodimentof the invention a release data
flag in the descriptor is set. The illustrated procedure then
caods with end state 1999.

If the MTU buffer is not full, then in state 1916 the next
address field ofMTU buffer table 1008 is updated to indicate
the address at which to store the next packet. The illustrated
procedure then ends with end state 1999.

In state 1920 (reached from state 1900), it has been
determinedthatthe present packetis a small packet suitable
for storage in a header buffer. Therefore, DMA engine 120
(e-g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. [lustratively, this determi-
nation is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer. If the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-
tinuesat state 1924.

Otherwise, in state 1922 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ning manager 1032 and retrieving its
reference to an empty buffer. If the cache is empty, new
dh s.r tis ta retrieved from the free descriptor ting in
host memory to replenish the cache.

EX 1017 Page 557

EX 1017 Page 558

gh ON oaSeaataenetenerTaiksaetie2

91

Whenanew descriptor is obtained from the cache or from
E the free descriptor ring, the buffer identifier (c.g., pointer,

| address, index) contained in the descriptoris stored in a free
; puffer array. The buffer’s initial address or some other
F indicatorof the first storage location or cell in the buffer is

b placed in next address field 1114 of header buffer table 1006.
Further, the buffer identifier’s position within the free buffer

3 array is stored in header buffer index 1112 and validity
F indicator 1116is set to a valid state.

In state 1924 the packet is copied or transferred (e.g., via
Fs DMA operation) into the header buffer at the address or
F jocation specified in the next address field of header buffer

table 1006. As described above, in one embodiment ofthe
invention pad bytes may be inserted before the header in
order to align the beginning of the packet’s layer three
protocol (¢.g., IP) header with a sixteen-byte boundary. In

} addition, the packet may be positioned within a cell of
| predeterminedsize (.g., 256 bytes) within the buffer.

E=:In state 1926, a completion descriptor is written or con-
- figured to provide necessary information to the host com-

puter (c.g., a software driver) for processing the packet. In
particular, the header buffer mdex (¢.g. the index of the free

: buffer array clement that contains the header buffer’s
F identifier) and offset are placed in the descriptor, in header
F index and headeroffset fields, respectively. Ilustratively,
E this offset serves to identify the first byte of the packet, the
} first pad byte preceding the packet or the location of the
B packet’s cell within the buffer. The size ofthe packet is also
® stored in the descriptor, illustratively within a header size

field. A data size field within the descriptor may be set to
} zero to indicate that the entire packet was placed in the

header buffer (e.g., n0 separate data portion was stored in
another buffer). A release header flag may be set in the

p descripior if the header buffer is full. However, the header
f buffer may not be tested to see if it is full until a later state
F of this procedure. In such an embodimentof the invention,

E the release header flag may beset (or cleared)atthat time.
A release data flag may be cleared (e.g., not set), because
there is no separate data portion being conveyedto the host

e. computer.
§ The descriptor type field is changed to a value indicating
, that DMA engine 120 transferred a non-re-assembleable

packetinto host memory. Also, a predetermined value(e.g.,
| zero) is stored in the descriptor’s ownership indicatorfield
». to indicate that DMA engine 120is releasing a packet to the

host computer and turning over ownership of the descriptor.
; In Ove embodimentof the invention the ownership indicatorpS not sct until end state 1999 below.

f Instate 1928it is determined whether the header buffer is
full. Tn this embodimentof the invention, where each buffer

; 1S cight kilobytes in size and entries in the header buffer are
no larger than 256 bytes, a counter is used to keep track of

P cntries placed into each new header buffer. The buffer is
Considered full when thirty-two entries are stored.
_ If the buffer is full, in state 1930 the header buffer is
invalidated to ensure that it is not used again.Ilustratively,

y this involves setting the header buffer table’s validity indi-
ator to invalid and communicating this status to the host

" Computer, In this embodiment of the invention a release
lerflag in the descriptoris set. The illustrated procedure

then ends with end state 1999.
If the header buffer is not full, then in state 1932 the next

Address field of header buffer table 1006 is updated 10
indicate the address at which to store the next header or
Small packet. Theillustrated procedure then ends with end

i; State 1999,

FoI state 1940 (reached from state 1902), it has been
termined that the packet is a jumbo packet(e.g.,thatit is

25

40

60

Belt te re ah 5 i a ee Sere bees
OP Sa SEE etek arms oneiN SeeDRTSegeen Ep neTOMES “ty ac

US 6,453,360 B1
92

greater than 1522 bytes in size). In this embodimentof the
invention a jumbo packet’s data portion is stored in a jumbo
buffer. Its header is also stored in the jumbo buffer unless
splitting of jumbo packets is enabled, in which case its
header is stored in a header buffer. DMA engine 120 thus
determines whethera valid (c.g., active) jumbobufferexists.
Illustratively, this determination is made by examining
validity indicator 1136 of jumbo buffer table 1010, which
manages an active jumbo buffer. If the validity indicator is
set, then there is a jumbo buffer readyto receive this packet
and the procedure contimues at state 1944.

Otherwise, in state 1942 a new jumbo buffer is prepared
orinitialized for storing a non-re-assembleable packetthat is
larger than 1522 bytes.Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 andretrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

‘Whena new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or other indication
of the first storage location within the bufferis placed in next
address field 1134 of jumbobuffer table 1010. The position
of the buffer identifier within the free buffer array is stored
in jumbo buffer index 1132,and validity indicator 1136is set
to a valid state.

Then, in state 1944, DMA engine 120 determines whether
splitting of jumbo buffers is enabled. If enabled, the header
of a jumbo packet is stored in a header buffer while the
packet’s data is stored in ope or more jumbo buffers.If not
enabled, the entire packet will be stored in one or more
jumbo buffers. Ilustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmableindicator(e.g., flag, bit, register) that is set by
software operating on the host computer (e.g., a device
driver). If splitting is enabled, the illustrated procedure
continues at state 1960. Otherwise, the procedure proceeds
to state 1946.

In state 1946, DMA engine 120 determines whetherthe
packet will fit into one jumbo buffer. For example, in an
embodiment of the invention using cight kilobyte pages,if
the packet is larger than eight kilobytes a second jumbo
buifer will be needed to store the additional contents. If the
packet is too large, the illustrated procedure continues at
state 1952.

Otherwise, in state 1948 the packet is copied or trans-
ferred (e.g., via a DMA operation) into the current jumbo
buffer, at the location specified in the next address field 1134
of jumbo buffer table 1010. When the packet is transferred
intact like this, padding may be added to align a header
portion of the packet with a sixteen-byte boundary. One
skilled in the art will appreciate that the next address field
may not need to be updated to account for this new packet
because the jumbo buffer will be released. In other words, in
one embodimentof the invention a jumbo bufferis only used
once (e.g., to store one packet or a portion of one packet). In
an altemative embodimentof the invention a jumbo buffer
may store portions of two or more packets, in which case
next address field 1134 may need to be updated.

In state 1950, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
jumbo buffer index (¢.g., the index, within the free buffer
array, of the buffer identificr that corresponds to the jumbo
buffer) and the offsetof the first byte of the packet within the

EX 1017 Page 558

EX 1017 Page 559

eRsseieeOO Seekecee
aa

US 6,453,360 B1
93

jumbobuffer are placed in the descriptor, in data index and
data size fields, respectively. The size ofthe packet(e.g., the
packet length) is stored in a data size field.

A headersize field may be cleared (e-g., a zero is stored)
to indicate that the header buffer was not used (e.g., the
header was not stored separately from the packet’s data).
Because the packet was stored intact, header index and
headeroffset fields may or may not be used (e.g., the values
storedin their fields do not matter). A release headerflag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo buffer (e.g., because it is
being released).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120is releasing a packet
to the host computer and tuming over ownership of the
descriptor. In one embodimentof the invention, the owner-
ship indicator is not changed until end state 1999 below.
After state 1950, the illustrated procedure resumes at state
1958.In one alternative embodimentofthe invention, DMA
engine 120 issues an interrupt or uses some other means,
possibly not until end state 1999,to alert the host computer
that a descriptor is being released.

In state 1952, a first portion of the packet is stored in the
present(¢.g., valid) jumbo buffer,at the location identified in
the buffer’s next address field 1134. Because the whole
packet will notfit into this buffer, in state 1954 a new jumbo
buffer is prepared and the remainder of the packet is stored
in that buffer.

In state 1956, 2 completion descriptor is written or con-
figured. The contents are similar to those described in state
1950 but this descriptor mustreflect that two jumbo buffers
Were used to store the packet. Thus, the jumbo buffer index
(c.g., the index, within the free buffer array, of the array
element containing the headerbuffer’s buffer identifier) and
the offsetofthefirst byte of the packet within the first jumbo

f buffer are placedin the descriptor, as above. ‘The size of the
’ packet(e.g., the packet length) is stored in a data size field.

Aheader size field may be cleared (¢.g., a zero is stored)
¢ to indicate that the header buffer was not used (e.g., the

E header was not stored separately from the packet’s data).
: Because there is no separate packet header, header index and
3 header offset fields may or maynot be used (c.g., the values

e. Stored in their ficlds do not matter).
> Avrelease headerflag is cleared and a release data flag is
ESet to indicate that no more data will be placed in these
Fdembo buffers (e.g, because they are being released).
; Burther, a split packet flag is sct to indicate that a second
, umbo buffer was used, and the index (within the free buffer
5 “ray) of the buffer identifier for the second bulfer is stored

Mf a next index field.
B*. The descriptor type field is changed to a value indicating

that DMA engine 120 transferred a non-re-assembleable
ct into bost memory. And, a predetermined value (e.g.,

Computer and turning over ownership of the descriptor.
‘one embodimentof the invention the ownership indicator
hot changed until endstate 1999 below.

“iQ state 1958, the jumbo buffer’s entry in jumbo buffer
ls 1010 is invalidated (e.g., validity indicator 1136is sct

pValid) to ensure thatit is not used again. In the procedure
&tibed above, a jumbo packet was stored in, at most, two
290 buffers. In an altemative embodiment of the

pation,-a jumbo buffer may be stored across any number

20

30

40

4a

wv o

94
of builers. The descriptor that is configured to report the
transfer of such a packet is constructed accordingly, as will
be obvious to one skilled in the art.

After state 1958, the illustrated procedure ends at end
state 1999.

In state 1960 (reached from state 1944), it has been
determined that the present jumbo packet will be split to
store the packet header in a header buffer and the packet data
in one or more jumbo buffers. Therefore, DMA engine 120
(c.g. DMA manager 1002) first determines whether there is
a valid (e.g., active) header buffer. Illustratively, this deter-
mination is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer. If the validity indicatoris set, then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1964.

Otherwise, in state 1962 a new header buifer is prepared
or initialized for storing small packets and headers of other
packets. Ilustratively, this initialization process involves
obtaining a free rmg descriptor from a cache maintained by
free rg manager 1012 and retrieving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring m host memory to
replenish the cache.

‘When a new descriptoris obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indication ofthe first storage location or cell in the buffer is
placed in next address field 1114 ofheader buffer table 1006.
The index or position of the buffer identifier within the free
buffer array is stored in header buffer index 1112, and
validity indicator 1116 is set to a valid state.

In state 1964 the packet’s headeris copied or transferred
(e.g., via a DMA operation) into the header buffer at the
address or location specified in the next address field of
header buffer table 1006. As described above, in one
embodiment of the invention pad bytes may be inserted
before the header in order to align the beginning of the
packet’s layer three protocol(e.g., [P) header with a sixtecn-
byte boundary. In addition, the header may be positioned
within a cell of predetermined size (e.g., 256 bytes) in the
buffer.

In state 1966, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload) will fit into one jumbo
buffer. If the packet is too large to fit into one (e.g., the
current jumbo buffer), the illustrated procedure continues at
state 1972.

In state 1968, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the current jumbo buffer, at
the location specified in the next address field 1134 ofjumbo
buffer table 1010. One skilled in the art will appreciate that
the next address field may noi need to be updated to account
for this new packet because the jumbo buffer will be
released.In other words, in one embodimentof the invention
a jumbo buffer is only used once(e.g., to store one packet
or a portion of one packet).

In state 1970, a completion descriptor is written or con-
fipured to release the jumbo buffer and to provide informa-
tion to the host-computer for processing the packet. The
headerbuffer index (c.g. the free buffer array position of the
buffer identifier corresponding to the header buffer) and
offset of the packet’s header are placed in the descriptor in
header index and header offset fields, respectively.
Tustratively, this offset servesto identify the first byte of the
header, the first pad byte preceding the header or the cell in
which the header is stored.The yuinbo buffer index (¢.g., the

EX 1017 Page 559

Se

EX 1017 Page 560

« Ilal aciad RESOaReeeSeMERBWI

US6,453,360 B1
95

index within the free buffer array of the buffer identifier that
references the jumbo buffer) and the offset of the first byte
of the packet’s data within the jumbo buffer are placed in
data index and dataoffset fields, respectively. Header size
and data size fields are usedto store the size of the packet’s
header(¢.g., the offset of the payload within the packet) and
data (e.g., payload size), respectively.

A telease header flag may be set in the descriptor if the
header buffer is full. However, the header buffer may not be
tested to see if it is full until a later state of this procedure.
in such an embodimentof the invention, the release header
flag may be set (or cleared) at that time. A release data flag
is also set, because no more data will be placed in the jumbo
buffer (€.g., it is being released to the host computer).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Also, a predetenninedvalue(e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120is releasing a packetto the
host computer and turning over ownership of the descriptor.
In one embodimentof the invention the ownership indicator
is not set until end state 1999 below.

After state 1970, the illusirated procedure proceeds to
state 1978.

In state 1972,a first portion of the packet’s data is stored
in the present (e.g., valid) jumbo buffer, at the location
identified in the buffer’s next address field 1134. Because all
of the packet’s data will notfit into this buffer, in state 1974
a new jumbobuffer is prepared and the remainder of the
packet is stored in that buffer.

In state 1976, a completion descriptor is written or con-
figured. The contents are similar to those describedin states

: 1970 but this descriptor must reflect that two jumbo buffers
i were used to store the packet. The header buffer index (e.g.
; the free buffer array elementthat contains the header buffer’s

identifier) and offsct of the header are placed in the descrip-
tor in header index and headeroffsetfields, respectively. The
Jumbo buffer index (c.g., the free buffer array element
containing the jumbobuffer’s buffer identifier) and the offset
ofthe first byte of the packet’s data within the jumbo buffer
are placed in data index and data offset fields, respectively.
Headersize and data size fields are used to store the size of
the packet’s header(e.g., theoffset of the payload within the
packet) and data (¢.g., payload size), respectively.

Arclease headerflag is set in the descriptorif the header
buffer is full. However, the header buffer may notbe tested
to see if it is full until a later state of this procedure. In such
an embodimentofthe invention, the release header flag may
be set (or cleared) at thattime. A release data flag is also set,

_ because no more data will be placed in the jumbo buffer
q eg, it is being released to the host computer). Further, a
:. Split packetflag is set to indicate that a second jumbo buffer

Was used, and the position or index within the free buffer
urayof the second buffer’s buffer identifier is stored in aDext index field.

._The descriptortype field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
Packet into bost memory. Finally, a predetermined value

; cs, Zero)is stored in the descriptor’s ownership indicator
eld to indicate that DMA engine 120is releasing a packet

to the host computer and tming over ownership of the
Scniptor. In one embodiment of the invention the owner-

,Bhip indicator is not set until end state 1999 below. In an
slernative embodiment of the invention DMA engine 120

{Ssues an interrupt or uses some othersignal to alert the host
puter that a descriptor is being released_

In state 1978, the jumbo buffer’s entry in jumbo buifer
ble 1010is invalidated (cg., validity indicator 1136is set

25

30

35

40

50

55

65

96

to invalid) to ensure thatit is not used again.In the procedure
described above, a jumbo packet was storedin, at most, two
jumbo buffers. In an alternative embodimentof the invention
a jumbo buffer may be stored across any numberofbuffers.
The descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1980, it is determined whether the header buffer
is full. In this embodiment of the invention, where cach
buffer is eight kilobytes in size and entries in the header
buffer are no Jarger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1982 the header buffer is
invalidated to ensure that it is not used again. [lustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
beaderflag in the descriptor is set. The illustrated procedure
then ends with end slate 1999.

If the header buffer is not full, then in state 1984 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet. The illustrated procedure then ends with end
state 1999.

In end state 1999, a descriptor may be tumed overto the
host computerby storing a particular value (c.g., zero) in the
descriptor’s ownership indicator field as described above.
Ilustratively, the host computer (or software operating on
the host computer) detects the change and understands that
DMA engine 120 is returning ownership of the descriptor to
the host computer.
A Method of Transferring a Packet with Operation Code 6
or Operation Code 7

FIGS. 20A-20B depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera-
tion code 6 or 7 to a host memory buffer. As reflected in
TABLE 1, operation codes 6 and 7 may indicate that a
packetis compatible with the protocols pre-selected for NIC
100 and is the first packet of a new flow. The difference
between these operation codes in this embodiment of the
inventionis that operation code 7 is used when an existing
flow is to be replaced (c.g., in flow database 110 and/or flow
re-assembly buffer table 1004) by the new flow. With
operation code 6, in contrast, no flow needs to be ton down.
For both codes, however, a new flow is set up and the
associated packet’s data may be re-assembled with data
from other packets in the newly established flow. Because
the packet data is to be re-assembled, the packet’s header
should be stored in a header buffer and its data in a new flow
re-assembly buffer.

As described in a previous section, the flow that is tom
down to make room for a new flow (in the case of operation
code 7) may be the least recently used flow. Because flow
database 110 andflow re-assembly buffer table 1004 contain
only a limited number ofentries in the presently described
embodimentof the invention, when they are full and a new
flow arrives an old one must be tom down. Choosing the
least recently active flow for replacementis likely to have
the least impact on network traffic through NIC 100. In one
embodimentof the invention DMA engine 120 tears down
the flow in flow re-assembly buffer table 1004 that bas the
same flow numberas the flow that has been replaced in flow
database 110.

In state 2000, DMA engine 120 determines whether there
is a valid (cg., active) header buffer Tustratively, this+

rs

EX 1017 Page 560

aehra

EX 1017 Page 561

US6,453,360 B1

97

determination is made by examining validity indicator 1116
of header buffer table 1006, which manages the active
header buffer. If the validity indicatoris set, then there is a
header buffer ready to receive this packet and the procedure
continues at state 2004.

Otherwise, in state 2002 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
teference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptorring in
host memory to replenish the cache.

When a new descriptoris obtained from the cache or from
the free descriptor ring, the buffer identifier (c.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indication ofthe first storage location or cell in the buffer is
placed in next address field 1114 of header buffertable 1006.
The position or indexof the buffer identifier within the free
buffer array is stored in header buffer index 1112, and
validity indicator 1116is set to a valid state.

In state 2004 the packet’s header is copied ortransferred
into the header buffer at the address or location specified in
the next address field of header buffer table 1006. As
described above, in one embodiment of the invention pad
bytes may be inserted before the headerin orderto align the
beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the pack-
et’s header may be positioned in a cell ofpredetermined size
(e-g., 256 bytes) within the buffer.

As discussed above, operation code 7 indicates that an old
flowis to be tom down in flow re-assembly buffer table 1004
to make room for a new flow. This requires the release ofany
flow re-assembly buffer that may be associated with the flow
being tom down.

Thus, in state 2006 it is determined whether a flow
re-assembly bufferis valid (¢.g., active) for a flow having the
flow number that was read from control queue 118 forthis
packet. As explained in a previous scction, for operation
code 7 the flow number represents the entry in flow database
110 (and flow re-assembly buffer table 1004) that is being
replaced with the new flow. DMA engine 120 thus examines
the validity indicator in the flow’s entry in flow re-assembly
buffer table 1004. Ilustratively, if the indicator is valid then
there is an active buffer storing data from one or more
packets in the flow that is being replaced. If there is a valid
flow re-assembly buffer for this flow, the illustrated proce-
dure continues at state 2008. Otherwise, the procedure
proceeds to state 2010. It will be understood that the
illustrated procedure will normally proceed to state 2008 for
operation code 7 and state 2010 for operation code 6.

In state 2008, a completion descriptor is written or con-
figured to release the replaced flow’s re-assembly buffer. In
Particular, the flow re-assembly buffer index (e.g., the index
within the free buffer array of the flow re-assembly buffer’s
buffer identifier) is written to the descriptor. In this embodi-
ment of the invention, no offset needs to be stored in the
descriptor’s data offset field and the data size field is set to
zero because no new data was stored in the buffer that is

being released. Similarly, the header buffer is not yet being
released, and therefore the header index and headeroffset
fields of the descriptor need not be used and a zero may be
stored in the header size field.

The descriptor’s release headerflag, is cleared (€.g., a zero
is stored in the flag) because the headerbuffer is not being
released. The release data flag is set (¢.g., a one is stored in

20

25

Hn

40

55

98
the flag), however, because no more data will be placed in
the released flow re-assembly buffer. Further, a release flow
flag in the descriptoris set to indicate that the flow associ-
ated with the released flow re-assemblybuffer is being torndown.

The descriptor type field is changed to a value indicating
that DMA engine 120is releasing a stale flow buffer (e.g.,
a flow re-assembly buffer that has not been used for some
time). Finally, the descriptor used to release the replaced
flow’s re-assembly buffer and terminate the associated flow
is tumed over to the host computer by changing its owner-
ship indicatorfield (¢.g., from one to zero). In onc alternative
embodiment of the invention, DMA engine 120 issues an
interrupt or employs some other means ofalerting the host
computer that a descriptor is being released.

In state 2010, a new flow re-assembly buffer is prepared
for the flow that is being set up. Iilustratively, a free ring
descriptor is obtained from a cache maintained byfree ring
manager 1012 andits buffer identifier (¢.g., a reference to an
empty memory buffer) is retrieved. If the cache is empty,
new descriptors may be retrieved from the free descriptor
ring in host memory to replenish the cache.

Whenanew descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or other indication
ofthe first storage location in the buffer is placed in next
address ficld 1104 of the flow’s entry in flow re-assembly
buffer table 1004. The flow’s cntry in the table may be
recognized by its flow number. The position or index of the
buffer identifier within the free buffer array is stored in
te-assembly buffer index 1102, and validity indicator 1106 is
set to a valid state.

In state 2012, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
te-assembly buffer table 1004.

In state 2014, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header buffer index
(c.g., the location or position within the free buffer array of
the buffer identifier that references the headerbuffer) and the
offset of the packet’s header within the header buffer are
placed in the descriptor. [llustratively, the offset identifies
the first byte of the header, the first pad byte preceding the
header or the location of the header’s cell in the header
buffer.

The flow re-assembly buffer index (¢.g., the location or
position, within the free buffer array, of the buffer identifier
that references the flow re-assembly buffer) andthe offset of
the packet’s data within that buffer are also stored in the
descriptor. It will be recognized, however, that the offset
reported for this packet’s data may be zero, because the
packet data is stored at the very beginning of the new flow
re-assembly buffer.

The size of the packet’s data (e.g., the size of the packet’s
TCP payload) and header(c.g., the offset of the TCP payload
within the packet) are stored in data size and headersize
fields, respectively. The descriptor type field is changed to a
value indicating that DMA engine 120 transferred a flow
packet into host memory.A release header flag is set if the
header bufferis full but a release data flag is pot set, because
more data will be placed in this flow re-assembly buffer. The
header buffer may not be tested to sceif it is full until a later
state of this procedure. In such an embodiment, the release
header flag may be sect (or cleared) at that time.

In one embodiment of the invention a release flow flag
mayalso be set, depending upon dynamic packet batching

EX 1017 Page 561

EX 1017 Page 562

eetateeT]

US 6,453,360 B1

99

| module 122. For example, if the packet batching module
{ \letermines that another packet in the same flow will soon be
| transferred to the host computer,the release flow flag will be

gleared (e.g., a zero will be stored). This indicates that the
jhost computer should await the next flow packet before
processing this onc. By collectively processing multiple

‘ packets from a single flow, the packets can be processed
more efficicatly and Jess processor time will be required for
gretwork traffic. If, however, no other packets in the same
flow are identified, the release flow flag may be set tokgndicate that the host computer should process the flow
bpackets received so far, without waiting for more.
... In state 2016, the flow’s entry in flow re-assembly buffer
Rabie 1004 is updated. In particular, next address field 1104
is updated to identify the location in the re-assembly buffer

!: which the next flow packet’s data should be stored.
In state 2018, it is determined whether the header buffer
; full In this embodiment of the invention, where each
piler is cight kilobytes in size and entries in the header

Wier arc no larger than 256 bytes, a counter may be used
B-kecp track of entries placed into cach new header buffer.

pe- buffer is considered fall when thirty-two entries arepf

a.

the buffer is full, in state 2020 the header buffer is
Validated to ensure that it is not used again.Illustratively,

me involves setting the headerbuffer table’s validity indi-
pc to invalid and communicating this status to the host

iress field of header buffer table 1006 is updated to
Beate the address at which to store the next header or

Processing associated with a packet having operation
6 and 7 then ends with endstate 2099.In this endstate,

mescriptor used for this packet (e.g., the descriptor that
nfigured in state 2014) is turned over to the host

« by changing its ownership indicatorfield (e.g.,
;One to zero). In one alternative embodiment of the
phon, DMA engine 120 issues an interrupt or employs
means (€.g., such as the descriptor’s descriptor type

fo alert the host computer that a descriptor is being

; bodiment of a Packet Batching Module
B21 is a diagram of dynamic packetbatching module

One embodiment of the invention. In this

ement, packet batching module 122 alerts a host
pcr to the transfer, or impendingtransfer, of multiple

from one communication flow. The related packets
pten be processed through an appropriate protocolstack
ively, rather than processing one at a time. As one

ye inthe art will recognize,this increases theefficiency
h network traffic may be handled by the host

illustrated embodiment, a packetis transferred from
PY ‘0 the hosi computer by DMA engine 120 (e.g., by
Re US payload into an appropriate buffer). When a
, 2s transferred, packet batching module 122 deter-

Whethera related packet (¢.g., a packet in the same
me! Soon betransferred as well. In particular, packet

ye :Module 122 examines packets that are to be trans-
t the present packet. One skilled in the art will
thatthe higher the rate of packet arrival at NIC

eenore packets that are likely to await transfer to a

More packets that may be examined by me
et batching module and the greater the benefit

15

25

40

55

er al a given time. The rnore packets that averit on

100

it may provide. In particular, as the number of packets
awaiting transfer increases, packet batching module 122
may identify a greater numberofrelated packets for collec-
tive processing. As the oumber of packets processed
together increases, the amount of host processor time
required to process cach packet decreases.

Thus, if a related packet is found the packet batching
modulealerts the host computerso that the packets may be
processed as a group. As described in a previous section, in
one embodiment of the invention dynamic packet batching
module 122 alerts the host computer to the availability of a
related packet by clearing a release flow flag in a completion
descriptor associated with a transferred packet. The flag
may, for example, be cleared by DMA engine 120 in
response to a signal or alert from dynamic packet batching
module 122.

Tn contrast, ip an alternative embodimentof the invention
dynamic packet batching module 122 or DMAengine 120
may alert the host computer when no related packets are
found or when, for some other reason, the host processor
should not delay processing a trapsferred packet. In
particular, a release flow flag may be set when the host
computer is not expected to receive a packet related to a
transferred packet in the near future (¢.g., thus indicating
that the associated flow is being released or tom down). For
example,it may be determinedthat the transferred packetis
the last packetin its flow or that a particular packet does’t
even belong to a flow (e.g., this may be reflected in the
packet’s associated operation code).

Witb reference now to FIG. 21, packet batching module
122 in one embodiment of the invention includes memory
2102 and controller 2104. Wustratively, each entry in
memory 2102, such as entry 2106, comprises two fields:
flow number 2108 and validity indicator 2110. In alternative
embodiments of the invention, other information may be
stored in memory 2102. Read pointer 2112 and write pointer
2314 serve as indices into memory 2102.

In the illustrated embodiment, memory 2102 is an asso-
ciative memory (e.g., a CAM) configured to store up to 256
entries. Each entry corresponds to and represents a packet
stored in packet queue 116. As described in a previous
section, packet queue 116 may also contain up to 256
packets in one embodimentof the invention. When a packet
is, or is aboutto be transferred, by DMA engine 120 from
packet queve 116 to the host computer, memory 2102 may
be searched for an entry having a flow numberthat matches
the flow numberof the transferred packet. Because memory
2102 is a CAM in this embodiment, all ecniries in the
memory may be searched simultancously or nearly simul-
tancously. In this embodiment, memory 2102 is imple-
mented in hardware, with the entries logically arranged as a
ring. In alternative embodiments, memory 2102 may be
virtually any type of data structure (e.g., array, table, list,
queue) implemented in hardware or software. In one par-
ticular alternative embodiment, memory 2102 is impic-
mented as a RAM, in which case the entries may be
examined ip a serial manner.

The maximum of 256 entries in the illustrated embodi-
ment matches the maximum numberofpackets that may be
stored in a packet queue. Because the depth of memory 2102
matches the depth of the packet queue, when a packet is
stored in the packet queue its flow number may be auto-
matically stored in memory 2102. Although the same num-
ber of entries are provided for in this embodiment, in an
iterative embodimentof the invention memory 2102 may
pe conngused to hold a smaller or greater number.ofextries
than the packet queuc. And, as discussed in a previous

EX 1017 Page 562

EX 1017 Page 563

sakESal ~ — aiaBe
Dae...0 bob.hoo es ae ereeas:5ena

US 6,453,360 BI
101

section, for each packet stored in the packei queuc, related
information mayalso bestored in the control queuc.

In the illustrated embodiment of the invention, flow
number 2108is the index into flow database 110 ofthe flow
comprising the corresponding packet. As described above,in
one embodiment of the invention a flow includes packets
carrying data from one datagram sent from a sourceentity to
a destination entity. Ifustratively, each related packet has the
same flow key and the same flow number Flow number
2108 may comprise the index of the packet’s flow key in
flow database 110.

Validity indicator 2110 indicates whether the information
. stored in the entry is valid or current. In this embodiment,

validity indicator 2110 maystore a first value (c.g., one)
whenthe entry contains valid data, and a second value (c.g.,
zero) when the data is invalid. For example, validity indi-
cator 2110 in entry 2106 maybesetto a valid state when the

f corresponding entry in packet queue 116 contains a packet
| awaiting transfer to the host computer and belongs to a flow
((e.g., which may be indicated by the packet’s operation
: code). Similarly, validity indicator 2110 may be set to an
‘invalid state when the entry is no longer needed (e.g., when
Rthe corresponding packet is transferred to the host
computer).
- Flow validity indicator 2110 mayalso beset to an invalid

tate when a corresponding packel’s operation code indi-
fates that the packet does not belong to a flow. It may also
fe set to an invalid state when the corresponding packet is
control packet (¢.g., contains no data) or is otherwise
mon-re-assembleable (¢.g., because it is out of sequence,
incompatible with a pre-selected protocol, has an unex-
ected control flag set). Validity indicator 2110 may be
stianaged by controller 2104 during operation of the packet
ENitching module.
#1n the illustrated embodimentofthe invention, an entry’s

‘w number is received from a register in which it was
ced for temporary storage. A packet’s flow number may
temporarily stored in a register, or other data structure,in
er to facilitate its timely delivery to packet batching
ule 122. Temporary storage of the flow numberalso

sOWS the flow databasc manager to turn its attention to a
Per packet. A flow number may, for example, be provided
. ‘dynamic packet batching module 122 at nearly the same

uc that the associated packetis stored in packet queue 116.
tratively, the flow number may be stored in the register

r flowdatabasc manager 108 or by IPP module 104. In an
a rmative embodiment, the flow numberis received from

ol queue 118 or some other module of NIC 100.
the illustrated embodimentof the invention, memory

contains an entry comesponding to each packet in
fxct queue 116. When a packet in the packet queue is
sssferred to a host computer (e.g., when it is written to a

Ssembly buffer), controller 2104 invalidates the memory
me. ‘hat corresponds to that packet. Memory 2102 is then
- hed for another entry having the same flow number as

. transferred packet. Afterwards, when a new packetis
0 packet queue 116, perhaps in place of the trans-

sed packet, a new entry is stored in memory 2102.
_ «0 alternative embodimentof the invention, memory

tay be configured to hold entries for only a subset of
f-2aXimum numberofpackets stored in packet queve 116
>Just re-asscmbleable packets). Entries in memory 2102

Psill be populated when a packetis stored in the packet
= - However, if memory 2102 is full when a new packet

Scived, thencreation of an entry for the new packet must
edt! a packet is transferred and its entry in memory
Validated, Therefore, in this alternative embodiment

i

102

entries in memory 2102 may be created by extracting
information from entrics in control queue 118 rather than
packet queue 116. Controller 2104 would therefore continu-
ally attempt to copy information from entries in control

5 queue 118 into memory 2102. The function of populating
memory 2102 may be performed independently or semi-
independently of the function of actually comparing the flow
numbers of memory entries to the flow number of a packet
being transferred to the host computer.

1¢ In this alternative embodimenta second read pointer may
be usedto index control queue 118to assist in the population
of memory 2102.In particular, the second read pointer may
be used by packet batching module 122 to find and fetch
entries for memory 2102. Illustratively, if the second, or

15 “lookahead” read pointer references the same entry as the
control queue’s write pointer, then it could be determined
that no new entries were added to control queue 118 since
the last check by controller 2104. Otherwise, as long as there
is an empty (e.g., invalid) entry in memory 2102, the

20 necessary information (c.g., flow number) may be copied
into memory 2102 for the packet correspondingto the entry
referenced by the lookabead read pointer. The lookahead
read pointer would then be incremented.

Returning now to FIG. 21, read pointer 2112 of dynamic
25 packet batching module 122 identifies the current entry in

memory 2102 (e.g., the entry corresponding to the packetat
the front of the packet queue or the next packet to be
transferred). Ihustratively, this pointer is incremented cach
time a packet is transferred to the host computer. Write

30 pointer 2114 identifies the position at which the next entry
in memory 2102 is to be stored. Illustratively, the write
pointer is incremented each time an entry is added to
memory 2102. One mannerofcollectively processing head-
ers from related packets is to form them into one “super-”

35 header. In this method, the packets’ data portions are stored
separately (e.g., in a separate memory page orbuffer) from
the super-header.

IHustratively, a super-header comprises one combined
headerfor each layerof the packet’ associated protocolstack

40 (¢.g., one TCP header and one IP header). To form each
layer’s portion of a super-header, the packet’s individual
headers may be merged to make a regular-sized header
whose fields accurately reflect the assembled data and
combined headers. For example, merged headerfields relat-

45 ing to payload or header length would indicate the size of the
aggregated data or aggregated headers, the sequence number
of a merged TCP header wouldbeset appropriately, etc. The
super-header portion may then be processed through its
protocol stack similar to the manner in which a single
packet’s header is processed.

This method of collectively processing related packet’
headers (e.g., with “super-” headers) may require modifica-
tion of the instructions for processing packets (e.g., a device
driver). For example, because multiple headers are merged
for each layerof the protocolstack, the software may require
modification to recognize and handie the super-headers.In
one embodiment of the invention the number of headers

folded or merged into a super-header may be limited. In an
altemative embodimentof the invention the headers of ali

60 the aggregated packets, regardless of number, may be com-
bined.

In another method of collectively processing related
packet’ header portions, packet data and beaders may again
be stored separately (c.g., in separate memory pages). But,

65 -ins(ead of combining the packet” headers Eur cach layer of
the appropriate protocol stack to form a super-header, they
may be submitted for individual processing in quick suc-

5So

5.wm

EX 1017 Page 563

EX 1017 Page 564

omenad Teg
leRell aoa mR.Pe

US 6,453,360 B1
104103

cession. For example, all of the packet’ layer two headers
may be processed in a rapid sequence—one after the other-—
then all of the layer three headers,etc. In this manner, packet
processing instructions need not be modified, but headers

EF are still processed more efficiently. In particular, a set of
: instructions (e.g., for each protocol layer) may be loaded
: once for ail related packets rather than being separately

loaded and executed for each packet.
As discussed in a previoussection,data portions ofrelated

j. packets may be transferred into storage areas of predeter-
mined size (¢.g., memory pages) for efficient transfer from

. the host computer’s kemel space into application or user
space. Where the transferred data is of memory page size,

| the data may be transferred using highly efficient “pape-
F flipping,” wherein a full page of data is provided to appli-
Seation or user Memory space.
$. FIGS. 22A-22B present one method of dynamic packet
B¥atching with packet batching module 122.In theillustrated
Pmcthod, memory 2102 is populated with flow numbers of
Packets stored in packet queue 116. In particular, a packet’s
Mow number and operation code are retrieved from control
Rucuc 118, IPP module 104, flow database manager 108 or
ber module(s) of NIC 100. The packet’s flow numberis

gored in the flow number portion of an entry in memory
B02, and validity indicator 2110 is sct in accordance with
Re operation code. For example, if the packet is not
Passcmbleable (e.g., codes 2 and 5 in TABLE 1), the
Biidity indicator may be set to zero; otherwise it may be setmC.

FPhe illustrated method may operate in parallel to the
gration of DMA engine 120. In other words, dynamic
ket batching module 122 may search for packets related

@ packet in the process of being transferred to a host
ory buffer. Alternatively, a search may be conducted

metily after or before the packet is transferred. Because
hory 2102 may be associative in nature, the search
ation may be conducted quickly,thus introducinglittle,
my, delay into the transfer process.
Bas. 22A may be considered a method of searching for a
ped packet, while FIG. 22B maybe considered a method
populating the dynamic packet batching module’sRIOry.

BGS, 224-228 eachreflect one “cycle” of a dynamic
Bt batching operation (¢.g., one search and creation of

cw Incmory cntry). Ilustratively, however, the opera-
packet batching module 122 runs continuously. That

oythe end of one cycle of operation another cycle
tely begins. In this manner, controller 2104 strives

ce © memory 2102 is populated with entries for packets
Bare stored in packet queue 116. If memory 2102is

¢nough to store an entry for each packet in packet
FAl6, then controller 2104 attempts to kecp the
Ey 45 full as possible and to quickly replace an
F ited cutry with a new one.
BS 2200is a start state for a memory search cycle. In

#4, il is determined whetherapacket(e.g., the packet
mt of the packel queue) is being transferred to the
nputer. This determination may, for example, be

athe operation of DMA engine 120 orthe status of
: eh packet qucue 116 or control queve 118.
x.» Slate 2202 is initiated by DMA engine 120 as

%8 copied into a buffer in the host computer. One
Prof state 2202 is simply to determine whether

7 2102 Should be searchedfor a packetrelated to one
oa will be, or is being transferred. Until a packetis

+” Cl aboutto be transferred, the illustrated proce-
paucs in state 2202.

q

5

20

25

30

35

40

wna

60

When, however, it is time for a search to be conducted
(c.g, a packetis being transferred), the method continuesat
state 2204. In state 2204, the entry ia memory 2102 corre-
sponding to the packet being transferred is invalidated.
Tiustratively, this consists of storing a predetermined value
(«.g., zero) in validity indicator 2110 for the packet’s entry.
In a present embodimentof the invention read pointer 2112
identifies the entry corresponding to the packet to be trans-
ferred. As one skilled in the art will recognize, one reason for
invalidating a transferred packet’s entry is so that when
memory 2102 is searched for an entry associated with a
packet related to the transferred packet, the transferred
packet’s own entry will not be identified.

In one embodimentof the invention the transferred pack-
et’s flow number is copied into a register (¢.g., 2 hardware
register) when dynamic packet batching module 122 is to
searchfor a related packet. This may be particularly helpful
(e.g., to assist in comparing the flow number to flow
numbers of other packets) if memory 2102 is implemented
as a RAM instead of a CAM.

In state 2206, read pointer 2112 is incremented to point to
the next entry in memory 2102. If read pomter is incre-
menied to the same entry that is referenced by write pointer
2114, and that entry is also invalid (as indicated by validity
indicator 2110), it may be determined that memory 2102 is
now empty.

Then,in state 2208, memory 2102 is searched for a packet
related to the packet being transferred (¢.g., the memory is
searched for an entry having the same flow oumber). As
described above, entries in memory 2102 are searched
associatively in one embodimentof the invention. Thus, the
result of the search operation may be a single signal indi-
cating whether or not a match was found.

In the illustrated embodimentof the invention,only valid
entries (e.g., those having a value of one in their validity
indicators) are searched. As explained above, an entry may
be marked invalid (¢.g., its validity indicator stores a value
of zero) if the associated packetis considered incompatible.
Entries for incompatible packets may be disregarded
because their data is not ordinarily re-assembled and their
headers are not normally batched. In an alternative embodi-
ment of the invention, all entries may be searched but a
match is reported only if a matching entry is valid.

In state 2210, the host computeris alerted to the avail-
ability or non-availability of a related packet. In this embodi-
mentof the invention, the host computeris alerted by storing
a predetenmined value in a specific field of the transferred
packet’s completion descriptor (described in a previous
section). As discussed in the previous section, when a packet
is transferred a descriptor in a descriptor ring in host
memory is populated with information conceming the
packet(¢.g., an identifier of its location in host memory,its
size, an identifier of a processor to process the packet’s
headers). In particular, a release flow flag or indicator is set
to a first value (e.g., zero) if a related packet is found, and
a second value if no related packet is found. Dlustratively,
DMA engine 120 issues the alert or stores the necessary
information to indicale the existence of a related packet in
response to notification from dynamic packet batching mod-
ule 122. Other methods ofnotifying the host computer of the
presence of a related packet arc also suitable (e.g., an
indicator, flag, key), as will be appreciated by one skilled in
the art.

In FIG, 228,state 2220 is a start state for a memory
population cycle.

In state 2222,it is determined whether a new packet has
been received at the network interface. Dluswatively, a new

tes

EX 1017 Page 564

EX 1017 Page 565

= --s ee oe * ~ oe -
NpPikessagCATEeeagRE {BRRagaeYeCREO RANGmie 7maT EeenhERTE 1 ST,MMCPees

US6,453,360 B1
105

entry is made in the packet batching module’s memory for
eachpacketreceived from the network. The receipt of a new
packet may be signaled by IPP module 104. For example,
the receipt of a new packet may be indicated by the storage
of the packet’s flow number, by IPP module 104, in a
temporary location (e.g., a register). Until a new packet is
received, the illustrated procedure waits. When a packet is
received, the procedure continues at state 2224.

In state 2224, ifmemory 2102 is configured to store fewer
entries than packet queue 116(and, possibly, control queue
118), memory 2102 is examined to determineif it is full.

In one embodimentofthe invention memory 2102 may be
considered full if the validity indicatoris set (¢.g., equal to
one) for each entry or for the entry referenced by write
pointer 2114. If the memory is full, the Ulustrated procedure
waits unt] the memory is not full. As one skilled in the art
will recognize, memory 2102 and other data structures in
NIC 100 maybetested for saturation (¢.g., whether they are
filled) by comparing their read and write pointers.

