
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 17, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/608,237

FILING DA TE: June 30, 2000

PA TENT NUMBER: 6,651,099

ISSUE DA TE: November 18, 2003

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

~~~ 
P.R. GRANT 

Certifying Officer 

PART ({) OF (<A PART(S) 

EX 1017 Page 1



I 
I 

d 
1 
1 

w 
::J 
II) 

!!2 

/ 

~ / Rus sell Di~i z 
~ . J,:J'seph Mai :-:n-er· 
u Andrew Kopper~aver i William Bares · 
~ 

g 

.. 

ORIGINAL I 
CLASS SUBCLASS 

·7° Cf 1-1-)-f 
INTERNATIONAL CLASSIFICATION 

r. 
ti Db I= /3/oo 

/ 

- }r:~ -{;~ ·. l-· ~851;99' 
-·~--~ r f 11t\ll\Hl\l\\l\~\~ll~l.1\llllllll\\l ! ·---· - . • . a .,; 

U.S. UTILITY Patent Application 
..__ ...... 1:1.1.J..,.,L...---'..;..J i 

I. 

\\ ~ 0.1.P.E. · PATENT DATE 

~ ifl . (v.:J.. · _-/ ijO\J : S 1003 •. 
v SCANNED _ Q.A:-=nr_ 

··z 1·s-7 · 

' 

PT0-2040 
12199 

ISSUING CLASSIFICATION ' .~ 

CROSS REFERENCE(S) 

CLASS SUbCLASS (ONE SUBCLASS PER BLOCK) ~ 

370 ~fj Cf .. 
.. 

,, . .. . 
' 

. :~ 

.. 
.. 

' 
>; ., 

. 
: 

0 ConUilued on Issue Slip Inside F'ile Jacket 

l 0--~-n ':fonnalDm'Winos ( ~ Slts)seLL : .. . ( ,>;- ~ ()__ Of) 

DTERMINAL DRAWINGS CLAIMS ALLOWED 
DISCLAIMER 

.. .. 

Sheets Drwg. · Rgs. Drwg. : .Print Fig . . Total Claims Print Claim for 0 .G. 

18 ·20 :. ' 'lb 
:., 

/0 ~-' , ' .. \ 
· .0 The tenn of this patent 

: ~ . 

-~ NOTICE OF ALLOWANCE MAILED 

subsequent to (date) 

has been disclaimed. ._,- (Asslllant Examine~ .. ·.· .~ 7-11-03 .. 

mru¥w.f ~/1df D The tenn of this patent shiill 
not extend beyond the expiration date 
of U.S Patent. No. ·- ISSUE FEE 

Alt. 

P~EY>MINfli-,/ l6/e3 
Amount Due Dat e Paid ' 

'*l,3oo·~ 
q ..... 'J..l/ -o'5 . {Prtmary Examiner) · · (Date) 

~ _q~ ~i·1~zs.o1 
· ISSUE BATCH NUMBER 

0 The tenninal _mo nths of .··.· 
this patent have been disclaimed. 

(Legal lnitr¥1en1s Examiner) .. ., .. (Date). 

' ; .,. WARNING: 
The Information disclosed herein may be resMcted. Unauthorized di~clo~~~~ ·,,;~;.·be piohlbi ted by the United States Code Title 35, Sections 122, 181 and 368. 
Possession ou~ide the U.S. Patent & Trademark Office is restrict ed to authori zed employees and contractors only. . · 

Fonn PT0-436A 
(Rev. B/99) 

,ssue. FEE \N F\LE 
FILED WITH: · D DISK (CRF) O FICHE O CD-ROM 

·(Attached In pocket on nght Inside flap) 

t8 
I' . 

I. :i: 

... 

< 

\ 

t 
.r ;:e 

., 
I 
l 
i 

'\ .J 

. ' 
(1_, 

EX 1017 Page 2

 
 

PATENT DATE

 _ M
scmusn _££Z:_ m:3L  

 
 

  
—-

l

.~

: _

pucn‘no CONTIPFIlOR cuss Examines ., I - ,. _. _ .9 . 7 .

I OQIEO 7‘ D {09 I_..‘-.,"-'""-f_' ‘_ l

E R M7 M y f l._l. '- - - I‘1:.i.- er , . ‘ L 1

i % fir .. _. Fin—31:3: rr'll'lak‘éi‘l" CE}: 11%! 9"" l I1 l a r E: "ES ‘ , i '

g l-Usl.l_|‘| -1 F9.“ n. 20'” .
Mel; |.- .;_..-_1 : a: gap; venture for ru-jnitm'il'lg traffic in a wugl'kj ,kl‘ , _

| ~1rl -—1 l _ {I Jar-“H .r‘. I _. .

! Pro-2m l ‘5

was r l
x" - . - ' —— * I

|

L Er .

'l

INTERNATIONAL CLASSIFICATION

_ "' . o I u. ’ I

l CI I
DISCLAIMER Sheets DW‘ Figs, DI'UIIg.Pl'II1I FIQ- . I

l 20. --'IO - l
I: The term of this patant . Ebasquant to -'
has been dlsclalmed.

I: The tam: of INS palanl shgn - -
no! extend beyond the axplrallon data ' M I _ _ ' ' .v

_ of US Patent. No.

 

 

  unusual M. MEN A ‘ .

PWEXAMINER jj/é [I 3 Amount Due Dale Paid '1‘
[Pllmnry Emmlnev‘] ' r #673. - 3'-

ISSUE BATCH NUMBER v l
C The terminal _manms of g

this patent have been disclaimed. {E
WARNING: . l 5
The lninrmalion disdosed herein may be restricted. Unsumonza-d disclosule may be pmhlbiled by the Unllad Status Coda Tllll! 35‘ Seclians 122. 181 and SEE. ' 5
Possession oufiida the US. Patent I Trademark om is reslrlcled Io aulhon'zed employees and :omraclors nary. E JPF v i'.

(3;: Egg-‘36! FlLEI'J WITH. D OISK (CRF) E] FlCHE D (JD-ROM

Ema m s.

 
EX 1017 Page 2

 



t 

l 

of I 

UNITED STATES PATENT AND ThADEMARK 0FFIGE 

11811 ii 11111111!1 WIIIIMlll lill 1181 
Bib Data Sheet 

SERIAL NUMBER 
09/608,237 

APPLICANTS 

FILING DATE 
06/30/2000 

RULE 

Russell S. Dietz, San Jose, CA; 
Joseph R. Maixner, Aptos, CA; 
Andrew A. Koppenhaver, Littleton, CO; 
William H. Bares, Germantown, TN; 
Haig A. Sarkissian, San Antonio, TX; 
James F. Torgerson, Andover, MN; 

** CONTINUING DATA***********************"'* 

CLASS 
709 

COMMIS51:::lNER F'OR PATENTS 
UNITED STATES PATENT ANO TRADEillARK OFFICE 

W..SHINGn:lN, D.C. 20231 
WW\11.uspto.gO\I 

CONFIRMATION NO. 9993 

GROUP ART UNIT 
2755 

ATTORNEY 
DOCKET NO. 
APPT-001-1 

THIS APPL~Cl,AIIVIS BENEFIT OF 60/141,903 06/30/1999 
~W, ,1MM 

~~ FO~"A~~~.:r(ONS ***************~**** 

IF REQUIRED, FOREIGN FILING LICENSE 
GRANTED** 08/21/2000 

Foreign Priority claimed CJ yes~ no 

~5 USC 119 (a-d) conditions CJ yes~ no CJ Met after 
met Allowance • J 
!Verified and ~~ r, 
Acknowledged Examiner's Signature Tila1s 
!ADDRESS 
Dov Rosenfeld 

Suite 2 
5507 College Avenue 

Oakland , CA 94618 

TITLE 

STATE OR SHEETS 
COUNTRY DRAWING 

CA 18 

TOTAL 
CLAIMS 

59 

INDEPENDENT 
CLAIMS 

4 

Method and apparatus for monitoring traffic in a network 

!CJ 1.16 Fees (Filing) 

J !CJ All Fees 

] 
FILING FEE FEES: Authority has been given in Paper CJ 1.17 Fees ( Processing Ext. of 
RECEIVED No. ·to charge/credit DEPOSIT ACCOUNT 1~t=im=e====) =========::: 

1622 No. for following: / •'~=CJ=1.=18=Fe=e=s=(=ls=s=ue=)====::::::~ 

1ll=CJ==Ot;;;;he==r ========~=== .--..;;;;; 
!CJ Credit -----=--1 

r 
I 
I 

EX 1017 Page 3

army—r21”:

“‘1

of}

UNITED STATES PATENT AND ThADEMARx OFFICE
COMMlssmNER ma PATENTS

UNITED STATES PATENT AND TRADEMARK OFFlCEWIINGmN. 11C. 2023:
wwusplugov

lllllllllllllMllllllfllllfllillfllflllllllllll , CONFmMAmN no, 3993
Bib Data Sheet

  
FlLlNG DATE 1 ‘ATTORNEY

SERIAL NUMBER 0630,2000 GROUP ART UN" DOCKET NO.
09/608,237

RULE 2755 APPT-OO'T -1

' : PPLlCANTS

Russell 8. Dietz, San Jose, CA;
Joseph R. Maixner. Aplos. CA;
Andrew A. Keppenhaver, Littlelon, CO;
William H. Bares, Germanlown, TN;
Haig A. Sarkissian, San Antonio, TX;
James F. Torgerson, Andover, MN;

* CoNT‘NUlNG DAT *tktflti**t*§*lmitt***hti

THlS APPLN C l S BENEFIT OF 601141.903 06/30/1999

ya» I MW
Ils- FORE‘GN Apfiw'r 0N3 Q*§l*i*****ii**fiflfi*max/V l
IF REQUIRED, FOREIGN FILING LICENSE
GRANTED ** 08/21/2000

Foreign Priority claimed D yes .
n0

:5 USC119(a-d)oonditlnns D ”5% m C] Mat 3“” STATE OR SHEETS INDEPENDENCOUNTRY DRAWING CLAIMS

Allowance I a 1 4Examiner‘s Signature I lials ‘

“to Charge/credit DEPOSlT ACCOUNT

for following: ,

in Other
{D Credit ]  

 
   

EX 1017 Page 3



w 

IN THE U.S. PATENT AND TRADEMARK OFFICE 
Application Transmittal Sheet 

Box Patent Application 
ASSISTANT COMMISSIONER FOR PATENTS 
Washington, D.C. 20231 

Dear Assistant Commissioner: 

Transmitted herewith is the patent application of 

INVENTOR(s)/APPLICANT(s) 

Our Ref./Docket No.: APPT-001-1 

Last Name First Name, MI Residence (City and State or Country) 

Dietz Russell S. San Jose, CA 
Maixner Joseph R. Aptos, CA 
Koppenhaver Andrew A. Fairfax, VA 

Additional inventors are being named on separately numberied sheets attached hereto. 

TITLE OF THE INVENTION 

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NE1WORK 

Included are: 

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S) 

Dov Rosenfeld, Reg. No. 38,387 
5507 College Avenue, Suite 2 
Oakland, California, 94618 
Telephone: (510) 547-3378; Fax: (510) 653-7992 

ENCWSED APPLICATION PARTS (check all that apply) 

_x_ _§§__ sheet(s) of specification, claims, and abstract 
_x_ .ll._ sheet(s) offonnal Drawing(s) with a submission letter to the Official Draftsperson 

Information Disclosure Statement. : 
Form PT0-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a 
copy of each references included in PT0-1449. 
Declaration and Power of Attorney 
An assignment of the invention to Apptitude, Inc. 
A letter requesting recordation of the assignment. 
An assignment Cover Sheet. · 

_x_ Additional inventors are being named on separately numbered sba@ts attached hereto. 
_x_ Return postcard. ,,, 
This application has: 

a small entity status. A verified statement: 
is enclosed 

__ was already filed. 

The fee has been calculated as shown in the following page. 

'Certificate of Mailing under 37 CFR 1.10 

I hereby certify that this application and all attachments are being deposited with the United States Postal 
Service as Express Mail (Express Mail_I,abel: EI417961944US in an envelope addressed to Box Patent 
Application, Asetlstant Commission" for Patents, Washington, D.C~ 

Date: ~ ?J.c? '-~ Sign · ---. 
{/" 7 Name. ov Rosenfeld, Reg. No. 38687 

EX 1017 Page 4

11.le?till“EdiEatill».
2::

 

“EllSill”'.1151.
n.

[Cl31leKill5E;

dleHt

 
 

  
  

09-0300 .fg

IN THE US. PATENT AND TRADEMARK OFFICE

Application Transmittal Sheet

Our RefJDocket No.: APPT—OOl-l

Box Patent Application .,_.

ASSISTANT COMMISSIONER FOR PATENTS ”E:
Washington, D.C. 20231 Sfléo

“hoo‘éa
Dear Assistant Commissioner: mafia 5

Transmitted herewith is the patent application of o‘ugo
see

INVENTORgsz/APPLICANTgs) " S
Last Name First Namez MI Residence gCitx and State or Country)

Dietz Russell S. San Jose, CA

Maixner Joseph R. Aptos, CA
Koppenhaver Andrew A. Fairfax, VA

Additional inventors are being named on separately numbered sheets attached hereto.
 

TITLE OF THE INVENTION 

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S!

Dov Rosenfeld, Reg. No. 38.38?
5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: {510) 547-3378; Fax: (510) 653-7992 '

ENCLOSED APPLICATION PARTS (check all that a l )

Included are:

X 66 sheet(s) of specification, claims, and abstract
18 sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson

Information Disclosure Statement. ( "
Form PTO-I449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATIQN, together with a

copy of each references included in PTO-1449.
Declaration and Power of Attorney
An assignment of the invention to Aggtimde, Inc.

A letter requesting recordation of the assignments
An assignment Cover Sheet.
Additional inventors are being named on separately numbered stasis attached hereto.
Return postcard /

This application has:
a small entity status. A verified statement:

is enclosed

was already filed.

 

 

The fee has been calculated as shown in the following page.

 
 

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being depOsited with the United States Postal
Service as Express Mail {Express MailLabel: BI417961944US in an envelope addressed to Box Patent

M

Application, Assistant Commissioner for Patents, Washington, DC 20231 0

Date: a& Sign ‘

Name. ov Rosenfcld, Reg. No. 38687

EX 1017 Page 4

 



SUBMISSION DOCUMENT 
ATIORNEYDOCKETNO. APPT-001-l 

TOTAL CLAIMS 

TOTAL 59 
CLAIMS 

INDEP. 4 
CLAIMS 

Page2 

NO.OFEXTRA RATE EXTRA CLAIM 
CLAIMS FEE 

39 $18 $ 702.00 

I $78 $ 78.00 

BASIC APPLICATION FEE: $ 690.00 

TOTAL FEES PAYABLE: $1,470.00 

METHOD OF PAYMENT 

A check in the amount of is attached for application fee and presentation of claims. 
A check in the amount of$ 40.00 is attached for recordation of the Assignment. 
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees 

required for this filing or credit any overpayment to Deposit Account No. 50-0292 
(A DUPLICATE OF THIS TRANSMITTAL IS ATIACHED): 

~7t:,~ 
0Date 

Correspondence Address: 
Dov Rosenfeld 
5507 College Avenue, Suite 2 
Oakland, California, 94618 
Telephone: (510) 547-3378; Fax: (510) 653-7992 

Respectfully Submitted, 

EX 1017 Page 5

SUBMISSION DOCUMENT

ATTORNEY DOCKET NO. APPT-OOl-l

— om —TOTAL CIAMS CLAIMS

TOTAL $ 70200
CLAIMS

Page 2

 
 

 

EXTRA CLAIM

 
 

 

CLAIMS

BASIC APPLICATION FEE: $ 69000

TOTAL FEES PAYABLE: $1,470.00

METHOD OF PAYMENT

A check in the amount of is attached for application fee and presentation of claims.
A check in the amount of 3 40.00 is attached for recordation of the Assignment.
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees

required for this filing or credit any overpayment to Deposit Account No. 50—0292
(A DUPLICATE OF THIS TRANSMI'I'I’AL IS ATTACHED):

:1 $0 1196-0
:3: Date

 
Respectfully Submitted,

  
Dov osenfeld , Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

:2: 5507 College Avenue, Suite 2
: Oakland, California, 94618
;; Telephone: (5 10) 547-3378; Fax: (510) 653-7992 ,

EX 1017 Page 5



r 
-
I 

SUBMISSION DOCUMENT Page3 
ATIORNEY DOCKET NO. APPf-001-1 

Last Name 

Bares 

Sarkissian 

Torgerson 

ATIORNEYDOCKETNO. APPT-001-1 

Application Cover Sheet (cont.) 

INVENTOR(s)/APPLICANT(s) 

First Name, MI 

WilliamH. 

Haig A. 

JamesF. 

Residence (City and Either State or Foreign 
Country) 

Gennantown, TN 

San Antonio, Texas 

Andover,MN 

EX 1017 Page 6

SUBMISSION DOCUMENT
Page 3

ATTORNEY DOCKET NO. APPI‘«{}01—1

ATTORNEY DOCKET NO. APPT-001- 1

Application Cover Sheet (cont.)

 

 

WENTOR(S)IAPPLICANT(S)

Last Name First Name, MI Residence (City and Either State or Foreign
Country)

Bares William H. Germantown, TN

Sarkissian Haig A. San Antonio, Texas

Torgerson James F. Andover, MN

.s’

EX 1017 Page 6



I 

Our Ref./Docket No: APPT-001-1 Patent 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant(s): Dietz, et al. 

Title: METHOD AND APPARATUS FOR 
MONITORING TRAFFIC IN A NETWORK 

Group Art Unit: unassigned 

Examiner: unassigned 

LETIER TO OFFICIAL DRAFTSPERSON 
SUBMISSION OF FORMAL DRAWINGS 

The Assistant Commissioner for Patents 
Washington, DC 20231 
A TIN: Official Draftsperson 

Dear Sir or Madam: 

Attached please find _lli sheets of formal drawings to be made of record for the above 
identified patent application submitted herewith. 

Respectfully Submitted, 

Dov Rosenfeld, Reg. No. 38687 

Address for correspondence and attorney for applicant(s): 
Dov Rosenfeld, Reg. No. 38,687 
5507 College A venue, Suite 2 
Oakland; CA 94618 
Telephone: (510) 547-3378; Fax: (510) ~53-7992 

Certificate of Mailing under 37 CFR 1.10 

I hereby certify that this application and all attachments are being deposited with the United States Postal 
Service as Express Mail (Express Mail Label: EI417961944US in an envelope addressed to Box Patent 
Application, ssistant Commissioner for Patents, Washington, D.~. 202 

Date: ~- Si@ · --
. · Name: Dov Rosenfeld, Reg. No. 38687 

EX 1017 Page 7

XQMm-W..-“:’ IIIIIII31till}Iii:’EllIt’ll”’dig:Iii:
.'v-l‘rmom.mwi:‘—

3!III‘IEEIIIt‘ll:“fillps i

 

  

Our Ref./Docket No: APPT-OOH Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 
  
 

Applicant(s): Dietz, er a1.

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC 1N A NETWORK

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPEFISON

SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find L8 sheets of formal drawings to be made of record for the above

identified patent application submitted herewith.

Respectfully Submitted,

Date Dov Rosenfeld,Reg. No. 38687 ,

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,68?

5507 College Avenue, Suite 2

Oakland; CA 94618

Telephone: (510) 547-3378; Fax; (510) 653—7992

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label:Wm an e“dope addressed to Box Patent

Applieatio/* ssistant Commissioner for Patents, Washington. DC. 202.9 Mr snag \:~/__
Name: Dav Rosenfeld, Reg. No. 38687

EX 1017 Page 7

 
 



Our Ref./Docket No.: APPT-001-1 

/. 

{' 
t METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK 

{ ~ 

' 
;:~ 

·' :tJ f 
t, 
"· 

I, 

'l 
~ ~ 

& -~ 

I ii; 

I 
i 

0 

I ~ bl 
n = 

' ~ <· 

~ 
" I' 

. \ 

Inventor(s): 

DIETZ, Russell S. 
San Jose, CA 

MAIXNER, Joseph R. 
Aptos, CA 

KOPPENHAVER, Andrew A 
Fairfax, VA 

BARES, William H. 
Germantown, TN 

SARKISSIAN, Haig A 
San Antonio, Texas 

TORGERSON, James F. 
Andover, MN 

Certificate of Mailing under 37 CFR 1.10 

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail 
(Express Mail Label: EI417961944US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents, 
Washington, D.C. 20231 on. 

Date: ;,0 Signed:..-4~---~==::::::.. __ 
N : Dov Rosenfeld, Reg. No. 38687 

EX 1017 Page 8

'““rmr'w2:“
Our RefJDocket No.: APPT-OO 1—1

)I._.3‘...,.:_..A,

vi:
5.

{sK
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

Inventofis):

DIETZ, Russell S.

San Jase, CA

MAIXNER, Joseph R’

Aptos, CA

KOPPENHAVER, Andrew A.

Fairfax, VA

BABES, William H.

Germantown, TN

SARKISSIAN, Haig A.
San Antonio, Texas

TORGERSON, James F.

Andover, MN

 
g,1".

Certificate of Mailing under 37 cm 1.10

; Ihcreby certify that this application and all attachments are being deposited with the‘United States Postal Service as Express Mail
:5 (Express Mail Label: EI417961944US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

V Washington, DC. 20231 on.f

a . Signed:

; Na : Dov Rosenfeld, Reg. No. 38687

i

  
EX 1017 Page 8



' (fi J 

~
?f~: ·;r - ' 

l 

"" 

~~ 
i ~-~ 

• i 

• 
1 

METHOD AND APPARATUS FOR MONITORING 
TRAFFIC IN A NETWORK 

CROSS-REFERENCE TO RELATED APPLICATION 

This application claims the benefit of U.S. Provisional Patent Application Serial No.: 

5 60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A 

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are 

incorporated herein by reference. 

10 

15 

This application is related to the following U.S. patent applications, each filed 

concurrently with the present application, and each assigned to Apptitude, Inc., the 

assignee of the present invention: 

4'\ 
U.S. Patent Application Serial No. o~ 16°'\1\ for PROCESSING PROTOCOL 

SPECIFIC INFORMATION IN PACKETS SPECIF1ED BY A PROTOCOL 

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed June 30, 2000, 
~ /;; I/ ,Pvrttl,vi.P-

Atieme,./Agee.t Refeience Manroen\.PP'f-liOl~ and incorporated herein by reference. 

U.S. Patent Application Serial No. ~<\ /be't#l{,for RE-USING INFORMATION FROM 

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK 

MONITORING, to inventors Dietz, et al., filed June 30, 2000, A.ifn/.~J;._~ko 
· Reference P>ttm:1be1 A:PPT 091.J, and incorporated herein by reference. 

U.S. Patent Application Serial No. o'\ /f,c~a(Ji.or ASSOCIATIVE CACHE 

20 STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A 

25 

NETWORK MONITOR, to inyentors Sarkissian, et al., filed June 30, 2000, 
~:t-::\\ P-t~~ 

AaEteFB:e:)i'A,ge&t Ref@r~Dce :Wnrober ,\.PPT 001...+, and incorporated herein by reference. 

U.S. Patent Application Serial No. 0 <\ ;6ri8, 2'7for STATE PROCESSOR FOR 

PATTERN MATCHING IN A NETWORK MONITORJDEVICE, to inventors 
Sti I pe'Yl,J;Yl,,ij-

Sarkissian, et al., filed June 30, 2000, J.rttetUeyU,geHt Refetencc P,hiffl:.e;er APP'r 091 3i-

and incorporated herein by reference. 

FIELD OF INVENTION 

The present invention relates to computer networks, specifically to the real-time 

elucidation of packets communicated within a data network, including classification 

30 according to protocol and application program . 

EX 1017 Page 9

e cg

1

METHOD AND APPARATUS FOR MONITORING

TRAFFIC IN A NETWORK

CROSS—REFERENCE TO RELATED APPLICATION

This application claims the benefit of US. Provisional Patent Application Serial No:

5 60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et aI., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following US. patent applications, each filed

concurrently with the present application, and each assigned to Apptitude, Inc, the

10 assignee of the present invention:

.3 K1 (\
US; Patent Application Serial No.°C\ Ié“ \I for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, eta1., filed June 30, 2000,
3 k; I}, flmtfii ‘

- - , and incorporated herein by reference.

15 US. Patent Application Serial No. °c\ liking} (gfor RE—USING INFORMATION FROM

DATA TRANSACTIONS FOR MAINTAINING STATISTICS méNETWORK. ‘ k.
MONITORING, to inventors Dietz, et al, filed June 30, 2000,W3‘

, and incorporated herein by reference. 

 
US. Patent Application Serial No. o‘\ “568Mm ASSOCIATIVE CACHE

20 STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A

NETWORK MO OR, to in enters Sarkissian, et al, filed June 30, 2000,

S I II Pi we;
, and incorporated herein by reference.

US. Patent Application Serial No. “I met?! léTEOI STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MOWERIDEVIOJE, to inventorss I en '~ ‘
25 Sarkissian, et al., filed June 30, 2000, '

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real—time

elucidation of packets communicated within a data network, including classification

30 according to protocol and application program.

EX 1017 Page 9



2 

BACKGROUND TO THE PRESENT INVENTION 

There has long been a need for network activity monitors. This need has become 

especially acute, however, given the recent popularity of the Internet and other intemets

an "internet" being any plurality of interconnected networks which forms a larger, single 

5 network. With the growth of networks used as a collection of clients obtaining services 

from one or more servers on the network, it is increasingly important to be able to 

monitor the use of those services and to rate them accordingly. Such objective 

information, for example, as which services (i.e., application programs) are being used, 

who is using them, how often they have been accessed, and for how long, is very useful in 

10 the maintenance and continued operation of these networks. It is especially important that 

selected users be able to access a network remotely in order to generate reports on 

network use in real time. Similarly, a need exists for a real-time network monitor that can 

provide alarms notifying selected users of problems that may occur with the network or 

site. 

15 One prior art monitoring method uses log files. In this method, selected network 

activities may be analyzed retrospectively by reviewing log files, which are maintained by 

network servers and gateways. Log file monitors must access this data and analyze 

("mine;') its contents to determine statistics about the server or gateway. Several problems 

exist with this method, however. First, log file information does not provide a map of 

20 real-time usage; and secondly, log file mining does not supply complete information. This 

method relies on logs maintained by numerous network devices and servers, which 

requires that the information be subjected to refining and correlation. Also, sometimes 

information is simply not available to any gateway or server in order to make a log file 

entry. 

25 One such case, for example, would be information concerning NetMeeting® 

(Microsoft Corporation, Redmond, Washington) sessions in which two computers 

connect directly on the network and the data is never seen by a server or a gateway. 

Another disadvantage of creating log files is that the process requires data logging 

features of network elements to be enabled, placing a substantial load on the device , 

30 which results in a subsequent decline in network performance. Additionally, log files can 

grow rapidly, there is no standard means of storage for them, and they require a 

EX 1017 Page 10

l‘33it]!“331thistill!
r.n.

u:
r ’1“:

E.

.3 a
E‘z

flflfli 
  

2

BACKGROUND TO THE PRESENT INVENTION

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other internets—

an “internet” being any plurality of interconnected networks which forms a larger, single

network. With the growth of networks used as a collection of clients obtaining services

from one or more servers on the network, it is increasingly important to be able to

monitor the use of those services and to rate them accordingly. Such objective

information, for example, as which services (i. e., application programs) are being used,

who is using them, how often they have been accessed, and for how long, is very useful in

the maintenance and continued operation of these networks. It is especially important that

selected users be able to access a network remotely in order to generate reports on

network use in real time. Similarly, a need exists for a real-time network monitor that can

provide alarms notifying selected users of problems that may occur with the network or

site.

One prior art monitoring method uses log files. In this method, selected network

activities may be analyzed retrospectively by reviewing log files, which are maintained by

network servers and gateways. Log file monitors must access this data and analyze

(“mine“) its contents to determine statistics about the server or gateway. Several problems

exist with this method, however. First, log file information does not provide a map of

real-time usage; and secondly, log file mining does not supply complete information. This

method relies on logs maintained by numerous network devices and servers, which

requires that the information be subjected to refining and correlation. Also, sometimes

information is simply not available to any gateway or server in order to make a log file

entry.

One such case, for example, would be information concerning NetMeeting®

(Microsoft Corporation, Redmond, Washington) sessions in which two computers

connect directly on the network and the data is never seen by a server or a gateway.

Another disadvantage of creating log files is that the process requires data logging

features of network elements to be enabled, placing a substantial load on the device ,

which results in a subsequent decline in network performance. Additionally, log files can

grow rapidly, there is no standard means of storage for them, and they require a

EX 1017 Page 10



0 
~ 
gi 
C 
00 
ro 
'' ~y 
~ 
ii 

0 
t1i 
w 
0 
0 
C 

~ 
\!fl 

significant amount of maintenance. 

3 

Though Netflow® (Cisco Systems, Inc., San Jose, California), RMON2, and other 

network monitors are available for the real-time monitoring of networks, they lack 

visibility into application content and are typically limited to providing network layer 

5 level information. 

10 

15 

20 

Pattern-matching parser techniques wherein a packet is parsed and pattern filters 

are applied are also known, but these too are limited in how deep into the protocol stack 

they can examine packets. 

Some prior art packet monitors classify packets into connection flows. The term 

"connection flow" is commonly used to describe all the packets involved with a single 

connection. A conversational flow, on the other hand, is the sequence of packets that are 

exchanged in any direction as a result of an activity-for instance, the running of an 

application on a server as requested by a client. It is desirable to be able to identify and 

classify conversational flows rather than only connection flows. The reason for this is that 

some conversational flows involve more than one connection, and some even involve 

more than one exchange of packets between a client and server. This is particularly true 

when using client/server protocols such as RPC, DCOMP, and SAP, which enable a 

service to be set up or defined prior to any use of that service. 

An example of such a case is the SAP (Service Advertising Protocol), a NetW are 

(Novell Systems, Provo, Utah) protocol used to identify the services and addresses of 

servers attached to a network. In the initial exchange, a client might send a SAP request to 

a server for print service. The server would then send a SAP reply that identifies a 

particular address-for example, SAP#5-as the print service on that server. Such 

responses might be used to update a table in a router, for instance, known as a Server 

25 Information Table. A client who has inadvertently seen this reply or who has access to the 

table (via the router that has the Service Information Table) would know that SAP#5 for 

this particular server is a print service. Therefore, in order to print data on the server, such 

a client would not need to make a request for a print service, but would simply send data 

to be printed specifying SAP#5. Like the previous exchange, the transmission of data to 

30 be printed also involves an exchange between a client and a server, but requires a second 

connection and is therefore independent of the initial exchange. In order to eliminate the 

EX 1017 Page 11

(F!
£3
E4

{‘3
flail

G
we

35

“BE? 10

15

20

25

3O

  

significant amount of maintenance.

Though Netflow® (Cisco Systems, Inc., San Jose, California), RMON2, and other

network monitors are available for the real-time monitoring of networks, they lack

visibility into application content and are typically limited to providing network layer

level information.

Pattern—matching parser techniques wherein a packet is parsed and pattern filters

are applied are also known, but these too are limited in how deep into the protocol stack

they can examine packets.

Some prior art packet monitors classify packets into connection flows. The term

“connection flow” is commonly used to describe all the packets involved with a single

connection. A conversational flow, on the other hand, is the sequence of packets that are

exchanged in any direction as a result of an activity—for instance, the running of an

application on a server as requested by a client. It is desirable to be able to identify and

classify conversational flows rather than only connection flows. The reason for this is that

some conversational flows involve more than one connection, and some even involve

more than one exchange of packets between a client and server. This is particularly true

when using client/server protocols such as RPC, DCOMP, and SAP, which enable a

service to be set up or defined prior to any use of that service.

An example of such a case is the SAP (Service Advertising Protocol), a NetWare

(Novell Systems, Provo, Utah) protocol used to identify the services and addresses of

servers attached to a network. In the initial exchange, a client might send a SAP request to

a server for print service. The server would then send a SAP reply that identifies a

particular address—for example, SAP#S—as the print service on that server. Such

responses might be used to update a table in a router, for instance, known as a Server

Information Table. A client who has inadvertently seen this reply or who has access to the

table (via the router that has the Service Information Table) would know that SAP#S for

this particular server is a print service. Therefore, in order to print data on the server, such

a client would not need to make a request for a print service, but would simply send data

to be printed specifying SAP#S. Like the previous exchange, the transmission of data to

be printed also involves an exchange between a Client and a server, but requires a second

connection and is therefore independent of the initial exchange. In order to eliminate the

EX 1017 Page 11



., . 
t-

5 

© 
4 

possibility of disjointed conversational exchanges, it is desirable for a network packet 

monitor to be able to "virtually concatenate"-that is, to link-the first exchange with the 

second. If the clients were the same, the two packet exchanges would then be correctly 

identified as being part of the same conversational flow. 

Other protocols that may lead to disjointed flows, include RPC (Remote Procedure 

Call); DCOM (Distributed Component Object Model), formerly called Network OLE 

(Microsoft Corporation, Redmond, Washington); and CORBA (Common Object Request 

Broker Architecture). RPC is a programming interface from Sun Microsystems (Palo 

Alto, California) that allows one program to use the services of another program in a -

10 remote machine. DCOM, Microsoft's counterpart to CORBA, defines the remote 

15 

procedure call that allows those objects--objects are self-contained software modules-to 

be run remotely over the network. And CORBA, a standard from the Object Management 

Group (OMG) for communicating between distributed objects, provides a way to execute 

programs (objects) written in different programming languages running on different 

platforms regardless of where they reside in a network. 

What is needed, therefore, is a network monitor that makes it possible to 

continuously analyze all user sessions on a heavily trafficked network. Such a monitor 

should enable non-intrusive, remote detection, characterization, analysis, and capture of 

all information passing through any point on the network (i.e., of all packets and packet 

20 streams passing through any location in the network). Not only should all the packets be 

detected and analyzed, but for each of these packets the network monitor should 

determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the 

protocol (e.g., voice, video, data, real-time data, etc.), and an end user's pattern of use 

within each application or the application context (e.g., options selected, service 

25 delivered, duration, time of day, data requested, etc.). Also, the network monitor should 

not be reliant upon server resident information such as log files. Rather, it should allow a 

user such as a network administrator or an Internet service provider (ISP) the means to 

measure and analyze network activity objectively; to customize the type of data that is 

collected and analyzed; to undertake real time analysis; and to receive timely notification 

30 of network problems. 

Considering the previous SAP example again, because one features of the 

invention is to correctly identify the second exchange as being associated with a print 

EX 1017 Page 12

”7,31,,”rwaavuuewgrwm.’"EVW‘H,.3W,,<?"W:—.‘M'W‘Mfi,
Z
i;1

is32X4:
3

 
10

15

20

25

30

 

4

possibility of disjointed conversational exchanges, it is desirable for a network packet

monitor to be able to “virtually concatenate"——that is, to linkwthe first exchange with the

second. if the clients were the same, the two packet exchanges would then be correctly

identified as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include RPC (Remote Procedure

Call); DCOM (Distributed Component Object Model), formerly called Network OLE

(Microsoft Corporation, Redmond, Washington); and CORBA (Common Object Request

Broker Architecture). RPC is a programming interface from Sun Microsystems (Palo

Alto, California) that allows one program to use the services of another program in a-

remote machine. DCOM, Microsoft’s counterpart to CORBA, defines the remote

procedure call that allows those objects—objects are self-contained software modules—to

be run remotely over the network. And CORBA, a standard from the Object Management

Group (OMG) for communicating between distributed objects, provides a way to execute

programs (objects) written in different programming languages running on different

platforms regardless of where they reside in a network.

What is needed, therefore, is a network monitor that makes it possible to

continuously analyze all user sessions on a heavily trafficked network. Such a monitor

should enable non—intrusive, remote detection, characterization, analysis, and capture of

all information passing through any point on the network (i.e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol (cg, http, ftp, H.323, VPN, etc), the application/use within the

protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e. g., options selected, service

delivered, duration, time of day, data requested, etc). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data that is

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

Considering the previous SAP example again, because one features of the

invention is to correctly identify the second exchange as being associated with a print

EX 1017 Page 12



r 
t 

,. 
' 

w 

I 

5 

service on that server, such exchange would even be recognized if the clients were not the 

same. What distinguishes this invention from prior art network monitors is that it has the 

ability to recognize disjointed flows as belonging to the same conversational flow. 

The data value in 1!1onitoring network communications has been recognized by 

5 many inventors. Chiu, et al., describe a method for collecting information at the session 

level in a computer network in United States Patent 5,101,402, titled "APPARATUS 

AND METHOD FOR REAL-TIME MONITORING OF NETWORK SESSIONS AND 

A LOCAL AREA NETWORK" (the "402 patent"). The 402 patent specifies fixed 

locations for particular types of packets to extract information to identify session of a 

10 packet. For example, if a DECnet packet appears, the 402 patent looks at six specific 

fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the 

other hand, an IP packet appears, a different set of six different locations is specified for 

an IP packet. With the proliferation of protocols, clearly the specifying of all the possible 

places to look to determine the session becomes more and more difficult. Likewise, 

15 adding a new protocol or application is difficult. In the present invention, the locations 

examined and the information extracted from any packet are adaptively determined from 

information in the packet for the particular type of packet. There is no fixed definition of 

what to look for and where to look in order to form an identifying signature. A monitor 

implementation of the present invention, for example, adapts to handle differently IEEE 

20 802.3 packet from the older Ethernet Type 2 (or Version 2) DIX (Digital-Intel-Xerox) 

packet. 

The 402 patent system is able to recognize up to the session layer. In the present 

invention, the number of levels examined varies for any particular protocol. Furthermore, 

the present invention is capable of examining up to whatever level is sufficient to 

25 uniquely identify to a required level, even all the way to the application level (in the OSI 

model). 

Other prior art systems also are known. Phael describes a network activity monitor 

that processes only randomly selected packets in United States Patent 5,315,580, titled 

"NETWORK MONITORING DEVICE AND SYSTEM." Nakamura teaches a network 

30 monitoring system in United States Patent 4,891,639, titled "MONITORING SYSTEM 

OF NETWORK." Ross, et al., teach a method and apparatus for analyzing and 

monitoring network activity in United States Patent 5,247,517, titled "METHOD AND 

EX 1017 Page 13

«t’3“"'-

 
 

{3In
'2a;
a:

‘3u

w”71/4“.4.

a.”"10

”mg.«:2..a;

§
2 p

g
:2

.tilltill!R.“2‘31ii.iii}!113331:ll].
u

llfifllHillllillliii"

10

15

20

25

3O

  
5

service on that server, such exchange would even be recognized if the clients were not the

same. What distinguishes this invention from prior art network monitors is that it has the

ability to recognize disjointed flows as belonging to the same conversational flow.

The data value in monitoring network communications has been recognized by

many inventors. Chiu, er al., describe a method for collecting information at the session

level in a computer network in United States Patent 5,101,402, titled “APPARATUS

AND METHOD FOR REAL~TIME MONI’I‘ORlNG OF NETWORK SESSIONS AND

A LOCAL AREA NETWORK” (the “402 patent”). The 402 patent specifies fixed

locations for particular types of packets to extract information to identify session of a

packet. For example, if a DECnet packet appears, the 402 patent looks at six specific

fields (at 6 locations) in the packet in order to identify the session of the packet. If, on the

other hand, an IF packet appears, a different set of six different locations is specified for

an IF packet. With the proliferation of protocols, clearly the specifying of all the possible

places to look to determine the session becomes more and more difficult. Likewise,

adding a new protocol or application is difficult. In the present invention, the locations

examined and the information extracted from any packet are adaptively determined from

information in the packet for the particular type of packet. There is no fixed definition of

what to look for and where to look in order to form an identifying signature. A monitor

implementation of the present invention, for example, adapts to handle differently IEEE

802.3 packet from the older Ethernet Type 2 (or Version 2) DIX (Digital-Intel~Xerox)

packet.

The 402 patent system is able to recognize up to the session layer. In the present

invention, the number of levels examined varies for any particular protocol. Furthermore,

the present invention is capable of examining up to whatever level is sufficient to

uniquely identify to a required level, even all the way to the application level (in the 081

model).

Other prior art systems also are known. Phael describes a network activity monitor

that processes only randomly selected packets in United States Patent 5,315,580, titled

“NETWORK MONITORING DEVICE AND SYSTEM.” Nakamura teaches a network

monitoring system in United States Patent 4,891,639, titled “MONITORING SYSTEM

OF NETWORK.” Ross, et al., teach a method and apparatus for analyzing and

monitoring network activity in United States Patent 5,247,517, titled “METHOD AND

EX 1017 Page 13



r 
I 

J.. 
;, 

' 1 
l 

' ~t ,· 
t< ., 
\ 

;, 
' ;I 

' ,I 

1 :-=: 
'--' 

~ 
~ 
i 
i 

' ~ 
' 
~ 

;; 

,; 

6 

!~ (J:I 

APPARATUS FOR ANALYSIS NETWORKS," Mccreery, etal., describe an Internet 

activity monitor that decodes packet data at the Internet protocol level layer in United 

States Patent 5,787,253, titled "APPARATUS AND METHOD OF ANALYZING 

INTERNET ACTIVITY." The Mccreery method decodes IP-packets. It goes through the 

5 decoding operations for each packet, and therefore uses the processing overhead for both 

recognized and unrecognized flows. In a monitor implementation of the present invention, 

a signature is built for every flow such that future packets of the flow are easily 

recognized. When a new packet in the flow arrives, the recognition process can 

commence from where it last left off, and a new signature built to recognize new packets 

10 of the flow. 

15 

20 

25 

SUMMARY 

In its various embodiments the present invention provides a network monitor that 

can accomplish one or more of the following objects and advantages: 

• Recognize and classify all packets that are exchanges between a client and 

server into respective client/server applications. 

• Recognize and classify at all protocol layer levels conversational flows that 

pass in either direction at a point in a network. 

• Determine the connection and flow progress between clients and servers 

according to the individual packets exchanged over a network. 

• Be used to help tune the performance of a network according to the current 

mix of client/server applications requiring network resources. 

• Maintain statistics relevant to the mix of client/server applications using 

network resources. 

• Report on the occurrences of specific sequences of packets used by particular 

applications for client/server network conversational flows. 

Other aspects of embodiments of the invention are: 

• Properly analyzing each of the packets exchanged between a client and a 

server and maintaining information relevant to the current state of each of 

these conversational flows. 

EX 1017 Page 14

 
it

mg; :7:’—.—..—=
:3 ia
2".. .
as 5.ma
5d

 ;WMWWLMWWfiflLu:Jaw“I ...fl‘,.,.e.m,.-

MW»;“#8:?
nIt?“’

”cream;,’s“

 is\‘s

6

APPARATUS FOR ANALYSIS NETWORKS,” McCreery, et al., describe an Internet

activity monitor that decodes packet data at the Internet protocol level layer in United

States Patent 5,787,253, titled “APPARATUS AND METHOD OF ANALYZING

INTERNET ACTIVITY.” The McCreery method decodes lP—packets. It goes through the

decoding operations for each packet, and therefore uses the processing overhead for both

recognized and unrecognized flows. In a monitor implementation of the present invention,

a signature is built for every flow such that future packets of the flow are easily

recognized. When a new packet in the flow arrives, the recognition process can

commence from where it last left off, and a new signature built to recognize new packets

of the flow.

SUMMARY

In its various embodiments the present invention provides a network monitor that

can accomplish one or more of the following objects and advantages:

- Recognize and classify all packets that are exchanges between a client and

server into respective client/server applications.

I Recognize and classify at all protocol layer levels conversational flows that

pass in either direction at a point in a network.

0 Determine the connection and flow progress between clients and servers

according to the individual packets exchanged over a network.

0 Be used to help tune the performance of a network according to the current

mix of client/server applications requiring network resources.

0 Maintain statistics relevant to the mix of client/server applications using

network resources.

0 Report on the occurrences of specific sequences of packets used by particular

applications for client/server network conversational flows.

Other aspects of embodiments of the invention are:

0 Properly analyzing each of the packets exchanged between a. client and a

server and maintaining information relevant to the current state of each of

these conversational flows.

EX 1017 Page 14



l 
\ 

I ,_ 

t 
!. 
I 
:J 

i 

5 

• 
7 

• Providing a flexible processing system that can be tailored or adapted as new 

applications enter the client/server market. 

• Maintaining statistics relevant to the conversational flows in a client/sever 

network as classified by an individual application. 

• Reporting a specific identifier, which may be used by other network-oriented 

devices to identify the series of packets with a specific application for a 

specific client/server network conversational flow. 

In general, the embodiments,,of the present invention overcome the problems and 

disadvantages of the art. 

10 As described herein, one embodiment analyzes each of the packets passing 

through any point in the network in either direction, in order to derive the actual 

application used to communicate between a client and a server. Note that there could be 

several simultaneous and overlapping applications executing over the network that are 

independent and asynchronous. 

15 A monitor embodiment of the invention successfully classifies each of the 

20 

individual packets as they are seen on the network. The contents of the packets are parsed 

and selected parts are assembled into a signature (also called a key) that may then be used 

identify further packets of the same conversational flow, for example to further analyze 

the flow and ultimately to recognize the application program. Thus the key is a function 

of the selected parts, and in the preferred embodiment, the function is a concatenation of 

the selected parts. The preferred embodiment forms and remembers the state of any 

conversational flow, which is determined by the relationship between individual packets 

and the entire conversational flow over the network. By remembering the state of a flow 

in this way, the embodiment determines the context of the conversational flow, including 

25 the application program it relates to and parameters such as the time, length of the 

conversational flow, data rate, etc. 

The monitor is flexible to adapt to future applications developed for client/server 

networks. New protocols and protocol combinations may be incorporated by compiling 

files written in a high-level protocol description language. 

EX 1017 Page 15

g
4.

10

 
15

{Elit'lllliilléiii:'liiilltill.1.
20 

@  

7

0 Providing a flexible processing system that can be tailored or adapted as new

applications enter the client/server market.

0 Maintaining statistics relevant to the conversational flows in a client/sever

network as classified by an individual application.

0 Reporting a specific identifier, which may be used by other network-oriented

devices to identify the series of packets with a specific application for a

specific client/server network conversational flow.

In general, the embodiments-of the present invention overcome the problems and

disadvantages of the art.

As described herein, one embodiment analyzes each of the packets passing

through any point in the network in either direction, in order to derive the actual

application used to communicate between a client and a server. Note that there could be

several simultaneous and overlapping applications executing over the network that are

independent and asynchronous.

A monitor embodiment of the invention successfully classifies each of the

individual packets as they are seen on the network. The contents of the packets are parsed

and selected parts are assembled into a signature (also called a key) that may then be used

identify further packets of the same conversational flow, for example to further analyze

the flow and ultimately to recognize the application program. Thus the key is a function

of the selected parts, and in the preferred embodiment, the function is a concatenation of

the selected parts. The preferred embodiment forms and remembers the state of any

conversational flow, which is determined by the relationship between individual packets

and the entire conversational flow over the network. By remembering the state of a flow

in this way, the embodiment determines the context of the conversational flow, including

the application program it relates to and parameters such as the time, length of the

conversational flow, data rate, etc.

The monitor is flexible to adapt to future applications developed for client/server

networks. New protocols and protocol combinations may be incorporated by compiling

files written in a high-level protocol description language.

EX 1017 Page 15



r ,, 

8 

The monitor embodiment of the present invention is preferably implemented in 

application-specific integrated circuits (ASIC) or field programmable gate arrays (FPGA). 

In one embodiment, the monitor comprises a parser subsystem that forms a signature from 

a packet. The monitor further comprises an analyzer subsystem that receives the signature 

5 from the parser subsystem. 

A packet acquisition device such as a media access controller (MAC) or a 

segmentation and reassemble module is used to provide packets to the parser subsystem 

of the monitor. 

In a hardware implementation, the parsing subsystem comprises two sub-parts, the 

10 pattern analysis and recognition engine (PRE), and an extraction engine (slicer). The PRE 

interprets each packet, and in particular, interprets individual fields in each packet 

according to a pattern database. 

The different protocols that can exist in different layers may be thought of as 

nodes of one or more trees of linked nodes. The packet type is the root of a tree. Each 

15 protocol is either a parent node or a terminal node. A parent node links a protocol to other 

protocols (child protocols) that can be at higher layer levels. For example, An Ethernet 

packet (the root node) may be an Ethertype packet-also called an Ethernet Type/Version 

2 and a DIX (DIGITAL-Intel-Xerox packet)-or an IEEE 802.3 packet. Continuing with 

the IEEE 802.3-type packet, one of the children nodes may be the IP protocol, and one of 

20 the children of the IP protocol may be the TCP protocol. 

The pattern database includes a description of the different headers of packets and 

their contents, and how these relate to the different nodes in a tree. The PRE traverses the 

tree as far as it can. If a node does not include a link to a deeper level, pattern matching is 

declared complete. Note that protocols can be the children of several parents. If a unique 

25 node was generated for each of the possible parent/child trees, the pattern database might 

become excessively large. Instead, child nodes are shared among multiple parents, thus 

compacting the pattern database. 

Finally the PRE can be used on its own when only protocol recognition is 

required. 

30 For each protocol recognized, the slicer extracts important packet elements from 

:l the packet. These form a signature (i.e., key) for the packet. The slicer also preferably 

t 

l 
EX 1017 Page 16

ev'.«a«-

L—lemeRhWMwfiWfiWWmW‘'9reams/mm»z
-'.‘:,2::1:a: 

10

15

20

25

30

 

8

The monitor embodiment of the present invention is preferably implemented in

application—specific integrated circuits (ASIC) or field programmable gate arrays (FPGA).

In one embodiment, the monitor comprises a parser subsystem that forms a signature from

a packet. The monitor further comprises an analyzer subsystem that receives the signature

from the parser subsystem.

A packet acquisition device such as a media access controller (MAC) or a

segmentation and reassemble module is used to provide packets to the parser subsystem

of the monitor.

In a hardware implementation, the parsing subsystem comprises two sub-parts, the

pattern analysis and recognition engine (PRE), and an extraction engine (slicer). The PRE

interprets each packet, and in particular, interprets individual fields in each packet

according to a pattern database.

The different protocols that can exist in different layers may be thought of as

nodes of one or more trees of linked nodes. The packet type is the root of a tree. Each

protocol is either a parent node or a terminal node. A parent node links a protocol to other

protocols (child protocols) that can be at higher layer levels. For example, An Ethernet

packet (the root node) may be an Ethertype packet—also called an Ethernet Typerersion

2 and a DIX (DIGITAL-Intel—Xerox packed—or an IEEE 802.3 packet. Continuing with

the IEEE 802.3—type packet, one of the children nodes may be the IP protocol, and one of

the children of the IP protocol may be the TCP protocol.

The pattern database includes a description of the different headers of packets and

their contents, and how these relate to the different nodes in a tree. The PRE traverses the

tree as far as it can. If a node does not include a link to a deeper level, pattern matching is

declared complete. Note that protocols can be the children of several parents. If a unique

node was generated for each of the possible parentfchild trees, the pattern database might

become excessively large. Instead, child nodes are shared among multiple parents, thus

compacting the pattern database.

Finally the PRB can be used on its own when only protocol recognition is

required.

For each protocol recognized, the slicer extracts important packet elements from

the packet. These form a signature (i.e., key) for the packet. The slicer also preferably

EX 1017 Page 16



'j 

9 

generates a hash for rapidly identifying a flow that may have this signature from a 

database of known flows. 

The flow signature of the packet, the hash and at least some of the payload are 

passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem 

5 includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser 

subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup 

a database of flow records for previously encountered conversational flows to determine 

whether a signature is from an existing flow, a state processor (SP) for performing state 

processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the 

10 database of flows, a memory for storing the database of flows, and a cache for speeding 

up access to the memory containing the flow database. The LUE, SP, and FIDE are all 

coupled to the UFKB, and to the cache. 

The unified flow key buffer.thus contains the flow signature of the packet, the 

hash and at least some of the payload for analysis in the analyzer subsystem. Many 

15 operations can be performed to further elucidate the identity of the application program 

content of the packet involved in the client/server conversational flow while a packet 

signature exists in the unified flow signature buffer. In the particular hardware 

embodiment of the analyzer subsystem several flows may be processed in parallel, and 

multiple flow signatures from all the packets being analyzed in parallel may be held in the 

20 oneUFKB. 

The first step in the packet analysis process of a packet from the parser subsystem 

is to lookup the instance in the current database of known packet flow signatures. A 

lookup/update engine (LUE) accomplishes this task using first the hash, and then the flow 

signature. The search is carried out in the cache and if there is no flow with a matching 

25 signature in the cache, the lookup engine attempts to retrieve the flow from the flow 

database in the memory. The flow-entry for previously encountered flows preferably 

includes state information, which is used in the state processor to execute any operations 

defined for the state, and to determine the next state. A typical state operation may be to 

search for one or more known reference strings in the payload of the packet stored in the 

~ 30 UFKB. 
i 

Once the lookup processing by the LUE has been completed a flag stating whether 

EX 1017 Page 17

M

«firm-thmka’yfi«Mfls‘fix‘,‘lél’im""”l‘:"%..(QWF’9“"14?
'1’
7'.
'is,r
..

 
3;3""xi:'.

.‘w‘f’$12,;5-‘3'1m‘“$43322

10

15

20

25

30

 

generates a hash for rapidly identifying a flow that may have this signature from a

database of known flows.

The flow signature of the packet, the hash and at least some of the payload are

passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem

includes a unified flow key buffer (UFKB) for receiving parts of packets from the parser

subsystem and for storing signatures in process, a lookup/update engine (LUE) to lookup

a database of flow records for previously encountered conversational flows to determine

whether a signature is from an existing flow, a state processor (SP) for performing state

processing, a flow insertion and deletion engine (FIDE) for inserting new flows into the

database of flows, a memory for storing the database of flows, and a cache for speeding

up access to the memory containing the flow database. The LUE, SP, and FIDE are all

coupled to the UFKB, and to the cache.

The unified flow key bufferlthus contains the flow signature of the packet, the

hash and at least some of the payload for analysis in the analyzer subsystem. Many

operations can be performed to further elucidate the identity of the application program

content of the packet involved in the client/server conversational flow while a packet

signature exists in the unified flow signature buffer. In the particular hardware

embodiment of the analyzer subsystem several flows may be processed in parallel, and

multiple flow signatures from all the packets being analyzed in parallel may be held in the

one UFKB.

The first step in the packet analysis process of a packet from the parser subsystem

is to lookup the instance in the current database of known packet flow signatures. A

lookup/update engine (LUE) accomplishes this task using first the hash, and then the flow

signature. The search is carried out in the cache and if there is no flow with a matching

signature in the cache, the lookup engine attempts to retrieve the flow from the flow

database in the memory. The flow—entry for previously encountered flows preferably

includes state information, which is used in the state processor to execute any operations

defined for the state, and to determine the next state. A typical state operation may be to

search for one or more known reference strings in the payload 0f the packet stored in the

UFKB.

Once the lookup processing by the LUE has been completed a flag stating whether

EX 1017 Page 17



"" . 1 ;J 

:W 

'= bJ 

5 

10 

it is found or is new is set within the unified flow signature buffer structure for this packet 

flow signature. For an existing flow, the flow-entry is updated by a calculator component 

of the LUE that adds values to counters in the flow-entry database used to store one or 

more statistical measures of the flow. The counters are used for determining network 

usage metrics on the flow. 

After the packet flow signature has been looked up and contents of the current 

flow signature are in the database, a state processor can begin analyzing the packet 

payload to further elucidate the identity of the application program component of this 

packet. The exact operation of the state processor and functions performed by it will vary 

10 depending on the current packet sequence in the stream of a conversational flow. The 

state processor moves to the next logical operation stored from the previous packet seen 

with this same flow signature. If any processing is required on this packet, the state 

processor will execute instructions from a database of state instruction for this state until 

there are either no more left or the instruction signifies processing. 

15 In the preferred embodiment, the state processor functions are programmable to 

provide for analyzing new application programs, and new sequences of packets and states 

that can arise from using such application. 

If during the lookup process for this particular packet flow signature, the flow is 

required to be inserted into the active database, a flow insertion and deletion engine 

20 (FIDE) is initiated. The state processor also may create new flow signatures and thus may 

instruct the flow insertion and deletion engine to add a new flow to the database as a new 

item. 

In the preferred hardware embodiment, each of the LUE, state processor, and 

FIDE operate independently from the other two engines. 

25 BRIEF DESCRIPTION OF THE DRAWINGS 

Although the present invention is better understood by ref erring to the detailed 

preferred embodiments, these should not be taken to limit the present invention to any 

specific embodiment because such embodiments are provided only for the purposes of 

explanation. The embodiments, in tum, are explained with the aid of the following 

30 figures. 

EX 1017 Page 18

  

10

it is found or is new is set within the unified flow signature buffer structure for this packet

flow signature. For an existing flow, the flow-entry is updated by a calculator component

of the LUE that adds values to counters in the flowentry database used to store one or

more statistical measures of the flow. The counters are used for determining network

5 usage metrics on the flow.

After the packet flow signature has been looked up and contents of the current

flow signature are in the database, a state processor can begin analyzing the packet

payload to further elucidate the identity of the application program component of this

 
packet. The exact operation of the state processor and functions performed by it will vary

10 depending on the current packet sequence in the stream of a conversational flow. The

  

 

state processor moves to the next logical operation stored from the previous packet seen

with this same flow signature. If any processing is required on this packet, the state

processor will execute instructions from a database of state instruction for this state untilatits'92“isti
there are either no more left or the instruction signifies processing.

15 In the preferred embodiment, the state processor functions are programmable to

provide for analyzing new application programs, and new sequences of packets and states

that can arise from using such application.

If during the lookup process for this particular packet flow signature, the flow is

required to be inserted into the active database, a flow insertion and deletion engine

20 (FIDE) is initiated. The state processor also may create new flow signatures and thus may

i instruct the flow insertion and deletion engine to add a new flow to the database as a new

item.

In the preferred hardware embodiment, each of the LUE, state processor, and

i FiDE operate independently from the other two engines.

25 BRIEF DESCRiPTlON OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments, in turn, are explained with the aid of the following

30 figures.

EX 1017 Page 18



:'~ 

\!JI 

11 

FIG. 1 is a functional block diagram of a network embodiment of the present 

invention in which a monitor is connected to analyze packets passing at a connection 

point. 

I FIG. 2 is a diagram representing an example of some of the packets and their 

! 5 formats that might be exchanged in starting, as an illustrative example, a conversational 

j flow between a client and server on a network being monitored and analyzed. A pair of 
( -,; flow signatures particular to this example and to embodiments of the present invention is 

j also illustrated. This represents some of the possible flow signatures that can be generated 

and used in the process of analyzing pack:~ts and of recognizing the particular server 

'' w 

10 applications that produce the discrete application packet exchanges. 

FIG. 3 is a functional block diagram of a process embodiment of the present 

invention that can operate as the packet monitor shown in FIG. 1. This process may be 

implemented in software or hardware. 

FIG. 4 is a flowchart of a high-level protocol language compiling and optimization 

15 process, which in one embodiment may be used to generate data for monitoring packets 

according to versions of the present invention. 

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an 

embodiment of the inventive packet monitor. 

FIG. 6 is a flowchart of a packet element extraction process that is used as part of 

20 the parser in an embodiment of the inventive packet monitor. 

25 

FIG. 7 is a flowchart of a flow-signature building process that is used as part of 

the parser in the inventive packet monitor. 

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of 

the analyzer in an embodiment of the inventive packet monitor. 

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call 

application than may be recognized by the inventive packet monitor. 

FIG. 10 is a functional block diagram of a hardware parser subsystem including 

the pattern recognizer and extractor that can form part of the parser module in an 

embodiment of the inventive packet monitor. 

EX 1017 Page 19

u'wea‘mu:r—QWWWW
 

5

' 10

15

7%

20

25Wm,wux:a.“rigWWW

.5
.5” xx.
\x I 5

11

FIG. 1 is a functional block diagram of a network embodiment of the present

invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their

formats that might be exchanged in starting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be generated

and used in the process of analyzing packets and of recognizing the particular server

applications that produce the discrete application packet exchanges.

FIG. 3 is a functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and optimization

process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of

the analyzer in an embodiment of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form pan of the parser module in an

embodiment of the inventive packet monitor.

EX 1017 Page 19



r 
12 

FIG. 11 is a functional block diagram of a hardware analyzer including a state 

processor that can form part of an embodiment of the inventive packet monitor. 

FIG. 12 is a functional block diagram of a flow insertion and deletion engine 

process that can form part of the analyzer in an embodiment of the inventive packet 

5 monitor. 

FIG. 13 is a flowchart of a state processing process that can form part of the 

analyzer in an embodiment of the inventive packet monitor. 

FIG. 14 is a simple functional block diagram of a process embodiment of the 

present invention that can operate as the packet monitor shown in FIG. 1. This process 

IO may be implemented in software. 

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and 

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor. 

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of 

the elements that may be extracted to form a signature according to one aspect of the 

g 15 invention. 

l 

FIG. 17 A is an example of the header of an Ethertype type of Ethernet packet of 

FIG. 16 and some of the elements that may be extracted to form a signature according to 

one aspect of the invention. 

I 

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet 

20 shown in FIGs. 16 and 17 A, and some of the elements that may be extracted to form a 

signature according to one aspect of the invention. 

FIG. 18A is a three dimensional structure that can be used to store elements of the 

pattern, parse and extraction database used by the parser subsystem in accordance to one 

embodiment of the invention. 

25 FIG. 18B is an alternate form of storing elements of the pattern, parse and 

extraction database used by the parser subsystem in accordance to another embodiment of 

the invention. 

EX 1017 Page 20

«New“fiwwaruvv‘lt

ta.«-.wm.‘.;W'54mg”.can“

ammmm &

WflmmwWWWMWMWMmWWmewmflflfiflwwmmmmwwwmmmwWhw mmmmmmmms

.33
Aa

 

 

m

H

m

%

 

12

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodiment of the

present invention that can operate as the packet monitor shown in FIG. 1. This process4

may be implemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. I7Bxis an example of an IP packet, for example, of the Ethertype packet

showu in FIGS. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of the

pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment of

the invention.

EX 1017 Page 20



r 
J 

13 

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 

Note that this document includes hardware diagrams and descriptions that may 

include signal names. In most cases, the names are sufficiently descriptive, in other cases 

however the signal names are not needed to understand the operation and practice of the 

5 invention. 

Operation in a Network 

FIG. 1 represents a system embodiment of the present invention that is referred to 

herein by the general reference numeral 100. The system 100 has a computer network 102 

that communicates packets (e.g., IP datagrams) between various computers, for example 

10 between the clients 104-107 and servers 110 and 112. The network is shown 

j ~ schematically as a cloud with several network nodes and links shown in the interior of the t 9 cloud. A monitor 108 examines the packets passing in either direction past its connection 

. w point 121 and, according to one aspect of the invention, can elucidate what application 
~; F~ 

programs are associated with each packet. The monitor 108 is shown examining packets 

15 (i.e., datagrams) between the network interface 116 of the server 110 and the network. 

The monitor can also be placed at other points in the network, such as connection point 

123 between the network 102 and the interface 118 of the client 104, or some other 

location, as indicated schematically by connection point 125 somewhere in network 102. 

Not shown is a network packet acquisition device at the location 123 on the network for 

20 converting the physical information on the network into packets for input into monitor 

108. Such packet acquisition devices are common. 

Various protocols may be employed by the network to establish and maintain the 

required communication, e.g., TCP/IP, etc. Any network activity-for example an 

application program run by the client 104 (CLIENT 1) communicating with another 

25 running on the server 110 (SERVER 2)-will produce an exchange of a sequence of 

packets over network 102 that is characteristic of the respective programs and of the 

network protocols. Such characteristics may not be completely revealing at the individual 

packet level. It may require the analyzing of many packets by the monitor 108 to have 

enough information needed to recognize particular application programs. The packets 

t 30 may need to be parsed then analyzed in the context of various protocols, for example, the 

EX 1017 Page 21



', 
i 

,· 

f 
f 
\ 
i 
' t !, 

i' 
./: 
t 
'~ 

~ 

L 

5 

14 

transport through the application session layer protocols for packets of a type conforming 

to the ISO layered network model. 

Communication protocols are layered, which is also referred to as a protocol stack. 

The ISO (International Standardization Organization) has defined a general model that 

provides a framework for design of communication protocol layers. This model, shown in 

table form below, serves as a basic reference for understanding the functionality of 

existing communication protocols. 

ISO MODEL 

Layer Functionality Example 

7 Application Telnet, NFS, Novell NCP, HTTP, 

H.323 

6 Presentation XDR 

5 Session ' RPC, NETBIOS, SNMP, etc. I 

4 Transport: TCP, Novel SPX, UDP, etc. 

3 Network IP, Novell IPX, VIP, AppleTalk, etc. 

2 Data Link: Network Interface Card (Hardware 

Interface). MAC layer 

1 Physical I Ethernet, Token Ring, Frame Relay, 

ATM, Tl (Hardware Connection) 

Different communication protocols employ different levels of the ISO model or 

10 may use a layered model that is similar to but which does not exactly conform to the ISO 

model. A protocol in a certain layer may not be visible to protocols employed at other 

layers. For example, an application (Level 7) may not be able to identify the source 

computer for a communication attempt (Levels 2-3). 

15 

In some communication arts, the term "frame" generally refers to encapsulated 

data at OSI layer 2, including a destination address, control bits for flow control, the data 

or payload, and CRC (cyclic redundancy check) data for error checking. The term 

EX 1017 Page 22

’1".

  

l4

transport through the application session layer protocols for packets of a type conforming

to the ISO layered network model.“9mm:flata»
Communication protocols are layered, which is also referred to as a protocol stack.

The ISO (International Standardization Organization) has defined a general model that

5 provides a framework for design of communication protocol layers. This model, shown in

table form below, serves as a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL

Application Telnet, NFS, Novell NCP, H'ITP,

H.323

Presentation XDR

Session { RPC, NETBIOS, SNMP, etc.

Transport 1 TCP, Novel SPX, UDP, etc.

Network IP, Novell IPX, VIP, AppleTalk, etc.

Network Interface Card (Hardware

Interface). MAC layer

Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

 
Different communication protocols employ different levels of the ISO model or

may use a layered model that is similar to but which does not exactly conform to the ISO

model. A protocol in a certain layer may not be visible to protocols employed at other

 
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame” generally refers to encapsulated

15 data at 081 layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

i
i

l

E-

1?

i
EX 1017 Page 22



r 
~ 
i 
t 
' i 

t 
' ,\ 

l , 
f 

I • , 
~ 

i 
'f 
·! 

t 
' 

' ~ 
! 
t ., 

" " •: 

L 

5 

10 

15 

"packet" generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the 

term "datagram" is also used. In this specification, the term "packet" is intended to 

encompass packets, datagrams, frames, and cells. In general, a packet format or frame 

format refers to how data is encapsulated with various fields and headers for transmission 

across a network. For example, a data packet typically includes an address destination 

field, a length field, an error correcting code (ECC) field, or cyclic redundancy check 

(CRC) field, as well as headers and footers to identify the beginning and end of the 

packet. The terms "packet format" and "frame format," also referred to as "cell format," 

are generally synonymous. 

Monitor 108 looks at every packet passing the connection point 121 for analysis. 

However, not every packet carries the same information useful for recognizing all levels 

of the protocol. For example, in a conversational flow associated with a particular 

application, the application will cause the server to send a type-A packet, but so will 

another. If, though, the particular application program always follows a type-A packet 

15 with the sending of a type-B packet, and the other application program does not, then in 

order to recognize packets of that application's conversational flow, the monitor can be 

available to recognize packets that match the type-B packet to associate with the type-A 

packet. If such is recognized after a type-A packet, then the particular application 

program's conversational flow has started to reveal itself to the monitor 108. 

20 Further packets may need to be examined before the conversational flow can be 

identified as being associated with the application program. Typically, monitor 108 is 

simultaneously also in partial completion of identifying other packet exchanges that are 

parts of conversational flows associated with other applications. One aspect of monitor 

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all 

25 previous events in the flow that lead to recognition of the content of all the protocol 

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a 

signature of extracted characteristic portions of the packet that can be used to rapidly 

identify packets belonging to the same flow. 

30 

In real-world uses of the monitor 108, the number of packets on the network 102 

passing by the monitor 108' s connection point can exceed a million per second. 

Consequently, the monitor has very little time available to analyze and type each packet 

and identify and maintain the state of the flows passing through the connection point. The 

EX 1017 Page 23

»Hawking-4aw»:avian-u"an.ummwwwr"MAWWWN
  
 

15!!#135211“Ill"33‘.“It‘ll:Ml

 
IEZHIE]!{fill415%.".'Hl11131"'all:

10

15

 

15

“packet” generally refers to encapsulated data at 051 layer 3. In the TCP/IP world, the

term “datagram” is also used. In this specification, the term “packet” is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for transmission

across a network. For example, a data packet typically includes an address destination

field, a length field, an error correcting code (ECC) field, or cyclic redundancy check

(CRC) field, as well as headers and footers to identify the beginning and end of the

packet. The terms “packet format” and “frame format,” also referred to as “cell format,”

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type—A packet

with the sending of a type-B packet, and the other application program does not, then in

order to recognize packets of that application’s conversational flow, the monitor can be

available to recognize packets that match the type—B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchanges that are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication of all

previous events in the flow that lead to recognition of the content of all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

and identify and maintain the state of the flows passing through the connection point. The

EX 1017 Page 23



16 

monitor 108 therefore masks out all the unimportant parts of each packet that will not 

contribute to its classification. However, the parts to mask-out will change with each 

packet depending on which flow it belongs to and depending on the state of the flow. 

The recognition of the packet type, and ultimately of the associated application 

5 programs according to the packets that their executions produce, is a multi-step process 

within the monitor 108. At a first level, for example, several application programs will all 

produce a first kind of packet. A first "signature" is produced from selected parts of a 

packet that will allow monitor 108 to identify efficiently any packets that belong to the 

same flow. In some cases, that packet type may be sufficiently unique to enable the 

10 monitor to identify the application that generated such a packet in the conversational flow. 

The signature can then be used to efficiently identify all future packets generated in traffic 

related to that application. 

In other cases, that first packet only starts the process of analyzing the 

conversational flow, and more packets are necessary to identify the associated application 

15 program. In such a case, a subsequent packet of a second type-but that potentially 

belongs to the same conversational flow-is recognized by using the signature. At such a 

second level, then, only a few of those application programs will have conversational 

flows that can produce such a second packet type. At this level in the process of 

classification, all application programs that are not in the set of those that lead to such a 

20 sequence of packet types may be excluded in the process of classifying the conversational 

flow that includes these two packets. Based on the known patterns for the protocol and for 

the possible applications, a signature is produced that allows recognition of any future 

packets that may follow in the conversational flow. 

It may be that the application is now recognized, or recognition may need to 

25 proceed to a third level of analysis using the second level signature. For each packet, 

therefore, the monitor parses the packet and generates a signature to determine if this 

signature identified a previously encountered flow, or shall be used to recognize future 

packets belonging to the same conversational flow. In real time, the packet is further 

analyzed in the context of the sequence of previously encountered packets (the state), and 

30 of the possible future sequences such a past sequence may generate in conversational 

flows associated with different applications. A new signature for recognizing future 

packets may also be generated. This process of analysis continues until the applications 

EX 1017 Page 24

 

 
Ali.

’mmmfimmm

as: ...

 
10

15

20

25

30

  

16

monitor 108 therefore masks out all the unimportant parts of each packet that will not

contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

within the monitor 108. At a first level, for example, several application programs will all

produce a first kind of packet. A first “signature” is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In some cases, that packet type may be sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational flow.

The signature can then be used to efficiently identify all future packets generated in traffic

related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated application

program. In such a case, a subsequent packet of a second type—but that potentially

belongs to the same conversational flow—is recognized by using the signature. At such a

second level, then, only a few of those application programs will have conversational

flows that can produce such a second packet type. At this level in the process of

classification, all application programs that are not in the set of those that lead to such a

sequence of packet types may be excluded in the process of classifying the conversational

flow that includes these two packets. Based on the known patterns for the protocol and for

the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceed to a third level of analysis uSing the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determine if this

signature identified a previously encountered flow, or Shall be used to recognize future

packets belonging to the same conversational flow . In real time, the packet is further

analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

EX 1017 Page 24



j 
I 
1 

f
: ~ 

. 
= 

17 

_are identified. The last generated signature may then be used to efficiently recognize 

future packets associated with the same conversational flow. Such an arrangement makes 

it possible for the monitor 108 to cope with millions of packets per second that must be 

inspected. 

5 Another aspect of the invention is adding Eavesdropping. In alternative 

IO 

15 

20 

25 

30 

embodiments of the present invention capable of eavesdropping, once the monitor 108 

has recognized the executing application programs passing through some point in the 

network 102 (for example, because of execution of the applications by the client 105 or 

server 110), the monitor sends a message to some general purpose processor on the 

network that can input the same packets from the same location on the network, and the 

processor then loads its own executable copy of the application program and uses it to 

read the content being exchanged over the network. In other words, once the monitor 108 

has accomplished recognition of the application program, eavesdropping can commence. 

The Network Monitor 

FIG. 3 shows a network packet monitor 300, in an embodiment of the present 

invention that can be implemented with computer hardware and/or software. The system 

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet 

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated, 

for example in an attempt to determine its characteristics, e.g., all the protocol information 

in a multilevel model, including what server application produced the packet. 

The packet acquisition device is a common interface that converts the physical 

signals and then decodes them into bits, and into packets, in accordance with the 

particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to 

the monitor 108 the type of network of the acquired packet or packets. 

Aspects shown here include: (1) the initialization of the monitor to generate what 

operations need to occur on packets of different types-accomplished by compiler and 

optimizer 310, (2) the processing-parsing and extraction of selected portions-of 

packets to generate an identifying signature-accomplished by parser subsystem 301, and 

(3) the analysis of the packets-accomplished by analyzer 303. 

The purpose of compiler and optimizer 310 is to provide protocol specific 

information to parser subsystem 301 and to analyzer subsystem 303. The initialization 

EX 1017 Page 25

 
l
l
i
l

 

 

 
iii“.'45?it.“‘Ei'il“‘5‘.“ill“
.lei5".

“EllElli"‘

“3.7!Ill]!til]!MIC

10

15

20

25

30

17

are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative

embodiments of the present invention capable of cavesdropping, once the monitor 108

has recognized the executing application programs passing through some point in the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processor then loads its own executable copy of the application program and uses it to

road the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware audfor software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol information

in a multilevel model, including what server application produced the packet.

The packet acquisition device is a common interface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM, etc). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing-«parsing and extraction of selected portions—of

packets to generate an identifying signature—accomplished by parser subsystem 301, and

(3) the analysis of the packets-«accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer SUbSYStem 303- The initialization

EX 1017 Page 25



• 
18 

occurs prior to operation of the monitor, and only needs to re-occur when new protocols 

are to be added. 

A flow is a stream of packets being exchanged between any two addresses in the 

network. For each protocol there are known to be several fields, such as the destination 

5 (recipient), the source (the sender), and so forth, and these and other fields are used in 

monitor 300 to identify the flow. There are other fields not important for identifying the 

·f flow, such as checksums, and those parts are not used for identification. 
!' 
! 
] Parser subsystem 301 examines the packets using pattern recognition process 304 

w 
0 
0 

that parses the packet and determines the protocol types and associated headers for each 

10 protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem 

15 

301 extracts characteristic portions (signature information) from the packet 302. Both the 

pattern information for parsing and the related extraction operations, e.g., extraction 

masks, are supplied from a parsing-pattern-structures and extraction-operations database 

(parsing/extractions database) 308 filled by the compiler and optimizer 310. 

The protocol description language (PDL) files 336 describes both patterns and 

states of all protocols that an occur at any layer, including how to interpret header 

information, how to determine from the packet header information the protocols at the 

next layer, and what information to extract for the purpose of identifying a flow, and 

0 ultimately, applications and services. The layer selections database 338 describes the 

·' .. , 

20 particular layering handled by the monitor. That is, what protocols run on top of what 

protocols at any layer level. Thus 336 and 338 combined describe how one would decode, 

analyze, and understand the information in packets, and, furthermore, how the 

information is layered. This information is input into compiler and optimizer 310. 

When compiler and optimizer 310 executes, it generates two sets of internal data 

25 structures. The first is the set of parsing/extraction operations 308. The pattern structures 

include parsing information and describe what will be recognized in the headers of 

packets; the extraction operations are what elements of a packet are to be extracted from 

the packets based on the patterns that get matched. Thus, database 308 of 

parsing/extraction operations includes information describing how to determine a set of 

30 one or more protocol dependent extraction operations from data in the packet that indicate 

a protocol used in the packet. 

EX 1017 Page 26

 
 
 

'mmmnmm"

mammnmmaa

 
10

15

20

25

30

  

18

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layer that exists in the packet 302. An extraction process 306 in parser subsystem

301 extracts characteristic portions (signature information) from the packet 302. Both the

pattern information for parsing and the related extraction operations, e. g., extraction

masks, are supplied from a parsing—pattern-strucmres and extraction—operations database

(parsing/extractions database) 308 filled by the compiler and Optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and

states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocols at the

next layer, and what information to extract for the purpose of identifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

protocols at any layer level. Thus 336 and 338 combined describe how one would decode,

analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

the packets based on the patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that indicate

a protocol used in the packet.

EX 1017 Page 26



Cl (} 
19 

The other internal data structure that is built by compiler 310 is the set of state 

patterns and processes 326. These are the different states and state transitions that occur in 

different conversational flows, and the state operations that need to be performed (e.g., 

patterns that need to be examined and new signatures that need to be built) during any 

5 state of a conversational flow to further the task of analyzing the conversational flow. 

Thus, compiling the PDL files and layer selections provides monitor 300 with the 

information it needs to begin processing packets. In an alternate embodiment, the contents 

of one or more of databases 308 and 326 may be manually or otherwise generated. Note 

that in some embodiments the layering selections information is inherent rather than 

IO explicitly described. For example, since a POL file for a protocol includes the child 

protocols, the parent protocols also may be determined. 

In the preferred embodiment, the packet 302 from the acquisition device is input 

into a packet buffer. The pattern recognition process 304 is carried out by a pattern 

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the 

15 packets. In particular, the PAR locates the next protocol field in the header and 

determines the length of the header, and may perform certain other tasks for certain types 

of protocol headers. An example of this is type and length comparison to distinguish an 

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also 

called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures 

20 and extraction operations database 308 to identify the next protocol and parameters 

associated with that protocol that enables analysis of the next protocol layer. Once a 

pattern or a set of patterns has been identified, it/they will be associated with a set of none 

or more extraction operations. These extraction operations (in the form of commands and 

associated parameters) are passed to the extraction process 306 implemented by an 

25 extracting and information identifying (Em engine that extracts selected parts of the 

packet, including identifying information from the packet as required for recognizing this 

packet as part of a flow. The extracted information is put in sequence and then processed 

in block 312 to build a unique flow signature (also called a "key") for this flow. A flow 

signature depends on the protocols used in the packet. For some protocols, the extracted 

30 components may include source and destination addresses. For example, Ethernet frames 

have end-point addresses that are useful in building a better flow signature. Thus, the 

signature typically includes the client and server address pairs. The signature is used to 

EX 1017 Page 27



""' ~ 
~ 
~ 
= l.,j 

m 
m 
w 
~~ 

I 

0 
O'l 
w 
A ...., 
0 
0 

'~ . ', 

20 

recognize fi;rther packets that are or may be part of this flow. 

In the preferred embodiment, the building of the flow key includes. generating a 

hash of the signature using a hash function. The purpose if using such a hash is 

conventional-to spread flow-entries identified by the signature across a database for 

5 efficient searching. The hash generated is preferably based on a hashing algorithm and 

such hash generation is known to those in the art. 

10 

15 

20 

/ 

In one embodiment, the parser passes data from the packet-a parser record-that 

includes the signature (i.e., selected portions of the packet), the hash, and the packet itself 

to allow for any state processing that requires further data from the packet. An improved 

embodiment of the parser subsystem might generate a parser record that has some 

predefined structure and that includes the signature, the hash, some flags related to some 

of the fields in the parser record, and parts of the packet's payload that the parser 

subsystem has determined might be required for further processing, e.g., for state 

processing. 

Note that alternate embodiments may use some function other than concatenation 

of the selected portions of the packet to make the identifying signature. For example, 

some "digest function" of the concatenated selected portions may be used. 

The parser record is passed onto lookup process 314 which looks in an internal 

data store of records of ~own flows that the system has already encountered, and decides 

(in 316) whe"ther or not this particular packet belongs to a known flow as indicated by the 

presence of a flow-entry matching this flow in a database of known flows 324. A record 

in database 324 is associated with each encountered flow. 

The parser record enters a buffer called the unified flow key buffer (UFKB). The 

UFKB stores the data on flows in a data structure that is similar to the parser record, but 

25 that includes a field that can be modified. In particular, one or the UFKB record fields 

stores the packet sequence number, and another is filled with state information in the form 

of a program counter for a state processor that implements state processing 328. 

The determination (316) of whether a record with the same signature already 

exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses 

30 the hash in the UFKB record to lookup if there is a matching known flow. In the 

particular embodiment, the database of known flows 324 is in an external memory. A 

EX 1017 Page 28

‘t 5

10

i:

ta

; . 15

c

. r2

:53:

e
'e

20

25

30

3,3"

20

recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key includes. generating a

hash of the signature using a hash function. The purpose if using such a hash is

conventional—to spread flow—entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.,1

In one embodiment, the parser passes data from the packet-ma parser record—that

includes the signature (i.e., selected portions of the packet), the hash, and the packet itself

to allow for any state processing that requires further data from the packet. An improved

embodiment of the parser subsystem might generate a parser record that has some

predefined structure and that includes the signature, the hash, some flags related to some

of the fields in the parser record, and parts of the packet’s payload that the parser

subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation

of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lockup process 314 which looks in an internal

data store of records of known flows that the system has already encountered, and decides

(in 316) whether or not this particular packet belongs to a known flow as indicated by the

presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

stores the packet sequence number, and another is filled with state information in the form

of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a. record with the same signature already

exists is carried out by a lookup engine (LUE) that Obtains new UFKB records and uses

the hash in the UFKB record to lookup if there is a matching known flow. In the

particular embodiment, the database of known flows 324 is in an external memory. A

llx5

EX 1017 Page 28



21 

cache is associated with the database 324. A lookup by the LUE for a known record is 

carried out by accessing the cache using the hash, and if the entry is not already present in 

the cache, the entry is looked up (again using the hash) in the external memory. 

, The flow-entry database 324 stores flow-entries that include the unique flow-

5 signature, state information, and extracted information from the packet for updating 

flows, and one or more statistical about the flow. Each entry completely describes a flow. 

Database 324 is organized into bins that contain a number, denoted N, of flow-entries 

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment. 

Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser 

10 subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the 

database to allow for fast lookups of entries, allowing shallower buckets. The designer 

selects the bucket depth N based on the amount of memory attached to the monitor, and 

the number of bits of the hash data value used. For example, in one embodiment, each 

flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a 

15 16-bit bash gives two flow-entries per bucket. Empirically, this has been shown to be 

more than adequate for the vast majority of cases. Note that another embodiment uses 

flow-entries that are 256 bytes long. 

Herein, whenever an access to database 324 is described, it is to be understood 

!"! that the access is via the cache, unless otherwise stated or clear from the context. 

j 
i 
l 
« r 

~ 

f 
·rl 
A 

' 

' l 

l 

20 If there is no flow-entry found matching the signature, i.e., the signature is for a 

25 

30 

new flow, then a protocol and state identification process 318 further determines the state 

and protocol. That is, process 318 determines the protocols and where in the state 

sequence for a flow for this protocol's this packet belongs. Identification process 318 uses 

the extracted information and makes reference to the database 326 of state patterns and 

processes. Process 318 is then followed by any state operations that need to be executed 

on this packet by a state processor 328. 

If the packet is found to hav:ua matching flow-entry in the database 324 (e.g., in 

the cache), then a process 320 determines, from the looked-up flow-entry, if more 

classification by state processing of the flow signature is necessary. If not, a process 322 

updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating 

includes updating one or more statistical measures stored in the flow-entry. In our 

EX 1017 Page 29

 
 

10

15

20

25

30

  

21

cache is associated with the database 324. A lookup by the LUE for a known record is

carried out by accessing the cache using the hash, and if the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-

signature, state information, and extracted information from the packet for updating

flows, and one or more statistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow-entries

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the

database to allow for fast lookups of entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the number of bits of the hash data value used. For example, in one embodiment, each

flow—entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be

more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a

new flow, then a protocol and state identification process 318 further determines the state

and protocol. That is, process 318 determines the protocols and where in the state

sequence for a flow for this protocol’s this packet belongs. Identification process 318 uses

the extracted information and makes reference to the database 326 of state patterns and

processes. Process 318 is then followed by any state operations that need to be executed

on this packet by a state processor 328.

If the packet is found to havegaa matching flow-entry in the database 324 (e.g., in

the cache), then a process 320 determines, from the looked—up flow—entry, if more

classification by state processing of the flow signature is necessary. Ifnot, a process 322

updates the flow-entry in the flow-entry database 324 (ago via the cache). Updating

includes updating one or more statistical measures stored in the flow—entry. In our

EX 1017 Page 29



22 

embodiment, the statistical measures are stored in counters in the flow-entry. 

If state processing is required, state process 328 is commenced. State processor 

328 carries out any state operations specified for the state of the flow and updates the state 

to the next state according to a set of state instructions obtained form the state pattern and 

5 processes database 326. 

The state processor 328 analyzes both new and existing flows in order to analyze 

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in 

the ISO model). It does this by proceeding from state-to-state based on predefined state 

transition rules and state operations as specified in state processor instruction database 

10 326. A state transition rule is a rule typically containing a test followed by the next-state 

to proceed to if the test result is true. An operation is an operation to be performed while 

the state processor is in a particular state-for example, in order to evaluate a quantity 

needed to apply the state transition rule. The state processor goes through each rule and 

each state process until the test is true, or there are no more tests to perform. 

15 In general, the set of state operations may be none or more operations on a packet, 

and carrying out the operation or operations may leave one in a state that causes exiting 

the system prior to completing the identification, but possibly knowing more about what 

state and state processes are needed to execute next, i.e., when a next packet of this flow 

is encountered. As an example, a state process (set of state operations) at a particular state 

20 may build a new signature for future recognition packets of the next state. 

By maintaining the state of the flows and knowing that new flows may be set up 

using the information from previously encountered flows, the network traffic monitor 300 

provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet 

protocol recognition of flows. Monitor 300 can even recognize the application program 

25 from one or more disjointed sub-flows that occur in server announcement type flows. 

What may seem to prior art monitors to be some unassociated flow, may be recognized by 

the inventive monitor using the flow signature to be a sub-flow associated with a 

previously encountered sub-flow. 

Thus, state processor 328 applies the first state operation to the packet for this 

30 particular flow-entry. A process 330 decides if more operations need to be performed for 

this state. If so, the analyzer continues looping between block 330 and 328 applying 

EX 1017 Page 30

 
when.0dearmmw

 
10

15

20

25

30

 3

22

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updates the state

to the next state according to a set of state instructions obtained form the state pattern and

processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). it does this by proceeding from state-to-state based on predefined state

transition rules and state operations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next-state

to proceed to if the test result is true. An operation is an operation to be performed while

the state processor is in a particular state—for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a packet,

and carrying out the operation or operations may leave one in a state that causes exiting

the system prior to completing the identification, but possibly knowing more about what

state and state processes are needed to execute next, 222., when a next packet of this flow

is encountered. As an example, a state process (set of state operations) at a particular state

may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and blowing that new flows may be set up

using the information from previously encountered flows, the network traffic monitor 300

provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

What may seem to prior art monitors to be some unassociated flow, may be recognized by

the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this

particular flow-entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

EX 1017 Page 30



23 

additional state operations to this particular packet until all those operations are 

completed-that is, there are no more operations for this packet in this state. A process 

332 decides if there are further states to be analyzed for this type of flow according to the 

state of the flow and the protocol, in order to fully characterize the flow. If not, the 

5 conversational flow has now been fully characterized and a process 334 finalizes the 

classification of the conversational flow for the flow. 

/ In the particular embodiment, the state processor 328 starts the state processing by 

vsing the last protocol recognized by the parser as an offset into a.j~~ table Gump 

vector). The jump table finds the state processor instructions to use for that protocol in the 

10 state patterns and processes database 326. Most instructions test something in the unified 

flow key buffer, or the flow-entry in the database of known flows 324, if the entry exists. 

The state processor may have to test bits, do comparisons, add, or subtract to perform the 

test. For example, a common operation carried out by the state processor is searching for 

one or more patterns in the payload part of the UFKB. 

15 Thus, in 332 in the classification, the analyzer decides whether the flow is at an 

end state. If not at an end state, the flow-entry is updated ( or created if a new flow) for 

this flow-entry in process 322. 

Furthermore, if the flow is known and if in 332 it is determined that there are 

further states to be processed using later packets, the flow-entry is updated in process 322. 

20 The flow-entry also is updated after classification finalization so that any further 

25 

packets belonging to this flow will be readily identified from their signature as belonging 

to this fully analyzed conversational flow. 

After updating, database 324 therefore includes the set of all the conversational 

flows that have occurred. 

Thus, the embodiment of present invention shown in FIG. 3 automatically 

maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3 

also generates characteristic parts of packets-the signatures-that can be used to 

recognize flows. The flow-entries may be identified and accessed by their signatures. 

Once a packet is identified to be from a known flow, the state of the flow is known and 

30 this knowledge enables state transition analysis to be performed in real time for each 

different protocol and application. In a complex analysis, state transitions are traversed as 

EX 1017 Page 31

a

,35z
s

 
15

“kl":

’20

25

30

I “is

23

additional state operations to this particular packet until all those operations are

completedm-that is, there are no more operations for this packet in this state. A process

332 decides if there are further states to be analyzed for this type of flow according to the

state of the flow and the protocol, in order to fully characterize the flow. If not, the

conversational flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing by

sing the last protocol recognized by the parser as an offset into a jump table (jump

vector). The jump table finds the state processor instructions to use 1:01- that prom in the

state patterns and processes database 326. Most instructions test something in the unified

flow key buffer, or the flow-entry in the database of known flows 324, if the entry exists.

The state processor may have to test bits, do comparisons, add, or subtract to perform the

test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow—entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically

maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3

also generates characteristic parts of packets—the signatures—that can be used to

recognize flows. The flow~entries may be identified and accessed by their signatures.

Once a packet is identified to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed as

EX 1017 Page 31



f 

24 

more and more packets are examined. Future packets that are part of the same 

conversational flow have their state analysis continued from a previously achieved state. 

When enough packets related to an application of interest have been processed, a final 

recognition state is ultimately reached, i.e., a set of states has been traversed by state 

5 analysis to completely characterize the conversational flow. The signature for that final 

state enables each new incoming packet of the same conversational flow to be 

individually recognized in real time. 

In this manner, one of the great advantages of the present invention is realized. 

Once a particular set of state transitions has been traversed for the first time and ends in a 

10 final state, a short-cut recognition pattern-a signature-can be generated that will key on 

every new incoming packet that relat~~ to the conversational flow. Checking a signature 

involves a simple operation, allowingfilgh packet rates to be successfully monitored on 

the network. 

In improved embodiments, several state analyzers are run in parallel so that a large 

15 number of protocols and applications may be checked for. Every known protocol and 

application will have at least one unique set of state transitions, and can therefore be 

uniquely identified by watching such transitions. 

When each new conversational flow starts, signatures that recognize the flow are 

automatically generated on-the-fly, and as further packets in the conversational flow are 

20 encountered, signatures are updated and the states of the set of state transitions for any 

potential application are further traversed according to the state transition rules for the 

flow. The new states for the flow-those associated with a set of state transitions for one 

or more potential applications-are added to the records of previously encountered states 

for easy recognition and retrieval when a new packet in the flow is encountered. 

25 Detailed operation 

30 

FIG. 4 diagrams an initialization system 400 that includes the compilation process. 

That is, part of the initialization generates the pattern structures and extraction operations 

database 308 and the state instruction database 328. Such initialization can occur off-line 

or from a central location. 

The different protocols that can exist in different layers may be thought of as 

nodes of one or more trees of linked nodes. The packet type is the root of a tree ( called 

EX 1017 Page 32

 IO

15

20

25

3O

 3

24

more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achieved state.

When enough packets related to an application of interest have been processed, a final

recognition state is ultimately reached, i.e., a set of states has been traversed by state

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.

Once a particular set of state transitions has been traversed for the first time and ends in a

final state, a short—cut recognition pattern-«a signature—can be generated that will key on

every new incoming packet that relates to the conversational flow. Checking a signature

involves a simple operation, allowing high packet rates to be successfully monitored on

the network.

In improved embodiments, several state analyzers are run in parallel so that a large

number of protocols and applications may be checked for. Every known protocol and

application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation process.

That is, part of the initialization generates the pattern StruCtures and extraction operations

database 308 and the state instruction database 328. Such initialization can occur off-line

or from a central location.

The different protocols that can exist in different layers may he thought of as

nodes of one or more trees of linked nodes. The paCket type is the root of a tree (called

EX 1017 Page 32



'i ., 

25 

level 0). Each protocol is either a parent node or a tenninal node. A parent node links a 

protocol to other protocols (child protocols) that can be at higher layer levels. Thus a 

protocol may have zero or more children. Ethernet packets, for example, have several 

variants, each having a basic format that remains substantially the same. An Ethernet 

5 packet (the root or level O node) may be an Ethertype packet-also called an Ethernet 

TypeNersion 2 and a DIX (DIGITAL-Intel-Xerox packet)-or an IEEE 803.2 packet. 

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol, 

and one of the children of the IP protocol may be the TCP protocol. 

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e., 

IO packet) of information and includes information on the destination media access control 

address (Dst MAC 1602) and the source media access control address (Src MAC 1604). 

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files 

for extraction the signature. 

FIG. 17 A now shows the header information for the next level (level-2) for an 

15 Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the 

packet that indicates the next layer level is a two-byte type field 1702 containing the child 

recognition pattern for the next level. The remaining information 1704 is shown hatched 

because it not relevant for this level. The list 1712 shows the possible children for an 

Ethertype packet as indicated by what child recognition pattern is found offset 12. 

20 FIG. 17B shows the structure of the header of one of the possible next levels, that of the 

IP protocol. The possible children of the IP protocol are shown in table 1752. 

The pattern, parse, and extraction database (pattern recognition database, or PRD) 

308 generated by compilation process 310, in one embodiment, is in the form of a three 

dimensional structure that provides for rapidly searching packet headers for the next 

25 protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as 

an indexed set of 2-D representations). A compressed form of the 3-D structure is 

preferred. 

An alternate embodiment of the data structure used in database 308 is illustrated in 

FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid 

30 searches to be performed by the pattern recognition process 304 by indexing locations in a 

memory rather than performing address link computations. In this alternate embodiment, 

EX 1017 Page 33

 10

15

20

25

30

  

25

level 0). Each protocol is either a parent node or a terminal node. A parent node links a

protocol to other protecols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet

Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)--or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP protocol,

and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level I) of a complete Ethernet frame (i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (levelv2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packet that indicates the next layer level is a two—byte type field 1702 containing the child

recognition pattern for the next level. The remaining information 1704 is shown hatched

because it not relevant for this level. The list 1712 shows the possible children for an

Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 1713 shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)

308 generated by compilation process 310, in one embodiment, is in the form of a three

dimensional structure that provides for rapidly searching packet headers for the next

protocol. FIG. 18A shows such a 3-D representation 1800 (which may be considered as

an indexed set of 2-D representations). A compressed form of the 3~D structure is

preferred.

An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. ISB. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations in a

memory rather than performing address link computations. In this alternate embodiment,

EX 1017 Page 33



26 

the PRD 308 includes two parts, a single protocol table 1850 (PT) which has an entry for 

each protocol known for the monitor, and a series of Look Up Tables 1870 (LUT's) that 

are used to identify known protocols and their children. The protocol table includes the 

parameters needed by the pattern analysis and recognition process 304 (implemented by 

5 PRE 1006) to evaluate the header information in the packet that is associated with that 

protocol, and parameters needed by extraction process 306 (implemented by slicer 1007) 

to process the packet header. When there are children, the PT describes which bytes in the 

header to evaluate to determine the child protocol. In particular, each PT entry contains 

the header length, an offset to the child, a slicer command, and some flags. 

10 The pattern matching is carried out by finding particular "child recognition codes" 

in the header fields, and using these codes to index one or more of the LUT' s. Each LUT 

entry has a node code that can have one of four values, indicating the protocol that has 

been recognized, a code to indicate that the protocol has been partially recognized (more 

LUT lookups are needed), a code to indicate that this is a terminal node, and a null node 

15 to indicate a null entry. The next LUT to lookup is also returned from a LUT lookup. 

Compilation process is described in FIG. 4. The source-code information in the 

form of protocol description files is shown as 402. In the particular embodiment, the high 

level decoding descriptions includes a set of protocol description files 336, one for each 

protocol, and a set of packet layer selections 338, which describes the particular layering 

20 (sets of trees of protocols) that the monitor is to be able to handle. 

A compiler 403 compiles the descriptions. The set of packet parse-and-extract 

operations 406 is generated ( 404 ), and a set of packet state instructions and operations 

407 is generated ( 405) in the form of instructions for the state processor that implements 

state processing process 328. Data files for each type of application and protocol to be 

25 recognized by the analyzer are downloaded from the pattern, parse, and extraction 

database 406 into the memory systems of the parser and extraction engines. (See the 

parsing process 500 description and FIG. 5; the extraction process 600 description and 

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each 

type of application and protocol to be recognized by the analyzer are also downloaded 

30 from the state-processor instruction database 407 into the state processor. (see the state 

processor 1108 description and FIG. 11.). 

EX 1017 Page 34



' . G) . ·~ 

27 

Note that generating the packet parse and extraction operations builds and links 

the three dimensional structure (one embodiment) or the or all the lookup tables for the 

PRD. 

Because of the large number of possible protocol trees and subtrees, the compiler 

5 process 400 includes optimization that compares the trees and subtrees to see which 

children share common parents. When implemented in the form of the LUT' s, this 

process can generate a single LUT from a plurality ofLUT's. The optimization process 

further includes a compaction process that reduces the space needed to store the data of 

thePRD. 

10 As an example of compaction, consider the 3-D structure of FIG. 18A that can be 

thought of as a set of 2-D structures each representing a protocol. To enable saving space 

by using only one array per protocol which may have several parents, in one embodiment, 

the pattern analysis subprocess keeps a "current header" pointer. Each location (offset) 

index for each protocol 2-D array in the 3-D structure is a relative location starting with 

15 the start of header for the particular protocol. Furthermore, each of the two-dimensional 

arrays is sparse. The next step of the optimization, is checking all the 2-D arrays against 

all the other 2-D arrays to find out which ones can share memory. Many of these 2-D 

arrays are often sparsely populated in that they each have only a small number of valid 

entries. So, a process of "folding" is next used to combine two or more 2-D arrays 

20 together into one physical 2-D array without losing the identity of any of the original 2-D 

arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur between any 

2-D arrays irrespective of their location in the tree as long as certain conditions are met. 

Multiple arrays may be combined into a single array as long as the individual entries do 

not conflict with each other. A fold number is then used to associate each element with its 

25 original array. A similar folding process is used for the set of LUTs 1850 in the alternate 

embodiment of PIG. l8B. 

In 410, the analyzer has been initialized and is ready to perform recognition. 

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting 

at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next 

30 (initially the first) packet component from the packet 302. The packet components are 

extracted from each packet 302 one element at a time. A check is made (504) to determine 

EX 1017 Page 35



28 

if the load-packet-component operation 503 succeeded, indicating that there was more in 

the packet to process. If not, indicating all components have been loaded, the parser 

subsystem 301 builds the packet signature (512)-the next stage (FIG 6). 

If a component is successfully loaded in 503, the node and processes are fetched 

5 (505) from the pattern, parse and extraction database 308 to provide a set of patterns and 

processes for that node to apply to the loaded packet component. The parser subsystem 

301 checks (506) to determine if the fetch pattern node operation 505 completed 

successfully, indicating there was a pattern node that loaded in 505. If not, step 511 

moves to the next packet component. If yes, then the node and pattern matching process 

10 are applied in 507 to the component extracted in 503. A pattern match obtained in 507 (as 

indicated by test 508) means the parser subsystem 301 has found a node in the parsing 

elements; the parser subsystem 301 proceeds to step 509 to extract the elements. 

If applying the node process to the component does not produce a match (test 

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern 

15 database 308 and to step 505 to fetch the next node and process. Thus, there is an 

"applying patterns" loop between 508 and 505. Once the parser subsystem 301 completes 

all the patterns and has either matched or not, the parser subsystem 301 moves to the next 

packet component (511). 

Once all the packet components have been the loaded and processed from the 

20 input packet 302, then the load packet will fail (indicated by test 504), and the parser 

subsystem 301 moves to build a packet signature which is described in FIG. 6 

FIG. 6 is a flow chart for extracting the information from which to build the 

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this 

point parser subsystem 301 has a completed packet component and a pattern node 

25 available in a buffer (602). Step 603 loads the packet component available from the 

pattern analysis process of FIG. 5. If the load completed ( test 604), indicating that there 

was indeed another packet component, the parser subsystem 301 fetches in 605 the 

extraction and process elements received from the pattern node component in 602. If the 

fetch was successful (test 606), indicating that there are extraction elements to apply, the 

30 parser subsystem 301 in step 607 applies that extraction process to the packet component 

based on an extraction instruction received from that pattern node. This removes and 

EX 1017 Page 36



29 

saves an element from the packet component. 

In step 608, the parser subsystem 301 checks if there is more to extract from this 

component, and if not, the parser subsystem 301 moves back to 603 to load the next 

packet component at hand and repeats the process. If the answer is yes, then the parser 

5 subsystem 301 moves to the next packet component ratchet. That new packet component 

is then loaded in step 603. As the parser subsystem 301 moved through the loop between 

608 and 603, extra extraction processes are applied either to the same packet component if 

there is more to extract, or to a different packet component if there is no more to extract. 

The extraction process thus builds the signature, extracting more and more 

10 components according to the information in the patterns and extraction database 308 for 

the particular packet. Once loading the next packet component operation 603 fails (test 

604), all the components have been extracted. The built signature is loaded into the 

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the 

signature generation process. 

15 

20 

Referring now to FIG. 7, the process continues at 701. The signature buffer and 

the pattern node elements are available (702). The parser subsystem 301 loads the next 

pattern node element. If the load was successful (test 704) indicating there are more 

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the 

hash elements that are found in the pattern node that is in the element database. In 706 the 

resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to 

the next packet component which is loaded in 703. 

The 703 to 707 loop continues until there are no more patterns of elements left 

(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and 

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the 

25 signature used by the analyzer subsystem 303. 

30 

A parser record is loaded into the analyzer, in particular, into the UFKB in the 

form of a UFKB record which is similar to a parser record, but with one or more different 

fields. 

FIG. 8 is a flow diagram describing the operation of the lookup/update engine 

(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with 

the parser record that includes a signature, the hash and at least parts of the payload. In 

EX 1017 Page 37

  

29

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this

component, and if not, the parser subsystem 301 moves back to 603 to load the next

packet component at hand and repeats the process. If the answer is yes, then the parser

5 subsystem 301 moves to the next packet component ratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component if

there is more to extract, or to a different packet component if there is no more to extract.

The extraction process thus builds the signature, extracting more and more

10 components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet component operation 603 fails (test

604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

15 Referring now to FIG. 7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

hash elements that are found in the pattern node that is in the element database. In 706 the

20 resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

 
The 703 to 707 loop continues until there are no more patterns of elements left

(test 704). Once all the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

25 signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record which is similar to a parser record, but with one or more different

fields.

FIG. 8 is a flow diagram describing the operation of the lookuplupdate engine

30 (LUE) that implements lookup operation 314. The process starts at 801 from F1G,7 With

the parser record that includes a signature, the hash and at least parts of the payload. In

.1,

it
. r.

EX 1017 Page 37



• 
30 

802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the 

lookup engine 314 computes a "record bin number" from the hash for a flow-entry. A bin 

herein may have one or more "buckets" each containing a flow-entry. The preferred 

embodiment has four buckets per bin. 

5 Since preferred hardware embodiment includes the cache, all data accesses to 

records in the flowchart of FIG. 8 are stated as being to or from the cache. 

Thus, in 804, the system looks up the cache for a bucket from that bin using the 

hash. ff the cache successfully returns with a bucket from the bin number, indicating there 

are more buckets in the bin, the lookup/update engine compares (807) the current 

10 signature (the UFKB-entry's signature) from that in the bucket (i.e., the flow-entry 

signature). ff the signatures match (test 808), that record (in the cache) is marked in step 

810 as "in process" and a timestamp added. Step 811 indicates to the UFKB that the 

UFKB-entry in 802 has a status of "found." The "found" indication allows the state 

processing 328 to begin processing this UFKB element. The preferred hardware 

15 embodiment includes one or more state processors, and these can operate in parallel with 

the lookup/update engine. 

In the preferred embodiment, a set of statistical operations is performed by a 

calculator for every packet analyzed. The statistical operations may include one or more 

of counting the packets associated with the flow; determining statistics related to the size 

20 of packets of the flow; compiling statistics on differences between packets in each 

direction, for example using timestamps; and detennining statistical relationships of 

timestamps of packets in the same direction. The statistical measures are kept in the flow

entries. Other statistical measures also may be compiled. These statistics may be used 

singly or in combination by a statistical processor component to analyze many different 

25 aspects of the flow. This may include determining network usage metrics from the 

statistical measures, for example to ascertain the network's ability to transfer information 

for this application. Such analysis provides for measuring the quality of service of a 

conversation, measuring how well an application is performing in the network, measuring 

network resources consumed by an application, and so forth. 

30 To provide for such analyses, the lookup/update engine updates one or more 

counters that are part of the flow-entry (in the cache) in step 812. The process exits at 813. 

EX 1017 Page 38



• 
31 

In our embodiment, the counters include the total packets of the flow, the time, and a 

differential time from the last timestamp to the present timestamp. 

It may be that the bucket of the bin did not lead to a signature match (test 808). In 

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again 

5 looks up the cache for another bucket from that bin. The lookup/update engine thus 

continues lookup up buckets of the bin until there is either a match in 808 or operation 

804 is not successful (test 805), indicating that there are no more buckets in the bin and no 

match was found. 

If no match was found, the packet belongs to a new (not previously encountered) 

10 flow. In 806 the system indicates that the record in the unified flow key buffer for this 

, packet is new, and in 812, any statistical updating operations are performed for this packet 

by updating the flow-entry in the cache. The update operation exits at 813. A flow 

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache). 

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a 

15 "new" status or a "found" status. 

20 

Note that the above system uses a hash to which more than one flow-entry can 

match. A longer hash may be used that corresponds to a single flow-entry. In such an 

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art. 

The hardware system 

Each of the individual hardware elements through which the data flows in the 

system are now described with reference to FIGS. 10 and 11. Note that while we are 

describing a particular hardware implementation of the invention embodiment of FIG. 3, 

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be 

implemented in software running on one or more general-purpose processors, or only 

25 partly implemented in hardware. An implementation of the invention that can operate in 

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate 

30 

at over a million packets per second, while the software system of FIG. 14 may be 

suitable for slower networks. To one skilled in the art it would be clear that more and 

more of the system may be implemented in software as processors become faster. 

FIG. 1 O is a description of the parsing subsystem (301, shown here as subsystem 

EX 1017 Page 39

I!

 

31

In our embodiment, the counters include the total packets of the flow, the time, and a

differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again

5 looks up the cache for another bucket from that bin. The lockup/update engine thus

continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

If no match was found, the packet belongs to a new (not previously encountered)

10 flow. In 806 the system indicates that the record in the unified flow key buffer for this

i ' , packet is new, and in 812, any statistical updating operations are performed for this packet

“ ; by updating the flow—entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lockup engine ends with a UFKB-entry for the packet with a

15 “new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

s: embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

20 Each of the individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodiment of FIG. 3,

it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be

-. s ‘ implemented in software running on one or more general-purpose processors, or only
i 25 partly implemented in hardware. An implementation of the invention that can operate in

‘ software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

30 FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

 
EX 1017 Page 39



32 

1000) as implemented in hardware. Memory 1001 is the pattern recognition database 

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is 

the extraction-operation database memory, in which the extraction instructions are stored. 

Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the 

5 system is initialized from a microprocessor (not shown) at which time these memories are 

loaded through a host interface multiplexor and control register 1005 via the internal 

buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by 

compiling process 310 of FIG. 3. 

A packet enters the parsing system via 1012 into a parser input buffer memory 

10 1008 using control signals 1021 and 1023, which control an input buffer interface 

controller 1022. The buffer 1008 and interface control 1022 connect to a packet 

acquisition device (not shown). Tfie buffer acquisition device generates a packet start 

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive 

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a 

15 packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006 

carries out the operations on the input buffer memory described in block 304 of FIG. 3. 

That is, protocol types and associated headers for each protocol layer that exist in the 

packet are determined. 

The PRE searches database 1001 and the packet in buffer 1008 in order to 

20 recognize the protocols the packet contains. In one implementation, the database 1001 

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing. 

The first lookup table is always at address zero. The Pattern Recognition Engine uses a 

base packet offset from a control register to start the comparison. It loads this value into a 

current offset pointer (COP). It then reads the byte at base packet offset from the parser 

25 input buffer and uses it as an address into the first lookup table. 

Each lookup table returns a word that links to another lookup table or it returns a 

tenninal flag. If the lookup produces a recognition event the database also returns a 

comm.and for the slicer. Finally it returns the value to add to the COP. 

The PRE 1006 includes of a comparison engine. The comparison engine has a first 

30 stage that checks the protocol type field to detennine if it is an 802.3 packet and the field 

should be treated as a length. If it is not a length, the protocol is checked in a second 

EX 1017 Page 40

10

15

20

25

30

  

32

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction-operation database memory, in which the extraction instructions are stored.

Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the

system is initialized from a microprocessor (not shown) at which time these memories are

loaded through a host interface multiplexer and control register 1005 via the internal

buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by

compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packet start

signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packet starts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006

carries out the operations on the input buffer memory described in block 304 of FIG. 3.

That is, protocol types and associated headers for each protocol layer that exist in the

packet are determined.

The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lockup tables. Each lockup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

base packet offset from a control register to start the comparison. It loads this value into a

current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lockup table or it returns a

terminal flag. 1f the lookup produces a recognition event the database also returns a

cormnand for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a first

stage that checks the protocol type field to determine if it is an 802.3 packet and the field

should be treated as a length. If it is not a length, the protocol is checked in a second

EX 1017 Page 40



• 
33 

stage. The first stage is the only protocol level that is not programmable. The second stage 

has two full sixteen bit content addressable memories (CAMs) defined for future protocol 

additions. 

Thus, whenever the PRE recognizes a pattern, it also generates a command for the 

5 extraction engine ( also called a "slicer") 1007. The recognized patterns and the commands 

are sent to the extraction engine 1007 that extracts information from the packet to build 

the parser record. Thus, the operations of the extraction engine are those carried out in 

blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in 

the form of extraction instruction pointers which tell the extraction engine 1007 where to 

10 a find the instructions in the extraction operations database memory (i.e., slicer instruction 

database) 1002. 

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol 

identifier and a process code to the extractor. The protocol identifier is added to the flow 

signature and the process code is used to fetch the first instruction from the instruction 

15 database 1002. Instructions include an operation code and usually source and destination 

offsets as well as a length. The offsets and length are in bytes. A typical operation is the 

MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data 

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a 

byte-wise barrel shifter so that the bytes moved can be packed into the flow signature. 

20 The extractor contains another instruction called HASH. This instruction tells the 

extractor to copy from the input buffer 1008 to the HASH generator. 

Thus these instructions are for extracting selected element(s) of the packet in the 

input buffer memory and transferring the data to a parser output buffer memory 1010. 

Some instructions also generate a hash. 

25 The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction 

engine 1007 performs extraction operations on data in input buffer 1008 already 

processed by PRE 1006 while more (i.e., later arriving) packet information is being 

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to 

accommodate the high arrival rate speed of packets. 

30 Once all the selected parts of the packet used to form the signature are extracted, 

the hash is loaded into parser output buffer memory 1010. Any additional payload from 

EX 1017 Page 41

 10

15

20

25

30

 
.2.

v3

33

stage. The first stage is the only protocol level that is not programmable. The second stage

has two full sixteen bit content addressable memories (CAMS) defined for future protocol

additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for the

extraction engine (also called a “slicer”) 1007. The recognized patterns and the commands

are sent to the extraction engine 1007 that extracts information from the packet to build

the parser record. Thus, the operations of the extraction engine are those carried out in

blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in

the form of extraction instruction pointers which tell the extraction engine 1007 where to

a find the instructions in the extraction operations database memory (i.e., slicer instruction

database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process code is used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a

byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more (i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

EX 1017 Page 41



, ,: ... 
', 

' 
' " ,. 

34 

the packet that is required for further analysis is also included. The parser output memory 

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once 

all the information of a packet is in the parser output buffer memory 1010, a data ready 

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem 

5 1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is 

asserted. 

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem 

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is 

initialized prior to operation, and initialization includes loading the state processing 

10 information generated by the compilation process 310 into a database memory for the 

state processing, called state processor instruction database (SPID) memory 1109. 

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer 

host interface controller 1118, which in turn has access to a cache system 1115. The cache 

system has bi-directional access to and from the state processor of the system 1108. State 

15 processor 1108 is responsible for initializing the state processor instruction database 

memory 1109 from information given over the host bus interface 1122. 

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records 

comprising packet signatures and payloads that come from the parser into the unified flow 

key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB 

20 records. A UFKB record is essentially a parser record; the UFKB holds records of packets 

that are to be processed or that are in process. Furthermore, the UFKB provides for one or 

more fields to act as modifiable status flags to allow different processes to run 

concurrently. 

Three processing engines run concurrently and access records in the UFKB 1103: 

25 the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow 

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more 

finite state machines (FSM's). There is bi-directional access between each of the finite 

state machines and the unified flow key buffer 1103. The UFKB record includes a field 

that stores the packet sequence number, and another that is filled with state information in 

30 the form of a program counter for the state processor 1108 that implements state 

processing 328. The status flags of the UFKB for any entry includes that the LUE is done 

EX 1017 Page 42

 

.2, 5E:

i
i ii

10

'n:
at
.g:

”T

as

l. r
g. ‘

A ‘ 15

is.as c
is
(Vt,’1 4
39‘ ‘

is
‘a

20

3?};

£315)“L?iE‘
'fig‘

33"“

it 25
y,
xi ._

30

 

 “C0

34

the packet that is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer

host interface controller 1118, which in turn has access to a cache system 1115. The cache

system has bidirectional access to and from the state processor of the system 1108. State

processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

comprising packet signatures and payloads that come from the parser into the unified flow

key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

records. A UFKB record is essentially a parser record; the UFKB holds records of packets

that are to be processed or that are in process. Furthermore, the UFKB provides for one or

more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lockup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM‘s). There is bi—directional access between each of the finite

state machines and the unified flow key buffer 1103. The UFKB record includes a field

that stores the packet sequence number, and another that is filled with state information in

the form of a program counter for the state processor 1108 that implements state

processing 328. The status flags of the UFKB for any entry includes that the LUE is done

EX 1017 Page 42



13) 

35 

and that the LUE is transferring processing of the entry to the state processor. The LUE 

done indicator is also used to indicate what the next entry is for the LUE. There also is 

provided a flag to indicate that the state processor is done with the current flow and to 

indicate what the next entry is for the state processor. There also is provided a flag to 

5 indicate the state processor is transferring processing of the UFKB-entry to the flow 

insertion and deletion engine. 

A new UFKB record is frrst processed by the LUE 1107. A record that has been 

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB 

record data may be processed by the flow insertion/deletion engine 1110 after being 

10 processed by the state processor 1108 or only by the LUE. Whether or not a particular 

engine has been applied to any unified flow key buffer entry is determined by status fields 

set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry 

indicates whether an entry is new or found. In other embodiments, the LUE issues a flag 

to pass the entry to the state processor for processing, and. the required operations for a 

15 new record are included in the SP instructions. 

Note that each UFKB-entry may not need to be processed by all three engines. 

Furthermore, some UFKB entries may need to be processed more than once by a 

particular engine. 

Each of these three engines also has bi-directional access to a cache subsystem 

20 1115 that includes a caching engine. Cache 1115 is designed to have information flowing 

in and out of it from five different points within the system: the three engines, external 

memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and 

a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host 

interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can 

25 thus directly insert or modify data in the cache. 

The cache subsystem 1115 is an associative cache that includes a set of content 

addressable memory cells (CAMs) each including an address portion and a pointer 

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries. 

The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The 

30 bottom CAM's pointer points to the least recently used (LRU) cache memory entry. 

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom 

EX 1017 Page 43

'3;.»9.

»..-.-M.anr

10

15

20

25

30

  

35

and that the LUE is transferring processing of the entry to the state processor. The LUE

done indicator is also used to indicate what the next entry is for the LUE. There also is

provided a flag to indicate that the state processor is done with the current flow and to

indicate What the next entry is for the state processor. There also is provided a flag to

indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular

engine has been applied to any unified flow key buffer entry is determined by status fields

set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry

indicates whether an entry is new or found. In other embodiments, the LUE issues a flag

to pass the entry to the state processor for processing, and. the required operations for a

new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out of it from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and

a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HJB) 1122. The analyzer microprocessor (or dedicated logic processor) can

thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMS) each including an address portion and a pointer

portion pointing to the cache memory (e. g., RAM) containing the cached flow-entries.

The CAMS are arranged as a stack ordered from a top CAM to a bottom CAM. The

bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.

Whenever there is a cache miss, the contents of cache memory pointed to by the bottom

EX 1017 Page 43



5 

36 

CAM are replaced by the flow-entry from the flow-entry database 324. This now becomes 

the most recently used entry, so the contents of the bottom CAM are moved to the top 

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache 

with a true LRU replacement policy. 

The LUE 1107 first processes a UFKB-entry, and basically performs the operation 

of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a "new" 

UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read a matching 

bin of up to four buckets from the cache. The cache system attempts to obtain the 

matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to 

10 the UMC 1119 to bring in a matching bin from the external memory. 

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket 

and compares it using the signature to the signature of the UFKB-entry until there is a 

match or there are no more buckets. 

If there is no match, or if the cache failed to provide a bin of flow-entries from the 

15 cache, a time stamp in set in the flow key of the UFKB record, a protocol identification 

and state determination is made using a table that was loaded by compilation process 310 

during initialization, the status for the record is set to indicate the LUE has processed the 

record, and an indication is made that the UFKB-entry is ready to start state processing. 

The identification and state determination generates a protocol identifier which in the 

20 preferred embodiment is a "jump vector" for the state processor which is kept by the 

UFKB for this UFKB-entry and used by the state processor to start state processing for 

the particular protocol. For example, the jump vector jumps to the subroutine for 

processing the state. 

If there was a match, indicating that the packet of the UFKB-entry is for a 

,, "' 25 previously encountered flow, then a calculator component enters one or more statistical 

measures stored in the flow-entry, including the timestamp. In addition, a time difference 

from the last ·stored timestamp may be stored, and a packet count may be updated. The 

state of the flow is obtained from the flow-entry is examined by looking at the protocol 

identifier stored in the flow-entry of database 324. If that value indicates that no more 

30 classification is required, then the status for the record is set to indicate the LUE has 

processed the record. In the preferred embodiment, the protocol identifier is a jump 

EX 1017 Page 44

10

15

20

25

3O

“AL~"...fit":«:3‘'~ 5.,,.

  

36

CAM are replaced by the flow—entry from the flow-entry database 324. This now becomes

the most recently used entry, so the contents of the bottom CAM are moved to the top

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

with a true LRU replacement policy.

The LUE 1107 first processes a UFKB~entry, and basically performs the operation

of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a “new”

UFKB—entry is available. The LUE uses the hash in the UFKB-entry to read a matching

bin of up to four buckets from the cache. The cache system attempts to obtain the

matching bin. If a matching bin is not in the cache, the cache 1115 makes the request to

the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket

and compares it using the signature to the signature of the UFKB~entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow—entries from the

cache, a time stamp in set in the flow key of the UFKB record, a protocol identification

and state determination is made using a table that was loaded by compilation process 310

during initialization, the status for the record is set to indicate the LUE has processed the

record, and an indication is made that the UFKB-entry is ready to start state processing,

The identification and state determination generates a protocol identifier which in the

preferred embodiment is a “jump vector” for the state processor which is kept by the

UFKB for this UFKB~entry and used by the state processor to start state processing for

the particular protocol. For example, the jump vector jumps to the subroutine for

processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a

previously encountered flow, then a calculator component enters one or more statistical

measures stored in the flow-entry, including the timestamp. In addition, a time difference

from the last Stored timestamp may be stored, and a packet count may be updated. The

state of the flow is obtained from the flow-entry is examined by looking at the protocol

identifier stored in the flow-entry of database 324. If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

EX 1017 Page 44



• 
37 

vector for the state processor to a subroutine to state processing the protocol, and no more 

classification is indicated in the preferred embodiment by the jump vector being zero. If 

the protocol identifier indicates more processing, then an indication is made that the 

UFKB-entry is ready to start state processing and the status for the record is set to indicate 

5 the LUE has processed the record. 

The state processor 1108 processes information in the cache system according to a 

UFKB-entry after the LUE has completed. State processor 1108 includes a state processor 

program counter SPPC that generates the address in the state processor instruction 

database 1109 loaded by compiler process 310 during initialization. It contains an 

10 Instruction Pointer (SPlP) which generates the SPID address. The instruction pointer can 

be incremented or loaded from a Jump Vector Multiplexor which facilitates conditional 

branching. The SPlP can be loaded from one of three sources: (1) A protocol identifier 

from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or 

(3) a value provided by the arithmetic logic unit (SPALU) included in the state processor. 

15 Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol 

identifier, the Program Counter is initialized with the last protocol recognized by the 

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that 

was decoded. 

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String 

20 Compare functions necessary to implement the State Processor instructions. The main 

blocks of the SP ALU are: The A and B Registers, the Instruction Decode & State 

Machines, the String Reference Memory the Search Engine, an Output Data Register and 

an Output Control Register 

The Search Engine in turn contains the Target Search Register set, the Reference 

25 Search Register set, and a Compare block which compares two operands by exclusive-or

ing them together. 

Thus, after the UFKB sets the program counter, a sequence of one or more state 

operations are be executed in state processor 1108 to further analyze the packet that is in 

the flow key buffer entry for this particular packet. 

30 FIG. 13 describes the operation of the state processor 1108. The state processor is 

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is 

EX 1017 Page 45

Hes.

ia't

: «£9

10

15

20

25

30

 

3'?

vector for the state processor to a subroutine to state processing the protocol, and no more

classification is indicated in the preferred embodiment by the jump vector being zero. If

the protocol identifier indicates more processing, then an indication is made that the

UFKB~entry is ready to start state processing and the status for the record is set to indicate

the LUE has processed the record.

The state processor 1108 processes information in the cache system according to a

UFKB—entry after the LUE has completed. State processor 1108 includes a state processor

program counter SPPC that generates the address in the state processor instruction

database 1109 loaded by compiler process 310 during initialization. It contains an

Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can

be incremented or loaded from a Jump Vector Multiplexer which facilitates conditional

branching. The SPIP can be loaded from one of three sources: (1) A protocol identifier

from the UFKB, (2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided by the arithmetic logic unit (SPALU) included in the state processor.

Thus, after 3 Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String

Compare functions necessary to implement the State Processor instructions. The main

blocks of the SPALU are: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-on

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB—entry is

EX 1017 Page 45



I 
f, 
1: 

• ,· 
'• ', 
' ,. 

" 

5 

10 

38 

new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified 

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used 

to set the state processor's instruction counter. The state processor 1108 starts the process 

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump 

table. The jump table takes us to the instructions to use for that protocol. Most 

instructions test something in the unified flow key buffer or the flow-entry if it exists. The 

state processor 1108 may have to test bits, do comparisons, add or subtract to perform the 

test. 

The first state processor instruction is fetched in 1304 from the state processor 

instruction database memory 1109. The state processor performs the one or more fetched 

operations (1304). In our implementation, each single state processor instruction is very 

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be 

performed on each unified flow key buffer entry. One aspect of the state processor is its 

ability to search for one or more (up to four) reference strings in the payload part of the 

15 UFKB entry. This is implemented by a search engine component of the state processor 

responsive to special searching instructions. 

In 1307, a check is made to determine if there are any more instructions to be 

performed for the packet. If yes, then in 1308 the system sets the state processor 

instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an 

20 immediate jump vector in the currently decoded instruction, or by a value provided by the 

SP ALU during processing. 

25 

The next instruction to be performed is now fetched ( 1304) for execution. This 

state processing loop between 1304 and 1307 continues until there are no more 

instructions to be performed. 

At this stage, a check is made in 1309 if the processing on this particular packet 

has resulted in a final state. That is, is the analyzer is done processing not only for this 

particular packet, but for the whole flow to which the packet belongs, and the flow is fully 

determined. If indeed there are no more states to process for this flow, then in 1311 the 

processor finalizes the processing. Some finnl states may need to put a state in place that 

30 tells the system to remove a flow-for example, if a connection disappears from a lower 

level connection identifier. In that case, in 1311, a flow removal state is set and saved in 

EX 1017 Page 46

5.Jar":-:

mu.3...“."We?‘1"
w.44‘9

,3.1.fl.

:~v-~\.v,.__....
“Mo." 10

15

, 20

25

30

  

38

new or corresponding to :1 found flow-entry. This UFKB-entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the process

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump

table. The jump table takes us to the instructions to use for that protocol. Most

instructions test something in the unified flow key buffer or the flow-entry if it exists. The

state processor 1108 may have to test bits, do comparisons, add or subtract to perform the

test.

The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, 3 compare, etc), so that many such instructions need to be

performed on each unified flow key buffer entry. One aspect of the state processor is its

ability to Search for one or more (up to four) reference strings in the payload part of the

UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is fully

determined. If indeed there are no more states to process for this flow, then in 1311 the

processor finalizes the processing. Some final states may need to put a state in place that

tells the system to remove a flOWwaI example, if a connection disappears from a lower

level connection identifier. In that case, in 1311, a flow removal state is set and saved in

EX 1017 Page 46



39 

the flow-entry. The flow removal state may be a NOP (no-op) instruction which means 

there are no removal instructions. 

Once the appropriate flow removal instruction as specified for this flow (a NOP or 

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can 

5 now obtain another unified flow key buffer entry to process. 

If at 1309 it is determined that processing for this flow is not completed, then in 

1310 the system saves the state processor instruction pointer in the current flow-entry in 

the current flow-entry. That will be the next operation that will be performed the next 

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now 

10 exits processing this particular unified flow key buffer entry at 1313. 

Note that state processing updates information in the unified flow key buffer 1103 

and the flow-entry in the cache. Once the state processor is done, a flag is set in the 

UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be 

inserted or deleted from the database of flows, control is then passed on to the flow 

15 insertion/deletion engine 1110 for that flow signature and packet entry. This is done by 

the state processor setting another flag in the UFKB for this UFKB-entry indicating that 

the state processor is passing processing of this entry to the flow insertion and deletion 

engine. 

The flow insertion and deletion engine 1110 is responsible for maintaining the 

20 flow-entry database. In particular, for creating new flows in the flow database, and 

deleting flows from the database so that they can be reused. 

The process of flow insertion is now described with the aid of FIG. 12. Flows are 

grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that 

may be new or that the state processor otherwise has indicated needs to be created. 

25 FIG. 12 shows the case of a new entry being created. A conversation record bin 

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that 

matches the hash of the UFKB, so this bin may already have been sought for the UFKB

entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be 

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the 

30 bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket 

and the bucket is marked "used" in the cache engine of cache 1115 using a timestamp that 

EX 1017 Page 47



40 

is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and 

bucket record flow signature to the packet to verify that all the elements are in place to 

complete the record. In 1211 the system marks the record bin and bucket as "in process" 

and as "new" in the cache system (and hence in the external memory). In 1212, the initial 

5 statistical measures for the flow-record are set in the cache system. This in the preferred 

embodiment clears the set of counters used to maintain statistics, and may perform other 

procedures for statistical operations requires by the analyzer for the first packet seen for a 

,~ ~r particular flow. 
/. 

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next 

10 bucket for this particular bin in the cache system. If this succeeds, the processes of 1207, 

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket, 

the unified flow key buffer entry for the packet is set as "drop," indicating that the system 

cannot process the particular packet because there are no buckets left in the system. The 

process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow insertion and 

15 deletion operations are completed for this UFKB-entry. This also lets the UFKB provide 

the FIDE with the next UFKB record. 

Once a set of operations is performed on a unified flow key buffer entry by all of 

the engines required to access and manage a particular packet and its flow signature, the 

unified flow key buffer entry is marked as "completed." That element will then be used 

20 by the parser interface for the next packet and flow signature coming in from the parsing 

and extracting system. 

25 

All flow-entries are maintained in the external memory and some are maintained 

in the cache 1115. The cache system 1115 is intelligent enough to access the flow 

database and to understand, the data structures that exists on the other side of memory 

interface 1123. The lookup/update engine 1107 is able to request that the cache system 

pull a particular flow or "buckets" of flows from the unified memory controller 1119 into 

the cache system for further processing. The state processor 1108 can operate on 

information found in the cache system once it is looked up by means of the lookup/update 

engine request, and the flow insertion/deletion engine 1110 can create new entries in the 

30 cache system if required based on information in the unified flow key buffer 1103. The 

cache retrieves information as required from the memory through the memory interface 

1123 and the unified memory controller 1119, and updates information as required in the 

EX 1017 Page 48

 
 

25

30

 

40

is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucket as “in process”

and as “new” in the cache system (and hence in the external memory). In 1212, the initial

statistical measures for the flow-record are set in the cache system. This in the preferred

embodiment clears the set of counters used to maintain statistics, and may perform other

procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow.

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket,

the unified flow key buffer entry‘for the packet is set as “drop,” indicating that the system

cannot process the particular packet because there are no buckets left in the system. The

process exits at 1213. The FlDE 1110 indicates to the UFKB that the flow insertion and

deletion operations are completed for this UFKB-entry. This also lets the UFKB provide

the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and manage a particular packet and its flow signature, the

unified flow key buffer entry is marked as “completed.” That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow—entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understand the data structures that exists on the other side of memory

interface 1123. The lookup/update engine 1107 is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system once it is looked up by means of the lockup/update

engine request, and the flow insertion/deletion engine 1110 can create new entries in the

cache system if required based on information in the unified flow key buffer 1103. The

cache retrieves information as required from the memory through the memory interface

1123 and the unified memory controller 1119, and updates information as required in the

EX 1017 Page 48



41 

memory through the memory controller 1119. 

There are several interfaces to components of the system external to the module of 

FIG. 11 for the particular hardware implementation. These include host bus interface 

1122,which is designed as a generic interface that can operate with any kind of external 

5 processing system such as a microprocessor or a multiplexor (MUX) system. 

Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12 

into some other processing system to manage the classification system and to extract data 

gathered by the system. 

The memory interface 1123 is;designed to interface to any of a variety of memory 

10 systems that one may want to use to store the flow-entries. One can use different types of 

memory systems like regular dynamic random access memory (DRAM), synchronous 

DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM), 

and so forth. 

FIG. 10 also includes some "generic" interfaces. There is a packet input interface 

15 1012-a general interface that works in tandem with the signals of the input buffer 

interface control 1022. These are designed so that they can be used with any kind of 

generic systems that can then feed packet information into the parser. Another generic 

interface is the interface of pipes 1031 and 1033 respectively out of and into host interface 

multiplexor and control registers 1005. This enables the parsing system to be managed by 

20 an external system, for example a microprocessor or another kind of external logic, and 

enables the external system to program and otherwise control the parser. 

The preferred embodiment of this aspect of the invention is described in a 

hardware description language (HDL) such as VHDL or Verilog. It is designed and 

created in an HDL so that it may be used as a single chip system or, for instance, 

/. 25 integrated into another general-purpose system that is being designed for purposes related 

to creating and analyzing traffic within a network. Verilog or other HDL implementation 

is only one method of describing the hardware. 

In accordance with one hardware implementation, the elements shown in FIGS. 10 

and 11 are implemented in a set of six field programmable logic arrays (FPGA's). The 

30 boundaries of these FPGA's are as follows. The parsing subsystem of FIG. 10 is 

implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts 

EX 1017 Page 49

 

luv1...“a:3“1‘.

".0umutiweaznm».t:,,v
‘5’

‘$4‘~§\«W~HMwt.if1‘.,I.,V
I.:.., .ml.4..wnmw’v

 

U!

10

15

20

25

30

  
41

memory through the memory controller 1 119.

There are several interfaces to components of the system external to the module of

FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessor or a multiplexer (MUX) system.

Consequently, one can connect the overall traffic classification system ofFIGS. 11 and 12

into some other processing system to manage the classification system and to extract data

gathered by the system.

The memory interface 1123 is¢designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),

and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

101 2——-a general interface that works in tandem with the signals of the input buffer

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host interface

multiplexer and control registers 1005. This enables the parsing system to be managed by

an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodiment of this aspect of the invention is described in a

hardware description language (HDL) such as VHDL or Verilog. It is designed and

created in an I-IDL so that it may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes related

to creating and analyzing traffic within a network. Verilog or other HDL‘implementation

is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10

and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The

boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is

implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts

EX 1017 Page 49



42 

of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of 

1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single 

FPGA. State processor 1108 and part of state processor instruction database memory 

1109 is another FPGA. Portions of the state processor instruction database memory 1109 

5 are maintained in external SRAM's. The lookup/update engine 1107 and the flow 

insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache 

system 1115, the unified memory control 1119, and the analyzer host interface and 

control 1118. 

Note that one can implement the system as one or more VSLI devices, rather than 

IO as a set of application specific integrated circuits (ASIC's) such as FPGA's. It is 

anticipated that in the future device densities will continue to increase, so that the 

complete system may eventually form.a sub-unit (a "core") of a larger single chip unit. 

j 
{ Operation of the Invention 

t, Fig. 15 shows how an embodiment of the network monitor 300 might be used to 
:; 

15 analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets 

from a connection point 121 on network 102 so that all packets passing point 121 in either 

direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 30 l, 

which determines flow signatures, and analyzer sub-system 303 that analyzes the flow 

signature of each packet. A memory 324 is used to store the database of flows that are 

20 determined and updated by monitor 300. A host computer 1504, which might be any 

processor, for example, a general-purpose computer, is used to analyze the flows in 

memory 324. As is conventional, host computer 1504 includes a memory, say RAM, 

shown as host memory 1506. In addition, the host might contain a disk. In one 

application, the system can operate as an RMON probe, in which case the host computer 

25 is coupled to a network interface card 1510 that is connected to the network 102. 

The preferred embodiment of the invention is supported by an optional Simple 

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one 

would, for example, implement an RMON probe, where a network interface card is used 

to send RMON information to the network. Commercial SNMP implementations also are 

30 available, and using such an implementation can simplify the process of porting the 

preferred embodiment of the invention to any platform. 

EX 1017 Page 50

 o

42

of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of

1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented as a single

FPGA. State processor 1108 and part of state processor instruction database memory

1109 is another FPGA. Portions of the state processor instruction database memory 1109

5 are maintained in external SRAM’S. The lockup/update engine 1107 and the flow

insertionldeletion engine 1110 are in another FPGA. The sixth FPGA includes the cache

system 1115, the unified memory control 1119, and the analyzer host interface and

control 1 118.

Note that one can implement the system as one or more VSLI devices, rather than

10 as a set of application specific integrated circuits (ASIC’s) such as FPGA’S. It is

; anticipated that in the future device densities will continue to increase, so that the

complete system may eventually formia sub-unit (a “core”) of a larger single chip unit.

’3 Operation of the Invention

g Fig. 15 shows how an embodiment of the network monitor 300 might be used to

- 15 analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets
i

. from a connection point 121 on network 102 so that all packets passing point 121 in either

: direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301 ,
, which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

i , signature of each packet. A memory 324 is used to store the database of flows that are

20 determined and updated by monitor 300. A host computer 1504, which might be any

processor, for example, a general~purpose computer, is used to analyze the flows in

memory 324. As is conventional, host computer 1504 includes a memory, say RAM,

shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMON probe, in which case the host computer

25 is coupled to a network interface card 1510 that is connected to the network 102. 
The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one

:5; would, for example, implement an RMON probe, where a network interface card is used

,1 to send RMON information to the network. Commercial SNMP implementations also are

30 available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform. 
EX 1017 Page 50



• 
43 

~-~ddition, MlB Compilers are available. An MlB Compiler is a tool that greatly ........ 
simplifies the creation and maintenance of proprietary MlB extensions. 

Examples of Packet Elucidation 

Monitor 300, and in particular, analyzer 303 is capable of carrying out state 

analysis for packet exchanges that are commonly referred to as "server announcement" 

type exchanges. Server announcement is a process used to ease communications between 

a server with multiple applications that can all be simultaneously accessed from multiple 

clients. Many applications use a server announcement process as a means of multiplexing 

a single port or socket into many applications and services. With this type of exchange, 

messages are sent on the network, in either a broadcast or multicast approach, to 

announce a server and application, and all stations in the network may receive and decode 

these messages. The messages enable the stations to derive the appropriate connection 

point for communicating that particular application with the particular server. Using the 

server announcement method, a particular application communicates using a service 

channel, in the form of a TCP or UDP socket or port as in the 1P protocol suite, or using a 

SAP as in the Novell JPX protocol suite. 

The analyzer 303 is also capable of carrying out "in-stream analysis'' of packet 

exchanges. The "in-stream analysis" method is used either as a primary or secondary 

recognition process. As a primary process, in-stream analysis assists in extracting detailed 

information which will be used to further ~cognize both the specific application and 

application component. A good example of in-stream analysis is any Web-based 

application. For example, the commonly used PointCast Web information application can 

be recognized using this process; during the initial connection between a PointCast server 

and client, specific key tokens exist in the data exchange that will result in a signature 

being generated to recognize PointCast. 

The in-stream analysis process may also be combined with the server 

announcement process. In many cases in-stream analysis will augment other recognition 

processes. An example of combining in-stream analysis with server announcement can be 

found in business applications such as SAP and BAAN. 

"Session tracking" also is known as one of the primary processes for tracking 

applications in client/server packet exchanges. The process of tracking sessions requires 

EX 1017 Page 51



44 

an initial connection to a predefined socket or port number. This method of 

communication is used in a variety of transport layer protocols. It is most commonly seen 

in the TCP and UDP transport protocols of the IP protocol. 

During the session tracking, a client makes a request to a server using a specific 

5 port or socket number. This initial request will cause the server to create a TCP or UDP 

port to exchange the remainder of the data between the client and the server. The server 

then replies to the request of the client using this newly created port. The original port 

used by the client to connect to the server will never be used again during this data 

exchange. 

10 One example of session tracking is TFfP (Trivial File Transfer Protocol), a 

version of the TCP/IP FfP protocol that has no directory or password capability. During 

the client/server exchange process of TFfP, a specific port (port number 69) is always 

used to initiate the packet exchange. Thus, when the client begins the process of 

communicating, a request is made to UDP port 69. Once the server receives this request, a 

15 new port number is created on the server. The server then replies to the client using the 

new port. In this example, it is clear that in order to recognize TFTP; network monitor 

300 analyzes the initial request from the client and generates a signature for it. Monitor 

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from 

the server with the key port information, and uses this to create a signature for monitoring 

20 the remaining packets of this data exchange. 

Network monitor 300 can also understand the current state of particular 

connections in the network. Connection-oriented exchanges often benefit from state 

tracking to correctly identify the application. An example is the common TCP transport 

protocol that provides a reliable means of sending information between a client and a 

25 server. When a data exchange is initiated, a TCP request for synchronization message is 

sent. This message contains a specific sequence number that is used to track an 

acknowledgement from the server. Once the server has acknowledged the synchronization 

request, data may be exchanged between the client and the server. When communication 

is no longer required, the client sends a finish or complete message to the server, and the 

30 server acknowledges this finish request with a reply containing the sequence numbers 

from the request. The states of such a connection-oriented exchange relate to the various 

types of connection and maintenance messages. 

EX 1017 Page 52



45 

Server Announcement Example 

The individual methods of server announcement protocols vary. However, the 

basic underlying process remains similar. A typical server announcement message is sent 

to one or more clients in a network. This type of announcement message has specific 

5 content, which, in another aspect of the invention, is salvaged and maintained in the 

database of flow-entries in the system. Because the announcement is sent to one or more 

stations, the client involved in a future packet exchange with the server will make an 

assumption that the information announced is known, and an aspect of the inventive 

monitor is that it too can make the same assumption. 

10 Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California) 

of the Remote Procedure Call (RPC), a programming interface that allows one program to 

use the services of another on a remote machine. A Sun-RPC example is now used to 

explain how monitor 300 can capture server announcements. 

A remote program or client that wishes to use a server or procedure must establish 

15 a connection, for which the RPC protocol can be used. 

Each server running the Sun-RPC protocol must maintain a process and database 

called the port Mapper. The port Mapper creates a direct association between a Sun-RPC 

program or application and a TCP or UDP socket or port (for TCP or UDP 

implementations). An application or program number is a 32-bit unique identifier 

20 assigned by ICANN (the Internet Corporation for Assigned Names and Numbers, 

www .icann.org), which manages the huge number of parameters associated with Internet 

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on 

a Sun-RPC server can present the mappings between a unique program number and a 

specific transport socket through the use of specific request or a directed announcement. 

25 According to ICANN, port number 111 is associated with Sun RPC. 

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making 

a specific request to the server (e.g., SERVER 2 of FIG. l, shown as 110) on a predefined 

UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the 

request, the specific mapping is returned in a directed reply to the client. 

EX 1017 Page 53

 

10

.15:

ti'

t: 15

‘3..3 l

;
i‘t

‘ 5 «3‘ 20
A. I 3‘

. : a
3 ”a
' 5‘

£1;
4 'V.
, 3: 25

 

J 3 t.
i. .’ ‘1’ _
v‘: ; ’C.

45

Server Announcement Example

The individual methods of server announcement protocols vary. However, the

basic underlying process remains similar. A typical server announcement message is sent

to one or more clients in a network. This type of announcement message has specific

content, which, in another aspect of the invention, is salvaged and maintained in the

database of flow-entries in the system. Because the announcement is sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun—RFC is the implementation by Sun lVficrosystems, Inc. (Palo Alto, California)

of the Remote Procedure Call (RPC), a programming interface that allows one program to

use the services of another on a remote machine. A Sun-RFC example is now used to

explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must establish

a connection, for which the RFC protocol can be used.

Each server running the Sun-RFC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun-RFC

program or application and a TCP or UDP socket or port (for TCP or UDP

implementations). An application or program number is a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

wwwicannorg), which manages the huge number of parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun-RFC server can present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g.. CLIENT 3 showu as 106 in FIG. 1) making

a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

UDP or TCP socket. Once the port Mapper process on the sun RPC server receives the

request, the specific mapping is returned in a directed reply to the client.

EX 1017 Page 53



() 
46 

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2 

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request 

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This 

request specifies the program (as a program identifier), version, and might 

5 specify the protocol (UDP or TCP). 

10 

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and 

3. 

version identifier from the request. The server also uses the fact that this 

packet came in using the TCP transport and that no protocol was specified, and 

thus will use the TCP protocol for its reply. 

The server 110 sends a TCP packet to port number 111, with an RPC Bind 

Lookup Reply. The reply contains the specific port number (e.g., port number 

'port') on which future transactions will be accepted for the specific RPC 

program identifier (e.g., Program 'program') and the protocol (UDP or TCP) 

for use. 

15 It is desired that from now on every time that port number 'port' is used, the 

packet is associated with the application program 'program' until the number 'port' no 

longer is to be associated with the program 'program'. Network monitor 300 by creating a 

flow-entry and a signature includes a mechanism for remembering the exchange so that 

future packets that use the port number 'port' will be associated by the network monitor 

20 with the application program 'program'. 

In addition to the Sun RPC Bind Lookup request and reply, there are other ways 

that a particular program-say 'program'-might be associated with a particular port 

number, for example number 'port'. One is by a broadcast announcement of a particular 

association between an application service and a port number, called a Sun RPC 

25 portMapper Announcement. Another, is when some server-say the same SERVER 2-

replies to some client-say CLIENT !-requesting some portMapper assignment with a 

RPC portMapper Reply. Some other client-say CLIENT 2-might inadvertently see this 

request, and thus know that for this particular server, SERVER 2, port number 'port' is 

associated with the application service 'program'. It is desirable for the network monitor 

30 300 to be able to associate any packets to SERVER 2 using port number 'port' with the 

application program 'program'. 

EX 1017 Page 54



47 

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3 

for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is 

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in 

FIG. 1) via the server's interface to the network 116. Further assume that Remote 

5 Procedure Call is used to communicate with the server 110. One path in the data flow 900 

starts with a step 910 that a Remote Procedure Call bind lookup request is issued by client 

106 and ends with the server state creation step 904. Such RPC bind lookup request 

includes values for the 'program,' 'version,' and 'protocol' to use, e.g., TCP or UDP. The 

process for Sun RPC analysis in the network monitor 300 includes the following aspects. : 

10 

15 

• Process 909: Extract the 'program,' 'version,' and 'protocol' (UDP or TCP). 

Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC. 

• Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If 

value is portMapper, save paired socket (i.e., dest for destination address, src 

for source address). Decode ports and mapping, save ports with socket/addr 

key. There may be more than one pairing per mapper packet. Form a signature 

(e.g., a key). A flow-entry is created in database 324. The saving of the request 

is now complete. 

At some later time, the server (process 907) issues a RPC bind lookup reply. The 

packet monitor 300 will extract a signature from the packet and recognize it from the 

20 previously stored flow. The monitor will get the protocol port number (906) and lookup 

the request (905). A new signature (i.e., a key) will be created and the creation of the 

server state (904) will be stored as an entry identified by the new signature in the flow

entry database. That signature now may be used to identify packets associated with the 

server. 

25 The server state creation step 904 can be reached not only from a Bind Lookup 

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an 

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can 

announce that it is able to provide a particular application service. Embodiments of the 

present invention preferably can analyze when an exchange occurs between a client and a 

30 server, and also can track those stations that have received the announcement of a service 

in the network. 

EX 1017 Page 55

‘ 23:35" ’

th'sM—ML..¢“a..’1..zr‘l..‘.<na>a.“a“,
10

‘“seat,
.a.‘

\'.

*3d“.er

15

 

25 
 

  
47

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server’s interface to the network 116. Further assume that Remote

Procedure C311 is used to communicate with the server 110. One path in the data flow 900

starts with a step 910 that a Remote Procedure Call bind lockup request is issued by client

106 and ends with the server state creation step 904. Such RPC bind lockup request

includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects. :

0 Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

0 Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If

value is portMapper, save paired socket (i. e., dest for destination address, src

for source address). Decode ports and mapping, save ports with socket/addr

key. There may be more than one pairing per mapper packet. Form a signature

(e.g., a key). A flow-entry is created in database 324. The saving of the request

is now complete.

At some later time, the server (process 907) issues a RFC bind lockup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lockup

the request (905). A new signature (i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow—

entry database. That signature now may be used to identify packets associated with the

SCH/81‘.

The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol can

announce that it is able to provide a particular application service. Embodiments of the

present invention preferably can analyze when an exchange occurs between a client and a

server, and also can track those stations that have received the announcement of a service

in the network.

EX 1017 Page 55



• 
48 

The RPC Announcement portMapper announcement 902 is a broadcast. Such 

causes various clients to execute a similar set of operations, for example, saving the 

information obtained from the announcement. The RPC Reply portMapper step 901 could 

be in reply to a portMapper request, and is also broadcast. It includes all the service 

5 parameters. 

Thus monitor 300 creates and saves all such states for later classification of flows 

that relate to the particular service 'program'. 

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature 

and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun 

10 Microsystems Remote Procedure Call protocol. A method embodiment of the present 

invention might generate a pair of flow signatures, "signature- I" 210 and "signature-2" 

212, from information found in the packets 206 and 207 which, in the example, 

correspond to a Sun RPC Bind Lookup request and reply, respectively. 

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds 

15 to such a request sent from CLIENT 3 to SERVER 2. This packet contains important 

information that is used in building a signature according to an aspect of the invention. A 

source and destination network address occupy the first two fields of each packet, and 

according to the patterns in pattern database 308, the flow signature (shown as KEYl 230 

in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include 

20 these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address identifies the 

client 106 (shown also as 202), the label used in the drawing is "C(. If such address 

identifies the server 110 (shown also as server 204), the label used in the drawing is "S{. 

The first two fields 214 and 215 in packet 206 are "Si" and C1" because packet 206 is 

provided from the server 110 and is destined for the client 106. Suppose for this example, 

25 "Si" is an address numerically less than address "Ci". A third field "pl" 216 identifies the 

particular protocol being used, e.g., TCP, UDP, etc. 

1n packet 206, a fourth field 217 and a fifth field 218 are used to communicate 

port numbers that are used. The conversation direction determines where the port number 

field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the 

30 hash pattern in field 218 is used to identify the destination-port pattern. The order 

indicates the client-server message direction. A sixth field denoted "il" 219 is an element 

EX 1017 Page 56

 

 

:-
t

5‘
’1‘:
”i
'2.

z

 

‘j‘XE'pCef'f;”

10

15

20

30

 

48

The RPC Announcement portMapper announcement 902 is a broadcast. Such

causes various clients to execute a similar set of Operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapper step 901 could

be in reply to a portMapper request, and is also broadcast. It includes all the service

parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206409 are exchanged, e. g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2”

212, from information found in the packets 206 and 20? which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds

to such a request sent from CLIENT 3 to SERVER 2. This packet contains important

information that is used in building a signature according to an aspect of the invention. A

source and destination network address occupy the first two fields of each packet, and

according to the patterns in pattern database 308, the flow signature (shown as KEYl 230

in FIG. 2) will also contain these two fields, so the parser subsystem 301 will include

these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address identifies the

client 106 (shown also as 202), the label used in the drawing is “Cl”. If such address

identifies the server 110 (shown also as server 204), the label used in the drawing is “SI”.

The first two fields 214 and 215 in packet 206 are “SI” and C1” because packet 206 is

provided from the server 110 and is destined for the client 106. Suppose for this example,

“81" is an address numerically less than address “C 1”. A third field “pl” 216 identifies the

particular protocol being used, e. g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate

port numbers that are used. The conversation direction determines where the port number

field is. The diagonal pattern in field 217 is used to identify a source—port pattern, and the

hash pattern in field 218 is used to identify the destination-port pattern. The order

indicates the client-server message direction. A sixth field denoted “11” 219 is an element

EX 1017 Page 56



J :; 
·:t .. 
•? 
~ ',• 

j 

1 
{~; 

5 

10 

49 

that is being requested by the client from the server. A seventh field denoted "s 1 a" 220 is 

the service requested by the client from server 110. The following eighth field "QA" 221 

(for question mark) indicates that the client 106 wants to know what to use to access 

application "s 1a". A tenth field "QP" 223 is used to indicate that the client wants the 

server to indicate what protocol to use for the particular application. 

Packet 206 initiates the sequence of packet exchanges, e.g., a 

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the 

packets, and is transmitted to the server 110 on a well-known service connection identifier 

(port 111 indicating Sun RPC). 

Packet 207 is the first sent in reply to the client 106 from the server. It is the 

RPC Bind Lookup Reply as a result of the request packet 206. 

Packet 207 includes ten fields 224-233. The destination and source addresses are 

carried in fields 224 and 225, e.g., indicated "Ci" and "Si", respectively. Notice the order 

is now reversed, since the client-server message direction is from the server 110 to the 

15 client 106. The protocol "pl" is used as indicated in field 226. The request "il" is in field 

229. Values have been filled in for the application port number, e.g., in field 233 and 

protocol '"'p2'"' in field 233. 

The flow signature and flow states built up as a result of this exchange are now 

described. When the packet monitor 300 sees the request packet 206 from the client, a 

20 first flow signature 210 is built in the parser subsystem 301 according to the pattern and 

extraction operations database 308. This signature 210 includes a destination and a source 

address 240 and 241. One aspect of the invention is that the flow keys are built 

consistently in a particular order no matter what the direction of conversation. Several 

mechanisms may be used to achieve this. In the particular embodiment, the numerically 

25 lower address is always placed before the numerically higher address. Such least to 

highest order is used to get the best spread of signatures and hashes for the lookup 

operations. In this case, therefore, since we assume "S1"<"C1", the order is address "S 1" 

followed by client address "C(. The next field used to build the signature is a protocol 

field 242 extracted from packet 206's field 216, and thus is the protocol "pl". The next 

30 field used for the signature is field 243, which contains the destination source port number 

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be 

EX 1017 Page 57

smut"MN“;m3-.t..x
11%.cacti.“»tv;t":-

3,;‘53'i.~“,’:_~m‘mm.
.t

4:t.mews...‘t»

 -.a
“twe‘.r
1.

m3-

 

10

15

20

30

  
49

that is being requested by the client from the server. A seventh field denoted “3121” 220 is

the service requested by the client from server 110. The following eighth field “QA” 221

(for question mark) indicates that the client 106 wants to know what to use to access

application “51a". A tenth field “QP” 223 is used to indicate that the client wants the

server to indicate what protocol to use for the particular application

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well—defined format, as do all the

packets, and is transmitted to the server 110 on a well—known service connection identifier

(port 111 indicating Sun RPC).

Packet 207 is the‘first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

Packet 20'? includes ten fields 224—233. The destination and source addresses are

carried in fields 224 and 225, e. 3., indicated “C1” and “SI”, respectively. Notice the order

is now reversed, since the client-server message direction is from the server 110 to the

client 106. The protocol “pl” is used as indicated in field 226. The request “i1” is in field

229. Values have been filled in for the application port number, e.g., in field 233 and

protocol ““p3”” in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a source

address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower address is always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “81”<“C1”, the order is address “51”

followed by client address “Cl”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p1”. The next

field used for the signature is field 243, which contains the destination source port number

shown as a crosshatched pattern from the field 218 of the packet 206. This pattern will be

EX 1017 Page 57



50 

recognized in the payload of packets to derive how this packet or sequence of packets 

exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP 

port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port 

numbers of UDS for pl that will be used to recognize this flow (e.g., port 111). Port 111 

5 indicates this is Sun RPC. Some applications, such as the Sun RPC Bind Lookups, are 

directly determinable ("known") at the parser level. So in this case, the signature KEY-I 

points to a known application denoted "al" (Sun RPC Bind Lookup), and a next-state that 

the state processor should proceed to for more complex recognition jobs, denoted as state 

"st0 " is placed in the field 245 of the flow-entry. 

10 

15 

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built 

by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters 

the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is 

obtained, and in this flow-entry indicates state "st0 ". The operations for state "st0 " in the 

state processor instruction database 326 instructs the state processor to build and store a 

new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the 

state processor also includes the destination and a source addresses 250 and 251, 

respectively, for server "Si" followed by (the numerically higher address) client "Ci". A 

protocol field 252 defmes the protocol to be used, e.g., "p2" which is obtained from the 

reply packet. A field 253 contains a recognition pattern also obtained from the reply 

20 packet. In this case, the application is Sun RPC, and field 254 indicates this application 

"a2". A next-state field 255 defines the next state that the state processor should proceed 

to for more complex recognition jobs, e.g., a state "stl". In this particular example, this is 

a final state. Thus, KEY-2 may now be used to recognize packets that are in any way 

associated with the application "a2". Two such packets 208 and 209 are shown, one in 

25 each direction. They use the particular application service requested in the original Bind 

Lookup Request, and each will be recognized because the signature KEY-2 will be built 

in each case. 

30 

The two flow signatures 210 and 212 always order the destination and source 

address fields with server "S 1" followed by client "C 1 ". Such values are automatically 

filled in when the addresses are first created in a particular flow signature. Preferably, 

EX 1017 Page 58

  
SO

recognized in the payload of packets to derive how this packet or sequence of packets

exists as a flow. In practice, these may he TCP port numbers, or a combination of TCP

port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port

numbers of UDS for p1 that will be used to recognize this flow (e.g., part 111). Port 111

5 indicates this is Sun RFC. Some applications, such as the Sun RPC Bind Lookups, are

directly determinable (“known”) at the parser level. So in this case, the signature KEY-l

points to a known application denoted “al” (Sun RPC Bind Lookup), and a next-state that

the state processor should proceed to for more complex recognition jobs, denoted as state

“stD” is placed in the field 245 of the flow-entry.

10 When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY—l. Hence, when the signature enters

the analyzer subsystem 303 from the parser subsystem 301, the complete flow—entry is

obtained, and in this flow—entry indicates state “stD”. The operations for state “stD” in the

state processor instruction database 326 instructs the state processor to build and store a

15 new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the

state processor also includes the destination and a source addresses 250 and 251,

respectively, for server “81” followed by (the numerically higher address) client “Cl”. A

protocol field 252 defines the protocol to be used, e.g., “p2” which is obtained from the

reply packet. A field 253 contains a recognition pattern also obtained from the reply

20 packet. In this case, the application is Sun RFC, and field 254 indicates this application

“32”. A next—state field 255 defines the next state that the state processor should proceed

to for more complex recognition jobs, e. g., a state “stl”. In this particular example, this is

a final state. Thus, KEY-2 may now be used to recognize packets that are in any way

associated with the application “at”. Two such packets 208 and 209 are shown, one in

25 each direction. They use the particular application service requested in the original Bind

{ t

. g

3.

3,‘e
i.

iiiat
t;

a
5‘
ti: .

Lookup Request, and each will be recognized because the signature KEY-2 will be built

in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “31” followed by client “C 1”. Such values are automatically

30 filled in when the addresses are first created in a particular flow signature. Preferably,

 
EX 1017 Page 58



51 

large collections of flow signatures are kept in a lookup table in a least-to-highest order 

for the best spread of flow signatures and hashes. 

Thereafter, the client and server exchange a number of packets, e.g., represented 

by request packet 208 and response packet 209. The client 106 sends packets 208 that 

have a destination and source address SI and C 1, in a pair of fields 260 and 261. A field 

262 defines the protocol as "p2", and a field 263 defines the destination port number. 

Some network-server application recognition jobs are so simple that only a single 

state transition has to occur to be able to pinpoint the application that produced the packet. 

Others require a sequence of state transitions to occur in order to match a known and 

predefined climb from state-to-state. 

Thus the flow signature for the recognition of application "a2" is automatically set 

up by predefining what packet-exchange sequences occur for this example when a 

relatively simple Sun Microsystems Remote Procedure Call bind lookup request 

instruction executes. More complicated exchanges than this may generate more than two 

flow signatures and their corresponding states. Each recognition may involve setting up a 

complex state transition diagram to be traversed before a "final" resting state such as "st( 

in field 255 is reached. All these are used to build the final set of flow signatures for 

recognizing a particular application in the future. 

Embodiments of the present invention automatically generate flow signatures with 

the necessary recognition patterns and state transition climb procedure. Such comes from 

analyzing packets according to parsing rules, and also generating state transitions to 

search for. Applications and protocols, at any level, are recognized through state analysis 

of sequences of packets. 

Note that one in the art will understand that computer networks are used to 

connect many different types of devices, including network appliances such as telephones, 

"Internet" radios, pagers, and so forth. The term computer as used herein encompasses all 

such devices and a computer network as used herein includes networks of such 

computers. 

Although the present invention has been described in terms of the presently 

preferred embodiments, it is to be understood that the disclosure is not to be interpreted as 

EX 1017 Page 59



I. 

52 

limiting. Various alterations and modifications will no doubt become apparent to those or 

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended 

that the claims be interpreted as covering all alterations and modifications as fall within 

the true spirit and scope of the present invention. 

EX 1017 Page 60

.4.".m-um»H
‘mwa.gm,“"w"N”:

,»‘~w.u...H
A»-‘.

van-a«shave-3&3»mm:
was"?<

_c1:-a:
2

 

, ."i
.
;u

4'

‘ f “‘3r». r “L
, i ‘,~ x

52

limiting. Various alterations and modifications will no doubt become apparent to those or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

that the claims be interpreted as covering all alterations and modifications as fall within

the true spirit and scope of the present invention.a

EX 1017 Page 60



.=· ... 

5 

CLAIMS 

What is claimed is: 

53 

'~ 
\II 

1. A packet monitor for examining packets passing through a connection point on a 

computer network in real-time, the packets provided to the packet monitor via a 

packet acquisition device connected to the connection point, the packet monitor 

comprising: 

(a) a packet-buffer memory configured to accept a packet from the packet 

acquisition device; 

(b) a parsing/extraction operations memory configured to store a database of 

10 parsing/extraction operations that includes information describing how to 

determine at least one of. the protocols used in a packet from data in the 

packet; 

15 

20 

( c) a parser subsystem coupled to the packet buffer and to the 

pattern/extraction operations memory, the parser subsystem configured to 

examine the packet accepted by the buffer, extract selected portions of the 

accepted packet, and form a function of the selected portions sufficient to 

identify that the accepted packet is part of a conversational flow-sequence; 

( d) a memory storing a flow-entry database including a plurality of flow-

(e) 

entries for conversational flows encountered by the monitor; 

a lookup engine connected to the parser subsystem and to the flow-entry 

database, and configured to determine using at least some of the selected 

portions of the accepted packet if there is an entry in the flow-entry database 

for the conversational flow sequence of the accepted packet; 

EX 1017 Page 61

 
 

3’; 53

" CLAIMS

What is claimed is:

( L‘ 1. A packet monitor for examining packets passing through a connection point on a

‘1 1‘ computer network in real-time, the packets provided to the packet monitor via a

g 5 packet acquisition device connected to the connection point, the packet monitor
3 , comprising:

(a) a packet—buffer memory configured to accept a packet from the packet

acquisition device;

9 (b) a parsing/extraction operations memory configured to store a database of

10 parsing/extraction operations that includes information describing how to

determine at least one of. the protocols used in a packet from data in the

.‘i. packet;

7 ‘1 (c) a parser subsystem coupled to the packet buffer and to the

pattern/extraction operations memory, the parser subsystem configured to

.E 15 examine the packet accepted by the buffer, extract selected portions of the

 accepted packet, and form a function of the selected portions sufficient to

identify that the accepted packet is part of a conversational flow-sequence;

 
‘ “:5 (d) a memory storing a flow-entry database including a plurality of flow-

entries for conversational flows encountered by the monitor;

20 (e) a lookup engine connected to the parser subsystem and to the flow-entry

database, and configured to determine using at least some of the selected

portions of the accepted packet if there is an entry in the flow-entry database

for the conversational flow sequence of the accepted packet; 
 

EX 1017 Page 61



5 

10 

15 

20 

54 

(f) a state patterns/operations memory configured to store a set of predefined 

state transition patterns and state operations such that traversing a particular 

transition pattern as a result of a particular conversational flow-sequence of 

packets indicates that the particular conversational flow-sequence is 

associated with the operation of a particular application program, visiting 

each state in a traversal including carrying out none or more predefined state 

operations; 

(g) a protocoVstate identification mechanism coupled to the state 

patterns/operations memory and to the lookup engine, the protocoVstate 

identification engine configured to determine the protocol and state of the 

conversational flow of the packet; and 

(h) a state processor coupled to the flow-entry database, the protocoVstate 

identification engine, and to the state patterns/operations memory, the state 

processor, configured to carry out any state operations specified in the state 

patterns/operations memory for the protocol and state of the flow of the 

packet, 

the carrying out of the state operations furthering the process of identifying which 

application program is associated with the conversational flow-sequence of the 

packet, the state processor progressing through a series of states and state operations 

until there are no more state operations to perform for the accepted packet, in which 

case the state processor updates the flow-entry, or until a final state is reached that 

indicates that no more analysis of the flow is required, in which case the result of the 

analysis is announced. 

2. A packet monitor according to claim l, wherein the flow-entry includes the state 

25 of the flow, such that the protocol/state identification mechanism determines the 

state of the packet from the flow-entry in the case that the lookup engine finds a 

flow-entry for the flow of the accepted packet. 

EX 1017 Page 62

 

54

(f) a state patterns/operations memory configured to store a set of predefined

state transition patterns and state operations such that traversing a particular

transition pattern as a result of a particular conversational flow-sequence of

packets indicates that the particular conversational flow~sequence is

 
5 associated with the operation of a particular application program, visiting

each state in a traversal including carrying out none or more predefined state

operations;

“:4 ,1. ‘ (g) a protocol/state identification mechanism coupled to the state

. patterns/operations memory and to the lookup engine, the protocol/state

10 identification engine configured to determine the protocol and state of the

conversational flow of the packet; and

(h) a state processor coupled to the flow-entry database, the protocol/state 
identification engine, and to the state patterns/operations memory, the state

3 processor, configured to carry out any state operations specified in the state

:23 15 patterns/operations memory for the protocol and state of the flow of the

:3 packet,

the carrying out of the state operations furthering the process of identifying which 
application program is associated with the conversational flow-sequence of the

packet, the state processor progressing through a series of states and state operations

20 until there are no more state operations to perform for the accepted packet, in which

case the state processor updates the flow-entry, or until a final state is reached that>3»

indicates that no more analysis of the flow is required, in which case the result of the

analysis is announced...-'asaw
I 2. A packet monitor according to claim 1, wherein the flow-entry includes the state

25 of the flow, such that the protocol/state identification mechanism determines theJean.»’3‘
.9.- state of the packet from the flow-entry in the case that the lookup engine finds a

flow-entry for the flow of the accepted packet.

EX 1017 Page 62



55 

3. A packet monitor according to claim 1, wherein the parser subsystem includes a 

mechanism for building a hash from the selected portions, and wherein the hash is 

used by the lookup engine to search the flow-entry database, the hash designed to 

spread the flow-entries across the flow-entry database. 

5 4. A packet monitor according to claim 1, further comprising: 

10 

a compiler processor coupled to the parsing/extraction operations memory, the 

compiler processor configured to run a compilation process that includes: 

receiving commands in a high-level protocol description language that 

describe the protocols that. may be used in packets encountered by the 

monitor, and 

translating the protocol description language commands into a plurality of 

parsing/extraction operations that are initialized into the parsing/extraction 

operations memory. 

5. A packet monitor according to claim 4, wherein the protocol description language 

1s commands also describe a correspondence between a set of one or more application 

programs and the state transition patterns/operations that occur as a result of 

particular conversational flow-sequences associated with an application program, 

wherein the compiler processor is also coupled to the state patterns/operations 

memory, and wherein the compilation process further includes translating the 

20 protocol description language commands into a plurality of state patterns and state 

operations that are initialized into the state patterns/operations memory. 

6. A packet monitor according to claim 1, further comprising: 

a cache memory coupled to and between the lookup engine and the flow-entry 

database providing for fast access of a set of likely-to-be-accessed flow-entries from 

25 the flow-entry database. 

7. A packet monitor according to claim 6, wherein the cache functions as a fully 

associative, least-recently-used cache memory. 

EX 1017 Page 63



.. ~ 

.': I 

,'L• 
',,·1 

'It, ~' 

,.; 

5 

10 

15 

20 

25 

56 

8. A packet monitor according to claim 7, wherein the cache functions as a fully 

9. 

associative, least-recently-used cache memory and includes content addressable 

memories configured as a stack. 

A packet monitor according to claim 1, wherein one or more statistical measures 

about a flow are stored in each flow-entry, the packet monitor further comprising: 

a calculator for updating the statistical measures in a flow-entry of the accepted 

packet. 

10. A packet monitor according to claim 9, wherein, when the application program of 

a flow is determined, one or more network usage metrics related to said application 

and determined from the statistical measures are presented to a user for network 

performance monitoring. 

11. A method of examining packets passing thro 

computer network, each packets conforming t one or more protocols, the method 

compnsmg: 

(a) receiving a packet from a pack acquisition device; 

(b) 

(c) 

(d) 

performing one or more pars· g/extraction operations on the packet to 

g a function of selected portions of the 

packet; 

database comprising none or more flow-entries 

for previously encounte ed conversational flows, the looking up using at 

ed packet portions and determining if the packet is of 

an existing flow; 

if the packet i of an existing flow, classifying the packet as belonging to 

( e) if the pac et is of a new flow, storing a new flow-entry for the new flow 

in the flow entry database, including identifying information for future 

be identified with the new flow-entry, 

EX 1017 Page 64

  

56

8. A packet monitor according to claim 7, wherein the cache functions as a fully

associative, least-recently-used cache memory and includes content addressable

memories configured as a stack.

9. A packet monitor according to claim 1, wherein one or more statistical measures

5 about a flow are stored in each flow-entry, the packet monitor further comprising:

a calculator for updating the statistical measures in a flow-entry of the accepted

packet.

10. A packet monitor according to claim 9, wherein, when the application program of

a flow is determined, one or more network usage metrics related to said application

10 and determined from the statistical measures are presented to a user for network

performance monitoring.vl.giga

 

 
 

 

a: 11. A method of examining packets passing thro gh a connection point on a

, a: computer network, each packets conforming t one or more protocols, the method
i comprising:
fl

5:: 15 (a) receiving a packet from a pack acquisition device;
. ,3:

(b) performing one or more pars' g/extraction operations on the packet to

create a parser record compris' g a function of selected portions of the

packet;

(c) looking up a flow-en database comprising none or more flow-entries

20 for previously encounte ed conversational flows, the looking up using at

least some of the sele ed packet portions and determining if the packet is of

an existing flow;

(d) if the packet i of an existing flow, classifying the packet as belonging to

the found exist' g flow; and

25 (e) if the pac et is of a new flow, storing a new flow-entry for the new flow

in the flow entry database, including identifying information for future

packets be identified with the new flow-entry,

 
EX 1017 Page 64



l::· r ~;., 57 

wherein the parsing/extraction operations depend on e or more of the protocols to 

which the packet conforms. 

12. A method according to claim 11, wherein each p cket passing through the 

connection point is examined in real time. 

5 13. A method according to claim 11, wherein cl ifying the packet as belonging to 

the found existing flow includes updating the fl w-entry of the existing flow. 

14. A method according to claim 13, wherein dating includes storing one or more 

statistical measures stored in the flow-entry o 

15. A method according to claim 14, wherei the one or more statistical measures 

10 include measures selected from the set co isting of the total packet count for the 

flow, the time, and a differential time fro the last entered time to the present time. 

16. A method according to claim 11, wh rein the function of the selected portions of 

the packet forms a signature that inclu es the selected packet portions and that can 

identify future packers, wherein the 1 okup operation uses the signature and wherein 

15 the new or updated flow-entry is a signature for 

identifying future packets. 

17. A method according to claim 1 , wherein at least one of the protocols of the 

packet uses source and destinati addresses, and wherein the selected portions of 

the packet include the source destination addresses. 

20 18. A method according to clai 17, wherein the function of the selected portions for 

packets of the same flow is c nsistent independent of the direction of the packets. 

19. A method according to c aim 18, wherein the source and destination addresses 

are placed in an order det · ned by the order of numerical values of the addresses 

in the function of selecte portions. 

25 20. A method according o claim 19, wherein the numerically lower address is placed 

before the numericall~ higher address in the function of selected portions. 

21. A method accor · g to claim 11, wherein the looking up of the flow-entry 

database uses a has of the selected packet portions. 

EX 1017 Page 65

 

 

 

 10

 

15

20

25 

 

57

 
 

 

 

 

 

 

 

 

 

wherein the parsing/extraction Operations depend on e or more of the protocols to

which the packet conforms.

12. A method according to claim 11, wherein each p cket passing through the

connection point is examined in real time.

13‘ A method according to claim 11, wherein cla ifying the packet as belonging to

the found existing flow includes updating the H w—entry of the existing flow.

14. A method according to claim 13, wherein dating includes storing one or more

statistical measures stored in the flow-entry o the existing flow.

15. A method according to claim 14, wherei the one or more statistical measures

include measures selected from the set co isting of the total packet count for the

flow, the time, and a differential time fro the last entered time to the present time.

16. A method according to claim 11, wh rein the function of the selected portions of

the packet forms a signature that inclu es the selected packet portions and that can

identify future packers, wherein the l okup operation uses the signature and wherein

the identifying information stored i the new or updated flow—entry is a signature for

identifying future packets. %
17. A method according to claim 1 , wherein at least one of the protocols of the

packet uses source and destinati addresses, and wherein the selected portions of

the packet include the source destination addresses.

18. A method according to clai 1?, wherein the function of the selected portions for

packets of the same flow is c nsistent independent of the direction of the packets.

19. A method according to c aim 18, wherein the source and destination addresses

are placed in an order dete ‘ned by the order of numerical values of the addresses

in the function of selecte portions.

20. A method according 0 claim 19, wherein the numerically lower address is placed

before the numerically higher address in the function of selected portions.

21. A method accor ‘ g to claim 11, wherein the looking up of the flow~entry

database uses a has of the selected packet portions.

EX 1017 Page 65



58 

22. A method according to claim 11, wherein the parfng/extraction operations are 

according to a database of parsing/extraction opera ons that includes information 

describing how to determine a set of one or more rotocol dependent extraction 

operations from data in the packet that indicate protocol used in the packet. 

5 23. A method according to claim 11, wherein ep (d) includes if the packet is of an 

existing flow, obtaining the last encountered tate of the flow and performing any 

state operations specified for the state of th flow starting from the last encountered 

state of the flow; and wherein step ( e) incl des if the packet is of a new flow, 

performing any state operations required f r the initial state of the new flow. 

10 24. A method according to clafm 23, whe ein the state processing of each received 

packet of a flow furthers the identifyin of the application program of the flow. 

25. A method according to claim 23, w erein the state operations include updating 

the flow-entry, including storing iden fying information for future packets to be 

15 26. A method according to claim 25 wherein the state processing of each received 

packet of a flow furthers the iden · · ng of the application program of the flow. 

20 

25 

27. , wherein the state operations include searching 

the parser record for the existen of one or more reference strings. 

28. A method according to cl · 23, wherein the state operations are carried out by a 

ccording to a database of protocol dependent state 

operations. 

29. A packet monitor for ex · ning packets passing through a connection point on a 

computer network, each pa kets conforming to one or more protocols, the monitor 

_comprising: 

(a) a packet acqui ition device coupled to the connection point and 

configured to re eive packets passing through the connection point; 

(b) an input buf er memory coupled to and configured to accept a packet 

from the pack t acquisition device; 

EX 1017 Page 66

 

i?
s5

Q
$3

at; iii
£93

‘ 5?

a
2% m

 
 

‘nesggagpgas‘gitgefi3.1;.a.“.V31.

10

15

20

22.

23.

24.

25.

26.

27.

28.

29.

 

58

A method according to claim 11, wherein the par7an/extraction operations are
according to a database of parsing/extraction opera ons that includes information

describing how to determine a set of one or more rotocol dependent extraction

operations from data in the packet that indicate protocol used in the packet.
 

A method according to claim 11, wherein ep ((1) includes if the packet is of an

existing flow, obtaining the last encountered Late of the flow and performing any

state operations specified for the state of th flow starting from the last encountered

state of the flow; and wherein step (e) incl des if the packet is of a new flow,

performing any state Operations required f r the initial state of the new flow.

 

 
 

 

 

 

A method according to claiin 23, whe cin the state processing of each received

packet of a flow furthers the identifyin of the application program of the flow.

A method according to claim 23, w erein the state operations include updating

the flow-entry, including storing iden fying information for future packets to be

identified with the flowcntry. V\
A method according to claim 25 wherein the state processing of each received

packet of a flow furthers the idcn ' 'ng of the application program of the flow.

A method according to claim , wherein the state operations include searching

the parser record for the existen of one or more reference strings.

A method according to cl ' 23, wherein the state operations are carried out by a

programmable state processor ccording to a database of protocol dependent state

operations.

A packet monitor for em 'ning packets passing through a connection point on a

computer network, each pa kets conforming to one or more protocols, the monitor

comprising:

(a) a packet acqui ition device coupled to the connection point and

configured to re eive packets passing through the connection point;

(b) an input buf or memory coupled to and configured to accept a packet

from the pack t acquisition device;

EX 1017 Page 66



5 

10 

15 

59 

(c) a parser subsystem coupled to the input buffer emory and including a 

slicer, the parsing subsystem configured to extr ct selected portions of the 

accepted packet and to output a parser record ontaining the selected 

portions; 

(d) a memory for storing a database compr' sing none or more flow-entries for 

previously encountered conversational ws, each flow-entry identified by 

identifying information stored in the fl w-entry; 

( e) a lookup engine coupled to the out ut of the parser subsystem and to the 

flow-entry memory and configured t lookup whether the particular packet 

whose parser record is output by th parser subsystem has a matching flow

entry, the looking up using at leas some of the selected packet portions and 

(f) a flow insertion engine co ed to the flow-entry memory and to the 

to create a flow-entry in the flow-entry 

database, the flow-entry incl ding identifying information for future packets 

to be identified with the ne flow-entry, 

the lookup engine configured sue that if the packet is of an existing flow, the 

monitor classifies the packet as elonging to the found existing flow; and if the 

packet is of a new flow, the flo insertion engine stores a new flow-entry for the 

20 new flow in the flow-entry da base, including identifying information for future 

packets to be identified with e new flow-entry, 

wherein the operation of th parser subsystem depends on one or more of the 

protocols to which the pac et conforms. 

30. A monitor according claim 29, wherein each packet passing through the 

25 connection point is ace ted by the packet buffer memory and examined by the 

. ·,: monitor in real time. 

' ./~,, 

31. A monitor accord' g to claim 29, wherein the lookup engine updates the flow

entry of an existing ow in the case that the lookup is successful. 

EX 1017 Page 67

  

S9

 

 

 

  
 

 
 

 
 

 

 

(c) a parser subsystem coupled to the input buffer. emory and including a

slicer, the parsing subsystem configured to extrct selected portions of the

accepted packet and to output a parser record ' ontaining the selected

portions;

5 (d) a memory for storing a database comp 'sing none or more flow-entries for

previously encountered conversational ows, each flow-entry identified by

identifying information stored in the flw-entry;

wut of the parser subsystem and to the

flow—entry memory and configured t lookup whether the particular packet

I I“ 10 whose parser record is output by th parser subsystem has a matching flow—

, entry, the looking up using at leas some of the selected packet portions and

determining if the packet is of . 2 existing flow; andI

(f) a flow insertion engine co ‘5 ed to the flow-entry memory and to the

lookup engine and configure to create a flow—entry in the flow—entry

15 database, the flow-entry including identifying information for future packets

to be identified with the ne flow-entry,

 
‘. the lookup engine configured suc that if the packet is of an existing flow, the

monitor classifies the packet as nelonging to the found existing flow; and if the

packet is of a new flow, the flo ~ insertion engine stores a new flow-entry for the.mrwgz‘vfé‘r.:5”,. 20 new flow in the flow-entry da base, including identifying information for future

. packets to be identified with e new flow-entry,

Fa .
: wherein the operation of :th" parser subsystem depends on one or more of the

:’j protocols to which the pac et conforms.

30. A monitor according o claim 29, wherein each packet passing through the

25 connection point is acc‘f’nted by the packet buffer memory and examined by the
monitor in real time.

31. A monitor accord' g to claim 29, wherein the lookup engine updates the flow—

entry of an existing J ow in the case that the lookup is successful.

EX 1017 Page 67



32. 

s 33. 

(I 

60 

A monitor according to claim 29, further includin a mechanism for building a 

hash from the selected portions, wherein the hash i included in the input for a 

particular packet to the lookup engine, and where· the hash is used by the lookup 

engine to search the flow-entry database. 

A monitor according to claim 29, further in luding a memory containing a 

database of parsing/extraction operations, the arsing/extraction database memory 

coupled to the parser subsystem, wherein th parsing/extraction operations are 

according to one or more parsing/extractio operations looked up from the 

parsing/extraction database . 

. , c 10 34. A monitor according to claim 33, whe ein the database of parsing/extraction 

j : operations includes information describ' g how to determine a set of one or more 

i ~ protocol dependent extraction operatio s from data in the packet that indicate a :·; 
ru protocol used in the packet. 
bJ 

.: ~ 35. A monitor according to claim 29, rther including a flow-key-buffer (UFKB) 
' l 

~; 0 .~' , il 
.: g 
~.i !~ 

•' 
~l ~ 

IS coupled to the output of the parser bsystem and to the lookup engine and to the 

flow insertion engine, wherein the utput of the parser monitor is coupled to the 

lookup engine via the UFKB, and wherein the flow insertion engine is coupled to 

36. A method according to clai 29, further including a state processor coupled to 

20 the lookup engine and to the fl w-entry-database memory, and configured to 

perform any state operations ecified for the state of the flow starting from the last 

encountered state of the flo in the case that the packet is from an existing flow, 

and to perform any state op rations required for the initial state of the new flow in 

the case that the packet is om an existing flow. 

25 37. A method according t claim 29, wherein the set of possible state operations that 

the state processor is co figured to perform includes searching for one or more 

EX 1017 Page 68

  

60

32. A monitor according to claim 29, further includin a mechanism for building a

hash from the selected portions, wherein the hash i included in the input for a

particular packet to the lockup engine, and where the hash is used by the lookup

engine to search the flow—entry database.

5 33. A monitor according to claim 29, further in luding a memory containing a

database of parsing/extraction operations, the aiming/extraction database memory

coupled to the parser subsystem, wherein th parsing/extraction operations are

according to one or more parsing/extractic operations looked up from the

parsing/extraction database. 10 34. A monitor according to claim 33, who ein the database of parsing/extraction

operations includes information describ' g how to determine a set of one or more~.<'’upt, fifilflfiflflhnfl protocol dependent extraction operatic s from data in the packet that indicate a

 
protocol used in the packet. V5

task.“
35. A monitor according to claim 29, her including a flow-key-buffer (UFKB) m

15 coupled to the output of the parser .. bsystem and to the lookup engine and to the
s, ,cx‘2K1":

flow insertion engine, wherein the utput of the parser monitor is coupled to the

lockup engine via the UFKB, and herein the flow insertion engine is coupled to

the lookup engine via the UFKB
”'flLML‘ltfiwwas»I22!

36. A method according to clai 29, further including a state processor coupled to

20 the lookup engine and to the fl w-entry—database memory, and configured to

perform any state operations ecified for the state of the flow starting from the last

encountered state of the flo in the case that the packet is from an existing flow,

and to perform any state op rations required for the initial state of the new flow in

the case that the packet is om an existing flow.

25 37. A method according t claim 29, wherein the set of possible state operations that

the state processor is co glued to perform includes searching for one or more

patterns in the packet p rtions.

EX 1017 Page 68



5 

10 
'. ,ii 

< w 
'.N 

~~ ~ ... 
~i ~ 
< • 

15 

20 

r 

i.\ . 
,;_ 

'< 

25 

~-. 

61 

38. A monitor according to claim 36, wherein the st e processor is programmable, 

the monitor further including a state pattems/oper ions memory coupled to the state 

processor, the state operations memory configure to store a database of protocol 

39. 

40. 

41. 

42. 

dependent state patterns/operations. 

A monitor according to claim 35, further in luding a state processor coupled to 

the UFKB and to the flow-entry-database me ory, and configured to perform any 

state operations specified for the state of the ow starting from the last encountered 

state of the flow in the case that the packet i from an existing flow, and to perform 

any state operations required for the initial tate of the new flow in the case that the 

packet is from an existing flow. 

A monitor according to claim 36, wh ein the state operations include updating 

the flow-entry, including identifying inf rmation for future packets to be identified 

with the flow-entry. ~ 

A packet monitor according to cl · 29, further comprising: 

a compiler processor cou ed to the parsing/extraction operations 

memory, the compiler proc ssor configured to run a compilation process that 

includes: 

ands in a high-level protocol description language 

rotocols that may be used in packets encountered 

d any children protocols thereof, and 

he protocol description language commands into a 

sing/extraction operations that are initialized into the 

parsing/ex ction operations memory. 

A packet monitor ace ding to claim 38, further comprising: 

a compiler p cessor coupled to the parsing/extraction operations 

memory, the c mpiler processor configured to run a compilation process that 

includes: 

EX 1017 Page 69

 

61

38. A monitor according to claim 36, wherein the st e processor is programmable,

the monitor further including a state pattems/oper ions memory coupled to the state

processor, the state operations memory configure to store a database of protocol

dependent state pattems/operations.  

 

 

 

 
 

 

 

5 39. A monitor according to claim 35, further in luding a state processor coupled to

the UFKB and to the flow-entry—database me cry, and configured to perform any

state operations specified for the state of the ow starting from the last encountered

state of the flow in the case that the packet i from an existing flow, and to perform

any state operations required for the initial tate of the new flow in the case that the

10 packet is from an existing flow.

40. A monitor according to claim 36, wh ein the state operations include updating

the flow-entry, including identifying inf rmation for future packets to be identified

\

Y‘,
41. A packet monitor according to Cl

with the flow-entry.

29, further comprising:

15 a compiler processor cou ed to the parsing/extraction operations

memory, the compiler proc ssor configured to run a compilation process that

includes:

receiving co ands in a high-level protocol description language

that describe the rotocols that may be used in packets encountered

20 by the monitor d any children protocols thereof, and

translating he protocol description language commands into a

plurality of sing/extraction operations that are initialized into the

parsing/ex ction operations memory.

42. A packet monitor acc ding to claim 38, further comprising:

25 a compiler p cessor coupled to the parsing/extraction operations

memory, the c mpiler processor configured to run a compilation process that

includes:

 
EX 1017 Page 69



' j 

,,· 
'. r 

~ 

i 
1 

'. 
! 

5 

10 

15 

43. 

62 

receiving command~ in a high-lev 1 protocol description language 

that'describe a correspondence bet een a set of one or more 

application programs and the state ransftion patterns/operations that 

occur as a result of particular co ersational flow-sequences 

associated with an application g ograms, and 

translatii'lg the protocol des ription language commands into a 

tate operations that are initialized into 

the state patterns/operations 

A packet monitor according to claim 29 further comprising: 

a cache subsystem coupled to and be een the lookup engine and the flow-entry 

database memory providing for fast ace ss of a set of likely-to-be-accessed flow

entries from the flow-entry database. 

44. A packet monitor according to clai 43, wherein the cache subsystem is an 

45. 

associative cache subsystem includi one or more content addressable memory 

cells (CAMs). :'\.. 

A packet monitor according~ aim 44, wherein the cache subsystem is also a 

least-recently-used cache memo such that a cache miss updates the least recently 

used cache entry. 
t 

46. A packet monitor according o claim 29, wherein each flow-entry stores one or 

20 more statistical measures abo the flow, the monitor further comprising 

a calculator for updating a least one of the statistical measures in the flow-entry 

of the accepted packet. 

47. A packet monitor accor ng to claim 46, wherein the one or more statistical 

measures include measure selected from the set consisting of the total packet count 

25 for the flow, the time, an a differential time from the last entered time to the 

present time. 

48. A packet monitor ac ording to claim 46, further including a statistical processor 

one or more network usage metrics related to the flow from 

one or more of the st istical measures in a flow-entry. 

EX 1017 Page 70

"(Vu

receiving COmmands in a high-lev 1 protocol description language

that’describe a correspondence bet een a set of one or more

application programs and the state ransition patterns/operations that

. ~ .; occur as a result of particular co ersational flow—sequences

5 associated with an application p ograms, and

 

 

 

 

 

 

 

 

 

.r

"'4‘“3‘5‘?"I.,.‘n. translating the protocol des ription language commands into a

plurality of state patterns and tate operations that are initialized into

the state patterns/operations

3;
43. A packet monitor according to claim 29 further comprising:

10 a cache subsystem coupled to and be een the lookup engine and the flow-entry

database memory providing for fast acc ss of a set of likely-to-be-accessed flow-

entries from the flow-entry database. 
44. A packet monitor according to clai 43, wherein the cache subsystem is an

associative cache subsystem includi

15 cells (CAMS). \

one or more content addressable memory

45. A packet monitor according to aim 44, wherein the cache subsystem is also a 
i 3 least—recently-used cache memo such that a cache miss updates the least recently

used cache entry.7‘

46. A packet monitor according 0 claim 29, wherein each flow-entry stores one or 
20 more statistical measures abo the flow, the monitor further comprising

a calculator for updating a least one of the statistical measures in the flow-entry

of the accepted packet.

47. A packet monitor accor mg to claim 46, wherein the one or more statistical

measures include measure selected from the set consisting of the total packet count 
25 for the flow, the time, an a differential time from the last entered time to the

31 present time.

48. A packet monitor ac ording to claim 46, further including a statistical processor

configured to determi one or more network usage metrics related to the flow from

one or more of the st istical measures in a flow-entry.

«3g. ,;

EX 1017 Page 70



5 

10 

15 

20 

63 

49. A monitor according to claim 29, wherei 

50. 

51. 

flow-entry-database is organized into a urality of bins that each contain N

number of flow-entries, and wherein said ins are accessed via a hash data value 

created by a parser subsystem based on t e selected packet portions, wherein N is 

one or more. 

A monitor according to claim 49, herein the hash data value is used to spread a 

plurality of flow-entries across the fl w-entry-database and allows fast lookup of a 

flow-entry and shallower buckets. 

A monitor according to claim 36 wherein the state processor analyzes both new 

and existing flows in order to clas fy them by application and proceeds from state

to-state based on a set of predefin d rules. 

52. A monitor according to clai 29, wherein the lookup engine begins processing as 

53. 

soon as a parser record arrives 

' A monitor according to ta· 36, wherein the lookup engine provides for flow 

state entry checking to see if flow key should be sent to the state processor, and 

that outputs a protocol iden · 1er for the flow. 

54. A method of examining ackets passing through a connection point on a 

computer network, the met od comprising: 

(a) receiving a pac et from a packet acquisition device; 

(b) performing on or more parsing/extraction operations on the packet 

according to a d tabase of parsing/extraction operations to create a parser 

record compris· g a function of selected portions of the packet, the database 

of parsing/extr ction operations including information on how to determine 

a set of one o more protocol dependent extraction operations from data in 

25 the packet th t indicate a protocol is used in the packet; 

(c) a flow-entry database comprising none or more flow-entries 

for previou ly encountered conversational flows, the looking up using at 

· of the selected packet portions, and determining if the packet is of 

an existi 

EX 1017 Page 71

"-WW.1,,“”“
:

 
 

 

49.

5

50.

51.

10

52.

53.

15

S4,

20

25

  

63

 

 

 

 

 

 

 
 

  

  

A monitor according to claim 29, wherei .

flow—entry-database is organized into a r urality of bins that each contain N-

number of flow—entries, and wherein said ins are accessed via a hash data value

created by a parser subsystem based on t e selected packet portions, wherein N is

0116 or more.

A monitor according to claim 49, herein the hash data value is used to spread a

plurality of flow-entries across the fl wenny—databasc and allows fast lookup of a

flow-entry and shallower buckets.

A monitor according to claim 36 wherein the state processor analyzes both new

and existing flows in order to clas fy them by application and proceeds from state—

to-state based on a set of predefin d rules.

A monitor according to clai 29, wherein the lookup engine begins processing as

soon as a parser record arrives t om the parser subsystem.\

A monitor according to %' 36, wherein the lookup engine provides for flow
state entry checking to see if . flow key should he sent to the state processor, and

that outputs a protocol iden ‘ rer for the flow.

A method of examining packets passing through a connection point on a

computer network, the met od comprising:

(a) receiving a pac et from a packet acquisition device;

(b) performing on or more parsing/extraction operations on the packet

according to a dtabase of parsing/extraction operations to create a parser

record compris' g a function of selected portions of the packet, the database

of parsing/extretion operations including information on how to determine

a set of one o more protocol dependent extraction operations from data in

the packet tht indicate a protocol is used in the packet;

(c) looking go a flow-entry database comprising none or more flow-entries

for previou1y encountered conversational flows, the looking up using at

least somof the selected packet portions, and determining if the packet is of

an existi ; flow;

EX 1017 Page 71



64 

( d) · if the packet is of an existin~ flow. obtai ing the last encountered state of 

the flow and performing any state operati ns specified for the state of the 

flow starting from the last encountered ate of the flow; and 

(e) if the packet is of a new flow, perf rming any analysis required for the 

s initial state of the new flow and sto ng a new flow-entry for the new flow in 

the flow-entry database, including dentifying information for future packets 

to be identified with the new flo -entry. 

55. A method according to claim 54, wh rein one of the state operations specified for 

at least one of the states includes upda g the flow-entry, including identifying 

10 information for future packets to"~e i entified with the flow-entry. 

56. A method according to claim 54, herein one of the state operations specified for 

at least one of the states includes s arching the contents of the packet for at least one 

reference string. 

' i 
57. A method according to claim 5, wherein one of the state operations specified for 

15 at least one of the states includ s creating a new flow-entry for future packets to be 

identified with the flow, then flow-entry including identifying information for 

58. A method according to c 54, further comprising forming a signature from the 
f 

selected packet portions, w erein the lookup operation uses the signature and 

20 wherein the identifying i ormation stored in the new or updated flow-entry is a 

signature for identifying 

59. A method accordin to claim 54, wherein the state operations are according to a 

database of protocol pendent state operations. 

EX 1017 Page 72

(d)- if the packet is of an existing flow, ‘obtai ‘ g the last encountered state of

2;: the flow and performing any state operati ns specified for the state of the

flow starting from the last encountered ate of the flow; and

(e) if the packet is of a new flow, perf rming any analysis required for the

5 initial state of the new flow and sto ng a new flow~entry for the new flow in

the flow-entry database, including dentifying information for future packets

to be identified with the new flo «entry.

55. A method according to claim 54, wh rein one of the state operations specified for

at least one of the states includes upda g the flow-entry, including identifying

10 information for future packets toshe i entified with the floweentry.

56. A method according to claim 54, herein one of the state operations specified for

at least one of the states includes 5 arching the contents of the packet for at least one

reference string. %
57. A method according to claim 5, wherein one of the state operations specified for

15 at least one of the states includ 8 creating a new flow-entry for future packets to be

identified with the flow, the n w flow-entry including identifying information for

future packets to be identifi with the fiow~entry.

58. A method according to c ' 54. further comprising forming a signature from the

selected packet portions, w erein the lookup operation uses the signature and

29 wherein the identifying i ormation stored in the new or updated flow—entry is a

signature for identifying ture packets.

59. A method aceordin to claim 54, wherein the state operations are according to a

database of protocol pendent state operations. 
EX 1017 Page 72



65 

ABSTRA 

A monitor for and a method of examining packets passi through a connection point on 

~ a computer network. Each packets conforms to one o ore protocols. The method 

'. / includes receiving a packet from a packet acquisitio device and performing one or more 

~ 5 parsing/extraction operations on the packet to ere e a parser record comprising a 

function of selected portions of the packet. Th parsing/extraction operations depend on 

one or more of the protocols to which the pa et conforms. The method further includes 

looking up a flow-entry database containi flow-entries for previously encountered 

conversational flows. The lookup uses t e selected packet portions and determining if 

1 o the packet is of an existing flow. If th packet is of an existing flow, the method 

classifies the packet as belonging to he found existing flow, and if the packet is of a new 

flow, the method stores a new flo -entry for the new flow in the flow-entry database, 

including identifying informatio for future packets to be identified with the new flow

entry. For the packet of an exi ·ng flow, the method updates the flow-entry of the 

15 existing flow. Such updatin may include storing one or more statistical measures. Any 

stage of a flow, state is m · tained, and the method performs any state processing for an 

identified state to further e process of identifying the flow. The method thus examines 

each and every packet p sing through the connection point in real time until the 

application program a ociated with the conversational flow is determined. The method 

20 

EX 1017 Page 73



et a.I. APPT-001-1 

1/18 

I CLIENT 41----, 
107 

j CLIENT s 1-.----
\ 

106 

DATA COMMUNICATIONS 
NETWORK 

865109!9 

108 

ANALYZER 

116 

SERVER 

121 
~10 

102 

125 

lsERVER 9----, 
112 

123---

El_JOS 

FIG. 1 

118 
..------L------.___J 

CLIENT 1 \ 

104 

EX 1017 Page 74

APPT—OO1 -1

~14 1/18

100 — 108,31‘ CUENT4

, W ANALYZER
107

11 s

—

 
6651 0939

 
 

SERVER .

:.;_ 106

1 DATA COMMUNICATIONS
NETWORK..-nfifi“*‘'A“!v'3:

102

125 
. 123

., — 118
SERVER 4 — 105 _~/

‘\ CLIENT2 -/ CLIENT1 xIf”:“1‘“
112 104

. W;-

113"

i ;yr;’33
‘2:-

3;},'4‘};:~ ‘,

5 r
‘1,
‘-

gs.
FIG. 1

EX 1017 Page 74



D 
CLIENT 3 

n 1 

j 

214 215 ,216 220 221 222,223 

s1a QA s1p QP 

21 
244 245 

KEY-1 S1 st0 

21 
250 251 ,252 253 ,254 ,255 

KEY-2 S1 C1 p2 ·-------,~a- 2 ...... l-'"-s-t1--! 

S1 C1 p2 ~ datum request 

208 
, 270 ,271 ,272 ~73 ,274 

datum reply n2 

20 

APPLICATION SERVER 2 

.............. 

FIG. 2 

/':~ \ 
~ 

EX 1017 Page 75

L'LOO'iddV

  
   

{270 271T2;2K273 274
V /WEIIJLIQW 

209 ‘

EX 1017 Page 75



310 

1308 

I 
I 

PATIERN, PARS 
AND 

EXTRACTION 
DATABASE 

COMPILER 
AND 

OPTIMIZER 

PROTOCOL 
DESCIPTIO 
LANGUAGE 

FIG. 3 

,- - - - .J 

N 

324 

DATABASE 
OF FLOWS 

L_ ---1 
~-..____, 322 I 

UPDATE I 
"FLOW" 
KNOWN I 

I 

I 
I 
I 
I 

PROTOCOL 
&STATE 

IDENTIFICATION RECORD I Cu 

- - J 

STATE 
PROCESSOR 
INSTRUCTION 

DATABASE 

326 

STATE 
PROCESSN1r.t---+--< 
OPERATION 

CLASSIFICATN 
FINALIZATION 

34 

I 
ANALYZER I 

303 I 
,__~~YE I ----------------------------

...._ 
-.I. 

CX) 

)> 
""O 
""O 
-;-I 
0 
0 ...... 

I ...... 

EX 1017 Page 76

302

 

,,,,,,,,,

 
300 ' V M

I PARSER L01 Ff.) __________I 324
I 304 305
I ANALYZE AND

 
 

 
 

 
 

  

   
 

 

 
 

 

  

  
  
  

316“
 
  

 
 

  

  

 

 

EXTRACT

   

 

RECOGNIZE BUILD UNIQUE I LOOKUP “
PATTERN IESSEII‘AFXT’fé‘iI CONVERSATIO ‘ ' FROM NEW FLOIév DATABASE

INFORMATION (EH) “FLOW“ KEY l KNOWN RECORD. OF FLOWS
(PAR) I I RECORDS

I I (DB 324
312 IA CACHE)

 
 

 

  
  

 

 
 

PROTOCOL MORE N "FLOW“ I
AND & STATE CLASSIFICATIO KNOWN

IDENTIFICATION RECORD
DATABAS E 

l

I

I

EXTRACTION I

: YE
.l

CLASS] FICATN

 

 
 
 
   

  
 

I

l

I

l

I

I I FINALIZATION I
310 I

PROCESSOR IINSTRUCTION
COMPILER 34

AND DATABASE I
OPTIMIZER I

1

NO I

330 '
DATAGRAM I

DESOIPTIO LAYER MORE I

LANGUAGE PROCESSM OPERATIONS. IOPERATION .

ANALYZER I

3.9.3 I
-_—_—-——————-——-_———————-—-—O—-ID-—.-—

 

 
  

I:I
I.

I?19’’1 u

L"LOO-iddV

 

 

EX 1017 Page 76



I 
~ti et al.. APPT-001-1 

• @ 

' 
f . 

404 

GENERATE 
PACKET 

PARSE AND 
EXTRACT 

OPERATIONS 

406,J ATTERN, PARS 
V AND 

EXTRACTION 
DATABASE 

4/18 

HIGH LEVEL 
PACKET 

DECODING 
ESCRIPTION 

COMPILE 
ESCRIPTION 

403 

408 409 

401 

402 

' . 

405 

PACKET 
STATE 

INSTRUCTION 
AND 

OPERATIONS 

STATE 
PROCESSOR 
INSTRUCTION 

DATABASE 

LOAD 
PARSING 

,___P'I SUBSYSTEM 

LOAD STATE 
NSTRUCTIO ,.._ __ 
DATABASE 

MEMORY MEMORY 

410 

FIG. 4 

407 

EX 1017 Page 77

i
59,; at al. APPT—001-1

 

 
W3;its":‘
”'3’

404

GENERATE
PACKET

PARSE AN D
EXTRACT

OPERATIONS 

 
  406 7/‘ATTERN, PARS

AND
EXTRACTION

DATABASE
  

 

®

LOAD
PARS} N G

SUBSYSTEM
MEMORY

O 401

  HIGH LEVEL
PACKET

DECODING
il ESCRIPTION ‘

 
 

 

 

COMPILE
El ESCRIPTION "‘ 

403

408 409

NSTRUCTIO
DATABASE
MEMORY 

LOAD STATE

 

 STATE

AN D

STATE _
PROCESSOR
INSTRUCTION

DATABASE

\400

V - .

PACKET

INSTRUCTION ‘

OPERATIONS

 

 
  

EX 1017 Page 77



·~ 1 

510 

APPT-001-1 

503 

504 

1'~ 

\:.Y 

5/18 

501 

INPUT PACKET 502 

LOAD PACKET 
COMPONENT--------. 

NO 

FETCH NODE AN 
.--------~ PROCESSFROM 

505 

507 

PATTERN 
NODE 

NO 

509 

P E N 

NO 

508 

EXTRACT 
ELEMENTS1--~-------

FIG. 5 

PACKET 
KEY 

513 

511 

EX 1017 Page 78

jfletw. APPTDOL1

  

‘3 5/1 8

M ‘I’ 501

i M

31 503 LOADPACKET
_ COMPONENT

512

PACKET
KEY

6

513

fhas;an

 

 

  
 
 

 
 

 
 

  

 
 

 

 

:5 *3

:g‘ 504 OREINPACK or
E

3% FETCHNODEANI
a PROCESSFROM

P. E'N   
NEXT

PACKET

COMPONE 5n

 ‘IDV‘.' .‘I‘

PROCESS TO
COMPONENT

 

‘ 510
f 2‘ ‘

PATTERN
NODE

t; EXTRACT
;; 509 ELEMENTS

FIG. 5

500

EX 1017 Page 78



,, ·~ ',t,, 

,.J, ;;.; 

,; ·~ 
; ' 

., 

:··~ .. 

et al. APPT-001-1 

603 

604 

NO 

606 

607 

6/18 

PACKET 
COMPONENT AND 
PATTERN NODE 

LOAD PACKET 
COMPONENT 

FETCH EXTRACTION 
ND PROCESS FRO 

PATTERNS 

APPLY EXTRACTIO 
PROCESS TO 
COMPONENT 

FIG. 6 

601 

602 

610 

NO LOAD KEY 
BUFFER 

605 

611 

NEXT 
N PACKET 609 

COMPONEN 

608 

EX 1017 Page 79

APPT—OOi-T

@ @

6/18

0

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 61 O

604

LOAD KEY
BUFFER 

YES

FETCH EXTRACTION @
ND PROCESS FRO s

PATTERNS 805

 

  
  

ORE EXTRACTEO ‘
ELEMENTS?

YES

NO 611

607 APPLY EXTRACTIO ;

606 NEXT
N G PACKET 609

COMPON E N

P ROCESS TO

COMPONENT \
600

  
  

 

 MORE TO 608
EXTRACT?

YE

FIG. 6

EX 1017 Page 79



et al. APPT-001-1 

703 

704 

706 

707 

t.t- :: 
,'1-· 

,(, 

• 
7/18 

EY BUFFER AND 
PATIERN NODE 

LOADPATIERN 

701 

702 

NODE ELEMENT..--~~-

NO 

YES 

HASH KEY BUFFER 
ELEMENT FROM 705 
PATIERN NODE 

PACK KEY & HAS 

NEXT PACKET 
COMPONENT 

FIG. 7 

708 

OUTPUTT 
ANALYZER 

709 

,700 

EX 1017 Page 80

APPT—OO‘I ~1

   

7/1 8

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

" 's 7’03 NODE ELEMENT 708

55; 704 MORE PATTER , OUTPUT T'
NODES? ANALYZER

 
  

 
'3 YES

HASH KEY BUFFER
“ ELEMENT FROM 705

PATTERN NODE

PACK KEY & HAS

“ ‘§ 706 \

707

 709

700

NEXT PACKET
COMPONENT

FIG. 7

EX 1017 Page 80



.,. 
• > ~ ~. 

· jetz ~t al. APPT-001-1 

800'\ 

ta 
~ 

805 

NEXT BUCKET N 

809 

811 

812 

8/18 

UFKB ENTRY FOR 802 
PACKET 

COMPUTE CONVERSATION 803 
RECORD BIN FROM HASH 

REQUEST RECORD BIN/ 
BUCKET FROM CACHE 

NO 

804 

COMPARE CURRENT BIN 807 
AND BUCKET RECORD KEY 

TO PACKET 

MARK RECORD BIN AND 
BUCKET 'IN PROCESS' IN 
CACHE AND TIMESTAMP 

SET UFKB FOR PACKET 
AS 'FOUND' 

808 

810 

806 

SETUFKB FOR 
PACKET AS 'NEW' 

UPDATE STATISTICS FOR 
RECORD IN CACHE 1-------..1 

813\J FIG. 8 

EX 1017 Page 81

  

8/18

. 801

UFKB ENTRY FOR 802
PACKET

COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804 806

”0 SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No@ 808
YES

800

\

 

  

  

ORE BUCKET
IN THE BIN?

805

YES

809 MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN 810
CACHE AND TIMESTAMP

SET UFKB FOR PACKET

8“ AS 'FOUND'

 
812 UPDATE STATISTICS FOR

RECORD IN CACHE

8mm. FIG. 8N.-.Aha-4..N.-.“m“a.
 

EX 1017 Page 81



APPT-001-1 

EXTRACT PROGRAM 

GET 'PROGRAM', 
'VERSION', 'PORT' AND 
'PROTOCOL (TCP OR 

UDP) 

CREATE SERVER STAT 

SAVE 'PROGRAM', 
'VERSION', 'PORT' AND 
'PROTOCOL (TCP OR 

UDP)' WITH NETWORK 
ADDRESS IN SERVER 

STATE DATABASE. KEY 
ON SERVER ADDRESS 

AND TCP OR UDP PORT. 

9/18 

905 

LOOKUP REQUE 

FIND 'PROGRAM' 
AND 'VERSION' 

WITH LOOKUP OF 
SOURCE NETWORK 

ADDRESS. 

FIG. 9 

907 

EXTRACT PORT 

GET 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)' 

908 

SAVE REQUEST 

SAVE 'PROGRAM', 
'VERSION' AND 

'PROTOCOL (TCP OR 
UDP)'WITH 

DESTINATION 
NETWORK ADDRESS. 
BOTH MAKE A KEY. 

EXTRACT 
PROGRAM 

GET 'PORT' AND 
'PROTOCOL (TCP 

OR UDP)'. 

909 

EX 1017 Page 82

etZ etal. APPT—001—1

  

9/1 8

901 902 910

 
 

  

  
  
  

  
 
  
  

  
  
  
  

  
 

 
 
 

  

 
 
 
 
 

 RPC
BIND LOOKU '

'ORTMAPP ~ ‘NNOUNCME REQUEST
'ORTMAPP '~

909 
EXTRACT PROGRAM EXTRACT PORT 

  

903 GET 'PROG RAM‘, GET ‘PROGRAM‘,
'VERSION', 'PORT‘ AND 'VERSION‘ AND

'PROTOCOL (TOP OR 'PROTOCOL (TCP OR
UDP) UDP)‘

SAVE REQUEST
CREATE SERVER STAT

SAVE ‘PROGRAM',
SAVE “PROGRAM: ‘VERSION‘ AND

904 'VERSION', 'PORT‘ AND ‘PROTOCOL (TCP OR
'PROTOOOL (TOP OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION

i ADDRESS IN SERVER NETWORK ADDRESS.
’n STATE DATABASE. KEY BOTH MAKE A KEY.

’ ON SERVER ADDRESS
AND TCP OR UDP PORT.

3&2“ 907
 

 
RPC
BiND

LOOKUP
REPLY

 

LOOKUP REQUE “

FIND ‘PROGRAM‘
AND ’VERSION‘

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

 
~‘w‘:huh-I‘D’»..4

EXTRACT
PROGRAM

3“
A

5“:
a:
'12 5
A.‘ ak
a;i  

 
 
 

 

 
 
 

900/ GET ‘PORT‘ AND

'PROTOCOL (TCP
OR UDP)‘.

FIG. 9

1~{7}“

EX 1017 Page 82



" 
' etal. APPT-001-1 

' 
r. 
f 
', 

• 
1000~ 

PATTERN 
RECOGNITION 

DATABASE 
MEMORY 

100 

10/18 

100 

1001 

100 

3 i 
' 

EXTRACTION 
OPERATIONS 

DATABASE 
MEMORY 

1031 
1004 

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS 

INFO OUT. 

CONTRLIN 

1007 PATTERN 
RECOGNITN --" 

ENGINE 
(PRE) 

EXTRACTION ENGINE 
(SLICER) 

1012 

1021 

102 

1023 

PARSER INPUT BUFFER 
MEMORY 

INPUT BUFFER 1011 
INTERFACE 
CONTROL 

101 

FIG. 10 

1013 

PARSER 
OUTPUT PACKET KEY 
BUFFER AND PAYLOA 
MEMORY 

ANALYZER 
INTERFACE 
CONTROL 

1025 

1027 

EX 1017 Page 83

at al. APPT-001-1

  1 0/1 8

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 1001 MEMORY

100 1 00 1031
1004

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL I  
5"“ 100

 
 
 
 

PATTERN

RECOGNITN
ENGINE

(PRE)

1 007

 
 

 
 

 
 
 

 

 
 
 

  
 
 

EXTRACTION ENGINE

(SLICER)

100-
 

 
 

 

PARSER

OUTPUT PACKET KEY 
 
 

a ‘2 I A V PARSER INPUT BUFFER

 
 
 

 
 

 

“3%? INPUT MEMORY BUFFER AND PAYLOAr
jug MEMORY

1012

§

3‘35: :1: 1021

f ‘5 P§1QAKFIIETT INPUT BUFFER ANALYZER DATA REA'Y
;«~ INTERFACE INTERFACE

g CONTROL CONTROL ANA YZER
READY

‘ v

PACKET

102

1023 FIG. 10 10279.0“",r:

EX 1017 Page 83



APPT-001-1 

1100 -::._ 

1101 1103 

1109 

UNIFIED 
FLOW 

PARSER KEY 
INTER- UFFER 
FACE (UFKB) 

11/18 

1115 
1107 

LOOKUP/ 
UPDATE 
ENGINE 

(LUE) 

STATE 
PROCESS 
INSTRUCN 
DATABASE 

(SPID} 

1108 

CACHE 

STATE 
PROCESSR 

(SP} 

FLOW 
INSERTION/ 
DELETION 

ENGINE 
(FIDE) 

1110 

FIG. 11 

1118 
1122 

ANALYZE HOST 
HOST BUS 

INTERFAC INTER-
AND FACE 

CONTROL (HIB} 
(ACIC} 

1119 1123 

UNIFIED 
MEMORY 
CONTROL 

(UMC} 

MEMORY 
INTER
FACE 

EX 1017 Page 84

‘3‘}i 3'

APPT~OO1-1
*FAGtz at al. .-

11/18

1100 “a

1101 1103

 

1115 1118 1122
1107 

LEAQW  

 
HOST BUS

h INTER FAC 1‘ INTER-
AND FA E

CONTROL (HIE)
(ACIC)

INSTRUCN
DATABASE

A 1109 (SPID) 
UNIFIED

FLOW

PARSER KEY
INTER- WUFFER
FACE (UFKB)

  

 

 
PROCESSR

(SP) 1119 11232

 
UNIFIED MEMORY

MEMORY 1 INTER-
“ CONTROL. FACE

(UMC)

 
 

  
  

FLOW
INSERTIONX
DELETION

ENGINE

(FIDE)

EX 1017 Page 84



et al. APPT-001-1 

1200~ 

,c;\ 
-~ 

~ :e REQUEST NEXT 
'M 

BUCKET FROM :,w 
ru 1206 CACHE 
·',i 

~ 
' 

1208 

YES 

1210 
SET UFKB FOR 

PACKET AS 
'DROP' 

1212 

12/18 

NO 

UFKB ENTRY FOR 
PACKET WITH 
STATUS 'NEW' 

ACCESS 
CONVERSATION 

RECORD BIN 

1201 

REQUEST RECORD BIN/ 
BUCKET FROM CACHE 

INSERT KEY AND HASH 
N BUCKET, MARK 'USED 

WITH TIMESTAMP 

OMPARE CURRENT Bl 
AND BUCKET RECORD 

KEY TO PACKET 

MARK RECORD BIN AND 
BUCKET 'IN PROCESS' 
AND 'NEW' IN CACHE 

SET INITIAL STATISTICS 
FOR RECORD IN CACHE 

1213 

FIG. 12 

1202 

1203 

1204 

1205 

1207 

1209 

1211 

EX 1017 Page 85

g1
13' t 31.
wail ei '

.V

MRI“?tingg;3"-t.¢w;q,;:

‘-:71?"wwwmw’mm-‘''i
w

III.«N'

APPT-001-1

C? 63%

12/18

1201

  
UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

  1202
 

 

 
 

 

 
 

ACCESS
CONVERSATION

RECORD BIN

REQUEST RECORD SIN/ 1204
BUCKET FROM CACHE

REQUEST NEXT No
BUCKET FROM «n-INISUCKET EMPTY 1205

1206 CACHE

YES

1203

   

  
 

  

 

  

    
 

 

NO INSERT KEY AND HASH ‘207
= N BUCKET, MARK ‘USED

1208 WITH TIMESTAMP

YES

1210 ONMPARCE: CURRENT Bl 1209A D BU KET RECORD
SET UFKB FOR

PACKET AS KEY TO PACKET
'DROP'

  

 
 

MARK RECORD BIN AND 1211
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

‘212 SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

EX 1017 Page 85



APPT-001-1 

1300 --::4. 

E STATE 
PROCESSOR 

13/18 

SET STATE PROCESSOR 
INSTRUCTION POINTER TO 

ALUE FOUND IN UFKB ENTRY 

FETCH INSTRUCTION FROM 
STATE PROCESSOR 

INSTRUCTION MEMORY 

PERFORM OPERATION BASED 
ON THE STATE INSTRUCTION 

INSTRUCTION NO 
POINTER TO 

VALUE FOUND IN 
CURRENT STATE 

SAVE STATE 
PROCESSOR 
INSTRUCTION 
POINTER IN 

CURRENT FLOW 
RECORD 

1308 
YES 

NO 

SET AND SAVE FLOW REMOVA 
STATE PROCESSOR 

INSTRUCTION IN CURRENT 
FLOW RECORD 

FIG. 13 

1302 

1303 

1304 

1305 

1307 

1309 

1311 

EX 1017 Page 86

at; et aI. APPT-001-1

  

13/18

. 1301
2“-

I: 1300 “a UFKB ENTRY FOR
PACKET WITH STATUS

' W’ooR'F ‘ 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

 

  

   

PROCESSOR  

     
 

   
   

  
  
  

  
 

    

FLOW RECORD

3 @1313
FIG. 13

INSTRUCTION NO DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

I308 YES
wj}: 1310

SAVE STATE
2‘? PROCESSOR

.- INSTRUCTION NO DONE PROCESSING 1309
POINTER IN

CURRENT FLOW
RECORD

3 YES‘5"

; SET AND SAVE FLOW REMOVA
STATE PROCESSOR 1311

I INSTRUCTION IN CURRENT

EX 1017 Page 86



140 

PACKET 

1404 
ANALYZE AND 
RECOGNIZE 
PATTERN , 

INFORMATION 

1406 

EXTRACT 
IDENTIFYING 

INFO & PROGL 
/STATE 

1412 I I 141 
~~~-~II LOOKUP 