In state 2226, a new packet is represented in memory
2102 by storingits flow number in the entry identified by
write pointer 2114 and storing an appropriate value in the
entry’s validity indicatorfield. If, for example, the packet is
not re-assembleable (e.g., as indicated by its operation
code), the entry’s validity indicator may be set to an invalid
state. For purposes of the operation of dynamic packet
batching module 122, a TCP control packet may or may not
be considered re-assembleable. Thus, depending upon the
implementation of a particular embodiment the validity
indicatorfor a packet that is a‘ TCP control packet may beset
to a valid or invalid state.

in an alternative embodimentof the invention an entry in
. memory 2102 is populated with information from the con-
; trol queue entry identified by the second read pointer

- described above. This pointer may then be incremented to
the next entry in control queue 118.

. In state 2228, write pointer 2114 is incremented to the
« next entry of memory 2102, after which the illustrated
. method ends at end state 2230. If write pointer 2114 refer-
y ences the same entry as read pointer 2112, it may be

determined that memory 2102is full. One skilled in the art
will recognize that many other suitable methods of manag-

p ing pointers for memory 2102 may be employed.
As mentioned above, in one embodimentof the invention

f one or both of the memory search and memory population
Operations run continuously. Thus, end state 2230 may be

e Temoved from the procedure illustrated in FIG. 22B, in
_Which case the procedure would retum to state 2222 afterE State 2228.

_ Advantageously, in the illustrated embodiment of the
‘4nvention the benefits provided to the host computer by
f dynamic packet batching module 122 increase as the host

Computer becomes increasingly busy. In particular, the
Breater the load placed on a host processor, the more delay

Hat will be incurred until a packet received from NIC 100
thay be processed. As a result, packets may queue up in

E Packet queue 116 and, the more packets in the packet queue,
wc More entries that can be maintained in memory 2102.

© more entries that are stored in memory 2102, the
pUrther ahead dynamic packet batching module can look for

related packet. The further ahead it scans, the morelikely
Fit is that a related packet will be found. As more related
Facets are found and identified to the host computer for

Collective processing, the amountof processor time spent on
. twork traffic decreases and overall processor utilizationBUcTeases,

f. One skilled in the art will appreciate that other systems
Bod methods may be employed to identify multiple packets

wv

20

25

35

40

4:mH

55

60

65

106
from a single communication flow or connection without
exceeding the scope of the present invention.
Early Random Packet Discard in One Embodimentof the
Invention

Packets mayarrive at a network interface from a network
at a rate faster than they can be transferred to a host
computer. When such a situation exists, the network inter-
face must often drop, or discard, one or more packets.
Therefore, in one embodiment of the present vention a
system and method for randomly discarding a packet are
provided. Systems and methods discussed in this section
may be applicable to other communication devices as well,
such as gateways, routers, bridges, modems, etc.

As oneskilled in the art will recognize, one reason that a
packet may be droppedis that a network interface is already
storing the maximum oumberof packets that it can store for
transfer to a host computer. In particular, a queue that holds
packets to be transferred to a host computer, such as packet
queuc 116 (shown in FIG. 1A), maybe fully populated when
another packet is received from a network. Either the new
packet or a packet already stored in the queue may be
dropped.

Partly because of the bursty nature of much network
traffic, multiple packets may often be dropped when a
network interface is congested. And, in some network
interfaces, if successive packets are dropped one particular
network connection or flow (e.g., a connection or flow that
includesall of the dropped packets) may be penalized even
if it is not responsible for the high rate of packet arrival. If
a network connection or flow is penalized too heavily, the
network entity generating the traffic in that connection or
flow maytear it down in the belief that a “broken pipe” has
been encountered. As one skilled in the art will recognize, a
broken pipe occurs when a network entity interprets a
communication problem as indicating that a connection has
been severed.

Forcertain networktraffic (e.g., TCP traffic), the dropping
of a packet mayinitiate a method of flow control in which
a network entity’s window (e.g., number of packets it
transmits before waiting for an acknowledgement) shrinks
or is reset to a very low number. Thus, every time a packet
from a TCP communicantis dropped by a network interface
at a receiving cotity, the communicant must re-synchronize
its connection with the receiving entity. If one or a subset of
communicants are responsible for a large percentage of
network traffic received at the entity, then it seems fair that
those communicants should be penalized in proportionto the
amountoftraffic that it is responsible for.

In addition, it may be wise to prevent certain packets or
types of packets from being discarded. For example, dis-
carding a small control packet maydovery little to alleviate
congestion in a network interface and yet have a drastic and
negative effect upon a network connection or flow. Further,
if a network interface is optimized for packets adhering to a
particular protocol, it may be more efficient to avoid drop-
ping such packets. Even further, particular connections,
flows or applications may be prioritized, in which case
higher priority traffic should not be dropped.

Thus, in one embodimentof a network interface accord-
ing to the present invention, a method is provided for
randomly discarding a packet when a communication
device’s packet queue is full oris filled to some threshold
level. Intelligence may be added to such a method by
selecting certain types of packets for discard (e.g., packets
from a particular flow, connection or application) or except-
ing certain types of packets from being discarded (c.g.,
control packets, packets conforming to a particular protocol
or set of protocols).

emt EETieRoe

EX 1017 Page 565

EX 1017 Page 566

US 6,453,360 B1
107

A provided method is random in that discarded packets
are selected randomly from those packets that are considered
discardable. Applying a random discard policy may be
sufficient to avoid broken pipes bydistributing the impact of
dropped packets among multiple connections or flows. In
addition, if a small number of transmitting entities are
responsible for a majority ofthe traffic received at a network
interface, dropping packets randomly may ensure that the
offending entities are penalized proportionately. Different
embodiments of the invention that are discussed below
provide various combinations of randomness and
intelligence, and one of these attributes may be omitted in
one or more embodiments.

FIG. 24 depicts a system and method for randomly
discarding packets in a present embodimentof the invention.
In this embodiment, packet queue 2400 is a hardware FIFO
(e.g., first-in first-out) queue that is 16 KB in size. In other
embodiments of the invention the packet queue may be
smaller or larger or may comprise another type of data
structure (¢.g.,list, array, table, heap) implemented in hard-
ware or software.

Similar to packet queue 116 discussed in a previous
section, packet queue 2400 receives packets from a network
and holds them for transfer to a bost computer. Packets
arriving from a network may arrive from the network at a
high rate and may be processed or examined by one or more
modules (c.g., header parser 106, flow database manager
108) prior to being stored in packet queue 2400. For

f- example, where the network is capable of transmitting one
gigabit of traffic per second, packets conforming to one set
of protocols (e.g., Ethernet, IP and TCP) may be receivedat
a rate of approximately 1.48 million packets per second,
Afier being stored in packet queue 2400, packets are trans-
ferred to a bost computerat a rate partially dependent upon
events and conditions internal to the host computer. Thus,
the network interface may not be able to control the rate of

; Packet transmittal to the bost computer.
In the illustrated embodiment, packet queue 2400 is

(divided into a plurality of zones or regions, any of which
’, May overlap or share a common boundary. Packet queue

B 2400 maybe divided into any numberofregions, and the
inventionis not limited to the three regions depicted in FIG.

24. Ilustratively, region zero (represented by the numeral
- 2402) encompasses the portion of packet queue 2400 from

> OKB (c.g., no packets are stored in the queue) to 8 KB (¢.g.,
half fall). Region one (represented by the numeral 2404)
Focompasses the portion of the packet queue from 8 KB to

f 12 KB. Region two (represented by the numeral 2406)
. €acompasses the remaining portion of ihe packet queuc,

¢ from 12 KB to 16 KB.In an alternative embodiment, regions
' Thay only be defined for a portion ofpacket queuc 2400. For
y ¢xample, only the upper half (¢.g., above 8 KB) may be

vided into one or more regions.
The number and size of the different regions and the

location of boundaries between the regions may vaty
*cording to several factors. Among the factors are the type

P of packets received at the network interface (c.g., the pro-
; tocols according to which the packets are configured), the
F: Size of the packets, the rate of packet arrival (e.g., expected
p. Tale, averagerate, peak rate), the rate ofpackettransferto the
p ost computer, the size of the packet queue, ctc. For

©Xample, in another embodiment of the invention, packet
"ucuc 2400 is divided into five regions. A first region
extends from 0 KB to 8 KB;a second region ranges from 8
geB to 10 KB;a third from 10 KB to 12 KB;a fourth from

iB to 14 KB; andafinal region extends from 14 KB to

20

25

wn

40

60

65

108

During operation of a network interface according to a
present embodiment, traffic indicator 2408 indicates how
full packet queue 2400 is. Traffic indicator 2408, in one
embodiment of the invention, comprises read pointer 810
and/or write pointer $12 (shown in FIG.8). In the presently
discussed embodiment in which packet queue 2400 is fully
partitioned,traffic indicator 2408 will generally be located in
one of the regions into which the packet queue was divided
or at a dividing boundary. Thus, during operation of a
network interface appropriate action may be taken, as
described below, depending upon howfull the packet queue
is (e.g., depending upon whichregionis identified by traffic
indicator 2408).

In FIG. 24, counter 2410 is incremented as packets arrive
at packet queue 2400.In the illustrated embodiment, counter
2410 continuously cycles through a limited range of values,
such as zero through seven. In one embodiment of the
invention, each time a new packetis received the counteris
incremented by one. In an alternative embodiment, counter
2410 may not be incremented when certain “non-
discardable” packets are received. Various illustrative crite-
ria for identifying non-discardable packets are presented
below.

For one or more regions of packet queue 2400, an
associated programmable probability indicator indicates the
probability that a packet will be dropped whentraffic indi-
cator 2408 indicates that the level of traffic in the packet
queue has reached the associated region. Therefore, in the
illustrated embodimentprobability indicator 2412 indicates
the probability that a packet will be dropped while the packet
queueis less than half full (c.g., when traflic indicator 2408
is located in region zero). Similarly, probability indicators
2414 and 2416 specify the probability that a new packet will
be dropped whentraffic indicator 2408 identifies regions one
and two, respectively.

In the illustrated embodiment, probability indicators
2412, 2414 and 2416 each comprise a set, or mask, of
sub-indicators suchasbits or flags. Hlustratively, the number
ofsub-indicators in a probability indicator matches the range
ofcounter values—in this case, eight. In one embodimentof
the invention, each sub-indicator may bave one of two
values (¢.g., zero or one) indicating whether a packet is
dropped. Thus, the sub-elements of a probability indicator
may be numbered from zero to seven (illustratively, from
right to left) to correspond to the eight possible values of
counter 2410. For each position in a probability indicator
that stores a first value (¢.g., one), when the value of counter
2410 matches the number of that bit, the next discardable
packet received for packet queue 2400 will be dropped. As
discussed above, certain types of packets (e.g., control
packets) may not be dropped. [lustratively, counter 2410 is
only incremented for discardable packets.

In FIG. 24, probability indicator 2412 (e.g., 00000000)
indicates that no packets are to be dropped as long as the
packet queue is less than half full (¢.g., as long as traffic
indicator 2408 is in region zero). Probability indicator 2414
(e.g., 00000001) indicates that every eighth packetis to be
dropped whenthere is at least 8 KB stored in the packet
queue.In other words, when traffic indicator 2408 is located
in regionone,there is a 12.5% probability that a discardable
packet will be dropped. In particular, when counter 2410
equals zero the next discardable packet, or a packet already
stored in the packet queuc, is discarded. Probability indica-
tor 2416(¢.g., 01010101) specifies thal every other discard-
able packetis to be dropped. There is thus a 50% probability
that a discardable packet will be dropped when the queueis
mor? thar three-quarters ful! Iltustatively, when a packetis
aropped, counter 2410is still incremented.

EX 1017 Page 566

EX 1017 Page 567

Fe gag Bey Fie Seg terran agesRSNeABE eTummm ons ae

US 6,453,360 B1
109

As another example, in the alternative embodiment
described above in which the packct queue is divided into
five regions, suitable probability indicators mayinclude the
following. For regions zero and one, 00000000; for region
two, 00000001; for region three, 00000101; and for region
four, 01111111. Thus, in this alternative embodiment, region
one is treated as an extension to region zero. Further, the
probability of dropping a packet has a widerrange, from 0%
to 875%.

In one alternative embodiment described above, only a
portion of a packet queueis partitioned into regions. In this
alternative embodiment, a default probability or null prob-
ability (¢.g., 00000000) of dropping a packet may be asso-
ciated with the un-partitioned portion. Hlustratively, this
ensures that no packets are dropped before the leveloftraffic
stored in the queue reaches a first threshold. Even in an
embodiment where the entire queue is partitioned, a default
or null probability may be associated with a region that
cncompassesor borders a 0 KB threshold.

Just as a packet queue may be divided into any numberof
regions for purposes of the present invention, probability

B indicators may comprise bit masks of anysize or magnitude,
and need not be of equal size or magnitude. Further, prob-
ability indicators are programmable in a present
embodiment, thus allowing them to be altered even during

. - the operation of a network interface.
One skilled in the art will recognize that discarding

packets on the basis of a probability indicator injects ran-
: dommess into the discard process. A random carly discard
(policy may be sufficient to avoid the problem of broken
f “pipes discussed above. In particular, in one embodimentof
‘the invention, all packets are considered discardable, such
‘that all packets arc counted by counter 2410 andall are
Ficandidates for being dropped. As already discussed,
k*however, in another embodiment of the invention intelli-
b’ gence is added in the process of excluding certain types of

‘packets from being discarded.
It will be understood that probability indicators and a

“counter simply constitute one system for enabling the ran-
f‘dom discard ofpackets in a network interface. Other mecha-

B nisms are also suitable. In one alternative embodiment, a
random number generator may be employed in place of a

Reounter and/or probability indicators to cnable a random
Fuiscard policy. For example, when a raudom number is
lecncrated, such as M,the Mth packet (or every Mth packet)
Mftcr the number is gencrated may be dropped. Or, the
Wandom number may specify a probability of dropping a
acket. The random number may thus be limited to (c.g.,
mashed into) a certain range of values or probabilities. As
Boothealternative, a random number generator may be used

7 e tandem with multiple regions or thresholds within a
picket queue. In this alternative embodiment a program-
Mable value, represented here as N, maybe associated with
“¢gion or queue threshold. Then, whena traffic indicator

maches that threshold or region, the Nth packet (or every
i packet) may be dropped until another threshold or
rundary is reached.
rin yet another alternative embodiment of the invention,

E* Probability of dropping a packetis expressed as a binary
ection. As one skilled in the art will recognize, a binary
e090 consists of a series of bits in which cach bil
esents onc half of the magnitude ofits more significant
Bhbor. For example, a binary fraction may use four digits

§.2¢ embodimentof the invention. From left to right, the
. May represent 0.5, 0.25, 0.125 and 0.0625,respectively.
B.? 2 binary fraction of 1010 would be interpreted as
ating a 62.5% probability of dropping a packet(¢.g..

‘
ti

wn

10

15

20

25

an

35

40

50

60

65

110

50% plus 12.5%). The more positions(e.g., bits) used in a
binary fraction, the greater precision that may be attained.

In one implementation of this altemative embodiment a
separate packet counter is associated with each digit. The
counterfor the leftmostbit increments at twice the rate of the
next counter, which increments twice as fast as the next
counter, etc. In other words, when the counter for the most
significant(c.g., left) bit increments from 0 to 1 the other
counters do not change. When the mostsignificant counter
increments again, from 1 back to Q, then the next counter
increments from 0 to 1. Likewise, the counter for the third
bit does not increment from 0 to 1 until the second counter
returns to 0. In summary, the counter for the most siguificant
bit changes(i.e., increments) each time a packetis received.
The counter for the next most significant bit maintains each
value (i.c., 0 or 1) for two packets before incrementing.
Similarly, the counter for the third most significant bit
maintains each counter value for four packets before incre-
menting and the counter for the least significant bit main-
tains its values for cight packets before incrementing.

Each time a packetis received or a counteris incremented
the counters are comparedto the probability indicator(c.g.,
the specified binary fraction). In one embodimentthe deter-
mination of whether a packet is dropped depends upon
which of the fraction’s bits are equal to one. IJustratively,
for each fraction bit equal to one a random packetis dropped
if the corresponding counteris equal to one and the counters
for anybits of higher significance are equal to zero. Thus for
the example fraction 1010, whenever the most significant
bit’s counter is equal to one a random packetis dropped_ In
addition, a random packet is also dropped whenever the
counter for the third bit is equal to one and the counters for
the first two bits are equal to zero.

Aperson skilled in the art may also derive other suitable
mechanisms for specifying and enforcing a probability of
dropping a packet received at a network interface without
exceeding the scope of the present invention.

As already mentioned, intelligence may be imparted to a
random discard policy in order to avoid discarding certain
types of packets. In a previous section, methods of parsing
a packet received from a network were described. In
particular, in a present embodimentofthe invention apacket
reccived from a networkis parsed before it is placed into a
packet queue such as packet queue 2400. During the parsing
procedure various information concerning the packet may be
gleaned. This information may be usedto injectintelligence
into a random discard policy.Inparticular, one or more fields
of a packet header may be copied, an originating or desti-
nation entity of the packet may be identified, a protocol may
be identified, etc.

Thus, in various embodiments of the invention, certain
packets or types of packets may be immune from being
discarded. In the embodiment illustrated in FIG. 24, for
example, contro] packets are immune. As one skilled in the
art will appreciate, control packets often contain information
essential to the establishment, re-cstablishment or mainte-
nance of a communication connection. Dropping a control
packet may thus have a more serious and damaging effect
than dropping a packet that is not a control packet. In
addition, because control packets generally do not contain
data, dropping a control packet maysave very little space in
the packet queue.

Manyothercriteria for immunizing packets are possible.
For example, when a packet is parsed according to a
procedure described in a previous section, a No__Assist flag
or signal may be associated with the packet to indicate
whether ihe packet is compatible with a set of pre-selected

EX 1017 Page 567

EX 1017 Page 568

US 6,453,360 B1
itl

cormmunication protocols.Ilustratively, if the flag is set to
a first value (e.g., one) or the signal is raised, the packetis
considered incompatible and is therefore ineligible for cer-
tain processing enhancements (¢.g., re-assembly of packet
data, batch processing of packet headers, load-balancing).
Because a packet for which a No_Assistflag is set to the
first value may be a packet conforming to an unexpected
protocol or unique format, it may be better not to drop such
packets. For example, a network manager may want to
ensure receipt of all such packets in order to determine
whether a parsing procedure should be augmented with the
ability to parse additional protocols.

Another reason for immunizing a No__Assist packet (e.g.,
packets that are incompatible with a set of selected
protocols) from being discarded concerns the reaction to
dropping the packet. Because the packet’s protocols were
not identified, it may not be known how the packet’s
protocols respond to the loss of a packet. In particular,if the

sender of the packet does not lowerits transmission rate im
response to the dropped packet (¢.g., as a form of congestion
control), then there is no bencfit to dropping it.

Apacket’s flow number may be used to immunizecertain
packets in another alternative embodimentof the invention.
As discussed in a previous section, a network interface may
include a flow database and flow database manager to
maintain a record of multiple communication flows received
by the network interface. It may be efficacious to prevent
packets from one or more certain flows from being dis-
carded. Immunized flows may include a flow involving a

: high-priority network entity, a flow involving a particular
application, etc. For example, it may be considered rela-

$. tively less damagingto discard packets from an animated or
streaming graphics application in which a packet, or a few
packets, may be lost without seriously affecting the desti-
nation entity and the packets may not even need to be

’ retransmitted. In contrast, the consequences may be more
severe if a few packets are dropped fromafile transfer
connection. The packets will likely need to be retransmitted,
and the transmiiting entity’s window may be shrunk as a
result—thus decreasing the rate of file transfer.

In yet another alternative embodimentof the invention, a
probability indicator may comprise a bit mask in which each

y bit corresponds to a separate, specific flow through the
& network interface, In particular, the bits may correspond to

the flows maintained in the flow database described in a
Previous section.

Although embodiments of the invention discussed thus
| far in this section involve discarding packets as they arrive

E ata packet queue,in an alternative embodimentpackets may
, be discarded from within the packet queue. In particular,as

c the packet queueis filled (e.g, as a traffic indicator reaches
pre-defined regions or thresholds), packets already stored in

* the queve may be discarded at random according to one or
FE Wore probability indicators. In the embodimentillustrated in

: HIG. 24, for example, whentraffic indicator 2408 reaches a
B certain threshold, such as the boundary between regions one
F. and two or the end of the queue, packets may be deleted in

Oue or more regions according to related probability indi-
©ators. Such probability indicators would likely have differ-

F cot values than those indicated in FIG. 24.

, In a present embodiment of the invention, probability
indicators and/or the specifications (e.g., boundaries) into
Which a packet queue is partitioned are programmable and

f ay be adjusted by software operating on a host computer
“.8., a device driver). Criteria for immunizing packets may

be programmable. Methods of discarding packets in 2
e Betwork interface or other communication device may thus

112

be altered in accordance with the embodiments described in
this section, even during continued operation of such a
device. Various other embodiments and criteria for ran-
domly discarding packets and/or applying criteria for the

5 intelligent discard of packets will be apparent to those
skilled in the art.

FIGS. 25A-25B comprise a flow chart demonstrating one
method of implementing a policy for randomly discarding
packets in a network interface according to the embodiment

10 of the invention substantially similar to the embodiment
illustrated in FIG. 24. In this embodiment, a packet is
received while packet queue 2400 is not yet full. As one
skilled in the will appreciate, this embodiment provides a
method of determining whether to discard the packet. Once

15 packet queue 2400 is full, when another packetis received
the network interface generally must drop a packet—either
the one just received or one already stored in the queue—in
which case the only decision is which packet to drop.

In FIG. 25A, state 2500 is a start state. State 2500 may
20 reflect the initialization of the network interface (and packet

queve 2400) or may reflect a point in the operation of the
network interface at which one or more parameters or
aspects concerning the packet queue and the random discard
policy are to be modified.

25 Yostate 2502, one or more regions are identified im packet
gueue 2400, perhaps by specifying boundaries such as the 8
KB and 12 KB boundaries depicted in FIG. 24. Although the
regions depicted in FIG. 24 fully encompass packet queue
2400 when viewed in unison, regions in an alternative

30 embodimentof the invention may encompass less than the
entire queue.

In state 2504, one or more probability indicators are
assigned and configured.In theillustrated embodiment, one
probability indicator is associated with each region.

35 Alternatively, multiple regions may be associated with one
probability indicator. Even further, one or more regions may
not be explicitly associated with a probability indicator, in
which case a default or pull probability indicator may be
assumed. As described above, a probability indicator may

40 take the form of a multi-bit mask, whereby the number of
bits in the mask reflect the range of possible values main-
tained by a packet counter. In another embodiment of the
invention, a probability indicator may take the form of a
random oumber or a threshold value against which a ran-

45 domly generated number is compared when a decision must
be whether to discard a packet.

In state 2506, if certain types of packets are to be
prevented from being discarded, criteria are expressed to
identify the exempt packets. Some packets that may be

so exempted are control packets, packets conforming to
unknown or certain known protocols, packets belonging to
a particular network connection orflow, etc. In one embodi-
ment of the invention, no packets are exempt from being
discarded.

55 In state 2508, a packetortraffic counteris initialized. As
described above, the counter may be incremented,possibly
through a limited range of values, when a discardable packet
is received for storage in packet queue 2400. Thelimited
range of counter values may correspond to the number of

60 bits in a mask form ofa probability indicator. Alternatively,
the counter may be configured to increment through a
greater range, in which case a counter value may be filtered
through a modulus or hash function prior to being compared
to a probability indicator as described below.

65 In state 2510, a packet is received from a network and
may be processed through one or more modules (¢.g., a
header parser, an IPP module) prior to its arrival at packet

EX 1017 Page 568

EX 1017 Page 569

US 6,453,360 B1
113

queue 2400. Thus, in state 2510 the packet is ready to be
stored in the packet quene. Oneor more packets may already
be stored in the packet queue anda traffic indicator(e.g., a
pointer or index) identifies the level oftraffic stored in the
queue (c.g., by a storage location and/or region in the 5
queue).

In state 2512,it may be determined whether the received
packet is discardable, For example, if the random discard

icy that is in effect allows for the exemption of some
packets from being discarded,in state 2512 it is determined
whether the received packet meets any of the exemption
criteria. If so, the illustrated procedure continues at state

: 2522. Otherwise, the procedure continues at state 2514.
: In state 2514, an active region of packet queve 2400 is

jdentified. In particular, the region of the packet quene to
which the queuc is presently populated with traffic is deter- 15
mined. The leveloftraffic stored in the queue depends upon
the number and size of packets that have been stored in the
queue to await transfer to a host computer. The slower the
transfer process, the higher the level of traffic may reach in
the queue. Although the level oftraffic stored in the queue 20

f riscs andfalls as packets are stored andtransferred,the level
_ mnay be identified at a given time by examining the traffic

F indicator. The traffic indicator may comprise a pointer
!. identifying the position of the last or next packetto be stored
in the queue. Such a pointer may be comparcd to another 25

pointer that identifies the next packet to be transferred to theFbost computer in order to reveal how much traffic is stored
Bin the queue.
°° Instate 2516, the countervalue (c.g., a value between zero
and seven in the embodimentof FIG.24) is comparedto the
m@robability indicator associated with the active region. As
Wecviously described, the counteris incremented as discard-
ble packets are received at the queue. This comparisonis
Fonducted so as to determine whether the received packet
Should be discarded. As explained above, in the embodiment
Bf FIG. 24 the setting of the probability indicator bit 75
Prresponding to the counier value is examined. For
ample, if the counter has a value of N,then bit number N

the probability indicator mask is examined.If the bitis set
a first state (e.g., one) the packet is to be discarded;
Bicrwise it is not to be discarded. 40
In Stale 2518, the counter is incremented to reflect the

eetipt of a discardable packet, whether or not the packet is
kpc discarded. In the presently discussed embodimentof

E invention, if the counter contains iis maximum value
-, Seven) prior to being incremented, incrementing it 45
Buls resetting it to its minimum value (€.g., zero).
State 2520,if the packetis to be discarded theillustrated
F<dure continues at state 2524. Otherwise, the procedure
Binues at state 2522. In state 2522, the packet is stored in

yet queue 2400 and the illustrated procedure ends with sa
ate 2526. In state 2524, the packetis discarded andthe
ted procedure ends with end state 2526.
Sun Microsystems, SPARC and Solaris are trade-
r registered trademarks of Sun Microsystems, Incor-
in the United States and other countries. 55

foregoing descriptions of embodiments of the inven-
ve been presented for purposes ofillusiration and

ption Only. They are not intended to be exhaustive or
the invention to the forms disclosed. Many modi-

RUS and variations will be apparent to practitioners 60
m7 the art. Accordingly, the above disclosure is not

F<G to limit the invention; the scope of the invention is
BY by the appended claims.
ets claimed is:

4 method of transferring a packetto acomputer system, 65
E Packetis received at a communication device
pRetwork, comprising:

114

parsing a header portion of a first packet received al a
communication device to determineif said first packet
conformsto a pre-selected protocol;

generating a flow key to identify a first communication
flow that includes said first packet;

transferring said first packet to a host computer system for
processing in accordance with said pre-selected proto-
col; and

associating, an operation code with said first packet,
wherein said operation code indicates a status of said
first packet.

2. The method ofclaim 1, wherein said parsing comprises:
copying a headerportion ofsaid first packet into a header

mnemory; and
examining said header portion according to a series of

parsing instructions;
wherein said parsing instructions are configured to reflect

a set of pre-selected communication protocols.
3. The method of claim 2, wherein said parsing imstruc-

tions are updateable.
4. The method of claim 2, further comprising copying a

value from a field in a header of said header portion.
5. The method of claim 1, wherein said parsing comprises:
extracting an identifier of a source ofsaid first packet from

said header portion; and
extracting an identifier of a destination of said first packet

from said header portion.
6. The method of claim 5, wherein said generating com-

prises combining said source identifier and said destinationidentifier.
7. The method of claim 1, wherein said generating com-

prises retrieving an identifier of a communication conncc-
tion from said header portion.

8. The method of claim 1, further comprising storing said
first packet in a packet memory prior to said transferring.

9. The methodof claim 1, further comprisingstoring said
flow key in a flow database, wherein said flow database is
configured to facilitate managementof said first communi-
cation flow.

10. The method ofclaim 9, further comprising associating
a flow number with said first packet, wherein said flow
number comprises an index of said flow key within said flow
database.

Ji. The method of claim 10, further comprising storing
said flow number in a flow memory.

12. The method of claim 9, further comprising updating
an entry in said flow database associated with said flow key
when a second packet in said first communication flow is
received.

13. Acomputerreadable storage medium storing instruc-
tions that, when executedby a computer, cause the computer
to perform a methodoftransferring a packet reccived at a
networkinterface from a network to a host computer system,
the method comprising:

receiving, a packet from a network at a network interface
for a host computer system;

parsing a header portion of said packet to extract an
identifier of a source entity and an identifier of a
destination entity;

generating a flow key from said source identifier and said
destination identifier to identify a commmnication flow
comprising said packet,

determining whether a header in said header portion
conformsto a pre-selected protocol;

storing said-flow key in a database;

EX 1017 Page 569

EX 1017 Page 570

US 6,453,360 B1
115

associating an operation code with said packet, wherein
said operation code identifies a status of said packet,

storing said packet in a packet memory;
if said header conformsto said pre-selected protocol:

storing a data portion of said packet in a re-assembly
buffer; and

storing said header portion in a headerbuffer; and
if said header conforms to a protocol other than said

pre-selected protocol, storing said packet in a non-re-
assembly buffer.

14. The method of claim 1, wherein said associating
comprises:

retrieving one or more headerfields of said header por-
tion; and

analyzing said header fields to determine said status of
said first packet.

15. The method of claim 14, wherein said analyzing
comprises:

determining whether said first packet includes a data
portion; and

if said first packet includes a data portion, determining
whether said data portion exceeds a pre-determined

size.

16. The method of claim 14, wherein said analyzing
comprises determining whether said first packet was
received out oforder in said first communication flow.

17. The method ofclaim 1, further comprising storing said
E operation code in a control memory.

» 18. The method of claim 1, wherein said first pack et is
&. determined to conform to said pre-selected protocol, said

& transferring comprising:
storing a data portion ofsaid first packet in a re-assembly

storage area, wherein said re-assembly storage area is
configured to only store data portions of packets in said
first communication flow; and

storing one or more headers from said header portion in
a header storage area.

:, 19. The method of claim 1, wherein said transferring
comprises:
:. 4£ said first packet is smaller than a predetermined

threshold, storing saidfirst packetin a first storage area;and

‘ if said first packet is larger than said predetermined
threshold,storing said first packet in a second storagearea.

s, 20. The methodof claim 1, further comprising determin-
bg whether a second packel received from said network is
pt of said first communication flow.

: 21. The method of claim 20, wherein said determining

B Maintaining a packet memory configured to store one or
s.” more packets received from said network;

aintaining a flow memory configuredto store, for cach
ofsaid one or more packets, an identifier of a commu-

{ Rication flow comprising said packet; and
Searching said flow memory for a first identifier of said
S first communication flow.

me. The method of claim 21, wherein said first identifier
pubtises said flow key.
iS. The method of claim 21, wherein said first identifier

EC OPUSes a flow numberofsaid first packet, wherein said
* aamber is an index of said flow key within a flowem)

Pt. The method of claim 1, wherein said host computer
pee Comprises a plurality of processors, further compris-

116

identifying a quantity of processors in said host computer
system available for processing packets; and

associating a first processor identifier with said first
packetto identify a first processorin said bost computer

5 system for processing said first packet.
25. The method of claim 24, further comprising:
receiving a second packet in said first communication

flow; and
associating said first processor identifier with said second

10 packet.
26. The method of claim 24, further comprising:
receiving a second packet from a second communication

flow; and

associating a second processoridentifier with said second
packet to identify a second processor in said host
computer system for processing said second packet.

27. The method of claim 1, further comprising alerting
said host computer system to the arrival of said first packet.

28. The method of claim 1, further comprising:

15

20 maintaining a packet memory configuredto store packets
received from said network; and

randomly discarding a packet if said packet memory
contains a pre-determined levelof traffic.

25 29. The method of claim 28, wherein said packet is said
first packet.

30. The method ofclaim 28, wherein said packet memory
comprises a plurality of regions, said randomly discarding
comprising:

identifying one of said plurality of regions, wherein a
level of traffic stored in said packet memory has
reached said region;

applying a probability indicator associated with said
region to determine a probability that said first packet

35 should be discarded; and
if said probability exceeds a predetermined threshold,

discarding said first packet.
31. The method of claim 1, wherein said communication

device is a network interface.

49 32. A method of transferring a packet received at a
network interface to a host computer system, comprising:

receiving a packet from a network,
storing said packet in a packet memory;
parsing a header portion of said packet;

45 extracting a value stored in said header portion;
identifying a communication flow comprising said

packet;
determining whether a header in said beader portion

conformsto a pre-selected protocol;

30

50 determining whether a second packet in said packet
memory is part of said communication flow;

if the host computer system contains a plurality of
processors, identifying a processor to process said

55 packet; and
storing said packet in a host memory area.
33. A method of transferring a packet received at a

network interface from a network to a host computer system,
comprising:

69 «receiving a packet from a network at a network interface
for a host computer system;

parsing a header portion of said packet to extract an
identifier of a source entity and an identifier of a
destination entity;

65 generating a flow key from said source identifier and said
destination identifier to identify a communication flow
comprising said packet;

EX 1017 Page 570

EX 1017 Page 571

US 6,453,360 B1
117

determining whether a header in said header portion
conformsto a pre-selected protocol;

storing said flow key in a database;
associating an operation code with said packet, wherein

said operation code identifies a status of said packet;
storing said packet in a packet memory;
if said header conformsto said pre-selected protocol:

storing a data portion of said packet in a re-assembly
buffer; and

storing said header portion in a header buffer; and
if said header conforms to a protocol other than said

pre-selected protocol, storing said packet in a non-re-
assembly buffer.

34. The method of claim 33, wherein said parsing com-
prises executing a series of updateable instructions config-
ured to parse a packet header conformingto one of a set of
pre-selected protocols.

35. The method of claim 33, further comprising storing
said operation code in a control memory.

36. The method of claim 33, further compmising storing a
flow numberof said packctin a flow memory, wherein said
flow number comprises an index ofsaid flow key in said
database.

37. The method of claim 36,further comprising indicating
whether said packet memory includes another packet with
said flow numberor said flow key.

38. The method of claim 33, wherein the host computer
“system comprises multiple processors, further comprising

. identifying a first processorin the host computer system to
-process said packet in accordance with said pre-selected

protocol.
39. The method of claim 38, further comprising:
receiving a sccond packet at said network interface,

wherein said second packet is part of a second com-
munication flow; and

identifying a second processor in the host computer
‘- system to process said second packet.
*° 40. The methodof claim 33, further comprising infomming

B® said host computer system ofsaid receipt of said packet.
; 41. The method of claim 33, wherein said packet memory
f, comprises a plurality of regions, further comprising:

" determininga level of networktraffic stored in said packet
memory; and

applying a probability indicator associated with one of
said regions to determine whetherto discard a packet

¢ ‘received from said network.
, 42. An apparatus for transferring a packet to a host

mMputer system, comprising:
&.: 4 traffic classifier configured to classify a first packet

received from a network by a communication flow that
f includes said first packet;
&. @ packet memory configured to store said first packet;

4 packet batching module configured to determine
whether another packetin said packet memory belongs

to said communication flow; and
‘ a flow re-assembler configured to re-assemble a data

Portion of said first packet with a data portion of a
Second packet in said communication flow;

F) Wherein said first packet data portion and said second
packet data portion are stored in a host computer
memory area to enable efficient transfer of said

memory area contents.
B43. The apparatus of claim 42, wherein said traffic clas-
pcr comprises:
¢. * Parser configured to parse a header portion of said first

Packet;

118

a flow database configured to store a flow key identifying
said communication flow; and

a flow database managerconfigured to manage said flow
database;

wherein said flow key is generated from an identifier of a
source of said first packet and an identifier of a desti-
nation of said first packet.

44. A computer system for receiving a packet from a
network, comprising:

a memory configured to store packets received from a
network; and

a communication device configured to receive a first
packet from said network, the communication device

15 comprising:
a parser configured to extract information from a

header portion of a first packet;
a flow manager configured to examine said informa-

tion;
20 a flow database configured to store an identifier of a

first communication flow comprising multiple
packets, including said first packet, and

are-assemblerfor storing data portions of said multiple
packets in a first portion of said memory; and

25 a processorfor processing said first packet.
45. The apparatus of claim 42, further comprising:
a load distributor for identifying a first processor within

the host computer system for processing said first
packet and said second packet;

wherein said load distributoridentifies a second processor
in the host computer system for processing a packet
from a different communication flow.

46. The apparatus of claim 42, further comprising:
35 a probability indicator for determining a probability of

discarding a packet at said packet memory whena level
of traffic stored in said packet memory is within a
pre-determined region associated with said probabilityindicator.

49-47. A device for receiving a packet from a network and
transferring the packet to a bost computer system, compris-
ing:

a parser configured to parse a header portion of a packet
received from a network, wherein said parsing com-

5 prises:
determining whether a header within said header por-

tion conforms to one of a set of communication
protocols; and

if said header conforms to one of said communication
50 protocols,

extracting information from said header portion to iden-
tify a communication flow to which said packet
belongs;

a flow memory configured to store a flow identifier for
identifying said communication flow;

a flow manager configured to assign an operation code to
said packet, wherein said operation code:
indicates a status of said packet, and
indicates a manner of transferring said packet to the

host computer system;

a packet memory configured to store said packet; and
a transfer module configured to transfer said packet from

said packet memory to a host computer system in
65 accordance with said operation code.

48. The device of claim 47, wherein the device is a
network interface.

ry

10

30

a

60

EX 1017 Page 571

EX 1017 Page 572

US 6,453,360 B1
119

49. The device of claim 47, said low memory comprising
flow database configured to store a flow key, wherein said
wkeyis assembled from an identifier of a source of said
cket and an identifier of a destination of said packet.
50. The device of claim 47, wherein said flow manager is 5
rtber configured to update said flow memory as additional
ickets in said communication flow are received from the
‘twork.
51. The device of claim 47, said flow memory compnising
flow memory configured to store a flow number, whercin 10
jd flow number comprises an index of said communication
yw in a flow database.
52. The device of claim 47, further comprising a control
emory configured to store said operation code.
53. A computerreadable storage medium storing instruc- 15

ons that, when executed by a computer, cause the computer
, perform a method oftransferring a packet from a com-
junication device to a host computer, the method compris-
ig:

parsing a header portion of a first packet received at a 20
communication device to determine if said first packet
conforms to a pre-selected protocol;

generating a flow keyto identify a first communication
flow that includes said first packet, as

transferring said first packet to a host computer system for
"processing in accordance with said pre-selected proto-

col; and
associating an operation code with said first packet,

whercin said operation code indicates a status of said 49
first packet.

54. The device of claim 47, wherein said host computer
ystem is a multi-processor host computer system, further
saprising a load distributor configured to select one of said
fultiple processors for processing said packet in accordance 45
Bth one of said communication protocols.
85. The device of claim 47, whercin said transfer module
Honfigured to transfer a data portion of said packet into
© of a set of host memory areas in accordance with said

i

The device of claim 47, further comprising a packet
hing module configured to determine whether said

et memory contains another packet in said communi-flow.

The device of claim 47, wherein said packet memory 45
multiple regions, and wherein cach of said mul-

to indicate a probability of discarding a packet
ed at the device,

An apparatus fortransferring a packet from a network
Seost computer system, comprising:

120

a parser module configured to:
parse a headerportion ofa first packet received from a

network to extract an identifier of a source of said
first packet and an identificr of a destination of said
first packet;

generate a flow key from said source identifier and said
destination identifier to identify a communication
flow comprising said first packet; and

determine whether a header in said header portion
conforms to a pre-selected

protocol;
a flow database configured to store said flow key;
a flow database manager configuredto associate an opera-

tion code with said first packet, wherein said operation
code identifies a status of said first packet;

a packet memory configured to store said first packet; and
a transfer module configured to:

if said header conforms to said pre-selected protocol:
store a data portion of said first packet in a

re-assembly buffer; and
store said header portion in a header buffer; and

if said header conforms to a protoco! other than said
pre-selected protocol,

store said packet in a non-re-assembly buffer.
59. The apparatus of claim 58, wherein said transfer

module comprises a re-assembly engine configured to
re-assemble, in said re-assembly buffer, a data portion of
said first packet with a data portion of a second packetin said
first communication flow.

60. The apparatus of claim 58, further comprising a flow
memory configuredto store a flow number associated with
said first packet, wherein said flow number comprises an
index of said flow key in said flow database.

61. The apparatus of claim 58, further comprising:
a load distributor configured to identify a first processorin

said host computer system for processing said first
packet, said first processor being identified on the basis
of said flow key;

whercin said host computer system is a multi-processor
computer system; and

wherein a second processor in said host computer system
is identified for processing a packet from a communi-
cation flow other than said first communication fiow.

62. The apparatus of claim 58, further comprising:
a packet batching module configured to determine

whethersaid packet memory includes another packetin
said first communication flow.

* * -_ + *

EX 1017 Page 572

SeerWa

EX 1017 Page 573

oy AA

‘

United States Patent p15 44) Patent Number: 6,118,760[19] (11) ’

Zaumen et al. 45) Date of Patent: Sep. 12, 2000{45] 9

{54] MANAGEMENT OFENTRIES IN A 5,490,139 2/1996 Baker et ab —.---eecseersseeessee 370/60NETWORK ELEMENT FORWARDING 5,490,252 2/1996 Maceraet al. . . 395/200.015,500,860 3/1996 Perlmanet al. 370/85.13MEMORY Ir
5,561,665 10/1996 Christensen etal. »- 370/434

. se. 5,572,522 11/1996 Calamvokis ct al. . .. 370/395
[75] Inventors: Willan7aoe paoAe 5,594,727 1/1997 Kolbensonet al. 370/468

Shree Murthy, Suan if Bs 5,633,865 5/1997 Short 370/412ree Murthy, Sunnyvale, Calif. 5636371 6/1997 Yu nue 395/500
. . . 5,640,605 6/1997 Johnsonetal. 395/881

[73] Assignee: Sun Microsystems, Inc., Mountain 5,651,002 7/1997 Van Seters etal.
View, Calif. 5,675,741 10/1997 Aggarwal et al. ...

[21] Appl. No.: 08/884,946 (List continued on next page.)
[22] Filled: Jun. 30, 1997 OTHER PUBLICATIONS
[st] Int. Cl 7 040 11/04 “Foundry Products”, downloaded from Website http://ww-i om eeAEA. . wfoundrynet.com/ on Jun. 19, 1997.

| 62] US.Cl..... 370/229; SoWOIETE Anthony J. McAuley & Paul Francis, “Fast Routing Table1428; 370) Lookup Using CAMs”,IEEE,1993, pp- 1382-1390.
. [58] Field Of Search w.ececceecennceeneenennene 370/229, 330, “Gigabit Ethemet”, Network Strategy Report, The Burton

4,652,874
4,850,042
4,922,503
4,933,938
5,150,358
5,210,746
5,220,562

* 5,251,205
5,293,379
5,309,437
5,343,471
5,386,413
5,392,432
5,394,402
5,410,540

* 5,422,838
5,425,028
5,459,714

F. 5.459717
5,461,624

B° 5,485,455
5,485,578

370/381, 386, 428, 469, 475, 237, 254,
389, 396, 397, 401, 402, 468; 365/49; 395/180,

182.03

References Cited

U.S. PATENT DOCUMENTS,

3/1987 Loyer . 340/825.05
7/1989 Petronio 455/606
5/1990 Leone 370/85.13
6/1990 Sheehy.. 370/85.13
9/1992 Punj etal. . 370/468
5/1993 Maheret al. 370/386
6/1993 Takada et al. 370/401

10/1993 Callon et al. .. 370/60
3/1994 Carr0. 370/474
5/1994 Perlman et al. 340/827
8/1994 Cassagnol 370/85.13
1/1995 McAuley etal. . 370/54
2/1995 Engelstad et al. 395/180
2/1995 ROSS «..0.0-0- 370/94.1
4/1995 Aikietal . 370/390
6/1998 Lim «1... 365/49
6/1995 Britton et al. 370/94.1

10/1995 Lo etal. 370/13.1
10/1995 Mollan et al. 370/351
10/1995 370/402

1/1996
1/1996

Group, v2, May 8, 1997 40 pages.
“IP On Speed”, Erica Roberts, Internet-Draft, Data Com-
munications on the Web, Mar. 1997, 12 pages.
“Multilayer Topology”, White Paper, Internet-Draft, 13
pages, downloaded from website hitp:/Awwwbaynetwork-
s.com on Apr. 18, 1997.

Primary Examiner—Douglas W. Olms
Assistant Examiner—Shick Hom
Attorney, Agent, or Firm—Blakely Sokoloff Taylor &
Zafman

[57]

The invention generally provides for a network element and
methods in the network element for allowing a matching
entry in a forwarding memory to be found in a single search
of the memory, for determining when an entry should be
placed in the memory, and for determining when ao entry
should be removed from the memory,in order to make more
efficient use of the fixed space available in the memory. The
invention is particularly useful in making more efficient use
of a Content Addressable Memory (CAM)forstoring flow
entries, and configuring the CAM to index an associated
memory that stores forwarding and quality of service infor-
mation for each CAM entry.

ABSTRACT

36 Claims, 3 Drawing Sheets

EX 1017 Page 573

EX 1017 Page 574

i
6,118,760 i it

Page 2 A

i
U.S. PATENT DOCUMENTS 5,745,048 4/1998 Taguchi et al. . \

. 5,748,905 5/1998 Hauseretal. .. . 395/200.79 te
ee 3998 Ueadrick otal. - 370/418 5,751,967 5/1998. Raab etal. .. _ 395/200.58 ig
5,740,171 4/1998 Mazzolaet al. . ” 5,754,540 5/1998 Lin et al. - 370/315 it
5,740,175 4/1998 Wakeman etal. . 395/422 5,764,634 6/1998 Christensenet al. .- 370/401 : i
5,740,375 4/1998 Dunneetal. 395/200.68 5,784,573 7/1998 Szczepanek et al. 395/200.8 | it5,742,604 4/1998 Edsall etal. . . 370/401 5,790,546 8/1998 Dobbins etal. .. 370/400 sae
5,742,760 4/1998 Picazo, Jr. et ab. .scssssecssseneene 370/351 5,802,052 9/1998 Venkataraman . » 370/395 1 as

i
|
i
||i

EX 1017 Page 574

EX 1017 Page 575

6,118,760Sheet 1 of 3Sep. 12, 2000U.S. Patent

 LtI

quawes|yjuawaly
SuTysIMS

juawalyBuTyrIMS

yVLA

VLEHOLEAeCELLLLLLLLELLIEITILIGT

SSS

(WD)Arowayjequas

O€T

EX 1017 Page 575

EX 1017 Page 576

221

275

Forwarding Memory
(Header Data)

IP

P 199. 171.
191. 142.

Source Dest.SourceEi

X. X.
X. X,

ra-L]

Associated Memory

(Associated Data)

Aged} Aged|,._.. [Subsystem vee

Aged) Aged |... [Subsystem oveDF

Aged} Aged |... [Subsystem veeDF
yuajed*S'N

0007‘ZT“das

€J07399US

O09L‘SIT‘9

EX 1017 Page 576

EX 1017 Page 577

U.S. Patent Sep. 12, 2000 Sheet 3 of 3 6,118,760
 Receive new

packet

Does new header

match an entry in
forwarding
memory?

forwarding
memory?

Creale new entry

Set new entry's
corresponding

umerto a first ume

Notify CPS

“Flood”

the packet

Update activity 315
field for entry

Forward packet in {307
hardware

317

321

323

Is the entry
corresponding tothe timer active?

No Remove| 327

the entry

Clear activity field |333
for the entry

Set second timer 335
to second time

EX 1017 Page 577

EX 1017 Page 578

6,118,760

1 2
MANAGEMENT OF ENTRIESIN A from a higher layer, a layer provides services 1o enable the

NETWORK ELEMENT FORWARDING operation of the layer above it. A received packet will
MEMORY typically have several headers that were added to the onigi-

nal payload by the different layers operating at the source.
BACKGROUND 5 There are several layer partitioning schemes in the prior

. , p such as the Arpanetand the n Systems InterconnectVo. Field ofthe{nvention (08) models. the seven layerDSI tmodel used here to
‘The inventionis generally related to network elements for describe the invention is a convenient model for mapping

communication between computers, and more specifically the functionality and detailed implementations of other
“related to the creation and elimination of entries im a 19 models. Aspects of the Arpanet, however, (now redefined by
‘forwarding, memory. the Internet Engineering Task Force, or IETF) will also be

2. Description of Related Art used in specific implementations of the invention to be
B., Communication between computers bas become an discussed below.
E- mportant aspect of everydaylife im both private and busi- The relevant layers for background purposes here are
Encss covironments. Computers converse with each other 15 Layer 1 (physical), Layer 2 (data link), and Layer 3
&ascd upon a physical medium for transmulting the messages (network), and to a limited extent Layer 4 (transport).Abrief
Bock and forth, and upon a set of rules implemented by—summary of the functions associated with these layers

siectronic hardware attached to and programs running on the follows.
pputers. These rules, often called protocols, define the The physical layer transmits unstructuredbits of infor-
erly transmission and receipt of messages in anetwork of 20 pation across a communication link. The repeater is an

7 nected computers. example of a nctwork clementthat operates in this layer. The
A local area network (LAN) is the most basic and simplest physical layer concerns itself with such issuesas the size and
Bawork that allows communication between a source com- shape of connectors, conversion ofbits to electrical signals,
Mer and destination computer. The LAN can be envisioned and bit-level synchronization.
Ba.cloud to which computers (also called endstations or Layer 2 provides for transmission of frames of data and
Bi-nodes) that wish to communicate with one another are—error detection. More importantly, the data link layer as

ched. At Jeast one network element will connect with all referredto in this invention is typically designed to “bridge,”
he endstations in the LAN. An example ofa simple or carry a packet of information across a single hop, ic., a

Ework elementis the repeater which is a physical layer hop being the journey taken by a packet in going from one
y that forwards bits. The repeater may bave anumber of * pode to another. By spending only minimal time processing

B, cach endstation being attached to one port. The 4 received packet before scnding the packet to its next
ter receives bits that may form a packet of data that—destination, the data link layer can forward a packet much

gains a message from a source endstation, and blindly faster than the layers aboveit, which are discussed next. The
€ ds the packet bit-by-bit. The bits are then received by data link layer provides addressing that may be used to
Biher cndstations in the LAN, including the destination. % identify a source and a destination between any computers

ple LAN, however, may be insufficient to meet the interconnected at or below the data link layer. Examples of
ments of an organization that has many endstations, Layer 2 bridging protocols include those defined in [EEE

ise of the limited number of physical connections 802 such as CSMA/CD,token bus, and tokenring (including
pble to and the limited message handling capability of Fiber Distributed Data Interface, or FDDI).Og 40

gle repeater. Thus, because of these physical limitations, Similar to Layer 2, Layer 3 also includesthe ability to
Fptater-based approach can support only a limited provide addresses of computers that communicate with each
er of endsiations over a limited geographical area. other. The network layer, however, also works with topo-

apability of computer networks, however, has been logical information about the network hierarchy. The net-
by connecting different subnetworks to form larger ,, work Iayer may also be configured to “route” a packet from
that contain thousands of endstations communi- the source to a destination using the shortest path. Finally,
h each other. These LANscanin turn be connected the network layer can control congestion by simply dropping

other to create even larger enterprise networks, selected packets, which the source might recognize as a
wide area network (WAN) links. request to reduce the packet rate.

mcilitate communication between subnets in a larger sq ‘Finally, Layer 4, the transport layer, provides an applica-
» More complex electronic hardware and software tion program such as an electronic mail program with a “port

proposed and are currently used in conventional address” which the application can use to interface with
Also, new scts of rules for reliable and orderly—Layer 3. Akey difference between the transport layer and the
‘ation among those endstations have been defined lowerlayers is that a program on the source computer carries
Standards based on the principle that the endsta- 55 a conversation with a similar program on the destination

prconnected by suitable network elements define a computer, whereas in the lower layers, the protocols are
Rte Tarchy, where endstations within the same sub- between each computer andits immediate neighbors in the

ave a commonclassification. A network is thus network, where the ultimate source and destination endsta-
ve a topology which defines the features and tions may be separated by a numberof intermediate nodes.

ae Position of nodes and endstations within the ¢9 Examples of Layer 4 and Layer 3 protocols include the
* Internet suite of protocols such as TCP (Transmission Con-
terconnection of endstations through packet trol Protocol) and IP (Intemet Protocol).
.Hctworks has traditionally followed a peer-to-peer Endstations are the source and ultimate destination of a
Fehitectural abstraction. In such a model, a given_packet, whereas a node refers to an intermediate point

ye: Source computer communicates with the same 65 between the endstations. A node will typically include a
a t endstation (usually the destination) across the network element which has the capability to receive and

BY attaching a header to the data unit received—forward messages on a packet-by-packet basis.

EX 1017 Page 578

EX 1017 Page 579

3

Generally speaking, the larger and more complex net-
works typically rely on nodes that have higher layer (Layers
3 and 4) functionalities. A very large network consisting of

& several smaller subnetworks musttypically use a Layer 3
- network element known as a router which has knowledge of

the topology ofthe subnetworks.
A router can form and store a topological map of the

E yetwork aroundit based upon exchanging information with
its neighbors. If a LAN is designed with Layer 3 addressing

F capability, then routers can be used to forward packets
F between LANsby taking advantage of the hierarchical

routing information available from the endstations. Once a
F table of endstation addresses and routes has been compiled
E by the router, packets received by the router can be for-

warded after comparing the packet’s Layer 3 destination
E address to an existing and matching entry in the memory.

| As packets are being transmitted and received between
f endstations, they must traverse intermediate nodes in which
: anetwork element receives a packet and forwards it towards
Fits final destination. When a packet arrives at such an
Eelement, the packet’s headers (or portions of the headers) are
Kcollected and an attempt is then made to match using
F hardwired logic the destination of the packet to a known
Tayer 2 destination address in an address table stored in a

S forwarding memory. Alternatively, a matching cycle may be
‘performed in software based on the Layer 3 information

x As a high performance device, the forwarding memory
Rmust be able to produce the matching entry from among

;.Existing techniques for implementing the forwarding
Biemory include the use of a content addressable memory
CA to store a Layer 2 address table. The CAM is
fypically implemented as a hardwired logic integrated circuit
ind is nicely suited for the job of storing an address table in
fnetwork element. The high performance offered by a
-AM, however, comes at a high cost because ofits unique
sal complex hardware requirements. Therefore, a CAM for
fs as a forwarding memory in networking applications is
Bpically selected to provide space for only a limited number

§40 reduce the numberofentries by discardingstale entries
mcr a given time has elapsed, the rationale being that since

¢ has not been muchactivity in the past, there will not

ckly after the entry is discarded, then a new identical
tmaust be created. This will interfere with both header

ing and forwarding memory operations. It would be
rable, therefore, to devise a technique for even more

t use of the forwarding memory in a networking
ication. Whatis neededis a network element that makes
tent use of the forwarding memory in order to forward

pkcts faster and save costly storage space in the forward-
3 ‘Memory.q

SUMMARY

5© Uvention generally provides for a nctwork element
& ‘ncthods in the network elementfor allowing a matching

2Y in a forwarding memory to be found in a single search
Memory, for determining when an entry should be

6,118,760
4

placed in the memory, and for determining when an cntry
should be removed from the memory, in order to make more
efficient use of the fixed space available in the memory. The
invention is particularly useful in making moreefficient use
of a Content Addressable Memory (CAM) for storing fiow
entries, and configuring the CAM to index an associated
memory that stores forwarding and quality of service infor-
mation for each CAM entry.

A fiow is defined by the network elementasaseries of
related packets that may be represented by a single entry
containing Layer 3 and higher layer information in the
forwarding memory. The network element is configured to
identify such packets as members of a flow. The network
elementselects certain fields in the entry to include wild-
cards. Wildcarding the entry may resuli in multiple flows
matching the entry, which can then handle a greater number
of received packets, thereby reducing the numberof entries
in the forwarding memory in return for coarser granularity
in routing and quality of service control.

To ensure a deterministic matching result following a
single search of the forwarding memory having wildcarded
entries, the network element is configured to produce only
the mostspecific match where multiple matches exist in the
forwarding memory. In one embodiment, the network ele-
ment is configured to order the entries in the forwarding
memory most specific, so that the first matching entry will
always be the most specific entry among multiple matching
entries. Altematively, the most specific match can be deter-
mined by dedicated hardware coupled to the forwarding
memory.

Regardless ofwhether wildcards are used, entries are aged
using dual time-out periods in another embodimentof the
invention. When an entry is placed in the forwarding
memory, a first timer is set to a first time. If no matching
packets arrive before the first time elapses, the entry is
marked for removal. If a matching packet does arrive before
the first time elapses, then a second timeris set to a second
time that is different than the first time. Subsequently, the
entry is removedif cither no matching packet arrives by the
time the second time elapses, or a matching packetarrives
late (after the second time has elapsed). Additional timers
such as a third, fourth, . . . could be used which would be
equivalent to changing the second timer dynamically. In the
preferred embodimentof the invention, the secondtime is
longerthan the first time.

BRIEF DESCRIPTION OF THE DRAWINGS

The above aspects and features of the invention will be
better understood by referring to the drawings, detailed
description, and claims below, where:

FIG. 1 is a block diagram of a network clement for
implementing the invention.

FIG.2 illustrates a forwarding memory and associated
memory configured according to another embodimentofthe
invention.

FIG. 3 shows a flow diagram of steps to practice an
embodimentof the invention.

DETAILED DESCRIPTION

Although as generally summarized above,the invention
may beapplied to manage any type of forwarding entry in
a network element, the invention is particularly uscful for
managing end-to-end flows. A flow is a sequence of packets
arriving at and identified by the network clementas a single
Layer 3 entry in the forwarding memory. The packets are

EX 1017 Page 579

EX 1017 Page 580

6,118,760
5

related in that they originate from the same end-node and
nonmally have the same destination end-node based ontheir
Layer 3 (network layer) and Layer 4 (transport layer)
headers as defined by the Open System Interconnect (OS!)
Reference Model. The packets in a flow nommally receive the
same quality of service (QOS) by the network element.

Membership in a flow can be based in part upon the
transport layer (Layer 4) protocolused such as Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP),
the network layer (Layer 3) addresses such as Internet

{ Protocol (IP) addresses, and the application source and
. destination UDP or TCP ports (part of the transport layer

§ protocol). Similar definitions for other protocols can be
developed by those skilled in the art.

FIG. 1 illustrates an exemplary setting for practicing the
E invention in a network element 101. The nctwork elementis

configured to relay packets and contains a numberof sub-
& systems 110 thatare interconnected by intemal links 141. A
Ecentral processing system (CPS) having a programmed
Fcentral processing unit (CPU) 135 and a central memory 130

Keouples with the different subsystems 110 through a con-
iventional computer communication bus, such as a Peripheral

omponents Interconnect (PCI) bus. Each subsystem 110
as a hardware search engine that includes a hardwiredlogic

itching element111 coupled to a forwarding memory 113
Rid associated memory 114. The address table used for
giwarding packets through the network clementis stored in

’ forwarding memory 113, while the forwarding and
ality of service (QOS) information associated with each

is stored in the associated memory 114.In a preferred
Peodiment, the forwarding memory is implemented by a

\M while the associated memory includes a random
fess memory (RAM). Alternatively, the associated data

ally stored in the separate RAM can be stored in the
together with the address table. In yet another

Roxdiment, the forwarding memory may be implemented
«programmed processor or hardwired logic circuit that

Bemenis a hash table.

Sic network clement 101 forwards packets received by an
knal connection 117 to one or more other extemal

poctions based on the packets’ headers and programmed
in the CPS and the individual subsystems 110. For

Ic, a newly arrived packetat the subsystem 110 will
cessed by a hardware class filter in the switching

pat 111 which identifies the packet as a memberof one
eral predefined packet types. The packet’s headers are
Evaluated apainst the entries in the forwarding memory

are of the identified class. A matching entry will
got Or more subsystem ports identified in the associ-
Semory 114 as well as a certain QOS. The packet will

b forwarded, based on the associated data, out of the
Subsystem 110 or to another subsystem 120, as

in the associated memory.In the event of a “miss”
Brhing entry), the CPS 130 may be configured to

pe forwarding aspects based on its software routines.
gebout this disclosure, references are made to the

, performing certain actions or causing certain other
2 be performed. These refer, in general to actions

art will recognize that other means for imple-
actions or decisions can be used, including

logic circuits, in order to obtain certain advan-
8S speed of execution.

130 is configured to evaluate, based on previ-
& “med criteria, whether or not a flow entry 221
, dded to the forwarding memory 113 in response

6

to a subsysiem receiving a new packet having unmatching
Layer 3 headers. As shown in FIG.2, the header data for a
flow entry according to one embodiment of the invention
include butare not limited to the following fields: class, IP
source address, IP destination address, application source
port, and application destination port. The flow entry 221
can alternatively be configured to store header data for
message traffic that is handled in accordance with network
layer, transport layer, and higher layer protocols other than
TCP/IP. Thus, similar definitions for other protocols can be
developed by those skilled in the art.

Regardless of the particular protocols used for each entry
in the forwarding memory, the associated memory identifies
internal and/or external ports of the inbound subsystem,
queuing, priority, header replacement information for
routing, age, and distribnted flow indication.

Jn the first embodiment of the invention, when the CPS
130 has determined that a flow entry should be created,
wildcards are used so that someofthefields in the entry will
contain “don’t care” bits that will match all combinations.

Exemplary entries 271 and 275 which contain certain wild-
carded fields are shown in FIG. 2. For example, by removing
dependency upon the application source and destination
ports, all packets transferred between the same source and

25 destination IP addresses using TCP will match the entry 271

55

and will be forwarded based on the same associated data.

As another example, a flow can be defined as having
wildcards in both the source and destination port fields as
well as the JP destination, with the IP source identified as the
address of a particular site on the Internet. Thereafter, all
traffic from that site will match the flow entry and will
normally reccive the same priority and quality of service.

Using wild cards in the header data of an entry for
defining flow membership will reduce the total number of
cutries in the address table as the flow is broadly defined,
thus resulting in more frequent matches. This comesat the
expense of coarser granularity for the network clement 101’s
ability to control QOS.For finer granularity (more specific
control over packet forwarding) more specific entries can be
added to the forwarding memory in order to more specifi-
cally define priority and QOSfor certain packets. However,
doing so may result in multiple matching entries where
wildcarding is used. For example,referring to the exemplary
forwarding and associated memories in FIG. 2, entry 271
will matchall traffic from the specified IP source. If entry
275 is added by the network clementto specifically control
QOSfor packets originating from application port 80, then
a subsequent packet originating with port 80 on the endsta-
tion assigned to the source [P address specified will yield
two matching entries 271 and 275. As the network element
is preferably configured to forward packets based on deter-
ministic criteria, multiple matching entries presents a prob-
Jem that needs to be dealt with in a predictive manner.

An important aspect of the invention, therefore, lies in
solving the multiple matching entry problem by orderingthe
entries from a least specific to a mostspecific fashion in the
forwarding memory 113. The ordering is normally set by
requiring that the numberofwildcard bits be lowerin earlier
entries, by placing entries that suppost resource-reservation
protocols such as RSVP before those having default values,
and by ordering entries to support administrative criteria.
However, ordering may be different in order to satisfy
certain admmistrative criteria.

The three TCP class entries shown in the forwarding
memory 113 of FIG. 2 are given as an example of the
ordering scheme. Entry 271 is less specific than entry 275

EX 1017 Page 580

EX 1017 Page 581

6,118,760
7

wuse the former includes wildcards in the application
ce port field whereas the latter does not. In general, by
ning the entries such that an entry bas more wildcarded
in a givenfield than the one aboveit, and by defining the
match to be the one to use for forwarding the packet, a
le sequential search of the forwarding memory 113 from
to bottom will be sufficient to produce a single and
rally most specific entry among multiple matching
es. This mayalso be referred to as the longest matching
7, or the one having the fewest wildcards.
lternatively, the multiple matchsituation can be handled
roviding additional hardware that is configured specially
ztect and select the most specific match as the single
ul, given a number of matching entries.
ms, as a first embodiment of the invention, the above
ission of the forwarding memory 113 describes a tech-
t for managing the entries in a forwarding memory so
provide for faster forwarding of packets using only a

e search so that the most specific is matched first, or by
‘ting the most specific from a number of matching
es. Also, an example was given for detecting and
ing Layer 3 flows based on different granularity levels
igh the use of wildcarding.
second embodiment of the invention is now discussed
h focuses on how to remove Layer 3 flows to use the
arding memory more efficiently. The embodiment is
rated in FIG. 3 as an exemplary series of steps to be
mmed in a network clement having a forwarding
ory 113 as in FIG. 1. The steps are described while
ring to the architecture of FIGS. 1 and 2, and the flow
am of FIG.3.

hen a new packetis received by the network element
nu block 301, its header is passed to header matching
(not shown) in switching element 111. The header

aing logic then initiates a matching cycle on the for-
ing memory 113 to determine if the new headers match
isting forwarding entry, as in decision block 305,
decision block 305,the test is whether the new headers
1 an entry in the forwarding memory 113. If yes, then
.cket is forwarded to its destination outside the network
‘nt 101 as between subsystems 110 (or witbin the
nd subsystem 110) using forwarding and quality of
x infonnation in the associated memory. The forward-
yemory 113 will generate a pointer to an associated
on in the associated memory that contains associated
or the matching entry. The associated data will include
temal or intemal subsystem port, any routing informa-
if the matching entry is of a hardware route type as
ited in the cntry’s class field), and priority information
\cuing the packet in an external port. Also, whenever a
! occurs with an existing entry in the forwarding
ty 113,the activity field or aged destination bits are
ed to reflect the match, as in block 309.
uring to decision block 305, if the received packet
aknown headers, i.e., not matching any entries in the
Iding memory 113, then the packetis “flooded”onall
al and external ports of the inbound subsystem. In that
block 311 calls for a decision as to whetheror not add
"entry to the forwarding memory. The decision block
3 preferably performed by CPS 130 in response to
‘ngrelevant portions of the headers of the new packet
the inbound subsystem. For packets thatfall within the
‘lass, such that a Layer 3 flow entry may need to be
&, the header portions sent to the CPS include the IP
*and destination addresses, and the application source
*stination ports (Layers 3 and 4).If the class filter in

wr

10

40

45

65

8

the subsystem 110 indicates that a hardware route is sup-
ported by the network element 101 for the received packet,
then the Layer 2 source and destination addresses are also
sent to the CPS. The CPS 130 then determines, based on
previously programmedinformation in the CPS about the
beader fields, whetberor not an entry should be addedto the
forwarding memory.

If the CPS 130 determines that an entry should be added
to the forwarding memory as in block 311, then the CPS 130
causes the entry to be created in the forwarding memory 113
as in block 315. The CPS 130 can place don’t care bits in any
field of the entry for the desired level of granularity. The
associated data of the new entry will also be provided by the
CPS 130 and will include at least an output port (external
and/or internal) in the subsysiem 110, queuing and priority
information to be used by the output ports of the outbound
subsystem, and any header replacement information
required for routing. The activity or aged destination field of
the new entry will also indicate that the entry is new, i.¢., no
match as ofyet.

Once the CPS 130 has determined that a new entry should
be created as in block 311, the CPS 130 sets a timer or
counter to a first time in block 317. The timer corresponds
to the new entry and is normally a software timer within the
CPS 130. The CPS 130 will include provisions such as
pointers for the timer that identify its corresponding new
entry as the one in forwarding memory 113 of subsystem
110.

When the timer runs out in block 321, the CPS 130 is
notified in block 323, normally by an interrupt to CPU 135
or, alternatively, by polling. Based on its pointer provisions,
the CPS 130 identifies the corresponding entry and deter-
mines whether the entry corresponding to the timeris still
active by reading the valueof its activity or aged destination
field in the associated memory 114,as in decision block 325.
If the activity field indicates that a received packet has not
matched the entry since the timer was settoafirst time, then
the CPS 130 instricts the removal of the entry in block 327.
If, however, the activity field indicated that the subsystem
received a packet having headers that match the entry during
the first time interval, then a second timer corresponding to
the same entry is set to a second time in block 335.Also, the
activity field is cleared to indicate no matching packets as of
yet.

The above procedure beginning with block 321 repeats
thereafter for each subsequent time-out of the second timer.
Although the first and second timers are defined as separate
timers, an alternative cmmbodimentcasts the first and second
timer as the same software timer having two different time
intervals.

An important aspect of the invention lies in the second
time being preferably longer than the first time, where
preferred numbers include approximately one second for the
first time and three seconds for the second time.
Furthermore, the first and second times can be chosen based
on network layer addresses, Layer 4 protocols, and Layer 4
port numbers.

Exceptions to the above removal of entries based on
time-out periods include the situation of RSVP signaling,
where a flow entry is managed explicitly by RSVP. In that
case, RSVP signaling between the source and destination
will determine when the flow entry should be removed from
the forwarding memory 123.

Other exceptions are packets destined to UDPport 111
(Layer 4 information). It_has been observed that such
packets appear to contribute greatly to packet flow entries

EX 1017 Page 581

EX 1017 Page 582

6,118,760
9

whichresult in only a single matching packetbefore thefirst
time expires. The network element 101 will thus be prefer-
ably configured to not make a Layer 3 flow entry for such
packets.

The use of dual time periods described above thus pre-
sents a simple yet effective technique for keeping the num-
ber of entries in a forwarding memory 113 to a minimum.
The technique’s simplicity in verifying the age status of an
entry in response to a time-out of two different time periods
expedites the entire forwarding process. However, addi-
tional timers and time periods can be used to further fine
tune the invention’s entry removal mechanism, which may
be viewed as dynamically changing the second time upon
each time-out of the second timer.

The rationale behind the shorter first and longer second
intervals can perhaps be explained by analyzing the prob-
ability of packets arriving at the network element 101 which
match a given entry. An assumption is made that the
intervals between the arrival of such packets are independent
of each other. For a given stream of arriving packets, the
probability of an interpacket gap exceedinga first time t, is
P,, and the probability of an interpacket gap exceeding a
second timet, is P,. Since the assumptionis that t,<t,, then
P,<P, must be truc in mostcircumstances.

If the sole basis for removingentries from the forwarding
memory is to use t, aS a time-out period, such that if an
interpacket gap exceeds t, then the flow entry is removed,
then the probability of not prematurely removing a flow for
the first n packets is (1-P,)"=(1-P,)(1-P,)"*.

If, however, two timeout intervals arc used, t, for the first
interval, and t, for subsequent intervals between arriving
packets, then the probability of not prematurely removing
the entry for the first n packets is (1-P,\1-P,)*"*. Since
P,<P,<1, so is (1-P,)*""<(1-P,)"", and thus the use of two
interval times increases the probability of not prematurely
removing a multi-packet flow, yet still effectively remove
entries which only receive a single matching packet.

To summarize, the invention presents a technique in a
network clement for managing the entrics in the forwarding
memory. After identifying a first received packet as a
member of a flow, an entry is created in the forwarding
memory which identifies the flow. Thereafter, the entry is
Temoved if a subsequent packet having a matching header is

fe Ot received beforeafirst time has elapsed.If, however, the
F subsequent packet having a matching header is received

! before the first time has clapsed,then the flow entry is kept
y and a timeris reset to a second longer time, such that the
F flow entry will be kept for subsequent packets arriving
f within the longer second time. Such a technique takes
; advantage of the pattern thatif two packets arrive within the

Shorter first time, then the Jikelihood of more matching
F Packets arriving within a subsequent longer time has sub-

Slantially increased.
In another embodiment, yct more efficient use of a for-

¢. Warding memory is made by implementing a longest-match
 ®Pproach, where the forwarding contains wildcarded entries.
; The wildcarding scheme allows for default routes to be

; defined based on any level of granularity desired for source
P ontstination addresses, subnets, as well as transport layer
f The embodiments of the invention described above for
y xemplary purposes are, of course, subject to other varia-
5 tions in structure and implementation within the capabilities
5 Of onereasonably skilled in the art. For example, although
} Many opcrations have been described as occurring
E. Squentially, some of these can be implemented concur-

|

5

i=]o

25

60

10

rently or even in a different order so long as the dependen-
cies between them pennit such deviation. Also, the invention
can be implemented in a network element having a central-
ized forwarding memory rather than one having the distrib-
uted architecture of FIG. 1. Thus, the details above should be
interpreted as illustrative and not in a limiting scnse.

Whatis claimed is:

1. Ina network clement having a forwarding memory for
storing a plurality of entries used for forwarding received
packets, a method of managing the storage of the entries
comprising the steps of:

makingafirst entry in the forwarding memory based upon
a headerofa first received packet; and one of

marking the first entry for removal if a second packet
having a header matching thefirst entry is not received
before a first time has elapsed, and

waiting a second time not equal to the first time before
markingthefirst entry for removal if the second packet
having the header matching thefirst entry is received
before the first time has elapsed. *

2. The method as in claim 1 wherein the second timeis

longer than the first time.
3. The method as in claim 2 where the first time is

approximately one second and the second time is approxi-
mately three seconds.

4. The method as in claim 1 further comprising the step of
markingthefirst entry for removal if a third packet having

a third header matching the first entry is not received
before the second time has elapsed.

5. The method as in claim 1 further comprising thestep of
waiting a third time before marking the first entry for
removal if a third packet having a third header matching the
first entry is received before the second time has elapsed.

6. The method as in claim 1 priorto the step of making the
first entry, further comprising the step of

searching the forwarding memory for a match between
the header ofthe first received packet and an entry in
the forwarding memory,

and wherein the step of makingthe first entry is performed
in fesponse to not finding the match.

7. The method as in claim 5 wherein the third time is
different than the second time.

8. The method as in claim 6 further comprising the step of
selecting a most specific one of a number of matching
entcies.

9. The method as in claim 1 further comprising the step of
ordering the plurality of entries in the forwarding memory

from mostspecific to least specific, the most specific
having the fewest wildcard characters of any of the
plurality of entries.

10. The methgd as in claim 1 wherein the headerfurther
comprises a Layer 4 address.

11. The methodas in claim 10 wherein the headerfurther

comprises a Layer 4 address.
12. The method as in claim 1 wherein at least one of the

first time and the second timeis selected based on predefined
network layer addresses.

13. In a network element having an address table for
storing a plurality of entries used for forwarding received
packets, and a timer associated with each entry, a method of

. maanaging the entries in the address table comprising the
_Steps of:

receiving a first packet; .
making 4 first entry in the address table based upon a

headerof the first packet;
setting a first timer fo a first time; and

EX 1017 Page 582

EX 1017 Page 583

6,118,760
11

setting a second timer to a second time not equal to the
first time if a second packet matchingthefirst entry is
received before the first time has elapsed.

14. The method as in claim 13 wherein the second timeis
longer than the first time.

15. The method as in claim 14 wherein the first time is

approximately one second and the second time is approxi-
mately three seconds.

16. The methodas in claim 13 further comprising the step
of

deleting the first entry if the second packet matching the
first entry is not received before the first time has
elapsed.

17. The methodas in claim 13 wherein the first timeris
the second timer.

18. The method as in claim 13

wherein the first entry comprises an activity field for
indicating that the first entry has matched a received
second packet.

19. The method as in claim 13 priorto setting the second
timer further comprising the steps of:

searching the address table to find a matching entry in
response to receiving the second packet, the first entry
being a most specific one of a plurality of matching
entries.

20. ‘The method as in claim 13 further comprising the
steps of:

ordering the plurality ofentries in the forwarding memory
from most specific to least specific, the most specific
having the fewest wildcard characters of any of the
plurality of entries; and

searching the address table to find a matching entry.
21. The method as in claim 20 wherein the step of

searching the address table to find the matching entry
includes searching based on Layer 3 and Layer4 headers of
a received packet.

22. Anetwork element for managing a plurality of entries
in a forwarding memory, comprising:

means for initiating a search of the forwarding. memory
for an entry matching a portion of a first header of a
received first packet;

means for makinga first entry in the forwarding memory
in response to finding no entry matching the portion of
the first header of the received first packet, the first
entry having an activity field indicating whether the
first entry bas matched a received second packet;

meansfor setting a first timer to a first time;
means for checking the activity ficld in response to the

first timer running out; and

10

x

35

45

12

means for setting a second timer to a second time hot
egual to thefirst time in response to the activity field
indicating that the first entry bas matched the received
second packet.

23. The network clement 2s in claim 22 wherein the
second time is longer than the first time.

24. The network elementas in claim 23 wherein the first

time is approximately one second and the second time is
approximately three seconds.

25. The network clementas in claim 22 further compris-
ing

meaps for invalidating the first entry in response to the
activity field indicating that the first entry has not
matched the received second packet.

26. The network element as in claim 22 further compris-
ing means forsetting a third timer to a third time in response
to the activity field indicating that the first entry has matched
a received third packet before expiration of the secondtime.

27. The network elementas in claim 22 wherein the first

beaderis a Layer 3 header. ,
28. The network elementas in claim 26 wherein the third

time is approximately equal to the second time.
29. The network element as in claim 22 wherein the first

entry comprises Layer 4 information.
30. The network clement as in claim 22 wherein the

secondtimeris the first timer.
31. The network element as in claim 22 further compris-

ing
memory configured for storing the forwarding memory

and the plurality of entries; and
means for ordering the plurality of entries in the memory

from most specific to least specific. .
32. The network element as in claim 31 wherein the

memory is a content addressable memory.
33. The network clementas in claim 22 wherein at least

one of the means for makingthefirst entry, meansforsetting
the first timer, means for checking the activity field, and
means for setting the second timer is a programmed pro-cessor.

34. The network element as in claim 22 wherein the first
timeris a software timer.

35. The network element as in claim 22 wherein the

means for initiating the search is a header matching, logic
circuit.

36. The network elementas in claim 22 further compris-
ing means for updating the activity field in response to the
first entry matching the received second packetprior to the
first timer muoning out.

&“
EX 1017 Page 583

EX 1017 Page 584

jul O8 O03 03:45p Dov senfeld +1-S ?91-2985 p.7

eo 1/4) ll
Our Ref/Docket No: APPT-O0i-1' Patent ys

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Te 6-93

Applicant(s): Dietz, et al. Group Art Unit: 2157
Application No.: 09/608237

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

Examiner: Moustafa M. Meky

RESPONSETO OFFICE ACTION UNDER37 CFR 1.111

Mail Stop No Fee Amendment
‘ Commissioner for Patents

P.O, Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of June 25, 2003.

Certificate of Facsimile Transmission under 37 CFR 1.8

I herebycertify that this response is being facsimile transmitted to the United States Patent and Trademark
Officeat telephone number 703-808-9052 addressed the Commissionerfor Patents, P.O. Box 1450,
Alexandria, VA 22313-1450 on. 7©3°746-7aBG

weoo

Date: 4/34/03 re Sine
- , Name: D senfeld, Reg. No. 38687

510 294 2985 » at 7/8/03 7:43:30 PM [Eastern Daylight Time]

EX 1017 Page 584

i

Semconenerid eanantanec
aaa

EX 1017 Page 585

rm eeEeSMkkaieeoOcreee

p-8 os O03 0O3:45p nok SBhenrere

S/N 09/608237 Page 2 APPT-O01-1

INTRODUCTORY REMARKS:

In response to the Office Action of June 25, 2003, kindly amendthis application as follows
and kindly consider the following remarks.

eaiooneaeanaes
aa

epeesega

Wd
if

, q

‘|f
lf
‘a

miph

|t
$.

ie

aig
|

\

i yl1Ht.

. Te
: res

Ald

EX 1017 Page 585

EX 1017 Page 586

wsikPss-voes p.g 11 O8 G3 O03:45p

S/N 09/608237 Page3 APPT-001-1

AMENDMENT(S) TO THE ABSTRACT: 1p

Kindly amend the abstract as follows:

- ABSTRACT

A monitor for and a method of examining packets passing through a connection point on a
computer network. Each packets conforms to one or more protocols. The method includes
receiving a packet from a packet acquisition device and performing one or more
parsing/extraction operations on the packet to create a parser record comprising a function
of selected portions of the packet. The parsing/extraction operations depend on one or more
of the protocols to which the packet conforms. The method further includes looking up a
flow-entry database containing flow-entries for previously encountered conversational
flows. The lookup uses the selected packet portions and determining if the packet is of an
existing flow. If the packetis of an existing flow, the method classifies the packet as
belonging to the found existing flow, and if the packet is of a new flow, the methodstores a
new flow-entry for the new flow in the flow-entry database, including identifying
information for future packets to be identified with the new flow-entry. For the packet of
an existing flow, the method updates the flow-entry of the existing flow. Such updating
may include storing one or more statistical measures. Any stage of a flow,state is
maintained, and the method performs any state processing for an identified state to further
the process of identifying the flow. The method thus examines each and every packet
passing through the connection pointin real time until the application program associated
with the conversational flow is determined. Fhe-methed

eee

irom « +1540 291 2985 > at 7/8/03 7:43:30 PM [Easter Daylight Time]

EX 1017 Page 586

EX 1017 Page 587

es

 ay vr,
ul O08 03 03:46p kPsenfeld +1-StF 291-2985 p.10

SAN 09/608237 Page 4 - APPT-001-1

AMENDMENT(S) TO THE CLAIMS: aS 4Thefollowing listing of claims will replace all prior versions, and listings, of claims on the yee
application. Claims being amendedaresetforth in a larger font than all other claims. All
claims are set forth below with oneof the following annotations.

1.
(Original): Claim filed with the application following the specification.

(Currently amended): Claim being amendedin the current amendmentpaper.

(Previously amended): Claim not being currently amended, but which was amended
in a previous amendment paper.

(Cancelled): Claim cancelled or deleted from the application.

(Withdrawn): Claim still in the application, but in a non-elected status.

(Previously added): Claim added in an earlier amendmentpaper.

(New): Claim being added in the current amendmentpaper.

(Reinstated - formerly claim #_): Claim deleted in an earlier amendmentpaper, but
re-presented with a new claim number in current amendment.

(Previously reinstated): Claim deleted in an earlier amendment and reinstated in an
earlier amendment paper.

(Re-presented - formerly dependentclaim # _): Dependent claim re-presented in
independent form in current amendmentpaper.

(Previously re-presented): Dependentclaim re-presented in independent farm in an
earlier amendment,but not currently amended.

CLAIMS

Whatis claimed is-

(Original) A packet monitor for examining packets passing through a connection—
point on a computer network in real-time, the packets providedto the packet monitor
via a packet acquisition device connected to the connection point, the packet monitor
comprising:

(a) a packet-buffer memory configured to accept a packet from the packet
acquisition device;

(b) a parsing/extraction operations memory configured to store a database of
parsing/extraction operations that includes information describing how to
determine at least one of the protocols used in a packet from data in the packet,

S14 510 294 2985 > at 7/8/03 7:43:30 PM [Eastern Daylight Time]

EX 1017 Page 587

EX 1017 Page 588

Cp TR cette oe ae aeToe aeSo

/ 1a
41-79 291-2985 p-11 aie.a

SIN 09/608237 Page 5 APPT-001-1 j

 og O03 O3:46p

(c) a parser subsystem coupled to the packet buffer and to the pattern/extraction
operations memory, the parser subsystem configured to examine the packet
accepted by the buffer, extract selected portions of the accepted packet, and
form a function of the selected portions sufficient to identify that the accepted
packetis part of a conversational flow-sequence;

“ (d) a memory storing a flow-entry database including a plurality of flow-entries
for conversational flows encountered by the monitor;

i

i

{e) a lookup engine connected to the parser subsystem andto the flow-entry
database, and configured to determine usingat least someof the selected
portions of the accepted packetif there is an entry in the flow-entry database a
for the conversational flow sequence of the accepted packet; 1

ii

(fy a state patterns/operations memory configured to store a set of predefined
state transition patterns and state operations such that traversing a particular
transition pattern as a result of a particular conversational flow-sequence of
packets indicates that the particular conversational flow-sequence is associated ,
with the operation of a particular application program,visiting each state in a
traversal including carrying out none or more predefined state operations;

(g) a protocol/state identification mechanism coupled to the state

patterns/operations memory and to the lookup engine, the protocol/state B
identification engine configured to determine the protocol andstate of the A:
conversational flow of the packet; and |

(hy a state processor coupled to the flow-entry database, the protocol/state
identification engine, and to the state patterms/operations memory, the state th
processor, configured to carry out any state operations specified in thestate
patterns/operations memory forthe protocol and state of the flow of the packet,

the carrying out ofthe state operations furthering the process of identifying which :
application program is associated with the conversational flow-sequence of the packet,
the state processor progressing througha series of states and state operations until
there are no more state operations to perform for the accepted packet, in which case

: the state processor updates the flow-entry, or until a final state is reached that indicates i
i that no more analysis of the flow is required, in which case the result of the analysis is
: announced.

w (Original) A packet monitor according to claim 1, wherein the flow-entry includes is
the state of the flow, such that the protocol/state identification mechanism determines |i
the state of the packet from the flow-entry in the case that the lookup enginefinds a :
flow-entry for the flow of the accepted packet.

H

3. (Original) A packet monitor according to claim 1, wherein the parser subsystem
includes a mechanism for building a hash from the selected portions, and wherein the
hash is used by the lookup engineto search the flow-entry database, the hash designed
to spread the flow-entries acrossthe flow-entry database.