BUILD KNOWN
"FLOW" KEY RECORDS

I I (DB 1424)
L-------11

DATABASE
OF FLOWS

-====-~~--------~

I PARSER
ISUBSYSEM

PATTERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

1408

FIG. 14

v:
1400 I

I
1426

STATE
MACHINE

SELECTOR

1428
(

\._r+------,
l ~::::::::::::::::::::::;-1 •• ~ ...

STATE
ANALYSIS
PERATION

L. - - - - - - - - - - - - -

N

YES

1422

UPDATE
"FLOW"
KNOWN
RECORD

CLASSIFICATN
FINALIZATION

1434
Nv--~

ANALYZER
SUBSYSTEM

-------- - - - -

)>
""U
""U
-;-I
0
0

I

~L

~

EX 1017 Page 87

'zw ma V .

140

RECOGNIZE

PATTERN ,
INFORMATION

PARSER

SUBSISE'Vi _______ l STATE

LOOKUP
KNOWN

RECORDS

(DB 1424)

EXTRACT
IDENTIFYING

INFO & PROCL
/STATE

UPDATE

PATTERN

"FLOW"

STRXSEURES KNOWN
EXTRACHON RECORD
OPERAHONS

MACHINE

SELECTOR

I426

CLASSIFICATN
FINALIZATION

STATE
ANALYSIS

ANALYZER
SUBSYSTEM

RECORD? DATABASE
OF FLOWS

J I I: ‘55

1919219”;

L'IOO'ichV

8I/I7I

EX 1017 Page 87

121

" '
_ 'rx.:-·,~~.$~~ ~ :

1502

PACKET
,----,."I-\ CQU I SITIO

DEVICE

PACKETS

PARSER
301

ANALYZE
303

324

DATABASE
OF

FLOWS

HOST
ROCESSO

1504

300 MONITOR 1
L.__~~~~~~~~(~1510

FIG. 15

NETWORK
INTERFACE

CARD

t

DISK
&

DB

1506

HOST
MEMORY

1508

)>
'"'O
'"'O
-;-i
0
0

I

~:r,.
'IV

EX 1017 Page 88

9:?ng 1., (303. '

324

PARSER ANALYZE" L‘

1502 3.9 w DATABASE »

PACKET @’
counsmo 1506

DEVICE

HOST _L
'ROCESSO'- MEMORY 01\

MONITOR A
3119 on

121\
1 02

iNTERFACE

CARD
EX 1017 Page 88

r
(,

Jietz et al. APPT-001-1
@ I

'

16/18

1602 0 - 3 Bytes
Jt;:---1600

Ost MAC I
offset O -11 Ost MAC Src MAC -- 1604

I Src MAC

\~-- ___ / ----~x _____ _
1608 _/' ___________________ ---..:..

Ost MAC (6)

1606

Ost Hash (2 1610

Src MAC (6)

1614
Src Hash (2

~et=12

FIG. 16

EX 1017 Page 89

maul

jail at a] .

IL.»I...“um“um".m'Mum

APPT—OO1-1

16/18

L20 et=12

FIG. 16

EX 1017 Page 89

: ti et al. APPT-001-1

I

offset I
12 to 13

L3to
[L3 +
(IHL/4
- 1]

.
'

17/18
1702

\
j 'Type

1704

1/ll!V Ill!~
_ /
'--· ~~~~ ,--~~-1706

1708 Type (2)

1710 Hash 1> ~ 1700

~et=14

IDP = Ox0600*
IP= Ox0800*

CHAOSNET = Ox0804
ARP= Ox0806
VIP = OxOBAD*

VLOOP = OxOBAE
VECHO = OxOBAF

NETBIOS-3COM = Ox3COO
Ox3COD#

DEC-MOP = Ox6001
DEC-RC = Ox6002

DEC-DRP = Ox6003*
DEC-LAT= Ox6004

DEC-DIAG = Ox6005
DEC-LAVC = Ox6007

RARP = Ox8035
ATALK = Ox8098*

VLOOP = Ox80C4
VECHO = Ox80C5 FIG. 17A L/ SNA-TH = Ox80D5*

1712
-- ATALKARP = Ox80F3

IPX = OxB 137*
SNMP = Ox814C#

DstAddress I
Dst Hash (2) I

SrcAddress I
Src Hash (2)1

1Pv6 = Ox86DD *
LOOPBACK = Ox9000

Apple = Ox080007
* L3 Decoding
LS Decoding

~1750

ICMP = 1
IGMP =2
GGP =3
TCP= 6*
EGP =8

IGRP =9
PUP= 12

CHAOS= 16
UDP = 17*
IDP = 22#

ISO-TP4 = 29
DDP = 37#

ISO-IP= 80
VIP =83#

EIGRP = 88
OSPF = 89

~01(1> FIG. 178 * L4 Decoding
L3 Re-Decoding

!L4 Off~et = L3 + (IHU4)

EX 1017 Page 90

 {i t; et a1. APPT—001-1

61'$11
I

r

gym»;”Rwy?
—L NI0N

u—L \1\ ——L CB

1%‘ A N’c>8%52
I

~211::m E

—.L «.1o .12..

g 1706

5 1708 Type (2)

17101) R- 1700
L\-et =14

FIG. 17A

1'93:11:31“$5.43.Ea'm'fimE."
u.»

[111E3!312]?5C
 L3 to i . ‘ .' 3 . 3 0 ‘ :

[535,4 mam—”01111121111100

1712

mmmwmmmmmzmwzm
WWW/Mr ' ~11

IDP =3 0x0600*
IP = 0x0800*

CHAOSNET = 0x0804
ARP == OXOBOB
VIP = OXOBAD"

VLOOP = OXOBAE
VECHO = OxOBAF

NETBIOS-3COM = OXSCUO -
OXSCDD#

DEC-MOP = 0x6001
DEC-RC = OXBOOZ

DEC—DRP = 0x6003*
DEC-LAT = 0X6004

DEC-DIAG = 0x6005
DEC—LAVC = 0x600?

RARP = 0x8035
ATALK = OXBOQB”

VLOOP = OXSOC4
VECHO = OXBOCS
SNA-TH = OX80D5*

ATALKARF’ = Ox80F3
[PX = 0x8137*

SNMP = Ox814C#
IPv6 = 0X86DD*

LOOPBACK = OXQOOO

Apple = 0x080007

* L3 Decoding
L5 Decoding

/l/
1 752

 ICMP '—= 1
IGMP = 2
GGP = 3

-1]

VIII/[[2WWWfiIfWIJ/IIIIIIIIM

-o'<1>

-et = L3 + (1111.14)

FIG. 17B

TCP =6*
EGP =8

IGRP =9
PUP =12

CHAOS =16
UDP =17”

IDP = 22#
lSO-TP4 = 29

DDP = 371%
ISO-1P = 80

VIP = 83#
EIGRP = 88

OSF’F = 89

* L4 Decoding
L3 Re—Decoding

EX 1017 Page 90

.,
' " ,,

APPT-001~1

:c
~ z
w
...J
0
...J w
u..

PROTOCOL
TYPE (ID~

...J
0
0
g
~
a.

18/18

,k--1800

FIG. 18A

1802-2
1802-1

l._1802-M

Jc--1850 w
00
0 ...J
0 !!!
w u..

~1870
LU_T_N_U_M_..).

~ u..
CD 0

§~§
FIG. 188

EX 1017 Page 91

at al. APPT-001—1

18/18

M.L1

,.in!!!m
thin-i!

PROTOCOL

TYPE (I02

FIG. 18A

wn—OUmtrm
W

@153JOOOHOEA

FIG. 188

EX 1017 Page 91

i

--

=

.. =!: ,,

(

l

1/18

I CLIENT 4-,
107

I CLIENT 31·4-----,J'

\
106

DATA COMMUNICATIONS
NETWORK

108
ANALYZER

116

SERVER

121
~10

102

125

1SERVER9\

112

123--

ICLIENT 2 f-)05

FIG. 1

118
.-----.._,)

CLIENT 1 \
104

EX 1017 Page 92

E
1’19“” or DRAWLNG:

1/18‘

100 — ' 108
CLIENT 4

N ANALYZER

107 116
—

, SERVER L

-x No
106 121

 DATA COMMUNICATIONS

NETWORK '

 ,‘13:",11:13“13311111"5171!113111111?
L 102

‘ 123
_ 118
SERVER 4 — 105 ——/

‘\ CLIENT 2 CLIENT 1 fl
”2 104

FIG. 1
EX 1017 Page 92

D

n 1

....... "'" .. -....

l

214 215 ,216 217 218 219 220 221 222 223

S1 C1 p1 j1 s1a QA s1p QP

21

S1

208

224 , 225 226 227 228 229 230 231 232 233

207
240 241 242 243

250 251 ,252 253

,

C1 p2

,270 ,21.1 ,272

C1 S1 p2

209

·-·-·---~

·1 I s1a

244 245

st0

,254 ,255

a2 J st1

,265

sp p2

i
datum request

273

'
274

' datum reply

I\)
.......... _..
00

APPLICATION ~ERVER 2

..................

. . .

.

FIG. 2

EX 1017 Page 93

 1

I
O

E;
‘3

E
.4

g.
93¢!“er30uni

EX 1017 Page 93

r•lf lf5. I.., j [£ , · www• JWWW [!Ill ,]!.! J - .- · .
• . • • ' ~ ,• ,.,. _.,,. '. • . I/ "I' 11"'11 'I "I! '!"'" 11:::11 11···11 '" .,,. '!" ., ·:::ti •1:"1: ... ,. •1:·:11 ,r.: ; \I" II

11 l t , I" • 1. , , ,, ., '''"" t "'" ii,,, l '", I\ 11 , , 'i,,I '"

•• k

300
- - - - - - - - - - - - - - - - - - -1~ ~

I PARSER 301 I r - - - - - - - - - - - - - 1 304 306 314
302 I ANALYZE AND I I .---....,..___, 315---. I
-----,1 RECOGNIZE EXTRACT BUILD UNIQUE I LOOKUP I

PATTERN IDENTIFYING CONVERSATIO I FROM NEW "FLOW
INFORMATION INFORMATION "FLOW" KEY I KNOWN RECORD? I

(PAR) (Ell) I RECORDS N I

, 312 I 1i°iAf~E} I
r _______ _J YES I

~-.J I

324

DATABASE
OF FLOWS

I I
I
I

1- - - - .J l_ -.--.
...------, 322 I

UPDATE
I
I

! . . e .. ···:;a:r

1308
I
I

PATTERN, PARS
AND

EXTRACTION
DATABASE

I
I
I
I

I
I
I

I
I

- - J

PROTOCOL
&STATE

IDENTIFICATION

"FLOW"
KNOWN
RECORD

I v.>
I~
I ex,

310

COMPILER
AND

OPTIMIZER

PROTOCOL
DESCIPTIO
LANGUAGE

FIG. 3

CLASSIFICATN I
FINALIZATION ,I

I
STATE

PROCESSOR
I INSTRUCTION N 34 I
I DATABASE I

I I
I ~6 I
I SJB NO I
I (I
I I
I STATE I

PROCESSN I
I OPERATION
I ANALYZER I
I 303 I

I - - - - - - - - - - - _Y§_ - - - - -·- - - - - - - - - _ I

EX 1017 Page 94

III IISII III: :Ii‘“: III III! N13111:; III-II III: III ”III III III

I Jog ’

I PARSER 3191 _____________ 324
I 304 306 I T 314 I

302 ANALYZE AND EXTRACT I |
I RECOGNIZE IDENTlFYING BUILD UNIQUE I I LOOKUP "

PACKET PATTERN INFORMATION CONVERSAT‘O ' FROM NEW FLOW DATABASE
I INFORMATION (EH) ”FLOW" KEY I KNOWN RECORD? OF FLOWS

(PAR) RECORDS
I

AND
EXTRACTION

DATABASE

310

COMPILER
AND

OPTIMIZER

DATAG RAM
LAYE FI

(DB 324

UPDATE

PROTOCOL “FLOW" I
& STATE KNOWN

IDENTIFICATION RECORD

 CLASSIFICATN

FINALIZATION ,

PROCESSOR
INSTRUCTION

DATABASE

PROCESSNC
OPERATlON'
 ANALYZER

3,93

"""b"
 7i;

$713331?! Comuvaasou
am
I:LOI

EX 1017 Page 94

.,
' , .
•

404

=, GENERATE k,d

PACKET ~
?:Fi: PARSE AND - EXTRACT !:

OPERATIONS . ,.

~

f';j
'. w
~~

~

~

0
= 406tJ ATTERN, PARS

AND = EXTRACTION '=
,=

DATABASE '='

:;:,;..'.:

e

~ .,
4/18

PACKET
COMPILE STATE

ESCRIPTION INSTRUCTION
AND

OPERATIONS

403

STATE
PROCESSOR
INSTRUCTION

408 409 DATABASE

LOAD LOAD STATE
PARSING NSTRUCTIO

SUBSYSTEM DATABASE
MEMORY MEMORY

,400

410

FIG. 4

407

EX 1017 Page 95

£3, PRL‘T OF DRAW LNG.) ‘01 1
.3 A52EGW

"i: . 3 w ,

4/18

0

HIGH LEVEL
PACKET

DECODING
I ESCRIPTION ‘

405

L

PACKE
STATE

AND

GENERATE

PACKET
PAHSE AND

EXTRACT
OPERATIONS

 COMPILE

I ESCRIPTION “

 OPERATIONS

403

407

STATE
PROCESSOR

: EXTRACTION INSTRUCTION
E DATABASE 408 409 DATABASE

LOAD LOAD STATE

PARSlNG NSTRUCTIO
SUBSYSTEM DATABASE

MEMORY MEMORY
400

f
1

Ig.MA>,w

.mm.”4.».w.an“

EX 1017 Page 95

r
I

-
=,

510

5/18

501

INPUT PACKET 502

503 LOAD PACKET
COMPONENT

504 NO

FETCH NODE AN

507

PATTERN 1+_._N.,_,O"-<
NODE

509

PROCESS FROM
505 p

NO

508

EXTRACT
ELEMENTS1--~~~-----'

FIG. 5

512

PACKET
KEY

513

511

EX 1017 Page 96

mun or DRAWLNG:

1 AgggquL/kuymzn

.iii”?113111141113111117111111
1‘1|'

11',

11'11''1':1,1"""11111,11
~8511

.T'é' 510«x

51'

'-OO1-1

5/1 8

502

503 LOAD PACKET
COMPONENT

504 ORE IN PACK I"

FETCH NODE AN I
PROCESS FROM

P ‘ i x

MORE
PATTERN
NODES?

 ‘nn V‘.’ A‘.‘
PROCESS TO
COMPONENT

‘

PATTERN
NODE

EXTRACT
509 ELEMENTS

NEXT
PACKET

COMPONE

: I I

PAC KET
KEY

513

511

500

EX 1017 Page 96

r
I

. PR.L-.T Of DR.A~l.M,.::,

'· ~.Qfil.G.~Y ffi..ED ·-001-1
,./

(

=
-
~
w

-...-.;

~

~·
,::,~

603

604

NO

606

6/18

PACKET
COMPONENT AND
PATTERN NODE

LOAD PACKET
COMPONENT

FETCH EXTRACTION
ND PROCESS FRO

PATTERNS

APPLY EXTRACTION
PROCESS TO
COMPONENT

FIG. 6

601

602

610

NO LOADK
BUFFER

605
611

NEXT
N PACKET 609

COMPONEN

"'-600

608

EX 1017 Page 97

1‘ rle' 0F nmwmm
‘ A§ ORIQINALLY FILED 2001-1

>2

6/18

0

PACKET 602
COMPONENT AND
PATTERN NUDE

603

NO

Kfflfifi.’J3‘Hz-

604

606

LOAD PACKET

COMPONENT 51o

LOAD KEY
BUFFER

MORE PACKE

YES

FETCH EXTRACTION @‘ ND PROCESS FRO
PATTERNS 605

611

NEXT
NO PACKET 609

COMPONEN
ORE EXTRACTIO ‘

ELEMENTS?

YES

507 APPLY EXTRACTION

5%?A%%%SEL$
600

 MORE TO 608
EXTRACT?

YE

FIG. 6

EX 1017 Page 97

.~ PR.1./"ITOf DRA~L~G.:,
001

_
1

; ~-ORIG.~AI_LY rn..ED

fl

703

~

~:'

=s
~
...

= 704 f~

-=-
=·

:::,-;::;

=
= =•

,

i
706

:: ..
I 707

~

7/18

702

LOAD PATTERN
NODE ELEMENT 708

NO OUTPUTT
ANALYZER

YES

HASH KEY BUFFER
ELEMENT FROM 705
PATTERN NODE

709

PACK KEY & HAS

,700

NEXT PACKET
COMPONENT

FIG. 7

EX 1017 Page 98

3g PRLNTOF DRAWING:

0 001-1
< A‘sggqmmy man

a

4.9

703

704

§
‘ 706

g 7071.

7/18

. 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN
NODE ELEMENT

MORE PATTER
NODES?

YES

HASH KEY BUFFER
ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

FIG. 7

708

OUTPUT To
ANALYZER

709

7'00

EX 1017 Page 98

·~ PRL~T Or DKA~L~G.) ._
001

_
1 ::. ~JIB!GI:NALL Y FIUD

8/18
801

UFKB ENTRY FOR 802
PACKET

800'\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/ 804
~ BUCKET FROM CACHE

806
-
~
-
c=;

..
SETUFKB FOR ~ 805

. - PACKET AS 'NEW'
·•
~

= COMPARE CURRENT BIN 807
'::::'- AND BUCKET RECORD KEY
-- TO PACKET
-·
.=-..:::

NEXT BUCKET N 808

f'
YES

809
MARK RECORD BIN AND 810
BUCKET 'IN PROCESS' IN

-, CACHE AND TIMESTAMP
~

"" ~
i:11

811
SET UFKB FOR PACKET

AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE 1-----~

FIG. 8

EX 1017 Page 99

q PRL‘TTOF DRAWINGS ._001 1
AS_ ORIGINALLY nun

>32"

8/18

. 801

UFKB ENTRY FOR 802
PACKET

\" . COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804 806

“0 SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No @ 808
YES

800

 ORE BUCKET
805 IN THE BIN?

YES

I:IIIIIIIIIIIIIIIIII
«III»

809 MARK RECORD BIN AND 810BUCKET ‘IN PROCESS' IN
CACHE AND TIMESTAMP

Ema!!!»4‘
SET UFKB FOR PACKET

3“ AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813$. FIG. 8
EX 1017 Page 99

9/18

909

EXTRACT PROGRAM EXTRACT PORT
903

GET 'PROGRAM', GET 'PROGRAM',
'VERSION', 'PORT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TCP OR

UDP) UDP)'

. ~ .. ~
~ 908 '.

,;t,
:/i
·l

==='

SAVE REQUEST
rJ CREATE SERVER STAT

SAVE 'PROGRAM',
~

SAVE 'PROGRAM', 'VERSION' AND 904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)'WITH

=' UDP)' WITH NETWORK DESTINATION .=;::.
~ ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.
ON SERVER ADDRESS

;:; AND TCP OR UDP PORT.
•', ~:,:£

;;:. 907 ...
°!!>:

..

"
,,

$ C

m 905 906

I ,,. LOOKUP REQUE EXTRACT !\ PROGRAM

900/
FIND 'PROGRAM'
AND 'VERSION' GET 'PORT' AND

WITH LOOKUP OF 'PROTOCOL (TCP
iQ SOURCE NETWORK OR UDP)'. ' ADDRESS.

~

FIG. 9

EX 1017 Page 100

a; mum or DRAWLNG.) 11001-1
Agp‘RiQWALLY mm

I .

« > 2 E
I'. V.‘ . ' ‘f
“I. u a I ~ T

9/18

901 902 910

lg}.

BIND LOOK "
REQUEST 'ORTMAPP '

 ‘ORTMAPP "

909

 EXTRACT PROGRAM

GET ‘PROGRAM',
'VERSION'. ‘PORT' AND
‘PROTOCOL (TOP 0R

UDP)

EXTRACT PORT

GET 'PROGRAM'.
'VERSTON' AND

‘PROTOCOL (TCP OR
UDP)‘

908

H“IE1!EFT,“HI I

SAVE REQUEST

SAVE ‘PROGRAM',
 CREATE SERVER STAT EC"!H

‘ SAVE ‘PROGRAM‘. 'VERSION' AND

904j 'VERSION’, ‘PORT' AND “PROTOCOL (I‘CP OR
;.__ 'PRDTOCOL(TCP OR UBP)‘ WITH
1: UDP)’ WITH NETWORK DESTINATION
7: ADDRESS IN SERVER NETWORK ADDRESS."I..

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TO? OR UDP PORT

BOTH MAKE A KEY.

TM

RPC
BIND

LOOKUP
REPLY

 «WK1'

 EXTRACT

PROGRAM
»;‘ §mamEPA“

 LOOKUP REQUE ‘

FIND 'PROGRAM'

AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP

fig SOURCE NETWORK OR UDP)‘.ADDRESS.

mg;-.;

FIG. 9

EX 1017 Page 100

1
fl

1000--...

PATIERN
RECOGNITION

DATABASE
MEMORY

10/18

100

1001

EXTRACTION
OPERATIONS

DATABASE
MEMORY

100
100 1031

1004

100

100

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS

PATIERN
RECOGNITN -

ENGINE
(PRE)

EXTRACTION ENGINE
(SLICER)

PARSER
OUTPUT

1031

1007

1013

PARSER INPUT BUFFER
MEMORY BUFFER AND PAYLOA

1021

INPUT BUFFER 1011
INTERFACE
CONTROL

101

FIG. 10

MEMORY

ANALYZER
INTERFACE
CONTROL

1025

EX 1017 Page 101

11‘ 9111:1105 DRAWLNG: 31 1
" AwflGmAIu/man '

:1. . W @

1 0/18

E. 100 EXTRACTION
RECOGNmON OPERATIONS

DATABASE DATABASE

MEMORY 100‘ MEMORY

100 1031
100

1004

INFO OUT

HOST INTERFACE MULTIPLEXR 8: CONTROL REGISTERS CONTRL I

1031

‘00 PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE SLICER
1 (PRE) ()

E 100.

g y PA KE PARSER INPUT BUFFER a???* PACKET KEY
-~ INPUT MEMORY BUFFER AND PAYLOA'

MEMORY

i, 1012

if 1021
PsAgAKRETr INPUT BUFFER ANALYZER DATA REA'Y

INTERFACE INTERFACE
CONTROL CONTROL

 A A V“‘ -

READY

‘ .

PACKET

102

1023 FIG.10 1027*
EX 1017 Page 101

, , PR!.°'IT Of DM\lrL°'IG.:i 001•1
~-~RiqJ;NALLY m.£D

1100 --:.4.

1101

PARSER
INTER-
FACE

1103

1109

UNIFIED
FLOW
KEY

UFFER
(UFKB)

11/18

1115

LOOKUP/
UPDATE
ENGINE

(LUE)

STATE
PROCESS
INSTRUCN
DATABASE

(SPID)

1108

CACHE

STATE
PROCESSR

(SP)

FLOW
INSERTION/
DELETION

ENGINE
(FIDE)

1110

FIG. 11

1122
1118

ANALYZE
HOST

INTERFAC
AND

CONTROL
(ACIC)

HOST
BUS

INTER
FACE
(HIS)

1119 1123

UNIFIED
MEMORY
CONTROL

(UMC)

MEMORY
INTER
FACE

EX 1017 Page 102

. PRLNTOF 0&1me: 001-1

LLQLIQBLAI—LmY mm

:2A.1:23.1.

1*"1|:,‘11-13?!{13:11:1711'f'il‘1MHA1!
,1

,111E111u:

1.11.11111!:1”

11/18

1100 w

1101 1103 1115 1118 1122

r1107

001121 'ANALYZE' H031-
ENGINE HOST BUS

(LUE) .- INTERFAC~ INTER-
AND FACE

000109 1181
PROCESS-
INSTRUCN
DATABASE

(SPID)

PARSER~
INTER- 1‘
FACE

PROCESSR 1119 1123

UNIFIED MEMORY

MEMORY 1- INTER-“ CONTROL FACE

(UMC)

ENGiNE

(HDE)

EX 1017 Page 102

~~ PRJ...,r Of DRA~L,G~ 101-1
~,_oRiql;l"ALLY FillD

~

1200~

REQUEST NEXT
-- BUCKET FROM
FJ 1206 CACHE

12/18

NO

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

ACCESS
CONVERSATION

RECORD BIN

1201

REQUEST RECORD BIN/
BUCKET FROM CACHE

INSERT KEY AND HASH
NO N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

YES
OMPARE CURRENT Bl

1210 AND BUCKET RECORD
SETUFKB FOR KEY TO PACKET

PACKET AS
'DROP'

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

1212
SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

1202

1203

1204

1205

1207

1209

1211

EX 1017 Page 103

; PRLNTOF DRAWLNG: 301-1
A5 ORIGINALLY FILED

12/18

1201

 UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW‘

1202

1200
N ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
:4. BUCKET FROM CACHE

REQUEST NEXT ‘
BUCKET FROM 'IN/BUCKET EMPTY 1205

1206 CACHE YES

NO INSERT KEY AND HASH: N BUCKET. MARK 'USED
1208 WITH TIMESTAMP

YES

1207

.I'II1"IIIIII
 1 209

OMPARE CURRENT BI

AND BUCKET RECORD1210
KEY TO PACKET SET UFKB FOR

PACKET AS
'DROP'

 Wx

MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND ‘NEW‘ IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

FIG. 12

1211

 immH.
EX 1017 Page 103

,

·,
,,.

-b

1300 ~

S T STA E
PROCESSOR

13/18

~1301

SET STATE PROCESSOR
INSTRUCTION POINTER TO

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

INSTRUCTION NO
POINTER TO

VALUE FOUND IN
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION NO
POINTER IN

CURRENT FLOW
RECORD

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

FIG. 13

1303

1304

1305

1311

EX 1017 Page 104

, I; P
E H Inner :3mech 110014

‘ QFQQQUTALLY FILED C.
; g ' 1&5

13/18

gfwm
1300 ‘N UFKB ENTRY FOR

PACKET WITH STATUS
'NE ’O" 1 WI' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR /"

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

PROCESSOR

INSTRUCTION DONE PROCESSING 1307

,. POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?

3.» _ CURRENT STATE

1308 YES
‘ , 1310

S; ~e~r SAVE STATE
*5: PROCESSOR

INSTRUCTION No IONE PROCESSING 1309

g; - POINTER IN TATES FOR THIS FLO
CURRENT FLOW

’. . RECORD
YESI_.J,

SET AND SAVE FLOW REMOVA

STATE PROCESSOR
INSTRUCTION IN CURRENT

FLOW RECORDI?

@1313
FIG. 13

1311

EX 1017 Page 104

r------
1

140 I 1404
,--.-....._, I ANALYZE AND

RECOGNIZE
PATTERN

PACKET

I INFORMATION

1406

EXTRACT
IDENTIFYING

INFO& PROGL
/STATE

1412

L---~,,
I-,= = = = = =-.J _______ __.
I I

1 PARSER

PATTERN
STRUCTURES

AND
EXTRACTION
OPERATIONS

1408
ISUBSYSEM _____ _ ------

FIG. 14

v:
1400 I

I

I

I

1426

STATE
MACHINE

SELECTOR

1428
(

\.,_...!-----,.
J.i:::::=::::::::::::::::;--i ••

STATE
ANALYSIS
PERATION

YES

N

DATABASE
OF FLOWS

1422 I

UPDATE
"FLOW"
KNOWN
RECORD

...&.

i::
...&.

I CX>

CLASSIFICATN
FINALIZATION

1434
N....--

ANALYZER
SUBSYSTEM I

I ---------~----------------

EX 1017 Page 105

mm‘
.2 "I” In“ Hm n w“.

$5 T mw‘fia I: I5? w

I II 2% WI? Ii'i'I‘IEII III‘ ,Ivt‘i.‘I.}“ "‘9 ‘5 '1’ ‘*

I40

LOOKUP
‘ KNOWN
RECORD
(DB 1424)

EXTRACT
IDENTIFYING

INFO & PROCL
/STATE

 RECOGNIZE

PATTERN
INFORMATION

PACKET

 DATABASE

OF FLOWS

UPDATE

STRUCTURES "FLOW"
AND CLASSIFICATION KNOWN

EXTRACTION RECORD
OPERATIONS

PARSER
SUBSYSEM

STATE
MACHINE

SELECTOR

‘I 426

CLASSI FICATN
Fl NALIZATION

STATE

ANALYSIS

ANALYZER
SUBSYSTEM

8L/I7I-

ATIVKIDIHO3vfi towmvaq50Ingai
I-“LOO'I“rm

1

EX 1017 Page 105

!111'1"'\ '

...

11:, ~~~a, W'.

1502

PACKET

,._\,i:;u , ;,-.it

\ 11 !\

PARSER
301

It II, .Ii 11
,,11'.. ~ ·.

ANALYZE
303

,-------:ii.hCQUISITIOII.~ I ,.,.,
DEVICE

MONITOR
300

PACKETS

FIG. 15

·--·-----·--_.,.-

·::,

,r::lll':ull'i1

324

1504

HOST
ROCESSO

1510

NETWORK
INTERFACE

CARD

DISK
&
DB

~ ..

1506

HOST
MEMORY

1508

_...
~ _...
(X)

IJ£..:" ~ ~ -..L.

,e; 'V

l
'o~
Z: >-l
.C"lc

f~ i Ls
fs~
0
.J.

I
.J.

® . -

f)

·-·-:a4 EX 1017 Page 106

W,“

iJ» 1 mama. W. u‘flfia L 57-52 ‘2' ' 'Er.

WWHMflFH”fl£fiWWWMMH

324

 PARSER

391

DATABASE

PACKET
‘CQWSWKD

DEWCE

MEMORY

MONWOR
329

INTERFACE DBK

CARD &
DB

,_ mi“ ‘,_ ,W." V, , V ’ ,Wm‘h—WWM WWWW ».

8L/9L

LdomnuA¥fifiom0§r{ (DN'YMWU30.UIRM}‘
fifii

a
" ‘EX1i017‘”i;a”ge‘106

: ' i ,'

.t a

=-~-=='

offset I
12 to 13

L3 to
[L3 +
(IHL/ 4
- 1)

17/18
1702

\ 1704 IDP = Ox0600*
IP= Ox0800*

CHAOSNET = Ox0804
ARP= Ox0806
VIP = OxOBAD*

VLOOP = OxOBAE
VECHO = OxOBAF

NETB10S-3COM = Ox3COO -
Ox3C0D#

DEC-MOP = Ox6001

[\Type 1/IIIIIIIOJY
\.____ ~---/

~ 1706

1708 Type (2)

Hash 1)
1710 ~1700

~et=14

DEC-RC = Ox6002
DEC-DRP = Ox6003 *
DEC-LAT = Ox6004

DEC-DIAG = Ox6005
DEC-LAVC = Ox6007

RARP = Ox8035
ATALK = Ox809B*

VLOOP = Ox80C4
VECHO = Ox80C5 FIG. 17A v SNA-TH = Ox80D5*

1712
---- ATALKARP = Ox80F3

IPX = Ox8137*
SNMP = Ox814C#

Ost Address I
Ost Hash (2) I

SrcAddress

Src Hash (2)1

1Pv6 = Ox86DD *
LOOPBACK = Ox9000

Apple = Ox080007
* L3 Decoding
LS Decoding

~1750

ICMP = 1
IGMP =2
GGP =3
TCP= 6*
EGP =8

IGRP =9
PUP= 12

CHAOS= 16
UDP= 17*
IDP =22#

ISO-TP4 = 29
DDP = 37#

ISO-IP= 80
VIP= 83#

EIGRP =88
OSPF = 89

jProto9ol (1) Fl G. 178 * L4 Decoding
L3 Re-Decoding

jL4 Offpet = L3 + (IHU4)

EX 1017 Page 107

PRLNTOF DRAWLNG.»

~. asomqmmvrm

111511717’

qr... -

offset

IiE‘E',‘IEEIIlIZZ‘II“LII115:1III
,1'

'“3111111

III:I'.,1II,"II1”
L3 to

[L3 +
(IHL/4
-1]

2001-1

17/18
1702

1704

1708 Type (2)

-H1710 aSh 1) K1700

\-;et = 14

FIG. 17A
1712

mmmmmmwllm
Wm M-
WI —w:.=1-1='inmm

'IIIIIIzzwmiflmlllllllllm

Dst Address

Dst Hash (2)
Src Address

Src Hash (2)

-om)

-et = L3 + (lHL/4)

FIG. 17B

IDP = OXOBOO“
IP = 0x0800"

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD"

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS-SCOM = 0x3COO -
0x3COD#

DEC—MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003"
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = 0x809B*

VLOOP = OXBOC4
VECHO = 0x80C5
SNA—TH = 0x80D5"

ATALKARP = 0x80F3
IPX = 0X8137*

SNMP = 0x814C#
IPv6 = 0x86DD'

LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

1752

 ICMP = 1
IGMP = 2
GGP = 3
TOP = 6 "
EGP = 8

IGRP = 9
PUP = 12

CHAOS = 16
UDP = 17*
IDP = 22#

ISO-TP4 = 29
DDP = 37#

ISO-IP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

EX 1017 Page 107

;'. f'RL~T Of DRA~L~G.:, ._
001

_
1 AS ORJGrHAU. Y FILED

'~ --r-. -- -- ~

u w
u::

PROTOCOL
TYPE (ID~

18/18

k'-1800

G::.i
~

1642

1802-1

FIG. 18A

1870

LUTNUM), ~

~ 01 0 ..J
c.., !:!:!
wu.
~ LL. mo

FIG. 188

..

EX 1017 Page 108

PROTOCOL

1001-1'u—WA§_0RIGI_NALLY rm1*"

5- m“ 05 0mm we.»

ea

s:hi...Iii...‘

r1800

. Elihunun"hiIhIIiii.35....ii-nii-i!huhhuh-thin!
C0

TYPE (1132

FIG. 18A

2;AAi¥l§§§§lx{3:32.12,
guétgr.1{It}.2135

1370

»/
LUT NUM:

QJME“.0mDOOwtm
.n5m

Ea4805mm.

FIG. 188n;1.VMwwm0fEuwmkmaffi2.1.13".-k

EX 1017 Page 108

'

C

Tbis ~:·arm is for INTERN.~ PTO USE ONL \'
-H·\ j J c'S NOT g c t n1 :1 i k d to t b c :i pp Ii c :i n t.

_..., ..
. NOTICE OF FILmG I CL.i\II\I FEE(S) DUE

(C:.\.LClfLA. TIO\ SHEET)

APPLICATIOL'-i i'll.!l'l-ffiER:

Sr:: :1..:

~!l ! 'I 11

l:'..~.:;:·::tJ,::t: Cl.it."71: >;

.'.! Jh C,:;: C!.1,r.i P':'::c:11 ~·J.1 1,i.

I)'l

:: ,:, t 1 ·; '; E: :-, \ F •.

: l -

_L

F ·,·

L;.: E:.1 :,:--,

.(pt~.
~ld~_ zL ·.

: l:::;:; Fdi:tf Fe::~ s~br.Jr:.::::! r
• J ----------

: B.-\1...ANCE Otr'E

t O ,;- r I

(ORJ.1 OIPE·R..AM·OI (R.c:v. 12!?7)

:t
' f.

L

i
i
l

,.
•,

': ,,.

'' . I

EX 1017 Page 109

(

This He'orm is for INTERNAL PTO USE ONLY
‘Ii‘a’oc’s NOOT get {nailed to the applicant.

NOTICE (3F FILING / CLAIM FEMS) DUE
(CALCULATION SHEET)

APPLICATION NUMBER:

Tom! Fcc Cakuixmc

 Fee rs!

Sm FL;
I

ELZK Fnhn-c; Ft: 3133*!“

T.JL:!CL:1::: >1!) 2')? M}
_.

(:‘j;;v::d-:31C!4:n; >3 Z'I‘. H:

mm Cc: Clam Ptzzcru 2')! H-

Sqr:.‘t:.:;c mi. N 3

3:.th Trznflmcn 11‘!

A EQTXL FEE CA LCULA‘HQN

g (72:5 du: agar. flimg (it: 3;;Ezcx,

Teal Fm": Fm: DL: = 5

1” L23: Filing F::s Submiasd 5
‘3’

{BALANCE DU'E =

x
<Kv,

{r
E 0““ OIPERAMO: (Ru. mm)Qo,

i « . , . ,
20mm: of 1mm! P316711 Emrrumuon

gum 7

EX 1017 Page 109

file:///c:/APPS/preexam/correspondence/4.htm

FORMALITIES LETTER

1 m111 m, 111111111 m, m, m111111111 nm 111111111 11111111~ 1111

UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trademark Office

OCD00000005353894
Address COMMISSIONER OF PA TENr AND TRADEMARKS

Wash.tngton, DC 20231

APPLICATION NUMBER FILING/RECEIPT DA TE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/608,237

Dov Rosenfeld
Suite 2
5507 College Avenue
Oakland, CA 94618

06/30/2000 Russell S. Dietz APPT-001-1

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,
are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

• The statutory basic filing fee is missing.
Applicant must submit$ 690 to complete the basic filing fee and/or file a small entity statement claiming such
status (37 CFR 1.27).

• Total additional claim fee(s) for thil? application is $780.
• $702 for 39 total claims over 20. ·
• $78 for 1 independent claims over 3 .

• The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

• To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.

• The balance due by applicant is$ 1600.
/

A copy of this notice MUST be returned with the reply.

?/() ~ '- rj} rf c.__

~'iistomer Service Center
Initial Patent Examination Division (703) 308-1202

PART 3 - OFFICE COPY

8/25/00 7:29 AM

'.'1

l i

l
1

EX 1017 Page 110

bfl

file:///c:/APPSipreexam/oorrespondcncefit.htm

FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCE

' - = P t T d It Off

lllllllllllllllllillllllllllllllallllllll llllllllllllll llll lillillll fail:”Emmi; OF dim AND Imam
‘00000000005353894' Washington. D c 2023!

APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

091608237 06/30/2000 Russell S, Dietz APPT—OOI -I

Dov Rosenfeld
Suite 2

5507 College Avenue
Oakland, CA 94618

Date Mailed: 0825/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR1.53(b}

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,

are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a),

- The statutory basic filing fee is missing.
Applicant must submit$ 690 to complete the basic filing fee and/or file a small entity statement claiming such
status (37 CFR 1.27).

- Total additional claim fee(s) for this application is $280.
I $702 for 39 total claims over 20.

I $78 for 1 independent claims over 3 .
' The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is rqued.

v To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.1669) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.

. The balance due by applicant is S 1600.

A copy ofthis notice MUST be returned with the reply.

L .

. “0947‘ r“ 5» . \
ustomet Service Center

Initial Patent Examination Divisron (703) 308-1202
- PART 3 - OFFICE COPY

8/25/00 7:29 AM

EX 1017 Page 110

i

st£cG/>rL
Our Ref./Docket No: Al_ i'-001-1 Patent c 9/:J

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 7 ~,3

~"f> ~A~· ant(s): Dietz,etal.
~

i;I ~ 061000 ° DV O 6 gpl~ation No.: 09/608237 till , i, . t ~

Fil~ June 30, 2000 {!,.. n.~
~,.. /J & :t,.'u •'

~~tle: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

Group Art Unit: 2755

Examiner: (Unassigned)

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents
Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR l.53(f).
Enclosed is a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

_x__ Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;

_x__ Executed Assignment with assignment cover sheet.

_x__ A credit card payment form in the amount of$ 1772.00 is attached, being for:
_x__ Statutory basic filing fee: $ 710
_x__ Additional claim fee of $ 782
_x__ Assignment recordation fee of L.1Q
_x__ Extension Fee First Month of$ VO
_x__ Missing Parts Surcharge $ 130

__ Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR l.136(a) of:

...lL_ one months ($110) __ tW.t') months ($380)

__ two months ($870) __ four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

t/f,.
,i ~ .. - ' . : ~": ' ,. ,.

'Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents, Washin~gton, D.C.}°n. .

.. ~__,
Date: A.kv I i ~ Signed:~~~--------

;, -A Name: Dov Rosenfeld, Reg. No. 38687

I
I

' l

EX 1017 Page 111

'372”}

SM”‘ 75/1

Our Ref/Docket No: At - 1"—001-1 . Patent / %/IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ill-:3

 ? E 4 . . -
Afipdé’ 313(3)- D1etz,etal. GroupArtUnit: 2755

fly a s amplgiation No.: 09/608237

Fileeglr‘?L June 30, 2000
. at
militia METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Examiner: (Unassigned)

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents :

Washington, DC. 20231 ‘

Attn: Box Missing Parts ‘

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1536). j '

Enclosed is a copy of said Notice and the following documents and fees to complete the filing ‘
requirements of the above-identified application:

X Executed Declaration and Power of Attorney. The above-identified application is the

same application which the inventor executed by signing the enclosed declaration;

X Executed Assignment with assignment cover sheet. '

X A credit card payment form in the amount of $ 1772.00 is attached, being for:
X Statutory basic filing fee: £110

_X___ Additional claim fee of $18,; ;

__2§___ Assignment recordation fee ofw f

__X_. Extension Fee First Month of £110 iv

X Missing Parts Surcharge $.39

mApplicands) believe(s) that no Extension of Time is required. However, this conditional

petition is being made to provide for the possibility that applicant has inadvertently

overlooked the need for a petition for an extension of time.

X Applieant(s) hereby petition(s) for an Extension of Time under 37 CPR 1.13601) of:

X one months ($110) two months ($380) :53

{ two months ($870) four months ($1360) "

E If an additional extension of time is required, please consider this as a petition therefor.

if": : . a

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United Etates Postal Service as first class mail in an
envelope addressed to the Assistant Commissioner for Patents. Washington. DC 1 on.

Date;W Signed:
Name: Dov Rosenfeld, Reg. No. 38687

. m... um...........,,i

EX 1017 Page 111

Application 09/608237, Page 2

....L The Commissioner is hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Address for correspondence:
Dov Rosenfeld
5507 College A venue, Suite 2
Oakland, CA 94618
Tel. (510) 547-3378; Fax: (510) 653-7992

Respectfully Submitted,

~d, Reg. No. 38687

....

EX 1017 Page 112

Application 091608237, Page 2

X The Commissioner is hereby authorized to charge payment of any missing fees associated

with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

1an 1 . W Z
Date 0v Rosenfeld, Reg. No. 38687

Address for correspondence: ‘ ,-
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653~7992

EX 1017 Page 112

r

0 0
PATENT APPLICATION

ATTORNEY DOCKET NO. APPT-001-1

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30. 2000 as US Application Serial No. 09/608237 or PCT International Application Number __ and

was amended on (if applicable).

1 hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendrnent(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section I 19 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRJORJTY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application

1 hereby claim the benefit under Title 35, United States Code Section l 19(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE ST A TUSfoatented/oending/abandoned)

POWER OF ATTORNEY:
As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618

Direct Telephone Calls To:
Dov Rosenfeld, Reg. No. 38,687
Tel: (5IO) 547-3378

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

EX 1017 Page 113

m 2&3

ATTORNEY DOCKET NO. APPT-OOl-l

As 3 below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entltled:

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the abovevidentified specification, including the claims, as amended by any
arnendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section I 19 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventofls) certificate having a filing date before that of
the application on which priority is claimed:

DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

APPLICATION NUMBER

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 1 19(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

[1.8. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter ofeach of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph ofTitlc 35, United States Code Section 112,1 acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1156(a) which occurred between the filing date of the prior application and the national or PCT international filing
date ofthis application:

APPLICATION SERIAL NUMBER FILING DATE STATUSgpatcntcd/pendingfabandoneg)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle)8 ofthe United States Code and that such wtllful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell 5. Diet: Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 951204736

£590
Date

EX 1017 Page 113

0
Declaration and Power of Attorney (Continued)
Case No; «Case. CaseNumbern
Page 2 llfl1-Pdi1- t

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Aptos, CA 95003

Post Office Address: Same

Inventor's Signature

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor's Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor's Signature

Name of Fifth Inventor; Haig A. Sarkissian

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Name of Sixth Inventor: James F. Torgerson

Residence: 227157th Ave., NW, Andover, MN 55304

Post Office Address: ~

Inventor's Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship; ~

Date

Citizenship: USA

Date

Citizenship: USA

Date

A
. l, . ._,J

EX 1017 Page 114

0 «7»
Declaration and Power ofAttorney (Continued)
Case No; «Case CaseNumber»

Page 2 ’ " ’"

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Jnsegh R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Amos, CA 95003

Post Office Address: Same

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koggenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax. VA 22030

Pest Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive1 Germantown, TN 38139

Post Office Address: Same

Inventor’e Signature Date

Name of Fifth Inventor: Haig A. Sarldssian Citizenship: USA

Residence: 8701 Mnuntain T02, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 221 157th Ave” NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature Date

EX 1017 Page 114

,icLARATION AND POWEli OF
yoB.PATENT APPUCATION

PUCATION

(.)

t,,s a below named inventor, I hereby declare that: /t·
t,(y residence/post office address and citizenship are below n~to my name;

1t,elieve I am the orig~ first and ~le ~vent;<>r (if iisted below) or an original, first and joint inventor(ifplural names are
iisted below) of the subject matter which 18 clrumed and fo a patent is sought on the invention entitled:

.MfillIOD,AND APPARATUS FOR MONITORING TRAFFlC IN A NE'IWORK

the specification of which is attached hereto unless ~llowing box is checked:
(X) was filed on June 30, 2000 as US ApplicMion Serial No. 09/608237 or PCT International Application Number __ and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
ll!llf:Ilclment(s) refened to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Appllcation(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNJRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States ap\)lication in the manner ~vided by the first
pa:ragra.ph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material infonnation as defined m Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

FILING DATE

POWER OF ATIORNEY:
As a named inventor, I hereby appoint the following attomey(s} and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618

Direct Telephone Calls To:
Dov Rosenfeld, Reg. No. 38,.687
Tel: (510) 547-3378

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on infonnation and belief are believed
to be true; and further that these statements were made with the knowlooge that willful false statements and the like so made are punishable by
fme or imprisonment, or both, under Section I 00 l of Title 18 of the United States Code and that such willful fidse statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz

Residence: 6146 Ostenberg Drive, San .Jose, CA 95120-2736

Post Office Address: .§!!.ms

Fint Inventor's Signature

Citizenship: .!!§A

Date

EX 1017 Page 115

‘ Afi y; - LICATION

,ECLARATION AND POWER OF RNE ’ 0 0 ~ I myDOCKET no. prom—1
FOR PATENT APPLICATION d!‘ l ' t . W

A5 it below named inventor, I hereby declare that: l i (1;
MY residencelpost office address and citizenship are - t .3 s - below nan) my name;
[believe I am the originfill. filst and 3918 inventor (if ' . ‘ 2 1|" 2" m not listed below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter whloh is claimed and for it c a patent is sought on the invention entitled:

LQHODAND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless following box is checked
(X) was filed on June 30 2000 as US Afiblic 'on Serial No. 091608237 or PCT Intemational Application Number and

was amended on (if applicable).

Hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as mended by any
ammdmenfls) referred to above. I acknowledge the duty to disclose all infonnntion which is material to patentnbility as defined in 37 CFR 1.56.

Foreign Application(s) andlor Claim ofForeign Priority

Hereby claim foreign priority benefits under Title 35, United States Code Section 119 ofany foreign application(s) for patent or inventoris)
certificate listed below and have also identified below any foreign application for patent or inventoris) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

—--—
YES: NO:

Provisional Application

1 haeby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FlLING DATE

60/141,903 June 30, 1999
US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States applications) listed below and, insofar as the
subject matter ofeach of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

. u ICATIDN SERIALNUMBER FILINGDATE STATUS n ‘1 u Hutu; abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) andior agenfis) listed below to prosecute this application and transact all business
in the Patent and Trademark Ofl‘ice connected therewith:

Dov Rosent'cld1 Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosmfcld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547—3378
Oakland, CA 94618

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on infonnation and belief are believed
to be one; and further that these statements were made with the knowledge that wrllful false statements find the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code and that such wfllful false statements may jeopardize the
Validity of the application or any patent issued thereon

Name ofFirst Inventor. Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenheg Drive, §ay Jung 52A 95120—2736

Post Office Address: Same

First Inventor’s Signature Date

EX 1017 Page 115

"' . 1
,.,...

PATENT APPLJCATION 0
OFATIORNEY ATTORNEY DOCKET NO. APPT-001-1

, ' ' .,. '/fr 'ffi~
, , AS a below name , hereby declare that:

~ MY residence/post office address and citizenship are as stated below next to my name;

\ I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
: listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

"METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
: (X) was filed on June 30, 2000 as US Application Serial No. 09/60823 7 or PCT International Application Number __ and

was amended on (if applicable).

· I hereby state that I have reviewed a,1;1~ the contents of the above-identified specification, including the claims, as amended by any
: amendment(s) referred to above. I a'cfSo~edgltR'e duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

" foreign Application(s) and/or Claim of Foreign Priority

[hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section I 19(e) of any United States provisional applicauon(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June JO, 1999

, U.S. Priority Claim

,. I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
, subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
'- paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined m Title 37, Code of

Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE ST A TUS(oatented/oendinl?/abandoned)

POWER OF A TTOR."'IEY:
As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618

Direct Telephone Calls To:
Dov Rosenfeld, Reg. No. 38,687
Tel: (510) 547-3378

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fin~ or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such w11lful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor's Signature

Citizenship: ..!&A

Date

EX 1017 Page 116

PATENT APPLICATION Q
' ATTORNEY DOCKET no. APPT—OOI-I

hereby declare that:

'. My residence/post office address and citizenship are as stated below next to my name;
[believe I am the original, first and sole inventor (it'only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

NETHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWO_RIS

mg specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT international Application Number and

was amended on (ifapplicable).

[hereby state that l have reviewed anWhe contents of the above—identified specification, including the claims, as amended by any3 amendment(s) referred to above. I 51ch edge‘ duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

v Foreign Application(s) and/or Claim of Foreign Priority

[hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 1 l9(e) ofany United States provisional applicatron(s) listed below:

1 APPLICATION SERIAL NUMBER FILING DATE

, 60/141,903 June 30, 1999

}

[1.5. Priority Claim

([hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
‘ t « subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first

‘« paragraph of Title 35, United States Code Section I 12. I acknowledge the duty to disclose material information as defined in Title 37, Code of
‘ Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing

date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS{ natented/ ending/abandoned)

‘ POWER OF ATTORNEY:

AS a named inventor. I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
In the Patent and Trademark Office connected therewith:

Dov Rosent’eld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510} 547-33?8
Oakland, CA 94618

‘ hfleby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that wrllful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section [001 of Title l8 of the United States Code and that such wrllful false statements may jeopardize the
Validity of the application or any patent issued thereon.

Name of First Inventor: Russell 5. Dietz Citizenship: _1_J_SA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

P0“ Office Address: Same

5.W W
‘. First Inventor’s Signature Date

EX 1017 Page 116

PATENT APPLICATION
CLARA TION AND POWER OF ATTCJRNEY
Jt PATENT APPLICATION .

ATTORNE):'.DOCKJ:T NO. APPT-001·1
' ,: :i /,.· , ,,· ' ... · .. ·.

:.'Iv a below named inventor, I hereby declare that:

~ 1,{Y residence/post office address and citizenship are as stated below next to my name;

f' Jl,elieve I am the orig~al, first and s~le i'I_lvent?r (if only one n~me is listed below) or· an original, first lll!d joint inventor (if plural names are
! Jjsted below) of the subject matter)Vh1ch 1s claimed and for which a patent is sought on the invention entitled:

j METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

[the spe;iftcation of which is attached hereto unless the followi~g box is checked:
~ (X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number __ and
~- was amended on (if applicable). .

f J hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
~~ ainendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

lporeign Appllcation(s) and/or Claim of Foreign Priority

-1 hereby cl~im foreign priority benefit~ un~er Title 35, United ~tates C<;!de _Section 119 of a1.1y foreign appl~cation(s) ~or paten_tor inventor(s)
'.certificate hsted below and have also identified below any fl)fe1gn apphcanon for patent or mventor(s) certificate havmg a filmg date before that of

~-the application on which priority is claimed:
i,
•,
:: COUNTRY APPLICATION NillvIBER · DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

"· frOvisional Application
J hereby claim the benefit under Title 35, United States Code Section} I9(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NillvIBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each' of the claims of this application is not disclosed in the prior United States application in the manner provided by the frrst
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section l .56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

!APPLICATION SERIAL NillvIBER FILING DATE ST A TUS(oatented/oendine-/abandoned)

f POWER OF ATTORNEY:
As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: ·
Dov Rosenfeld,·
5507'College Avenue, S1tite·2:···:
Oakland, CA 946-18 ·

Direct Telephone Calls-To:
Dov Rosenfeld, Reg; No. 38,687

· Tel: mg) 547-3378 .

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowle~ge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the Umted States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: .fu!m!:

First Inventor's Signature

Citizenship: USA

Date

..,

EX 1017 Page 117

PATENT APPLICATION __

GLARA'I‘ION AND rowan or ATTORNEY - ATTORNEY nocxsr N0. APPT»001~1
’R'PATENTAI’PLICATION ' . “‘- .‘ v .1

 $5 a below named inventor, I hereby declare that:
:3de residence/post office address and citizenship are as stated below next to my name;

glbefieve I am the original, first and sole inventor (if only one name is listed below) or an original, first and limit inventor (if plural names aredistal below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
¥METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK \

cification of which is attached hereto unless the following box is checked: '
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number .._-, and

was amended on (if applicable).

hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
j; amendrnenfis) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

I?
53 3pc
i; W

I,"a,

Foreign Application(s) andfor Claim of Foreign Priority

Hereby claim foreign priority benefits under Title 35, United States Code Section 1 l9 of any foreign application(s} for patentor inventor-(s)
:"acrtificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of

" the application on which priority is claimed:

COUNTRY APPLICATION NUMBER ‘ DATE FILED PRIORITY CLAIMED UNDER 35

' — was: No:

-—_ YES: N0;
in Provisional Application

1‘ 1hereby claim the benefit under Title 35, United States Code Section 119(6) of any United States provisional application(s) listed below:

K199337425

APPLICATION SERIAL NUMBER FILING DATE

U.S. Priority Claim

’ I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
. subject matter of each'of the claims of this application is not disclosed in the prior United States application in the manner provided by the first

paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
* Federal Regulations, Section 156(3) which occurred between the filing date of the prior application and the national or PCT international filing

date of this application:

it . ’PLICATION SERIAL NUMBER FILING DATE

§ POWER OF ATTORNEY:

{\s a named inventor, I hereby appoint the following attomey{s) and/or agent(s) listed below to prosecute this application and transact all businessin the Patent and Trademark Office connected therewith: -

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: ‘ ‘ 1 Direct Telephone Calls-To:
Dov Rosemfeldzte‘ Dov Rosenfeld, Reg:_No. 38,68
5507‘College Ayenue,Sl:1ite’2f“"_' ~ 'Tel:(51§)547-3378
Oaldand CA 94618 e

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that wrllful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Diet: Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

EX 1017 Page 117

Declaration and Power of Attorney 1.,l.-Jntinued)
Case No; «Case CaseNumbem
Page 2 lft'"jlf-/;f!Jt-f

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Aptos, CA 95003

Post Office Address: Same

~//

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address:· ~

Inventor's Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor's Signature

Citizenship: ~

Date

Citizenship: USA

Date

Citizenship: USA

Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA
t

Residence: 8701 Mountain Top, San Antonio, Texas 78255 ,,

Post Office Address: Same

Inventor's Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor's Signature

Date

Citizenship: USA

Date

EX 1017 Page 118

Declaration and Power ofAttorney {L ontinued)

Case No; «Case CaseNumbem

Page 2 I??? -M/—’.

ADDITIONAL INVENTOR SIGNATURES:

x

Name of Second Inventor: Joseph R. Maixner

Residence: 121nnrtwood CougAgtos, CA 95003

Post Office Address: Same

 nventor’s Sign /'

Name of Third Inventor: Andrey A. Koppenbaver

Residence: 19400 Kenmore Drivg Fairfax, VA 22030

Post Office Addressr Same

Inventor’s Signature

Name 01“ Fourth Inventor: William H. Bares

Residence: 9005 Gleéaiden Drive, Germantown. TN 38139

Post Office Address: Same

Inventor’s Signaiure

Name of Fifth Inventor: Haig A. Sarkissian2

Residence: 8701 Mountain TogJ San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 227 157!!! Ave, NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature

Citizenship: USA

10/23/2000
Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

EX 1017 Page 118

I
l

L

r
0

Declaration and Power of Attorney (Continued)
Case No; «Case CaseNumber»
Page 2 1t-1'flT-PtH-I

ADDIDONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Aptos, CA 95003

Post Office Address: Same

Inventor's Signature

Name of Third Inventor: Andrew A, Koppenhaver

Residence: 932S W. Hinsdale Place, Littleton, CO 80128

Inventor's Signature

Name of Fourth Inventor: WUliam B. Bares

Residence: 9005 GJenalden Drive, Germantown, TN 38139

Post Office Address: ~

Inventor's Signature

Name of Fifth Inventor: Haig A. Sarkillsian

Residence: 8701 Mountain Top. San Antonio. Texas 7825S

Post Office Address: Same

Inventor's Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 227 1S7th Aye.. NW, Andover, MN SS304

Post Office Address: Same

Inventor's Signature

0

Citizenship: USA

Date

Citizenship: USA

10/,0/aoao
Date r I

Citizenship: USA

Date

Citizenship:~

Date

Citizenship: USA

Date

EX 1017 Page 119

' Q 1‘0
Declaration and Power of Attorney (Continued)
Case No; «Case QaéeNumbem

Page 2 hr’flTv'W I 4

ADDITIONAL INVENTOR SIGNATURES:

Residence: 121 Driftwood Cong, Agog CA £003

Post Office Address: game
g Name of Second Inventor: Jonah R. Maigner Citizenship: USA
E

I Inventor’s Signature Date
Name of Third Inventor: MGM A: Kmeuhnver Citizenship: USA

Residence: 9325 W. 'usdule Place Littleton CO 80128

Post Office Address:KA” fl)0 [20 lama
Inventor’s Signature Date

Name ofFourth Inventor: WflflgmHBues Citizenship: USA

Residence: 05 l v e TN 3 1 9

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: HE A, Sarkissian Citizenship: USA

Residence: 8701 Mountain T22, San Antonin, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: Jemu F. Taggerson Citizenship: USA

Residence: 227 157th AXE; NW, Agdgver, MN 553%

Post Office Address: SameWWW—«W,

Inventor’s Signature Date

’1
3

EX 1017 Page 119

PATENT APPLICATION 0
ATTORNEYDOCKETNO. APPT-001-1

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

ME1H0D AND APPARATUS FOR MONITORING TRAFFIC IN A NEJWORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number __ and

was amended on (if applicable). -

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all infonnation which is material to patentability as defined in 37 CFR 1.56.

Foreign Appllcation(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) fur patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATEFILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER F1LINGDATE
60/141,903 June 30, 1999

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material infonnation as defined m Title 37, Code of
Federal Regulations, Section l .56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

IAPl'LICATION SERIAL NUMBER F1LINGDATE

POWER OF ATTORNEY:
As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld. Reg. No. 38,687

Send Correspondence to:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland. CA 94618

Direct Telephone Calls To:
Dov Rosenfeld, Reg. No. 38,687
Tel: (510) 547-3378

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true· and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section l 00 I of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name ofFint Inventor: Rossell S. Dietz Citizenship: USA

f Residence: 6146 Ostenberg Drive, San Jose, CA 9512()..2736
't', ~·
¥ Post Office Address: ~

First Inventor's Signature Date

EX 1017 Page 120

no:mi”3‘tm
.2; ~.

#5“
o

:W’WJ*3“;"at";w.
x”:

.995:

«2:4or:
t’»7

x

O
ATTORNEY DOCKET NO. APPT$014

PATENT APPLICATION '
 e .I.‘.,f''

As it below named inventor, I hereby declare that:

My residencelpost office address and citizenship are as stated below next to my name;

lobelieve I am the original, first and sole inventor (ifonly one name is listed below) or an original, first andjoint inventor (ifplural names are
listed below) ofthe subject matter which 15 claimed and for which a paint is sought on the invention entitled:

MEHIOD AND ALPARATUS FOR MOEITQRHE WIN A NEWQRK

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on 1mm “LAM as US AppliCation Serial No 09J608237 or PCT International Applimtion Number and

was amended on (if applicable). ~w.

I hereby state that I have reviewed and understood the contents of the above~identified specification, including the claims, as amended by any
amendmends) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 156.

Foreign Applicatiomfis) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign applieation(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO: ___.

YES: ~ , N0: _‘

I hereby claim the benefit under Title 35, United States Code Section 11902) ofany United Suites provisional applications) listed below:

Provisional Appliution

APPLICATTON SERIAL NUMBER FILING DATE

60/141,903 June30,1999

us. Priority Claim

l hereby claim the benefit under Title 35, United States Code, Section 120 ofany United Smes application(s) listed below and, insofar as the
subject matter of cash of the claims of this application is not disclosed in the prior United States application in the manner provided by the first

h ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code ofparagrap
Federal Regndations, Section 1 56(3) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS . atentedli A w. ; abandoned

POWER OF ATTORNEY:

{\s a named inventor, I hereby appoint the following attorney(s) audio: agent(s) listed below to prosecute this application and transact all businessin the Patent and Trademark Office connected therewidi:

Dov Rosenield, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547~33?8
Oaklan CA 94613

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on infommion and belief are believed
to be true; and finther that these statements were made with the knowledge that wdlfiil false stat-ems and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon

Name of First Inventor: Russell S. Diet; Citizenship: ILSA.

Residence: 6 46 Ost n l) lve S nJos A 20—2

Post Office Address: Same

First Inventor’s Signature Date

EX 1017 Page 120

)eclaration and Power of Attorney ~ued)
:;ase No; «Case CaseNumbem ·U
>age 2 11-P Pr- H>t-, ·

U>DfflONAL INVENTOR SIGNATURES:

lfame of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court. Aptos. CA 95003

Post Office Address: Same

Inventor's Signature

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax.VA 22030

Post Office Address: Same

Inventor's Signature

Name of Fourth Inventor: William R Bares

Residence: 9005 Glenalden Drive, Germantown. TN 38139

Post Office Address: ~

t?;~~
Inventor's Signature '

Name of Fifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: ~

Inventor's Signature

Name of Sixth Inventor: James F. Torgenon

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor's Signature

0

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

EX 1017 Page 121

)cclalation and Power ofAttomey ' 116d)

2356 No; «Case CaseNumbem

’agc 2 M pr— 00: 1'
O

XDDITIONAL INVENTOR SIGNATURES:

Name ofSecond Inventor: Josegh R. Manner Citizenship: USA

Residence: 121 Drifiwood Cong; Antes, CA 95003

Post Office Address: Same

Inventor's Signature Date

Name of Third Inventor: Andrew A. Konmnhaver Citizenship: USA

Residence: 10400 Kenmore Drive Fairing, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor. William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantowg, TN 38139

Post Office Address: Same

@{fléfié‘‘ zlé/gg: Mg f 00
Inventor’s Signature (Date

Name ofFifih Inventor: Egg A. Sarkissian Citizenship: USA

Residence: 8701mmt§jg Ton, San Antonie, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor. Jages F. Taggerson Citizenship: 1.15:4.