EX 1017 Page 588

EX 1017 Page 589

a Serenoego

yl O8 03 03:46p Do enfeld skPostvoce

S/N 09/608237 Page 6 APPT-001-1

4. (Original) A packet monitor according to claim 1, further comprising:

a compiler processor coupled to the parsing/extraction operations memory, the
compiler processor configured to run a compilation process that includes:

receiving commandsin a high-level protocol description language that
describe the protocols that may be used in packets cncountered by the monitor,
and

translating the protocol description language commandsinto a plurality of
parsing/extraction operations that are initialized into the parsing/extraction
operations memory.

t 5. (Original) A packet monitor according to claim 4, wherein the protocol description
language commandsalso describe a correspondence between a set of one or more
application programsandthe state transition patterns/operations that occur as a result
of particular conversational flow-sequences associated with an application program,
wherein the compiler processoris also coupled to the state patterns/operations
memory, and wherein the compilation process further includes translating the protocol
description language conumandsinto a plurality of state patterns and state operations
that are initialized into the state patterns/operations memory.

6. (Original) A packet monitor according to claim 1, further comprising:

a cache memory coupled to and between the lookup engine and the flow-entry
database providing for fast access of a set of likely-to-be-accessed flow-entries from
the flow-entry database.

7. (Original) A packet monitor according to claim 6, wherein the cache functions as a
fully associative, least-recently-used cache memory.

8. (Original) A packet monitor according to claim 7, wherein the cache functionsas a
fully associative, least-recently-used cache memory and includes content addressable
memories configured as a stack.

9. (Original) A packet monitor according to claim 1, wherein one or morestatistical
measures about a flow are stored in each flow-entry, the packet monitor further
comprising:

a calculator for updating the statistical measures in a flow-entry of the accepted
packet.

10. (Original) A packet monitor according to claim 9, wherein, when the application
program of a flow is determined, one or more network usage metrics related to said
application and determined from the statistical measures are presented to a user for
network performance monitoring,

L159, (Cancelled) 47

. eaeBae ss AA1AMDoeaeill

EX 1017 Page 589

Paineeeciceniir=Oar-sonanarene:tan

EX 1017 Page 590

Dele aietttL| ea esa

fs,
+1-5 3 291-2985 p-

S/N 09/608237 Page 7 APPT-001-1 Ll

 1 08 03 O3:47p Dot

r

REMARKS 7| AU it
Status of the Application: so | j
Claims 1-59 are the claims of record of the application. Claims 1-10 have been allowed.
Claims 11-59 have beenrejected.

Amendmentto the Abstract:

Applicants have amended the abstract to remove a spurious phaseat the end,this being a
typographical error.

|
Amendmentto the Claims:

Applicants have cancelled the rejected claims.

Conclusion

The only remaining claims are those allowed by the Examiner. A notice of Allowance for ‘
the remaining claims is respectfully requested, bch

, i 1

If the Examiner has any questions or comments that would advance the prosecution and
allowance of this application, an email message to the undersigned at dov@inventek.com,

1

: or a telephonecall to the undersigned at +1-510-547-3378 is requested. ; |
Respectfully Submitted, |

|2/2/02 |
Date ! |

f

q

|

Address for correspondence:
Dov Rosenfeld "
5507 College Avenue, Suite 2 |
Oakland, CA 94618
Tel. +1-510-547-3378

Fax: +1-510-291-2985 qs

Email:dov @ inventek.com . 7a
EX 1017 Page 590

EX 1017 Page 591

aed AE

1 8 O39 03:44p nov Meenrere +1-5%9-291-2985 p.1

INVENTEK | Fax
* Dov Rosenfeld

§507 College Avenue, Suite 2
Oakland, CA 94618, USA

Phone: (510)547-3378; Fax: (510)653-7992
dov@ inventek.com

Patent Application Ser. No.: 09/608237 Ref./Docket No: APPT-001-1

Applicant(s): Dietz, et al. Examiner.. Moustafa M. Meky

Filing Date: June 30, 2000 Art Unit: 2157

FAX COVER PAGE

- TO: Commissionerfor Patents
‘ P.O. Box 1450

i Alexandria, VA 22313-1450‘

United States Patent and Trademark Office

(Examiner Moustafa M. Meky, Art Unit 2157)

Fax No.: 103-368-9632 746-71234

DATE: July 08, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Response to Office Action

Number ofpages including cover: 13

OFFICIAL COMMUNICATION

 PLEASE URGENTLY DELIVER A COPY OF

THIS RESPONSE TO

EXAMINER MOUSTAFA M. MEKY, ART UNIT
2157

Certificate of Facsimile Transmission under 37 CFR 1.8

; treby certify that this responseis being facsimile transmitted to the United States Patent and Trademark Office at
Sphone number 703-308-9052eddressed the Commissionerfor Patents, P.O. Box 1450, Alexandria 22313-1450

T45-72.B3

E. +/8/oz
senfeld. Reg. No, 38687

Me? 257 2985 » at 718/03 7:43:30 PM [Eastern Daylight Time}

EX 1017 Page 591

EX 1017 Page 592

 08 O03 03:44p

 09/608237
TRANSMITTAL

FORM
(to be used forall correspondenceafterinitial filing}

SLOSURES (checkall that apply) 7

| Fee Transmittal Form

Attorney Docket Number

Assignment Papers
(for an Application)
Drawing(s)

After Allowance Communication
to Group '

| Fee Attached Appeal Communication to Board iof Appeals and interferences i

] Amendment / Response Licensing-related Papers
| After Finai
| CO)

Oo Affidavits/declaration(s)

Appeal Communication to Group li
(Appeal Notice, Bref, Reply Brief) ty

Petition Routing Slip (PTO/SB/69) Proprietary !nformation
and Accompanying Petition

To Converta Status Letter i ;

Provisional Application
Powerof Attorney, Revocation
Changeof Correspondence
Address

Extension of Time Request Additional Enclosure(s) 7
(please identify below):

Express Abandonment Request Terminal Disclaimer

tnformation Disclosure Statement Small Entity Statement

Certified Copy of Priority Document(s) Request of Refund PF ' ‘i
Response to Missing Parts/ Incomplete Hemarks
Application

CJ Responseto Missing Parts under 37CFR 1.52 or 1.53

VATURE OF APPLICANT, ATTORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

 OOOOOOOOd OOOOOOO
i
iW

! g
aa

‘or Dov Rosenteld, Reg. No, 38687
tidual name ae
(ZZture ALE

: Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618, Tel: +1-510-547-3378

 Esaeumber 703-746-7239 addressed to: Commissionerfor Patents, P.O. Box 1450, Alexandria, VA
: On this date:

Dov Rosenfeld, Rag NS7S8687

SseZ
Ct

‘+1 510 201 2995 > at 7/8/03 7:43:20 PM [Easter Daylight Time]

EX 1017 Page 592

EX 1017 Page 593

ce -Jul O8 O39 O3:44p nok.henrera iDiar-eses p-3
vay IND

| ihwe
Our Ref./Docket No: APPT-0O1-1 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz,et ai. Group Art Unit: 2157

Application No.: 09/608237 Examiner: Moustafa M. Meky
Filed: June 30, 2000

Titles METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents
P.O. Box 1450

¢ Alexandria, VA 22313-1450

. Dear Commissioner:

ng Transmitted herewith is a response to an office action for the above referenced application.
By Included with the response are:
pe

4 a formal drawings (with separate letter);
4 e

ay This application has:
ef a small entity status. If a claim for such status has not earlier been made, considerar
fi

-

this as a claim for small entity status. .

X_ No additional fee is required.

=

2
i" 2 ‘
28

So Certificate ofFacsimile Transmission under 37 CFR 1.8

Z P T herebycertify that this response is being facsimile transmitted to the United States Patent and Trademark
a = Office at telephone number 783-806*9652 addressed the Commissionerfor Patents, P.O. Box 1450,
a e Alexandria, VA 22313-1450 on, 70 3-3446-12 49
Ae~~ Date: + /€ o
¥ Z : osenfeld, Reg. No. 38687
a

"e Received from < +1 510 291 2985 > at 7/8/03 7:43:30 PM [Eastern Daylight Time]

EX 1017 Page 593

EX 1017 Page 594

ge Q ©
Unrrep States Parent AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office
Address, COMMISSIONER FOR PATENTSPO Box 1450

09/608,237 06/30/2000 Russell §, Dietz APPT-001-1 9993

7590 07/17/2003

Dov Rosenfeld MEKY, MOUSTAFA M
Suite 2

5507 College Avenue
| Oakland, CA 94618 2157 8DATE MAILED:07/17/2003

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)

The patent term adjustment to date is 589 days. If the issue fee is paid on the date that is three months after the
mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half

; months) after the mailing date ofthis notice, the term adjustmentwill be 589 days.

, if a continued prosecution application (CPA) was filed in the above-identified application, the filing date that
. determinespatent term adjustmentis the filing date of the most recent CPA.

ig Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval
“ (PAIR) system.(http://pair.uspto.gov)

% Any questions regarding the patent term extension or adjustment determination should be directed to the Office of
¥ Patent Legal Administration at (703)305-1383.
B
Rewe

 we

x<
a

mat

rh
he

Page 3 of 4

TOL“85 (REV. 05-03) Approved for use through 04/30/2004.

EX 1017 Page 594

EX 1017 Page 595

q “
~ PART B- FEE(S) TRANSMITTA

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEECommissioner for Patents

Alexandria, Virginia 22313-1450
Fax (703)746-4000

INSTRUCTIONS: This form should beused for transmitting the [SSUE FEE and PUBLICATION FEE(if required) Blocks | through 4 should be completed whereappropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as
indicated unless corrected below ordirected otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS"for
maintenancefee notifications.

 ote. Legibly mark-up with any corrections oruse Bloc ote:Acertificate of mailing can only be used for domestic mailings of the
1590 07/17/2003 Fee(s) Transmittal, This certificate cannot be used for any other

accompanying papers. Each additional paper, such as an assignment or
Dov Rosenfeld formal drawing, must have its own certificate of mauling or transmission.

Suite 2 Certificate of Mailing or Transmission
07 College Avenue I hereby certify that this Fee(s) Transmittal is beg deposited with thepatied, CA 94618 United States Postal Service with sufficient postage for first class mail in anenvelope addressed to the Box Issue Fee address above, or being facsimiletransmitted to the USPTO,on the date indicated below.

{Depositor's name)

(Signature)

Date)

09/608,237 06/30/2000 Russell S. Dietz APPT-00I-! 9993

TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

APPLN TYPE SMALL ENTITY ISSUE FEE PUBLICATION FEE TOTAL FEE(S) DUE DATE DUE
NO $0nonprovisional $1300 $1300 10/17/2003

MEKY, MOUSTAFA M 2157 709-224000

 2. For printing on the patent front page,list (1)
the names of up to 3 registered patent attomeys 1or agents OR, alternatively, (2) the name of a
single firm (having as a member a registered

1. Change of correspondence address or indication of "Fee Address” (37
CFR 1.563).

OQ Change of correspondence address (or Change of CorrespondenceAddress form PTO/SB/122)attached. 2
- . oe attomey or agent) and the names of up to 2Q "Fee Address"indication (or "Fee Address" Indication form +

PTO/SB/47; Rev 03-02 or ore recent) attached. Use of a Customer Tegistered patent attorneys or agents. If no name 3
Numberis required. is listed, no name will be printed,

PLEASE NOTE:Unless an assignee is identified below, no assignee data will appear on the patent. Inclusion of assignee data is only. appropriate when an assignment haseen previously submitted to the USPTOoris being submitted under separate cover. Completion ofthis form is NOTa substitute forfiling an assignment.
(A) NAME OF ASSIGNEE (B) RESIDENCE:(CITY and STATE OR COUNTRY)

¢ Please check the appropriate assignee category or categories (will not be printed onthe patent) Qi individual Oi corporation or other private group entity O government

‘ 4a. The following fee(s) are enclosed: 4b, Paymentof Fee(s):
fe Issue Fee QO A check in the amountofthe fee(s) is enclosed,

QO Publication Fee Q Paymentby credit card. Form PTO-2038 is attached,
QA . i QO The Commissioneris hereby authorized by charge the required fee(s), or credit any overpayment, to

dvance Order-# of Copies ________ Deposit Account Number (enclose an extra copy of this form).
¥ Commissioner for Patents is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issue fee to the application identified above.

. . (Authorized Signature)

(Date)

COTE, The Issue Fee and Publication Fee (if required) will not be accepted from anyone
other than the applicant; a registered attomey or agent; or the assignee or other party ininterest as shown by the records of the United States atent and Trademark Office.
obey; collection of information is required by 37 CFR 1.311. The information is required to

a tain or retain a benefit by the public which is to file (and by the USPTO to process) an
: eeplication. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is

coated to take 12 minutes to complete, including gathering, preparing, and submitting the
empleted application form to the USPTO, Time will vary depending upon the individualme ‘ny comments on the amount of time you require to comp ete this form and/orP 88estions for reducing this burden, should be sent to the Chief Information Officer, U.S.
at and Trademark Office, U.S. Department of Commerce, Alexandria, Virginia
SENG150. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.D TO: Commissionerfor Patents, Alexandria, Virginia 22313-1450.

é Under the Paperwork Reduction Act of 1995, nopersons are required to respond to aBs lection of mformation unlessit displays a valid OMB control number.

 Pn TRANSMIT THIS FORM WITH FEE(S)
eTOL-85 (REV. 05-03) Approved for use through 04/30/2004. OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

EX 1017 Page 595

EX 1017 Page 596

UNITED STATES PaTENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTSP.O Box 1450

Alexandria, Vinge 22313-1450www uspta gov

NOTICE OF ALLOWANCE AND FEE(S) DUE

Dov Rosenfeld

Suite 2 MEKY, MOUSTAFA M
5507 College Avenue
Oakland, CA 94618

2157 709-224000

DATEMAILED:07/17/2003a

APPLICATIONNO. FILING DATE FIRST NAMED INVENTOR. ATTORNEY DOCKET NO, CONFIRMATION NO,

09/608,237 06/30/2000 Russell S. Dietz APPT-001-1 9993

TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

APPLN. TYPE SMALL ENTITY ISSUE FEE - PUBLICATION FEE . TOTAL FEE(S) DUE DATE DUE
NO $0nonprovisional $1300 $1300 10/17/2003

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWEDFORISSUANCEAS A PATENT.
PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCEIS NOT A GRANT OF PATENTRIGHTS,
THIS APPLICATIONIS SUBJECT TO WITHDRAWALFROM ISSUE AT THEINITIATIVE OF THE OFFICE OR UPON
PETITION BY THE APPLICANT.SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE ANDPUBLICATIONFEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE
MAILING DATEOF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED.THIS STATUTORY
PERIOD CANNOT BE EXTENDED.SEE 35 U.S.C, 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT
FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-85B (OR AN EQUIVALENT)
MUST BE RETURNED WITHIN THIS PERIOD EVENJF NO FEE IS DUE OR THE APPLICATION WILL BE REGARDED AS
ABANDONED.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITYis shown as YES, verify your current If the SMALL ENTITYis shown as NO:
SMALLENTITYstatus:

A.If the status is the same, pay the TOTAL FEE(S) DUE shown A. Pay TOTAL FEE(S) DUE shownabove,or
above.

B. If the status is changed, pay the PUBLICATIONFEE(ifrequired) |B. If applicant claimed SMALL ENTITY status before, or is now
and twice the amount of the ISSUE FEE shownaboveandnotify the claiming SMALL ENTITYstatus, check the box below and enclose
United States Patent and Trademark Office of the changein status, or|the PUBLICATIONFEEand 1/2 the ISSUE FEE shown above.

QO Applicant claims SMALL ENTITYstatus.
See 37 CFR 1.27.

Il. PART B - FEE(S) TRANSMITTALshould be completed and returned to the United States Patent and Trademark Office (USPTO) with
your ISSUE FEE and PUBLICATIONFEE(ifrequired). Evenif the fee(s) have already been paid, Part B - Fee(s) Transmittal should be
Completed and returned. If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be
Completed and an extra copy of the form should be submitted.

II. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Box ISSUE FEEunless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applicationsfiled on or after Dec. 12, 1980 may require payment of
Maintenancefees. It is patentee’s responsibility to ensure timely payment of maintenance fees when due.

Page I of4
PTOL-85 (REV.05-03) Approved for use through 04/30/2004,

EX 1017 Page 596

EX 1017 Page 597

[7
Application No. _-| Applicant(s)

09/608 ,237 . DIETZ ET AL.
Examiner Art Unit

Moustafa M Meky __, 2157

Notice of Allowability

-- The MAILING DATEofthis communication appears on the cover sheet with the correspondence address-- \
All claims-being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSEDinthis application. {f not included
herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS
NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENTRIGHTS.This application is subject to withdrawalfrom issueat the initiative
of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. J This communication is responsive to the amendmentfiled 7/8/2003.
2. The allowed claim(s)is/are 1-10.
3. EX] The drawingsfiled on 30 June 2000 are accepted by the Examiner.

4.) Acknowledgmentis madeofa claim for foreign priogity under35 U.S.C. § 119(a)-(d) or(f).
a) All b)[)Some* c)[1None ofthe:

1. CJ Certified copies of the priority documents have been received.

2. CJ Certified copiesof the priority documents have been received in Application No.

3. CJ Copies ofthe certified copies of the priority documents have been receivedin this national stage application from the
International Bureau (PCT Rule 17,2(a)).

* Certified copies not received:

5. Acknowledgmentis madeof a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
(a) [] Thetranstation of the foreign languageprovisional application has been received.

6. _] Acknowledgmentis made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Applicant has THREE MONTHS FROM THE “MAILING DATE”of this communicationtofile a reply complying with the requirements noted
below. Failure to timely comply will result in ABANDONMENTofthis application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE

701A SUBSTITUTEOATH OR DECLARATION mustbe submitted. Note the attached EXAMINER'S AMENDMENTor NOTICE OF
INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

8. CI CORRECTED DRAWINGSmust be submitted.
(a) 1) including changes required by the Notice of Draftsperson’s Patent Drawing Review (PTO-948) attached

1) hereto or 2) to PaperNo.

(b) 1 including changes required by the proposed drawing correctionfiled , which has been approved by the Examiner.

(c)(including changes required by the attached Examiners Amendment / Commentorin the Office action of Paper No.

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of
each sheet.

9. [] DEPOSIT OF and/or INFORMATIONaboutthe deposit of BIOLOGICAL MATERIALmust be submitted. Notethe
attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

11 Notice of References Cited (PTO-892) 20 Notice of Informal Patent Application (PTO-152)
30] Notice of Draftperson's Patent Drawing Review (PTO-948) 4(] Interview Summary (PTO-413), PaperNo.___.
5C] Information Disclosure Statements (PTO-1449), PaperNo._ 6L] Examiner's Amendment/Comment
7C] Examiner's Comment Regarding Requirement for Deposit 8C] Examiner's Statement of Reasons for Allowance

of Biological Material 9] Other UTOUS TARA M. MERY
PoeARY EXAMINER

u

US. Patant and Trademark Office
TO-37 (Rev. 04-03) Notice of Allowability Part of Paper No. 8

EX 1017 Page 597

EX 1017 Page 598

Jul O8 G3 03: 45p povdenreid visPor-aes pP.S6

S/N 09/608237 Page 6 APPT-001-1

X_ Applicant(s) believe(s) that no Extension of Timeis required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a)of:

one months ($110) two months ($410)

two months ($930) four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

X_ The Commissioneris hereby authorized to charge payment of the following fees
associated with this communication or credit any overpaymentto Deposit Account
No. 50-0292, (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

xX Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

xX Any missing extension orpetition fees required under 37 CFR 1.17.

Respectfully Submitted,

/8 [03
Date

Dov Rosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

; 5507 College Avenne,Suite 2
8 Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-291-2985

Recesved from < +1 510 291 2985 > at 7/8/03 7:43:30 PM [Easter Daylight Time}

EX 1017 Page 598

EX 1017 Page 599

S 2Jul O8 O3 O3:45p nokdenrera +1-5 291-2985 p-.5

Our Ref./Docket No: APPT-001-1 Patent|4 G 4{ a”

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al. Group Art Unit: 2157

Application No.: 09/608237 Examiner: Moustafa M. Meky
FijJed: June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop No Fee Amendment| Commissioner for Patents
P.O. Box 1450

| Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewithis a response to an office action for the above referenced application.
Included with the responseare:

formal drawings (with separate letter);

This application has:
a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

X_ No additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

Therebycertity that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-308-0652 addressed the Commissionerfor Patents, P.O, Box 1450,
Alexandria, VA 22313-1450 on, V¥6 772.29

Date:_Ffefomh Signed:
Name: Dov nfeld, Reg. No. 38687

Received from <-+1 540 291 2985> at 7/8/03 7:43:30 PM [Eastern Daylight Time]

EX 1017 Page 599

EX 1017 Page 600

. a .jul O8 03 03:44p nok__denrere vaPot zees p.4

S/N09/608237 Page 4 APPT-O0I-1

X__ Applicant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need for a petition for an extension oftime.

Applicant(s) hereby petition(s) for an Extension of Time uader 37 CFR 1.136(a)of:
one months ($110) two months ($410}

two months ($930) four months ($1450)

If an additional extension of time is required, please considerthis as a petition therefor.

A credit card payment form for the required fee(s) is attached.

Ls . The Commissioner is hereby authorized to charge paymentof the following fees
EY. associated with this communication or credit any overpayment to Deposit Account
zs 2 No. 50-0292 (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):
t Xx Any missingfiling fees required under 37 CFR 1.16 for presentation of

additional claims.

X_ Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

+/8/O3
Date

eld, Reg. No. 38687

ae Address for correspondence:" Dov Rosenfeld

i 5507 College Avenue,Suite 2
Ss Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-291-2985

Fe elved from < 44 510 204 2985 > at 7/8/03 7:43:30 PM (Eastem Daylight Time}

EX 1017 Page 600

EX 1017 Page 601

©
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address. COMMISSIONER FOR PATENTSPO. Box 1450

a Alexandna, Virgina 22313-1450

Www uspto gov

09/608,237 06/30/2000 Russell S. Dietz APPT-001-1 9993

7590 07/17/2003

Dov Rosenfeld MEKY, MOUSTAFA M
oe Suite 2
"45507 College Avenue
: Oakland, CA 94618 3157
UNITED STATESode DATE MAILED:07/17/2003

Notice of Fee Increase on January 1, 2003

If a reply to a "Notice ofAllowance and Fee(s) Due”is filed in the Office on or after January 1, 2003, then the
amount due wil! be higher than that set forth in the “Notice of Allowance and Fee(s) Due" since there will be an increase

in fees effective on January 1, 2003. See Revision ofPatent and Trademark Fees for Fiscal Year 2003; Final Rule, 67 Fed.

=EpF Beg. 70847, 70849 (November27, 2002).
; The current fee schedule is accessible from: http://www.uspto.gov/main/howtofees.htm.

If the issue fee paid is the amount shown on the "Notice ofAllowance and Fee(s) Due," but not the correct amount
in view of the fee increase, a "Notice to Pay Balance of Issue Fee" will be mailed to applicant. In order to avoid

Fptocessing delays associated with mailing of a "Notice to Pay Balance of Issue Fee," if the response to the Notice of
lowance and Fee(s) due form is to be filed on or after January 1, 2003 (or mailed with a certificate of mailing on or

otter January 1, 2003), the issue fee paid should be the fee thatis required at the time the fee is paid. If the issue fee was
Eoreviously paid, and the response to the "Notice of Allowance and Fee(s) Due” includes a request to apply a
Breviously-paid issue fee to the issue fee now due, then the difference between the issue fee amount at the time the

me-sponse is filed and the previously paid issue fee should be paid. See Manual of Patent Examining Procedure, Section
B08.01 (Eighth Edition, August 2001).

; Questionsrelating to issue and publication fee payments should be directed to the Customer Service Center
ofthe Office of Patent Publicationat(703) 305-8283.

‘g Page 4 of 4an
‘9 L-85 (REV. 05-03) Approvedfor use through 04/30/2004.

EX 1017 Page 601

EX 1017 Page 602

usf
ofae foamy wiileg wisyceg)veemecee 167 O65 Le > Wod peApoey

“

PART B~- FEE(S) TRANSMITTAL

Gud send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEECommissioner for Patents
Alexandria, Virginia 22313-1450

Ea (703746-4000

eee, 4 Ce

att

BA. « oneBu ond a dePuicatsd 2 eS or 4 E Oirem re te cK ton becpmplete wherea4 ence includingthePaten' vance: orders notifiestionofmaintenance wii mai he Buren o ce address as; 3 opretedwales coadirected otherwise in Bklock 1, dy (a) specifying a new correspondence address; and/or (b) mdicating « okcaesarADDRESS" formaintenance.fee notifications
OD
 — B a a ree 0 OF UCSRESUC ity of 1

1590 em Ta003 Fos) Transmit, This tcnificats camot bo used for em otheraccciTipanying papers, Each additional paper, such a3 an assignment orDov Rosenfeld fk drawing,Fast have its own certificateEreVailing of

3307 Coll iy aee atoliege Avenue certify that deposited with theHBricy Postal Service with sufficteat for first class
Oakland, CA 94618 : envelopeaddreeted to theBox Issue Fesadgrentabove, orblogfaseitethe USPTO,on the date indicated below.

“yyreb/2003 TTRANE 90000068 09608237
E ot FCst50l £300.00 OP
“ag FCSBOOL 30.00 OP

09/608,7 66/30/2000 . RosseJ} §, Diew. AFFT-001-5
TITLE OF INVENTION: METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

Es Toracrersjooe_[__onreoue
nooprovisional $1300 1091712003

BainYes)MEKY, MOUSTAFA M 2137 7058-22400)

ignar=fFecrrespondence address or indication of“Fee Address® (37

G Chan, address(orChan of CorrespondenceRakes!honPTORBIIDwmmchen OT nee
QO "Fee Address" indication (or "Fee fon form

os PFOSSB/42; Rev03-003-02 ormoreFoeAynoesuschedLttice!ofs Customer; Nomber 1s required,

z r . 3, ASSIGNEB NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

2. For printing on ihe patent front pege, list (1)
the names of up to 3 registered patent attlomeys Tons Zosen feid
or agents OR. alternatively, (2) the name of asingle firm (raving as a moeumbcr a registered tea ANstorey or agra’) and the nsues of up w 2 a= TEK
tegistcred patent attomcys or agents. [If no name
ig listed, no name will be printed, 3

AMMAR. PLEASE NOTE:U: belo ignos dain will the patent. foclusion of data is only sppropsiaic whoo on assignment bascas ben previouslySeeeeecn basubmited2underpeparate cower,Comptcii‘en ofthis form is NOTSesienssdaa8ontxf fm assignment.
% % (A) NAME OF ASSIGNEE (B) RESIDENCE: (CITYand STATE OR COUNTRY)
y 4 Hi sen, Ine. Los Gates, CA

Ee Mease check ths appeopriate assignae category orcategories (will not be printed on the pateat} individual Gfcorporation orotherprivate group entity O government

F 4a. The following fec(s) are enclosed: 4b. Paymentof Fee(s):
Bisse Fee OA check is the amount ofthe {ee(s} is caclosed.

MS Cl Publication Fee OkPayment by eredit card. Form PTO-2038 is attached.

a: vance . . ToeCommiss}oner is hereb: au ch fired fee(s) oeediton overpayment, toRe A Order-#ofCopies \D it Acoust Number ey cronanentra copy oti 7

wi Solleenion of information ts is required to
ee bain or 5 bencfit which ‘de (and PIOtoTae alcSayiiGolacane

. fadingg preparing, SodauBe caneiated application form to the Ssti0-*Time wallian,pep upon the LatinAny comments on the amovatoftime you require to complete una form end/oreae for reducing this burden, should be scnt 9 theChie!Intin maion Ofiess, ts.— 234. and Tradomark Office, artment $9q SENDEO DO NOT SEND’‘FEES OR COMPLETES‘FORMS:70 THIS "ADD! S.
a Uncor on CaTeresones forParents, Alexandria, Virginia 22313-1450.swotk Reduction Act of 1995, are ined to respond 10 &calcu,ofnmeTontarioes doplayns said Ob concol number. te

= TRANSMIT THIS FORM WITH FEE(S)
g “FOL-85 QREV. 05.03) Approved for use through D4/3W/2004, OMB 0651-0033 U.S, Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

eed S8G67-162-DIS-T+ Plajuasoy nog dos:90 ED +2 das
EX 1017 Page 602

EX 1017 Page 603

 -_\ \
{Sep 24 03 06:32p Dov i... senfeld +1-510- 2398S p.l

507 College Avenue, Suite 2
Oakland, CA 94618, USA
Phone: (610)547-3378; Fax (510)653-7992
dov@inventek.com

OUR REF: APPT-OO1-1

TO: Mail Stop Issue Pee FAX No.: (103) 746-4000
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

DATE: September 24, 2003

FROM: Dov Rosenfeld, Reg. No., 38,687

RE: Issue Fee for Application No.: 09/608237

Nimber ofpages including cover: §

OFFICIAL COMMUNICATION

. ISSUE FEE PAYMENT

Included herewith are:

» A transmittal letter and copy

e Fee(s) Transmittal (form PTOL-85) .

e Credit Card charge form for issue fee

Cortficate of Facsimile Trausmission under 37 CFR L9

hereby certify thal this response is being facsimile transmitted lo the United States Patent and Trademark Office at telephone
number (703) 746-4000 addressed to Mail Stop Issue Fee, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
on.

Date: September 24, 2
fcld, Rez. No. 38687

Received from <1 510 281 2985 > at 9/24/09 9:32:27 PAR [Eastern Daylight Time] 4

EX 1017 Page 603

EX 1017 Page 604

i

Sep 24 03 06:32p Dov hksenfeld +1-si0-(bases . p.2

Our Ref./Docket No: APPT-001-1 . Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al,

Application No.: 09/608237

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

 Group Art Unit: 2755

Examiner:

Notice of Allowance Mailed:

July, 17, 2003

Confirmation No: 9993

SUBMISSION OF ISSUE FEF,

Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a completed “Issue Fee Transmittal” Form.Included with the form are:
X_ A credit card paymentform for the issue fee and any advance order ofcopies;

‘ drawing corrections (with separate letter);
formal drawings (with separate letter);

X__ The Commissioneris hereby.authorized to charge paymentof the any missing fee or
credit any overpayment to Deposit Account No. 30-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):ot.

Respectfully Submitted,

ot Ssef2 O% JIZZDate ’ enfeld, Reg. No. 38687
Address for correspondence:

Dov Rosenfeld

5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +1-510-547-3378: Fax: +1-413-638-1280

27atame

Certificate of Facsimile Transmission under 37 CFR 1.8

Thereby certify that this response is being facsimile transmilted to the United States Patent and Trademark Office at
telephone number (703) 746-4000 addressed to Mail Stop Issue Fee, Conanissioner for Patents, P.O. Box 1450,Alexandria, VA 22313-1450 on.

Date:September24,2003 Signed:
Name: Dov Ro’

 cid, Reg. No. 38687

Received from < +1 610 281 2085 » af 8/26/03 9:32:27 PM [Eactern Daylight Time}

EX 1017 Page 604

EX 1017 Page 605

COP CL
aa ‘E® |
i e B t Ref./Docket No: «~PPT-001-1 Patent FroA wy4 a)IN THE UNITED STATES PATENT AND TRADEMARK OFFICE E-?

$ ientor(s): Dietz, et al.
; Assignee: Hi/fn, Inc. Certificate
E patent No: 6651099 MAR 0 5 2004

: Issue Date: November, 18, 2003 of Correction
E Application No.: 09/608237

Filed: June 30, 2000

: Title: METHOD AND APPARATUS FOR
4 MONITORING TRAFFIC IN A NETWORK 6

REQUEST FOR CERTIFICATE OF CORRECTIONS

Commissionerfor Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

The above patent contains significant error as indicated on the attached Certificate of Correction form
(submitted in duplicate).

X_ Such error arose through the fault of the Patent and Trademark Office.It is requested that the
' certificate be issuedat no cost to the applicant.

However,if it is determinedthat the error arose through the fault of applicant(s), please note that
sucherroris of clerical error or minor nature andoccurred in goodfaith and therefore issuanceof the
certificate of Correction is respectfully requested. The Commissioner is authorized to charge Deposit
Account No. 50-0292 any required fee. A duplicate of this request is attached.

Sucherrors specifically:

In col. 3, line 14, delete the word "Io"
<

In col. 15, line 45, kindly replace "ump" with --jump--

In col. 28, line 65, change "MEB"to --MIB--.

Certificate of Mailing under 37 CFR 1.8
I herebycertify that this response is being deposited with the United States Postal Service as ‘fitst class mail in an
envelope addressed to the Commissionerfor Patents, P.O. Box 1450, Alexandrja, VA 22313-1450 on.

Signed:
Name: Amy Drury

8 MAR 2004

EX 1017 Page 605

EX 1017 Page 606

Our Ref./Docket No: _PPT-001-1 Page 2

The undersigned requests being contacted at (510) 547-3378 if there are any questionsorclarifications,
or if there are any problems with issuance of the Certificate of Correction.

Respectfully Submitted,

Feh- 25,2004
Date Dov Ro&énfeld, Reg. No. 38687

Agent of Record.

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2, *
Oakland, CA 94618

Tel. 510-547-3378; Fax: 510-291-2985

EX 1017 Page 606

EX 1017 Page 607

PTO/SB/44 (10-96)
Approvedfor use through 6/30/89. OMB 0651-0033

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995,no persons are required to respond to a collection of information unless Rolsplaysava valid OMBcontrol number.

Also Form PTO-1050'

UNITED STATES PATENT AND TRADEMARKOFFICE

| CERTIFICATE OF CORRECTION

PATENT NO: 6651099 p|
vee DATED : November 18, 2003

INVENTOR(S) : Dietz, et al.

 It is certified that an error appears in the above-identified patent and that said Letters Patent
are hereby corrected as shown below:

In col. 3, line 14, delete the word "io" {

In col. 15, line 45, kindly replace “ump" with --jump-

- In col. 28, line 65, change "MEB"to MIBA

s

\

MAILING ADDRESS OF SENDER cattylAgent ofRecord):
. Dov Rosenfeld, Reg. No. 38687 PATENT NO:_6651099
. 5507 College Avenue, Suite 2 No. of additional copies
x Oakland, CA 94618 an :x

i ° 8 MAR 1Wu4

EX 1017 Page 607

EX 1017 Page 608

PTO/SB/44 (1 0-96)Approvedfor use through 6/30/99. OMB 0651-0033
Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE ;OBE Peekconel 1988, no pacers are ewediorspndodeeneaeTENT, COMMERGE ‘

control number.

 UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO: 6651099

DATED : November 18, 2003
INVENTOR(S) : Dietz, et al,

 It is certified that an error appears in the above-identitied patent andthat said Letters Patentare hereby corrected as shown below:

In col. 3, line 14, delete the word "Io"

In col. 15, line 45, kindly replace "ump" with --jump--
In col. 28, line 65, change "MEB*to --MIB--.

MAILING ADDRESS OF SENDER (Atty/Agent of Record):

Dov Rosenfeld, Reg. No. 38687 ~ PATENT NO:_66510995507 College Avenue, Suite 2 No.of additional copiesOakland, CA 94618

~ 8 MAR 2:

EX 1017 Page 608

EX 1017 Page 609

» United States Patent
Kerr et al.

54) NETWORK FLOW SWITCHING AND FLOW
DATA EXPORT

Inventors: Darren R. Kerr, Union City; Barry L.5) Bruins, Los Altos, both of CA (US)

(73) Assignee: Cisco Systems, Inc., San Jose, CA (US)

(*) Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.

' 154(aX2).
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 0 days.

Appl. No.: 08/655,429

Filed: May 28, 1996

BD) Tate C0? ennnsennnrnemnnmnnmnecsenmnnines GOCE 9/34

2) US. Ce anseseerterreecccreneten 703/27; 703/20; 370/379;: 370/392; 370/389

Field of Search, o......scscer----eseee-. 395/500, 200.01,
395/200.13, 683, 185.04; 370/352, 389,

392, 351, 410

=) References Cited
; U.S. PATENT DOCUMENTS

E Re. 33,900 4/1992. Howson seseceeeusnnsanceetee 370/105
4,131,767 12/1978 Weinstein -... .- 179/170.2
4,161,719 7/1979 Parikh et al. wa 340/147 SY

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0 384758 2/1990 (EP)~ . HOAL/12/56
1751 A1 11/1990 (EP) .. _ HO4t/12/46
R95/20850 8/1995 (WO) HO4L/12/56

| 00S00624366

US 6,243,667 B1(10) Patent No.:
*Jun. 5, 2001(45) Date of Patent:

OTHER PUBLICATIONS

Comnenet al., “Introduction to Algorithms”, MIT Press,
seventeenth edition, pp. 221—-224.*
Pei et al., VLSI Implementation of Routing Tables: Tries and
Cams, IEEE, 1991, pp. 515-524.*
Chandrammenonetal., “Trading Packet Headers for Packet
Processing,” IEEE, Apr. 1996, pp. 141-152.
Cao et al., Performance of Hashing—Based Schemes for
Internet Load Balancing, IEEE, 2000, pp. 332-341.*
Newman et al., “Flow Labelled IP: A Connectionless
Approach to ATM,” IEEE, Mar. 1996, pp. 1251—1260.*
Newman etal., “IP Switching and Gigabit Routers,” IEEE,
1997, pp. 64-69.*
Worster et al., “Levels of Aggregation in Flow Switching
Networks,” IEEE, 1997,pp. 51-59.*
William Stallings, Data and Computer Communications,pp.
329-333, Prentice Hall, Upper Saddle River, New Jersey
07458.

(List continued on next page.)

Primary Examiner—Kevin J. Teska
Assistant Examiner—Thai Phan
(74) Attorney, Agent, or Firm—Oblon,Spivak, McClelland,
Maier & Neustadt, P.C.

67) ABSTRACT
The invention provides a method and system for switching
in networks responsive to message flow patterns. Anmnessage
“flow” is defined to comprise a set of packets to be trans-
mitted between a particular source and a particular destina-
tion. When routers in a network identify a new message
flow, they determine the proper processing for packets in
that message flow and cache that information for that
messageflow. Thereafter, when routers in a network identify
a packet whichispart of that message flow, they process that
packet accordingto the proper processing for packets in that
message How. The proper processing may include a deter-
mination of a destination port for routing those packets and
a determination of whether access contro] permits routing
those packets to their indicated destination.

19 Claims, 5 Drawing Sheets

EX 1017 Page 609

EX 1017 Page 610

US 6,243,667 B1

Page 2

U.S. PATENT DOCUMENTS 5,243,342 9/1993 Kattemalalavadi et al.
5,243,596 9/1993 Port etal. ...

4,316,284 2/1982 Howson.-.- 370/105 5.247516 9/1993 Bernstein etal.
4,397,020 8/1983._Howson 370/105 5.249178 9/1993 Kurano etal
4,419,728 12/1983 Larson . 364/200 5.249.292 * 9/1993 Chi .4,424,565 1/1984 Larson 249,29. appa .-ee 5,253,251 10/1993 Aramaki .4,437,087 3/1984 Petr ..
4,438,511 3/1984 Baran 5,255,291 10/1993 Holdenet al.
4,439,763 3/1984 Limb ._ 5,260,933 11/1993 Rouse ... 370/14
4,445,213 4/1984. Baugh et al. 5,260,978 11/1993 Fleischeret al. 375/106
4,446,555 5/19B4- Devault et al. 5,268,592 12/1993 Bellamy et al.
4,456,957 6/1984 Schieltz. 5,268,900 12/1993 Hluchyj et al.
4,464,658 8/1984 Thelen .. 5,271,004=12/1993 Proctoret al.
4,499,576 2/1985 Fraser... 5,274,631 12/1993 Bhardwaj
4,506,358 3/1985 Montgomery 5,274,635 12/1993 Rabman et al.
4,507,760 3/1985 Fraser.... 5,274,643 12/1993 Fisk ou...
4,532,626 7/1985 Floreset al. . 5,280,470 1/1994 Burke et al.
4,644,532 —-2/1987 George etal. 5,280,480 1/1994 Pittetal
4,646,287-2/1987 Larson etal.... 5,280,500 1/1994 Mazzolaet al. 375/17
4,677,423 6/1987 Benvenuto et al. 5,283,783 2/1994 Npuyenetal. .
4,679,189 * 7/1987 Olsonetal. 5,287,103 2/1994
4,679,227 7/1987 Hughes-Hartogs . 379/98 5,287,453 * 2/1994
4,723,267 2/1988 Jones et al. 37993 5,291,482 3/1994
4,731,816 3/1988 _Hughes-Hartogs 37998 5305311 4/1994
4,750,136 6/1988 Arpinetal...... 364/514 5,307,343 4/1994
4,757,495 7/1988 Deckeretal. 370/76 5,309,437 * 5/1994
4,763,191 8/1988 Gordonet al. .. 358/86 5,311,509 5/1994
4,769,810 9/1988 Eckberg,Jr. etal. 370/60 5,313,454 5/1994
4,769,811 —-9/1988__Eckberg, Jr. et al. 370/60 5,313,582 5/1994
4,771,425 9/1988 Baranetal. . 370/85 5,317,562 5/1994
4,819,228 4/1989 Baranetal. . 370/85 5,319,644 6/1994
4,827,411 5/1989 Arrowheadetal. 364/300 5,327,421 7/1994
4,833,706 5/1989 _Hughes-Hartogs . 379/98 5,331,637 7/1994
4,835,737 5/1989 Herrig et al. 5,345,445 9/1994
4,879,551 11/1989 Georgiou et al. 5,345,446 9/1994
4,893,306 1/1990 Chaoetal...... 5,359,592 10/1994 Corbalis et al. .
4,903,261 2/1990 Barmetal. . . 5,361,250 11/1994 Nguyenetal. .. 370/16.1
4,922,486 5/1990 Lidinsky etal. . 370/60 5,361,256 11/1994 Doeringer et al. .
4,933,937 6/1990 Konishi 370/85.13 5,361,259 1A1994 Huntef ale oo..-sssscccsccssnseeseccceee 370/84
4,960310 10/1990 Cushing... sane 350/17 5,365,524 11/1994 Hiller etal. 370942
4,962,497 10/1990 Ferencetal. 370/60.1 5,367,517 11/1994 Cidon et al. .. 370/54
4,962,532 10/1990 Kasiraj et al. .. 5,371,852 12/1994 Attanasio et al. . 395/200
4,965,767 10/1990 Kinoshita et al. . 5,386,567 1/1995 Lien et al. 395/700
4,965,772 10/1990 5,390,170 —-2/1995 Sawant et al 370/58.1
4,970,678 11/1990 5,390,175 2/1995 Hiller etal. 370/60
4,979,118 * 12/1990 5,394,394 2/1995 Crowtheret al. .. 370/60
4,980,897 12/1990 Deckeret al. 5,394,402 2/1995 ROSS vrresseeeee 370/94.1
4,991,169 2/1991 Davis etal. . 5,400,325 3/1995 Chatwani etal 370/60.1
5,003,595 3/1991 Collins et al. 5,408,469 4/1995 370/60.1
5,014,265 5/1991 Hahneet al. 370/60 5,416,842 5/1995
5,020,058 5/1991 Holdenet al. 370/109 5,422,880 6/1995
5,033,076—T/I9DL_ Tomes et ab cesssscssssensscsscceseesone 379/67 5,422,882 6/1995
5,034,919 7/1991 Sasai et al. . 5,423,002 6/1995
5,054,034 10/1991 Hughes-Hartogs we 3875/8 5,426,636 6/1995
5,059,925 10/1991 Weisbloom . 33/1 A 5,426,637 * 6/1995
5,072,449 12/1991 Enns etal. 371/371 5,428,607 6/1995
5,088,032 2/1992 Bosack 395/200 5,430,715 7/1995
5,095,480 * 3/1992 Fenner et al . 370/94.1 5,430,729 T1995
5,115,431 5/1992 i 5,442,457 8/1995 385/400
5,128,945 7/1992 5,442,630 8/1995 . 370/85.13
5,136,580 8/1992 5,452,297 9/1995 370/60.1
5,166,930 11/1992 5,473,599 12/1995 370/16
5,199,049 3/1993 5,473,607 12/1995 Hausman etal. . 370/85.13
5,206,886 4/1993 5,477,541 12/1995 Whi
5,208,811 5/1993 Kashio et al. 5,485,455 * 1/1996Dobbinsetale-.--cscsscssessees 370/60
5,212,686 5/1993 Joy et al. 370/60 5,490,140—-2/1996
5,224,099 6/1993 Corbaliset 370/94.2 5,490,258 * 2/1996Fenner..sesaesessssesssssseesnseesenens 395/401
5,226,120 7/1993 Brown etal 395/200 5,491,687=2/1996Christensen¢tal... 370/17
5,228,052 7/1993 Bingham 1. 375/97 5,491,693 * 2/1996 Britton etal. - 370/85.13
5,229,994 711993 Balzano etal. 370/85.13 5,491,804=2/1996 Heath etal. ... eee 395/275
5,237,564 8/1993 Lespagnol et al. 370/60.1 5,497,368 3/1996 Reijnierse et al. .
5,241,682 8/1993 Bryant et al. ~.... ... 395/800 5,504,747 4/1996 Sweazey.

EX 1017 Page 610

EX 1017 Page 611

US 6,243,667 BI
Page 3

5,509,006 4/1996 Wilfordet al. wee 370/60 5,684,800 * 11/1997 Dobbins etal. 370/401
5,509,123 * 4/1996 Dobbins et al... 395/200.15 5,687,324 11/1997 Green et al. .
§,517,494 5/1996 Green . 5,724,351 3/1998 Chao etal. .
5,517,662 * 5/1996 Coleman et al. 395/800 5,740,097 4/1998 Satoh .
5,519,704 5/1996 Farinacci et al. . 370/85.13 5,748,186 * 5/1998 Raman ...r..--sersereereernneersneeree 345/302
5,519,858 * 5/1996 Walton et al. 395/600 5,754,547 5/1998 Nakazawa .
5,524,254 * 6/1996 Morgan et al. ... 395/800 5802,054 9/1998 Beltenger .
5,526,489 6/1996 Nilakantan et al. 395/200.02 5,835,710 * 11/1998 Nagami et al... 395/200.8
§,530,963 6/1996 Mooreet al 395/200.15 5,841,874 11/1998 Kempkeetal. .
§,535,195 TIV996 Lee 2 eseseessccvsnneenensseenrensenscorennne 370/54 5,854,903 12/1998 Morrisonetal. .
5,539,734 7/1996 Burwelletal. - 5,856,981 1/1999 Voelker-
5,541,911 7/1996 Nilakantan et al. . 5,892,924 * 4/1999 Lyon etal.---esseecssnenre 395/200.75
5,546,370 8/1996 Ishikawa . 5,898,686 4/1999 Virgile .
5,550,816 * 8/1996 Hardwick et al... 370/60 5,903,559 5/1999 Acharya et al. .
5,555,244 9/1996 Gupta et al. . .. 370/60 5,925,097 * 7/1999 Gopinath et BD seaseeeeseceneeeeee 709/200
5,561,669 10/1996 Lenney et al. 370/60.1
5,583,862 12/1996 Callon.......... . 370/397 OTHER PUBLICATIONS
§,592,470 1/1997 Rudrapatna ctal. . 370/3205,598,581 1/1997 Daines etal. , 395/872 Chowdhury, ct al., “Alternative Banddwidih Allocation
5,600,798 2/1997 Chenrokuri et al. . Algorithms for Packet Vidco in ATM Networks”, 1992,
5,602,770 2/1997 Ohira . IEEE Infocom 92, pp. 1061-1068.
5,604,868 2/1997
5,608,726 3/1997
5,617,417 4/1997

Zhang,et al., “Rate—Controlled Static-Priority Queueing”,
1993, IEEE,pp. 227-236.

5,617,421 4/1997 Doeringer,ct al., “Routing on Longest—Matching Prefixes”,
5,630,125 * 5/1997 - IEEE ACM Transactions on Networking, Feb. 1, 1996, vol.
5,631,908 5/1997 Saxe. 4, No. 1, pp. 86-97.
oe S997 IBM,“Method and Apparatus for the Statistical Multiplex-ne ing of Voice, Data, and Image Signals”, Nov., 1992, IBM
5,634,011 * 5/1997 Averbach et al. . 395/200.15 > .5,644,718 7/1997 Belove etal. ‘Technical DataBulletin n6,pp. 409-411. .
5,666,353 9/1997 Klausmeier et al. ” 370230 Esaki, et al., “Datagram Delivery in an ATM-Intemet,
5,673,265 9/1997 Gupta etal. 370/432 JEICE Transactions on Communications vol. E77—B, No.3, '
5,675,579 * 10/1997 Watson etal. .. . 370/248 (1994) Mar., Tokyo, Japan.
5,678,006 10/1997 Valizadeh ct al. =
5,680,116 10/1997 Hashimoto et al. . * cited by examiner

EX 1017 Page 611

EX 1017 Page 612

U.S. Patent Jun.5, 2001 Sheet 1 of 5 US 6,243,667 B1

100

\ 129 130
DESTINATIONTAKE rwx

COMMUNICATION
LINK

FIG. 7
EX 1017 Page 612

EX 1017 Page 613

U.S. Patent Jun.5, 2001

200

RECEIVE

PACKET

IDENTIFY
MESSAGE

FLOW

LOOKUP

OLD

BUILD
NEW

ENTRY

 RETRIEME

ROUTING
INFO

FIG. 2A
\

US 6,243,667 B1

FIG. 2B

EX 1017 Page 613

EX 1017 Page 614

US 6,243,667 B1Sheet 3 of 5Jun.5, 2001U.S. Patent

{SiI|UdINIOd

AXINGSHOW)SSIYOQYdf
&DOLL

UAINIOdTIAN

 00¢

EX 1017 Page 614

EX 1017 Page 615

U.S. Patent Jun.5, 2001 Sheet 4 of 5 US 6,243,667 B1

2

wear 7 on i

POINTER

13

LEAF

420
LEAF

420

FIC. F

EX 1017 Page 615

(SES

EX 1017 Page 616

U.S. Patent Jun.5, 2001 Sheet 5 of 5

OBTAIN

HISTORICAL

INFO
DOES

NOT

EXCEED

LIMIT

EXCEEDS

LIMIT

TRANSMIT

INFO

PACKET

US 6,243,667 BL

DISPLAY/
TRANSMIT

REPORT

EX 1017 Page 616

EX 1017 Page 617

US 6,243,667 Bl

1
NETWORK FLOW SWITCHING AND FLOW

DATA EXPORT

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to network switching and data
export responsive to message flow patterns.

2. Description of Related Art
In computer networks, it commonly occurs that message

traffic between a particular source anda particular destina-
tion will continue for a time with unchanged routing or
switching parameters. For example, when using the file-
transfer protocol “FTP” there is substantial message traffic
between the file’s source location and the file’s destination

location, comprising the transfer of many packets which
have similar headers, differing in the actual data which is
transmitted. During the time when messagetraffic continues,
routing and switching devices receiving packets comprising
that messagetraffic must examine those packets and deter-
mine the processing thereof.

One problem whichhas arisen in the art is that processing
demands on routing and switching devices continue to grow
with increased network demand. It continues to be advan-

tageous to provide techniques for processing packets more
quickly. This problem has been exacerbated by addition of
more complex forms of processing, such as the use of access
controllists.

It would therefore be advantageous to provide techniques
in which the amount of processing required for any indi-
vidual packet could be reduced. With inventive techniques
described herein, information about message flow pattems is
used to identify packets for which processing has already
been determined, and therefore to process those packets
without having to re-determine the same processing. The
amount of processing required for any individual packet is
therefore reduced.

Information about message flow patterns would also be
valuable for providing information about use of the network,
and could be used for a variety of purposes by network
administrators, routing devices, service providers, and users.

Accordingly, it would be advantageous to provide a
technique for network switching and data export responsive
to message flow patterns.

SUMMARYOF THE INVENTION

The invention provides a method and system for switch-
ing in networks responsive to message flow patterns. A
message “flow” is defined to comprise a set of packets to be
transmitted between a particular source and a particular
destination. When routers in a network identify a new
message flow, they determine the proper processing for
packets in that message flow and cache that information for
that message flow. Thereafter, when routers in a network
identify a packet which is part of that message flow, they
process that packet according to the proper processing for
packets in that message flow. The proper processing may
include a determination of a destination port for routing
those packets and a determination of whetheraccess control
permits routing those packets to their indicated destination.

In another aspect of the invention, information about
message flow pattems is collected, responsive to identified
message flows and their packets. The collected information
is reported to devices on the network. The collected infor-
mation is used for a variety of purposes, including: , to
diagnose actual or potential network problems,to determine

15

20

4s

60

2

patterns of usage by date and time or by location, to
determine which services and which users usearelatively
larger or smaller amountof network resources, to determine
which services are accessed byparticularusers, to determine
which users access particular services, or to determine usage
which falls within selected parameters (such as: access
during particular dates or times, access to prohibited
services, excessive access to particular services, excessive
use of network resources, or lack of proper access).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a network in which routing responsive to
message flow pattems is performed.

FIG. 2 shows a method for routing in networks responsive
to message flow patterns.

FIG. 3 shows data structures for use with a method for

routing in networks responsive to message flow pattems.
FIG. 4 shows an IP address cache for use with a method

for routing in networks responsive to message flow patterns.
FIG. 5 shows a method for collecting and reporting

information about message flow patterns.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the following description, a preferred embodiment of
the invention is described with regard to preferred process
steps and data structures. However, those skilled in the art
would recognize, after perusal of this application, that
embodiments of the invention may be implemented using a
set of general purpose computers operating under program
control, and that modification of a set of general purpose
computers to implement the process steps and data stnic-
tures described herein would not require undue invention.

Message Flows

FIG. 1 shows a network in which routing responsive to
message flow pattems is performed.

A network 100 includes at least one communication link
110, at least one source device 120, at least one destination
device 130, and at Icast one routing device 140. The routing
device 140 is disposed for receiving a set of packets 150
from the source device 120 and routing them to the desti-
nation device 130.

The communication link 110 may comprise any form of
physical media layer, such as ethemet, FDDI, or HDLC
serial link.

The routing device 140 comprises a routing processor for
performing the process steps described herein, and may
include specific hardware constructed or programmed per-
forming the process steps described herein, a general pur-
pose processor operating under program control, or some
combination thereof.

Amessage flow 160 consists of a unidirectional stream of
packets 150 to be transmitted between particular pairs of
transport service access points (thus, network-layer
addresses and port numbers). In a broad sense, a message
flow 160 thus refers to a communication “circuit” between
communication end-points. In a preferred embodiment, a
message flow 160is defined by a network-layer address for
a particular source device 120, a particular port numberat
the source device 120, a network-layer address for a par-
ticular destination device 130, a particular port numberat the
destination device 130, and a particular transmission proto-
col type. For example, the transmission protocol type may

EX 1017 Page 617

EX 1017 Page 618

aA,
*

US 6,243,667 B1
3

identify a known transmission protocol, such as UDP, TCP,
ICMP, or IGMP(internet group management protocol).

In a preferred embodiment for use with a network of
networks (an “internet”), the particular source device 120 is
identified by its IP (internet protocol) address. The particular
port number at the source device 120is identified by cither
a port number whichis specific to a particular process, or by
a standard port numberfor the particular transmission pro-
tocol type. For example, a standard port numberfor the TCP
protocol type is 6 and a standard port number for the UDP
protocol type is 17. Other protocols which may have stan-
dard port numbers include the FTP protocol, the TELNET
protocol, an internet telephone protocol, or an internet video
protocol such as the “CUSeeMe” protocol; these protocols
are known in the art of networking. Similarly, the particular
destination device 130 is identified by its IP (internct
protocol) address; the particular port numberat the destina-
tion device 130 is identified by either a port number which
is specific to a particular process, or a standard port number
for the particular transmission protocol type.

Tt will be clear to those skilled in the art, after perusing
this application, that the concept of a message flow is quite
broad, and encompasses a wide variety of possible alterna-
tives within the scope and spirit of the invention. For
example,in alternative embodiments, a message flow may
be bi-directional instead of unidirectional, a message flow
maybe identified at a different protocollayer level than that
of transport service access points, or a message flow may be
identified responsive to other factors. These other factors
may inchde one or more of the following: information in
packet headers, packet length, time of packettransmission,
or routing conditions on the network (such as relative
network congestion or administrative policies with regard to
routing and transmission).

Network Flow Switching
FIG.2 shows a methodfor routing in networks responsive

to message flow pattems.
In broad overview, the method for routing in networks

responsive to message flow pattems comprises two parts. In
a first part, the routing device 140 builds and uses a flow
cache described in further detail with regard to FIG. 3), in
which routing informationtobe used for packets 150 in each
particular message flow 160 is recorded and from which
such routing information is retrieved for use. In a second
part, the routing device 140 maintains the flow cache, such
as by removingentries for message flows 160 which are no
longer considered valid.

A method 200 for routing in networks responsive to
message flow patterns is performed by the routing device
140.

Ata flowpoint 210, the routing device 140 is disposed for
building and using the flow cache.

At a step 221, the routing device 140 receives a packet
150.

Ata step 222,the rouling device 140 identifies a message
flow 160 for the packet 150. In a preferred embodiment, the
routing device 140 examines a header for the packet 150 and
identifies the [P address for the source device 120, the IP
address for the destination device 130, and the protocoltype
for the packet 150. The routing device 140 determines the
port number for the source device 120 and the port number
for the destination device 130 responsive to the protocol
type. Responsive to this set of information, the routing
device 140 determines a flow key 310 (described with
reference to FIG. 3) for the message flow 160.

35

60

65

4

At a step 223, the routing device 140 performs a lookup
in a flow cache for the identified message flow 160. If the
lookup is unsuccessful, the identified message flow 160 is a
“new” message flow 160, and the routing device 140 con-
tinues with the step 224. If the lookup is successful, the
identified message flow 160 is an “old” message flow 160,
and the routing device 140 continues with the step 225.

In a preferred embodiment, the routing device 140 deter-
mines a hashtable key responsive to the flow key 310. This
aspect of the step 223 is described in further detail with
regard to FIG. 3.

At a step 224,the routing device 140 builds a new entry
in the flow cache. The routing device 140 determines proper
treatment ofpackets 150 in the message flow 160 and enters
information regarding such propertreatmentin a data struc-
ture pointed to by the new entry in the flow cache. In a
preferred embodiment, the routing device 140 determines
the propertreatmentby performing a lookupin an IP address
cache as shown in FIG.4.

In a preferred embodiment, the proper treatment of pack-
ets 150 in the message flow 160 includes treatment with
regard to switching (thus,the routing device 140 determines
an outputport for switching packets 150 in the message flow
160), with regard to access control (thus, the routing device
140 determines whether packets 150 in the message flow
160 meet the requirements of access control, as defined by
access control lists in force at the routing device 140), with
regard to accounting(thus, the routing device 140 creates an
accounting record for the message flow 160), with regard to
encryption (thus, the routing device 140 determines encryp-
tion treatment for packets 150 in the message flow 160), and
any special treatment for packets 150 in the message flow
160.

In a preferred embodiment, the routing device 140 per-
forms any special processing for pew message flows 160 at
this time. For example, in one preferred embodiment, the
routing device 140 requires that the source device 120 orthe
destination device 130 must authenticate the message flow
160. In that case, the routing device 140 transmits one or
more packets 150 to the source device 120 orthe destination
device 130 to request information (such as a user identifier
and a password) to authenticate the new message flow 160,
and receives one or more packets 150 comprising the
authentication information. This technique could be useful
for implementing security “firewalls” and other authentica-
tion systems.

Thereafter, the routing device 140 proceeds with the step
225, using the information from the new entry in the flow
cache, just as if the identified message flow 160 were an
“old” message flow 160 and the lookup in a flow cache had
been successful.

Al a step 225, the routing device 140 retrieves routing
information from the entry in the flow cache for the iden-
tified message flow 160.

In a preferred embodiment, the entry in the flow cache
includes a pointer to a rewrite function forat least part of a
header for the packet 150. If this pointer is non-null, the
routing device 140 invokes the rewrite functionto alter the
header for the packet 150.

Ata step 226, the routing device 140 routes the packet 150
responsive to the routing information retrieved at the step
225.

Thus, in a preferred embodiment, the routing device 140
does not separately determine, for each packet 150 in the
message flow 169,the information stored in the entry in the
flow cache. Rather, when routing a packet 150 in the

EX 1017 Page 618

EX 1017 Page 619

¥

US6,243,667 B1
5

message flow 160, the routing device 140 reads the infor-
mation from the entry in the flow cache andtreats the packet
150 according to the information in the entry in the flowcache.

Thus, in a preferred embodiment, the routing device 140
routes the packet 150 to an outputport, determines whether
access is allowed for the packet 150, determines encryption
treatment for the packet 150, and performs any special
treatmentfor the packet 150,all responsiveto information in
the entry in the flow cache.

In a preferred embodiment, the routing device 140 also
enters accounting information in the entry in the flow cache
for the packet 150. When routing each packet 150 in the
message flow 160, the routing device 140 records the
cumulative number of packets 150 and the cumulative
number of bytes for the message flow 160.

Because the routing device 140 processes each packet 150
in the message flow 160 responsive to the entry for the
message flow 160 in the flow cache, the routing device 140
is able to implement administrative policies which are
designated for cach message flow 160 rather than for each
packet 150. For example, the routing device 140 is able to
Tteserve specific amounts of bandwidth for particular mes-
sage flows 160 and to queue packets 150 for transmission
responsive to the bandwidth reserved for their particular
message flows 160.

Because the routing device 149 is able to associate each
packet 150 with a particular message flow 160 and to
associate cach message flow 160 with particular network-
layer source and destination addresses, the routing device
140 is able to associate network usage with particular
workstations (and therefore with particular users) or with
particular services available on the network. This can be
used for accounting purposes, for enforcing administrative
policies, or for providing usage information to interested
parties.

For a first example, the routing device 140 is able to
monitor and provide usage information regarding access
using the HTTP protocol to world wide web pages at
particular sites.

For a second example, the routing device 140 is able to
monitor usage information regarding relative use of network
resources, and to give priority to those message flows 160
which use relatively fewer network resources. This can
occur when a first message flow 160 is using a relatively
Jow-bandwidth transmission channel (such as a 28.8 kilobits
per second modem transmission channel) and when a sccond
message flow 160 is using a relatively high-bandwidth
transmission chamel (such as a T-1 transmission line).

At a flow point 230, the routing device 140 is disposed for
maintaining the flow cache.

At astep 241, the routing device 140 examines cach entry
in the flow cache and compares a current time with a last
time a packet 150 was routed using that particular entry. If
the difference exceeds a first selected timeout, the message
flow 160 represented by that entry is considered to have
expired due to nonuse and thus to no longerbe valid.

In a preferred embodiment, the routing device 140 also
examines the entry in the flow cache and compares a current
time with a first time a packet 150 was routed using that
particular entry. If the difference exceeds a second selected
timeout, the message flow 160 represented by that entry is
considered to have expired due to age and thus to no longer
be valid. The second selected timeout is preferably about
one minute.

Expiring message flows 160 due to age artificially
requires that a new message flow 160 must be created for the

10

35

40

50

60

65

6

next packet 150 in the same communication session repre-
sented by the old message flow 160 which was expired.
However, it is considered preferable to do so because it
allows information to be collected and reported about mes-
sage flows 160 without having to wait for those message
flows 160 to expire from nonuse. For example, a multiple-
broadcast communication session could reasonablylast well
beyond the time message flows 160 are expired for age, and
if not so expired would mean that information about network
usage would not account for significant network usage.

In a preferred embodiment, the routing device 140 also
examines the entry in the flow cache and determines if the
“next hop” information has changed. If so, the message flow
160 is expired due to changed conditions. Other changed
conditions which might cause a message flow 160 to be
expired include changes in access contro] lists or other
changes which might affect the proper treatment of packets
150 in the message flow 160. The routing device 140 also
expires entries in the flow cache on a least-recently-usedbasis if the flow cache becomes too full.

If the message flow 160 is still valid, the routing device
140 continues with the next entry in the flow cache until all
entries have been examined.If the message flow 160 is no
longer valid, the routing device 140 continues with the step242.

At a step 242, the routing device 140 collects historical
information about the message flow 160 from the entry in
the flow cache, and deletes the entry.

Flow Cache

FIG. 3 shows data structures for use with a method for

routing in networks responsive to message flow patterns.
A flow cache 300 comprises a memory which associates

flow keys 310 with information about message flows 160
identified by those flow keys 310. The flow cache 300
includes a set of buckets 301. Each bucket 301 includes a
linkedlist of entries 302. Each entry 302 includes informa-
tion abouta particular message flow 160, including routing,
access contro], accounting, special treatment for packets 150
in that particular message flow 160, and a pointer to infor-
mation about treatment of packets 150 to the destination
device 130 for that message flow 160.

In a preferred embodiment, the flow cache 300 includes a
relatively large number of buckets 301 (preferably about
16,384 buckets 301), so as to minimize the numberofcutries
302 per bucket 301 and thus so as to minimize the number
of memory accesses per entry 302. Each bucket 301 com-
prises a four-byte pointer to a linked list of entries 302. The
linked list preferably includes only about oneor two entries302 at the most.

In a preferred embodiment, each entry 302 includes a set
of routing information, a set of access control information,
a set of special treatment information, and a set of account-
ing information, for packets 150 in the message flow 160.

The routing information comprises the output port for
routing packets 150 in the message flow 160.

The access control information comprises whether access
is permitted for packets 150 in the message flow 160.

The accounting information comprises a time stamp for
the first packet 150 in the message flow 160, a time stamp
for the most recent packet 150 in the message flow 160, a
cumulative count for the number of packets 150 in the
message flow 160, and a cumulative countfor the number of
bytes 150 in the message flow 160.

IP Address Cache

FIG. 4 shows an IP address cache for use with a method

for routing ia networks responsive to message flow patterns.

EX 1017 Page 619

EX 1017 Page 620

my3
e.

a
US6,243,667 B1

7

An IP address cache 400 comprises a tree having a root
node 410, a plurality of inferior nodes 410, and a pluralityof leaf data structures 420.

Each node 410 comprises a node/leaf indicator 411 and an
array 412 of pointers 413.

The node/leaf indicator 411 indicates whether the node
410s a node 410 ora leaf data structure 420; for nodes 410
it is set to a “node”value, while for leaf data structures 420
it is sct to a “leaf” value.

The array 412 has room for exactly 256 pointers 413;
thus, the IP address cache 400 comprises an M-trie with a
branching width of 256 at each level. M-tries are known in
the art of tree structures. IP addresses comprise four bytes,
each having eight bits and therefore 256 possible values.
Thus, each possible IP address can be stored in the IP
address cache 400 using at most four pointers 413.

The inventors have discovered that IP addresses in actual

use are unexpectedly clustered, so that the size of the IP
address cache 40 is substantially less, by a factor of about
five to a factor of aboutten, than would be expected for a set
of randomly generated four-byte 1P addresses.

Each pointer 413 represents a subtree of the IP address
cache 400 for its particular location in the array 412. Thus,
for the root node 410, the pointer 413 at location 3 represents
IP addresses having the form 3.xxx-xxx.xxx, where “xxx”
represents any possible value from zero to 255. Similarly, in
a subtree for IP addresses having the form 3.xxx20c0.xxx,
the pointer 413 at location 141 represents IP addresses
having the form 3.141 xxx.0cx. Similarly, in a subtree for IP
addresses having the form 3.141.xxx20mx, the pointer 413 at
location 59 represents IP addresses having the form
3.141.59xxx. Similarly, in a subtree for IP addresses having
the form 3.141.59.xxx, the pointer 413 at location 26 rep-
resents the IP address 3.141.59.26.

Each pointer 413 is cither null, to indicate that there are
no IP addresses for the indicated subtree, or points to an
inferior node 410 or leaf data structure 420. A least signifi-
cantbit of each pointer 413 is reserved to indicate the type
of the pointed-to structure; that is, whether the pointed-to
structure is a node 410 or a leaf data structure 420. In a

preferred embodiment where pointers 413 must identify an
address which is aligned on a four-byte boundary, the two
least significant bits of each pointer 413 are unused for
addressing, and reserving the least significant bit for this
purpose docs not reduce the scope of the pointer 413.

Eachleaf data structure comprises information about the
TP address, stored in the IP address cache 400. In a preferred
embodimentthis information includes the proper processing
for packets 150 addressed to that IP address, such as a
determinationof a destination port for routing those packets
and a determination of whether access control permits
routing those packets to their indicated destination.

Flow Data Export

FIG. 5 shows a method for collecting and reporting
information about message flow patterns.

A method 500 for collecting and reporting information
about message flow patterns is performed by the routing
device 140.

At a flow point 510, the routing device 140 is disposed for
obtaining information about a message flow 160. For
example, in a preferred embodiment, as noted herein, the
routing device 140 obtains historical information about a
message flow 160 in the step 242. In alternative
embodiments, the routing device 140 may obtain informa-

10

20

25

35

40

55

65

8

tion about message flows 160, either in addition or instead,
by occasional review of entrics in the flow cache, or by
directly monitoring packets 150 in message flows 160.

It will be clear to those skilled in the art, after perusing
this application, that the concept of reporting information
about message flows is quite broad, and encompasses a wide
variety of possible alternatives within the scope and spirit of
the invention. For example, in alternative embodiments,
information about message flows may include bi-directional
traffic information instead of unidirectional traffic

information, information about message flows may include
informationat a different protocol layer level other than that
of transport service access points and other than that at
which the message flow is itself defined, or information
about message flows mayinclude actual data transmitted as
part of the message flow itself. These actual data may
include one or more of the following: information in packet
headers, information about files of file names transmitted
during the message flow,or usage conditions of the message
flow (such as whether the message flow involves steady or
bursty transmission of data, or is relatively interactive or
relatively unidirectional).

At a step 521, the routing device 140 obtains historical
information about a particular message flow 160, and
records that information in a flow data table.

At a step 522,the routing device 140 determines a size of
the flow data table, and compares that size with a selected
size value. If the flow data table exceeds the sclected size
valuc, the routing device 149 continues with the step 523 to
report flow data. If the flow data table does not exceed the
selected size value, the routing device 140 returns to the step
521to obtain historical information about a next particular
message flow 160.

At a step 523, the routing device 140 builds an informa-
tion packet, responsive to the information about message
flows 160 which is recorded in the flow data table.

At a step 524, the routing device 140 transmits the
information packetto a selected destination device 130 on
the network 100. In a preferred embodiment, the selected
destination device 130 is determined by an operating param-
eter of the routing device 140. This operating parameteris
set when the routing device 149 is initially configured, and
maybe altered by an operator of the routing device 140.

In a preferred embodiment, the selected destination
device 130 receives the information packet and builds (or
updates) a database in the format for the RMONprotocol.
The RMONprotocol is known in the art of network moni-
toring.

Ata flow point 530,a reporting device 540 on the network
100 is disposed for reporting using information about mes-
sage flows 160.

At a step 531, the reporting device 549 querics the
selected destination device 130 for information about mes-

sage flows 160. In a preferred embodiment, the reporting
device 540 uses the RMON protocol to query the selected
destination device 130 and to obtain information about
message flows 160.

At a step 532, the reporting device 540 builds a report
about a condition of the network 100, responsive to infor-
mation about message flows 160.

At a step 533, the reporting device 540 displays or
transmits that report about the condition of the network 100
to interested parties.

In preferred embodiments, the report may comprise one or
more of a wide varicty of information,and interested parties

EX 1017 Page 620

EX 1017 Page 621

US 6,243,667 B1

9

mayuse that information for one or more of a wide variety
of purposes. Some possible purposes are noted herein:

Interested pasties may diagnose actual or potential net-
work problems. For example, the report may comprise
information about packets 150 in particular message flows
160,including 2 time stamp fora first packet 150 and a time
stamp for a last packet 150 in the message flow 160, a
cumulative total number of bytes in the message flow 160,
a cumulative total number of packets 150 in the message
flow 160,or other information relevantto diagnosing actuai
or potential network problems.

Interested parties may determine patterns of usage of the
network by date andtime or by location. For example, the
report may comprise information about which users or
which services on the network are makingrelatively heavy
use of resources. In a preferred embodiment, usage of the
network 100 is displayed in a graphical fonn which shows
use of the network 100 in a false-color map, so that network
administrators and other interested parties may rapidly
determine which services, which users, and which commu-
uication links are relatively loaded or relatively unloaded
with demand.

Interested parties may determine which services are
accessed byparticularusers, or which users access particular
services. For example,the report may comprise information
about which services are accessed by particular users at a
particular device on the network 100, or which users access
a particular service at a particular device on the network 100.
This information may be used to market or otherwise
enhance these services. In a preferred embodiment, users
who access a particular world wide web page using the
HTTP protocolare recorded, and informationis sent to those
users about changes to that web page and about further
services available from the producers of that web page.
Providers of the particular web page may also collect
information about access to their web page in response to
date and time of access, and location of accessing user.

Information about patterns of usage of the network, or
about which services are accessed by particular users, or
which users access particular services, may be used to
implement accounting or billing for resources, or to set
limits for resource usage, such as by particular users, by
particular service providers, or by particular protocol types
(and therefore by particular types of services).

Interested parties may determine usage whichfalls within
(or without) selected parameters. These selected parameters
mayinvolve access during particular dates or times, such as
for example access to particular services during or outside
nomnal working hours. For example, it may be desirable to
record those accesses to a company database which occur
outside normal working hours.

These selected parameters may involve access to probib-
ited services, excessive access to particular services, or
excessive use of network resources, such as for example
access to particular servers using the HTTP protocol or the
FTP protocol which fall within (or without) a particular
administrative policy. For example, it may be desirable to
record accesses to repositories of games orother recreational
material, particularly those accesses which occur within
normal working hours.

These sclected parameters may involve or lack of proper
access, such as for cxample access control list failures or
unauthorized attempts to access secure services. For
example, it may be desirable to record unauthorized
attempts to access secure services, particularly those
attempts which form a pattern which might indicate a
concerted attempt to gain unauthorized access.

15

20

55

60

10

In alternative embodimenis, the routing device 149 could
save the actual packets 150 for the message flow 160, or
some part thereof, for later examination. For example, a
TELNET session(a message flow 160 comprising use ofthe
TELNET protocol by a user and a host) could be recorded
in its entirety, or someportion thereof, for later examination,
e.g., to diagnose problems noted with the network or with
the particular host.

In further alternative embodiments, the routing device
140 could save the actual packets 150 for selected message
flows 160 which meetcertain selected parameters, such as
Tepeated unauthorized attempts to gain access.

In embodiments where actual packets 150 of the message
flow 160 are saved, it would be desirable to perform a name
translation (such as a reverse DNS lookup), because the IP
addresses for the source device 120 and the destination
device 130 are transitory. Thus, it would be preferable to
determine the symbolic names for the source device 120 and
the destination device 130 from the IP addresses, so that the
recorded data would have greater meaning at a later time.
Altemative Embodiments

Although preferred embodiments are disclosed herein,
Many variations are possible which remain within the
concept, scope, and spirit of the invention, and these varia-
tions would become clear to those skilled in the art after

perusal of this application.
We claim:
1. A method for routing messages in a data network

wherein a set of packets is isolated for specialized policy
treatment by a plurality of routing devices in the data
network, the method comprising the steps of:

identifying a first one message of a first plurality of
Inessages associated with an application layer, said first
plurality of messages havingat least one policy treat~
ment in common,saidfirst plurality of messages being
identified in response to an address of a selected source
device and an address of a selected destination device,
wherein said policy treatment comprises at least one of
the access control information, security information,
queuing infonnation, accounting information, traffic
profiling information, and policy information;

generating a unique hash key by each of the routing
devices that receives thefirst plurality of messages,the
unique hash key being based upon the address of the
selected source device, the address of the selected
destination device, a port number associated with the
selected source device, a port number associated with
the selected destination device, and a protocol type
corresponding to the first plurality of messages;

recording said first policy treatment by building a corre-
sponding entry in a flow cache, wherein the first
plurality of messages is identified by the unique hash
key;

recording information about said first plurality of mes-
sages,

transmitting said information to at least one selected
device on said network based upon a predetermined
operating parameter,

identifying a second one messageof said first plurality of
messages; and

routing said second one message responsive to said first
routing treatment.

2. Amethod as in claim 1, wherein
said first one message comprises a packet;
said first plurality of messages comprises a stream of

packets associated with a selected source device and a
selected destination device.

EX 1017 Page 621

EX 1017 Page 622

US 6,243,667 B1
i

3. Amethodas in claim 2, wherein said stream of packets
is associated withafirst selected port numberat said source
device and a secondselected port numberat said destination
device.

4. A method as in claim 1, wherein said first plurality of
nessages comprises a message flow.

5. A method as in claim 1, wherein said first plurality of
messages comprises an ordered sequence, and said first one
nessage has a selected position in said ordered sequence.

6. A method as in claim 1, wherein said step of recording
comprises building an entry flow cache, wherein said flow
zache includes a plurality of entries, one said entry for cach
said plurality of messages, each said entry including ainicast destination address.

7. Amethod as in claim 1, including a step ofidentifying
1 first packet of a second stream of packets, wherein the
sackets of said second stream of packets have at least one
second policy treatment in common, said second routing
reatmentdiffering from said first policy treatment.

8. A method as in claim 1, wherein said policy treatment
comprises a destination output port for routing said first
nessage.

9. A method as in claim 1, wherein said information
comprises

an arrival time foran initial one message in said plurality
of messages;

an arrival time for most recent one message in said
plurality of messages;

a cumulative countofbytes in said plurality of messages;or

a cumulative count of said one messagesin said plurality
of messages.

10. A method as in claim 1, comprising the steps of
Teceiving said informationat said selected device on said

network;
recording said information in a database at said selected

device; and
making said information available to a second device on

said network.

11. A system for routing packets in a data network
vherein a set of packets is isolated for specialized policy
teatment, said system comprising:

a source device for outputting a stream of packets;
a destination device for receiving said stream of packets;and

a plurality of routing devices for transporting said stream
of packets from said source device to said destination
device, each of said plurality of routing devices
comprising,

means for receiving said stream ofpackets, said stream of
packets comprising a plurality of message flows asso-
ciated with an application layer, each said packet being
associated with one selected message flow, each said
message flow having at least one policy treatment in
common, wherein said policy treatment comprises at
least one of access control information, security
information, queuing information, accounting
information, traffic profiling information, and policy
information;

Means for associating packets with a first ove of said
message flows,

Ineans for generating a unique hash key upon receipt of
the stream of packets, the unique bash key being based
upon an address of the source device, an address of the
destination device, a port number associated with the

20

35

65

12
source device, a port number associated with the des-
tination device, and a protocol type corresponding to
the first plurality of messages,

means for caching an entry associated with said first one
of said message flows, wherein said first one of said
message flows is identified by the unique hash key,

means for recording information about said first one of
said message flows;

means for transmitting said information to the destination
device on said network based upon a predetermined
operating parameter, and

means for routing packets responsive to entries in said
caching means.

12. Asystem as in claim 11, wherein said entry comprises
access control information.

13. Asystem as in claim 12, wherein said entry comprises
a destination output port for routing packets.

14. A system as in claim 11, wherein said information
comprises

a transmission time for an initial one message in said
plurality of messages;

a transmission time for a most recent one message in said
plurality of messages;

a cumulative countof bytes in said plurality of messages;or

a cumulative countof said one messages in said plurality
of messages.

15. The system as in claim 11,
wherein the caching means comprises a plurality of

buckets, cach bucket including a linked list that
includes a maximum of two entries. '

16. A method for routing messages in a data network
wherein a set of packets is isolated for specialized policy
treatment by plurality devices in the data network, said
method comprising the steps of:

identifying a first one packetof a first stream of packets
defining a first message flow associated with an appli-
cation layer, wherein said first stream of packets com-
prise an ordered sequence and said first packet has a
selected position in said ordered sequence, said first
stream ofpackets havingatleast one first routing policy
treatment in common, wherein said policy treatment
comprisesat least one of access control information,
security information, queuing information, accounting
information, traffic profiling information, and policy
information; and

generating a unique hash key by each of the routing
devices that receives the first stream of packets, the
unique hash key being based upon an address of a
selected source device, an address of a selected desti-
nation device, a port number associated with the
selected source device, a port number associated with
the selected destination device, and a selected protocol
type, said first routing treatment being identified by the
unique hash key;

recording said unique hash key by building an entry in a
flow cache;

identifying subsequent packets of a said first stream of
packets defining said first message flow;

recording information about said first stream of packets;
transmitting said information to at least one selected

device on said network based upon a predetermined
operating, parameter, and

routing said subsequent packets responsive to said first
policy treatment.

EX 1017 Page 622

EX 1017 Page 623

ae

US 6,243,667 B1
13

17. A method as in claim 16, comprising the step of
identifying a first one packet of a second stream of packets
defining a second message flow, said second stream of
packets having at least one second policy treatment in
common, said second policy treatment differmg from said 5
first policy treatment.

18. A method as in claim 16, wherein said policy treat-
ment further comprises a destination outputport for routing
said first oue packet.

19. A method as in claim 16, wherein said information 10
comprises

14
a transmissiontimeforsaid first packet of said first stream

of packets;
a transmission time for a most recent one packetin said

first stream of packets;
a cumulative countof bytes in said first stream of packets;or

a cumulative count of packets in said first stream of
packets.

EX 1017 Page 623

Teese

i”

-Sra

EX 1017 Page 624

(12)

(54)

(75)

(73)

(*)

(21)

ey)

(60)

(51)
(52)
(58)

(56)

United States Patent
Dietz et al.

METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

Inventors: Russell §, Dietz, San Jose, CA (US);
Joseph R. Maixner, Aptos, CA (US);
Andrew A. Koppenhaver,Littlcton,
CO (US); William H. Bares,
Germantown, TN (US); Haig A.
Sarkissian, San Antonio, TX (US);
James F. Torgerson, Andover, MN
(US)

Assignee: Hi/fn, Inc., Los Gatos, CA (us)
Notice: Subject to any disclaimer, the term ofthis

patent is extended or adjusted under 35
U.S.C. 154(b) by 589 days.

Appl. No.:
Filed:

09/608,237

Jun. 30, 2000

Related U.S. Application Data
Provisional application No. 60/141,903, filed on Jun.
1999,

Tint, C1? ceccccccssssseccsssereeereceeteeenesenenesnees GO6F 13/00
WLS. Che coeeet tneneeeeteeseneeee . 709/224; 370/389
Field of Search 00.00... ccsceseeetsee 709/200, 201,

709/220, 223, 224, 231, 232, 236, 238,
239, 240, 246; 370/389, 392, 395.32

30,

References Cited

U.S. PATENT DOCUMENTS

4,736,320 A 4/1988
4,891,639 A 1/1990
5,101,402 A 3/1992
5,247,517 A 9/1993
5,247,693 A 9/1993
5,249,292 A 9/1993
5,315,580 A 5/1994
5,339,268 A 8/1994
5,351,243 A 9/1994
5,365,514 A 11/1994

Bristolsceesescesesseee 364/300
Nakamura 340/825.5
Chui etai. SINT
Rosset al. 370/85.5
Bristol wae 395/800

w. 395/650
weve 370/13

. 365/49

dat taal

(10) Patent No.:
(45) Date of Patent:

meagan
US 6,651,099 B1

Nov. 18, 2003

yy

12/1994 Hershey etal.............. 364/550
2/1995 Crowther et al.0 370/60

5,375,070 A
* 5,394,394 A

(List continued on next page.)

OTHER PUBLICATIONS

“Technical Note: the Namus System,” Downloaded Apr. 29,
1999 from www.narus.com, Narus Corporation, Redwood
City Califomia.

Primary Examiner—Moustafa M. Meky
(74) Attorney, Agent, or Firm—Dov Rosenfeld; Inventek

(57) ABSTRACT

A monitor for and a method of examining packets passing
through a connection point on a computer network. Each
packets conforms to one or more protocols. The method
includesreceiving a packet from a packetacquisition device
and performing one or more parsing/extraction operations
on the packet to create a parser record comprising a function
of selected portions of the packet. The parsing/extraction
operations depend on one or more of the protocols to which
the packet conforms. The method further includes looking
up a flow-entry database containing flow-cntries for previ-
ously encountered conversational flows. The lookupuses the
selected packet portions and determiningif the packet is of
an existing flow. If the packet is of an existing flow, the
method classifies the packet as belonging to the found
existing flow, and if the packet is of a new flow, the method
stores a new flow-entry for the new flow in the flow-entry
database, including identifying information for future pack-
ets to be identified with the new flow” “ry. For the packet
of an existing flow, the method updat* _ 2 flow-entry of the
existing flow. Such updating may include storing one or
more statistical measures. Any stage of a flow, state is
maintained, and the method performs any state processing
for an identified state to further the process of identifying the
flow. The method thus examines each and every packet
passing through the connection pointin real time until the
application program associated with the conversational flow
is determined.

10 Claims, 18 Drawing Sheets

ANALYZER DATAREADYINTERFACECONTROL

EX 1017 Page 624

EX 1017 Page 625

U.S. Patent—Nov. 18,2003 Sheet 1 of 18 “US6,651,099 B1

100

J

CLIENT 3

~
106

108CLIENT 4

, Yor ANALYZER
J

SERVER 2

10

116

121

DATA COMMUNICATIONS

NETWORK

ae
125 |

123
118

c——7?:SCO*105—_——

CLIENT 2 CLIENT1

104

FIG. 1

EX 1017 Page 625

EX 1017 Page 626

US 6,651,099 B1Sheet 3 of 18Nov. 18, 2003U.S. Patent

 edeY3ZATWNV

WvySvivd

ON

HaZINILdOONvVYATIIdNOO

asvavlvdNOILLONYLSNIYOSSA90UdALVLS

ve!