Residence: 227 157th Ave, NW, Andover, MN 55304

Post Office Address: Same

W .._._—--—-—-—~————-———-——

InWater's Signature Date

EX 1017 Page 121

0 0
PATENT APPLICATION

ATTORNEY:»t;~NO, rl\Pl:'T.:0014.
' '" '\ -~

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METIIOD AND APPARATUS FOR MONITORING TRAFFIC IN A NE1WORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number __ and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section I 19(e) of any United States provisional application{s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regnlations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE ST A TUS(patented/pending/abandoned)

POWER OF ATTORNEY:
As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

.. ~,,;"!,'~·.::Direct Telephone Calls To:
·,/ ':''· "::_:pov Rosenfeld, Reg. No, 38,687 ·-i,
·.:'··", . .-·rei: (510) S47-3378 · · ,,.

I hereby declare that all statements made herein of my own knowledge are true an<:f that all statements made on i~formation and belief are believed
to be true· and further that these statements were made with the knowledge that wtllful false statements and the hke so made are pumshable by
fine or im'prisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: ~

Inventor's Signature

Citizenship: USA

Date

EX 1017 Page 122

 i’ATENT APPLICATION

anomnrnocrte’rnooam‘ 4301.23.

As :1 below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (ifplural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
METHOD AND APPMIA’IUS FOR MONITORING TRAFFIC IN A NETWORK

the specificatitm of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 093508237 or PCT international Application Number and

was amended on (if applicable).

I hereby state that] have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above, laclmowledge the duty to disclose all information which is material to patentability as defined in 37 CFR L56.

Foreign Applicatinn(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section [19 ofany foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) ofany United States provisional application(s) listed below:

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter ofeach of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.5601) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

vwe POWER OF ATTORNEY:

As a named inventor, l hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687V’ni—r-‘“f.
tmrect TelephoneCaUs To: , t

0v Rosenfeld, Reg. Nd: 33,687 5.2; t, ’

"" I A _ '.1:el:(510)547-3378" ~
I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that wrllful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell 5. Dietz Citizenship: 11%

Residence: 6146 Ostenberg Drive, San Jose, CA 95120~2736

Post Office Address: Same

First Inventor’s Signature Date

EX 1017 Page 122

-0
Declaration and Power of Attorney (Continued)
Case No; «Case CaseNumber»
Page 2 11-Pff"'">I -I

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Aptos. CA 95003

Post Office Address: Same

Inventor's Signature

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor's Signature

Name of Fourth Inventor: William H. Bares

~. Residence: 9005 Glenalden Drive, Germantown, TN 38139

J Post Office Address: Same

J
Inventor's Signature

Name of Fifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top. San Antonio, Texas 78255

Post Office Address: Same

1/ar .) w-ll.~
Inventor'

Name of Sixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor's Signature

0

Citizenship: .QM

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date I t

Citizenship: USA

Date

EX 1017 Page 123

..— .m inu.)
~ _ V

Declaration and Power ofAttorney (Continued)
Case No; «Case CaseNumbem

Page 2 ”1"”wa 4

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: I21 Driftwood Cog}; A211); CA 95003

Post 011143: Address: Same

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Kongenhaver Citizenship: U§A

Residence: 10400 Kenmore Drivg Fairfax,VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name ofFourth Inventor: William H. Bares Citizenship: 128A

Residence: 9005 Gienalden Drivg gern‘iantmrgna {E 38139

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Tog, San Antonia: Texas 78255

Post Office Address: Same

flat :2! 2000Date
n

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave, NW, Andnver, MN 55304

Post Office Address: Same

Inventor‘s Signature Date

EX 1017 Page 123

0
PATENT APPLICATION

FOR P.A'l'ENT AffLJCA'llON

As a below named inventor, I hereby declare that

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND APPARATIJS FOR MONITORING 1RAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
(X) was :filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number __ and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all infomiation which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATEFILED PRIORITY CLAIMED UNDER 35

YES: NO:

YES: NO:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE
60/141,903 June 30, 1999

U.S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a} which occU1Ted between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/nending/abandoned)

POWER OF A'ITORNEY:
As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Curresportdence to::
Dov.Rosenfeld
S507 Cultf$e Avenue, Suite-2
Oakland. CA 9'4618

Direct Telephone Calls To:
Dov Rosenfeld, Reg. No, 38,687
tel: {SUl) S47-3378

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true· and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or im.'prlsonment, or bolh, under Section I 001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of 1he application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor's Signature

Citizenship: USA

Date

EX 1017 Page 124

i0 .0
PATENT APPLICATION

AMRNEY DOCKETmom FOR enrmrmmATIm

As a below named inventor, I hereby declare that:

My residenceo’post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (ifonly one name is listed below) or an original, first and joint inventor (ifpluml names are
listed below) of the subjed matter which is claimed and for which a patent is sought on the invention entitled:
METHOD P 1 SF R ONITO ~‘INA ‘TW RK

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on June 30, 2!!!) as US Application Serial No. 09/608237 or PCT Intcmational Application Number ,__,_ and

was amended on (if applicable).

I hereby state that l have reviewed and understood the contents of the above~identified specification, including the claims, as amended by any
amendmentfs) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56,

Foreign Applicafion(s) and/or Claim ofForeign Priority

Illereby claim foreign priority benefits under Title 35, United States Code Section 1 19 ofany foreign applimtion(s) for patent or inventofls)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before tho: of
the application on which priority is claimant

APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

-——
-— yes: W N0: ,, ,.

Provisional Application

Ihereby claim the benefit under Title 35, United States Code Section 119(6) ofany United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

so;141,903 lune30,1999

U.S. Priority Claim

Ihcreby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.5601) which occurred between the filing date ofthe prior application and the national or PC]? international filing
date ofthis application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atmlzcd/ - udin; abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby a point the following attomefls) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark ce connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: , Direct Telephone Calls To:
Danosenfeld , Dov Rosenfeld, Reg. No. 38,687 350? College Antonie, Suitei! I Tel: {5 ill) $476318

CA 94618 .

Ihereby declare that all statements made herein ofmy own knowledge are one and that all statements made on information and beliefare believed
to be true; and further that these statements were made with the knowledge that wfllful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements mayjeopardize the
validity of the application or any patent issued thereon.

Name ofFlrst Inventor: Russell 8. Dietz Citizenship: USA

Residence: 6146 Qstenherg Drive, §an Jose, CA 95120-2236

Post Ofiioc Address: Same

First Inventor’s Signature Date

EX 1017 Page 124

....

Declaration and Power of Attorney (Continued)
Case No; «Case CaseNumbern
Page 2 H/JT-0()1 -f

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court. Aptos, CA 95003

Post Office Address: Same

Inventor's Signature

Name of Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor's Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor's Signature

Name of Fifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top. San Antonio, Texas 78255

Post Office Address: Same

Inventor's Signature

Name of Sixth Inventor: James F. Torgerson

f Residence: 227157th Ave., NW, Andover, MN 55304

0

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: .!IM

Date

Citizenship: USA

Date

Citizenship: USA

Date

EX 1017 Page 125

M3I

rzn‘

‘Fu.3

Declaration and Power ofAttorney (Continued)
Case No; «Case §2aseNumbem

Page 2 M " 90! "I

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Cougg Amos, CA 95003

Post Office Address: Same

Inventor’s Signature

Name of Third Inventor: Andrew A. Kogflenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor's Signature

Name of Fourth Inventor: William H. Bares

Residence: 2005 Glenaiden Drive3 Germantown, TN 38139

Post Office Address: Same

Inventor’s Signature

Name ofFifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain T01;J San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature

Name of Sixth Inventor: James F. Torgerson

Residence: 22715701 Ave. NW Andover MN 55304

Pas Office Address; e

MW
In ntor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date 7

Citizenship: USA

Date

Citizenship: 1151A

M
Date

EX 1017 Page 125

r
:~ ..

~,' -O'd>1
'-otil\\00 r

file:///c:/APPS/preexam/correspondence/3.btm

FO~LITIES LEITER

~11~11~111011111m1111111101~ 11011111111111111111
UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trademark Office

Address COMMISSIONER OF PATENT AND TRADEMARKS

Of I

·ocoooooooos353a94• , Washington, D C. 20231

APPLICATION NUMBER FlLINGIRECEIPT DATE FIRST NAMED APPLICANT ATfORNEY DOCKET NUMBER

09/608,237

Dov Rosenfeld
Suite 2
5507 College Avenue
Oakland, CA 94618

06/30/2000 Russell S. Dietz APPT-001-1

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,
are mlssing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

• The statutory basic filing fee is missing.
Applicant must submit $1390-to complete the basic filing fee and/or file a small entity statement claiming such
status (37 CFR 1.27). ,1(9 ·

• Total additional claim fee(s) for this application is $780.
• $702 for 39 total claims over 20.
• $78 for 1 independent claims over 3 . 10

• The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

• To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small 'entity, must be submitted with the missing items identified in this letter.

• The balance due by applicant is $1600.
~o ,.

.......... 1,i. 7-....... .. ,

~ - \1'1'l-
$lC.&1-- ,._\\Q - '±-~-

A copy of this notice MUST be returned with the reply. t...J '--'

Customer Service Center
Initial Patent Examination Division (703) 308-1202

PART 2 - COPY TO BE RETURNED WITH RESPONSE

·: fl J l '

8/25/00 7:29 AM

EX 1017 Page 126

r

i E i ‘

361353091
will. 3%

F0

Wine

74:“.,u.‘ngt

'0C000000005353894’

‘ i i /APPLICATION NUMBER FILMS/RECENT DATE FIRST NAWD APPLICANT ATTORNEY DOCKET NUMBER

filev’flchPPSlprecxam/corrcspondcncelihtm

-. a?)

UNITE-ESTATES DEPARTMENT or COMMERCE
Patent and Trademark Office

Addreis COMMISSIONER or PATENT AND TRADEMARKS
Washington, D c. 20231

LITIES LETTER

IIIIiIIIIIIIIIIIIIIIIIIIIIIIIIlIII

.:

. IIIIIIIIIIiIliIIIIIII

09/608,237 06/302000 ‘ Russell S. Dictz A APPT-OOl—I

Dov Rosenfeld
Suite 2

5507 College Avenue

Oakland, CA 94618 ,4

Date Mailed: 085252000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.530))

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however,
are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and
pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition
accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

'

rick-é iv 5g?»
‘usiomcr Service Center

Initial Patent Examination Division (703) 308~1202

The statutory basic filing fee is missing.
Applicant must submitWcomplete the basic filing fee and/or file a small entity statement claiming such
status (37 CFR 1.27). "7'0 ‘
Total additional claim fee(s) for this application is $780.

I $702 for 39 total claims over 20,

I $78 for 1 independent claims over 3 . fO
The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identilying the application by the
above Application Number and Filing Date, is required.
To avoid abandonment. a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.1603) of
$130 for a non-small entity, must be submitted with the missing items identified in this letter.
The balance due by applicant is $ 1600.

9.0

MW. .40.... ..L
[ESL “‘0 z “W ' L

A copy ofthisé'notice MUST be returned with the reply
PART 2 - COPY TO BE RETURNED WITH RESPONSE

3/25/00 ?:29 AM

EX 1017 Page 126

GP/Md 1
Our Docket/Ref. No.: AP PT-OU 1-1 Patent ;;)} s / ~ ·O

..---. IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 4 /~

June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC lN A
NETWORK

Commissioner for Patents
Washington, D.C. 20231

Group Art, Unit: 2755

Examiner:
RECEIVED
APR 1 6 2001

TechnologyCenter2100

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Infonnation Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

l Return postcard.

The 'commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS A TT ACHED

Date: April 9, 2001

Correspondence Address:
Dov Rosenfeld
5507 College A venue, Suite 2
Oakland, CA 94618
Telephone No.: +l-510-547-3378

flovRosenield
Attorney/Agent for Applicant(s)
Reg. No. 38687

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

EX 1017 Page 127

Our Docket/Ref. N0"‘ APPTOUl— 1 Patent 2/ 3 / 7‘470
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 57’4""

Group Art Unit: 2755

Se ~.mNo: 09/608237
<3“

RECEIVED \
Examiner:

. APR 1 6 2001
Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC 1N A Technology Center 2100
NETWORK

Commissioner for Patents "

Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited inform 1449.

A check for petition fees.

X Return postcard.

X The'commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfull submitted,

Date: April 9, 2001

0v Rosenfeld

. Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +I~5 10647-3378

Certificate of Mailing under 37 CFR 1.18

l hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231‘

DateofDeposit; AA: q, M {
Signature:

EX 1017 Page 127

/·'\
\J

Our Docket/Ref. No.: APPT-001-1 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APR t 2 7ffflt--in-t---------------.---------------
cant(s): Dietz et al.

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A
NETWORK

Commissioner for Patents
Washington, D.C. 20231

Group Art Unit: J.._ 1))

Examiner:

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

RECE\VEO
~PR l 6 ?_OOi

T~t\00\<>91 center 21 oo

(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurs last)

under 37 CFR l.97(c) together with either a:
_ Certification under 37 CFR 1.97(e), or
_ a $180.00 fee under 37 CFR 1.17(p)
(After the CFR 1.97(b) time period, but before final action or notice of
allowance, whichever occurs first)

under 37 CFR 1.97(d) together with a:
Certification under 37 C:fR 1.97(e), and

_ a petition under 37 CFR 1 .97(d)('.2)(ii), and
_ a $130.00 petition fee set forth in 37 CFR 1.17(i)(l).
(Filed after final action or notice of allowance, whichever occurs first, but before
payment of the issue fee)

x Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence 1s being deposited with the United States Postal Service as first
class mail rn an envelope addressed to. Comnussioner for Patents, Washington, D.C. 20231.

Date of Deposit: 4t C Cf. ;J..f}o (
=3'------

S1gnature: Fi ""-
DovRo~.R~

EX 1017 Page 128

o a
Our Docket/Ref. No.2 APPT—OOl-l Patent

Group Art Unit: 07:1 ff

Examiner: RECE‘VED

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A my came! 2100NETWORK

Commissioner for Patents

Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

_X___ under 37 CFR l.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever
occurs last)

under 37 CFR l.97(c) together with either a:

Certification under 37 CFR l.97(e), or

_ a $180.00 fee under 37 CFR l.17(p)

(After the CFR l.97(b) time period, but before final action or notice of

allowance, whichever occurs first)

under 37 CFR l.97(d) together with a:

Certification under 37 CFR 197(6), and
a petition under 37 CFR].97(d)(2)(ii), and

__ a $130.00 petition fee set forth in 37 CFR l.17(i)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before

payment of the issue fee)

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

X Applicant(s) submit herewith Form PTO l449—Information Disclosure Citation together

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to. Commissioner for Patents. Washington, DC. 20231,

Date of Deposit:

Signature:
Dov R0 d, Reg. No. 38,687

EX 1017 Page 128

SIN: 09/608237
0

Page 2 IDS

x Some of the references were cited in a search report from a foreign patent office in a
counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED
were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and
appear among the "references cited" on any patent to issue therefrom.

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the infonnation and
references cited are prior art merely because they are in this statement and no representation is
being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Date: April 1, 2001

Correspondence Address:
Dov Rosenfeld
5507 College Avenue, Suite 2
Oakland, CA 94618
Telephone No.: +1-510-547-3378

Respectfully submitted,

~~d
Attorney/ Agent for Applicant(s)
Reg. No. 38687

EX 1017 Page 129

r .<
C) .3

SIN: 09/608237 Page 2 IDS

X Some of the references were cited in a search report from a foreign patent office in a

counterpart foreign application. in particular, references AD, AF, AH, CI, EA, EB, EC, and ED

were cited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR1.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Respectfully submitted,

4/

L42/osenfeld

Attorney!Agent for Applicant(s)

Reg. No. 38687

Date: April 7, 2001

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No; +1~510-547—3378

EX 1017 Page 129

.,.

~\P~ 0 <:J SHEET 1 OF 5. (ef-ai.FOR 1 9
~

-- --

PR 1 2 2001 ~I ATIY. DOCKET NO. SERIAL NO.

,.,., ~i. APPT-001-1 o9160823RECEIVE

~
-.:

l77lAOE~ RMATION DISCLOSURE STATEMENT APPLICANT

~~ APR 1 6 20 J Dietz et al.

D

- .
(Use several sheets if necessary) FILING DATE GROUP "'"i II IUIUQY 1.,eme 210(

6/30/2000 ~ 2!57
U.S. PATENT DOCUMENTS

FILING DATE

·EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPR/A TE

INITIAL. NUMBER

fcl.736320 Apr. 5, Bristol 364 300 Oct. 8' AA
1988 1985

fcl.891639 Jan. 2, !Nakamura 340 825.500 Jun. 23,
AB

1990 1988
5101402 Mar. 31, Chui et al. 370 17 May 24,

AC
1992 1988

5247517 Sep. 21, Ross et al. 370 85.5 Sep. 2' AD
1993 1992

~ 5247693 Sep. 21, Bristol 395 800 Nov. 17,
AE

1993 1992

~ 5315580 May 24, Phaal 370 13 ~ug. 26,
AF

1994 1991

~\ 5339268 ~ug. 16, !Machida 365 49 Nov. 24,
AG

1994 1992
5351243 Sep. 27, Kalkunte et. al. 370 92 Dec. 27,

AH
1994 1991

5365514 INov. 15, Hershey et al. 370 17 Mar. l,
Al

1994 1993
5375070 [)ec. 20, Hershey at al. 364 550 Mar. l,

AJ
1994 1993

5394394 Feb. 28, Crowther et al. 370 60 ~un. 24,
AK

1995 1993

FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS·

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION

NUMBER YES I NO

AM

----~
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

"Technical Note: the Narus System," Downloaded April 29, 1999 from

f1HtlJ
AR twww.narus.com, Narus Corporation, Redwood City California.

AS

EXAMINER

JJL. ;~Jr DATE CONSIDERED /2 1/ ~~~ t,;
"EXAMINER: initial 11 c1tat1on considered, whether or not c1tat1on 1s in conformance with MPEP 609. Draw line through citation 11 not in cofitormance

and not considered Include a copy of this form with next commurncat1on to Applicant.

EX 1017 Page 130

-
- (°IP~ D .J Et al.FOAM -1449 SHEET 2 OF 5.

0 -- --
l APfl1,.._
! .,, " £UU1 (C ATIY. DOCKET NO. SERIAL NO. ~

~
(:

APPT-001-1 091608 2FfECEIVEI, ~~
rf lb •• ·":t, d< •

INFORMATION - •RE STATEMENT APPLICANT

APR 1 6 200 Dietz et al. ~i
(Use several sheets if necessary) FILING DATE GROUP

1
lol\ll,,1Vfoqy 'ter 2

6/30/2000 ~ 21)
00

U.S. PATENT DOCUMENTS

FILING DATE

'EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPRIATE

INITIAL. NUMBER

5414650 [May 9, ~ekhuis 364 715.02 iMar. 24,
BA

1995 1993

) 5430709 !Jul. 4, Galloway 370 13 Jun. 17,
BB

1995 1992
I 15432776 !Jul. 11, Harper 370 17 Sep. 30,

BC
1995 1993

~"-
5493689 Feb. 2 lawsky et al. 395 821 Mar. 1,

BD
1996 1993

.\ '\. 5500855 !Mar. 19, !Hershey et al. 370 17 ~an. 26,
~

BE
1996 1994 ,,

5568471 Oct. 22, Hershey et al. 370 17 Sep. 6,
\

BF
1996 1995

\' 5574875 !Nov. 12, Stansfield et al. 395 403 iMar. 12,
BG

1996 1993
15586266 Dec. 17, !Hershey et al. 395 Oct. 15,

BH
1996 1993

5606668 Feb. 25, Shwed 1395 1200 .11 IDec. 15,
Bl

1997 1993
5608662 Mar. 4, Large et al. 364 724.01 Jan. 12,

BJ
1997 1995

5634009 May 27, Iddon et al. 395 200.11 Oct. 27,
\ BK

1997 1995

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

CLASS I SUB-CLASS

TRANS·

DOCUMENT DATE COUNTRY LATION

NUMBER YES I NO

BM

BN
"--

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

BR ------
BS. ---~ EXAMINER ;vi? 1~r

DATE CONSIDERED

t/2 'lob~
'EXAMINER: initial if citation considered. whether or not citation is in conformance with MPEP 609. Draw line through citation ii riot in conformance

and not considered. Include a copy of this form with next communication to Applicant.

EX 1017 Page 131

-

E.t al.FORM - 1449 /b''°b \) SHEET 3 OF 5 .
._' --

J ADD , ()
h, I {. ZOO, (1)

ATIY. DOCKET NO. SERIAL NO.
~ (()

~ s. APPT-001-1 091608 FfECEIVEC ~~ ,:f h,. _,, d<
INFORMATION DISC[_ ,ATEMENT APPLICANT

~'1 APR 1 6 2001 Dietz et al.

(Use several sheets if necessary) FILING DATE GRouFu1"111NNYY tJemer , 0
6/30/2000 ~2,sJ

0

U.S. PATENT DOCUMENTS

FILING DATE

·EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF BPPROPRIBTE

INITIAL NUMBER

I CA
5651002 Jul. 22, Van Seters et all. 370 392 Jul. 12,

1997 1995

J CB
l5684954 Nov. 4, Kaiserswerth et al. 395 200.2 Mar. 20,

1997 1993

cc 5732213 Mar. 24, Gessel et al. 395 200 .11 Mar. 22,
1998 1996

5740355 Apr. 14, Watanabe et al. 395 183.21 Jun. 4,
\\. CD

1998 1996

\' 5761424 Jun. 2, Adams et al. 395 200.47 Dec. 29,
'_

CE
1998 1995

:r 5764638 Jun. 9, Ketchum 370 401 Sep. 14,
i.' CF

1998 1995
\,. 5781735 Jul. 14, Southard 395 200.54 Sep. 4,

CG
1998 1997

5784298 Jul. 21, Hershey et al. 364 557 Jul. 11,
CH

1998 1996

Cl
5787253 Jul. 28, Mccreery et al. 395 200.61 May 28,

1998 1996
5805808 Sep. 8, Hansani et al. 395 200.2 Apr. 9,

CJ
1998 1997

\ 5812529 Sep. 22, Czarnik et al. 370 245 ~ov. 12,
CK

1998 1996

FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION

NUMBER YES I NO

CM

CN .

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publlcation, Etc.)

CR -----------
cs ~ -----

EXAMINER

;v!/ ~M DATECONS6~E/ 2-(/
20
~

,y

'EXAMINER: 1n1t1al ,f citation considered, whether or not c1tat1on 1s ,n conformance with MPEP 609. Draw line through c1tat1on if not in conformance

and not considered. Include a copy of this form with next communication to Applicant

EX 1017 Page 132

o' PA . ,$' t{) ·;
Et at.FORM -1449 SHEET 4 OF 5.

APR 1 2 ?nnt 1t .,,- -- --.
:t. 4 ATTY. DOCKET NO. SERIAL NO.

~ ~~- APPT-001-1 o9 t6Cfff:.CEIVED " ~~ llfAl)BA~~
INFORMATION DISCLusuHE STATEMENT APPLICANT

,j:- '-I APR 1 6 2001
Dietz et al.

- . I l"'ont11:1r ?1 M
(Use several sheets if necessary) FILING DATE GROUP""• - -· --

6/30/2000 ~ ZJS;
U.S. PATENT DOCUMENTS

FILING DATE

·EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF BPPROPR/BTE

INITIAL NUMBER

p819028 Oct. 6, Manghirrnalani et al. 395 185.1 Apr. 16,
DA

1998 1997

I 5825774 Oct. 20, Ready et al. 370 401 Jul. 12,
DB

1998 1995
I p835726 Nov. 10, Shwed et al. 395 200.59 Jun. 17,

DC
1998 1996

5838919 Nov. 17, Schwaller et al. 395 200.54 Sep. 10,
DD

1998 1996 .

~\ 15841895 Nov. 24, Huffman 382 155 Oct. 25,
DE

1998 1996

} OF
5850386 ~;~8 15, Anderson et al. 370 241 Nov. 1,

1996

f 5850388 Dec. 15, Anderson et al. 370 252 Oct. 31, DG
1998 1996

15862335 Jan. 19, Welch, Jr. et al. 395 200.54 Apr. 1,
DH

1999 1993
15878420 Mar. 2, de la Salle 707 10 Oct. 29,

DI
1999 1997

5893155 IA.pr. 6, Cheriton 711 144 Dec. 3 I
DJ

1996
5903754 f.f,11. Pearson 395 680 Nov. 14,

DK
9 1997

FOREIGN PATENT DOCUMENTS

PU BU-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION

NUMBER YES I NO

OM

_..{}fr' i----

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

--

DR -------
.E§ ~ --

EXAMINER

jvl, /llr DATE CONSIDEREb /

2
1/w b_3

•EXAMINER: irnt1al 11 citation considered, whether or not citation ,s in conformance with MPEP 609. Draw line through citation if not in conformance

and not considered. Include a copy of this form with next communication to Applicant.

EX 1017 Page 133

,
. ~,·~("\

fta/.FORM-1449 ___ +/ __ ____ u--trl,.,.._.., } _________________ ·\)---- SHEET_5_0F_5_.

j APRf?'>M•°'
1-; - ;;
~ ~~

ATTY. DOCKET NO.

APPT-001-1
SERIAL NO.

09/6082RECEIVE D
cf!RAt1rul',.~~

INFORMATION DISC:.. ·- STATEMENT APPLICANT

Dietz et al. * ~ APR 1 6 20(1

(Use several sheets if necessary) FILING DATE

6/30/2000
GROUP 1ecnnoiuyy \.,ttllLICil 2100

-~2157
U.S. PATENT DOCUMENTS

"EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS

INITIAL NUMBER

t1t1rl 5917821 ~un. 29, Gobuyan et al. 370 392
EA

1999

rl ~tJ\ 5414704 !May 9, Spinney 370 60
EB

1995

M~fA 6014380 ~an 11, Hendel et al. 370 392
EC

2000

M~.v\ L5511215 !Apr. 23, Terasaka et al. 395 800
ED

1996

EE

EF

EG

EH

El

EJ

EK

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY CLASS SUB-CLASS

NUMBER

OM

ON

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

DR --------
EXAMINER

DATECONSIDERED 6 /z l 1.o VJ
"EXAMINER 1nit1al 1f c1tat1on considered, whether or not citation is in conformance with MPEP 609. Draw hne through citation 1f not 1n conformance

and not considered Include a copy of this form with next communication to Applicant.

FILING DATE

IF BPPROPRIBTE

IAug. 16,
1996
IApr. 5,
1994
Jun. 30,
1997
Oct. 26,
1993

TRANS-

LATION

YES I NO

-

EX 1017 Page 134

 SHEET 5 OF 5.

ATTY. DOCKET NO.

APPT—OOl-l

APPLJCANT
Dietz et a1.

FILINGDATE

6/30/2000

'EXAMINER DOCUMENT
lNlTiAL NUMBER

”MI“ E 5917821

mm 2:; 5'

MM— ~ 1:2;
55l1215 . 26,

1993

ug. 16,
1996

LA.) LC [\J

O O ('1'

A

EB

EC

ED

EE

EF
800

PUBLI-CATION
DOCUMENT COUNTRY CLASS SUB-CLASS

NUMBER

'EXAMINER Inmal If cnatvon consudered. whether or not citation is in conformance wnh MPEP 609, Draw Ilne through citation |f not In conformance
and fig! conSIdered Include a copy 01 W3 10”“ W'lh next communication to Applicant.

EX 1017 Page 134

Our Docket/Ref. No.: APPT-001..:1

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A
NETWORK

Commissioner for Patents
Washington, D.C. 20231

Group Art Unit: ";;L 7 5S
Examiner:

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

....x_ under 37 CFR l.97(b), or

Patent

(Within three months of filing national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurs last)

.1L Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

_x (Certification under 37 C.F.R. 1.97 (e)) Each item of information contained in this
information disclosure statement was first cited in an official communication from a foreign
patent office in a counterpart foreign application not mor.e than three months prior to the filing of
this information disclosure statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and
appear among the "references cited" on any patent to issue therefrom.

As provided for by 37 CFR1.97(g) and (h), no inference should be made that the information and
references cited are prior art merely because they are in this statement and no representation is

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

,A. 1 ___L_._ '/ --
Date of Deposit: 3o ,-\01,.4' ,2l)© Lsignature:_=.;-=~-2.___~-:-:-=------

~~ Reg. No. 38,687

EX 1017 Page 135

a5
Our Docket/Ref. No.: APPT—OO 1;; Patent

0 ‘ “(as IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
W

is “ :1
Applic;(s): Dietz et a1.

{0
‘1 'm‘“ No.2 09f608237

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Group Art Unit: l75’;

Examiner:

Commissioner for Patents ' V3 2 ‘L N“
Washington, DC. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 197(1)), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

){__ Applicant(s) submit herewith Form PTO l449-lnfonnation Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

__2_(_ (Certification under 37 C.F.R. 1.97 (e)) Each item of information contained in this

information disclosure statement was first cited in an official communication from a foreign

patent office in a counterpart foreign application not more than three months prior to the filing of

this information disclosure statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made of record in the application and

appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR‘1.97(g) and (h), no inference should he made that the information and
references cited are prior art merely because they are in this statement and no representation is \

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 20231.

Date of Deposit: MlfignamreflD osenfeld, Reg. No. 38,687

EX 1017 Page 135

SIN: 09/608237 Page2 IDS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Date:c.9 0 Ha...r ?-O!YL

Correspondence Address:
Dov Rosenfeld
5507 College A venue, Suite 2
Oakland, CA 94618
Telephone No.: + 1-510-547-3378

Respectfully submitted,

--frovRosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

EX 1017 Page 136

SIN: 09/608237 Page 2 IDS

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Date:W1
Respectfully submitted,

'fiov Rosenfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1—510-547—3378

EX 1017 Page 136

r

Et at.FOP... . -- ---------- ---- SHEET_l_OF_l_.

ATTY. DOCKET NO. SERIAL NO.

APPT-001-1 09/608237

INFORMATION DISCLOSURE STATEMENT APPLICANT '*5 - Dietz et al.
,? E'~

0 ~ ~ Jse several sheets if necessary) FILING DATE GROUP

~ ,, 6/30/2000 ~21s7

~J{r.-1cH, U.S. PATENT DOCUMENTS

- FILING DATE
*EXAMINER DOCUMENT DATE NAME CLASS SUB-CLASS IF APPROPRIATE

INITIAL NUMBER

MMI~ M 5,249,292 Sep. 28, Chiappa 395 650 Mar .10, 1
1993 992

r\Mr1 AB 5,511,213 Apr. 23, K::orrea 395 800 May 8,
1996 1992

t'\Mt'1 AC 5,703,877 Dec. 3 0, !Nuber et al. · 370 395 Nov. 22,
1997 1995

illM~ AD 5,802,054 Sep. l, Bellenger 370 351 Aug. 16,
1998 1996

AE

AF

AG r-C\\lt.(t _,
AH

y\l;;...' i,,-

" "· 1UI l
J\\' \ ...

i,oO Al
·--· r.ente I

1ec,11• -
AJ

AK

AL

AM

AN

FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS·

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION

NUMBER YES I NO
AO I

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)
~

AP
I

'
EXAMINER

;v&_Jy-
DATE CONSIDERED ·1 I /v1- 6 2 \ i ,--w c/3

'EXAMINER: initial if citation considered, w'hether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance

and fil!! considered. Include a copy of this form with next communication to Applicant.

EX 1017 Page 137

r ,

I IIIII IIIIIIII Ill lllll lllll lllll lllll llllh111111l~ lllll 111111111111111111

United States Patent [19J

Chiappa

(54] DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT TO DESIGNATE ONE
OF A PLURALITY OF DATA STREAM
CONTROL CIRCUITS TO SELECTIVELY
HANDLE TIIE HEADER PROCESSING OF
INCOMING PACKETS IN ONE DATA
PACKET STREAM

(76) Inventor: J. Noel Cbiappa, 708 E. Woodland
Dr., Grafton, Va. 23692

[21] Appl. No.: 847,880

(22) Filed: Mar. 10, 1992 .

Related U.S. Application Data /

[63) Continuation of Ser. No. 332,530, Mar. 31, 1989, aban
doned.

[51]
_[52]

(58)

[56)

Int. Cl.' G06F 9/28; G06F 13/12
U.S. Cl 395/650; 395/325;

395/800; 370/60; 370/61; 364/DIG. l;
364/228; 364/229.2; 364/230.3; 364/230.4;

364/266
Field of Search 364/DIG. l, DIG. 2:

340/825.52, 825.1; 370/60, 61, 80; 395/200,
325, 650, 800

References Cited

U.S. PATENT DOCUMENTS

3,846.763 11/1974 Riikonen 395/275
4,281.315 7/1981 Bauer et al. 364/200
4,312,065 1/1982 Ulug 370/94
4,456,957 6/1984 Schieltz 364/200
4.493,030 1/1985 Barran et al. 364/200
4:494,230 1/1985 Turner 370/60
4,499,576 2/1985 Fraser 370/60
4,601.586 7/1986 Bahr et al 364/200
4,630,258 12/1986 McMillen et al. 370/60
4,630.260 12/1986 Toy et al. 370/60
4,777.595 10/1988 Strecker et al 364/200
4,807,282 2/1989 Kazan et al. 379/284
4,851,997 7/1989 Tatara 364/200
4,858.112 8/1989 Puerzer et al. 364/200
4,899,333 2/1990 Roediger 370/60

:i. - •.·,:-!':;,If.-

US005249292A

[I I) Patent Number: 5,249,292
[45) Date of Patent: Sep. 28, 1993

4,975,828 12/19'JO Wishneusky et al. 395/325
4,979,100 12/1990 Makris et al. 395/325

, 4,991,133 2/1991, Davis et al 395/375

OTHER PUBLICATIONS

"Hyperchannel Net Is Plggged Into the Open-Systems
World," Electronics, Oct. 1, 1987, pp. 96-97.
"Cisco Introduces High-Performance Desktop Gate
way That Allows Remote Users to Access World
Wide Networks", ciscoSystems, Inc., Mar. 4, 1988.
"Company Backgrounder Mar. 1988", ciscoSystems,
Inc. Network Systems brochures.

Primary Examiner-Thomas C. Lee
Assistant Examiner-John C. Loomis
Attorney, Agent, or Firm-Fish & Richardson

[57] ABSTRACT

A high speed data packet switching circuit has a soft
ware controlled primary processing unit, a plurality of
network interface units connected to a plurality of net
works for receiving incoming data packet streams and
for transmitting outgoing data packet streams, a plural
ity of high speed data stream hardware control circuits
for processing data packets in response to instructions
from the primary processing unit and circuitry for inter
connecting the primary processing unit, the interface
units, and the data stream control circuits. The primary
processing unit receives from the network interface unit
at least a first one of the data packets of each new data
packet stream and assigns that stream to be processed
by one of the data stream control circuits without fur
ther processing by the primary processing unit. The
apparatus and method thus perform routine, repetitive
processing steps on the further packets of the data
stream using the high speed hardware circuitry, while
the initial processing and other non-repetitive or special
processing of the data packets are performed in soft
ware. Particular hardware is described for effecting the
high speed hardware processing of the data packets.

17 Claims, S Drawing Sheets

111:1111'11•,:1

: , ...

"'·~~:;1:1
: •'I•"""

,,.,:,,
.. :,111

EX 1017 Page 138

United States Patent [191
Chiappa

IlllllllllllllIlllllll||||l||||llllllllHlm..illlllllllllllllllllllllll
U5005249292A

[11] Patent Number: 5,249,292

[54]

1761

[21]

[22]

[63]

[511
152]

[531

[56]

DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT TO DESIGNATE ONE
OF A PLURALITY OF DATA STREAM
CONTROL CIRCUITS T0 SELECTIVELY
HANDLE THE HEADER PROCESSING OF
INCOMING PACKETS IN ONE DATA
PACKET STREAM

Inventor: .1. Noel Chinppa, 708 E. Woodland
Dr., Grafton, Va. 23692

App]. No.2 847,880
Filed: Mar. 10. 1992 '

Related US. Application Data /
Continuation of Ser. No. 332.530, Mar. 3|, 1989. aban-
doned.

Int. Cl.5 G06F 9/28; G06F 13/ 12
US. Cl. 395/650; 395/325;

395/800; 370/60; 370/61; 364/D1G. 1;
364/228; 364/2292; 364/2303; 364/230.4;

364/266
Field of Search 364/DlG. l. DIG. 2:

340/825.52. 825.1; 370/60, 61. 80; 395/200, ’
325. 650. 800

References Cited

U.S. PATENT DOCUMENTS

3.846.763 11/1974 Riiltonen 395/275
4.281.315 7/1981 Bauer et a1. . 364/200
4,312,065 1/1982 Ulug 370/94
4.456.957 6/1984 SChieliz ., . 364/200
4.493.030 1/1985 Barran et a1 . 364/200
4,494,230 1/1985 Turner .. 370/60
4.499.576 2/1985 Fraser 370/60
4.601.586 7/1986 Bahr ct a1. .. . 364/200
4.630.158 12/1986 McMilIen et 370/60
4.630.260 12/1986 Toy et al. 370/60
4.777.595 10/1988 Slrecker et al. 364/200
4,807,282 2/1989 Kazan et al. 379/284
4,851.997 7/1989 Tatara 364/200
4.858.112 8/1989 Puerzer et a1. . 364/200
4.899.333 2/1990 Roediger

. (mu :(II/uq”11:"!

~11“...

[45] Date of Patent: Sep. 28, 1993

4,975,323 12/1990 Wishneusky et :1. 395/325
4,979,100‘ 12/1990 Makriset a1. 395/325

» 4,991,133 2/1991. Davisetal. 395/375

OTHER PUBLICATIONS

“Hyperchannel Net Is Plugged Into the Open—Systems
World.“ Electronics. Oct. 1, 1987, pp. 96-97.
“Cisco Introduces High-Performance Desktop Gate-
way That Allows Remote Users to Access World—
wide Networks", ciscoSystems, Inc., Mar. 4, 1988.
“Company Backgrounder Mar. 1988”. ciscoSystems,
Inc. Network Systems brochures.

Pn'mary Examineh-Thomas C. Lee
Assistant Examiner—John C. Loomis
Attorney. Agent. or Firm—Fish 5: Richardson

[571 ABSTRACI

A high speed data packet switching circuit has a soft-
ware comrolled primary processing unit, a plurality of
network interface units connected to a plurality of net-
works for receiving incoming data packet streams and
for transmitting outgoing data packet streams, a plural-
ity of high speed data stream hardware control circuits
for processing data packets in response to instructions
from the primary processing unit and circuitry for inter-
connecting the primary processing unit, the interface
units, and the data stream control circuits. The primary
processing unit receives from the network interface unit
at least a first one of the data packets of each new data
packet stream and assigns that stream to be processed
by one of the data stream control circuits without fur-
ther processing by the primary processing unit, The
apparatus and method thus perform routine, repetitive
processing steps on the further packets of the data
stream using the high speed hardware circuitry, while
the initial processing and other non-repetitive or special
prooessing of the data packets are performed in soft-
ware. Particular hardware is described for effecting the
high speed hardware processing of the data packets.

17 Claims, 5 Drawing Sheets
.n' "Iliad.“-1 n1

EX 1017 Page 138

I. U.S. Patent
8

Sep. 28, 1993
~

Sheet 1 of 5 5,249,292

l"o -,.,.IJUTfUT IITEJtl)IKECT -'') 11/U! /KflltPIIEC!-
PATH ((1)11

''"'
. 1 IET,DHI IKTf lfACE •~ '- l[fnll SPECIAL PUll'PSl I' ' CPIIEC!/11 •

• r'"· • ..
I IEfffll /l!Elfltf l, ... IET'6ll /Sl'Et/JL IUINSlJ -" 'tl)ll[tf/11

,11, ,,-JtJ,

• 1 IITEIFACE APAl!ll
I•

I

~r Jl-11,
I KETll)Hl IITEIFAGl ,.,. ... IETIOIK

(STAIDJHDJ I' ' CQIKEtT/11
--st • <-10,

• ,-JP11
• (l/11

IIT{lfJ&E IDAPTPI
I

I I
q 1 /1111

.,, ___
' IETIIJll llTl!l/tl L. '"IETIIHl

S!JIPAID r 'COIIEG!/PI

r/11 11,

a,, ,.,,~~'
111-, r111 l PATA I...

IUffll r ~

flPI /IATTEII ~ . NA!CNEI --11,
llOCI - --II • ~

rt1, • rll1 r11, •
fllJ,llltl ..

r-------------------------,
.. I

I l)QTPVT IUff[I! • I IIIUT IUff[! I. ' I I I "I I I
I • '-J/1 • '-11, I
I • • I
I • . I
I

I IJUTPU! IUffll • • I IKPQT IUffEI 1 I

I
I I I I

'-.1lf11 I •J r,..r(/1 Lttf11l•J I
I I
I . GEITIAL ..-/J I I - fHIJtf SS/11 I
I Ultr I
! I 1...--------------------T

II

II .,.. FIG. 1 v,..

EX 1017 Page 139

r

l
(,
i

,'

·'·
·;..
,

'
,.

~
U.S. Patent Sep. 28, 1993 Sheet 2 of 5 5,249,292

INPUT
IUS

$/KILE PACI£!

PAClET IFEll·!QQ --u·,-------------...;,{!E

IYTE IFEll·!QG --AA:QI --------------------n.._

PATA ---------~------------------x::::,__._
/ICY! PJCIET-l/Q __J1 ____________ ...Jn_

\.,..__rr._'IIO._'K_F_IFD_'s_J _____,v,.......---....--------_)

FIG.2
SINGLE PJCIET

PACI(! lfEl·lll I L

fHJ'!l' IYTE IFEH·l!Q n..rt. _______________ J"L_

PATA c::x:::J c:x=x.. __________ ..X::,

FIG.3

EX 1017 Page 140

«WW—wnu;

‘7

US. Patent Sep.28, 1993 Sheet 2 of 5 5,249,292

ma5mm

f ‘1 {2”
mm{rm-2w _"LJ‘—_-—_"_"‘"—‘I_F‘"

217!

I”! ”fl-[06'j_______________________L
It?!”
MS

WM [:3 X________________.___X:l__

N” Plflif-2/0 I l H
\ If!” f/M’s/ ,

FIG. 2

ammo/{tr

”mum-m

0%?” m: tin-m _______________.r1__

0!” _________....X:L.

EX 1017 Page 140

r
'"
f
' . ,.

t·
'

'
.

'I<

t
I'

I
!
t
l

.!
!

I
,,

\

U.S. Patent
A
t:}

Sep. 28, 1993

IIIPUT IKTEHCtJIK[CT
BUSES, JI

~
Sheet 3 of S 5,249,292

fHtJN
CPU
J.r-!16'

!5()
I i---,

!51

r---

1
I
I
I
I

!lo I I ---~
I
I
I
I
I
I
I L __

STRIPPING
CIRCUIT/
CtJUKTEI

IUIIE!
CtJKTHtJL

LtJG/C

I I
I I

/GI
,-------, I

PATTEHK I
NATCHER I

15! I r---.L.-------,

!6!

I
I
I
~
I
I
I
I

PHEPEKP !GG l
~~mllr ---------4+

------ I
/() I

I
----------'

Ill

FIG. 4

EX 1017 Page 141

.[uk

«(-~w+~WWWmWwW~¢r
“Fr"l‘rlJ'~2,-”mm”.
“vx«Hung-n

~.mw-n.,
vone...

:-...wwxnmvmm.«p.

.5-

T

US. Patent

Sep. 28, 1993 Sheet 3 of 5 5,249,292

mar [Iii/FM!!!”

ma, 3/ m:
r--—-——. If”

Sill/W”
HIM/V
Mill”!

_____.._.......,____J
”EFF”

may/m ________.1,

mm mm I
mm; am ———___..__.1
mm mm

EX 1017 Page 141

r
t

' . ,,
r
' .
>'
,I

U.S. Patent

HOR CPKPL ETE

!Id

I BIT
LATCH

~
Sep. 28, 1993 Sheet 4 of 5

PACKET
START
RESET

NATCH
IIEKPRf

!IP !II KEKPRY
I

...--r--iA
lr/51

D

GP

PATA I

!52

299
-----,!11

!91 Q FL IP i.:::Jl,.:.:.:.'ATi.~'CH~--+--'-l
r---~n~ I ._____,~

NATCH

o,
•

•

•

PP

KASl
KEKPRY

KEKPRY

•
Pl

• 291
2:1

JIU/ II
s

pp •••

I A I)......,......._.,_...,
lr/51 !9!

G!

FIG.5

•

•

•

Pl

l)l

PO

-u
5,249,292

!9!

I

INPUT Pl.TA
BUS

EX 1017 Page 142

Sheet 4 of 5 5,249,292

l/M calm/'5

mm
2!! 5M”

”WM!
1
It!”

lift/f01f!
MS

EX 1017 Page 142

•

:.1

' .
U.S. Patent

J/f

Sep. 28, 1993

PACIET IK

J!O

CPKTHOl IIPUT
COUNTER 1 IUff £11

I
s,2 I

,---., I

GIJD[IJ J fiPN
Al/RAY GPU

TP IUfflRS, SCIATCH
PJIJ, NUJ'/, NV.I!, ALU, 1/t.

2:/
NUI

PAC!ETPUT

Sheet S of S 5,249,292

PJCIET

CPUITER -----,fl/ON
I GPU
I
I
I
I

--.....--..-
11
--1 SCHJTCH PAP

.,

c=::::=::;1 SHlfT//IOTATE
'K JI/

FIG.6

EX 1017 Page 143

'1“3>‘

qumw‘m‘n..

.any:"ww’w,

4:02.«xx—«am»

®
US. Patent Sep. 28, 1993

‘ mm I!

['0 ”17595; it”)?!
”9, KW], Ill/1'2, Alli, alt.

”6'”fo

FIG. 6'

Sheet 5 of 5

5

5,249,292

EX 1017 Page 143

r ,,
}

1
'~ .
t
,l • •
"" ; f
\
t
{

J

l
f
t
f,

'f
' . I

(

I

I
I
',

l

1
5,249,292

2

DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT TO DESIGNATE ONE OF A

PLURALITY OF DATA STREAM CONTROL
CIRCUITS TO SELECTIVELY HANDLE THE

HEADER PROCESSING OF INCOMING PACKETS
IN ONE DATA PACKET STREAM

This is a continuation of co-pending application Ser.
No. 332,~30 field on Mar. 31, 1989 now abandoned.

BACKGROUND OF THE INVENTION

are little different from the switch described above, but
there is a substantial difference. The fonnat of the pack·
els (that is, the protocols) handled by these switches is
much more complex. The greater complexity is neces-

s sary since the protocols are designed to work in less
restricted environments and in a much larger system,
and provide a greater range of services. While the for
mats interpreted by the first class of switches above are
chosen for easy implementation in hardware, the data

IO packets handled by this second class of switches are
generally intended to be interpreted by software (which
can easily and economically handle the greater com-

The invention relates generally to data communica- plexity) .
tions networks and in particular to the packet switch In the third class of packet switch, the packet proto-
used to direct the flow of data packets along data paths 1S cols are intended to be used in very large data networks
in a data communications network. having many very dissimilar links (such as a mix of very

In a data communications network, a data packet high speed LAN's and low speed long distance point to
switch directs data packets from one network node to point lines). Examples of such protocols are the United
another. The throughput for a packet switch can be States designed TCP/IP, and the International Stan-
measured in the number of either data packets per sec- 20 dards Organization's IP /CLNS protocols.
ond or bits per second which pass through the switch. In addition, this third class of switches (called rout-
The former measure is important because in a typical ers) often handle multiple protocols simultaneously.
network traffic, the bulk of the packets are small. How- Just as there are many human languages, there are many
ever, when the traffic is weighted by packet size, the computer protocols. While a single set of telephone
bulk of the data is carried in large data packets. In large 25 links and exchanges suffice to handle all human Ian-
bulk data transfers, the second measure is thus more guagcs, in computer communication systems the
important. This is a continuing dichotomy in through- switches are more involved in the carrying of data, and
put measurement. For example. the amount of work must understand some of the details of each protocol to
needed to switch packets is fairly constant, independent be able to correctly handle data in that protocol. The
of the packet size. 30 routers often have to make fairly complex changes to

The average desired values for both of these mea- the packets as they pass through the switch.
sures of packet throughput arc going up quickly, just as It is this latter class of packet switch to which this
other basic measures of computer power have been invention primarily relates. In current conventional
increasing. As the volume of the data transfers in· packet switch design, a programmed general purpose
creases, increasingly higher throughput rates are being 35 processor examines each packet as it arrives over the
demanded. The increase in the volume of data transfers network interface and processes the packet. Packet
results as experience is gained in new systems, and more processing requires assignment to an outbound network
and more applications, with more and more expansive interface for transmission over the next communications
needs, are being developed. Also, quickly changing link in the data path. While attempts are being made to
technology has made the basic underlying data trans- 40 build higher speed packet switches, based on this gen-
mission resource very inexpensive. Fiber optics, for era] architecture. the attempts have not been very suc-
example, offers data rates in the gigabyte per second cessful. One approach is to use faster processors; an-
range. Fmally, many difficult problems in the organiza- other is to make the software run faster; and a third is to
tion of large systems can be bypassed by the free con- apply multiple processors to the processing task. All of
sumption of resources. The typical drop in cost of such 45 these approaches fail to meet the need for the reasons
resources has always made this an attractive path for noted below.
meeting difficult system requirements. The approach which uses faster processors simply

Accordingly, the need for throughput rates substan- keeps pace with processor dependent (future) demands
tially higher than currently available in a packet switch since the traffic which the packet switch will handle
is presently sought. Switches more than an order of 50 will depend upon the speed of the user processors being
magnitude faster than current switches would seem to used to generate the traffic. Those user processors, like
be required. the processors in the packet switches, will increase in

The present invention is directed to a class of packet speed at more or less the same rate and accordingly no
switch which differs substantially from the other two overall increase in the ability of the future packet switch
classes of devices often commonly (and confusingly) 55 over the present packet switch, relative to traffic load,
referred to as packet switches. will be available. Furthermore, this approach may be

One class of packet switch is that commonly used in impractical as not .being cost-effective for wide spread
digital telephone exchanges. This switch is intended use. For example, two high speed machines, distant
only to transfer packets among the devices in a single from each other, must have intermediate switches
station, such as a telephone exchange. The format of the 60 which are all equally as powerful; deployment on a
packet in these systems is chosen to make the hardware large .scale of such expensive switches is not likely to be
in the switch as simple as possible; and this usually practicable.
means that the packets include fields designed for direct The approa~h which increases the execution rate of
use by the hardware. The capabilities of this .class of ;he soft.ware Jtsel! ~y, for example, removing excess
switches (for example, in such areas as congestion con- 65 instructions or wntmg the code m assembly language,
trol) are very limited to keep the hardware simple. leads to a limit beyond whic~ an increase in execution

The second class of packet switch is used in networks rate cannot be made. The gams which result are typi-
such as X.25 networks. In some sense, these switches cally small (a few percent) and the engineering costs of

EX 1017 Page 144

Wm«,0:r9:fl

.34....“fig...”amswp.7.4-",mm“,\tflfikYfi‘H—‘tm«vi-far

E
r:

E}
‘fl"‘aw”

Mn.w—a

w.

Sol t a,

' . 5,249,2921

DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT T0 DESIGNATE ONE OF A

PLURALITY OF DATA STREAM CONTROL
CIRCUITS TO SELECTIVELY HANDLE THE

HEADER PROCESSING OF INCOMING PACKETS
IN ONE DATA PACKET STREAM

This is a continuation of co-pending application Ser.
No. 332,530 field on Mar. 31, 1989 now abandoned.

BACKGROUND OF THE INVENTION

The invention relates generally to data communica-
tions networks and in particular to the packet switch
used to direct the flow of data packets along data paths
in a data communications network.

In a data communications network, a data packet
switch directs data packets from one network node to
another. The throughput for a packet switch can be
measured in the number of either data packets per sec-
ond or bits per second which pass through the switch.
The former measure is important because in a typical
network traffic. the bulk of the packets are small. How-
ever, when the traffic is weighted by packet size, the
bulk of the data is carried in large data packets. In large
bulk data transfers, the second measure is thus more
important. This is a continuing dichotomy in through-
put measurement. For example. the amount of work
needed to switch packets is fairly constant, independent
of the packet size.

The average desired values for both of these mea-
sures of packet throughput are going up quickly. just as
other basic measures of computer power have been
increasing. As the volume of the data transfers in»
creases, increasingly higher throughput rates are being
demanded. The increase in the volume of data transfers
results as experience is gained in new systems, and more
and more applications, with more and more expansive
needs. are being deveIOped. Also. quickly changing
technology has made the basic underlying data trans-
mission resource very inexpensive. Fiber optics, for
example. offers data rates in the gigabyte per second
range. Finally, many difficult problems in the organiza
tion of large systems can be bypassed by the free con-
sumption of resources. The typical drop in cost of Such
resources has always made this an attractive path for
meeting difficult system requirements

Accordingly, the need for throughput rates substan-
tially higher than currently available in a packet switch
is presently sought. Switches more than an order of
magnitude faster than current switches would seem to
be required.

The present invention is directed to a class of packet
switch which differs substantially from the other two
classes of devices often commonly (and confusingly)
referred to as packet switches.

One class of packet switch is that commonly used in
digital telephone exchanges. This switch is intended
only to transfer packets among the devices in a single
station, such as a telephone exchange. The format of the
packet in these systems is chosen to make the hardware
in the switch as simple as poSsible; and this usually
means that the packets include fields designed for direct
use by the hardware. The capabilities of this class of
switches (for example, in such areas as congestion con-
trol) are very limited to keep the hardware simple.

The second class ofpacket switch is used in networks
such as X25 networks. In some Sense, these switches

5

10

15

25

30

35

4s

50

55

65

2
are little different from the switch described above. but
there is a substantial difference. The format of the pack-
ets (that is, the protocols) handled by these switches is
much more complex. The greater complexity is neces~
sary since the protocols are designed to work in less
restricted environments and in a much larger system,
and provide a greater range of services. While the for-
mats interpreted by the first class of switches above are
chosen for easy implementation in hardware, the data
packets handled by this second class of switches are
generally intended to be interpreted by software (which
can easily and economically handle the greater com-
plexity).

In the third class of packet switch, the packet proto’
cols are intended to be used in very large data networks
having many very dissimilar links (such as a mix of very
high speed LAN's and low speed long distance point to
point lines). Examples of such protocols are the United
States designed TCP/IP, and the International Stan»
dards Organization's IP/CLNS protocols.

In addition, this third class of switches (called rout—
ers) often handle multiple protocols simultaneously.
Just as there are many human languages. there are many
computer protocols. While a single set of telephone
links and exchanges suffice to handle all human lanv
guages, in computer communication systems the
switches are more involved in the carrying of data, and
must understand some of the details ofeach protocol to
be able to correctly handle data in that protocol. The
routers often have to make fairly complex changes to
the packets as they pass through the switch.

It is this latter class of packet switch to which this
invention primarily relates. In current canventional
packet switch design, a programmed general purpose
processor examines each packet as it arrives over the
network interface and processes the packet. Packet
processing requires assignment to an outbound network
interface for transmission over the next communications
link in the data path. While attempts are being made to
build higher speed packet switches. based on this gen—
eral architecture. the attempts have not been very suc-
cessful. One approach is to use faster processors; an~
other is to make the software run faster; and a third is to
apply multiple processors to the processing task. All of
these approaches fall to meet the need for the reasons
noted below.

The approach which uses faster procasors simply
keeps pace with processor dependent (future) demands
since the traffic which the packet switch will handle
will depend upon the speed of the user processors being
used to generate the traffic. Those user processors, like
the processors in the packet switches, will increase in
speed at more or less the same rate and accordingly no
overall incrase in the ability of the future packet switch
over the present packet switch, relative to traffic load,
will be available. Furthermore, this approach may be
impractical as not being cost-effective for wide spread
use. For example, two high speed machines, distant
from each other, must have intermediate switches
which are all equally as powerful; deployment on a
large scale of such expensive switches is not likely to be
practicable.

The approach which increases the execution rate of
the software itself by, for example, removing excess
instructions or writing the code in assembly language,
leads to a limit beyond which an increase in execution
rate cannot be made. The gains which result are typi~
catty small (a few percent) and the engineering costs of

EX 1017 Page 144

l

3
5,249,292

4
such distortions in the software are significant in the features a processing unit responsive control circuit for
long term. controlling, in response to control signals sent by the

The use of multiple processors to avoid the "proces- primary processing unit, the congestion control and
sor bottleneck" provides some gains but again has Jim- header modification, stripping and prepending func-
its. Given a code path to forward a packet, it is not S tions of the data stream control circuit. The data stream
plausible to split that path into more than a few stages. control circuit further features a data buffer responsive
Three is typical: network input; protocol functions; and to the pattern matching circuitry and the processing
network output. The basis for this limitation is the over-
head incurred to interface the different processors be- unit responsive control circuit for storing data and pro-
yond a limited number of task divisions; that is, after a 10 ·1ocol elements of an incoming data packet stream and
certain point, the increase in interface overhead out- for outputting a data packet stream to be forwarded
weighs the savings obtained from the additional stage. along a communications -path.
This is particularly true because of the need to tightly The network interface unit features, in one aspect of
ill'legrate the various components, for example, conges- the invention, a network interface circuit for communi-
tion control at the protocol level requires close coordi- 15 eating with a network channel and an interface adapter
nation with the output device. Also, the interface over- for receiving channel data from the network interface
head costs are made more severe by the complication of circuit and for transmitting that channel data over the
the interface which is required. interconnecting circuit structure to the data stream

In general then, the multiprocessor approach is not, control circuits and the primary processing unit, and for
as expected, the answer to substantially increasing the 20 receiving network data from the data stream control
throughput of the packet switching network. This has circuits and the primary processing unit over the inter-
been borne out by several attempts by technically well- connecting circuit structure and for providing received
regarded groups to build packet switches using this data to the associated network interface circuit for
approach. While aggregate throughput over a large transmission over a network channel.
number of interfaces can be obtained, this is, in reality, 25 In another particular aspect of the invention, the
little different than having a large number of small software controlled primary processing unit features a
switches. It has thus far proven implausible to substan- central processing unit, bus circuitry, a plurality of
tially speed up a single stream using this approach. input storage units for receiving respectively each of

Accordingly, it is a primary object of the present the plurality of data streams from the network interface
invention to increase the throughput of a data packet 30 units and each storage unit having its output connected
switch while maintaining reasonable cost, and avoiding to the bus circuitry, elements for connecting the central
a high complexity of circuitry.

Other objects of the invention are a high speed data processing unit to the bus circuitry, and a plurality of
packet switching circuitry and method which can ban- output storage units for receiving data from the central
die large numbers of input streams, large numbers of 35 processing unit over the bus circuitry and for providing
output destinations and lines, and large and small data the data to the network interface units.
packets at high bit and packet throughput rates. The method of the invention features the step of

separating from a software controlled primary process-
SUMMARY OF THE INVENTION ing unit used in a high speed data packet switching

The invention relates to a method and apparatus for 40 circuit a portion of the functionality which is repeti-
effecting high speed data packet switching. The switch- tively used in connection with the processing of the
ing circuit features a software controlled primary pro- second and further packets of an input data stream and
cessing unit; a plurality of network interface units for implementing that portion of the functionality in hard-
receiving incoming data packet streams and for trans- ware elements.
mitring outgoing data packet streams from and to net- 45
work paths respectively; a plurality of data stream con
trol circuits or now blocks for processing data packets
in response to the primary processing unit; and circuitry
for interconnecting the primary processing unit and the
plurality of interface units and data stream control cir- so
cuits. The primary processing unit is adapted to receive
from the network interface units, and to process, at least
a first one of the data packets of each new data packet
stream and to assign this stream to be processed by a
data stream control circuit without further intervention 55
or processing by the primary processing unit. It is im
portant to note that this first packet is not necessarily a
"connection set up" packet or any other similar explicit
direction to the switch to set up a stream. Rather, as is
usual in the connectionless datagram model, this fll'St 60
packet is just another user data packet.

In particular aspects of the invention, the data stream
control circuit features a pattern matching circuit, re
sponsive to pattern setting signals from the primary
processing unit and to the incoming data packets from 65
the network interface units, for identifying those pack
ets of a packet stream which will be processed by the
control circuit. The data stream control circuit further

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the inven
tion will be apparent from the following description
taken together with the drawings in which:

FIG. 1 is an electrical block diagram of an overall
packet switching circuitry in accordance with a particu
lar embodiment of the invention;

FIG. 2 is a timing diagram of an input interconnect
circuitry according to a particular embodiment of the
invention;

FIG. 3 is a timing diagram of an output interconnect
circuitry in accordance with a particular embodiment of
the invention;

FIG. 4 is a detailed block diagram of the control
circuitry according to a particular embodiment of the
invention;

FIG. 5 is a detailed block diagram of the pattern
matching circuitry according to a particular embodi
ment of the invention; and

FIG. 6 is a detailed block diagram of the control
circuitry of the now blocks according to a particular
embodiment of the invention.

EX 1017 Page 145

E
isit.i:
.i.i
9;
:9
§

'6
3:

;;
t‘ H

E

«nutawe-yrm-
was?

a.W.w”...“W...,H.wgmmwwuw\

.

3
such distortions in the software are significant in the
long term.

The use of multiple processors to avoid the "procgs.
sor bottleneck" provides some gains but again has lim-
its. Given a code path to forward a packet, it is not 5
plausible to split that path into more than a few stages.
Three is typical: network input; protocol functions; and
network output. The basis for this limitation is the over-
head incurred to interface the different processors be-
yond a limited number of task divisions; that is, after a lo
certain point, the increase in interface overhead out-
weighs the savings obtained from the additional stage.
This is particularly true because of the need to tightly
integrate the various components, for example, conges-
tion control at the protocol level requires close coordi- ls
nation with the output device. Also, the interface over
head costs are made more severe by the complication of
the interface which is required.

In general then, the multiprocessor approach is not,
as expected, the answer to substantially increasing the 20
throughput of the packet switching network. This has
been borne out by several attempts by technically well-
regarded groups to build packet switches using this
approach. While aggregate throughput over a large
number of interfaces can be obtained, this is. in reality, 25
little different than having a large number of small
switches. It has thus far proven implausible to substan-
tially speed up a single stream using this approach.

Accordingly, it is a primary object of the present
invention to increase the throughput of a data packet 30
switch while maintaining reasonable cost, and avoiding
a high complexity of circuitry.

Other objects of the invention are a high speed data
packet switching circuitry and method which can han-
dle large numbers of input streams, large numbers of 35
output destinations and lines, and large and small data
packets at high bit and packet throughput rates.

SUMMARY OF THE INVENTION

The invention relates to a method and apparatus for 40
effecting high Speed data packet switching. The switch-
ing circuit features a software controlled primary pro-
cessing unit; a plurality of network interface units for
receiving incoming data packet streams and for trans-
mitting outgoing data packet streams from and to net- #5
work paths respectively; a plurality of data stream con-
trol circuits or flow blocks for processing data packets
in response to the primary processing unit; and circuitry
for interconnecting the primary processing unit and the
plurality of interface units and data stream control cir- 50
cuits. The primary processing unit is adapted to receive
from the network interface units, and to process, at least
a first one of the data packets of each new data packet
stream and to assign this stream to be processed by a
data stream control circuit without further intervention 55
or processing by the primary processing unit. It is im-
portant to note that this first packet is not necessarily a
"connection set up" packet or any other similar explicit
direction to the switch to set up a stream. Rather, as is
usual in the connectionless datagram model. this first 60
packet is just another user data packet.

In particular aspects of the invention, the data stream
control circuit features a pattern matching circuit, re-
sPonsive to pattern setting signals from the primary
processing unit and to the incoming data packets from 65
the network interface units, for identifying those pack-
ets of a packet stream which will be processed by the
control circuit. The data stream control circuit further

5,249,292

4
features a processing unit responsive control circuit for
controlling, in response to control signals sent by the
primary processing unit, the congestion control and
header modification, stripping and prepending func-
tions of the data stream control circuit. The data stream

control circuit further features a data buffer responsive
to the pattern matching circuitry and the processing
unit responsive control circuit for storing data and pro-
tocol elements of an incoming data packet stream and
for outputting a data packet stream to be forwarded
along a communications .path.

The network interface unit features, in one aspect of
the invention, a network interface circuit for communi-
cating with a network channel and an interface adapter
for receiving channel data from the network interface
circuit and for transmitting that channel data over the
interconnecting circuit structure to the data stream
control circuits and the primary processing unit, and for
receiving network data from the data stream control
circuits and the primary processing unit over the inter-
connecting circuit structure and for providing received
data to the associated network interface circuit for
transmission over a network channel.

In another particular aspect of the invention, the
software controlled primary processing unit features a
central processing unit, bus circuitry, a plurality of
input storage units for receiving respectively each of
the plurality ofdata streams from the network interface
units and each storage unit having its output connected
to the bus circuitry. elements for connecting the central
processing unit to the bus circuitry, and a plurality of
output storage units for receiving data from the central
processing unit over the bus circuitry and for providing
the data to the network interface units.

The method of the invention features the step of
separating from a software controlled primary process-
ing unit used in a high speed data packet switching
circuit a portion of the functionality which is repeti-
tively used in connection with the processing of the
second and further packets of an input data stream and
implementing that portion of the functionality in hard-
ware elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the inven-
tion will be apparent from the following description
taken together with the drawings in which:

FIG. I is an electrical block diagram of an overall
packet switching circuitry in accordance with a particu-
lar embodiment of the invention;

FIG. 2 is a timing diagram of an input interconnect
circuitry according to a particular embodiment of the
invention;

FIG. 3 is a timing diagram of an output interconnect
circuitry in accordance with a particular embodiment of
the invention;

FIG. 4 is a detailed block diagram of the centrol
circuitry according to a particular embodiment of the
invention;

FIG. 5 is a detailed block diagram of the pattern
matching circuitry according to a particular embodi—
ment of the invention; and

FIG. 6 is a detailed block diagram of the control
circuitry of the flow blocks according to a particular
embodiment of the invention.

EX 1017 Page 145

~
l .

i'
..

f
t·
i
f
f

1 •
}
;.
;;
i
j;
~

·~

' !
I,

i
'

t

f
f •

1

s 5,249,292
6

DESCRIPTION OF A PARTICULAR
PREFERRED EMBODIMENT BACKGROUND

prevent the repetitive computation of identical informa
tion for packets belonging to the same traffic stream.

It is further important to recogni:i:e that although the
According to the invention, a selected portion of the complellity of the functionality provided at the packet

packet forwarding operation, previously performed by , protocol layer is increasing, it does so {a) because net-
the processor software, is moved from the software to work systems are getting larger and more mechanisms
the packet switch hardware. In this manner, all of the are required to make the larger systems work correctly,
load on the software is removed for "normal user data (b) because the user community is becoming more so-
packets;" and since hardware can operate at a substan- phisticated, and (c) because systems are being deployed
tially greater speed than software, substantial perfor- 10 with extra functionality. This complexity has a direct
mance gain can be achieved. However, any attempt to bearing on the cost of forwarding packets, since many
translate into hardware all of the functions currently added functions are performed on each packet.
performed in software would not be possible. Typical . .
packet switches contain tens of thousands of lines of System Descnption
code, and are thus of extreme complexity. To imple- ts Accordingly, the illustrated embodiment of the in-
ment all of this software in hardware would require vention operates using two important assumptions.
either programmability of the hardware, thus rcintro- First, that traffic streams exist and are of sufficient dura-
ducing the problem of a software system, or require an . tion to be useful. Second, that the majority of the traffic
unmanageable and uneconomic configuration of hard- in the network is in the streams. Both of these assump
ware circuitry. Accordingly, it is necessary is to select 20 tions are reasonably descriptive of most data communi-
that amount of software which can efficiently and etTec- cations networks.
tively be performed in hardware and thus reduce to Referring to FIG. 1, in accordance with a particular
hardware only a small, but effective, portion of the embodiment of the invention, a specialized hardware 10
software function. does all the work necessary for forwarding a "normal"

If the software code of a typical packet switching 2S packet in a previously identified packet stream from one
system were monitored, most of it is ellercised infre- network interface to another. All packets which the
quently. It is there to handle errors, or to handle the specialized hardware 10 cannot process are passed to a
control traffic which forms a small, albeit vital, share of software controlled primary processing unit 11, includ-
the packets in the system. Very little of the code, a few ing a central processing unit, CPU, 12, running software
percent, is used in connection with processing a "nor- 30 code which is more or Jess similar to the current soft.
mat" packet through the switch. And it is precisely ware code run by the processors of most packet
those "normal" packets which form a preponderance of switches. If the packet looks like it is part of a new
the packets with which the switch deals. Thus, in one traffic stream, the central processing unit 12 provides
aspect, the invention herein is to select that portion of the specialized hardware 10 with the necessary data
the software which will be reproduced in hardware and 35 parameters to deal with further packets from that
leave the remaining functionality in software where it is packet traffic stream. Accordingly, any further packets
more appropriate for reasons of efficiency and support. seen from that data stream are dealt with automatically
In particular, the illustrated embodiment attempts to do by the specialized hardware 10.
so with the minimum number of circuit elements. In operation, a packet switch normally examines the

One way to reduce the functionality which must be 40 low level network header of an incoming packet at the
reproduced in hardware is to not implement in hard· input network, and removes that header from the
ware the code which handles packets other than normal packet. The packet is then passed to the software of the
data packets. It is feasible to produce a device which appropriate "protocol." The software generally checks
would handle all normal user data packets entirely in the packet for errors, does certain bookkeeping on the
hardware. This would allow a far faster router than is 4S packet, ensures that the packet is not violating flow or
available with current means. access controls, generates a route for the packet, and

However, even that level of reduction can be sur• passes it to the output network. The output network
passed, producing an even more efficient implementa· constructs the outgoing network header, attaches it to
tion (the illustrated embodiment of the invention) if a the packet, and sends the packet on to the nellt packet
further observation is made. In the handling of a single SO switch or other destination. At all stages in the process,
data packet, several operations are necessary to forward the packet switch must guard against data congestion.
each packet. In accordance with the invention, it is Mostofthesefunctionsareidcnticalonpacketsofthe
recognized that many of these forwarding operations same stream and can therefore be separated from those
are completely repetitive when performed on individual functions which vary from packet to packet in the same
packets which are part of a common connection path, 55 packet stream. The repetitive functions can be per-
that is, part of a data stream having a common source formed once in software at CPU 12, at the time the
and often the same destination. hardware is first set up for a packet stream, that is, at the

Thus, most packets in the system are part of ongoing time the first packet of the stream is being processed. At
transfers in which as many as thousands of similar pack- this time, the hardware itself has very little that it is able
ets now through the switch. While the meaning of the 60 to do. Thereafter, the hardware will handle all succeed-
various packets at higher levels of the communications ing packets of the stream without any further interven-
system can be quite different, the portion of the packet tion from the central processing unit.
protocol which concerns the packet switch is usually The illustrated specialized hardware 10 has a plural-
identical from packet to packet. Thus, judicious reten- ity of data stream control circuits (flow blocks) 14a,
tion of information about a traffic stream passing 65 14b, ... ,14p, each now block having a pattern matching
through the switch is often both necessary and useful. It hardware 16, a control circuitry 18, and a data buffer 20.
is necessary to implement some required functions such An input bus 22 connects, as described below, to any of
as flow and congestion control. It is further useful to the inbound network interfaces, and an output bus 24

EX 1017 Page 146

t

E

i

E
E

abut,fiWWW,‘«wmwm

it;

5

DESCRIPTION OF A PARTICULAR
PREFERRED EMBODIMENT BACKGROUND

According to the invention, a selected portion of the
packet forwarding operation, previously performed by
the processor software, is moved from the software to
the packet switch hardware. In this manner. all of the
load on the software is removed for “normal user data
packets" and since hardware can operate at a substan-
tially greater speed than software, substantial perforo
mance gain can be achieved. However, any attempt to
umslatc into hardware all of the functions currently
performed in software would not be possible. Typical
packet switches contain tens of thousands of lines of
code, and are thus of extreme complexity. To imple-
ment all of this sottware in hardware would require
either programmability of the hardware, thus reintro-
ducing the problem of a software system. or require an
unmanageable and uneconomic configuration of hard-
ware circuitry. Accordingly, it is necessary is to select
that amount of software which can efficiently end effec-
tively be performed in hardware and thus reduce to
hardware only a small, but effective. portion of the
software function.

If the software code of a typical packet switching
system were monitored, most of it is exercised infre»
quently. It is there to handle errors, or to handle the
control traffic which forms a small, albeit vital, share of
the packets in the system. Very little of the code, a few
percent, is used in connection with processing it “nor-
ma" packet through the switch. And it is precisely
those "nonnal" packets which form a preponderance of
the packets with which the switch deals. Thus. in One
npect, the invention herein is to select that portion of
the software which will be reproduced in hardware and
leave the remaining functionality in software where it is
more appropriate for reasons of efficiency and suppon.
In particular, the illustrated embodiment attempts to do
so with the minimum number of circuit elements.

One way to reduce the functionality which must be
reproduced in hardware is to not implement in hard-
ware the code which handles packets other than normal
data packets. It is feasible to produce a device which
would handle all normal user data packets entirely in
hardware. This would allow a far faster router than is
available with current means.

However. even that level of reduction can be sur-
passed, producing an even more efficient implementa-
tion (the illustrated embodiment of the invention) if a
further observation is made. In the handling of a single
data packet, several operations are necessary to forward
each packet. In accordance with the invention, it is
recognized that many of these forwarding operations
are completely repetitive when performed on individual
packets which are part of a common connection path,
that is, part of a data stream having a common source
and Often the same destination.

Thus, most packets in the system are part of ongoing
transfers in which as many as thousands of similar pack—
ets flow through the switch. While the meaning of the
various packets at higher levels of the communications
system can be quite different, the portion of the packet
protocol which concerns the packet switch is usually
identical from packet to packet. Thus. judicious reten»
tion of information about a traffic stream passing
through the switch is often both necessary and useful. It
is necessary to implement some required functions such
as flow and congestion control. it is further useful to

10

IS

6
prevent the repetitive computation of identical informa-
tion for packets belonging to the same traffic stream.

It is further important to recognize that although the
complexity of the functionality provided at the packet
protocol layer is increasing, it does so (it) because net—
work systems are getting larger and more mechanisms
are required to make the larger systems work correctly,
(b) because the user community is becoming more so.
phisticated, and (e) because systems are being deployed
with extra functionality, This complexity has a direct
bearing on the cost of forwarding packets, since many
added functions are performed on each packet.

5,249,292

System Description
Accordingly, the illustrated embodiment of the in-

vention operates using two important assumptions.
First, that traffic streams exist and are ofsuflicient dura.

, lion to be useful. Second, that the majority of the traffic

20

25

30

35

40

45

55

65

in the network is in the streams. Both of these assump-
tions are reasonably descriptive of most data communi-
cations networks.

Referring to FIG. 1. in accordance with a particular
embodiment of the invention, a specialized hardware 10
does all the work necessary for forwarding a “normal“
packet in a previously identified packet stream from one
network interface to another. All packets which the
specialized hardware 18 cannot process are passed to a
software controlled primary processing unit 11, includ-
ing a central processing unit. CPU, 12. running software
code which is more or less similar to the current soft-
ware code run by the processors of most packet
switches. 1f the packet looks like it is part of a new
traffic stream, the central processing unit 12 provides
the specialized hardware 10 with the necessary data
parameters to deal with further packets from that
packet traffic stream. Accordingly, any further packets
seen from that data stream are dealt with automatically
by the specialized hardware 10.

In operation, a packet switch normally examines the
low level network header of an incoming packet at the
input network, and removes that header from the
packet. The packet is then passed to the software of the
appropriate "protocol.“ The software generally checks
the packet for errors, does certain bookkeeping on the
packet, ensures that the packet is not violating flow or
access controls. generates a route for the packet, and
passes it to the output network. The output network
constructs the outgoing network header, attaches it to
the packet. and sends the packet on to the next packet
switch or other destination. At all stages in the process,
the packet sWilch must guard against data congestion.

Most of these functions are identical on packets of the
some stream and can therefore be separated from those
functions which vary from packet to packet in the same
packet stream. The repetitive functions can be per-
formed once in software at CPU 12, at the time the
hardware is first set up for a packet stream, that is, at the
time the first packet ofthe stream is being processed. At
this time, the hardware itself has very little that it is able
to do. Thereafter, the hardware will handle all succeed-
ing packets of the stream without any further interven-
tion from the central processing unit.

The illustrated specialized hardware 10 has a plural~
ity of data stream control circuits (flow blocks) 144,
14!), . . . ,14p, each new block having a pattern matching
hardware 16, a control circuitry 18, and a data buffer 20.
An input bus 22 connects. as described below, to any of
the inbound network interfaces, and an output bus 24

EX 1017 Page 146

r
J

i
f

I
I
f
'

'

l

7
5,249,292

8
can connect to any outbound network interface. There control circuitry 18 of the flow block, is read and stored
is further associated with each input network interface a by the flow block. Further circuitry of control circuitry
CPU input storage buffer 26, the output of which is 18 will remove the packet from the data buffer 20 of the
directed to the CPU 12 for handling special packets, flow block 14, with a new header prepended thereto,
that is, packets which are not "normal," and a CPU s when the system is ready to send the packet over the
output storage buffer 32, for receiving special packets next link of the data communications path.
from the CPU 12 for transmission to the network inter- Any packet which is not recognized by any of the
faces. flow blocks is available to the CPU from the one of the

The network interface devices 30 or 400, as viewed CPU input buffers 26 assigned for receiving data from
from the packet processing elements, (either flow 10 that network interface. The CPU input buffer for each
blocks 14, or CPU 12 and storage buffers 26, 32), are network automatically starts to copy each packd from
pure sources or sinks of data. They are always function- the input interconnect path 31 each time a packet ar·
ing autonomously, and accordingly no intervention is rives, and continues to do so until one of the flow blocks
required on the part of the flow blocks 14 or storage 14 for that network interface accepts, or all flow blocks
buffers 26, 32 and CPU 12 to keep these network inter- 15 assigned to that network interface reject, the packet If
face devices operating. The flo~ blocks 14 should not the packet was accepted by one of the assigned flow
interact with the network interfaces since that interac- block circuitries, the portion of the data stored in the
tion would require extra complexity in the flow block, associated CPU input bu!Ter 26 is discarded, and the
a cost to be paid for in each flow block, and not by the CPU input buffer resets to await the next packet from
network interface. Further, the central processor U 20 that network interface. If the packet is rejected by those
should not control the network operation since that flow blocks assigned to that network interface, the asso-
control inevitably slows the central processor opera• ciated buffer 26 passes the packet to the processor 12
tion, as well as the network. Accordingly, each network which will analyze the packet and process it accord·
interface device is an autonomous unit. ingly. It is important to note that no conflict arises from

In the illustrated embodiment, two classes of network 25 trying to put two packets into a CPU input buffer at the
interface devices are illustrated. The network interfaces same time since each network interface has its own
30a, •.. ,30n, each include a network interface adapter associated buffer 26 and a network interface 30 can
42, and a standard network interface circuit 40. The receive only one packet at a time.
network interfaces 30 connect to an input interconnect • The CPU 12 further has access to the set of output
path 31, an output interconnect path 5:2, and a CPU 30 buffers 32 (one bu!Ter for each output network) over a
standard bus 41 for complete communications with all bus 420, through which it can send packets to the net-
other circuit elements of the packet switch, and receive work interfaces over output interconnect path 52 for
data from and transmit data to the associated standard transmission along a link of the transmission chain.
network interface circuit 40. The other class of network . . .
interface device is the special purpose network interface 35 Descnptton of Detailed Elements
400 which connects to the input interconnect path 31, Network Interface
the output interconnect path 5:2, the CPU standard bus Data enters the packet switch from a network
41, and also to the associated network. through the network interface. As noted above, these

In the illustrated embodiment, the packet switch is units are autonomous. They can be constructed either
configured so that it can be expanded as necessary to 40 by building the special purpose hardware 400, one for
support more traffic streams. The expansion can be each network, which. enables a network to connect
easily implemented by adding additional flow block directly with the respective interconnect paths, or by
circuitries, and if necessary, additional network inter• providing the standard adapter 42, into which an exist•
face devices. This allows an existing unit to be scaled up ing off-the-shelf hardware network interface 40 can be
as the traffic load grows. 45 inserted. The two classes of hardware can both be ad-

In operation, a traffic stream is received and first vantageously used in the same embodiment.
identified by the CPU 12, as it receives the first packet Referring to FIG. 1, the second approach employs a
of a new traffic stream from a CPU input buffer 26 standard network interface element 40 (typically an
connected to the input interconnect path 31. A free flow off-the·shelf commercially available circuitry) which
block 14 is selected to handle future packets of that 50 connects over lines 41a (which is usually a standard bus)
traffic stream and all of the necessary information to to the associated interface adapter 42. Each adapter 42
handle the traffic stream, including the identification of has a standard interface connection which connects to
the stream, is loaded into the pattern matching circuitry the input interconnect path 31 for eventual connection
16 and the control circuitry 18 of the selected flow to an as yet unknown one of the flow blocks 14 and to
block over the CPU bus 41. 55 the network associated storage bu!Ter 26. The interface

As each subsequent packet of the stream arrives at the adapter also has a standard bus interface which con-
packet switch interface circuit, it is handled by the nects to CPU ~s 41. The interface adapter 42 also
network interface 30 (for ease of explanation it is gener· provides a third interface for receiving packets from the
ally assumed that the receiving network device will be flow blocks over the output interconnect path 52.
an interface 30) and flow block 14 without intervention 60 Adapter 42 provides those received packets, to the
by the CPU 12. In particular, as it is received at inter- associated network interface 40 for transmission over a
face circuit 30, it passes through the network interface network path to the next network connection. The
circuitry 30 and is placed on the input interconnect path choice of this second interface approach is convenient
31 so that each flow block 14, assigned to that interface, and allows for modular expansion and network inter-
can check the packet, in parallel, to determine if any one 65 face card i~terchangeability; however, use of the
of those flow blocks recognizes the packet as being adapter 42 with a separate network interface 40 is likely
assigned to it. if a match is found, the packet is accepted to be more expensive than a special purpose network
by that flow block and the data, usually modified by the interface card 400.

EX 1017 Page 147

v\ewwfinrprm,
t.mm“

:

me.

va~.

.w»;com“«merwmequvwmon

‘ ®

7
can connect to any outbound network interface. There
is further associated with each input network interface a
CPU input storage buffer 26, the output of which is
directed to the CPU 12 for handling special packets,
that is, packets which are not “normal,“ and a CPU
output stomgc buffer 32, for receiving special packets
from the CPU 12 for transmission to the network inter—
faces.

The network interface devices 30 or 400. as viewed
from the packet processing elements, (either flow
blocks 14, or CPU 12 and storage buffers 26. 32), are
pure sources or sinks of data. They are always function-
ing autonomously, and accordingly no intervention is
required on the part of the flow blocks 14 or storage
buffers 26, 32 and CPU 12 to keep these network inter.
face devices operating. The flow blocks 14 should not
interact with the network interfaces since that interac—
tion would require extra complexity in the flow block.
a cost to be paid for in each flow block, and not by the
network interface. Further, the central processor 11
should not control the network operation since that
control inevitably slows the central processor opera—
tion, as well as the network. Accordingly, each network
interface device is an autonomous unit.

In the illustrated embodiment, two classes ofnetwork

interface devices are illustrated. The network interfaces
300.30n, each include a network interface adapter
42, and a standard network interface circuit 40. The
network interfaces 30 connect to an input interconnect
path 31, an output interconnect path 52. and a CPU
standard bus 41 for complete communications with all
other circuit elements of the packet switch, and receive
data from and transmit data to the associated standard
network interface circuit 40. The other class of network

interface device is the special purpose network interface
‘00 which connects to the input interconnect path 31,
the output interconnect path 52, the CPU standard bus
61, and also to the associated network.

In the illustrated embodiment, the packet switch is
configured so that it can be expanded as necessary to
support more traffic streams. The expansiOn can be
easily implemented by adding additional flow block
circuitries. and if necessary, additional network inter-
face devices. This allows an existing unit to be scaled up
as the traffic load grows.

In operation, a traffic stream is received and first
identified by the CPU 12, as it receives the first packet
of a new traffic stream from a CPU input buffer 26
connected to the input interconnect path 31. A free flow
block 14 is selected to handle future packets of that
traffic stream and all of the necessary information to
handle the traffic stream. including the identification of
the stream, is loaded into the pattern matching circuitry
16 and the control circuitry 18 of the selected flow
block over the CPU bus 41.

As each subsequent packet of the stream arrives at the
packet switch interface circuit, it is handled by the
network interface 30 (for ease ofexplanation it is gener-
ally assumed that the receiving network device will be
an interface 30) and flow block 14 without intervention
by the CPU 12. In particular. as it is received at inter.
face circuit 30, it passes through the network interface
circuitry 30 and is placed on the input interconnect path
31 so that each flow block 16, assigned to that interface,
can check the packet. in parallel, to determine if any one
of those flow blocks recognizes the packet as being
assigned to it. if a match is found, the packet is accepted
by that flow block and the data, usually modified by the

10

15

20

25

35

40

45

St}

55

65

5,249,292

control circuitry 18 of the flow block, is read and stored
by the flow block. Further circuitry of control circuitry
18 will remove the packet from the data buffer 20 of the
flow block 14. with a new header prepended thereto,
when the system is ready to send the packet over the
next link of the data communications path.

Any packet which is not recognized by any of the
flow blocks is available to the CPU from the one of the
CPU input buffers 26 assigned for receiving data from
that network interface. The CPU input buffer for each
network automatically starts to copy each packet from
the input interconnect path 31 each time a packet ar—
rives, and continues to do so until one ofthe flow blocks
14 for that network interface accepts, or all flow blocks
assigned to that network interface reject, the packet. If
the packet was accepted by one of the assigned flow
block circuitries, the portion of the data stored in the
associated CPU input buffer 26 is discarded, and the
CPU input buffer resets to await the next packet from
that network interface. Ifthe packet is rejected by those
flow blocks assigned to that network interface, the asso-
ciated buffer 26 passes the packet to the processor 12
which will analyze the packet and process it accord.
ingly. It is important to note that no conflict arises from
trying to put two packets into a CPU input buffer at the
same time since each network interface has its own
associated buffer 26 and a network interface 30 can
receive only one packet at a time.

The CPU 12 further has access to the set of output
buffers 32 (one buffer for each output network) over a
bus 420, through which it can send packets to the net-
work interfaces over output interconnect path 52 for
transmission along a link of the transmission chain.

Description of Detailed Elements
Network Interface

Data enters the packet switch from a network
through the network interface. As noted above, these
units are autonomous. They can be constructed either
by building the special purpose hardware 400. one for
each network, which enables a network to connect
directly with the respective interconnect paths, or by
providing the standard adapter 42, into which an exist»
ing off-the«shelf hardware network interface 40 can be
inserted. The two classes of hardware can both be ad~
vantageously used in the same embodiment.

Referring to FIG. 1, the second approach employs a
standard network interface element 40 (typically an
off‘the-shelf commercially available circuitry) which
connects over lines 41a (which is usually a standard bus)
to the associated interface adapter ‘2. Each adapter 41
has a standard interface connection which connects to
the input interconnect path 31 for eventual connection
to an as yet unknown one of the flow blocks 14 and to
the network associated storage buffer 26. The interface
adapter also has a standard bus interface which con
nects to CPU bus 41. The interface adapter 42 also
provides a third interface for receiving packets from the
now blocks over the output interconnect path 52.
Adapter 42 provides those received packets, to the
misled network interface 40 for transmission over a
network path to the next network connection. The
choice of this second interface approach is convenient
and allows for modular expansion and network inter-
face card interchangeability; however, use of the
adapter 42 with a separate network interface 40 is likely
to be more expensive than a special purpose network
interface card 400.

EX 1017 Page 147

' l ., .,

t

L

'
9

5,249,292
10

The choice of which network interface approach is however. The input network interface thus feeds at
adapted thus depends upon both cost and speed. The most one input packet at a time to the flow blocks;
interface adapter 42 with its various bus connections is however, the input packet can be read by many differ-
most likely, the slower path unless the bus 41a is ver; ent flow blocks, all of which are assigned to that net-
fast; and even then, most current network interfaces for 5 work interface. The output side of the flow blocks is
high speed networks cannot keep up with a network slightly more complex since several flow blocks, each
which is running at maximum capacity. Additionally, connected to a different network interface at its input,
the use of several cards is likely to be more expensive. may present a packet to the same output network inter-
Accordingly, it may be desirable to provide the special face simultaneously. The output interconnect must thus
purpose network interfaces, such as a special network 10 have some method for choosing which, and in what
interface 400, which connect to interconnect paths 31 order, to send the packets. For example, it can service
and 52, for high volume networks where speed is more the flow blocks in the same order specified by the CPU
important; whereas the slower network interface, em- when the processor sets up the traffic stream; or prefer-
ploying off the shelf components, can be employed ably, a gra,nt passing ring configuration can be em-
where speed is not as important or where the construe- 15 ployed. It is important, however, to be sure to allocate
don of special purpose hardware. is not cost justified. d

The autonomous interface network unit is, as noted appropriate ban widths to each stream so that accept-

bo
. able operation is attained. There are various concepts

a ve, responsible, on the mput side, only for ensuring fi rfi • hi r. • II kn
that all packets destined for the switch are received ?r pe. onrung t s ,unction'. we ow.n to those prac-
from the network and are fed to the flow blocks 14 and 20 tlced m the art, ~nd they will not be discussed here in

. any further detJ11l.
storage buffers 26. Congestion and control are the re-
sponsibility of the flow blocks 14 and the control de- The Flow Blocks 14
vices 18 therein. Similarly, the output side of the net- .
work interfaces 30 needs only to read data packets sent Each flow ~Joe~ 1~ consists, as noted above, of a
by the flow blocks 14 and buffers 32. and transmits them 25 pattern matching e1rcmt, the flow block data buffer 20,
over the selected network. and th~ contr?I device 18. The pattern matching hard-

It is also possible that inexpensive and slow network ware,. m the illu:trated cmbod_imen.t of the invention,
interfaces can be connected directly to the standard bus contams two vanable length bit stnngs: a "match" bit
41 and be run by the general purpose CPU 12 rather stri~g and a "mask" bit string. Those fields .in the packet
than by the interface adapter 42. These packets would 30 which :~n :~ry am?.ng th; pa:kets of a SI?gle streai;i,
then be sent on whichever path the processor normally are set ?n m the mask s.trmg. Values 1~ th_ese bits
uses to send packets which it originates. This is an ac- arc then ignored. '!he values m the fields ~htch identify
ceptablc alternative, subject to the speed and time re- a stream, and which arc always present m a packet of
quircmcnts imposed upon the central processor. The the st.ream, are stored in the "match" bit string. Several
standard bus also provides the central processor unit 35 ~unct1.ons .can thus. be pe~f?rmed by the pattern match-
with full access to the standard network interfaces 40 mg c1rcu11ry 16, 1n addition to merely checking the
and special network interfaces 400 through the network assignment of a packet to a traffic stream. For example,
adapter 42 so that any network interface can be con- certain error c~cclcs (for valid values) can be per-
trolled by the CPU 12 when unusual functions, such as formed. Also, smcc a flow block 14 is assigned by the
problems with the transmission layer, fault isolation, or 40 CPU 12 to forward a traffic stream only if a route for
other complex testing tasks must be performed. the traffic stream exists, and if the traffic stream is au

The Interconnect Path
thorized by the access control software in the CPU 12,
a match by the circuitry 16 immediately implies that the

As noted above, each interface adapter 42 or special packet .is allowed by the access control to pass through
network interface 400 connects to each of the flow 45 the swttch, and that a route for the packet exists.
blocks 14 in a most general form of illustrated structure. The data buffer 20 of a flow block can be imple-
Dcpending upon the economics and speed desired, the mentcd in a variety of ways. The simplest approach, is
interconnect circuitry can take a variety of forms using to have associated with each flow block a separate
a number of techniques which are already known in the memory array having head and tail registers to allow
art. One particular approach, using "brute force," is to 50 reading and writing. Two disadvantages to this ap-
usc a full crossbar switch to make all possible connec- proach arc that it requires additional hardware and the
tions between each of the network interface adapters buffer memory is split up into many small memory
and each of the flow blocks, both on the input and the banks rather than employing a single large memory
output interconnect paths. As the flow blocks arc as- bank for the entire packet switch.
signed, and reassigned, between interface adapter units 55 Nevertheless, the use of a large memory bank, from
and special network interfaces, the various points of the which .each !low block buffer memory is allocated,
crossbar can be opened and closed. results ma complex storage management problem. It is

An alternate approach, used in digital telephone sys- necessary in such' a memory structure to maintain a list
terns, is to interface all of the functional units to a high of unused blocks, a mapping of the used blocks, etc. In
speed, time division, multiplexed bus. This approach 60 addition, the .now control mechanism must be more
requires Jess switch hardware but necessitates a bus complex, particularly if there is less total buffering than
speed comparable to the maximum speed of an interface the sum of the maximum storages of all of the data
times the number of interfaces. Such speed require- streams. It must therefore deal with a global resource
ments may make it less economical to build such a bus shortage of buffer memory in the switch. This problem
than might otherwise appear. 6S can thus remove a primary advantage of having a large

The input interconnect path is conceptually simple in memory bank. In addition, with separate memory
that flow blocks 14 are assigned to but a single network banks, each bank need only be able to support two
interface at a time. The relationship is not symmetrical, simultaneous accesses: a read and a write. With a single

EX 1017 Page 148

l
i:
i.

l

The choice of which network interface approach is
adapted thus depends upon both cost and speed. The
interface adapter 42 with its various bus connections is.
most likely, the slower path unless the bus 41a is very
fast; and even then, most current network interfaces for
high speed networks cannot keep up with a network
which is running at maximum capacity. Additionally,
the use of several cards is likely to be more expensive.
Accordingly, it may be desirable to provide the special
purpose network interfaces, such as a special network
interface 400, which connect to interconnect paths 3]
and 52. for high volume networks where speed is more
important; whereas the slower network interface, em-
ploying off the shelf components, can be employed
where speed is not as important or where the construc-
tion of special purpose hardwareis not cost justified.

The autonomous interface network unit is, as noted
above, responsible, on the input side, only for ensuring
that all packets destined for the switch are received
from the network and are fed to the flow blocks 14 and
storage buffers 26, Congestion and control are the re—
sponsibility of the flow blocks 14 and the control de—
vices 18 therein. Similarly, the output side of the net-
work interfaces 30 needs only to read data packets sent
by the flow blocks 14 and buffers 32, and transmits them
over the selected network.

It is also possible that inexpensive and slow network
interfaces can be connected directly to the standard bus
41 and be run by the general purpose CPU 12 rather
than by the interface adapter 42. These packets would
then be sent on whichever path the processor normally
uses to send packets which it originates. This is an ac-
ceptable alternative, subject to the speed and time re-
quirements imposed upon the central processor. The
standard bus also provides the central processor unit
with full access to the standard network interfaces 40
and special network interfaces 400 through the network
adapter 42 so that any network interface can be con-
trolled by the CPU 12 when unusual functions, such as
problems with the transmission layer, fault isolation, or
other complex testing tasks must be performed.

The Interconnect Path

As noted above. each interface adapter 42 Or special
network interface 400 connects to each of the flow
blocks 14 in a most general form of illustrated structure.
Depending upon the economics and speed desired, the
interconnect circuitry can take a variety of forms using
a number of techniques which are already known in the
art. One particular approach, using “brute force,“ is to
use a full crossbar switch to make all possible connec-
tions between each of the network interface adapters
and each of the flow blocks, both on the input and the
output interconnect paths. As the flow blocks are as-
signed, and reassigned, between interface adapter units
and Special network interfaces, the various points of the
crossbar can be opened and closed.

An alternate approach. used in digital telephone sys«
tents. is to interface all of the functional units to a high
speed, time division, multiplexed bus. This approach
requires less switch hardware but necessitates a bus
speed comparable to the maximum Speed of an interface
times the number of interfaces. Such speed require—
ments may make it less economical to build such a bus
than might otherwise appear.

The input interconnect path is conceptually simple in
that flow blocks 14 are assigned to but a single network
interface at a time. The relationship is not symmetrical,

10

15

20

45

50

55

65

10
however. The input network interface thus feeds at
most one input packet at a time to the flow blocks;
however, the input packet can be read by many differ-
ent flow blocks, all of which are assigned to that not»
work interface. The output side of the ll0w blocks is
slightly more complex since several flow blocks. each
connected to a different network interface at its input,
may present a packet to the same output network inter-
face simultaneously. The output interconnect must thus
have some method for choosing which, and in what
order, to send the packets. For example, it can service
the flow block in the same order specified by the CPU
when the processor sets up the truffle stream; or prefer-
ably, a grant passing ring configuration can be em-
ploycd. It is important, however, to be sure to allocate
appropriate bandwidths to each stream so that accept~
able operation is attained. There are various concepts
for performing this function, well known to those prac-
ticed in the art, and they will not be discussed here in
any further detail.

The Flow Blocks 14

Each flow block 14 consists. as noted above, of a
pattern matching circuit, the flow block data buffer 20,
and the control device 18. The pattern matching hard-
ware, in the illustrated embodiment of the invention,
contains two variable length bit strings: in “match" bit
string and a “mas ” bit string. Those fields in the packet
which can vary among the packets of a single stream,
are set “on" in the "mask“ string. Values in these bits
are then ignored. The values in the fields which identify
a stream, and which are always present in a packet of
the stream. are stored in the “match" bit string. Several
functions can thus be performed by the pattern match-
ing circuitry 16, in addition to merely checking the
assignment of a packet to a traffic stream. For example,
certain error checks (for valid Valium) can be per-
formed. Also. since a flow block 14 is assigned by the
CPU 12 to forward a traffic stream only if a route for
the traffic stream exists, and if the traffic stream is an»
thorized by the access control software in the CPU 12,
a match by the circuitry 16 immediately implies that the
packet is allowed by the access control to pass through
the switch, and that a route for the packet exists.

The data butler 20 of a flow block can be imple-
mented in a variety of ways. The simplest approach, is
to have associated with melt flow block a separate
memory array having head and tail registers to allow
reading and writing. Two disadvantages to this ap-
proach are that it requires additional hardware and the
buffer memory is split up into many small memory
banks rather than employing a single large memory
bank for the entire packet switch.

Nevertheless, the use of a large memory bank, fmrn
which each flow block buffer memory is allocated,
results in a complex storage management problem. It is
necessary in such'a memory structure to maintain a list
of unused blocks, a mapping of the used blocks, etc. In
addition, the flow control mechanism must be more
complex, particularly if there is less total buffering than
the sum of the maximum storages of all of the data
streams. It must therefore deal with a global resource
shortage of buffer memory in the switch. This problem
can thus remove a primary advantage of having a large
memory bank. In addition, with separate memory
banks, each bank need only be able to support two
simultaneous accesses: a read and a write. With a single

5,249,292

EX 1017 Page 148

.' •

'~ . ,

I
L

11
5,249,292

12
large bank, all of the network interface accesses must be tional unit 19a of each control circuitry 18 strips the
handled simultaneously. input header from a packet before it enters the flow

A number of practical operating problems exist with block data buffer 20 and another functional unit 19b of
the circuitry illustrated in FIG. 1. Thus, if there arc the control circuitry prepends the output header to the
more identified traffic streams than there arc flow 5 data packet before it exits the flow block data buffer.
blocks, or if a single packet stream is to be routed over In addition, each protocol tends to have certain book-
multiple paths by the network protocol, appropriate keeping functions which must be perfonncd on each
hardware must be available to deal with the various packet of the stream; however, these functions tend to
circumstances. In particular, if there arc more identified be slightly different for each protocol. The design of the
traffic streams than there arc flow blocks 14, it is impor- 10 illustrated control device provides flexibility for han-
tant to avoid "thrashing" as the streams compete for the dling the different protocols, including in particular the
flow blocks. If the protocol has adequate flow and~- capability of computing the checksum (and signaling an
gestion control mechanisms, these can be used to inhibit error should one occur), and updating the "hop" count.
the excess streams. Also, the flow blocks should be The control circuitry 18 also needs to be flexible
packaged and interfaced to the rest of the system so that 15 enough to handle the different protocols in a very short
additional flow blocks can be installed as load patterns time. Accordingly, the design preferably allows for
change or as switches experience higher usage rates additional circuitry to be added to the protocol function
than they arc able to handle. circuitry 19a and 19b. The additional circuitry can also

Further, the software can maintain a record of the be implemented in the state machine controller for the
streams including the time when each flow block was 20 flow block .
last used, so that periodic scans can be made by the The flow block control circuitry also acts as a flow
software to find flow blocks which arc associated with control agent. Thus, if packets arc entering the flow
streams that arc no longer active and list those flow block at too fast a rate, an error is caused. The specific
blocks as ready for reuse. Further, the software can hardware configuration depends on the protocol archi-
maintain a record of the stream parameters so that if a 25 tccturc and the policy implemented therein. One cffcc-
prcviously tcnninatcd stream should restart, it would tivc mechanism uses the error alarm signal to show that
not be necessary to recompute everything. Preferably, the flow block buffer is filled past a selected level. The
the CPU stores this information in its local memory. control circuitry also needs to set a so-called "discard"

It may also be desirable to avoid assigning a stream to level. This is necessary to protect the congestion con-
a flow block until a minimum number of packets rclat· 30 trol mechanism of the switch from being overloaded by
ing to a stream have been counted. In this instance the a single, out of control, data stream. Such a mechanism
CPU 12 can maintain the necessary infonnation regard- would cause a selectable percentage of the incoming
ing the stream (and pass the packets of the stream on to packets of a stream to be ignored completely rather
the next network node) and dedicate a flow block to than passed, over bus 41, to the congestion control
that stream only after the length of the stream has been 35 mechanism of the CPU 12, which it could overload.
assessed.

There arc also instances when a single packet is for- The Interconnect Path Operation
warded over multiple paths. The situation can thus exist In the Illustrated embodiment of the invention, the
when packets of the same data stream arc received over presently preferred embodiment of the interconnect
two different network interfaces and/or where a single 40 paths 31 and 52 uses the simple, brute force, approach;
packet stream must be divided and forwarded to two or that is, a full cross bar is provided for each intcrconncc"t
more output networks. The first problem can be ban- path by assigning a separate bus to cacb network inter-
died simply by allocating one flow block to each inter- face adapter 30, to which each of flow blocks 14 and
face. The second problem is somewhat harder to ban- buffers 26 is connected. Each bus has a full set of con-
dlc; however, in most protocols, there is a sequence 45 trol lincs for, and in addition to, the data lines of the bus.
field in each packet wherein it is possible to assign two The illustrated interconnect circuitry thus consists of a
different flow blocks to the stream in which the se- set of, for example, "N" identical buses. The intcrcon-
qucncc field was masked out except for, for example, ncct further can include some general signal lines such
the lowest bit. In one flow block the bit would have to as, for example, a system reset line. The full cross bar is
match to "zero" and in the other flow block to "one." 50 also large enough to support the maximum complement
Thereafter, each flow block can be assigned to a differ- of interface circuitries simultaneously, each interface
cnt output stream, the split being roughly into two divi- being able to proceed at full speed with no buffering.
sions. More complex and controlled splitting requires Considering in particular the input interconnect 31,
more sophisticated mechanisms to effect proper qucu- there arc R buses, "R" being equal to the sum of the
ing and sequencing on the output. 55 number of special network interface units 400 and inter-

. . face adapter 42. Each interface data bus is "M" bits
The Flow Block C1rcu1try wide, and is dri';'cn only by the associated network

In the description of this particular embodiment, the adapter 30 or interface 400. In addition to the data from
width of the various buses, the number of identical each network in,tcrfacc 30, each bus also has a plurality
interface units or flow blocks, the length of a counter, 60 of control signals for controlling the transfer of the
etc., arc subject to the particular switching system cnvi- incoming packets from the network to the flow blocks
ronmcnt and capacity. Accordingly, while specific 14 and buffers 26. The control signals allow a flow
numbers arc suggested from time to time, the values block 14 to indicate to the associated CPU input buffer
"N", "n", "P", etc. arc variable and may be equal to 26 (and CPU 12) whether the packet has been accepted.
each other or not as the particular embodiment requires. 65 Referring to FIG. 2, the control signal functions can

Referring to FIG. 1, the flow block control device be pcrfonncd with two lines, both driven by the net-
circuitry 18 effects bookkeeping functions at the proto- work interface o_r adapter and "listened" to by all of the
col level and flow and congestion control. One func- flow blocks assigned to that network (including the

EX 1017 Page 149

1 a.

11

large bank, all of the network interface accesses must be
handled simultaneously.

A number of practical operating problems exist with
the circuitry illustrated in FIG. 1. Thus, if there are
more identified traffic streams than there are flow
blocks, or if a single packet stream is to be routed over
multiple paths by the network protocol, appropriate
hardware must be available to deal with the various
circumstances. In particular. if there are more identified
traffic streams than there are flow blocks 14, it is impor-
tant to avoid “thrashing" as the streams compete for the
flow blocks. If the protocol has adequate flow and con-
gestion control mechanisms, these can be used to inhibit
the excess streams. Also. the flow blocks should be
packaged and interfaced to the rest ofthe system so that
additional flow blocks can be installed as load patterns
change or as switches experience higher usage rates
than they are able to handle.

Further. the software can maintain a record of the
streams including the time when each flow block was
last used, so that periodic scans can be made by the
software to find flow blocks which are associated with
streams that are no longer active and list those flow
blocks as ready for reuse. Further, the software can
maintain a record of the stream parameters so that if a
previously terminated stream should restart, it would
not be necssary to recompute everything. Preferably,
the CPU stores this information in its local memory.

It may also be desirable to avoid assigning a stream to
a flow block until a minimum number of packets relat-
ing to a stream have been counted. In this instance the
CPU 12 can maintain the necessary information regard-
ing the stream (and pass the packets of the stream on to
the next network node) and dedicate a flow block to
that stream only after the length of the stream has been
assessed.

There are also instances when a single packet is for-
warded over multiple paths. The situation can thus exist
when packets of the same data stream are received over
two different network interfaces and/or where a single
packet stream must be divided and forwarded to two or
more output networks. The first problem can be han-
dled simply by allocating one ilow block to each inter-
face. The second problem is somewhat harder to han-

10

15

20

25

30

35

die; however, in most protocols, there is a Sequence 45
field in each packet wherein it is possible to assign two
different flow blocks to the stream in which the se-

quence field was masked out except for, for example,
the lowest bit. In one flow block the bit would have to
match to “zero“ and in the other flow block to “one."
Thereafter, each flow block can be assigned to a differ-
ent output stream, the split being roughly into two divi-
sions. More complex and controlled splitting requires
more sophisticated mechanisms to effect proper queu-
ing and sequencing on the output.

The Flow Block Circuitry

In the description of this particular embodiment, the
width of the various buses, the number of identical
interface units or flow blocks. the length of a counter,
etc.. are subject to the particular switching system envi-
ronment and capacity. Accordingly, while specific
numbers are suggested from time to time, the values
“N", “n", "P", etc. are variable and may be equal to
each other or not as the particular embodiment requires.

Referring to FIG. 1, the flow block control device
circuitry 18 effects bookkeeping functions at the proto-
col level and flow and congestion control. One fun.

50

55

65

5,249,292

12
tional unit 19a of each control circuitry 18 strips the
input header from a packet before it enters the flow
block data buffer 20 and another functional unit 19b of
the control circuitry prepends the output header to the
data packet before it exits the flow block data buffer.

In addition, each protocol tends to have certain book-
keeping functions which must be performed on each
packet of the stream; however, these functions tend to
be slightly different for each protocol. The design of the
illustrated control device provides flexibility for han-
dling the different protocols, including in particular the
capability of computing the checksum (and signaling an
error should one occur), and updating the “hop" count.
The control circuitry 18 also needs to be flexible
enough to handle the different protocols in a very short
time. Accordingly, the design preferably allows for
additional circuitry to be added to the protocol function
circuitry 19a and 19b. The additional circuitry can also
be implemented in the state machine controller for the
flow block.

The flow block control circuitry also acts as a flow
control agent. Thus, if packets are entering the flow
block at too fast a rate, an error is caused. The specific
hardware configuration depends on the protocol archi-
tecture and the policy implemented therein. One effec-
tive mechanism uses the error alarm signal to show that
the flow block buffer is filled past a selected level. The
control circuitry also needs to set a so-called “discard"
level. This is necessary to protect the congestion con-
trol mechanism of the switch from being overloaded by
a single, out of control, data stream. Such a mechanism
would cause a selectable percentage of the incoming
packets of a stream to be ignored completely rather
than passed, over bus 41, to the congestion control
mechanism of the CPU 12, which it could overload.

The Interconnect Path Operation

In the illustrated embodiment of the invention, the
presently preferred embodiment of the interconnect
paths 31 and 52 uses the simple, brute force, approach;
that is, a full cross bar is provided for each interconnect
path by assigning a separate bus to each network inter-
face adapter 30, to which each of flow blocks 14 and
buffers 26 is connected. Each bus has a full set of con-
trol lines for, and in addition to, the data lines of the bus.
The illustrated interconnect circuitry thus consists of a
set of, for example, “N“ identical buses. The intercon-
nect further can include some general signal lines such
as, for example, a system reset line. The full cross bar is
also large enough to support the maximum complement
of interface circuitries simultaneously, each interface
being able to proceed at full speed with no buffering.

Considering in particular the input interconnect 31,
there are R buses, "R" being equal to the sum of the
number of special network interface units 400 and inter-
face adapter 42. Each interface data bus is "M" bits
wide, and is driven only by the associated network
adapter 30 or interface 400. In addition to the data from
each network interface 30, each bus also has a plurality
of control signals for controlling the transfer of the
incoming packets from the network to the flow blocks
14 and buffers 26. The control signals allow a flow
block 1b to indicate to the associated CPU input buffer
26 (and CPU 12) Whether the packet has been accepted.

Referring to FIG. 2. the control signal functions can
be performed with two lines, both driven by the net-
work interface or adapter and "listened" to by all of the
flow blocks assigned to that network (including the

EX 1017 Page 149

r
i
} ,, t
t
,r
?

i

5,249,292

corresponding ~PU input~~uffer 26 assigned to that control logic 18 where the
1
!gher level protocol func-

network). One h.ne 26:8 md1cates when. a packet is being tions such as check sum computation and hop count
transferred and 1s a~ttve f~r the duration ~f _the pa~ket modification occur. The control logic 18, pattern
trans~er. A non-acttve penod .:202 h~ a m1mmum time matcher 16, and stripping circuit 254 have all been pre-
durauon. so that ~he .next active pen~ (and t~e next S viously loaded with other necessary data from CPU 12
i,acket) is sp~ce~ m time f~om t_he pre~1ou~ a7uve per- over bus 41. The input to the control device has a small
iod. The begmmng of the ma~ttve pe1;1od .:nd1cates the amount of buffering to allow the control device to take
end of the packet. A second !me 206 1s a word trans- more than one cycle when proc-· rt · b ·
fi

" Ji d h · · · -.na •mg ce am ytes m
~r ne an eac active trans1~on ~ on that hne the data stream. The packet passing through this sta e

signals that a new word (a byte m the illustrated em- JO of processing may be od'fied ~ I h' g
bodiment) of data has been placed on the bus by the may abort further p o!s· t I f; thor ex~p .ef, t is stag.e
network interface . r. mg o e pac,..et 1 an error 1s

Thereisfurther.acommoncontrolline210whicbcan found, 15 descnbed m niore detail ~lo~. The packet
be driven by any of the flow blocks 14 and listened to by then ~asses to a counter /truncate cucuttry 260 which
the CPU input buffer 26 for that network. When going 15 C?n~ms a counter loaded by the control logic over
active. it signals to the CPU that the current packet has circuitry ~ 2· ~e counter se_rve: two functions: any
been accepted by a flow block and the packet may thus unused _trailer m the packet 1s d1~~ed, and, if ~he
be ignored by the CPU 12. The timing must be carefully packet is truncated, an error ~ag 1s ~~ over a .]me
contro11ed, especially if faults are to be detected. For 264· ~e.~ext stage of proccssmg, a ctreuttry :266, pre-
example, if the packet length in the protocol header is to 20 pends n bytes 0.f da~ ~he new output h~d~r, l~ade~
be verified. it is necessary to wait until the entire packet from the CPU 12 m a. sunilar manner to stnppmg c1rcu1t
has been received before accepting the packet. How- ~· to the packet :i5 it passes t?erethrougb. It also con-
ever, by that time, the next packet is starting. This prob- tams some bufTenng. on the mput to. allow the new
!em also arises when verifying header check sums for packet header t~ be mscrt~d. In those mstances where
packets with no data. The riming can be resolved by 2s the new p~ck~t ts substa~tially larger than the old one,
having the accept line driven at a time during the man- the buffenng ts a necessity. '!he pac~et next passes to
datory non-active period of the packet line, that is, after the output data buffer 20 ':"b1ch conSJsts of a dual port
the packet bas completely arrived and before the next (one read-onlr and one wnte-only) memory, along with
packet begins. a control logic 268 to keep track of the packets in the

Referring to FIG. 3, the output interconnect 52 has a 30 buffer. The buffer 20 is organized in a ring structure and
slightly more complex data bus. The bus is "P" bits a hardware qu~?e ~f "t" buffer pointer/size pairs keeps
wide and is driven by a sequentially varying one of the t~ck. of the. ut~hzatlon of the buffer. Additional control
flow blocks 14 and buffers 3:2 (the "driving circuits") circuitry w1thm the buffer keeps track of the current
assigned to the connected network interface. The out· start and end oft~e "free space". The packet"tben passes
put of the driving circuit is read by the associated net- 35 to an output multiplexor 274 which has output bus con·
work interlace 30 or 400. Preferably, the driving cir- trol logic an.d a set of drivers, one for each output bus in
cuits are arranged as, and include the circuitry to form, th~ output mterconnect 52. When the flow block re-
a grant-passing ring. In addition, there are other control ce1ves the "grant," for the appropriate output network
lines which are used to control the transfer of the packet interface 30, as described above, packets which are in
from the drive circuit having the grant. These other 40 the output buffer are read out and passed along the bus.
lines 218, 220 are substantially the same as those control Throughout the flow block, there are, in addition, data
lines :200, :206 of the input interconnect bus. After a paths 276 which allow the CPU 12, over bus 41, to load
packet bas been transferred to a network interface, the memories, etc. in order to maintain proper operation of
"grant" advances to the next driving circuit. If the iden- the flow block.
tified driving circuit has a packet waiting at the time the 45 Referring to FIG. 5, the pattern matcher 16 has two
grant line becomes active (typically the rising edge), it small memories 60, 62 each "a" bits wide and "b" bytes
begins a transfer. Otherwise, the grant is passed to the long. In the illustrated embodiment, 8X2S6 bit RAM's
next driving circuit which repeats the process. are employed. One memory 62 contains the "masked"

. bits and the other memory 60 contains the "match" bits.
Flow Block Details so More precisely, for those header positions for which a

t

As noted above, the flow blocks 14 has several major bit is "on" in the mask memory, the packet can have any
functional units. The stages,. in the illustrated embodi- value in the header whereas, if a bit is "off'' in the mask
ment, are connected asynchronously since the through· memory, those corresponding bits in the packet header
put of the stages is not constant and some stages have must match the CPU predetennined values stored in the
buffering between them. Referring to FIG. 4, the circuit ss match memory. .
structure of flow block 14, considered in more detail, The pattern matcher can operate with varying quan-
has an input multiple:,i:or 250 which selects the current tities of data in the memories 60, 62, and if all the mask
input bus and passes the data to both the pattern "off" bits in. the.?eader match the "match" memory bits,
matcher 16 and the rest of the flow block. The pattern the header is a match", as indicated over line 252, and
matcher, as noted above, examines the header of the 60 the flow block continues to read the packet. In the
incoming packet. If it matches the pattern to be bandied illustrated embodiment, an "n" bit counter 280 is reset
by this flow block, the match is indicated by a signal over a line 282 when the packet begins arriving and
over a line 252 to the control device logic 18. counts up "one" for each byte received from the bus.

Simultaneously, data from the input bus flows The output of the counter over lines 284 is used as an
through a stripping circuit 254 which includes a counter 65 index into the two memories and is directed, also, to an
and which discards the first "n" bytes of data (the "n" bit comparator 286. Comparator 286 compares the
header) allowing the remainder of the packet to pass output of counter 280 with the output of an "n" bit latch
through unmodified. The packet then passes to the 288 which holds the current header size count. When

EX 1017 Page 150

l
g.

i.

“"w

«at'vJar":

wwww-WWm-M«you*WmIntro‘v-.~
.2.«vac...»t...

“4»...,.y.,
WV”.

.,_.,.mnq-vr‘,..u

w
5,249,292

13

corresponding CPU input buffer 26 assigned to that
network). One line 200 indicates when a packet is being
transferred and is active for the duration of the packet
transfer. A corrective period 202 has a minimum time
duration so that the next active period (and the next
packet) is spaced in time from the previous active per.
iod. The beginning of the inactive period indicates the
end of the packet. A second line 296 is a “word trans-
fer" line and each active transition 208 on that line
signals that a new word (a byte in the illustrated em—
bodiment) of data has been placed on the bus by the
network interface.

There is further a common control line 210 which can
be driven by any ofthe flow blocks 14 and listened to by
the CPU input buffer 26 for that network. When going
active, it signals to the CPU that the current packet has
been accepted by a flow block and the packet may thus
be ignored by the CPU 12. The timing must be carefully
controlled, especially if faults are to be detected. For
example, if the packet length in the protocol header is to
be verified. it is necessary to wait until the entire packet
has been received before accepting the packet. How-
ever, by that time, the next packet is starting. This prob-
lem also arises when verifying header check sums for
packets with no data. The timing can be resolved by
having the accept line driven at a time during the mam
datory non~active period of the packet line, that is, after
the packet has completely arrived and before the next
packet begins.

Referring to FIG. 3, the output interconnect 52 has a
slightly more complex data bus. The bus is “P" bits
wide and is driven by a sequentially varying one of the
flow blocks 14 and buffers 32 (the "driving circuits")
assigned to the connected network interface The out-
put ot‘ the driving circuit is read by the associated net-
work interface 30 or ‘00. Preferably, the driving cir—
cuits are arranged as, and include the circuitry to form.
a grantcpassing ring. In addition. there are other control
lines which are used to control the transfer or the packet
from the drive circuit having the grant. These other
lines 218. 220 are substantially the same as those control
lines 200, 206 of the input interconnect bus. After a
packet has been transferred to a network interface. the
“grant" advances to the next driving circuit. if the iden-
tified driving circuit has a packet waiting at the time the
grant line becomes active {typically the rising edge), it
begins a transfer. Otherwise, the grant is passed to the
next driving circuit which repeats the process.

Flow Block Details

As noted above, the flow blocks 14 has several major
functional units. The stages, in the illustrated embodi-
ment, are cemented asynchronously since the through~
put of the stages is not constant and some stages have
buffering between them. Referring to FIG. 4. the circuit
structure of flow block 14, considered in more detail.
has an input multiplexer 250 which selects the current
input bus and parses the data to both the pattern
matcher 16 and the rest of the flow block. The pattern
matcher. as noted above, examines the header of the
incoming packet. if it matches the pattern to be handled
by this flow block, the match is indicated by a signal
over a line 252 to the control device logic 18.

Simultaneously, data from the input bus flows
through a stripping circuit 254 which includes a counter
and which discards the first “n" bytes of data (the
header) allowing the remainder of the packet to pass
through unmodified. The packet then passes to the

ID

is

20

25

30

35

45

50

55

65

14

control logic 13 where the higher level protocol func-
tions such as check sum computation and hop count
modification occur. The control logic 18. pattern
matcher 16. and stripping circuit 254 have all been pre-
viously loaded with other necessary data from CPU 12
over bus 41. The input to the control device has a small
amount of buffering to allow the control device to take
more than one cycle when processing certain bytes in
the data stream. The packet passing through this stage
of processing my be modified; for example, this stage
may abort further processing of the packet if an error is
found, as described in more detail below. The packet
then passes to a counterftruncatc circuitry 260 which
contains a counter loaded by the control logic over
circuitry 262. The counter serves two functions: any
unused trailer in the packet is disarded, and. if the
packet is truncated, an error flag is raised over aline
26‘. The next stage of processing, a circuitry 266, pre-
pends “n" bytes ofdata, the new output header, loaded
from the CPU 12 in a similar manner to stripping circuit
25¢, to the packet as it passes therethrough. It also con-
tains some buffering on the input to allow the new
packet header to be inserted. In those instances where
the new packet is substantially larger than the old one,
the buffering is a necessity. The packet next passes to
the output data buffer 20 which consists of a dual port
(One read-only and one write-only) memory, along with
a control logic 268 to keep track of the packets in the
buffer. The buffer 28 is organized in a ring structure and
a hardware queue of “1" buffer pointer/size pairs keeps
track of the utilization of the buffer. Additional control
circuitry within the buffer keeps track of the current
start and end of the “free space”. The packet'then passes
to an output multiplexor 274 which has output bus con-
trol logic and a set ofdrivers, one for each output bus in
the output interconnect 52. When the flow block re-
ceives the “grant." for the appropriate output network
interface 30, as described above, packets which are in
the output buffer are read out and passed along the bus.
Throughout the flow block. there are. in addition. data
paths 276 which allow the CPU 12. over bus 41, to load
memories. etc. in order to maintain proper operation of
the flew block.

Referring to FIG. 5, the pattern matcher 16 has two
small memories 60. 62 each “a" hits wide and “b" bytes
long. in the illustrated embodiment. 8X256 bit RAM'S
are employed. One memory 62 contains the “masked"
bits and the other memory 60 contains the “match“ bits.
More precisely, for those header positions for which a
bit is “on" in the mask memory, the packet can have any
value in the header whereas, if a hit is “off“ in the mash
memory, those corresponding bits in the packet header
must match the CPU predetermined values stored in the
match memory. .

The pattern matcher can operate with varying quan-
tities of data in the memories 60, 62, and if all the mask
“all" bits in the header match the "match" memory hits,
the header is a "match", as indicated over line 252, and
the flow block continues to read the packet. In the
illustrated embodiment, an “n" bit counter 280 is reset
over a line 282 When the packet begins arriving and
counts up "one" for each byte received from the bus,
The output of the counter over lines 284 is used as an
index into the two memories and is directed, also, to an
“n" bit comparator 286. Comparator 286 compares the
output orcounter 28!) with the output of an “n" bil latch
288 which holds the current header size count. When

EX 1017 Page 150

I ' 5,249,292
16 15

the count reaches the header count, a header complete passed through under control of the local processor,
signal is generated over a line 290. and allows certain bytes of the packet to be operated on

The comparison of the input header to the match by more than one control word without the necessity of
word is effected byte-by-byte, using an eight bit com- storing the byte in an intermediate location. A second
parator 294 and a series of eight identical two-to-one s counter 322, cleared at the stan of each packet, counts
multiplexors 296. The output of the match memory is the current data byte and provides that count for use by
one input of the identical two.to-one multiplexors 296 the rest of the control device 18.
with the "n" bits (typically eight bits) from the data bus Another bit of the control word from array 312, ef·
292 as the other input. In each multiplexor, the select fectively disables the control device, thereby allowing
input is driven by the corresponding output bit over JO the rest of the packet to pass through to the next stage
lines 292 of the mask memory; so that if a mask bit is of processing. This bit is set in the last control word of
"off'', the data bus bit is selected. Otherwise, the match the process sequence, that is, once processing of the
bit is selected. The "n" selected bits are then fed into the header has been completed. Another field of the control
"n" bit (illustrated as eight bits) comparator 294 which, word controls the logic which cancels the packet if
as noted above, receives the original match data word 15 certain conditions are true. This field is thus used to
as the other input. cancel processing of the pacltet when fatal errors are

The output of the comparator is fed to a flip flop 298 detected.
which is set by a signal over a line 299 when the packet The control circuitry also includes several scratch
begins to be read. If any byte of the header fails to have pad registers 330. These registers allow accumulation of
a complete match (of the selected bits), the output of the 20 results etc., and provide constants for use by the ALU
comparator goes low and clears (resets) the flip flop. If 310. The scratch pad registers 330 can be loaded by the
the flip flop is still set when the counter 280 has also CPU 12 during that process by which the CPU selects
reached a match (the end of the header), the packet a flow block to receive a data packet stream.
header is accepted and the logical "AND" circuit 300 The apparatus further has a multiplexor 340 to allow
provides the match indication signal over line 252. 2S selection from the variety of data· sources available as

In addition, the pattern matcher funher contains data inputs to the ALU. The results of the ALU processing
pads, not shown, which allow the CPU 12 to load can be sent to a number of circuitries. In particular,
(through bus 41) the match and mask memories 60, 62, inputs to the multiplexor 340 come from either the input
the length latch 288, and other data as well. data buffer 320, count register 322, or the scratch pad

Referring now to FIG. 6, the data stream control unit 30 registers 330. Data may be written from the ALU 310,
18 (and stripping circuitry 254} has an arithmetic logic through a shift/rotate register 311, to either the scratch
unit (ALU) 310, special purpose logic which will be pad registers, or output from the control unit through
described hereinafter, and a control table stored in a an output multiplexor 342. Funher, a pass around path
memory 312. The ALU and the control store act like a 343 allows the result of an ALU calculation to be sent to
general purpose microcode engine, but one which has 35 a register while a data byte is sent to the output. Other
been specialized to create a very minimal, high speed data paths not shown are available which allow the
processor for packet headers. The functions to be per· CPU 12 to load the control table, the scratch pad regis-
formed, as described above, are very limited. ters 330, the counters 314, 322, etc. when a flow block

The illustrated circuitry allows the processing of the is selected to receive a data packet stream.
headers in the transmission time of a complete packet 40 As noted above, the illustrated embodiment provides
having no data, thus allowing the flow block to operate for a flel!.l"ble flow block configuration which, when
at full network bandwidth with minimum sized packets. loaded from CPU 12 with protocol setting data signals,
In addition, the control device keeps its required cycle enables the flow block to handle a particular one of a
time as high as possible (that is, operates as slow as plurality of packet stream protocols. In an alternative
possible) to keep its costs down. , 45 embodiment of the invention, each flow block can have

In the illustrated typical circuitry, the control table implemented therein, in hardware, the necessary cir-
312 is the heart of the control device. It consists of an cuitry to enable it to handle one (or more) particular
array of words, which are horizontal microcode, used protocols. Accordingly therefore, different hardware
to directly control the ALU and gates of the control modules would be needed for different protocols; how-
circuit as is well known in the art. While some fields of so ever, some speed advantage can be obtained by reduc-
the control word will perform standard operations, ing the flexibility of the hardware controlled flow
such as selecting which ALU operation is to be per• block.
formed on each cycle, other fields will control the spe- In addition, further circuit efficiency can be obtained,
cial logic associated with packet forwarding. without loss of flexibility, if those flow blocks which

The illustrated control circuitry further includes a ss can be assigned to a particular interface share the same

'

control counter 314 which is set at the start of each ALU circuitry (PIO. 6). Recalling that ALU 310 oper·
packet. The counter selects one of the control words in ates to process an \ncoming data packet, and, since only
the control array (the output of the control word con• one data packet can be received from a network at a
trolling the logic elements of the control device). While time, all of the flow blocks assigned to a particular
processing a packet, this counter is incremented at the 60 network interface can then share the same ALU since
cycle speed of the control device, essentially asynchro• only one of the assigned flow blocks will be active for
nous to the rest of the system, thereby stepping through receiving a data packet at any particular instant. This
the control table at a fixed rate. The input data packet savings in circuitry can, for example, be advantageously
flows through an input FIFO buffer 320, the output of implemented when a plurality of flow blocks are pro..
which is controlled by a bit in the control table 312. If 6S vided on the same card module. In that configuration,
the bit is "on," a byte is read out of the input buffer. This all flow blocks of a card module which share an ALU
function, which is thus not performed automatically should be used in connection with the same selected
when data is read from the buffer, allows data to be network interface, and in panicular, as noted above, the

' ;
!
.t

L
EX 1017 Page 151

g

1

15
the count reaches the header count, a header complete
signal is generated over a line 290.

The comparison of the input header to the match
word is effected byte-by‘byte. using an eight bit com-
parator 294 and a series of eight identical two-to-one
multiplenors 296. The output of the match memory is
one input of the identical twmto-one multiplexers 296
with the “n” bits (typically eight bits) from the data bus
292 as the other input. In each multiplexer. the select
input is driven by the corresponding output bit over
lines 292 of the mask memory; so that if a mask bit is
“o ’. the data has hit is selected. Otherwise. the match
bit is selected. The “n" selected bits are then fed into the
“it" hit (illustrated as eight bits) comparator 294 which,
as noted above, receives the original match data word
as the other input.

The output of the comparator is fed to a flip flop 298
which is set by a signal over a line 299 when the packet
begins to be read. If any byte of the header fails to have

5,249,292
16

passed through under control of the local processor.
and allows certain bytes of the packet to be operated on
by more than one control word without the necessity of
storing the byte in an intermediate location. A second

5 counter 322, cleared at the start of each packet, counts
the current data byte and provides that count for use by
the rest of the control device 18.

Another bit of the control word from array 312, ell
fectively disables the control device. thereby allowing

to the rest of the packet to pass through to the next stage
of processing. This bit is set in the last control word of
the process sequence. that is, once processing of the
header has been completed. Another field of the control
word controls the logic which cancels the packet if

15 certain conditions are true. This field is thus used to
cancel proceming of the packet when fatal errors are
detected. ' ,

The control circuitry also includes several scratch
pad registers 330. These registers allow accumulation of

a complete match (of the selected hits), the output ofthe 20 results etc.. and proVBde constants for use by the ALU
comparator goes low and clears (resets) the flip flop. If
the flip flop is still set when the counter 280 has also
reached a match (the end of the header), the packet
header is accepted and the logial “AND” circuit 300
provides the match indication signal over line 252.

In addition, the pattern matcher further contains data
pads, not shown, which allow the CPU 12 to load
(through bus 4!) the match and mask memories 60, 62,
the length latch 288, and other data as well.

310. The scratch pad registers 330 can be loaded by the
CPU 12 during that process by which the CPU selects
a flow block to receive a data packet stream.

The apparatus further has a multiplexor 34-0 to allow
25 selection from the variety of data sources available as

inputs to the ALU. The results of the ALU processing
can be sent to a number of circuitries. In particular,
inputs to the multiplexer 340 come from either the input
data buffer 320, count register 322, or the scratch pad

Referring now to FIG. 6, the data stream control unit 30 registers 330. Data may be written from the ALU 310,
18 (and stripping circuitry 254) has an arithmetic logic
unit (ALU) 310. Special purpose logic which will be
described hereinafter, and a control table stored in a
memory 312. The AU.) and the control store act like a
general purpose microcode engine, but one which has
been specialized to create a very minimal, high speed
processor for packet headers. The functions to be per-
formed, as described above, are very limited.

The illustrated circuitry allows the processing of the

through a shift/rotate register 31!, to either the scratch
pad registers, or output from the control unit through
an output multiplexer 342. Further, a pass around path
343 allows the result ofan ALU calculation to be sent to

35 a register while a data byte is sent to the output. Other
data paths not shown are available which allow the
CPU 12 to load the control table. the scratch pad regis-
ters 330, the counters 314, 322. etc. when a flow block
is selected to receive a data packet stream.

headers in the transmission time of a complete packet 40 As noted above, the illustrated embodiment provides
having no data, thus allowing the flow block to operate
at full network bandwidth with minimum sized packets.
In addition. the control device keeps in; required cycle
time as high as possible (that is, operates as slow as
possible) to keep its costs down. .

In the illustrated typical circuitry, the control table
312 is the heart of the control device. It consists of an
array of words. which are horizontal microcode, used
to directly control the ALU and gates of the control

for a flexible flow block configuration which, when
loaded from CPU 12 with protocol setting data signals,
enables the flow block to handle a particular one of a
plurality of packet stream protocols. In an alternative

45 embodiment of the invention, each flow block can have
implemented therein. in hardware, the necessary cir-
cuitry to enable it to handle one (or more) particular
protocols. Accordingly therefore, different hardware
modules would be needed for different protocols; how-

circuit as is well known in the art. While some fields of so ever, some speed advantage can be obtained by reduc-
thc control word will perform standard operations,
such as selecting which ALU operation is to be per-
formed on each cycle, other fields will control the spe-
cial logic associated with packet forwarding.

The illustrated control circuitry further includes a
control counter 314 which is set at the start of each

packet. The counter selects one of the control words in
the control array (the output of the control word con-
trolling the logic elements of the control deVice). While
processing a packet, this counter is incremented at the
cycle speed of the control device. essentially asynchro-
nous to the rest of the system, thereby stepping through
the control table at a fixed rate. The input data packet
flows through an input FIFO buffer 329, the output of

log the flexibility of the hardware controlled flow
block.

In addition. further circuit efficiency can be obtained,
without loss of flexibility, if those flow blocks which

55 can be assigned to a particular interface share the same
ALU circuitry (FIG. 6). Recalling that ALU 310 oper-
ates to process an incoming data packet, and, since only
one data packet can be received from a network at a
time, all of the flow blocks assigned to a particular

60 network interface can then share the same ALU since
only one of the assigned flow blocks will be active for
receiving a data packet at any particular instant. This
savings in circuitry can. for example, be advantageously
implemented when a plurality of flow blocks are pro-

which is controlled by a bit in the control table 312. It 65 vided on the same card module. In that configuration.
the bit is "on.“ a byte is read out of the input butler. This
function, which is thus not performed automatically
when data is read from the buffer, allows data to be

all flow blocks of a card module which share an ALU
should be used in connection with the same selected
network interfacc, and in particular, as noted above, the

EX 1017 Page 151

,, ,

' i

17
5,249,292

18
card module may be implemented fully in hardware
with different flow blocks of the card module being
used for different protocols.

Additions, subtractions, deletions and other modifica
tions to the illustrated embodiment of the invention will s
be apparent to those practiced in the art and are within
the scope of the following claims.

What is claimed is:
1. A high speed data packet switching circuit com-

prising: 10
a software controlled primary processing units,
a plurality of network interface units for receiving

incoming data packet streams and for transmitting
outgoing data packet streams, each of said data
packet streams having a selected protocol and all of JS
the data packets in a said stream having the identi
cal protocol,

a plurality of data stream control circuits for concur
rently receiving at least a portion of a header of the
data packets and selectively processing the re- 20
ceived packets only wherein each said data stream
control circuit processes the data packets of one
data stream having one of said selected protocol in
response to previously generated electrical signals
from the primary processing unit based upon 2S
header identification information in the at least first
data packet of the new data packet stream for des
ignating and initializing one of said data stream
control circuits to process a remainder of the data
packets of the new data packet stream, 30

means for interconnecting said primary processing
unit, said plurality of interface units and said plural
ity of data stream control circuits,

said primary processing unit receiving from said net
work interface units, and for processing, at least a 35
first one of the data packets of a new data packet
stream and having means for generating said elec
trical signals means in each said designated and
initialized data stream control circuit for receiving
and processing only those data packets which in- 40
elude said header identification information upon
which said designated and initializing is based.

.2. The packet switching circuit of claim 1 further
wherein each data stream control circuit comprises

a pattern machining circuit responsive to pattern 45
setting signals from the primary processing unit
and to incoming data packets from said network
interface units for identifying and receiving a
packet stream which will be processed by said
control circuit, 50

a processing unit responsive control circuit for con
trolling, in response to control signals sent by the
primary processing unit, a congestion control
means, and a header stripping and prepending func
tions means for the data stream control circuit, and 55

a data buffer responsive to said pattern matching
circuit and the processing unit responsive control
circuit for receiving and storing data and protocol
elements for an incoming data packet stream and
for outputting a data packet stream to a said net- 60
work interface unit to be forwarded to a next net
work node.

3. The packet switching circuit of claim .2 wherein
said pattern matching circuit comprises

a mask bit memory, 65
a match bit memory, and
means for comparing data bits of incoming data pack

ets, not masked by a data word from the mask bit

memory with an output of the match bit memory
for determining the validity of an incoming data
stream packet.

4. The packet switching circuit of claim .2 wherein
said pattern matching circuit comprises

a match memory
a mask memory,
a comparator circuitry, and
means for inputting, to the compuator circuitry, data

bits from the match memory and corresponding
data bits from an input packet, said corresponding
data bits being selected in accordance with the bit
values in the mask memory, for determining the
acceptability of an input packet.

5. The packet switching circuit of claim 4, wherein
said pattern matching circuit further comprises

means for determining the end of an input header for
an input packet,

to the comparator circuit for determining whether all
of the matched bits in the input header are valid,
and

means for providing an acceptance signal in response
to a valid output of the comparator responsive
means and the header determining means.

6. The high speed data packet switching circuit of
claim .2 wherein the processing unit responsive control
circuit comprises

a table array storage for storing horizontal micro
code,

a control counter for selecting words of the table
array storage,

an arithmetic logic unit, and
means for controlling operation of the processing unit

responsive control circuit using horizontal micro
code output of the table array memory.

7. The packet switching circuit of claim 1 wherein
said data stream control circuit comprises

an input multiplexor for selecting a data packet
stream source from among the interconnecting
means accessible to the control circuit;

a pattern matching circuit responsive to pattern set
ting signals from the primary processing unit and to
incoming data packets from the input multiplexor
for identifying those data packets which will be
processed by the control circuit.

a header stripping circuitry for removing the header
from each data packet from the input multiplexor.

control logic, responsive to the pattern matching
circuit and to the stripping circuitry, for passing
the data packet, without the header, for further
processing by the control circuit,

a counter/truncator circuit for determining whether
the data packet from the control logic is truncated
and for providing an error signal in the event the
packet is truncated,

a prepend circuitry for adding a new header to the
data packet f~om the counter/truncator circuit,

an output data buffer for buffering the data packet
from the prepend circuitry and responsive to a
buffer control logic, for maintaining accurate status
data regarding the contents of the buffer, and for
outputting a next data packet for transmission over
a network, and

an output demultiplexor connected to the output data
buffer for transmitting data from the output data
buffer over the output interconnecting path.

8. The packet switching circuit of claim 1 further
wherein said network interface unit comprises

EX 1017 Page 152

17

®

18
5,249,292

card module may be implemented fully in hardware
with different flow blocks of the card module being
used for different protocols. stream packet.

Additions, subtractions, deletions and other modifica- 4. The packet switching circuit of claim 2 wherein
tions to the illustrated embodiment of the invention will 5 said pattern matching circuit comprises
be apparent to those practiced in the art and are within a match memory
the scope of the following claims. a mask memory,

memory with an output of the match bit memory
for determining the validity of an incoming data

i

What is claimed is:
1. A high speed data packet switching circuit com-

prising:
a software controlled primary processing units,
a plurality of network interface units for receiving

incoming data packet streams and for transmitting
outgoing data packet streams, each of said data
packet streams having a selected protocol and all of
the data packets in a said stream having the identi-
cal protocol,

a plurality of data stream control circuits for concur-
rently receiving at least a portion of a header of the
data packets and selectively processing the re-
ceived packets only wherein each said data stream
control circuit processes the data packets of one
data stream having one of said selected protocol in
response to previously generated electrical signals
from the primary processing unit based upon
header identification information in the at least first
data packet of the new data packet stream for des-
ignating and initializing one of said data stream
control circuits to process a remainder of the data
packets of the new data packet stream,

means for interconnecting said primary processing
unit, said plurality ofinterface units and said plural-
ity of data stream control circuits,

said primary processing unit receiving from said net-
work interface units, and for processing, at least a
first one of the data packets of a new data packet
stream and having means for generating said elec-
trical signals means in each said designated and
initialized data stream control circuit for receiving
and procasing only those data packets which in-
clude said header identification information upon
which said designated and initializing is based.

2. The packet switching circuit of claim 1 further
wherein each data stream control circuit comprises

a pattern machining circuit responsive to pattern
setting signals from the primary processing unit
and to incoming data packets from said network
interface units for identifying and receiving a
packet stream which will be processed by said
control circuit,

a processing unit responsive control circuit for con-
trolling, in response to control signals sent by the
primary processing unit, a congestion control
means, and a header stripping and prepending func-
tions means for the data stream control circuit, and

a data buffer responsive to said pattern matching
circuit and the processing unit responsive control
circuit for receiving and storing data and protocol
elements for an incoming data packet stream and
for outputting a data packet stream to a said net-
work interface unit to be forwarded to a next net-

work node. .
3. The packet switching circuit of claim 2 wherein

said pattern matching circuit comprises
a mask bit memory,
a match bit memory, and
means for comparing data bits of incoming data pack-

ets, not masked by a data word from the mask bit

lo

15

20

25

30

35

45

50

55

65

a comparator circuitry. and
means for inputting, to the comparator circuitry, data

bits from the match memory and corresponding
data bits from an input packet, said corresponding
data bits being selected in accordance with the bit
values in the mask memory, for determining the
acceptability of an input packet.

5. The packet switching circuit of claim 4, wherein
said pattern matching circuit further comprises

means for determining the end of an input header for
an input packet,

to the comparator circuit for determining whether all
of the matched bits in the input header are valid,
and

means for providing an acceptance signal in response
to a valid output of the comparator responsive
means and the header determining means.

6. The high speed data packet switching circuit of
claim 2 wherein the processing unit responsive control
circuit comprises

a table array storage for storing horizontal micro-
code,

a control counter for selecting words of the table
array storage,

an arithmetic logic unit, and
means for controlling operation of the processing unit

responsive control circuit using horizontal micro-
code output of the table array memory.

7. The packet switching circuit of claim 1 wherein
said data stream control circuit comprises

an input multiplexor for selecting a data packet
stream source from among the interconnecting
means accessible to the control circuit;

a pattern matching circuit responsive to pattern set-
ting signals from the primary processing unit and to
incoming data packets from the input multiplexer
for identifying those data packets which will be
processed by the control circuit.

a header stripping circuitry for removing the header
from each data packet from the input multiplexor.

control logic, reSponsive to the pattern matching
circuit and to the stripping circuitry, for passing
the data packet. without the header, for further
processing by the control circuit,

a counter/truncator circuit for determining whether
the data packet from the control logic is truncated
and for providing an error signal in the event the
packet is truncated, ‘

a prepend circuitry for adding a new header to the
data packet from the counter/truncator circuit,

an output data buffer for buffering the data packet
from the prepend circuitry and responsive to a
buffer control logic, for maintaining accurate status
data regarding the contents of the buffer, and for
outputting a next data packet for transmission over
a network, and

an Output demultiplexor connected to the output data
buffer for transmitting data from the output data
buffer over the output interconnecting path.

8. The packet switching circuit of claim 1 further
wherein said network interface unit comprises

EX 1017 Page 152

t ,·
' .

"'

19

~
.CJ

5,249,292
20

a network interface circuit for communicating with a receiving each packet stream from one of a plurality
network channel in accordance with a said selected of networks,
protocol and delivering data from the channel in a processing at least a first packet of each received data
predetermined format, and packet stream using a software controlled, primary

an interface adapter for receiving data from the chan- 5 processing unit,
nel through the network interface circuit in said designating that performance of routine, repetitive
predetermined format and for transmitting that header processing of the further packets of one of
data from the channel over the interconnecting said received packet steams, said processing includ-
mcans to said data stream control circuits and said ing packet forwarding processing to effect routing
primary processing unit, for receiving data, to be 10 of said packet,
sent over a network channel, over said intercon- receiving and examining by each said high speed
necting means from the data stream control circuit hardware circuitry at least a portion of each packet
and the primary processing unit and for delivering of each said received data packet stream, determin-
data received from said interconnecting means to ing based on said examination of said at least a
said network interface circuit for transmission over 15 portion of each packet by each of said high speed
a said network channel. hardware circuitry, which said high speed hard-

9. The packet switching circuit of claim 8 wherein ware circuitry bas been designated to process each
said network interface unit further comprises further packet of each received data packet stream,

a single network special purpose hardware interface receiving in said designated high speed hardware
circuit having 20 circuitry said each further packet.
means for communicating with a network channel, 15. The high speed data packet switching method of

means for transmitting received network data over claim 4 further comprising the step of
the interconnecting means to said data stream con- controlling at leat the initialization of a said high
trol circuits and said primary processing unit, 25 speed hardware circuitry assigned to process a
means for receiving network data packets from the packet stream from the software controlled, pri-

data stream control circuits and the primary mary processing unit.
processing unit, and 16. A high speed data packet switching method com-

means for processing the received data packets for prising the steps of
transmission over a network channel. 30 receiving incoming packet streams from network

10. The packet switching circuit of claim 1 wherein interface units;
said software controlled primary processing unit further processing ones of the received data packets in re-
includes sponse to a software controlled primary processing

a central processing unit, unit using a plurality of hardware dl!ta stream con-
a bus means; 35 trol circuits,
a plurality of input storage units for selectively re- interconnecting the primary processsing unit, the

ceiving ones of said plurality of data streams from interface units, and the data stream control circuits
the network interface units and each storage unit for communications therebetwecn,
having its output connected to said bus means, processing at least a first one of the data packets from

means for connecting the central processing unit to 40 the receiving step for each new data packet stream
said bus means, in the primary processing unit,

a plurality of output storage units for selectively re- identifying, using the"primary processing unit, one of
ceiving data from said central processing unit over the data stream control circuits for processing the
said bus means, and for providing said data to said incoming data packet stream,
network interface units, and ,45 determining by each said data stream control circuit

means for controlling the input of data to said input the one data stream control circuit which will pro-
and output storage units. cess each packet of that portion of said incoming

11. The packet switching circuit of claim 1 wherein data packet stream which is not processed by said
said interconnecting means comprises primary processing unit,

an input bus for interconnecting the outputs of said so processing that portion of a said data packet stream
network interface units, the inputs of said data which is not processed by said primary processing
stream control circuits, and the primary processing unit by said identified data stream control circuit,
unit, and and

an output bus for interconnecting the outputs of said outputting the results of the data stream control cir-
data stream control circuits, the inputs to said net- ss cuit processing and the primary processing unit
work interface units, and the primary processing processing to form an output data stream for trans-
unit. mission along a communications path.

12. The packet switching circuit of claim 11 wherein 17. A high speed data packet switching circuit for
said interconnecting means further comprises a central receiving data packet streams from a plurality of input
processing unit bus interconnecting said data stream 60 communication pat~s and for transmitting data packet
control circuits, said network interface units, and a streams to a plurality of output communication paths,
central processing unit of said primary processing unit. said circuit comprising

13. The packet switching circuit of claim 12 wherein a plurality of network interface units for receiving the
said input and output bus means each comprises data incom_ing data packet streams and for transmitting
lines and control lines. 65 outgomg data packet streams,

14. A high speed data packet switching method for a software controlled primary processing unit, having
switching data packet stream among communication a bus means, . .
paths comprising the steps of a central processmg umt,

EX 1017 Page 153

5,249,292

19
a network interface circuit for communicating with a

network channel in accordance with a said selected

protocol and delivering data from the channel in a
predetermined format, and

an interface adapter for receiving data from the chan-
nel through the network interface circuit in said
predetermined format and for transmitting that
data from the channel over the interconnecting
means to said data stream control circuits and said
primary processing unit, for receiving data, to be
sent over a network channel, over said intercon-
necting means from the data stream control circuit
and the primary processing unit and for delivering
data received from said interconnecting means to
said network interface circuit for transmission over
a said network channel.

9. The packet switching circuit of claim 8 wherein
said network interface unit funher comprises

a single network special purpose hardware interface
circuit having
means for communicating with a network channel,

means for transmitting received network data over
the interconnecting means to said data stream con-
trol circuits and said primary processing unit,
means for receiving network data packets from the

data stream control circuits and the primary
processing unit, and

l0

15

20

25

means for processing the received data packets for ,
transmission over a network channel.

10. The packet switching circuit of claim I wherein
said software controlled primary processing unit further
includes

a central processing unit,
a bus means;
a plurality of input storage units for selectively re-

ceiving ones of said plurality of data streams from
the network interface units and each storage unit
having its output connected to said bus means,

means for connecting the central processing unit to
said bus means.

a plurality of output storage units for selectively re-
ceiving data from said central processing unit over
said bus means, and for providing said data to said
network interface units, and

means for controlling the input of data to said input
and output storage units.

11. The packet switching circuit of claim 1 wherein
said interconnecting means comprises

an input bus for interconnecting the outputs of said
network interface units, the inputs of said data
stream control circuits, and the primary processing
unit, and

an output bus for interconnecting the outputs of said
data stream control circuits, the inputs to said net-
work interface units, and the primary processing
unit.

12. The packet switching circuit of claim 11 wherein
said interconnecting means further comprises a central
processing unit bus interconnecting said data stream
control circuits, said network interface units, and a
central processing unit of said primary processing unit.

13. The packet switching circuit of claim 12 wherein
said input and output bus means each comprises data
lines and control lines.

14. A high speed data packet switching method for
switching data packet stream among communication
paths comprising the steps of

30

35

45

50

55

65

20
receiving each packet stream from one of a plurality

of networks,
processing at least a first packet of each received data

packet stream using a software controlled, primary
processing unit.

designating that performance of routine, repetitive
header processing of the further packets of one of
said received packet steams, said processing includ-
ing packet forwarding processing to effect routing
of said packet.

receiving and examining by each said high speed
hardware circuitry at least a portion of each packet
of each said received data packet stream, detennin-
ing based on said examination of said at least a
portion of each packet by each of said high speed
hardware circuitry, which said high speed hard-
ware circuitry has been designated to process each
further packet of each received data packet stream,
receiving in said designated high speed hardware
circuitry said each further packet.

15. The high speed data packet switching method of
claim 4 further comprising the step of

controlling at leat the initialization of a said high
speed hardware circuitry assigned to process a
packet stream from the software controlled, pri—
mary processing unit.

16. A high speed data packet switching method com-
prising the steps of

receiving incoming packet streams from network
interface units;

processing ones of the received data packets in re-
sponse to a software controlled primary processing
unit using a plurality of hardware data stream con-
trol circuits,

interconnecting the primary processsing unit, the
interface units, and the data stream control circuits
for communications therebetween,

processing at least a first one of the data packets from
the receiving step for each new data packet stream
in the primary processing unit,

identifying, using the‘ primary processing unit, one of
the data stream control circuits for processing the
incoming data packet stream,

determining by each said data stream control circuit
the one data stream control circuit which will pro-
cess each packet of that portion of said incoming
data packet stream which is not processed by said
primary processing unit,

processing that portion of a said data packet stream
which is not processed by said primary processing
unit by said identified data stream control circuit,and

outputting the results of the data stream control cir-
cuit processing and the primary processing unit
processing to form an output data stream for trans-
mission along a communications path.

17. A high speed data packet switching circuit for
receiving data packet streams from a plurality of input
communication paths and for transmitting data packet
streams to a plurality of output communication paths,
said circuit comprising

a plurality of network interface units for receiving the
incOming data packet streams and for transmitting
outgoing data packet streams.

a software controlled primary processing unit, havinga bus means.
a central processing unit,

EX 1017 Page 153

..
' ,,,

t
' • L

21
5,249,292

a plurality of input storage units for receiving re
spectively each of said plurality of data streams
from the network interface units and each input
storage unit having its output connected to said
bus means, 5

means for connecting the central processing unit to
said bus means, and

a plurality of output storage units for receiving
data from said central processing unit over said 10
bus means, and for providing said data to said
network interface units,

a plurality of data stream control circuits for ma
nipulating data packet stream in response to the
primary processing unit,

said data stream control circuit~ comprising

15

a pattern matching circuit responsive to pattern
setting signals from the central processing unit
and to incoming streams of data packets from 20
said network interface units for identifying a data
packet to be processed by said control circuit,

means for transferring identified data packets to
said control circuit,

25

30

35

40

4S

50

55

60

65

22
a processor responsive control circuit for control

ling, in response to control signals sent by the
primary processing unit, means for congestion
control, and means for header stripping and pre
pending functions for the data stream control
circuit, and

a data buffer responsive to said pattern matching
circuit and the processor responsive control cir
cuit for storing an incoming data packet stream
from said control circuit and for outputting a
stored data packet stream to be forwarded to a
network interface unit,

means for interconnecting said primary processing
unit, said plurality of network interface units and

· said plurality of data stream control circuits, and
said primary processing unit receiving from said net

work interface units at least a first one of the data
packets of each new data packet stream and having
means for designating those data packets of the
stream which arc not processing by the primary
processing unit to be processed by a said data
stream control circuit without further processing
by said primary processing unit.

• • • • •

EX 1017 Page 154

- 5,249,29221

a plurality of input storage units for receiving re-
spectively each of said plurality of data streams
from the network interface units and each input
storage unit having its output connected to said
bus means,

means for connecting the central processing unit to
said bus means, and

a plurality of output storage units for receiving
data from said central processing unit over said
bus means, and for providing said data to said
network interface units,

a plurality of data stream control circuits for ma—
nipulating data packet stream in response to the
primary processing unit,

said data stream control circuits comprising
a pattem matching circuit responsive to pattern

setting signals from the central processing unit
and to incoming streams of data packets from
said network interface units for identifying a data
packet to be processed by said control circuit,

means for transferring identified data packets to
said control circuit,

10

l5

20

25

30

35

40

45

50

55

65

22
a processor responsive control circuit for control-

ling, in response to control signals sent by the
primary processing unit. means for congestion
control, and means for header stripping and pre-
pending functions for the data stream control
circuit, and

a data buffer responsive to said pattern matching
circuit and the procssor responsive control cir-
cuit for storing an incoming data packet stream
from said control circuit and for outputting a
stored data packet stream to be forwarded to a
network interface unit,

means for interconnecting said primary processing
unit, said plurality of network interface units and

' said plurality of data stream control circuits. and
said primary processing unit receiving from said net—

work interfaee units at least a first one of the data

packets of each new data packet stream and having
means for designating those data packets of the
stream which are not processing by the primary
processing unit to be processed by a said data
stream control circuit without further processing
by said primary processing unit.l I . t O

EX 1017 Page 154

., .
·~

l

United States Patent [19J

Correa

[54] ASSOCIATIVE MEMORY PROCESSOR
ARCHITECTURE FOR THE EFFICIENT
EXECUTION OF PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING
AND PATTERN RECOGNITION

[76] Inventor: Nelson Correa, Carrera 6a No 57-11
Apt 402, Santa Fe de Bogota, D.C.,
Colombia

(21] Appl. No.: 880,711

[22] Filed: May 8, 1992

[51} Int. Cl.6
....................................... - G06F 15/38

[52] U.S. Cl 395/800; 3951700; 364/253;
364/274.8; 364/DIG. I

[58] Field or Search ._ 395/800, 700;
364/253, 274.8, DIG. l

[56] References Cited

U.S. PATENT DOCUMENTS

4,686,623 8/1987 Wallace 395n00
4,914,590 4/1990 Loatman et al. 364/419 .08
4,994,966 2/1991 Hutchins 364/419.08
5,105,353 411992 Charles et al. 39Snoo
5,239,298 8/1993 Wei ... 341/51
5,239,663 8/1993 Faudemay ct al. 39S/800

Primary Examiner-Alyssa H. Bowler

1g
I

11111111111111111111111111 II Ila! I DI
US005511213A

[HJ Patent Number:

[451 Date of Patent:

Assistant E:caminer-1otm Harrity

5,511,213
Apr. 23, 1996

Attorney, Agent, or Finn-Beveridge, DeGrandi, Weilacher
& Young

(57] ABSTRACT

An associative memory processor architecture is disclosed
for the fast and efficient execution of parsing algorithms for
natural language processing and pattern recognition appli
cations. The architecture consists of an associative memory
unit for the storage of parsing state representations, a ran
dom access· memory unit for the storage of the grammatical
rules and other tables according to which the parsing is done,
a finite state parsing control unit which embodies the chosen
parsing algorithm, and a communications unit for commu
nication with a host processor or external interface. The use
of associative memory for the storage of parsing state
representations allows the architecture to reduce the algo
rithmic time complexity of parsing algorithms both with
respect to grammar size and input string length, when
compared to standard software implementations on general
purpose computers. The disclosed architecture provides fur
a fast and compact computer peripheral or system, particn
larly when physically realized in one or a small number of
integrated circuit chips, and thus contributes to the technical
feasibility of real time applications in speech recognition,
machine translation, and syntactic pattern recognition.

7 Claims, 5 Drawing Sheets

I'
~ ,, I ----- ---------------------------------~-----------,

;1 ! r- 1 .
1
I
l
l
I
I
I

' I
I
I
I
I
I
I
I
I
I
I
I
'--

I

(s\ 3 f2 I
PARSING CONTROL RANDOM I

UNIT i-- ACCESS I
COMMUNICATIONS I

MEMORY I UNIT I

sb I

5!6 \
I
I S3 I
I

i I .i I l
------- ___ . ------------ ..___ _ __________ ______ ..J

' }l " ~ d2

ASSOCIATIVE V
MEMORY

I

EX 1017 Page 155

..
4

U.S. Patent

-_

C\I -

i

I
t

L

Apr. 23, 1996 Sheet 1 of 5

\
w
> - - !:c >- -- - -a: -Uo
o::E
~w

'<(::E
I

r--- ,----------------,
I C\I I J '-.. l l
I
I I
I

::Eu,>-
I

I I ,_ 8U)a: ~ I

I Cl)'- wO - I
I zo::E I

tC). I <(OW I
' I a:<s:~ I
'•J 1

,

--

--

I l

I
i,..-.t<> I

I ~
(/)

I
I

~ I
I
I t-I
I z

8 I -

I - (!)
I z I en,-I
I a:-
I f~ I
I

I
I ~-I
I v.._.-
I (/)
I i--lO I (/)

' I
I
I (/)
I z
I v- 0

!i
- u - z

::>
::1:._
::E-oz u ::>

-

-

I
I
I
I
I
I
I
I
I

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I L------------ -- -------J

5,511,213

--

i..,,--N
(/)

--

--

--

EX 1017 Page 156

63‘ @

5,511,213Sheet 1 of 5Apr. 23, 1996US. Patent

$052$2.08?

>m02MEmmwood.2002<m

szP<QZDEEOQN—

L....._..__......_——.— --- —---—-—-——.-J

EX 1017 Page 156

'•

1

l

..

U.S. Patent Apr. 23, 1996 Sheet 2 of 5

DATA BUS OPCODE MATCH FLAG

. 28 29 30

21 DATA-REG CONTRCl..

22 MASK-REG

CAM CELL ARRAY.

20

FIG. 2

START

l~ITIALIZE COMMUNICATIONS UNIT

FIG. 6

LOAD GRAMMAR
AND PARSING TABLE

RECOGNIZER

POSTPROCESSING

EXTRACT PARSE INFORMATION

END

5,511,213

27

EX 1017 Page 157

‘ @1

US. Patent Apr. 23, 1996 Sheet 2 of 5 5,511,213

DATA BUS OPCODE MATCHFLAG

21 DATA..REG
27

22

 20

HQ 2 MR1 MR2 MR3 PRTORJTY

INlTlALlZE COMMUNICATIONS UNlT

LOAD GRAMMAR
AND PARSING TABLE

RECOGNIZER

FIG. 6 POSTPROCESSING

EXTRACT PARSE INFORMATION

EX 1017 Page 157

•

'

..

U.S. Patent Apr. 23, 1996 Sheet 3 of 5

FIG. 3

MIVBBS RULE
0 z-ss
1 S-NP VP
2 NP_.,.. "JOHN"
3 VP,.. "THllll(S"

"JOHN fflll\l(S S"
• • u
0 1 23

FIG. 5
RIR.E MIIIIBBS

DOT POSITION

5,511,213

--- STATE PROCESS8J BIT

111ST WORD NIEi ~
lAST WORD I\IJEH

FIG. 7A·

<O, 0, 0, 0, Z, S1 O>

. . .

\
SYMBOL AFTBI DOT

LffT HAI\IJ SYMBOL

FIG. 78

<II, 0, 0, 0, Z, s, 1>

<II, 0, 0, 0, s, M> I O>

. . •

EX 1017 Page 158

‘ 63

US. Patent Apr. 23, 1996 Sheet 3 of 5 5,511,213

FIG. 3

mm mu;

0 Z —- 8 S

I S —. M’ "P

z m __._ “Jam"

3 "P __~ “mu

“.10th “MKS 3"

1 i H

9 1 2 3

FIG. 5

HIRE mm

BET PBSITIBN

 SIRTE PHDBESSHJ 811'

ms: mm: mix 8
umwnnn mm mmmm

EX 1017 Page 158

• ..

U.S. Patent

0 __.

z~FSET

s
11P
IP
VP+1

N;OFFSE
-.C.ML

T

" "JOHN
"THIM<
"$"
z
s
I\P
IP

S"

:~

~~

Apr. 23, 1996 Sheet 4 of 5 5,511,213

FIG. 4

z
s
"$"

RULED

NIL
s
I\P
IP

RULE 1

ML
I\P
"JotW"
ML

RULE 2

ML
IP
"ffllM(S"
NIL

RULE 3

NIL

••••• ~=
0
1
2 P-TABLE

3
4

••••• ': =
0
0
0
0 N-TABLE
0
0
0
0

•••••

EX 1017 Page 159

v.

US. Patent Apr. 23, 1996 Sheet 4 of 5 5,511,213

FIG.‘1

RULE O

RULE I

RULE 2

RULE 3

P-TABLE

1 N-TABLE

EX 1017 Page 159

P-OFFSET

4:2

"PH

N-OFFSET

Alma

‘IJOHNH

"IHINKS"

us"

I

8

DP

1?

U.S. Patent Apr. 23, 1996 Sheet 5 of 5 5,511,213

FIG~ 7C

"JOHN ntll\lCS $"

ITBVIS ACTIIN

<11, 0, 0, 0, Z, s, 1> z --- •S"S" PRBJET ·

<11, 0, 1, 0, s, rt>, 1> S---- •NP VP PR~T

<0, 0, 2, 0, NP, "JOHN'', 1 > NP -----•"JOHN"

<11, 1, 2, 1, Ml, ML, 1> NP --- "JOHN"• COVPLm

<(), 1, 1, 1, s, VP, 1> S--NP•VP PRBJICT

<1, 1, 3, 0, VP,''Till\l(S'',1> VP ---- • "THll'l<S" EKM'I\I

<1, 2, 3, 1, VP, ML, 1> VP -----"THIM<S" • CO\nPlfTE

<11, 2, 1, 2, S, Ml, 1> S---- NP VP• COVIPLETE

<11, 2, 0, 1, Z, "S", 1> z ----s • "$" EXAMINE

<0, 3, 0, 2, Z, Ml, 1> z ----s "S" • ACCIPT

l
EX 1017 Page 160

@

US. Patent Apr. 23, 1996 Sheet 5 of 5

FIG; 7C

“JllHN THMS 3"

CM NEVIS

<0, 0, I], I], Z, S, 1> Z --— 08"8"

<0, 0,1, 0, 8, fl’, 1> S --- ONP IIP

<0, (I, 2,0,M’, “JIMM”, 1>

NP n--- -"Jon"

<0, 2, 0, 1, Z, “S", 1> Z ---- 8 ° "3"

1
it~ 2;

5,511,213

ABM

PBHRT ‘

Pflfllfl

WPLEIE

PEEK”

CMLETE

[IMPLETE

MCCEPT

EX 1017 Page 160

'

5,511,213
1 2

In contrast to the parsing of some artificial languages,
such as programming languages for computers, the chief
problems encountered in parsing natural languages are due
to the size of the grammatical descriptions required, the size

ASSOCIATIVE MEMORY PROCESSOR
ARCHITECTURE FOR THE EFFICIENT

EXECUITON OF PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING

AND PATI'ERN RECOGNITION

BACKGROUND OF TIIE INVENTION

The present invention relates broadly to computer hard
ware architectures using parallel processing techniques and
very large scale integration (VLSI) microelectronic imple
mentations of them. More particularly, the invention relates
to an integrated associative memory processor architecture
for the fast and efficient execution of parsing algorithms
used in parsing intensive and real time natural language
processing and pattern recognition applications, including
speech recognition, machine translation, and natural lan
guage interfaces to information systems. Parsing is a tech
nique for the analysis of speech, text, and other pancms,
widely used as a key process in contemporary natural
language processing systems and in syntactic pattern recog
nition for the identification of sentence structure and ulti
mately the semantic content of sentences.

5 of the vocabularies of said languages and several sorts of
ambiguity such as part of speech, phrase structure, or
meaning found in most sentences. The handling of ambigu
ity in the description of natural language is by far one of the
most severe problems encountered and requires the adoption

10
of underlying grammatical formalisms such as general con
text-free grammars and the adoption of universal parsing
methods for processing.

Even the most efficient universal parsing methods known
for context-free grammars (Cocke-Kasami-Younger and

15 Earley' s algorithms) are too inefficient for use on general
purpose computers due to the amount of time and computer
resources they take in analyzing an input string, imposing
serious limitations on the size of the grammatical descrip
tions allowed and the types of sentences that may be

20 handled. The universal parsing methods produce a number
of parsing state representations which is in the worst case
proportional to the size of the grammatical description of the
language arid proportional to the square of the number of

Parsing is done with respect to a fixed set of rules that
describe the grammatical structure of a language. Such a set 25
of rules is called a grammar for the language. In a standard
parsing model, the parser accepts a string of words from its
input and verifies that the string can be generated by the
grammar for the language, according to its rules. In such
case the string is said to be recognized and is called a 30

sentence of the language. There exist many forms of gram
mar that have been used for the description of natural
languages and patterns, each with its own generative capac-
ity and level of descriptive adequacy for the grammatical
description given languages. A hierarchy of grammars has 35
been proposed by N. Chomsky, "On Certain Formal Prop
erties of Grammar," Information and Control, Vol. 2, 1959,
p. 137-167, and some of the formalisms that have been or
are currently in use for the description of natural language
are transformational grammar, two-level grammar, unifica- 40
tion grammar, generalized attn1,utc grammar, and aug
mented transition network grammar. Nonetheless, the for
malism most widely used is that of context-free grammars;

input words in the strip.g being analyzed. The set of parsing
states actually generated in typical applications is, however,
a sparse subset of the potential set. Other universal parsing
methods used in some systems, including chart parsers,
augmented transition network parsers, and top-down or
bottom-up backtracking or parallel parsers encounter prob
lems similar to or worse than the standard parsing methods
already cited. Since parsing algorithms in current art are
typically executed on general purpose computers with a yon
Neumann architecture, the number of steps required for the
execution of th~ algorithms while analyzing an input
sentence can be as high as proportional to the cube of the
size of the grammatical description of the language and
proportional to the cube of the number of words in the input
string.

The existing von Neumann computer architecture is con
stituted by a random access memory device (RAM) which
may be accessed by location for the storage of program and
data, a central processing unit (CPU) for fetching, decoding
and execution of instructions from the RAM, and a com
munications bus between the CPU and RAM, comprising the formalisms just cited, and others, are in some sense

augmentations of or based on context-free grammars.
Likewise, many parsing methods have been reported in

the literature for the parsing of natural languages and
syntactic pattern recognition. For context-free grammars
there are three basic parsing methods, as may be inspected

45 address, control, and dam lines. Due to its architecture, the
yon Neumann type computer is restricted to serial operation,
executing one instruction on one data item at a time, the
communications bus often acting as a ''bottleneck" on the

in 'The Theory of Parsing, Translation and Compiling," Vol. 50
1, A. V. Aho and J. D. Ullman, 1972. The universal parsing
methods, represented by the Cocke-Kasami-Younger algo
rithm and Earley' s algorithm, do not impose any restriction
on the properties of the analysis grammar and attempt to
produce all derivations of the input string. The two other 55
methods, known as top-down or bottom-up, attempt as their
names indicate to construct derivations for the input string
from the start symbol of the grammar towards the input
words, or from the input words towards the start symbol of
the grammar. The parsing state representations used by the 60
parsing methods include, in general, a triple consisting of the
first and last word positions in the input string covered by the
parsing state, and a parsing item which may be a grammati-
cal category symbol or a "dotted" grammatical rule, that
shows how much of the item has been recognized in the 65
segment of the input string marked by the first and last word
positions.

speed of the serial operation.

With a clever choice of data structure for the representa
tion of sets of parsing states on a von Neumann computer,
such as the use of an array of boolean quantities used to mark
the presence or absence of a given item from the set of
parsing states, it is possible to reduce the number of steps
required to perform basic operations on a set of parsing
states to a time that is proportional only to the logarithm of
the number of states in the set, and therefore to reduce the
total time required for the execution parsing algorithms on
the von Neumann computer. However, the number of pars
ing states that may be generated by uni versa! parsing algo
rithms is dependent on grammar size and input string length
and can be quite high. For the type of grammars and inputs
envisioned in language and pattern recognition applications,
this number can be of the order of two to the power of thirty,
or several thousands of millions of parsing items. This
amount of memory space is beyond the capabilities of
current computers and, where available, it would be ineffi-

EX 1017 Page 161

-

5,511,213
1

ASSOCIATIVE MEMORY PROCESSOR
ARCHITECTURE FOR THE EFFICIENT

EXECUTION 0F PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING

AND PATTERN RECOGNITION

BACKGROUND be me INVENTION

The present invention relates broadly to computer hard-
ware architectures using parallel processing techniques and
very large scale integration (V151) microelectronic imple-
mentations of them More particularly, the invention relates
to an integrated associative memory processor architecture
for the fast and efiicient execution of parsing algorithms
used in parsing intensive and real time natural language
processing and pattern recognition applications, including
speech recognition, machine translation, and natural lan-
guage interfaces to information systems. Parsing is a tech-
nique for the analysis of speech, text, and other patterns,
widely used as a key process in contemporary natural
language processing systems and in syntactic pattern recog-
nition for the identification of sentence structure and ulti-

mately the semantic content of sentences.
Parsing is done with respect to a fixed set of rules that

describe the grammatical structure of a language. Such a set
of rules is called a grammar for the language. In a standard
parsing model, the parser accepts a suing of words from its
input and verifies that the string can be generated by the
grammar for the language, according to its rules. In such
case the suing is said to be recognized and is called a
sentence of the language. There exist many forms of gram-
mar that have been used for the description of natural
languages and patterns, each with its own generative capac-
ity and level of descriptive adequacy for the grammatical
description given languages. A hierarchy of grammars has
been proposed by N. Chomsky, "0n Certain Formal Prop-
erties of Grammar," Information and Control, Vol. 2, 1959,
p. 137—167, and some of the formalisms that have been or
are currently in use for the description of natural language
are transformational grammar, two-level grammar, unifica-
tion grammar, generalized attribute grammar, and aug-
mented transition network grammar. Nonetheless, the for-
malism most widely used is that of context-free grammars;
the formalisms just cited, and others, are in some sense
augmentations of or based on context-free grammars.

Likewise, many parsing methods have been reported in
the literature for the parsing of natural languages and
syntactic pattern recognition. For context-free grammars
there are three basic parsing methods, as may be inspected
in “The Theory of Parsing, Translation and Compiling,” Vol.
1, A. V. Aho and I. D. Ullman, 1972. The universal parsing
methods, represented by the Cocke—Kasami-Younger algo-
rithm and Earley’s algorithm, do not impose any restriction
on the properties of the analysis grammar and attempt to
produce all derivations of the input string. The two other
methods, known as top-down or bottom-up, attempt as their
names indicate to construct derivations for the input string
from the start symbol of the grammar towards the input
words, or from the input words towards the start symbol of
the grammar. The parsing state representations used by the
parsing methods include, in general, a triple consisting of the
first and last word positions in the input string covered by the
parsing state, and a parsing item which may be a grammati-
cal category symbol or a “dotted" grammatical rule, that
shows how much of the item has been recognized in the
segment of the input string marked by the first and last word
positions.

10

15

25

30

35

45

50

55

60

65

2

In contrast to the parsing of some artificial languages,
such as programming languages for computers, the chief
problems encountered in parsing natural languages are due
to the size of the grammatical descriptions required, the size
of the vocabularies of said languages and several sorts of
ambiguity such as part of speech, phrase structure, or
meaning found in most sentences. The handling of ambigu-
ity in the description of natural language is by far one of the
most severe problems encountered and requires the adoption
of underlying granunatical formalisms such as general con-
text-free grammars and the adoption of universal parsing
methods for processing.

Even the most eflicient universal parsing methods known
for context-free grammars (Cocke-Kasami-Youngcr and
Earley's algorithms) are too inefficient for use on general
propose computers due to the amount of time and computer
resources they take in analyzing an input string, imposing
serious limitations on the size of the grammatical descrip-
tions allowed and the types of sentences that may be
handled. The universal parsing methods produce a number
of parsing state representations which is in the worst case
proportional to the size of the grammatical description ofthe
language and proportional to the square of the number of
input words in the suing being analyzed. The set of parsing
states actually generated in typical applications is, however,
a sparse subset of the potential set. Other universal parsing
methods used in some systems, including chart parsers,
augmented transition network parsers, and top-down or
bottom—up backpacking or parallel parsers encounter prob-
lems similar to or worse than the standard parsing methods
already cited. Since parsing algorithms in current art are
typically executed on general purpose computers with a you
Neumarm architecnrre, the number of steps required for the
execution of these algorithms while analyzing an input
sentence can be as high as proportional to the cube of the
size of the grammatical description of the language and
proportional to the cube of the number ofwords in the input
string.

The existing von Neumann computer architecture is con-
stitutcd by a random access memory device (RAM) which
may be accessed by location for the storage of program and
data, a central processing unit (CPU) for fetching, decoding
and execution of instructions from the RAM, and a com-
munications bus between the CPU and RAM, comprising
address, control, and darn lines. Due to its architecture, the
you Neumann type computer is restricted to serial operation,
executing one instruction on one data item at a time, the
communications bus often acting as a “bottlenec " on the
spud of the serial operation.

With a clever choice of data structure for the representa-
tion of sets of parsing states on 9. von Neumarm computer,
such as the use of an array of boolean quantities used to mark
the presence or absence of a given item from the set of
parsing states, it is possible to reduce the number of steps
required to perform basic operations on a set of parsing
states to a time that is proportional only to the logaritlun of
the number of states in the set, and therefore to reduce the
total time required for the execution parsing algorithms on
the von Neumann computer. However, the number of pars-
ing states that may be generated by universal parsing algo-
rithms is dependent on grammar size and input string length
and can be quite high. For the type of grammars and inputs
envisioned in language and pattern recognition applications,
this number can be of the order of two to the power of thirty,
or several thousands of millions of parsing items. This
amount of memory space is beyond the capabilities of
current computers and, where available, it would be inchi-

EX 1017 Page 161

r
f
j,
!

L

5,511,213
3

ciently used: The speedup technique suggested is well
known and illus~tes the tr~eoff _of processing memory
space for reduction of execution time. Universal parsing
algorithms, furthennore, require multiple patterns of access
to their parsing state representations. This defeats the: pur- 5
pose of special data structures as above, unless additional
memory space is traded off for a fast execution time.

In the technical article "Parallel Parsing Algorithms and
VLSI Implementations for Syntactic Pattern Recognition,"
Y. T. Chiang and K. S. Fu, IEEE Transactions on Pattern 10
Analysis and Machine Intelligence, Vol. 6, No. 3, 1984, p.
3~2-314, a parallel processing architecture consisting of a
tnangular-shaped VLSI systolic array is devised for the
execution of a variant of the universal parsing algorithm due
to Earley. In the Chiang-Fu architecture, the systolic array
has a number of rows and a number of columns equal to the

15

number of symbols in the string to be analyzed. Each
processing cell of the systolic array is assigned to compute
one matrix element of the representation matrix computed
by the algorithm. Each cell is a complex VLSI circuit that
includes a control and data paths to implement the operators

20

used in the parsing algorithm, and storage cells for the
storage of cell data corresponding to matrix elements. The
architecture has a regular communication geometry, with
each cell communicating information only to its upper and
right-hand side neighbors. In order to achieve its processing

25

efficiency requirements, allowing as many processing cells
of the array as possible to operate in parallel, the Chiang-Fu
architecture must· use a weakened form of Earley's algo
rithm. Furthermore, in order to meet the VLSI design
requirement that each processor perform a constant time

30

operation. the architecture restricts the grammar to be free of
null productions, i.e., those whose fight-hand sides have
exactly zero symbols.

In addition to the two disadvantages of the Chiang-Fu 35
architecture noted above, its main disadvantage, however, is
the complexity of each cell in the processing array and the
required size of the array. The cell design uses complex
special purpose hardware devices such as programmable
logic arrays, shift registers, arithmetic units, and memories. 40
This approach yields the fastest execution speed for each
cell, but due to its complexity and the highly irregular
pattern of interconnections between the cell's components
the design is not the best suited for VLSI implementation.
Since the systolic array has a number of rows and a number 45
of columns equal to the number of symbols in the string to
be analyzed, the number of cells in the array is proportional
to the square of the number of symbols in the string.

Associative processing is a technique of parallel compu
tation that seeks to remove some problems of the von so
Neumann computer by decentralizing the computing
resources and allowing the execution of one operation on
multiple data items at a time. An associative memory
processor has distributed computation resources in its
memory, such that the same operation may be executed 55
simultaneously on multiple data items, in situ, The opera
tions that may be executed in the memory are fairly simple,
usually restricted to comparison of a stored data word
against a given search pattern. The distributed computation
approach eliminates two major obstacles to computation 60

speed in the von Neumann computer, namely the ability to
operate only on one data item at a time, and the need to move
the data to be processed to and from memory. Since asso
ciative memory is essentially a memory device, it is the best
suited type of circuit for large scale VLSI implementation. 65
Associative processing is currently used in some special
purpose computations such as address translation in current

4
computer systems, and is especially well suited for symbolic
applications such as string searching, data and knowledge
base applications, and artificial intelligence computers. In
contrast to addressing by location in a random access
memory, associative processing is particularly effective
when the sets of data elements to be processed are sparse
relative to the set of potential values of their properties, and
when the data elements are associated with several types of
access patterns or keys.

An associative memory processor architecture for parsing
algorithms, as has been proposed by N. Correa, "An Asso
ciative Memory Architecture for General Context-free Lan
~ge Recognition," Manuscript, 1990, stores sets of pars
mg ~~te . repre~tations in an associative memory,
pemutting mspection of the membership of or the search for
a given parsing state in a time which is small and constant
independent of the number of state representations generated
by the algorithm. Additionally, the parsing method chosen is
imf lemented in a finite state parsing control unit, instead of
bemg programmed an executed by instruction sequences in
th~ central proccss~g unit of a general purpose computer or
In!croprocessor. This allows for a maximally parallel sched
ul!°~ of the microoperations required by the algorithm, and
ehmmates the need for instruction fetching and decoding in
the general purpose computer. Furthermore, since the asso
ciative memory need be dimensioned only for the number of
pars~g states that. may a~y be generated by the parsing
algonthms, and smce the finite state control unit contains
only the states and hardware required for the execution of
the algorithm, said machine may be fabricated and pro
grammed more compactly and economically with integrated
circuit technology.

It is apparent from the above that prior art approaches to
the execution of uni versa! parsing algorithms are neither fast
enough nor compact enough for the technical and economic
feas~ility of complex symbolic applications requiring a
parsmg step, such as real-time voice recognition and under
standing, real-time text and voice-to-voice machine transla
tion, massive document processing, and other pattern rec
ognition applications. The general purpose von Neumann
computer and other previous proposals for the parallel
execution of those algorithms are not fast enough and not
compact enough. The associative processing architecture for
the execution of universal parsing algorithms herein dis
closed has the potential to offer significant speed improve
~ents in the execution of universal parsing algorithms and
1s furthermore more compact and better suited for large scale
VLSI implementation.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a new and improved parallel processor architecture that
executes parsing algorithms faster than the prior art
approaches.

It is a f?rtber object of the present invention to provide a
new and improved parallel processor architecture which is
dedicated exclusively to the execution of parsing algorithms
and is physically more compact, smaller, and better suited
for large scale VLSI implementation than the prior art
approaches.

It is still a further object of the present invention to show
a ~articul_ar embodiment of a universal parsing algorithm in
said architecture and the method by which this is achieved.

In accordance with the above objects, the present inven
tion is addressed to an associative memory processor archi-

EX 1017 Page 162

-

5,511,213
3

ciently used. The speedup technique suggested is well
lnrown and illustrates the tradeofi‘ of processing memory
space for reduction of execution time. Universal parsing
algorithms, furthermore, require multiple patterns of access
to their parsing state representations. This defeats the: pur-
pose of special data structures as above, unless additional
memory space is traded 05 for a fast execution time.

In the technical article “Parallel Parsing Algorithms and
VLSI Implementations for Syntactic Pattern Recognition,"
Y. T. Chiang and K S. Fu, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 6, No. 3, 1984, p.
302—314, a parallel processing architecture consisting of a
triangular-shaped VLSI systolic array is devised for the
execution of a variant of the universal parsing algorithm due
to Earley. In the Chiang-Fu architecture, the systolic array
has a number of rows and a number of columns equal to the
number of symbols in the string to be analyzed. Each
processing cell of the systolic array is assigned to compute
one matrix element of the representation matrix computed
by the algorithm. Each cell is a complex VLSI circuit that
includes a control and data paths to implement the operators
used in the parsing algorithm, and storage cells for the
storage of cell data corresponding to matrix elements. The
architecture has a regular communication geometry, with
each cell communicating information only to its upper and
right-hand side neighbors. In order to achieve its processing
efficiency requirements, allowing as many processing cells
of the array as possible to operate in parallel, the Chiang-Fu
architecture must- use a weakened form of Earley’s algo-
rithm. Fm‘thermore, in order to meet the VLSI design
requirement that each processor perform a constant time
operation. the architecture restricts the grammar to be free of
null productions, i.e., those whose fight-hand sides have
exactly zero symbols.

In addition to the two disadvantages of the Chiang-Fu
architecture noted above, its main disadvantage, however, is
the complexity of each cell in the processing array and the
required size of the array. The cell design uses complex
special purpose hardware devices such as programmable
logic arrays, shifi registers, aritlnnetic units, and memories.
This approach yields the fastest execution speed for each
cell, but due to its complexity and the highly irregular
pattern of interconnections between the cell’s components
the design is not the best suited for VLSI implementation.
Since the systolic array has a number of rows and a number
of columns equal to the number of symbols in the string to
be analyzed, the number of cells in the array is proportional
to the square of the number of symbols in the string.

Associative processing is a technique of parallel compu-
tation that seeks to remove some problems of the von
Neumann computer by decentralizing the computing
resources and allowing the execution of one operation on
multiple data items at a time. An associative memory
processor has distributed computation resources in its
memory, such that the same operation may be executed
simultaneously on multiple data items, in sitrr, The opera-
tions that may be executed in the memory are fairly simple,
usually restricted to comparison of a stored data word
against a given search pattern. The distributed computation
approach eliminates two major obstacles to computation
speed in the von Neumann computer. namely the ability to
operate only on one data item at atime, and the need to move
the data to be processed to and from memory. Since asso-
ciative memory is essentially a memory device, it is the best
suited type of circuit for large scale VLSI implementation.
Associative processing is currently used in some special
purpose computations such as address translation in current

10

15

30

35

45

50

55

60

4

computer systems, and is especially well suited for symbolic
applications such as string searching, data and knowledge
base applications, and artificial intelligence computers. In
contrast to addressing by location in a random access
memory, associative processing is particularly efl’ective
when the sets of data elements to be processed are sparse
relative to the set of potential values of their properties, and
when the data elements are associated with several types of
access patterns or keys.

An associative memory processor architecture for parsing
algorithms, as has been proposed by N. Corr-ea, “An Asso-
ciative Memory Architecture for General Context-free Lan-
guage Recognition," Manuscript, 1990, stores sets of pars-
ing state representations in an associative memory,
permitting inspection of the membership of or the search for
a given parsing state in a time which is small and constant,
independent of the number of state representations generated
by the algoritlun. Additionally, the parsing method chosen is
implemented in a finite state parsing control unit, instead of
being programmed an executed by instruction sequences in
the central processing unit of a general purpose computer or
microprocessor. This allows for a maximally parallel sched-
uling of the microoperations required by the algorithm, and
eliminates the need for instruction fetching and decoding in
the general purpose computer. Furthermore, since the asso—
ciative memory need be dimensioned only for the number of
parsing states that may actually be generated by the parsing
algorithms, and since the finite state control unit contains
only the states and hardware required for the execution of
the algorithm, said machine may be fabricated and pro-
grammed more compactly and economically with integrated
circuit technology.

It is apparent from the above that prior art approaches to
the execution ofuniversal parsing algorithms are neither fast
enough nor compact enough for the technical and economic
feasibility of complex symbolic applications requiring a
parsing step, such as real-time voice recognition and under-
standing, real-time text and voice-to-voice machine transla-
tion, massive document processing, and other pattern rec-
ognition applications. The general purpose von Neumann
computer and other previous proposals for the parallel
execution of those algorithms are not fast enough and not
compact enough. The associative processing architecture for
the execution of universal parsing algorithms herein dis-
closed has the potential to offer significant speed improve—
ments in the execution of universal parsing algorithms and
is furthermore more compact and better suited for large scale
VLSI implementation.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a new and improved parallel processor architecture that
executes parsing algorithms faster than the prior art
approaches.

It is a further object of the present invention to provide a
new and improved parallel processor architecture which is
dedicated exclusively to the execution of parsing algorithms
and is physically more compact, smaller, and better suited
for large scale VLSI implementation than the prior art
approaches.

It is still a further object of the present invention to show
a particular embodiment of a universal parsing algorithm in
said architecture and the method by which this is achieved.

In accordance with the above objects, the present inven-
tion is addressed to an associative memory processor archi-

EX 1017 Page 162

I
l
!
(

L

e
5,511,213

5
tecture consisting of an associative memory unit for the
storage of parsing state representations, a random access
memory unit for the storage of the grammatical rules and
other parsing data and tables according to which the parsing
is done, a finite state parsing control unit which embodies 5
the chosen parsing algorithm, and a communications unit for
communication with a host processor or external interface.

The associative memory unit (CAM) is used for the
storage of parsing state representations, dynamically com
puted by the parsing algorithm according to the input string 10
and grammar. Each parsing state representation consists of
a tuple of a first word index to a position in the input string,
a last word index to a position in the input string, a parsing
item, a left-hand side symbol field., a next symbol field, a
state-not-processed field, and optional fields to store other
information related to the parsing process, such as context

15

and lookahead symbols, attributes of the parsing state, and
information for parse tree extraction. Each parsing state
representation is storm in one logical CAM word, which
permits fast and easy inspection of the parsing states already

20
generated by the algorithm. The parsing item in the third
field of a parsing state representation may be a grammar
symbol or a dotted rule, consisting of a rule number and an
index to a position on the right hand side of the rule.

The random access memory unit (RAM) is used for the 25
storage of the grammatical rules according to which the
parsing is done. This memory unit is also used to store other
parsing data and tables used by the parsing algorithm, as
detailed below; alternatively, a second random access
memory unit may be used for the storage of such informa- 30
lion. Each. grammatical rule consists of one left-hand side
symbol and a right-hand side of zero or more symbols. Each
grammatical rule is stored in one logical RAM record, with
one RAM word allocated to store each of the rule's symbols.
In this manner, ith possible to retrieve thej-th symbol of the 35
p-th grammatical rule from the j-th word of the p-th record
10 the RAM. The RAM may be accessed by the communi
cations unit for the purpose of allowing the host processor
writing into the RAM the grammatical rules according to
which the parsing is done. Alternatively, the RAM may be 40
a read-only memory, which permanently stores a predefined
set of grammatical rules and tables.

The finite state parsing control unit (PCU) is connected to
the CAM and the RAM and is a finite state machine that
embodies the chosen parsing algorithm. The PCU accesses 45

the CAM for the purposes of initializing it, inserting initial
or seed parsing states for the parsing process, and requesting
parsing states marked unprocessed for processing. When an
unprocessed parsing state is retrieved from the CAM, the
PCU may access the RAM and may request input symbols 50

from the communications unit for the purpose of generating
new parsing states to be added to the CAM, as unprocessed.
Each access to the RAM allows the inspection of the
grammatical rules, if any, that may be applicable for pro
cessing of the current parsing state. The input symbols 55
requested form the communications unit allow verification
that the next input symbol is compatible with the current
parsing state. When the PCU has generated the number of
parsing state sets required by the input string and all parsing
states in the CAM axe marked processed-Le., there are no 60

unprocessed states-the'PCU performs a test on the contents
of the CAM to decide acceptance of the input string, may
optionally execute some post-processing operations, as
detailed below, signals the communications unit that the
parsing of the current input string is complete, and termi- 65
nates execution. The exact order and the precise nature of the
operations performed by the parsing control unit, generically

6
described above, depend on the particular parsing algorithm
embodied in the finite state parsing control unit.

The communications unit (CU) is connected to the CAM
RAM, and PCU and is used for communication with a host
processor or external interface. The communications unit
~ay be as _simple as an interface to a given computer
mterconnection bus, or as complex as a system that imple
ments a computer communications protocol. The commu
nications unit accesses the RAM for the purpose of allowing
the host processor writing into the RAM the grammatical
rules according to which the parsing is done. Alternatively;
the RAM may be a read-only memory, which permanently
stores a predefined set of grammatical rules, in which case
the CU need not have access to the RAM. The CU also
accesses the finite state control unit for the purposes of
initializing it and supplying to it input symbols from the
input string to be analyzed. The CU also accesses the CAM
at the en~ of a parsing process for the purpose of reading out
and s':°ding to the host processor the parsing state repre
sentations and any other information that may be relevant to
further processing of the input string. An optional additional
function of the communications unit is its ability to issue
commands and data to the RAM, CAM and PCU for the
purpose of testing their functionality and correctness of
operation.

Preferably, the associative memory unit is formed on a
single integrated circuit chip, and the random access
memory unit, finite state parsing control unit, and a com
munications unit are formed together or programmed on a
separate integrated circuit controller chip. Alternatively, all
sys~m comp~n~nts may be integrated on a single chip, with
optional provmon for external expansion of the RAM or
CAM memories. In either case, the operation of the finite
state parsing control unit may allow for the execution of
parse extraction algorithms and useless parsing state mark
ing and elimination algorithms, to simplify further process
ing of the parsing result by the host processor.

BRIEF DESCRIPTION OF TIIB DRAWINGS

In the detailed description of the preferred embodiment of
the invention presented below, reference is made to draw
ings as presently detailed. The drawings arc not necessarily
to.s~e, emphasis being placed instead upon illustrating the
prmciples of construction and operation of the invention.

FIG. 1 is a complete schematic illustration of the asso
ci9:1ive memory processing system for parsing,algorithms,
obJect of the present invention.

FIG. 2 shows the general organization of the associative
memory unit assumed by the preferred embodiment

FIG. 3 is a small example context-free grammar and
shows a sample input string with annotated string positions.

FIG. 4 is a schematic illustration of the RAM memory
map corresponding to the example grammar in FIG. 3

FI~. S is a schematic illustration of the parsing state
encodmgs to be _stored in the associative memory, for the
preferred embodiment where the processor embodies Ear
ley' s algorithm.

~G. 6 is _a flow chart of the steps followed by the system
dunng loading of a grammar, parsing, and extraction of the
parse information.

FIGS. 7 .a-c are a schematic illustration of a series of
C:AM me~ory ma~s of the associative processing system at
different times durmg ~arsing an input string, according to
the example grammar m FIG. 3.

EX 1017 Page 163

'

5,511,213
5

tecture consisting of an associative memory unit for the
storage of parsing state representations, a random access
memory unit for the storage of the grammatical rules and
other parsing data and tables according to which the parsing
is done, a finite state parsing control unit which embodies
the chosen parsing algorithm. and a communications unit for
communication with a host processor or external interface.

The associative memory unit (CAM) is used for the
storage of parsing state representations, dynamically com-
puted by the parsing algorithm according to the input string
and grammar. Each parsing state representation consists of
a tnple of a first word index to a position in the input string,
a last word index to a position in the input string, a parsing
item, a left—hand side symbol field, a next symbol field, a
state-not-prccessed field, and optional fields to store other
information related to the parsing process, such as context
and lookahead symbols, attributes of the parsing state, and
information for parse tree extraction. Each parsing state
representation is storm in one logical CAM word, which
permits fast and easy inspection of the parsing states already
generated by the algorithm. The parsing item in the third
field of a parsing state representation may be a granrmar
symbol or a dotted rule, consisting of a rule number and an
index to a position on the right hand side of the rule.

The random access memory unit (RAM) is used for the
storage of the grammatical mles according to which the
parsing is done. This memory unit is also used to store other
parsing data and tables used by the parsing algorithm. as
detailed below; alternatively, a second random access
memory unit may be used for the storage of such informa-
tion. Eachgrammatica] nrle consists of one left-hand side
symbol and a right-hand side of zero or more symbols. Each
grammatical rule is stored in one logical RAM record. with
one RAM word allocated to store each of the rule's symbols.
In this mamrer, it is possible to retrieve the j-th symbol ofthe
[Hit grammatical rule from the j-th word of the p-th record
in the RAM. The RAM may be accessed by the communi-
cations unit for the purpose of allowing the host processor
writing into the RAM the grammatical rules according to
which the parsing is done. Alternatively, the RAM may be
a read—only memory, which permanently stores a predefined
set of grammatical rules and tables.

The finite state parsing control unit (PCU) is connected to
the CAM and the RAM and is a finite state machine that
embodies the chosen parsing algorithm. The PCU accesses
the CAM for the purposes of initializing it, inserting initial
or seed parsing states for the parsing process, and requesting
parsing states marked unprocessed for processing. When an
unprocessed parsing state is retrieved from the CAM, the
PCU may access the RAM and may request input symbols
from the communications unit for the purpose of generating
new parsing states to he added to the CAM, as unprocessed.
Each access to the RAM allows the inspection of the
grammatical rules, if any, that may be applicable for pro-
cessing of the current parsing state. The input symbols
requested form the communications unit allow verification
that the next input symbol is compatible with the current
parsing state. When the PCU has generated the number of
parsing state sets required by the input string and all parsing
states in the CAM axe marked processed—Le, there are no
unprocessed states—the‘PCU performs a test on the contents
of the CAM to decide acceptance of the input string, may
optionally execute some post—processing operations, as
detailed below, signals the communications unit that the
parsing of the cun'ent input string is complete, and termi—
nates execution. The exact order and the precise nature ofthe
operations performed by the parsing control unit, generically

l0

[5

20

30

35

45

50

55

60

65

6
described above, depend on the particular parsing algorithm
embodied in the finite state parsing control unit.

The communications nrrit (CU) is connected to the CAM,
RAM, and PCU and is used for communication with a host
processor or external interface. The communications unit
may be as simple as an interface to a given computer
interconnection bus, or as complex as a system that imple-
ments a computer communications protocol. The commu-
nications unit accesses the RAM for the purpose of allowing
the host processor writing into the RAM the grammatical
rules according to which the parsing is done. Alternatively;
the RAM may be a read-only memory, which permanently
stores a predefined set of grammatical rules, in which case
the CU need not have access to the RAM. The CU also
accesses the finite state control unit for the purposes of
initializing it and supplying to it input symbols from the
input string to be analyzed. The CU also accesses the CAM
at the end of a parsing process for the purpose of reading out
and sending to the host processor the parsing state repre-
sentations and any other information that may be relevant to
further processing of the input string. An optional additional
function of the communications unit is its ability to issue
commands and data to the RAM, CAM and PCU for the
purpose of testing their functionality and correctness of
operation.

Preferably, the associative memory unit is formed on a
single integrated circuit chip, and the random access
memory unit, finite state parsing control unit, and a com—
munications unit are formed together or programmed on a
separate integrated circuit controller chip. Alternatively, all
system components may be integrated on a single chip, with
optional provision for external expansion of the RAM or
CAM memories. In either case, the operation of the finite
state parsing control unit may allow for the execution of
parse exnaction algorithms and useless parsing state mark—
ing and elimination algorithms, to simplify further process-
ing of the parsing result by the host processor.

BRIEF DESCRIPTION OF THE DRAWINGS

In the detailed description of the preferred embodiment of
the invention presented below, reference is made to draw-
ings as presently detailed. The drawings are not necessarily
to scale, emphasis being placed instead upon illustrating the
principles of construction and operation of the invention.

FIG. 1 is a complete schematic illustration of the asso-
ciative memory processing system for parsing,algorithms,
object of the present invention.

FIG. 2 shows the general organization of the associative
memory unit assumed by the preferred embodiment.

FIG. 3 is a small example context-free grammar and
shows a sample input string with annotated string positions.

FIG. 4 is a schematic illustration of the RAM memory
map corresponding to the example grammar in FIG. 3

FIG. 5 is a schematic illustration of the parsing state
encodings to be stored in the associative memory, for the
preferred embodiment where the processor embodies Ear-
ley’s algorithm.

FIG. 6 is a flow chart of the steps followed by the system
during loading of a grammar, parsing, and extraction of the
parse information.

FIGS. 7.a—c are a schematic illustration of a series of
CAM memory maps of the associative processing system at
different times during parsing an input string, according to
the example grammar in FIG. 3.

EX 1017 Page 163

i

L

5,511,213
7

DETAil..ED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 illustrates an embodiment of the present invention
suitable for the execution of a wide family of parsing
algorithms. Referring to the same figure, the system includes 5

an associative memory unit 1 and a communications and
parsing control unit 5. The communications and parsing
control unit includes a random access memory unit 2, a finite
state parsing control unit 3, a communications unit 4, a first
data bus 10, a second data bus 11, and other signals further 10

detailed below.
Associative memory unit 1 is connected by the internal

data bus 10 and by control fines Sl and S2 to the parsing
control unit The associative memory unit (CAM) is used for

15
the storage of parsing state representations and its word
width is commensurate with the number of bits required for
the representation of parsing states. The parsing state rep
resentations produced by the parsing control unit may be
transferred, i.e., written. to the associative memory through

20
the internal data bus 10. Likewise, parsing states stored in
the associative memory may be transferred in the opposite
direction, i.e., read, to the parsing control unit by means of
the same internal data bus 10. To provide for fast data
transfers between the associative memory and the parsing

25
control unit, in one bus cycle, the width of the first data bus
IO is equal to the width of one CAM, word. Control line Sl
from the parsing control unit to the associative memory is
the operation select code for the operation requested of the
associative memory. Control line S2 from the aasociative 30
memory to the parsing control unit is a match llag produced
by the associative memory after a match operation. Because
an associative memory is used for the storage of parsing
state representations, operations such as the insertion of a
new parsing state into the CAM may be performed in

35
conslant time, independent of the number of parsing states
already generated, and the performance degradation result
ing from the use of random access memory in avon Neu
mann computer for the storage of the same representations
is mitigated. Also, because an associative memory is wed, 40
multiple access patterns are permitted into the parsing state
representations, without the overhead of additional data
structures. These multiple access pattern& play a role in the
implementation of some optimizations of the parsing algo
rithm to be embedded in the finite state parsing control unit. 45

The general organization of the associative memory unit
assumed by the preferred embodiment is shown in FIG. 2.
This device has one array 20 of content addressable memory
cells, one data register 21, one mask register 22, three
general purpose match registers 23, 24, and 25, a priority 50
encoder 26 for multiple response resolution, and an internal
control section 27 for control of CAM operations. The
device has an associative method of word selection for read
and write operations, in which word selection is achieved by
the use of one of tbe match registers 23, 24, or 25, and the ss
priority encoder 26. The memory receives data and control
sigoals from the outside tbrough data and control buses 28
and 29, and produces one match signal .MATCHFLAG 30
after the execution of match operations. The set of opera
tions provided by the associative memory unit is further 60
detailed below in the description of the parsing control unit

Random access memory unit 2 in FIG. 1 is connected to
the parsing conttol unit and other system compunents by a
second internal data bus 11 and by address and control lines
S3 from the PCU. Physically, the RAM is organized as a 65
linear array of words, divided into logical records of several
words. The number of bits per RAM word must be selected

8
according to the number of temtinal and non-terminal sym
bols in the grammar; for example, with a word width of ten
bits a total of 1024 different symbols may be encoded. We
Jet PLBN be the number of words in one logical RAM record
and require that it be at least one more than the number of
symbols in the longest grammatical rule to be represented.
The grammatical rules are .ordered by their left-hand side
symbol and numbered from rero to some positive integer
PMAX, so that the number of RAM words required to store
the grammatical rules is PLEN limes PMAX.

The rules of FIG. 3 constitute a simple grammar with four
non-terminal symbols Z, S, NP, and VP, and three terminal
symbols "$", "John", and ''thinks"; Z is the start symbol of
the grammar, and "$" is the "end-of-input-string" marker.
Each grammatical rule is stored in one logical RAM record,
as shown in FIG. 4, with one RAM word used to store each
of the rule's symbols. In this preferred embodiment, the
logical records have a fixed number of words, such that the
j-th symbol of the p-th grammatical rule may be retrieved
from the RAM word at address p times PLEN plus j. The
symbol NIL, not in the vocabulary of the grammar, is used
to mmk the end of each rule's right-hand side. The RAM
may be accessed by the communications unit through the
second internal data bus 11 for the purpose of allowing the
host processor to write into the RAM the grammatical rules
according to which the parsing is done. Alternatively, the
RAM may be a mad-only memory, which permanently
stores a predefined set of grammatical rules.

In this embodiment, the random access memory unit
contains additional space for the storage of two parsing
tables, P-TABLE and N-TABLE. P-TABLE relates the non
tenn.inal symbols of the grammar to the number of the record
of the fast production in their list of alternatives in the RAM.
This ioformation is used by the parsing algorithm and is
stored at an offset P _OFFSET from the first word of the
RAM, beyond the end of the space used to store the
grammatical rules. N-TABLE is a table of all the symbols in
the grammar and the special symbol NIL that indicates for
each one whether it may derive the empty string after one or
more derivation steps (i.e., whether it may be nulled). This
table is storm at an offset N_OFFSET from the fast word of
the RAM, beyond the end of the space used to store the
P-TABLE. These tables are also shown in FIG. 4.

The parsing control unit 3 in FIG. 1 is connected to the
associative memory unit and to the random access memory
unit as already described. The parsing control unit is also
connected by the second internal data bus 11 and by control
lines S4, S5, and S6 to the communications unit. The second
internal data bus 11 is used to transfer commands and input
symbols to the parsing control unit, and to read status
information from the same. Control line S4 is the SYM
BOL_REQUESTline from the PCU to the communications
unit, while S5 is the SYMBOL_READY line in the converse
direction. Control line S6 is the END_OF _PARSE line from
the PCU to the communications unit Because the parsing
control unit is a finite state machine that embodies the
chosen parsing algorithm, it is optimized both with regard to
speed and size. In this preferred embodiment, the parsing
control unit is designed to execute a version of Earley's
algorithm, "An Efficient Context-free Parsing Algorithm,"
Communications of the Association for Computing Machin
ery, Vol. 13, No. 2, p. 94-102, known in the art, and includes
some optimizations of the original algorithm, suggested by
S: Graham et al., "An Improved Context-free Recognizer,"
A CM Transactions on Programming Languages and Sys
tems, Vol. 2, No. 3, 1980, p. 415-462. According to Earley' s
algorithm. in the preferred embodiment the parsing control

EX 1017 Page 164

"~34;:

“ukfi'.”e2...‘
.5,.»

‘9‘c

»«.9.ha‘~

quu.7”

race.”7

5,511,213
7

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG 1 illustrates an embodiment of the present invention
suitable for the execution of a wide family of parsing
algorithms. Referring to the same figure, the system includes
an associative memory unit 1 and a communications and
parsing control unit 5. The connnunications and parsing
control unit includes a random access memory unit 2, a finite
state parsing control unit 3, a conununicutions unit 4, a first
data bus 10, a second data bus 11, and other signals further
detailed below.

Associative memory unit 1 is connected by the internal
data bus 10 and by control fines SI and 82 to the parsing
control unit The associative memory unit (CAM) is used for
the storage of parsing state representations and its word
width is commensurate with the number of bits required for
the representation of parsing states. The parsing state rep-
resentations produced by the parsing control unit may he
transferred. i.e., written, to the associative memory through
the internal data bus 10. Likewise, parsing states stored in
the associative memory may be transferred in the opposite
direction. i.e., read, to the parsing control unit by means of
the same internal data bus 10. To provide for fast data
transfers between the associative memory and the parsing
control unit, in one bus cycle, the width of the first data bus
10 is equal to the width of one CAM {word Control line 81
from the parsing control unit to the associative memory is
the operation select code for the Operation requested of the
associative memory. Control line 82 from the associative
memory to the parsing control unit is a match flag produced
by the associative memory after a march operation. Because
an associative memory is used for the storage of pmsing
state representations, operations such as the insertion of a
new parsing state into the CAM may be performed in
constant time, independent of the amber of parsing stares
already generated, and the performance degradation result-
ing from the use of random access memory in avon Neu-
mzmn computer for the storage of the same representations
is mitigated. Also, because an associative memory is used,
multiple access patterns are permitted into the parsing state
repiesentatious, without the overhead of additional data
structures. These multiple access patterns play a role in the
implementation of some optimizations of the parsing algo-
rithm to be embedded in the finite state parsing control unit.

The general organization of the associative memory unit
mated by the prefened embodiment is shown in FIG. 2.
This device has one array 20 ofcontent addressable memory
cells. one data register 21, one mask register 22, time
general purpose match registers 23, 24, and 25, a priority
encoder 26 for multiple response resolution, and an internal
control section 27 for control of CAM operations. The
device has an associative method of word selection for read
and write operations, in which word selection is achieved by
the use of one of the match registers B, 24. or 25, and the
priority encoder 26. The memory receives data and control
signals from the outside through data and control buses 28
and 29, and produces one match signal .MATCHFLAG 30
after the execution of match operations. The set of opera-
tions provided by the associative memory unit is thither
detailed below in the description of the parsing control unit.

Random access memory unit 2 in FIG. 1 is connected to
the parsing control unit and other system components by a
second internal data bus 11 and by address and control lines
S3 from the PCU. Physically. the RAM is organized as a
linear array of words, divided into logical records of several
words. The number of bits per RAM word must be selected

ll)

15

30

45

50

55

65

8

according to the number of terminal and non-terminal sym-
bols in the 81'; for example, with a word width of ten
hits a total of 1024 difi'erent symbols may be encoded We
letPIEN be the number of words in one logical RAM record
and require that it be at least one more than the number of
symbols in the longest grammatical rule to he represented.
The grammatical rules arecrdered by their left-hand side
symbol and numbered from zero to some positive integer
PMAX, so that the number ofRAM words required to store
the grammatical rules is PLEN times PMAX.

The rules of FIG. 3 constitute a simple graunnar with four
non-tenninal symbols 2, S, NP, and VP, and three terminal
symbols “3;”. “John". and "thinks”; Z is the start symbol of
the grammar. and “$” is the “end—of—input—string” marker.
Each grammatical rule is stored in one logical RAM record,
as shown in FIG. 4, with one RAM word used to store each
of the rule’s symbols. In this preferred embodiment. the
logical records have a fixed number of words, such that the
j-th symbol of the [nth grammatical rule may be retrieved
fi'omtheRAMwordataddresspdmesPLENplusj. The
symbol NIL, not in the vocabulary of the grammar, is used
to mark the end of each rule’s right-hand side. The RAM
may be accessed by the communications unit through the
second internal data bus 11 for the purpose of allowing the
host processor to write into the RAM the grammatical rules
according to which the parsing is done. Alternatively, the
RAM may be a mad-only memory, which peonanently
stores a predefined set of grammatical rules.

In this embodiment, the random access memory unit
contains additional space for the storage of two parsing
tables, P—TABLE and N-TABLE. P-TABLE relates the now
terminal symbols of the grammar to the number ofthe record
of the fast production in their list of alternatives in theW.
This information is used by the parsing algorithm and is
stored at an oliset PflOFFSEI‘ from the first word of the
RAM, beyond the end of the space used to store the
grammatical rules. N—‘IIABLE is a table of all the symbols in
the grammar and the special symbol NIL that indicates for
each one whether it may derive the empty string after one or
more derivation steps (to, whether it may be culled). This
table is storm at an offset N_0FFSE1‘ from the fast word of
the RAM, beyond the end of the space used to store the
P-TABLB. These tables are also shown in FIG. 4.

The parsing control unit 3 in FIG. 1 is connected to the
associative memory unit and to the random access memory
unit as already described The parsing control unit is also
connected by the second internal data bus 11 and by control
lines 84, SS, and 86 to the communications unit. The second
internal data bus 11 is used to transfer commands and input
symbols to the parsing control unit, and to read stems
information from the same. Control line S4 is the SYM-
BOL_REQUES'I‘ line from the PCU to the communications
unit, while SS is the SYMBOL_READY line in the converse
direction. Control line 86 is the END_OF_PARSE line from
the PCU to the communications unit. Because the parsing
control unit is a finite state nmchine that embodies the
chosen pacing algorithm. it is optimized both with regard to
speed and size. In this preferred embodiment, the parsing
control unit is designed to execute a version of Harley’s
algorithm, “An Eflicient Context-free Parsing Algorithm,"
Communicafions of the Association for Computing Machin—
ery, Vol. 13, No. 2, 9. 944.02, known in the art, and includes
some optimizations of the original algorithm, suggested by
3; Graham et al., “An Improved Contexttree Recognizer,"
A CM Transactions on Programming Languages and Sys~
terns, Vol. 2, NO- 3. 1980. p. 415—462. According to Harley’s
algorithm. in the preferred embodiment the parsing control

EX 1017 Page 164

..
,

5,511,213
9

unit has a main procedure that initializes the machine, writes
an initial parsing state into the associative memory unit, and
then reads unprocessed states from the CAM and processes
them according to one of three actions: PREDICT, COM
PLETE, and EXAMINE, to be detailed below. The embodi- 5
ment is most general, allowing arbitrary context-free gram
mar rules, including grammar rules with zero right-hand side
symbols. In this version, the algorithm uses a number k of
"lookahead'' symbols equal to zero. Modification of this
feature of the algorithm is within the state of current an and

10
may be made by those skilled in the art.

The parsing state representations stored in the associative
memory unit are bit patterns arranged into seven fields
named "first-word-index", "last-word-index", "rule-num
ber'', "dot-position", "left-hand-side" symbol, "symbol-af-

15 ter-dot", and "processed-bit", as shown in FIG. 5. The data
in the fifth and sixth fields, "left-hand-side" symbol and
"symbol-after-dot'', respectively, are redundant, since they
may be obtained from the grammar rules stored in the
random access memory knowing the "rule-number'' and

• 20 "dot-position" values. However, the operation of retrieving
the symbol on the right side of the dot is essential to the three
actions of the algorithm, particularly the COMPLEIBR, and
hence the "symbol-after-dot'' field is included in the parsing
state representations to facilitate and speed up the execution
of this operation. Similarly, the inclusion of the fifth field, 25

''left-hand-side" symbol, allows the implementation of an
important optimization to the COMPLEIBR step. A com
plete behavioral description of the parsing control unit,
corresponding to Earley's algorithm with the noted optimi
zations, appears below in TABLE 1, pans A through G. The 30

first data bus 10 of FIG. 1 is referred to as CAM_BUS in the
descriptive code, and the second data bus ll of the same
figure is referred to as D_JIUS in the same code. The
behavioral description assumes the purely associative

35 memory of FIG. 2, with one data and one mask register, and
with three match registers MRl, MR2, and MRJ, which may
be used for word selection in the CAM operations. The
behavioral description of the CAM operation codes assumed
by the parsing control unit is given in TABLE 2, below.

40
The communications unit is connected to the associative

memory unit, the random access memory unit, and the
parsing control unit through the second internal dam bus 11.
The CU accesses, through said second internal data bus 11,
the finite state parsing control unit for the purposes of 45
initializing it and supplying to it input symbols of the input
string to be analyzed. The unit also accesses the CAM at the
end of a parsing process for the purpose of reading out and
sending to the host processor the parsing state representa
tions and any other information that may be relevant to 50
further processing of the input string. In this embodiment,
the communications unit implements a communications
protocol for computer peripherals that may be supported by
small computers and workstations. This allows the use of the
associative processor object of the present invention as an 55
internal or external peripheral device for a wide variety of
computers.

The operation of the associative parsing machine, accord
ing to the behavioral description of its components given in
TABLE 1 and TABLE 2 below, with the grammar of FIG. 3 60
and for the input string "John thinks $" will now be
described with reference to FIG. 6 and FIGS. 7A to 7C.

When the associative parsing machine starts its operation

10
access memory. Thus, for the grammar of FIG. 3, the RAM
configuration is that shown in FIG. 4. FIG. 6 is a flow chart
that shows the general operation of the system, including
loading of the analysis grammar, invocation of the main
recognizer procedure, execution of optional post-processing
actions, and extraction of the parse information.

The parsing control unit of the machine uses an associa-
tive memory with one data register DATA~G. one mask
register MASK_REG, and three match registers MRl, MR2,
and MRJ. MRI is used as a general "match" register, MR2
as a temporary "match" register, and MR3 as a ''free words"
register. The parsing control unit contains three registers
CURRENT_SET, INPUT_SYMBOLS, and NEXT_SYM
BOL which are used to store the number of the current
parsing state set being processed (last-word-index), the
number of symbols from the input string already seen, and
the next input symbol from the input string. A one bit flag
EXIST_SYMBOLis use to indicate that the NEXT_SYM
BOL register currently contains the next input symbol from
the input string. The parsing control unit also has a data
register DR used for storing parsing state representations
and a STATUS register'with "accept" and "error'' fields, into
which the result of recognition of the input string is depos
ited, in the "accept" field of the register. An END_OF-
_PARSE one bit flag is used to signal the communications
unit the end of the parsing process for the input string.

The descriptive code corresponding to the top level of the
parsing control unit (RECOGNIZER) is shown in TABLE 1,
part A. The code contains steps to initialize the recognizer,
write an initial parsing state representation into the CAM,
dynamically compute the set of all parsing state represen
tations, and test for acceptance of the input string, depending
on the set of parsing states computed. The intialization steps
of the recognizer in the code of JNlTIALIZE_RECOG-
NIZER, shown in TABLE 1, part B, reset the CURRENT
_SET and other registers of the machine, reset the STATUS
accept and END_OF_PARSE flags, clear the associative
memory, and according to the operation CLEAR.CAM, in
TABLE l, part G, set the ''free words'' register MR3 of the
CAM, indicating that initially all CAM words are free.
Immediately thereafter the parsing control unit assembles
and writes into the CAM an initial parsing state represen
tation that corresponds to the application of the production
for the initial symbol of the grammar in a top-down deri
vation. This is shown in the code of WRITE_INITIAL
_STAIB, also in TABLE l, part B. This initial parsing state
corresponds to the zero-th production of the grammar in
FIG. 3 and has first and last word indices equal to zero, rule
number equal to zero, dot position equal to zero, left-hand
side symbol equal to the numeric code of Z, symbol-after
dot equal to numeric code of S, and processed-bit mark in
zero. The contents of the CAM after insertion of this parsing
state are shown in FIG. 7A.

The principal part of the RECOGNIZE-R code consists of
an iteration cycle in which the CAM is searched for unproc
essed parsing states in the current state set and, if any are
found, these are processed, one at a time, according to one
of three actions: PREDICT, COMPLEIB, and EXAMINE,
depending to the type of the symbol found in the "symbol
after-dot" field of the unprocessed parsing state. PREDICT
is applied when the symbol after the dot is a non-terminal
symbol, COMPLEIB when there is no symbol (i.e., Nil..)
after the dot, and EXAMINE when the symbol is a terminal
symbol. The processing of each state includes toggling its in response to a command from the host processor or

external interface, it requires that the parsing grammar, the
productions table (P-TABLE), and the nullable symbols
table (N-TABLE) have already been loaded into the random

65 processed-bit mark to one (i.e., marking it as processed). The
descriptive code for the three actions PREDICT, COM
PLEIB, and EXAMINE is shown in TABLE 1, part C. The

EX 1017 Page 165

'

69

5,511,213
9

unit has a main procedure that initializes the machine, writes
an initial parsing state into the associative memory unit, and
then reads unprocessed states from the CAM and processes
them according to one of three actions: PREDICT, COM-
PLETE, and EXAMINE, to be detailed below. The embodi-
ment is most general, allowing arbitrary context-free gum-
mar rules, including grammar rules with zero right-hand side
symbols. In this version, the algorithm uses a number k of
“lookahead” symbols equal to zero. Modification of this
feature of the algorithm is within the state of current an and
may be made by those skilled in the art.

The parsing state representations stored in the associative
memory unit are bit patterns arranged into seven fields
named “first-word-index", "last-word-index", “mic-num-
ber", “dot-position”, “left-hand—side” symbo , “symbol-af-
ter-dot”, and "processed-bit", as shown in FIG. 5. The data
in the fifth and sixth fields, “left-hand-side" symbol and
“symbol—after-dot”, respectively, are redundant, since they
may be obtained from the grammar rrrles stored in the
random access memory knowing the “rule-number“ and
“dot-position” values. However, the operation of retrieving
the symbol on the right side ofthe dot is essential to the three
actions of the algorithm, particularly the COMPLEI'ER, and
hence the “symbol-after—dot" field is included in the parsing
state representations to facilitate and speed up the execution
of this operation. Similarly, the inclusion of the fifth field,
‘1eft—hand-side” symbol, allows the implementation of an
important optimization to the COMPLETER step. A com-
plete behavioral description of the parsing control unit,
corresponding to Harley's algorithm with the noted optimi—
zations, appears below in TABLE 1, pans A through G. The
first data bus 10 ofFIG. 1 is referred to as CAM__BUS in the
descriptive code, and the second data bus 11 of the same
figure is referred to as D_BUS in the same code. The
behavioral description assumes the purely associative
memory of FIG. 2, with one data and one mask register, and
with three match registers MR1, MR2, and MR3, which may
be used for word selection in the CAM operations. The
behavioral description of the CAM operation codes assrmred
by the parsing control unit is given in TABLE 2, below.

The communications unit is connected to the associative

memory unit, the random access memory unit, and the
parsing connol rmit through the second internal dam bus 11.
The CU accesses, through said second internal data bus 11,
the finite state parsing control unit for the purposes of
initializing it and supplying to it input symbols of the input
string to be analyzed. The unit also accesses the CAM at the
end of a parsing process for the purpose of reading out and
sending to the host processor the parsing state representa-
tions and any other information that may be relevant to
further processing of the input string. In this embodiment.
the communications unit implements a communications
protocol for computer peripherals that may be supported by
small computers and workstations. This allows the use of the
associative processor object of the present invention as an
internal or external peripheral device for a wide variety of
computers.

The operation of the associative parsing machine, accord—
ing to the behavioral description of its components given in
TABLE 1 and TABLE 2 below, with the grammar of FIG. 3
and for the input string “John thinks 5" will now be
described with reference to FIG. 6 and FIGS. 7A to 7C.

When the associative parsing machine starts its operation
in response to a command from the host processor or
external interface, it requires that the parsing grammar, the
productions table (P-TABLE), and the nullable symbols
table (N-TABLE) have already been loaded into the random

10

15

20

25

30

35

45

55

60

65

10
access memory. Thus, for the grammar of FIG. 3, the RAM
configuration is that shown in FIG. 4. FIG. 6 is a flow chart
that shows the general operation of the system, including
loading of the analysis grammar, invocation of the main
recognizer procedure, execution of optional post—processing
actions, and extraction of the parse information.

The parsing control unit of the machine uses an associa-
tive memory with one data register DATA_REG, one mask
register MASK_REG, and three match registers MR1, MR2,
and MR3. MRI is used as a general ‘hnatch” register, MR2
as a temporary “match" register, and MR3 as a “free words"
register. The parsing control unit contains three registers
CURRENT_SET, INPUT_SY'MBOLS, and NEXI‘_SYM-
BOL which are used to store the number of the current

parsing state set being processed (last-word-index), the
number of symbols from the input string already seen, and
the next input symbol from the input string. A one bit flag
EXIST_SYMBOL is use to indicate that the NEXI‘_SYM-
BOL register currently contains the next input symbol from
the input string. The parsing control unit also has a data
register DR used for storing parsing state representations
and a STATUS register‘with “accept" and “error" fields, into
which the result of recognition of the input string is depos-
ited, in the “accept" field of the register. An END_OF—
_PARSE one bit flag is used to signal the communications
unit the end of the parsing process for the input string.

The descriptive code corresponding to the top level of the
parsing control unit (RECOGNIZER) is shown in TABLE 1,
part A. The code contains steps to initialize the recognizer.
write an initial parsing state representation into the CAM,
dynamically compute the set of all parsing state represen-
tations, and test for acceptance of the input string, depending
on the set of parsing states computed. The intialization steps
of the recognizer in the code of INI'I‘IALIZE_RECOG—
NIZER, shown in TABLE 1, part B, reset the CURRENT—
_SET and other registers of the machine. reset the STATUS
accept and END_OF_PARSE flags, clear the associative
memory, and according to the operation CLEARCAM, in
TABLE 1, part G, set the "free words" register MR3 of the
CAM, indicating that initially all CAM words are free.
Immediately thereafter the parsing conuol unit assembles
and writes into the CAM an initial parsing state represen-
tation that corresponds to the application of the production
for the initial symbol of the grammar in a top-down deri-
vation. This is shown in the code of WRITEJNITIAL—
__STATE, also in TABLE 1, part B. This initial parsing state
corresponds to the zero-th production of the grammar in
FIG. 3 and has first and last word indiccs equal to zero, rule
number equal to zero, dot position equal to zero, left-hand-
side symbol equal to the numeric code of Z, symbol-afier—
dot equal to numeric code of S, and processed-bit mark in
zero. The contents of the CAM after insertion of this parsing
state are shown in FIG. 7A.

The principal part of the RECOGNIZE-R code consists of
an iteration cycle in which the CAM is searched for unproc-
essed parsing states in the current state set and, if any are
found, these are processed, one at a time, according to one
of three actions: PREDICT, COMPLETE, and EXAMINE,
depending to the type of the symbol found in the “symbol-
after-dot" field of the unprocessed parsing state. PREDICT
is applied when the symbol alter the dot is a non~terminal
symbol, COMPLETE when there is no symbol (i.e., NIL)
after the dot, and EXAMINE when the symbol is a terminal
symbol. The processing of each state includes toggling its
processed-bit mark to one (i.e., marking it as processed). The
descriptive code for the three actions PREDICT, COM-
PLETE, and EXAMINE is shown inTABLE 1, part C. The

EX 1017 Page 165

,

j

L

5,511,213
11

descriptive code for the search ofunprocessed parsing states
from the current state set appears in the code of
MATCH_UNPROCESSED_STA'IES in TABLE 1, part F.

The first parsing state to be processed by the machine is
the initial state inserted into the CAM, as part of the s
initialization steps of the RECOGNIZER code. This parsing
state is first read from the CAM into register DR of the
parsing control unit, and then processed according to the
PREDICT operation, since the symbol S found in the
"symbol-after-dot" field is a non-tenninal symbol. The PRE- 10
DICT operation first searches the CAM to verify if the
"symbol-after-dot" in the state (S in this case) has not
already been predicted during processing of the current
parsing state set, and then marks the state processed by
toggling its "processed-bit" field to one and rewriting it into
the CAM. If the symbol has been predicted during process- 15

ing of the current parsing state set no further action is done
by the PREDICT operation. Otherwise, the operation seeks
grammar rules with the "symbol-after-dot" on the left-hand
side and for each one generates a new parsing state repre
sentation, to ·be added to the CAM as unprocessed. The new 20

states arc added into the CAM by the operation
ADD _STATE, shown in TABLE l, part D. According to this
operation, a new parsing state representation is not added
into the CAM if it is already found there, ignoring its
"processed-bit". The ADD_STATE operation may also add 25
some additional states into the CAM, if some symbols after
the dot in the original state to be added are nullable. Since
in the grammar of FIG. 3 there is only one rule for the
symbol S of the initial parsing state representation, and there
arc no nullable symbols, there is only one new parsing state 30
added into the CAM by the PREDICT operation, and the
CAM contents after execution of this operation arc the two
parsing states shown in FIG. 7B.

After one more iteration in the RECOGNIZER code, in
which the production for the NP non-terminal symbol is 35
predicted, the associative processor is ready to apply the
EXAMINE operation to the first symbol "John" of the input
string. Symbols from the input string are obtained from the
communications unit by the GET_INPUf_SYMBOL opera
tion of TABLE l, part E. If the symbol is not already in the

40
NEXT_SYMBOL register, the operation raises the SYM
BOL_REQUEST signal to the communications unit and
waits until the unit responds with the SYMBOL_READY
signal in the converse direction, at which time the symbol
must be present on the data bus 11 (D_BUS) of FIG. 1 and 45
is loaded into the NEXT_SYMBOL register.

The parsing control unit continues operating as made
explicit in its behavioral description of TABLE 1, parts A
through G, until no parsing states axe found unprocessed in
the current parsing state set end the value of the CURRENT- so
_SET register is greater than the value in the INPUf_SYM
BOLS register. This condition signals the end of the
dynamic computation of parsing state representations for the
input string read. For the input string "John thinks $",
assumed as input to the associative parsing machine, the 5s
parsing state representations computed, and hence the con
tents of the CAM at the end of the iterations of the
RECOGNIZER, are shown in FIG. 7C. The last two steps of

12
unit is done through the operations of TABLE 1, part G.
These operations assume the basic operation codes of
TABLE 2 for the associative memory unit, and are macro
codes that utilize those primitive operations of the associa
tive memory.

Two optimizations of Barley's original algorithm appear
in the steps CHECK_IF _ALREADY _PREDICTED and
CHECK_IF _ALREADY _COMPLETED of the PREDICT
and COMPLETE operations in TABLE 1, part C. The two
steps, shown in TABLE 1, part F, help to avoid lengthy
computations in which a non-terminal symbol already pre
dicted during computation of the current parsing state set is
tried to be predicted again, or a non-terminal symbol already
completed from a given parsing state set is tried to be
completed again. A third optimization of the algorithm
appears in the o')leration ADD_STATE of TABLE 1, part D.
This operation handles in an efficient way what would
otherwise be a series of predict and complete operations on
nullable symbols, using the precomputed information on
nullable symbols from the N-TABLE.

In addition to the execution of the selected parsing
algorithm, the finite state parsing control unit may optionally
execute some post-processing operations, such as parse
extraction algorithms and useless parsing state marking and
elimination algorithms, to simplify further processing of the
parsing result by the host processor.

The chief advantage of the associative memory parsing
processor over a traditional von Neumann computer is that
it reduces the theoretical and practical time complexity of
universal parsing algorithms both with respect to grammar
size and input string length, in a compact manner. The
hardware implementation of the parsing algorithm to be
used also contributes significantly to speed of operation.
Additionally, when attached to the central processing unit of
a standard computer, the associative processor acts as a
dedicated parallel processor that frees general computing
resoutces of the host computer for other user tasks. An
advantage of the associative memory processor over other
parallel architectures for the execution of parallel parsing
algorithms, such as the systolic array architecture of Chiang
and Fu, is that the parallel processing element in the asso
ciative processor is its associative memory, which is better
suited for large scale VLSI implementation, due to its
regularity oflayout and interconnection patterns and its wide
range of applications. For the purposes of illustration, but
not of limitation, in the following TABLE 1, parts A through
G, an example behavioral description of the associative
processor in accordance with the invention is given. It
should be noted by those skilled in the art that the descrip
tion admits man), different structural realizations and that,
therefore, in the interest of generality, none such is given.

TABLE 1

Behavioral Description of Parsing Control Unit (PCU):
RECOGNIZER

the of the parsing control unit, as shown in the RECOG- RECOGNIZER:
NIZER code of TABLE 1, part A, are a test for acceptance 60 1• D111a register fields DR: <f, i, p, j, lbs, slld, pb>
of the input string, by searching the CAM for presence of a CAM MRI: General match register

Particular parsing state representation, and to signal the end CAM MR2: Temporary match regis1er
CAM MR3: Free words register

of the parsing process, by setting the END_OF _PARSE flag
to one. The details of the test for acceptance appear in
TABLE 1, part F.

Throughout TABLE 1, the interaction between the opera
tion of the parsing control unit and the associative memory

6S

INITIALIZE_RECOGNIZER;
WRITE_INITIAL_STATE;
repeat

MATCJLUNPROCESSED_STATES;

-·---*/

EX 1017 Page 166

5,511,213

11

descriptive code for the search of unprocessed parsing states
from the current state set appears in the code of
MATCl-I_UNPROCESSED_STATES in TABLE 1, part F.

The first parsing state to be processed by the machine is
the initial state inserted into the CAM, as part of the
inin'alization steps of the RECOGNIZER code. This parsing
state is first read from the CAM into register DR of the
parsing control unit, and then processed according to the
PREDICT operation, since the symbol S found in the
“symbol-after-dot" field is a non-terminal symbol. The PRE-
DICI‘ operation first searches the CAM to verify if the
“symbol-after-dot“ in the state (S in this case) has not
already been predicted during processing of the current
parsing state set, and then marks the state processed by
toggling its “processed-bit" field to one and rewriting it into
the CAM. If the symbol has been predicted during process-
ing of the current parsing state set no firrther action is done
by the PREDICT operation. Otherwise, the operation seeks
grammar rules with the “symbol-after-dot” on the left-hand
side and for each one generates a new parsing state repre-
sentation. tO’be added to the CAM as unprocessed. The new
states are added into the CAM by the operation
ADD_STATE, showninTABLE 1, part D. According to this
operation, a new parsing state representation is not added
into the CAM if it is already found there, ignoring its
‘processed-bit". The ADD_STATE operation may also add
some additional states into the CAM, if some symbols after
the dot in the original state to be added are nullable. Since
in the grammar of FIG. 3 there is only one rule for the
symbol S of the initial parsing state representalion, and there
are no nullable symbols, there is only one new parsing state
added into the CAM by the PREDICT operation, and the
CAM contents after execution of this operation are the two
parsing states shown in FIG. 7B.

Afier one more iteration in the RECOGNIZER code, in
which the production for the NP non-terminal symbol is
predicted, the associative processor is ready to apply the
EXAMINE operation to the first symbol “John" of the input
string. Symbols from the input string are obtained from the
communications unit by fire GE'I‘JINIPU'LSYMB0L opera-
tion ofTABLE 1, part B. Iftbe symbol is not already in the
NEXT_SYMBOL register, the operation raises the SYM-
BOL_REQUEST signal to the communications unit and
waits until the unit responds with the SYMBOL_READY
signal in the converse direction, at which time the symbol
must be present on the data bus 11 (D_BUS) of FIG. 1 and
is loaded into the NEXLSYMBOL register.

The parsing control unit continues operating as made
explicit in its behavioral description of TABLE 1, parts A
through G, until no parsing states axe found unprocessed in
the current parsing state set and the value of the CURRENT-
_SE1' register is greater than the value in the lNl’UT_SYM—
BOLS register. This condition signals the end of the
dynamic computation ofparsing state representations for the
input string read. For the input string “John thinks $",
assumed as input to the associative parsing machine, the
parsing state representations computed, and hence the con-tents of the CAM at the end of the iterations of the

RECOGNIZER, are shown in FIG. 7C. The last two steps of
the of the parsing control unit, as shown in the RECOG-
NIZER code of TABLE 1, part A. are a test for acceptance
of the input string, by searching the CAM for presence of a
particular parsing state representation, and to signal the end
of the parsing process, by setting the END_OF_PARSE flag
to one. The details of the test for acceptance appear in
TABLE 1, part F.

Throughout TABLE 1, the interaction between the opera-
tion of the parsing control unit and the associative memory

5

10

15

30

35

4O

45

50

55

60

65

12

unit is done through the operations of TABLE 1, part G.
These operations assume the basic operation codes of
TABLE 2 for the associative memory tmit, and are macro
codes that utilize those primitive operations of the associa-
tive memory.

Two optimizations of Earley’s original algorithm appear
in the steps CHECK_IF_ALREADY_PREDICI'ED and
CHECK_IF_ALREADY_COMPLETED of the PREDICT
and COMPLETE operations in TABLE 1, part C. The two
steps, shown in TABLE 1, part F, help to avoid lengthy
computations in which a non-terminal symbol already pre-
dicted during computation of the current parsing state set is
tried to be predicted again, or a non—terminal symbol already
completed from a given parsing state set is tried to he
completed again. A third optimization of the algorithm
appears in the operation ADD__STATE of TABLE 1, part D.
This operation handles in an eflicient way what would
otherwise be a series of predict and complete operations on
nullable symbols, using the precomputed information on
nullable symbols from the N-TABLE.

In addition to the execution of the selected parsing
algorithm, the finite state parsing control unit may optionally
execute some post-processing operations, such as parse
extraction algorithms and useless parsing state marking and
elimination algorithms, to simplify further processing of the
parsing result by the host processor.

The chief advantage of the associative memory parsing
processor over a traditional von Neumann computer is that
it reduces the theoretical and practical time complexity of
universal parsing algorithms both with respect to grammar
size and input string length, in a compact manner. The
hardware implementation of the parsing algorithm to be
used also contributes significantly to speed of operation.
Additionally, when attached to the central processing unit of
a standard computer, the associative processor acts as a
dedicated parallel processor that frees general computing
resources of the host computer for other user tasks. An
advantage of the associative memory processor over other
parallel architectures for the execution of parallel parsing
algorithms, such as the systolic array architecture of Chiang
and Fu, is that the parallel processing element in the asso-
eiative processor is its associative memory, which is better
suited for large scale VLSI implementation, due to its
regularity of layout and interconnection patterns and its wide
range of applications. For the purposes of illustration, but
not of limitation, in the following TABLE 1, parts A through
G, an example behavioral description of the associative
processor in accordance with the invention is given. It
should be noted by those skilled in the art that the descrip-
tion admits man), diiferent structural realizations and that,
therefore, in the interest of generality, none such is given.

TABLE 1

fl

Behavioral Description of Parsing Control Unit (PCU):RECOGNIER

RECOGNIZER:
I‘ Data register fields DR: <f, i, p, j, [111, sad, pb>

CAM MR1: General match register
CAM MRZ: Temporary match register
CAM MR3: Free words register-

INITIALIZE_RECOGNIZER;
WRITLINlTIAL_STATE;
repeat

MATcrrJNPRocassr-irLsrm;

EX 1017 Page 166

,.

l

13

TABLE I-continued

part A

Behovioral Description of Parsing Control Unit (PC{J):
RECOGNIZER

while MATCHEILSTATES do begin
READCAM MRI;
switch CLASS1FY(DR.sad) begin

NON_TERMINAL: PREDICT;
NIL: COMPLETE;
TERMINAL: EXAMINE;
default ERROR(O);

endswitch;
MATOLUNPROCESSED_STATES;

endwhilc;
CURRENT_SET :=CURRENT_SET+ I;
EXIST _SYMBOL := O;

until CURRENT_SET > INPUT_.SYMBOLS;
TEST__ACCEPI'ANCE;
END_OF_PARSE := I;

END.

5,511,213
14

TABLE 1

part C

5 Behavioral Description of PCU: PREDICT, COMPLETE,
EXAMINE

10

15

PREDICT:
CHECK..JF _ALREADY_PREDICTED;
MARK....STATE.J'ROCESSED;
if not(MATCHED_STATES) begin

FIRSTJ := P_TABLE[DR.sad];
LAST_P := P_TABLE[DR.sad+ IJ;
DR.f := CURRENT_SET;
DR.i := CURRENT_SET;
DR.j :=O;
DR.lhs := DR.sad;
repeat

DR.p :=FIRSTJ;
DR.sad := RULE[FIRST.J', lJ;
DR.pb := (DR.sad = NIL);
ADD_STATE;

-------------------- 20

FIRST_P :=F1RST_P+ 1,
nntil FlRST.J' = LASTJ;

TABLE 1

Behavioral Description of PCU: Ioitialiution routines

INITIALIZB_RECOGNIZER:
CURRENT_.SET := O;
INPUT_SYMBOLS := O;
EX1ST__5YMBOL := 0,
SYMBOL_REQUEST := O;
END_OF JARSE := O;
STATUS.accept := O;
STATUS.crror(OJ := O;
CLEARCAM;

END.
WRITE_IN1TIAL_STATE:

END.

DR.f := O;
DRj :=O;
DR.p := O;
DR.j :=O;
·DR.lbs := RULE(0, OJ;
DR.sad := RULE[0, lJ;
DR.pb :=O;
ADD_s'l'ATE;

25

30

35

40

endif;
END.
COMPLEI'E:

END.

CHECILIF_ALREADY_COMPLETED;
MARK.....STATILPROCESSED;
ifnot(MATCHED_STATESJ begin

DR.i :=DR.f;
DR.sad := DR.lbs;
MATOICAM MRI, DR,< 1, 0, I, !, I, 0, l>;
whilcMATCHED_STATESdobegin

READCAM MRI;
DR.i := CURRENT _SET;
DR.j := DR.j + I;
DR.nd := RULE[DR.p, DR.j + l];
DR.pb := O;
ADD_STATE;
SELECTNEXTCAM MRI;

endwhilc;
endif;

EXAMINE:
MAR!LSTATJLPROCESSED;
GET_INPUT_.SYMBOL;
if DR.sad = NEXT_.SYMBOL begin

DR.i :=CURRENT_.SET+ !;
DR.j := DR.j + 1;
DR.sad := RULE[DR.p, DR.j + 1];
DR.pb :=0;
ADD_STATE;

endif;
45 END.

50

EX 1017 Page 167

0
{'3 fir

5,5 1 1 ,213
13 14

TABLE l-cominued TABLE 1

I’m" 29$

Bdmvioml Dacfipfion of Parsing Comm] Unit (PCU'): 5 Behavioral Description of FCC; PREDICT, COMPLEI'E,
RECOGNIZER EXAMINE

while MATCEED_5'I‘A’IES do begin FRED! .
READCAM MR1; CHEMJLREADY_PREJICIED;
switch CLASSIFWDRSIL‘I) begin MARK_STATE_PROCESSED;

NON__TERMINAL: PREDICT; m if not(MATCIED_SI‘ATES) begin
N11: COWLETE; FMTJ := P_TABLE[Distal];
TERMINAL; EXAMINE; LASTJ .= P_TABLE[DKsad + 1|;
dcfault ERROR(0); DRJ := CURRENT_SEI':

endswimh; ' DIU = CURRENTJEI';
MATCl-LUNPROCESSEDVSTATES; DRj .= O;

endwhile; 15 Dths z: Dksad;CURRENT_SbT := CURRENT_SEI‘ + l; rcpca!
EXIST_SYMBOL := 0; DRp := FIRM};

until CURRENI‘_SEI‘ > [NPUT_SYMBOLS; DRJM .= RULEI FIRSTJ 1];
TESTJCCEPTANCE; Dpr := (DRJad = NIL);
END_OF_PARSE 7: 1; ADD_SI‘A’I‘E;

END, FIRST_P ,= HRST_P + l,
20 until 1:111er = LASTJ:

eudif;
END.

TABLE 1 com
CHECK_IF_ALREADY_OOMPLEI'ED;

pm 3 MARLSI‘ATEJROCFSSED;
. _ _ ‘ . 25 ifnoK MAIfllED_STATES) bcgin

Behaviozal Description of PCU: [Inhahuuun manna: DR.i .‘= DR5:
DRAM! .= DRJhs;

INITIALIZE_RECOGNIZER:
CURRENTJEI' := 0',

MATG‘ICAM MR1, DR, < 1. 0.1. l, 1. U. 1>‘.
while MATCHED_SI‘A’IE d0 begin

 INPUT_SYMBOI.S .= 0. mam MR1;
EXISTJYMBOL = 0. 30 mu .~= CURRENT__SEI‘;
SYMBOL_REQU$T := 0: DRj ,2 mg + 1;
END_OF_PARSE .= 0. mum -.= RULEI DR_p, 1m + 1);
STATUS-cucpt .= Dpr := 0;
STATUSmrlO] := 0; ADD_SI'ATE;
mm; mmMR];

m. endwhfle',
wm~msrnm 35 may;DR! .= 0; FM).

13111“ :=0. EXAMNE
DR—P = 0. MARKJTATLPROUSED:
DRj 7-0; GEI‘_1NPUT_SYMBOI..;
-DRJhs .= RULE! 0. 0]: if 1mm = NEXLSYMBOL begin
mum := RULE! 0, 11; 40 um :mm+ l'.
Dpr .= 0. mi .= 13le + 1;
ADD.SFATE; 1mm .= RULEI DKp, ij + 1];

END. 1)pr = 0.
ADD_5TATE;

mdlf:
45 END.

50

EX 1017 Page 167

...

L

0

5,511,213
15

TABLE 1

part D

Behavioral Description of PCU: ADD_STATE

ADD_STATE:
WRITESETCAM MR3, DR, < 0, 0, 0, 0, 0, 0, I>;
if not(MATCHED_STATFS) begin

repeat
NULLABLE := N_TABLE[DR.sad);
if NULLABLE begin

DR.j := DR.j + I

16

DR.sod := RULE[DR.p, DR.j + I];
WRITESETCAM MR3, DR, < 0, 0, 0, 0, 0, 0, I>;

enclif;
until not(NULLABLE) OR MATCHED_STATFS;

cnclif;
END.

TABLE 1

part E

Bebaviornl Description of PCU: GET_INPUf _SYMBOI., CLASSIIFY

GET_INPUT_SYMBOL:

END.

if not(EXIST_SYMBOL) begin
SYMBOL_REQUEST := I;
w,ut on SYMBOL_READY;
NEXT_SYMBOL := D_BUS,
SYMBOL_REQUEST := O;
EXIST_SYMBOL := I;
INPUT__s\'MBOLS := INPUf_SYMBOLS + l;

enclif;

CLASSIFY(SYMBOL):
,. AsSlllIICs an n-bit encoding of 'SYMBOL' as follows

Swt symbol (ZETA): 2· (n-1)
Other non-lerminals: 2· (n-1), ... , r n - I
Terminau: I, ... , 2· (n-1) - 1
End-of-string (NIL): 0
-------------------- .,

NT= SYMBOL[n-1];
ZERO = not(OR(SYMBOL[n-2], .•. , SYMBOL[01));
if (NT AND ZERO) begin rctum(ZETAJ endif;
if (NT AND not ZERO)) begin ieturn(NON_TERMINAL) enclif;
if (not NI) AND not(ZERO)) begin Jeturn(TERMINAL) enclif;
if (not(NT) AND ZERO) begin ieturn(NIL) enclif;

END.

TABLE 1

Behnviornl Dcscriptioo of PCU: Other Macros

MATCH_UNPROCFSSED_STATES:
DR.i := CURRENT_SET;
DR.pb :=O;
MATCHCAM MRI, DR,< I, 0, I, I, I, l, O>;

END.
MARK_STATE_PROCFSSED:

DR.pb := I;
WRITECAM MRI, DR;

END.
CHECK_IF _ALREADY _PREDICTED:

DR.pb :=l;
MATCHCAM MR2, DR, < I, 0, I, I, I, 0, O>;

END.
CHECK_IF _ALREADY COMPLETED:

DR.pb := l;
MATCHCAM MR2, DR,< 0, 0, I, I, 0, 0, O>;

END.
ERROR(i):

STATUS.error[ii := I:

4S

TABLE I-continued

part F

50
Behaviornl Description of PCU: Other Mncms

END.

5S

60

TEST_ACCEPfANCE:

END.

DR.f := O;
DR.i := INPUf_SYMBOLS;
DR.p := O;
DR.j :=2;
MATCHCAM MR2, DR,< 0, 0, 0, 0, I, 1, l>;
STATUS.accept := MATCHED_STATES;

TABLE 1

part G

Bebavior.J Description of PCU: CAM Mncms

65 Tbe,e macros are expanded into primitive CAM opemion code•,
with the following usage of the tluce match regislers: MR 1 =

EX 1017 Page 168

O

5,511,213
15

TABLE 1

16

panD

Behavioral Description of PCU: ADD_S’1'ATE

ADD_STATE:
WRHESEI‘CAM MRS, DR. < 0,0,0, 0. 0,0, 1);
if nm(MKI‘CHEDJTATES) begin

repeal
NU'LLABLE := N_TABLE[DR.sad];
if NULLABLE begin

DR.j := DRJ + l
mum := RULE[DKp, mg + 11-,
WRII‘ESEI‘CAM MR3. DR. < 0. 0. 0, 0. 0, 0, 1);

endif;
until nnt(NULLABLE) 0R MATCHEDWSTATES;

endif;
END.

TABLE 1

Em E
Behaviunl Description of PCU: GET_INPU1'_.SYMBOL CLASSIIFY

GET_INPUT_SYMBOL:
if unt(EXISTJYMBOL) begin

SYMBOL_REQUEST := I;
wait on SYMBOL_READY;
NEXT;SYMBOL 2: D_BUS.
SYMBOLREQUEST := 0;
EXIST_SYMBOL .= l;
INPUTJYMBOLS := INPUT_SYMBOI3 + 1:

endif;
END.
CLASSIFY(SYMBOL):

I" Assumes an n-bit encoding of ‘SYMBOL‘ a: fnflnw:
Sun symbol (ZETA): 2‘ (n—l)
Other nun-Ieminals: 1‘ (11—1), . . ,, T n — l
Terminals: 1.. . ., 2“ (n—J) —1
Endmf-suing (NIL): 0
__ .____._.._.__._._________. *1

NT = SYMBOLI n—l];
ZERO = not(on SYMBOLI 11—2]. . . ., SYMBOL[on);
if (NT AND ZERO) begin mumGE'I‘A) end-if.
if (NT AND not ERG» begin remm(NON_TERWAL) endif‘.
if (not NT) AND um(ZERO» begin rem-M TERMINAL) endif‘,
if (not(NT) AND ZERO) begin mum NIL) endif;

END.

45

TABLE 1

part F

Behavioral Description of PCU: Other Macros 50
MATCH_UNPROCESSED_STATES:

DRJ r: CURRENT_SEI".
DR.pb := 0',
MATCHCAM MR1. DR1 <1, 0.1,1,1.1. 0>3

Hm. 55
MARK_STATE1.PROCESSED:

kab := 1',
WRITECAM MR1. DR;

END.
CHECK.U=_ALREADY_PREDIC1'ED:

[)pr :-- 1; 60
MATCHCAM mum. <1,o,1,1,1,o,0>;

END.
CHECK_IF_ALRFADY COMPLETED:

DKpb .2: 1;
MATCH-{MM MRZ, DR. < 0.0.1.1,0,0,0>;

END. 65ERROR(i):
STATUS.emrI i] := I:

TABLE l-coulinued

part1?

Behavioral Descripn'un of PCU: Other Macros
END.
1BT_AOCEPTANCE‘

DR.f .= 0;
mm : INPUT_SYMBOLS:
DRp '
DRj : ;
MATCHCAM MRI. DR, < 0, 0, 0, 0, l. 1. 1>;
STATUS.acuept := MATCHED_STATES;

.3

TABLE 1

111116

Behavioral Description of PCU: CAM Munro:1

These macros are expanded into plimifive CAM opemiun codes,
with the folluwing usage of the Khxee much registers: MRI =

EX 1017 Page 168

,..

L

0

5,511,213
17 18

TABLE I-continued TABLE I-continued

part G

Behavioral Description of PCU: CAM Ml!Cl"os

IDll!ch regmcr, MR2 = tcmpomy match register, MR3 =
free words register.
CLEARCAM:

a.EAR;
SETREGMR3;

END.
READCAM REG:

READ REG;
DR := CAM_BUS;

END.
WRITECAM REG, DATA:

END.

CAM_BUS = DATA;
WRITE REG;

SELECI'NEXTCAM REG:
SELECTNEXT REG;
MATCHED-5TATES := MATCHFLAG;

END.
MATCHCAM REG, DATA, MASK:

CMLBUS = MASK;
LOADMASK;
CAM_BUS = DATA;
MATCH REG;

Behavioral Description of CAM Operation Codes

TABLE2

,. CAM rcgistcn: DATA_REG, MASK_REG, MRI, MR2, MR3
CAM width: WCAM (bits per wntd)
CAM height: HCAM (number of wntds)
CAM{ i] is the i-th CAM word, for i = l, ... , HCAM

5 Behavioral Description of PCU: CAM Macros

10

15

20

MOVEREG REG, (REG AND not(MR3));
MATCHED_STATES := MATCHFLAG;

END.
WRITESEfCAM REG, DATA, MASK:

END.

CAMJIUS = MASK;
LOADMASK;
CAM__BUS = DATA;
MATCHMR2;
MOVEREG MR2, (MR2 AND not(MR3));
MATCHED_STATES := MATCHFLAG;
if not(MATCHFLAG) begin

WRITE REG;
SELECTNEXT REG,

endif;

Also, for the purposes of illustration, but not of limitation,
in the following TABLE 2, a behavioral description of the

CAM operation codes assumed by the parsing control unit is

given.

________ .,
CLEAR:

END.

DAT,_REO := O;
MA.SIL.REG := O;
MRl[i]:=O;
MR2[ii :=O;
MR3[i] :=O;

1• MASK rcgistcr. "O'' don't maslc; "l" mask
,. MATCH register I, for i = l, •.• , HCAM
,. MATCH rcgi•tcr 2, for i = I, •.. , HCAM
,. MATCH rcgister 3, for i = l, ... , HCAM

READ REG: /• REG = MRI, MR2, or MR3

END.

DATA.JU!G := CAM[PRIORITY[REG]);
CAM_BUS = DATA_REG;

WRITE REG:
DATA_REO := CAMJIUS;
CAM(PRIORITY[REGJ] := DATA_REG;

END.

,. REG = MRI, MR2, or MR3

., ., ., .,

.,

.,

SEIBCI'NEXT REG: /* REG= MRI, MR2, or MR3 •/
REG := SELECT _NEXT(REG); J• resets I.SB of REG set to 'T' • J
MATCHFLAG := OR(REG(!], REG[HCAM]);

END.
LOADMASK:

MASILREG := CAM_BUS;
END.

SEI'REG REG:
REG[l] :=I;

END.
RESEfREG REG:

REG[i] :=0;
END.

/* REG = MRI, MR2, or MR3
,. for i = l, ... , HCAM

/* REG = MRI, MR2, or MR3
/* for i = I, ... , HCAM

., .,

., .,
MOVEREG REG, expression: /+ REG = MRI, MR2, or MR3 */

/* expression: register, Boolean */
REG[i] := expression[i]; J• for i = 1, ••• , HCAM */
MATCHFLAG := OR(REG[l], ... , REG(HCAM]);

END.
MATCH REG: /* REG = MRI, MR2, or MR3

DATA_REG := CAM_BUS;
SEARCILPATTERN = DATA_REG • MASILREG;
MUNE[i] = MATCH(CAM[i], SEARCH_PATIERN);
MATCHFLAO := OR(MLINEI 1), ... , MLINE(HCAMJ);
REG(i] := MLINE(i]; /• for i = 1, ... , HCAM

.,

.,

EX 1017 Page 169

5,511,213
17 18

TABLE l-confinued TABLE Hominued

pan G 2'" G

Behavioral Ikscciptiun of FCU: CAM Macros

match rcgimer. M112 = tamper-fly match mgr'smr, MIG =

5 Behavioral Description of PCU: CAM Macros

MOVEREG REG, (REG AND nul(MR3»;

free words maim- MATCHED_STATES .= MATCEFLAG;
CLEARCAM: END

GEAR: WRII'ESETCAM REG. DATA. MASK:
SEFREG MR3: 10 CAM_BUS = MASK;HID. LOADMASK;

READCAM REG: CAM_BUS = DATA;
READ REG; MATCH MR2;
DR := CAM_BUS; MOVEREG MR2. (MR2 AND not(MR3»;

END. MATGIEJ__STA’I‘ES : MAICHFLAG;

WRITECAM REG, DATA:]5 if nm(MATCHFLAG) beginCAM_BUS = DATA; WRITE REG;
WRITE REG; SELECI'NEXT REG,

IND. endif‘.
SELECI‘NEXTCAM REG: END.

SELECTN'EXT REG,

MATCHEDJI‘ATES := MATCHELAG; 20
fiCI-ICAM REG. DATA. MASK: Also, for the purposes of illustration, but not of limitation,

3%:3: =MASK; in the following TABLE 2, a behavioral description of the
CAM_BUSE DATA; CAM operation codes assumed by the parsing control unit is
MATCH REG; given.

TABLE 2

Behaviorll Description of CAM Opcmion Codes

I“ CAM registers: DATA___REG. MASK_REG, MRl, MR2. MR3
CAM width: WCAM (hits per word)
CAM height HCAM (amber of words)
CAMIiIislhei—IhCAMwoM.furi=l,...,I-ICAM._._ __._.._..._._...___. t]

CLEAR:
DATA__REG := 0-,
MASLREG := 0: l‘ MASK mgislu: “0" don't ml: “l" mu]: ’I
MR1| i] := I“ MATCH register 1. for i = 1.. . .. HCAM 'I
MRZIi] _ I'MATG-l mgirmrzfori=l.....l-ICAM ‘I
MR3Ii].=0, l'MATCI-lmgisterB.fari=l.....HCAM 'I

END.
READREG: I‘Rm=MRl,Nm2.oerR3 ‘I

DATUEG .= CAMI PRIOqu REG";
CAM_EUS = DATA_REG;

END.
WRITE REG: l‘ REG = MR1, MR2. Dr MR3 *l

DATLRBG .= CAMJUS:
CAMl PRIORITY[REGn := DATA_REG;END. .

SELEcrNExr REG: /* REG = MR1. MR2. or MR3 ‘I
REG :.—. SELEC1'_NEXI‘(REG); /' mus 153 of REG 5:: to "1" ‘I
MATCHFLAG r: 0R(REG[l]. REGI HCAMl);

DID.
mADMASK:

MASLREG := CAM_BUS;
END.

SEI'REGREG: FREG=MR1,MR2.orMR3 t/
REG[i]:=l; [*furi=l,,..,l-IDXM ‘lEND.

RESEI'REGREG: PREG:MR1,MR2,orMR3 "I
R.E5[i]:=0, Pfuri=l,....HCAM ‘IEND.

MOVEREG REG. expression: I" REG = MR1, MR2, or M18 ‘l
I‘ expression: ragister, Boolean *l

REGI i] :=exprcssion[i]; I’ fnri = l, . . ., HCAM ‘/MATCHFLAG := 0R(REG[1]. . . ., REG[HCAMI);
END
MATCH REG: rt REG = MR1, MR2, or MR3 ‘I

DATA_REG .= CAM_EUS:
SEARCl-LPA’ITERN = DATLREG t MASKJIEG;
MLlNEl i] = MATCH(CAMl i], SEARCH_PA'ITERN);
MATCHI-‘LAG := OR(MLINEI 1]. - . -. MUNE! HCAMI):
REG[i] :m[i]: l' furi: 1,. , .. HCAM ‘I

EX 1017 Page 169

J

l

... 0 ' 0

5,511,213
19

TABLE 2-continued

Behavioral Description of CAM Operation Codes

END.

While this invention bas been shown particularly and
described with reference to a preferred embodiment, it shall
be understood by those skilled in the an that numerous 10

modifications may be made in form and details of the
architecture, in the choice of the parsing algorithm to be
used, and in the particular embodiment of said algorithm,
that are within the scope and spirit of the inventive contri
bution, as defined by the appended claims. For example, the 15

associative memory unit has been shown with a particular
organization and set of operation codes it can execute, but
this does not preclude the use of other associative memory
means that can implement the required operations. Likewise,
different arrangements in the number and nature of the 20

control signals used to interconnect the system components
are possible. Variations and optimizations in the choice of
the parsing algorithm are possible, which may affect the time
and space complexity of the device. Some of the optimiza
tions referred to may require minor changes to the architec- 25
ture of the preferred embodiment, such as the inclusion of
additional tables for the parsing process. One such optimi
zation worth noting is the inclusion of a table or other means
in the random access memory to store the relation FIRSTk
between non-terminal and terminal symbols, to avoid use- 30

less predictions.

Fmally, the behavioral description of the parsing control
unit shown in Table l, corresponding to the particular
parsing algorithm chosen, or any other alternative one,
admits of many distinct physical realizations, such as may be 35

obtained by manual transformation of the specification into
structural, logical, electrical, and geometrical levels of
description, or as the same descriptions may be obtained by
means of automated synthesis tools for silicon compilation.

What is claimed is: 40

1. An associative memory processing system for execut
ing parsing algorithms and real time context-free language
processing and pattern recognition of an input symbol string,
said system comprising:

an associative memory unit logically arranged as an array
of words for storing parsing state representations, each
associative memory word being compared, in parallel
with all other words, to an input search pattern corre
sponding to a parsing state representation;

45

20

a random access memory unit for storing parsing data
including context-free language grammatical rules
according to which parsing is done for the context-free
language of the input symbol string;

a parsing control unit, connected to said associative
memory unit and said random access memory unit, for
accessing said associative memory unit to store and
retrieve parsing state representations according to an
input symbol string said parsing control unit being a
finite state machine that executes a parsing algorithm,
corresponding to the context-free language of the input
symbol string, for syntactically recognizing the input
symbol string; and

a communications unit for providing communication
between said associative memory processing system
and an extemal device.

2. An associative memory processing system as claimed
in claim 1 wherein said parsing control unit executes parsing
algorithms for natural language processing and pattern rec
ognition applications.

3. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of integrated circuit semiconductor
chips.

4. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of associative memory chips, and said
random access memory unit and said parsing control unit are
formed on a separate integrated circuit semiconductor chip.

5. An associative memory processing system as claimed
in claim 1 wherein all system components are formed on a
siµgle integrated circuit semiconductor chip.

6. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit accesses said
associative memory unit in an amount of time that is
constant and independent of an amount of parsing data
stored in said associative memory unit

7. An associative memory processing system as claimed
in claim l, wherein said parsing control unit performs
post-processing actions.

* * * * *

EX 1017 Page 170

..~:.'~‘=LC;

LLam‘s.tan-41:.

W...;.

Haw-(v.'

GVv-mume.

‘

5,511,213
19

TABLE 2~continued

20

Behavioral Description of CAM Operation Codes
END.

While this invention has been shown particularly and
described with reference to a preferred embodiment, it shall
be understood by those skilled in the an that numerous
modifications may be made in form and details of the
architecture, in the choice of the parsing algorithm to be
used, and in the particular embodiment of said algorithm,
that are within the scope and spirit of the inventive contri-
bution, as defined by the appended claims. For example, the
associative memory unit has been shown with a particular
organization and set of operation codes it can execute, but
this does not preclude the use of other associative memory
means that can implement the required operations. Likewise,
difi'erent arrangements in the number and nature of the
control signals used to interconnect the system components
are possible. Variations and optimizations in the choice of
the parsing algorithm are possible, which may afi'ect the time
and space complexity of the device. Some of the optimiza-
tions referred to may require minor changes to the architec-
ture of the preferred embodiment, such as the inclusion of
additional tables for the parsing process. One such optimi—
mtion worth noting is the inclusion ofa table or other means
in the random access memory to store the relation FERSTk
between non-terminal and terminal symbols, to avoid use-
less predictions.

Frnally, the behavioral description of the parsing control
unit shown in Table 1, corresponding to the particular
parsing algorithm chosen, or any other alternative one,
admits of many distinct physical realizations, such as may be
obtained by manual transformation of the specification into
structural, logical. electrical, and geometrical levels of
description. or as the same descriptions may be obtained by
means of automated synthesis tools for silicon compilation.

What is claimed is:
1. An associative memory processing system for execut-

ing parsing algorithms and real time context-free language
processing and pattern recognition of an input symbol string,
said system comprising:

an associative memory unit logically arranged as an array
of words for storing parsing state representations, each
associative memory word being compared' in parallel
with all other words, to an input search pattern corre-
sponding to a parsing state representation;

20

25

30

35

4O

45

a random access memory unit for storing parsing data
including context-free language grammatical rules
according to which parsing is done for the context-flee
language of the input symbol string;

a parsing control unit, connected to said associative
memory unit and said random access memory unit, for
accessing said associative memory unit to store and
retrieve parsing state representations according to an
input symbol string said parsing control unit being a
finite state machine that executes a parsing algorithm,
corresponding to the context-free language of the input
symbol suing, for syntactically recognizing the input
symbol string; and

a communications unit for providing communication
between said associative memory processing system
and an external device.

2. An associative memory processing system as claimed
in claim 1 wherein said parsing control unit executes parsing
algorithms for natural language processing and pattern rec-
ognition applications.

3. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of integrated circuit semiconductor
chips. .

4. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of associative memory chips, and said
random access memory unit and said parsing control unit are
formed on a separate integrated circuit semiconductor chip.

5. An associative memory processing system as claimed
in claim 1 wherein all system components are formed on a
single integrated circuit semiconductor chip.

6. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit accesses said
associative memory unit in an amount of time that is
constant and independent of an amount of parsing data
stored in said associative memory unit.

7. An associative memory processing system as claimed
in claim 1. wherein said parsing control unit performs
post-processing actions.

* I * * *

EX 1017 Page 170

J,

L

United States Patent [19]

Nuber et al.

[54) ACQUISfflON AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED
DATA STREAM

[75) Inventors: Ray Nuber, La Jolla; Paul Moroney,
Olivcohain; G. Kent Walker,
Escondido, all of Calif.

[73) Assignee: General Instrument Corporation of
Delaware, Chicago, m.

[•] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5,517,250.

(21) Appl No.: 562,611

[22) Filed: Nov. 22, 1'1~

[51) Int. CL 6
.... ·-·-·-·-- .. -- B04J 3/06; H04N 7/12

[52) U.S. Cl ·-·---···· 370'395; 370/510; 370/514;
375/366; 348/423; 348/462; 348/4(,6; 348/467

[58) Field of Search ---·-·-- 370/389, 395.
370/503, 5()1), 510, 514, 516; 375/362,

365,366,368,37i;348/423,461,462,
464,466,467

[56] Rtfeftnces Cited

U.S. PATENT DOCUMENTS

5,365,272 11/1994 Siracma ··-·-- 34&1461

11•11111111111111111a11
US005703877A

(111 Patent Number:

(451 Date of Patent:

5,703,877
*Dec. 30, 1997

5,376,969 12/1994 1.depski - ···-···---··- 3481466
5,467,342 1U1995 l.Dgston et al. 370/l53
5,517,250 5/1996 Hoogenboom et al 343/467
5,537,409 711996 Moriyama et al 370/471

Primary Emminer-Alpus H. Hsu
ArtoTne)I Agent, or Firm-Barry R. Lipsitz

[57) ABSTRACT

Audio data is processed from a pack:ctizcd data stream
cmying digital television infcrmation in a succession of
fixed length transport packets. Some of the packets contain
a presentation time stamp (Pl'S) indicative of a time for
commencing the output of associated audio data. Aft.er the
audio data stream has been acquired., the dctcctcd audio
packets arc monitored to locate subsequent PI'S's for adjust
ing the timing at which audio data is output. thereby
providing proper lip synchroni7.ation with associated video.
Errors in the audio data arc processed in a manner which
attempts to maintain syndlronization of the audio data
lllrcam while mas.king the errors. In the event that the
,yochronization condition cannot be maintained, for
example in the p-csence of Cll'Cl's over mere than one audio
ftamc, the audio data stream is reacquired while the audio
output is concealed. An error condition is signaled to the
audio decoder by altering the audio synchronization word
associated with the audio frame in which the error has
occurred.

25 Claims, 4 Dnwing Sheets

COMIAAND:FORCE IDLE ~l}OO

102 ,---
COMMANO:ACOUIRE '----JI

110

ERROR: PTS, SYNC. rN, ADP, ENC, RS, AUD, PmS FULL

EX 1017 Page 171

.‘3";if...
Hugs»

.{mason»

Lu

:0.»

United States Patent [19]
Nuber et al.

llllllllllllllllllllllllllflllflfllllllllllll
USOOS703877A

[11} Patent Number: 5,703,877

[45} Date of Patent: *Dec. 30, 1997

[54] ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZEI)
DATA STREAM

[75] Inventors: Ray Nnber, La Jolla; Paul Mornney,
Olivenhain; G. Kent Walker,
Escondido. all of Calif.

[73] Assignec: General Instrument Corporation of
Delaware, Chicago, 111.

P] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5.5 17250.

[2]] App]. No.: 561,611

[22] Filed: Nov. 22. 1995

[51] Int. Cl.‘ ..,.e....»..~-..m...m HM] 3/06; HMN 7/12
[52] US. Cl. 370/595; 370/510; 370/514;

375/366; 343/423; 348/462; 348/466; 348/467
[58] Field of Search 370/339, 395.

370/503, 509. 510, 514, 516; 375362,
365, 366, 368, 371; 348/423. 461. 462,

464, 466. 467

[56] Reference Cited

U.S. PATENT DOCUMENTS

5.365.272 11/1994 Siracnsa 348/461

5,376,969 12/1994 31qu 348/466
5,467,342 11/1995 Logston 04 I1. 370/253
5517.250 5/1996 Hoosenboomet al.,.. .
5,537,409 7/1996 Motiylma a a1. 370/471

Primry Exanlinerh—Alpus H. Hsu
Attorney Agent, or Finn—Barry R. Lipsitz

[57] ABSTRACT

Audio data is processed from a packetized data stream
carrying digital television inftrmation in a succession of
fixed length transport packets. Some of the packets contain
a presentation time stamp (PTS) indicative of a time for
commencing the output of associated audio data. After the
audio data stream has been acquired. the detected audio
packets are monitoredtolomte subsequent P'I‘S’s for adjust-
ing the timing at which audio data is output. thereby
providing proper lip synchronization with associated video.
Emir: in the audio data are processed in a manner which
attempts to maintain synchronization of the audio data
stream while masking the mars. In the event that the
synchronization condition cannot be maintained. for
example in the puence of enters over mire than one audio
flame, the audio data stream is reaoquired while the audio
output is concealed An moi- condition is signaled to the
audio decoder by slicing the audio synchronization word
associated with the audio frame in which the error has
counted. 4

25Claims,4DI-awingSheets

,- 1 00
oouwwwone: IDLE

arm-AUDIO PCR RECUVED l‘03 FULL
PTS ACOUIK

ERRORSTNC. ENC. RS.
EVENTWJDIO PIS AND DAM

RECENED

ERROR: PIS. SYNC. 0V, FDP.
ENC. RS. ADD, PIRS FULL

 ERRORISYNC. D10.
RS. AUD. PYRS

AUD. PTRS FULL

ERROR:PCR DISt

ERROR: PTS. me. ov. ADP. ENC. RS- AUD- ms FULL

EX 1017 Page 171

.. ' ,. ','' ,~ ,., >.

10\
s,
~I
c'

PES
HEADER

r
I
I
I
I
I
1 24
I
I
I

12 /14

AUDIO FRAME
SI

~:

(
20

PES PAYLOAD

12 /14 12 /14

~! ELEMENTARY
AUDIO FRAME AUDIO FRAME STREAM

I
I
I
I
I
I
I

I PES
PACKET

V O A V O A V O A V O A V 0 A

24

TRANSPORT
PACKETS

I
I

/ 30
'/
XPT

_H_D_R ___ P_A_YL_o_AD ____ ~

' - 24
188 BYTES(MPEG)

24 24

FIG. 1

e • 00 •
~ = """ a

i
--~ -~ ...,

EX 1017 Page 172

 I
I

I

J

XPT
HDR

1

 \

3° 32 “x‘\

PAYLOAD

88 BYTES(MPEG)

Z<U3

/’/’ I

fllflflfl
“a. 28 2

\24

I

MEI

“ /

AUDIO FRAME

\

\ 24 \\ \\

AI

22

5. ELEMENTARY
E} AUDIO FRAME STREAM

PES
PACKET

\\ ‘x\ 24

TRANSPORT

Ella mm
24

FIG. 1

11191321'S'fl

L661‘09”393

V5°I”OHS

LLS‘SOL‘S

EX 1017 Page 172

40

DECODER
µP

88

PCR

46

RESET

42

VIDEO CONTROL DATA
ADDR. + CONTROL 52

VIDEO

AUDIO ~~~_..;..;.;;.;:::;.:.;~--iAUDIO
DECODERt-------AUDIO OUT w

ADDR. + CONTROL
54 ~

FIG. 2
PROGRAM CLOCK

~- ------------------------------,
I
I
I PCR ,s:r--_....-~

60 62

LOOP
FILTER

46/

vco

64 66

COUNTER PROGRAM
CLOCK

68 tit ...
-..J

FIG. 3
es --QC
-..J
-..J

EX 1017 Page 173

PCR.

60

DECODER

TIME
CLOCK

ADDR. + CONTROL 48
Mpg}; VIDEO VIDEO

DECODER

DATA PARSING AUDIO BUFFER AUDIO AU

I ADDR. + CONTROLn

LOOP

52 54 as 68

42

VIDEO CONTROL DATA

DECODER

54

AUDIO CONTROL DATA

FIG. 2

PROGRAM CLOCK

45/ ‘ FIG. :5

VIDEO OUT

AUDIO OUT

PROGRAM
CLOCK

mama'S'fl

L661‘08ma

r3”27”NS

LLS‘QOL‘S

EX 1017 Page 173

'. ,, __ ,
:::aAlllbli ...

' ' .,.

TRANSPORT /'70 FIG. 4
PACKETS PIO

r'°: ----,DETECT
40 -----~-,74

l r 72 MODIFIED SYNC y AUDIO DATA TO

TO
µp

.___ DEMUX
1--A~U~O~IO~PK~T.::::.S_t--_~ WORD INSERTER BUFFER

'-----, /78 76
':--l~E-RR __ O_R-,1 SYNC WORD

.,.___~I DETECT 11--------i INVERTER

CONTROL VIDEO
SYNC t PKTS PKTS

'""\ r---------,,
SYNC WORD PCR

----- PCR & PTS PTS
,,,.. DETECT

80 __ ~

SYNC

AUDIO SAMPLE 86
'----1 & BIT RATE ~

CALCULATOR

LIP SYNC &: BUFFER 84
OUTPUT TIMING ::--CONTROL ./
COMPENSATOR

-----CONTROL

L,__ ______ ___.f rL------ ADDRESS

'-88

0

0

EX 1017 Page 174

TRANSPORT

PACKETS

40

TO

,LLP

70 FIG. 4
PID

DEFECT

74

72 MODIFIED SYNC AUDIO DATA T0

DEMUX AUDIO PKTS WORD INSERTER BUFFER

‘— 73
ERROR SYNC WORD
DEIEOT

S:
S”

"U
a?n
(‘D

E.

INVERTER

CONTROL VIDEO
PKTS PKTS

[.661‘0539G

m

/ SYNC WORD MEIR SYNC ac 'BUFFER g
44 PCR 8: PTS PTS OUTPUT TIMING CONTROL 84 a

DEIEOT COMPENSATOR 9..A

AUDIO SAMPLE

& BIT RATE CONTROL

CALCULATOR U1
ADDRESS 1‘

5
aa 3‘0

q

EX 1017 Page 174

}
' ,,

i
i

l

. . .
.. 0 0

U.S. Patent Dec. 30, 1997 Sheet 4 of 4 5,703,877

COMMAND:ACQUIRE ..__ __ ,

106

ERROR:SYNC, ENC,
RS, AUD, PTRS
FULL

ERROR:SYNC, ENC, RS,
AUD, PTRS FULL

ERROR: PTS, SYNC, OV, ADP,
ENC, RS, AUD, PTRS FULL

FIG.
5

ERROR: PTS, SYNC, ov. ADP, ENC, RS, AUD, PTRS FULL

•

EX 1017 Page 175

s. G (O

US. Patent Dec. 30, 1997 Sheet 4 of 4 5,703,877

,100

COMMANDzFORCE IDLE

102

COMMANDACQUIRE

INTERRUPTzDPTS REQ

DELTA PTS WAIT

EVENTlePUT PROCESSOR WRITES DPTS—ACQ ERROR:SYNC.
ENC. RS. AUD.
PTRS FULL

PCR ACQUIRE

. ERROR:SYNC. ENC.
EVENT.AUD|O PCR RECEIVED RS, AUD. PTRS

FULL

1 08

PTS ACQUIRE

ERROR:SYNC, ENC. RS.
AUD. PTRS FULL

EVENT:AUDIO PTS AND DATA
RECEIVED

110 ERROR:PCR DIS1

ERROR: PTS. SYNC. OV. ADP,

ENC. RS. AUD. PTRS FULL

EVENT:STC=PTS+DPTS

ERROR: PTS. SYNC. 0V. ADP. ENC, RS, AUD. PTRS FULL
FIG. 5

EX 1017 Page 175

/,

·<,
'

..

"

0 0

5,703,877
1

ACQUISfflON AND ERROR RECOVERY or
AUDIO DATA CARRIED IN A PACKE'IIZED

DATASTREAM

BACKGROUND OF THE INVENTION

2
associated data to facilitate remultiplexing and nctw~k
routing operations. When a.a adaptation field is used. the
payload is correspondingly shlXter in length.

The PCR is a sample of the system time dock (STC) for
5 the associated program at the time the PCR bytes are

received at the decoder. The decoder uses the PCR values to
The present invention relates to a method and apparatus syncbroa.ize a. decoder system time clock (STC) with the

for acquiring audio data from a pactetized data stream and encoder's system time clock The lower nine bits of a 42-bit
recovery from caors contained in such data. STC provide a modulo-300 oountt'r that is incremented at a

Various standan::18 have emerged for the transport of 10 n MHz clock rate. At each modulo-JOO rollover. the count
digital data, such as digital television data. Examples of such in the upper 33 bits is incremented. such that lbe uppa bits
standards include the Moving Pictures Experts Group of the STC represent time in units of a 90 kHz clock period.
{MPBG) standan::ls and the DigiCipha:@ n standard pr<>Jrl- This enables presentation time stamps {Pl'S) and decode
etmy to Ocneial. Instrument Carpcntion of Chicago, Ill, time stamps (DI'S) to be used to dictate the proper time fer
U.S.A., the assignee of the present invention. The DigiCi- 15 the decoder to decode access units and to present presenta-
pbC!® n standard extends lhe MP00-2 systems and video tion units with the accuracy of one 90 kHz dock. period.
sundards, which are widely known and recognized as trans- Since each program or service carried by the data stream
port and video compression specifications specified by the may haw its own PCR. lhe programs can be multiplexed
J.ntemational Sta.ndan::18 Organization (ISO) in Document asynchronously.
series ISO 13818. The MPBG-2 specm.cation's systems 20 Synchronization of audio, video and data. presentation
''layer" provides a transmission medium independent coding within a program is accomplished using a time stamp
technique to build bitstreams containing one er more MPEG approach. Presentation time stamps (PI'Ss) and/or decode
programs. The MPEO coding technique uses a formal gram- time stamps (DTSs)are inserted into the lransport stream for
mar ("syntax") and a set of semantic rules for the oonstmo- the separate video and audio packets. The PrS and DTS
tion of bitsb:eams. The syntax and semantic rules indude u infomlation is used by the decoder to determine when to
provisions for demultiplexing, clock. recovery, elementary decode and display a picture and when to play an audio
stream synchronization and error handling. segment. The PrS and DTS values are relative to lhe same

The MPEG transport stream is apeciftcally designed for system time dock sampled to generate the PCRs.
use with medLt that can generate data. a:rors. Many 30 All MPEG video and audio data must be formatted into a
programs, each comprised of one or more elementary pac:kctized elementary stream (PBS) fonned from a succes-
stream.,, may be combined into a transport stteam. ELlmplcs sion of PES pac.tets. Each PES pack.ct includes a PES header
of seivices that can be provided using the MPOO foanat are followed by a payload. The PES packets am then divided
television services broadcast over tea'cst:rial.. cable television into lhe payloads of successivi, fixed length transport pack.-
and satdlite networks as well as interactive telephony-based 35 ets.
services. The primacy mode of .information carriage in PES packets are of variable and relatively long length.
MPBG broadcast applications will be the MPBG-2 transport Various optional fields, such as the presentation time stamps
stream. The syntax and semantics of the MPBG-2 transport and decode time atamps may be included in the PES header.
stream are defined in International Organisation for When the transport packets are formed from the PES. the
Standar<lisation, ISO/lEC 13818-1. International Stmdlrd. 40 PES headers immediately follow the twisport packet hea.d-
1994 entided "Generic Coding of Moving Pictures a.nd ers. A single PES packet lllllY span many tta.nsport packets
Associated Audio: Systems," recommendation H.222. incor- and the subsections of the PES packet must appear in
poratcd herein by reference. consecutive transport packets of the same PID value. It

Multiplexing according to the MPEG-2 standard is should be appreciated, however, that these transport packets
accomplished by segmenting and pack.aging elcmcnwy 4' may be freely multiplexed with othc:r transport packets
streams such as compressed digital video and audio into having dilfcrent P1Ds and cmying data from different
packctized elementary strcmi (PES) packets which are then elementary streams within the constraints of the MPEG-2
segmented and packaged into ti:ansport pacets. As noted Systems specifi.calion.
above. each MPBG b:anspm packet is fixed at 188 bytes in Video programs are can:ied by placing coded MPEG
length. The first byte is a synchronization byte having a so video streams into PES packets which are then divided into
specific eight-bit pattern, e.g., 01000111. The sync byte tra.nsport packets for insertion into a transport stxeam. Each
indicates the beginning of each transport paclu:t. video PBS packet contains one or more coded video

Following the sync byte is a three-byte field which pictures, referred to as video Maccess units." A PfS and/or a
includes a one-bit transport packet enu: indicator, a one-bit DTS value may be placed into lbe PES packet header that
payload unit start indicator, a one-bit transport priority :ss encapsulates the associated access units. The DTS indicates
indicator. a 13-bit packet identifier (PID), a two-bit transport when the decoder should decode the access unit into a
scrambling control, a two-bit adaptation field oontrol, and a presentation unit. The PrS is used to actuate the decoder to
four-bit continuity coo.ntcr. The remaining 184 bytes of the present the associated presentation unit.
packet may carry lhe data to be communicated. An optional Audio programs are provided in accordance with the
adaptation field may follow the prefix for carrying boCh 60 MPOO Systems specification using the same specification of
MPBG related and private information of relevance to a the PBS pack.ct layer. PrS values may be included in those
given transpcrt stream oc the elc:meolary stream carried PES packets that contain the first byte of an audio access unit
within a given transport packeL Provisions for clock (sync frame). The first byte of an audio access writ is part of
recovery, such as a program dock. reference (PCR), and an audio sync word. An audio frame is ddi.ncd as the data
bitslrcam splicing information are typical of the information 65 between two consecutive audio sync words. including the
canied in the adaptation fteld. By pl.acing such information preceding sync word and not including the succeeding sync
.in an adaptation field. it becomes encapsulated with its word.

EX 1017 Page 176

‘f‘* e

e.,...“n.‘f"Pa-'X';'~‘n
MN1.”I
3..-x. "Aco‘4t...'w."-

’”fifw‘5~42":‘ruz':.‘“
“xvi

~DIN/.1:

.L.rem;.-

..:;:‘u’mdv1.a:’

i“Home»

’

0

5,703,877
1

ACQUISITION AND ERROR RECOVERY 0]?
AUDIO DATA CARRIED IN A PACKETIZEI)

DATA STREAM

BACKGROUND OF THE INVENTION

The present invention relates to 3 method and
for acquiring audio data from a packetized data stream and
recovery from errors contained in such data.

Various standards have emerged for the transport of
digital data. such as digital television data. Examples of such
standards include the Moving Pictures Experts Group
(MPEG) standards and the DigiCipher® 11 standard propri—
etary to General Instrument Corporation of Chicago, 111.,
USA. the assignee of the present invention. The DigiCi-
pher® 11 standard extends the MPEG-2 systems and video
standards, which are widely known and rwngnized as trans-
port and video compression specifications specified by the
International Smndards Organization (ISO) in Document
series ISO 13818. The MPEG-2 specifieatiou's systems
‘kyer" provides a transmission medium independent aiding
technique to buildbiuh'eams containing one (ImmeMPEG
programs. The MPEG codingtechnique uses a {amalgam-
mar (“syntax") and a set of semantic rules for the construc-
tion of bitsuenms. The syntax and semantic rules indude
provisions for demnltiplexing, clock recovery, elementary
stream synthnization and woe handling.