Ole

NOLLWZIIWNisN1VOlsISSV19

asvaviva

NOLLWOISILNSG!NOILOVuLXS

qyoosy

|1
NMONALVLS2\NvMO.7O90LOYd{|aivadn;LowerTTo|

1\—analJPeroccnn

SMO1d40asvaevivda

Ady«MO1s.|OLLVSYSANODANnoInnaing
NOLLWWHOSNISNIASILNAOILOWHLX3

EX 1017 Page 626

EX 1017 Page 627

U.S. Patent Nov. 18, 2003 Sheet 5 of 18 US 6,651,099 B1

502

LOAD PACKET
COMPONENT

ORE IN PACKET>

FETCH NODE AND
PROCESS FROM

503

504

 AA AN

APPLY NODE AND

PROCESS TO
COMPONENT

510 500wy

PATTERN
NODE

509

EX 1017 Page 627

EX 1017 Page 628

U.S. Patent Noy.18, 2003 Sheet 6 of 18 US 6,651,099 B1

One

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 610
604

LOAD KEY
BUFFER

YES

FETCH EXTRACTION (F7)AND PROCESS FRO
PATTERNS 605

NO 611

606 NEXT
NO PACKET 609

COMPONEN

 {ORE EXTRACTION
ELEMENTS?

YES

607 APPLY EXTRACTION

COMPONENT
E x

600

MORE TO 608
EXTRACT?

L__ves_—_
FIG. 6

EX 1017 Page 628

EX 1017 Page 629

US. Patent

703

704

706

707

Nov.18, 2003 Sheet 7 of 18

C) 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
NODE ELEMENT

MOREPATTER
NODES?

YES

HASH KEY BUFFER
ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

FIG. 7

US 6,651,099 B1

708

OUTPUT TO
ANALYZER

709

700
|

EX 1017 Page 629

EX 1017 Page 630

U.S. Patent Nov. 18, 2003 Sheet 8 of 18 US6,651,099 Bi

C) 801

UFKB ENTRY FOR
PACKET 802

800\
COMPUTE CONVERSATION|—893
RECORDBIN FROM HASH

REQUEST RECORDBIN/
BUCKET FROM CACHE 804

806

NO|SET UFKB FOR
PACKETAS 'NEW'

COMPARE CURRENTBIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET }¢-NO<KEYMATCH 808
YES

 ORE BUCKET
805 IN THE BIN?

YES

809
MARK RECORD BINAND|—519
BUCKET 'IN PROCESS’ IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORDIN CACHE

mee FIG. 8

EX 1017 Page 630

EX 1017 Page 631

U.S. Patent Nov.18, 2003 Sheet 9 of 18 US 6,651,099 B1

RORTMAPPE PORTMAPPEA
909

EXTRACT PROGRAM

GET 'PROGRAM’,
‘VERSION’, ‘PORTAND
‘PROTOCOL(TCP OR

UDP)

EXTRACT PORT

GET ‘PROGRAM’,
‘VERSION' AND

‘PROTOCOL(TCP OR
UDP)

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

‘PROTOCOL(TCP OR

 CREATE SERVER STAT

SAVE 'PROGRAM,
‘VERSION’, 'PORT' AND
‘PROTOCOL(TCP OR

 904

UDP) WITH
UDP)' WITH NETWORK DESTINATION
ADDRESSIN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT,
EXTRACT
PROGRAM

GET ‘PORTAND

‘PROTOCOL(TCP
OR UDP)’.

FIND 'PROGRAM'
AND ‘VERSION’

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

woo”

FIG. 9

EX 1017 Page 631

EX 1017 Page 632

U.S. Patent Nov. 18, 2003 Sheet 10 of 18 US 6,651,099 B1

1000 —,

PATTERN 1090 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE
MEMORY 1001 MEMORY

100 1031
100 1004

 INFO/OUT,

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTBLI

1031

1006 PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

1008

PARSER
PACK PARSER INPUT BUFFER QUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

1012

1010
1021

1025

"Stat INPUT BUFFER] 1011 ANALYZER DATAREADY
INTERFACE INTERFACE

VEX CONTROL CONTROL
PACKET ANALYZER||AL

N READY

1 one(FIG. 10 1027

EX 1017 Page 632

EX 1017 Page 633

U.S. Patent

1100 —4

1104

Nov. 18, 2003 Sheet 11 of 18 US 6,651,099 BI

1103
1115 1118

1107

LOOKUP/

1119 1123

‘UNIFIED MEMORY

r\ INTER-FACE

EX 1017 Page 633

EX 1017 Page 634

U.S. Patent Nov. 18, 2003 Sheet 12 of 18 US 6,651,099 B1

UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

1200
a ACCESS

CONVERSATION 1203
RECORDBIN

1204

REQUEST NEXT
BUCKET FROM

 INSERT KEY AND HASH

N BUCKET, MARK 'USED
WITH TIMESTAMP

 OMPARE CURRENTBI
AND BUCKET RECORD

KEY TO PACKET

SET UFKB FOR

PACKET AS
‘DROP'

 MARK RECORDBIN AND

BUCKET‘IN PROCESS'
AND 'NEW' IN CACHE

1212_|Set INITIAL STATISTICS
FOR RECORD IN CACHE

| ~1213

FIG. 12

Poperenret co

' } TT area Te . - Wid , -teeRCMeloe 4we te ee tn renaIFi
EX 1017 Page 634

EX 1017 Page 635

U.S. Patent Nov.18, 2003 Sheet 13 of 18 US 6,651,099 B1

Ou
1300 —»4 UFKB ENTRY FOR

PACKET WITH STATUS
'NEW! OR 'FOUND’ 1302

SET STATE PROCESSOR
INSTRUCTION POINTER TO 1303

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

ET ST.

PROCESSOR

INSTRUCTION NO DONE PROCESSING 1307
POINTER TO STATES FOR THIS

PACKET?

YES

SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1309

 POINTERIN
CURRENT FLOW

RECORD

TATES FOR THIS FLO
YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

1311
EX 1017 Page 635

EX 1017 Page 636

140;

EXTRACT LOOKUP
IDENTIFYING KNOWN

INFO & PROCL RECORD DATABASE
 /STATE (DB 1424)

UPDATE
"FLOW"
KNOWN

PATTERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

PARSER

SUBSYSEM

STATE
MACHINE

SELECTOR

ANALYSIS
OPERATIONS

 ANALYZER
SUBSYSTEM

yuajed‘SA
£007‘ST“4°N

8TJOPLJa0N§

Tl660°1S9°9Sa

EX 1017 Page 636

EX 1017 Page 637

US 6,651,099 B1Sheet 15 of 18Nov. 18, 2003U.S. Patent

dd

Rduvoysia||SOVAHSLNIMHOMLAN
—————CO

80S1

006HOLINOW
AYHOWSWLSOH

HOSSADOUd

SOIAACOILISINDOYLANOVd

LoeHaSHVd
bol

EX 1017 Page 637

EX 1017 Page 638

U.S. Patent Nov. 18, 2003 Sheet 16 of 18 US 6,651,099 B1

1602 0 - 3 Bytes

Dst MAC

offset 0 Dst MAC|Src MAC 1604

| Src MAC

1608

Dst MAC(6)

Dst Hash (2

\\£2Get = 12

FIG. 16

EX 1017 Page 638

EX 1017 Page 639

US. Patent Nov. 18, 2003

1702
1704

ffsetstySia
Y 1706

1708 Type (2)

1710 2 1700

FIG. 17A

DeniTSeveMeHereU/L)

L3 to 0 Ad] AKG g

13| UTEPretecaa
"i

TTTTonsAaseng//////LL1L

*— 1750

Dst Address

Dst Hash(2)
Src Address

rte)
L4 Offpet = L3 + (IHL/4)

Sheet 17 of 18

FIG. 17B

US 6,651,099 B1

IDE = 0x0600*
CHAOSNET=

ARP =

0x0800*
Qx0804
0x0806

Vi -_
NETBIOS-3COM = 0x3C00-

0x3COD#
DEC-MOP= 0x6001

DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

VECHO = 0x80C5
SNA-TH = 0x80D5*

ATALKARP = Ox80F3
IPX = 0x8137*

SNMP= 0x814C#
IPv6 = Ox86DD*

LOOPBACK= 0x9000

Apple = 0x080007
*L3 Decoding
#L5 Decoding

EIGRP = 8&8
OSPF = 89

* L4 Decoding
#L3 Re-Decoding

EX 1017 Page 639

EX 1017 Page 640

US 6,651,099 B1Sheet 18 of 18Nov.18, 2003U.S. Patent

PROTOCOL

HLONATTals

FIG. 18A

\.
LUT NUM,

LITETTL]TTITTT)
osdTaldAO40093LAg

1850

LOTTE)jO001080

FIG. 18B

EX 1017 Page 640

EX 1017 Page 641

US 6,651,099 B1
1

METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application Ser. No.: 60/141,903 for METHOD AND
APPARATUS FOR MONITORING TRAFFIC IN A NET-
WORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following U.S. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

U.S. patent application Ser. No. 09/609,179 for PRO-
CESSING PROTOCOL SPECIFIC INFORMATION
IN PACKETS SPECIFIED BY A PROTOCOL
DESCRIPTION LANGUAGE, to inventors
Koppenhaver, etal., filed Jun. 30, 2000, still pending,
and incorporated herein by reference. U.S. patent appli-
cation Ser. No. 09/608,126 for RE-USING INFORMA-
TION FROM DATA TRANSACTIONS FOR MAIN-
TAINING STATISTICS IN NETWORK
MONITORING,to inventors Dietz,et al., filed Jun. 30,
2000, still pending, and incorporated herein by refer-
ence. U.S. patent application Ser. No. 09/608,266 for
ASSOCIATIVE CACHE STRUCTURE FOR LOOK-
UPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR,to inventors Sarkissian,etal.,
filed Jun. 30, 2000, still penting, and incorporated
herein by reference. U.S. patent application Ser. No.
09/608,267 for STATE PROCESSOR FOR PATTERN
MATCHING IN A NETWORK MONITORDEVICE,
to inventors Sarkissian, et al., filed Jun. 30, 2000, still
pending, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, spe-
cifically to the real-time elucidation of packets communi-
cated within a data network,including classification accord-
ing to protocol and application program.

BACKGROUND TO THE PRESENT
INVENTION

There has long been a need for network activity monitors.
This need has becomeespecially acute, however, given the
recent popularity of the Internet and other internets—an
‘{ntemet” being any plurality of interconnected networks
which forms a larger, single network. With the growth of
networks used as a collection ofclients obtaining services
from one or more servers on the network,it is increasingly
importantto be able to monitor the use of those services and
to rate them accordingly. Such objective information, for
example, as which services(i.e., application programs) are
being used, who is using them, how often they have been
accessed, and for how long, is very useful in the mainte-
nance and continued operation of these networks. It is
especially important that selected users be able to access a
network remotely in order to generate reports on network
use in real time. Similarly, a need exists for a real-time
network monitor that can provide alarms notifying selected
users of problems that may occur with the network orsite.

One prior art monitoring method uses log files. In this
method,selected network activities may be analyzed retro-
spectively by reviewing log files, which are maintained by

45

50

55

65

2

network servers and gateways. Log file monitors must
access this data and analyze (“mine’’) its contents to deter-
mine statistics about the server or gateway. Several problems
exist with this method, however. First, log file information
does not provide a mapofreal-time usage; and secondly, log
file mining does not supply complete information. This
method relies on logs maintained by numerous network
devices and servers, which requires that the information be
subjectedto refining and correlation. Also, sometimes infor-
mation is simply not available to any gateway or server in
order to makea logfile entry.

One such case, for example, would be information con-
ceming NetMeeting® (Microsoft Corporation, Redmond,
Washington) sessions in which two computers connect
directly on the network andthe data is never seen by a server
or a gateway.

Another disadvantage of creating log files is that the
process requires data logging features of network elements
to be enabled, placing a substantial load on the device, which
Tesults in a subsequent decline in network performance.
Additionally, log files can grow rapidly, there is no standard
means of storage for them, and they require a significant
amount of maintenance.

Though Netflow® (Cisco Systems, Inc., San Jose, Calif.),
RMON2,and other network monitors are available for the
Teal-time monitoring of networks, they lack visibility into
application content and are typically limited to providing
network layer level information.

Pattern-matching parser techniques wherein a packetis
parsed and pattern filters are applied are also known, but
these too are limited in how deep into the protocol stack they
can examine packets.

Some prior art packet monitors classify packets into
connection flows. The term ‘connection flow” is commonly
used to describe all the packets involved with a single
connection. A conversational flow, on the other hand, is the
sequence of packets that are exchanged in any direction as
a result of an activity—for instance, the running of an
application on a server as requestedbyacclient.It is desirable
to be able to identify and classify conversational flows rather
than only connection flows. The reason for this is that some
conversational flows involve more than one comnection, and
some even involve more than one exchange of packets
between a client and server. This is particularly true when
using client/server protocols such as RPC, DCOMP, and
SAP, which enable a service to be set up or defined prior to
any use of that service.

An example of such a case is the SAP (Service Adver-
tising Protocol), a NetWare (Novell Systems, Provo, Utah)
protocol used to identify the services and addresses of
servers attached to a network.In theinitial exchange,a client
might send a SAP request to a server for print service. The
server would then send a SAP reply that identifies a par-
ticular address—for example, SAP#5—asthe print service
on that server. Such responses might be used to update a
table in a router, for instance, known as a Server Information
Table. A client who has inadvertently seen this reply or who
has access to the table (via the router that has the Service
Information Table) would know that SAP#5 forthis particu-
lar server is a print service. Therefore, in order to print data
onthe server, such a client would not need to makea request
for a print service, but would simply send data to be printed
specifying SAP#5. Like the previous exchange, the trans-
mission of data to be printed also involves an exchange
between a client and a server, but requires a second con-
nection andis therefore independentofthe initial exchange.

EX 1017 Page 641

EX 1017 Page 642

US 6,651,099 B1

3

in orderto eliminate the possibility of disjointed conversa-
tional exchanges,it is desirable for a network packet monitor
to be able to “virtually concatenate”—that is, to link—the
first exchange with the second.If the clients were the same,
the two packet exchanges would then be correctly identified
as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include
RPC (Remote Procedure Call); DCOM (Distributed Com-
ponent Object Model), formerly called Network OLE
(Microsoft Corporation, Redmond, Wash.); and CORBA
(Common Object Request Broker Architecture). RPC is a
programming interface from Sun Microsystems (Palo Alto,

if.) that allows one program touse the services of another

|froaen in alo remote machine. DCOM,Microsoft's coun-
terpart to A, defines the remote procedure call that
allows those objects—objects are self-contained software
modules—to be run remotely over the network. And
CORBA, a standard from the Object Management Group
(OMG) for communicating between distributed objects,
provides a way to execute programs (objects) written in
different programming languages running on differentplat-
forms regardless of where they reside in a network.

What is needed, therefore, is a network monitor that
makes it possible to continuously analyze all user sessions
on a heavily trafficked network. Such a monitor should
enable non-intrusive, remote detection, characterization,
analysis, and capture of all information passing through any
point on the network(i.e., of all packets and packet streams
passing through any location in the network). Not only
should ali the packets be detected and analyzed, but for each
of these packets the network monitor should determine the
protocol(e.g., http, ftp, H.323, VPN,etc.), the application/
use within the protocol (e.g., voice, video, data, real-time
data, etc.), and an end user’s pattern of use within each
application or the application context (e.g., options selected,
service delivered, duration, time of day, data requested,etc.).
Also, the network monitor should not be reliant upon server
residentinformation suchasJogfiles. Rather,it should allow
ausersuch as a network administrator or an Internet service

provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and
to receive timely notification of network problems.

Considering the previous SAP example again, because
one features of the invention is to correctly identify the
second exchangeas being associated with a print service on
that server, such exchange would even be recognizedif the
clients were notthe same. Whatdistinguishes this invention
from prior art network monitors is that it has the ability to
tecognize disjointed flows as belonging to the same conver-
sational flow.

The data value in monitoring network communications
has been recognized by many inventors. Chiu, et al.,
describe a method for collecting information at the session
level in a computer network in U.S. Pat. No. 5,101,402,

MONITORING OF NETWORK SESSIONS AND A
LOCAL AREA NETWORK”(the ‘402 patent’). The 402
patent specifies fixed locations for particular types of pack-
ets to extract information to identify session of a packet. For
example, if a DECnet packet appears, the 402 patent looks
at six specific fields (at 6 locations) in the packet in order to
identify the session of the packet. If, on the other hand, an
IP packet appears,a different set of six different locationsis
specified for an IP packet. With the proliferation of
protocols, clearly the specifying of all the possible places to
look to determine the session becomes more and more

10

20

45

65

4

difficult. Likewise, adding a new protocol or application is
difficult. In the present invention, the locations examined
and the information extracted from any packet are adap-
tively determined from information in the packet for the
particular type of packet. There is no fixed definition of what
to look for and whereto look in order to form an identifying
signature. A monitor implementation of the present
invention, for example, adapts to handle differently IEEE
802.3 packet from the older Ethernet Type 2 (or Version 2)
DIX (Digital-Intel-Xerox) packet.

The 402 patent system is able to recognize up to the
session layer. In the present invention, the numberof levels
examined varies for any particular protocol. Furthermore,
the present invention is capable of examining up to whatever
level is sufficient to uniquely identify to a required level,
even all the way to the application level (in the OSI mode]).

Otherpriorart systems also are known. Phael describes a
network activity monitor that processes only randomly
selected packets in U.S. Pat. No. 5,315,580, titled “NET-
WORK MONITORING DEVICE AND SYSTEM.” Naka-

mura teaches a network monitoring system in U.S. Pat. No.
4,891,639, titled “MONITORING SYSTEM OF NET-
WORK.” Ross, et al., teach a method and apparatus for
analyzing and monitoring networkactivity in U.S. Pat. No.
5,247,517, titled “METHOD AND APPARATUS FOR
ANALYSIS NETWORKS,” McCreery, et al., describe an
Intemet activity monitor that decodes packet data at the
Internet protocol Jevel layer in U.S. Pat. No. 5,787,253,
titled “APPARATUS AND METHOD OF ANALYZING

INTERNET ACTIVITY.” The McCreery method decodes
IP-packets. It goes through the decoding operations for each
packet, and therefore uses the processing overhead for both
recognized and unrecognized flows. In a monitor implemen-
tation of the present invention, a signature is built for every
flow such that future packets of the flow are easily recog-
nized. When a new packetin the flow arrives, the recogni-
tion process can commence from whereit ast left off, and
a new signature built to recognize new packets of the flow.

SUMMARY

In its various embodiments the present invention provides
a network monitor that can accomplish one or more of the
following objects and advantages:

Recognize and classify all packets that are exchanges
betweena client andserver into respective client/server
applications.

Recognize and classify at all protocol layer levels con-
versational flows that pass in either direction at a point
in a network.

Determine the connection and flow progress between
clients and servers according to the individual packets
exchanged over a network.

Be used to help tune the performance of a network
according to the current mix of client/server applica-
tions requiring network resources.

Maintain statistics relevant to the mix of client/server

applications using network resources.
Report on the occurrencesof specific sequences of pack-

ets used by particular applications for client/server
network conversational flows.

Other aspects of embodiments of the invention are:
Properly analyzing each of the packets exchanged

between a client and a server and maintaining infor-
Mation relevant to the current state of each of these

conversational flows. pl] Providing a flexible process-

EX 1017 Page 642

EX 1017 Page 643

US 6,651,099 B1
5

ing system that can be tailored or adapted as new
applications enter the client/server market.

Maintaining statistics relevant to the conversational flows
in a client/sever network as classified by an individual
application.

Reporting a specific identifier, which may be used by
other network-oriented devices to identify the series of
packets with a specific application for a specific client/
server network conversational flow.

In general, the embodiments of the present invention
overcome the problems and disadvantages of the art.

As described herein, one embodiment analyzes each of
the packets passing through any point in the network in
cither direction, in order to derive the actual application used
to communicate between a client and a server. Note that
there could be several simultaneous and overlapping appli-
cations executing over the network that are independent and
asynchronous.

A monitor embodiment of the invention successfully
classifies each of the individual packets as they are seen on
the network. The contents of the packets are parsed and
selected parts are assembled into a signature (also called a
key) that may then be used identify further packets of the
same conversational flow, for example to further analyze the
flow and ultimately to recognize the application program.
Thus the key is a function of the selected parts, and in the
preferred embodiment, the function is a concatenation of the
selected parts. The preferred embodiment forms and remem-
bers the state of any conversational flow, which is deter-
mined by the relationship between individual packets and
the entire conversational flow over the network. By remem-
bering the state of a flow in this way, the embodiment
determines the context of the conversational flow, including
the application program it relates to and parameters such as
the time, length of the conversational flow, data rate, etc.

The monitor is flexible to adapt to future applications
developed for client/server networks. New protocols and
protocol combinations may be incorporated by compiling
files written in a high-level protocol description language.

The monitor embodiment of the present invention is
preferably implemented in application-specific integrated
circuits (ASIC) or field programmable gate arrays (FPGA).
Jn one embodiment, the monitor comprises a parser sub-
system that forms a signature from a packet. The monitor
further comprises an analyzer subsystem that receives the
signature from the parser subsystem.

A packet acquisition device such as a media access
controller (MAC) or a segmentation and reassemble module
is used to provide packets to the parser subsystem of the
monitor.

In a hardware implementation, the parsing subsystem
comprises two sub-parts, the pattern analysis and recogni-
tion engine (PRE), and an extraction engine (slicer). The
PRE interprets each packet, and in particular, interprets
individual fields in each packet according to a pattem
database.

The different protocols that can exist in different layers
may bethought of as nodes of one or moretrees oflinked
nodes. The packettypeis the root of a tree. Each protocolis
either a parent nodeor a terminal node. A parent node links
a protocolto other protocols (child protocols) that can be at
higher layer levels. For example, An Ethernet packet(the
root node) may be an Ethertype packet—also called an
Ethernet Type/Version 2 and a DIX (DIGITAL-Intel-Xerox
packet)—or an IBEE 802.3 packet. Continuing with the
TEEE 802.3-type packet, one of the children nodes may be
the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.

25

35

40

45

55

65

6

The pattern database includes a description of the differ-
ent headers of packets and their contents, and how these
relate to the different nodesin a tree. The PRE traverses the
tree as far as it can. If a node does not include a link to a

deeper level, pattern matching is declared complete. Note
that protocols can be the children of several parents. If a
unique node was generated for each of the possible parent/
child trees, the pattern database might become excessively
large. Instead, child nodes are shared among multiple
parents, thus compacting the pattern database.

Finally the PRE can be used on its own when only
protocol recognition is required.

For each protocol recognized,the slicer extracts important
packet elements from the packet. These form a signature
(i.e., key) for the packet. The slicer also preferably generates
a hash for rapidly identifying a flow that may have this
signature from a database of known flows.

The flow signature of the packet, the hash and at least
someof the payload are passed to an analyzer subsystem. In
a hardware embodiment, the analyzer subsystem includes a
unified flow key buffer (UFKB) for receiving parts of
packets from the parser subsystem andfor storing signatures
in process, a lookup/update engine (LUE) to lookup a
database of flow records for previously encountered con-
versational flows to determine whether a signature is from
an existing flow, a state processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for
inserting new flowsinto the database of flows, a memory for
storing the database of flows, and a cache for speeding up
access to the memory containing the flow database. The
LUE,SP, and FIDEareall coupled to the UFKB,and to the
cache.

The unified flow key buffer thus contains the flow signa-
ture of the packet, the hash andat least some of the payload
for analysis in the analyzer subsystem. Many operations can
be performed to further elucidate the identity of the appli-
cation program content of the packet involved in the client/
server conversational flow while a packet signature exists in
the unified flow signature buffer. In the particular hardware
embodimentofthe analyzer subsystem several flows may be
processed in parallel, and multiple flow signatures from all
the packets being analyzed in parallel may beheld in the one
UFKB

The first step in the packet analysis process of a packet
from the parser subsystem is to lookup the instance in the
currentdatabase of knownpacket flow signatures. A lookup/
update engine (LUE) accomplishesthis task using first the
hash, and thenthe flow signature. The search is carried out
in the cache and if there is no flow with a matching signature
in the cache, the lookup cngine attempts to retrieve the flow
from the flow database in the memory. The flow-entry for
previously encountered flows preferably includes state
information, which is used in the state processor to execute
any operations defined for the state, and to determine the
next state. A typical state operation maybe to search for one
or more known reference strings in the payload ofthe packet
stored in the UFKB.

Once the lookup processing by the LUE has been com-
pleted a flag stating whetherit is foundor is new is set within
the unified flow signature buffer structure for this packet
flow signature. For an existing flow, the flow-entry is
updated by a calculator component of the LUE that adds
values to counters in the flow-entry database used to store
oneor more statistical measures of the flow. The counters are

used for determining network usage metrics on the flow.
After the packet flow signature has been looked up and

contents of the current flow signature are in the database, a

EX 1017 Page 643

EX 1017 Page 644

US 6,651,099 B1

7

state processor can begin analyzing the packet payload to
further elucidate the identity of the application program
componentof this packet. The exact operation ofthe state
processor andfunctions performedbyit will vary depending
on the current packet sequencein the stream of a conver-
sational flow. The state processor moves to the next logical
operation stored from the previous packet seen with this
same flow signature. If any processing is required on this
packet, the state processor will execute instructions from a
database of state instruction for this state until there are

either no moreleft or the instruction signifies processing.
In the preferred embodiment,the state processor functions

are programmableto provide for analyzing new application
programs, and new sequences ofpackets and states that can
arise from using such application.

If during the lookup processfor this particular packet flow
signature, the flow is required to be inserted into the active
database, a flow insertion and deletion engine (FIDE) is
initiated. The state processor also may create new flow
signatures and thus may instruct the flow insertion and
deletion engine to add a new flow to the database as a newitem.

In the preferred hardware embodiment, each of the LUE,
state processor, and FIDE operate independently from the
other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
specific embodiment because such embodiments are pro-
vided only for the purposes of explanation. The
embodiments, in turn, are explained with the aid of the
following figures.

FIG.1 is a functional block diagram of a network embodi-
ment of the present invention in which a monitor is con-
nected to analyze packets passing at a connection point.

FIG.2 is a diagram representing an example of some of
the packets and their formats that might be exchanged in
starting, as an illustrative example, a conversational flow
between a client and server on a network being monitored
and analyzed. A pair of flow signatures particular to this
example and to embodiments ofthe present invention is also
illustrated. This represents some ofthe possible flow signa-
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular server
applications that produce the discrete application packet
exchanges.

FIG.3 is a functional block diagram of a process embodi-
mentofthe present invention that can operate as the packet
monitor shownin FIG. 1. This process may be implemented
in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization process, which in one embodi-
ment may be used to generate data for monitoring packets
according to versions ofthe present invention.

FIG.5 is a flowchart of a packet parsing process used as
part of the parser in an embodimentofthe inventive packet
monitor.

FIG. 6 is a flowchart of a packet element extraction
process that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG.7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process thatis used as part of the analyzer in an embodiment
of the inventive packet monitor.

20

25

50

55

60

6 ivy

FIG.9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

FIG.10 is a functional block diagram of a hardware parser
subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware
analyzerincluding a state processor that can form part of an
embodimentof the inventive packet monitor.

FIG.12 is a functional block diagram ofa flow insertion
and deletion engine process that can form part of the
analyzer in an embodimentofthe inventive packet monitor.

FIG. 13 is a flowchart of a state processing process that
can form part of the analyzer in an embodimentof the
inventive packet monitor.

FIG.14 is a simple functional block diagram of a process
embodimentof the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in software.

FIG.15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and some of the elements that may be
extracted to form a signature according to one aspect ofthe
invention.

FIG.17A is an exampleof the header of an Ethertype type
of Ethernet packet of FIG. 16 and someofthe elementsthat
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a signature
according to one aspect of the invention.

FIG.18A is a three dimensional structure that can be used

to store clements of the pattem, parse and extraction data-
base used by the parser subsystem in accordance to one
embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
subsystem in accordance to another embodiment of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include signal names. In most cases,
the namesare sufficiently descriptive, in other cases how-
ever the signal names are not needed to understand the
operation and practice of the invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present
invention that is referred to herein by the gencral reference
numeral 100. The system 100 has a computer network 102
that communicates packets (c.g., IP datagrams) between
various computers, for example betweentheclients 104-107
and servers 110 and 112. The network is shown schemati-
cally as acloud with several network nodes and links shown
in the interior of the cloud. A monitor 108 examines the
packets passing in either direction pastits connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with

EX 1017 Page 644

EX 1017 Page 645

US 6,651,099 Bi

9

each packet. The monitor 108 is shown examining packets
(ie., datagrams) between the network interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, such as connection point 123
between the network 102 and the interface 118 ofthe client
104, or some other location, as indicated schematically by
connection point 125 somewhere in network 102. Not
shownis a network packet acquisition deviceat the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity—for example an appli-
cation program run bythe client 104 (CLIENT 1) commu-
nicating with another running on the server 110 (SERVER
2)}—will produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing of many packets by the monitor
108 to have enough information needed to recognize par-
ticular application programs. The packets may need to be
parsed then analyzed in the context of variousprotocols, for
example, the transport through the application session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack. The ISO (international
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in tables form below,
serves as a basic reference for understanding the function-
ality of existing communication protocols.

ISO MODEL

Layer Functionality Example

7 Application Telnet, NFS, Novell NCP, HTTP,323
6 Presentation XDR
5 Session RPC, NETBIOS, SNMP, etc
4 Transport TCP, Novel SPX, UDP, etc.
3 Network TP, Novell IPX, VIP, AppleTalk, ctc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer
1 Physical Ethemet, Token Ring, Frame Relay,

AIM,T1 (Hardware Connection)

Different communication protocols employ different lev-
els of the ISO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may notbe visible to
protocols employed at other layers. For example, an appli-
cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2-3).

In some communication arts, the term “frame” generally
refers to encapsulated data at OSI layer 2, including a
destination address, control bits for flow control, the data or
payload, and CRC (cyclic redundancy check) data for error
checking. The term “packet” generally refers to encapsu-
lated data at OSI layer 3. In the TCP/IP world, the term
“datagram” is also used. In this specification, the term
“packet” is intended to encompass packets, datagrams,
frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with variousfields

35

40

45

450

65

10

and headers for transmission across a network. For example,
a data packet typically includes an address destinationfield,
a length field, an error correcting code (ECC)field,or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format,”0 are generally synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packetcarries the
same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
server to send a type-A packet, but so will another. If,
though,the particular application program always follows a
type-A packet with the sending of a type-B packet, and the
other application program docsnot, then in order to recog-
nize packets of that application’s conversational flow, the
monitor can be available to recognize packets that match the
type-B packet to associate with the type-A packet. If such is
recognized after a type-A packet, then the particular appli-
cation program’s conversational flow has started to reveal
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying
other packet exchangesthat are parts of conversational flows
associated with other applications. One aspect of monitor
108is its ability to maintain the state of a flow. The state of
a flow is an indication ofall previous events in the flow that
lead to recognition of the contentof all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the sameflow.

In real-world uses of the monitor 108, the number of
packets on the network 102 passing by the monitor 108’s
connection point can exceed a million per second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
state of the flows passing through the connection point. The
monitor 108 therefore masksoutall the unimportantparts of
each packet that will not contribute to its classification.
However,the parts to mask-outwill change with each packet
depending on which flow it belongs to and depending on the
state of the flow.

The recognition of the packet type, and ultimately of the
associated application programs according to the packets
that their executions produce,is a multi-step process within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first “signature” is produced from selected parts of a
packetthat will allow monitor 108 to identify efficiently any
packets that belong to the same flow. In some cases, that
packettype may be sufficiently unique to cnable the monitor
to identify the application that generated sucha packetin the
conversational flow. The signature can then be used to
efficiently identify all future packets generated in traffic
related to that application.

In othercases, that first packet only starts the process of
analyzing the conversational flow, and more packets are
necessary to identify the associated application program.In
such a case, a subsequent packet of a second type—but that
potentially belongs to the same conversational flow—is
recognized by using the signature. At such a secondlevel,
then, only a few of those application programs will have

EX 1017 Page 645

EX 1017 Page 646

US 6,651,099 B1

ll

conversational flowsthat can produce such a second packet
type. Atthis level in the process ofclassification, all appli-
cation programsthat are notin the set of those that lead to
such a sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is
producedthat allows recognition of any future packets that
may follow in the conversational flow.

It may be thal the application is now recognized, or
recognition may need to proceedto a third level of analysis
using the second level signature. For each packet, therefore,
the monitor parses the packet and generates a signature to
determine if this signature identified a previously encoun-
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packetis further analyzed in the context of the sequence of
previously encountered packets (the state), and of the pos-
sible future sequences such a past sequence may generate in
conversational flows associated with different applications.
Anew signature for recognizing future packets may also be
generated. This process of analysis continues until the
applicationsare identified. The last generated signature may
then be used to efficiently recognize future packets associ-
ated with the same conversational flow. Such an arrange-
ment makes it possible for the monitor 108 to cope with
millions of packets per second that must be inspected.

Another aspectof the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through somepoint
in the network 102 (for example, because of execution ofthe
applications by the client 105 or server 110), the monitor
sends a message to some general purpose processor on the
network that can input the same packets from the same
location on the network,and the processorthen loads its own
executable copy of the application program and usesit to
read the content being exchanged overthe network. In other
words, once the monitor 108 has accomplished recognition
of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple-
mented with computer hardware and/or software. The sys-
tem 300 is similar to monitor 108 in FIG. 1. A packet 302is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi-
level model, including what server application produced the
packet.

The packet acquisition device is a commoninterface that
converts the physical signals and then decodes them into
bits, and into packets, in accordance with the particular
network (Ethernet, frame relay, ATM,etc.). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what operations need to occur on
packets of different types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of
selected portions—of packets to generate an identifying
signature——accomplished by parser subsystem 301, and (3)
the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide
protocolspecific information to parser subsystem 301 andto

40

60

12

analyzer subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re-occur when
new protocols are to be added.

A flow is a stream of packets being exchanged between
any two addresses in the network. For each protocol there
are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these
and otherfields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
such as checksums, and those parts are not used for identi-
fication.

Parser subsystem 301 examines the packets using pattern
recognition process 304 that parses the packet and deter-
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser subsystem 301 extracts characteristic
portions (signature information) from the packet 302. Both
the pattern information for parsing and the related extraction
Operations, e.g., extraction masks, are supplied from a
parsing-pattern-structures and extraction-operations data-
base (parsing/extractions database) 308 filled by the com-
piler and optimizer 310.

The protocol description language (PDL) files 336
describes both patterns and states of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor-
mation to extract for the purposeof identifying a flow, and
ultimately, applications and services. The layer selections
database 338 describesthe particular layering handled by the
monitor. Thatis, what protocols run on top of what protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the informationis layered.
This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates
two sets of internal data structures. The first is the set of

parsing/extraction operations 308. The pattem structures
include parsing information and describe what will be
recognized in the headers of packets; the extraction opera-
tions are what elements of a packetare to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 of parsing/extraction operationsincludes infor-
mation describing how to determine a set of one or more
protocol dependent extraction operations from data in the
packetthat indicate a protocol used in the packet.

The other internal data structure that is built by compiler
310 is the set of state patterns and processes 326. Theseare
the different states and state transitions that occur in different

conversational flows, and the state operations that need to be
performed(e.g., patterns that need to be examined and new
signatures that need to be built) during any state of a
conversational flow to further the task of analyzing the
conversational flaw.

Thus, compiling the PDLfiles and layer selections pro-
vides monitor 300 with the information it needs to begin
processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in some embodimentsthe
layering selections information is inherent rather than
explicitly described. For example, since a PDLfile for a
protocol includes the child protocols, the parent protocols
also may be determined.

In the preferred embodiment, the packet 302 from the
acquisition device is input into a packet buffer. The patter
recognition process 304 is carried out by a pattem analysiseo - . oe

EX 1017 Page 646

EX 1017 Page 647

US 6,651,099 B1
13

and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
ofthe header, and may perform certain othertasks for certain
types of protocol headers. An exampleof this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DIGITAL-Intel-Xerox (DIX) packet. The PAR
also uses the pattern structures and extraction operations
database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations
(in the form of commands and associated parameters) are
passed to the extraction process 306 implemented by an
extracting and information identifying (EJI) engine that
extracts selected parts of the packet, including identifying
information from the packet as required for recognizing this
packetas part of a flow. The extracted information is put in
sequence and then processed in block 312 to build a unique
flow signature (also called a “key”’) for this flow. A flow
signature depends on the protocols used in the packet. For
some protocols, the extracted components may include
source and destination addresses. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus, the signature typically includes
the client and server address pairs. The signature is used to
recognizefurther packets that are or maybe part ofthis flow.

In the preferred embodiment, the building of the flow key
includes generating a hash of the signature using a hash
function. The purpose if using such a hash is conventional—
to spread flow-entries identified by the signature across a
database for efficicnt searching. The hash generated is
preferably based on a hashing algorithm and such hash
generation is known to those in the art.

In one embodiment, the parser passes data from the
packet—a parser record—that includes the signature (i.e.,
selected portions of the packet), the hash, and the packet
itself to allow for any state processing that requires further
data from the packet. An improved embodimentofthe parser
subsystem might generate a parser record that has some
predefined structure and that includes the signature, the
hash, some fiags related to someof the fields in the parser
record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further
processing, e.g., for state processing.

Note that alternate embodiments may use some function
other than concatenation of the selected portions of the
packet to make the identifying signature. For example, some
“digest function”of the concatenated selected portions may
be used.

The parser record is passed onto lookup process 314
which looks in an internal data store of records of known

flows that the system has already encountered, and decides
(in 316) whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow-entry
matching this flow in a database of known flows 324. A
record in database 324 is associated with each encountered
flow.

The parser record enters a buffer called the unified flow
key buffer (UFKB). The UFKB stores the data on flows in
a data structure that is similar to the parser record, but that
includesa field that can be modified.In particular, one or the
UFKB recordfields stores the packet sequence number, and
another is filled with state information in the form of a

= 5

20

25

30

50

60

65

14

program counterfor a state processorthat implementsstate
processing 328.

The determination (316) of whether a record with the
same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFKS records and uses the
hash in the UFKB record to lookup if there is a matching
known flow. In the particular embodiment, the database of
known flows 324 is in an external memory. A cache is
associated with the database 324. A lookup by the LUE for
a knownrecord is carried out by accessing the cache using
the hash,and if the entry is not already present in the cache,
the entry is looked up (again using the hash) in the extemal
memory.

The flow-entry database 324 stores flow-entries that
include the unique flow-signature, state information, and
extracted information from the packet for updating flows,
and one or more statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N,of flow-entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser sub-
system 301 (ie., the hash in the UFKB record). The hash
spreads the flows across the database to allow for fast
lookupsofentries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory
attached to the monitor, and the numberofbits of the hash
data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16
Mbytes are required. Using a is 16-bit hash gives two
flow-entries per bucket. Empirically, this has been shown to
be more than adequate for the vast majority of cases. Note
that another embodimentuses flow-entries that are 256 bytes
long.

Herein, wheneveran accessto database 324 is described,
it is to be understood that the access is via the cache, unless
otherwise stated or clear from the context.

If there is no flow-entry found matching the signature,i.e.,
the signature is for a new flow, then a protocol and state
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and
wherein the state sequence for a flow for this protocol’s this
packet belongs. Identification process 318 uses the extracted
information and makesreferenceto the database 326 of state

patterns andprocesses. Process 318 is then followed by any
state operations that need to be executed on this packet by
a state processor 328.

If the packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a process 320
determines, from the looked-up fiow-entry, if more classi-
fication by state processing of the flow signature is neces-
sary. If not, a process 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in
the flow-entry. In our embodiment, the statistical measures
are stored in counters in the flow-entry.

If state processing is required, state process 328 is com-
menced,State processor 328 carries out any state operations
specified for the state of the flow and updatesthe state to the
ext state according to a set of state instructions obtained
form the state pattern and processes database 326.

The state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol stack,
ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state
based on predefined state transition rules and state opera-

EX 1017 Page 647

EX 1017 Page 648

US 6,651,099 B1

15

tions as specified in state processorinstruction database 326.
A State transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
state processoris in a particular state—for example, in order
to evaluate a quantity needed to apply the state transition
rule. The state processor goes through cach mule and each
state process until the test is true, or there are no more tests
to perform.

In general, the set of state operations may be none or more
Operations on a packet, and carrying out the operation or
operations may leave onein a state that causes exiting the
system prior to completing the identification, but possibly
knowing more about what state and state processes are
needed to execute next, i.e., when a next packetof this flow
is encountered. As an example, a state process(set of state
operations) at a particular state may build a new signature
for future recognition packets of the nextstate.

By maintaining the state of the flows and knowing that
new flows may be set up using the information from
previously encountered flows, the network traffic monitor
300 provides for (a) single-packet protocol recognition of
flows, and (b) multiple-packet protoco! recognition offlows.
Monitor 300 can even recognize the application program
from one or more disjointed sub-flows that occur in server
announcement type flows. What may seem to prior art
monitors to be some unassociated flow, may be recognized
by the inventive monitor using the flow signature to be a
sub-flow associated with a previously encountered sub-flow.

Thus, state processor 328 applies the first state operation
to the packet for this particular flow-entry. A process 330
decides if more operations need to be performed for this
state. If so, the analyzer continues looping between block
330 and 328 applying additional state operations to this
particular packet until all those operations are completed—
that is, there are no more operations for this packet in this
state. A process 332 decidesif there are further states to be
analyzed for this type of flow accordingto the state of the
flow and the protocol, in order to fully characterize the flow.
Tf not, the conversational flow has now been fully charac-
terized and a process 334 finalizes the classification of the
conversational flow for the flow.

e particular embodiment, the state processor 328
§ the state processing by using the last protocol recog-

nized by the parser as an offset into a jump table (um

vector). The jumptable finds the state processorinstructions
to use for that protocol in the state patterns and processes
database 326. Mostinstructions test somethingin the unified
flow key buffer, or the flow-entry in the database of known
flows 324, if the entry exists. The state processor may have
to test bits, do comparisons, add, or subtract to perform the
test. For example, a common operation carried out by the
state processor is searching for one or more patterns in the
payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides
whether the flow is at an endstate. If not at an endstate, the

flow-entry is updated (or created if a new flow) for this
flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is
determined thatthere are further states to be processed using
Jater packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification final-
ization so that any further packets belongingto this flow will
be readily identified from their signature as belonging to this
fully analyzed conversational flow.

After updating, database 324 therefore includesthe set of
all the conversational flows that have occurred.

Ua4 5

65

16

Thus, the embodimentof present invention shownin FIG.
3 automatically maintains flow-entries, which in one aspect
includesstoring states. The monitor of FIG. 3 also generates
characteristic parts of packets—the signatures—that can be
used to recognize flows. The flow-entries may be identified
and accessed by their signatures. Once a packetis identified
to be from a knownflow,the state of the flow is known and
this knowledge enables state transition analysis to be per-
formed in real time for each different protocol and applica-
tion. In a complex analysis, state transitions are traversed as
more and more packets are examined. Future packets that
are part of the same conversational flow have their state
analysis continued from a previously achieved state. When
enough packets related to an application of interest have
been processed, a final recognition state is ultimately
reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow.
The signature for that final state enables each new incoming
packet of the same conversational flow to be individually
recognized in real time.

In this manner, one of the great advantages of the present
invention is realized. Onceaparticular set of state transitions
has been traversed for thefirst time and endsinafinal state,
a short-cut recognition pattern—a signature—can be gener-
ated that will key on every new incoming packetthat relates
to the conversational flow. Checking a signature involves a
simple operation, allowing high packet rates to be success-
fully monitored on the network.

In improved embodiments, several state analyzers are nun
in parallel so that a large number of protocols and applica-
tions may be checked for. Every known protocol andappli-
cation will have at least one uniqueset of state transitions,
and can therefore be uniquely identified by watching such
transitions.

Wheneach new conversational flow starts, signatures that
recognize the flow are automatically generated on-the-fly,
and as further packets in the conversational flow are
encountered, signatures are updated and the states of the set
of state transitions for any potential application are further
traversed accordingto the state transition rules for the flov.
Thenewstates for the flow——those associated withaset of

state transitions for one or more potential applications—are
added to the records of previously encountered states fur
easy recognition andretrieval when a new packetin the fic v
is encountered.

Detailed Operation

FIG.4 diagrams an initialization system 400 that incluc::s
the compilation process. That is, part of the initialization
generates the pattern structures and extraction operations
database 308 and the state instruction database 328. Such
initialization can occur off-line or from a central location.

The different protocols that can exist in different layc rs
may be thought of as nodes of one or more trees of linked
nodes. The packettype is the root of a tree (called level 0).
Each protocolis either a parent node or a terminal node A
parent node links a protocol to other protocols (chiid
protocols) that can be at higher layer levels. Thus a protocol
may have zero or more children. Ethemet packets, for
example, have several variants, each having a basic format
that remains substantially the same. An Ethernet packet(the
root or level 0 node) may be an Ethertype packet—also
called an Ethernet Type/Version 2 and a DIX (DIGITAL-
Intel-Xerox packet)—or an IEKE 803.2 packet. Continuing
with the IEEE 802.3 packet, oneofthe children nodes may
bethe IP protocol, and one ofthe children of the IP protocol
may be the TCPprotocol.

EX 1017 Page 648

EX 1017 Page 649

US 6,651,099 B1
17

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and
includes information on the destination media access control
address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shownin FIG. 16 is
some (but notall) of the information specified in the PDL
files for extraction the signature.

FIG. 17A now showsthe header information for the next

level (level-2) for an Ethertype packet 1700. For an Ether-
type packet 1700, the relevant information from the packet
that indicates the next layer level is a two-byte type field
1702 containing the child recognition pattern for the next
level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the

possible children for an Ethertype packet as indicated by
what child recognition pattern is found offset 12. FIG. 17B
showsthe structure of the header ofone of the possible next
levels, that of the IP protocol. The possible children of the
IP protocol are shownin table 1752.

The pattern, parse, and extraction database (pattern rec-
ognition database, or PRD) 308 generated by compilation
process 310, in one embodiment, is in the form of a three
dimensional structure that provides for rapidly searching
packet headers for the next protocol. FIG. 18A shows such
a 3-D representation 1800 (which may be considered as an
indexed set of 2-D representations). A compressed form of
the 3-D structure is preferred.

An altemate embodiment of the data structure used in
database 308 is illustrated in FIG. 18B. Thus, like the 3-D
structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process
304 by indexing locations in a memory rather than perform-
ing addresslink computations. In this alternate embodiment,
the PRD 308includes twoparts, a single protocoltable 1850
(PT) which has an entry for each protocol known for the
monitor, and a series of Look Up Tables 1870 (LUT’s) that
are used to identify known protocols and their children. The
protocoltable includes the parameters neededbythe pattern
analysis and recognition process 304 (implemented by PRE
1006) to evaluate the header information in the packet that
is associated with that protocol, and parameters nceded by
extraction process 306 (implemented by slicer 1007) to
process the packet header. When there are children, the PT
describes which bytes in the header to evaluate to determine
the child protocol. In particular, each PT entry contains the
headerlength, an offset to the child, a slicer command, and
some flags.

The patiern matching is carried out by finding particular
“child recognition codes” in the header fields, and using
these codes to index one or more of the LUT’s. Each LUT

entry has a node code that can have one of four values,
indicating the protocol that has been recognized, a code to
indicate that the protocol has been partially recognized
(more LUT lookups are needed), a code to indicate that this
is a terminal node,and a null node to indicate a null entry.
The nextLUT to lookup is also retumed from a LUT lookup.

Compilation process is described in FIG. 4. The source-
code information in the form of protocol description files is
shown as 402. In the particular embodiment,the high level
decoding descriptions includes a set of protocol description
files 336, one for each protocol, andaset of packet layer
selections 338, which describes the particular layering (sets
of trees ofprotocols) that the monitoris to be able to handle.

A compiler 403 compiles the descriptions. The set of
packet parse-and-extract operations 406 is generated (404),
and a set of packet state instructions and operations 407 is

20

55

60

65

18

generated (405) in the form of instructions for the state
processor that implements state processing process 328.
Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from thepattern,
parse, and extraction database 406 into the memory systems
of the parser and extraction engines. (See the parsing process
500 description and FIG. 5; the extraction process 600
description and FIG.6; and the parsing subsystem hardware
description and FIG. 10). Data files for each type of appli-
cation and protocol to be recognized by the analyzer are also
downloaded from the state-processor instruction database
407 into the state processor. (see the state processor 1108
description and FIG. 11.).

Note that generating the packet parse and extraction
operations builds and links the three dimensional structure
(one embodiment) or the or all the lookup tables for the
PRD.

Becauseofthe large numberofpossible protocol trees and
subtrees, the compiler process 400 includes optimization
that compares the trees and subtrees to see which children
share common parenis. When implemented in the form of
the LUT’s,this process can generate a single LUT from a
plurality of LUT’s. The optimization process further
includes a compaction processthat reduces the space needed
to store the data of the PRD.

As an example of compaction, consider the 3-D structure
of FIG. 18A that can be thoughtof as a set of 2-D structures
each representing a protocol. To enable saving space by
using only one array per protocol which may have several
parents, in one embodiment, the pattern analysis subprocess
keeps a “current header’ pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a
telative location starting with the start of header for the
particular protocol. Furthermore, each of the two-
dimensional arrays is sparse. The next step of the
optimization, is checking all the 2-D arrays against all the
other 2-D arrays to find out which ones can share memory.
Manyofthese 2-D arrays are often sparsely populated in that
they each have only a small number of valid entries. So, a
process of “folding” is next used to combine two or more
2-D arrays together into one physical 2-D array without
losing the identity of any of the original 2-D arrays(i.e., all
the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the
tree as long as certain conditions are met. Multiple arrays
may be combined into a single array as long as the individual
entries do not conflict with each other. A fold numberis then

used to associate each element with its original array. A
similar folding process is used for the set of LUTs 1850 in
the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to
perform recognition.

FIG. 5 showsa flowchart of how actual parser subsystem
301functions. Starting at 501, the packet 302 is input to the
packetbuffer in step 502. Step 503 loadsthe next(initially
thefirst) packet componentfrom the packet 302. The packet
componentsare extracted from each packet 302 one element
at a time. A check is made (504) to determine if the
load-packet-componentoperation 503 succceded, indicating
that there was more in the packet to process. If not, indi-
cating all components have been loaded, the parser sub-
system 301 builds the packetsignature (512)—the next stage
(FIG.6).

If acomponentis successfully loaded in 503,the node and
processes are fetched (505) from the pattern, parse and
extraction database 308 to provide a set of patterns and

EX 1017 Page 649

EX 1017 Page 650

US 6,651,099 B1

19

processes for that node to apply to the loaded packet
component. The parser subsystem 301 checks (506) to
determineif the fetch pattem-node operation 505 completed
successfully, indicating there was a pattern node that loaded
in 505. If not, step 511 moves to the next packet component.
If yes, then the node and pattem matching process are
applied in 507 to the componentextracted in 503. A pattern
match obtained in 507 (as indicated by test 508) means the
parser subsystem 301 has found a node in the parsing
elements; the parser subsystem 301 proceeds to step 509 to
extract the elements.

If applying the node process to the component does not
produce a match (test 508), the parser subsystem 301 moves
(510) to the next pattern node from the pattern database 308
and to step 505 to fetch the next node and process. Thus,
there is an “applying patterns” loop between 508 and 505.
Once the parser subsystem 301 completes all ihe patterns
and has either matched or not, the parser subsystem 301
moves to the next packet component (511).

Onceall the packet components have been the loaded and
processed from the input packet 302, then the load packet
will fail (indicated by test 504), and the parser subsystem
301 movesto build a packet signature which is described in
FIG. 6

FIG.6 is a flow chart for extracting the information from
which to build the packet signature. The flow starts at 601,
which is the exit point 513 of FIG. 5. At this point parser
subsystem 301 has a completed packet component and a
pattern node available in a buffer (602). Step 603 loads the
packet component available from the pattern analysis pro-
cess of FIG.5. If the load completed (test 604), indicating
that there was indeed another packet component, the parser
subsystem 301 fetches in 605 the extraction and process
elements received from the pattem node componentin 602.
If the fetch was successful (test 606), indicating that there
are extraction elements to apply, the parser subsystem 301 in
step 607 applies that extraction process to the packet com-
ponentbased on an extraction instruction received from that
pattern node. This removes and saves an element from the
packet component.

In step 608, the parser subsystem 301 checksif there is
more to extract from this component, and if not, the parser
subsystem 301 moves back to 603 to load the next packet
componentat handandrepeats the process. If the answeris
yes, then the parser subsystem 301 movesto the next packet
component ratchet. That new packet component is then
loaded in step 603. As the parser subsystem 301 moved
through the loop between 608 and 603, extra extraction
processes are applied either to the same packet component
if there is more to extract, or to a different packet component
if there is no more to extract.

The extraction process thus builds the signature, extract-
ing more and more components accordingto the information
in the patterns and extraction database 308 for the particular
packet. Once loading the next packet component operation
603fails (test 604), all the components have been extracted.
The built signature is loaded into the signature buffer (610)
and the parser subsystem 301 proceeds to FIG. 7 to complete
the signature generation process.

Referring now to FIG.7, the process continues at 701. The
signature buffer and the pattern node elements are available
(702). The parser subsystem 301 loads the next pattern node
element. If the load was successful (test 704) indicating
there are more nodes, the parser subsystem 301 in 705
hashes the signanire buffer clement based on the hash
elements that are found in the pattern node that is in the

25

40

55

60

20

elementdatabase. In 706the resulting signature and the hash
are packed.In 707 the parser subsystem 301 moves on to the
next packet component whichis loaded in 703.

The 703 to 707 loop continues until there are no more
patterns of elementsleft (test 704). Once all the patterns of
elements have been hashed, processes 304, 306 and 312 of
parser subsystem 301 are complete. Parser subsystem 301
has generated the signature used by the analyzer subsystem
303.

A parser record is loaded into the analyzer, in particular,
into the UFKB in the form of a UFKB record which is

similar to a parser record, but with one or more different
ficlds.

FIG.8 is a flow diagram describing the operation of the
lookup/update engine (LUE)that implements lookup opera-
tion 314. The process starts at 801 from FIG. 7 with the
parser record that includes a signature, the hash andat least
parts of the payload. In 802 those elements are shownin the
form of a UFKB-entry in the buffer. The LUE, the lookup
engine 314 computes a “record bin number” from the hash
for a flow-entry. A bin herein may have one or more
“buckets” each containing a flow-entry. The preferred
embodimenthas four buckets per bin.

Since preferred hardware embodimentincludes the cache,
all data accesses to records in the flowchart of FIG. 8 ave

stated as being to or from the cache.
Thus, in 804, the system looks up the cache for a buck.t

from that bin using the hash. If the cache successfully
returns with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine
compares (807) the current signature (the UFKB-entr's
signature) from that in the bucket (i.ce., the flow-entry
signature). If the signatures match (test 808), that record (in
the cache) is marked in step 810 as “in process” and a
timestamp added. Step 811 indicates to the UFKB that the
UFKB-cntry in 802 has a status of “found.” The “fours”
indication allows the state processing 328 to begin process-
ing this UFKB element. The preferred hardware embodi-
ment includes one or more state processors, and these can
operate in parallel with the lookup/update engine.

In the preferred embodiment,a set ofstatistical operations
is performed by a calculator for every packet analyzed. Tite
statistical operations may include one or more of counting
the packets associated with the flow; determiningstatistics
relatedto the size ofpackets of the flow; compilingstatistics
on differences between packets in each direction, for
example using times tamps; and determining statistical
relationships of timestamps of packets in the same direction.
The statistical measures are kept in the flow-entries. Other
Statistical measures also may be compiled. These statistics
may be used singly or in combination by a statistical
processor component to analyze many different aspects of
the flow. This may include determining network usage
metrics from thestatistical measures, for example to ascer-
tain the network’s ability to transfer information for ihis
application. Such analysis provides for measuring the quil-
ity of service of a conversation, measuring how well an
application is performingin the network, measuring network
resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine
updates one or more counters that are part of the flow-entry
(in the cache) in step 812. The process exits at 813. In our
embodiment, the counters include the total packets of the
flow,the time, and a differential time from thelast timestamp
to the present timestamp.

It may be that the bucket of the bin did not lead to a
signature match (test 808). In such a case, the analyzer in

EX 1017 Page 650

EX 1017 Page 651

US 6,651,099 Bl
21

809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The
lookup/update engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that there are no more
buckets in the bin and no match was found.

If no match was found, the packet belongs to a new (not
previously encountered) flow. In 806 the system indicates
that the record in the unified flow key buffer for this packet
is new, and in 812, anystatistical updating operations are
performed for this packet by updating the flow-entry in the
cache. The update operation exits at 813. A flow insertion/
deletion engine (FIDE) creates a new record for this flow
(again via the cache).

Thus,the update/lookup engine ends with a UFKB-cntry
for the packet with a “new” status or a “found” status.

Note that the above system uses a hash to which more
than one flow-entry can match. A longer hash may be used
that corresponds to a single flow-entry. In such an
embodiment, the flow chart of FIG.8 is simplified as would
be clear to those in the art.

The Hardware System

Eachof the individual hardware elements through which
the data flows in the system are now described with refer-
ence to FIGS. 10 and 11. Note that while we are describing
a particular hardware implementation of the invention
embodimentof FIG.3, it would be clear to one skilled in the
art that the flow of FIG. 3 mayalternatively be implemented
in software running on one or more general-purpose
processors, or only partly implemented in hardware. An
implementation ofthe invention that can operate in software
is. shown in FIG. 14. The hardware embodiment (FIGS. 10
and 11) can operate at over a million packets per second,
while the software system of FIG, 14 may be suitable for
slower networks. To one skilled in the art it would be clear

that more and more of the system may be implemented in
software as processors becomefaster.

FIG. 10 is a description of the parsing subsystem (301,
shown here as subsystem 1000) as implemented in hard-
ware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed
are stored. Memory 1002 is the extraction-operation data-
base memory,in which the extraction instructionsare stored.
Both 1001 and 1002 correspond to internal data structure
308 of FIG. 3. Typically, the system is initialized from a
microprocessor (not shown) at which time these memories
are loaded through a host interface multiplexor and control
register 1005 via the internal buses 1003 and 1004, Note that
the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG.3.

A packet enters the parsing system via 1012 into a parser
input buffer memory 1008 using control signals 1021 and
1023, which control an input buffer interface controller
1022. The buffer 1008 andinterface control 1022 connect to
a packet acquisition device (not shown). The buffer acqui-
sition device generates a packetstart signal 1021 and the
interface control 1022 generates a next packet(i.e., ready to
receive data) signal 1023 to control the data flow into parser
inputbuffer memory 1008. Once a packetstarts loading into
the buffer memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory
describedinblock 304 of FIG. 3. Thatis, protocol types and
associated headers for each protocol layer that exist in the
packet are determined.

The PRE searches database 1001 and the packet in buffer
1008 in order to recognize the protocols the packet contains.

50

65

22,

In one implementation, the database 1001 includesa series
oflinked lookuptables. Each lookup table useseightbits of
addressing. The first lookup table is always at address zero.
The Pattern Recognition Engine uses a base packet offset
from a control register to start the comparison.It loads this
value into a current offset pointer (COP). It then reads the
byte at base packetoffset from the parser input buffer and
uses it as an address into the first lookup table.

Each lookup table returns a word that links to another
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command fortheslicer. Finally it returns the valueto add to
the COP.

The PRE 1006 includes of a comparison engine. The
comparison engine hasafirst stage that checks the protocol
type field to determineif it is an 802.3 packet andthe field
should be treated as a length. If it is not a length,the protocol
is checked in a second stage. The first stage is the only
protocol level that is not programmable. The second stage
has two full sixteen bit content addressable memories
(CAMs) defined for future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also
generates a commandfor the extraction engine (also called
a “slicer’) 1007, The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts informa-
tion from the packet to build the parser record. Thus, the
operations of the extraction engine are those carried outin
blocks 306 and 312 of FIG. 3. The commandsare sent from
PRE 1006 to slicer 1007 in the form of extraction instruction

pointers which tell the extraction engine 1007 where to a
find the instructions in the extraction operations database
memory (i.¢., slicer instruction database) 1002.

Thus, when the PRE 1006 recognizesa protocolit outputs
both the protocol identifier and a process code to the
extractor. The protocol identifier is added to the flow sig-
nature and the process code is used to fetch the first
instruction from the instruction database 1002. Instructions
include an operation code and usually source and destination
offsets as well as a length. The offsets and length are in
bytes. A typical operation is the MOVE instruction. This
instruction tells the slicer 1007 to copy no bytes of data
unmodified from the input buffer 1008 to the output buffer
1010. The extractor contains a byte-wise barrel shifter so
that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH.
This instruction tells the extractor to copy from the input
buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element
(s) of the packet in the input buffer memory andtransferring
the data to a parser output buffer memory 1010. Some
instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a
pipeline. Thatis, extraction engine 1007 performs extraction
operationson data in input buffer 1008 already processed by
PRE 1006 while more (i.c., later arriving) packet informa-
tion is being simultaneously parsed by PRE 1006. This
provides high processing speed sufficient to accommodate
the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the
signature ate extracted,the hash is loaded into parser output
buffer memory 1010. Any additional payload from the
packet that is required for further analysis is also included.
The parser output memory 1010 is interfaced with the
analyzer subsystem by analyzer interface control 1011. Once
all the information of a packetis in the parser output buffer
memory 1010, a data ready signal 1025 is asserted by

EX 1017 Page 651

EX 1017 Page 652

US 6,651,099 B1

23

analyzer interface control. The data from the parser sub-
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready signal 1027 is asserted.

FIG.11 shows the hardware components and dataflow for
the analyzer subsystem that performs the functions of the
analyzer subsystem 303 of FIG, 3. The analyzeris initialized
prior to operation, and initialization includes loading the
state processing information generated by the compilation
process 310 into a database memory for the state processing,
called state processor instruction database (SPID) memory
1109.

The analyzer subsystem 1100 includes a host businterface
1122 using an analyzer hostinterface controller 1118, which
in turn has access to a cache system 1115. The cache system
has bi-directional access to and from the state processor of
the system 1108. State processor 1108 is responsible for
initializing the state processor instruction database memory
1109 from information given over the host bus interface
1122.

With the SPID 1109 loaded, the analyzer subsystem 1100
receives parser records comprising packet signatures and
payloads that come from the parserinto the unified flow key
buffer (UFKB) 1103. UFKB is comprised of memory set up
to maintain UFKB records. A UFKB record is essentially a
parser record; the UFKB holdsrecords of packets that are to
be processed orthat are in process. Furthermore, the UFKB
provides for one or more fields to act as modifiable status
flags to allow different processes to run concurrently.

Three processing engines run concurrently and access
records in the UFKB 1103: the lookup/update engine (LUE)
1107, the state processor (SP) 1108, and the flow insertion
and deletion engine (FIDE) 1110. Each of these is imple-
mented by one or more finite state machines (FSM’s). There
is bi-directional access between each of the finite state

machines and the unified flow key buffer 1103. The UFKB
record includes a field that stores the packet sequence
number, and anotherthat is filled with state information in
the form of a program counter for the state processor 1108
that implementsstate processing 328. The status flags of the
UFKB for any entry includes that the LUE is done and that
the LUE is transferring processing of the entry to the state
processor. The LUE doneindicator is also used to indicate
whatthe next entry is for the LUE. There also is provided a
flag to indicate that the state processor is done with the
current flow and to indicate what the next entry is for the
state processor. There also is provided a flag to indicate the
state processoris transferring processing of the UFKB-entry
to the flow insertion and deletion engine.

Anew UFKBrecordis first processed by the LUE 1107.
A record that has been processed by the LUE 1107 may be
processed by the state processor 1108, and a UFKB record
data may be processed by the flow insertion/deletion engine
1110 after being processed by the state processor 1108 or
only by the LUE. Whether or not a particular engine has
been applied to any unified flow key buffer entry is deter-
mined by status fields set by the engines upon completion.
In one embodiment, a status flag in the UFKB-entry indi-
cates whether an entry is new or found. In other
embodiments, the LUE issuesaflag to pass the entry to the
state processor for processing, and the required operations
for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed
byall three engines. Furthermore, some UFKB entries may
need to be processed more than once by a particular engine.

Each ofthese three engines also has bi-directional access
to a cache subsystem 1115 that includes a caching engine.

ee

—0

_ 5

35

OMeiae

24

Cache 1115 is designed to have information flowing in and
out of it from five different points within the system: the
three engines, external memory via a unified memory con-
troller (UMC) 1119 and a memory interface 1123, and a
microprocessor via analyzer host interface and control unit
(ACIC) 1118 and host interface bus (HIB) 1122. The ana-
lyzer microprocessor(or dedicated logic processor) can thus
directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that
includesa set of content addressable memory cells (CAMs)
each including an address portion and a pointer portion
pointing to the cache memory (e.g., RAM) containing the
cached flow-entries. The CAMsare arranged as a stack
ordered from a top CAM to a bottom CAM.The bottom
CAM’s pointer points to the least recently used (LRU) cache
memory entry. Wheneverthere is a cache miss, the contents
of cache memory pointed to by the bottom CAM are
replaced by the flow-entry from the flow-entry database 324.
This now becomes the most recently used entry, so the
contents of the bottom CAM are moved to the top CAM and
all CAM contents are shifted down. Thus, the cache is an
associative cache with a true LRU replacementpolicy.

The LUE 1107 first processes a UFKB-entry, and basi-
cally performs the operation of blocks 314 and 316 in Fil.
3. A signal is provided to the LUE to indicate that a “ne: ”
UFKB-entry is available. The LUE uses the hash in the
UFKB-entry to read a matching bin of up to four buck:ts
from the cache. The cache system attempts to obtain Lie
matching bin. If a matching bin is not in the cache, the cacne
1115 makes the request to the UMC 1119 to bring in a
matching bin from the external memory.

Whena flow-entry is found using the hash, the LUE 1157
looks at each bucket and comparesit using the signature to
the signature of the UFKB-entry until there is a match or
there are no more buckets.

If there is no match,orif the cache failed to provide a Fin
of flow-entries from the cache, a time stampin set in the flow
key of the UFKB record, a protocol identification andstate
determination is made using a table that was loaded by
compilation process 310 duringinitialization, the status for
the record is set to indicate the LUE has processed ine
record, and an indication is made that the UFKB-entry is
ready to start state processing. The identification and state
determination generates a protocol identifier which in the
preferred embodiment is a “jump vector” for the ste
processor which is kept by the UFKB for this UFKB-entry
and used by the state processorto start state processing for
the particular protocol. For example, the jump vector jumps
to the subroutine for processing the state.

If there was a match, indicating that the packet of the
UFKB-entry is for a previously encountcred flow, then a
calculator componententers one or more statistical measures
stored in the flow-entry, including the timestamp. in
addition, a time difference from the last stored timestamp
maybe stored, and a packet count may be updated. The state
of the flow is obtained from the flow-entry is examined by
looking at the protocol identifier stored in the flow-entry of
database 324.If that value indicates that no more classifi-
cation is required, then the status for the record is set to
indicate the LUE has processed the record. In the preferred
embodiment, the protocol identifier is a jump vector for the
state processor to a subroutine to state processing the
protocol, and no more classification is indicated in the
preferred embodimentby the jump vector being zero.If the
protocol identifier indicates moreprocessing, then an indi-
cation is made that the UFKB-entry is ready to start state

EE OR ceeela Abe
EX 1017 Page 652

EX 1017 Page 653

US 6,651,099 B1

25

processing andthe status for the recordis set to indicate the
LUE hasprocessed the record.

The state processor 1108 processes information in the
cache system according to a UFKB-entry after the LUE has
completed. State processor 1108 includes a state processor
program counter SPPCthat generates the addressin thestate
processor instruction database 1109 loaded by compiler
process 310 duringinitialization. It contains an Instruction
Pointer (SPIP) which generates the SPID address. The
instruction pointer can be incremented or loaded from a
Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three
sources: (1) A protocol identifier from the UFKB, (2) an
immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic
unit (SPALU) included in the state processor.

Thus, after a Flow Keyis placed in the UFKB by the LUE
with a known protocol identifier, the Program Counter is
initialized with the last protocol recognized by the Parser.
This first instruction is a jump to the subroutine which
analyzes the protocol that was decoded,

The State Processor ALU (SPALU) contains all the
Arithmetic, Logical and String Comparefunctions necessary
to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the
Instruction Decode & State Machines, the String Reference
Memory the Search Engine, an Output Data Register and an
Output Control Register.

The Search Engine in turn contains the Target Search
Register set, the Reference Search Register sct, and a
Compare block which compares two operandsby exclusive-
or-ing them together.

Thus, after the UFKB sets the program counter, a
sequence of one or more state operations are be executed in
state processor 1108 to further analyze the packet that is in
the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor
1108. The state processor is entered at 1301 with a unified
flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB-
entry is retrieved from unified flow key buffer 1103 in 1301.
In 1303, the protocol identifier for the UFKB-entry is used
to set the state processor’s instruction counter. The state
processor 1108 starts the process by using the last protocol
recognized by the parser subsystem 301 as an offset into a
jumptable. The jumptable takes us to the instructions to use
for that protocol. Most instructions test something in the
unified flow key buffer or the flow-entry if it exists. The state
processor 1108 may haveto test bits, do comparisons, add or
subtract to perform thetest.

The first state processor instruction is fetched in 1304
from the state processor instruction database memory 1109.
The state processor performs the one or more fetched
operations (1304).In our implementation, each single state
processor instruction is very primitive (¢.g., a move, a
compare, etc.), 80 that many such instructions need to be
performed on each unified flow key buffer entry. One aspect
ofthe state processor isits ability to search for one ar more
(up to four) reference strings in the payload part of the
UFKB entry. This’ is implemented by a search engine
component of the state processor responsive to special
searching instructions.,

In 1307, a check is made to determine if there are any
moreinstructions to be performed for the packet. Ifyes, then
in 1308 thesysicm sets the state processor instruction
pointer (SPIP).to;o}fain the next instruction. The SPIP mayJURE Oo” .

a a

20

25

35

40

45

55

60

65

26

be set by an immediate jump vectorin the currently decoded
instruction, or by a value provided by the SPALU during
processing.

The next instruction to be performed is now fetched
(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions
to be performed.

Atthis stage, a check is made in 1309 if the processing on
this particular packet has resulted in a final state, Thatis,is
the analyzer is done processing not only for this particular
packet, but for the whole flow to which the packet belongs,
andthe flow is fully determined.If indeed there are no more
states to process for this flow, then in 1311 the processor
finalizes the processing. Somefinal states may need to put
a state in place thattells the system to remove a flow—for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal
state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which meansthere
are no removal instructions.

Once the appropriate flow removal instruction as specified
for this flow (a NOP or otherwise) is set and saved, the
processis exited at 1313. The state processor 1108 can now
obtain another unified flow key buffer entry to process.

If at 1309 it is determinedthat processing for this flow is
not completed, then in 1310 the system saves the state
processor instruction pointer in the current flow-entry in the
current flow-entry. That will be the next operation that will
be performedthe next time the LRE 1107 findspacketin the
UFKB that matches this flow. The processor now exits
processing this particular unified flow key buffer entry at
1313.

Note that state processing updates information in the
unified flow key buffer 1103 and the flow-entry in the cache.
Oncethe state processor is done,a flag is set in the UFKB
for the entry that the state processor is done. Furthermore,If
the flow needsto beinserted or deleted from the database of

flows, control is then passed on to the flow insertion/deletion
engine 1110 for that flow signature and packet entry. This is
doneby the state processor setting another flag in the UFKB
for this UFKB-entry indicating that the state processor is
passing processing of this cntry to the flow insertion and
deletion engine.

The flow insertion and deletion engine 1110 is responsible
for maintaining the flow-entry database. In particular, for
creating new flows in the flow database, and deleting flows
from the database so that they can be reused.

The process of flow insertion is now described with the
aid ofFIG. 12. Flows are groupedinto binsof buckets by the
hash value. The engine processes a UFKB-entry that may be
new orthatthe state processor otherwise has indicated needs
to be created. FIG. 12 showsthe case of a new entry being
created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB,so this bin may already
have been sought for the UFKB-entry by the LUE.In 1204
the FIDE 1110 requests that the record bin/bucket be main-
tained in the cache system 1115.If in 1205 the cache system
1115indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucketis marked “used”in the cache engine of cache 1115
using a timestampthat is maintained throughoutthe process.
In 1209, the FIDE 1110 compares the bin and bucket record
flow signature to the packetto verify that all the elements are
in place to complete the record. In 1211 the system marks the
record bin and bucket as “in process” and as “new” in the

EX 1017 Page 653

1

EX 1017 Page 654

US 6,651,099 Bl
27

cache system (and hencein the external memory). In 1212,
the initial statistical measures for the flow-record are set in

the cache system. This in the preferred embodimentclears
the set of counters used to maintain statistics, and may
perform other procedures for statistical operations requires
by the analyzerforthe first packet seen for a particular flow.

Backin step 1205,if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system.If this succecds, the processes of 1207, 1209,
1211 and 1212are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key buffer entry for
the packetis set as “drop,”indicating that the system cannot
process the particular packet because there are no buckets
left in the system. The processexits at 1213. The FIDE 1110
indicates to the UFKB thatthe flow insertion and deletion

operations are completed for this UFKB-entry. This also lets
the UFKB provide the FIDE with the next UFKB record.

Oncea set of operations is performed on a unified flow
key buffer entry by all of the engines required to access and
managea particular packet andits flow signature, the unified
flow key buffer entry is marked as “completed.” That
elementwill then be used by the parserinterface for the next
packet and flow signature coming in from the parsing and
extracting system.

All flow-entries are maintained in the external memory
and some are maintained in the cache 1115. The cache

system 1115is intelligent enough to access the flow database
and to understand the data structures that exists on the other

side of memory interface 1123. The lookup/update engine
1107is able to request that the cache system pull a particular
flow or “buckets” of flows from the unified memory con-
troller 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache system onceit is looked up by meansof the lookup/
update engine request, and the fiow insertion/deletion engine
1110 can create new entries in the cache system if required
based on information in the unified flow key buffer 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 andthe unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There are several interfaces to components of the system
external to the module of FIG. 11 for the particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing system such as a micropro-
cessor or a multiplexor (MUX) system. Conseguently, one
can connectthe overall traffic classification system of FIGS.
11 and 12 into some other processing system to manage the
classification system and to extract data gathered by the
system.

The memory interface 1123 is designed to interface to any
of a variety of memory systems that one may wantto use to
store the flow-entries. One can use different types of
memory systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous
graphic memory (SGRAM),static random access memory
(SRAM), and so forth.

FIG.10 also includes some“generic”interfaces. There is
a packet input interface 1012—a general interface that
works in tandem withthe signals of the input buffer interface
control 1022. These are designed so that they can be used
with any kind of generic systems that can then feed packet
information into the parser. Another gencric interface is the
interface of pipes 1031 and 1033 respectively out of and into
host interface multiplexor and control registers 1005. This

20

25

55

60

65

28

enables the parsing system to be managed by an external
system, for example a microprocessor or another kind of
external logic, and enables the external system to program
and otherwise control the parser.

The preferred embodimentofthis aspect of the invention
is described in a hardware description language (HDL) such
as VHDLor Verilog. It is designed and created in an HDL
so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being
designed for purposes related to creating and analyzing
traffic within a network. Verilog or other HDL implemen-
tation is only one method of describing the hardware.

In accordance with one hardware implementation, the
elements shown in FIGS. 10 and 11 are implemented in a set
of six field programmable logic arrays (FPGA’s). The
boundaries of these FPGA’s are as follows. The parsing
subsystem of FIG. 10 is implemented as two’ FPGAS; one
FPGA,andincludes blocks 1006, 1008 and 1012, parts of
1005, and memory 1001. The second FPGAincludes 1002,
1007, 1013, 1011 parts of 1005. Referring to FIG. 11, the
unified look-up buffer 1103 is implemented as a single
FPGA.State processor 1108 and part of state processor
instruction database memory 1109 is another FPGA. Por-
tions of the state processor instruction database memory
1109 are maintained in external SRAM’s. The lookup/
update engine 1107 and the flow insertion/delction enginc
1110 are in another FPGA. The sixth FPGAincludes the

cache system 1115, the unified memory control 1119,and the
analyzer hostinterface and contro] 1118.

Note that one can implement the system as one or more
VSLI devices, rather than as a set of application specific
integrated circuits (ASIC’s) such as FPGA’s. It is antici-
pated that in the future device densities will continue to
increase, so that the complete system may eventually form
a sub-unit (a “core”) of a larger single chip unit.

Operation of the Invention
FIG. 15 shows how an embodiment of the network

monitor 300 might be used to analyze traffic in a nctwork
102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all
packets passing point 121 in either direction are supplied to
monitor 300. Monitor 300 comprises the parser sub-system
301, which determines flow signatures, and analyzer sub-
system 303 that analyzes the flow signature of each packet.
A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer
1504, which mightbe any processor, for example, a general~
purpose computer, is used to analyze the flows in memory
324. As is conventional, host computer 1504 includes a
memory, say RAM, shown as host memory 1506. In
addition, the host might contain a disk. In one application,
the system can operate as an RMONprobe,in whichcase the
host computer is coupled to a network interface card 1510
that is connected to the network 102.

The preferred embodimentof the invention is supported
by an optional Simple Network Management Protocol
(SNMP)implementation. FIG. 15 describes how one would,
for example, implement an RMONprobe, where a network
interface card is used to send RMONinformation to the

network. Commercial SNMP implementations also are
available, and using such an implementation can simplify
the process of porting the preferred embodimentof the
inyention to any platform.

In addition, MEB Compilers are available. An MIB
Compiler is a toolthat greatly simplifies the creation and
maintenance of proprietary MIB extensions.

EX 1017 Page 654

EX 1017 Page 655

US 6,651,099 B1
29

Examples of Packet Elucidation

Monitor 300, andin particular, analyzer 303 is capable of
carrying out state analysis for packet exchanges that are
commonly referred to as “server announcement” type
exchanges. Server announcementis a process used to ease
communications between a server with multiple applications
that can all be simultaneously accessed from multiple cli-
ents. Many applications use a server announcement process
as a means of multiplexing a single port or socket into many
applications and services. With this type of exchange, mes-
Sages are sent on the network, in either a broadcast or
multicast approach, to announce a server and application,
andall stations in the network may receive and decode these
messages. The messages enable the stations to derive the
appropriate connection point for communicating that par-
ticular application with the particular server. Using the
server announcement method,a particular application com-
municates using a service channel, in the form of a TCP or
UDPsocketorport as in the IP protocol suite, or using a SAP
as in the Novell JPX protocol suite.

The analyzer 303 is also capable of carrying out “in-
stream analysis”ofpacket exchanges. The “in-stream analy-
sis” method is used either as a primary or secondary recog-
nition process. As a primary process, in-stream analysis
assists in extracting detailed information which will be used
to further recognize both the specific application and appli-
cation component. A good example of in-stream analysisis
any Web-based application. For example, the commonly
used PointCast Web information application can be recog-
nized using this process; during the initial connection
between a PointCast server and client, specific key tokens
exist in the data exchange that will result in a signature being
generated to recognize PointCast.

The in-stream analysis process may also be combined
with the server announcement process. In many cases
in-stream analysis will augmentother recognition processes.
An example of combining in-stream analysis with server
announcementcan be found in business applications such as
SAP and BAAN.

“Session tracking” also is known as one of the primary
processes for tracking applications in client/server packet
exchanges. The process of tracking sessions requires an
initial connection to a predefined socketor port number. This
method of communication is used in a variety of transport
layer protocols. It is most commonly seen in the TCP and
UDPtransport protocols of the IP protocol.

During the session tracking, a client makes a requestto a
server using a specific port or socket number. This initial
request will cause the server to create a TCP or UDP port to
exchange the remainder of the data between the client and
the server. The server then replies to the requestof the client
using this newly created port. Theoriginal port used by the
client to connect to the server will never be used again
during this data exchange.

One example of session tracking is TFTP (Trivial File
Transfer Protocol), a version of the TCP/IP FTP protocol
that has no directory or password capability. During the
client/server exchange process ofTFTP, a specific port (port
number 69) is always used to initiate the packet exchange.
Thus, when the client begins the process of communicating,
a request is made to UDP port 69. Oncethe server receives
this request, a new port numberis created on the server. The
server then replies to the client using the new port. In this
example,it is clear that in order to recognize TFTP; network
monitor 300 analyzes the initial request from the client and
generates 4 signature for it. Monitor 300 usesthat signature

20

50

55

65

30

to recognize the reply. Monitor 300 also analyzesthe reply
from the server with the key port information,and usesthis
to create a signature for monitoring the remaining packets of
this data exchange.

Network monitor 300 can also understand the current
state of particular connections in the network. Connection-
oriented exchanges often benefit from state tracking to
correctly identify the application. An example is the com-
mon TCP transport protocol that provides a reliable means
of sending information betweenaclient and a server. When
a data exchangeis initiated, a TCP request for synchroni-
zation message is sent. This message contains a specific
sequence numberthat is used to track an acknowledgement
from the server. Once the server has acknowledged the
synchronization request, data may be exchanged between
the client and the server. When communication is no longer
required,the client sends a finish or complete messageto the
server, and the server acknowledgesthis finish request with
a reply containing the sequence numbers from the request.
The states of such a connection-oriented exchangerelate to
the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcementproto-
cols vary. However, the basic underlying process remains
similar. A typical server announcement message is sent to
one or more clients in a network. This type of announcement
messagehas specific content, which,in another aspect of the
invention, is salvaged and maintained in the database of
flow-entries in the system. Because the announcementis
sent to one or morestations, the client involved in a future
packet exchange with the server will make an assumption
that the information announced is known, and an aspect of
the inventive monitor is that it too can make the same
assumption.

Sun-RPC is the implementation by Sun Microsystems,
Inc. (Palo Alto, Calif.) of the Remote Procedure Cali (RPC),
a programming interface that allows one program to usethe
Services of another on a remote machine. A Sun-RPC
example is now used to explain how monitor 300 can
capture server announcements.

A remote program or client that wishes to use a server or
procedure must establish a connection, for which the RPC
protocol can be used.

Eachserver running the Sun-RPC protocol must maintain
a process and database called the port Mapper. The port
Mappercreates a direct association between a Sun-RPC
program or application and a TCP or UDPsocketorport (for
TCP or UDP implementations). An application or program
numberis a 32-bit unique identifier assigned by ICANN (the
Intemet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge numberofparam-
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each port Mapper
on a Sun-RPC server can present the mappings between a
unique program number and a specific transport socket
through the use of specific request or a directed announce-
ment. According to ICANN, port number 111 is associated
with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown
as 106 in FIG. 1) making a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined
UDP or TCP socket. Once the port Mapper process on the
sun RPC serverreceives the request, the specific mappingis
returned in a directed reply to theclient.

1. Aclient (CLIENT 3, 106 in FIG. 1) sends a TCP packet
to SERVER 2 (110 in FIG.1) on port 111, with an RPC Bind

EX 1017 Page 655

EX 1017 Page 656

US 6,651,099 B1

31

Lookup Request (rpcBindLookup). TCP or UDPport 111 is
always associated Sun RPC. This request specifies the
program (as a program identifier), version, and might
specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the
program identifier and version identifier from the request.
The serveralso uses the fact that this packet came in using
the TCPtransport and that no protocol was specified, and
thus will use the TCP protocolfor its reply.

3. The server 110 sends a TCP packet to port number111,
with an RPC Bind Lookup Reply. The reply contains the
specific port number (e.g., port number ‘port’) on which
future transactions will be accepted for the specific RPC
program identifier (e.g., Program ‘program’) and the proto-
col (UDP or TCP) for use.

It is desired that from now on every time that port number
‘port’ is used, the packet is associated with the application
program ‘program’until the number‘port’ no longer is to be
associated with the program ‘program’. Network monitor
300 by creating a flow-entry and a signature includes a
mechanism for remembering the exchange so that future
packets that use the port number‘port’ will be associated by
the network monitor with the application program ‘pro-
gram’.

In addition to the Sun RPC Bind Lookup request and
reply, there are other ways that a particular program—say
‘program’-might be associated with a particular port
number, for example number ‘port’. One is by a broadcast
announcementof a particular association between an appli-
cation service and a port number, called a Sun RPC port-
Mapper Announcement, Another, is when some server—say
the same SERVER 2—replies to some client—say CLIENT
1—requesting some portMapper assignment with a RPC
portMapper Reply. Some other client—say CLIENT
2—mightinadvertently sce this request, and thus know that
for this particular server, SERVER 2, port number ‘port’ is
associated with the application service ‘program’, It is
desirable for the network monitor 300 to be able to associate

any packets to SERVER 2 using port number‘port’ with the
application program ‘program’,

FIG.9 represents a dataflow 900 of some operationsin the
monitor 300 of FIG. 3 for Sun Remote Procedure Call.