The MPEG mspoxt streamis specifietlly designed for
use with media the: can generate data errors. Mary
programs, each compdsed of one or more elementary
streams, may be combined into atranspon strum. Exxon)!“
ofsewioes thatcnnbeprovideduslngtheMPEGformntue
television services hroadeast over terrestrial. cable television
and satellite networks as well as interactive telephony—based
services. The primary mode of information carriage in
MPEG broadest npplimtions will he the MPEG-2 transport
stream The syntax and semantics of the MPEG—2 transpon
stream are defined in International Organisation for
Standardization, ISOIIEC 138184. International Standard.
1994 entitled "Generic Coding of Moving Plumes and
Associated Audio: Systenn," recommendation H.222. incor—
porated herein by reference

Multiplexing according to the MPEG-2 standard is
accomplished by segmenting and packaging elementary
streams such as compressed digital video and audio into
packefined elementary stream (PBS) packets which are then
segmented and packaged into transport packets. As noted
above. each MPBG transport packet is fixed at 188 bytes in
length. The first byte is a synchronization byte having a
specific eight-hit panel-n. e.g.. 01000111. The sync byte
indicates the beginning of each transport packet.

Following the sync byte is a disco-byte field which
includes a one—hit transport packet one: indicator. 3 one-bit
payload unit start indicator, :1 oneahit transport priority
indicator. a 13-bit packet identifier (PJD). n two-bit transport
scrambling control, a two-bit adaptation field coon-cl. and n
{om—bit continuity counted The remaining 184 bytes of the
packet may carry the data to he communicated. An optional
adaptation field may follow the prefix for carrying both
MPEG related and private infatuation of relevance to a
given transport stream or the elementary stream carried
within a given transport packet. Provisions for clock
recovery. such as a program clock reference (PCR), and
bitstrmn gaming information are typical of the information
carried in the adaptation field. By placing such infcrmntiou
in an adaptation field. it becomes encapsulated with its

10

15

55

65

2
associated data to facilitate remultiplexing and network
routing operations. When an adaptation field is used. the
payload is correspondingly shorter in length.

The PCRis a sample ofthe system time clock (STC) for
the associated program at the time the PCR bytes are
received at the decoder. The decoder uses the PCP. values to

syndtroniu a decor?“ system time clock (SIC) with the
encoder‘s system time clock. The lower nine bits of a 42.133:
STCpmvide a modulo-300 oountu’ that is incremented at a
27 MHz clock rate. At each modulo-300 rollover. the count

in the uppe- 33 bits is indemnified. such that the uppq bits
of the SEC represent time in um’ls of a 90 kHz clock puiod.
This enables presentation time stamps (FPS) and decode
time stamps (UPS) to be used to dictate the proper time for
the decoder to decode access units and to present presenta-
tionnniuswidttheacemrcyofone 90klizclockperlod.
Sinoeeeehtrogramorservice earriodbythe dntastream
may have its owa PCR. the progarns can be multiplexed
asynclronously.

Syndronizafion of audio. video and dab. presentation
within a program is accomplished using a time stamp
apponch. Presentation time stamps (PTSs) nndJor decode
time stamps (UPSshre inserted into the transport stream for
the separate video and audio packets. ”the FPS and DTS
information is used by the decoder to determine when to
decode and display I picture and when to play an audio
segment. The FPS and ms values are relative to the same
system time clock sampled to generate the PCRS.

AllMPHivicho andaudio dannmstbefornmnedinto a
padtetized elementary stream (PBS) formed from a succes-
sionofPFSpackets. Etch PBS packet includes a PE header
followed by a payload. The PES packets are then divided
into the payloads of successive fixed length transport pat-Jo
eta.

PBS packets are of variable and relatively long length.
Various optional fields, such as the presentation time stamps
nnddecodetimemmps mnybeincludedinthe PB header.
Whenthe msportpaelretsareformedfiommel’fis. the
PPS headers immediately follow the transport packet bead-
ers. A single PBS pocket may span many transport packets
andmesubsectionatfthePESpaeketmustappearin
conseartive transport packets of the same PID value. It
should be appreciated. however. that these transport packets
my be freely multiplexed with outer transport packets
having dilferent Plus and carrying data from different
elementary streams winnn the constraints of the MPEG-2
Systems spedflcntion.

Video programs are carried by placing coded MPEG
video streams into PBS packets which are then divided into
transport packets fm‘ insertion into a transport stream. Each
video PBS packet contains one or more coded video
pictures, referred to as video “access units.” A PTS andior a
UPS value may be placed into the PBS packet header that
encapsulates the associated access units. The D'I‘S indicates
when the decoder should decode the access unit into a

presentation unit. The PTS is used to acmate the decoder to
present the associated presentation unit.

Audio programs are provided in accordance with the
MPEG Systems specification using the same specification of
the PBS packet layer. P'I‘S values my be included in atone
PBS packets that contain the first byte ofan audio access unit
(sync frame). The first byte of an audio access unit is part of
an audio sync Word. An Indie frame is defined as the data

between two consecutive audio sync words. including the
preceding sync word and not including the succeeding syncword.

EX 1017 Page 176

~ ,, ,,

, .
·' 0 0

5,703,877
3 4

In DigiClphc:r@ n. audio transport packets include one or information will be dominated by whether the ra:civa: bas
both of an adapt&lion field and payload field. The adaptation adequate ei:ror detection. Thus, it wonld be advantageous to
field may be used to transport the PCR valuos. The payload provide .a decoder having two modes of operation. In a
field transports the audio PES. coasisting of PBS headers robust error detection enviromnent sudl as for satellite
and PES data. PBS headers arc used to lranspa.1 the audio s communications or cable media, when: crror detection is
PI'S values. Audio PES data consists of audio frames as robust, a scam.less mode of q:,eration can be provided by
specified. e.g., by lbe Dolby® AC-3 or Musicam. audio trusting a bit rate change indication provided by the data. In
syntax specifications. The AC-3 specifications are set forth a less robust ei:rar detection eaviromnent. indications of bit
in a docummt entitled Digital Audio Compression (AC-3), rate changes can be ignored, at tho expcnso of requiring
ATSC Standard. Doc. A/52. United States Advanced Tele- 10 resyncbronizalion of 1bc audio in lbe event that the bit rate
vis.ion Systems Committee. The Musicam specification can bas actually changed.
be found in the document entitled "Coding of, Moving It wonld be further advantageous to provide an audio
Pictures aad Associated Audio for Digital Stc:.nge Media at decoder in whidl syndtronization to the audio bitstte.am is
UptoAbout 1.5 MBIT/s," Part3Audio, 11172-3 (MPEG-1) maintained when the audio data contains mors. Such a
published by ISO. Bach syntax specifics an audio sync frame 15 decoder shonld conceal the audio for those sync frames in
as audio sync word, followed by audio information includ- which an ei:rar has occl.lll'Cd, to minimize the aural impact of
ing audio sample rate, bit rate and/a- frame s.iu. followed by .audio data errors.
audio data. n wonld be still further advantageous to provide a decoder

In order to reconstruct a television signal from the video in which the timing at which audio data is oueput from the
and audio information canicd in an MPEG/DigiClphcr@ n 20 decoder's audio buffer is adjusted on an ongoing basis. The
transport stream, a decoder is required to process lbc video intent. of ~ch adjus~ts wonld be to insure ecrrect pre-
packets for output to a video decompression processa: scntaliOD time for audio clcmcntaiy strwm.
(VDP) and tho audio paclccts for output to an audio dcoom- The present invention provides methods and apparatus for
ircssion processoc (ADP). In order to properly iroccss the decoding digital audio data from a pacbtizcd transport
audio data, the decoder is n:quited to synchroniu to the 25 stream having the aforementioned and other advantages.
audio data packet stream. In particular, tins is required to SUMMARY OF TRB INVENTION
enable audio data to be buffered for continuous output to the
ADP and to enable the audio syntax to be read fer audio rate In accordance wilb the present Invention, a method is
information necessary to delay the audio output to achieve provided for processing digital audio data from a paclaltil:cd
proper lip synchronization with respect to the video of the 30 data s1rcam ca.ayi.ng television information in a succession

of fixed length transport packets. Each of the packets
same program. includes a paclalt identifier (PID). Some of the paclcets

Several events ~ result iD ~ conditions with respect contain a r,rogram cloclc.n:fcrcncc (PCR) value for synchro-
to the audio proccwng. Th~ 10clude loss of audio trans- niziDg a decoder system time dock (SfC). Some of the
port packets due to ~s1on ~l ei:rors. ~en will 3S packets conlllin a presentation time stamp (PI'S) indicative
also result from the ICCCipt. of audio paclalts which arc not of a time for commencing tho output of associated data for
r,rq,cdy dca:ypted or are still .e~ .A decoder must.be use in reconstructing a television signal. In accordance with
able to handle such mars without significantly degrading the Jrdhod, lbc PID's for the paclccts carried in the data
lhe quality of the audio output stream are molliton:d to identify audio pacbts associated

The decoder must also be able to handle changes in the 40 with the desired program. The audio pacla:ts are examined
audio sample rate and audio bit rate. The audio sample rate to locate the OCCllll'CDcc of at least one audio synchroniza-
for a given audio elementary stream will rarely change. The tion wud tha:cin f<r use in achieving a syndtroni:ution
audio bit rate, howevu, can often change at program condition. The audio packets are monitored after the syn-
bound.arlcs, and at the start and end of commercials. n is chrollization condition has been achieved to locate 1U1 audio
difficult to nwntaln syn~nization .to the audio • stream 45 PI'S. After the PI'S ia located. the detected audio p.aclccts arc
through such rate changes, smcc the S1ZC of lbc audio sync searched to locate the next audio synchronization word.
frame~ is dependent on lhe .audio ~le rate and ';'it rate. Audio data following the next audio synchronization word is
Handling undetected errors ID tho audio stream. particularly stored in a buffer. The stored audio data is output from the
in systems where error detection is weak, complicates lbc buffer when the decoder system time cloclc reaches a speci-
trac1?°K o~ the ~o ~ through ra!C changes. When a so ficd time dcrlved from the PrS. The dctcctcd audio packets
rccctVed bitstream. mdicatcs that an audio rate has changed, are continually monitored to locate subsequent audio PrS's
the rate may or may not have lldually changed. If the for adjusting the timing at which the stored audio data is
decoder responds to an indication from the bitstream that the oueput from lhe buffer on an ongoing basis.
audio rate has changed when the indication is ~ ~or and A PrS pointer can be provided to maintain .a cwrcnt PrS
the rate has not ~ged, a 105;1 of audio. synchromzatton ~ ss value and an address of the buffer identifying where tho sync
llk:cly occur. ntls can result m an audio signal degradation word of an audio frame rcfmed to by tho cwrent PJ'S is
that is noticeable to an end user. stored. In order to provide the timing adjustment. the PI'S

To support an audio sample rate change, lbc audio clock value in the P1'S pointer is replaced with a new PI'S value
rates utilized by the decoder must be changed. This process after data ston:d at tbe address specified by the PrS pointa:
can take significant time, again dcg,:ading the quality of the oo has been output from the butler. The addmss specified by the
audio output signal. Still further, such a sample rate change PI'S pointer is then rcplaoed with a new address ca:respond-
will require tho audio bmfcrs to be clcan:d to establish a ing to the sync word of an audio frame rcfcircd to by the new
diJfcrcnt $l1111plc-rate-dcpcndcnt lip sync delay. Thus, it may Pl'S value. The oueput of data from the buffer is suspended
not be advanlageous to lrUst a signal In the rcccivcd bit- when the new buffer address is reached during the i;rcsen-
strcam indicating that the audio sample rate has changed. 65 tation process. The output of data from the buffer is rccom-

W'illl respect to bit rate changes. the relative frequency of menced when the decoder's system time clock reaches a
such dlanges compared to undetected crrcn in the bit zatc specified time da:ived from the new PJ'S value.

EX 1017 Page 177

“firmI.
‘

 ”i
3;._«

4

.1

.44r
“F,
:5e.
3.3
. ‘.
,5;

m.‘¢»."\"ir.2¥¢’xV
{53¢~‘

J o 0

5,703,877
3

In DigiCipherG II. audio transport packets include one or
hath of an adaptation field and payload field. The adaptation
field may he used to transport the PCR values. The payload
field tr-ansports the audio PES. consisting of PBS headers
andPES MPES headers n'eusedtouansportthe audio
PI'S values. Audio PES data consists of audio frames as
specified. e.g., by [he Dolbyfit AC-S or Musicarn audio
syntax specifications. The AC-3 spedficadons are set forth
in a document entitled Digital Amho Compression {A03}.
AII‘SC Standxd. Doc. N52. United States Advanced Tole.
vision Systems Commidoe. The Musieam specification an
be found in the document entitled “Coding of , Moving
Plumes and Associated Audio for Digind Stung: Media at
Up toAbout 1.5 MBlTIs,” Par-r3Audio, 11172-3 (MPEG-1)
published by 180. Each syntax specifies an audio nyncframe
as audio sync word. followad by audio information includ-
ing audio sample rate, bin-are Indira- frame size. followedby
audio data.

In order to reconfirm: a television signal from the video
and audio information carried in anWWN II
mspoflmamadecoderisreqrmedtopnoeessdzevideo
packets for output to a video decompression processor
(VD?) and the audio paokcts for output to an audio decom-
pression processa‘ (ADP). In order to properly pocess the
mfiommedeoodrxisrequiredtosynehmnizetome
audiodampacketsmhpuficularfihiaisrequiredtn
enable audio data to be bufiered for continuous mitput to the
ADP and to enable the audio syntax to beread for audio rate
information necessary to delay the audio output to achieve
proper lip synchronization with respect to the video of the
53'“ momm-

Several events can result in error conditions with respect
to the audio proeeaaing. These include loss of audio trans-
port packets due to transmission mane! errors. Error: will
also result fi-om dzereeeiptot‘andiopaehets whichare net
properiydeayptedorare stillencrypted. Ademdermnstbe
able to handle such raters without significnndy degrading
the quality of the audio output.

The decoder must also be able to handle changes in the
audio sample rate and audio bit rate. The audio sample rate
for a given audio elementary streamwill rarely change. The
audio bit rate, however, can often change at pogram
boundaries. and at the start and end of commercials. It is
difficult to maintain synchronization to the audio stream
through such rate changes. since the size of the audio sync
fi'ames is dependent on the audio sample rate and bit rate.
Handling undetected morn in the audio stream, partiallnrly
in systems when: error detection is weak. complieanes the
tracking of the audio stream through we danger. When a
received bitshream indieates that an audio rate has dredged.
the rate may or may not have morally changed. If the
decoder responds to an indication from the bitstream that tire
audio rate has changed when the indication is in error and
the rare has not changed. a loss of audio synchronization will
likely occur. This can result in an audio signal degradation
that is noticeable to an end user.

To support an audio sample rate change, the audio clock
ratesutilizedbythe deeodermnstbedrwged'lhisproms
make srgniiimnttirne, againdegnding the qualityoithe
audio output signal. Still fin-rim, such a sample rate change
wfllnequiretheaudiobufierstobeclearedtoestablisha
(Mimi)! menu-dependent lip sync delay. Thus. it may
not be advantageous to trust a signal in the received bit-
stream indicating that the audio sample rate has changed.

With respect to hit rate changes. the relative frequency of
such changes compared to undetected man in the bit rate

ll}

15

30

35

45

55

4
intonation will be dominated by whether the receiver has
adequate am: detection. Thus. it would be advantageous to
provide a decoder having two modes of cperalion. In a
robust error detection environment sudr as for satellite
communications or cable media, where error detection is
robust. a seamlms mode of operation can be provided by
hunting a hit rate dingo indication provided by the data. In
a less minis: em: detection environment, indications of bit
rmehangesmuigmfittheexpenseofrequiring
resynchronization of me audio in the event that the bit rate
has wally changed.

Itwonldbefurtlrradvnnugeoustoprovideanaudio
decoder in which synchronization to the audio bitmam is
maintained when the audio dam contains mots. Such a
decoder should conceal the audio for those sync frames in
chhmenmhnoocmdtomlnimizedreauralimpactofaudio data errors.

Itwouldbe stillfmther advantageoustoprovide adeooder
in whidl the timing at which audio data is output from the
dmodu‘s audio boiler is adjusted on an ongoing basis. The
intent of such adjruunents would be to insure career. pre.
sentation time for audio elementary streams.

The present invention provides methods and apparatus for
decodingdigitalaudiodatafmmapacketizedtranspon
stream having the aforementioned and om: marriages.

SUMMARY OF THE INVENTION

In accordance with the present invention. a method is
provided forprocessing digital audio data from a packetieed
data stream carrying television information in a succession
of fixed length transport packets. Each of the poem:
includes a packet identifla' (Pm). Some of the packets
contain a program clock reference (PCR) value for synchro-
nizingadecodersystcmtinnedock(SFC).Someofthe
pm contain a presentation time stamp (PIS) indicative
ofatimefor oommencingthe outputofasaociareddatafor
useinreconauuoting ateleviaion signatinawordanccwith
themhodfliel’m‘sforthepadoetrcarfiedindledata
stream are monitored to idenn'fy audio paclwts associated
with the (leaned program. The audio packets are examined
to locate the commence of at least one audio synchroniza-
tion word therein fu‘ use in achieving a syndtronlmtion
condition. The audio packets are monhwed after the syn«
chroniution condition has been achieved to locate an audio
PTS.AftertheVI‘S aloe-Mme detected audio packets are
senehed to locate the next audio synchronization word.
Audio data following the next audio synchronization word is
stored in a buffer. The stored audio data is output from the
bufferwhen the decodersystem time clockreacha a speci-
fied time thrived from the FIS. The detemd audio packets
are continually monitored to locate subsequent audio PI‘s’s
for adjuam'ng the timing at which the stored audio data is
output from the hulfrr an an ongoing basis.

Al’l'S pointer unbeprovided to maintain a currentPI‘S
value and an address ofthe bufi‘rr identifying where the sync
word ofanaudio framerefmdtohythemnrentm is
stored. In order to provide the timing adjustment. the FPS
value in the PPS pointer is replaced with a new PI‘S value
after data shared at the address spedfied by the PPS poiutu'
has been outputfromthe Mane address specifiedby the
P18 pointeristhen replacedwith new address emergenci—
ingmmesyncwordofanaudiofimmfmedtooythenew
P'I‘S value. The cutout of data from the butter is amended
when the new buffet address is reached dining the presen-
tation process. The output of chta from the buffer is recom—
mended when the decoder's system time clock reaches a
specified time derived from the new PIS value.

EX 1017 Page 177

0 ()
' .

5,703,877
s 6

In an illustrated embodiment. the output of data from the indicated by the audio data on the assumption that the
buffer is recommenced when the decoder's system time sample rate has not actually changed, and concealing the
clock reaches the time indicated by the sum of the new PI'S audio frame containing the data indicative of an audio
value and an offset value. The offset value provides proper sample rate change while attempting to maintain the syn-
lip synchronization by accounting for any decoder video 5 chronization condition. 1bis strategy will properly respond
signal processing delay. In this manner, after the audio and to an event in which the audio sample rate change oc bit rate
video data has been decoded, the audio data can be presented change indication is the result of an error in the indication
synchronously with the video data so that, for example, the itself, as opposed to an actual rate change.
movClllCllt of a person's lips in the video picture will be Similarly, audio data can be processed in aa:ordancewith
sufficiently synchronous to the sound reproduced.

10
a new rate indicated by the audio data in the absence of an

The method of the present invention can comprise the error indication pertaining to the audio frame containing the
further step of commencing a reacquisition of the audio new rate, while attempting to maintain the synchronization
synchronization condition if the decoder's system time clock condition. The audio data is processed without changing the
is beyond the specified time derived from the new PrS value rate if an error indication pertains to the audio frame
before the output of data from the buffer is recommenced. 15 containing the new rate. At the same time, the audio frame
Thus, if a PfS designates that an audio frame should be to which the cnor condition pertains is concealed while the
presented at a time which has already passed, reacquisition decoder attempts to maintain the synchronization condition.

·, of the audio data will automatically commence to CXD'Cd the If the synchronization condition cannot be maintained. a
timing error, thua mjnjmjzfng the duration of the resultant reacquisition of the synchronization condition is
audio artifact. 20 commenced, as desired when the sample rate actually

In the illustrated embodiment, two consecutive audio changes.
synchronization words define an audio frame thcn:betwcen, Apparatus in accordance with the present invention
including the preceding sync wocd. but not including the acquires audio information carried by a packetized data
succeeding sync word. The occurrence of arors may be stream. The apparatus also handles Cll'ors contained in the
detected in the audio packets. Upon detecting a first audio 25 audio infcmiation. Means are provided for identifying audio
packet of a current audio frame containing ao error, the write packets in the data stream. An audio elementary stream is
pointer for the buffer is advanced by the maximum number recovered from the detected audio packets for storage in a
of bytes (N) contained in one of the fixed length transport buffer. An audio presentation time stamp (PfS) is located in

',,
-~

1

packets. At the same time, the cm:rcnt audio frame is the detected audio packets. Means responsive to the PI'S are
designated as being in error. The subsequent audio packets 30 provided for commencing the output of audio data from the
of the cwrent audio frame arc monitored fix the next audio buffer at a specified time. Means are trovided for monitoring
synchronization word after the eaor has been detected. If the the detected audio packets after the output of audio data
synchronization wcrd is not m:cived at the expected point in from the buffer has conuncnccd. in ordc% to locate subse-
the audio elementary stream, subsequent data is not stored in qucot audio PI'S's for use in governing the output of audio
the buffer unlil the sync wcrd is located. Ste.age of audio 35 data from the buffer to insurc audio is Jresented synchronous
data into the buffer is resumed with the next sync wcrd if the to any other elementary streams of the same program a.nd to
next audio synchronization word is located within N bytes maintain oom:ct buffer fullness.
after the commencement of the search thcn:for. If the next 1bc apparatus can further COffllrlse means for maintain-
audio synchronization word is not located within N bytes ing a PI'S pointer with a current PJ'S value and an address
after the COJlllDellcement of the search therefor, a reacqui- 40 of the bu1fc:r identifying where a portion of audio data
sition of the synchronization condition is commenced. These refCll'ed to by the cum:nt PrS is stored. Means are fl'C)Vided
steps will insure the buffer is maintained at the correct for replacing the PrS value in the PTS pointer with a new
fullness when as many as one transport packet ia lost per cum:nt PJ'S value after data stored at the address set forth in
audio sync frame, even with the sync frame size changes the PTS pointer has been output from the buffer. The address
such as with a sample rate of 44.1 ksps, and will rcsyncbro- 45 in the PI'S pointer is then replaced with a new address
nizc the audio when too many audio transport packets ue corresponding to a portion of audio data referred to by the
lost. new CUD"ent PrS value. Means responsive to the PrS pointer

Whenever the audio data from which the television audio are provided for suspending the output of data from the
is being reconstructed is in error, it is preferable to conceal buffer when the new address is reached. Means are JrOvided
the error in the television audio. In the illustrated so for recommencing the output of data from the buffer at a
embodiment. a current audio frame is designated as being in time derived from the new current PrS value. In the event
error by altering the audio synchronization word for that that the new current PrS value is outside a predetermined
frame. Fe. ex.unple, every other bit of the audio syncbro- range, means provided in the apparatus conceal the audio
nization word can be inverted.. The en-or in the television signal and reestablish synchronization.
audio for the corresponding audio frame may then be 55 In an illustrated embodiment, the audio transport packets
concealed in response to an altered synchronization word have a fixed length of M bytes. The transport packets carry
during the decoding and presentation proccsa. 1bis method a succession of audio frames each contained wholly or
allows the buffering and en-or detection process to signal the partially in said packets. The audio frames each begin with
decoding a.nd presentation ~ocess when Cll'Ol'S occur via the an audio synchronization word. Means are provided for
data itself, without the need for additional interprocess 60 detecting the ocaurence of errors in the audio packets. A
signals. write pointer for the buffer is advanced by the maximum

The audio data can include information indicative of an number of audio frame bytes per audio transport packet (N)
audio sample rate and audio bit rate, at least one of which is and a cmrent audio fuunc is designated as being in error
variable. In such a situation, it is advantageous to maintain upon detecting an error in an audio packet of the current
synchronization within the audio elementary stream during 65 audio frame. Means are provided for monitoring the detected
a rate change indicated by the audio data. This can be audio packets of the rurrcnt audio frame for the next audio
accomplished by ignoring an audio sample rate change synchronization word after the cn:or has been detected. If the

l
EX 1017 Page 178

n ‘ lati:

T?s

...M5'5

Sea

‘ O 0

5,703,877
5

In an illustrated embodiment. the output of data from the
butter is recommenced when the decoder's system time
clockreaches the time indicated by the sum of the new PTS '
value and an otfset value. The offset value provides propu-
lip synchroniution by accounting for any decoder video
signal processing delay. In this manner, after the audio and
video data has been decoded. the audio data can be presented
syndrronously with the video data so that. for example. the
movement of a person's lips in the video picture will be
suificientiy synchronous to the sound reproduced.

The method of the present invention can comprise the
further step of commencing at reacquisition of the audio
syndtrom'zation condition if the deooder’s system time clock
is beyond the specified time derived from the new PI‘S value
before the output of data from the butter is recomrnenced.
Thus, if a PI‘S designates that an audio frame should be
presented at a time which has already passed, reacquisition
of the audio datawill automatically commence to cured the
timing error, thus minimizing the duration of the resultantaudio artifact

In the illustrated embodiment. two consecutive audio
synchronization words define an audio frame therebetween,
including the preceding sync word. but not including the
succeeding sync word. The adherence of errors may be
detected in the audio packets. Upon detecting a first audio
packet ofa eta-rent audio frame containing an arm, the write
points for the butfu' is advanced by the maximum numbn-
ofbytes (N)containedinone oftheflxedlengthtransport
packets. At the same time, the current audio frame is
designated as being in error. The subsequent audio packets
of the current audio frame are monitored for the next audio
synchronization word afte- the error has been detected. Ifthe
synchronization word is not received at the expected pointin
the audio elementary stream, subsequent data is not stored in
the butter until the sync word is located. Stu-age of audio
data into the bufiu' is resumed with the next sync word if the
next audio synchronization word is loarted within N bytes
after the commencement ofthe search therefor. If the next

audio synchronization word Is not located within N bytes
after the commencment of the search therefor, a reacqui-
sition of the synchronization condition is commenced. These
steps will instne the butter is maintained at the correct
fullness when as many as one transport packet is lost pea-
audio sync flame. even with the sync frame size changes
such as with a sample rate of44.l ksps, andwill resynchro-
nize the audio when too many audio transport packets are
lost.

Whenever the audio data from which the television audio

is being reconstructed is in error, it is preferable to conceal
the error in the television audio. In the illustrated
embodiment, a current audio frame is designated as being in
uror by altering the audio synchronization word for that
frame. For example, every othu' bit of the audio synchro-
nization word can be inverted. The error in the television

audio for the corresponding audio frame may then be
concealed in response to an altered synchronization word
during the decoding and presentation process. This method
allows the buffering and error detection process to signal the
decoding and presentation process when errors occur via the
data itself, without the need fen- additional interprocess
signals.

The audio data can include information indimtive of an

audio sample rate and audio bit rate, at last one of which is
variable. In such a situation, it is advantageous to maintain
synchronization within the audio elementary stream during
a rate drangc indicated by the audio data. This can be
accomplished by ignoring an audio sample rate change

10

15

35

45

55

6

indicated by the audio data on the assumption that the
sample rate has not actually changed. and concealing the
audio frame containing the data indicative of an audio
sample rate change while attempting to maintain the syn-
chronization condition. This strategy will propaly respond
to an eventin which the audio sample rate change or bit rate
change indication is the result of an error in the indication
itsdf. as opposed to an actual rate change.

Similady, audio data can be [recessed in accordance with
a new rate indicated by the audio data in the absence of an
error indication pertaining to the audio frame containing the
new rate, while attempting to maintain the synciuonization
condition. The audio data is processed without changing the
rate if an error indication pertains to the audio frame
containing the new rate. At the same time, the audio frame
to which the error condition pertains is concealed while the
decoda' attempts to maintain the synchronization condition.
If the synchronization condition cannot be maintained. a
reacquisition of the synchronization condition is
commenwd, as desired when the sample rate actually
changes.

Apparatus in accordance with the present invention
acquires audio information carried by a packeh'zed data
stream. The apparatus also handles errors contained in the
audio infrrmation. Means are provided for identifying audio
packets in the data stream. An audio elementary stream is
recovered from the detected audio packets for storage in a
bufiec An audio presentation time stamp (Pl‘S) is located in
the detected audio packets. Means responsive to the PPS are
provided for commencing the output of audio data from the
bufier ata specified time. Means are Ia'ovided for monitoring
the detected audio packets after the output of audio data
from the buffer has commenwd, in ordu to locate subse-
quent audio P'I'S‘s for use in governing the output of audio
data from the bufl’u'to insure audiois p’esented synchronous
to any othu' elementary streams of the same program and to
maintain correct buficr fullness.

The apparatus can furdrer comprise means for maintain-
ing aPl‘Spointerwith acrnrentPl'S value andanaddress
of the buffer identifying where a portion of audio data
referred to by the current PI‘S is stored. Means are provided
for replacing the PI‘S value in the PPS pointer with a new
current PIS value aflu’ data stored attire address set forth in
the HS point: has been output from the butter. The address
in the I’l‘S pointer is then replaced with a new address
corresponding to a portion of audio data referred to by the
new amentPTS value. Means responsive to the l’l‘S pointa
are provided for suspending the output of data from the
bufl'er when the new address is reached. Means are provided
for mcommencing the output of data from the butter at a
time du-ived from the new current Pl'S value. In the event
that the new currem PI‘S value is outside a predetermined
range. means provided in the apparatus conceal the audio
signal and reestablish synchronization.

In an illustrated embodiment, the audio transport packets
have a fixed length of M bytes. The transport packets carry
a succession of audio frames each contained wholly or
partially in said packets. The audio frames each begin with
an audio synchronization word. Means are provided for
detecting the ocuurence of mots in the audio packets. A
write pointer for the buffer is advanced by the maximum
number of audio frame bytes per audio transport packet (N)
and a current audio frame is designated as being in error
upon detecting an error in an audio packet of the crurent
audio frame. Means are provided for monitoring the detected
audio packets of the unrent audio frame for the next audio
sjmchronizatioll word after the arorhas been detected. If the

EX 1017 Page 178

0 0

5,703,877
7 8

transport pack.ds. Mulliplc:xing is accomplished by seg
menting clementary stteams such as coded video and audio
into PFS ~ and then segmenting these into transport
packets. The figure is illustrative only, since a PBS packet.

s such as PBS packet 16 illustrated, will commonly translate
into other than the six transport pacu:ts 24 illustrated.

synchronization word Is not received whc:rc expcded within
the audio elementary stream. subsequent audio data is not
buffi::red until the next audio synchronization word is
rea:ived. 1bis process compensates for too many andio
bytes having been buffered when the cmired audio packet
was dctectcd. Such an event will occur each time the lost
pac~ docs not caay the m.ax.imum. number of possible
audio data bytes. Means are provided for resumm the In the exampJe of fIG. 1, an elementary stream generally
storage of audio data In the buffi% if the next audiog design_ated It contains audio data provided in audio frames
chroni:zatioa word is located within N bytes after the :; 10

14 delineated t:Y synchro~n W?rds 12. Similar elcmcn-
mencement of the search therefor. If the next audio syn- ~=m:.._~ be provided for video data and other data
chroni:zatioa word is not located within said N bytes after the

O 5
"""'"""';

oommencement of the search therefor, the audio timing will The first step ID forming a transport pac~ stream is to
be reacquired. In this manner, the size of the sync frame:s reconfigure the elementary sttcam for each lype of data into
buffered will be maintained including for those frames that

15
a corresponding pa~ketizcd elemenwy stream (PBS)

are ma.rkcd as being in Cir«r, unless the next sync word is not !onned from. successive PBS paclcds, such as packet 16
located where expected in the audio elementary stream to illustrated. Each PBS packet contains a PF.S header 18
recover from the error before buffering any of the next followed by a PBS payload 20. The payload CO.lllJilSCS the
successive frame. This algorithm allows the decode and ~ta to ~ oommnn!cated. ~ PF.S header 18 will contain
presentation processes to rcly on buffered audio frames 20 infomutio.n l;IS~ m processing the payload cbta. such as
being the COll"ed size in bytes, even when data errors result the presentatiOa time stamp (PI'S).
In the loss of an unlmown amount of audio data. The header and payload data from each PF.S packet are

Means can also be provided for concealing emr in an encapsuiatcd into 1rlll.Sport packets 24, each containing 11

audio signal reproduced from data output from the buffer transport header 30 and payload data 32. The payload data
when the datll output from the buffer is in eaor. Means are :i, of the transport paci:ct 24 will contain a p<rtion of the
further provided for altering 1he audio synchrontzadon wont payload data ~ and/or~ header 18 from PES packet 16.
associated with a cwrent audio frame. to signal the decode In an_MPEG UDplement.ation, the tnnsport header 30 will
and presentation process that a particular frame is in mor. contain 1he packet identifier (PID) which identifies the
Toe concealing means arc responsive to altered syoduoni- ~sport packet. such u an audio transport packet 24, a
zalion words for concealing audio assod.a.ted with the cor- 30 video transport. packet Ui, or other data packet 28. Io FIG.
responding audio frame. 1, only the derivation of the audio tt"ansport packets 24 is

Decoder apparatus in accordance with the Invention shown. In~ to derive video packets 26 and other padc.ets
acquin:s audio information cmicd by a pac.tetized data 28, com:s_ponding demen~ streams (not shown) are pro-
stream 1111d ha.adles erron therein. Means are provided fa.- vided which. an: processed mto PBS packets and transport
identifying audio packets in the data stream. The successive " ~ckets in essentially the same manner lllnstrated in FIG. 1
audio frames are extracted from the audio tnmsport pacbts. with respect to the formation of the audio transport padtets
Each audio fnmc is camed by one or mor:e of the plda:t.s. :Each MPEG transport pacizt contains 188 bytes of data.
and the start of each audio frame is identified by an audio formed from the four-byte transport header 30 and payload
synduonizatl.on word. Means responsive to the synchroni- data 32. which CID be up to 184 byte:s. In the MPEG
zation words obtain a syndironi:zation condition enabling ~ .implementation, an adaptation field of. e.g., eight byte:s may
the recovery of audio data from the detected audio packets be p-ovided between the transport header 3' and payload 32.
for storage in a buffer. Means arc provided for detecting the The variable length adaptation field can contain, for
preseocc of errors In the audio data. Means responsive to the example, .the program clock :n:fcn:n~ (PCR) used for syn-
Cll'Or detecting means control !he flow of data through the chroaization of the decoder system time clock (Sl'C).
buft:c:r when an CirlX is present, to attempt to maintain the 4S The plurality of audio transport packets 24. video tn.ns-
synchronizatl.on cooditi.on while masking lbe a:ror. Means port packets 26 and othe:r packets 28 is multiplexed as
are provided for reestablishing the audio timing if the illustrated in FIG. l to form a transport stream 22 that is
controlling means cannot mailltain the synchronization con- collllllllllicated ova: the comm.uni.cation channel from the
dition. encoder to the decode.& The purpose of the decoder is to

BRIEF DBSCR1I'l10N OF THE DRAWINGS so demultiplex the different types of transport packds from the
transport stream. based on the PID's of the individual

FIG. 1 is a diagrammatic illustration showing how audio packets, and to then process each of the audio, video and
transport packets are formed from an elementary stream of other compooents foe use in rcconstructina a television
audio data; signal.

0

FIG. 2 is a block diagram of decoder apparatus that can ss . FIG. 2 is a ~ock. diagram of a decoder for recovering the
be used in accordance with the present invention; video and audio data. The transport stream 22 is input to a

FIG. 3 is a ma.-e detailed block diagram of the deooder deJDllltiplexer and data parsing subsystem 44 via terminal
system time clock (Sl'C) illustrated in FIG. 2; 40. The demultiplexing and data parsing subsystem com-

FIG. 4 is a more detailed block diagram of the dC11llllti- municates with a decoder miaoprocessix 42 via a data bus
plc:xing and data parsing circuit of FIG. 2; and ro 88. Subsystem 44 recovers the video and audio transport

FIG. 5 is a state diagram illustrating the processing of packets from the transport pacut stream and parses the
audio data in accordance with the present invention. PCR, PTS and other necessary data 1hcrefrom for use by

other decoder components. For example.. PCR's are recov-
DBTAILBD DESCRIPITON OF THE ered from adaptation fields of- .. .- -n1r ... ,, • INVENTION • • ., ___ .,_ ---· r-- ,or use m

6S synchronwng a UQ;UUl;I system time clock (STC) 46 to the
FIG. l is a diagrammatic il.lustiation showing how one or system time clock of the encoder. Presentation time stamps

more digital programs can be multiplexed into a stream of for 1he video and audio data streams are recovaed from the

EX 1017 Page 179

' G 0

5,703,877
7

synchronization word is not rweived where expected within
the audio elementary stream. subsequent audio that: is not
butfaed until the next audio synchronization word is
maeived. This process compensates for too my audio
bytes having been hulfered when the armed andlopauket
wasdetected. Suehaneventwillocmreachdmethem

pacloet does not curry the maximum number of possible
audio data bytes. Means are providd for rerouting die
stange ofnudiodatnlnthebufl‘eriffire ncxtandiosym
chrouilation word is located within N bytes after the com-
mencement of the search therefor. 11 the next audio syn~
circulation wordis notlocatedwithin saidN bytes after-the
commencement of the search timefor. the audio timing will
be reacquired. In this manner. the size of dte sync fumes
bulfa'ed will be maintained including for those frames that
ntcmarlredaabeinginerror.unlessd1enextsyncwordisnot
located where expected in the audio elementary stem to
recovafmmmeetrorbeforehulferingenyofmenext
successive flame. This algorithm allows the decode and
presentation processes to rely on buttered audio frames
being the meet size in bytes. even when data errors rerult
in the loss of an unknown amount of audio data.

Means emalsobeprovidedforcoucealingenu’innn
sordid signal reproduced from data output from the butler
whenthedan ontputfiomdrebuttutrtnerror.Meens Ire
further provided for altering the Indie synchronization word
associated with a current Iudio frame. to signal the decode
and presentation process that a particular frame is in error.
The concealing means are responsive to altered synchroni-
zation words for concealing India associated with the cor-
responding nudio flame.

Decoder apparatus in accordutrx with the invention
acquires audio information canted by a pecketized data
stream and handles mas therein. Means are prodded for
identifying nuchopmhets in the data stream. The memsive
audiommeeereextrnctedfromthenndlotranspmtpeeketn
Eachaudiofnmeis amicdby onemmore offliepackets.
and the start ofench audio fimeisidentifiedbyanmxfio
syndtmntzntlon word. Means responsive to the synchroni-
zation words obtain a syndrronization condition enabling
the recovery of indie data from the detected audio packets
for stung: in a buffer. Means are provided for detecting the
presence of more in the audio data. Means responsive to the
error detecting means control the flow of data through the
butter when an error is present. to anempt to maintain the
synchronization condition while masking the error: Means
are provided for reectnblishing the audio timing if the
controlling means cannot maintain the synchronization con-
dition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is n diagrammatic illustration showing how audio
transport packets are formed fi'om an elementxy stream of
audio data;

FIG. 2is ahlockdingrnmofdeoodcrapporntus thltmn
be used in accordance with the present invention;

FIGJ is amedetniled blookdlagramofthedeooder
system time clock (STC) illustrated in FIG. 2;

FIG. 4 is a more detailed block diagram of the dcmulti-
plexing and data parsing circuit of FIG. 2; and

FIG. 5 is a state diagram illustrating the processing of
audio data in accordance with the present invention.

DETAEED DESCRIFI'ION OF THE
INVENI'ION

FIG. 1 is n dixgrnmmatic illustration showinghow one or
more digital programs can be multiplexed into a stream of

l0

15

35

45

55

60

65

8
transport packets. Multiplexing is accomplished by seg-
menting elementary streams such as coded video and audio
into PBS packet: and then segrnenting three into transport
packets. The figure is illustrative only. since a PBS packet.
such as PBS packet 16 illustrated, will oonunonly mince
inmotherdnnthe sixmsportpmhetsfifllustnwd.

In the example ofFIG. 1. an elementary stream generally
design-mil 10 contains audio data provided in audio frames
14 delineated by synchronization words 12. Similar elemen»
mystrumswfllbcptovidedforvideodatamdotherdata
to be transported.

Thefirststepinformtngaunnsponpacket streamisto
reconfigure the elementary stream for each type of data into
a corresponding pocketized elementary stream (PES)
formed from successive PBS packets, such as packet 16
illusWBnchPESpaeketcontainsaPESheaderls
followed by a PBS payload 20. The payload comprises the
dantobecomnutnlcetedThePESheodulSwillcontain
intonation useful inpmeecsing the payload date. such as
the prerennfien date stamp (PPS;

'l‘heheederandpaylonddntnfrcnneoehPES packet are
enclpsulntedintotnusportpacleetsumeeheontainingn
transport [reader 30 and payload date 32. The payload data
of the transport packet 24 will contain a portion of the
paylond data 28) andlor PBS bender 18 fi'omPES packet 16.
In an MPEG implementation. the transport head: 30 will
contain the packet identifier (PlD) which identifies the
transport packet. such 15 an audio transport packet 24, a
video transport picket 26, or other data packet 28. In FIG.
1, only the derivation of the audio transport packets 24 is
shown. In order to derive video packets 26 and other packets
28, omesponding elementary streams (not shown) are pro—
ridedwhichareprooessedianESpeekeo andtnnsport
padrets in essentially the same manner illustrated in FIG. 1
withrespeettotheformadonofdie audionansportpackets

mmunnepcrtpacmcontnins lSSbytesofdntn.
formedfi'om die fonrvbytc transport header 30 and payload
dm32,whichoenbeuptol$4bytec.lnfircl/IPEG
haplemennuton, Ill adaptation field of. e.g., tight bytes may
be provided between the transporthender 3! and payload 32.
The variable length adaptation field can contnin. for
example. the program clock reference (POI) used for syn-
chronization of the decoder system time clock (STC).

The plurality of ludlo trnnsport padrets 24. video we-
podpacketsZSnndofitcrpncketsZflisnuflfiplexedas
illustratcdinFIG. ltofotmnmsportstreamnthntis
communicated over the cornmunicnfion channel from the

encodertothedecoden'l‘heptnpose ofthedeoodu‘isto
Whittle! the dilfmnt types of transport packets tom the
transport mum. based on the Film of the individual
packets, and to then process end: of the rudio. video and
other components for use in reconstructing a television
signnL

FIG. zis ablockdingnmofxdecodcrforrecovefing the
video and audio dztn.'l'he transport sneamzz is inputto a
dcmulfiplexcr and data parsing subsystem 44 via terminal
40. The demultiplcxlng and data parsing subsystem com—
municntes with a decoder microprocessor 42 via a data bus
88. Subsystem 44 recovers the video and audio mspott
packets from the transport packet stream and parses the
mmandolhcrnmsarydalamuefmmforuseby
otha' decoder cmnponents. For movie. PCR’s are recov-
ered 33111333133303 fiddsofmspatpmketsfor usein
synchronizing nmsystem time clock (SI‘C) 46 to the
system time clock of the encoda. Presentation time stamps
for the video and audio data streams are recovered from the

EX 1017 Page 179

..

J

l
l

i

. . . 0 0

5,703,877
9 10

respective PBS packet headers and communicared as video The number of bits between the rust bit of two c:onsea1-
or audio control data to the video decoder 52 and audio tive audio sync words is refcacd to as the frame size. The
decoder 54, respectively. frame size depends on whether the audio stream is AC-3 or

The decoder time clock 46 is illustrated in greater detail Musicam and bas a different value for each combination of
in FIG. 3. An .important function of the decoder is the 5 audio sample and bit rate. In a preferred embodiment.
rc:construction of the clock associated with a particular subsystem 44 is required to synchronize to AC-3 and Musi-
program. This clock is used to reconstruct. for example, the cam sample rates of 44.1 ksps and 48 bps. The AC-3 audio
proper bodmotal scan rate for the video. The p-oper pre- syntax conveys the audio sample rate and audio frame size
sentadon rate of audio and video presentation units must while the Musicam audio syntax conveys the audio sample
also be assured. These arc the audio sample rate and the

10
rate and audio bit rate. Both AC-3 and Musicam spocify one

video frame rate. Synchronization of the audio to the video, sync frame size for mch bit rate when the sample me is 48
referred to as "lip sync", is also required. ksps. However, AC-3 and Musicam spocify two sync frame

In order to generate a synchronized program clock. the sizes for each bit rate when the sample rate is 44.1 ksps, a
decoder system time clock (STC) 46 receives the PCR' s via fact which complicates synchronization. especially through
temJina1 60. Before the commencement of the transport pac.ki!t loss. When the sample rate is 44.1 ksps. the com::ct
stream decoding, a PCR value is used co preset a countcr 68 15 sync frame size between the two possibilities is indicated by
for the decoder sySlem time clock. As the clock runs, the the least significant bit oftheAC-3 frame size code orby a
value of this counter is fed back to a subtracter 61. Toe local Musicam padding bit. • •
feedback value is then compan:d with subsequent PCR's in O~cc ~o consecutive audio sync w~ have been

. received with the cCIII'Cd. number of bytes m between. as
the transport ~ as they mive at temnnal 60. When 11 20 specified by the sync frame siu:, subsystem 44 will store the
PCR amves, it .represents the ca:rect STC value f<I 1he audio sample rate and audio bit rate implied by the audio
~ogram. The diffcrcncc between the ~ value and the syntax for access by the decoder miaoiroccssor 42, intcr-
STC value, as ouq,ut nc:im su~actcr 62, 1s filtered by a loop rupting the micrqxoccssCI' to indicate that subsystem 44 is
filmr 64 and used to drive the ms~taneous frequency of a waiting fer the microprocessor to supply it with 1111 audio
voltage controlled oscillator 66 to citha dea:ease or increase 15 PrS ooacction factor. The ooacction factoc is necessary in
the STC frequency as ncccssary. The src has both a 90 kHz order to .tnow when to OUlpUt audio data to the audio
and Z7 MHz component, and the loop filter 64 converts this decoder 54 during initial acquisition and eluting lrack:ing for
to units in 1he Z7 Mhz domain. The output of the VCO 66 proper lip synchronization. The value is denoted as dPl'S.
is a 27 MHz oscillator signal which is used as the program The lip sync value used for tracld.ng is sligbtly less lb.an that
clock frequency output from the decoder system lime clock. 30 used for initial acquisition to allow for time errors which will
Those skilled in the art will recognize that the decoder lime exist between any two PJ'S values. namcly !bat which is
clock 46 illustrated in FIG. 3 is implemented using well used for acquisition and those which ~ used fo,: tracking.
known phase locked loop (PU.) techniques. Decoder microprocessor 42 sets the corredion factors

Before beghming audio synchronization. the decoder of such that audio and video-will exit the decoder with the
FIG. 2. and particularly subsystem 44, will remain idle until 35 same time relationship as it entered the encoder. thus achiev-
it is configured by~ mkro~ocessor 42. The configu- ing lip synchronization. These com:ction fact«s arc deter-
ration consists of identifying the type of audio data stream mined based on audio sample rate and video frame rate (e.g.,
to be processed (e.g., Dolby AC-3 or Musicam audio), 60Hzor50Hz).1bcscdcpendcnciesc:xistbecausctheaudio
identifying the PID of packets from which the audio PCR decomp[e$sion processing time required by audio decodcr
values arc to be extracted, and identifying the PlD for audio 40 54 potentially depends on audio sample and bit rate while
pac.ki!ts. the video decompression implemented by video decoder 5:2

During the idle state, subsystem 44 will instruct audio potentially depends on video frame rate and de.lay mode. In
decoder 54 to conceal the audio output. Conce.almcnt can be a preferred implementation, the PJ'S coacc:tion factors con-
accomplished by zaoing all of the audio samples. Subse- sist of 11 bits, representing the number of 90 kHz clock
quent digital signal processing will result in a smooth aural 4.5 periods by which audio data is to be delayed before output
transition from no sound to sound, and back to no sound. to the audio decoder 54. With 11 bit values, the delay can be
The con<=al.ment of the audio output will be terminated as high as '22.7 milliseconds.
when the synchronization process reaches a tracking stMe. Once the demultiplexing and data parsing subsystem 44
Decoder mkroprocessor 42 confi.gures the audio fCl'IDllt as requests the decoder miaoprocessor 42 to supply the cor-
AC-3 or Musicam, depending on whethcr audio decoder 54 ,o rection factors. it will monitor reception of conseaitive sync
is an AC-3 or Musicam decoder. Mia:oproccssor 42 deter- words at the cxpect.ed positions within the audio elementary
milles the audio PID and audio PCR PID from p-ogram map stream. II an em,r condition occurs during this time. sub-
information provided in the transport stream. The program system 44 will transition to sean:hing far two consecutive
map information is essentially a directory of PID's, and is audio sync wcrds with the COifCd number of data bytes in
identlfted via its own PID. 55 between. Otherwise, subsystem. 44 remains in State dPl'S-

Once the dcmu:uiplexcr and data pming subsystem 44 is wait until the decoder microprocessor services the interrupt
romroanded to enter a Frame Sync state via an acquire from subsystem 44 by writing dPTS- to subsystem 44.
command, it will begin searching for two conseaitive audio Once subsystem 44 is provided with the PJ'S conec:ti.on
sync worda and will supply the decoder mic:roprocessor 42 fact<Is, it checb whether a lrallsport packet has been
with the audio sampling rate and audio bit rate indicated 60 received on the audio PCR PlD containing a PCR value.
within the audio elementary stream. To locate the sync Cflried in the adaptation field of the packet. Until this has
wcrds, subsystem 44 will receive 1J:anspQrt packets on the occum:d, :n:«ption of consecutive sync words will continue
audio PID and extract the PBS data. searching for the [State=PCR. Acquire]. If an crroc coadition occurs during
occurrence of the audio sync word, which is a this time, subsystem. 44 will transition to searching for two
prcdeteonined. fixed word. F<r example, the AC-3 audio 65 consecutive audio sync words [State=Frame Sync].
sync word is 0000 1011 0111 0111 (16 bits) while the Othetwise. it will remaio ill State=PCR Acquire until it
Musicam sync word is Ull 1111 111J (12 bits). receives a FCR value on the audio PCR PID.

EX 1017 Page 180

' O

5,703,877
9

respective PBS packet headers and communicated as video
or audio control data to the video W 52 and audio
decoder 54, respectively.

The decoder time clock“ is illustramd in greater detail
in FIG. 3. An important function of the deooda is the
reconstruction of the clock associated with a particular

This clock is used to reconstruct. for example, the
proper horizontal scan rate for the video. The {repente-
sentation nte of audio and video In'esentntion units must
also be assured These are the audio sample rate and the
video frame rate. Syndnonization of the audio to the video.
referred to as “lip sync“, is also required.

In order to generate a molecular! program clock. the
decoder system time clock (SI‘C) 46 receives the PCR’s via
terminal 61). Before the commencement of the transport
stream decoding, a PCR value is used to prone: a counter 68
for the decoder system time clock. As the clock runs, the
value of this canola is fed backto a subtracts: 62. Thelocel
feedback value is then compmed with subsequent PCR’S in
dreamspmtsueamasthey an‘lventterminaléé.Whena
PCR arrives. it represents the correct STC value ft! the
program. The dlfl‘erence between the PCR value and the
ETC value, as output from subtract: 62, is filtered by sloop
filter 64 and used to drive the instantaneous frequency of a
voltage controlled oscillator 66 to either cleanse «increase
theSl‘Cfroquenq successor-y'l'heSI'ChnsbothaQDkllz
and 27 MHz component. and the loop filter 64 converts this
termite intheTIMhz domaln.Theourput oftheVCO“
isdz’IMHzoseillator signalwhichisuseduflreprcmm
clock frequency output from the decoder system time clock.
Those skifledinthemwiflreeognizethatthedeooderfime
clock 46 fluctuated in FIG. 3 is implemented using well
known phase locked loop (PLL) techniques

Before beginning audio synchronization. the deeoda’ of
FIG. 2. and particularly subsystem M. will remain idle until
it is configured by decoder miaopocessrx 42. The configu-
ration consists of identifying the type (indie data stream
to be processed (e.g.. Dolby A03 or Musiezm audio),
idenflfyingthe PID ofpec‘rets fromwhioh the audioPCR
values are to be extruded, and identifying the PID for audio
packets.

Dtning the idle state. subsystem 44 will instruct audio
decodetsuooonoenl the uudiooutpm. Concealmentennbe
accomplished by zu'oing all of the audio samples. Subse-
quent digital signnl processing will result in a smooth aural
dentition from no sound to sound. and back to no sound.
The concealment of the audio output will be terminated
when the synehronintion process reaches a melting state.
Decoder microprocessor 42 configmes the audio fcrmnt as
AC—3 orMusienm. depending on whether audio decoda'Sl
is an AC-3 or Musicnm decoder: Microprocessor 42 deter-
mined the audio PI!) and audio P'C'R FlDfromprogram map
inflammation provided in the transport stream. The program
map infonmtion is essentially a directory of PID‘s, and is
identified via its own Pm.

Once the «multiplexer and data parsing subsystem 44 is
commandedtoentu'aPrameSyncsmcviaquuire
command, it will begin searching fortwo consecutive audio
sync words and will supply the decoder microprowssordz
with the audio sampling rate and audio bit rate indicated
within the audio elementary stream. To locate the sync
wads, subsystem 44 will receive transport packets on the
audio P11) and extract the PBS data, searching for the
occurrence of the audio sync word, which is a
Ixedctermincd. fixed word. For example, the ARC—3 audio
sync word is 0000 1011 0111 0111 (16 bits) while the
Musieum sync word is 1111 1111 111102 hits).

5

10

15

35

55

10
The number of bit: between the first bit of two consecu-

tive audio sync words ls referred to as the frame size. The
frame size depends on whether the audio stream is AC~3 or
Musicam and has a diligent value for each combination of
audio sample and bit rate. In a preferred embodiment.
subsystem 44 is required to synchronize to A03 and Musi-
cnmssmplerares 1144.1 ksps and 48 tops The AC6 audio
syntax conveys the audio simple rate and audio frame size
while the Musicarn audio syntax conveys the audio sample
rate and audio bit rate. Both AC-3 and Maxim spwify one
sync flame size for unit bit rate when the sample rate is 48
ksps. However, AC-B and Music-m specify two sync frame
sizes for each bit rate when the sample rate is 44.1 bps. a
fad which complicates synchronization. especially through
packet loss. When the sample rate is 44.1 ksps. the correct
sync frame size between me two possibilities is indicated by
the least significant bit oftheAC~3 frame size code orby a
Muslcam padding bit.

Once two consecutive audio sync words have been
received wins the cured numb: of bytes in between. :5
specified by the sync frame size subsystem 44 will store the
audio sample rate md audio bit rate implied by the audio
syntax for access by the decoder microprocessor 42. inter—
rupting the rnr‘rropocessrr to indicate that subsystem 44 is
wetting for the tnierqnocecsor to supply it with an audio
PI‘S correction factor. The correction factcr is necessary in
ordertokuow whentoartput audiodntatothenudio
decode 54 during initial acquisition and during tracking for
proper lip synchronization. The value is denoted as dPI‘S.
The lip sync value used for tracking is slightly less than that
used for initial acquisition to allow for time more which will
exist between any two Pl‘S values. numely that which is
used for acquisition and those which are used for tracking.

Decoder microprocessor 42 sees the correction factors
such that audio and video-will exit the decoder with the
same time relationship as it entered the encoder. thus reliev-
ing lip synehmnizntim These correction factors are deter-
mined bnsed on audio Simple me Ind video frame rate (e.g.,
60 HzarSt) Hz). 'l'hesedependeneies ezdstbcausethe audio
(immersion processing time required by audio demdu'
54 potentially depends on audio sample and bit rate while
the video decompression implemented by video decoder 52
potentially depends ouvideo fumemewd dolly mode. In
a preferred inplementatlon. the m correction factors con-
sist of 11 bits, rqsresenting the titration of 90 kHz clock
period: by which audio data is to be delayed before output
to the audio decoder 54. With 11 bit values, the delay can be
as high as 22.7 milliseconds.

Once the demulfipluring and data parsing subsystem 44
requests the decoder microprocessor 42 to supply the can
rection factors, it will monitor reception of consecutive sync
words at the expected positions within the audio elementary
stream. If an error condition occurs during this time. sub-
system 44 will transition to searching for two consecutive
audio sync words with the correct number of data bytes in
between. Otherwise. subsystem 4d mmins in State dP'IS-
wait until the decoder mi 501‘ sa’vices the interrupt
from subsystem 44 by writing (11’qu to subsystem 44.

Once subsystem 44 is provided with the PTS corredion
factors. it check: whether a transport packet has been
received on the audio PCR PID containing in PCR value.
carried in the adaptation field of the pecker. Until this has
oemrred, reception of consecuh've sync words will continue
{SWPCK Milk]- If an error condition occurs during
thistimc, SUBSYSMMwflluamitionmsczrdfingfortwo
consecutive audio sync words IStnte=Frame Sync].
Otherwise. it will morale in Sun-5P6! Acquire until it
receives a PCR value on the audio PCR Pm.

EX 1017 Page 180

0 0
5,703,877

11 12
After a PCR has been acquired. subsystem 44 will begin continue to receive audio packi::ts, write their PBS data into

searching for a PrS [State=Pl'S Aoqu:lre], whl.ch is camed the buffer SO, maintain the aIDI' pointers, and moo.itor
iJJ the PES header of the audio transport packets. Until this reception of consecutive sync wa:ds. If an en-or condition

k

bas occw:ted, subsystem 44 will monitcr the reception of occurs during this time, subsystem 44 will transition to em,r

consecutive sync words. If an ei::ror condition occurs during s processing. Othenvise, it will remain in Statc=Traclc until an
this time, it will transition to an error handling algorithm. error occurs or microprocessor 42 commands it to return to
[Statc=Fn'or Handling}. Otherwise, it wW remain io the PJ'S the idle state.
acquire state uatil it receives a PfS value on the audio PJD. As sublyste~ 44 outputs the sync wor:! of ~~ sync

When subsystem 44 receives an mdio PrS value, it wW ~ to the ~dio ~ 54 as part of the audio rcfcm::d
begin scan:hillg for reception of the next audio sync word. 1o to m FIG. 2, it~ signal the ~or status of each audio sync
This is important since lhe PrS defines the time at which to frame to th~ audio decoder_ usm~ the sync word. The sync
ou1put the data which begins with the next audio ftame.. word of auil;io sync frames m w~ch subsystem 44 knows of
Since audio frames are not aligned with the audio PES, the no errors will be oulput as specified by the Dolby AC-3 or
number of bytes which wW be received between the PJ'S Mu~ specification, ~ appropriate. The sync word of
and the next audio sync word varies with time. If an error 15 a~dio sync frames ill which subsystem 44 bows of mors
condition occurs bcfcre reception of the next audio sync will be al~ relative to the c~ sync words. ~ an
ward, subsystem 44 returns to searchillg for andio frame example, and m the preferred cmbodiml:nt, every other~ of
synchronization [State=Prame Sync]. n should be apJreci- the sync w~ of sync~ to which an ~ pomter
atcd that since audio sync frames and PBS headers are not points will be lBVertcd, starting with the most s1gn.ifi~t bit
ali ned ·t · --,.1 for PBS heada: and the PJ'S which 20 of the sync word. Thus, the altered AC-3 sync word will be
. g ,

1 11 r--· e a. ' . 1010 000111011101 while the altered Musicam sync word
it ~y contaill, to. be rcce,.vcd bdWeen the 12 or 16 bits will be 0101 0101 0101. Only the bits of the sync word will
which_ fmn an audio ~ word. In this case, the sync wa:~ be altered. The audio decoder 54 will conceal the audio
to whl.ch the PrS refers is not the sync wcrd which i.s split . ..__ ,,_ __ which • . · ... , •'--
by the PBS header but rather the folluwiDg sYDC word. ClIOlS ID WD sync uilllJC. it receives ID w,., ~c

' • • 25 word has been altered m this m.atu1er. However., the audio
W'!1en subsystem 44 rece1':es the next sync w~ it has deoodcr will continue to maintain syochrouizatioo with the

acquired PfS. At this point, ~ will store the received PJ'S audio bitsttcam. Syndironizatioo will be maintaioed assum-
and the PBS data ~stllrting ~ the sync wtll1 ~ first iog lhe andio bit rate did not change, and knowing that two
followed the PrS) mto 111 audio buffer 50, together with lhe sync frame sizes are possible when the audio sample rate l.s
buffer address at which it writes lhe sync word. This sto£cd 44 1 i:sps.
PfS/bu1fer address pair will allow subsystem 44 to begin 30 in accordance with the preferred embodiment. audio
outputtin.g audio ';ES ~ to the ~dio decoder 54 at lhe decoder 54 will maintain synchronization through sample
coaect time, startillg with the audio sy~c word. In a p:e- and bit rate changes if this feature is enabled by lhe decoder
ferrt;d embodiment: lhe buffer SO is implemented in a microirocessor 42. If the microirocessor disables sample
portion of dy~ random access memory (DRAM) ss rate changes, audio decoder 54 will conceal the audio errors
al.ready provided m the ~ • • in each sync frame received with a sample rate that does not

Once subsystem 44 begins buffenng audio data, a number nwch lhe sample rate of the sync t.came on which the audio
of parametcls must be lractcd whl.ch will allow it to handle decoder last acquired, and will assume that the sample rate
particular error conditions, sudl as loss of an audio transport did not change in order to maintaio synchronization. The
pacht to transmission Cll'Ol'S. These parameters can be '40 audio decoder is required to process through bit rate
tracked using audio poln~ inclu4iog a ~ poin~, a changes. If an error in lhe bit rate information is indicated,
DRAM o1fsc:t address pomtcr, and a valid flag pomtcr e.g., through the use of a cyclic redundancy code (CRC) as
discussed in greater detail below. well i:Dowo in the art, audio decoder 54 wW assume that the

After PTS is acquired.. subsystem 44 begins waiting to bit rate of the coo:cspooding sync frame is the siu:ne bit me
synchronize to PJ'S (State=PI'S Sync]. In this stale, the 4S as the previous sync frame iJi order to maintain synchroni-
deroultiplexer and data parsing subsystem 44 continues to :z:atioo. If the decoder microJrOCCssor 42 has enabled rate
receive audio pachts via terminal 4t, writes their PES data changes, the audio decoder 54 will assume that the rates
into buffer 50, and maintains the aror pointers. When this indicated in the sync frame are ca:rect, wW p:ocess the sync
state is entered, subsystem 44 compares its audio STC to the frame, and use the appropdate sync frame size in m.aintain-
coaect output start time, which is the PrS valae in the PJ'S so ing synchronization wilh the audio bitstream.

.,
'~

pointer plus the acquisition PrS concction factor (dPI'S-). Demultiplexer and data parsing subsystem44 will also aid
If subsystem 44 discovers that the oouect time has passed, microprocessor 42 in checking that audio data continues to
i.e .. PCR>PI'S+dPl'S_., one or more of the three values is be output at the coacct time by resynchronizl.llg with the
incoitect and subsystem 44 will flag decoder microprocessor PfS for some PJ'S values received.. To accomplish this,
42. At this point, the state wW revat to Statc=Frame Sync, ss when a PrS value is received it will be ston:d in the PrS
and subsystem. 44 will .retum to scuching fer two consecu- pointer, along with the audio o1fset address at which the nc:xt
tive audio sync words. Otherwise. until PCR=PI'S+dPI'Saor sync word is written in audio buffer 50, if the PTS pointer
subsystem 44 will continue to receive audio packets, write is not already occupied. In doing this, subsystem 44 will
their PBS data into the buffer 51, maintain lhe eaor pointers, ensure that the next sync word is received at the oorrcct
and monitor the reccplioa of conscrulive sync words. 60 location in the audio PBS bitstrcam. Otherwise, lbe PJ'S

When PCR=PrS+dPI'S subsystem 44 has syncbro- value will not be stored and subsystem 44 will defer rcsyn-
nized to PrS and will ~ tractiog lhe audio stream chronizati~n . until ~ next successful ~S/DRAM offset
[St.ate=!Track]. At this time, subsystem 44 will begin trans- address pair JS obtained. Subsystem 44 will store the PI'S/
ferring the contents of the audio buffer to the audio decoder DRAM offset add.n::ss pair in the PTS pointer until it begins
54 upon the audio decoder requesting audio data. starting 65 to output the associated audio sync frame. Once it begins
with the sync wocd located at the buffer address pointed to ouq,utting audio data to lhe audio decoder 54, subsystem 44
by the PrS pointer. In the tracking state, sublystem. 44 will will continue to senice the audio decoder's requests for

L ' .

EX 1017 Page 181

t“!-

s

.l/'.

..19..meW“".k§e‘14.“S:.
“ml
Y‘mfln

gym-1-do»!b*.1»,93'«only»
“ratios”:inJJul“

<2‘“‘2*‘n.
ILA-

4a

' O 0

5,703,877
11

After a PCR has been acquired. subsystemu will begin
melting for 1 Yrs [SM Aquino], which is carried
in the PBS header of the audio transport packets. Until this
has boomed, subsystem 44 will monitor the mcepfion of
consealtive sync words. If an error condition ocean dining
this time. it will transition to an error handling algorimm
[State=Error Handling]. Othu'wise, it will rennin in the PIS
acquire state until it receives 1 HS value on the audio P11).

When subsystem 44 receives an audio PTS value, it will
begin searching for reception of the next audio sync word.
Thisisimportant since theI’l‘S defines lhetimeatwhiehto
wtput the data which begins with the next audio frame.
Since audio frames areuot alignedwith the audioPES.the
number of bytes whldr will be received between the HS
and the next audio sync word varies with time. If an error
condition occurs before reception of the next audio sync
ward, subsystem 44 realms to rut-dung for audio frame
syndnonizatlon [SWIM Sync]. It should be emeri-
azedthatsinceaudiosyneframesmdPESheadmalenot
aligned, it is possible for a PBS header, and the PI‘S which
it may contain, to be received between the 12 or 16 bits
whichfcrmanaudiosync wordluthis case. the syucword
towhicbthel’l‘Sr-efasis nottbesyuc wordwblchlssplil
by the PBS header, but rather the following sync word.

When subsystem 44 receives the next sync Word, it has
acquired FI‘S. Atthispoint1 itwlll store memeivedl’l's
andthePBS maturingwithtbesyncwordwhlmm
followed the P'l‘S) into an audio buffer 50, together with the
bull’er addreoa at which itwritea the sync word. This mod
PTSfbufler address pair will allow subsystem 44 to begin
outpum’ng audio PBS data to the audio decoder 54 at the
oonectfimmstartingwfihtheeudiosyncwcrdlnapre-
fen-ed embodiment. the butter 50 is implemented in a
portion of dynamic random access memory (DRAM)
already provided in the decoder.

Once subsystem 44 begins buffering audio data, a number
ofpamneters mustbeuachedwhieh willallow ittc handle
particular error conditions. such as loss of an audio transport
packettouanamiasionerrom'lheseparamelerscanbc
tracked using audio pointers including 3 PTS pointer, a
DRAM ofi’set address pointer. and a valid flag pointer
discussed in greater detail below.

After PTS is acquired. subsystem 44 begins waiting to
syncinonlze to MS [Statemel’l‘s Sync]. In this state, the
demultiplexer and data leasing subsystem d4 continues to
receive audio packets via terminal 40. writes their PBS data
into butler so. and maintains the mar pointus. When this
stateis entered, subsystem 44 computer its audio S'I’Cto are
correct wtput start timewhicbisthef'l‘s valueintltePl‘S
pointer plus the acquisition P'I‘S correction factor (arrow).
If subsystem 44 discovers that the meet time has passed,
Le" PCR>PTS+dPTSm. one or mom: of the three values is
incorrect and slursystem 44 will flag deoodermltroprocessor
42. At this point. the state will revert to Sme=Frame Sync,
and subsystem 44 will return to searching for two consecu-
tive audio sync words. Othewise. until PCR=PTS+dPTSmr
subsystem 44 will continue to receive audio packets, Mite
tlteirPES dataintothe butler-5., maintain memorpointers.
and monitor the nweption of consecutive sync wads.

When PCR=PTS+dFESW subsystem 44 has syndaro.
hired to PTS and will begin tracking the audio stream
[Stnlod’l‘mck]. At th‘s time. subsystem 44 will begin trans-
ferring themntents ofthe audio bufi’er to the audio decoder
54 upon the audio decoder requesting audio data, stoning
with the sync word located at the buffer address pointed to
by the PPS pointer. In the tracking Me. subsystem 44 will

10

15

35

45

55

65

12
continue to receive audio packets, write their PBS data into
the butter 50. maintain the error pointers. and monitor
reception of consecutive sync words. If an error condition
occurs during this time, subsystem“ will transition to error
processing. Otherwise. it will remain in Saree-Truck until an
ermroccura mmiuoproeessordzmmmandsittorm to
the idle state.

As wbmtem 44 outputs the sync word of each cynic
flame to the audio decoder 54 as part of the “audio” referred
toinFIG. zitwillsignalthearorstams ofeaeh audio sync
frame to the audio decoder using the sync word. The sync
word of audio sync frames in which subsystem 44 knows of
no errors will be one»! as specified by the Dolby AC-B or
Musicam specification, as appropriate. The sync word of
audio sync frames in which subsystem 44 known of errors
will be altered relative to the correct sync words. As an
example. and in the prefmed embodiment. every other bitof
the sync word of sync frames to which an snot pointer
points will be inverted, starting with the mug significant bit
of the sync word. Thus. the altered AC—3 sync word will be
1010 000! 1101 1101 while the Iltaed Musical sync word
will be 0101 0101 0101. Only the bits of the sync word will
be altered. The audio decoder 54 will conceal the audio
more in the syncframe which itreceivesin whichtbesync
word has been altered in this manner. However. the audio
dewder will continue to maintain synchronization with the
audio bitstream. Synchronization will be maintained assum-
ing the audio bit rate did not change. and bowing that two
sync frame size: are possible when die audio sample rate is
44.1 zaps.

In accordance with the preferred embodiment, audio
decoder 54 will maintain synduonization through sample
and bit rate changes if this {centre is enabled by the decoder
microprocessor 42. If the microprocessor disables sample
rate changes. audio decoder 541 will conceal the audio errors
in card: sync {rm received with a sample rate that does not
match the samplerateofthe syncfnme on which theaufio
deoodcrlnstacquired, wdwillassumethatthe samplerate
did not mange in mid to maintain synchronization. The
audio decoder is required to process through bit rate
changes. If an (not in the bit rate information is indicated
e.g., through the use of a cyclic redundancy code (CRC) as
well known lathe mandiodecoderfiwillasmmethatthe
bitrate ofthe corresponding syncframe {31116 same bitme
as the previous sync frame in order to maintain syndtronio
zation. If lite decoder microprocessor 42 has enabled rate
changes, the audio decoder 54 will assume that the rates
indium! in the sync flame are correct, will process the sync
flame. and use the Write sync frame size in maintain-
ing synchronization with the audio bitsn‘cam.

Demultiplexer anddataparsing subsystem“ will also aid
miaoprocessor 42 in checking that audio data continues to
be output at the correct time by resynchroniflng with the
ITS for some PI'S Values received. To accomplish this.
wheuaI’I‘Svalueisreoeiveditwfllbe storedinthel’l's
pointer, along with the audio ofi‘set address at which the next
sync word is Written in audio bufier 50. if the PI'S pointer
is not already 0W1”. In doing this, subsystem 44 will
ensure that the next sync word is received at the curred
location in the audio PIES bitstream. Otherwise. the PPS
value will not be stored and subsystem 44 will defer resyn-
chronization until the next successful PI‘SIDRAM offset
address pair is obtained. Subsystem 44 will store the P'l‘S/
DRAM onset adskcsapulrlnthePl’Spointerunfilitbegins
to output the associated audio sync flame. Once it begins
outputting audio data to the audio decoder 54. subsystem“
will condone to service the audio decoder's requests for

EX 1017 Page 181

•'.

0 0
5,703,877

13 14
audio data, outputting each audio sync frame in sequence.
1bis will continue until the sync frame pointed to by the PrS
pointer is reached. When this occurs, subsystem 44 will stop
outputting data to the audio decoder 54 until PCR=PrS+
dPI'S"""'*" This will detect audio timing errors which may s
have occurred since the last resyncluonization by this
method.

enter, respectively, with the symbol ">" that the dc:signatcd
emir will be detected when the audio processing state of
subsystem 44 is higher than the designated state. Toe audio
processing state hierarchy, from lowest to highest. is:

1. Idle
2. Frame Sync

3. dPrS...,u
4.PCR....,

If PCR>PI'S+dPI'Soog when subsystem 44 completes
ou1put of the previous sync frame, the audio decoder 54 is
processing too slow or an undetected error bas occurred in
a PCR or PrS value. After this error condition, subsystem44
will :flag miaoprocesscr 42, stop the output to the audio
decoder 54. clear audio buffer SO and the pointas, and return
to searching for two consecutive sync words separated by
the correct number of audio data bytes. If the audio decoder
54 is not requesting data when the bu:ffer read pointer equals
the address pointed to by the PJ'S pointer, an audio process
ing error has occurred and subsystem 44 will maintain
synchronization with the audio stream, clear its audio buffer
and pointers, and return to searching for two consecutive
audio sync words [State=Frame Sync].

In order to handle errors, subsystem 44 sets a unique crr<r
:flag for each error condition, which is reset when miaopro
cessor 42 reads the flag. Each aror condition which inter
rupts microprocessor 42 will be maskable under control of
the microprocessor. Table l lists the various error conditions
related to audio synchronization and the response by sub
system 44. In this table. "Name" is a name assigned to each
aror condition as referenced in the state diagram of FIG. S.
"Definition" defines the conditions indicating that the cor
responding error has occurred. ''INT" is an intemJpt desig
nation which, if ''yes", indicates that subsystem 44 will
Interrupt miaoprocesscr 42 when this error occurs. ''Cleek
State" and ''Next State" designate the stat.es in which the
aror will be detected (checked) and the audio processor will

10 5. PrS""'1
6.PrS Sync

7.Track:
The symbol "~" preceding a state indicates that the error
will be detected when the audio pl"OCCSsing state of sub--

1.5 system.44 is equal to or higher than the designated state. The
designated state(s) indicatc(s) that the error will be detected
in this state or that the audio processing of subsystem 44 will
proceed to this state after the associated actions arc carried
oul The designation "same" indicates that the audio pro-

20 cessing of subsystem 44 will stay in the same state after the
associated actions are carried oul

The heading "Buffer Action" indicates whether the audio
bu:ffer is to be :flushed by setting its read and write pointers
to be equal to the base address of the audio bu:ffcr. The

25 designation "none" indicates no change from normal audio
buffer management.

The heading ''Pointer Action" indicates by the term
''reset" that the PrS pointer, error pointers or both will be
relumed to the state specified as if subsystem 44 had been

30 reset. The designation "none" indicates no change from
nonnal. pointer management. The designation "sec other
actions" indicates that othCI' actions under the "Other
Actions" heading may indicate a point.er to be set or rcsel
The "Other Actions" heading states any additional actions
required of the subsystem 44 as a result of the error.

EX 1017 Page 182

« tV: t62

may"t

whaw-e."“rim”“'

gr

,3.;.

' Q

5 ,703,877
13

audio data. outputting each audio sync frame in sequence.
This will continue until the sync frame pointed to by the PIS
pointer is reached. When this acorn-s, subsystem44 will stop
outputting data to the audio decoder 54 until PCR=PTS+
dPI‘SM This will detect audio timing errors which may
have occurred since the last resynchronization by this
method.

If PCR>PIS+dPTSm when subsystem 44 completes
output of the previous sync frame, the audio decoder 54 is
processing too slow or an undetected error has occurred in
a PCR or PI‘S value. After this aror condition, subsystem“
will flag microprocessa’ 42. stop the output to the audio
decoder 54. clear audio bum-r 50 and the pointers. and return
to searching for two consecutive sync words separated by
the corred number of audio data bytes. If the audio decoder
54 is not requesting data when the bufl’er read pointer equals
the address pointed to by the PPS pointer, an audio process-
ing error has occurred and subsystem 44 will maintain
syndrronization with the audio stream, clear its audio butt:
and pointus, and return to searching for two consecutive
audio sync words [Stathrame Sync].

In order to handle errors. subsystem 44 sets a unique en'cl'
flag for each error condition, which is reset when micropro-
cessor 42 reads the flag. Each error condition which inta-
rupts microprocessor 42 will be maslmble under control of
the microprocessor. Table 1 lists the various error conditions
related to audio synchronization and the response by sub-
system 44. In this table. “Name" is a name assigned to each
(:10: condition as referenced in the state diagram of FIG. 5.
“Definition" defines the conditions indicating that the cor-
responding error has occurred. “INF" is an interrupt desig~
nation which, if Wes". indicates that subsystem 44 will
lntcmrpt microprocesscr 42 when this error occurs. “Greek
State” and “Nut State“ designate the states in which the
error will be detected (checked) and the audio processorwill

5

IO

15

14
enter, respectively, with the symbol “>" that the designated
error will be detected when the audio processing state of
subsystem 44 is higher than the designated state. The audio
processing state hierarchy. from lowest to highest. is:

I. Idle

2. Frame Sync
3. dl’l'Sm“

4. PCRmy
s. Prsm,
6. PTS Sync
7. Thick

The symbol "a" preceding a state indicates that the error
will be detected when the audio processing state of sub-
system44 is equal to or higher than the designated state. The
designated state(s) indicate(s) that the enor will be detected
in this state or that the audio processing of subsystem 44 will
prmed to this state after the associated actions are carried
out. The designation “same" indicates that the audio pro-
cessing oi subsystem 44 will stay in the same state am: the
associated actions are carried out.

The heading “Buffer Action" indicates whethu the audio
buifer is to be flushed by setting its read and write pointers
to be equal to the base address of the audio bufi’er. The
designation “none“ indicates no change from normal audio
butfer management

The heading "Pointer Action" indicates by the term
“reset" that the [’1‘S pointer, error pointers or both will be
returned to the state specified as if subsystem 44 had been
reset. The designation “none” indicates no change from
normal pointer management. The designation “see other
aetions" indicates that 0th: actions under the “Other

Actions" heading may indicate a pointer to be set or reset.
The “Otha Actions” heading states any additional actions
required of the subsystem 44 as a result of the aror.

EX 1017 Page 182

TABLE 1

SUMMAllY OF !YSKOR§, EXCEPTIONS.. Alm 4CilONS.

Cb=ek Nu:t Bulfer Pointer
NIIIIC Delmiticxl Int State Stale AcbOII Ae!itn O!ber Acliaoa

pt.Lorr PCR > PTS + dPfS_, ya pll.J)'llC framcJJllC ftuih - """" ptll_err PCR > PTS + dPI'S ... Y• lnCk framr,_IJDC lllllh - SIDp output lo Audio D.!coder (ADP). .,,....,.,. lllput proce.uor lote.t rym willl ioput audio ya >idle hm.J)'DC llush - SIOp OUlpUI ID ADP.
framc4 ov_m Aud.io Bulfer overflmn Y• iripllJyllo lnmc.J7DC !!um rcoet lllput pmceuor mainl:llml IJIICbroniu.tion wilh lhc audio tll

billlream. Stop output to ADP.
under....- Audio Bul!'ct umatlowa DO ll'ICII: lltllC """" DODO Iq:Rll ~ IIWDlaim ~11 wilb lbc audio

bitmcam. Skip output to ADP.
k_ca lDput proeeacr teae:hot Aw.io PBS data yes >fi'tme.JyDC - llCIIC llOIIO Con1Jmc procc,,iiJa u if lhc audio 1111mplc WO had mt ~.

which mk:ates tho audio JIIIIPlc ralc bu

0 ~ linco ti... cwnmt PIO"""' ai:quin,d
lb_ett IDpur pmcaoor i,eccivcll Audio PBS dala ya >fi'tme_a:ync IIIDO """" IIOIIO If bit nt.e cbanpa - enabled, input pn:,:ell&Or will ocxmimc

wbioh mk:ates Ibo llldio bit rall: bas oh&npd ~ lrWJtm& lb.at lhc bit role in &ct cliona<d and usios cbc
rclatmi IO lbc last audio 1JDC fmno i:eaclll!>d oppoprialc lyna fnmc lillll ID maintain oyo,:htolliza!lon. If bit

rate ~ m DOI tmblcd, input pooeuor will COlllinuo
~ usio,J Ibo bit - illdicllOd by cbc lul audio oyo,: frame
Reeiwd. VI

pts...Jllils Syn;; wo,d DOI fowxl due ID ba of audio data DO ;r;pis_i,:qum, - """" """" Nooo but od>m-enw eoJ:Jdi!i,na may alao tpply ill dJia cue ~
all« a PTS is "'°"ived 0

p<t_dlsl Iuput p,,,.,.,_,. ~ a tnnopxt poctcr OIi DO ~ pll a,:quin lluah pll:.-1 lllput plOCCIIOr ll<lpl Sll<>l'q PTS value,, in Ibo PTS pomtcr IIDlil ~
1M Audio PCll PID with Ille cm:ir:nooc aflcr receptlo11 of the llilltt Audio PCll value. QC)

-..]
dioc:ontmuily_iudii::u,r hit of ii.a -..]
adaplllicm......fi<ld ICI

pci:...d.io2 JDpllt pl'OCCIIIIOr rccoivca a tno.spOrt pocbt oo IID track """" pts:rcsct Input ptoeeuor l!Dpl JIOrill& PIS n1uca in Ille PTS pointer U111i1
Ibo Audio PCR PID with tho crror:oooe aft« reccpli<m or the nut Audio Pell 'llliuc.
di.ocoo!lnuily_mdicalOr bit of ill
adaplalion....field Kl

aucLerr1a Audio data of oao ""1lspoll pacbl of Ibo Seo >idle HIIICot DODC pts:llODO Mainwn Audio Bul'er fullnoas by adV2QCina !he Fll'O write
cum::m mput ~ r.am. ;. 1os1 .i.... "' """" other lnmc-')'IIC; error:- pomb!r by UU bJw (MPl!G), uoe an error poiW,r io IIllli: the

actions -olhot olbc:r cwm,t oyo,: fromo u in c:noi; 1111d oolllinuo proceaki& wilbout
ocdoos ICUOIII pml'lmlJ an hilcm,pt. U it is poooiblo dlll - thin a... audio

l1JlO wv1d wu !oat wilh Ibo miNm,J llldia lnQlpCllt pd.et, u:h •
Wlll:II. IUl'P"ffllll Mlllicam LiJer II II lea,, than 64 11:bpt or AC•3 11t
!cu Ihm 48 tbpt, rc111n11D !be p.....,., Sync - and JCllOl'UO m
iDt,om,pt. If cbc DOSt audio ayu:: W<m ia DOI n,r:eivcd ,vh,m <:ti
expcckd, begin • byte-by-byte acon:h &:,r the llldlo oyoe wmd
during !be r=plion of lllbNqucm amlo dala. Oo::o Ibo oyo,:

0 bylo aun:h is llllnocl, IIIDp llllrixla audio data in !he buffi:r umil
the qnc wom in lewd. Do DOI - Ibo Im bytc examined
during ti» scan:h. Raumc IIIDriq audio data wbell tho oyo,: byte
ic hwd. ~ wilh tbc ayu:: word illlel! Uthe IIJIIC -.d ill DOI
found dwil>s !he tint 184 bytn acarcllcd, iavm 1D lbc Pl'llllO
Sync 111a1e1 aoo aeaon1o an infmnrpt

EX 1017 Page 183

"v A ' ”V“ "4'" "4"" “m ‘ 4"“ V“ A .3.‘ ”3.14:“ . 333.2 ;

TABLEI

W
Chad: Nun Mu Pointer

Nun: Definificn In: State Sun Mam Action mam

pm PCR>PTS+MSH ya m Mm nu); ms! nu:
pm.“ PCR>FTS+dPTSH yen hick imam.” Rush rota! Swpmmbmdbmfiwfl,
33mm Mpmwmcmwimmwdio ya Hun: Wm M rem Swompmwhm’.frame!
ov_cu Audi: 3113‘: ova-flow: ya 3W fnmeJyn: flush rust Input men-o: mainlin- lynchmkwiou with the audio

bimemswpoumntoma
unchm' minnflfarmdafion nu met “me ma non: mmmmmmnvimhmdm

bimSm-pomwtmm
Len Inpmptmmhumfliofi‘asdm ya >fi-szync an: nme non: Wminguiffinun‘nmbnuhfimtchmyed.

whichhdhmmmmkmhu
changedlincofiucuanIDV-ruxcquimd

mm: lugmpmmrmivenAudioPBsdm ya >fl1m_pync lam none none BhfimWleAmWw-mmfim
wmmmmmbammw mmmmmmhmwmmw
reluivctoltwiuuudqufimmchnd :ppmprimuymmuiummuminsywhvniudouuhh

nthmmbmmmmemm

wmub‘dmmbymhtuflowm
me .

pm Smwzxdthdmmh-ofmd‘ndnu no Emmy: mm m m thnofimmcommmymwhhlfllmMamkmived
M1 hpmpmmmchunmpwhton no m puma. flush plum Mpmmmmehmmlnmm

mmmnmwflhu mm mmnmmmawopcxm.
dimmfltyfimhilofh
mpWHm

chdiaz mmwivuammketm m nu: ma non: pram-ct mummmmmhmmmmm
thcAud'nPCRmeimfln mm manwnutAudjoPCRde.
Wfikmbfifliu
mmwldm

31:14:11: Audiodstxolum mpmpaclmaffhe See Mile me: am: pumon: Whmmmubyfimfiuumo write
minwsymfimkm‘hzhmn other Mm mm pohmbylmhfimmymmmpoinmmmu

Iain: muffin our: mmfimuhmmwmmswwlam lotion: mnfiumhmwtnikmibkax-mmmmdb
wwdquWiththcminiuwdiummtpckflth-s
wMWMuiumL-ywflubnmflkbpuxACJI:
MmdskhpanmmmsmemMm-n
WHhmtnndioqmwudi-mmkvadwhm
mmkfinlwwby-bfieumhbrdnudioqmm
muwnotmmmmum
manhkmmpminguxfiodlnhdnhlfluumfl
thelymwrd-tuwdoonmmtheambyuunfimd
mmmmmwmwmmmm
hmmvmumwm’dmlzfltbemwdilm
mammmmwmmmmnmmm
mm‘mmmmt

SI

9!

LLS‘EOL‘S

EX 1017 Page 183

., .. : "., .. ._, ,-·--~-·-· ------------·-· ------------...... ---·-------·-·---.. -----..........;.. ____ .;;;...;. __ ..;.;. __ ,~,,;,:;,:.,· --~T11

'""1Jttlb Audb data of ooo lrlDlpOrt p1d:el of Ibo
cunmi iuput sync fnmo ;. Iott due ID cmm
after ul...crrla bu occmred clurilll the 5IIIIO

input l)'DC frt.mo
auiLm2 Audb data of lll(fflO Ihm one lrlmsport paebl

of th,: C\IITCDt mpul f)'llC hmo • loll due lo
en'Olll

Audio data of ODO !NlllpO<t p&cel i& lo6I
while 1!not Mode i, Uoproloeted

In!

ym

Y•

yea

TABLB !-continued

SUMMARY OP l!JlRO!!§, EXCEPI10NS1 AND ACllONS.

Chock Nut Bulfer Poimar
Sl8lo StalAI Action Aclian

>idlo ~ BIi.ib pls:iaet -
>idlo ~ llulh pls:iact

cnor.-
olbor
ICtioao

ilptl.JY11C frame.JYDC lllllh -

"'

00.-Acticm -
u.., ,m emir pointer ID mm: d>O cumml ll)'1IC frame u iD cm,r.

Input ptOCOIIOI' mllnlainl ,ynclnmization 'IVilh Ille audio
billllrcam. Stq, olllpUI to ADP.

0

0 ,'

EX 1017 Page 184

TABLE l—confinucd

SUMMARY” m 0 SANDACI’IONS.

Chuck Nan Mot Points:
Nun: mm In: sum Sm Action Ania: mm

“La-nib Mbdmofnmnwmpmm aid: ya >idla M m puma! non:
muhpunsyncfimisbfidwbm m
Ifiumxlhmmmeddmmum
inpmsyacfnmc .

“Lena Afibdmofmm‘hmamtmuportpuba ya >id‘b Erma: nub yum Uummpdmubmdnmtwmuhm
officmmhnuqmmisbuflzw anon-eacum: omn-

m
pm Audio Maren: transport puck: in last ya 31mm {mum mu: m Input pronoun! maintain 33-112mm with the audio

WhilcEnotModaisUnpmbchd bimumSmpouqletoADR

‘Tbimpkmuilh-nbovemprmhufmmqmficiphanmwmInpukocmcmnéminmmdiafimby‘emhy:
Wumsvmnuodnwmcmhbyuuewhmwudim
Whamuwhleackednnfiomhmdhhmnmmoy
memmbylfihymwhnmhmmmmpmkmkhdbmmmhmmmtoihmwpinmbylm
mmmrwmmflmathmmmmmmmmmmmmfihmmmkdhnugfiumvdwmmmmmmpxm
Mlycmhinodthnmxwdio umdmdmu‘ufiuflupom’bifltymflxndb lanai-44.11“:Rpmdhaymfimmhn edfiomlhcluwvdmvofinmfianhn).nmhgmflanmoSym nae queWth-mvflnvhhbwwas upfivfihfl‘nfiuthebnnmspmpchtpmfih Wmd‘mmuxihsmcwwd),wd
befiuninng-byaiymwmdmthwmflwmmhm.

LI

SI

LL8‘20L‘S

EX 1017 Page 184

0 ' 0

5,703,877
19 20

All indicated above, the demultiplexing and data parsing flag of one oc mocc ei:ror pointers is not set, the buffer
subsystem 44 of PIG. 2 roai ntains several pointers to support address of the sync wocd is recorded into the DRAM offset
audio processillg. The PI'S pointer is a set of para:mctcn. address of one of the invalid error pointers. At the same time.
related to a PJ'S value, specifically & PJ'S value, a DRAM the error mode is set to protcctcd. If the validity flag of both
offset address, aod a validity flag. In the illustrated embodi- s error poinkD is set when a sync word is pJaccd into the
ment. the PJ'S value comprises the 17 least signilicant bits bwfer, the error mode is set to unprotected but the DRAM
of the PJ'S value ICCCived from the audio PF.s header. This olfset address of the sync word Is not recorded.
value is associated with the audio sync frame pointed to by When audio data is placed into the buft'cr and any error is
the pointer's DRAM o1fset address field. The use of 17 bits discovered in the audio data, such u due to the loss of an
allows this field to specify a I.456 second time window 10 audio transport pac.b:t oc the reception of audio data which
((217-1)/90 kHz). which excc:cds the maximum audio time has not been properly deaypted, subsystem 44 will revert to
span which the audio buffer 50 Is sized to store. the PJ'S acquire state if the error mode is unprotected.

The DRAM offset address maintained by the PJ'S pointer OthtrWise, the validity bit of the mror pointer which con-
is a 13-bit offset address, relative to the audio buffer base tains the DRAM offset address of the sync word which starts
address. into the DRAM at which the first byte of the audio 1, the sync frame c:mrently being received is set. Io the rare
sync frame associated with the pointer's PI'S value is stored. event that an= is discovered in the data for an audio sync
The 13 bits allows the pointer to address an audio buffer as frame dnriog the same clock cycle that the sync word for the
large as 8192 bytes. sync frame is removed from the buffer, the sync word will

The PJ'S pointer validity flag is a one-bit flag indicating he amipted as indicated above to specify that the sync
whether or not this PI'S pointer contains a valid PI'S value 20 frame is known to contaln an audio error. At the same time,
and DRAM off'sct address. Since MPEO docs not require the validity bit is deared such that it docs not remain set after
PI'S values to he transported moce often than every 700 the sync frame.has been output. Thisav~ids the need to .i:esct
milliseconds, subsystem 44 may find itself not having a valid subsystem 44 m order to render the po1ntcr useful agam.
PI'S value for some intervals of time. When audio data is being removed from the audio buffer,

-1

After the decoder is reset, the valid flag of the PfS pointer :zs the sync W<»;d is oonupted if the DRAM olfset address of
is set to invalid. When a new PTS value is received, if the any error pomtcr matches that of the data currently _beio!it
valid ftag is set, the newly received PfS value is ignored. If ~ed.~ the buffer. At the same time., the validity bit
the valid ftag is not set, the newly received PTS value is JS set to Invalid.
stoced into the PI'S pointer but its valid ftag is not yet set to The decoder of PIG. 2 also illustrates a video buffer 58
valid. After a new PI'S value is stoced into the PI'S pointer, 30 and video decoder 52. These process the video data at the
the processing of audio data is continued and each audio data same time the audio data is being processed as described
byte is connted. If the next audio sync frame 1s ICCCived and above. The ultimate goal is to have the video and audio data
placed into the buffer coxrectl.y. the DRAM offset :address output together at the i:rq,er time so that the television
(which com:spoods to the buffer address into whidl the first signal can be reconstructed with fXOPCl' lip synchronizalion.
byte of the sync word of this sync frame is stoced) is stored " FIG. 4 is a block diagram illustrating the dcmnltiplexing
into the pointer's DRAM offset address field. Then, the and data pJDing subsystem 44 of FIG. 2 iD greater detail.
pointer's valid flag is set to valid. The nm audio sync frame After the transport pacb::ts an: input via tcrmillal 40, the PID
is received and placed into the buffer cmrcctly when no dam of each pacltct is detcct.ed. by cin:u.il 79. The dctcd:ion of the
is lost for any muon between reception of the PrS value and PIDs enables demultiplexer 72 to output audio packets,
reception of a subsequent sync word bcfoa: too many audio 40 video packets and any other types of packets carried in the
bytes (i.e., the number of audio bytes per sync frame) are data stream, sudl as packets carrying control data, on
buffered. If the next audio, sync frame fa not received <r separate lines.
pl~ into the buffer correctly, the valid ftag is not set to The audio packets output from demultlplexer 72 are input
valid. 45 to the various circuits neecssuy to implement the audio

After the PJ'S pointer is used to detect any audio timing processiDg as dcsaibed above. Circuit 74 modifies the sync
c:r:rors which may have occurred since the last resyndlroni- word of each audio frame known to contain eir«:rs. The
zation. the valid Dag is set to iDvalid to allow subsequent modified sync words are obtained usillg async word inverter
PI'S pointa:s to be captured and used. This occurs wbcthcr 78, which inverts every other bit in the sync wocds output
the P:rS pointci- is in the PI'S sync or tracking state. ,o from a sync word. PCR and PTS detection circuit se. in the

The eaor pointers are parameters related to an audio sync event that the audio frlDlt: to which the sync word corrc-
frame cm:mntly in the buffer and known to contain emrs. s~ con~ an error. Error detection is provided by error
The error pointers comprise a DRAM offset address and a detection CiraJJ.t 7fi.
validity flag. The DRAM offset address is a 13-bit offset The sync word, PCR and PI'S detection circuit 80 also
a.ddn:ss, rclatlve to the audio buffer base address. into the ss outputs the sync word for each audio frame to an audio
DRAM at which the first byte of the audio sync frame sample and bit rate calculator 86. This circuit determines the
known to contain a::rors is stored. Tb.irtcen bi.ts allows the audio sample and bit rate of the audio data and passes this
pointer to address an audio buffer as large as 8192 bytes. The information to decoder microprocessor 42 via data bus 88.
validity flag is a one-bit flag indicating whether oc not this The PCR and PTS arc output from circuit 80 to a lip sync
CITOr pointer contains a valid DRAM offset address. When 60 and output timing compensator 82. Circuit 82 also receives
receiving data from a relatively er:mr free medium. sub- the dPI'S values from microprocessor 42, and adds the
system 44 will find itself not having any valid mroc pointers appropiate values to the PTS in order to provide the
for SODlC intervals of time. necessary delay for proper lip synchronization. Compensa-

Subsystem 44 is required to maintain a total of two ea<r tor 82 also determines if the delayed presentation time is
pointers and one =or mode flag. After rc&et, the validity flag 6S outside of the acceptable range with respect to the PCR. in
is set to invalid and the eir«:r mode is set to "protected." which case an error bas oa:wrcd and resynchronization will
When a sync word is placed into the audio buft'er, if the valid he required.

EX 1017 Page 185

'

0

5,703,877
19

As indicated above, the demultiplexlng and data priming
subsystem 44 ofFIG. 21mintu'ns sevual pointers to support
audioprocessing.’l‘he PFSpointerisa setofpuamctm
related to aPTS value, specifically rm value. a DRAM
offset address. and. a validity flag. In the illustrated embodi-
ment. the FPS value com-lees the 17 least significant bits
of the PPS value received from the audio PBS header. This

value is associated with the audio syncfiame pcintedto by
the poinur’s DRAM offset address field. The use of 17 hits
allows this field to specify .1: L456 second time window
(all-moo kHz), which exceeds the maximum audio time
span which the audio bulfer 50 is sized to store.

The DRAM ofl‘set address maintained by the PPS pointa:
is a 13-bit ofiset address, relative to the audio bulfer base
address. into the DRAM at which the first byte of the audio
sync frame associated with the pointer’s W8 value is stored.
11m 13 hits allows me point: to address an audio butter as
large as 8192 bytes.

The PTS pointd validity flag is a one-hit flag indicating
whetherornotmisP’l‘SpoinrercontnimavalidPTSvalue
and DRAM offset address. Since MPBG does not requ’ne
PIS values to be transported more often than every 700
millismonds, subsystem 44 may find itself nothaving a valid
PI'S value for some intervals of time.

After the decoder is reset. the valid flag of the Pl‘S pointer
is set to invalid. When a new PI‘S value is received, if the
valid flag is set. the newly received Pl‘S value is ignored. If
the valid flag is not set, the newly received PTS value is
stored into the ITS pointer but its valid flag is not yet set to
valid. After a new Pl‘S value is stored into the PPS pdmer,
the processing ofaudio chm is continued and each audio data
byte is countedlfthenen audio syncfi'ameisreodvedmd
placed into the buffer correctly. the DRAM offset address
(which corresponds to are buffer address into which the first
byteofthe syncwordofuiis syncfmneis storedfis stored
into the winter's DRAM olfset address field. Then. the
polnta‘s valid flag is set to valid. The nerd audio sync frame
isreceivednndplacedintothe bulb-correctly when nodal:
is lost for myrenson between reception of the PTS value and
reception of a subsequent sync word before too many audio
bytes (i.e.. the number of audio bytes per sync frame) are
buffered. If the next audio, sync frame is not received or
placed into the buffer correctly. the valid flag in not set to
valid.

After the HS pointer is used to detect any audio timing
errors which my have warned since the last resynchroni-
zation. the vnlid flag is set to invalid to allow subsequent
Pl‘Spolnters tobecapmred andused'l‘hlsoecmswhetha'
theFI’SpointerisinthePTS synecru'ackingsute.

The error pointers are pummers related to an audio sync
firnme amend}; in the buffer and known to contain ms.
The error pointers comprise a DRAM offset address and n
validity flag. The DRAM offset address is a 13—bit offset
address. relative to the audio buffer base add-ens. into the
DRAMatwhieh the firsthyteofmenudiosyneframe
blown to contain errors is stored. Thirteen bits allows the

pointer to address an audio bufller ns luge as 8192 bytes. The
validity flag is a one-bit flag indicating whether a not this
error pointer contains a vnlid DRAM ofl'set address. When
receiving data from a relatively arm- free medium. sub-
system 44 will find itself not having any valid em: pointers
for some intu-vnls of time.

SnbsystemMisrequh-edtomnintaina botaluftwoemx
pointers Ind one error mode flag. Afierreset, the validity flag
is set to invalid and the em: mode is set to "protected."
When a sync word is placed into the audio buffer. ifthe valid

ll)

15

IS

55

20
fiagofoneormrreen'orpointersisnotseethebufi’er
add-essofthe sync word is recorded into the DRAM clfset
adrkessofone aimeinvnlidmpointers.Atfize samefime.
mommiswtwprmfmevflidfiyflagofbom
mpointers issetwhennsyncwadisplneedintothc
bufier,themmodeissetto tmprotectedbuttheDRAM
ofi’setaddressofflresynewnrdisnotrworded.

Whenmdlodnta ispleeedinto thebutfeund any erroris
diseaveredlnthcaudio damsuehnsduetomeloss clan

audio transport packet or the reception of audio data which
has not been properly deaypted, subsystem“ will revert to
the Pl‘S acquire state if the error mode is unprotected.
Otherwise, the validity bit of the error pointer which con-
tains the DRAM offset address ofthe sync word which starts
the sync frame amendy being received is set. In the me
event that an nor is discovered in me data for an audio sync
frame during the same clock cycle tint the sync word for the
synchameisremovedfmmthebofl‘rx. the sync wordvvill
be campted as indicated above to specify that the sync
fmrneisknowntooontnlnanaudiommmesametlme,
the validity hills cleared sud: that it does not remain srz aftu'
the sync frame has been ouqyut'l‘his avoids the need to reset
subsystem 44 in order to render the pointer useful again.

When audio data is being removed from the audio buffer.
the sync word is corrumed it the DRAM otfset address of
any error pointer matches that or the data currently being
removedfromt’ne bufier.Atthe sameumethe validity bit
is set to invalid.

The decoder of HG. 2 also illustrates a video buffer 58

mdvideodwoderSZThesepmcessthcvmwdataatthe
sanmfimeflzeaudiodatalsbeingprocmsedssdesaibed
nhoveflheullimxtegoalistohlvethe video and nudlodata
output together It the proper time so that the television
signal can be reconstructed wldx groper lip syncluomzntion.

FIG. 4 is a block diagamillusttating the denmltiplexing
and datepming subsystem“ of FIG. 2 in great: detail.
Afiu‘memsportpncketsaminputvialumimln,thcl’m
ofenchpadnetisdetectedbycirwit‘fl'l‘hedetedionofthe
Pl'Ds enables dewltiplexet 72 to output audio packets.
videopacmts andanyothertypes ofpnckets carriedin the
den stream. such as packets carrying control data. on
separate lines.

The audio packets output from demultlplexer 72 are input
to the various drums necessary to implement the audio
processing as described above Circuit 74 modifies the sync
word of each audio from known to contain erras. The
modified sync words are obtained using a sync word inverter
78. which inverts every other bit in the sync words output
from a sync word. PCR and 91‘s detection cit-ml: 80. in the
event that the audio fame to which the sync word con-e;
smds contaim nnerrorfinordetecfionispmvided byeuordetection circuit 7a.

The sync wont. PCR and PT'S detection chum 80 also
outputs the sync word for each audio frame to an audio
sample and hit me calctflntor 86.1113 circuit determines the
audio sample and bit rate of the audio data and passes this
information to decoder microprocessor 42 via data bus 88.
Ther and P18 are output from circuit 80 to a lip sync

and output liming compensator 32. Circuit 82 also receives
the m values from mimprocessor 42. and adds the
appropififi values to the W8 in order to provide the
neceSsnry delay for proper lip syndronization. Compensa-
tor 82 also determines if the delayed presentah‘on time is
maid: of the acceptable range with respect to the PCR. in
which case an error has occurred and resynchronization will
be required.

EX 1017 Page 185

L

0 0

5,703,877
21

Butfer control 84 provides the control and address infor
mation to the audio output buffer SO. The butfer control 84
is signaled by error detection ciraiit 76 whenever an emr
occurs that requires lhe temporary suspension of lhc writing
of data to the buffer. The butfer control 84 also receives lhc 5
delay values from lip sync and output timing compensator
82 in orda to control the proper timing of data output from
the buff«.

22
replacing said ad<!ress in said PfS pointer with a new

address corresponding to a portion of audio data
reftrrcd to by said new current PfS value;

suspending the output of data from said buffer when said
new address is reached; 1Dd

recommencing the output of data from said buffer when
said decodtr system time clock. rcachca a ircsentation
time derived from said new cuaent PrS value.

3. A method in accordance with claim 2 whcmn said FlG. 5 is a state diagram illustrating the processing of
audio data and response to cnors as set forth in Table 1. The
idle state is represented by box 100. Acquisition of the audio
data occurs during the frame sync state 101. The dPI'S-wait
state is indicated by box 104. Boxes 106,- 108 and no
represent the PCR_. PrS~ and PTS sync states, respec
tively. Once audio synchromzation has occum:d, the signal
is tracked as indicated by the tracking state of box 112. The
outputs of each of boxes 104. 106, 108, 110 and 112 indicate
the error conditions that cause a return to the frame syn
chronization state 102. The error PCR DIS1 during the PTS
sync state 110 will cause a return to the PfS acquire state,
as indicated in the state diagram of FIG. 5.

10 presentation time is determined from the sum of said new
current PI'S value and an offset value that Jr(lvides proper
lip synchroniution by accounting for a vidoo signal pro
cessing delay.

4. A mdhod in accordance with claim l whrrein the time
at which the audio data is output from said bulfer is

15 dependent on an offset value added to said PfS for providing
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim I comprising the
further steps of:

20 examining the detected audio packets to locate the occur-
rence of at least one audio synchronization word
therein for use in achieving a synchronization condition
prior to locating said audio PrS's;

k should now be appreciated that the present invention
provides methods and apparatus for acquiring and process
ing crron in audio data communicated via a transport packet
scheme. Transport packet errors arc handled while main
taining audio synchronization. During such error conditions,
the associated audio errors arc concealed. Corrupted data in
an audio frame is signaled by altering the sync pattern
associated with the audio frame. PTS's arc used to check the
timing of processing and to curcct audio timing euors.

commencing a reacquisition of said synchronization con-
25 dition if said comparing step determines that said audio

packets arc too late to decode.

Although the invention has been described in connection 30
with various specific embodiments, it should be appreciated
and undentood that nmn«ous adaptations and modifications
may be made thereto, without departing from the spirit and
scope of the invention as set forth in the clainu.

We claim.: 3S
1. A method for processing digital audio data from a

peckctized data stream carryiJlg digital television informa
tion in a suca:ssion of fixed length transport packet!, each
of said packets including a packet identifier (PID), some of
said pacla:ts containing a program clock reference (PCR) 40
value for synchronizing a decoder system time clock (STC),
and some of said packets containing a presentation time
stamp (PJ'S) indicative of I time foc commencing the output
of associated data for use in reconstructing a television
signal. said method comp.ising the steps of:

monitoring the PID's for the packets canied in said data
45

stream to detect audio packets, some of said audio
pacla:ts carrying an audio PTS;

storing audio data from the detected audio pacla:ts in a
buffer for subsequent output;

monitoring the detected audio packets to locate audio
PrS's;

so

6. A method in accordance with claim 5 wherein two
consecutive audio synchronization w<rds with a correct
numbec of audio data bytes in between define an audio
frame, said audio frame including only one of said two
consecutive audio synchronization words, said method com-
prising the further steps of:

detecting the occurrence of errors in said audio packets;
upon detecting a first audio pacla:t of a current audio

frame containing an error, advancing a write point« for
said buffer by the maximum number of payload bytes
(N) contained in one of said fixed length transport
pacla:ts and designating said currcnt audio frame as
being in error;

monitoring the detected audio packets of said cmrent
audio frame for the next audio synchronization wocd
after said CII"or h&S been detected, and if said synchro
nization word is not received where expected in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said buffer;

reswning the storage of audio data in said butfcr upon
detection of said next audio synchronization word if
said next audio synchronization w<rd is located within
N bytes after the commencement of the search therefor;
and

if said next audio synchroniution word is not located
within said N bytes after the commencement of the
search therefor, commencing a reacquisition of said
synchroniz.ation condition.

comparing a time derived from said STC with a time
derived from the located audio PrS's to detennine
whether said audio packets arc too early to decode, too 55
late to decode, or ready to be decoded; and

7. A method in accordance with claim 6 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being

60 reconstructed is in exror.

adjusting the time at which said stored audio data is output
from said buffer on an ongoing basis in response to said
comparing step.

2. A method in accordance with claim I wherein a PrS
pointer is provided to maintain a cuaent PfS value and an
address of said buffer identifying whei-c a portion of audio
data referred to by said cuaent PfS is st<red, said timing
adjusbncnt being provided by the further steps of:

8. A method in accordance with claim 7 wherein:

replacing said PTS value in said PfS pointer with a new 65
current PI'S value aft« data stored at said address has
been output from said buffer;

a cum:nt audio frame is designated as being in error by
altering the audio synchronization word fO£ that frame;
1Dd

said concealing step is responsive to an altered synchro
nization word for concealing audio associated with the
corresponding audio frame.

EX 1017 Page 186

1':t

~“2h.A-1.51;“l’”1::

‘ O » 0

5,703,877
21

Butler control 84 provides the control and address infor-
mation to the audio output bufi'er S0. The butter control 84
is signaled by error detection circuit 76 whenever an erra-
occurs that requires Ihe temporary suspension of the writing
of data to the buflu'. The bufier control 84 also receives the
delay values from lip sync and output timing compensator
82 in order to control the proper timing of data output fromthe butts.

FIG. 5 is a state diagram illustradng the processing of
audio data and response to errors as set forth in Table 1. The
idle state is represented by box 100. Acquisition of the audio
data occurs timing the frame sync state 102. The dPl‘S-wait
state is indicated by box 104. Boxes 106,- 108 and 110

represent the PCRW may, and PI‘S sync slates. respec-
tively. Once audio synchronization has occurred, the signal
is tracked as indicated by the tracking state of box 112. The
outputs of each of boxes 104. 106, 108, 110 and 112 indicate
the aror conditions that cause a return to the frame syn-
drronization state 102. The error PCR DISI drn'ing the HS
sync state 110 will cause a return to the PPS acquire state,
as indicated in the state diagram of FIG. 5.

It should now be appreciated that the present invention
provides methods and apparatus for acquiring and process-
ing errors in audio data communicated via a transport packet
scheme. Transport packet errors are handled whfle main-
taining audio synchronization. Dming such error conditions,
the associated audio errors are concealed Corrupted data in
an audio frame is signaled by altering the sync pattern
associated with the audio frame. Pl‘S's are used to check the

timing of processing and to correct audio timing errors.
Although the invention has been described in connedion

with various specific embodiments. it shouldbs appreciated
and understood thatnuma'ous adaptations and modifications
may be made thereto, without departing from the spirit and
scope of the invention as set forth in the claims.We claim:

1. A method for processing digital audio data from a
pacbdzed data stream can'ying digital television informa-
tion in a succession of fixed length transport packets, each
of said packets including a packet identifier (PID), some of
said packets containing a program clock reference (PCB)
value for synchronizing a decoder system time clock (Sl‘C).
and some of said packets containing a presentation time
stamp (PIS) indicative of a time for commencing the output
of associated data for use in reconstructing a television
signal. said method comprising the steps of:

monitoring the PID's for the packets can'ied in said data
stream to detect audio packets, some of said audio
packets carrying an audio Pl‘S;

storing audio data from the detected audio padtets in a
bulfer for subsequent output:

monitoring the detected audio packets to locate audio
I’I‘S‘s:

comparingatimedmivediromsaidSI‘Cwithatime
derived from the located audio PTS‘s to determine
whether said audio packets are too early to decode, too
late to decode. or ready to be decoded; and

adjusting the time at which said stored audio data is output
from said butt]: on an ongoing basis in response to said
comparing stqa.

2.Amethodinacoordancewifl1claimlwhereinaPI‘S so

pointer is provided to maintain a current PI‘S value and an
address of said buifer identifying where a portion of audio
data referred to by said current PPS is stra’ed, said timing
adjustment being provided by the further stqis of:

replacing said PTS value in said PI‘S pointer with a new
current PTS value after- data stored at said address has
been output from said butter.

10

15

35

40

45

55

65

22
replacing said address in said PI‘S pointer with a new

address corresponding to a portion of audio data
refared to by said new current PI‘S value;

suspending the output of data from said bufl-‘er when said
new address is reached; and

recomrnencing the output of data from said butter when
said decode" system time clock reaches a Fesentation
time derived from said new unseat I’l‘S value.

3.Amethodinaccordancewith claimeherein said

presentation time is detmnined from the sum of said new
current PI‘S value and an offset value that provides proper
lip synchronization by accounting for a video signal pro—
cessing delay.

4. A method in accrrdanoe with claim 1 whaein the time
at which the audio data is output from said bulfer is
dependent on an ofiset value added to said PI‘S forproviding
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim 1 comprising the
further steps of:

examining the detected audio packets to locate the occur-
rence of at least one audio synchronization word
therein for use in achieving a synchronization condition
prior to locating said audio PTS’s;

cormncna‘ng a rucquisition of said synchronization con-
ditionif said comparing step determines that said audio
packets are too late to decode.

6.Amcthodinaccordancewith claimSwherein two
consecutive audio synchronization words with a correct
number of audio data bytes in between define an audio
frame. said audio frame including only one of said two
consecutive audio synchronization words. said method com-
prising the furthe- steps of:

detecting the occrn'rence of «tors in said audio packets;
upon detecting a first audio packet of a current audio

frame containing an error, advancing a write pointer for
said buffer by the maximum number of payload bytes
(N) contained in one of said fixed length transport
packets and designating said crn-rent audio frame as
being in error:

monitoring the detected audio packets of said ament
audio flame for the next audio synchronization word
afier said error has been detected. andif said synchro-
nization word is not recrn’ved where expecmd in the
audio stream. discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said buffer:

resuming the storage of audio data in said butter upon
detection of said next audio synchronization word if
said next audio mchrnniution wra-d is located within
N bytes after the commencement of the search therefor:
and

if said next audio synchronization word is not located
within said N bytes after the commencement of the
search therefor. commencing a "acquisition of said
synchronization condition.

7. A method in accordance with claim 6 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is beingreconstructed is in error.

8. A method in accordance with claim 7 wherein:

a current audio frame is designated as being in error by
urging the audio synehronrzsu'‘on word tq- that frame;
and

said concealing step is responsive to an altered synchro-
nization word for concealing audio associated with the
corresponding audio frame.

EX 1017 Page 186

0 ' 0
5,703,877

23 24
9. A mclhod fol: processing digilal audio data from a ignoring aratc change indicated by said audio data on lhc

packctiUJd data slrca.m cmying digital television infonna- assumption that the rate has not actually changed;
lion in a succession of lransp(Kt packets having a fixed concealing the audio frame containing the data indicative
length of N bytes, each of said pacb:ts including a pact of an audio sample rate change while attempting to
identifio: (PID), some of said packets colliainiD.g a program s maintain said synchronization condition; and
clock reference (PCR) value for synchronizing a decoder commencing a reacquisition of said synchronization con-
system lime clock, and some of said packets containing a dition if said condition cannot be maintained.
presentation lime st.amp (PfS) indicative of a lime for 13. A method in accordance with claim 9 wherein said
commencing the owput of associated data for use in recoo- audio data includes information iodicative of an audio
structing a television signal. said method comprising lhe 1o sample rate and audio bit rate, at least one of said audio
steps of: sample iate and audio bit Rte being variable, said method

monitoring the PID's foc the packets carried in said data comprising the fin?ta step of attemptin' to maintain syn-
-.._ .,~- u ..,__ts· chronlzalion of wd audio packets during a :rate change

s to o pa..... • iadicated by said audio data by:
eumining lhe detected audio packets to locate the occur-

15
processing said audio data in accordance with a new rate

:ence of audio ~yn~bronizati~n words for use in ~v- indicated by said audio data in the absence of an o:ror
mg a synchromzation condition, each two COIISCCllliVe indication pertaining to Che audio frame containing the
audio synchronization wocds defining an audio frame new rate, while attempting to maintain said synchro-
therebetwecn; nization condition;

monitoring the detected audio packets after said synchro- 20 processing said audio data without changing the rate if an
oization condition bas been achieved to locate an audio error indication pertains to the audio frame containing
Pf'S; the new rate, while CODccaliag the audio frame to which

searcbiog the detected audio packets after locating said said cm:,r condition pertains and attempting to maintain
audio PTS to locate the next audio synchronization said synchronu.ation condition; and
word; 2!l commencing a reacquisition of said synchronization con-

storing audio data following said next audio synchroni- dition if said coo.dition cannot be maintained.
zation word in a buffer; 14. Apparatus f<r acquiring audio information CIIITied by

detecting the occurrence of cams in said audio packets; a pack:ctized data stream and p:ocessing errors therein,
upon detecting a first audio padd of a cmrent audio comprising:

frame containing an error, advallcing a wdtc pointcrfor 30 means for detecting audio IIansport packets in said data
said buffer by N bytes and desipating said amcnt stream;
audio frame as being in error; means for recovering audio data from said detected audio

monitoring the detected audio paclccts of said cuncnt transpa:t packets for storage in a bwfc:r;
audio frame for the next audio synchronization wool means fol: locating an audio presentation time st.amp
after said error bu been detected, and if said syndlro- 35 (PfS) in said detected audio transpat pac.tets;
niz.ation word is not received where expected in the means JCsponsive to said PrS for commencing the output
audio stream, discarding subsequent audio data while of audio data from said bu1fcr at a specified time;
searebing for said synchronmlion wool rather tho means for monit<ring the detected audio tnwport packcts
storing the subsequent audio data into said buffer, afta- the output of audio data from said buffer bas

resuming the stocage of audio data in said bu1fa upon '40 commenced, to locate subsequent audio PfS's;
det.ection of said next audio synchronization word if meaDS fer comparing a lime derlved from a decoder
said next audio synchronization wool is located wilhia system time clock {SfC) to a time derived from the
Nbytesaftc:rlhecommencementofthesearcbtherefor; subsequent a.udio PTS's to detc:nnine whethtt audio
and

45
data stored in said buffer is too early to decode, too late

if said next audio synchronization wool is not located to decode, er ready to be decoded; and
withia said N bytes after the commencement of the means responsive to said compadng means for adjusting
search tbaefor, commencing a rcacquisllion of said Che time at which said stored audio data is output from
synchronization condition. said buffer.

10. A method in accordance with claim !1 comprising the 50 15. Apparatus in accordance with claim 14 further com-
further step of concealing television audio errors wbeneva prising:
the audio data from which said television audio is beiag means for maintaining a PfS pointer with a cur.rent PfS
reconstructed is in ccror. value and an address of said blllfer identifying where a

IL A method in accordance with claim lt whacin: portion of audio data referred to by said cwrent PfS is
a cw:rent audio frame is designated as being in error by ,, stored;

altcring the audio synchronization word for that frame; means for replacing said PfS value in said PfS pointer
and with a new airrcnt PfS value after data stored at said

said concealing step is responsive to an altered syncbro- address has been output from said buffer, and for
oization word for concealing audio associated with the replacing said address in said PTS pointer with a new
corresponding audio frame, oo address co.rrcsponding to a portion of audio data

12. A method in acccrdance with claim , wherein said referred to by said new current PrS value;
audio data l.ncludes information indicative of an audio means responsive to said PfS pointer fol: suspending the
sample rate and audio bit rate, at least one of said audio ouq,ut of data from said bulfer when said new address
sample rat.e and audio bit rate being variable, said method is reached; and
comprising the further step of attempting to maintain syn- 6' means for recommencing the output of data from said
dironization of said audio packets during a rate change: buffer at a time derived from said new current PrS
indicated by said audio data by: value.

EX 1017 Page 187

L

{3

5,703,877
23

9. A method for processing digital audio data from a
packeu'zed data stream canying digital television informa-
tion in a succession of transpcrt packets having a fixed
length of N bytes. each of said packets including a packet
identifia (PIE). some of said packets containing a program
clock reference (PCR) value for synchronizing a decoder
system time clock, and some of said pockets containing a
presentation time stamp (PIS) indicative of a time for
commencing the output of associated data for use in reeon~
stmeting a television signal. said method comprising the
steps of:

monitoring the PlD‘s fr; the packets carried in said data
stream to detect audio packets;

examining the detected audio packets to locate the occlu—
rence of audio syncluonination words for use in achiev-
ing a synchronization condition. each two oonsewtive
audio synchronization words defining an audio frame
therebetwoen;

monitoring the detected audio packets after said synchro-
nization condition has been achieved to locate an audio
PIS:

searching the detected audio packet: after locating said
audio PIS to locate the nest audio synchronization
word;

storing audio data following said next audio synchroni—
zation Word in a butter;

detecting the commence of errors in said audio packets;
upon detecting a first audio poem of a current audio

frame containing an error. advancing a write pointerfor
said buffer by N bytes and designating said current
audio frame as being in error;

moninoring the demoted audio psekets of said oment
audio lime for the next audio synchronization word
aitersaldetrorhas been detected andifsaidsyndno—
nization word is not received where W in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said huflin'.

resuming the storage of audio data in said mfier upon
detection of said next audio synchronization word if
said next audio synchronization Word is located within
N bytes afterthe commencementofthe search therefor;
and

if said next audio synchronization word is not located
within said N bytes afler the commencement of the
search therefor. commencing s quon of said
synchronization oundifion.

10. Amethod in accordance with claim 9 comprising the
further step of concealing television audio cum-s wheneve'
the audio data from which said television audio is being
reconsnuaed is in m.

11. A method in accordance with claim It wherein:
amentaudiofxmeisdesignatedasbeinginerrorby

aiming the audio synchronization word for that frame:
and

said concealing step is responsive to an altered synd'no—
nization word fa- concesling audio associated with the
corresponding audio flame.

lemedtodinaecu-dancewitnclaimiiwherein said
audio dam includes information indicative of an audio
sample rate and audio bit rate. at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the fin-diet step of attempting to maintain syn-
dsmnization of said audio packets during a rate change
indicated by said audio data by:

10

15

SO

15

65

24
ignoring a rate change indicated by said audio data on the

assumption that the rate has not actually changed;
concealing the audio flame containing the data indicative

of an audio sample rate change while attempting to
unintain said synchronization condition; and

commencing a mogulsition of said synchronization con-
dition if said condition cannot be maintained.

1.3. A method in accordance with claim 9 wherein said
audio data includes infomafion indicative of an audio
sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable. said method
comprising the forth: step of attempting to maintain syu~
dnonlzation of said audio packets during a rate change
indicated by said audio data by:

pmoessingsaidandiodatainnocordaneewithanewme
indicated by said audio data in the absence of an error
indication pertaining to the audio frame containing the
new rate, while attempting to maintain said synchro-
nization condition;

processing said audio data without changing the rsteifan
en’ot indication pennins to the audio frame containing
the newrate. while eonwdling the audio frame to which
said mcondition pertains and attempting to maintain
said synchronization condition; and

commencing a Requisition of said synchronization con-
dition if said condition cannot be maintained.

14. Apparatus for acquin‘ng audio information carried by
a packntiud data stream and Focesslng more therein,
composing:

means for detecting audio transport packets in said data
stream;

means for recovering audio data from said detected audio
transport packets for storage in a buffer;

means for locating an audio presentation time stanip
(PIS) in said detected audio transport packets;

means responsive to saidP'l‘S for commencing the output
ofaudiodataftomsnidbufietatnspecifiedtimc;

means for monitoring the detected audio transport packets
afterthcoutpmofaudiodntnfromsaid buiferhns
commenced, to locate subsequent audio PI‘S’S;

muster oompatinga timederivedirom a decoder
system time clock (SIC) to a time derived from the
subsequent audio P'I‘S's to detumine whether audio
datasnxedin saidbufl’eristooearly todecodc. tooiate
to decodenrreadytobe decoded; and

means responsive to said computing means for adjusting
thetimeatwhich snidstnredaudiodstaisoutpmfrom
said bufl’er.

15. Appamms in accordance with claim 14 fimher com—
prising:

meansformaintainingaPl‘SpointerwithactutentPrS
value and an address of said bufi‘er identifying where a
portion of audio data refused to by said mutant PIS is
stored;

means for replacing said P'I‘S value in said PTS pointer
withancwulmntYI‘Svaiuclfia'datastorcdatsfid
address has been output from said bufim‘, and for
replacing said address in said PTS pointer with a new
address corresponding to a portion of audio data
refined to by said new atrrem PIS value;

means responsive to said FI'S pointer for suspending the
output of data from said buffer when said new address
is reached: and

means for mcommcndug the omput of data from said
bufl’m‘ntafimederivedfromsaidnewcmentfls
value.

EX 1017 Page 187

0 0

5,703,877
2S 26

16. Apparatus in accu-dance with claim 15 further com- means for recstablisWng the detection of said audio
JXising: IIllsport packets if said controlling means cannot

means for concealing = in an audio signal reproduced maintain said synchronization condition.
from data output from said buffer andrccstablishlng the 21. Apparatus in accordance with claim 20 wherein said
detection of said audio transport packets if the time s audio transport packets each contain a fixed number N of
derived from said new current PfS value is outside a payload bytes. and said means responsive to said eaor
predetermined range. detecting means compr.ise:

17. Apparatus in accordance with claim 14 wherein said means far advancing a write po.later fouaidbutferby said
audio transport packets each contain a fixed number N of .fixed number N of bytes and designating a a.urent
payload bytes, said packets being arranged into successive 10 audio frame as being in CJrOI' upon the detection of an
audio frames commencing with an audio synchronization aror in an audio lrallsport paclr.ct thereof;
WIXd, said apparalns furthcr comprising: means for monitlXing the detected audio transport packets

means for detecting the occurrence of eacn in said audio of said cUIICDt audio frm:m, for the next audio syncbro-
paclcets; nization word after said error has been detected, and If

means for advancing a write pointer for said buffer by N 15 said synchronization word is not received where
bytes md designating a current audio frame as being in expected in the audio stream, discarding subsequent
em:,r upon detecting an error in an audio lransport audio data while searching for said synchronization
packet of said current audio frame; word ra1hcr than storing the subsequent audio data into

means for monitoring the detected audio transport pactcts
20

said buffer; and
of said cwrent audio frame for the next audio syncbro- means for resuming the storage of audio data in said
nl.z.ation word after said ea1X has been detected, and if buffer upon detection of said next audio syncbroni2:a-
said synchronization word is not received where tion word if said next audio synchronization word is
expected in the audio stream, discarding subsequent located wi1ldn said fixed number N of bytes after the
audio data while searcWng for said synchronization 25 co~t of the ~ th~or.
word rather than storing the subsequent audio data into ~ Apparatus lll accordance with claim 20 further com-
said buffer; pmmg:

means for resuming the storage of audio data in said means for concealing error in an audio signal reproduced
buffer upon detection of said next audio synchroniza.. from~ output ~'!'11 said bufftt when the data output
tion word if said next audio synchronization word is 30 from said buffer ts m ciror.
located within said fixed number N of bytes after the 23. Apparatus in accordana: with claim 22 further com-
commencement of the search therefor; and prising:

means for reestablishing the detection of said audio means for altering the audio synchronization ward asso-
transport packets if said next audio synchronization ciated. with an audio ~ ~g a data emr to
word is not located within said fixed number N of bytes 3, designate that frame as bd.ng m mror;
after the commencement of the search thercfot wherein said concealing means arc responsive to altered

18. Apparatus in accordance with claim 17 further com- synchronization words for concealing emlt5 in audio
prising: assodated with the COIIesponding audio frame.

means for concealing error in an audio signal reproduced 24. A method for managing cmxs in data received in
from data output from said buffer when the data output '40 burs.ts ~ a ~ data slrcam carrying digital infor-
from said buffer is in error. mation 1D a succession of fixed length transport packets, at

lP. Apparatus in acc<rdancc with claim 18 ftJrthcr com- least some of said packets containing a pesentation time
Jrising: stamp (PJ'S) indicative of a time for commencing the fixed

means for altering the audio synchronization ward asso- ~ p:csentation of presentation units fro":11 a buffer into
dated with a current udio frame to designate that 45 which they arc temporarily sured upon receipt, said method
frame as being in error; compd~!~t~ 5

~-~:
. mmu..,.""li recc1y.,.. packets to locate associated PIS·s.

wherein sai~ ~ncealing means are responsive to a1t.ered said received packets ca.uying tati n units to be
synchronization words for concealing errors in audio presented· p-esen °
associated with the corresponding audio frame. • • ' • •

20. AppatatUs for acquiring audio information cmied by so syn~g the presentation of Slld presentation units
a packctizcd data stream and processing errors thcrei.n, from w.d buffer to a system time clock (STC) associ-
oo "sin • ated with the padcctized data stream using timing

mpn g. information derived from the PfS's located in said
lDCIUl$ for detecting audio transport paclccts in said data monitlXing step· and

stream, said paclccts being amnged into successive ide...:A.:n dis • . •
audio frames commencing with an audio S"""'broniza.. ,s -, g contmlJi?' ei:rcn resultmg from a loss. of
ti ord· .,-- one or more transn:u.tted paclr.cts between succcss1ve

on w , • • . ones of the received pack:tts and. if a discontinuity of
means responsive to ~d .syncbro~on w~ for no moce than one packet is idenlffied, advancing a write

obtaining a synchronization condition enabling the point.er of said buifer by a suit.able number of bits to
rcoova:y of audio data fr?m said detected audio trans- (,() compensate for the discontinuity, while maintaining the
port packets for storage m a buffer; synchronization of said presentation with respect to

means for detecting the presence of Cll'ors in said audio said STC.
data; 25. A method in accordance with claim 24 wherein said

means responsive to said em:a-detecting means for con- transport l)lelei:ts each contain a fixed number N of payload
trolling the flow of data through said buffer when an 6, bytes. said method comptlsi.ng the further steps of:
error is present, to attempt to maintain said syncbroni- advancing said write pointer by said fixed number N of
zation condition while lllASlcing said error, and bytes upon Che detection of a discontinuity error;

l
l

EX 1017 Page 188

I

..
•

I ,
''

.. e
0 0

5,703,877
27

continuing said monitmng step after said discontinuity
error bas been detected in order to search for a syn
chronization WCW'd. and if said synchronization word is
not located where expected. discarding subsequent
presentation units while searching for said synchroni- s
zation word rather than staring said subsequent .irc
sentation units in said buffer; and

28
resuming the storage of presentation units in said buffer

upon the detection of said synchronization word if said
synchronization word is located within said fixed num
ber N of bytes after the commencement of the search
therefor.

* * * • *

EX 1017 Page 189

. . G 0

5,703,877
27 28

continuing said monitoring step after said discontinuity resuming the storage of presentation units in said bufier
error has been detected in order to search for a syn— upon the detection of said synchronization word if said
chronizafion wa'd. and if snid synchronization word is synchronization word is located within said fixed num-
not located where expected. discarding subsequent bet N of bytes after the commencement of the search
presentation units while searching for said syndaroni- 5 therefor.
zafion word rather dun storing said subsequent [IO-
sentation units in said bufl’cr, and :- II e no t

EX 1017 Page 189

United States Patent c191

Bellenger

[54] ATOMIC NETWORK SWITCH wrrn
INTEGRATED CIRCUIT SWITCH NODES

[75] Inventor: Donald M. BtDenger. Los Altos Hills.
Calif.

[73] Assignee: 3Com Corporation, Santa Oa.m, Calif.

[21] Appl No.: 698,745

(22) F'ded: Aug. 16, 1996

[51] lnL Cl.
6

--·-·---·--·-··---·---·- BML 12/66
(52) U.S. Cl ----·---·-- .. ---·----·---·- .. 370/411
[58] Field of Sw:ch --·--··------·--- 370/351, 400,

[56]

370/401,402,407,408,422

Referenca Cited

U.S. PATENT DOCUMENTS

4,947,.300 ll/1990 Sheehy ·--·------ 37iY«l1
S,{)47,917 9/1991 Adm ct al. ·---- 364/200
5,166,931 1111992 Riddle ··----·--·-· 37iY«ll
S,.321,695 611994 Fllllk. Jr. ·-·----·- 37iY401
5,300,173 21199S Siinney et Ill. ------- 3701«)1
5,477 :;,r, 12/1995 Sugiyama -----·-··· 3701«)1
S,610,905 3/1997 Mutby et al ---· .. ···---- 37iY401
5,657,314 S/1997 Mcameet 11. ·----·- 3701«)1

OI'HHR PUBUCA'IIDNS

ATOMIC: A Low-Cost, Very Higb--Spccd, Local Commu
nication Ardutectme, Danny Cohen, Oregory Pinn, Robert
Fclderni10, Alu!elt.e DeSchoo., USC'Jinfor:mlllion Sciences
Institute,. 1993 Intemlti.on.al Conference on Paralld Pmcas
mg.
The Use ofMcssap-Bascd Multicomputer Components to
Construct Oigabit Networb, by D. Cohen, G. Pinn, R.
Felderman and A. DeScbon, Univeni.ty of Soutbem Cali
fomil/Infom:lltioo Sclcnccs Jn.stitutc.
ATOMIC: A Wgh-Speed Local C'.ornrnnnbtlon .Architcc
tme, by R. Fc14crman. A. DcSdioo, D. Cdleo, G. Finn,
USCIIDformatioll ScleD.a'!s Institute. Journal of Hfab Speed
Netw<rks 1 (1994) pp. 1-28, IOS Press.
ATOMIC: A Local ColJllllll.llication Netwcr:t Crcltcd
Through Rq,catcd Application of Multioornputillg Compo
nents, by D. Cohen, G. Finn, R. Felderman, A. DeSchon.

'

11111 ~I Ill lllll llll lllll lllll llll l11.,~1111~ 111111111111111
US005802054A

c111 Patent Number:
[451 Date of Patent:

5,802,054
Sep.1, 1998

All Integration of Network: Commwrication and Worbtmon
Architecture, by Gregory G. Finn, USC/lllfonn.atioo Sci
ences Institute. Published Oct. 1991, ACM COIDpUter Com.
munication Review.

(List continued on next page.)

Primary baminer-Ajit Patel
Attolffi!'). Age~ or Firm-Mark A. Haynes; Kent R.
Richardson; Wtlsoll, Sonsini., Goodrich & Rosati

[57] ABSTRACT

AD atomic type switch mesh is combined with standard local
ar~ lletwcrk li.nb, such as high speed E.thcmet, and a
bri.dge-lila, protocol to provide a high perf amiancc scalable
netwod: switch. The netwcrk switch comJrises a plurality of
sw:itch nodes, a first set of comrmmication 1.illks which 111.'e
coupled between switch nodes intcmal to the network:
switch, and a sccolld set of COmroJJDication linb which
comprise networic li:nb from switch nodes on the herder of
the nctwcr:t: switch to systems extemal to the netwcrk:
switch. The respective switch nodes include a set of perts
(having more than two mcmbcrs) which arc connccied to
respeclive rornrnmrication 1.illks in ei.1he:r the first or second
set of comrmrnication lioks. Each port i:o the set comprises
a medium access control (MAC) logic unit fa a .conneo
tl.onlcsa netwmc protocol, preferably high speed Bhenlct.
The switch nodes also include a route table memocy which
his a set of ac.cellSibJc memory locations that st<Ie switch
route data speclfying routes through the p1uralil.y of switch
aodes within the boundaries of lhe networlc switdl. Flow
detect logic is rooplcd with the set of parts on lhe switch
node, which monitors frames received by lhe set of parts and
&eneratcs ID identifying tag for use in acoessi:og the route
·table memoJY. FiDllly, the switcb. JIOde includes node route
logic whid:I is coupled with the flow detect logic, the route
table memory and the set of ports. The node route logic
monitool frames ffi':Cived by the set d ports to route a
rcceivcld frame fer transmission out a port in lhc, set of ports.

EX 1017 Page 190

w‘“9%.”‘5}fiv143f‘:‘z:

’yterLV,e.“‘1.
with

United States Patent [19]

Bellenger

\

mummmnnmnmggtgggsmsgyoggrmumnuammnm
5,802,054

Sep. 1, 1998

[11] Patent Number:

[45] Date of Patent:

[54] ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NGDE

{75] Inventor: Donald M. Bellenger. Les Altos Hills.
Calif.

[73] Assign: 3Com Corporation, Santa (1am, Calif.

[21] AppL 1405698345

[22] Filed: Ang.16,1996

[51] Int. CL“ HM. 12/66
[52) us. CL e..e"..-....m.m...e..m...w..m. 370/431
[58] mammal e................. 370F351,400,

3701401,402, 407, 408, 422

[561 References Cited

vs. mm Booms

4,9473% M990 Sheehry 37mm
5,041,917 911991 was 5111. mm“... 36m
5.166.931 1mm Riddle .._............mam/401
5,321,695 631994 Pink. 1:. mmmmmmmmm 3104‘)!
5,390,173 mm Syinney a a. mmmmmm 37mm
5,417,547 1711995 Sngiyuna__m__~.........m1
5,610,905 3/1997 Hunky an; .m........... 31m:
5,653,314 8/1997 Mchet :1. .~~~~~.0... 378401

0mm: muczmws

ATOMIC: ALow—Cost, meffigh—SMIM Cummin-
nienfion Ardaitcmn-e, Denny Otxhen, Gregory Finn, Rabat
Feldelman, Anna}: DcSchm, 1180me Science:
Institute, 1993 Internaliwal Conference on Parallel Process—
mg.
The Use ofMessagb-Basod Mulfimmpum Compuncnts to
WWNWKEWD.00hmG.FinLK
Peldenmn IndA. DcSchon, University ofSouthetn Cali—
forniaflnfmfion Sdenms Institute. '
mm A High-SM Local Communication Architec-
un-e,hyR.Feldermsn,A.Dchlon,D.Cohen,G.finn,
U'SCIInformation Sciences Institute, Journal of High Speed
Netwuks 1(1994)pp. 1-28, 103 Press.
HOMO; A Dual Communication Netwctk Created.

Thwgh Repealed Appliution of Mdfiwmpuflng (Imo-
nents, by 1). Cohen, G. Finn, R. Feldmmn, A. Dedeon,

An Integration of Network Communication and Workstation
Architecture, by Gregory G. Finn, USClInfoxmation Sci-
ence: Instimte. Published Oct. 1991. ACM Computer Cum-
municarion Review.

(List continued on next page.)

Primary Examiner—Mix Patel
Amaze}; Agent, or firm—Mark A. Haynes; Kent R.
Ridwdson; Wflson, Sensini. Goodrich & Rosafi

[57] ABSTRACT

Anatomictypeswitchmeshiseombinedwimsmndardlocal
area netwu'k links, such as high speed Emmet, and a
buidge—lflrepmmcolmpovideahigh performance salable
nMMTm networkswitdxcampiswaplmamy of
switch nodes,afimtsetofmmmunicafionljnkswhich are
coupled between switch nudes intend to the network
mmasmndsetofoommnnieafionfinkswhich
compfiscnetworklinksfmmswitdmodesonmebcrdaof
the network switch to systems external to the netwcrk
mm. The respective switch nodes include a set of parts
(bavingmefluntwomunbers)whichmoonmctedto
respective commmicaflonfinksinqu the time: second
mofcanmnniufionlinks.Emhponinthesewompfiscs
l. medium access control (MAC) logic unit for amnnw
donlewndwukpumwmbiyhighspeedm
Theswitchnodesalsoimhdeamutcubkmemmywhich
haemofacmesiblemmoxylocafionsmnmemwh
routedmspeciffingmntesmmughmeplmafixyofswitch
nodes within the boundaries of the netwozk wildl. How

detecloficiscoupiethhesetofpoflsonlheMtch
nodewhidxmmimfmmesreedvedbymesetofpu‘tsmd
gem-nidmfifyingtagforuseinmssingthemum
’ublemmy.finsfly,lheswixchnodeindudecmdcmute
logic which is coupled with the flow detect logic, the tome
ublememrymdlhesctofpothe nodemutelogic
mmmceivedbythc sctofponstomum a
tecefvedfiamcfa’tnnsmisxiou wtaportinmesetofpons.