Suppose a client 106 (e.g., CLHENT 3 in FIG. 1) is com-
municating via its interface to the network 118 to a server
110 (e.g., SERVER 2 in FIG.1) via the server’s interface to
the network 116. Further assume that Remote Procedure

Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup requestis issued by client 106
and ends with the server state creation step 904. Such RPC
bind lookup request includes values for the ‘program,’
‘version,’ and ‘protocol’ to use, e.g., TCP or UDP. The
process for Sun RPC analysis in the network monitor 300
includes the following aspects.:

Process 909: Extract the ‘program,’ ‘version,’ and ‘pro-
tocol’ (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 111
indicating Sun RPC.

Process 908: Decode the Sun RPC packet. Check RPC
type field for ID. If value is portMapper, save paircd
socket (i.e., dest for destination address, src for source
address). Decode ports and mapping, save ports with
socket/addr key. There may be more than onepairing
per mapper packet. Form a signature (e.g., a key).A
flow-entry is created in database 324, The saving of the
request is now complete.

25

w a

40

355

32

At somelater time, the server (process 907) issues a RPC
bind lookup reply. The packet monitor 300 will extract a
signature from the packet and recognizeit from the previ-
ously stored flow. The monitor will get the protocol port
number(906) and lookupthe request (905). A new signature
(i.e., a key) will be created and the creation of the server
state (904) will be stored as an entry identified by the new
signature in the flow-entry database. That signature now
may be used to identify packets associated with the server.

Theserverstate creation step 904 can be reachednot only
from a Bind Lookup Request/Reply pair, but also from a
RPC Reply portMapper packet shown as 901 or an RPC
Announcement portMapper shown as 902. The Remote
Procedure Call protocol can announcethat it is able to
provide a particular application service. Embodiments ofthe
present invention preferably can analyze when an exchange
occurs between a client and a server, and also can track those
stations that have received the announcementofa service in
the network.

The RPC Announcement portMapper announcement 902
is a broadcast. Such causes various clients to execute a

similar set of operations, for example, saving the informa-
tion obtained from the announcement. The RPC Reply
portMapper step 901 could be in reply to a portMapper
request, and is also broadcast. It includes all the service
parameters.

Thus monitor 300 creates and saves all such states for

later classification of flows that relate to the particular
service ‘program’,

FIG. 2 shows how the monitor 300 in the example of Sun
RPC builds a signature andflow states. A plurality ofpackets
206-209 are exchanged, e.g., in an exemplary Sun Micro-
systems Remote Procedure Call protocol. A method embodi-
mentof the present invention might generate a pair of flow
signatures, “‘signature-1” 210 and “‘signature-2” 212, from
information found in the packets 206 and 207 which,in the
example, correspond to a Sun RPC Bind Lookuprequest and
reply, respectively.

Consider first the Sun RPC Bind Lookup request. Sup-
pose packet 206 corresponds to such a request sent from
CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to
an aspect of the invention. A source and destination network
address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow
signature (shown as KEY1 230 in FIG.2) will also contain
these two fields, so the parser subsystem 301 will include
these twofields in signature KEY 1 (230). Note that in FIG.
2, if an addréss identifies the client 106 (shownalso as 202),
the label used in the drawing is “C,”. If such address
identifies the server 110 (shownalso as server 204), the label
used in the drawingis “‘S,”. The first two fields 214 and 215
in packet 206 are “S,” and “C,” because packet 206 is
provided from the server 110 and is destined for the client
106. Suppose for this example, “‘S,” is an address numeri-
cally less than address “C,”. Athird field “p!” 216identifies
the particular protoco] being used, c.g., TCP, UDP, etc.

In packet 206, a fourth field 217 andafifth field 218 are
used to communicate port numbers that are used. The
conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify
a source-port pattern, and the hash pattern in field 218 is
used to identify the destination-port pattern. The order
indicates the client-server message direction. A sixth field
denoted “i’” 219 is an elementthatis being requested by the’
client from the server, A seventh field denoted “s,a” 220 is
the service requested by the client from server 110. The

EX 1017 Page 656

EX 1017 Page 657

US 6,651,099 B1
33

following eighth field “QA” 221 (for question mark) indi-
cates that the client 106 wants to know whatto use to access

application “‘s,a’”. A tenth field “QP” 223 is used to indicate
that the client wants the server to indicate what protocol to
use for the particular application.

Packet 206 initiates the sequence of packet exchanges,
e.g., a RPC Bind Lookup Request to SERVER 2.It follows
a well-defined format, as do all the packets, and is trans-
mitted to the server 110 on a well-knownservice connection

identifier (port 111 indicating Sun RPC).
Packet 207 is the first sent in reply to the client 106 from

the server. It is the RPC Bind Lookup Reply asa result of
the request packet 206.

Packet 207 includes ten fields 224-233. The destination

and source addresses are carried in fields 224 and 225,e.g.,
indicated “C,” and “S,”, respectively. Notice the orderis
now reversed, since the client-server message direction is
from the server 110 to the client 106. The protocol “p’” is
used as indicated in field 226. The request “i’” is in field 229.
Values have been filled in for the application port number,
e.g., in field 233 and protocol “p?”in field 233.

The flow signature and flow states built up as a result of
this exchange are now described. When the packet monitor
300 sees the request packet 206 from theclient, a first flow
signature 210 is built in the parser subsystem 301 according
to the pattern and extraction operations database 308. This
signature 210 includes a destination and a source address
240 and 241. One aspect of the invention is that the ow
keys are built consistently in a particular order no matter
what the direction of conversation. Several mechanisms may
be used to achieve this. In the particular embodiment, the
numerically lower address is always placed before the
numerically higher address. Such least to highest order is
used to get the best spread of signatures and hashes for the
lookup operations. In this case, therefore, since we assume
“§,°<"C,", the order is address “S,” followed by client
address “C,”. The next field used to build the signature is a
protocolfield 242 extracted from packet 206’s field 216, and
thus is the protocol “p’”. The next field used for the
signature is field 243, which contains the destination source
port number shown as a crosshatched pattern from thefield
218 of the packet 206. This pattern will be recognized in the
payload of packets to derive how this packet or sequence of
packets exists as a flow. In practice, these may be TCP port
numbers,or a combination ofTCP port numbers. In the case
of the Sun RPC example, the crosshatch represents a set of
port numbers of UDS for p* that will be used to recognize
this flow (e.g., port 111). Port 111 indicates this is Sun RPC.
Some applications, such as the Sun RPC Bind Lookups,are
directly determinable (“known”) at the parser level. So in
this case, the signature KEY-1 points to a knownapplication
denoted “a’” (Sun RPC Bind Lookup), and a next—state
that the state processor should proceed to for more complex
recognition jobs, denoted as state “st,,” is placed in thefield
245ofthe flow-entry.

When the Sun RPC Bind Lookup replyis acquired, a flow
signature is again built by the parser. This flow signature is
identical to KEY-1. Hence, when the signature enters the
analyzer subsystem 303 from the parser subsystem 301, the
complete flow-entry is obtained, and in this flow-entry
indicates state “stp”. The operations for state “st,” in the
state processor instruction database 326 instructs the state
processor to build and store a new flow signature, shown as
KEY-2 (212) in FIG.2. This flow signature built by the state
processor also includes the destination and a source
-addresses 250 and 251, respectively, for server “S,” fol=
lowed by (the numerically higher address) client “CyAY

25

30

40

4s

50

55

60

65

34

protocol field 252 defines the protocolto be used,e.g., “p””
which is obtained from the reply packet. A field 253 contains
a recognition pattern also obtained from the reply packet. In
this case, the application is Sun RPC, and field 254 indicates
this application “a””. A next-state field 255 defines the next
state that the state processor should proceed to for more
complex recognition jobs,e.g., a state “st!” In this particular
example, this is a final state. Thus, KEY-2 may now be used
to recognize packets that are in any way associated with the
application “a”. Two such packets 208 and 209 are shown,
one in each direction. They use the particular application
service requestedin the original Bind Lookup Request, and
eachwill be recognized becausethe signature KEY-2 will be
built in each case.

The two flow signatures 210 and 212 always order the
destination and source address fields with server “S,” fol-
lowed byclient “C,”. Such values are automatically filled in
when the addresses are first created in a particular flow
signature. Preferably, large collections of flow signatures are
kept in a lookuptable in a least-to-highest order for the best
spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of
packets, ¢.g., represented by request packet 208 and
response packet 209. The client 106 sends packets 208 that
have a destination and source address S, and C,, in a pair of
fields 260 and 261. A field 262 defines the protocol as “p?”,
and a field 263 defines the destination port number.

Some network-server application recognition jobs are so
simple that only a single state transition has to occur to be
able to pinpoint the application that produced the packet.

Others require a sequence ofstate transitions to occur in
order to match a known andpredefined climb from state-
to-state.

Thusthe flow signature for the recognition of application
“a” is automatically set up by predefining what packet-
exchange sequences occur for this example when a rela-
tively simple Sun Microsystems Remote Procedure Call
bind lookup requestinstruction executes. More complicated
exchanges than this may generate more than two flow
signatures and their corresponding states. Each recognition
may involve setting up a complex state transition diagram to
be traversed before a “final” resting state such as “st,” in
field 255 is reached. All these are used to build the final set

of flow signatures for recognizing a particular application in
the future.

Embodimentsof the present invention automatically gen-
erate flow signatures with the necessary recognition pattems
and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen-
erating state transitions to search for. Applications and
protocols,at any level, are recognized throughstate analysis
of sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of
devices, including network appliances such as telephones,
“Internet”radios, pagers, and so forth. The term computer as
used herein encompasses all such devices and a computer
network as used herein includes networks of such comput-ers.

Although the present invention has been described in
terms of the presently preferred embodiments,it is to be
understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosure. Accordingly,it is intended
that the claims be interpreted as coveringall alterations and
modifications as fall within the true spirit and scope of the
present invention.

EX 1017 Page 657

eetie

EX 1017 Page 658

i
i

US 6,651,099 Bi
35

Whatis claimedis:

1. A packet monitor for examining packets passing
through a connection point on a computer network in
real-time, the packets provided to the packet monitor via a
packet acquisition device connected to the connectionpoint,
the packet monitor comprising:

(a) a packet-buffer memory configured to accept a packet
from the packet acquisition device;

(b) a parsing/extraction operations memory configured to
store a database of parsing/extraction operations that
includes information describing how to determine at
least one of the protocols used in a packet from data in
the packet;

(c) a parser subsystem coupled to the packet buffer and to
the pattern/extraction operations memory, the parser
subsystem configured to examine the packet accepted
by the buffer, extract selected portions of the accepted
packet, and form a function of the selected portions
sufficient to identify that the accepted packet is part of
a conversational flow-sequence;

(d) a memory storing a flow-entry database including a
plurality of flow-entries for conversational flows
encountered by the monitor;

(e) a lookup engine connectedto the parser subsystem and
to the flow-entry database, and configured to determine
using at least some of the selected portions of the
accepted packetif there is an entry in the flow-entry
database for the conversational flow sequence of the
accepted packet;

(f) a state patterns/operations memory configured to store
a set of predefined state transition patterns and state
Operations such that traversing a particular transition
pattern as a result of a particular conversational flow-
sequence of packets indicates that the particular con-
versational flow-sequenceis associated with the opera-
tion of a particular application program,visiting each
state in a traversal including carrying out none or more
predefined state operations,

(g) a protocol/state identification mechanism coupled to
the state patterns/operations memory and to the lookup
engine, the protocol/state identification engine config-
ured to determine the protocol and state of the conver-
sational flow of the packet; and

(h) a state processor coupled to the flow-entry database,
the protocol/state identification engine, andto the state
patterns/operations memory, the state processor, con-
figured to carry out any state operations specified in the
state patterns/operations memory for the protocol and
state of the flow of the packet,
the carrying out of the state operations furthering the

process ofidentifying which application program is
associated with the conversational flow-sequence of
the packet, the state processor progressing through a
series of states and state operationsuntil there are no
more state operations to perform for the accepted
packet, in which casethe state processor updates the
flow-entry, or until a final state is reached that
indicates that no more analysis of the flow is
required, in which case the result of the analysis is
announced.

30

45

60

36

2. A packet monitor according to claim 1, wherein the
flow-entry includes the state of the flow, such that the
protocol/state identification mechanism determinesthestate
of the packet from the flow-entry in the case that the lookup
engine finds a flow-entry for the flow ofthe accepted packet.

3. A packet monitor according to claim 1, wherein the
parser subsystem includes a mechanism for building a hash
from theselected portions, and wherein the hash is used by
the lookup engineto search the flow-entry database,the hash
designed to spread the flow-entries across the flow-entry
database.

4. A packet monitor according to claim 1, further com-
prising:

a compiler processor coupled to the parsing/extraction
operations memory, the compiler processor configured
to run a compilation process that includes:
receiving commandsin a high-level protocol descrip-

tion language that describe the protocols that may be
used in packets encountered by the monitor, and

translating the protocol description language com-
mands into a plurality of parsing/extraction opera-
tions that are initialized into the parsing/extraction
operations memory.

5. A packet monitor according to claim 4, wherein the
protocol description language commands also describe a
correspondence between a set of one or more application
programs and the state transition patterns/operations that
occur as a result of particular conversational flow-sequences
associated with an application program, wherein the com-
Piler processor is also coupled to the state patterns/
operations memory, and wherein the compilation process
further includes translating the protocol description lan-
guage commandsintoa plurality of state patterns andstate
Operations that are initialized into the state patterns/
operations memory.

6. A packet monitor according to claim 1, further com-
prising:

a cache memory coupled to and between the lookup
engine and the flow-entry database providing for fast
access Of a set of likely-to-be-accessed flow-entries
from the flow-entry database.

7. A packet monitor according to claim 6, wherein the
cache functions as a fully associative, least-recently-used
cache memory.

8. A packet monitor according to claim 7, wherein the
cache functions as a fully associative, least-recently-used
cache memory and includes content addressable memories
configured as a stack.

9. A packet monitor accordingto claim 1, wherein one or
morestatistical measures about a flow are stored in each

flow-entry, the packet monitor further comprising:
a calculator for updating thestatistical measures in a

flow-entry of the accepted packet.
10. A packet monitor accordingto claim 9, wherein, when

the application program ofa flow is determined, one or more
network usage metrics related to said application and deter-
mined from the statistical measures are presented to a user
for network performance monitoring.

* owe Ok Ok Ok

EX 1017 Page 658

EX 1017 Page 659

PRINT OF DORA WINGS
ASORIGINALLY FLED UI? a5

| ORIGINALLYFILE é; 6 > oe

1/18

[Ld

100 CLIENT 4 108
> ANALYZER

407
116

Frts~‘“CSCSC*SC*sétsSY

CLIENT 3 ~, 10

} 121
106

 DATA COMMUNICATIONS

NETWORK

_ 102

= 125

” 123
Cc 118
SERVER 2 o——7~C#O*108 7]

_ CLIENT 2 CLIENT 1
Me 104GREDe

FIG. 1
EX 1017 Page 659

EX 1017 Page 660

A, + GSE ER Oo. FE o *

CPRSERS RCH oe ORR E TMU AK

214 .215 <216 217,218 219 .220,221 222 .223

81/¢
 aS ———F oS —l-—} oS ox

os

APPLICATION SERVER 2

EX 1017 Page 660

ake

‘TIVNIDHIOSv CORTasunenwArime
L--00OFLA

EX 1017 Page 661

i Weve or. oe al

Petite Pha oeER

300

| 304 PARSER 301 <_4 eee eee eK; 304
| 306 314302 ANALYZE AND EXTRAGT l
||RECOGNIZE IDENTIFYING BUILD UNIQUE]; | LOOKUP

PACKET, PATTERN CONVERSATIO! FROM

“FLOW” KEY RECORD?

UPDATE

PATTERN, PARSI "FLOW" I
AND KNOWN

EXTRACTION RECORD
DATABASE

CLASSIFICATN
FINALIZATION

310 I STATE

PROCESSOR
INSTRUCTION

DATABASE

COMPILER

AND
OPTIMIZER

NO

PROTOCOL DATAGRAM
DESCIPTIO LAYER
LANGUAGE

ANALYZER

303

8L/e

eb

onOFWsATIVNISEED&
wor

cONTAWHOJOLNTHG
om

EX 1017 Page 661

EX 1017 Page 662

s;
PRINT OF DRAWINGS 994.4
aS OlusisaLLly fTLep——=ee ‘i. :

@ wa

5/18

501

[wootncxer “
503 LOAD PACKET

COMPONENT
512

504Wh RE IN PACKEL?

PEWA
Help FETCH NODE AND

PROCESS FROM
PATTER

NEXT

. PACKET
= 506 COMPONE 511

APPLY NODE AND

PROCESS TO
507 COMPONENT

510
ony

PATTERN|g-NO< P
NODE

EXTRACT
509-|ELEMENTS

FIG. 5

EX 1017 Page 662

EX 1017 Page 663

1 PRINT OF DRAWINGS
ASORIGINALLY FILED

SUCREgbaaL!

pheEley

001-1

7/18

701

 EY BUFFER AND 702

PATTERN NODE

 LOAD PATTERN

703 NODE ELEMENT

704 OUTPUT TO

NODES? ANALYZER

HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE 709

706 Noo
NEXT PACKET
COMPONENT

707

FIG. 7

EX 1017 Page 663

EX 1017 Page 664

» PRINT OF DRAWINGS

5UPAGINACLY FILED

MEHYr,

Pra
*

eae

eyWh"hy
Wehg

T.004-1

we w

9/18

PORTMAPPEH SORTMAPPER 909

EXTRACT PORT

GET 'PROGRAM',
‘VERSION AND

‘PROTOCOL(TCP OR

EXTRACT PROGRAM

GET 'PROGRAM',
‘VERSION’, ‘PORT! AND
‘PROTOCOL (TCP OR

UDP)

903

SAVE ‘PROGRAM’,
‘VERSION AND

‘PROTOCOL (TCP OR

SAVE ‘PROGRAM’,
‘VERSION’, 'PORT' AND
 904

‘PROTOCOL(TCP OR UDP) WITH
UDP) WITH NETWORK DESTINATION
ADDRESSIN SERVER NETWORK ADDRESS.

STATE DATABASE.KEY BOTH MAKEA KEY.
ON SERVER ADDRESS

AND TGP OR UDP PORT.

EXTRACT
PROGRAM

FIND ‘PROGRAM’

AND 'VERSION'
WITH LOOKUP OF

SOURCE NETWORK
ADDRESS.

GET ‘PORT’ AND
‘PROTOCOL(TCP

OR UDP)’.

woo”

FIG. 9

EX 1017 Page 664

ee nngeen

EX 1017 Page 665

» PRINT OF DRAWINGS

ao

SU,

¢EEG

“ASORIGINALLY.et zp >"———

1000 —ws 10/18

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE
MEMORY 1001 MEMORY

100 100

1006

PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

1008 1018

PARSER

PACKET\|PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAY

MEMORY °

1012
1010

1021

FArARTE INPUT BUFFER 1011
INTERFACE
CONTROL

ANALYZER DATA READY
INTERFACE

CONTROL ANALYZER
READY

102

1023 FIG. 10 1027

EX 1017 Page 665

EX 1017 Page 666

PRINT OF DRAWINGS 01-1
AS ORIGINALLY FILED

1100—,

1101

~ PARSER
7 INTER- bob
_ FACE

eGEY
a,Woh

@

1103

LOOKUP/
UPDATE

INSTRUCN]
DATABASE

EX 1017 Page 666

EX 1017 Page 667

ae oe 5

AAIPeat

DePeeeee 1

140

 LOOKUP

ANALYZE AND EXTRACT

RECOGNIZE IDENTIFYING \ r KNOWN NEW "FLOW"
PATTERN INFO & PROCL||FLOW" KEYr"™ RECORD RECORD? DATABASE

INFORMATION (STATE (DB 1424) OF FLOWS

UPDATE
"FLOW"
KNOWN
RECORD

 EXTRACTION
OPERATIONS

PARSER
SUBSYSEM

STATE
MACHINE

SELECTOR

CLASSIFICATN
FINALIZATION

ANALYZER
SUBSYSTEM

Sl/rk

- CFTATIVNIDTMOS¥© cONTMYYGJOEAT&

EX 1017 Page 667

EX 1017 Page 668

1: PRENT OF DRAWINGS
ASU AGEN‘NALLYFILED 103-1

 quvoSOVAYSLNIAYOMLAN

00e

oo

coHOLINOW
~~

|AYONaINNHOSSSOOUd1SOH

301g

—NOLLISINOOY
LayOWd

Loe

asvavivaHaSUVdEeeee“ar:hotRRS|a

EX 1017 Page 668

EX 1017 Page 669

RINT OF DRAWINGS
- ASORIGINALLY FILED 001-1

a

16/18

=[2Offpet= 12

: FIG. 16

aesyaE
EX 1017 Page 669

EX 1017 Page 670

Aah2,
i

PRINT OF DRAWING)
ASORIGINALLY FILED©O' !DRIGINAL

17/18
1702

1704

ffseteySa

\E5Offfet = 14

. FIG. 17A
1712SURETY

(

 isto|{//]/Wieaipes/7//Arlae
TM14 VATE|ProtocolAHSENT)Src Address

Dst Address

 Src Address

Src Hash (2)

Preto)
[L4Offfet = L3 + (IHL/4)

VeeeT

FIG. 17B

IDP = 0x0600*
IP = 0x0800*

CHAOSNET= 0x0804
ARP = 0x0806
VIP = 0xOBAD*

VLOOP = 0x0BAE
VECHO = Ox0BAF

NETBIOS-3COM = 0x3C00-
0x3COD #

DEC-MOP= 0x6001
DEC-RC = 0x6002

DEC-DRP= 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP= 0x8035
ATALK = 0x809B*

VLOOP= 0x80C4
VECHO= 0x80C5
SNA-TH = 0x80D5*

IPv

LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

1752

ICMP = 1

OSPF = 89

*L4 Decoding
#3 Re-Decoding

EX 1017 Page 670

EX 1017 Page 671

001-1
OF DRAWING®PRINT

~ * AS ORIGINALLY FILED

18/18

PROTOCOL

HLONA1GTsi4
\

PaeRin,

FIG. 18APeareBaba
4870

“a
LUT NUM,

FIG. 18B

Qala40Hq093LAg
A1850

jO00LoWd
EX 1017 Page 671

EX 1017 Page 672

© 8
Application 09/608237, Page 2

ur

X__The Commissioner is hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

1 008 ZZ_—
Date Dov Rosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

EX 1017 Page 672

EX 1017 Page 673

~ Our Docket/Ref. No.: appr.&)1 €) Patent ,
IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

APR + 2 afypri@l|No.: 09/608237 Group Art Unit: 27 °C RECEIVED
a j = : -.

Filg/ June 30, 2000 Examiner. APR 16 2001
‘tle: METHOD AND APPARATUS FOR - ‘Technology Center 2100

MONITORING TRAFFIC IN A

NETWORK

Commissionerfor Patents

Washington, D.C. 20231

TRANSMITTAL: INFORMA'TION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

x

x

x

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A checkfor petition fees.

Return postcard.

The commissioneris hereby authorized to charge payment of any missing fee associated
with this communication orcredit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,
Date: April 9, 2001

osenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

 Certificate of Mailing under 37 CFR 1.18

[hereby certify that this correspondenceis being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: Aart,22©{
Signature.

eld, Reg No 38,687

EX 1017 Page 673

ee ~ . + wnt me

EX 1017 Page 674

4 ss .

VP BuyR ocket/Ref. No.: appro.) ” J.) Patent
v IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 Group Art Unit: 2755

Filed: June 30, 2000 Examiner:
Title) METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK
CEIVER

9, 2002

Genter2109—

RE

APR 2

Commissioner for Patents Tectinology
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X_ An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copyof each reference cited in form 1449.

A checkfor petition fees.

Return postcard.befee|
The commissioner is hereby authorized to charge payment of any missing fec associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Sov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No, 38687

Date: 30 Mar 202 7Z_

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

 I herebycertify that this correspondence is being deposited with the United States Postal Serviceasfirst
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: 2© Z WM Lt 2802signature: oA.Dov mfeld, Reg. No. 38,687

EX 1017 Page 674

EX 1017 Page 675EX 1017 Page 675

EX 1017 Page 676

CPE By

e, (2 0)
1 Qur Ref./Docket No*.APPT-O01-1 Patent

1 i
we & IN THE UNITED STATES PATENT AND TRADEMARK OFFICEa &

Yar TRAD“— Beaventor(s): Dietz,et al.
Assignee: Hi/fn, Inc.

Patent No: 6651099

Issue Date: November, 18, 2003

Application No.: 09/608237

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

1 REQUEST FOR CERTIFICATE OF CORRECTIONS

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

The above patent contains significant error as indicated on the attached Certificate of Correction form
(submitted in duplicate).

X__ Such error arose through the fault of the Patent and Trademark Office. It is requested that the
certificate be issued at no cost to the applicant.

However,if it is determined that the error arose through the fault of applicant(s), please note that
sucherroris of clerical error or minor nature and occurred in good faith and therefore issuance of the
certificate of Correction is respectfully requested. The Commissioneris authorized to charge Deposit
Account No. 50-0292 any required fee. A duplicate of this request is attached.

Sucherrors specifically:

In col. 3, line 14, delete the word "lo"

In col. 15, line 45, kindly replace "ump" with --jump--

In col. 28, line 65, change "MEB"to --MIB--.

Certificate of Mailing under 37 CFR 1.8
I herebycertify that this response is being deposited with the United States Postal Serviceas first class mail in an
envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on.

Date. Hb : 25 200 Y Signed:
Name: Amy Drury

EX 1017 Page 676

EX 1017 Page 677

n 6Our Ref./Docket wokdepr-o0! -1 ~~ Page 2

The undersigned requests being contacted at (510) 547-3378if there are any questionsorclarifications,
or if there are any problems with issuanceof the Certificate of Correction.

Respectfully Submitted,

Fb: 25 200 Y
Date Dov Rosenfeld, Reg. No. 38687

Agent of Record.

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2,
Oakland, CA 94618
Tel. 510-547-3378; Fax: 510-291-2985

EX 1017 Page 677

EX 1017 Page 678

*. ’ - eae fe)Jul 08 O03 03:35p nov denser +1-5K 291-2985 p.l

,

-

-INVENTEK Fax
Dov Rosenteld

5507 College Avenue, Suite 2
Oakland, CA 94618, USA

Phone: (510)547-3378; Fax: (510)653-7992
dov@ inventek.com

Patent Application Ser. No.: 09/608237 Ref./Docket No: APPT-001-1

Applicant(s): Dietz,et al. Examiner... Moustafa M. Meky

Filing Date: Tune 30, 2000 Art Unit: 2157

FAX COVER PAGE

TO: Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

United States Patent and Trademark Office

(Examiner Moustafa M. Meky, Art Unit 2157)

Fax No.: —-703-30#9652 74+ 6-123I
DATE: July 08, 2003

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Response to Office Action

Number ofpages including cover: 13

OFFICIAL COMMUNICATION |

PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO

EXAMINER MOUSTAFA M. MEKY, ART UNIT
2157

Certificate of Facsimile Transmission under 37 CFR 1.8

Thereby certify that this responseis being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703-308-90S2addressed the Commissioner for Patents, P.O. Box 1450, Alexandri 22313-1450
on. T46-TABY

Date: + 8/O%
scnfeld, Reg. No. 38687

Received from < +1 510 291 2985 > at 7/8/03 7:36:18 PM [Eastern Daylight Time]

EX 1017 Page 678

EX 1017 Page 679

- Cy.Jul O8 O03 03:39p Dosa =ssenfeld +1-5.. 4291-2985 p.2

TRA N SMITTA L Application Number 09/608237

FORM
(to ba usedfor all correspondence atter Initial filing)

Filing Date

Dietz, Russell S.

2157

Examiner Name Moustafa M. Meky

Attorney Docket Number APPT-001-1

ENCLOSURES (checkalf that apply)

Cl Fee Transmittal Form After Allowance Communication
to Group

Assignment Papers

{for an Application)
Drawing{s)Fee Attached Appeal Communication to Board

of Appeals and Interferences
Amendment / Response

Cl After Final

Tr] Affidavits/declaration(s)

Licensing-related Papers Appeal Communication to Group
(Appeal Notice, Bnef, Reply Brief)

Petition Routing Slip (PTO/SB/69) Proprietary Information
and Accompanying Petition
To Convert a Status Letter

Provisional Application
Powerof Attorney, Revocation
Change of Correspondence
Address

Terminal Disclaimer

Extension of Time Request Additional Enclosure(s)
(please ideniify below):

Express Abandonment Request Return Postcard

Information Disclosure Statement Small Entity Statement Fo
Certified Copy of Priority Document(s) Request of Refund

C]

L]

CO

C

C

O

C

C

O

OOOOOOOooOd

Responseto Missing Parts/ incomplete Remarks
Application

Responseto Missing Parts under 37
GFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. Na. 38687
Individual name .

Signature

MOOOOOOOOF

Date

ADDRESS FOR CORRESPONDENCE

Firm Dov Rosenfeld

or 5507 College Avenue, Suite 2
Individual name Oakiand, CA 94618, Tel: +1-510-547-3378

CERTIFICATE OF FACSIMILE TRANSMISSION

| hereby certify that this correspondenceis beingfacsimile transmitted with the United States Patent and Trademark Office at

Telephone number 703-746-7239 addressed to: Commissionerfor Patents, P.O. Box 1450, Alexandria, VA duly 8, 200322313-1450 on this date:

Dov Rosenfeld,Reg NSA8687

iim

Received from < +1 510 291 2985> at 7/8/03 7:36:18 PM [Eastern Daylight Time]

EX 1017 Page 679

EX 1017 Page 680

“

 Jul O08 O03 023:39p +1- __/-e91-2985 p.3

Our Ref./Docket No: APPT-001-1 tent, éIN THE UNITED STATES PATENT AND TRADEMARK orien’pe °

Applicant(s): Dietz, et al.

Application No.: 09/608237

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

Group Art Unit: 2157

Examiner: Moustafa M. Meky

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Non Fee Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the responseare:

formal drawings (with separate letter);

This application has:
a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

X__ No additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

Lhercbycertify that this response is being facsimile ransmitied to the United States Patent and Trademark
Office at telephone number 783-308-8052 addressed the Commissioner for Patents, P.O. Box 1450,
Alexandria, VA 22313-1450 on. 7O 3=Ht b-TAAT

Date: +t [S) 63B
osenfeld, Reg. No.:-38687

Received from < +1 510 291 2985> at 7/8/03 7:36:18 PM [Eastern Daylight Time]

EX 1017 Page 680

EX 1017 Page 681

 (oo f-)
, af ~ y

Jul O8 O39 O03: 40p Dots~wsenfeld +1-S..5-291-2985 p.4

S/N 09/608237 Page 4 APPT-001-1

X__ Applicant(s) believe(s) that no Extension of Timeis required. However,this
conditional petition is being made to provide for the possibility that applicant has
inadvertently overlooked the need fora petition for an extension oftime.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a)of:

one months ($110) two months ($410)

two months ($930) four months ($1450)

If an additional extension oftime is required. please consider this as a petition therefor.

A credit card payment form for the required fee(s) is attached.

The Commissioner is hereby authorized to charge paymentof the following fees
associated with this communication or credit any overpayment to Deposit Account
No. 50-0292 (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

X_ Any missingfiling fees required under 37 CFR 1.16 for presentation of
additional claims.

X_ Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

+/8 /O2
Date Dov Roséfifeld, Reg. No. 38687 _

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +1-510-547-3378; Fax: +1-510-291-2985

Received from < +1 §10 291 2985 > at 7/8/03 7:36:18 PM [Eastern Daylight Time]

EX 1017 Page 681

EX 1017 Page 682

 f- ‘
Soyaf Jul og O39 O3:40p Doti-usenfeld +1- -291-2985 p.5

° |3. LP NOCS
i ed

Our Ref./Docket No: APPT-001-1 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al. Group Art Unit: 2157

Application No.: 09/608237 Examiner: Moustafa M. Meky
Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop No Fee Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.
Included with the responseare:

formal drawings (with separate letter);

This application has:
asmall entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

X_ No additionalfee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

Thereby certify that this response is being facsimile transmitted to the United States Patent and Trademark
Office at telephone number 703-398-9052 addressed the Commissioner for Patents, P.O. Box 1450, —
Alexandria, VA 22313-1450 on, “Ure 7229

Date: Fy By 0 b Signed:
Name: Dov nfeld, Rep. No. 38687

Received from < +1 510 291 2985 > at 7/8/03 7:36:13 PM [Eastern Daylight Time]

EX 1017 Page 682

EX 1017 Page 683

A)
}

+1-_4291-2985 p.s Jul O08 O3 03:40p
*

S/N 09/608237 Page 6 APPT-001-1

X__ Applicant(s) believe(s) that no Extension of Time is required. However, this
conditional petition is being madeto provide for the possibility that applicant has
inadvertently overlooked the needfor a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($410)

two months ($930) four months ($1450)

If an additional extension of time is required, please considerthis as a petition therefor.

A credit card payment formfor the required fee(s) is attached.

X The Commissioneris hereby authorized to charge payment of the following fees
associated with this communication or credit any overpayment to Deposit Account
No. 50-0292, (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Xx Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

_X__ Any missing extension orpetition fees required under 37 CFR 1.17.

Respectfully Submitted,

+/3 [03
Date

osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue,Suite 2
Oakland, CA 94618
Tel. +1-510-547-3378; Fax: +1-510-291-2985

Received from < +1 510 291 2985 > at 7/803 7:36:18 PM [Eastern Daylight Time)

EX 1017 Page 683

EX 1017 Page 684

ae

(fo a Se

 . pplication or Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD

Effective December 29, 1999

CLAIMS ASFILED - PART! SMALL ENTITY OTHER THAN
Column 1 Column 2 TYPE C_] OR SMALL ENTITY

NUMBER FILED NUMBER EXTRA TEE

MULTIPLE DEPENDENT CLAIM PRESENT

QoOo yDoD
~<ae> i&m

OR] +250=

* If the difference in column 1 is less than zero, enter “O” in column 2

OR TOTAL

CLAIMS AS AMENDED- PARTII OTHER THAN

CLAIMS HIGHEST
ADDI- ADDI-REMAINING NUMBER

AFTER PREVIOUSLY OR. RATE |TIONAL RATE|TIONAL
AMENDMENT FEE FEE

X$18= =| Pex
=} Poon]

+130=

TOTAL
ADDIT. FEE

X78=
AMENDMENTA

Ooa

Oo aD

 FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

OR] +260=mea,

TOTAL
OR AOCDIT. FEE

Coiumn 1 Column 2 Column 3

CLAIMS HIGHEST

REMAINING NUMBER PRESENT ADDI- ADDI-
AFTER PREVIOUSLY “| EXTRA RATE {TIONAL RATE}TIONAL

AMENDMENT FEE FEE

QO D xNi

Pen[
Pa

|

 AMENDMENTB

 FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

+130=

TOTAL
ADDIT. FEE

Oo J +to oD oO
i

TOTAL
oO wv

Column1 Column 2 Column 3
CLAIMS HIGHEST
 REMAINING NUMBER ADDI-

AFTER PREVIOUSLY RATE|TIONAL
AMENDMENT PAID FOR FEE

vu
mw xmdn om PZ

5

>Q Q5 7 m m

OR|X%$18=AMENDMENTC
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM_-

oR| X78=

+260=Oa

* If the entry in column 1 is less than the entry in column 2, write “O” in column 3.
“* If the “Highest Number Previously Paid For” IN THIS SPACEis less than 20, enter "20."
***If the “Highest Number Previously Paid For’ iN THiS SPACEts less than 3, enter“3.”

The “Highest Number PreviouslyPaid For” (Total or Independent) is the highest number found in the appropriate, box in column1.

OR .__ TOTAL

> QO oa nm m

FORM PTO-875 Zant and Traneatk OHina $65 PEFARTMENT OF COMMERCE
(Mev 12/99) = "US GPO. 2000463-433/29044

EX 1017 Page 684

EX 1017 Page 685

nt ,x. we
ISSUE SLIP STAPLE AREA(for additional cross references)

' cy POSITION L INITIALS ID NO.

a ‘PE DETERMINATION

S1.P.£. CLASSIFIER Ad

FORMALITY REVIEW : _ fe TC & Ss (
RESPONSE FORMALITY REVIEW _ |

| |

INDEX OF CLAIMS

OC ecee - a . . Rejected Now wu. veesee oe wes Non-elected '
Sete ee . Allowed Po eae ee sere. [interference '
— (Through numeral). . Canceled A vice cee Appeal |

1 eee eee soe Restricted O.. Objected
2a "

Date }

|4 NI=TF,-|by z5 iWw

LetLINE]

TiFinalo
£

Onginal{3 ,Hee
}_

Ooo

To Final9
»

SBT|Onginal|3
76/22/24:

oOao

+ !AQO ;[Finalez|ASOrginal{3 to

++]
+}

 oe
|Hoo LaT oy
 Njoaafa|

Slola
tf

|
4.

f{_

oy

ane BLS|8 rT
aa

izptttt[TTT

I ; [yf 109
jo) == = | thro]
: | 61] | 44
' 62] | 112 { :1 i ct | [63 | 13, |
1 | [64 anni 14 |Fi 65 11
1 : [“| 66 1 wie | :

| L 7 : 4 r :1 67 7 ;

Lt | [Jes || Ty 118) I 1: 14 ffi fbi “| 69 ; gl | L2 | 70 ; |
2|tf 121

122,

73 | | im 1a4 Pry 74 iy 2 12a] Hear | | 76 LH 1 [has Hy

CI

 aan3(> i 44

4
8

TET

4
128)
 ; 4

79 29

80} ty | | 30] 1
: | a CA et

+H | [82 | LE | 32 |[8g ha

: qik)

39)

— +
 A

 7 4

|

 +

144 |

eT OCT eg |, fea}| T a 14) | |
He 4 Her CHE HERE

4 | [96 l. | 46 |

Toe C CI FEEEEEEFEHAE

at TPP
98 | H 4: ;t a cI CIEE

lf more than 150 claims or 10 actions

staple additional sheet here |

Let
|

Ht CeCeHCE

eT thayPrt tree ree

EX 1017 Page 685

EX 1017 Page 686

SEARCH NOTES
(INCLUDING SEARCH STRATEGY)

bfeipos Wiel

 puP iimPe22) MEMRaT

—oo0004

 Fess|sib.|bate|Emr|

“104 [224
1G/03|144|rr

(RICHT ONTAINE

 09608237 Glasbi

EX 1017 Page 686

EX 1017 Page 687

LICATIONreAU
4

«Lien f] hap papers,
7 ceoc _—vee O&-AG oo 43.Asteto
JL. DS.=f: hy ee ec\id -3 mos

To permemnrenges oanen

ue eyo. .
ad B75 aPdi06/30/0

CONTENTS
Date Received
(Incl. C. of M.)or
Date Mailed

Hele
Ur\ys 8

vd($02 46.
é

i

INITIALS L#

Date Received
(Incl. CG. of M.)or

Date Mailed

82.

PrereeeCee eewersneneanoneet an aaae Pei peereeeamee eran

EX 1017 Page 687

EX 1017 Page 688

| fOur Ref./Docket No:AByT-001-1 CO Patent
IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

peertony,

VP

“cs
Applicant(s): Dietz,et al. O ON, Group Art Unit: 2755n

Application No.: 09/608237 Noy 0.6 2000 i Pxaminer: (Unassigned)
Filed: June 30, 2000

Qi WrRho
Title: METHOD AND APPARAT

MONTTYORING TRAFFIC IN A NETWORK

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X_ Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration; _

X_ Executed Assignment with assignment coversheet.

X Acredit card payment form in the amountof $ 1772.00_is attached, being for:
Statutory basic filing fee: $710
Additional claim fee of $782
Assignment recordation fee of$40
Extension Fee First Month of$110
Missing Parts Surcharge$130

ebb
_____Applicant(s) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

X_ one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please considerthis as a petition therefor.

Certificate of Mailing under 37 CFR 1.8
T herebycertify that this response is being deposited with the United States Postal Service as first class mai} in an
envelope addressed to the Assistant Commissioner for Patents, Washington, D.C.

; Dov Rosenfeld, Reg No. 38687

EX 1017 Page 688

EX 1017 Page 689

- = shldards9 wer(]ey - TGci

. YG. jefochesb ethane

| - thie

Se Ttgi

- fhepet

_ befHE:BETpeMGs

-=xa, ime. He rtieleedaPEstepAftgett,
of the Selahpoterd . PNBO

PdHepAMS

picoeSteFFiyigh7
pedawfhakebrebche sulescéthdvila
sadCe That Th.fearditebenConus

ed 4sanatiihcl-vaiT.Fro.

ASAMDsed wi lK thehe ah. pag
ftwSpeeopep,yokputethe,flora

onAf

—+|

L

EX 1017 Page 689

EX 1017 Page 690

ee op

gy9fmf -
heorpBn yomye a
Sfpegg ota bongsheffonofl a
aew ge

oghgon ueBoa:
_ a vnfh gtPirrd Hp Pre |

oafBpem-“oO Lowpeodnne_frwnap}pre — ~ ~——
. npIPLEEhe fw $7} yeeebee
eeoeAobippeyte&s:maf?ggne) — —
 prngeayve fyewornastel-oP (reaJaane aa em em

Fronogeehieretbheyer Se
—— soQiapadry, ~ - oy Te

PwnedprepsbfBesry- — | -—-
. Parad orsA v-Beard oFppd _
- HY14D eouperkewaptpeeRisaey ndgo—-LepradoO

Stor 7°
EX 1017 Page 690

EX 1017 Page 691

1 wthDOAa t ae 2 Fe nn ae aan 4 ~
hep tenner, . EAE manne OE Orpen Bente 4 Ort

its

Freeform Search

US Patents Full-Text Database +I

| US Pre-Grant Publication Full-Text Database |
Database: : JPO Abstracts Database :atabase: " Epo Abstracts Database i

- Derwent World Patents Index

: {BM Technical Disclosure Bulletins ea
“14 same15 eT]

Term: |
ce2

Display: 10| Documents in Display Format: ; TI | Starting with Number !2 |
Generate: © Hit List © Hit Count © Side by Side © Image

i i ‘ }
[Search[Clear][Help }[_Logout_}[interrupt]

TUL BSHDeOUST Edit S umbers Ce) DTI}

i

Search History

DATE: Saturday, June 21,2003 Printable Copy Create Case

Set Name Query Hit Count Set Name
side by side result set

DB=USPT; PLUR=YES; OP=ADJ

L6 14 same 15 50 Lo

Ls (packet or datagram) near5 flow 3376 LS

14_flow near3 (entry or entries) 4883 L4

L3 11 same L2 18 L3

12 (source or destination) adj3 address$2 15666 L2

Ll (packet or datagram) near3 signature 199 Ll

END OF SEARCH HISTORY

EX 1017 Page 691

lame TT