5.503113136anth

EX 1017 Page 190

r\
V 0

5,802,054
Page2

OO'HER. PUBUCATIONS

ATOMIC: A Low-Cost, Vcry-ffigh-Speed LAN, by D.
Cohen, G. Finn, R. Felderman, A. DcSchon.
The Design of the Caltech Mosaic C Multioompntcr, C.
Seitz, N. Boden, J. Seizovic, and W. Su, Computer Science
256-80, California Institute of Technology.
802.Jz mghc:r Speed Task Force Objectives (Gigabit Bth
crnet), Apr., 1996,

Netstation.Archi1Cctme Mulli-Gigabit Workstation Network
Fabric. G. Finn, P. Mockapetris, USC/Information Sciences
Inst!tutc..
A Zero-Pass End-to-End O)edcsum.Mechanism forIPv6 1

,

G. Finn. S. Hotz, C. Rogers, USC/Information Sciences
Institute, Dec., 1995.
Networlc Backplane, G. Finn, USC/Information Sciences
Institute, Apr., 1994.

EX 1017 Page 191

i , U.S. Patent

·' .

12-9

r-1\
V 0
Sep. 1, 1998 Sheet 1 of 6 5,802,054

10

ATOMIC MESH
NETWORK SWITCH

END
STATION

12-8

12-1

END
STATION

11-1 12-2

END
STATION

hi ~;" 12-13
l..a41----EERIHEl:Rl'lt~&B:i-,j;--~.. STATIO~

11-3 -

12-4

END
STATION

12-7

FIG. 1

END
STATION

END
STATION

12-6

12-5

EX 1017 Page 192

a 0

US. Patent Sep. 1,1998 Sheet 1 of6 5,802,054

ATOMIC MESH

NETWORK SWITCH

I ' l. I x 1 1‘6
STATION

1 1-9 1 1_7

END

12 9 STATION 12'6' END

fi sum"12-7

12'“ FIG. 1

EX 1017 Page 192

. I

() 0
U.S. Patent Sep. 1, 1998 Sheet 2 of 6 5,802,054

121

FLOW FLOW
SWITCH ___ ,.. SWITCH ..,_ __ ..

1-1 106 1·2

104

FLOW
SWITCH ---ei

2-1

FLOW FLOW
SWITCH ---ei SWITCH M---+t

3-1 3-2

RAM

FLOW FLOW
SWITCH ----eiSWITCHN---N

4-1 4-2

129

ROUTER

FIG. 2
150

EX 1017 Page 193

a 0

US. Patent Sep. 1, 1998 Sheet 2 of 6 5,802,054

121 122 123

PHY PHY

105 02 110 1111

PHY SWITCH SWITCH pHy- 1,3 -
04

1.2

1 m IE'I m

121 FLOW I=Low “3 ‘25
swrrcn swrrcn

2,, 2,3
133

m m m

12° I=Low FLOW now 114
wrrc swncH SWITCH

m n I:
132

m m m

“9 FLOW FLOW FLOW "5
c

pHY sw4r'r1c11 511212 H 5111ch E

131118 E 117 m 116 m 127

0 129 12313

151

W FIG. 2
1 50

EX 1017 Page 193

'"'' : .

q .,I '

I
l

0
U.S. Patent Sep. 1, 1998 Sheet 3 of 6

r------------------1 200 201-1 I
I FLOW SWITCH NODE 201-1 I
I

IC .,._I...._.,~,

I
SWITCH ~ MIi
PORT1 -

I 215

I
I
I
I
I
I
I
I

FLOW
DETECT
LOGIC

(NFLOWS}

212

'---'---I
I
I
I
I
I
I
I
I
I
I
I
I

(ROUTE
TABLE
MGMT)

CPU

(NODE
ROUTE
LOGIC

213
ARBITER

201-2

SWITCH
PORT2

1..-------" I 260-2
I
I

.202-2

• I

210 • I
202-X I ___ __,_

201-X I
SWITCH ~
PORT X :& n----,1

211

L--------~ -------~
RDRAM

220
SWITCH
ROUTE
TABLE

I 206

207

221

FRAME
BUFFER(S)

BLK•UNBLK

253

0
5,802,054

270-1
TO OTHER

CHIP

204

PORT2-
PHY

270-X

TOOTHER
CHIP

FIG. 3

254

EX 1017 Page 194

£1. 0 ‘0

US. Patent Sep. 1, 1993 Sheet 3 of 6 5,802,054

{566' ““““““““““““““““
IFLOW swncu MODE 270-1
I IC 10 OTHER

CHIP

: 215 260—1
1 270-2 7-04
I FLOW
I mac: 205

1 LOGK: I 93%.”
I (N FLOWS}

: I 22:1
I ‘ 1
x ' 1
l . I
I 210 202-x 1
l 2014c | 203-x 270x
i -;

swncu T0om

{ PORTX CHIP
g 260%

l

I
I

I
I
I

swam)
250

TAG ROUTE HDR BLIWNBLK m
251 252 253 254

EX 1017 Page 194

><. ,

I
~

0 ' 0
U.S. Patent Sep. 1, 1998 Sheet 4 of 6 5,802,054

300

FIG. 4 YES

NO

GENERATE TAG FROM
FLOW DETECT

ADD ROUTE HEADER

306 302

DECREMENT HEADER.
TRANSMIT ON DEFAULT

PORT
TRANSMIT ON PORT ID IN

HEADER

EX 1017 Page 195

US. Patent Sep. 1, 1998 Sheet 4 of 6 5,802,054

300

 F RAM E
RECEIVED ON PORT N

FIG. 4 YES
ROUTE HEADER?

GENERATE TAG FROM
FLOW DETECT

HATCH IN ROUTE
TABLE?

ADD ROUTE HEADER

DECREMENT HEADER,
TRANSMIT ON PORT ID IN

HEADER

TRANSIIIT ON DEFAULT
PORT

EX 1017 Page 195

iii,;i, ,,::· ··u'li:i)ni~,uu N~

! .. -·:2:;;t·~-1*:..~. ,, , "" ·~ 1 4J!!IIH'l~·il· , !L

___co1
400_.... ~

FIG. 5

[402

DEST

,e:410

[403

SOURCE

I:411

r404 r4o5 r4oa r401 r4oa
MISC I IP HEADER I ? (I CHECKSUM I EOF I

..c:..412..c.413

414

------------------ HASH GENERATOR

RECEIVED
FRAME

500 '
HASHFLOW1
HASHFLOW2
HASHFLOW3
HASHFLOW4
HASHFLOW5

HASHFLOWG
HASHFLOW7

HASHFLOW8

• • •
HASH FLOWN

HASH FLOW SEL

501

ROUTE TABLE ADDRESS ...
503

502

FIG. 6

ROUTE
TABLE

415

416

HIT/MISS

0
en •
;p
~ a

C'/l

~ ,,.

~
QC

g3
!!
UI

S»
O'I

Ol
QC

i5 ,..
= Ol
~

,.

0 ,

0

EX 1017 Page 196

401 402 403 404 405 408 407 408

400 —+ Ba] 0251 m was: IPHEADER - cnscxsuu m

E410 E411 E412 E413

HASH GENERATOR

RECEIVED
FRAME

500
41 8

HITMISS

HEADER

41 7

ROUTE TABLE ADDRESS

503
416

502

FIG. 6

- HASH FLOW NHASH FLOW SEL

501

. * ”yr”, :«y‘ ,- 4"‘insu'u ”whys, ELI-v ‘v.

1119ch'S'fl

866!‘I“dos

9505199118

vso‘zos‘s

EX 1017 Page 196

,}: '

~:
l

,,
,, .

' :I
·1

'

U.S. Patent

0
Sep. 1, 1998 Sheet 6 of 6

GENERATE ROUTE
HEADERS FOR FLOWS

SWITCHES

702

SEND MSG TO FLOW
SWITCHES TO UPDATE
ROUTE TABLES AND
BLOCK MATCHING

PACKETS

FORWARD PACKET TO
DESTINATION

703

704

SEND MSG TO FLOW
SWITCHES TO UNBLOCK

FIG. 7

C)

5,802,054

EX 1017 Page 197

Y. 0

US. Patent Sep. 1, 1998 Sheet 6 of 6 5,802,054

 T00

FRAHE

g RECEIVED m ROUTER

is? 701

i .‘ GENERATE ROUTE
.r _ HEADERS FDR FLOWS
3 swrrcnas

T f SEND use TO FLOW
swrrcuzs To UPDATE

4 ROUTE TABLES AND
4.2. BLOCK MATCHING

PACKETS

703

’ FORWARD PACKET T0

3‘ nesnwmou

a?

L i: ‘» 704
:2? g

, SEND use To FLOW
smcaes TO UNBLOCK

EX 1017 Page 197

r.':•

.. G

1
ATOMIC NETWORK SWITCH WITH

INTEGRATED CIRCUIT SWITCH NODES

BACKGROUND OF TIIE INVENTION

1. Field of the Invention

0
5,802,054

2
connection with a supercomputer known as Paragon from
Intel Carpc.-ation of Santa Oara. Calif. Basically it has been
only a research demonstration project. Critical limitations of
the design include the fact that it is based on grossly

s non-standard clements which make commercial use imprac
tical. For example, there is no way to intcrface the switch

The present invention relates to the field of nctwod: chips taught according to the atomic LAN project with
intermediate devices, and more particularly to high- standard workstations. Each workstation needs a special
performance switches for routing data in computer net- interface chip to become part of the mesh in onia to
works. 10 participate in the LAN. Nonetheless, the ATOMIC LAN

2. Description of Related Art project has demonstrated a high throughput and ICadily
Nctwo.ck. inteancdiatc systems for interconnecting net- extendable architecture for communicating data.

works include various classes af devices, including bridges, Typical switches and routas in the prior art are based on
routas and switches. Systems for the: intm:onocction af an architecture requiring a "backplane:" having clc:ctrical
multiple: networks encountrr a variety of problems, indud- 15 characteristics that arc: superior to any of the: incoming links
ing the diversity of network protocols exc:rutcd in the: to be switched. F<r cumplc:, 3Com Coiporation of Santa
networks to be intcrconncct.ed, the: high bandwidttt rcq_uired Clara, Calif., produces a product known as NctBuildcr2,
in order to handle the: convergence of data from ~ inter- having a core bus backplane defined which runs at 800
connected networks at one place, and the complc:uty of the megabit., per second 'Ibis backplane moves traffic among
systems being designed to handle these: problems. As the: 20 various local area netwerk extemal perts.
bandwidth of local area nctwod protocols inac:ascs, with There arc: several iroblcms with the backplane app-oach
the development af so-called asynchronous transfer mode typical of prior art inteauc:diate systems. First. the backplane
("ATM"), 100 megabit per second FJhcrnct standards, and must be defined fast enough to handle the: largest load that
proposals for gigabit pcr second. FJhcrn~ standards, the: migb1 occur in the: intennediatc system. Furthermore, the
i:roblrms cnCOUDtcrc:d at network. intermediate systems arc 25 customer must pay for worst case backplane: design regard-
being multiplied. less af the customer's actual ncc:d fer the: w<rst cas; system.

One technique: which has been the subject of significaDt Second, the backplane itself is just another commnnication
research fer inacasing the throughput of nctwius is known link. 'Ibis communication link must be complct.c:ly sap-
as the so-called atomic LAN. The atomic LAN is dcsmbcd ported u a backplane for the nctwerk intennc:diate system.
for CXllllple in Cohen, et al.. "ATOMIC: A Low-Cost, Very 30 involving intriate and expensive design. The: lower vol-
Higb-Spccd, Local Communication Architccture", 1993 umcs for spccializc:d backplane link further inacascs the
International Conference on Paralld. Processing. There is a C06t of network intermediate systems based on the: back-
significant amount of published information about the plane architcaurc.
atomic LAN technology. Felderman, c:t al "ATOMIC: A In light of the ever inaeasing complexity and bandwidth
Bigb-Spc:ed Local Communication Architecture", lo11171Dl 35 requirements of network intermediate: systems in comma-
of High Speed Networks, Vol 1, 1994, pp. 1-28; Cohen, ct cial settings it is desirable to apply the atomic LAN prin-
al., "ATOMIC: A Local Cornrnuoication Nctwmk Crc:at.ed ciples in ~ easy to implement, and extcndablc net-
Through Repeated Application of Multicomputing wod: inta:rnetliate systems.
Components", DARPA Contract No. DABT63-91-C-001,
Oct. 1, 1992; C.oben ct aL, "lbc Use of Message-Based "° SUMMARY OF THE INVENTION
Multicomputa- ComponentJ to Construct Gigabyte Net- Accmding to the p-cscnt invention, the: tine scalability of
werb"; DARPA Conllad: No. DABT63-91-C-001, pub- an atomic type LAN mesh, is combined with standard local
lished Jun. 1, 1992; Fmn, "An Integration of Network area nctwod: liob, such as high spcc:d Etbcmc:t, and a
Communications with Wor.btation Ardmeclme", ACM, A standard routing protocol to provide a high performance
Computa Communication Rc:vic:w, October 1991; Cooen ct 45 scalable nc:twod: switch. The need for the: special purpose
al, "ATOMIC: Low-cost, Very-High-Spcc:d LAN", DARPA bad.plane bus is removed aaxrding to this architecture.
Contract No. DABT63-91-C-001 (publication date while puviding scalability, high pcrformancc:, and simplic-
unknown, downloaded fr<m Intc:rnct on er about May 10, ity of design.
1996). Accoldingly, the present invention can be cb.aracteri7.cd as

'lbe atomic LAN is built by repeating simple four port ,o a nctwod: switcb. that compises a plurality af switdi nodes
switch integrated ciicoits in the end stations, based on the: manged in a mesh, a first set of iDtcrnal commnnication
well known Mosaic architccture acated at the California linb which arc coupled between switch nodes intemal to the
Institotc of Technology. These integrated circuits at the end nc:twodt. switch, and a second set of cxtcmal a,mmnnic•don
stations m: interconnected in a mesh arrangement. to pro- linb which COJ!llnSC network links from switch nodes on
duce a lm:gc pool of bandwidth that can aoss many perts. 55 the border of the nctworll: switch to systems cxtcmal to the
The links that intaconnoct the switches run at 500 megabits nc:twodt. switch. The respective switch nodc:s include a set of
per second. Pramc:s are rooted among the end stations of the: port., (having mote than two members) which are connected
networlr. using a differential source route code adapted fer to respective: commnnication links in one of the first or
the mesh. One: or more end stations in the mesh act "address second sets of communication links. The: ports in the: set of
consultants" to map the mesh and calculate soun:c route (,() ports include respective medium access control (MAC) units
codes. All d. the links are self timed., and depend on for transmission and reception of data frames acccrding to a
acknowledged signal protocols to coordinate flow across the nctwod: ~tocol, preferably a connectionless protocol like
links to prevent congestion. The routing method fOI' navi- high spc:cdEthemct, and are connectable to a port on another
gating through the mesh, known as "wonn hole" routing is nctworlc switch node inside the mesh aaoss an intcmal
designed to reduce the buffering requirements at each node. 65 cODllDllDication link, or to a nctwerk communication

The atomic LAN has not achieved commercial applica- medium outside the mesh which constitutes, or is coupled
tion to a significant degree, with an exception posSI"b:ly in with, an cxtcmal communication link.

EX 1017 Page 198

0

5,802,054
1

ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NODFS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of network
intermediate devices, and more particularly to high-
performance switdies for routing data in computer net-
works.

2. Desu'iption of Related Art
Network intermediate systems for interconnecting net-

works include various classes of devices, including bridges,
routers and switches. Systems for the interconnection of
multiple networks encounter a variety of problems, includ-
ing the diversity of network protocols exeutted in the
networks to be intuconnected, the high bandwidth required
in order to handle the convergence of data from the inter-
connected netwrrks at one place, and the complexity of the
systemsbeingdesignedtchandle titeseproblemsAsthe
bandwidth of local area network protocols increases, with
the development of so-called asynchronous transfer mode
(“ATM"), lDO megabit pa second Enter-net standards, and
poposals for giyhit pu- second Elba-net standards, the
problems encountucd at network intermediate systems are
being multiplied.

One technique which has been the subject of siyiificant
melt ftl’ increasing the throughput of netwm is known
asfltesocallcdatomiclANJI'heatomicLANis described

for example in Cohen. et aL, “ATOMIC: ALow-Cost, Very
High-Speed, Local Communiation Architecntre", 1993
International Confcrmce on Paralld Processing. There is I
significant amount of published information about the
atomicLANtechnclogy. Felderman, etal.“ATOMIC:A
High-Speed Local Communication Architecture", Journal
ofHigh axed Networks, Vol. 1, 1994, pp. 1—23; Cohen. et
al., “ATOMIC: ALoal Communication Ndwuk Cream
Through Repeated Application of Multicompnting
Components", DARPA Contract No. DABT63-91-C-001,
Oct. 1. 1992;00henetaL.‘l‘he Usechessage—Baaed
Mtdticcmputz Components to Coma Gigabyte Net-
wra-ks"; DARPA Conn-act No. DABT63-9l-C-001. pub-
lished Jun. 1, 1992; Finn, “An Integration of Netwfl
Communications with Wakstafion Ardiitccture", ACM, A
ComputerCommunicatlonReview,Octobc 1991; Cdscnet
1L. “ATOMIC: Low-cost. Very-High-Speed LAN“, DARPA
Contract No. DABT63—9l-C-001 (publication date
unhowmdowflmdedfianlntu’netona’abommy 10,
1996).

'lheatomieLANisbufltbyrepeetingshnplefompat
switch integrated circuits in the end stations, based on the
wdl known Mosaic architecntre created at the California
Institute ofTechnolcgy. These integrated citatim at the end
stations areintuconnmdinameshmangementtopro-
ducealargepoolofbandwidththatcanu'ofimanypms.
The links that interconnect the switches run at 500 megabits
per secondan aremntcdamongmeendstaficnsofthe
network using a difl‘erential source route code adapted fra-
themesh. Oneormcreend stationsinthemeshactfiddress
consultants"tomapthemesh andcalutlatesomcemute
codes.Allcfd1elinksaresclffimed,anddependon
acknowledged signal protocols to coordinate flow across the
links to prevent congestion. The routing method for navi—
gating through the mesh, known as “worm hole" routing is
designedtcredncemcbutfuingrequirements ateachnode.

The atomic LAN has not achieved commercial applica—
tion to a significant degree, with an exception possibly in

10

15

35

55

2
cannection with a supercomputer known as Paragon from
Intd Cupaation of Santa Clara, Calif. Basitzlly it has been
only a research demonstration project. Crititnl limitations of
the design include the fact that it is based on gossly
non-standard elements which make commercial use imprac—
tical. For example. there is no way to interface the switch
chips taught according to the atomic LAN project with
standard workstations. Each workstation needs a special
interfacechiptobecomepartofthemerhinorderto
participate in the MN. Nonetheless, the ATOMIC LAN
project has demonstrated a high throughput and readily
extendable architecture for communicating data.

Typical switches androutersintheprior artarehasedon
an architecture requiring a “backplane” having electrical
chmcnrristimthataresuperiorto any oftheincominglinks
to be switched. For example, 3Com Corporation of Santa
Clara Calif., produces a product known as NetBnilderZ,
having a cue bus backplane defined which runs at 800
megabits per second. This beckplane movu tnific among
various local area network enernal pea-Is.

There are several problem with the backpiane approach
typical ofprim an immediate systems. first, the backplane
mustbeddinedfastenoughtohandle thelargest 1mm
mightccatrinlheintermediatesystemFtnfia-nmrc,die
custom: must pay for worst case backplane design, regard-
less of the customer’s actualneed ft: the west case system.
Second, the badtplane itself is just another communication
link. This communication link must be completely sup—
portcdaa abackplaneforthe netwca‘kintermediatesystem,
involving intricate and expensive design. The lowa vol-
umesforspedalizedbackplanelinkhnthainaeases the
costofnetworkintarmediate systemsbasedonthe back-
plane architedme

Inlightoftheevctinueaslngcomplexityand bandwidth
requirements of network inteunediate systems in coma-
dalsettings,itisdeairabletoapplytheatomicLANpin-
ciplm in practical, my to implement, and extendable net-
work inmdiate systems.

SUMMARY OF THE INVEJTION

Amending to the [recent invention, the fine salability of
anatomictypeLANmesh,is combinedwith standardlocal
mnetwa’klinks,sucbashigispeedflthanet,anda
standatdroutingprotocoltop'ovideahighperfounance
scalable nomad switch. 'Ihe need fa: the special purpose
badplanebusiaremovedaccu'dingtothisardtitechne,
while [twirling scalability, high puformance, and simplic-
ity of dais-L

Amordingly, the present invention can be chxacterined as
anetwotkswitchthatoomrlisesaphn‘alityofswitdtnodes
mgedinanteshafirstsetofintmlcommunicafion
linkswhidtarecoupledbetween sudtchnodeaintemalto the
netwock switch, and a second set of extunal communication
linkswhich compise networklinb fromswitch nodes on
Iheborderofdtenetworkm‘tchto systansexternalto the
netwmk switch. ‘Ihe respective switch nodes include a set of
ports (having more titan two members) which are connected
to respective communication links in one of the first or
second sets of communication links. The ports in the set of
patsincluderespective medimn access control (MAC) unis
fortnnsmission andrecqation ofdata frames acctrdingto a
network Forccol, prefa'abiy a connectioniess protocol like
higltspwdEfia-nekmdmconnectabletoapartonanotha
network switch node inside the mesh across an internal
communication link. or to a network communication
medium outside the mesh which constitutes, or is coupled
With, an external communimtion link.

EX 1017 Page 198

.:• 0 . 0
5,802,054

3 4
The switch nodes also include rcsourc:es to c:x.ecutc a network p-otocol, intending to include data units called

routing process for frames inside the mesh. These resources tranies, packt:ts, cells, slrlngs, or other names which may
include a route t.able memory which has a set of accessible have more specific meaning in other contexts.
memory locations d1l&t stare switch route data specifying Ill the preferred system, all the ports on the switch node
routes through the plurality of switch nodes inside the mesh 5 execute a single local uu networlt protocol Picfaably this
of the network: switch for specific flows of data frames, or for
data frames having specific destination addresses. Flow protocol is an Ethernet protocol lilr:c the carrier sense,
detect logic is coupled with the set of ports on the switch multiple. access with collision detection~ J?fi'tocol
node, which monitors frames received by the set of ports and of the widely used Eth~ stan~ and van.ants _of it Ma:e
generates an identifying tag for use in access.mg the route LO pref~, the protocol is ~ed for operation at 100
table memory. Example tags consist of a destination address meg~ts per ~?d or higha:, more Jrefc:rably at the

of th -'-~ ,:_,_ , _ th ~_,_ • emergmg one gigabit pei: second Ethernet standard protocoL
at one e.....,.....,... ,,.ya: or e n.,,wuu..layer, a portion F __ ...-, .. halfd-'-· dfulldupl,,,...,h ... Eth
of the destination address or bash values based on one a: or""'"'"'!'""'• ·"'1"'""" an c:x _it eraet
mere fields in control s~ of the frame. The tags (1EBB802.3z) or _100 Megabit Elha:net (802.3u) arc used in
prefer.ably act as low signatures to assodate a frame with a

15
prcfcm:d embodiments. . •

sequence of frames traversing the switch. For example, Flow control between the nodes is halldl.ed according to
wbe11 a large file is transfcm:d, a sequence of frames is the standard LAN protocol of the pms, such as the Etherac:t
generated which constitutes a flow of data to a s.inglc pr~ Tims, IDlllUlgCIDCDt of the flame flow ~o~ the
destination and frames in the sequence have a single idea- switch u conducted on a frame by frame basis with the
ti.fying ~ Finally the switch node includes node route famlll of the frame inside the switch essentially unaltered
logic which is coupled wilb the flow detect logic, the route

20
from the foauat ~~g or exiting the switch, with well

table memory and the set of ports. The node route logic lllldmloocl and easily llllplcmcnt.ed technology.
monitors frames received by the set of ports to route a Accan:ling to another aspect of the present invention, the
=ived frame for transmission out a part iD the set of ports. flow detect logic on the respedive switch nodes comprises

The node route logic determines whetha: the received 25 logic wbicb computes a plmality of hash values in response
frame includes a switch route field that hJdicatea a port in the to reapecli:vc sets of control :tidda la a received frame. The
set of perts to which the frame should be dir:ectcd fa: rcspccli-ve ICU of control fie.Ids couclate wilh different
tra.nmws.sion. If the received frame includes a switch route network frame fonnau which might be encountered in the
field, that field is updated according to a swrcc route type aetwcc:t. Logic is also iaduded wbich det.eanines a partim-
Jrotocol, and the frame is forwarded wilb the updated switdl 30 lat nct.wm:t frame format fa: a received fnlmc, and selects
route 1icll1 out the indicated port. If the received frame does one of the pmality of huh values as the identifying tag in
not include a switch route field, such as would nonnally be response to the partim.lar netwodc frame fomw that has
the cue for a frame eotedng the nctw<d.: switch at a switch been detec:ted. The huh Vl1nes preferably comprise cyclic
node on the bordc:r: of the nc:twm:t switdl, then the identi- redundancy codea which are generated with hardware CRC
fying tag generated by the Jlow detect logic ii used to aa:eu 9, genentorl. In this DllllllCl', the identifying tag fa: an inc::om-
the rwte table memory. Switch route data is rdlieved from ingfrlmcis gcnc:nted vr:ry quietly, allowing fa: wt through
the rwte table memory, if an entry exists fur the identifying of .fmne& in a switdt node so that a lranamission of a frame
tag of the cum:nt frame. This data is used to geneme a onanoutgoingpm:tcanbcginbefa:etheCOOlpletc:framchas
switch route field for the mune. and to direct the frame out hem reocived at the inoomiag part.
a port iDdicatcd by the data. 40 The pcacDt invention am aho be ~ as indi-

The node route logic oa the respealvc awitdl node also '¥idaa1 aw:itch DOdes t\x' use in a nctw<d.: switch in the
indudcs logic that fa:wmb a rccdved li:amo for tnnsmis- configuralfon dcsaibed above. In lllOlher aspect, the nct-
sioo on a dcfanlt port in the set of ports, when the route table wade lwitdt node compme, 111 integrated drcuit on which
mcmocy does not mdude awitdl route data fa: the idcnti- the plmal.i1y of ports, the flaw comrol logic, &Dd the flow
fying tag. 'lbe defa.uk port is COl1ped to a route lead.ing to a 45 dcicct logic ue incorporated, and intcn:onnected by an
JrOCCSSOI' in the system It whid:1 switch route data la embedded high spcc:d bas. A system incliiding any two or
gena:11:cd, such .u a multi.protocol actwod: router either mare of mch integrati,d circuits ccmbined togdbe:r to form
intc:nlal ar extcmal to the nctwom: llwitch. Thus, the node a mesh, provide a nd:wcrlt switch. Accooling to another
route logic fta:lher includes logic to rcc:civc switch rout.c data upcc:t of the invention. the pms on the integrated circuits
from a remote system for a particular idendfying tag. 'lbil ,o are coupled wilb standard jackOODBeCta:s, er other standant
switch route data is stored in the route table memory in connector intedaccs, allowing usc:n of switch circuits
associal:ioo with the pm.ticular identifying taa, When a new iDdDding a plurality of integrated circuits to connect them
entry is made in a switch route tabJc, li:amos having lbe together using cables in any desired configuration. Thus, a
particular identifying tag are bloc::tcd, with or without very fleldble switch an:bttcclurc ii provided which can be
buffmng, until noti:tication is rccdved 11w it is clcllr to 55 coafl.gurcd foe individual installations very easily.
forward frames having the particular idemifying tag. This A high pei:fCIID&D.Oe network switch is provided according
blocking tedlnique allaws the remote system to which a to the present invention based on a switch node made wilb
frame wu directed for routing, to fmward the frame to its an integrated ciram having 3 or more LAN ports. A frame
destination, prier to other frames in the nmc flow sequence is routed amongst the nodes in the switch without moving
being routed to that destination. Tbil pn:scn,es the order of 60 across any intc:nDcdiate non-LAN bus (excluding the
b:ansmwion of flames in a puti.cu1ar flow. The node route memmy latc:rfacc in each of the DOdes used for the frame
logic begins f<KWarding 1mncs aceanling to the switch route buffi:rs). A route decision is made in each node based on a
data stored in the route lablc mcm.my for a particular tag switch route header attached f.o lhe LAN frame or on the
after it ICCCives notifi.cation from the remote system that it is Btbernet address contained within the frame, or directed to
dear to forward fiaroea. 65 a defauk route if no route is stored in the route table and lbe

The teon frame is used hcrcm, llDlcss st.at.ed olhCIWise, in Btbernet address is unknown. The flow eolll:rol amongst the
a gcnaic sense as a UDi.t of data transfcm:d according to a nodes in the switch u handled based on standard LAN

EX 1017 Page 199

I
L

(< 0 0
5,802,054

5
control signals. In the preferred 5Ystcm, the standard LAN
interface amongst the nodes is 100 megabit per second a:
higher Ethernet, and mm: p:cferably the emerging 1 gigabit
per second Ethernet protocol

Other aspect! and advantages of the present invention can s
be seen upon review of the drawings, the detailed descrip
tion and the claims which follow.

6
switch 10 is compiscd of a pluralky of switch nodes
manged in rows and columns in FIG. 2. The switch nodes
are labeled in the drawing by column and row numbers.
Thus, the switch node in the upper left hand corner is node
1-1. The switch node at row 1, column 2 is node 1-:2, and so
on throughout the mesh. In a preferred embodiment, each
switch node includes an integrated circuit, such as integrated
circuit 105 in node 1-1, coupled to a mem.cry dlip, such as

BRIEF DFSCRIPTION OF THE DRAWINGS chip 106 in node 1-L Each of the nodes includes four ports.
0

Thus, node 1-1 includes pa:t ltl, pm 10:2, port lt3, and
FIG. 1 is a simplified diag,:llm of a network including an 1 port llM.

atomic network switch according to lhe present invention, Toe bouodal:y of the network switch in FIG • .2 comprises
interconnecting a plurality of standard Ethernet l.inb. the llOl:lt$ 1 ti and 1'2 ofnode 1-1, pmt ll O of node 1-2, port

FIG. 2 is a block: diagr.un of a network switch based on 111 of node 1-3, 112 of node 1-3, port ll3 of node 2-3, port
a mesh of switch nodes acca:ding to the present invention.

15
114 of node 3-3, port ll5 of node 4-3, port 116 of node 4-3,

FIG. 3 is a block diagram of a switch node accontiag to port 117 of node 4-2, pa:t 111 of node 4-1, port 119 of node
the present invention. 4-1, pa:t 120 of node 3-1, a.nd port 121 of node 2-1. Bach of

FIG 4 is ., - ill -.ino_ .. b the ports 11e-121. 101 ud lt2 on the boundary of the
. a ,..ow ~· u, we process cxccu..,.. y switch is connected to through a physical layec device,

the node route logic in the switch node of FIG. 3. l:2l-l34 to respectl.ve physical OOlllmunkmon media, such
FIG. S is a diagram illustrating the process of genaating 20 IS libcroptic cables twisted pair cables wireless linkJ such

identifying tags based on cyclic redundancy code hash IS radio frcquenc:, a: iDfnred cba.nncls or od:icr ~
generatcn for the flow dd.ea logic of the system of FIG. 3. specified according to stand.mi local area 'netw<rt physical

PIG. 6 is a simplilied block diagram of the fl.ow detect layer spedfi.cations. The coanedion between switch nodes,
logic for multiple pnllel flows for use in the system of FIG. such u the oonnedion 140 between port 141 on node 2-3
3. 2!I a.nd port 142 011 node 2-2, consist of medium independent

PIO. 7 is 1. flow chart illustrating the process exeaJted ill intedace ronnedfons whidi am dcftaed for connccti.on
aroutcrorothernetwa:krouteprocessorfccframesrcceived between MAC logic oa a part, and medium dependent
from the network switch, wbk:h do not have cnmes in the components for 1. port. However, 1hese mcdhJm independent
route tables of the netwux switch. 30 coDDedions arc connected from MAC logic to MAC logic

dired:ly. Preferably all tbc Jinks between 1he parts in the
netwod: switch exemte 1hc same network: protocol as the DEl'AlLBD DESCRIPrION

A detailed desa:iptioa of embodiments of. the present ports on 1hc boundary of. 1hc switch. However, a1tcmativc
inVl!ntion is provided with reference to FIGS. 1 through 7, systems support multiple pmtoc:ol types at the boundary.
where FIG. 1 ilhmrates the OOD1cXt in which the present 35 Management of the coofiguration of the nctwoa: swilcll is
invention is U1ilized. ID FIG. 1, an atomic network: swit.ch le accomplisbed in a router ISO wbidl ls COl1DtlCfcd aams lint
aceording to the present invention is connected by standard 151 to lhe piysical layer device 130 on the nctwa:k switdl.
Bhcmetlinb 11-1 through n-,toaplmality of endmtions The memory chi:ps, such u chip 10611 node 1-1, in the
12-1 through 12-!J. The number of cud statiou and Ethmld netwod: switch am used to &tan: :route tables, and as frame
linb shown in PIO. l fl arlmmy. A larger Cl' llml1ler nmnbcr -"l buff en used in routing of frames III!Ongst the nodes of lhc
of. linb CCJU1d be OODDectcd to a single atomic swit.ch It swtt.ch.
according to the prcscut invention, u described in detail In operation, the netwut. switch receives and lranlimits
below. Pw:tbclmme, the connec:tions 11-1 through 11-!J from standard LAN frames oa Ji,.ysical interfaces 121-134.
the atomic switch to the respedivc end stations cc 111 Ptcfcnbly, the LAN intacoanectio.u c:ompise CSMA/0>
standard network connections, prefmbly CSMA/CD pro- 45 LA.Ni, such as 100 Mcpbit Bthc:met (IEEB802.3 u), or 1
tocol lints, snch u the standard full duplex fast Eibcmet gigab.it EUicmet. When 1. standard frame ent.en the switch It
(]EBB802.3u) spedfi.ed for 100 megabits per second cllCh one piysical intedacc, it is directed oot of the switch
way, Cl' the emerging standard full duplex, 1 gigalit per through anotbec piysical intcmcc u indicated by the
second F.themet protocol In the preferred. system, all links addmss data carried by the frame itself. The individual nodes
11-1 through 11-9 opeade according to the same network: .so in the switch include a switch :routing feature. Each indi-
prctocol However, a1ta:native systems I.CCOIDll'IOdat mul- vidual node selects a port on wbidl to tmwnit 1. n:ccived
tiple network protocols on the extcmal ports of switch 10. frame based upon the contents of the header of the incoming

The end stations 12-1 through 12-9 may be pecsonal frame.
ooIJll)UtaS, hfgh performance workstations, mnltjJQ/'Ala Thece arc two inta:nal modes for routing frames inside the
appliances, J)dntcrs, netwmx intemlediate systems coupled ss switch. In the bl.Sc mode. each node rout.es frames using a
to furthec netwm:b, or other data p:ocessing devices as switch route header attached to the beginning of the regular
cmdecstood in the art. LAN frame. The switch route bcadc:r ill one example oon-

According to one embodiment of the present invention lists of a series of bytes, each byte specifyiJlg one a: more
one of the end stations, sum as end station 12-1 includes hops of the route. The top two bits in one byte specify a
resouICClii to manage the configuration of the atomic network: <,o dh'cdion, in the next bits specify the distance. As 1. frame
switch H, such as initializing route tables, maintaining the moves through each node, the header is updated until it
route tables, and providing ()(her functions. Thus, end station reaches the target. Before a frame leaves the mesh, all the
12-1 may include resources to act as a multi1,ID)toool roukr, switch route bytes are stripped, and the fuune has the same
such as the NetBulld.cr2. manufadut'cd by 3Com Corp<ratioa format as it had when it entered the mesh or, if required, a
of Santa Oant, Calif, 6S format adapted to the Detw«t protocol of the exit port.

FIG. 2 illustrates the inta:nal arcbitcctm:e of the atomic The nodes of the switch. It least nodes on !be boundary
netwod:: switch 10 shown in HG. 1. The atomic nc:twort of the switch. also have a loot up mode. 'When a frame

EX 1017 Page 200

' O 0

5,802,054
5

control signals. In file preferred system, the standard LAN
interface amongst the nodes is 100 megabit per second or
higher Emmet. and more preferably the emerging l gignbit
per second Ethernet protocoL

Other aspects and advantages of the present invention can
be seen upon review of the drawings, the detailed descrip-
tion and the claims which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is n simplified diagram of a network including an
atomic network switch according to the present invention.
interconnecting a plurality of standard Ethernet links.

HG.2isablockdiagrmcfanetwcrkswitdrbwedon
a mesh of switch nodes seeming to the present invention.

FIGJis ablockdiagmnofaswitch nodenccordingto
the present invention.

FIG. 4 is a flow chart illustrating the procms executed by
the node route logic in the swltdr node of FIG. 3.

FIG. 5 is a diagram illustrzting the process of generating
identifying tags based on cyclic rednndanq' code hash
generators forthcflowdetedlogic ofthcsystemofFlGJ.

FIG. Gin a simplified blodrdr'ngmm ofthe new detect
logicfcrmnlfipleperallelflcwefornseinthexystemofHG.3.

1710.73 nflow drnrtillustrating thepmeese execute-lie
amtnotothcrnetwonkrwtepmcessorfufnmesreceived
fr-thenewlorkswitch,whichdonothave entriesinthe
route teeter of the network switch.

DETAILED DESCRIPTION

Addaileddecaipfiouufembodimemscfmerresent
invention isWwith reference to FIGS. 1 though '7,
whereFIG.1musmteltheoontextiowhidrthepmscm
invendmlanfilized.lnfi6.l,matomienetwmkswimh10
according to the present invention is connected by standard
Barman: nolthrcugh u-Stcaphn'alityofendsutions
12—1me n9.1henmcfmdsnflommdfimm
finnehowninFIGJlurbimMargucrmnernmber
offinkeconldbeconncctedteasinglenwmicswmfl
mdingtcflregeeeminvenfiomudeecfibedindemil
below. Furthermore, the connections 11-! though 11-! from
mmmromempmcemmnmmm
standard network comedians. preferably CSMAJCD pro-
mtumsuwummdmmmmw
MSW) spodfiodfmlflflmegmbitnpdseccndench
way,c:theemugingstnmkrdfnllduplmt,lgignfltper
scondEthu'netprotocollntheprefmedryste-rnnflfinh
11~lfl1touglrfl-9mtemdingtntheunmnetwnrk
protocol However, alternative systems necomnwdam mul-
fiplenetwm‘kp‘otccolsonflteextannlpcamofswitdtlo.

The end stations 12-1 unmgh 12-9 may be personal
comm, high pafcrmnnee workstations, multimedia
appliancesmdnta-s, netwrrk intermediate systems corpled
oofurther networks, orodterdntnproeessingdeficesu
cndqstoodindrem.

According to one embodiment of the present invention
one of the and stations. and: as end station 12-1 includes
resources to manage the conflgmation ofthc atomic network
mini: 10, sad: as inifinfizingmrtctablce, maintainingme
route tables, andpovidlng uhafunefionsfl‘hus, end station
12:] mayinclode resources to act as a mnlttymmcoi miner,
snchaethe NetBullderZ mannfactmedby 3Ccchxp<n£ion
ofsmClmCalif.

FIG. Zillustratesflteintu'nal architecmre ofthe atomic

18

15

35

$5

6

switdr 10 is conqrised of a plurality of switch nodes

arrangedinrowsnndcclumns in MG 3.11m switch nodesare labeled in the drawing by column and row numbers
Thus,memitd1nodoinlheupperlefthnndcornaisnode
1“].1‘heswitchnodeetrow 1, colmnnZis node 1.2. and so
on throughout the mesh. In aprefa'red embodiment, each
witch node ineludesnnincegtateddrwit, suchaslntegrated
drafitloSinnodel-lmwpledwememydtmwchas
chip 106innode 1~1. Each ofltte nodes includesfotnports.
Thus, node l-l includes pm 1.1, put me, 1301': 103. and
porth.

The baunrlny oftbe network switch inFlG. 2 comp'ises
the nodes 101 And 102 of node 14,9111 110 of node l—Apofi
111 ofnode 1-3, 112 ofnode 145, port 113 ofnodez-s,port
1140f node 3-3.port1150f traded-3, port 116 ofnodetfi,
ponll?ofnode4—2,pcrt1180fncde4—l,pmmofnode
4-1,pa11200fnode3~l,endport1210fnode2—l. Becket
the pan: 110—121, 101 end 102 on file boundary of the
switdtiseonnectedtommcghaphysiallnyerdeviee,
131-134 to respecfive physical communication medic, such
as fibemptic ables. twisted pair cables, wireless links, such
Isradiofiequencyminfrredchmnels,orofltermedia
rpecifiedmdingtostmdml toenlarennetwork physical
layer spedfiectlonsflflre connecfionbctween switdtnodes,
such :3 the connection 140 between port 141 on node 2-3
andponlflonmdetlmnsistofmediumindependent
intafnce mnneaionn which no defined for comedian
betweenMAClogiconnport, Mmedimndcpendent
componemfernptxeflowevemhesemediumindcpendcnt
comeaiomxeconnmdfiumMAChgicmelogic
directly. heferlbly all toolinks between the ports in the
mmmtememnetworkpmmcolasflre
Montheboundnrycffixeswiwh. Howeveenlmnfive
system suppmmkiplegxotccoltypesufltebonndary.

Mnnngementoftheamflgunfionoffimnetwu'ksfitdais
nceonqtllshedlnnouta’lfitbwhidrisconnectedmslink
BlmthephysiullxyudeviceBGcnthenetwakswlIdL

Thememcrychipnsnchuchiplfinnode l-l,inthe
mmmummmmm,m8m
Mmusedinroufingoffim amongetthcncdeeofflxe
ewltdr.

hopanfiommenetwrxtswitehreceivesmdmsmits
standard LAN frames on physical interfaces 121-134.
Newly. dalANintermnnecdomeomrxtseCSWCD
LANs, such as 100 Megabit mum mom u), or 1
mmmamdmmmmmn
onephysicelinterquhisfirectedcmctthewizeh
through anothe- physical interline ls indicted by the
eddrwdemenniedbymefinmitselfflheindividmlnodes
intheswinfiindudensm’mhrwfingfechnewindi-
vidmlnodeselcctsapcrtcnwhichtouusmitucedved
mooseduponthecontemoffltehuduoftheincomtng
frame.

Thercmtwointanflnmdesformufingfnmetinsideme
Naminthebuemodeuchncdemutesfinmusinga
mfldrrotflehenderattachodtothebeginningofthemgnlnr
LANfitameTheswitchmutohecderinoneennxflecon-
riststfasedcsofbytes,eadrbytespecifyingonecrme
hopsoftherouee.'l‘hetoptwobicsinonebytespcclfya
dlrediominthenenhlmspcdrythedisunceAsefi-anw
movesdrrougheldtmuhehmisnpdatcdunfillt
xeghesmemgafiefuexfi'melemsthcmeQJJlme
switdrrmtebytesmsnippemandthemhasflresnme
formatnsithadwhcnixenmdthemeshor,ifrequired,a

55 formztadapcedtothenetwotkpmtccolofmeexttport.
'I‘henodes ofthe mmntleastnodecontnehcrmdmy

netwurkswlmhlosbowninHGJJ‘hentomicnetwmt ofmcmmmvenbokupmodeanfinme

EX 1017 Page 200

..

I
i

0 0
5,802,054

7 8
enters lbe switch, with no source route header, the Elhemet as CSMAfCD protocols, even though they may not fit
addresses, or other fields of the control hcadc:r of the frame completely within the classic CSMA/CD definition.
are utili:r.cd access the route table. 1n prefem:d systems a
CRC-lilce checksum generator is run over the header of the FIG. 3 is a simplified block diagram of a single node in
frame, or ova selected fields in the header. At the end of the the network switch according to the present invention. The
header, the checksum, or the low order bits of the dl.ecbum, 5 node consists of an int.egrated circuit 200 comprising ports
are used as a hash code to access a route table stored in the 201-1,201-2, ••• 201-X. Eachportiocludesthef:ramc buffer
memory associated with the node. Olhcr look up techniques and port management logic nonnally associated with stan-
could be utilized for accessing the route table in the memory. dard bridges. Also, con~ to ellCh of the ports, is a medium
For example, the destination address of the incoming frame access control MAC u111t.20l-l, 202-2, ••• 202-X. The MAC
could be used directly as an address in the table. 10 ~ 202-1 to 212-X arc coupled to medium independent

If there is an entty in the room table coacsponding to the 111terfaces MII 203-1, 203-2, • · • 203-X.
header of the frame, then the switch route data from the table In the embodiment of FIG. 3, each of the medium
is used to create a switcll route header. 1b.c header is independent interlaces is connected to a. connector jack
attached to the frame, and the frame is lrallsmittcd at the

5
260-1, 2'0-2, 260-X. The connector jacks comi;r.tse a stan

approinat.e port. If no entry is found in lbe route table, then 1 dard connector to which a cable 270-1, 270-2, 270-X is
the frame is routed to a default address, such as the address easily comiect.cd by the user. The cable may comprise a
of a multiprotocol routu associated with the switch. The coaxial cable f<r medium indepcDdent i.ntafaccs hued on
multii;rotocol rooter at the defauit add,;ess also performs serial data, or nbbon cables foe wider data buses. A 'llllriety
lll.lll&gcmcnt functions such as reporting status, ioiti•Jirlng :¥1 of mcc:hlnical jlck. configurations can be used as known in
the nctwodc, broadcast functions, and managing node 1'0llt.e the 11.1. F<I ex.af!lPle, coaxial stubs cm be mounted on
tables. Routing the frame to a default addn:s.s lltenwively printed ciralit boards adjacent each pa:t of the integrated
involves attachment of a switch route header to direct the circuits. A shoo coaxial cable is then connected from stub-
frame to the default address, er simply fawarding the frame to-stub in ordl% to mange the plurality of inl.egtatcd circuit
at a default port ia the local node, such tut the next node in 15 chips in a mesh 1b1t suits the particnlar i.n.stallati.on. Also,
themcshtoiecelvcthcframcalsoloobitupinitsownroute standardrlbbon connectoc jacks can be smfacemounted on
table to determine whether the frame is i:ccognized. Either printed wiring boards adjacent to the int.egrated cimlit.. The
way, the fn.mc reacbcs the default addles& and is baodlcd ribbon cables are cooncctcd into the ribbon connector jacks
app,:opri.ately. in ordel' to establish the inter-connection.

Row contrcl of the frames in the mcah, and at the 30 1n altcmatives, each of the swit.ches is mounted on a
boundary of the mesh. is based on the net.wade potocoJ. of daugbfa: board, with jacl.:s designed to be con.nectcd to a
the linb, such as Bfhcmct. Therefore, in the p:cfmcd m.ather board in which the data b routed aocoroing to the
Ethc::niet example, if a pa:t is not availalic in a target node needs of the particular appliation. In llto:.nmve systems,
due to a hJly lin1c, a collision on the lint, Q[lack: of mcmo,:y the jacb 2'0-1 through 260-X arc not included, and the
space at the target node, the fn.mc will betdilsed with a jam 35 medmm independent interfaces 11e routed in the print.ed
sigD.ll or a busy sfgnal on the link. 'lbe sending node buffe.r:s wiring board in a hard-wired configuration, designed for a
the frame, andremc:s the trallmlfssion 1all%, acca:ding to the puticullr imtallation.
backoff and tctry l'tlles of tbe p:otocol or olbcr flow comrol Mediumiadcpclldcnt interfaces allow fo, commnnfcadon
lcc:hDiqucs of the protocoL by means of the jacks llit-1 to llil-X and cables ~1 to

The standard highcr-epeed Blhc:met pot.oco1I indude ,io 270-X, or othc:twise, directly with olher MAC UDit5 on othrr
bodl half duplex and foll dupl.c:lt cmbodJ:mmts. The 100 IIWitc:h int.egrated circuits, cr to physical layer dcvicca for
Megabit per second E.lhem.et, dcfiJled by JBl!E8023u, connection to actual con:m:umication ~ For cxamplc,
clause 31 "MAC Control," ddines a fi:amc-based ftow lht: MB 203-1 in FIG. 2 is connected dircclly to a pa:t on
conlIOl scheme for the full duplex embodiment Flow coo- anotba' node in the switch. 'lbe MII 203-2 in FIG. 2 is
trol &low1 down the agpegatc rite of pllCbts that a particu- 45 connected to a physical layer device 214 for port 2 tbroogb
larporti.s sending. Tbcmclbodusedrevol.vc:uroundcoalrol. jack 27L 'lbe physical layer device 214 is connccted to a
frame& distinguished by a unique multi.cat address and a physical transmission medium 215 for the LAN being
lcDg1bltype field in the pacbt. When a MAC port controller utilized. The Mn 203-X in FIG. 2 is coupled directly to
detects Iha.I: it bas received a control frame, the opcode in the another chip wilhin the switch mesh.
control frame is sensed, and tninsmissicm of.):llCki:tl ill so Aa:ording to one embodiment of the present invention,
controlled based on the opcode. In existing spccilicaliou, a iDtegntc:d cu:cuit 2N incl.ud.es a memocy-int.ei:w:e 206 for
single opcode PAUSE is defined. Tons, in rcspomc to the connection dircclly to an extcmal memoty, such as a Ram-
PAUSE opcode, transmission of packets is either enabled« bus dynamic random &mess memory RDRAM ffl. The
di.sabled depending on the cum:nt state in a Xon/Xoff type RDRAM 2f11 is utilized to store the swit.ch route table 220
mr.chanism. Thus, Ibis full duplex mode docs not depend on ss and f<I frame butfc:rs 221 utilized. during the routing oi
thc shared. media, collision dctec:t techniques of lbc classic fiames through the node.
CSMA/CD protocols. The intcma1 arcbitc:cture of the integrated circuit 200 can

All the JrOPOsed standards in the Elhernet family basi- tabl on a variety of fonnats. In one p:efc:m:d embodiment,
cally use the standard 802.3/Bhc:met frame fmnat, con- the intc:mal ardrltcc1ure is based on a stllldard bus arcbi-
fomu:d to 1he 802.2 logical link control layer i.ntaface, and 60 tcctme specified for operation at 1 Gigabit per second, or
the 802 functiolllll requirement document with thc possible higher. In one example, a 64 bit-wide bus 21t operating at
cxcq,tion of Rimming distance. Also, 1hc mjnhnmn and 100 Megahertz is used, fm\'iding 6.4 Gigabits per seamd as
mmmmn frame sb:e as specified by the cuacnt 802.3 a thcorctica1 maximum. Even higher data rates m: achicv-
standard and by the half er full duplex opa:atioDal modes is able with faster cl.ockJ. The iDt.cgrated circuit of FIG. 3
diffcrc:nt in the higbcl' rate standaros. Thos. the half and full 6S includes bus 21& which is connected to a memory ubit.er
duplex embodiments of 1he 100 Megabit per SCQOJld and unit 211. Arbitc:r unit 211 connects the bus 210 to a CPU
Gigablt per second Ethernet 111:Andards are often refc:m:d to procc:ssa: 212 across line 213. 1bc processor 212 is utili:r.cd

EX 1017 Page 201

,n

5,802,054
7

entersthe switd1,wi1:l: no soumezoulehmdu,ahe51hmcx
addressesmtothnrfields of the control hadn‘cflhe frame
are utiliud was me route table. In prefixed systems, a
CRC-h'kn checksmn genmmrismnava the headerot the
fiamqorovcr selected fieldsinmehcadmm the end of the
headmmedzeckmmmflxclowotderbitsofmedlmksum,
reusedasnhashoodemaccessamutetahlestmedinnle
memos? associated with the node. Otherlook up um
oouldbeufilizedforaccewingmemwmbleinthemnmmy.
For mle. the destination address ofthe incomingfrnme
oouldbeusedd'n‘ectlyasanaddxessinmetable.

Iffllereisanennyinthcrwmtablemspondingtothe
hesdcrofthefimfihcnlheswflchmmedaufiomtheubh
lsusedtocreateaswitchrontehcadcn'l‘hnheaderis
wwwthefiame,mdthefinmnisnmsnfiuednme
memnmemismundmmemnugmen
mefi'meisroutedtoadd'auunddxess,suehstheaddxess
damnltiprotocolmutuassocmedwimmeswmm
mulfiprotooolmaaxfile defulladdteasalsopufonns
management functions such asrepoxfing ”€113.1nt
fizenetwork,brmdenstfunefions,andmanaglngnodemntn
tabla. Routing mum to ndcfaultaddrm alternatively
involves nflmzhmnnt of a switch route header to direct the
frametothcdefalmnddlus,uaimplyfrchfingfiwfiamc
xadefnfltpmtinthcloalnodqsudxflmfllenMnodein
memeshtoxeaeiveflzefnmcalsoloohimpinitsownmte
“flewdecaminewhdhaflwfiannisremgnimmlha
waxmefimereachesthedefannadckessandishandled
Will-
mmwmeminmemmdum

bounduyofmemesmisbasedonmenmmkponocolof
mclim,suchathlsemeL “adminthcpm‘med
mmmqifapmtianotavaflableinnmgunode
rhxetoahmylinhaeollisiononflxelinborlackofmnmy
spamnlhetnganodefihefinmwmberefmdwflhajam
signalorabusysignnlonmclinh'mesendingnodcmfim
d1cfime,andmnimmen-ansmksionlamnacoadingfiome
backoifandreuyrulesofflmyomaxmomaflawonntol
tedmiqnesofmepmml.

The standard higher‘spwd mum pounce}: include
bodihnlfdnplexandfnllduplexembodlmenune 100
Megabit per second Emmet. defined by W311,
clause 31 “MAC 00ml,” (ll-fines a frame-based flow
wmmmmmmmmmmowm
tolflowsdownmeaggregmmeofmmnapum
mpmtkwndingmmmwnsedmvdemdmd
mamnguishedbyauniquennnmmaddmssnda
lenthypefieldlnmepackeLWhenaMACpoxteomuer
ddwlslhatithasrwdmdaooukolfiamemeopoodeinme
mmlfimisscMmdmmfissiondWis
wnuolledbnodonthcopcodulnaisfingspedfiufima
dngleopcochAlISEkdefimminxespomtodw
PAUSE cpcodc, transmission cfpackets is when matador
(fisnhleddepcnangonmeammmlnamfitype
mechanism'lhnsfihisfuntmgflmmodedoesnotdependon
meshamdmedigcdflsiandctedwchniqmofmcclassic
CSMAICDptaoeols.

Aflthcgroposed standardsinmefithernet fnmflybnsio
ally use the standard 8023/5111unet frame taunt, eon-
immediate 802.2 logical link annual layer inlaface, and
the 802 ftmctional requimncnt document with the possible
exoepn‘on of Hamming distance. Also, 11:: minimal: and
mafimnmframsizeas spedfledbytheamentSOlS
standardandbythehalfu-fullduplexoperauonalmoduis
difimmmmehighcmwsmdmdsmngmehmandfim
duplexembodimentsofthe IDOMegahfipusemndand
Gignbit per second Ethernet sunduds n'eufien refuredto

10

15

35

55

6S

8

as CSMAICD protocols, evm though they may not 5!
completely within the classic CSMA/CD definition.

FfG. 3 is a simplified block diigtam of a single node in
the network switch according to the pmsent invention. The
node consists of an integrated circuit 200 comprising ports
201-1, 201—2, . . . EDI-X. Each pmincludes the frame buffer
and port management logic normally associated with stan-
dxdlnidges.Also. conpledtoewh niflsepansfis amedinm
access conned MAC umzoz-l. 201-2. . . . 201x. The MAC
units and m 202-): are coupled to medium independent
interfaces M]! 2034, 2032, . . . 20$X.

IntheembodimcntofHG.3.cadz<imemedium
independent induces is connednd to a connector jack
260-1. m2, EGO—x. The connector jacks confine a stan-
dardconnectm’ to which a cable 270-], 270-2, 270.): is
mynonmdbythem’memblemayoompdscn
mislablefmmedimnindepcndentinletfmbasedon
ssifldamctribbonublesfotwidudmmsw.Avuidy
ofmermnicaljackoonfigmnfionsmnbeusedasknownin
IhemFmexmplsmoaxialsmbseanbemonntedon
mama drmflboatdsaijaocntcwhpatofmeimcgnmd
ctcdm.Ashutoonxinlmh1cisthenconnededfmmsmb—
mmbfnadammngethoplwafityofianchufi!
chipsinammhlhflufilsflsepaxfiuflxinsmlafimmso,
mdudfibbonoonnwtcrjmksmbcwfacemamwdon
printed wiringbouds ndjacentto the integrated mime
ribbanublammnnectedintothcfibbonconmjacksinordatocsublishlhc interconnection.

maltamfives,eadzofflm swinchuismoumedona
daughmbordwl’flljacksdsignedtobeoonuecxedma
mdhabudinwhidlflwdalaismnedamdingmflae
needs cf thepuficnlr “Mon. In altamtivc sysnnms,
theimhMlflnonghMXmmindMandlhn
medinmlndnpemlent intedwmmnedindne
widngbondinahud-wdredmnfigmnfiomdesignedfara

Medinmindmendemlnmfacesfllowfmmmmnnimnon
byumofmeijMImMXudubhsflO-lm
27$};uolhuwisqdirediywiflmfllaMACuniuonm
”www.crwphysiealkyadefimfa
Monmndnflommnnimfionmndhfircxmsplc,
mm2051inFIG.2ismnmdnddirecfiytoapodon
mmmmmmmmmzmmazis

conneaedtoaphyaiullayudevioe’u-Hapmzmgh
jackm.mphysindlnyerdcviee2fiismnmcmdma
physicalmnnissionmdimmmflnmbeing
ufifimdfieMflMXinFIG.2isooup1eddirecflyto
anodxcrchipwidlinlhcswitdamb.

Aceoxdingto one embowfiment oftbopmsent invention,
integweddmntmincludesamemoryinterfmemfcr
eonneajondirwtlytoanmunalmmy.m¢asakm
mammdmmmcmynmmm.m
RDRAMWisutifizedmmmemwhrouteuuew.
mdfafiamcbnflmzzlnfilizeddm‘jngthemnfingof
frumsdmnghmenode.

MWumimeofmeinmgramdckufitMm
ukconnmietyoffotmatslnonep'efmedcmbodhnent,
thcintcmalardtitncmreisbasedonamndardblsamhi-
technespuifiedfmopenfionatlfiigahitpaseoond,“
highet.1nono exampk,164hix-widc1n52flopetafingat
100 Megahm is used, ll‘m’icfing 6.4 Gigabias pa second as
athuxeflnalmaximnmfimah’gbadauratumachlw-
ablewithfamdnch.1‘hemmeddmmofflfi.3
includesbusflflwhidxisoonneaedwamemoryubim
unilzll.ArbitdruniIZ’ll connectsmebuszlitoaCPU
pmccssoerz malignancmmzulsm

EX 1017 Page 201

.. 0
5,802,054

9 10
to execute Che route logic for dle node. Each of the switch Icut-recendy-used techniques far the plll:pOseS of finding
ports 201-1 to 201-X is coupled to the bus 210, and thereby locations for new entries. Other control fields (not shown)
through the arbiter 211 to the CPU 212 and the memory include a field for storing a count of the number of packets
interface 206. Also, :flow detect logic 215 is coupled to the forwarded by the node using this route, a drop.lkecp field to
bus 210 for the purpose: of monitoring the frame received in s indicam packets that will be dropped during ovcrllow
the node to detect :flows, and to generate idc:otifying tags fa.- conditions, a priority "high/low" field for quality of service
the pw:pose of accessing the switch route table in thc algorltluns, and additional fields rcsc:cved for future use, to
RDRAM 207. The arbiter 211 provides fa.- arbitratioo be defined according to a particular embodiment.
amongst the ports, the flow detect logk:, thc memory, and the The frame bulfer 221 is preferably large enough to hold
CPU for access to the bus, and other management necessary 10 sevc:ra1 frames of the standard LAN foonat. Thus. a standard
to accomplish the high speed transfer data from. the ports to Ethernet fnunc may comprise 1500 bytes. Preferably, the
the frame buffers and back out the port. frame bulfer 221 is large enough t.o hold at least one ftame

A rcpmsentadve location 2St of the switch route table is foe eadl of the ports on the flow switch.
shown. The location 2Sf includes a field 251 for the idcn- The flow switch 208 includes more than 2 ports, and
tifying t.ag a field 252 for the route header: a field 253 for IS prcf erably 4 oc mare ports. All the ports m:c either connected
a block-wililock control bit, and a field 254 or fields far through tbe media independent interfaces 203-1 through
infonnatioo used io the management of the route table, such 203-X directly to other chips in the mesh. Cl:' to physic.al
as the age of the enay. The rag field 251 may be a.uoclated lay~ devices for connection to extc:mal communication
with a location by one or more of using the tag or a portion media.
of the tag in the address, by storing all or part of the adUAI. 20 The router or other management node fCl:' the switdl may
t.ag data in the addressed location, or by using other IDCDlOlY ccmmmnicate with each of the nodes 200 using well-known
t.ag techniques. management potocols, sudl 1111 SNMP (simple netwcrk

The route header in the prdmed cmboctimeDl consists d. management protocol), enhancements of SNMP, or the like.
a sequence of route ~. The first :field in a route byte Thus, the R;DRAM 2f7 associated with each node also
includes infcnnadon identifying I dm:ction, which m:re- 25 itoml statistics and control data used by the management
sponds to a particular port on the node, and a second field in process in ~otrolling the switch node.
the byte includes a count indicltlng the number of steps Although m FIG. 3, the RDRAM 2f11 is shown off the
through the swit.dt from node to node whidl shoold be dlip 20t, alte:rnltive embodiments incoq,oratc memo,.y into
cxeam:d in the direction indicated by Che first field. FIX the switch intcgnu:d circ:uit 20t, for DMXC integrated design,
cu:mple, an eight bit route byte in a switdl having nodes 30 smaller footprint for the switch, and other classic purposes
wilh four ports, includes a two bit dm:dioo field, and a lilt for higher integration designs.
bi.t OOWJt field, spccffying up to 63 hope in one « four The CPU 212 cxeana lhe node route logic for the node.
ditcd:ions.. A sequcncc of route ~ is used to spcdfy a A simplified flow dlart of. the node route procc4s executed
route through the switch. Thus, the swit.cb roum headerusea by CPU 211 is shown in FIG. 4.
soun:e rooting mcliniqucs within the swit.cb for the pmposes 3S Thc procesa begins with the receipt of the frame on a
d. rn1uaging now frames through the switch. The 11WrCC particular port (step 3M). The CPU first dctcrmines whether
rout.c approach may, for example. in a 4 port node iDclDdc a the &a.me carries a route hcada (step 3tl). This process is
field for hope to right. hops to the left, hope up and hq>s executed in parallel wilh the 1ransfc:mng of the frame being
down. The first field may c:my information indfeating left 4 r=ved to the &a.me bulfcr of the node. Jf tbe frame cmics
heps, followed by a field indicatin.g down 2 bops, followed 40 I route bcadcr. then the CPU opdatca tbe header by dcac-
by a field indicating left one hop to exit the switch. Thus, a :mmliDa the hop count. or otbcrwis.e updating the infOIIDa-
frmul would be transmitted out the left and in the right port tioo to .IIX()UDt for a traversed leg of the route according to
of 3 nodes, in the right and out the down port of.1 node, in the particu1u switch route tcdul.iquc utili7.cd. The CPU
the top and out the down of 1 node, 111.d in the top and out ttansmits the mmc (wilh updated header) on the port
tbe left of the wt node oa the boon4ta:y of the switch. A 45 ideatified by the header (step 382). If at step 301, no switch
stmdud Elhcmct frame format ram over for b:'lnsmission route header wu detected, the now detect logic is accessed
through the network outside the switches. As the size of. the to dd:amine a tag for the frame (step 3t3). The tag is
mesh grows, and the bandwidth bandied by the mesh utiJb:ed by the CPU to acc:ess cnttics in the route table (step
increases, more sophisticated routing tecbniques arc avail- 3N). If a matd1 h found in the route table, then a route
able because of the flexible technology utiliz.ed. For larger so header is generated for the ftame (step 315). Then, the
switches.. mm:e than one route exists forD'IIJlllell ellfaing ODC header h updated f:d' required), and the frame is transmitted
node and leaving on another oode. Thn11, the switch can be on the pact identified by the data in the table (step 382). If
configured to minimize the lllllUbcr of frames whkh are at step 384, no mntch was found in the route table, tbcu lhe
blocked in passage through the switch, while rntiotaiuing frame is transmitted on a default pact (step 316). An alm'-
optimwn utilization of the bandwidth available through the 55 nadvc tedmique to transmitting the frame on a default pact.
switch. is to add a default route bcadc:r to the fnme, and transmit the

The block-unblock field 253 is used dming the updating frame according to the information in the default route
f:I the switch route table by 1bc host Q>U 212 to block header. ID this manner, subseque,nt nodes in the switch will
routing of frames com:sponding to new enttics., until it is not be required to perform the look-up operation for the
assured dw the first frame in the flow to which the entty 60 purposes of routing the frame. However, it may be desirable
OOJrCSPODds, aaivcs at its destinalion before the node begins to bllve cacb node look: up thc frame in its own route table,
forwarding following frames in the ftow to the desrin#ffon in order to Jnsure that if any node already has data useflll in
using the route header, in order to preserve the order of fotwarding the frame, then that ftame will be fOIWlrded
lllmsmis.sion of the frames. The age field 254 is usedalao by approi;datcly without requiring processing resources of the
the CPU 212 for the purpose of managing the contents of the 6S management process at the default address.
route table. Thus, entries which have not been utilized far a FIG. 5 illustrates the technique executed by the low
oertaiD amount of time are deleted, or used according to detect logk: in generating an identifyi:ng rag fer the frame

EX 1017 Page 202

‘ D

3“

5,802,054
9

toexecuwmemutelogicformemdefiaehofmmm
ports 201-1 mm-Xis coupledtothe bus 210 andflmeby
through the axbiter 211 to the CPU 212 and the memory
1'11me 206. Also,flow dctectlogic 215isooupledtothc
bus 210 for the pmpose of monitoring memmereeeivedin
the nodetodetectfiows,andtogenmte idenn‘fyingtngsfa
the pmpose of accessing the wild: route table in the
RDRAM 207. The claim 21! provides for arbitration
amongstfize ports, the flow detect logic, themy,and the
CPUfor accesstothebusand other management necessary
maceomplishmehighspeedmsferdmfmmmemm
thefmnebulfetsnndbeckomthepon.

Arqxtewnwive loeafionEOoftheswitdtmubleis
showm'l‘helocntion 250 indudcsafield 2.51 fmflteiden—
tifyingtag,afield2§2fmflzcmmehuder,afldd253fm
a block-unblock control bit, and a field 254 or fields for
infoxmnflonusodinthemanngementofthcronte table, such
asmeageofmeenuy.neugfleld251maybesssodated
witnalomuonbyonewmoreofusingthetegorsponion
otdtetaginthesddresgbysmdnganupmofmemal
tegdntninthcaddrusedlocsfion,m-bynslngodtermemy
tagtedmiqucs.

Themteheadwinmeprefuredembodimemeonsimd
ascqueneeofrmtebytcsfi‘hcfimfieldinemttebym
includes infatuation identifying a direction, which ane-
spondswnpafiwhrportonmenode,mdaseemdfieldin
mebyteincludeseooomindiolfingthenmba‘ofsteps
Mougttheswitmmmnodetonodewltichshouldbe
memtcdinflmdixedionindiatedbythefirstfiddl’or
aantplqmeightbltmutebytcinlswitdthnvingnm
wflhfompmtsdndudesnwohfidimcfionfieldundlsk
firmfieuspeclfyingupwfl hops incantation:
WAsequenceofmmebfiuisnaedwspedfya
mmefln‘oughdteswiwfins,meswfichmmhendauses
mermfingwdmiquuwflhinflzeswfichfmflnpnpom
cfmanngingflowfi’amesthroughthcsfitdn'x'hem
mmespiroodtmy,foreumple.ins4patnodelnelndea
fieldfmhapsmdghnhopsmduemnopsupmdlmps
downfil‘hefirstfieldnnymylnfamfionindicefingkR4
hops, followed by a field indicating down 2 hops, followed
bytficldinfiafinglefionehoptncxittiwswitdtflhma
filmewouldbetrmsmiuedoutmelefiandinthexigmpm
d3nodel,lndtetightnndotnthedownpmoflnode,in
mummdmnmedownoflnodqmdlnthetopmdom

25

10
lust-recently—used techniques for the pmposes of finding
locations for new entries Other court-o! fields (not shown)
include a field for stating a count of the number ofpackets
forwarded by the node using this route, a drop/keep field to

5 indicate packets that will be dropped during overflow
conditions. a priority “high/low” field for quality of service
algodtlnns, and additional fields named for future use. to
be defined aceetding to a particular embodiment.

The frame bufi‘cr 22] is preferably large enough to hold
m semnlfmncsofthc standudLANformsL'l‘hus,a standard

Ethernet frame may comprise 1500 bytes. Min-ably, the
fiamcbufl’erzzlislaxgeenwghtcholdatleastonefnme
forendaofthepoxtsontheflow switch.

Thcfluw switchmmcludcs mothnnzpcrts,and
prefaably4ormos‘cpotts.Alllhepa'ts are cithctconnectcd
through the media indcpcndent interfaces 203-1 through
203—X directly to otha chips in thc mesh, (r to physical
layer devices for connection to enamel communication
media.

15

20 Themutcmrothermamgcmentnodefa-theswiuitmay
communiulc with each of the nodes 209 using well-known
management protocols, such as SNMP (simple network
mumxmmofsm, armelike.
nonmeRDRAMWassodatedwitheeehnodealso
chsmdconlmldatnusedbymemmgement
moccasin controllingme switch node.

Hmonghinfifi.3,meRDRAM2Misshownofithc
dfipm,almnntiveemhodimenmincuporntcmemyinw
theswitchintegmcdcimfitmjcnmeintcgneddcsign,

30 smaller foam-int for the switdl. and our: classic ptnposes
fu'highaintemflondesigm.

mmzuexcwtesthenodemlogicfotthenode.
Asimplifiedfiowdmtofthenodemumpmmsmted
byG’UleisshowninFlG-A.

35 nowheginswimfltemcdptofthsfiameone
mapm(mpw).mmmmmm
memwrieaarwtehcadumepatll'l‘hismssis
Winpmflelmmemsfun‘ngofmefinmebeing
madvedwflmfimbufiaoflhenakaflxefi-munics

40 ammhcndu‘Ahen'flteCPUqfimfiuhcmhydme-
menflngmehopcounnorodtawlseupdafingthcinfoma-
flunwucountftramvusedlegofthemteaoctrdingto
mmmmwmmmmmmm
transmit: thefnmemithupdn’cedheula) on thcport

meld’tofmchumdcmmcbmndxyofhcswiflA 4s idmflfledbyfltehmder(stcp302).fl‘ltxtcpul,noswitdx
mmafimfmmcvetfmmmssion
throughthenetwotkoutsldemeswitchesmmedzeddte
ml: gxows,andthemwidmb¢ndledbyflaemcih
W,mesopfimwedmnfingtedmiqtesxem-
table because of the {lexible tedxnologymflized. Forums:
MMWMOmmefismfmfiameMngme
nodelndleavingonlnothumdanusfizcswitdlmbe
configured to minimize the number of flames whid: Ire
liockedhtpasagedtmndtthenfifinwhflemfinnining
opfimnmufilinfion of the bandwidth nvaileblethroughme
switch.

The block-unblock field 253% useddmingthe updating
ofthe switchrometable bythehoet CPUZIZtobloct
routingoffnmcscotrupomfingtoncw thutfilitls
assureddatthefimfrmeintheflowmwlfidnheentry
mphndgafivannsdafimfimbefmthoncdebegim
forwarding following fizmcsin the flowto the desfimfion
usingthemutcheadminadcttopmsetvcmemduof
mnfisfibndficfimmagefleldMismdmaby
memmfotmepmposeofmgingmewnmmsofme
malleable. Thus. entries which havenotbeen utilization
oertainamauntoffimezedelMorusedaccmdingm

mehudawasdeteaedtheflowdetcaloficis accessed
todaunfineutngfotthefmms(stq1303).Thetngis
Wbymemwmswminmemmteblflstep
“Eamhfonndinmetmuuethenamute

amuletisgcnudodfcmcfinmcfinpmmflm
Misapdamdflmnnmmmefizmekmnmned
oumcpatidentificdbythcdsuinflxetablc (mount
ststepflimommchwufoundinmemtneuhlemtmme
fimlsmsminedonsdefaultpm(mp306).l\nmet-

55 nativeteclnniquetokansmltfingthefi-amonadefmltpcrt.
iswwdadeflunmmehuduwmemmqmdmsmfime
franc wounding to the infatuation in the default mute
headenlnfifismmna,subseqnentnodaintheswltdtwfll
nctbcrcquhcdtopuformmelook-upopa‘sdon forthe

so puposesdrwfingmefiamflowevcmtmybedefimhle
tobnveeschnodelookupthefnmeinitsownmfletahle,
inudettoinmthatifmymdemdyhusdauusefulin
fmwudingthcfimfitenmxfiamewmbefmded
We» “dandreqlfiringpmcess‘ngmumesofthc

55 mmgmentptmutthedefeuluddmss.

FIG Sillustraresthctechniqueexecutedbythefiow
detect loggingcmsfingmidenfifimgugfwwefiw

EX 1017 Page 202

11

A
t._;)

5,802,054

0

12
being xeccivcd. FIG. S includes the format of a standard The address degencncy problem of the bash coding
Ethernet (8023) style frame 400. The frame includes a start technique is reduced by irocessing the initial address frag-
of frame deliminator SOF in field 401. A destination address ment through a polynomial shift register. This translates the
is carried in field 402. A source address is carried in field initial address to a unifannly-distributed random number. A
403, and miscellaneous conttol infmnation is cmied in 5 typical example of random number generation is the CRC
additional fields 414. A network layer header, such as an algorithm mentioned above. In a prefCJred bashing
Internet protocol header in this example, is found in field technique, the hardware on the flow switch includes at least
485. Other style network layer beadas could be used a template register, pseudo-random number generation logic
depending on the particular frame format. The data field of and a pseudo-random result registe& The template register is
variable length is found at section 406 of the frame. The end 10 loaded to specify bytes of a subject frame to be included in
of the frame includes a CRC-type checksum field 407 and an the bash code. The template specifies all irotocol--OepCDdent
end-of-frame de~ 408. The flow detect logic runs a fields for a particular }rotOCOL The fields are not distin-
CRC-type bash alg<rithm over selected fields in the control guished beyond whether they are included in the hash or not.
header of the frame to generate a pseudo-nndom tag. Thus, As the frame is irocessed, each byte of the initial b.eadc:r is
the field 410, ~e ft~ 411, the fidd 412, and the field 413 either included in the hash function or it is ignored, based on
arcsclcctedfor10put10toaCRCbashgeacrator414.'lbetag 15 ._ __ ,. fun • .
generated by the hash generator 414 is supplied on line 415 !he ~late. A uaou Ction IS generated based on the
for use in accessing the route table 416. Toe route table mcommg packet and the template. The p~udo-nndom.
either supplies a route header on line 417, or indicates a miss number generator is seeded by the inp~~ bi~ selected by
on line 418. In this way, the route management software the tcmpllte.. The cbange of a single bit m the iDpllt stream
ex:ecutcd by the CPU can make the apprqniate decisions. 20 shwld cause a complctcly unrelat.ed random number to be

The embodiment of FIG. S sdects a particular set of fields generated. Most co~n algorithms f~ generating pseud_o-
within the frame for the purpose of generating the pseudo- random numbers U'C linear-congruential, and polynomial
random tag. Toe particular set of fields is selected to shift methods known ~ the art _Of course, other pseudo-
ocuespond to one standard frame format encountered in the random number generation techniques are available.
network. However, a variety of frame formall may be 25 A fint field of the pseudo-nndom number is used as an
transmitted within a single Ethernet style of netwOJk, address for the loot-up table. The number of bits in this field
although in this example, a CRC-type bash gemntor is depends on the dimensiom of the loot-up table. For
utilized, relying on typical CRC-type algorithms, ref med to example, if the circuit table bu 64,000 possible eatcies, and
as polynomial arithmetic, modulo ll This type of arithmetic the huh number is eight bytes long, the first two bytes arc
is also referred to as "binary arithmetic with no cmy" <r 30 used as an address. The other six bytc1 are stcxed as a key
serial shift exclusive-OR feedback. However, a variety of in the hash table.. If the key in the bash table matches the key
pseudo-random number generation techniques can be in the hash code, then the circuit is i.dentifi.ed.. The additional
utilized, other than CRC-likc algodthml. The two pr:imuy bytes in the table for the addrcascd entry specify lhe route to
aspects needed for a suilablc pseudo-random bub code are be applied. The length of the pseudo-random hash code is
width and chaos, where widlb is the number of bits in the 35 critical, to acaiunt for the probability that two unrelat.ed
bash code, whic:h is aitica1 to prevent eaars caused by the frames will result in the IIIDlC bub number being generated.
occurrcncc of packds which arc unrcutcd but noncthelels 'lberequired length depmds on the size of the routing tables.
result in the same hash being generated, and chaos is based and the rate '1 turnover of routes.
on the ability to }rOdncc a number in the bash register that The problem with a pure bub code circuit identification
is Ullll:lated to previous values. 40 technique ia that there is a chance of randomly misrouting a

Also, according to the ircscnt invention, the parsing of pacht. The problem.arises when you me generating random
the frames incoming for the purposes of }rO(lucing an numbers rut of a llJgc:r set. There is a chance that two
address to the loot-up table can Ill£ oditr approaches. This di1fercnt input pattcru wm i;roducc the same hash code.
parsing can be xefem,d to as circuit identification, becaUJc it Typically, a hash code wfil be loaded into a table with a
is intended to gemntc a number that is unique to the 4S known route. Then a second, dJlferent, packet will appear
particular path of the incoming frame. th.It reduces to the same bash code u the one already in the

Toe ciralit identification method dqlends on verifying • table. The second packet will be falady identified as having
match on specific fields of numben in the incoming frame. a known route, and will be sent to the wrong address. The
There lll'C two common table loot-up methods, rcfem:d to as exact IJll'ffl•nism of this mor can be undcntood by the
binary search and hash coding. The key char&c:tcris1ic of so wcll-lcnown statistics of the "biithday problem."' The "birtb-
binary search is that the time to locate an cnlly is prq,or- day problem" answcn the question, "'What is the probability
tional to the log base 2 of the number of entries in the table. th.It two people in a group will have the same birthday?" It
This loot-up time is independent cL the number of bils iD the turns out that the number of people iD a group xequired foc
comparison, and the time to locate a number is relatively there to be a likelihood of two people having the same
}rOCiscly known. ss birthday is quite small F<r example, there is a 50% chance

A second, lllU'C p:cfencd, method of loot-up is based on that two people out of a group of 23 will have the same
hash coding. In this tccbnique, a subset '1 address field <r birthday.
other control fields cL the frame are used as a short address The problbility of a switching mor depends on the
to loot. into the ciralit table. If the dn:uit table contains a number of circuits active. For example, if there are no
match to the rest of the address field, then the ciraJit has ro circuits active, then there is no chance that an invalid cirroit
been found. If the table contains a null value, then the will be confused with another circuit, since there arc no valid
address is known not to exist in the table. The hash method circuits.At. each circuit is added to the table, it decreases the
bu several disadvantages. n requires I mostly empty table remaining available space for other numbers by approxi-
to be eflicicnt. The time to find a circuit cannot be guann- mately ('I£/-, where "bits" is the nlllllbca' of bits in the hash
teed. Toe distribution of duplicates may not be unifODD, 65 code. If the hash code is 32 bits long, then each entry into
depending on the details of which fields arc selected foc the the circuit table will reduce the remaining code spaa: by
initial address generation. (Yz)3~, which is equal to 232><10-10• The cumulative prob-

EX 1017 Page 203

' D 0

5,802,054
11

being received. FIG. 5 includes the format of a standard
Ethernet (8023) style frame 400. The frame includes a start
of frame deliminatnr SOF in field 401.A destination address
is carried in field 402. A source address is earn-led in field
403, and miscellaneous control information is carried in
additional fields 404. A network layer header, such as an
Internet protocol header in this example, is found in field
405. Other style network layer headers could be used
depending on the particular frame format. The data field of
variable length is found at section 406 ofthe frame. The end
of the frame includes aCRC-type checksumfield407 andan
end-of-frame deliminator 408. The flow detect logic runs a
CRthpe hash alga-hum over selected fields in the control
header of the frame to generate a pseudo-random tag. This.
file field 410. the field 411, the field 412. and the field 413
u'eselectedforinputintoaCRChashgenerator414.’lhetag
generated by the hash generic: 414 is supplied on line 415
for use in accessing the route table 416. The route table
eithu supplies aroute heada’ on line 417, crindimtes amiss
on line 418. In this way, the route management software
exeenedbytheCPUcanmaketheapp'opriatededsions.

'l'heembodimentofFlG.Sselectsaparticularsetoffields
withintbefi-amefortbe pinposeofgenmfingthepsendo-
mndomtngT‘hepartiuflarsetoffieldsisselecledm
eurespondtoone standardframeformat enoountaedin the
network. Howeva', a variety of frame formal: may be
transmitted within a single Ediernet style of network,
although in this example, a CRC-type bash genera!!! is
nfilized,relyi.ng on tyln'eal CRC—type algu'itbms,refuredto
aspolynonnalariflimedemoduloILThistypecfadmmedc
isalaorefaredtoas‘binaryar-itlrmetiewlthnoeanfc
serial shifi urelusive-OR feedback. waa, a variety of
pseudo-random number generation techniques an be
utilized, other than CRC-like algorithms. The two pinnry
aspects neededfcrasuitablepseudo-randomhaahoorbare
widfimddnos,wherewiddrismennmberofbiflinthe
bashcodewhidiiaaifiealtopreventmeausedbythe
oeennenceofpacketswhld: arennrdatedbutnonethelesa
resultinthe samehashbeinggenrrated,anddnosisbased
onlheabflitytop’odnoeanumberlndrehashregisterflnt
is unrelated to previous values.

Also. accordingmdiepresentimvenfion, thepars‘ingof
thefi'amestomingforthepnposesofp'odndngan
addresstodlelook-uptablemntakeothn’appmudiesfllhls
parsingunbereferredmaseireuitidentifleaflonbeeauaeit
isintendedtogenarateannmba'dmisuniqnetothe
partiadarpatb ofthe incoming flame.

'I'heciruritidentification methoddepends onverifying a
matdxonspecificfieldsofnumbersintbeincomingfnme.
Thine aretwo common table look-upmedrods,referredtoas
binnysearehmdhasheoding'lhekeydmaeteiaticof
binary seardiismaturefimetoloeateanentryispropor-
ticnaltotbelogbaseZofthe numberofentriesinthetable.
Thislouk-upfimeisindependentcfdrenmnbaofbilsinthe
comparison, andthefime toloeate a numberisrelaflvely
precisely known.

A swond, me prefmed, method of look-up is based on
hash coding. Inthistedmique, asubset ofaddresifieldu‘
otherwntrolfieldsofdrefiameareusedasashortaddress
tolooktnto theeiruiittnble. Ifthecircuittable containsa
matehtotherestoftheaddressfield,tbenthedrcuithas
beenfolmd. Hbenbleeonninsanullvaluenhendre
addresaisknownnottoexistindretable'l‘hebashmethod
has several disadvantages. It requires a mostly unpty table
tobe elfirn'enLThe timetofindaclrcuitmnnotbeguaran-
teed. The disn'itution of duplicates may not be uniform,
depending on the details of which fields me selected fit the
initial adrh'ess generation.

10

15

45

55

12
The address degenu'acy problem of the hash coding

technique is reduced by Focusing the initial address frag-
ment through a polynomial shifi regista'. This translates the
initial addresstoaunifcrmly—dish'ibmed random numbeeA
typieal example of random number generation is the CRC
algorithm mentioned above. In a preferred hashing
technique, the hardware on the flow switdrincludes at least
a template register, pseudo-random number generation logic
and a pseudo-random result register The template register is
loadedtospedfybytesofasubjectframetobeincludedin
the hash codeThe template specifies aflp’otocol—dqacndent
fieldsforaparficularlxotocol'l‘hefieldsuenotdisfin-
guishedbeyondwhethet dreyareineludedlnthehashornot
Asthefiameiaproeessedeambyteoftheinifialheaderis
eithaindndedinmehashfimefionoritisignmedbasedon
the template. A bash fundion is generated based on the
incoming packet and the template. The pseudo-random
numbergenmtorisseededbymeinputhashbitssdectedby
themplate'l‘hecbangeofasinglebisinflreinpmm
should cause a completely unrelatedrandom lumber to be
gene‘ated. Most commonalgou'tbmsfnr generating pseudo-
nndom numbers are linear-congruenfial, and polynomial
shifimethodaknowninlheart. Ofeourse,otherpseudo—
random number g-erllion techniques are available.

Afirstfieldofthepseudo—randomnumbaisusedasan
nddressfca'thelook-uptable. Thenumberofbltsinlhisfield
depends on the dimensions of the look-up table. For
exampleif the charitable 13864300 possible entries, and
thehuhnnmbaiseightbyteslongdxefimtwobyterare
nsedasanaddrese'l‘heothcrsixbyteaarestuedasakey
indxehashublelifliekeyindiehashtablematdrerthekey
indnhshmdethenfllcdrufitisidenfified'rheaddflional
bytesindretableftxtheaddtessedentryspecifythemuteto
beamlied'l‘helengthofthepsendo—randomhasheodeis
aifleaLtoaocountforthelxobalflitydiattwoumelated
fizmeswfllresultlnfliesamehaahnnmbu'beinggenerated.
Thereqlfiredlengthdepmdsondxeaizeoffllerwfingtables,
andtherateofturnoverofroutes.

'I‘hepmblemwifiiapurehaaheodedrcuitidenlifieation
Indmiqueiadnlfliaelaaehaneeofrandomlymisrontinga
pan'l‘helnoblemarlmwbenymaregenuafingnndom
numbaaartofalargu'aeLTbereisadaneethattwo
din’erenrinplnpamswfllp-oaioemesamehashcode.
’l‘ypieally,ahaahcodewillbeloadedintoatablewitha
knownmmnuaseconddifl'aennpmwfll appear
thatreducertethesamehasheodeaatheonealreadylndie
table'l‘hesecondpaeketwfllbefalaely ldentifiedashaving
alrnownroute,andwillbesenttothewrongaddress.'l‘he
exactmeohanismofthiameunbenndflstoodbydte
well-knownatatisficaof the ‘Hflhdayproblem.’ 'l‘he“hirtb-
dayproblem”answmfl1equestion,“Wbatisthepmbabiliry
thntwopeopleinamnpwmhavetheumebirthdayrn
hrrnnontthatmennmbuofperpleinagmnprequiredfor
thaetobealikelihoodoftwopeogiehavingmesame
birdldlyisquhemaflFctexample,daereisa50%drmce
thattwopeople outofagrwpofflwillhavemesame
birthday.

The probability of a swuelu''ng error depends on the
number of drcuits active. For example. if there are no
druritaufivemenmaeisnednncemataninvalidcirwit
wmbewnfinedndthamduchcumsincemerearenovalid
eircuits.Asudrdrudtlsaddedwdretable.irdeaeasesme
remaining available Space for other numbers by approxi-
matdy(%)’".whfle”bits"ismenumbaofbflsinthehash
comnmehashOOdCiSSZbitslongfiheneaehentryimo
the dralittablewillmdrne Ihemmainingcode spam by
0‘2)”. which is equal to 232x10"°. The cumulative prob-

EX 1017 Page 203

'') 0

5,802,054
13

ability of not making an c:m,r in the circuit table is equal to
lhe product of the individual entry emn ~ to the size of the
table. This is (1)*(1~ 32)•(1~ 32)•(1-3/23) ..• •(1-n/232).
where D is the number of entries in the table. In the case of
a 32-bit hash code, and an 8,~ntry circuit table, the ,
probability of making an en-or in the table would be about
O. 7%. With a 64,000-cnlry circuit table, the probability of an
error would be about 39%.

Using a 32-bit bash code and some typical-sized ciratlt
tables indicates that the conventional wisdom is correct 10

That is, there will be routing c:aors if only a 32-bit bash code
is used However, if the number of bits in the bash code is
increased and irobebllity is rcca1cu1atcd for typical-sized
circuit tables, we find that the probability of Ciror quickly
approaches zero for bash codes just slightly longer than 32 1.5
bits. For c:umple, an 8,000-entty table with a 40-bit hash
code will reduce the error rate to 0.003%. A 48-bit hash code
will reduce the aror to 0.000012%. These calculadoos show
that a pure hash code look-up table can be used if the length
of the hash code is longer than 32 bit, for typical-size tables. 20

Example for IP:

Preamble 64 bit& ""' diocarded
Destinatioo bytea 1-6
Soun:e bytea 7-12
Pacbt typo bytea 13-14
bfle IS: IP byte 1
bytc 16: IP byte 2
17-18: IP 3--4
19-22: IP~
23 IP9
24 IP 10
2S-26 IP 11-12
27-30 IP 13-16
31-34 IP 17-20
3S- IP 21-

14

optioml
optioml
Ignore (802.3 length)
= wrsion length = optiomJ
= sorvice type = lgoom
= lcogth = Jinme
= Ignore
= TIL = optional
= Pltm = op6oml
= Rm cbksum = Jama'c
= Somce IP~= Used
= Deslinmco IP odm... = Uood
= r,oorc

Assume that optional fields arc included in the pseudo-
random hash code.

The tcmpiatc would then be: FF-Fl-0~03 FC-~00
The sclcct(r is: Bytes 13-15=080045, Hicrarchy=2
Example for IPX in an Ethernet frame:

M a further ex.ample, consider the case of a 64-bit hash
code. Assuming an 8,000-entry table, lhe probability of
making an cacr is 2•10-u. Even if the table is complctcly Plamble 64 bib.., diacndod

replaced with new enttics every 24 hours, it would take over Deaimlim bJa 1~

one billion years for an eaar to ocair. Using a 64-bit hash 25 ~ = ~;_~4
code with a 64,000-entry table would give a probability of bJto IPX = of 10- 10• Assuming the table tumcd over every day, it lS-16 1-2 Cbcc:bm, Jpo,e
would take about 28 million years for an cacr to occur. An 11-11 3--4 Lmath Jpo,e

mor might occur sooner, but the rate would be ncgligL"blc. : ! Hep eoms Opcioml
In all cues, there is no iealistic chance of mating an mer 30

21-24 1-10 ~ Net ~ (SelDctar =
2

or
4
>

based on this routing tcdmique within the lifetime of typical 2S-30 11-16 Deat llmt Uoe
networking equipment. 31-32 17-1& Delt Soctd Jpn

33-36 1~22 Src Net u.
In a prcfc:m,d embodiment, filtaing mechanisms are 37-42 23-21 Src Holt Ua

implemented OD the flow switch integrated dn:u:it, and 35 43- 29- 1-
multiple filta's operate in parallel. The circuit look-up table '1empla (wilb oplioa,l lieldo): FP-R:-31'-PC FP-CO-OO-OO
is implcmcuted with e:xtcmalmcmory mucli luger than the Seleclar: n,- 13-14 =1137,HicrUl:hJ .. 2

number of circuits cxpcctcd to be simultaneously active.
This means that lhc bash pointer gcncratcd either points to The examples shown arc rcprcscntative, and may not
a valid key or a miss is assumed. There is no linear search '40 COIICSpOlld to what would aC1Dllly be required foc any
for :matdling key. When a circuit is not fwnd in the table, particubr applicatlon. There are many prcxocol pattern pos-
thc packet is routed to a default adtkcss. Ncmwly, thu sibillties. Some combinations may not be resolvable with the
dcfault address directs the packet ro a stored irogram roota. hicnrdiy dcsaibcd in these thiee cumpleL
The router will then parse the packet using standard In the embodiment in which there are a number of filters
methods. and then commuuic:atc with the low switch c::irmit operating in pmlld, the low dcted logic includes the
to update the c::iraiit table with the coaect entry. All subao-

45 ~ register dhlmsscd ~c, a seco~ register loaded
quent packets are directly routed by the switch clement with • template for dctec:ting the spcc:iftc protocol type
without further assistance from the router. r~ by the ~ :register. ~ feeds «;<>mhina-

• tioaal logic that P'()Vldes a boolean function, ICIUmiD.g a true
Example template organizations for the bridging a: falae condition based on a string compare of a section of

embodiment, the IP routing embodiment, and the 1PX rout- so the frame to determine the protooaL A tmrdregistcr is loaded
ing embodiment are set forth below. with a luaan:hy number, which is used to arbilratc among

Example for lndging: similar protocols, whicb might simultaneously appear to be
true based Oil the second protoool detect register. A fourth

:e..c clbomDt pocbl:
~
~
Pacb:I 'l)p,: Dlla..,....,
CJIC:

Pnm,blo, 64 bill ce dilCllldod
l>J'lol l-6 Uood
l>J'lol 7-U Uood
l>J'lol 13-14 ue ipcnd (lm,3 lelJ&1h)
" .. (0 - iporod JMt 4 bJ1ol ... iporod

register is optional, and contains a mcmocy start address
ss which triggers the operation of the filter.

The IIIDhiple instantiations of the filters operate in panl
lcl. The filters can be reprogrammed on the fly to support the
exact types of traffic encountered. Furthermore, the filters
may oi-afc in a pipeline mode along a series of switching

------------------ ro nodes. Bacbprotocolrctums its hicnn:by DlllDNZ wben that
• • • • filter detects the protocol pattern coouined in the template.

The temphte :n:giSttr 1S 8 bytes long. Each bit speci1ics For example, bridging protocol may be defined as true for
one byte. of the header. The fust bit ccm:sponds to byte I of hierarchy 1 for all frames, If no stronger filter fires, such as
the DestioatiollAddrcss. an IP or IPX film', then the bridging filter will be selected as

The template for bridging is FP-FO-to-11 OO-G0-08-80 65 the default.
The sdcctor is: Always TRUE. Hicmchy=,l (default to Thus, the flow detect logic in a preferred system exea.rtes

!ridging) a plurality of bash low analyses in parallel as illustrated by

EX 1017 Page 204

11‘.4;.3 _

..IV we».

4"2“?

»Waist]...
':~st

A.u‘.aw...gm“:..'-

.'.m,Maegan»
-.Run”

mumis.313's

<2mazes-yarn?

- s

5,802,054
13

abflitynfnotmnkinganmrinthecimiitmbleis cqualtu

the product of the individual entry en'cn u!) to the size of thetable. This is (1)'(15a”)*(1%35'(1-3r2’) . . . *(l-n/Zn),
where n is the number of entries in the table. In the case of
a 32—bit hash code, and an 8.000—entry circuit table, the
probability of making an arc: in the table would be about
0.7%. With a 64,000-entry circuit table. the probability of an
error would be about 39%.

Using 1 32-bit hash code and some typical-sized drum
tables indicates that the conventional wisdcnn is conect.
Thatis, there will berotm'ngeimls ifonlyaSZ—bithnsh code
is used. However, if the number of bits in the hash code is
incensed and probability is recalculated for typiml-sizcd
circuit tables, we find the! the probability of en'os quicfly
approaches zero for hash codes just slightly longer than 32
bits. Ft: example, In 8,000—entry table with s 40—bit hash
codewillmdnce the mmteto0.003%.A48—bit hssh code
will reduce the error no 0.000012%. These calmlntions show

diattpurehashoodelook-uptablecsnbeusedifthe length
ofthehsshcodeis longerthsn32 bits ft: typicel-size ables.

Asafunhuexampleconsidfl‘theesseofséat—bithssh
code. Assuming In 8,000-enlry table, the probability of
mskingnnmisZ‘lO'”.Evmifflsetableisoanqsletely
:eplseed with new entries evuy24 helm, itwould take over
onebflliouyesrsformmtoocumUsingséLblthash
wdewimsfiowennymblewouldgivespxobahflityof
moth"°.Assmningthe table un-nedova'evu'y day,it
wuddtakesbeutnminionyemfm'snmtoocamm
mnfightoccmsooner,butthentewotddbenegligible
Insllcues,thueisnosealisticchsuceofmskingma:or
basedonthisroufingtedmiquewithindielifedmeoftypicsl
netwofiingcquipmeut.

In s ptefmed enimdiment, film-Eng mechanisms In:
implementedontheflow switchintcgntchInd
mnllilieflltn‘sopenteinparslleL'l‘heeirwitlook-uptnble
isimplementedwithextamlmemynmchlasgamthe
mnnhesofdreuitsexpectedtobesimulumouslyseflve.
'lhismesnsmstthehashpointergenemedehhcpointsto
avflidkeyorsmissisusmncd'lhaeisnolinesrsesreh
farmstdtingkey.Wheusdeitisnntfmndinthetahle,
diepseketismutedsoadefsnltsddxess.Ncs-mally,this
defaultaddressdirectsdsepsdrcttosmedproyunrwta.
'l‘hetenta'willthenpmethepachetusingsundard

without further assistance from the rum:

Exemple template orgsnlzsflons for the bridging

mbodimengdien’muflng embodiment. sndtheIPXx-out-
ing mhodiment are set firth below.

Examplefcrhudgm‘' g:

hedmetpseht Pie-nbbflhitsmdismcbd
Wu: Intel—6 Used
Saleem W742 Used
Fscht'fi'pc hymn—l4 “M(m3lengfil)
Des-bytes. unposo new
as: hstlbyhs reigned

'l‘hetemphtesegistes'is SbytcslongEechbitspedfies
onebyteof thehesdee'l‘hefirstbitcmespondatobjmlof
the DcsfinslionAddmss.

The template fa- huidging is FF-Fo-Io-Otl 0040-00-00
The selector is: Alwsys TRUE. Hierarchy=l (default to

bridging)

IO

15

SS

14

Example ft: 1?:

Preembleflbiuuedimded
Deetimtim by“: 1—6 apfiom]
Sauce bytes'i—IZ optional
Psebttype bytes 13—14 mam: length)
bytels: leytnl =vnsmleugds=opbonsl
17216: IP‘berZ =sermtype=lpme
l‘I—ll: IP34 =length=lpne
19—22: IP54 =Igncle
B 1P9 =TrL=optbnsl
24 IP10 =Ptm=opfieunl
75—26 JPN-12 =I’ld'ehkam:
27—30 DIS—[6 =SmneelPsthhees=Usni
31—34 I? 17-20 =W11’ Idfiees 2 Dad
35— ll’21— =

Asslnne that optional fields are included in the pseudo-nndom hssh code.

The template would then be: moses Fons-00.00
The seleeur is: Bytes l3—15=080045, Hierarchy=2
Example fa- lPXin an FJhernet frame:

Fumble 64 bits In dissuaded
Denis-tin bytes [—6 Optimal
Some bye: 7-12 Optimal
1y,» bytes 13—14 Opfixnl (Selector = sm)
byb ll’x
15-16 1—2 cum lime
11—1. 3-4 lauds lane
19 5 Rap m Optical
20 6 Type Ops'm-l (Sahetu = 2 or 4)21—14 7—10 Du Net Use
15—30 11-16 Dec nus: Use
31-32 17-1! Du Sock-ct lame
33—36 19-22 St: Not Use
31-42 23-28 St: list Use
43— 8- [me
'llsnpl. (with option-1 fish): PF-PCGF—R: FP-CO-OO-w
Selena: ByblS—l4=lm,flimmhy=2

Themnmlesshownsterepresentsfive, sndmsynot
catapudtowhstwouldsctnsllyberequiredforsny
putiuflsrsppllesdoml‘haeuemsnypsaocolpmempos-
sibillties. Some combinations msy notberesolvshlewith the
hie-My desadhedin diesethseeenmples.

Intheembotfimentinwhidiflau'enesnnmberoffilters
opmfingmpulflithe flowdctcdlog'c includes the
tanplsteregistadismssed shovc.sswond registulosdcd
with-templatefu'dctecfingmespecifieptmocoltype
rqxeseutedbyfltetunphtemgistm'l‘hisfccds combina-
tions! logic map-evidenboolan filmfiomrennningstrue
ct fslse condition based on s string compass: of s section of
thefnmetodctemfineflsepmtocoLAthirdregimislosded
withshiersrchyuumbcnwhidtisusedtoubitntesmong
shnilsrlxotocols,whidimightsim11tsnoously eppurtobe
truebucdonfllcsecondprctncoldetedregimAfomth
regimisopfiomLsndcontainssmemorystmtsddress
whidl triggers theopeutiouofthe filter.

The multiple instantiation: ofthe filters operate inpanl-
lel.1heflltetxunberepmyammedonfl:eflytosupportd1e
and types of trsfiic encountaed. Furniemtae, the film
mayopaateinslipellnemcdeslougssa'ieaofswimhing
uoda.Bachprotocolreunsitshiet-udiynumbawhenthat
tilterdemets daemowcolpmemcontainedinthetunplste.
Forenmple.btidgingpmtooolmybedefinedssu-nefor
hia‘n’ehy l for all flames, If no strongerfiltcr files, such as
snIPu'IPXfiltu‘.fllenflselnidgingfilterwillbeselecbdas
thedcfzull.

Thus, ““3“” deted IOSiCinIprefen'ed system executes
a plurality ofbash flow Analyses inpmllel as illustrated by

EX 1017 Page 204

·,,

L

5,802,054
15 16

FIG. 6. Thus in FIG. 6. a received frame is supplied 011 line individually without any regard to a connection. 'fypically a
SOO in parallel to hash flow logic 1 through bash flow logic router will analyze every single packet as if it had never s~n
N, each flow COIICsponding to a particular frame format it before, even though 1he router might have just processed
Also, the received frame is supplied t.o a bash flow "select" thousands of identical packets. This is obviously a huge
501 which is used f<r selectiog one of the N flows. The s wasce of routing resources. The automation of this flow
output of flows 1 through N are supplied through multi- analysis with multiple levels of parallel and cascaded hash-
plexer 512 in FIG. 6, which is oonlrolled by the output of lhe ing algorithms combined with a default router is believed to
select flow Set. The output of the select flow Set causes be a signiftcant improvement over existing routing methods.
selection of a single flow on line 503, which is used foc Flow based switching is also critical t.o ensuring quality of
accessing the route table by lhe CPU. 10 SttVice guan.ntees foc different cl.asses of traffic.

Thus a preferred embodiment of the present invention FIG. 7 is a flow cha.rt illustrating thc process executed in
uses a routing technique base on flow signatures. Individual the router or other management node, whenever a ftame is
frames of data move from one of the Ethemet ports to a received which docs not have a switch route header. Thus,
shared buffer memory at the node. As the data is being the process of FIG. 7 begins at step 700 where a frame is
moved from the inpit port to the bu1fer, a series of hash 15 received in the router, sudi as the router 150 in FIG. 2. The
codes is computed f<r various sections of the input data rour.c:r applies the multip:otoool routing techniques to dd:er-
strcam. Which bits me er irre not included in each hash mine the destination of thc ftame.. Based ou the destination,
calculation is detennined by a stored vector in a Vect(r and other information about the 11.ows within the switch,
register correspoadfng to that calculation. Por eumpk:, in switch route headers arc gencntcd fir nodes in the switch
the most common case of ID JP pacht. the hash function 20 (step 711). Thus, a diff=t route headm: is generated for
starts at the 96th. bit to fi.o.d the "0800" code follow.Ing the eadJ. node in the switch mesh, and cmrelatcd with the tag
link-layer source address, it then includes the .. 4.5" code, 32 whk:h would be generated according lo the rccci.ved fta.me
bits of JP source, 32 bits of JP destination, skips to protocol at each node. Next, a message is sent to the nodes in the
:iD 8 bits, and tbcu at byte 2t tatca the swree port 16 bits switchtoupdllctheroutetabl.eswiththe newrootehcadcn,
and lhe destination port 16 bits. The result is a 64 bit Ialldom 25 and to block frames which match the tag of the frame being
number identifying this puticu1ar IP flow. routed (b1oclr 712).

The bub code is looked up in or wed to access a local After step 702, the frame h forwarded from the room-lo
mcmocy.lfthecodcillfound,u:mcamtbat1his1!owtypcbas !ti dcsdnatioo (step 7Q). Afta: the frame bas been foc-
bcen anaiymcl p-cviously, and lhc node will know to apply warded to fta destination, the routa: sends a message to all
the SUM routing u applied to lhc rest of the flow. Jf there 30 of the nodes in the switch to unblock: frames which have a
is DO entry axrespooding to this .hulu:odc, ltmeanUhll the matddng tag (mp 784). This blocking and nnblocking
flow hu Dot been seen lafdy, and lhe node will route the protocol is used to pmicrve the order in which frames arc
frame to a default dcstinatiOD. A kast recently used txaoaml.tlx:d through the switch, by making sure that the first
algodtbm,otothcrcacberq,laccmi:ntsc:bmnc,illusedtoagc flame of a single flow arrlves at ia destination ahead of
flow entries oot of the local tables. 35 following framea.

In prldicc, many filters operate sim:oltancouly. For lAlgic in the nodcl fur the purpose of accomplishing the
example. filt.ers may be dcfiJlcd fc.: buic bridg{Jlg. 1P blocking and nnblocking operalion take a variety of for.mats.
routing, sab-vuiantl,Apple Tllk, md so 011. The acmal limit In one ClW'Dple, the Clllry at each looali.on in the route table
to 1he number of filt.ers will be detern:rioed by the available 40 indudel a fi.c1d wbidl lndlcatca whether the flow is bloclcr;d
space on the ASIC. The logf.c of the filt.ers Is basically the c.: not. When an Clllry is :first made in the route table, the
SollDle for all !he filters. The actual fimcd.on of eadJ. filter ii blocting field ill Id. Only after a spcdal instruclion is
defined by a vector regilter spccify:ing whk:h bib arc received to unblock lhe location, is the bkd:mg field
dctccted. cJcared, and use of the locadon allowed at the switch node.

A second ~ is the use cl. mult:1-levd filtcn. Ill the 4S .Ac:cmdi.ngly, in the prcfcm:d system the atomic nctw<rl::
common cue simull:aneoualy siq,pcming bddging, JP. &lid switch ICCU'ding to the pn:ICDt invcation ls based on
JPX; about ten fi1ters operate in parallel. Ao addmoml level repeated use of a simplc4-pcxe switch iDtegnlted ciralit. The
of coding is used to select which of the other Alteri iJ to be integrated dmlifa are interconnected to aeatc a mesh with
used as the xeleYant huh code. This second levdfiltecwould a large pool of bandwidth aaoss many ports, The links that
dctecl whether the flow was IP or 1PX for cumplc. .so inf.l::lrCODncct the intcgra.tcd circuits 1'UD according to a LAN

In the case where lhe Aow is not rccognizcd. it ls passed ~ at preferably 100 megabits per second er higher,
t.o lhc default route. Al. lhe pacet puses along the default such u a gigabit per second. Individual perts act as autooo-
route. additional nodes may examine 1hc pact and ddect mou, routers between the boundarles of lhe switch accord-
its fl.ow type based on di1l'emnt filters or on a diffen,nt set of ing to the switch route protocol which is layered on top of
fl.ow signatures (huh tllble catties) stored. This method of ss the stmdard flame famat. The overall bandwidth of the
cascading fi1ters and tlblcs allows fur 1he total size &lid switch can be arbilrarily iDaeascd by adding more atomic
speed of the mesh to be expanded by adding nodes. nodes to the switch. Using• well-Ulldctstood and simple
Ultimaf.cly, if a pactd can not be routed by any cl. the nodes intei:face based on standad Bthcmet LAN irotoools, vastly
aloog the default route, the packet will mive at the final simpl:lfi.cs the impl.emcntatioo of each node in the switch,
defllllt router, typically a NctBuiklcJ:2. Tue defauh routa: 60 because each is able to rely on well understood MAC logic
will analyze the pamt using &taadatd parsing methods to units and port structures, rather than propi.ctaty complex
dctcnnine its cor.rcct destination. A fl.ow signawre will be systcmS of pd.or atomic LANS. Purthci:more, any node of
i.Dst.allcd in an appropriate node, or nodes, of thc nab so any switch can be CODllCCtcd to a physical layer device that
that subsequent flows of the same slgnatutc can be routed coonedl t.o an Ethernet medium, or can be disconncctcd
autonom<JUsly without further intervention. 6S from the Bthc:met medium ud connected to anothcr node

A flow dfecdvdy de.fines a "circuif' or a "connection"; ~ to readily expand ~ change ~ topology of the
however, in standard Ethernet design, packets arc lrcatcd switch. The fine granularity and scalabiJity of the mesh

EX 1017 Page 205

5,802,054

15

FIG. 6. Thus in FIG. 6, a received frame is supplied on lint:
500 in parallel to hash flow logic 1 through hash flaw logic
N, cad: flow corresponding to a particular frame format,
Also, the received frame is supplied to a bash flow "select"
501 which is used it: sclecu'ng one of the N flows. The
output of flows 1 through N are supplied flunugh amm—
plexcz 502 in FIG. 6, which is controlled by the output of the
selea flow 501. The onipm of the select flow 5“ causes
seleaion of a single flow on line 563, whidl is used for
accessing the route table by the CPU.

Thus 3 Infant! embodinmnt of the prwent invention
uses Hurting technique base on flow signatures. Individual
fimesotdmmovefromoneoftheflhemetportswa
shuedbufiamemoryatthenode.Asthedauisbeing
movedfi’omtheinputpentwflrebutfmnsciesofhzsh
eoduisomnputedfervmous sedionsoftheinputdntn
chhbflsuewmnotindudedithash
mlcnlnfionisdetmnlnedhyasmdvectarinavm
register mumpondlngtofimt calculation. Farexmhin
dmnmstmmmenweofmmpacbgmehnhfnwflon
mmmembittoflndme‘fifim“eodefollowingthe
link-1136 source address, itthen include-me“45"code,32
{itsofIPsom‘mflbflsoflPdesfinatiomsfipnmprotwol
m8bite,endtheuatbyte29tnkesthemeepat16hiu
andthedesfimflonportlfiblts.mresnhisafi4bhnndum
umber identifyingmispuficulrll’flow.

’I‘hehanheodeislmkedupinotusedtomsnloul
maylfflmoodeiafounddzmmsmmisflowtypem
beenmnlymdyevionsly,nndlhemdewfllknnwenxppty
themmfingugfiiedmthemdflmflmn’flzm
knoentryeuuwpundingtoflflshuhmdedtmemthuflw
fiowhasnaheenswnlately,nndfl1enodewfllmuteme
fnmeto ldefufltdcsflmfimAlcastmfly need
dgodmmomaaehcrqnlmntmkueedwnge
flow ennlesemofmelocal tables.

In genuine, my filter-n npmte simuluneonnly. Fer
mnqigfihenmnybedefimdfnrbafichcflgingll’
rmning,snb-vadnnts,AppleTnlhandsoon.'l‘heaemnllimfi
toflnenumberofflltmwlllbedetemfinefibyflmnvnflnble
spnoemtheASICThelngicnfflnefihaslshuhllyflm
smelorallihefilmflheeamlfnndimofemhfikcin

defindbyavedmmfiatexspedffingwbfibflxm
«lama.

Aseeondieameinheuserimnflfievelfiltuatnthe

commas: simultaneouflysuppufingbddgingmnd
mmmmwmmamw
deodingisneedcosdeawhlchoffieomammismbe
mammmmmmmmm
detectwhethaflxeflcwwnsn’orll’xmmle.

hthecmwhaemeflowhndrecognimitispuwd
tome dd’uflt mute.Asmepacketpnsses along the default
meddifionnlnodecmnyenminetheplcketmddm
inflowtypebasedonditfmmfiltusmonufliaenteetcf
flowsignmnesmuhtableenuzlee)stcted.mmethodof
mscadingfiheunndublesmemfmmetonlsinemd
speedofmenwshmbeexpandedbyaddlngnodu.
Ultimatelyjfnpmmcnnnotberomedbynnyofmenodes
nongthe defwkmnm,mepmbtwmnuiveuthefiml
defaukmm,typiaflleetBnfldu2.1hedefeuhm
wfllmflyzeflmpndretusingsmduflparsingmcflmdsto
deternfineitsaneetdeefinxfiomhflowsigmflnewfllbe
installedlnmapprqfintenodc.ornodca,offlmmeshso
thatsubquentfiomofflremsignmnecanbernmed
mtonomwsly without fmflaer Mention.

Allow effectively definesa“dmurit‘wn“wnnecfion”;
howem,instandard Emanetdesiyupmbtsuemwd

10

15

35

45

65

16

individually wilhwt any regard :0 a connection. Wally a
router will analyze every single paclmtas ifit had never seen
it before, even thougr the router might have just processed
thousands of identical packets. This is obviously a huge
waste of routing resumes. The automation of this flow
analysiawhhmulfiple levels of paralleland mended hash-
ing algorithms combined witludcfaultmutaisbelicvedw
beasignifimnt Wevementoverexisflng mnfingmethods.

Flow based switching is also miticaltn ensuing quality of
service guarantee: fa: difierent classeseftraific.

HGJisnflowchmillustnfingmepmcessaemtedin
themmetorotha'mmgcmem node, whenever aframeis
received which 1106110! have a switda route header. Thus,
mep’wessofFIGTbeg'nsnstep100whereafnmis
reoclvedintherouter,mdustherwter150lnFlG.lThe
romaapplies thenflfiprotocolrouflng techniquestndetm
mincthedesdnalioncfmefi'amelsuedonthedestinafion.
and other infmtion fluent the flow: within the switdt,
switchmumehendersxregenemedfmnodesinmemmh
(step 101). Thus, 3 “mm healeris generated for
eadxnodoindreswhdtmeshmdmelntedwfihmug
whlehwouldbcgemtedmdingtomemceivedmme
nuehnodeflmlmessageissemtothcnodeslnme
switchmupdnethemnteubleswithmencwmhndm,
Indtoblockfimwhiehmanirthemgofflrefmmebcing
WW7”).

AthZnhefiameisfm-wndedfrmnmermm
ludaflnation (step703).Afterthetmmbasbeenftx-
wndedmhsdesfinsdnmflwrwtersendsamessagewnfl
ofthenodesintheswitdtmnmlockfiamwhimma
Wagugutepl'mmhlocflngnndunblocfing
protocollausedtopnelervetheminwfichfi'mmm
mmmwmmwwngmmmenm
fimcfasingleflowufimnlt: deetinnfionalmdof
followingfmmen.

Ingleinmenodeiforthepnxposeofweomplistfingme
blocfingmdunblodingopmfionukenvafinyoffmmns.
Inmenmpleuhemuyaudrlmfioninmemmuble
lndnrlelafleldwhiehindienesMerflmflawirblocbd
ntnoLWhmmenkyisfirstm-deintherwteublemze
blockingfiddisietOnlyaficrnspednlinstuefionis
received to unblock the Man, is the binding field
Minamofthcloaflouulowedatflmmxehnodc.

Amdinglyfintheyefmedsystemmemnnicnetwak
switchmdingtomepmentinvnnfionlsbuedon
mamofnsflnpleat—pmswfiehimmeddxmne
mwmummmmmmamhwim
alugepoolofbandwidfllmossmmypnrtsfihefinbthn
mmmmmwmmmmmnm
protocoLatprefmbly mo mngabitsperseeondcrhigha.
mdtungigahitpernwomludividmlpmsaetnnntow
mammbetweenflmboumlnfimoffllcmfidumd~

ingwmemmmmlwhiehiskyacdontopof
the standud frame fen-ma. The overall bandwidth of the

mmbexbfimflyinmasedbyaddlngmeammic
nodes to the Midi. Using 1 well-nudmtood and simple
WWWMMWMtLANWkJesfly
shuplifienflteimplmentxfiondudtnodeintheswitch,
becauscuehisablelomly onwdlumstdeAClogic
Wmdmsmmmmdmmmemrywmplex
system»: ofpn'm‘ atomic LANE. Mme, my node of
myswiwhmbemcetedmnphysialhyetdmdeem
wmeaxmmfithmmedimwmbedlswnmed
from the Ehmmedinmud connectedtoanoflm node
mwmflywlndmdchangethewpolcgyofmc
swinin'l‘hefinegnnnlmly' and salami“tyofmemech

EX 1017 Page 205

5,802,054
17

architecture, combined with the ability to optimize the
topology of the switch for a particular cnviromncnt allow
implcmcntmon of a high bandwidth, low cost .network
switch.

A high bandwidth and vay flexible network: switch is S
achievable according to the present invention with a simple,
scalable, low-cost architecture.

18
port in the set of,ports, adds a switch route field to the
received fnm.e, and forwards the received frame with

, the switch route field to the part Jndicated by the switch
route data. ·

7. The nctwcct switch node of claim 6, wherein the
default location includes a default part and wherein the node

. route logic flXWards the received frame for transmission on
the default port in the set of ports when lhc switch route table

The foregoing description of a prcfcm:d embodiment of docll not include switch route data for the ideatifyiDg tag.
the invention has been presented for pw:poses of illustration s. Toe DCI.WU'.t switch node of claim 7, wherein the
ud description. Itisnotintended to be exhaustive or to limit to default port is coupled to a route to a multi-protocol,
the invention to the p:cclse fm:ms disclosed. Obviously, nctwodc route JXOCCSSor at which switch route data is
many :modifications and variations will be apparent to pm,- gcncntcd.
titioncrs skilled in this art. n is intcndcd that the scope of the 9. The network switch node of clafm ', iDcluding logic to
invention be defined by the following claims a,d their receive switch route data from a remote system for a
equivalents. 15 particular identifying tag, to store lhe switch route data.in the

What is claimed is: route table memory in association with the particular idcn-
1. Far a network switch including a mesh of intc!x:on- tlfying tag and to block frames having the particular iden-

nectcd network switch nodes, a network switch node com- tifying ta,i uatil noliftcation is received that it is clear to
pising: fotward frames having the particular identifying tag, and

a set of ports having mac than two DICillben, md the
20

aftcrnotificationinec:eivedthatitisclcartofmwardframcs
ports in the set inclading respective medium 1CCC1S having the particular identifying tag, forward frames having
control units for transmission and reception of data the pertic:ula:r tag according to the switch route data.
frames accmti:ng to a networt protocol, the ports in the lt. The network switch node of claim 6, wherein the
set of ports being connectable to a port on another

25
. defmhloadion includes a dcfmll: part and whes:ein the node

network switch node inside the mesh, or to a nctwat:t · route logic f!X'Wards the received frame for tnnsmissi.on on
commmdcation medium outside the mesh; aDd the default pad in the set of ports when the route table

node roule logic, coupled with the set of po.rlll, which memory docs not include switch route dala fer the identi-
monitars frames received by the set 11 ports to route a fying tq; and fmthcr including:
rcc:eived frame for trall8mission according to the net• 30 logic to n:cciye switch route data from a remote system
wert p-otooo1 to a selected part in the set of polU, fer a particubr identifying tag, to store the switch route
Including logic to select the selected port acccrding to dala in the mute table memory in association with the
rules fa navigating through the mesh inside to the pu1icolar identifying tag, and to block frames having
network switc:h, and wherein the node route logic the particular idcntifyiDg tag until notification is
forwards the :rcccived frame fct: t:ransmission to a " rc:c:dved that it is clear to farward frames having the
default location of a nmJtjprot.ocol router n,sourcc pu1:icDL1l' identifying tag, and after noti1ication is
associated. with the switch when the node route logic rc:c:dved that it is clear to forward frames having the
cannot otherwise determine a route for the rccdvcd patlia11ar identifying tag, fcnm:d fJauJea having the
frame. pll1icum tag UC!Oldlng to the switch rootc data.

2. The DCtwod: switch node of claim 1, wbcmiD the 40 n The netw«t switch llodc of claim lt, wherdn the
network.)Dfoool compiscs a 001111ectionlcss J:X")toOOl. dcfanlt part is coupled to a rout.e to a nmlti-:(rOtoCOI.

3. The nctwod:: switch node of claim 1, wherefD the nctwoi:t route p:occssor at which iWitc:b route data is
netwod p:otoa>l compiscs an Edlernct protocol. aencntcd.

4. The network switch 11.odc of claim 1, whc:mlD the 12. The netw«tswitch nodc of claim 6, wherein the flow
network protDco1 comprises an Ethernet, full duplex poto- 45 detect 1ogfc compdses:
coL logic whk.h computel a plurality of hub values in

5. The DCtW«t: switch node of claim 1, whctei.n ports in rcspomc to respective sets of control fields in a
the act of parts include n:u:dium independent inta:faa:s fer rc:c:dved frame, where the n:spectivc sets d. control
the network protocoL fteldl c«relatc with respcdive network frame formats;

6. The network. switch node of claim 1, fm1her inc)gdjng: 50 and
route table memory, coupled with the node rome logic, logicwhichck:mmioeupaticularnetwort.fnmcformat

having a set of accessible locatiou for st«ing switch far a received fnmc. and sclecu one « the plmality of
route data; huh values u the identifying tag in rcspousc to the

Dow dctca logic, coupled with the set of ports, which padico1ar network fta:mc fomw.
monitors frames received by the set of parts and ,:s 13. The network switch node of claim 12, wherein the
gem:ntes an identifying tag for use in accessing the hash values comprise pseudo-random codes.
route table memory; 14. The nctwcd:: switch node of claim 6, whc:rcin the llow

wherein the node mute logic includes logic which defer- detect logic comp:iscs:
mines whether the received frame includes a switch logic which computes a hash valnc in respoose to a set of
routeficldiodicatiDgapa:tinthesetofportll,andifthe c,o control fields in a received frame, where the set of
received frame includes a switch rootc field, updates coDIIOl fields coaclates with a network mmc fonmt,
the switch rou.tc field, and forwards the received frame and applies the huh vallle as 1he identifying tag.
with the updated switch route field to the port indicated 15. The network switch node of claim 14, wherein the
by the switch route field, and if the received frame does hash valnc comprises a pseudo-random. code.
not include a switch route lidd, accesses the route table 65 16. The network switch node of claim 1, wherein the
memory using the identifying tag gcnen.ted in the flow netwc:d: p:otocol compises an P.thernet prot.ocol, specified

' detect logic to retrieve switch route data indic:atin1 a for q,cntion at 100 Megabits per second.

EX 1017 Page 206

5,802,054
17

mdfitecmre, combined with the ability to optimize the
topology of the switch for a particular environment: allow

unplexnentation of a high bandnddth, low cost networkswitch.

A high bandwidm and very flexible {remark switchis
addevable according to the present invention with a simple.
scalable, low-cost architecture.

The foregoing desa-lption of a preferred embodiment of
the invention has been presented for purposes of illustration
and description. ltis notimended to be exhaustive CI’ to limit
the invention to the greets: foam disclosed. Obviously,
my modifications and variations with: apparent to prac-
fifionassfinedinmismnisintendedmaflhe wopeofthe

invention be defined by the following claims and theirequivalents.
What'Is claimed'13:
1.an network swimh includingamesh ofintencon-

nectednetworkswitchnodes, anctworkswiteh nodeoom—
pmng:

asaofpwmmfingmemmMommmmdthew
pmsinflaesetindmfingrwpwfivemufimn-wens
control units for trensmisstonandreeepdon ofdata
framesaeemdingmanetwmkprotooomhepominme
aetofportsbeingoonneaabletoaponon another
networkswitchnodeinsidethemeshmttoenmk .
communication medium wtside the mesh; and

node route logic, ompledwiththe setofpom,whim
monitorsfiamesreeeivedbyfllesetcfpomtoromen
reocivedfmmefor transmission ammdingtothe net-
workpomeoltoasdmdpminthemofm,
indodlngloglctoseloaflle selectedpoxtnmdingto
ruleefornavigafingflnwghthemhinsidetoflre
netwm'kswitdgmdwha'einflxenoderontelogic
forwards the received from for Mien to a
default location of a mnlflmococol router resource
assodfledwhhflremitflwhenmenoderoutelogie
eonnototherwiae demineamuteforthereeeived
frame.

Z'I'henetwutstnodeofchiml,wheminthe
mmmamwfimlmprm

3.1mnetworkswltdznodeofchim1,whaeinme
networkpooooolcomdsesmflmmocol.

4.mnetworkswltehnodeofclniml,whadnthe
makproweoleompdsesnmmmflwpmprmo-
out.

5mm nodeofclaimehereinpomin
dreaetofpmtsmcmdemediumindependenintufacesfor
monetworkprotoeol.

6.1henetworkmnflanodefidaimlfirrflminehrding:
routeuble money, crawled "wimthonodemtelogic,

havinganetofmseibleloufimforstuingrwflrh
routed-1m;

flowdemlogiqcoupledwimmesaofpmwlfleh
monitm hm received by the m of ports md
generatuanidenfifyingtagfwuseinaecessingthe
routetaflememy;

whudnme nodormmelogic includes logiswhidt deem
mineswhethatberweivedfiameinclndesa swim:

rmrtefieldimdleofingapminthesetofm.mdifme
noeivedfl‘meineludeseswitchrmtefiddupdatu
meswachmumfiddandforwardsmemoeivedfiame
with meupdatedswitehmutefleldtothepmtindiated
bythesmdtthmutefiddandifthereeeivedfi‘amedoes
notindudenswitdxmutefieldamsestherouteuhle

‘ memory usingthe identifying tag genmtedin thenow
detealogietcreu-ieveswitchroutedmindicafinga

5

18
port in the set of,potts, adds a switch route field to the
rweived frame. and fmards the received frame with

the switch route field to the port indicated by the switchroute data.
7. The network switdt node of claim 6, whack: the

default location indudes a default put and wherein the node
’ route logic forwards the received frame for transmission on

15

25

30

4O

45

50

55

60

65

thcdefaultportin the set ofports whenthe switchroute table
dnunotindudeewitehromcdmfmtncidenfifyingtag.

&'rhcnmkswitch node ofclaim'l, whereinthe

odefanltportis cwpledtoammetolmlflti—protoool,
networkmutepooessoratwhichsudtehmutedanis
geweted.

9.Thenetwotkmdtdtnodeofclalm6,indudinglogicw
reoeiveswltehmucedeufromaremotesymmfora
Widenfifyingm,mstoremeswitd1mutedatainme
romeublemennyinlssodafionwiflzflaeparfiwlridem
fifyingtagmdtoblockframmhnvingtfiepufiuflniden-
tifyingtagunfilnotifieutioniareca‘vedmatitisclwto

20forward fumes having the particular identifying ug,andafternotifieadon isreoeivedthatitisdeortofmdfrmes

havingmepufiannidenfifyingugformrdmmes having
meputimlutegmdingtotheswimrontedm

II. The network switch node of claim 6, wherein the
rdefmmlmxfionindndmadefmltpatandwhadnflaenode
route logic towards the received frame for «remission on
firedefanltportindaeretofponswhenmerouteuble
mmydoeenotindudeswitdrmutedatafa‘theidenti—
frfnsuzmdtmmmcmg:

logictorweiveewitchmutedatafiomaremotesym
fuapufiafluidenfifyingmgtommeswitmm
dmhmemutetlflcmemayinassocilfionwithme
puflmlarfienfifyingflg.mdwbloetframes having
the particular identifying tag until (Indication is
reedvedthuitisdeermformrdfiameshavtngme
particular idenfifivinx mg. and after notification is
recdvedmatitiscleuloformrdfrmshavingme
particular identifying tag, forwardt'nmes having the
portimll'tagamdingtoflmsvdtehtmteden.

ummwkswitchnodeofdahnlo whereinthe

defenltpatiseoupledtoamntetonmnlti—prmoeol,network route meat at which switch route data is
generated.

ummqkswitdmodeofdaimsmhcreinmeflow
Windeoompdm:

logic which computes a phuahty of lush values in
response to sets 0‘ control field: in n
reeeivedfimwhuethereepecflvemdoontml
fieldiomehtewifitreepeotivenetwmkfiamefmfis;
and

logicwhfidetermineupnrtimflarnetwoekfiameformat
fanmodvedfiamondseleotsoneofflmplmalityof
habvalnelumeidcnfifyingnginreeponsetothe
partimlxnetwmkfimnefomat.

ll'menetwmkswitchnodeidfimnwhereinme
hashvalncamnqxlaepseudo—nndomcotks.

ldmmakmtchnuieofchxmfl whuoinmenow
mlosicotmpdses:

logicwhkiwomeuhnshvflueintemonsetoasetof
oomlfieldsinareeeivedfrmwherethesetof
mmlfiddsmekteswflanetwukhmefom
andlppliesfltehashwhreasmeidenfifylngug.

H.1henetwmtswitehnodeotclaimld.whereinthe
hahvnlneosmptimapseudo-mndomoode.

lfl'l‘henetwakswitch nodeofclaiml,wheteinthe
mmlmprisesmflhmmLspedfied
for Want 100 Megthitxpersecond.

EX 1017 Page 206

5,802,054
19 20

17. The nctwod: switch node of claim 16, whcrein the 28. The integrated circuit of claim rt, including logic to
Ethernet protocol comprlscs a full duplex protocol receive switch route data from a remote system for a

18. The netw<rk: switch node of claim 1, wherein said set pcticular identifying tag, to store the switch route data in the =:~ =:oote logic comprise elements of a route table memory in association with the particular iden-

JJ. The network: switch node of. claim 18, wherein ports 5 tifylng tag, and to block: frames having the particular iden-
in the set of ports include medium independent interi'accs f<X tifylng tag until n~cation is received that it is clear to
the nctwcdcprotocol, and the netwod: J:X'(ltocol comprises an forward.~ ~ving. the P~ idendfying tag, and
Ethernet protocol, speci.fi.ed for operation at 100 Megabits ~ notification is~~~ it 1s dear to f~ard frames
pt.r second or higher. havt.Dg ~e ~~ ~tifying tag, forward frames having

20. The netwod: switch node of cla.lm 19, wherein the to the particular identifying tag according to the switch route

Ethernet protocol ccmprises a full duplex protocol. data. • . • •
21. The network switdl node of claim t, wherein ports of. 29· Th~ mtegrated arcmt of claim 22, wherein the default.

the set of ports include medium independent ink.I.faces fer l~on includes a default port and wherein the node route
the network protocol, the medium independent Ultcr:facea logic forwards the mcelvcd frame for transmission on the
defining a partiauar bus comiguntion, and further including 1s default port in Ille ~ of ports when the~ table mcm<X)'
connectors coupled to the medium independent iakdacc$ does not indndc SWitch route data for the u:lcotifyi.llg tag;
adapted to receive cables configured aa:a:ding to the par- and further including:
ticu1ar bus eoofiguration. logic to receive switch route data from a :remote system

22. An integrated ciraut, comprising: fer a particular ideotifyi.llg tag, t.o st.ore the switch route
a set of ports for access to respective rouunuulcation

20
data in the_ r~ ~e mrmoey in association with the

med.la, the set of ports having mare than two mcmbcn, pm:ti~ ~g tag, and to bloct frames having
and the ports in the set including respective medium the _particular ~dentlfy.ing tag until notification is
access control logic for a nctwor:k protocol; ~ved ~ it !5 clear to f<XWard framos having the

a memory intei::faol, for connection to a route table
25

~CIIW" idc~~g ta& and after notification ii
memory having a set of accc1siblc locations for storing ~ved ~ it m .elem: to f<XWm:d frames having the
switch route data; pa11icolar 1dentifyillg t.ag, forward frames having the

flow detect logic, coupled wilh !he set of ports, which ~ identifying tag aaxrding to the switch route

mooitora frames received by the set of. ports and • • •
generates 1111 identifying tag for use in accessing the !ID ~ 'Ibc. ~ ~ of cl.aim 22, wherein the flow
route table mem«y; 1.11d • logic ccmq:mes.

node route logic, coupled wilh the flow dctcct logic, the lop: which computes • plurality of hash vllues in
mmnory imed'al:e 1.11d the set of perts, which l'JlODit(:n rcsJ>?DSC to respecdve scu of conttol fields in a
framel received by the set of ports to route I rccci.vcd rcccivcd frame, ~ere the. rcspccdvc sets of control
frame far tn.nsmfasion to I. port in the 1C1 of pca'ta, 1he 3.5 fields caaeJat.e with rcspccliVO l10twOdc frame fomiatJ;
node route logic dcf.cnnining whcd!.cr the received and
framc inc:ludcs a swifcb route fi.etd indicadDg a port il1 logic which dmmuuec a pmicular nctwortframe format
the set of pcm, and if the a:ceived frame includes I f« I RICdvcd frame, and lc1cds one of the~ of
switcb. route fio1d, updatel thc switch route field, and b.aah values u the ldeatlfyfng tag 1n rcsponso to the
forwards the rcccivcd frame wilh the updated. swifcb ~ partiauar nctwadc frame romut.
route field to the port indicated by the switch routc 3L The integrated c:m:uit of daim 3t, whcn:in the hash
field, and if the rcccivcd frame docs nd. include a values compdsc psewkrrandom codes.
sw:itcb fflJte field, a.cceases the route table mem«y 32. The integrated cln:uil of claim 22, whc::rdn the tlow
through the memory intciface using the identifying tag dctcct logic oomp:ises:
generated in Ille flow detect logic to reuicve swftdl 45 logic which computes a bash valne in response to set of
route data indfcati:ng a port in the set of ports, adds a conttol fields in a received frame, when: the set of
sw:itcb route 1i.c1d to the iecmvcd hmo, and fcnrudll control fields ooaelates with a n.ctwod: frame fmn11:,
the rca:ivedfmme with the swm::h route field to the port and applies the hub value as the identifying tag.
indicated by the swit.ch route data and Jf 1he route table 33. The ~ cln:uil of claim 32, wherein the bash
mcmoiy does not ine1ndc switch route data fa: the ,o vlluo compnscs a pseudo-random code.
identifying tag, then f~ 1he recc:i.vcd fn.mD to a 34. The integrated circuit of claim 22, inclnding an
default location of a .ronltiprolocol router resource cmbcddcd bus intcrconnCCWII the set of pa:ta the low
associated with lhe switch. detect lop:., 1he node route logic and the 1l!l:D1trY iotmace.

23. The integrated cin:uit. of claim 22, wbi::rcin lbe net- 35. The intcgtatcd c:m:uit of claim 22, wbcr:m.n the net,.
wed: protocol comprises a connectionless prorocoL ss wort protocol comprises 1.11 Bthcmet protocol, spccfficd for

24. The integrated circuit of. claim 22, wherein 1he net- opcntion at 100 Megabits per second <X bighcr..
w<n: protocol comp:ises an Elhcmc:t protocol 36. The intcg.ated circuit of claim 35, whcn:in the Bth-

25. The intcgrltcd circuit of cwm l4, wbel:dn the Eth- ernct protocol compdse11 a fiill duplex protocoL
mict prot.ocol ~~foll duplex protocol.. . 3?· 1bc integrated cln:uit of cltim 35, including a

26. The integrated circUit of cWm 22, wherein~ in the 60 bi--Oircdional. cmbcddcd bus interconnecting the set of
set of perts include mcdimn :indepcndcD.t il!.terface1 fa: the ports, the flow detect logic, the node route logic and the
nct.wa.:lt prot.ocoL memory illtcrface, Ule embedded bus spec::lftcd for operation

rt. The integrat.cd ciro.dt of cla.lm 22, wherein the default at l Gigabtt per second or higbct.
location includes a default port and wbcrd.n the node route 38. The integrated cu:cuit of claim 22, induding the route
logic forwards Ule recelvcd fmmc for transmission on the 65 table mClll01}' on lbe integndcd circuit.
def.llllt p<Xt in the sct of ports when the swilcb route table 39. A netwn switch, comprising:
docs not include switch route data for the identifying tag. a plurality of switch node,;

l
EX 1017 Page 207

33»

5,802,054
19 20

17. The new switch node of claim 16. wherein the 28. The integrated circuit ofclaim 27, handing logic to
Ethernet comprises afull duplex pmtoool. receive switch mute data from a remote system for a

18. The netwa'k witch node of claim 1, wherein said set
of ports and snid node route Dogic comprise elements of a
single integrated circuit. 5

19. The network switch node of claim 18, wherein ports
in the set ofportsinclude mediumindependent intelfeces ft!
the makprotwoL and the netwodprotocol comprise: an
Ethanet protocol. specified for operation at 100 Megabits
per seeond or higher.

21!. The mod switch node of claim 19, wherein the
Ethernet protocol comprises a full duplex protocol.

21.121te netwmtswitdtnodeofchimeheminpmtsaf
the set of ports include median!) independent interfaces for
menawmkmmmemedimiudependemintm
definingaputieulsrbus configuration, mdfm‘flterinchding
connectors ooupledtotbemedinmindependentinterftm

10

15

andmepottsinthesetincludingmspetfiwmeditm
access control logic fannetworkgrutoeoi;

amemoryintafmforeonnediontoarouteuble
memorthingnetofmaibleloeefiomforstodng
switchzoumdau;

flmdmlogiqmgledwidamesetofports,wbich
mmitmframesreedvcdbythesetofpm‘emd
genermesmidenfifyingugforuseinumesxingme
romeuhlemennyund

ndemmmedvdmtheflowdmhgigme
mmyintetfwemdfltesetoquu,wbid1moniton
mmwbymesetofmwmmeueeeived
mfamfionmammmemdmme
noderoute hagicdetmniningmthereoeived
frameindnduemdflrmtcfleidindiatbgapmin
firesetofportznndifmexeoeivedfrmeinchfiua
mummwmmmmmm
forwudsfllereeeivedfrmaewifllmeupdmmkch
rmflddtothepathldimedbyfllewimmnte
fiemandifmemeivedfi-medoeunaindudea
switchrattefield, maesthcmntemlflememory

geneatedintheflowdeteetlogictoretfleveswm
romedmindimfingapatilthesetofpmsaddu
:witdlrontefieldmuxereeeivedfrummdfawud:
thereceivedfmnewimmerwfiehromefifldtothepm
indiutedbythemmhmrtedeumdlfmemuble
mmdoeanotinelndeswttehrmnedmform
idenfifyingug,menfmdefl1ereoeived&amewe
default location of I whipomcol router resource
usedatedwflhmeswim

mnewmnofdnmnmmm
workpietoeoloomprisealcomeotionleuprotocol.
unemmdmnmmem

wakprotocdcomgisecmmmetpmtocol.
nmmwmwmnwmmm

anetprotoeolcomprisesefdldnplexpmocol.
mmmmdmufiofddmnwhmmminme

setafportsincludemoditmindependentinmfweaforthe
Mgr-atom].

27.neintegrateddmfltofdaimuwhadnthedémlt
leaflet: indndesndefnmtpcrtandwhudn the noderoute
logic forwards theroeeivedfmmefwtnnmissiononthe as
detmnpminflaesuofportswhentheswfldxromembie
docsmtindndoswiuhroutemformeidentifyingug,

313

40

45

50

SS

60

putictflar identifying tag, to stuethe switch route damn the
route table memory in association with the particular iden-
tifying mg. 1nd to block frames having the particular idem
tifyingtagtmfiinotiflcafionisreoeivedmitisoiearto
forward frame: having the pantomi- identifying tag, and
after notification is received that itis dear to Reward frames

having the particular identifying tag, forward frames having
the particular identifying tag awarding to the switch routedata.

29.1‘he integratedcirmitofchimnwhereinflte default.
Imumineludes adefmltportandwherein the noderome
logic forwards the received frame for Wen on the
defnuhpmtinmesetofpottswhentherouxeuble new
does not include switch route the: for the identifying tag:
Ind further including:

logic to teceiveswitdzroutedaufromeremote system
forepufiunaridenfifyingtag,mstotemeswitdtmme
minuterontemuememyinusocinfimwithme
partials identifying Meandmbloekfrnmbnving
the particuln' identifying tag until nou'ficafion is
reedvedmitiseleatofawrdfiameshafingflm
parfiathr identifying as. and after notification is
receivedthetitiaclurtoftrwmdfinmeshwingthe
partial!!! identifying tag, forward frames having the
particula- identifying tag wording to the switchmuteden.

”.mmmkddfimnwhfleintheflow
dwalogiceempises:

togicwhiehoompmeleplmmyofhuhvemeain
responeetoregzeettvesm ofoontrolfielosinl
reeeived frame, when the respective sets of control
fieldsoarehtewfihreepecfivenetworkfrmefm;
and

logicwhidtdetmnimapufiahrnetwortfrmefm
fxanedvedfilmandecleetsoneofthephmfityof
huhvdnesumeidendfyinguginrespmsetome
mmmmmtm

3L'l‘heintcgatedcircuitd‘dfim30,whaeinmnimh
vemesmmpdsepmudonndomcodee.
sznemmmaddmnmmnow

demiogicmmgn'see:
logicwhiehoomneuhashvekteinresponsetomof

oonmlfiddsinnreeet'vedflzmwhetethesetof
controlflelds oonehteawithenetworkfrmefomu.
mdnppfiesthehnfltvdneumeidenfiffingug.

33.1‘heinoegratedcironitofdnim32,whereinfltchuh
vmtecamgrkesopscudo-nndomeode.
ummmmmmmnmmgm

embeddedbusiotmnedingflxeaetofports,flnflaw
detealommenodermlogiemmemmuym
ammwmormnwnmmem.

murky-Owen! eonaisesmflflmnetpmtoeol, Medfor
opaaflonnloouegnbitspetseoondorhighm

mmmmmdmmorddmasmhmtnmm-
anetpotoeol oompliseoefmldnplex protocol.

37. The integrated circuit of skim 35, including l
bi-dtreetionnL embedded bus interconnecting the set of
ports, menowdetect logic. the node mute logicami the
manmyinterfacmhe embeddedbus specifiedfor operation
ulGigebinerseeondorhighec

38. The integrated circuit of claim 22, including themute
nblomemoryonmeintemteddrmit.

39.Anetwofi.swit£h,emnpising:
:pbtrllityofswimhnodcs;

EX 1017 Page 207

.
I

l

, .. b D
5,802,054

21 22
a first set of communication links, communication links in switch route data ill the route table memory in association

the first set coupled between switch nodes in the with the particular identifying tag, and to block frames
plurality of switch node, intemal to the network switch; having the particular identifying tag until notification is

a second set of OOJDJJlllJlication links, commun.icalion received that it is clear to f<rWard frames having the
links in the second set comprising network links extcr- , particular identifying tag, and after nodiicati.on is received
nal to the network switch; that it is clear to forward frames having the particular

the respective switch nodes in lbe plurality of switch identifying tag, fmward frames having the particular iden-
nodes including tifying tag accarding to the switch route data.,
a set of pom connected to respective communication 47. The network switch of claim 3!1, whereill lhe node

links in either the first set of corrnmmication links or 10 route logic on lhe respective switch nodes foiwards the
the second set of collllllllllication links, the set of received Jhune for transmission on a default poet in the set
ports having more than two members, and the ports of ports when the route table memory docs not include
in the set including respective mcdiwn access control switch roate data for the identifying tag; and further indud-

logic for I network protocol; inf~gic on the respeccive switch nodes to rea:ive switch
route table mcmay having a set of accessible localions 15 route data from I remote system for I putic:ular iden-

for storing switch route data which specify routes tifyiog tag, to store the switch route data in the route
1hrough the pluxalily of switch nodes; table memory in association. with the puticular identi-

flow detect logic, coupled with the set of ports, which fying tag, ud to block frames having the particular
moniton frames received by the set of ports and identifying tag until notification is reccived lhat it is
generates an identifying tag for use in IICCCSsing the 20 clear to fc.ward frames having the particular identify-
route table memory; and ing tag, and after notific:ation is received that lt is clear

noderoutelogk, coupled with the 11ow detect logic, the to forwl!d fnlmcs having lhe particlJlar identifying tag,
route table mtmOrY and the stt of pcm. which forward frames having the putia.lla identifying t.ag
moniton frames received by the set of ports to route according to the switch route data..
a received frame for transmission to a p<Xt in the set 2!I 48. The nctworlt switch of cwm if'/, wbcrcin the default
of ports, the node route logic detcrnriuing whether port is coupled to a route to a mwti-prot.ocol. n.ctw<rt route
the ICCCi.ved frame includes a switch route fi.ehl processor at whidl. switch route data is gew:nted.
indicating a port ill the set of pam, and if the 4t. The n.ctwork switdl. of claim 39, wherein !he flow
n:c:dved frame indudcs a switch route 1icld, upc1a1es demd logic on the respective switch nodes romprlses:
the switch route field, and forwards thc rccdvcd 30 logic which computcs a plurality of b.ub vaJucs in
fmnc with the updated switch route field to the port response to :respective sets of conlrol fields in a
Indicated by the switch route field, and Jf the :received frame, wbcre the rcspcdive sets ex control
~ frame docs not ind.ode a switch route field, fields ca:rclat.e with rc:spective nctwar:k frlmc formats;
accascs the m:llll lable .mrmory usfng the Identify- and
ing tag generated in the ftow dct.ect 1ogic to :i:etticve 35 logic which detl:mlines a particular Mtworkfnmc format
switch route data indicating a pcxt In the set of ports, f<r a received frame, and sek:ds one of the pluraliey of
adds a switch route fi.cl4 to the received frame, aod hash values u the identifying tag in response to the
forwnds the n:c:dved fmnc with thc switch route pm:tiadar network fmnc fm:mat.
fi.cld to the port indbted by the switch route data, st. The nctw<Xt switdl m claim 4', w1u:min the hash
and ff the route table memory does not fndude 40 values comp:isc pseudo-nmdom codes.
switch route data ooacspondiDg to !he idmtifyJag 5L The nctwark switch m claim 39, wherein the flow
tag, then. forwarding the n:c:civcd fmnc to a cld'mlt deted logic on the mapective switch nodes romprlses:
localiOD of a multiprotoco1 routcr resoun:e assod.- logic which computes a hash value in response to set of
ated with the switch. control 11.cldl in a n:c:civcd frame, wheie the set of

40.. 1bc network switch of dlim 3P, wbemill the nctworlt 45 CODtroJ. fields <Xll'IC1atcs with a nctw<d: frame fomiat,
protocol for ports in the set cL pmts on the respective switch and applies the hash vaJue as the identifying tag.
nodes comprises a COllllCCtioDles protocol 52. The nctw«t: switch of claim 51, wherein the huh

4L The network switch of claim 39, wherein the nctwadt valne campriscs a pseudo-random code.
protocol for ports in the set of ports OD the respective switch 53. The networlt switch of claim 3!1, whtmD the network
nodel comprises an Ethernet pr«oool. so protocol for ports fa the set of ports on. thc respective switch

42. The JIClWOd: switch of claim 41, wherein the E!themet node$ oompises an Edlemct protoool, specified for opcra-
protoool comprlsc$ a full dnplcx protocol tion at 100 Megabits per SCCODd or higher.

43. The netwos:t: switch of claim 39, wherein puts in the S4. The oetwo:dr.: switch of cl&im 53, whetein the Elhcmet
set of ports on lbc rcspective switch nodes include medium protocol comprises a full duplex proo,ooL
independent interfaa:s fOI' the netwark protocol. ,s 55.. The nctworlt switch of claim 3!1, whm:in the MAC

44. The network switch of claim 3P, wherein the defaub: logic fur ports in the set of pons on lhe respective switch
location includes a default pcxt 1111d whetein the node route nodes c::tcaites the s.un.e networlt protocol for all ports in the
logic OD the respective switch nodes forwards the rm::ivcd set of puts.
frame foe lmDSmission OD the default pcxt in thc set of ports 56. The nctworlt switch of claim 3', whetein ports in the
when the switch route t.abl.e does not include switch route Ql set of ports OD the respective switch nodes inclndc medium
data for the identifying tag. iadcpcndent iotcmces for the netwmcpr«ocol, the medium

45. 1bc network switch of claim 44, wherein the defaub: independent interfaces defining I particular bus
port is coupled to a ronte to a mulli-protocol, network: route oonfigumtioa., and further include coo.nectors coupled to the
processor at which switch route data us generated.. medmnt independent in~ adapted to receive cables

46. The nctw«t: switch of claim.3!), including logic on the 6.S configun:d acca:ding to the puticular bus configuration.
respective swum nodes to receive switch route data from a
remote system fer a pu:ticular identifying tag, to st.ore the • • • • •

EX 1017 Page 208

.f-
,iz.

#},

f

~iled: June 30, 2000

Group Art !,Jnit!, 2755

Examiner:

Patent

Title: METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A
NE'IWORK

f\E.CE\\JtO
~PR 2, 2, 2002

l091 centet 2.100

Commissioner for Patents
Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

K

K

K

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

, A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

~
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld
5507 College A venue, Suite 2
Oakland, CA 94618
Telephone No.: + 1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: '.ac9 tYYl.v 2..&(0 2- Signature: ~
~sfnfeld, Reg. No. 38,687

EX 1017 Page 209

Patent

Group Art Unit; 2755

xFiled: June 30, 2000 Examiner:

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Commissioner for Patents 3,
Washington, DC. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copyof each reference cited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with‘this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Date—{(9 1129.4: 19¢) L
Respectfully submitted,

"lgov Rosenfeld
Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547~3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, Washington, DC. 2023L

Date of Deposit: 19 A Hz; J: 2— 96) L Signature: %. ov o enfeld, Reg. No. 38,687

EX 1017 Page 209

t

L

0
UNITED STATES PATENT AND TRADEMARK 0FF1GE

APPLICATION NO. FILlNGDATE

09/608,237

7590

Dov Rosenfeld
Suite 2
5507 College Avenue
Oakland, CA 94618

06/30/2000

06/25/2003

FIRST NAMED INVENTOR

Russell S. Dietz

UNITED STATES DEPARTMENT OF COMMERCE
United State• Patent and Trademark Office
Addr..,.COMM!SSIONER FOR PATENTS

P.O Box USO
Akundna, Vilj;,ru• 22313-USO
wwwuipto gov

ATTORNEYDOCKETNO

APPT-001-1

CONFIRMATION NO.

9993

EXAMINER

MEKY, MOUSTAFA M

ARTUN1T PAPER NUMBER

2157

DATE MAILED: 06/25/2003 b

Please find below and/or attached an Office communication concerning this application or proceeding.

PT0-90C (Rev. 07-01)

EX 1017 Page 210

O (7‘

UNITED STATES PA'nzm AND TRADEMARK Omen UNITED STATES DEPARTMENT OF COMMERCE
Uflited States Patent Ind Traéem-rk Office
was” COMMISSIONER FOR PATENTSPD Box 1450

Mew-Ant. Vim: 223134450mum gov

APPLICATION NO. mm NAMED INVENTOR ATTORNEY DOCKET No

092608337 asrsmzooo Russell 5. Dictz APPT—DO 1 .1 9993

7590 061259003

DovRosenfem

Suite 2 MEK
5507 College Avenue Y, MOUSTAFA M
Oakland, CA 94618

2157 EDATE MAILED: 06/25/2003

Please find below and/0r attached an Office communication conceming this application or proceeding.

Home (Rev. 07-01)

EX 1017 Page 210

l

Office Action Summary

Application No.

09/608,237

Examiner

Applicant(s)

DIETZ ET Al.

Art Unit

Moustafa M Meky 2157
•· The MAILING DATE of this communication appears on the cover sheet with the correspondence address ••

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE ;J, MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a) In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S C. § 133)
• Any reply received by the Office later than three months after the mailing date of this communication, even 11 timely filed, may reduce any

earned patent term adjustment See 37 CFR 1.704(b).

Status

1)[81 Responsive to communication(s) filed on 18 April 2002.

This action is FINAL. 2b)[81 This action is non-final. 2a)O

3)0 Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11,453 O.G. 213.

Disposition of Claims

4)[81 Claim{s) 1-59 is/are pending in the application.

4a) Of the above claim{s) __ is/are withdrawn from consideration.

5)[81 Claim{s) 1-10 is/are allowed.

6)[81 Claim(s) 11-59 is/are rejected.

7)0 Claim{s) __ is/are objected to.

8)0 Claim{s) __ are subject to restriction and/or election requirement.
Application Papers

9)0 The specification is objected to by the Examiner.

10)0 The drawing(s) filed on __ is/are: a)D accepted or b)O objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)0 The proposed drawing correction flied on __ is: a)O approved b)O disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)0 The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)0 Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119{a)-{d) or {f).

a)O All b}O Some* c)O None of:

1.0 Certified copies of the priority documents have been received.

2.0 Certified copies of the priority documents have been received in Application No. __ .

3.0 Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau {PCT Rule 17.2{a)).

*Seethe attached detailed Office action for a list of the certified copies not received.

14)[81 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).

a) D The translation of the foreign language provisional application has been received.
15)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s}

1} IZJ Notice of References Cited (PT0-892}

2) 0 Notice of Draflsperson's Patent Drawing Review (PT0-948}

3) [811nformation Disclosure Statement(s) (PT0-1449) Paper No(s} M.

4) 0 Interview Summary (PT0-413} Paper No(s}. __ .

5) 0 Notice of Informal Patent Application (PT0-152)
6) 0 Other:

U.s Palen! and Trademark Office

PTQ-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6

/

EX 1017 Page 211

 Application No. Applicant(s)

09f608,237 DlETZ ET AL.

Office Action Summary Examiner

Moustata M Meky

- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -~
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
» Extensions of time may be available under the provisions of 37 CFR 1.136(3) in no event, however. may a reply be timely filed

after SIX (6) MONTHS from the mailing data of this communication.
it the pen'od for reply Specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely,
ll NO period for reply is specified above, the maximum statutory pcnod will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 US 0. § 133)
Any reply received by the Office later than three months after the mailing date of this communication. even if timely filed, may reduce any
earned patent term adiustment See 37 CFR 1.704(1)).

Status

silt

0E Responsive to communication(s) filed on 18 April 2002.

2a)[] This action is FINAL. 2mg This action is non—final.

3):] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle. 1935 CD. 11. 453 0.8. 213.

Disposition of Claims

19E} Claim(s) lfiglslare pending in the application.

421) Of the above clalm(s) __ is/are withdrawn from consideration.

5)IZ Claim(s)1;1l_2 ls/are allowed.

6). Claim(s)11;_5_§ is/are rejected.

7)l:] Claim(s) ________ is/are oblected to.

8)[:] Claim(s) are subject to restriction and/or election requirement.

Application Papers

9):] The specification is objected to by the Examiner.

10):) The drawing(s) filed on ___.... is/are: a)|:] accepted or b)[] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyanoe. See 37 CFR 1135(3).

11)[] The proposed drawing correction filed on_ is: a)[] approved b)l:I disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12):] The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)[] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)—(d) or (f).

20E] All b)|:| Some * c)[:] None of:

LC] Codified copies of the priority documents have been received.

2.I:| Certified copies of the priority documents have been received in Application No.

3.1:! Copies of the certified copies of the priority documents have been received in this National Stage
application from the international Bureau (PCT Rule 172(3)).

" See the attached detailed Office action for a list of the certified copies not received.

1MB Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(c) (to a provisional application).

a) [I The translation of the foreign language provisional application has been received.

15)I:I Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 andior 121.
Attachmenfls)

1) E Notice of References Cited (PTO-892) 4) CI interview Summon; (PTO—413) Paper Nona). .
2) E] Notice of Draflsperson's Patent Drawing Review (PTO-948) 5) E] Notice of Informal Patent Application (PTO~152)

L3) Information Disclosure Statement(s) (PTO-1449) Paper No(e) i5 . 6) [:1 Other;

Us Patent and Trademrk Office

PTO-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6

EX 1017 Page 211

:

L

0

Application/Control Number: 09/608,237

Art Unit: 2157

1. Claims 1-59 are presenting for examination.

2. Claims 1-10 are allowed over the prior art ofrecord.

0

Page2

2.1. The prior art of record taken singularly or in combination does not teach or suggest a

packet monitor having a state patterns/operations memory configured to store a set of predefined

state transition patters and state operations such that traversing a particular transition pattern as a

result of a particular conversational flow-sequence of packets indicates that the particular

conversational flow-sequence is associated with the operation of a particular application program

and a state processor configured to carry out any state operations in the state patterns/operations

memory for the protocol and state of the flow of the packet (claim 1).

3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in a patent granted on an application for patent by another filed in the
United States before the invention thereof by the applicant for patent, or on an international application by
another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371© of this title before
the invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102{e) by the American Inventors Protection Act

of 1999 (AIP A) do not apply to the examination of this application as the application being

examined was not (1) filed on or after November 29, 2000, or (2) voluntarily published under 35

U.S.C. 122(b). Therefore, this application is examined under 35 U.S.C. 102(e) prior to the

amendment by the AIP A (pre-AIP A 35 U.S.C. 102(e)).

EX 1017 Page 212

>
0

Application/Control Number: 09/608,237

Art Unit: 2157

Page3

4. Claims 11-59 are rejected under 35 U.S.C. 102(e) as being anticipated by Muller et al.

(US Pat. No. 6,483,804).

5. As to claims 11-12, Muller shows in Fig lA, a method of examining packets through a

connection point (the point connects the network to the NIC of the circuit 100).

Muller discloses the following steps:

* receiving a packet from a packet acquisition device (NIC), see col 6, lines 26-29, lines 54-60,

col 8, lines 33-35;

* performing one or more parsing/extraction operations to create a record comprising a function

of selected portions of the packet, see col 7, lines 31-44, col 8, lines 50-67, col 9, lines 1-5;

* looking up a flow-entry database 110 to determine if the packet is of an existing flow, see col 9,

lines 18-24, col 11, lines 32-45 ;

* if the packet is of an existing flow, classifying the packet as belonging to the found existing

flow, see col 11, lines 46-52; and

* if the packet is of a new flow, storing a new flow-entry in the flow-entry database 110, see col

11, lines 46-52.

6. As to claims 13-15, Muller teaches updating the flow-entry of the existing flow including

measures selected from the set consisting of the total packet count, see col 7, lines 36-45, col 8,

lines 50-54, lines 64-66.

7. As to claim 16, Muller shows that the function of the selected portions of the packet

forms a signature (flow key), see col 8, lines 64-67, col 9, lines 1-5, col 11, lines 35-37.

EX 1017 Page 213

f

L

Application/Control Number: 09/608,23 7

Art Unit: 2157

Page4

8. As to claims 17-20, Muller shows at least one of the protocols uses source and destination

addresses, see col 7, lines 31-40.

9. As to claim 21, Muller shows the looking up of the flow-entry database 110 uses a hash

of the selected packet portions, see col 9, lines 18-22.

10. As to claim 22, Muller shows determining a set of one or more protocol from data in the

packet, see col 10, lines 63-67, col 11, lines 27-30.

11. As to claim 23, Muller shows obtaining the last encountered state of the existing flow and

performing any state operations required for a new flow, see col 9, lines 15-28.

12. As to claim 24, Muller shows identifying of the application program of the flow, see col

8, lines 60-61, col 12, lines 45-47.

13. As to claim 25, Muller shows storing identifying information for future packets, see col 9,

lines 26-28.

14. As to claim 26, Muller shows identifying the application program of the flow, see col 8,

lines 60-61, col 12, lines 45-47.

15. As to claim 27, Muller shows searching the parser record for the existence of one or more

reference strings, see col 9, lines 32-36.

16. As to claim 28, Muller shows the state operations are carried by state processor, see col

9, lines 42-47, col 10, lines 61-63

17. As to claim 29-59, the claims are similar in scope to claims 11-28, and they are rejected

under the same rationale.

EX 1017 Page 214

Application/Control Number: 09/608,237

Art Unit: 2157

Therefore, it can be seen from paragraphs 5-17 that Muller anticipates claims 11-59.

Page 5

18. The prior art made ofrecord and not relied upon is considered pertinent to applicant's

disclosure.

19. Any inquiry concerning this communication or earlier communications from the examiner

should be directed to Moustafa M. Meky whose telephone number is (703) 305-9697. The

examiner can normally be reached on week days from 8:30 am to 4:30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Ario Etienne, can be reached on (703) 308-7562. The fax phone number for

this Group is (703) 308-9052.

Any inquiry of a general nature or relating to the status of this application or proceeding

should be directed to the Group receptionist whose telephone number is (703) 305-

9600. The fax number for the After-Final correspondence/amendment is (703) 746-

7238. The fax number for official correspondence/amendment is (703) 746-7239. The

fax number for Non-official draft correspondence/amendment is (703) 746-7240.

M.M.M

June 22, 2003

EX 1017 Page 215

Application/Control Number: 09/608,237 Page 5

Art Unit: 2157

Therefore, it can be seen fiom paragraphs 5-17 that Muller anticipates claims 11-59.

18. The prior art made of record and not relied upon is considered pertinent to applicant's

disclosure.

19. Any inquiry concerning this communication or earlier communications from the examiner

should be directed to Moustafa M. Meky Whose telephone number is (703) 305-9697. The

examiner can normally be reached on week days from 8:30 am to 4:30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Ario Etienne, can be reached on (703) 308-7562. The fax phone number for

this Group is (703) 308-9052.

Any inquiry of a general nature or relating to the status of this application or proceeding

should be directed to the Group receptionist whose telephone number is (703) 305—

9600. The fax number for the After-Final correspondence/amendment is (703) 746—

7238. The fax number for official correspondence/amendment is (703) 746-7239. The

fax number for Non-official draft correspondence/amendment is (703) 746-7240.

M.M.M

June 22, 2003

E ‘,
2'; i ‘

WW- W6 is

EX 1017 Page 215

-· Applicant(s)/Patent Under Application/Control No.
Reexamination

09/608,237 DIETZ ET AL.
Notice of References Cited

Examiner Art Unit

Moustafa M Meky 2157
Page 1 of 1

U.S. PATENT DOCUMENTS

*
Document Number

Country Code-Number-Kind Code
Date

MM-YYYY Name Classification

A US-6,483,804 11-2002 Muller et al. 370/230
B US-6,570,875 05-2003 Hegde 370/361
C US-6,452,915 09-2002 Jorgensen -310/ 3,~f?.)
D US-6,466,985 10-2002 Goyal et al. 1dJ/l3~
E US-6,453,360 09-2002 Muller et al. 1°~ /250
F US-6,243,667 06-2001 Kerr et al. ,r:i3 /27
G US-6, 118,760 09-2000 Zaumen et al. 370/22 q
H US-

I US-

J us-
K US-

L US-

M US-

FOREIGN PATENT DOCUMENTS

*
Document Number Date

Country Name Country Code-Number-Kind Code MM-YYYY Classification

N

0 -
p --------a ___;----
R --------s --------l--l---' --·-

NON-PATENT DOCUMENTS

* Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)

u

V

w

~A copy of this reference is not being furnished with thi~ Offi~ action. (See MPEP ~ 707.0S(a).)
ates 1n MM-YYYY format are publication dates. Class1ficat1ons m~~be US or foreign.

iTs. Patent and Trademark Office
0-892 (Rev. 01-2001) Notice of References Cited

l
Part of Paper No. 6

EX 1017 Page 216

Application/Control No. Applicant(S)/Patent UnderReexamination
09/608,237 DiETZ ET AL.

Notice of References Cited .Examiner

Moustafa M Meky

U.S. PATENT DOCUMENTS

Document Number Date . .

EMQMMMImmJIIIIIMHIIIIIIENMII
us 6 483 804 11-2002 Muller et al. 370/ 2 3o

US-6 570 875 05-2003 Hegde 3 /0 3%?
S .

 A

F 765 /2
s

——_—
—- —
——
—-
——
_— —

FOREIGN PATENT DOCUMENTS '

l_-
Ilil

c—-— 370 335
“23;;

— ‘—

—
7‘ —
_
i

III--“I!!!

'A °°DY of this reference is not being fumished with this Office action. (See MPEP § 707.05(a)‘)
Dates in MM-YYYY format are publication dates. Classifications my be US or foreign.
U-5~ Patent and Tradermrk office
P (1892 (Rev. 012001) _ Notice of References cned P3” 0* Paper N°~ 6

EX 1017 Page 216

l

c12> United States Patent
Muller et al.

(54) METHOD AND APPARATUS FOR DYNAMIC
PACKET BATCHING WITH A IDGH
PERFORMANCE NETWORK INTERFACE

(75) Inventors: Shimon Muller, Sunnyvale, CA (US);
Denton E. Gentry, Jr., FICmont, CA
(US)

(73) Assignee: Sun Microsystems, Inc., Santa Qara,
CA(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U .S.C. 154(b) by O days.

(21) Appl. No.: 09/260,324

(22) Filed: Mar. 1, 1999

(51) Int. CJ.7 ... H04J 1/16
(52) U.S. CJ •.......•..............• 370/230; 370/235; 709/225;

709(l1J?,
(58) Field of Search 370/230, 231,

(56)

EP

370/235, 392, 389, 225, 226, 241, 401,
428,427,473,474,394,252,466,409;

709/225, 226, 235, 241, 228

References Cited

U.S. P~ DOCUMENTS

5,414,704 A
5,583,940 A
5,684,954 A
5,748,905 A
5,758,089 A
5,778,180 A
5,778,414 A
5,7ff7;i.55 A
5,793,954 A
5,870,394 A
5,9']1),705 A
6,157,955 A

5/1995 Spinney ••••••••••••••••••••••• 'r/0/60
12/1996 Vulrucu ct al. 380/49
11/1997 Kaiserswerth ct al. ... 395!200.2
5/1998 Hauser et al. .•....•.. 395/200.79
5/1998 Gcnlry ct al. 395!200.64
7/1998 Gcnlry ct al •••••••••.• 395/200.42
7/1998 Willier ct al. 711/5
7 /1998 Patlan ct al. 395/200.63
811998 Baker ct al. 395!200.8
2/1999 Oprea 370/392

• 7/1999 Lyon ct al. 370/409
• 12/2000 Narad et al. 700/228

FOREIGN P~ DOCUMENTS

0 447725 9/1991 G06F/15/16

11 HI 1111111111~1 IIII II ii Ill 111111111111111111
US006483804Bl

(10) Patent No.: US 6,483,804 Bl
Nov. 19, 2002 (45) Date of Patent:

EP
EP
EP
WO
WO
WO
WO
WO
WO

0 573 739 12/1993 H04I./12/56
O 853 411 7/19')8 H041/29/06
O 865 180 9/19')8 H04L/12/56

WO 95/14269 5/1995 GOOFn/08
WO 97/28505 8/1997 GOOF/13/14
WO 99/00737 1/19')9 GOOF/13/00
W099/00945 1/1999 H04L/12/46
W099/00948 1/1999 .•.••...... H04L/12/56

WO 99/00949 1/1999 H04L/12/56

OTIIER PUBUCATIONS

Tuong Shoon Qian, et al., "Parallel Architecture Support for
High-Speed Protocol Processing," Feb. 1, 1997, Micropro
cessors And Microsystems, vol. 20, No. 6, pp. 325-339.

(List continued on next page.)

Primary Examiner-Wellington Chin
Assistant Examiner-William Schultz
(74) Attorney, Agent, or Finn-Park, Vaughan & Fleming
ll..P

(57) AMTRACT

A system and method are provided for identifying related
packets in a communication flow for the purpose of collec-),
tively processing them through a prolocol stack comprising t._.) 'I
one or more protocols under which the packets were trans- 1 'Ji ~ ,t
mitted. Apacke::;1:!at a network interface is paISed to J,11.,,NOJ 0Ut,V"'
rewwdlhon~f ____ one or more protoml be~ A 1 "'·' f
flow c is enerated to idenf a · ation flow tiiiif ;J n-
incl e ac e database of flow ke .
When the packet is placed in a queue to be transferred to a
host computer, the flow key and/or its flow number (e.g., its
index into the dalabasc) is stored in a separate queue. Near
to the lime at which the packet is tra.usf.erred to the host
computer, a dynamic packet batching module searches for a
packet that is IClated to the packet being transferICd (i.e., is
in the same flow) but which will be transferred later in time.
If a related packet is located. the host computer is alerted
and. as a result, delays processing the transferICd packet
until the IClatcd packet is also received. By collectively
processing the related packets, processor time is more effi
ciently utilw:d.

27 Claims, 49 Drawing Sheets

EX 1017 Page 217

(12) United States Patent

llllflllllllllllllllfillllljllfll HIIIHfllllllllllllllllfflllllllllll8006483804131

(10) Patent No.: US 6,483,804 B1
 Muller Ct 131- (45) Date of Patent: Nov. 19, 2002

(54) METHOD AND APPARATUS FOR DYNAMIC EP 0 573 B9 12/1993 1534111236
PACKET BATCHING WITH AHIGH EP 0 853 411 @1998 13041129106

PERFORMANCE NETWORK INTERFACE 5’90 Woo9§154gg Egg: ngg
. . W0 WO 97128505 311997 606F113!“

(75) “mm“ gm“:yazaysufigwgfim? (3:), W0 wo 991100937 1/1999 0061713100
8 “ ’ ” “‘7 wo wowms 1/1999 Hmuum(U) W0 W099/m948 1/1999 1104111256W0 W0 99/013949 1/1999 AAAAAAAA H041 1 56

(73) Assigncc: Sun Micmsystems, Inc“ Santa Clara, I 2,
CA (US) OTHER PUBIJCA’I‘IONS

. Ibong Shoon Chan, et 31., “Parallel Architecture Suppurt for
(x) Nance. Subjectto any dxaarzlaumix1 the term of 11115 “- I —S 1 Pmtoc01 P ing,” Feb. 1’ 1997, M’ ro—atant IS extended or ad usicd undar 35

{I} S C 1540)) by 0 days] cwsars And Micmsystenw, vol. 20, No. 6, pp. 325—339.
(List continued 011 mm pays.)

(21) Appl- No: 09/260,324 Primary Wimp-Wellington Chin
F11 d: - 1 1.999 Assistam mama-William Schultz

(22) 6 Mar ’ (74) Attorney, Agent, or Finn—$111k, Vaughan 8: Flaming
(51) Int. CL? ... H04] 1116 IL?

(52) 11.3. CI. 370/230; 370235; “gig/[22252; (57) ABSTRACT
(58) Field of Search 3701230, 231, A syslcm and method are provided for identifying mlatod

37Uf235, 392, 389, 225, 226, 241, 401, packets in a communication flow for the purpose of 0011;:-
428, 427, 4'73, 474, 394, 2‘52, 466, 489; fively processing them through a protocol stack mmprising

7091275, 226, 235, 241, 228 one or more protocols under which the packets were tram;-
mittcd.A ackct : r an at auctworkinterfaceis .. d to

(56) References Cited (3' 5": n “It, I 1 u! n «13' , nu .‘ u u a." I” 'Afl
wwmnowm fiwLm—vkmTsimxfggminmmfi‘sm“

5,414,704 A 5.11995 Spinney 310/60 When the packet is placcd in x qucur, to be transferred to a
5,583,940 A 12.!1996 Vutmscn cl :1. .. 380l49 host computer, the flow by and/or its flow number (e.g., its

Eggs; 2 153% MT? d ‘1' fig; index into the database) is stored in a separate queue. Near, Hausa: c A - -

5,758,089 A 5/1998 Gentry a .1. . . 395mm w mug“: 3‘ “11¢ msgxft *5 mfififl: figs:
5,778,180 A 7/1993 Gentry u a}. . . 39mm “mg “1’ . ”km“ ”the ”mm. M , 15,773,414 A 7/1998 Wm: a .L .. 71115 P” t at ‘5 3 1° , P“? t “‘3 “m“ .04?" ‘5
5,787,255 A 7/1998 Mm a BL . m the 383116 flow) butwinch W111 b0 transfcmd later 11:: tune.
5,7931954 ,3 3,1993 Baker at :1. If a related packet is heated, the host computer is alerted
5,870,394 A 211999 09:11:41 and, as a mun, delays proasing the transferred packet
5,920,705 A ‘ 711999 Lyon cl aL until the mlatcd packet is 1350 received. By collectively
6,157,955 A ‘ 1212000 Nanci at '11- - processing tin related packcts, pmmssur time is more effi-

FOREIGN PAIIENT DOCUMENTS

044773

u......mast-n«a:
931991 (3065115116

cicmly utilized.

2? Claims 49 Drawing Sheets

a.“"can
EX 1017 Page 217

r

l

US 6,483,804 Bl

OIBER PUBliCATIONS

Peter Newman, et al., "IP Switching and Gigabit Routers,"
IEEE Communications Magazine, vol 335, No. 1, Jan.
1997, pp. 64-69.
Francois Le Faucheur, "IE'JF Multiprotocol Label Switch
ing (MPLS) Architecture," IEEE International Conference,
Jun. 22, 1998, pp. 6-15.
F. Ha.llsall, "Data Communications, Computer Networks
and Open Systems," Electronic Systems Engineering Series,
pp. 451-452.
R. Cole, et al., "IP Over ATM: AFramewolk Document,"
IETF Online, Apr. 1996, pp. 1-31.
Sally Floyd & Van Jacobson, Random Early Detection
Gateways for Congestion Avoidance, Aug., 1993, IEEE/
ACM Transactioos on Networking.
U.S. patent application Ser. No. 08/893,862, entitled
"Mechanism for Reducing Interrupt Overhead in Device
Drivers," filed Jul. 11, 1997, inventor Denton Gentry.
Pending U.S. paten! application Ser. No. 09/259,445,
entitled "Method and Apparatus for Distributing Network
Processing on a Multiprocessor Computer," by Shimon
Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3481-ITF).
Pending U.S. patent application Ser: No. 09/260,367,
entitled "Method and Apparatus for Suppressing Interrupts
in a High-Speed Netwolk Environment," by Denton Gentry,
filed Mar. 1, 1999 (Attorney Docket SUN-P3482-ITF).
Pending U.S. patent applicati.on Ser. No. 09/259, 736entitled
"Method and Apparatus for Modulating Interrupts in a
Netwolk Interface," by Denton Gentry et at, filed Mar. 1,
1999 (Attorney Docket SUN-P3483-JTF).
Pending U.S. patent application Ser. No. 09/259,765,
entitled "A High Performance Network Interface," by Shi
mon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P348S-ITF).

Pending U.S. patent application Ser: No. 09/260,618,
entitled "Method and Apparatus for Classifying Nctwmk
Traffic in a High Per:furmance Network INterface," by
Shimon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3486-ITF).

Pending U.S. patent application Ser: No. 09/259,932,
entitled "Method and Apparatus for Managing a Netwolk
Flow in a High Performance Netwolk Interface," by Shimon
Muller et al., filed Mar. l, 1999 (Attorney Docket
SUN-P3487-ITF).

Pending U.S. patent application Ser. No. 09/258,952,
entitled "Method and Apparatus for Early Random Discan:I
of Packets," by Shimon Muller et al., filed Mar. 1, 1999
(Attorney Docket SUN-P3490-JTF).

Pending U.S. patent application Ser. No. 09.260,333,
entitled "Method and Apparatus for Data Re-Assembly with
a High Performance Network Interface," by Shimon Muller
et al.. filed Mar. 1, 1999 (Attorney Docket
SUN-P3507-ITF).

Pending U.S. patent application Ser. No. 09/258,955,
entitled "Dynamic Parsing in a High Performance Netwolk
Interface: by Denton Gentry, filed Mar. 1, 1999 (Attorney
Docket SUN-P3715-JTF).

Pending U.S. patent application Ser. No. 09/259,936,
entitled "Method and Apparatus for Indicating an InterIUpt
in a Network Interface," by Denton Gentry et al., filed Mar.
1, 1999 (Attorney Docket SUN-P3814-ITF).

* cited by examiner

EX 1017 Page 218

s
y
s
T
E
M

r------
' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I

I

DMAENGINE
120

NElWORK INTERFACE RECEIVE CIRCUIT 100

DYNAMIC
PACKET

BATCHING
MODULE

122

CONTROL
QUEUE

118

PACKET
QUEUE

116

FLOW
DATABASE

110

LOAD
DISTRIBUTOR

112

CHECKSUM
GENERATOR

114

---------------------,

FLOW DATABASE
MANAGER 108

HEADER PARSER
106

INPUT PORT
PROCESSING

MODULE
104

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i N
: E
i T
: w
I 0

..J ~
1
0
2

~- --
FIG. 1A

$ j ,,
i:: •
00. •

EX 1017 Page 219

DYNAMIC
PACKET

BATCHING FLOW FfivxEéAE-figgeMODULE DATABASE
122 110

 LOAD

DISTRIBUTOR HEADEEEARSER112

INPUT PORT
PACKET PROCESSING

III

'1|

'1I
1

E QUEUE MODULE
: 118 104
:Il

'.l

'.
l|

|

Zm4m<wmmacugoo4m0:
1

'1
CHECKSUM i

GENERATOR I

114 il11

1mm'8'!)

2002‘61'AoN

61710IWW8

III1708‘9817‘9Sfl

EX 1017 Page 219

U.S. Patent Nov.19,2002 Sheet 2 of 49 US 6,483,804 Bl

START
130

RECEIVE PACKE, AT IPP
MODULE FROM NETWORK

132

PARSE PACKET:
GENERATE FLOW KEY,

RETRIEVE HEADER INFO
134

STORE/UPDATE FLOW IN
FLOW DATABASE; ASSIGN"

OPERATION CODE
136

ASSIGN PROCESSOR
NUMBER FOR MULTI
PROCESSOR SYSTEM

138

POPULATE PACKET AND
CONTROL QUEUES

140

FIG. 1B

END
150

NOTIFY HOST COMPUTER
OF PACKET TRANSFER

148

STORE PACKET IN HOST
MEMORY

146

SEARCH FOR RELATED
PACKET($)

144

YES

EX 1017 Page 220

US. Patent

RECEIVE PACKET AT 1PP
MODULE FROM NETWORK

132

PARSE PACKET:
GENERATE FLOW KEY,

RETRIEVE HEADER INFO
134

 STORE/UPDATE FLOW IN
FLOW DATABASE; ASSIGN

OPERATION CODE
138

ASSIGN PROCESSOR
NUMBER FOR MULTl-
PROCESSOR SYSTEM

138

Nov. 19, 2002

Sheet 2 of 49

US 6,483,804 B1

NOTiFY HOST COMPUTER
OF PACKET TRANSFER

148

STORE PACKET TN HOST
MEMORY

146

SEARCH FOR RELATED

PACKERS)
144

YES

N0

PACKET
READY TO BE

TRANSFERRED?
142

POPULATE PACKET AND
CONTROL QUEUES

140

FIG. 1B

EX 1017 Page 220

r
l

i

l

U.S. Patent

HEADER PORTION
204

Nov. 19, 2002 Sheet 3 of 49 US 6,483,804 Bl

LAYER ONE HEADER
210

LAYER TWO HEADER
212

LAYER THREE HEADER
214

LAYER FOUR HEADER
216

DATA PORTION
202

I I
I TRAILER 206 I

L---------------------------------'

PACKET200

FIG. 2

EX 1017 Page 221

U.S. Patent Nov. 19, 2002 Sheet 4 of 49 US 6,483,804 Bl

HEADER PARSER 106
~-- - --------------- -----,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FLOW ¢·-DATABASE
MANAGER ,.-

HEADER MEMORY
302

INSTRUCTION MEMORY
306

PARSER
304

I
I
I
I
I

~-- IPP
\r---;--MODULE

-~ IPP
___ ·:--/MODULE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

----------------------------------'

FIG. 3

EX 1017 Page 222

r
!
i
i

U.S. Patent Nov. 19, 2002 Sheet 5 of 49 US 6,483,804 Bl

START
400

COPY PACKET HEADER
402

YES

FIG. 4A

OTHE~

NO -0
>-· A

EX 1017 Page 223

“,qu*1

'"‘‘MM*WWWWMWMM

US. Patent Nov. 19, 2002 Sheet 5 of 49 US 6,483,804 Bl

START
400

COPY PACKET HEADER
402

VLAN TAGGED
HEADER?

ETHERNET

862.3 HEADER?
408 OTHER/UNKNOWN :

NO

WHO
\J

VERIFY
LLC SNAP

ENCAPSULATION?
410

IPv4 OR IPv6
HEADER?

412

FIG. 4A

EX 1017 Page 223

r
'

U.S. Patent

l

Nov. 19, 2002 Sheet 6 of 49 US 6,483,804 Bl

YES

PROCESS 1Pv4 HEADER
416

PROCESS 1Pv6 HEADER
420

NO~
>--- -0

PROCESS TCP HEADER
424

GENERATE FLOW KEY
426

GENERATE CONTROL INDICATOR
428

END
432

SET NO_ASSIST FLAG FOR
PACKET

430

FIG. 4B

EX 1017 Page 224

US. Patent Nov. 19, 2002 Sheet 6 of 49 US 6,483,804 B1

E

§
§§

§

1

Q <9

SET NO_ASSIST FLAG FOR

PACKET
430

FIG. 4B

WWWWWW...
EX 1017 Page 224

------------------------···---·-·· ··-·-

FLOW DATABASE 110
I - --
1
l FLOW'

IP DESTINATION I TCP SOURCE
TCP I

: 0
IP SOURCE

ADDRESS510 ADDRESS 512 PORT 514
DESTINATION

I
I
I I
I
I
I
I
I

I

I
I
I
I
I

I I
I I
I I
I I
I I

ASSOCIATIVE PORTION 502

I

I·
I
I
I
I
I
I,
I
I
I
I
I
I

PORT 516

N

506 _)'

FLOW VALIDITY
FLOW

FLOW ACTIVITY
INDICATOR 520

SEQUENCE#
INDICATOR 524

522

I
I

I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

ASSOCIATED PORTION 504

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

-- I

FIG. 5

··-··- ... __ ,.,.,

~ •
00 •

EX 1017 Page 225

 WWW—m”My ,u-A.

gm.5:2:FLOW ACTIVITY
INDICATOR 524

WmF
SEQUENCE #

522

FLOW VALIDITY
INDICATOR 520

FLOW '
TCP

DESTINATION

FLOW DATABASE 110

PORT 516

w
4WMTcornPCCD-

TN

muT5
AT

Rwemm0WMRsUS0%SDmm

23.E.88

£52q3.he
Gm936%?“H:

ASSOCIATED PORTION 504

FIG. 5

ASSOCIATIVE PORTION 502

EX 1017 Page 225

U.S. Patent Nov. 19, 2002

~
~

I

I
' '

RECEIVE SEARCH
REQUEST

602

NO

Sheet 8 of 49 US 6,483,804 Bl

SEARCH FLOW DATABASE
>-~~~~~~.i 606

NO

RETRIEVE FLOW# AND
FLOW DATA

610

YES

FIG. 6A

EX 1017 Page 226

US. Patent Nov. 19, 2002 Sheet 8 of 49 US 6,483,804 B1

RECEIVE SEARCH
REQU EST

602

FLAGGED FOR NO
ASSISTANCE?

604

SEARCH FLOW DATABASE
606

MATCH FLOW

KEY IN DATABASE?
608

RETRIEVE FLOW # AND
FLOW DATA

610

ATTEMPT YES
TO ESTABLISH
CON NECTION?

614

 DOES PACKET
CONTAIN DATA?

612

FIG. 6A

EX 1017 Page 226

T
U.S. Patent Nov.19, 2002

YES

UPDATE FLOW SEQUENCE
NUMBER & ACTIVITY

INDICATOR; SET FLOW
VALIDITY INDICATOR

622

SELECT OPCODE 4 FOR
PACKET

624

NO

NO

NO

Sheet 9 of 49 US 6,483,804 Bl

--J

TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
628

TEAR DOWN FLOW;
SELECT OPCODE 3 FOR

PACKET
626

,-.

FIG. 68

EX 1017 Page 227

 US. Patent Nov.19,2002 Sheet 9 of 49

FLOW

SEQUENCE
NUMBERS MATCH?

616

N0

MORE DATA
TO FOLLOW?

620

 UPDATE FLOW SEQUENCE

NUMBER 8. ACTIVITY
INDICATOR; SET FLOW
VALIDITY INDICATOR

622

SELECT UPCODE 4 FOR
PACKET

624

FIG. SB

TEAR DOWN FLOW;

SELECT OPCODE 2 FOR
PACKET

628

TEAR DOWN FLOW;
SELECT OPCODE 3 FOR

PACKET
626

US 6,483,804 B1

EX 1017 Page 227

r
I
'

!
r
I

l

U.S. Patent Nov. 19, 2002 Sheet 10 of 49 US 6,483,804 Bl

NO

TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
632

SELECT OPCODE O FOR
PACKET

644

UPDATE AS REQUIRED:
FLOW SEQUENCE#",

ACTIVITY INDICATOR;
VALIDITY INDICATOR

642

REPLACE FLOW:
YES

SET FLOW SEQUENCE #;
c>-------- SET ACTIVITY INDICATOR;

YES

FIG. 6C

SET FLOW VALIDITY
634

SELECT OPCODE 7 FOR
PACKET

636

TEAR DOWN FLOW;
SELECT OPCODE 1 FOR

PACKET
640

EX 1017 Page 228

U.S. Patent Nov. 19, 2002 Sheet 10 of 49 US 6,483,804 Bl

REPLACE FLOW:
MORE DATA SET FLOW SEQUENCE #:

TO FOLLOW? SET ACTIVITY INDICATOR;
630 SET FLOW VALIDITY

634

TEAR DOWN FLOW:

SELECT OPCODE 2 FOR SELECT OPCODE 7 FORPACKET

PACKEI' 636632

TEAR DOWN FLOW;
SELECT OPCODE 1 FOR

PACKET
640

SELECT OPCODE 0 FOR
PACKET

644

UPDATE AS REQUIRED:
FLOW SEQUENCE #:

ACTIVITY INDICATOR;
VALIDITY INDICATOR

642

FLAGS OKAY?
638

FIG. 6C

m-m

~7'Vv1-www-

EX 1017 Page 228

U.S. Patent Nov. 19, 2002 Sheet 11 of 49 US 6,483,804 Bl

RETRIEVE LOWEST FLOW#
HAVING AN INVALID FLOW

INDICATOR
648

0-YES

FIG. 6D

YES

RETRIEVE FLOW# OF
LEAST RECENTLY ACTIVE

FLOW
650

NO

NO

NO n
-~

EX 1017 Page 229

US. Patent Nov. 19, 2002 Sheet 11 or 49 US 6,483,804 Bl

NO
 FLOW

DATABASE FULL?
646

RETRIEVE FLOW?! OF
LEAST RECENTLY ACTIVE

FLOW
650

RETRIEVE LOWEST FLOW 82!
HAWNG AN INVALID FLOW

INDICATOR
648

N0

DOES PACKET
CONTAIN DATA?

652

 ‘ MORE DATA NO '
TO FOLLOW? — ~

654

 @945

FIG. 6D

EX 1017 Page 229

r
U.S. Patent Nov. 19, 2002

NO

ADD FLOW:
SET FLOW SEQUENCE#;

SET ACTMTY INDICATOR;
SET FLOW VALIDITY

660

SELECT OPCODE 6 FOR
PACKET

662

SELECT OPCODE 5 FOR
PACKET

668

Sheet 12 of 49 US 6,483,804 Bl

G~) _:_,

YES

REPLACE FLOW:
SET FLOW SEQUENCE#;

SET ACTIVITY INDICATOR;
SET FLOW VALIDITY

664

SELECT OPCODE 7 FOR
PACKET

666

FIG. 6E

EX 1017 Page 230

.m.“w..._W."WW-

US. Patent Nov.19,2002 Sheet 12 of 49 US 6,483,804 B1

NO
 FLOW YES

DATABASE FULL?
658

ADD FLOW:

SET FLOW SEQUENCE it;
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY
660

REPLACE FLOW:

SET FLOW SEQUENCE #;
SET ACTIVITY INDICATOR;

SEI' FLOW VALIDITY
664

SELECT OPCODE 6 FOR
PACKET

662

SELECT OPCODE 7 FOR
PACKET

666

SELECT OPCODE 5 FOR
PACKET * w

668

FIG. 6E

EX 1017 Page 230

l

U.S. Patent Nov. 19, 2002 Sheet 13 of 49 US 6,483,804 Bl

RECEIVE ANO PARSE
PACKET

702

l
LOAD DISTRIBUTOR

RECEIVES FLOW KEY
704

'

HASH FLOW KEY
706

'
PERFORM MODULUS
OPERATION ON HASH

VALUE
708

- _______.
STORE PACKET AND

PROCESSOR NUMBER
710

FIG. 7

END
720

I

PROCESS PACKET
718

ALERT SELECTED
PROCESSOR

716

PACKET INFORMATION
STORED FOR PROCESSING
BY SELECTED PROCESSOR

714

ALERT HOST COMPUTER
712

-~

-

EX 1017 Page 231

RECEIVE AND PARSE
PACKET

702

PROCESS PACKET
718

LOAD DISTRIBUTOR
RECEIVES FLOW KEY

704

ALERT SELECTED
PROCESSOR

716

PACKET INFORMATION
STORED FOR PROCESSING
BY SELECTED PROCESSOR

714

HASH FLOW KEY
706

PERFORM MODULUS
OPERATION ON HASH

VALUE
708

ALERT HOST COMPUTER

712

STORE PACKET AND

PROCESSOR NUMBER
710

FIG. 7

U.S. Patent Nov. 19, 2002 Sheet 13 of 49 US 6,483,804 Bl

EX 1017 Page 231

r
U.S. Patent

ENTRYB

READ
POINTER

810

WRITE
POINTER

812

0~

-...

... -

Nov. 19, 2002 Sheet 14 of 49 US 6,483,804 Bl

PACKET QUEUE 116 PACKET

PACKET PORTION 802 ·1
r--- ---------------- ------ - 0

FILLER 802a

CHECKSUM

I
PACKET I DIAGNOSTIC AND STATUS

VALUE LENGTH INFORMATION
804 806 808

255

FIG. 8

EX 1017 Page 232

U.S. Patent Nov.19, 2002 Sheet 15 of 49 US 6,483,804 Bl

CONTROL QUEUE 118 PACKET

.--~~=---.-~~~;:::-:-;,:-~~,n'T""-;:..;;:~#1
NO_ PAYLOAD PAYLOAD OTHER +

READ
POINTER

914

WRITE
POINTER

916

CPU#
902

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ASSIST OFFSET SIZE STATUS 0
904 908 910 912

N

I I I I
I I I I
I I I I
I I I I
1 I I I
I I J I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

255

FIG. 9

EX 1017 Page 233

US. Patent Nov. 19,2002 Sheet 15 of 49 US 6,483,804 B1

CONTROL QUEUE 118 PACKET

#

ENTRY 900 PAYLOAD PAYLOAD OTHER l
OFFSET S‘ZE STATUS O

908 910 912

READ
POINTER

914

WRITE
POINTER

916

255

FIG. 9

EX 1017 Page 233

,. .
_ ____;. ______________ .~

OMA ENGINE 120 I--------------------------------------- - - I
I I

H
0
s
T

I
I
I
I
I

g~
M \,-i/1
p :
U I

T :
E I

R :

~

FREE RING
MANAGER ~

1012

--------,
I FREE I
I DESCRIPTOR I
I CACHE I - .
I 1012a I L _______ J

4
--------,
1 COMPLETION I
I DESCRIPTOR I
I CACHE I
I I L __ 1_9'!._4! __ J

COMPLETION
RING MANAGER

1014

I I FLOW RE-
I ASSEMBLY
I k--
I TABLE

1004 I V--_J-
IY-·, HEADER

I TABLE ~
I

l.
1006

MTUTABLE
~ 1008

DMAMANAGER f--J 1002
i/L._

JUMBO
~ I TABLE ~ I 1010

DYNAMIC
PACKET

BATCHING
MODULE

122

I
··········-·······-1

CONTROL
QUEUE

118

I
I
I
I
I
I
I
I
I
I
I _I\ ----· --- I -

PACKET
QUEUE

116
I I

I-- I

FIG. 10

0 •
00. •

~
tt)

=

~
~ .. ~
~

r
~
e,-.

e.
,I:.
~

Cj
C'l'.l .. ~
~
QC
= .s:,.

t::d
"""'

EX 1017 Page 234

I, ,WWWWW

IJITI—IC'UEOO—IUJOI
FREE RING
MANAGER

DESCRIPTOR ICACHE

TEOTIIEITETIGN I
I DESCRIPTOR I

I CACHEI

COMPLETION
RING MANAGER

1014

DMA ENGINE 120

FLOW RE-
ASSEMBLY

TABLE
1004

MTU TABLE
1008

DMA MANAGER
1002

DYNAMIC
PACKET

BATCHING
MODULE

122

CONTROL
QUEUE

118

PACKET
QUEUE

116

mama'S'Il

ZO0Z‘61'MIN

6|?1091Rails

Islvos‘ssv‘9srl

EX 1017 Page 234

U.S. Patent

VALIDITY
INDICATOR

1106

VALIDITY
INDICATOR

1116

VALIDITY
INDICATOR

1126

VALIDITY
INDICATOR

1136

I
I
I
I
I
I
I
I
I
I
I

Nov. 19, 2002 Sheet 17 of 49 US 6,483,804 Bl

FLOW RE-ASSEMBLY TABLE 1004

NEXT ADDRESS
1104

I
I
I
I
I
I
I
I
I
I

I

HEADER TABLE 1006

NEXT ADDRESS
1114

MTU TABLE 1008

NEXT ADDRESS
1124

JUMBO TABLE 1010

NEXT ADDRESS
1134

FIG. 11

FLOW RE-ASSEMBLY
BUFFER INDEX

1102

HEADER BUFFER
INDEX
1112

MTU BUFFER INDEX
1122

JUMBO BUFFER
INDEX
1132

0

63

EX 1017 Page 235

US. Patent Nov. 19,2002 Sheet 17 of 49 Us 6,483,804 B1

PACKET

FLOW REASSEMBLY TABLE 1004 #1VAL|DITY FLow RIB-ASSEMBLY

INDICATOR NEXTfig'i’RESS BUFFER INDEX1106 1102

63

HEADER TABLE 1006

wxuosw HEADER BUFFER

mmm‘roa NEXTmamas INDEX1116 1112

MTU TABLE 1008

vmmw NEXT ADDRESS mu BUFFER INDEX
maze/won “24 11221126

JUMBO TABLE 1010

VALIDIW Jumac BUFFER

INDICATOR NEXT 31351212533 INDEX1136 1132

FIG. 1 1

EX 1017 Page 235

..... ,_ _ _.;,,,...,..,_ ---··---------------------

' ' \

FREE DESCRIPTOR 12D2

\
\

I \
I \

' \ ' \ I \
I \

I \
/ \

I \
I \
I \

/ \
I \
' \ I \

I \

I ',
I \

I \
I \

I ',
I \

FREE BUFFER ARRAY 1210

ARRAY INDEX BUFFER IDENTIFIER FIELD 1214 FIELD 1212

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I '
I \ I

rL' R-I-NG~12:l~:o_ex_Jl ______ a_u_F_FE_R_1k_~_Ee NT-IF-IE_R_ •• ;;::: ••• ::::: •• =: ... :----~1 //
f

A

-................................. ..~-" .. ~
..................................... ~ ~ ... ---"'"'># ..

FIG. 12A

0 •
00 •

EX 1017 Page 236

FREE BUFFER ARRAY 1210

ARRAY INDEX
FIELD 1212 BUFFER IDENTIFIER FIELD 1214

FREE DESCRIPTOR 1202

FREE DESCRIPTOR

RING
1200

maxed'S'Il

zooz‘6IWM

6171°81“WIS

ISI1708‘987‘9SIl

EX 1017 Page 236

.. ,. :,--~~- -·· __ ,,,_,..._ _________________________________,, ~~

DESCRIPTOR
TYPE 1238

HEADER
OFFSET 1246

LAYER THREE
HEADER OFFSET

1258

ELEASE &
LIT FLAGS DATA OFFSET DATA BUFFER

1236 1234 INDEX 1232
DATA SIZE

1230

HEADER BUFFER HEADER SIZE NEXT BUFFER
INDEX 1244 1242 INDEX 1240

PROCESSOR
NO_ASSIST OPERATION

FLOW
IDENTIFIER NUMBER

1256 SIGNAL 1254 CODE 1252 1250

OTHER 1266
OWNER HIP
INDICATOR

1264

PACKET
LENGTH

1262

FIG. 128

I .,
I

/
/ .,

/
I

/
/

COMPLETION DESCRIPTOR 1222

/
/

/

I
I

/ COMPLETION
DESCRIPTOR RING

1220 ...----'----,

0 •
00 •

EX 1017 Page 237

DESCRIPTDR sgiiI‘rEfiEEés DATA OFFSET DATA BUFFER DATA SIZE ‘\\
TYPE 1235 1236 1234 INDEX 1232 1230 \ \ \ \

HEADER HEADER BUFFER HEADER SIZE NEXT BUFFER
OFFSET 1246 INDEX 1244 1242 INDEX 1240

LAYER THREE PROCESSOR FLOW ’

HEADER OFFSET IDENTIFIER 3&2???“ ggfiéflgg NUMBER // 1220
1258 1256 1250 [II

/
OWNER HIP PACKET r

OTHER 1288 INDICATOR LENGTH ggffgfig f"1264 1282 "

COMPLETION DESCRIPTOR 1222

COMPLETION
DESCRIPTOR RING

FIG. 123

I

111311121'S'fl

20M‘61MN

 67J061mus

IHvos‘esv‘9sn

EX 1017 Page 237

U.S. Patent Nov. 19, 2002 Sheet 20 of 49

START
1300

PACKET STORED IN DATA
QUEUE

1302

READ PACKET ENTRY
FROM CONTROL QUEUE

1304

FETCH FLOW NUMBER
1306

FIG. 13

US 6,483,804 Bl

EX 1017 Page 238

US. Patent

Nov. 19, 2002

PACKET STORED IN DATA
QUEUE

1302

READ PACKET ENTRY

FROM CONTROL QUEUE
1304

FETCH FLOW NUMBER
1306

OPERATION
CODE 0?

1308

OPERATION
CODE 1?

1310

Sheet 20 of 49

OPERATION
CODE 5?

1 31 B

OPERATION
CODE 4?

1 316

OPERATION
CODE 3?

1 314

OPERATION
CODE 2?

1312

FIG. 13

us 6,483,804 B1

EX 1017 Page 238

U.S. Patent Nov. 19, 2002 Sheet 21 of 49 US 6,483,804 Bl

NO
PREPARE HEADER BUFFER

>-~~~~~~-.i 1402

YES

COPY PACKET INTO
HEADER BUFFER

1404

WRITE COMPLETION
DESCRIPTOR

1406

YES

INVALIDATE HEADER
BUFFER

1410

NO

FIG. 14

UPDATE HEADER BUFFER
TABLE

1412

END
1499

EX 1017 Page 239

US. Patent Nov. 19,2002 Sheet 21 of 49 US 6,483,304 Bl

HEADER
BUFFER VALID?

1400

PREPARE HEADER BUFFER
1402

COPY PACKET INTO
HEADER BUFFER

1404

WRITE COMPLETION
DESCRIPTOR

1406

UPDATE HEADER BUFFER
TABLE

1412

HEADER
BUFFER FULL?

1408

INVALIDATE HEADER
BUFFER

1410

FIG. 14

EX 1017 Page 239

U.S. Patent Nov. 19, 2002 Sheet 22 of 49 US 6,483,804 Bl

YES

WRITE COMPLETION
DESCRIPTOR

1508

INVALIDATE FLOW RE
ASSEMBLY BUFFER

1510

YES

INVALIDATE HEADER
BUFFER

1516

NO
>-~~~~~~PREPARE HEADER BUFFER

1502

YES

NO

FIG. 15

COPY PACKET INTO
HEADER BUFFER

1504

NO

WRITE COMPLETION
DESCRIPTOR

1512

UPDATE HEADER BUFFER
TABLE
1518

END
1599

EX 1017 Page 240

US. Patent Nov. 19, 2002 Sheet 22 of 49 US 6,483,804 B1

HEADER
BUFFER VALID?

1500

PREPARE HEADER BUFFER
1502

COPY PACKET INTO
HEADER BUFFER

1504

FLOW
REnASSEMBLY

BUFFER VALID?
1506

WRITE COMPLETION
DESCRIPTOR

1508

WRITE COMPLETION
DESCRIPTOR

1512

INVALIDATE FLOW RE—
ASSEMBLY BUFFER

1510

UPDATE HEADER BUFFER
TABLE

1518

HEADER
BUFFER FULL?

1514

INVALIDATE HEADER
BUFFER

1516

FIG. 15

EX 1017 Page 240

U.S. Patent

NO

Nov. 19, 2002 Sheet 23 of 49 US 6,483,804 Bl

YES

FIG. 16A

WRITE COMPLETION
DESCRIPTOR

1602

INVALIDATE FLOW RE
ASSEMBLY BUFFER

1604

EX 1017 Page 241

US. Patent Nov. 19, 2002 Sheet 23 of 49 US 6,483,804 Bl

FLOW
RE-ASSEMBLY

BUFFER VALID?
1500

WRITE COMPLETION
DESCRIPTOR

1802

INVALIDATE FLOW RE-
ASSEMBLY' BUFFER

1804

SMALL PACKET?
1606

JUMBO PACKET?
1608

FIG. 16A

EX 1017 Page 241

U.S. Patent Nov. 19, 2002 Sheet 24 of 49 US 6,483,804 Bl

YES

COPY PACKET INTO
HEADER BUFFER

1614

WRITE COMPLETION
DESCRIPTOR

1616

YES

INVALIDATE HEADER
BUFFER

1620

NO
PREPARE HEADER BUFFER

">-~~~~~~+! 1612

NO

FIG. 168

UPDATE HEADER BUFFER
TABLE
1622

END
1699

EX 1017 Page 242

US. Patent Nov. 19, 2002 Sheet 24 of 49 US 6,483,804 Bl

a

HEADER
BUFFER VALID?

1610

PREPARE HEADER BUFFER
1612

COPY PACKET INTO
HEADER BUFFER

1614

WRITE COMPLETION
DESCRIPTOR

1616

HEADER UPDATE HEADER BUFFER
BUFFER FULL? TABLE

161 8 1 622

INVALlDATE HEADER
BUFFER

1620

FIG. 1GB

EX 1017 Page 242

U.S. Patent Nov. 19, 2002 Sheet 25 of 49 US 6,483,804 Bl

YES

COPY PACKET INTO MTU
BUFFER

1634

WRITE COMPLETION
DESCRIPTOR

1636

YES

INVALIDATE MTU BUFFER
1640

NO

NO

FIG. 16C

PREPARE MTU BUFFER
1632

UPDATE MTU BUFFER
TABLE
1642

EX 1017 Page 243

US. Patent Nov. 19,2002 Sheet 25 of 49 US 6,483,804 Bl

MTU
BUFFER VALID?

1630

PREPARE MTU BUFFER
1632

COPY PACKET INTO MTU
BUFFER

1634

WRITE COMPLETION
DESCRIPTOR

1636

MTU
BUFFER FULL?

1638

UPDATE MTU BUFFER
TABLE

1642

INVALI DATE MTU BUFFER
1640

FIG. 160

EX 1017 Page 243

U.S. Patent Nov. 19, 2002 Sheet 26 of 49 US 6,483,804 Bl

NO

TRANSFER PACKET INTO
JUMBO BUFFER

1658

WRITE COMPLETION
DESCRIPTOR

1660

INVALIDATE JUMBO
BUFFER

1668

NO
PREPARE JUMBO BUFFER

:>-~~~~~--.a 1652

YES

YES

FIG.160

TRANSFER FIRST PART OF
PACKET INTO CURRENT

JUMBO BUFFER
1662

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1664

WRITE COMPLETION
DESCRIPTOR

1666

ENO
1699

EX 1017 Page 244

U.S. Patent Nov. 19, 2002 Sheet 26 of 49 US 6,483,804 Bl

C3

 N0

JUMBO
BUFFER VALID?

1650

PREPARE JUMBO BUFFER

1652

YES

SPLIT JUMBO YES
BUFFERS?

1654

NO

PACKET
TOO LARGE FOR

ONE BUFFER?
1656

TRANSFER FIRST PART OF
PACKET INTO CURRENT

JUMBO BUFFER
1662

TRANSFER PACKET INTO T PACSE1:310 538':ng
JUMBO BUFFER OJUMBO BUFFER1658 1664

WRTTE COMPLETION
OESCRIPTOR

1666

WRITE COMPLETION
DESCRIPTOR

1660

INVALIDATE JUMBO END
BUFFER * 16991668

FIG. 160

EX 1017 Page 244

;j ,,
.~
,-.

.. . ~

'i

"
\·

U.S. Patent Nov. 19, 2002 Sheet 27 of 49 US 6,483,804 Bl

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1674

NO

TRANSFER PACKET DATA
INTO JUMBO BUFFER

1678

WRITE COMPLETION
DESCRIPTOR

1680

NO
PREPARE HEADER BUFFER

>-~~~~~~~ 1672

YES TRANSFER FIRST PART OF
PACKET DATA. INTO JUMBO

~~~~~~~~ BUFFER 

G 
FIG. 16E 

1682 

TRANSFER REMAINDER OF 
PACKET DATA INTO 

SECOND JUMBO BUFFER 
1684 

WRITE COMPLETION 
DESCRIPTOR 

1686 

EX 1017 Page 245

 US. Patent

115‘;twimm.‘Iu 

Nov. 19, 2002

CA

HEADER
BUFFER VALID?

1670

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1674

PACKET
TOO LARGE FOR

ONE BUFFER?
1676

TRANSFER PACKET DATA
INTO JUMBO BUFFER

1678

WRI‘I'E COMPLEI'ION
DESCRIPTOR

1680

Sheet 27 of 49

FIG. 16E

PREPARE HEADER BUFFER
1672

TRANSFER FIRST PART OF

PACKET DATA INTO JUMBO
BUFFER

1682

TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1684

WRITE COMPLETION
DESCRIPTOR

1686

 
US 6,483,804 131

EX 1017 Page 245



U.S. Patent Nov. 19, 2002 Sheet 28 of 49 US 6,483,804 Bl 

YES 

INVALIDATE HEADER 
BUFFER 

1692 

INVALIDATE JUMBO 
BUFFER 

1688 

END 
1699 

FIG. 16F 

NO 

UPDATE HEADER BUFFER 
TABLE 

1694 

EX 1017 Page 246

US. Patent Nov. 19, 2002 Sheet 28 of 49 US 6,483,804 31

(as)

lNVALi DATE JUMBO
BUFFER

1688

  

  
  

 
  

  
 

YES NO
 

HEADER
BUFFER FULL?

1690

UPDATE HEADER BUFFER
TABLE

1594
 
 

INVALIDATE HEADER
BUFFER

1692

 

 

FIG. 16F

 
EX 1017 Page 246



U.S. Patent Nov. 19, 2002 Sheet 29 of 49 US 6,483,804 Bl 

YES 

TRANSFER PACKET 
HEADER INTO HEADER 

BUFFER 
1704 

NO 
PREPARE HEADER BUFFER 

~~~~~~~-+! 1702 

NO

FIG. 17A

PREPARE FLOW RE
ASSEMBLY BUFFER

1708

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1710

WRITE COMPLETION
DESCRIPTOR

1712

INVALIDATE FLOW RE
ASSEMBLY BUFFER

1714

EX 1017 Page 247

US. Patent Nov. 19, 2002 Sheet 29 of 49 US 6,483,804 Bl

NO
HEADER

BUFFER VAUD? PREPARE HWEAJLZIER BUFFER1700

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1704

RE-ASSEMBLY NO PREPARE FLOW RE-
BUFFER VALID? ASSEMBLY BUFFER

1706 1708

YES

TRANSFER PACKEI' DATA
INTO FLOW RE—ASSEMBLY

BUFFER
1710

WRITE COMPLETION
DESCRIPTOR

1712

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1714

EX 1017 Page 247

•,, ,,
.,. ,, . ·· .. U.S. Patent Nov. 19, 2002 Sheet 30 of 49 US 6,483,804 Bl

NO

TRANSFER PAYLOAD INTO
FLOW RE-ASSEMBLY

BUFFER
1718

WRITE COMPLETION
DESCRIPTOR .

1720

YES

INVALIDATE ENTRY IN
FLOW RE-ASSEMBLY

BUFFER TABLE
1728

FIG. 178

TRANSFER FIRST PORTION
OF PAYLOAD INTO FLOW
RE-ASSEMBLY BUFFER

1722

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

1724

WRITE COMPLETION
DESCRIPTOR

1726

EX 1017 Page 248

US. Patent Nov. 19, 2002 Sheet 30 of 49 US 6,483,804 Bl

\

TCP

PAYLOAD TOO
LARGE FOR

BUFFER?
1716

TRANSFER FIRST PORTION
OF PAYLOAD INTO FLOW
RE-ASSEMBLY BUFFER

1722

TRANSFER PAYLOAD INTO
FLOW RE-ASSEMBLY

BUFFER
1718

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

1724

WRITE COMPLETION
DESCRIPTOR .

1720

WRITE COMPLETION
DESCRIPTOR

1726

INVALI DATE ENTRY IN
FLOW RE—ASSEMBLY

BUFFER TABLE
1728

FIG. 1TB

EX 1017 Page 248

U.S. Patent Nov. 19, 2002

YES

INVALIDATE HEADER
BUFFER

1732

END
1799

Sheet 31 of 49 US 6,483,804 Bl

NO

UPDATE HEADER BUFFER
TABLE

1734

FIG. 17C

EX 1017 Page 249

US. Patent N0v.19, 2002 Sheet 31 of 49 Us 6,483,804 Bl

YES NO
 HEADER

BUFFER FULL?
1730

UPDATE HEADER BUFFER
TABLE

1734

iNVALlDATE HEADER
BUFFER

1 732

FIG. 176

EX 1017 Page 249

U.S. Patent Nov. 19, 2002 Sheet 32 of 49 US 6,483,804 Bl

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1804

NO
PREPARE HEADER BUFFER

">-~~~~~---.. 1802

YES

FIG.18A

EX 1017 Page 250

US. Patent Nov. 19, 2002 Sheet 32 of 49 US 6,483,804 B1

HEADER
BUFFER VALID?

1800

PREPARE HEADER BUFFER
1802

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1804

TCP
PAYLOAD TOO

LARGE FOR
BUFFER?

1808

FLOW
RE-ASSEMBLY

BUFFER VALID?
1806

N0

FIG. 18A

EX 1017 Page 250

U.S. Patent Nov. 19, 2002 Sheet 33 of 49 US 6,483,804 Bl

E1)
../

'

PREPARE FLOW RE-
ASSEMBLY BUFFER

1810

I,

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1812

I,

WRITE COMPLETION
DESCRIPTOR

1814

'~
UPDATE FLOW RE-

ASSEMBLY BUFFER TABLE
1816

't

,1,

E4
·"\

FIG. 188

EX 1017 Page 251

US. Patent Nov. 19, 2002 Sheet 33 0f 49

PREPARE FLOW RE-
ASSEMBLY BUFFER

1810

TRANSFER PACKET DATA
INTO FLOW RE—ASSEMBLY

BUFFER
1812

WRITE COMPLETION
DESCRIPTOR

1814

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

1316
FIG. 183

US 6,483,804 B1

EX 1017 Page 251

U.S. Patent Nov. 19, 2002 Sheet 34 of 49 US 6,483,804 Bl

YES

RELEASE FLOW IN FLOW
RE-ASSEMBLY BUFFER

TABLE
1.826

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1820

WRITE COMPLETION
DESCRIPTOR

1822

FIG. 18C

NO

UPDATE FLOW RE
ASSEMBLY BUFFER TABLE

1828

EX 1017 Page 252

US. Patent Nov. 19, 2002 Sheet 34 of 49 US 6,483,804 Bl

 TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1820

WRITE COMPLETION
DESCRIPTOR

1822

YES FLOW

RE-ASSEMBLY
BUFFER FULL?

1 824

NO

RELEASE FLOW IN FLOW

UPDATE FLOW RE-

RE'ASSEMBLY BUFFER ASSEMBLY BUFFER TABLE
TABLE 18281826

FIG. 18C

EX 1017 Page 252

U.S. Patent Nov. 19, 2002 Sheet 35 of 49 US 6,483,804 Bl

YES

INVALIDATE HEADER
BUFFER TABLE

1840

TRANSFER FIRST PORTION
OF PACKET PAYLOAD INTO

RE-ASSEMBLY BUFFER
1830

TRANSFER REMAINING
PACKET PAYLOAD INTO

SECOND BUFFER
1832

WRITE COMPLETION
DESCRIPTOR

1834

UPDATE FLOW RE
ASSEMBLY BUFFER TABLE

1836

NO

UPDATE HEADER BUFFER
1842

FIG. 180

EX 1017 Page 253

US. Patent

YES

INVALIDATE HEADER
BUFFER TABLE

1840

Nov. 19, 2002

TRANSFER FIRST PORTION
OF PACKET PAYLOAD INTO

RE-ASSEMBLY BUFFER
1830

TRANSFER REMAINING
PACKET PAYLOAD INTO

SECOND BUFFER
1832

WRITE COMPLETION
DESCRIPTOR

1834

UPDATE FLOW RE-

ASSEMBLY BUFFER TABLE
1 B36

HEADER
BUFFER FULL?

1838

FIG. 18D

Sheet 35 of 49

NO

UPDATE HEADER BUFFER
1842

US 6,483,804 B1

EX 1017 Page 253

..
"

U.S. Patent Nov. 19, 2002

PREPARE MTU BUFFER
1906

WRITE COMPLETION
DESCRIPTOR

1910

YES

INVALIDATE MTU BUFFER
1914

NO

NO

Sheet 36 of 49 US 6,483,804 Bl

NO

NO

YES

TRANSFER PACKET INTO
MTUBUFFER

1908

UPDATE MTU BUFFER
TABLE
1916

FIG.19A

EX 1017 Page 254

US. Patent Nov. 19, 2002 Sheet 36 of 49 US 6,483,804 B1

.43

YES

N0

SMALL PACKET?
1900

J UM80 PACKET'?
1 902

NO

NO

MTU
BUFFER VALID?

1904

PREPARE MTU BUFFER
1906

YES

WRITE COMPLETION
DESCRIPTOR

191 0

TRANSFER PACKET lNTO
MTU BUFFER

1 908

MTU
BUFFER FULL?

1912

UPDATE MTU BUFFER
TABLE

1 916

INVALIDATE MTU BUFFER
1914

END
1999

FIG. 19A

EX 1017 Page 254

U.S. Patent Nov. 19, 2002 Sheet 37 of 49 US 6,483,804 Bl

TRANSFER PACKET INTO
HEADER BUFFER

1924

WRITE COMPLETION
DESCRIPTOR

1926

YES

INVALIDATE HEADER
BUFFER

1930

NO
PREPARE HEADER BUFFER

-:>--~~~~~-+! 1922

NO

FIG. 198

UPDATE HEADER BUFFER
TABLE
1932

END
1999

EX 1017 Page 255

US. Patent Nov. 19, 2002 Sheet 37 0f 49 US 6,483,804 B1

 NO

HEADER
BUFFER VALID?

1920

PREPARE HEADER BUFFER
1922

YES

TRANSFER PACKET INTO
HEADER BUFFER

1924

WRITE COMPLETION
DESCRIPTOR

1926

NO

UPDATE HEADER BUFFER
TABLE

HEADER
BUFFER FULL?

1928 1932
YES

INVALIDATE HEADER END
BUFFER 19991930

FIG. 193

:5:v

EX 1017 Page 255

U.S. Patent Nov. 19, 2002 Sheet 38 of 49 US 6,483,804 Bl

NO

TRANSFER PACKET INTO
JUMBO BUFFER

1948

WRITE COMPLETION
DESCRIPTOR

1950

INVALIDATE JUMBO
BUFFER

1958

NO

YES

YES

PREPARE JUMBO BUFFER
1942

TRANSFER FIRST PORTION
OF PACKET INTO CURRENT

'>-------...i JUMBO BUFFER

FIG. 19C

1952

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1954

WRITE COMPLETION
DESCRIPTOR

1956

END
1999

EX 1017 Page 256

US. Patent Nov. 19,2002 Sheet 38 of 49

F2

US 6,483,804 B1

PREPARE JUMBO BUFFER
1942

JUMBO NO
BUFFER VALID?

1940

YES

YESSPLIT JUMBO
PACKETS?

1 944 F3

NO

PACKET
TOO LARGE FOR

ONE BUFFER?
1946

TRANSFER PACKET INTO
JUMBO BUFFER

, 1943

WRITE COMPLETION
DESCRI PTOR

1950

INVALIDATE JUMBO
BUFFER

1958
FIG. 190

TRANSFER FIRST PORTION
OF PACKET INTO CURRENT

JUMBO BUFFER
1 952

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1954

1956

WRITE COMPLETION
DESCRIPTOR

END
1999

EX 1017 Page 256

U.S. Patent Nov.19, 2002 Sheet 39 of 49 US 6,483,804 Bl

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1964

NO

TRANSFERPACKETDATA
INTO JUMBO BUFFER

1968

WRITE COMPLETION
DESCRIPTOR

1970

NO
PREPARE HEADER BUFFER

>--~~~~~---!M 1962

YES

FIG. 19D

TRANSFER FIRST PORTION
OF PACKET DATA INTO

CURRENT JUMBO BUFFER
1972

TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1974

WRITE COMPLETION
DESCRIPTOR

1976

EX 1017 Page 257

U.S. Patent Nov. 19,2002 Sheet 39 of 49 US 6,483,804 B1

NO

PREPARE HEADER BUFFERBUFFER VALID?

1960 1962
YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1964

 PACKET
TOO LARGE FOR

ONE BUFFER?
1966

TRANSFER FIRST PORTION
OF PACKET DATA INTO

CURRENT JUMBO BUFFER
1972

 TRANSFER REMAINDER OF

PACKET DATA INTO
SECOND JUMBO BUFFER

‘1 974

TRANSFER PACKET DATA
INTO JUMBO BUFFER

1968

WRITE COMPLETION
DESCRIPTOR

1970

WRITE COMPLETION
DESCRIPTOR

1976

F4 \

/

FIG. 190

EX 1017 Page 257

U.S. Patent Nov. 19, 2002 Sheet 40 of 49 US 6,483,804 Bl

YES

INVALIDATE HEADER
BUFFER

1982

INVALIDATE JUMBO
BUFFER

1978

END
1999

FIG. 19E

NO

UPDATE HEADER BUFFER
TABLE

1984

EX 1017 Page 258

U.S. Patent Nov. 19, 2002 Sheet 40 of 49 US 6,483,804 Bl

GI)

INVAUDATEJUMBO
BUFFER

1978

YES NO

HEADER
BUFFER FULL?

1980

UPDATE HEADER BUFFER
TABLE

1984

INVALIDATE HEADER
BUFFER

1982

FlG. 19E

EX 1017 Page 258

U.S. Patent Nov. 19, 2002 Sheet 41 of 49 US 6,483,804 Bl

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
2004

PREPARE FLOW RE
ASSEMBLY BUFFER

2010

NO
PREPARE HEADER BUFFER

.::>--~~~~~---+1 2002

YES

FIG. 20A

WRITE COMPLETION
DESCRIPTOR

2008

EX 1017 Page 259

US. Patent Nov.19,2002 Sheet 41 of 49 US 6,483,804 B1

NO

HEADER
BUFFER VALID?

2000

PREPARE HEADER BUFFER
2002

YES

TRANSFER PACKET

HEADER INTO HEADER
BUFFER

2004

FLOW
REE-ASSEMBLY

BUFFER VALID?
2006

YES
 WRITE COMPLETtON

DESCRIPTOR
2008

NO

PREPARE FLOW RE«
ASSEMBLY BUFFER

2010
G1

FIG. 20A

EX 1017 Page 259

U.S. Patent Nov. 19, 2002 Sheet 42 of 49 US 6,483,804 Bl

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
2012

WRITE COMPLETION
DESCRIPTOR

2014

UPDATE FLOW RE
ASSEMBLY BUFFER TABLE

2016

YES

INVALIDATE HEADER
BUFFER

2020

NO

FIG. 208

UPDATE HEADER BUFFER
TABLE
2022

EX 1017 Page 260

US. Patent Nov. 19, 2002 Sheet 42 of 49 US 6,483,804 B1

TRANSFER PACKET DATA
INTO FLOW REASSEMBLY

BUFFER
2012

WRITE COMPLETION
DESCRIPTOR

2014

 UPDATE FLOW RE»
ASSEMBLY BUFFER TABLE

2016

UPDATE HEADER BUFFER
TABLE
2022

HEADER
BUFFER FULL?

2018

INVALIDATE HEADER
BUFFER

2020

FIG. 208

EX 1017 Page 260

,---------·
I
I
I
I

I
I
I
I

I --------

. DYNAMIC PACKET BATCHING MODULE 122
--· ---· ·------ ------ ----- ·-----·· ·---- -- . --------- ----

ENTRY ENTRY#

2106 VALIDITY
'-- INDICATOR

FLOW NUMBER

2110
2108

a

I
REA D POINTER I

-
2112 I

I
I
I
I MEMORY 2102 CONTROLLER 2104

I
I

WR ITE POINTER I
2114 I

I
I
I

255

I

-------· --- -------- ----------------------·-------- ---------------------- ------- ------

FIG. 21

0 •
00 •

EX 1017 Page 261

I DYNAMIC PACKET BATCHING MODULE 122

ENTRY ENTRY t:
2106 VALIDITY

21 10

_1
READ POINTER

I

I

I

I

CONTROLLER 2104 l MEMORY 2102
I

WRITE POINTER I!
I

I

I

I

I 255

2002‘61"MIN111311?J.STI
6v:0917139113

18vos‘ssv‘9sn

EX 1017 Page 261

U.S. Patent

.'l.

Nov.19, 2002 Sheet 44 of 49

START
2200

YES

INVALIDATE PACKET
ENTRY IN MEMORY

2204

INCREMENT READ
POINTER

2206

SEARCH MEMORY FOR
RELATED PACKET

2208

ALERT HOST COMPUTER
2210

FIG. 22A

NO

US 6,483,804 Bl

EX 1017 Page 262

US. Patent Nov. 19, 2002 Sheet 44 of 49 US 6,483,804 B1

TRANSFER
PACKET TO HOST?

2202

INVALIDATE PACKET
ENTRY IN MEMORY

2204

iNCREMENT READ
POINTER

2206

SEARCH MEMORY FOR
RELATED PACKET

2208

ALERT HOST COMPUTER
2210

FIG. 22A

EX 1017 Page 262

U.S. Patent Nov. 19, 2002 Sheet 45 of 49

START
2220

NO

GENERA TE NEXT ENTRY
2226

INCREMENT WRITE
POINTER

2228

END
2230

FIG. 228

NO

YES

US 6,483,804 Bl

EX 1017 Page 263

US. Patent Nov. 19, 2002 Sheet 45 01' 49

CREATE NEW
ENTRY?

2222

MEMORY FULL?
2224

GENERATE NEXT ENTRY
2226

INCREMENT WRITE
POINTER

2228

FIG. 228

US 6,483,804 B1

EX 1017 Page 263

U.S. Patent Nov. 19, 2002 Sheet 46 of 49 US 6,483,804 Bl

INSTRUCTION CONTENT 2306
INSTR. INSTR. (EXTRACTION MASK, COMPARE VALUE, OPERATOR,

NO. NAME SUCCESS OFFSET, SUCCESS INSTRUCTION, FAILURE OFFSET,
2302 2304 FAILURE INSTRUCTION, OUTPUT OPERATION, OPERATION ARGUMENT,

OPERATION ENABLER, SHIFT, OUTPUT MASK)

0 WAIT OxFFFF, OxOOOO, NP, 6, VLAN, 0, WAIT, CLR_REG, Ox3FF, 1, 0, OxOOOO

1 VLAN OxFFFF, Ox8100, EQ, 1, CFI, 0, 802.3, IM_CTL, OxOOA, 3, 0, OxFFFF

2 CFI Ox1000, Ox1000, EQ, 0, DONE, 1, 802.3, NONE, OxOOO, 0, 0, OxOOOO

3 802.3 OxFFFF, Ox0600, LT, 1, LLC_1, O, IPV4_1, NONE, OxOOO, 0, 0, OxOOOO

4 LLC_1 OxFFFF, OxAAAA, EQ, 1, LLC_2, 0, DONE, NONE, OxOOO, 0, 0, OxOOOO

5 LLC_2 OxFFOO, Ox0300, EQ, 2, IPV4_1, 0, DONE, NONE, OxOOO, 0, 0, OxOOOO

6 IPV4_1 OxFFFF, Ox0800, EQ, 1, IPV4_2, 0, IPV6_1, LD_SAP, Ox100, 3, 0, OxFFFF

7 IPV4_2 OxFFOO, Ox4500, EQ, 3, IPV4_3, 0, DONE, LD_SUM, OxOOA, 1, 0, OxOOOO

8 IPV4_3 Ox3FFF, OxOOOO, EQ, 1, IPV4_4, 0, DONE, LD_LEN, Ox03E, 1, 0, OxFFFF

9 IPV4_4 OxOOFF, Ox0006, EQ, 7, TCP _1, 0, DONE, LD_FID, Ox182, 1, 0, OxFFFF

10 IPV6_1 OxFFFF, Ox86DD, EQ, 1, IPV6_2, 0, DONE, LD_SUM, Ox015, 1, OxOOOO

11 IPV6_2 OxFOOO, Ox6000, EQ, 0, IPV6_3, 0, DONE, IM_R1, Ox114, 1, 0, OxFFFF

12 IPV6_3 OxOOOO, OxOOOO, EQ, 3, IPV6_ 4, 0, DONE, LD_FID, Ox484, 1, 0, OxFFFF

13 IPV6_4 OxFFOO, Ox0600, EQ, 18, TCP _1, 0, DONE, LD_LEN, Ox03F, 1, OxFFFF

14 TCP_1 OxOOOO, OxOOOO, EQ, 0, TCP _2, 4, TCP _2, LD_SEQ, Ox081, 3, 0, OxFFFF

15 TCP_2 OxOOOO, OxOOOO, EQ, 0, TCP _3, 0, TCP _3, ST_FLAG, Ox145, 3, 0, Ox002F

16 TCP_3 OxOOOO,OxOOOO,EQ,O, TCP_4,0, TCP_4,LD_R1,0x205,3,0xB,OxFOOO

17 TCP_4 OxOOOO, OxOOOO, EQ, 0, WAIT, 0, WAIT, LD_HDR, OxOFF, 3, 0, OxFFFF

18 DONE OxOOOO, OxOOOO, EQ, 0, WAIT, 0, WAIT, IM_CTL, Ox001, 3, OxOOOO

PROGRAM 2300

FIG. 23

EX 1017 Page 264

US. Patent Nov. 19, 2002 Sheet 46 of 49 US 6,483,804 Bl

 INSTRUCTION CONTENT 2306
(EXTRACTION MASK. COMPARE VALUE, OPERATOR.

SUCCESS OFFSET, SUCCESS INSTRUCTION, FAILURE OFFSET,
FAILURE INSTRUCTION. OUTPUT OPERATION, OPERATION ARGUMENT.

OPERATION ENABLER, SHIFT. OUTPUT MASK)

 OXFFFF, OXOOOO, NP, 6, VLAN, 0, WAIT, CLR_REG. 0x3FF. 1, 0, OXOOOO

OXFFFF, 0x8100, E0, 1, CFI, 0, 802.3, IM_CTL. OXOOA. 3, 0, OXFFFF

n-_

OXFFFF. OXAAAA. E0, 1, LLC_2. 0, DONE, NONE. 0x000, O, 0, OXUOOO

LLC 2

IPV4 1

IPV4 2

OXFFOO, 0x0300, E0, 2, IPV4_1, O, DONE, NONE, 0x000, 0, 0, OXOOOO

 OxFFFF, oxoaoo, E0, 1, IPV4_2, o. 1va_1, LD_SAP. 0x100, 3, o, OxFFFF

OXFFDO, 0x4500, E0. 3, IPV4_3. 0. DONE, LD_SUM. OXOOA, 1, 0, OXOOOO

0X3FFF, OXOOOO, EQ, 1, IPV4_4, 0, DONE, LD_LEN, 0x03E, 1, 0. OxFFFF IPV4_3

IPV4 4 OXOOFF, 0x0006, E0, 7. TCP_1. o, DONE, LD_FID. 0x182, 1, o. OxFFFF

n IPV6_1 OXFFFF, OXSEDD, E0. 1. IPV6_2. O, DONE. LD_SUM, 0x015, 1. OXOOOO
IPV6 2 OXFOOO, OXSOOO, E0, 0, IPV6_3, 0, DONE, IM_R1, 0x114, 1, 0, OxFFFF

IPV6 3 OXOOOO, OXOOOO, E0, 3, IPV6_4, 0, DONE, LD_FID. 0x484, 1I O, OXFFFF

DxFFOO, 0x0600, E0, 18, TCP_1. 0, DONE, LD_LEN, 0x03F, 1. OXFFFF

0xoooo, 0xoooo. E0, 0, TCP__2, 4, TCP_2, LD_SEQ, 0x081, 3, o, OxFFFF

7

13

14

TCP_2 0x0000, OXOOOO, E0, 0, TCP__3, 0. TCP_3, ST_FLAG, 0x145, 3, 0, OXOOZF

17

OxOOOO, OXOOOO, E0, 0, TCP_4, O, TCP_4, LD_R1, 0x205, 3, 0x3, OXFOOO

OXOOOO, OXOOOO, E0, 0, WAIT, 0, WAIT, LD_HDR, 0xOFF, 3, 0, OxFFFF

OXOOOO, OXOOOO, E0. 0, WAIT, 0, WAIT, IM_CTL, 0x001. 3. OXOOOO

PROGRAM 2300

DONE

FIG. 23

EX 1017 Page 264

,,...

PACKET
QUEUE

2400

"'--
TO HOST

COMPUTER --

I
I
I
I

PROBABILITY

INDICATORB
2412

00000000

'

REGION ZERO
2402

I
I
I
I

0KB 4 KB

PROBABILITY

INDICATORB
2414

00000001

REGION ONE
2404

JI.
I
I
I
I

8KB

TRAFFIC
INDICATOR

240B

FIG. 24

I
I
I
I

PROBABILITY

B
NDICATOR

2418

1

REGION TWO -
2406 -

I
I
I
I

12 KB 16 KB

,._
., li ru, c " 'I • r . : -~i([:$, .

FROM
NETWORK

I COUNTER I
2410

0 •
cr..i •
~
~

i

~ ,...
~

~

ga
a
t:i
s.
~

d
00

SI' a
QC
= ,I:.

== 1--

EX 1017 Page 265

U.S. Patent Nov.19, 2002 Sheet 48 of 49

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS

2502

CONFIGURE PROBABILITY
INDICATOR($)

2504

SELECT CRITERIA FOR
NON-DISCARDABLE

PACKETS, IF ANY
2506

INITIALIZE COUNTER
2508

RECEIVE PACKET FROM
NETWORK

2510

FIG. 25A

US 6,483,804 Bl

EX 1017 Page 266

US. Patent Nov. 19, 2002 Sheet 48 of 49

START

2500

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS

2502

CON FIGURE PROBABILITY

lNDICATOR(S)
2504

SELECT CRITERIA FOR
NON—DISCAR DABLE

PACKETS, iF ANY
2506

INITIALIZE COUNTER
2508

RECENE PACKET FROM
NE‘IWORK

2510

YES NO

IS
PACKET

DlSCARDABLE?
2512

FIG. 25A

US 6,483,804 Bl

EX 1017 Page 266

U.S. Patent

STORE PACKET
2522

Nov.19, 2002 Sheet 49 of 49

DETERMINE ACTIVE
REGION

2514

COMPARE COUNTER AND
PROBABILITY INDICATOR

2516

INCREMENT COUNTER
2518

END
2526

FIG. 258

US 6,483,804 Bl

DISCARD PACKET
2524

EX 1017 Page 267

US. Patent

STORE PACKET
2522

Nov. 19, 2002 Sheet 49 of 49

DETERMINE ACTIVE
REGION

2514

COMPARE COUNTER AND
PROBABILITY INDICATOR

2516

INCREMENT COUNTER
2518

NO YES

DISCARD
PACKET?

2520

FIG. 253

US 6,483,804 B1

DISCARD PACKET
2524

EX 1017 Page 267

US 6,483,804 Bl
1

METHOD AND APPARATUS FOR DYNAMIC
PACKET BATCHING WITH A IIlGH

PERFORMANCE NETWORK INTERFACE

TABLE OF CONIENTS

BACKGROUND

SUMMARY
BRIEF DF.sCRIPTION OF TIIE FIGURES

DEOOLED DF.sCRIPTION
Introduction
One Embodiment of a High Performance Network Inter-

face Circuit
An illustrative Packet

One Embodiment of a Header Parser
Dynamic Header Parsing Instructions in One Embodi-

ment of the Invention

One Embodiment of a Flow Database
One Embodiment of a Flow Database Manager
One Embodiment of a Load Distnbutor
One Embodiment of a Packet Queue
One Embodiment of a Control Queue

One Embodiment of a DMA Engine
Methods of Transferring a Packet Into a Memory Buffer

by a DMA Engine
A Method of Transferring a Packet with Operation

Code 0
A Method of Transferring a Packet with Operation

Code 1
A Method of Transferring a Packet with Operation

Code 2
A Method of Transferring a Packet with Operation

Code 3
A Method of Transferring a Packet with Operation

Code 4
A Method of Transferring a Packet with Operation

Code 5
A Method of Transferring a Packet with Operation

Code 6 or 7
One Embodiment of a Dynamic Packet Batching Module
Early Random Packet Discard in One Embodiment of the

Invention
CT.AIMS

BACKGROUND

This invention relates to the fields of computer systems
and computer networks. In particular, the present invention
relates to a Network Interface Circuit (NIC) for processing
communication packets exchanged between a computer
network and a host computer system.

The interface between a computer and a network is often
a bottleneck for communications passing between the com
puter and the network. While computer performance (e.g.,
processor speed) has increased exponentially over the years
and computer network transmission speeds have undergone
similar increases, inefficiencies in the way network interface
circuits handle communications have become more and
more evident. With each incremental increase in computer or
network speed, it becomes ever more apparent that the
interface between the computer and the network cannot keep
pace. These inefficiencies involve several basic problems in
the way communications between a network and a computer
are handled.

2
Today's most popular forms of networks tend to be

packet-based. These types of networks, including the Inter
net and many local area networks, transmit information in
the form of packets. Each packet is separately created and

5 transmitted by an originating endstation and is separately
received and processed by a destination endstation. In
addition, each packet may, in a bus topology network for
example, be received and processed by numerous stations
located between the originating and destination endstations.

10 One basic problem with packet networks is that each
packet must be processed through multiple protocols or
protocol levels (known collectively as a "protocol stack') on
both the origination and destination eadstations. When data
transmitted between stations is longer than a certain minimal

15 length, the data is divided into multiple portions, and each
portion is carried by a separate packet. The amount of data
that a packet can carry is generally limited by the network
that conveys the packet and is often expressed as a maxi
mum transfer unit (M11J). The original aggregation of data

20 is sometimes known as a "datagram," and each packet
carrying part of a single datagraiir"is processed very simi
larly to the other packets of the datagram.

Communication packets are generally processed as fol
lows. In the origination endstation, each separate data por-

25 lion of a datagram is processed through a protocol stack.
During this processing multiple protocol headers (e.g., TCP,
IP, Ethernet) are added to the data portion to form a packet
that can be transmitted across the network. The packet is
received by a network interface circuit, which transfers the

30 packet to the destination endstation or a host computer that
serves the destination endsta.tion. In the destination
endstation, the packet is processed through the protocol
stack in the opposite direction as in the origination endsta
tion. During this processing the protocol headers are

35 removed in the opposite order in which they were applied.
The data portion is thus recovered and can be made available
to a user, an application program, etc.

Several related packets (e.g., packets carrying data frr.m
one datagram) thus undergo substantially the same process

40 in a serial manner (i.e., one packet at a time). The more data
that must be transmitted, the more packets must be seat, with
each one being separately handled and processed through
the protocol stack in ea.ch direction. Naturally, the more
packets that must be processed, the greater the demand

45 placed upon an endstation's processor. The number of
packets that must be processed is affected by factors other
than just the amount of data being sent in a datagram. For
example, as the amount of data that can be encapsulated in
a packet increases, fewer packets need to be sent. As stated

50 above, however, a packet may have a maximum allowable
size, depending on the type of network in use (e.g., the
maximum transfer unit for standard Ethernet traffic is
a.pproxintately 1,500 bytes). Toe speed of the network also
affects the number of packets that a NIC may handle in a

55 given period of time. For example, a gigabit Ethernet
network operating at peak capacity may require a NIC to
receive approxintately 1.48 million packets per second.
Thus, the number of packets to be processed through a
protocol stack may place a significant burden upon a com-

60 puter's processor. The situation is exacerbated by the need to
process each packet separately even though each one will be
processed in a substantially sinrilar manner.

A related problem to the disjoint processing of packets is
the manner in which data is moved between "user space"

65 (e.g., an application program's data storage) and "system
space" (e.g., system memory) during data transmission and
receipt. Presently, data is simply copied from one area of

EX 1017 Page 268

US 6,483,804 B1

1

METHOD AND APPARKI'US FOR DYNAMIC
PACKET BATCHING WITH A HIGH

PERFORMANCE NETWORK INTERFACE

TABLE OF CONTENTS

BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE FIGURES
DETAILED DESCRIPTION
Introduction

One Embodiment of a High Performance Network Inter-
face Circuit

An Illustrative Packet
One Embodiment of a Header Parser

Dynamic Header Parsing Instructions in One Embodi-
ment of the Invention

One Embodiment of a Flow Database

One Embodiment of a Flow Database Manager
One Embodiment of a load Distributor

One Embodiment of a Packet Queue
One Embodiment of a Control Queue
One Embodiment of a DMA Engine
Methods of Transferring a Packet Into a Memory Buffer

by a DMA Engine
A Method of Transferring a Packet with Operation

Code 0

A Method of Transferring a Packet with Operation
Code 1

A Method of Transferring a Packet with Operation
Code 2

A Method of Transferring a Packet with Operation
Code 3

A Method of Transferring a Packet with Operation
Code 4

A Method of Transferring a Packet with Operation
Code 5

A Method of Transferring a Packet with Operation
Code 6 or 7

One Embodiment of a Dynamic Packet Batching Module
Early Random Packet Discard in One Embodiment of the

Invention
CLAIMS

BACKGROUND

This invention relates to the fields of computer systems
and computer networks. In particular, the present invention
relates to a Network Interface Circuit (NIC) for processing
communication packets exchanged between a computer
network and a host computer system.

The interface between a computer and a network is often
a bottleneck for communications pasing between the com-
puter and the network. While computer performance (e.g.,
processor speed) has increased exponentially over the years
and computer network transmission speeds have undergone
similar increases, inefficiencies in the way network interface
circuits handle communications have become more and
more evident. With each incremental increase in computer or
network speed, it becomes ever more apparent that the
interface between the computer and the network cannot keep
pace. These inefliciencies involve several basic problems in
the way communications between a network and a computerare handled.

10

15

30

35

45

50

55

60

65

2

Today’s most pepular forms of networks tend to be
packet-based. These types of networks, including the Inter-
net and many local area networks, transmit information in
the form of packets. Each packet is separately created and
transmitted by an originating endstation and is separately
received and processed by a destination endstation. In
addition, each packet may, in a bus topology netwodr for
example, be received and processed by numerous stations
located between the originating and destination endstations.

One basic problem with packet networks is that each
packet must be processed through multiple protocols or
protocol levels (known collectively as a “protocol stack") on
both the origination and destination endstations. When data
transmitted between stations is longer than a certain minimal
length, the data is divided into multiple portions, and each
portion is carried by a separate packet. The amount of data
that a packet can carry is generally limited by the network
that conveys the packet and is often expressed as a maxi—
mum transfer unit (M'I'U). The original aggregation of data
is sometimes known as a “datagram,” and each packet
carrying part of a single dataéfifiprocessed very simi-
larly to the other packets of the datagram.

Communication packets are generally processed as fol-
lows. In the origination endstation, each separate data por-
tion of a datagram is processed through a protocol stack.
During this processing multiple protocol headers (e.g., TCP,
IP, Ethernet) are added to the data portion to form a packet
that can be transmitted across the network. The packet is
received by a network interface circuit, which transfers the
packet to the destination endstatiou or a host computer that
serves the destination endstation. In the destination

endstation, the packet is processed through the protocol
stadr in the opposite direction as in the origination endsta-
tion. During this proceming the protocol headers are
removed in the opposite order in which they were applied.
The data portion is thus recovered and can be made available
to a user, an application progam, etc.

Several related packets (e.g., packets carrying data from
one datagram) thus undergo substantially the same process
in a serial manner (i.e., one packet at a time). The more data
that must be transmitted, the more packets mustbe sent, with
each one being separately handled and processed through
the protocol stack in each direction. Naturally, the more
packets that must be processed, the greater the demand
placed upon an endstation’s processor. The number of
packets that must be processed is affected by factors other
than just the amount of data being sent in a datagram. For
example, as the amount of data that can be encapsulated in
a packet increases, fewer packets need to be sent. As stated
above, however, a packet may have a maximum allowable
size, depending on the type of network in use (e.g., the
maximum transfer unit for standard Ethernet traffic is
approximately 1,5(X) bytes). The speed of the network also
affects the number of packets that a NIC may handle in a
given period of time. For example, a gigabit Ethernet
network operating at peak capacity may require a NIC to
receive approximately 1.48 million packets per second.
Thus, the number of packets to be procemd through a
protocol stack may place a significant burden upon a com-
puter’s procesor. The situation is exacerbated by the need to
process each packet separately even though each one will be
processed in a substantially similar manner.

A related problem to the disjoint processing of packets is
the manner in which data is moved between “user space"
(e.g., an application program’s data storage) and “system
space" (e.g., system memory) during data transmission and
receipt. Presently, data is simply copied from one area of

EX 1017 Page 268

US 6,483,804 Bl
3

memory assigned to a user or application program into
another a:cea of memory dedicated to the processor's use.
Because each portion of a datagram that is transmitted in a
packet may be copied separately (e.g., one byte at a time),
there is a nontrivial amount of processor time required and 5
frequent transfers can consume a lazge amount of the
memory bus' bandwidth. ffiustratively, each byte of data in

4
Thus, present NICs fail to provide adequate performance

to interconnect today's high-end computer systems and
high-speed networks. In addition, a network interface circuit
that cannot make allowance for an over-burdened host
computer may degrade the computer's performance.

SUMMARY
a packet received from the network may be read from the
system space and written to the user space in a separate copy In one embodiment of the invention a system and method
operation, and vice versa for data transmitted over the are provided for identifying a packet within a particular
netwotk. Although system space generally provides a pro- 10 communication flow through a communication device such
tected memory area (e.g., protected from manipulation by as a network interface. In particular, the communication flow
user programs), the copy operation does nothing of value may include a first packet transferred from the network
when seen from the point of view of a network interface interface to a host computer. Based on an identifier of the
circuit. Instead, it risks over-burdening the host proces.sor flow, another packet in the same flow may be identified to
and retanling its ability to rapidly accept additional network 15 the host computer. To increase the efficiency of haodling
traffic from the NIC. Copying each packet's data separately network traffic, the flow packets may then be collectively , }J;
can therefore be very inefficient, particularly in a high-speed processed through a protocol stack on a host computer. ~ •
network environment. I this L--"-- high ...,, · IJ . ,n, n emUUU1WCnt., a penormance network mterface . P '\ -v-

In ~tion to the. meflicient transf~r of data (e.g., one of a host computer receives a packet from a netwotk. t"'.J,. ji \
packet s data at a time), the proces.smg of headers from 20 Inf · ·thin i.... d · · \ 1

\ .,, • kets 'ved fro twork . also . ..,_, Ea.ch ormatlon WI a _...,a er rtion of the acket IS t::/J ,;¥1\il> <'
pac rece_1 m a ~e IS melJ.11.ient. asse to enerate a · · · .r', · • >'
packet carrymg part of a single datagram generally has the ,,t· t.}» .) 1 X
same protocol headers (e.g., Ethernet., IP and TCP), although , connection or _cm::mt ~at mcludes the acket. J lil ~'li
there may be some variation in the values within the packets' eludes iden~ers source 0- yf • I»
headers for a particular protocol. Each packet, however, is 25 destina!ion entities ~at m: exchangmg the packet. In vJ l r"' \
individually processed through the same protocol stack, thus one embodime:°"t ~f the mvention flaw from one or L ~.~~
requiring multiple repetitions of identical operations for mo~ commUillCat10n flows are sto . t \.. "- ' \ta ~ .
related packets. Successively processing unrelated packets ch IS mdt;xc;d hf a flow number and which mjj,y be ':!> ~, id
through different protocol stacks will likely be much less ~ged by a flow datahas: management module. If the (!). JJ '.
efficient than progressively processing a number of related 30 \>ii,,
packets through one protocol stack at a time. \ ~ 0 . ,;,

Another basic problem concerning the interaction l ~ ~~ .. y
between present network interface circuits and host com- ~
put.er systems is that the combination often fails to capitalize
on the increased processor resources that are available in le, .fa
multi-processor computer systems. In other words, present O ·
attempts to distribute the processing of network packets The packet is stored in a packet mem
(e.g.. through a protocol stack) among a number of protocols aWlU ans er to I an tbe acket's flow
in an efficient mmner are generally ineffective. In particular, num er JS s m a w memory of a dynamic packet
the performance of present NICs does not come close to the 40 l:mclnng moiliil;e. When the packet is transferred or is about
expected or desired linear performance gains one may to be transferred, the flow memory is searched to determine
expect to realize from the availability of multiple processors. whether another packet stored in the packet memory is part
In some multi-processor systems, little improvement in the of the same communication flow (e.g., has the same flow
processing of network traffic is realized from the use of more number or flow key).
than 4-6 processors, for exaniple. 45 In this embodiment, if another packet ha.s the same flow

In addition, the rate at which packets are transferred from number then the host computer is alerted by storing an
a network interface circuit to a host computer or other indicator in a host memory, such as a descriptor. In another
communication device may fail to keep pace with the rate of embodiment of the invention, if no other packet is found
packet arrival at tbe network interface. One element or with the same !low number then a different indicator is
another of the host computer (e.g., a memory bus, a so storedinahostmemory.Adilferentindicatormaybestored,
processor) may be over-burdened or otherwise unable to for example, if the packet is determined to be the last packet
accept packets with sufficient alacrity. In this event one or of its communication !low. Depending on the indicator that
more packets may be dropped or discarded. Dropping pack- is stored, the host computer may delay processiog the packet
et.s may cause a network entity to re-transmit some traffic to await another packet having the same flow number.
and, if too many packets are dropped, a network connection 55 The dynamic packet batching module also includes a
may require re-initialization. Further, dropping one packet controller in a present embodiment of the invention. The
or type of packet instead of another may make a significant controller attempts to populate the flow memory with infor-
differencc in overall network traffic. If, for example, a mation associated with or derived from packets stored in the
control packet is dropped, the corresponding network con- packet memory. Illustratively, ;1:ch entry in the flow.,
nection may be severely affected and may do little to 60 memory in this embodiment stores a packet's flqw 011rober
alleviate the packet saturation of the nctwoik interface ' ~ an mdicator of whether e entry may
circuit because of the typically small size of a control packet. be mv 1 a w en its packet is transferred to the host
Therefore, unless the dropping of packets is performed in a computer, at which time it may be replaced with another
manner that distributes the effect among many network entry.
connections or that makes allowance for certain types of 65 In one embodiment of the invention, al
packets, network traffic may be degraded more than neces- conform too r ore of a set of re-select
sary. eligible for dynamic packet batching. In this embodiment, a

EX 1017 Page 269

US 6,483,804 El

3

memory assigned to a user or application program into
another area of memory dedicated to the processor'3 use.
Because each portion of a datagram thatIS transmitted'to a
packet may be copied separately (e.g., one byte at a time),
there is a nontrivial amount of processor time required and
frequent transfers can consume a large amount of the
memory hus’ bandwidth. lllustratively, each byte of data in
a packet received from the network may be read from the
system space and written to the user space in a separate copy
operation, and vice versa for data transmitted over the
network. Although system space generally provides a pm-
tected memory area (cg, protected from manipulation by
user programs), the copy operation does nothing of value
when seen from the point of View of a newt: interface
circuit Instead, it risks over-humming the host processor
and retarding its ability to rapidly accept additional network
traflic from the NIC. Copying each packet’s data separately
can therefore be very incfiident, particularly in a high-speednetwork environment.

In addition to the iueflicient transfer of data (cg, one
packct’s data at a time), the prming of headers from
packets received from a network is also inefficient. Each
packet carrying part of a single datagram generally has the
same protocol headers (e.g., Ethernet, H’ and TOP), although
there may be some variation in the values within the packets’
headers for a particular protocol. Each packet, however, is
individually processed through the same protocol stack, thus
requiring multiple repetitions of identical operations for
related packets. Successively processing unrelated packets
through difierent protocol stacks will likely be much less
efficient than progressively processing a number of related
packets through one protocol stack at a time.

Another basic problem concerning the interaction
between present network nuerface circuits and host com-
puter systems is that the combination often fails to capitalize
on the increased processor resources that are available in
mold—processor computer systems. In other words, present
attempts to distribute the processing of network packets
(cg, through a protocol stack) among a number ofprotocols
in an eficient manner are generally ineffective. In particular,
the performance of present Nle dam not come close to the
expected or desired linear performance gains one may
expect to realize from the availability ofmultiple promors.
In some mum-processor systems, little improvement in the
processing ofnetwork traffic is realized from the use of more
than 4‘6 processors, for example.

In addition, the rate at which packets are transferred from
a network interface circuit to a host computer or other
communication device may fail to keep pace with the rate of
packet arrival at the network interface. One element or
another of the host computer (e.g., a memory bus, 3
pmoesmr) may be over-bunlened or otherwise unable to
accept packets with suficient alacrity. In this event one or
more packets may be dropped or discarded. Dropping pack—
ets may cause a network entity to re-transmit some traffic
and, if too many packets are dropped, a network connection
may require re-initialization. Further, dropping one packet
or type of packet instead of another may make a significant
difference in overall network traffic. If, for example, a
control packet is dropped, the corresponding network com
nection may be severely affected and may do little to
alleviate the packet saturation of the new/0dr interface
circuit because of the typically small size of a motel packet.
Therefore, unless the dropping of packets is performed in a
manner that distributes the efiect among many network
connections or that makes allowance for certain types of
packets, network Irafiic may be degraded more than neces~
sary.

10

15

7.5

30

4

Thus, present Nle fail to provide adequate performance
to interconnect today’s high—end computer systems and
high—speed networks. In addition, a network interface circuit
that cannot make allowance for an overburdened host
computer may degrade the computer's performance.

SUMMARY

In one embodiment of the invention a system and method
are provided for identifying a packet within a particular
communication flow through a communication device such
as a network interface. In particular, the communication flow
may include a first packet transferred from the network
interface to a host computer: Based on an identifier of the
flow, another packet in the same flow may be identified to
the host computer. To increase the efiiciency of handling
network traffic, the flow packets may then be collectively
processed through a protocol stack on a host computer.

In this embodiment, a high performamx: network interface
of a host computer reclaim a packet from a network,
Information within a header rtioo of the acket is
assembled to cncrate a ’ ’ -
cation flow, connection or circuit that includes the

rativem: ‘ hcludes idenufiersmer, u destination e are exehan

 one em ‘ ent of the invention flow or one or
more communication flows are sto

ch rs mgexgdhy a flow number and which mnge \5
WMWWMe. If thedatabase does not ahead include the flow In:
 receive packet, then the received acket’s communication
downing 55 a new flow at the network interface In tgg case

ow is registered111 the database I) storin its flow e
an ,possibly, other information concerning the flow Thus, a 3 ts won ‘61 n ow outs

35 .W
'l'hepacketisstoredinapadretmem e. . a tie

awn: Inserto r an t’s ow
num or is s m a w memo o d 'c

40

45

SC}

55

mo e. on the packet is transferred or is about
to 53 transferred, the flow memory is searched to determine
whether another packet stored in the packet memory is part
of the same communication flow (e.g., has the same flow
number or flow key).

In this embodiment, it mother packet has the same flow
number then the host computer is alerted by storing an
indicator in a host memory, such as a descriptor. In another
embodiment of the invention, if no other packet is found
with the same flow number then a different indicator is

stored in a host memory. Adilfcrent indicator may be stored,
for example, if the packet is determined to be the last packet
of its communication flow. Depending on the indicator that
is stored, the host computer may delay processing the packet
to await another packet having the same flow number.

The dynamic packet batching module also includes a
controller in a present embodiment of the invention. The
controller attempts to populate the flow memory with infor»
motion associated with or derived from packets stored in the

packet memory Illustratively, each cog in the flow60 memory in this cke’ r
an indicator of whether e ‘ ' entry maye mv r a

65

l) w it its packet is transferred to the host
computer, at which time it may be replaced with another
entry.

In one embodiment of the invention, n1 ckets that
motorm to 0 are of a set of mselect
eligible for dynamic packet batching. In this embodiment, a.WMM

Weiv

EX 1017 Page 269

US 6,483,804 Bl
5

BRIEF DESCRIPTION OF TIIE FIGURES 10

6
FIG. 23 depicts one set of dynamic instructions fur

parsing a packet in accordance with an embodiment of the
invention.

FIG. 24 depicts a system for randomly discarding a packet
from a network interface in accordance with an embodiment
of the invention.

FIGS. 25A-2SB comprise a flow chart demonstrating one
method of discarding a packet from a network interface in
accordance with an embodiment of the invention.

FIG. 1A is a block diagram depicting a network interface DETAILED DESCRIPTION
circuit (NIC) for receiving a packet from a network in The following description is presented to enable any
accordance with an embodiment of the present invention. person skilled in the art to make and use the invention, and

FIG. 1B is a flow chart demonstrating one method of
5

is provided in the context of particular applications of the
operating the NIC of FIG. 1A to transfer a packet received

1
invention and their requirements. Various modifications to

from a network to a host computer in accordance with an the disclosed embodiments will be readily apparent to those
embodiment of the invention. skilled in the art and the general principles defined herein

FIG. 2 is uliagram ofa packet transmitted overa network may be applied to other embodiments and applications
and received at a network interface circuit in one embodi- 20 ~tho~t departing from the ~irit ~d ~pe ~f the present
ment of the invention. mvention. Thus, the present mventmn is not mtended to be

FIG. 3 is a block diagram depicting a header parser of a ~led to the embo~ents ~own, bu! is_to be accorded the
networll: interface circuit for parsing a packet in accordance "'?dest scope ;onsllitent with the pnnciples and features
with an embodiment of the invention. disclosed berem.

FIGS. 4A-4B comprise a flow chart demonstrating one 25 In p~cular, embodiments of the ~vention ~ d~ COc.A6.f teri
method of parsing a packet received from a network at a be10:W. m the fo~ 0 ~ !-network mterface cireu:it j!C) A !'JC.::::. &- 1 · ,
network interface circuit in accordance with an embodiment ~l ~mmumca~OD_ adcets formatted ill acco ce fV, f":,) ckvie...Jj;..
f th t · ve tio with certain commim1cat10n protoco com e wit e \JI/ 0 e p~n 1D n _n. . . . ~ s m e art will recognize, however, that
. FI?· 5 is a block ~gram depictin~ a network 1;11terface

30
the present invention is not limited to commimication pro-

cir~t fl~ database m accordance with an embodiment of tocols compatible with the Internet and may be readily
the invention. adapted for use with other protocol!! and in commu:oication

FIGS. 6A--6E comprise a flowchart illustrating one devices ffiticr than a NIC.
method of managing a network interface circuit flow data- The program environment in which a present embodiment
base in accordance with an embodiment of the invention. 35 of the invention is executed illustratively incorporates a

FIG. 7 is a flow chart demonstrating one method of general-purpose computer or a special purpose device such
distributing the processing of network packets among mul- a band-held computer. Details of such devices (e.g.,
tiple processo[S on a host computer in accordance with an processor, memory, data storage, input/output ports and
embodiment of the invention. display) are well known and are omitted for the sake of

FIG. 8 is a diagram of a packet queue for a network 40 clarity.
interface circuit in accordance with an embodiment of the It should also be understood that the techniques of the
invention. present invention might be implemented using a variety of

FIG. 9 is a diagram of a control queue for a network technologies. For example, the methods described herein
interface circuit in accordance with an embodiment of the may be implemented in software running on a program-
invention. 45 mable microprocessor, or implemented in hardware utilizing

FIG. 10 is a block diagram of a DMA engine for trans- eith~r a comb~~on of ~croprocessors ~r of:ber specially
ferring a packet received from a network to a host computer designed ~pplica~on specifi~ mtegrat~ CU:cttits, program-
in accordance with an embodiment of the invention. mable logic devices, or vanous combmations thereof. In

FIG.11 includes diagrams of data structures for managing particular, the m~thods described herein may. be irnple-
the storage of network packets in host memory buifers in SO me~t~ by a senes of ':°mputer-e:xecutabl~ mstruc:tJ~ns
accordance with an embodiment of the invention. re~1ding on a storage medium such as .a earner wave, disk

FIGS 12A 12B dia f
,.__ d . to drive, or other computer-readable medium.

. - are grams o a u"" e.scnp r, a Introducti
~mpletion ~tor and a ~ b~r array in accordance In one ~~bodiment of the present invention, a networlc
with an embodiment of the mvention. . 55 ~rface circuit (NIC) is configured to receive difprocess

FIGS .. 13-20 are flow _charts demonstrating methods ?f corn cation packets exchanged between a bast mmp:ii'iet
transferring a packet rece~ved from a n~rk to a b~er m system and a network such as the ln~[Qet. In .R,articnlar, the
a host ':°mpu~er memory m aa:ordance with an embodiment NI · nfi red to receive and mani ulate packets for-
of the mvention. matted in accordance Wl1 a rotoco stac e. . a co i-

FIG. 21 is a diagram of a dynamic packet batching 60 natjon of commimication protocols) supported by a network
module in accordance with an embodiment of the invention. coupled to the NIC.

FIGS. 22A-22B comprise a flow chart demonstrating one A protocol stack may be de.scnbed with reference to the
method of dynamically searching a memory containing seven-layer ISO-OSI (International Standards
information concerning packets awaiting transfer to a host Organizatioa--Open Systems Interconnection) model
computer in order to locate a packet in the same commimi- 65 framework. Thus, one illustrative protocol stack includes the
cation fiow as a packet being transferred, in accordance with Transport Control Protocol (TCP) at layer four, Internet
an embodiment of the invention. Protocol (IP) at layer three and Ethernet at layer two. For

EX 1017 Page 270

US 6,483,804 B1

5

header arser module may be configured to determine
whether a a e is mafiEdm El
one of the protocols atihle with the e-selected
pro on received packet may also [gm 1m benefit
of other processing eflicienci such as ITO—assembling data

m an ts in one flow or dist uting pro-
c ackets am a m -p r
system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. Min 3 block diagram depicting a network interface
circuit (NIC) for receiving a packet from a network in
awordance with an embodiment of the present invention.

FIG. 13 is a flow chart demonstrating one method of
operating the NIC of FIG. 1A to transfer a packet received
from a network to a host computer in awordancc with an
embodiment of the invention.

FIG. 2 is a diagram of a packet transmitted over a network
and received at a network interface circuit in one embodi—
ment of the invention.

FIG. 3 is a block diagram depicting a header parser of a
network interface circuit for parsing a packet in accordance
with an embodiment of the invention.

FIGS. 4MB comprise a flow chart demonstrating one
method of parsing a packet received from a network at a
network interface circuit in accordance with an embodiment

of the present invention.
FIG. 5 is a block diagram depicting a network interface

circuit flow database in accordance with an embodiment of
the invention.

FIGS. GME comprise a flowchart illustrating one
method of managing a network interface circuit flow data-
base in accordance with an embodiment of the invention.

FIG. 7 is a flow chart demonstrating one method of
distributing the processing of network padrets among mul-
tiple processors on a host computer in accordance with an
embodiment of the invention.

FIG. 8 is a diagram of a packet queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 9 is a diagram of a control queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 10 is a block diagram of a DMA engine for trans»
ferring a packet received from a network to a host computer
in accordance with an embodiment of the invention.

FIG. 11 includes diagramsofdata stmctums for managing
the storage of network packets in host memory buffers in
accordance with an embodiment of the invention.

FIGS. lZA-lZB are diagrams of a free descriptor, a
completion descriptor and a free buffer array in accordance
with an embodiment of the invention.

FIGS. 13~20 are flow charts demonstrating methods of
transferring a packet received from a network to a buffer in
a host computer memory in awordance with an embodiment
of the invention.

FIG. 21 is a diagram of a dynamic packet batching
module in accordance with an embodiment of the invention.

FIGS. ZZA-JZB comprise a flow chart demonstrating one
method of dynamically searching a memory containing
information concerning packets awaiting transfer to a host
computer in order to locate a packet in the same communi-
cation flow as a packet being transferred, in accordana: with
an embodiment of the invention.

15

6

FIG. 23 depicts one set of dynamic instructions for
parsing a packet in accordance with an embodiment of theinvention.

FIG. 24 depicts a system for randomly discarding a packet
5 from a network interface in accordance with an embodiment

of the invention.

FIGS. 25A—25l3 comprise a flow chart demonstrating one
method of discarding a packet from a network interface in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the m to make and use the invention, and
is provided in the context of particular applicatiom of the
invention and their requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
skilled in the art and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
invention. Thus, the present invention is not intended to be
limited to the embodiments showu, but is to be accorded the
widest scope consistent with the principles and Erratum
disclosed herein.

10

75 In particular, embodiments of the invention are described

below in the form of a network interface circuit iEiC)recei ' communication a mo rmat in awo cc

with certain communication protocoE co§§§§le wrtE EB:
M m c art will rcwgnize, however, that

30 the present invention is not limited to communiution pro-
tocols compatible with the Internet and may be readily
adapted for use with other pmtooolggndjnmmmnnication
devices fir {Ban :1 NW.”M

The program environment in which a present embodiment
35 of the invention is executed illustratively incorporates a

general-purpose computer or a special purpose device such
a hmd—hcld computer. Details of such devices (e.g.,
processor, memory, data storage, inputloutput ports and
display) are well known and are omitted for the sake of

40 clarity.
It should also be understood that the techniques of the

present invention might be implemented using a variety of
technologies. For example, the methods described herein
may be implemented in software running on a program-

45 mable microprocessor, or implemented in hardware utilizing
either a combination of microprocessors or other specially
designed application specific integrated circuits, program-
mable logic devices, or various combinations thereof. In
particudar, the methods described herein may be imple-

50 mented by a series of computer-exemtable instructions
residing on a storage medium such as a carrier wave, disk
drive, or other computer—readable medium.
Introduction

In one embodiment of the present invention. a network
55 interface circuit (NIC) is oonfi ive add rooess
WW

We!lameNl nfi red to receive and In ulatc packets or.
mattedIn accordance a [01000 stac a CO

on nationnot communication protocols! supportedehy a network
coupled to the NC

A protocol stack may he described with reference to the
seven-layer ISO-OS] (International Standards
Organization—Open Systems Interconnection) model

65 framework. Thus, one illustrative protocol stack includes the
Transport Control Protocol (TCP) a1 layer four, Internet
Protocol (I?) at layer three and Ethernet at layer two. For

c Mm
€13.44...-

EX 1017 Page 270

i •
et
~ . ,. ,~

·, ., ...
~·[· ,~

•· -~ .':'

US 6,483,804 Bl
7

purposes of discussion, the term "Ethernet" may be used
herein to refer collectively to the standardized IEEE
(Institute of Electrical and Electronics Engineers) 802.3
specification as well as version two of the oon-standardized
form of the protocol. Where different forms of the protocol
need to be distinguished, the standard form may be identified
by including the "8023" designation.

Other embodiments of the invention are configured to
work with communications adhering to .2!!!_cr protocols, both
known c .. , A leTalk, IPX (Internetwork Packet
~), etc.) and unknown at c present time. One
skilled in the art will recognize that the methods provided by
this invention are easily adaptable for new communication
protocols.

In addition, the processing of packets described below

/

may be performed on communication devices other than a
NIC. For example, a modem, switch, router or other com
munication port or device (e.g., serial, parallel, USB, SCSI)
may be similarly configured and operated.

In embodiments of the invention described below, a NIC
receives a packet from a network on behalf of ~t
com ter s tern or other communication deVIce. 1bc NIC

~ analyzes the packet e.g., by retrieving certain e . om
~ne or more o 1 protoco ea ers an s action to

increase the efficiency Wl W C C paclZct is transferred
9~ts-destination cntify. Equipment and methods
discussed below for increasing the efficiency of processing
or transferring packets received from a nctworli: may also be
used for packets moving in the reverse direction (i.e., from
the NIC to the network).

One techniqu ay be applied to incoming nc~rk
n traffic involves o arsin one or more headers of
{ an mcom · . ., headers for the layer two, three and

four protocols) in order to identify the packet's 59urce and
, destination entities and possibly retrieve certain other jpfor

mation. Using identifiers of the communicatin enti ·
·· 'lrev,ilata fro ·p1c packets may: be aggregated or

µ Jr,,, r~led. Typically, a datagram sent to one destination

J

entity from one source entity is transmitted via multiJ!lc
packets. Aggregating data from multiple related packets

'{c:g.:'"'pack~ carrying data from the same datagram) thus
allows a datagram to be rc-asscmblc!l. and roUectively
!!:arisfcrrcd to a~mputcr. The datagram may then be
provideif1oflic destination cntit)!Jn a highly cfficicnfman
~ For example, rather than providing data from one packet
at a time (and one byte at a time) in separate "copy''
operations, a "page-flip" operation may be performed. In a
page-flip, an entire memory page of data may be provided to
the destination entity, possibly in exchange for an empty or
unused page.

In another technique,.wickets received from a network are
:elaccd in a queue to await transfer to a host computer. Whlie
awaiting transfer, multiple related packets may be identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (e.g., one at a time).

Yet another technique involves submitting a number of
related packets to a single processor of a multi-processor
host computer system. By distributing packets conveyed
between di!Ierent pairs of source and destination entities
among different processors, the processing of packets
through their respective protocol stacks can be distributed
while still maintaining packets in their correct order.

The techniques discussed above for increasing the effi
ciency with which Eackcts arc processed may mvolvc a
combination of hardware and software modules located on
a network interface and/or a host computer system. In one

8
particular embodiment, a,parsing module on a host comput
er's NIC parses hcaderportions of packets. Illustratively, the
parsing module comprises a microsequencer operating
according to a set of replaceable instructions stored as

s micro-code. Using information extracted from the packets,
multiple paclicfs from one source entity to one destination
entity may 6cfclentificd. A hardware re-assembly module on
the NIC may then gather the data from~c multiple packets.
Another hardware module on the NIC is configured to

10 recognize related packets awaiting transfer to the host com
puter so that they may be processed througli an appropriate
protocol stack collectively, rather than serially. The
re-assembled data and the packet's headers may then be
provided to the host computer so that appropriate software

1s (e.g., a device driver for the NIC) may process the headers
and deliver the data to the destination entity.

Where the host computer includes.multiple processors, a
load distributor (which may also be implemented in hard
ware on the NIC) 1!!!Y select a procel!SOr to process the

20 headers of the multiple packets through a protocol stack.
In another cmoodiment of the invention, a system is

provided for randomly discarding a packet from a NIC when
the NIC is saturated or nearly saturated with packets await
ing transfer to a host computer.

25 One Embodiment of a Higli Performance Network Interface
Circuit

\

FIG. 1A depicts NIC 100 configured in accordance with
an illustrative embodiment of the invention. A brief descrip
tion of the operation and interaction of the various modules

30 of NIC 100 in this embodiment follows. Descriptions incor
porating much greater detail are provided in subsequent
sections.

A communication packet may be received at NIC 100 _ oJ:tl .,;h)/::-· ,/_~-.:.JL
~fr~'l'l~m'::,.;,n;e~tw;,;o7rkT::1::lll~~bfuia~mredi~·':ium~~access7.~::co~n:'tro~:=~:=~ - 1 rj !

35 m c not shown in FIG. lA). The MAC module performs ~
low-leve processin of the the

ac ct om k, performing some error checking,
detecting packet fragments, detecting over-sized packets,
removing the layer one preamble, etc.

40 Input Port Processing (IPP) module 104 then receives the)
packet. I he IPP module stores the entire packet in packet
queue ll6, as received from the MAC module or network,
and a Jl2rtion of the packet is copied into header parser 1~6.
In one embodiment of the invention IPP module 104 may act

45 as a coordinator of sorts to prepare the packet for transfer to
a host computer system. In such a role, IPP module 104 may
receive information concerning a packet from various mod-
ules of NIC 100 and dispatch such information to other
modules .

so Header parser 106 arscs a header portion of the packet to
retrieve various 1cces o ormat10n t at to
identify related packets (e.g., m ti e ac e e
same so en 1 y or one estination entity) and that will
a1rect subsequent processing of the packets. In the illustrated

ss embodiment, header parser 106 communicates with flow
database man:'ger (FDBM) 108, which manages flow data
base (FDB) 110. In particular, header parser 106 submits a
.51.ucry to FDBM 108 to dctermmc whether a valid commu
nication flow (described below exists between the e

60 entity at sent a packet and the destination entity. ~
destination entity may comprise an application program. a
communication module, or some other e]emcpt of a host
computer system that is to receive the packet.
-rn1lic illustrated embodiment of the invention, kcom~u-

65 nication flow comprises one or more data am ac ets m
on,e sour one es mat10n cntit . A flow may be
1 entificd by a flow key assembled from source and desti-,

EX 1017 Page 271

e

,

“o

9%

august,

‘:

.6

~,afi'ram4.~*‘Mfiflt‘a:

 WV

t;

. t

r.e

.,x—

US 6,483,804 B1
7

purposes of discussion, the term “Ethernet” may be used
herein to refer collectively to the standardized IEEE
(Institute of Electrical and Electronics Engineers) 802.3
specification as well as version two of the non-standardized
form of the protocol. Where rlifierent forms of the protocol
need to be distinguished, the standard form may be identified
by including the “802.3” designation.

Other embodiments of the invention are configured to
work with communications adhering to other protocols, both
known e. ., A leTalk, IPX (lam—Packet
Exchange), etc.) and unknown at Elie present time. One
skilled in the artwillrecognize that the methods provided by
this invention are easily adaptable for new communication
protocols

In addition, the processing of packets described below
may be performed on communication devices other than a
NIC. For example, a modem, switch, router or other com-
munication port or device (cg, serial, parallel, U813, SCSI)
may be similarly configured and operated.

In embodiments of the invention described below, a NIC

receich a packet from a network on behalf of rho—st
com ter 5 tom or other communication deVice. The NIC

Ci analyzes the packet teg, by retrieving certain fields Eorn

9
t

pail"

One techniqu ay be applied to incoming networktraflic involves in~ o arsin one or more headers of
an incom' . ., headers for the layer two, three and

Fe , data fro

he or more 0 i protoco ea ers _anAaction to
increase the efiiciency M w e packet is transferred
gm.Equipment and methods
discussed below for increasing the efiiciency of processing
or transferring packets received from a network may also be
used for packets moving in the reverse direction (i.e., from
the NIC to the network).

four protocols) in order to iden ' the ac ’ e and
destination entities and ibl retrieve certain othe ‘ -
mation. Using identifiers of the communicatin en ‘ '

' ckets ma ted

Ira-assembled. Typically, a datagram sent to one destinationcum from one source ‘ 's transmitted via multi 1e

packets. Ag/grjgfinmigirwfrmnrnulfiple related packetse.g., packets gm"g data m mthus
allows a dWmhledjfldmflecfively

meuten The datagram may then beWW-
3}; For example, rather than providing data from one packe
at a time (and one byte at a time) in separate “copy”
operations, a “page-flip” operation may be performed. In a
page-flip, an entire memory page ofdata may be provided to
the destination entity, possibly in exchange for an empty or
unused page.

In another technique, ceived from a network are
laced in a ueue to await transfer uter. e

awaiting transfer, multiple related packets may be identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (e.g., one at a time).

Yet another technique involves submitting a number of
related packets to a single processor of a multi-processor
host computer system. By distributing packets conveyed
between different pairs of source and destination entities
among different processors, the processing of packets
through their respective protocol stacks can be distributed
While still maintaining packets in their correct order.

The techniques discussed above for increasing the efli—
ciency with which packets are proce§ed may invo ve acombination of hardware and software modules located on
a network interface and/or a host computer system. In one

8

particular embodiment.awe
er’s NIC parses header ortions ts. Illustratively, the
parsing module comprises a microsequencer operating
according to a set of replaceable instructions stored as
micro-code. Using information extracted from the packets,
multiple packe om one source entity to one estination
Weiaénfifiea. K hardware re—assembly module on
the N16 may then gather the datafrom.

0 of ar odule on the NICmgnred to
recefgnize related packets awaiting transfer to the host com- \
puter so that they may be processed through an appropriate
protocol stack collectively, rather than serially. The
re-assembled data and the packet’s headers may then be
provided to the host computer so that appropriate software
(e.g., a device driver for the NIC) may process the headers
and deliver the data to the destination entity.

Where the host computer includcsmultiple processors, a
load distributor (which may also be implemented in hard-
ware on the NIC) ma select a processor to process the
headers of the multi e pac ts ough a protoco stack.

In another embodiment of the invention, a system is
provided for randomly discarding a packet from a NIC when
the NIC is saturated or nearly saturated with packets await-
ing transfer to a host computer.
One Embodiment of a High Performance Network Interface
Circuit

FIG. 1A depicts MC 100 configured in accordance with
an illustrative embodiment of the invention. Abrief desa'ip-
tion of the operation and interaction of the various modules
of MC 100 in this embodiment follows. Descriptions incor—
porating much greater detail are provided in subsequent
sections.

A communication packet me be waived at NIC 100
hm/

35 mfle toot shown in FIG. 1A). The MAC module performs

W' theac t om Ir, performing some error checking,
detecting packet fragments, detecting over-sired packets,
removing the layer one preamble, etc.

Input Port Processing (IPP) module 104 then receives the
pamet
q‘u'Tee' “B, as received from the MAS; mg; or network,

a rtion o the adret is co ied into header arser 106.

In one embodiment of the invention IPP module 104 may act
45 as a coordinator of sons to prepare the packet for transfer to

a host computer system. In such a role, IPP module 104 may
receive information concerning a packet from various mod-
ules of NIC 100 and dispatch such information to other
modules.

Header parser 106 arses a header portion of the packet to
retrieve various woes of Einrmatron :55: Will R m to

same so on i y r one estlnation entit and '
su uen rocessing of the ackets. In the illustrated

55 embaiment, header arser i06 communicates with flow
database manager lEQBM! 108I which manages flow data-base FDB 110. In articular, header arser 106 submits a
ue to FDBM 108 to determine w e '

nication flow (described below exists between the_____________)___'_mur£eentity that sent a acket and the destination entity. The
destination entity may comprise an application program, a

Walrus:computerWe.fiillustrated embodiment of the invention a commu-

65 nication flow comprises one or more data am HCECIS fim C ,one sour§ fifififi B one E_ies§inatron emit: A flog may be i /
i entified by a flow key assembled from source and desti-W

10

15

30

arr/“’06“ we
2 ,C/

40
”fl Skit: ' ’I‘f

M {we 38/)

50 reg Q»),
- MA

no Wflvtt 1
.fi - pram/V5

.we

,3.» ’

\A gawk/M"

 u-

60

EX 1017 Page 271

9
US 6,483,804 Bl

10

s

ue ll6.
a et tchin module 122 draws upon information

10
(Uh, collective) pro=ng oflieaders from m~ie related
~- In one embodiment of the invention pac et batch-

concerning packets in ~ et queue batch 1
mg module 122 alerts the host computer to the availability
of headers from related packets so that they may be pro
cessed together.

Although the processing of a packet's protocol headers is
performed by a processor on a host computer system in one
embodiment of the invention, in another embodiment the
protocol headers may be processed by a processor located on
NIC 100. In the former embodiment, software on the host
computer (e.g., a device driver for NIC 100) can reap the

20 advantages of additional memory and a replaceable or
upgradeable processor (e.g., the memory may be supple
mented and the processor may be replaced by a faster
model).

During the storage of a packet in packet queue ll6,
•. 25 checksum generator ll4 may perform a checksum opera-

-1 L.J.-""" code with the received ackel An apcration code may j:,e lion. The checksum may be added to the packet queue as a
pr,~ use to 1 en r a packet is art of a new or existin trailer to the packet. Illustratively, checksum generator 114 !*')- .J. ow, whether pa e me u es data or just control generates a checksum from a portion of the packet received

.• s ~ f T iiiformation, the amount of data within the packet, whether from network 102. In one embodiment of the invention, a

1:
1 the packet data can be re-assembled with related data (e.g., 30 checksum is generated from the TCP portion of a packet

,-- other data in a datagram sent from the source entity to the (e.g., the TCP header and data). If a packet is not formatted
destination entity), etc. FDBM 108 · · according to TCP, a checksum may be generated on another
retrieved from the packet and pro · portion of the packet and the result may be adjusted in later

ra- processing as necessary. For enmple, if the checksum
back to with 35 calculated by checksum generator 114 was not calculated on

the correct portion of the packet, the checksum may be
0 adjusted to capture the correct portion. This adjustment may

be made by softwan: operating on a host computer system
(e.g., a device driver). Checksum generator ll4 may be

40 omitted or meiged into another module of NIC 100 in an
alternative embodiment of the invention.

From the information ob ·
the uw information managed b flaw database man er
108, the host co rv C 00 in th

45 · ustratcd embodiment .iJ;; able to process network traffic
very efficiently. For example, data portions of related pack
its may 5e re-assembled by DMA engine 120 to form
aggregations that can be more cffictently mampiilaied. Aria;
by assembling the data mto buffers the si7.e of a memory
page, the data can be more efficiently transferred to a
destination entity through "page-flipping," in which an
entire memory page filled by DMA engine 120 is provided
at once. One page-flip can thus take the place of multiple
copy operations. Meanwhile, the header portions of the

55 re-assembled packets may similarly be processed as a group
through their appropriate protocol stack.

As already described, in another embodiment of the
invention the processing of network traffic through appro
priate protocol stacks may be efficiently distributed in a

60 multi-processor host computer system. In this embod,imcnt.
load distributor 112 assigm; or distnbutes related packets
(e.g., packets in the same communication flow to the same
processor. p , pac ets a urce and
~on a esscs m en yer tocol e .. IP)

65 lieaders an ·on rts in their
ma be sent tu.. a

EX 1017 Page 272

US 6,483,804 Bl
9

WWQMII: one our odiment of the mventiou a flow key on »

memflg-ERWMdestination entities to ciet s 1:: er t ee (eHg, 1?)
and/or laier Err—E Eli; RTE; 5:10:01 headers.

For purposes of the illustrated embodiment of the
invention, a communication flow is similar to a TCP end-
to'end mnnection but is generally shorter in duration. In
particular, in this embodiment the duration of a flow may be
limited to the time needed to receive all of the packets
associated with a single datagram passed from the source

' ntity to the destination entity.

Thus, for purposes of flow management, header parser
106 s the paeket’s flow kc to flow database manager

”0 1% 1% head? arser ma also rovide me how database
manager with other information concerning (2 pa at that

WWW“of the packet)
ow eta ase manager 108 searches FDB 110m

ing each v ' g
50111wa by MC 100 Thus, FDBM 108 uglinessFDBfirmupon the information received
fiom Header parser 11% 15 Edition, In E emiiafieut of
the inventmn FDBM 108 associates an o oration or action

Mamie with the recen'féi acEL An upgrahon Ede may bewméto 1§cn§§ $63!. a packet is part of a new or existing{’4% ow, whether e pa e m n es data or just controlii‘{“If information, the amount of data within the packet. whetherc the packet data can be re—assembled with related data (0g,
/ other data'to a datagrsrn sent from the source entity to the

7% destination entity), etc. FDBM 108 [my use infannation

retrieved hour the packet md provided b header arser 106
toseeca e e aet’som-

Wemindexofthe s owwr FDB 110

oneembodimento the invention the combination of
header parser 106, FDBM 108 and FDB 110, or a subset of
these modules, may be known as a traffic classifier due to
their role in classifying or identifying network traffic
received 1t NIC 100.

In the illustrated embodiment, header

hint

W311)“ may tetmine which rooessor an incomin ache!
WW5H0“E310 Emma
Wloaddistributot re ted ackets are routed to e
sen all ackets in one communication -

0 connection to a single pmcmsor. the correct 0rd ’ of
‘ par: ts can be e or . Lstrfimtor 112 may be
, Wtemafive embodiment of the invention. In

mother alternative embodiment, header parser 106 may also
communicate directly with other modules of MC 100
besides the load distributor and flow database manager.

Thus, after h arser 106 arses u ask 'W

W8
W
.2“ Wmrmatlon back to module 104 Illustrativel

Wy, g; indexof
. an identifier of

da concerning e packet (e.g, its length, a length of a
Wet).

Now 01o adret run be stored in e ' ‘11

fit ho packets r manipulzn‘on b DMA (Direct Memory

10

W120 and “21!!“chth
Wm

5 WWHW
WW‘ cm}at m acket queue 116.

concerning packets in ct ueue batch

swim-Firmrelated
13%? one embodtm'ent of the invention par: et batch-mg e 122 alerts the host computer to the availability
of headers from related packets so that they may be pro.
cessed together.

Although the processing of a packet’s protocol headers is
performed by a processor on a host computer system in one
embodiment of the invention, in another embodiment the
protocol headers maybe processed by aprooessor located on
MC 100. In the former embodiment, software on the host
computer (erg, a device driver for MC 100) can reap the
advantages of additional memory and a replaceable or
upgradeable processor (e.g., the memory may be supple-
mented and the processor may be rcplamd by a 553sz
model).

During the storage of a packet in packet queue 116,
checksum generator 114 may pertinent a ohecksum opera-
tion. The checksum may he added to the packet queue as a
trailer to the packet. lllustmtively, checksum generator 114
generates a checksum from a portion of the packet received
from network 102. In one embodiment of the invention, a
chedrsum is generated from the TCP portion of a packet
(e.g., the TCP header and data). If a packet is not fiormuttod
according to TCP, n checksum may be generated on another
portion of the packet and the restlt may be adjusted in later
processing as neoemry. For example, if the checkmm
calculated by cheeksum generator 114 was not calculated on
the correct portion of the padret, the chedrsmn may be
adjusted to capture the correct portion. This adjustment may
be made by software operating on a host computer system
(e.g., a device driver). Chooksum generator 114 may be
omitted or merged into another module of MC 100 in an
alternative embodiment of the invention.

From the information obtgjngg by header mgr 106 and
the ow information nun ed 1) flow database man er

WM45 ‘ ustrated embodiment a; able to pangs pegged: trifle
very efficiently. For example, data pgrtions of related pack-
mrc-assembled by DMA engine 120 to form
W
Wof a memory
page, the data can be more efficiently transferred to a
destination entity through “page-flipping,” in which an
entire memory page filled by DNA engine 120 is provided
at once. One page-flip mo thus take the place of multiple
copy operations. Meanwhile, the header portions of the
ro-assembled packets may similarly be processed as a group
through their appropriate protocol stack.

As already described, in another embodiment of the
invention the processing of network traffic through appro-
priate protocol stacks may be efliciently distributed in a
multiprocessor host computer system. In this embodiment,

loaddistributor1.12 assi or (1151111) to ed

(eg, packetsp1nthesame oommzmication flow to the same
processor. , pa etsmgthe same source andestimation up was In err yer10001e.

as heat ers and/or the same source and destination rts in their
layer Eur protocol gags TCPE headers mai he sent to;smgle processor.W

10

15

30

35

50

55

60

EX 1017 Page 272

@ettts
Q PW"

US 6,483,804 Bl
11 12

ln the NIC illustrated in FIG. lA, the processing enhance- Jn state 140, J)le packet is stored in packet queue)16. As
meats discussed above (e.g., re-assembling data, batch pro- the oontents of the packet are placed into the packet queue,
ccssing packet headers, distributing proto~ck checksum generator 114 may oompute a checksum. The
p rk checksum generator may be inforroed by IPP module 104 as
1 at one or more re- s to which portion of the packet to compute the checksum on.
J?!Otocol:ttacks. In this embodiment of the invention net- The computed checksum is added to the packet queue as a

is the Internet and NIC 100 is therefore configured trailer to the packet. In one embodiment of the invention, the
to process packets using one of several protocol stacks packet is stored in the packet queue at substantially the same
compatible with the lnternet. Packets not conl:igiired aa:ord- time that a copy of a header portion of the packet is provided
ing to the pre.:S-Clected protocols are also processed, but may 10 to header parser 106.
not receive the benefits of the full suite of processing Abo in state 140, n
efficiencies provided to packets meeting the pre-selected stored in control eue 11
protocols. packet's flow e. ., flow

For example, packets not matching one of the pre-selected to ynamic acket module-122-
protocol stacks may be distnbuted for processing in a 15 n s le 142, NIC 100 determines whether the packet is
multi-processor system on the basis of the packets' layer two ready to be transferred to host computer memory. Until it is
(e.g., medium access control) source and destination ready to be transferred, the illustrated procedure waits.
addresses rather than their layer three or layer four When the packet is ready to be transferred (e.g., the
addresses. Using layer two identifiers provides less granu- packet is at the bead of the packet queue or the host
larity to the load distnbutinn procedure, thus possibly dis- 20 computer receives the packet ahead of this packet in the
tnbuting the processing of packets less evenly than if layer packet queue), in state 144 dynamic packet batching module
three/four identifiers were used. 122 determines whether a related packet will soon be

FIG. 1B depicts one method of using NIC 100 of FIG. 1A transferred. If so, then when the present packet is transferred
to receive one packet from network 102 and transfer it to a to host memory the host computer is alerted that a related
host computer. State 130 is a start state, possibly character- 25 packet will soon follow. The host computer may then
ized by the initialization or resetting of NIC 100. process the packets (e.g., through their protocol stack) as a

In state 132, a packet is received by NIC 100 from group.
network 102. As 'tlready dcscn6ed, tbe ·wcket ma'l:& In state 146, the packet is transferred (e.g., via a direct
fomiatted according to a variety of communication proto- memory access operation) to host cometer memory. And,
cols. The packet may be received and mdiilly ma.nipulited 30 in state 148, the host computer is notifiedtliii.t the packet was
~MAC module befurc being passed to an IPP module. transferred. 'fiicillustratcd procedure then ends at state ISO.

ln state 134, a rtion of the a d asscd - One skilled in the art of computer systems and nctworlcing
to header parser c e r will recognize that the procedure descnbed above is just one
p to e a.c v ucs from one or more of its headets method of employing the modules of NIC 100 to receive a
ind/or its data. A flow · m some of the sin e ackct from a network and transfer 1t to a liost

computer system. Other suitab e mcth are also contem-
plated within the scope of the invention.
An Illustrative Packet

FIG. 2 is a diagram of an illustrative packet received by
40 NIC 100 from network 102. Packet 200 comprises data

portion 202 and header portion 204, and may also contain
trailer portion 206. Depending upon the network environ
ment traversed by packet 200, its maximum size (e.g., its
maximum transfer uoit or MTU) may be limited.

'45 In the illustrated embodimen · 202 com rises
data bein rovided to a . elVlil entity n
within a computer system e. . user lication ro , ~

ratin s stem or co · tion snhs tcm of the
co~r. Header portion 204 come._rises one or more e d-

t,;:..;"';-"~:.;;.="?=="";'.,_Jf an en alread ensts or so ~rs prefixed to the data portion by the source or orlg:iijating
ed to reflect the rece1 t of entity or a computer system comprising the source entit~

a new er, ~h header normally corre!j>Onds to a different comm~J
tion code to summarize one or more e cs or ~I. -
conditions of the packet. The operation code may be used by · ln a typical network environment, such as the Internet,
other modules of NIC 100 to handle the packet m an ss individual headers within header portion 204 are attached
aP.£ropnate manner, as dcscnbed in subsequent seclmns. (e.g., prepended) as the packet is processed through different
The operation code is returned to the header parser, alon_g layers of a protocol stack (e.g., a set of protocols for
with an index (e.g., a flow number) of the packet's flow in communicating between entities) on the transmitting com-
the How tlata:base. puter system. For example, F1G. 2 depicts protocol headers

In iitate D8, load distributor 112 assigns a processor 60 210,212,214 and 216, correspoocling to layers one through
number to the packet, l!"tlie host computer includes multiple four, respectively, of a suitable protocol stack. Each protocol
processors, and returns ihe processor number to the header header contains inforroation to be used by the receiving
processor. ffiuslral:ively, the procc~r number identifies computer system as the packet is received and processed
wli.lch processor is to conduct the packet 'ts.pr.ntru.ol through the protocol stack. Ultimately, each protocol header
stac on e ost computer~ State 138 may be omitted in an 65 is removed and data portion 202 is retrieved.
"alternative embodlment of the invention, particularly if the As described in other sections, in one embodiment of the
host computer consists of only a single processor. invention a system and method are provided for parsing

EX 1017 Page 273

11

In the NIC illustrated in FIG. 1A, the processing enhance-
ments dismissed above (e.g., remssembling data, batch pm»
cessing packet headers, distributing momma];
p are (not e or par: e re ti:
1 at are formatte new one or more rc- ted

tocol stacks. In this embodiment of the invention net-

work 102 is the Internet and NIC IN is therefore configured
to process packets using one of several protocol stacks

anhle with the Internet. nadmmfigm‘rmo
mg to the preselected protocols are also processed, but may
not receive the benefits of the full suite of processing
efficiencies provided to packets meeting the pro-selected
protocols

For example, packets not matching one of the pro-selected
protocol stacks may be distributed for processing in a
multi-processor system on the basisof the packets’ layer two
(e.g., medium access control) source and destination
addresses rather than their layer three or layer four
addrcsws. Using layer two identifiers provides less granu-
larity to the load distribution procedure, thus 1:035me dis—
tributing the processing of packets less evenly than if layer
three/four identifiers were used.

FIG.)3 depicts one method of using NIC 100 of FIG. 1A
to receive one packet from network 102 and transfer it to a
host computer. State 130 is a start state, possibly character-
ized by the initialization or matting of NIC III].

In state 132, a packet is received by MC 100 fromnetwork 102.MW
fo'r'fiatted acco ' to a variety of communication proto-
mmckfi‘Tiymrmm-mmmmm
5? a MAC module befiore being pared to an IPI’ module. N"

Ci)

“6 In state 134, a figmon of the padret is égpied and passedl to header parser . e e r en arses e
. C) p e an v u o ‘or its eta. A flow kn is aerated from some of the

refieval Elimination to identigy the Emmumcanon flow
thatincludes the acket The degree or extent to which the
packctis arsedma d ndwnits rotoco]s,rnthatthc
heEHEr parser may be mnfigurcd to parse headers ofdilfcrcnt
protoco to area ep ar,hcadcrparser106
may e optimized (c.g., its operating instructions

configured) for a $‘ific set of protocols or pgtocol stacks.If the packet on rms one or more of the specified
protocols it may be parsed more fully than a packet that does
not adhere to any of the protocols.

In 5% ”QWSheaders is forwarded to hm database manager 08 and/or
load distributor 112. The FDBM uses the information to set
It a flow 111 How datab 0 ' one does not ahead cinst

“‘9 or this communication If an on ahead exists or(a: :SM,_.._~l‘l_._1__,__packct’s flow, it may be dated to reflect the reset t of
'a new c . 11 en, M 108 generates an opera-

} tion code to summarize one or more (3 or
conditions of the packet The c ration code may be used by
WC 100 to die cpace man
timer,as demibal'm suhmsetm
The ration code25 returned to the headerLather, along
with an index (6g, a flow number) of the packet’5 flowin
W
m, load distributor n2 migg a Emccmor
number to the packet, c host computer includes in lo
processors, and returns {Es processor number [My
pm“
Which processor is to oondtict the packet mung]: 1W1
Sta on e ost com utcr tat: 138 may be omitted in an
‘Wmiifithe invention, particularly if the
host computer consists of only a single processor.

US 6,483,804 Bl
12

In state“aweAsthe contents of the pac et are placed into the packet queue,
cheeksum generator 114 may compute a checksum. The
checksum generator may be informed by IPP module 104 as

S to which portion of the packet to compute the checksum on.
The computed checksum is added to the packet queue as a
trailer to the packet, in one embodiment of the invention, the
packet is stored in the packet queue at substantially the same
time that a copy of a header portion of the packet is provided

10 to header pm): 106.

Alsoin state 140, fill—[121 infgrmation {9; the packet isstoredin control our: 118 information concemin the

packet’s flow it:2., flow number; flow keEi mai b§ fifigfisd
to ynamic racket arc in modul5_1_22,r_¢
WWW“ whether the packet is
ready to be transferred to host computer memory. Until it is
ready to be transferred, the illustrated procedure waits.

When the packet is ready to be transferred (e.g., the
packet is at the head of the packet queue or the host

10 computer receives the packet ahead of this packet in the
packet queue), in state 144 dynamic packet batching module
122 determines whether a related packet will soon be
transferred. Ifso, then when the present packet is transferred
to host memory the host computer is alerted that a related

25 packet will soon follow. The host wmputcr may then
process the packets (c.g., through their protocol stack) as a
group.

In state 146, the packet is transferred (e.g., via a direct
memorymeory.And,

30 in state 148, the host com uter is notified $32: the acket was
transferred. e illustrated procedure then ends at state 150.
Wedin the art of computer systems and networking
will recognize that the procedure described above is just one
method of employing the modules of MC 100 to receive a

35 singlj packet from amm:on ter Other sultan e moth are also contem-

p ted within the scope of the invention.
Au Illustrative Packet

FIG. 2 is a diagram of an illustrative packet received by
an NIC 100 from network 102. Packet 200 comprises data

portion 202 and header portion 204, and may also contain

15

trailer portion 206. Depending upon the network environ-
ment traversed by packet 200, its maximum size (cg, its
maximum transfer unit or MTU) may be limited.

#5 In the illustrated embodiment, rtion 202. com rises
data being provided to a destination gr; reeervmg entitylication ro

 M tion subs tem of the

when Header portion254%Enscmmcormrecad—so cummmwfing

cntior a com titer s [em or) risin the sourcewig)lrmall corre nds to a different commcation
In atypicallnetwork environment, such as the Internet,

55 individual headers within header portion 204 are attached
(e.g,, pmpended) as the packet is protxmed through dilIerent
layers of a protowl stack (c.g., a set of protocols for
communicating between entities) on the transmitting com-
puter system. For example, FIG. 2 depicts protocol headers

60 210,212, 214 and 216, corresponding to layers one through
four, respectively, of a suitable protocol stack. Each protocol
header contains information to be used by the receiving
computer system as the packet is received and processed
through the protocol stack. Ultimately, each protocol header

as is removed and data portion 202 is retrieved.
As described in other sections, in one embodiment of the

invention a system and method are provided for parsingW

EX 1017 Page 273

US 6,483,804 Bl
13 14

g,acket 200 to retrieve various bits of informal!!:!._n. In this Although depicted as distinct modules in FIG. 3, in an
embodiment. packet 200 is parsed in order to identify the alternative embodiment of the invention header memory 302
beginning of data portion 202 and to retrieve one or more and instruction memory 30fi are contiguous.
values for fields within header portion 204. Illustratively, In the illustrated embodiment. pamer 304 parses a header
however, layer one protocol header or preamble 210 corre- s stored in header 11epmcy: 302"'icconling to instructions
sponds to a hardware,.level specification related to the cod- siored in instruction memqry 30fi. The instructions are
ing of individual bits. Layer one protocols are generally only des. ed for the arsin icular otocols or a articu-
necded for the physical process of sending or receiving the ar protocol stack, as discussed above. In one embodiment of
packet across a conductor. Thus, in this embodiment of the the mvention, instruction memory 30fi is modifiable (e.g.,
invention layer one preamble 210 is stripped from packet 10 the memory is implemented as RAM. EPROM, EEPROM or
200 shortly after being received by NIC 100 and is therefore the like), so that new or modified parsing instructions may
not parsed. be downloaded or otherwise installed. Instructions for pru:s-

Toe extent to J!Yhich header l!Ortion 204 is pa:rsed may ing a packet are further discussed in the following section.
~endiipon how manY, if any-:c;f the protocols represe'"iil:ed In FlG. 3, a header portion of a packet stored in IPP
in the header portion match a set of pre-selected protocols. 1s module 104 (shown in FlG. IA) is copied into header
For example, tbe_parsing procedure may be ahbreyiated or memory 302. Illustratively, a specific number of bytes (e.g.,
abortedonceitisdetermjnedtbatoneofthepacket'sbeaders 114) at the beginning of the packet are copied. In an
corresponds to an unsypported protocol. alternative embodiment of the invention, the portion of a
lii particular, in one embodiment of the invention NIC 100 packet that is copied may be of a different size. Toe

is configured primarily for Internet traffic. Thus, in this 20 particular amount of a packet copied into header memory
· is extensivel on1 en the 302 should be enough to capture one or more protocol

met (either traditional Ethernet or headers, or at least enough information (e.g., whether
or wit u included in a header or data portion of the packet) to retrieve

~~:::.:~~Pthe:"-·......,~,.,. the information descnbed below. Toe header portion stored
in header memory 302 may not include the layer one header,
which may be removed prior to or in conjunction with the
packet being processed by IPP module 104.

After a header portion of the packet is stored in header
memory 302, parser 3114 parses the header portion according

a.re parsed, and the extent to which they are 30 lo the mstructions stored m instruction memory 30fi. In the
parsed, are determined by the configuration of a set of presently descnbed embodiment, instructions for operating

instructi~ for operating header parser 106. . parser 304 apply the fonnatu>helcctrn pmtnmk!°Ylep
As descnbed above, the protocols corresponding to head- 1Jjrough the contents o~~U!!!'J!!!Dg! 30:t..amL.elrieve

ers 212, 214 and 216 depend upon the network environment ~c information. In particular, specifications of commu-
in which a packet is sent. Toe protocols also depend upon the 35 ilication pro'torols are well known and widely available.
communicating entities. For example, a packet received by Thus, a protocol header may be traversed byte by byte or
a network interface may be a control packet exchanged i:,me other fashion by referring to the rotocol ca-
between the medium access conttolleIS for the source and lions. In a present em ent o invention the parsing
destination computer systems. In this case, the packet would algorithm is dynamic, with information retrieved from one
be likely to include minimal or no data, and may not inclnde ,co field of a header often altering the manner in which another
layer three protocol header 214 or layer four protocol header part is parsed.
216. Control packets are typically used for various pmposes For example, it is known that the Type field of a packet
related to the management of individual connections. adhering to the traditional, form of Ethernet (e.g., version

Another communication flow or connection could involve two) begins at the thirteenth byte of the (layer two) header.
two application programs. In this case, a packet may include 45 By comparison, the Type field of a packet following the
headers 212,214 and 216, as shown in FlG. 2, and may also IEEE 802.3 version of Ethernet begins at the twenty-first
include additional headers related to higher layers of a byte of the header. Toe Type field is in yet other locations if
protocol stack (e.g., session, presentation and application the packet forms part of a Vntual Local Area Network
layers in the ISO-OSI model). In addition, some applications (VIAN) communication (which illustratively involves tag-
may include headets or header-like information within data so ging or encapsulating an Ethernet header). Thus, in a present
portion 202. For example, for a Network File System (NFS) embodiment of the invention, the values in certain fields are
application, data portion 202 may include NFS headers retrieved and tested in order to ensure that the information
related to individual NFS datagrams. A datagram may be needed from a header is drawn from the correct portion of
defined as a collection of data sent from one entity to the header. Details concerning the form of a VLAN packet
another, and may comprise data transmitted in multiple 55 may be found in specifications for the IEEE 802.3p and EEE
packets. In other words, the amount of data constituting a 8023q forms of the Ethernet protocol.
datagram may be greater than the amount of data that can be The operation of header parser 106 also depends upon
included in one pat:keL other differences between protocols, such as whether the

One skilled in the art will appreciate that the methods for packet uses vetsion four or version six of the Internet
parsing a packet that are descnbed in the following section 60 Protocol, etc. Specifications for versions four and six of IP
an: readily adaptable for packets formatted in accordance may be located in IETF (Internet Engineering Task Force)
with virtually any commuoicatioo protocol. RFCs (Request for Comment) 791 and 2460, respectively.
One Embodiment of a Header Parser The more protocols that are "known" by parser 304, the

FlG.3depictsbeaderparser 106 ofFIG. lAin accordance more protocols a packet may be tested for, and the more
with a present embodiment of the invention. Illustratively, 65 complicated the parsing of a packet's header portion may
header parser 106 comprises header memory 302 and parser become. One skilled in the art will appreciate that the
304, and parser 304 comprises instruction memory 306. protocols that may be parsed by parser 304 are limited only

EX 1017 Page 274

US 6,483,804 B1

13

WeIn thisem intent, packet 200 is parsed in order to identify the
beginning of data portion 202 and to retrieve one or more
values for fields within header portion 204. Illustrativcly,
however, layer one protocol header or preamble 210 com-
spouds to a hardware-level specification related to the cod-
ingof individual bits. Layer one protocols are generally only
needed for the physical process of sending or receiving the
packet across a conductor. Thus, in this embodiment of the
invention layer one preamble 210 is stripped from packet
200 shortly after being received by NIC 100 and is therefore
not parsed.

The extent to which hegdgr portion 204 is parsed may
depend umn how manyz if any, of the protocols represented
In the header portion match a set of Ere-selected protocols.
For example, mepgsmgmmdmmmmmé or
thinedthat one oftho packft’s headers
mmswanprowl-

l5 particular, in one embodiment of the invention MC 100
is configured primarily for Internet traffic. Thus, in this
embodiment packet 200 is extensively mg only;wen the
l y r o rotooolis Ethernet (either traditional Ethernet or
mM
Area Networks the" rotocol is [1’ (Internet
Protoccli and the layer four rotocol is TCP ”tampon
Collin loco . ac etsadh ’ may
IE parsed to some (e.g., lesser) extent. MC 100 may,
W cdtosu rtandparsevrrtuillyany

WWfiroto’shcader. Illustratively, ilie protocol11 ms at are parsed, and the extent to which they are
parsed, are determined by the configuration of a set of
instructions for operating header parser 106.

As described above, the protccols corresponding to head-
ers 212, 214 and 216 depend upon the network environment
in which a packet is sent. The protocols also depend upon the
communicating entities. For example, a packet received by
a network interface may be a control packet exchanged
between the medium access controllers for the source and

destination computer systems. In this use, the packet would
be likely to include minimal or no data, and may not include
layer three protocol header 214 or layer flour protocol header
216. Control packets are typically used for various purposes
related to the management of individual connections.

Another communication flow or connection wold involve
two application programs. In this case, a packet may include
headers 212, 214 and 216, as shown in FIG. 2, and may also
include additional headers related to higher layers of a
protocol stack (c.g., session, presentation and application
layers in the ISO-OS! model). In addition, some applications
may include headers or header—like information within data
portion 202. For example, for a Network File System (NFS)
application, data portion 292 may include NFS headers
related to individual NBS datagrams, A datagram may be
defined as a collection of data sent from one entity to
another, and may comprise data transmitted in multiple
packets. In other words, the amount of data constituting a
datagram may be greater than the amount ofdata that can be
included in one packet.

One skilled in the art will appreciate that the methods for
parsing a packet that are described in the following section
are readily adaptable for packets formatted in accordance
with virtually any communication protocol.
One Embodiment of a Header Parser

FIG. 3 depicts header parser 106 of FIG. 1A in amordancc
with a present embodiment of the invention. lllustmtively,
header parser 106 comprises header memory 302 and parser
304, and parser 304 comprises instruction memory 306‘

ll]

15

30

35

14

Although depicted as distinct modules in FIG. 3, in an
alternative embodiment of the invention header memory 3&2
and instruction memory 306 are contiguous.

In the illustrated embodiment, parser 304 pm a header

stored in h “MooErotomstmctronsstored ‘ instruction 306. The instructions are

MW“0me-ar protocol stack, as discussed above. In one embodiment of
The invention, insthtion memory 306 is modifiable (e.g.,
the memory is implemented as RAM, EPROM, EEPROM or
the like), so that new or modified parsing instructions may
be downloaded or otherwise installed. Instructions for pars-
ing a packet are further dimmed in the following section.

In FIG. 3, a header portion of a packet stored in IPP
module 104 (shown in FIG. 1A) is copied into header
memory 302. IthStratively, a specific number of bytes (e.g.,
114) at the beginning of the packet are copied. In an
alternative embodiment of the invention, the portion of a
packet that is copied may he of a difl'erent size. The
particular amount of a packet copied into header memory
302 should be enough to capture one or more protocol
headers, or at least enough information (c.g., whether
inclutkd in a header or data portion of the packet) to retrieve
the information described below. The header portion stored
in header memory 302 may not include the layer one header,
which may be removed prior to or in conjunction with the
packet being processed by [PP module 104.

After a header portion of the packet is stored in header
memory—Slufififir 3Mparses the hefificr nion according
T6 the instructions stored in instruction memo 306. In the

presently decor-1535 moment, instructions for cgrating
. ~; I, ' 2

Nation. In particular, specifications ofcommention protocols are well known and widely available.
Thus, a rotocol header ma he traversed byte by byte or

some other fashion by referring to the re ca-
tions. In a present em out o invention the parsing_

4O

45

SS

60

algorithm is dynamic, with information retrieved fiom one
field of a header often altering the manner in which another
part '5 parsed.

For example, it is known that the Type field of a packet
adhering to the traditional, form of Ethernet (e.g., version
two) begins at the thirteenth byte of the (layer two) header.
By comparison, the Type field of a packet following the
IEEE 8023 version of Ethernet begins at the twenty-first
byte of the header. The Type field is in yet other locations if
the packet forms part of a Virtual Local Area Network
(VLAN) communication (which fllustntivcly involves tag-
ging or encapsulating an Ethemet header). Thus, in a present
embodiment of the invention, the values in certain fields are
retrieved and tested in order to cmure that the information
needed from a header is drawn from the correct portion of
the header. Details concealing the floral of a VLAN packet
may be found in specifications for the IEEE 802.31) and EB
8023:; forms of the Ethernet protocol.

The operation of header parser 106 also depends upon
other differences between protocols, such as whether the
packet uses version four or version six of the Internet
Protocol, etc. Specifications for versions four and six of 11’
may be located in [E’I'F (Internet Engineering Task Force)
RFCs (Request for Comment) 791 and 2460, respectively.

The more protocols that are “known” by parser 304, the
more protocols a packet may be tested for, and the more
complicated the parsing of a padret’s header portion may
become. One skilled in the art will appreciate that the
protocols that may be parsed by parser 304 are limited only

EX 1017 Page 274

US 6,483,804 Bl
1S 16

by the instructions according to which it operates. Thus, by lrn appropriate circumstances, header parser 106 may also
augmenting or replacing the parsing instructions stored in report (e.g., to IPP module 104 and/or control queue 118)
instruction memory 306, virtually all known protocols may that the packet is not formatted in accordance with the
be handled by header parser 106 and virtually any informa- protocols that parser 304 is configured to manipulate. This
lion may be retrieved from a packet's headers. s report may take the form of a signal (e.g., the No_As.sist

If, of course, a packet header does not conform to an signal dcscnbed below), alert, flag or other indicator. The
expected or suspected protocol, the parsing operation may signal may be raised or issued whenever the packet is found
be terminated. In this case, the packet may not be suitable for to reflect a protocol other than the pre-selected protocols that
one more of the efficiency enhancements offered by NIC 100 arc compatJ.ble with the processing enhancements described
(e.g., data re-assembly, packet batching,. load distnbution). 10 above (e.g., data re-assembly, batch processing of packet

mustratively, the information retrieved from a packet's headers, loaddistnbution). For example, in one embodiment
headers is used by other portions of NIC 100 when process- of the invention paISer 304 may be configured to parse and
ingthatpacket.Forexample,asaresultofthe acket arsin efficiently process packets using TCP at layer four, IP at

erformcd b arser 304 o e is ed to identify layer three and Ethernet at layer two. In this embodiment, an
e communication flow or communication connection that 15 IPX (Internetwork Packet Exchange) packet would not be

the packet. Illustratively, the flow key is considered compatJ.ble and IPX packets therefore would not
natin one or more addresses corre- be gathered for data re-assembly and batch processing.

sponding to one or more of the commun.J!:ating entities. In At the conclusion of parsing in one embodiment of the
a present embodiment, a flow kel is formed from a combi- invention, the various pieces of information described above
nation of the source and ~ation addresses di'awn from 20 are disseminated to appropriate modules of NIC 100~

~e IP header and the source and destmation pods taken from this (and as described in a following sectiog) flow database
~e TCP licader. Oilier mdiaa of the commumcafing enfities manager 108 determines whether an active flow is ~-

fuay be used, such as the Ethernet source and destination atcd with the flow key derived ~acket and sets an
addresses (drawn from the layer two header), NFS file o~ration ;;;.e to be used jn subsequ_t p~
handles or source and destination identifiers for other appli- 25 a tion, l' module 104 transmits the packet to packet
cation datagrams drawn from the data portion of the packet. queue 116. IPP module 104 may a1so receive some of the

One skilled in the art will appreciate that the communi- information_sxtractcd by he;wer parser 106, and pass it to
eating entities may be identified with greater resolution by another module of NIC 100.
using indicia drawn from the higher layers of the protocol .-In the embodiment of the invention depicted in FIG. 3, an
stack associated with a packet. Thus, a combination of IP 30 entire header portion of a received packet to be parsed is
and TCP iodicia may identify the entities with greater copied and then parsed in one evolution, after which the
particularity than layer two information. header parser turns its attention to another packet. However,

Besides a flow key, parser 304 also generates a control or in an alternative embodiment multiple copy and/or paISing
status indicator to summarize additional information con- operations may be performed on a single packet. In
ceming the packet. In one embodintent of the invention a 35 particular, an initial header portion of the packet may be
control indicator includes a sequence number (e.g., TCP copied into and parsed by header parser 106 in a first

·r
,,:

sequence number drawn from a TCP header) to ensure the evolution, after which another header portion may be copied
correct ordering of packets when re-assembling their data. into header parser 106 and parsed in a second evolution. A
The control indicator may also reveal whether certain Hags header portion in one evolution may partially or completcly
in the packet's headers are set or cleared, whether the packet 40 overlap the header portion of another evolution. In this
contains any data, and, if the packet contains data, whether manner, extensive headers may be parsed even if header
the data exceeds a certain size. Other data arc also suitable memory 302 is of limited size. Similarly, it may require
for inclusion in the control indicator, limited only by the more than one operation to load a full set of instructions for
information that is available in the portion of the packet parsing a packet into instruction memory 306. IDustrativcly,
parsed by parser 304. 45 a first portion of the instructions may be loaded and

In one embodiment of the invention, header arscr 106 executed, after which other instructions are loaded.
provides the How key and all or a rtJ.on o e n rot With reference now to FIGS. 4A-4B, a flow chart is
m ca ow asc manager 108. ~ ~d in a presented to illustrate one method by which a header parser
following section, FDBM 108 manages a database or other may parse a header portion of a packet received at a network
dala structure containing informatJ.on relevant to communi- 50 interface circuit from a network. In this implementation, the
cation llows passing through NIC 100. header parser js configured. or QJ>tiroip;d. for paming pacK-"
... In other embodintents of the invention, parser 304 pro- ~ts conforming to a set of Rre-selected.pmtoroJs '°rprotocol
duces additional information derived from the header of a stacks). For packets meeting these criteria, various informa-
packet for use by other modules of NIC 100. For example, tion is retrieved from the header Portion to assist in the
header parser 106 may report the offset, from the beginning 55 re-assembly of lhe data portions of related packets (e.g.,

., of the packet or from some other point, of the data or packets comprising data from a sins)e--datagram). Other
payload portion of a packet received from a network. As enhauced features of the network interface circuit may also
descnbed above, the data portion of a packet typically be enabled.
follows the header portion and may be followed by a trailer The information generated by the header parser includes,
portion. Other data that header parser 106 may report 60 in particular, a flow key with which to identify the COlill,!lU-
include the location in the packet at which a checksum mt:ation How or communication connection ilia{ com ri!;es
operation should begin, the location in the packet at which n:ce1ved acket. la one em unent o the invention,
the layer three and/or layer four headers begin, diagnostic a.ta from pac els having the same flow key may be iden-
data, payload information., etc. The term "payload" is often tified and re-assembled to form a datagram. In addition,
used to refer to the data portion of a packet. In particular, in 65 headers of packets having the same flaw key may be \
one embodiment of the invention header parser 106 provides processed collectively through their protocol stack (e.g.,
a payload offset and payload size to cnntrol queue 118. rather than serially).

EX 1017 Page 275

US 6,483,804 B1

15

by the instructions aworriing to which it operates. Thus, by
augmenting or replacing the parsing instructions stored in
instruction memory 306, virtually all known protocols may
be handled by header parser 106 and virtually any informa-
tion may be retrieved from a packet’s headers.

II, of course, a packet header does not; conform to an
expected or suspected protocol, the parsing operation may
be terminated. In this case, the packet may not be suitable for
one more of the efficiency enhancements otfered by NIC 100
(e.g., data re-assembly, packet hatching, load distribution).

lllustratively, the information retrieved from 3 packets
headers is used by other portions of MC 100 when process-
ing thatpncket. For example, as a resultof the ticket arsin
erformed b arse: 304 0 lie is ed to identify

t communication flow or communication connection that

comprises the packet Illustratively, the flow key is
AWcorre—
spgnding In one Q; mom of the communicating entities. In
a pmsenl embodiment, a flow kc. is formed from a combi-
nation of the source mdmd‘fim

' header and source an mat on po om

., miss
naybe used, such as the Ethernet source and destination
addresses (drawn from the layer two header), NIB file
handles or source and destination identifiers for other appli-
cation datagants drawn from the data portion of the packet.

One skilled in the art will appreciate that the communi-
cating entities may be identified with greater resolution by
using indicia drawn from the higher layers of the protocol
stack mortified with a packet Thus, a combination of [P
and TCP indieia may identify the entities with greater
particularity than lzyer two information.

Besides a flow key, parser 304 also generates a control or
status indicator to summarize ndditional information con-

cealing the packet. In one embodiment of the invention a
control indicator includes a sequence mtmber (e.g., TC?
sequence mtmber drawn from a TC? header) to com the
correct ordering of packets when reassembliug their data.
The control indicator may also reveal whether certain flags
in the paeket’s headers are at or cleared, whether the packet
contains any data, and1 if the packet contains data, whether
the data exceeds a certain size. Other data are also witable
for inclusion in the control indicator, limited only by the
information that ‘5 available in the portion of the packet
parsed by parser 304.

In one embodiment of the Modem header user 106
provides the flow key and all or a moo o n rot
.in on auto manger 108. Win a
following section, FDBM 108 manages a database or other
dfim-

garion flows passing through NIC In.
In other embodiments of the invention, parser 30‘ pro-

duces additional information derived born the header of a

packet for use by other modules of MC 100. For example,
header parser 106 may report the offset, from the beginning
of the packet or from some other point, of the data or
payload portion of a packet received from a network. As
described above, the data portion of a packet typically
follows the header portion and may be followed by a trailer
portion. Other data that header parser 106 may report
include the location in the packet at which a chedrsnm
operation should begin, the location in the packet at which
the layer three and/or layer four headers begin. diagDOSLic
data, payload information, etc. The term “payload” is often
used to refer to the data portion of a packet. In particular, in
One embodiment of the invent‘mn header parser 106 provides
a payload oilset and payload size to control queue 118.

16

gin appropriate circumstances, header parser 106 may also
report (e.g., to [FF module 101» antifor control queue 118)
that the packet is not formatted in accordance with the
protocols that parser 304 is configured to manipulate. Ibis

5 report may take the form ofa signal (eng, the No_Assist
signal described below), alert, flag or other indicator. The
signal may be raised or ismed whenever the packetis found
to reflect a protocol other than the pie-selected protocols that
are compatible with the processing enhancements described

10 above (e.g., data rat-assembly, batch processing of packet
headers, load distribution). For example, in one embodiment
of the invention parser 304 may be mnfigured to parse and
efficiently process packets using TC? at layer four, IP at
layer three and Ethernet at layer two. In this embodiment, an

15 IPX (hltemetwork Packet Exchange) packet would not be
considered compatible and IPX packets therefore would not
be gathered for data reassembly and batch processing.

At the conclusion of parsing in one embodiment of the
invention, the various pieces of information described above

20 are disseminated to appropriate modules of MC 100, go;
this (and as described111 a followin

aha er etermines whether an activ ‘ '-

qucuc 6~ IPP modulnlllitnaxnlmrmmmof the

WWW“parser 106, and pass it tostun er module of NIC 100.

”135:“embodiment ofthe invention depicted in FIG. 3, an
an entire header portion of a received packet to be parsed is

copied and then parsed in one evolution, after which the
header parser turns its attention to another packet. However,
in an alternative embodiment multiple copy Indfor parsing
operations may be performed on 1 single packet. In

35 particular, an initial header portion of the packet may be
copied into and parsed by header parser 106 in a first
evolution, after which another header portion may be copied
into header parser 106 and parsed in a second evolution. A
header portion in one cvohttion may partially or completely

4o overlap the header portion of another evolution. In this
manner, extensive headers may be parsed even if header
memory 302 is of limited size. Similarly, it may require
more than one operation to load a full set of instructions for
parsing a packet into instruction memory 306. Illustratively,

4s a first portion of the instructions may be loaded and
executed, after which other instructions are loaded.

With reference new to FIGS. 4A4B, a flow chart is
presented to ilhtstrate one method by which a header parser
may parse a harder portion of a packet received at a network

so interface circuit from a network. In this implementation, the
head r conii M7
ets oonfo to a set of rose rpmtocolMimic
stacks). For rickets c tin these criteria, various informa-
tion isWWaist-sun the

55W1min"ts (cs-2
FWWW 0““e s o the network interface circuit may also
be enabled.

The information generated by the header user includes,
50 in particular. a how Ecy wrfli Which to identify the commu—

merrier; flow or communtEEfiEn counEEon {Earl com rises
received whet. In one em ment 0 the invention,

ata from par: els having the same flow key may be iden~
titled and re-assembled to form a datagram. In addition,

65 headers of packets having the same flow key may be
processed collectively through their protocol stack (e.g.,
rather than serially).

EX 1017 Page 275

,: '

,.,

US 6,483,804 Bl
17

In another embodiment of the invention, information
retrieved by the header pan;er is also used to distribute the
processing of network traffic received from a network. For
example, multiple packets having the same flow key may be
submitted to a single processor of a multi-processor host s
computer system.

In the method illustrated in FIGS. 4A-4B, the set of
pre-selected protocols corresponds to communication pro
tocols frequently transmitted via the Internet. In particular,
the set of protocols that may be extensively parsed in this 10

method include the following. At layer two: Ethernet

t
(traditional version), 802.3 Ethernet, Ethernet VLAN
(Vutual Local Area Network) and 802.3 Ethernet VLAN. At
layer three: IPv4 (with no options) and IPv6 (with no
options). Finally, at layer four, only TCP protocol headers 1s
(with or without options) arc parsed in the illustrated
method. Header parsers in alternative embodiments of the
invention pan;e packets formatted through other protocol
stacks. In particular, a NIC may be configured in accordance
with the most common protocol stacks in use on a given 20

network, which may or may not include the protocols
compabblc with the header parser method illustrated in
FIGS. 4A-4B.

As descnbed below, a received packet that docs not
correspond to the protocols pan;ed by a given method may 25

be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet has been
formatted can only be determined, in the present method, by
examining certain header field values, the determination that
a packet docs not conform to the selected set of protocols 30

may be made at virtually any time during the procedure.
Thus, the illustrated parsing method has as one goal the
identification of packets not meeting the formatting criteria
for re-assembly of data.

Various protocol header fields appearing in headers for the 35
selected protocols are discussed below. Communication
protocols that may be compatible with an embodiment of the
present invention (e.g., protocols that may be parsed by a
header parser) arc well known to persons skilled in the art
and are described with great particularity in a number of '40

references. They therefore need not he visited in minute
detail herein. In addition, the illustrated method of parsing a
header portion of a packet for the selected protocols is
merely one method of gathering the information described
below. Other parsing procedures capable of doing so arc 45

equally suitable.
In a present embodiment of the invention, the illustrated

procedure is implemented as a combination of hardware and
software. For example, updatcable micro-code instructions
for performing the procedure may be executed by a microse- so
quencer. Alternatively, such instructions may be fu::ed (e.g.,
stored in read-only memory) or may be executed by a
processor or microprocessor.

18
copied. Packet portions of different sizes are copied in
alternative embodiments of the invention, the sizes of which
are guided by the goal of copying enough of the packet to
capture and/or identify the necessary header information.
illustratively, the full packet is retained by IPP module 104
while the following parsing operations are performed,
although the packet may, alternatively, be stored in packet
queue 116 prior to the completion of parsing.

Also in state 402, a pointer to be used in parsing the
packet may be initialized. Because the layer one preamble
was removed, the header portion copied to memory should
begin with the layer two protocol header. illustratively,
therefore, the pointer is initially set to point to the twelfth
byte of the layer two protocol header and the two-byte value
at the pointer position is read. As one skilled in the art will
recognize, these two bytes may be part of a number of
different fields, depending upon which protocol constitutes
layer two of the packet's protocol stack. For example, these
two bytes may comprise the Type field of a traditional
Ethernet header, the Length field of an 802.3 Ethernet header
or the TPID (Tag Protocol IDcntificr) field of a VLAN-
tagged header.

In state 404, a first examination is made of the layer two
header to determine if it comprises a VIAN-tagged layer
two protocol header. illustratively, this determination
depends upon whether the two bytes at the pointer position
store the hexadecimal value 8100. If so, the pointer is
probably located at the TPID field of a VIAN-tagged
header. If not a VlAN header, the procedure proceeds to
state 408.

If, however, the layer two header is a VIAN-tagged
header, in state 406 the CFI (Canonical Format Indicator) bit
is examined. If the CFI bit is set (e.g., equal to one), the
illustrated procedure jumps to state 430, after which it exits.
In this embodiment of the invention the CFI bit, when set,
indicates that the format of the packet is not compatible with
(i.e., docs not comply with) the pre-selected protocols (e.g.,
the layer two protocol is not Ethernet or 8023 Ethernet). If
the CFI bit is clear (e.g., equal to zero), the pointer is
incremented (e.g., by four bytes) to position it at the next
field that must be examined.

In state 408, the layer two header is further tested.
Although it is now known whether this is or is not a
VIAN-tagged header, depending upon whether state 408
was reached through state 406 or directly from state 404,
respectively, the header may reflect either the traditional
Ethernet format or the 8023 Ethernet format. At the begin
ning of state 408, the pointer is either at the twelfth or
sixteenth byte of the header, either of which may correspond
to a Length field or a Type field. In particular, if the two-byte
value at the position identified by the pointer is less than
0600 (hexadecimal), then the packet corresponds to 8023
Ethernet and the pointer is understood to identify a Length
field. Otherwise, the packet is a traditional (e.g., version In FIGS. 4A-4B, state 400 is a start state during which a

packet is received by NIC 100 (shown in FIG. IA) and initial
processing is performed. NIC 100 is coupled to the Internet
for purposes of this procedure. Initial processing may
include basic error checking and the removal of the layer one
preamble. After initial processing, the packet is held by IPP
module 104 (also shown in FIG. IA). In one embodiment of
the invention, state 400 comprises a logical loop in which
the header pan;er remains in an idle or wait state until a
packet is received.

ss two) Ethernet packet and the pointer identifies a Type field.

In state 402, a bcader portion of the packet is copied iota
memory (e.g., header memory 302 of FIG. 3). In a present

embodiment of the mvent10n a predetermined number of
bytes at the beginning (e.g., 114 bytes) of the packet are

If the layer two protocol is 802.3 Ethernet, the procedure
continues at state 410. If the layer two protocol is traditional
Ethernet, the Type field is tested for the hexadecimal values
of 0800 and 08DD. If the tested field has one of these values,

60 then it has also been determined that the packet's layer three
protocol is the Internet Protocol. In this case the illustrated
procedure continues at state 4U. Lastly, if the field is a Type
field having a value other than 0800 or 86DD (hexadecimal),
then the packet's layer three protocol docs not match the

65 pre-selected protocols according to which the header parser
was configured. Therefore, the procedure continues at state
430 and then ends.

EX 1017 Page 276

3.
2
r

US 6,483,804 B1
17

In another embodiment of the invention, information
retrieved by the header parser is also used to distribute the
processing of network traflic received from a network. For
example, multiple packets having the same flow key may be
submitted to a single processor of a multi-prooessor host
computer system.

In the method illustrated in FIGS. 4A-4B, the set of
pre—selected protocols corresponds to communication pro-
tocols frequently transmitted via the Internet. In particular,
the set of protomls that may be extensively parsed in this
method include the following. At layer two: Ethernet
(traditional version), 802.3 Ethernet, Ethernet VIAN
(Virtual Local Area Network) and 802.3 Ethernet VIAN. At
layer three: IPv4 (with no options) and IPv6 (with no
options). Finally, at layer four, only TCP protocol headers
(with or without options) are parsed in the illustrated
method. Header parsers in alternative embodiments of the
invention parse packets formatted through other protocol
stacks. In particular, a NIC may be configured in accordance
with the most common protocol stacks in use on a given
network, which may or may not include the protocols
compatible with the header parser method illustrated in
FIGS. 4A-4B.

As described below, a received packet that does not
correspond to the protocols parsed by a given method may
be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet has been
formatted can only be determined, in the present method, by
examining certain header field values, the determination that
a packet does not conform to the selected set of protocols
may be made at virmally any time during the procedure.
Thus, the illustrated parsing method has as one goal the
identification of packets not meeting the formatting criteria
for re-assembly of data.

Variousprotocol header fields appearing in headers for the
selected protocols are discussed below. Communication
protocols that may be compatible with an embodiment of the
present invention (e.g., protocols that may be parsed by a
header parser) are well known to persons skilled in the art
and are described with great particularity in a number of
references. They therefore need not be visited in minute
detail herein. In addition, the illustrated method ofparsing a
header portion of a packet for the selected protocols is
merely one method of gathering the information described
below. Other parsing procedures capable of doing so are
equally suitable.

In a present embodiment of the invention, the illustrated
procedure is implemented as a combination of hardware and
software. For example, updateable micro-code instructions
for performing the procedure may be executed by a microse—
quencer. Alternatively, such instructions may be fixed (e.g.,
stored in read-only memory) or may be executed by a
processor or microprocemor.

In FIGS. 4A-4B, state 400 is a start state during which a
packet is received by NIC 100 (shown in FIG. 1A) and initial
processing is performed. NIC 100 is coupled to the Internet
for purposes of this procedure. Initial processing may
include basic error checking and the removal of the layer one
preamble. After initial processing, the packet is held by IPP
module 104 (also shown in FIG. 1A). In one embodiment of
the invention, state 400 comprises a logical loop in which
the header parser remains in an idle or wait state until a
pinket is received.

In state 402, a eader rtion of i i ' to
memory (e.g., header memo 302 of FIG. 3). In a present
Wednumber of
bytes at the beginning (e.g., 114 bytes) of the packet are

10

15

30

35

45

50

55

60

65

18

copied. Packet portions of difierent sizes are copied in
alternative embodiments of the invention, the sizes of which

are guided by the goal of copying enough of the packet to
capture and/or identify the necessary header information.
Illustratively, the full packet is retained by [PP module 104
while the following parsing operations are performed,
although the packet may, alternatively, be stored in packet
queue 116 prior to the completion of parsing.

Also in state 402, a pointer to be used in parsing the
packet may be initialized. Because the layer one preamble
was removed, the header portion copied to memory should
begin with the layer two protocol header. Illustratively,
therefore, the pointer is initially set to point to the twelfth
byte of the layer two protocol header and the two-byte value
at the pointer position is read. As one skilled in the art will
recognize, these two bytes may be part of a number of
ditferent fields, depending upon which protocol constitutes
layer two of the packet's protocol stack. For example, these
two bytes may comprise the Type field of a traditional
Ethernet header, the Length field of an 802.3 Ethernet header
or the TPID (Tag Protocol IDentifier) field of a VLAN—
tagged header.

[11 state 404, a first examination is made of the layer two
header to determine if it comprises a VLAN—tagged layer
two protocol header. Illustratively, this determination
depends upon whether the two bytes at the pointer position
store the hexadecimal value 8100. If so, the pointer is
probably located at the TPlD field of a VLAN-tagged
header. If not a VLAN header, the procedure proceeds tostate 4%.

If, however, the layer two header is a VLAN—tagged
header, in state 406 the CF] (Canonical Format Indicator) bit
is examined. If the CPI bit is set (e.g., equal to one), the
illustrated procedure jumps to state 430, after which it exits.
In this embodiment of the invention the CFI bit, when set,
indicates that the format of the packet is not compatible with
(i.e., does not comply with) the pre-selected protocols (e.g.,
the layer two protocol is not Ethernet or 802.3 Ethernet). If
the CFI bit is clear (e.g., equal to zero), the pointer is
incremented (e.g., by four bytes) to position it at the next
field that must be examined.

In state 408, the layer two header is further tested.
Although it is now known whether this is or is not a
VIAN-tagged header, depending upon whether state 408
was reached through state 406 or directly from state 404,
respectively, the header may reflect either the traditional
Ethernet format or the 802.3 Ethernet format. At the begin-
ning of state 408, the pointer is either at the twelfih or
sixteenth byte of the header, either of which may correspond
to a Length field or a Type field. In particular, if the two-byte
value at the position identified by the pointer is less than
0600 (hexadecimal), then the packet corresponds to 8023
Ethernet and the pointer is understood to identify a Length
field. Otherwise, the packet is a traditional (e.g., version
two) Ethernet packet and the pointer identifies a Type field.

If the layer two protocol is 802.3 Ethernet, the procedure
continues at state 410. If the layer two protocol is traditional
Ethernet, the Type field is tested for the hexadecimal values
of0800 and OBDD. If the tested field has one of these values,
then it has also been determined that the packet’s layer three
protocol is the lntemet Protocol. In this case the illustrated
procedure continues at state 412. Lastly, if the field is a Type
field having a value other than 0800 or 86DD (hexadecimal),
then the packet’s layer three protocol does not match the
pro-selected protocols according to which the header parser
was configured. Therefore, the procedure continues at state
430 and then ends.

EX 1017 Page 276

US 6,483,804 Bl
19 20

In one embodiment of the invention the packet is exam- In state 418, the layer three header's conformity with
incd in state 408 to determine if it is a jumbo Ethernet frame. version six of IP is verified by testing the Version field for
This determination would likely be made prior to deciding the hexadecimal value 6. If the Version field does not contain
whether the layer two header conforms to Ethernet or 802.3 this value, the illustrated procedure proceeds to state 430.
Ethernet. Illustratively, the jumbo frame determination may s In state 420, the values of the Payload Length (e.g., the
be made based on the siz.e of the packet, which may be size of the TCP segment) and Next Header field arc saved,
reported by IPP module 104 or a MAC module. If the packet plus the IP source and destination addresses. Source and
is a jumbo frame, the procedure may continue at state 410; destination addresses arc each sixteen bytes long in version
otherwise, it may resume at state 4U. six of IP.

In state 410, the procedure verifies that the layer two 10 In state 422 of the illustrated procedure, it is determined
protocol is 8023 Ethernet with ILC SNAP encapsulation. In
particular, the pointer is advanced (e.g., by two bytes) and whether the IP header (either version four or version six)
the six-byte value following the Length field in the layer two indicates that the layer four header is TCP. Illustratively, the
header is retrieved and examined. If the header is an 802.3 Protocol field of a version four IP header is tested while the
Ethernet header, the field is the ILC_SNAP field and Next Header field of a version six header is tested. In either
should have a value of AAAA03000000 (hexadecimal). Toe 15 case, the value should be 6 (hexadecimal). The pointer is
original specification for an ILC SNAP header may be then incremented as necessary (e.g., twenty bytes for IP
found in the specification for IEEE 802.2. If the value in the version four, forty bytes for IP version six) to reach the
packet's ILC_SNAP field matches the expected value the beginning of the TCP header. If it is determined in state 422
pointer is incremented another six bytes, the two-byte 802.3 that the layer four header is not TCP, the procedure advances
Ethernet Type field is read and the procedure continues at 20 to state 430 and ends at end state 432.
state 4U. If the values do not match, then the packet does In one embodiment of the invention, other fields of a
not conform to the specified protocols and the procedure version four IP header may be tested in state 422 to ensure
enters state 430 and then ends. that the packet meets the criteria for enhanced processing by

In state 4U, the pointer is advanced (e.g., another two NIC 100. For example, an IHL field value other than 5
bytes) to locate the beginning of the layer three protocol 25 (hexadecimal) indicates that IP options arc set for this
header. This pointer position may be saved for later use in packet, in which case the parsing operation is aborted. A
quickly identifying the beginning of this header. The packet fragmentation field value other than zero indicates that the IP
is now known to conform to an accepted layer two protocol segment of the packet is a fragment, in which case parsing
(e.g., traditional Ethernet, Ethernet with VLAN tagging, or is also aborted. In either case, the procedure jumps to state
802.3 Ethernet with LLC SNAP) and is now checked to 30 430 and then ends at end state 432.
ensure that the packet's layer three protocol is IP. As In state 424, the packet's TCP header is parsed and
discussed above, in the illustrated embodiment only packets various data are collected from it. In particular, the TCP
confomiing to the IP protocol arc extensively processed by source port and destination port values arc saved. The TCP
the header parser. sequence number, which is used to ensure the correct

Illustratively, if the value of the Type field in the layer two 35 re-assembly of data from multiple packets, is also saved.
header (retrieved in state 402 or state 410) is 0800 Further, the values of several components of the Flags
(hexadecimal), the layer three protocol is expected to be IP, field-illustratively, the URG (urgent), PSH (push), RST
version four. If the value is 86DD (hexadecimal), the layer (reset), SYN (synch) and FIN (f.nish) bits-arc saved. As
three protocol is expected to be IP, version six. Thus, the will be seen in a later section, in one embodiment of the
Type field is tested in state 4U and the procedure continues 40 invention these flags signal various actions to be performed
at state 414 or state 418, depending upon whether the or statuses to be considered in the handling of the packet.
hexadecimal value is 0800 or 86DD, respectively. Other signals or statuses may be generated in state 424 to

In state 414, the layer three header's conformity with reflect information retrieved from the TCP header. For
version four of IP is verified In one embodiment of the example, the point from which a checksum operation is to
invention the Version field of the layer three header is tested 45 begin may be saved (illustratively, the beginning of the TCP
to ensure that it contains the hexadecimal value 4, corrc- header); the ending point of a checksum operation may also
sponding to version four of IP. If in state 414 the layer three be saved (illustratively, the end of the data portion of the
header is confirmed to be IP version four, the procedure packet). An offset to the data portion of the packet may be
continues at state 416; otherwise, the procedure proceeds to identified by multiplying the value of the Header Length
state 430 and then ends at state 432. so field of the TCP header by four. The size of the data portion

In state 416, various pieces of information from the IP may then be calculated by subtracting the offset to the data
header are saved. Tliis information may mclude the lliL (IP portion from the siz.e of the entire TCP segment.

', Header Length), Total Length, Protocol and/or Fragment In state 426, a w key is assembled by concatenating the
Offset fields. The IP source address and the IP destination IP source and cl · and
addresses may also b.it stored. The SOJfCffi and destination
address values are each four bytes long in version four of IP.
These addresses are used, as descnbed above, ~generate a
flow key that identifies the communication flow in whlcli
thjs packet was sent. lbe lofal Ll:ngth held stores the stze
of the IP segment of this packet, which illustratively com
prises the IP header, the TCP header and the packet's data
portion. The TCP segment size of the packet (e.g., the size
of the TCP header plus the size of the data portion of the
packet) may be calculated by subtracting twenty bytes (the
size of the IP version four header) from the Total Length
value. After state 416, the illustrated procedure advances to
state 422.

ss aestinatian,ports. As already descnbed the flow key may be
used to identify a rommunication flow or communication
connection, and may be used by other modules of NIC 100
to process network traffic more efficiently. Although the
sizes of the source and destination addresses differ between

60 IP versions four and six (e.g., four bytes each versus sixteen
bytes each, respectively), in the presently descnbed embodi
ment of the invention all flow keys arc of uniform size. In
particular, in this embodiment they arc thirty-six bytes long,
including the two-byte TCP source port and two-byte TCP

65 destination port. Flow keys generated from IP, version four,
packet headers are padded as necessary (e.g., with twenty
four clear bytes) to fill the flow key's allocated space.

EX 1017 Page 277

US 6,483,804 Bl
21 22

In state 428, a control or status indicator is assembled to packets are still processed (e.g., through their respective
provide various information to one or more modules of NIC protocol stacks) on the host computer system in the illus-
100. In one embodiment of the invention a control indicator trated embodiment of the invention. However, after parsing
includes the packet's TCP sequence number, a flag or a packet in an alternative embodiment of the invention, NlC
identifier (e.g., one or more bits) indicating whether the s 100 also performs one or more subsequent processing steps.
packet contains data (e.g., whether the TCP payload si7l: is For example, NIC 100 may include one or more protocol
greater than zero), a flag indicating whether the data portion processors for processing one or more of the packet's
of the packet exceeds a pre-determined siz.e, and a flag protocol headers.
indicating whether certain entries in the TCP Flags field arc Dynamic Header Paising Instructions in One Embodiment
equivalent to pre-determined values. Toe latter flag may, for

O
of the Invention

example, be used to inform another module of NlC 100 that
1

In one embodiment of the present invention, header parser
components of the Flags field do or do not have a particular 106 parses a packet received from a network according to a
conlignration. After state 428, the illustrated procedure ends dynamic sequence of instructions. Toe instmctions may be
with state 432. stored in the header parser's instruction memory (e.g.,

State 430 may be entered at several different points of the RAM, SR.AM, DRAM, flash) that is re-programmable or
illustrated procedure. This state is entered, for example, 1S that can otherwise be updated with new or additional
when it is determined that a header portion that is being instructions. In one embodiment of the ioventinn software
parsed by a header parser does not conform to the pre- operating on a host computer (e.g., a device driver) may
selected protocol stacks identified above. As a result, much download a set of parsing instructions for storage in the
of the information described above is not retrieved. A header parser memory.
practical consequence of the inability to retrieve this infor- 20 Toe number and format of instructions stored in a header
mation is that it then cannot be provided to other modules of parser's instruction memory may be tailored to one or more
NIC 100 and the enhanced processing descnbed above and specific protocols or protocol stacks. An instruction set
in following sections may not be performed for this packet. confignred for one collection of protocols, or a program
In particular, and as discussed previously, in a present constructed from that ~tructio!1 set, !Day therefore be
embodiment of the invention one or more enhanced opera- 25 updated or repl~d by a different ms~on set or program.
lions may be performed on parsed packets to increase the For p~ts received at ~e network mterface that are for-
efficiency with which they are processed. illustrative opera- ~tted m ~rdance with the. selected prot?COls (e.g.,
lions that may be applied include the re-assembly of data • compall.blc packe~), as determmed by_analyzmg o~ pais-

l . . mg the packets, vanous enhancements m the handling of
~m related packets ,e.g., packets. containing data from a network traffic become poSSible as described in the follow-
smgle datagram), batch processmg of packet headers 30 · tio. In ~-...:~.1.r kets fro datagram th t
through l ... __ ,. load distributin 1 ad h · f mg sec ns. i--~, pac m one a

a protoco "~ . n or O s anng O are conlignred according to a selected protocol may be
pro~l 5!ack Pf?CCSSing, efficient transfer of packet data to re-assembled for efficient transfer in a host computer. In
& des~n enllty, etc. . . addition, header portions of such packets may be processed

In the. illustrated procedure'. m .state 4.30 a flag o~ s1_gnal collectively rather than serially. And, the processing of
(illustratively termed No_Assist) is set or cleared to indicate 3S packets from different datAgrams by a multi-processor host
that the packet presently held by IPP module 104 (e.g., computer may be shared or distributed among the proces-
which was just processed by the header parser) does not sors. Therefore, one objective of a dynamic header parsing
conform to any of the pre-selected protocol stacks. This flag operation is to identify a protocol according to which a
or signal may be relied upon by another module ofNIC 100 received packet has been formatted or determine whether a
when deciding whether to perform one of the enhanced "° packet header conforms to a particular protocol
operatinns. FIG. 23, discussed in detail shortly, presents an illustrative

Another flag or signal may be set or cleared in state 430 series of instructions for parsing the layer two, three and four
to initializ.e a checksum parameter indicatiog that a check- headers of a packet to determine if they are Ethernet, IP and
sum operation, if performed, should start at the beginning of TCP, respectively. Toe illustrated instructions comprise one
the packet (e.g., with no offset into the packet). Illustratively, '45 possiole program or microcode for performing a paising
incompall"ble packets cannot be paised to determine a more operation. As one skilled in the art will recogniz.e, after a
appropriate point from which to begin the checksum opera- particular set of parsing instructions is loaded into a parser
tion. After state 430, the procedure ends with end state 432. memory, a number of difli:rent programs may be assembled.

After · · 'bute FIG. 23 thus presents merely one of a number of programs

mventlon
?'.'""""o°"ad;;;. ue
ll8 !!!id nacket qneue, ll6. illustratively, the control indica-
~ed to flow database manager fim. 'This a.ii! oilier S5

I
control information, such as TCP payload size, 'l'CP payload
offset and the No_As<;ist signal may be returned to IPP
module 104 and provided to control queue ll8. Yet addi
tional control and/or diagnostic information, such as offsets

so that may be generated from the stored instructions. Toe
instructions presented in FIG. 23 may be performed or
executed by a microsequencer, a processor, a microproces
sor or other similar module located within a network inter
face circuit

In particular, other instruction sets and other programs
may be derived fur different communication protocols, and
may be expanded to other layers of a protocol stack. For
example, a set of instructions could be generated for parsing
NFS (Network File System) packets. Illustratively, these
instructions would be conlignred to parse layer Jive and six
headers to determine if they are Remote Procedure Call
(RPC) and External Data Representation (XDR), respec
tively. Other instructions could be conlignred to parse a
portion of the packet's data (which may be considered layer

to the layer three and/or layer four headeis, may be provided 60

to IPP module 104, packet queue ll6 and/or control queue
118. Checksum information (e.g., a starting point and either
an ending point or other means of identifying a portion of the
packet from which to compute a checksum) may be pro
vided to checksum generator ll4.

As discussed in a following section, although a received
packet is paised on NIC 100 (e.g., by header pan;er 106), the

6S seven). An NFS header may be considered a part of a
packet's layer six protocol header or part of the packet's
data.

EX 1017 Page 278

....-...._.~..Wk.......w,..MW»we

US 6,483,804 Bl
21

In state 428, a control or status indicator is assembled to
provide various information to one or more modules of NIC
100. In one embodiment of the invention a control indicator
includes the packet’s TCP sequence number, a flag or
identifier (mg, one or more hits) indicating whether the 5
packet contains data (cg, whether the TC”? payload size is
greater than zero), a flag indicating whether the data portion
of the packet exceeds a pro—determined size, and a flag
indicating whether certain entries in the TCP Flags field are
equivalent to pee—determined values. The latter flag may, for
example, be used to inform another module of MC 100 that
components of the Flags field do or do not have a particular
configuration. After state 428, the illustrated procedure endswith state 432.

State 430 may be entered at several different points of the
illustrated procedure. This state it entered, for example, 15
when it is determined that a header portion that is being
parsed by a header parser does not conform to the pre-
selected protocol stacks identified above. As a result, much
of the information described above is not retrieved. A

practical consequence of the inability to retrieve this infor— 20
mation is that it then cannot be provided to other modules of
NIC 100 and the enhanced processing described above and
in following sections may not be performed for this packet.
In particular, and as discussed previously, in a present
embodiment of the invention one or more enhanced opera— 25
tiers may be performed on parsed packets to increase the
cflicicncy with which they are processed. Illustrative opera—
tions that may be applied include the re-assembly of data
from related packets (cg, packets containing data from a
single datagram), batch processing of packet headers 30
through a protocol stack, load distribution or load sharing of
protocol stack processing, efiicient transfer of packet data to
a destination entity, etc.

In the illustrated procedure, in state 430 a flag or signal
(illustratively termed N0_Assist) is set or cleared to indicate 35
that the packet presently held by IPP module 104 (cg,
which was just pmeemed by the header parser) does not
conform to any of the pre-selccted protocol stacks. This flag
or signal may be relied upon by another module of MC 100
when deciding whether to perform one of the enhanced 40
operations.

Another flag or signal may be set or cleared in state 430
to initialize a checksum parameter indicating that a check
sum operation, ifperformed, should start at the beginning of
the packet (mg, withno offset into the packet). Illustratively, 45
incompatible packets cannot be parsed to determine a more
appropriate point from which to begin the cheeksum opera»-
tion After state 430, the prowdure ends with end state 432

W”inf lion enerated from the acket to one or more 50

WWmventront e ow kc is rovided to flow dat er
oad dismbum Lmntquucue

W116. lllustratively, the control indica-
tor is vided to flow database mm orWM 55
control information, sucli as'I‘CP payload size, leP payload
ofiset and the No__Assist signal may be returned to IPP
module 104 and provided to control queue 118. Yet addi—
tional control and/or diagnostic information, such as oflsets
to the layer three and/or layer four headers, may be provided 60
to [PP module 104, packet queue 116 and/or control queue
118. Checksum information (e.g., a starting point and either
an ending point or other means of identifying a portion of the
packet from which to compute a checlrsum) may be pro~
vided to checksum generator 1.14. 65

As dismissed in a following section, although a received
packet is parsed on MC 100 (e.g., by header parser 106), the

10

22

packets are still processed (eg, through their respective
protocol stacks) on the host computer system in the illus-
trated embodiment of the invention. However, after parsing
a packet in an alternative embodiment of the invention, MC
100 also performs one or more subsequent processing steps.
For example, NIC 100 may include one or more protocol
pmoessors for processing one or more of the packet’s
protocol headers.
Dynamic Header Parsing Instructions in One Embodiment
of the Invention

In one embodiment of the present invention, header parser
106 parses a packet received from a network according to a
dynamic sequence of instructions. The instructions may be
stored in the header parser’s instruction memory (cg,
RAM, SRAM, DRAM, flash) that is re-programmable or
that can otherwise be updated with new or additional
instructions. In one embodiment of the invention software
operating on a host computer (e.g., a device driver) may
download a set of parsing instructions for storage in the
header parser memory.

The number and format of instmch'ons stored in a header
parser’s instruction memory may be tailored to one or more
specific protocols or protocol stacks. An instruction set
configured for one collection of protocols, or a program
constructed hour that instruction set, may therefore be
updated or replaced by a diflerent instruction set orprogram.
For packets received at the nemdr interface that are for—
matted in acmrdanoe with the selected protocols (e.g..,
“mmpatible” packets), as determined by analyzing or pars—
ing the packets, various enhancementsin the handling of
network trafic become possible as described11) the follow-
ing sections. In particular, packets from one datagram that
are configured according to a selected protocol may be
rte-assembled for efficient transfer in a host computer. In
addition. header portions of such packets may be processed
collectively rather than serially. And, the processing of
packets from different datagrams by a mad-processor host
computer may be shared or distributed among the procss
501's. Therefore, one objective of a dynamic header parsing
operation is to identify I protocol according to which a
received packet has been formatted or determine whether a
packet header conforms to a particular protocol.

FIG. 23, discussed indetail shortly, presents an illustrative
series ofinstructions for parsing the layer two, three and four
headers of a padret to determine if they are Ethernet, IP and
TCP, respectively. The illustrated instructions comprise one
possible program or microcode tor perfiorming a parsing
operation.Asone skilledinthc artwillrecognize, aftera
partiutlar set of parsing instmaions is loaded into a pamr
memory, a number of diflercnt programs may be assembled.
FIG. 23 thus presents merely one of a number of programs
that may be generated from the stored instructions. The
imtructions presented in FIG. 23 may be performed or
exewted by n microsequencer, a pmmssor, a microproces-sor or other similar module located within a network inter-
face circuiL

In particular, other instruction sets and other programs
may be derived for ditferent communication protocols, and
may be expanded to other layers of a protocol stack. For
example, a set of instructiom could be generated for parsing
NFS (Network File System) packets. lllustratively, these
instructions would be configured to parse layer five and six
headers to determine if they are Remote Procedure Call
(RFC) and External Data Representation (XDR), respec»
lively. Other instructions could be configured to parse a
portion of the packet’s data (which may be considered layer
seven). An NFS header may he considered a part. of a
packet’s layer six protocol header or part of the packet’s
data.

EX 1017 Page 278

US 6,483,804 Bl
23 24

One type of instruction executed by a microscqucncer bytes) may be increased or decreased in an alternative
may be designed to locate a particular field of a packet (e.g., embodiment of the invention. Altering the unit of measure-
at a specific offset within the packet) and compare the value mcnt may alter the precision with which a header can be
stored at that offset to a value associated with that field in a parsed or a header value can be extracted.
particular communication protocol. For example, one s In the embodiment of the invention illustrated in FIG. 23,
instruction may require the microscqucncer to examine a a set of instructions loaded into the header parser's instruc-
value in a packet header at an offset that would correspond lion memory comprises a number of possible operations to
to a Type field of an Ethernet header. By comparing the be performed while tcstiog a packet for compatibility with
value actually stored in the packet with the value expected selected protocols. Program 2300 is generated from the
for the protocol, the microscquenccr can determine if the 10 instruction set. Program 2300 is thus merely one possible
packet appears to conform to the Ethernet protocol. program, microcode or sequence of instructions that can be
Illustratively, the next instruction applied in the parsing formed from the available instruction set.
program depends upon whether the previous comparison In this embodiment, the loaded instruction set enables the
was successful. Thus, the particular instructions applied by following sixteen operations that may be performed on a
the microsequencer, and the sequence in which applied, 1s packet that is being parsed. Specific implementations of
depend upon which protocols are represented by the pack- these operations in program 2300 arc discussed in additional
et's headers. detail below. These instructions will be understood to be

The microsequcncer may test one or more field values illustrative in nature and do not limit the composition of
within each header included in a packet. The more fields that instruction sets in other embodiments of the invention. In
arc tested and that arc found to comport with the format of 20 addition, any subset of these operations may be employed in
a known protocol, the greater the certainty that the packet a particular parsing program or microcode. Further, multiple
conforms to that protocol. As one skilled in the art will instructions may employ the same operation and have dif-
appreciate, one communication protocol may be quite dif- fcrent effects.
fcrcnt than another protocol, thus requiring examination of A CLR_REG operation allows the selective initialization
different parts of packet hcadeIS for different protocols. 25 of registers or other data structures used in program 2300
Illustratively, the pa.rsing of one packet may end in the event and, possibly, data structures used in functions performed
of an error or because it was determined that the packet after a packet is parsed. Initialization may comprise storing
being parsed docs or docs not conform to the protocol(s) the the value zero.A number of illustrative registers that may be
instructions aze designed for. initiali7.cd by a CLR_REG operation arc identified in the

Each instruction in FIG. 23 may be identified by a number 30 remaining operations.
and/or a name. A particular instruction may perform a A ID___FID operation copies a variable amount of data
variety of tasks other than comparing a header field to an from a particular offset within the pllckct into a register
expected value. An instruction may, for example, call configured to store a packet's flow key or other flow
another instruction to examine another portion of a packet identifier. This register may be termed a FLOWID register.
header, initialize, load or configure a register or other data 35 The effect of an ID_FID operation is cumulative. In other
structure, prepare for the arrival and parsing of another words, each time it is invoked for one packet the generated
packet, etc. In particular, a register or other storage structure data is appended to the flow key data stored previously.
may be configured in anticipation of an operation that is A ID_SEQ operation copies a variable amount of data
performed in the network interface after the packet is parsed. from a particular offset within the packet into a register
For example, a program instruction in FIG. 23 may identify 40 configured to store a packet's sequence number (e.g., a TCP
an output operation that may or may not be performed, sequence number). This register may be assigned the label
depending upon the success or failure of the comparison of SEQNO. This operation is also cumulative-the second and
a value extracted from a packet with an expected value. An subsequent invocations of this operation for the packet cause
output operation may store a value in a register, configure a the identified data to be appended to data stored previously.
register (e.g., load an argument or operator) for a post- 45 A ID_cn. operation loads a value from a specified
paISing operation, clear a register to await a new packet, etc. offset in the packet into a CONTROL register. The CON-

A pointer may be employed to identify an offset into a TROLregister may comprise a control indicator discussed in
packet being parsed. In one embodiment, such a pointer is a previous section for identifying whether a packet is
initially located at the beginning of the layer two protocol suitable for data re-assembly, packet batching, load d:istri-
header. In another embodiment, bowcver, the pointer is so butionorothercnhancedfunctionsofNIClOO.Inparticular,
situated at a specific location within a particular header (e.g., a control indicator may indicate whether a No_Assist flag
immediately following the layer two destination and/or should be raised for the packet, whether the packet includes
source addresses) when parsing commences. Illustratively, any data, whether the amount of packet data is laxgcr than a
the pointer is incremented through the packet as the parsing predetermined threshold, etc. Thus, the value loaded into a
procedure executes. In one alternative embodiment, 55 CONTROL register in a ID _en. operation may affect the
however, offsets to areas of interest in the packet may be post-parsing handling of the packeL
computed from one or more known or computed locations. A ID_SAP operation loads a value into the CONTROL

In the parsing program depicted in FIG. 23, a header is register from a variable offset within the packet. The loaded
navigated (e.g., the pointer is advanced) in increments of value may comprise the packet's ethertype. In one option
two bytes (e.g., sixteen-bit words). In addition, where a 60 that may be associated with a ID_.SAP operation, the offset
particular field of a header is compared to a known or of the packet's layer three header may also be stored in the
expected value, up to two bytes are extracted at a time from CONTROL register or elsewhere. As one skilled in the art
the field. Further, when a value or header field is copied for will recognize, a packet's layer three header may immedi-
storagc in a register or other data structlm:, the amount of ately follow its layer two cthcrtype field if the packet
data that may be copied in one operation may be expressed 65 conforms to the Ethernet and IP protocols.
in multiples of two-byte umts or in other units altogether A ID_Rl operation may be used to load a value into a
(e.g., individual bytes). This unit of measurement (e.g., two temporary register (e.g., named Rl) from a variable offset

EX 1017 Page 279

r

..

US 6,483,804 Bl
25

within the packet. A temporary register may be used for a
variety of tasks, such as accumulating values to determine
the length of a header or other portion of the packet. A
LD_Rl operation may also cause a value from another
variable offset to be stored in a second temporary register
(e.g., named R2). The values stored in the Rl and/or R2
registers during the parsing of a packet may or may not be
cumulative.

A LD__l..3 operation may load a value from the packet
into a register configured to store the location of the packet's
layer three header. This register may be named L30FFSET.
In one optional method of invoking this operation, it may be
used to load a fixed value into the L30FFSET register. As
another option, the LD_L3 operation may add a value
stored in a temporary register (e.g., Rl) to the value being
stored in the L30FFSET register.

ALD_SUM operation stores the starting point within the
packet from which a checksum should be calculated. The
register in which this value is stored may be named a
CSUMSTART register. In one alternative invocation of this
operation, a fixed or predetermined value is stored in the
register. As another option, the LD_SUM operation may
add a value stored in a temporary register (e.g., Rl) to the
value being stored in the CSUMS'D\RT register.

A LD_HDR operation loads a value into a register
configured to store the location within the packet at which
the header portion may be split. The value that is stored may,
for example, be used during the transfer of the packet to the
host computer to store a data portion of the packet in a
separate location than the header portion. The loaded value
may thus identify the beginning of the packet data or the
beginning of a particular header. In one invocation of a
LD_HDR operation, the stored value may be computed
from a present position of a parsing pointer descnbed above.

26
Instruction content field 2306 includes multiple portions

for executing an instruction. An "extraction mask'' portion
of an instruction is a two-byte mask in hexadecimal notation.
An extraction mask identifies a portion of a packet header to

5 be copied or extracted, starting from the current packet offset
(e.g., the current position of the parsing pointer).
lliustrativcly, each bit in the packet's header that corre
sponds to a one in the hexadecimal value is copied for
comparison to a comparison or test value. For example, a

10 ::c~~n~~cs~:eth:~:o~rs~~~p~~en ~:
packet offset is to be copied and that the contents of the
second byte arc irrelevant. Similarly, an extraction mask of
Ox3FFF signifies that all but the two most significant bits of
the first byte arc to be copied. A two-byte value is con-

15 structed from the extracted contents, using whatever was
copied from the packet. Illustratively, the remainder of the
value is padded with zeros. One skilled in the art will
appreciate that the format of an extraction mask (or an
output mask, described below) may be adjusted as necessary

20 to reflect little endian or big cndian representation.
One or more instructions in a parsing program may not

require any data extracted from the packet at the pointer
location to be able to perform its output operation. These
instructions may have an extraction mask value of OxOOOO to

25 indicate that although a two-byte value is still retrieved from
the pointer position, every bit of the value is masked off.
Such an extraction mask thus yields a definite value of zero.
This type of instruction may be used when, for example, an
output operation needs to be performed before another

30 substantive portion of header data is extracted with an
extraction mask other than OxOOOO.

A "compare value" portion of an instruction is a two-byte

In another invocation, a fixed or predetermined value may be
store. As yet another alternative, a value stored in a tempo- 35

rary register (e.g., Rl) and/or a constant may be added to the
loaded value.

hexadecimal value with which the extracted packet contents
are to be compared. The compare value may be a value
known to be stored in a particular field of a specific protocol
header. The compare value may comprise a value that the
extracted portion of the header should match or have a
specified relationship to in order for the packet to be
considered compatible with the pre-selected protocols.

A LD_l.EN operation stores the length of the packet's
payload into a register (e.g., a PAYLOADLEN register).

An IM_FID operation appends or adds a fixed or predc- 40

termined value to the existing contents of the FLOWID
register descnbed above.

An "operator" portion of an instruction identifies an
operator signifying how the extracted and compare values
arc to be compared lliustratively, EQ signifies that they arc
tested for equality, NE signifies that they arc tested for
inequality, lJ' signifies that the extracted value must be less

An IM_SEQ operation appends or adds a fixed or pre
determined value to the contents of the SEQNO register
descnbcd above.

An IM_SAP operation loads or stores a fixed or prede
termined value in the CSUMSTAIIT register described
above.

An IM_Rl operation may add or load a predetermined
value in one or more temporary registers (e.g., Rl, R2).

45 than the compare value for the comparison to succeed, GE
signifies that the extracted value must be greater than or
equal to the compare value, etc. An instruction that awaits
arrival of a new packet to be parsed may employ an
operation of NP. Other operators for other functions may be

An IM_CIL operation loads or stores a fixed or prede
termined value in the CONTROL register described above.

50 added and the existing operators may be assigned other
monikers.

A ST__FIAG operation loads a value from a specified
offset in the packet into a FLAGS register. The loaded value
may comprise one or more fields or flags from a packet 55

header.
One skilled in the art will recognize that the labels

assigned to the operations and registers described above and
elsewhere in this section are merely illustrative in nature and
in no way limit the operations and parsing instructions that 60

may be employed in other embodiments of the invention.
Instructions in program 2300 comprise instruction num

ber field 2302, which contains a number of an instruction
within the program, and instruction name field 2304, which
contains a name of an instruction. In an alternative cmbodi- 65
meat of the invention instruction number and instruction
name fields may be merged or one of them may be omitted.

A "success offset" portion of an instruction indicates the
number of two-byte units that the pointer is to advance if the
comparison between the extracted and test values succeeds.
A "success instruction" portion of an instruction identifies
the next instruction in program 2300 to execute if the
comparison is successful.

Similarly, "failure offset" and "failure instruction" por
tions indicate the number of two-byte units to advance the
pointer and the next instruction to execute, respectively, if
the comparison fails. Although offsets are expressed in units
of two bytes (e.g., sixteen-bit words) in this embodiment of
the invention, in an alternative embodiment of the invention
they may be smaller or larger units. Further, as mentioned
above an instruction may be identified by number or name.

Not all of the instructions in a program arc necessarily
used for each packet that is parsed. For example, a program

EX 1017 Page 280

US 6,483,804 Bl
27

may include instructions to test for more than one type or
version of a protocol at a particular layer. In particular,
program 2300 tests for either version four or six of the IP
protocol at layer three. The instructions that an: actually
executed for a given packet will thus depend upon the format s
of the packet Once a packet has been parsed as much as
possible with a given program or it has been determined that
the packet does or does not conform to a selected protocol,
the parsing may cease or an instruction for halting the
parsing procedure may be executed. illustratively, a next 10

instruction portion of an instruction (e.g., "success instruc
tion" or "failure instruction") with the value "DONE" indi
cates the completion of parsing of a packet. A DONE, or
similar, instruction may be a dummy instruction. In other
words, "DONE" may simply signify that parsing to be 1s
terminated for the present packet. Or, like instruction eigh
teen of program 2300, a DONE instruction may take some
action to await a new packet (e.g., by initializing a register).

The remaining portions of instruction content field 2306
are used to specify and complete an output or other data 20

storage operation. In particular, in this embodiment an
"output operation" portion of an instruction corresponds to
the operations included in the loaded instruction set. Thus,
for program 2300, the output operation portion of an instruc
tion identifies one of the sixteen operations descnbed above. 25

The output operations employed in program 2300 are further
descnbed below in conjunction with individual instructions.

An "operation argument" portion of an instruction com
prises one or more arguments or fields to be stored, loaded
or otheiwise used in conjunction with the instruction's 30

output operation. illustratively, the operation argument por
tion takes the form of a multi-bit hexadecimal value. For
program 2300, operation arguments are eleven bits in siz.e.
An argument or portion of an argument may have various
meanings, depending upon the output operation. For 35

example, an operation argument may comprise one or more
numerical values to be stored in a register or to be used to
locate or delimit a portion of a header. Or, an argument bit
may comprise a flag to signal an action or status. In
particular, one argument bit may specify that a particular 40

register is to be reset; a set of argument bits may comprise
an offset into a packet header to a value to be stored in a
register, etc. Illustratively, the offset specified by an opera
tion argument is applied to the location of the parsing pointer
position before the pointer is advanced as specified by the 45

applicable success offset or failure offset. The operation
arguments used in program 2300 are explained in further
detail below.

An "operation enabler" portion of an instruction content
field specifies whether or when an instruction's output so
operation is to be performed. In particular, in the illustrated
embodiment of the invention an instruction's output opera
tion may or may not be performed, depending on the result
of the comparison between a value extracted from a header
and the compare value. For example, an output enabler may ss
be set to a first value (e.g., zero) if the output operation is
never to be performed. It may take different values if it is to
be performed only wben the comparison does or does not
satisfy the operator (e.g., one or two, respectively). An
operation enabler may take yet another value (e.g., three) if 60

it is always to be performed.
A "shift" portion of an instruction comprises a value

indicating how an output value is to be shifted. A shift may
be necessary because different protocols sometime require
values to be formatted differently. In addition, a value 65

indicating a length or location of a header or header field
may require shifting in order to reflect the appropriate

28
magnitude represented by the value. For example, because
program 2300 is designed to use two-byte units, a value may
need to be shifted if it is to reflect other units (e.g., bytes).
A shift value in a present embodiment indicates the number
of positions (e.g., bits) to right-shift an output value. In
another embodiment of the invention a shift value may
represent a different shift type or direction.

Finally, an "output mask" specifies bow a value being
stored in a register or other data structure is to be formatted.
As stated above, an output operation may require an
extracted, computed or assembled value to be stored. Similar
to the extraction mask, the output mask is a two-byte
hexadecimal value. For every position in the output mask
that contains a one, in this embodiment of the invention the
corresponding bit in the two-byte value identified by the
output operation and/or operation argument is to be stored.
For example, a value of OxFFFF indicates that the specified
two-byte value is to be stored as is. Illustratively, for every
position in the output mask that contains a zero, a :zero is
stored. Thus, a value of OxFOOO indicates that the most
significant four bits of the first byte are to be stored, but the
rest of the stored value is irrelevant, and may be padded with
zeros.

An output operation of "NONE'' may be used to indicate
that there is no output operation to be performed or stored,
in which case other instruction portions pertaining to output
may be ignored or may comprise specified values (e.g., all
zeros). In the program depicted in FIG. 23, however, a
CLR_REG output operation, which allows the selective
re-initialization of registers, may be used with an operation
argument of zero to effectively perform no output In
particular, an operation argument of zero for the CLR__REG
operation indicates that no registers are to be reset In an
alternative embodiment of the invention the operation
enabler portion of an instruction could be set to a value (e.g.,
zero) indicating that the output operation is never to be
performed.

The format and sequence of instructions in FIG. 23 will
be understood to represent just one method of gMinp; a
packet tli' qetepnjne whether it conforms to a p ctilar
c'8mmunicatian protocol. In particular, the instructions arc
designed to examine one or more portions of one or more
packet headers for comparison to known or expected values
and to configure or load a register or other stafll~ location
~- As one skilled m the art will appreciate,
instructions for parsing a packet may take any of a number
of forms and be performed in a variety of sequences without
exceeding the scope of the invention.

With reference now to FIG. 23, instructions in program
2300 may be described in detail. Prior to execution of the
program depicted in FIG. 23, a parsing pointer is situated at
the beginning of a packet's layer two header. The position of
the parsing pointer may be stored in a register for easy
reference and update during the parsing procedure. In
partit:ular, the position of the parsing pointer as an offset
(e.g., from the beginning of the layer two header) may be
used in computing the position of a particular position
within a header.

Program 2300 begins with a WAIT instruction (e.g.,
instruction zero) that waits for a new packet (e.g., indicated
by operator NP) and, when one is received, sets a parsing
pointer to the twelfth byte of the layer two header. This offset
to the twelfth byte is indicated by the success offset portion
of the instruction. Until a packet is received, the WAIT
instruction loops on itself. In addition, a CLR_REG opera
tion is conducted, but the operation enabler setting indicates
that it is only conducted when the comparison succeeds
(e.g., when a new packet is received).

EX 1017 Page 281

r

US 6,483,804 Bl
29 30

The specified CLR._REG operation operates according to Instruction CFI (e.g., instruction two) examines the CFI
the WAIT instruction's operation argument (ie., Ox3FF). In bit or flag in a layer two header. If the CFI bit is set, then the
this embodiment, each bit of the argument corresponds to a packet is not suitable for the processing enhancements
register or other data stracture. The registers initialized in descnbed in other sections and the parsing procedure ends
this operation may include the following: ADDR (e.g., to 5 by calling instruction DONE (e.g., instruction eighteen). If
store the parsing pointer's address or location), FLOWID the CFI bit is not set, then the pointer is incremented another
(e.g., to store the packet's flow key), SEQNO (e.g., to store couple of bytes and e:s:ccution contioues with instruction
a TCP sequence number), SAP (e.g., the packet's ethertypc) 8023. As explained above, a null output operation (e.g.,
and PAYLOAD LEN (e.g., payload length). The following "NONE") indicates that no output operation is performed. In
registers configured to store certain offsets may also be reset: 10 addition, the output enabler value (e.g., zero) further ensures
FLOWOFF (e.g., offset within FLOWID register), SEQOFF that no output operation is performed.
(e.g., offset within SEQNO register), l30FFSET (e.g., In instruction 802.3 (e.g., instruction three), a Type or
offset of the packet's layer three header), HDRSPIIf(e.g., Length field (depending on the location of the pointer and
location to split packet) and CSUMSTART (e.g., starting format of the packet) is examined to determine if the/
location for computing a checksum). Also, one or more 15 packet's layer two format is traditional Ethernet or 8023
status or control indicators (e.g., CONTROL or FIAGS Ethernet. If the value in the header field appears to indicate
register) for reporting the status of one or more flags of a 8023 Ethernet (e.g., contains a hexadecimal value less than
packet header may be reset. In addition, one or more 0600), the pointer is incremented two bytes (to what should
temporary registers (e.g., Rl, R.2) or other data structures be an LLC SNAP field) and e:s:ecution continues with
may also be initialized These registers are merely illustra- 20 instruction LLC_l. Otherwise, the layer two protocol may
tive of the data structures that may be employed in one be considered traditional Ethernet and execution continues
embodiment of the invention. Other data structures may be with instruction IPV4 _l. Instruction 8023 in this embodi-
employed in other embodiments for the same or different ment of the invention does not include an output operation.
output operations. In instructions LLC_l and LLC_.2 (e.g., instructions

Temporary registers such as R1 and/or R2 may be used in 25 four and five), a suspected layer two LLC SNAP field is
program 2300 to tnck various headers and header fields. e:s:amined to en.sure that the packet conforms to the 8023
One skilled in the art will recognize the number of possible Ethemet protocol In instruction LLC_l, a first part of the
combinations of commllllication protocols and the effi:ct of field is tested and, if successful, the pointer is incremented
those various combinations on the structure and format of a two bytes and a second part is tesled in instruction LLC_.2.
packet's headers. More information may need to be exam- 30 If instruction LLC_2 succeeds, the parsing pointer is
ined or gathered from a packet conforming to one protocol advanced four bytes to reach what should be a Type field and
or set of protocols than from a packet conforming to another execution continues with instruction IPV 4 _l. If either test
protocol or set of protocols. For example, if extension fails. however, the parsing procedure exits. In tbe illustrated
headers are used with an Internet Protocol header, values embodiment of the invention, no output operation is per-
from those emnsion headers and/or their lengths may need 35 formed while testing the LLC SNAP field.
to be stored, which values are not needed if e:s:tension In instruction IPV4_1 (e.g., instruction six), the parsing
headers are not used. When calculating a particular offset, pointer should be at an Ethernet Type field. This field is
such as an offset to the beginning of a packet's data portion examined to determine if the layer three protocol appears to
for example, multiple registers may need to be maintained correspond to version four of the Internet Protocol. If this
and their values combined or added. In this example, one 40 test is successful (e.g., the Type field contains a hexadecimal
register or temporary register may track the size or format of value of 0800), the pointer is advanced two bytes to the
an extension header, while another register tracks the base IP beginning of the layer three header and execution of pro-
header. gram 2300 continues with instruction IPV 4_2. If the test is

Instruction VLAN (e.g., instruction one) examines the unsucocssful, then execution continues with instruction
two-byte field at the parsing pointer position (possibly a 45 IPV6_1. Regardless of the test results, the operation enabler
Type, Length or 1l'ID field) fora value indicating a VLAN- value (e.g., three) indicates that the specified LD_SAP
tagged header (e.g., 8100 in hexadecimal). If the header is output operation is always performed.
VLAN-tagged, the pointer is incremented a couple of bytes As described previously, in a LD_SAP operation a pack-
(e.g., one two-byte llllit) and execution contioues with et's ethertype (or Service Access Point) is stored in a
instruction CFI; otherwise,executioncontinueswithinstruc- 50 register. Part of the operation argument of OxlOO, in par-
tion 802.3. In either event, the instruction's operation ticular tbe right-most six bits (e.g., zero) constitute an offset
enabler indicates that an IM_CTL operation is always to be to a two-byte value comprising the ethertype. The offset in
performed. this example is zero because, in the present context, the

As descnbed above, an IM_CTL operation causes a parsing pointer is already at the Type field that contains the
control register or other data structure to be populated with 55 ethertype. In the presently described embodiment, the
one or more flags to report the status or condition of a remainder of the operation argument constitutes a flag
packet. As descnbed in the previous section, a control specifying that the starting position of the layer three header
indicator may indicate whether a packet is suitable for (e.g., an offset from the beginning of the packet) is also to
enhanced proa:ssing (e.g., whether a No_Assist signal be saved (e.g., in the L30FFSET register). In particular, the
should be generated for the packet), whether a packet 60 beginning of tbe layer three header is known to be located
includes any data and, if so, whether the size of the data immediately after the two-byte Type field.
portion exceeds a specified threshold. The operation argu- Instruction IPV4_.2 (e.g., instruction seven) tests a sus-
ment OxOO A for instruction VLAN comprises the value to peeled layer three version field to ensure that the layer three
be stored in the control register, with individual bits of the protocol is version four of IP. In particular, a specification for
argument corresponding to particular flags. Illustrative]y, 65 version four of IP specifics that tbe first four bits of the layer
flags associated with the conditions just descnbed may be three header contain a value of Ox4. If the test fails, the
set to one, or true, in this IM_CTL operation. parsing procedure ends with instruction DONE. If the test

EX 1017 Page 282

r

US 6,483,804 Bl
31 32

succeeds, the pointer advances sil bytes and inslruction In instruction IPV6_1 (e.g., instruction ten), which fol-
IPV4_3 is called. lows the failure of the comparison performed by instruction

The specified lD_SUM operation, which is only per- IPV4J, the parsing pointer should be at a layer two Type
formed if the comparison in instruction IPV4 _2 succeeds, field. If this test is successful (e.g., the Type field holds a
indicates that an offset to the beginning of a point from 5 hexadecimal value of 86DD), instruction IPV6_2 is
which a checksum may be calculated should be stored. In executed after a W_$UM operation is performed and the
particular, in the presently described embodiment of the pointer is incremented two bytes to the beginning of the
invention a checksum should be calculated from the begin- layer three protocol. If the test is unsuccessful, the procedure
ning of the TCP header (assuming that the layer four header exits.
is TCP). The value of the operation argument (e.g.,, OxOOA) 10 Toe indicated LD_SUM operation in instruction IPV6_1
indicates that the checksum is located twenty bytes (e.g., ten is similar to the operation conducted in instruction IPV U
two-byte increments) from the =nt pointer. Thus, a value but utilizes a different argument. Again, the checksum is lo
of twenty bytes is added to the parsing pointer position and be calculated from the beginning of the TCP header
the result is stored in a register or other data structure (e.g., (assuming the layer four header is TCP). The specified
the CSUMSTART register). 15 operation argument (e.g., 0x015) thus comprises an offset to

Instruction IPV4_3 (e.g., instruction eight) is designed to the beginning of the TCP header-twenty-one two-byte
determine whether the packet's IP header indicates IP frag- steps ahead. The indicated offset is added to the present
mentation. If the value extracted from the header in accor- pointer position and saved in a register or other data struc-
dance with the extraction mask does not equal the compari- ture (e.g., the CSUMSTART register).
son value, then the packet indicates fragmentation. If 20 Instruction IPV6 _2 (e.g., instruction eleven) tests a
fragmentation is detected, the pac~t is considered unsuit- suspected layer three version field to further ensure that the
able for the processing enhancements described in other layer three protocol is version six of IP. If the comparison
sections and the procedure exits (e.g., through instruction fails, the parsing procedure ends with the invocation of
DONE). Otherwise, the pointer is incremented two bytes instruction DONE. If it succeeds. instruction IPV6_J is
and instruction IPV4_4 is called after performing a 25 called. Operation IM_Rl, which is performed only when
[DJ.EN operation. the comparison succeeds in this embodiment, saves the

In accordance with the LDJ.EN operation, the length of length of the IP header from a Payload Length field. As one
the IP segment is saved. The illustrated operation argument skilled in the art will appreciate, the Total Length field (e.g.,
(e.g., OJ:03E) comprises an offset to the Total Length field IP segment sizc) of an IP, version four, header includes the
where this value is located. In particular, the least-significant 30 size of the version four header. However, the Payload
six bits constitute the offset. Because the pointer has already Length field (e.g., IP segment size) of an IP, version six,
been advanced past this field, the operation argument com- header does not include the size of the version six header.
prises a negative value. One skilled in the art will recognize Thus, the siu of the version six header, which is identified
that this binary value (e.g., 111110) may be used to represent by the right-most eight bits of the output argument (e.g.,
the decimal value of negative two. Thus, the present offset 35 Ox14, indicating twenty two-byte units) is saved.
of the pointer, minus four bytes (e.g., two two-byte units), is IDustratively, the remainder of the argument identifies the
saved in a register or other data structure (e.g., the PAY- data structure in which to store the header length (e.g.,
LOADLEN register). Any other suitable method of repn:- temporary register Rl). Because of the variation in sizc of
seating a negative offset may be used. Or, the IP segment layer three headers between protocols, in one embodiment
mngth may be saved while the pointer is at a location '40 of the invention the header size is indicated in different units
preceding the Total Length field (e.g., during a previous to allow gicater precision. In particuiar, in one embodiment
instruction). of the invention the sizc of the header is specified in bytes

In instruction IPV4_4 (e.g., instruction nine), a one-byte in instruction IPV6_2, in which case the output argument
Protocol field is examined to determine whether the layer could be Ox128.
four protocol appears to be TCP. If so, the pointer is 45 Instruction IPV6_3 (e.g., instruction twelve) in this
advanoed fourteen bytes and execution continues with embodiment does not examine a header value. In this
instruction TCP _l; otherwise the procedure ends. embodiment, the combination of an extraction mask of

The specified LD _FID operation, which is only per- OxOOOO with a comparison value of OxOOOO indicates that an
formed when the comparison in :instruction IPV4_ 4 output operation is desired before the next examination of a
succeeds, :involves retrieving the packet's flow key and so portion of a header. After the LD_FID operation is
storing it in a register or other location (e.g., the FLOWID performed, the parsing pointer is advanced six bytes to a
register). One skilled in the art will appreciate that in order Next Header field of the version six IP header. Because the
for the comparison in instruction IPV4_4 to be successful, extraction mask and comparison values are both OxOOOO, the
the packet's layer three and four headers must conform to IP comparison should never fail and the failure branch of
(version four) and TCP, respectively. If so, then the entire 55 instruction should never be invoked.
flow key (e.g., IP smm:e and destination addresses plus TCP As described previously, a ll)_FID operation stores a
source and destination port numbers) is stored cootiguously flow key in an appropriate register or other data structure
in the packet's header portion. In particular, the flow key (e.g., the FLOWID register). IDustratively, the operation
comprises the last portion of the IP header and the initial argument of Ox484 comprises two values for identifying and
portion of the TCP header and may he extracted in one 60 delimiting the flow key. In particular, the right-most six bits
operation. The operation argument (e.g., Ox182) thus com- (e.g., 0x04) indicates that the flow key portion is located at
prises two values needed to locate and delimit the flow key. an offset of eight bytes(e.g., four two-byte increments) from
Illustratively, the right-most six bits of the argument (e.g., the cummt pointer position. The remainder of the operation
0x02) identify an offset from the pointer position, in two- argument (e.g., Ox12) indicates that thirty-six bytes (e.g., the
byte units, to the beginning of the flow key. The other five 65 decimal equivalent of Ox12 two-byte units) are to be copied
bits of the argument (e.g., Ox06) identify the size of the flow from the computed offset. In the illustrated embodiment of
key, in two-byte units, to be stored. the invention the entire flow key is copied intact, including

EX 1017 Page 283

r

US 6,483,804 Bl
33 34

the layer three source and destination addresses and layer output mask (e.g., OxFOOO) is shifted to the right eleven
four sowx:e and destination ports. positions when stored in order to simplify calculations.

In instruction IPV6_4 (e.g., instruction thirteen)., a sus- Operation ID_HDR of instruction TCP_4 causes the
pected Next Header field is examined to determine whether loading of an offset to the first byte of packet data following
the layer four protocol of the packet's protocol stack appears s the TCP header. As descnbed in a later section, packets that
to be TCP. If so, the procedure advances thirty-six bytes arc compahble with a pre-selected protocol stack may be
(e.g., eighteen two-byte units) and instruction TCP_l is separated at some point into header and data portions.
called; otherwise the procedure exits (e.g., through instruc- Saving an offset to the data portion now makes it easier to
tion DONE). Operation lD _I.EN is performed if the value split the packet later. Illustratively, the right-most seven bits
in the Next Header field is 0x06. As described above, this 10 of the OxOFF operation argument comprise a first clement of
operation stores the IP segment size. Once again the argu- the offset to the data. One skilled in the a.rt will recognize the
ment (e.g., 0x03F) comprises a negative offset, in this case bit pattern (e.g., 1111111) as equating to negative one. Thus,
negative one. This offset indicates that the desired Payload an offset value equal to the current parsing pointer (e.g., the
Length field is located two bytes before the pointer's present value in the ADDR register) minus two bytes-which
position. Thus, the negative offset is added to the present is locates the beginning of the TCP header-is saved. The
pointer offset and the result saved in an appropriate register remainder of the argument signifies that the value of a
or other data structure (e.g., the PAYLOADLEN register). temporary data structure (e.g., temporary register Rl) is to

In instructions TCP _l, TCP _,2, TCP _3 and TCP_ 4 he added to this offset. In this particular context, the value
(e.g., instructions fourteen through seventeen)., no header saved in the previnus instruction (e.g., the length of the TCP
values-otherthancertainflagsspecifiedintheinstruction's 20 header) is added. These two values combine to form an
output operatioDS---ilIC examined, but various data from the offset to the beginning of the packet data, which is stored in
packet's TCP header arc saved. In the illustrated an appropriate register or other data structure (e.g., the
embodiment, the data that is saved includes a TCP sequence HDRSPUT register).
number, a TCP header length and one or more flags. For each Finally, and as mentioned above, instruction DONE (e.g.,
instruction, the specified operation is performed and the next 2S instruction eighteen) indicates the end of parsing of a packet
instruction is called. As dcscnocd above, 1. comparison when it is determined that the packet does not conform to
between the comparison value of OxOOOO and a null extrac- one or more of the protocols associated with the illustrated
tion value, as used in each of these instructions, will never instructions. This may be considered a "clean-up" instruc-
fail After instruction TCP_ 4, the pa:ising procedure returns tion. In particular, output operation ID_CIL,. with an
to instruction WAIT to await a new packet. 30 operation argument of 01001 indicates that a No_Assist flag

For operation lD_SEQ in instruction TCP J, the opera- is to be set (e.g., to one) in the control register described
tion argument (e.g., 0x081) comprises two values to identify 1.bove in conjunction with instruction VLAN. The
and extract a TCP sequence number. The right-most six bits No_,Assist flag, as described elsewhere, may be used to
(e.g., OxOl) indicate that the sequence number is located two inform other modules of the network interface that the
bytes from the pointer's current position. The rest of the 35 present packet, is unsuitable for one or more processing
argument (e.g., Ox2) indicates the number of two-byte units enhancements described elsewhere.
that must be copied from that position in order to capture the It will be recognized by one skilled in the art that the
sequence number. Illustratively, the sequence number is illustrated program or microcode merely provides one
stored in the SEQNO register. method of parsing a packet. Other programs, comprising the

For operation ST _FLAG in instruction TCP _2, the 40 same instructions in a different sequence or different instruc-
operation argument (e.g., Ox:145) is used to configure a lions altogether, with similar or dissimilar formats, may be
register (e.g., the FIAGS register) with flags to be used in employed to examine and store portions of headers and to
a post-parsing task. The right-most six bits (e.g., Ox:OS) configure registers and other data structures.
constitute an offi;ct, in two-byte units, to a two-byte portion The efficiency gains to be realized from the application of
of the TCP header that contains flags that may affect whether 45 the enhanced processing described in following sections
the packet is suitable for post-parsing enhancements more than offi;ct the time required to parse a packet with the
described in other sections. For example, URG, PSH, RST, illustrated program. Further, even though a header parser
SYN and FIN flags may be located at the offi;ct position and parses a packet on a NIC in a current embodiment of the
be used to configure the register. The output mask (e.g., invention, the packet may still need to be processed through
Ox002F) indicates that only particular portions (e.g., bits) of so its protocol stack (e.g., to remove the protocol headers) by
the TCP header's Flags field are stored. a processor on a host computer. Doing so awids burdening

Operation lD_JU of instruction TCP _3 is similar to the the communication device (e.g., network interface) with
operation conducted in instruction IPV6_2. Here, an opera- such a task.
tion argument of Ox205 includes a value (e.g., the least- One Embodiment of a Flow Database
significant six bits) identifying an offset of five two-byte ss FIG. 5 depicts flow database (FDB) 110 according to one J
units from the current pointer position. That location should embodiment of the invention. Illustratively FDB 110 is
include a Header Length field to be stored in a data structure implemented as a CAM (Content Addressable Memory)
identified by the remainder of the argument (e.g., temporary using a re-writeable memory component (e.g., RAM,
register Rl). The output mask (e.g., Ox:FOOO) indicates that SRAM, DRAM). In this embodiment, FDB 110 comprises
ooly the first four bits are saved (e.g., the Header Length 60 associative portion 502 and associated portion 504, and may
field is only four bits in size). be indexed by flow number 506.

As one &killed in the art may recognize, the value The scope of the invention does not limit the furm or
extracted from the Header Length field may need to be structw:c of flow database 110. In alternative embodiments
adjusted in order to reflect the use of two-byte units (e.g., of the invention virtually any fonn of data structw:c may be
sixteen bit words) in the illustrated embodiment. Therefore, 65 employed (e.g., database, table, queue, list, array), either
in accordance with the shift portion of instruction TCP _3, monolithic or segmented, and may be implemented in ha.n:!-
the value extracted from the field and configured by the ware or software. The illustrated form of FDB 110 is merely

l
EX 1017 Page 284

US 6,483,804 Bl
35 36

one manner of maintaining useful information concerning For example, a pack.et may be received out of order from
communication flows through NIC 100. As one skilled in the other packets of a data~am, a control pack.et indicating that
art will recognize, the structure of a CAM allOW!i highly a data transfer or flow is being aborted may be received, an
efficient and fast associative searching. attempt may be made to re-establish or re-synchronize a

In the illustrated embodiment of the invention, the infor- s flow (in which case the original flow is terminated), etc. In

f
mation stored in FDB 110 and the operation of flow database one embodiment of the invention flow validity indicator 520
manager {FDBM) 108 (described below) permit functions is a single bit, flag or value.
such as data re-assembly, batch processing of pack.ct Flow sequence number 522 in tbe illustrated embodiment
headers, and other enhancements. These functions arc dis- comprises a sequence number of the next portion of data that
cussed in detail in other sections but may be briefly 10 is expected in tbe associated flow. Because the datagram
described as follows. being sent in a flow is typically received via multiple

One form of data re-assembly involves the re-assembly or packets, the flow sequence number provides a mechanism to
combination of data from multiple related packt:ts (e.g., ensure that the packets arc received in the correct order. For
packets from a single communication flow or a single example, in one embodiment of the invention NIC 100
datagram). One method for the batch proccs.mig of packet 1s re-assembles data from multiple packets of a datagram. To
headers entails pro · 'ple perform this re-assembly in the most efficient manner, the
re a a ets a co cct1ve y ra er packets need to be received in order. Thus, flow sequence
than one v;u:;kct at a tune. Another illustrative number 522 stores an identifier to identify the next packet or
Rte 100 involves the distribution or sharing of such proto- portion of data that should be received.
col stack. processing (and/or other functions) among proces- 20 In one embodiment of the invention, flow sequence num-
sors in a multi-processor host computer system. Yet another ber .522 corresponds to the TCP sequence number field
possible function of NIC 100 is to enable the transfer of found in TCP protocol headers. As one skilled in the art will
re-assembled data to a destination entity (e.g., an application recognize, a packet's TCP sequence number identifies the
program) in an efficient aggregation (e.g., a memory page), position of the packet's data relative to other data being sent
thereby avoiding piecemeal and highly inefficient transfers 25 in a datagram. For packets and flows involving protocols
of one packet's data at a time. Thus, in this embodiment of other than TCP, an alternative method of verifying or
the invention, one purpose of FDB 110 and FOBM 108 is to ensuring the receipt of data in the correct order may be
generate information for the use of NIC 100 and/or a host employed.
computer system in enabling, disabling or performing one or Flow activity indicator 524 in the illuslrated embodiment
more of these functions. 30 reflects the recency of activity of a flow or, in other words,

Associative portion .502 of FOB 110 in FIG. 5 stores the the age of a flow. In this embodiment of the invention flow
flow key of each valid flow destined for an entity served by activity indicator .524 is associated with a counter, such as a
NIC 100. Thus, in one embodiment of the invention asso- flow activity counter (not depicted in FIG. 5). The flow
ciative portion 502 includes IP source address 510, IP activity counter is updated (e.g., incremented) each time a
destination address .512, TCP source port 514 and TCP 35 packet is received as part of a flow that is already stored in
destination port .516. As described in a previous section these flow database 110. Toe updated counter value is then stored
fields may be extracted from a packet and provided to in the flow activity indicator field of the packet's flow. Toe
FOBM 108 by header pa.mer 106. flow activity counter may also be incremented each time a

Although each destination entity served by NIC 100 may first packet of a new flow that is being added to the database
participate in multiple communication flows or end-to~d '40 is received. In an alternative embodiment, a flow activity
TCP connections, only one flow at a time will exist between counter is only updated for packets containing data (e.g., it
a particular source entity and a particular destination entity. is not updated for control packets). In yet another alternative
Therefore, each flow key in associative portion 502 that embodiment, multiple counters are used for updating flow
corresponds to a valid flow should be unique from all other activity indicators of different flows.
valid flows. In alternative embodiments of the invention, 45 Because it can not always be determined when a com-
associative portion .502 is composed of different fields, munication flow bas ended (e.g., the final packet may have
reflecting alternative flow kt:y forms, which may be deter- been lost), the flow activity indicator may be nscd to identify
mined by the protocols parsed by the header parser and the flows that are obsolete or that should be tom down for some
information used to identify communication flows. other reason. For example, if flow database 110 appears to

Associated portion .504 in the illustrated embodiment so be fully populated (e.g., flow validity indicator 520 is sci for
comprises flow validity indicator 520, flow sequence num- each flow number) when the first packet of a new flow is
ber 522 and flow activity indicator .524. These fields provide received, the flow having the lowest flow activity indicator
information concerning the flow identified by the flow key may be replaced by the new flow.
stored in the corresponding entry in associative portion 502. In the illustrated embodiment of the invention, the size of
The fields of associated portion 504 may be retrieved and/or 55 fields in FDB 110 may differ from one enti:y to another. For
updated by FDBM 108 as descnlJed in the following section. example, IP source and destination addresses are four bytes

How validity indicator 520 in this embodiment indicates large in version four of the protocol, but arc sixteen bytes
whether the associated flow is valid or invalid. Illustratively, large in version six. In one alternative cmbodimeot of the
the flow validity indicator is set to indicate a valid flow when invention, entries for a particular field may be uniform in
the first packet of data in a flow is received, and may be reset 60 size, with smaller entries being padded as necessary.
to reassert a flow's validity every time a portion of a flow's In another alternative embodiment of the invention, fields
datagram (e.g., a packet) is correctly received within FOB 110 may be merged. In particular, a flow's flow

How validity indicator 520 may be marked invalid after key may be stored as a single entity or field instead of being
the last packet of data in a flow is received. The flow validity stored as a number of separate fields as shown in FIG. 5.
indicator may also be set to indicate an invalid flow when- 65 Similarly, flow validity indicator 520, flow sequence number
ever a flow is to be tom down (e.g., terminated or aborted) 522 and flow activity indicator 524 are depicted as separate
for some reason other than the receipt of a final data packt:t. entries in FIG. 5. However, in an alternative embodiment of

EX 1017 Page 285

US 6,483,804 B1

35

one manner of maintaining useful information concerning
communication flows through NlC 100.As one skilled in the
art will recognize, the structure of a CAM allows highly
clficient and fast associative scarcling

In the illustrated embodiment of the invention, the infor-
mation stirred in FDB 110 and the operation of flow database
manager (FDBM) 108 (described below) permit functions
such as data re-assembly, batch processing of packet
headers, and other enhancements. These functions are dis—
cussed in detail in other sections but may be briefly
described as follows.

One form ofdata ire-assembly involves the reassembly or
combination of data from multiple related packets (cg,
packets from a angle communication flow or a single
datagram). One method for the batch processing of packet
headers emails processin Moment:
to a a ets h a rotoeol stack co ectrve y ra er

Wet at a time. Another must: we on of100 involves the distribution or sharing of such proto—
col stack promnsing (and/or other flirtatious) ammg proces-
sors in a mold-processor host computer system. Yet another
possible function of NIC 100 is to enable the transfer of
wassembled data to a destination entity (e.g., an application
program) in an eflicient aggregation (eg, a memory page),
thereby avoiding piecemeal and highly inefiicient transfers
of one packet’s data at a time. Thus, in this embodiment of
the invention, one purpose of FDB 110 and FDBM 108 is to
generate information for the use of NIC 100 and/or a host
computer system in enabling, disabling or performing one or
more of these functions.

Associative portion 502 of FDB 110 in FIG. 5 stores the
flow key of each valid flow destined for an entity served by
MC 100. Thus, in one embodiment of the invention asso-
ciative portion 502 includes 11’ source address 510, IP
destination address 512, TCP source port 514 and TCP
destination port 516. As described in a previous section these
fields may be extracted from a packet and provided to
FDBM 108 by header parser 106.

Although each destination entity served by NIC 100 may
participate in multiple communication flows or end-to-cnd
TCP connections, only one flow at a time will exist between
a particular source entity and a particular destination entity.
Therefore, each flow key in associative portion 502 that
corresponds to a valid flow should be unique from all other
valid flows. In alternative embodiments of the invention,
associative portion 502 is composed of difiierent fields,
reflecting alternative flow key forms, which may be deter-
mined by the protocols parsed by the header parser and the
information used to identify communication flows.

Associated portion 504 in the illustrated embodiment
comprises flow validity indicator 520, flow sequence num-
ber 522 and flow activity indicator 524. These fields provide
information concerning the flow identified by the flow key
stored in me corresponding entry in associative portion 502.
The fields of associated portion 504 maybe retrieved and/or
updated byFDBM 108 as described in the following section.

Flow validity indicator 520 in this embodiment indicatee
whether the associated flow is valid or invalid. Illustratively,
the flow validity indicator is set to indicate a valid flow when
the first packet ofdata in a flow is received, and may be reset
to reassert a how's validity every time a portion of a flow’s
datagram (e.g., a packet) is correctly received.

Flow validity indicator 520 may be marked invalid after
the last packet of data in a flow is received. The flow validity
indicator may also be set to indicate an invalid flow when—
ever a flow is to be torn dorm (cg, terminated or aborted)
for some reason other than the receipt of a final data packct.

10

15

25

35

#5

55

65

36

For example, a packet may be received out of order from
other packets of a datagam, a control padrct indicating that
a data transfer or flow is being aborted may be received, an
attempt may be made to reestablish or mvsynchronize a
flow (in which case the original flow is terminated), etc. In
one embodiment of the invention flow validity indicator 520
is a single bit, flag or value.

Flow sequence number 522 in the illustrated embodiment
comprises a sequence number of the next portion ofdata that
is expected in the associated flow. Because the datagram
being sent in a flow is typically received via multiple
packets, the flow sequence number provides a mechanism to
erasure that the packets are received in the mired. order. For
example, in one embodiment of the invention MC 100
rte-assembles data from multiple packets of a datagrarn. 'Ib
perform this rte-assembly in the most efficient manner, the
packets need to be received in order. Thus, flow sequence
number 522 stores an identifier to identify the next packetor
potion of data that should be received.

In one embodiment of the invention, flow sequence num-
ber 522 corresponds to the TCP sequence number field
found in TCP protocol headers. As one skilled in the art will
recognize, a packct’s TC? sequence number identifies the
position of the packet’s data relative to other data being sent
in a datagram. For packets and flows involving protocols
other than TCP, an alternative method of verifying or
ensuring the receipt of data in the correct order may be
employed.

Flow activity indicator 524 in the illustrated embodiment
reflects the recency of activity of a flow or, in other words,
the age of a flow. In this embodiment of the invention flow
activity indicator 524 is associated with a counter, such as a
flow activity counter (not depicted in FIG. 5). The flow
activity counter is updated (mg, incremented) each time a
packet is received as part of a flow that is already stored in
flow database 110. The updated counter value is then stored
in the flow activity indicator field of the packet’s flow. The
flow activity counter may also be incremented each time a
first packet ofa new flow that is being added to the database
is received. In an alternative embodiment, a flow activity
counter is only updated for packets containing data (e.g., it
is not updated for control packets). In yet another alternative
embodiment, multiple counters are used for updating flow
activity indicators of rlilferenl flows.

Because it can not always be determined when a corn-
munieation flow has ended (e.g., the final packet may have
been lost), the flow activity indicator may be used to identify
flows that are obsolete or that should be torn down for some

other reason. For example, if flow database 110 appears to
be fully populated (e.g., flow validity indicator 5le is set for
each flow number) when the first packet of a new flow is
received, the flow having the lowest flow activity indicator
may be replaced by the new flow.

In the illustrated embodiment of the invention, the size of
fields in FDB 110 may difier from one entry to another. For
example, 11’ source and destination addresses are four bytes
large in version four of the protocol, but are sixteen bytes
large in version six. In one alternative embodiment of the
invention, entries for a particular field may be uniform in
size, with smaller entries being padded as ncocmary.

In another alternative embodiment of the invention, fields
within FDB 110 may be merged. In particular, a how’s How
key may be stored as a single entity or field instead of being
stored as a number of separate fields as shown in FIG. 5.
Similarly, flow validity indicator 520, flow sequence number
522 and flow activity indicator 524 are depicted as separate
entries in FIG. 5. However, in an alternative embodiment of

EX 1017 Page 285

r
• !

l

US 6,483,804 Bl
37

the invention one or more of these entries may be combined.
In particular, in one alternative embodiment flow validity
indicator 520 and flow activity indicator 524 comprise a
single entry having a first value (e.g., zero) when the entry's
associated flow is invalid. As long as the flow is valid, s
however, the combined entry is incremented as packets arc
received, and is reset to the first value upon termination of
the flow.

38
If a later packet contains the next portion of data for a

previous flow (e.g., flow number zero), that flow is updated
appropriately. In one embodiment of the invention this
entails updating flow sequence number 522 and increment
ing flow activity indicator 524 to reflect its recent activity.
Flow validity indicator 520 may also be set to indicate the
validity of the flow, although it should already indicate that
the flow is valid

new flows arc idcntifi the arc added to FDB 110 In one embodiment of the invention FDB 110 contains a
ma.xi.mum of sixty-four entries, indexed by flow number 10

506, thus allowing the database to track sixty-four valid
flows at a time. In alternative embodiments of the invention,
more or fewer entries may be permitted, depending upon the
size of memory allocated for flow database 110. In addition
to flow number 506, a flow may be identifiable by its flow
key (stored in associative portion 502).

In the illustrated embodiment of the invention, flow
database 110 is empty (e.g., all fields are filled with zeros)
when NIC 100 is initializ.cd. When the first packet of a flow

in a s ar manner to the first flow. When a ow is
terminated or tom down, the as.wciatcd cntzy in FDB 110 is
iiiviiliiiated. In one embodiment of the invention, flow
validityindicator 5211 is merely clca.ed-(c.g., set to zero) for
ffie terrmnated flow. In another embodiment, one or more

15 1i.eiasor-a terminated flow are cleared or set to an amitrary
or predetermined value. Because of the bursty nature of
network packet traffic, all or most of the data from a
datagram is generally received in a short amount of time.

is received header parser 106 parses a header portion of the 20
packet. As described in a previous section, the header parser
assembles a flow key to identify the flow and extracts other
information concerning the packet and/or the flow. The flow
key, and other information, is passed to flow database
manager 108. FDBM 108 then searches FDB 110 for an 25

active flow associated with the flow key. Because the
database is empty, there is no match.

In this example, the flow key is therefore stored (e.g., as
flow number zero) by copying the IP source address, IP
destination address, TCP source port and TCP destination 30

port into the corresponding fields. Flow validity indicator
520 is then set to indicate a valid flow, flow sequence
number 522 is derived from the TCP sequence number
(illustratively provided by the header parser), and flow
activity indicator 524 is set to an initial value (e.g., one), 35
which may be derived from a counter. One method of
generating an appropriate flow sequence number, which may
be used to verify that the next portion of data received for the
flow is received in order, is to add the TCP sequence number
and the size of the packet's data. Depending upon the 40

configuration of the packet (e.g., whether the SYN bit in a
Flags field of the packet's TCP header is set), however, the
sum may need to be adjusted (e.g., by adding one) to
correctly identify the next expected portion of data.

As described above, one method of generating an appro- 45
priatc initial value for a flow activity indicator is to copy a
counter value that is incremented for each packet received as
part of a flow. For example, for the first packet received after
NIC 100 is initialized, a flow activity counter may be
incremented to the value of one. This value may then be so
stored in flow activity indicator 524 for the associated flow.
The next packet received as part of the same (or a new) flow
causes the counter to be incremented to two, which value is
stored in the flow activity indicator for the associated flow.
In this example, no two flows should have the same flow 55

activity indicator except at initialization, when they may all
equal zero or some other predetermined value.

Upon receipt and parsing of a later packet received at NIC
100, the flow database is searched for a valid flow matching
that packet's flow key. Illustratively, only the flow keys of 60

active flows (e.g., those flows for which flow validity
indicator 520 is set) arc searched. Alternatively, all flow keys
(e.g., all entries in associative portion 502) may be searched
but a match is only reported if its flow validity indicator
indicates a valid flow. With a CAM such as FDB 110 in FIG. 65
5, flow keys and flow validity indicators may be searched in
parallel.

Thus, each valid flow in FDB 110 normally only needs to be
maintained for a short period of time, and its entry can then
be used to store a different flow.

Due to the limited amount of memory available for flow
database 110 in one embodiment of the invention, the size of
each field may be limited. In this embodiment, sixteen bytes
are allocated for IP source address 510 and sixteen bytes arc
allocated for IP destination address 512. For IP addresses
shorter than sixteen bytes in length, the extra space may be
padded with zeros. Further, TCP source port 514 and TCP
destination port 516 arc each allocated two bytes. Also in
this embodiment, flow validity indicator 520 comprises one
bit, flow sequence number 522 is allocated four bytes and
flow activity indicator 524 is also allocated four bytes.

As one skilled in the art will recognize from the embodi
ments described above, a flow is similar, but not identical, to
an end-to-end TCP connection. A TCP connection may exist
for a relatively extended period of time, sufficient to transfer
multiple datagrams from a source entity to a destination
entity. A flow, however, may exist only for one datagram.
Thus, during one end-to-end TCP connection, multiple flows
may be set up and tom down (e.g., once for each datagram).
As described above, a flow may be set up (e.g., added to
FDB no and marked valid) when NIC 100 detects the first
portion of data in a datagram and may be tom down (e.g.,
marked invalid in FDB 110) when the last portion of data is
received. illustratively, each flow set up during a single
end-to-end TCP connection will have the same flow key
because the layer three and layer four address and port
identifiers used to form the flow key will remain the same.

In the illustrated embodiment, the size of flow database
110 (e.g., the number of flow entries) determines the maxi
mum number of flows that may be interleaved (e.g., simul
taneously active) at one time while enabling the functions of
data re-assembly and batch processing of protocol headers.
In other words, in the embodiment depicted in FIG. 5, NIC
100 can set up sixty-four flows and receive packets from up
to sixty-four different datagrams (i.e., sixty-four flows may
be active) without tearing down a flow. If a maximum
number of flows through NIC 100 were known, flow data
base no could be limited to the corresponding number of
entries.

The flow database may be kept small because a flow only
lasts for one datagram in the presently descnbed embodi
ment and, because of the bursty nature of packet traffic, a
datagram's packets arc generally received in a short period
of time. The short duration of a flow compensates for a
limited number of entries in the flow database. In one
embodiment of the invention, if FDB 110 is filled with active

EX 1017 Page 286

US 6,483,804 Bl
39 40

flows and a new flow is commenced (i.e .• a first portion of pre-selected protocol stacks (i.e., the packet is not
data in a new datagram), the oldest (e.g., the least recently "compatible"), as discussed in a previous section.
active) fiow is replaced by the new one. Illustratively, the No_Assist signal indicates that one or

In an alternative embodiment of the invention, fiows may mon: functions of NIC 100 (e.g., data re-assembly, batch
be kept active for any number of datagrams (or other s processing, load-balancing) may not be provided for the
measure of network traffic) or for a specified length or range packet.
of time. For example, when one datagram ends its flow in In state 604, FDBM 108 determines whether a No_Assist
FDB no may be kept "open" (i.e., not tom down) if the signal was asserted for the packet. If so, the procedure
database is not full (e.g., the flow's entry is not needed for proceeds to state 668 (FIG. 6E). Otherwise, FDBM 108
a different ftow). 1bis scheme may further enhance the 10 searches FDB 110 for the packet's flow key in state 606. In
efficient operation of NIC 100 if another datagram having one embodiment of the invention only valid flow entries in
the same flow key is n:ceived. In particular, the overhead the flow database are searched.As discussed above, a flow's
involved in setting up another ftow is avoided and more data validity may be reflected by a validity indicator such as fiow
re-assembly and packet hatching (as described below) may validity indicator S20 (shown in FIG. S). If, in state 608, it
be performed Advantageously, a fiow may be kept open in 15 is determined that the packet's flow key was not found in the
flow database no until the end-to-end TCP connection that database, or that a match was found but the associated flow
encompasses the flow ends. is not valid, the procedure advances to state 646 (FIG. 60).
One Embodiment of a Flow Database Manager If a valid match is found in the ftow database, in state 610

FIGS. 6A-6E depict one method of operating a flow tlie How lllllllbcr (s_g., the flow database index for the
database manager (FDBM), such as flow database manager 20 matching entry) of the matching flaw is noiiid and flow
108 of FIG. 1A, for managing ftow database (FOB) 110. i.riformatton stored m FDB 110 is read. Illustratively, this
Illustratively, FDBM 108 stores and updates flow informa-.., infoimatien iBelu~alidity indicator 520, flow
lion stored in ifow database no and generates an operation. sequence number 522 and flow activity indicator 524

i@e fpr a packet received by NIC 1'9. FDBM 108 also tears (shown in FIG. S).
down a flow (e.g., replaces, removes or otherwise invali- 25 In state 612, FDBM 108 determines from information
dates an entry in FDB 110) when the flow is terminated or received from header parser 106 whether the packet contains
aborted. TCP payload data. If not, the illustrated procedure proceeds

In one embodiment of the invention a packet's operation to state 638 (FIG. 6C); otherwise the procedure continues to
code reflects the packet's compatibility with predetermined state 614.
criteria for performing one or more functions of NIC 100 30 In state 614, the flow database manager determines
(e.g., data re-assembly, batch processing of packet headem, whether the packet constitutes an attempt to reset a com-
load distribution). In other words., depending upon a pack- munication connection or flow. Illustratively, this may be
et's operation code, other modules of NIC 100 may or may determined by e:nmining the state of a SYN bit in one of the
notperformoneoftbesefunctions,asdescnbedinfollowing packet's protocol headers (e.g., a TCP header). In one
sections. 35 embodiment of the invention the value of one or more

In another embodiment of the invention, an operation control or flag bits (such AS the SYN bit) are provided to the
code indicates a packet status. For example, an operation FDBM by the header parser. As one skilled in the art will
code may indicate that a packet: contains no data, is a control recognize, one TCP entity may attempt to reset a commu-
packet, contains more than a spcci1ied amount of data, is the nication flow or connection with another entity (e.g.,
first packet of a new flow, is the last packet of an existing 40 because of a problem on one of the entity's host computers)
flow, is out of order, contains a certain flag (e.g., in a and send a first portion of data along with the re-connection
protocol header) that does not have an expected value (thus requ.cst. 1bis is the situation the flow database manager
possibly indicating an exceptional circumstance), etc. attempts to discern in state 614. If the packet is part of an
~ oC flnw database ma1nger 101 depends attempt to re-connect or reset a flow or connection, the

upon acket inform · n rovided by and '45 procedure continues at state 630 (FIG. 6C).
drawn from flow database 108 In state 616, flow database manager 108 compares a

roccsses llie acket information sequence number (e.g., a TCP sequence number) extracted
mat10n e .. the acket' ration code is stored in from a packet header with a sequence number (e.g., flow

eue 8 0 m ow sequencenumberS22ofFIG.S)ofthenextexpectedportion
may be entered or an eristjng one u.pdatod-er-tem down). so of data for this flow. As discussed in a previous section, these
- With reference J:!OW to FIGS. 6A-6E, state 600 is a start sequence numbers should correlate if the packet contains the
state in which FDBM 108 awaits information drawn from a flow's next portion of data. If the sequence numbers do not
packet received by NIC 100 from network 102. In state 602, match, the procedure continues at state 628.

or another In state 618, FDBM 108 determines whether certain flags
a et b rovidin the ackct's flow 55 extracted from one or mon: of the packet's protocol headers

~nd some cnntml information. Receipt o match expected values. For example, in one embodiment o[
be inte reted AS a r est to search FOB no determine the invention the URG, PSH, RST and FIN flags from the
whether a flow havin eady exists. packet's TCP header arc expected to be clear (i.e., equal to

one embodiment o the e control informa- zero). If any of these flags arc set (e.g., equal to one) an
lion passed to FDBM 108 includes a sequence number (e.g., 60 exceptional condition may exist, thus making it possible that
a TCP sequence number) drawn from a packet header. The one or more of the functions (e.g., data re-assembly, batch
control information may also indicate the status of certain processing, load distribution) offered by NIC 100 should not
flags in the packet's headers, whether the packet includes be performed for this packet. As long as the flags are clear,
data and, if so, whether the amount of data exceeds a certain the procedure continues at state 620; otherwise the proce-
size. In this embodiment, FDBM 108 also receives a 65 dure continues at state 626.
No_Assist signal for a packet if the header parser deter- In state 620, tbe flow database manager determines
mines that the packet is not formatted according to one of the whether more data is expected during this flow. As discussed

EX 1017 Page 287

ELM“,—

US 6,483,804 Bl
39

flows and a new flow is commenced (Le, a first portion of
data in a new datagram), the oldest (e.g., the least recently
active) flow is replaced by the new one.

In an alternative embodiment of the invention, flows may
be kept active for any number of datagrams (or other
measure of network traffic) or for a specified length or range
of time. For example, when one datagram ends its flow in
FDB 110 may be kept “open” (i.e., not torn down) if the
database is not full (e.g., the How’s entry is not needed for
a different flow). This scheme may further enhance the
efiicient operation of MC 100 if mother datsgram having
the same flow key is received. In particular, the overhead
involved in setting up another flow is avoided and more data
reassembly and packet batching (as described below) may
be performed Advantageously, a flow may be kept open in
flow database 110 until the end—to—end TCP connection that
encompasses the flow ends.
One Embodiment of a Flow Database Manager

FIGS. 6Ao6E depict one method of operating a flow
databam manager (FDBM), such as flow database manager
108 of FIG. 1A, for managing llow database (FDB) 110.
Illmtratively, FDBM 108 stores and ufites flow informa—
tion stored in ow use an gent-nag Q operationcode ra acket ivedb NICl .FDBMIOSalsotears

S

10

15

20

down a flow (e.g., replaws, removes or otherwise invali~ 75
dates an entry in FDB 110) when the flow is terminated oraborted,

In one embodiment of the invention a paeket‘s operation
code reflects the packet’s compatibility with predetermined
criteria for performing one or more functicms of MC 100
(e.g., data re-asscmbly, batch processing of packet headers,
load distribution). In other words, depending upon a pack-
et’s operation code, other modules of NIC 100 may or may
mtperform one of these functions, as dosuibed in followingsections.

In another embodiment of the invention, an operation
code indicates a packet status. For example, an operation
code may indicate that a packet: contains no data, is acontrol
packet, contains more than a Specified amount ofdata, '3 the
first packet of a new flow, is the last packet of an existing
flow, is out of order, contains a certain flag (e.g., in a
protocol header) that does not have an expected value (thus
possibly indicating an exceptional circumstance), etc.
atabase

WWWNdrawn from how database After FDBM 1w
Minion-

ma he entered or a ' ‘ e to down).

I With reference now to FIGS. 6A—6E, state 600Is a start
state in which FDBM 108 awaits information wn m a
packet received by NIC 100 from network 102. In state 602,

ZWMAJWWWWmauon Receipto ata may
be interpreted as a request to search I‘m}; 110 to determine
whether a flow having the flow key already exists." one embodiment of the invention 6 control informa—

tion passed to FDBM 108 includes a sequence number (c.g.,
a TCP sequence number) drawn from a packet header. The
control information may also indicate the status of certain
flags in the packet’s headers, whether the packet includes
data and, if so, whether the amount ofdata exceeds a certain
size. In this embodiment, FDBM 108 also receives a
N0_Assist signal for a packet if the header parser deter.
mines that the packet is not formatted acmrding to one of the

30

35

40

4s

50

55

40

pro-selected protocol stacks 6.6., the packet is not
“compatible”), as discussed in a previous section.
lllustratively, the New signal indicates that one or
more functions of NIC 100 (e.g., data re—assembly, batch
processing, load-balancing) may not he provided for the
packet.

In state 604, FDBM 108 determines whether a Nofiist
signal was asserted for the packet. If so, the procedure
proceeds to state 668 (FIG. 6E). Otherwise, FDBM 108
searches FDB 110 for the packet’s [low key in state 606. In
one embodiment of the invention only valid how entries in
the flow database are searched.As discussed above, a how’s
validity may be reflected by a valifity indicator such as flow
validity indicator 520 (shown in FIG. 5). If, in state 608, it
is determined that the packet’s flow key was not found in the
databnse, or that a match was found but the associated flow
is not valid, the procedure advances to state 646 (FIG. 61)).

If a valid match is found in the flow database state 610

mmfor the
matcbfig enfryl of the m Windand flow

orma ton so In FDB 110is read Illustratively,thrs
informafion—ineludee-ficwmalidity indicator 520, flow
sequence number 522 and flow activity indicator 524
(shown in FIG. 5).

In state 612, FDBM 108 determines from information
received from header parser 106 whether the packet contains
'I'CP payload data, If not, the illustrated procedure proceeds
to state 638 (FIG. 6C); otherwise the procedure continues to
state 614.

In state 614, the flow database manager determines
whether the packet constitutes an attempt to reset a com-
munication connection or flow. Illustratively, this may be
determined by examining the state ofa SYN bit in one of the
pucket’s protocol headers (e.g., a TCP header). In oneembodiment of the invention the value of one or more

control or flag bits (such as the SYN bit) are provided to the
FDBM by the header parser. As one skilled in the art will
recognize, one TCP entity may attempt to reset a commu—
nication flow or connection with another entity (e.g.,
because of a problem on one of the entity’s host computers)
and send a first portion of data along with the reconnection
request. This is the nitration the flow database manager
attempts to discern instate 614.1f the paclmtispart of an
attempt to re-connect or met a flow or connection, the
procedure continues at state 630 (FIG. 6(3).

In state 616, flow database manager 108 compares a
sequence number (e.g., a TCP sequence number) extracted
from a packet header with a sequence number (e.g., flow
sequence number 522 ofFIG. 5) of the next expected portion
ofdata for this 1&0st dimusscd in a previous section, these
sequence numbers should correlate ifthe packet contains the
how‘s next portion of data If the sequence numbers do not
match, the procedure continues at state 628.

In state 618, FDBM 108 determines whether certain flags
extracted firom one or more of the packet‘s protocol headers
match expected values. For example, in one embodiment of
the invention the URG, PSH, PSI and FIN flags from the
packers TCP header are expected to be clear (LL, equal to
zero). If any of these flags are set (c.g., equal to one) an

an exceptional mndition may exist, thus making it possible that

65

one or more of the functions (e.g., data re-ausemhly, batch
processing, load distribution) ofi'ered by NIC 100 should not
be performed for this packet. As long as the flags are clear,
the procedure continues at state 620; otherwise the proce-
dure continues at state 626.

In state 620, the flow database manager determines
whether more data is expected during this flow.As discussed

EX 1017 Page 287

l
I

US 6,483,804 Bl
41 42

above, a flow may be limited in duration to a single embodiment of the present invention to indicate that one
datagram. Therefore, in state 620 the FDBM determines if flow was active more recently thm another was.
this packet appears to be the final portion of data for this Also in state 622, flow sequence number 522 is updated.
flaw's datagram. Illustratively, this determination is made on Illustratively, the new flow sequence number is determined
the basis of the amount of data included with the present 5 by adding the size of the newly received data to the existing
packet. As one skilled in the art will appreciate, a datagram flow sequence number. Depending upon the configuration of
comprising more data than can be carried in one packet is the packet (e.g .. values in its headers), this sum may need to
sent via multiple packets. The typical manner of disscmi- be adjusted. For example, this sum may indicate simply the
nating a datagram among multiple packets is to put as much total amount of data received thus far for the flaw's data-
data as possible into each packet. Thus, each packet except 10 gram. Therefore, a value may need to be added (e.g., one
the last is usually equal or nearly equal in size to the byte) in order to indicate a sequence number of the next byte
maximum transfer unit (MllJ) allowed for the netwoik over of data for the datagram. As one skilled in the art will
which the packets are sent. The last packet will hold the recognize, other suitable methods of ensuring that data is
remainder, usually causing it to be smaller than the MTU. received in order may be used in place of the scheme

Therefore, one manner of identifying the final portion of 1s described here.
data in a flaw's datagram is to examine the size of each Finally, in state 622 in one embodiment of the invention,
packet and compare it to a figure (e.g., M1lJ) that a packet flow validity indicator 520 is set or reset to indicate the
is expected to exceed except when carrying the last data flow's validity.
portion. It was descn"bed above that control information is Then, in state 624, an ~ration code is associated with
received by FDBM 108 from header parser 106. An indi- 20 the packet. In the illus~ embodiment of ihe mvenfion,
cation of the size of the data carried by a packet may be qicrilion codes comprise codes generated by flow database
included in this information. In particular, header parser 106 m~ IU8 ind Stmed in contml queue ll.8. In this
in one embodiment of the invention is configured to com- em ent, an operatlon codi: is three 6its in size, thus
pare the size of each packet's data portion to a pre-selected allowing for eight operation codes. Operation codes may
value. In one embodiment of the invention this value is 25 have a variety of other forms and ranges in alternative
programmable. This value is set, in the illustrated embodi- embodiments. For the illustrated embodiment of the
mcnt of the invention, to the maximum amount of data a invention, TABLE 1 dcscn"bes each operation code in tenns
packet can carry without exceeding MTU. In one alternative of the criteria that lead to each code's selection and the
embodiment, the value is set to an amount somewhat less ramifications of that selection. For purposes of TABLE 1,
than the maximum amount of data that can be carried. 30 setting up a flow comprises inserting a flow into flow

Thus, in state 620, flow database manager 108 determines database no. Tearing down a flow comprises removing or
whether the received packet appears to carry the final invalidating a flow in flow database no. The re-ll&'>Cmbly of
portion of data for the flow's datagram. lf not, the procedure data is discussed in a following section descnbing DMA
continues to state 626. engine 120.

In state 622, j! bas been ascertained that the packet is 35 In the illustrated embodiment of the invention, operation
compatible with pre-selected protocols and is 5!lltable for code 4 is selected in state 624 for packets in the present

,_ine or mou tiiilcfio~ NIC 100. In particular, the context of the procedure (e.g., compatible packets carcying
packet has been formatted appropriately for one or more of the next, but not last, data portion of a flow). Thus, the
the functions discussed above. FDBM 108 has determined existing flow is not tom down and there is no need to set up
that the received packet is part of an eiisdng flow, is 40 a new flow. As descnbed above, a compatible packet in this
~e with the p.re-scl~grQioco!s 1md ~The embodiment is a packet conforming to one or more of the
nciiportioiiof'dll.tlrfortiie flow (but not the final portion). pre-selected protocols. By changing or augmenting the
Furlfier, the packetis not part of an attempt to re-set a pre-selected protocols, virtually my packet may be compat-
flow/connection, and important flags have their expected ible in an alternative embodiment of the invention.
values. Thus, flow database no can be updated as follows. 45 Returning now to FlGS. 6A-6E, after state 624 the

· · indicator e.g., flow activity indicator 524 of illustrated proccd:urc ends at state 670.
FIG. S for this ow is mo to re ect e In state 626 (reached from state 618 or state 620),
activity. In one em ent o t e mvention flow activity operation code 3 is selected for the packet. Illustratively,
mdicator 524 is implemented as a counter, or is associated opemtion code 3 indicates that the packet is compatible and
with a counter, that is incremented each time data is received 50 matches a valid flow (e.g., the packet's flow key matches the
for a flow. In another embodiment of the invent~ flow key of a valid flow in FDB no). Operation code 3 may
activity indicator or counter is updated every time a pa~t also signify that the packet contains data, does not constitute
~ a flow key matching a valid flow (s,g., whe~t an attempt to re-synchronize or reset a communication
4cket includes da · · . flow/connection and the packet's sequence number matches

e ated embodiment, after a flow activity indi- 55 the expected sequence number (from flow database no).
cator or counter is incremented it is examined to determine But, either an important flag (e.g., one of the TCP flags
if it "rolled over" to zero (i.e., whether it was incremented URG, PSH, RST or FIN) is set (determined in state 618) or
past its maximum value). If so, the counter and/or the flow the packet's data is less than the threshold value described
activity indicators for each entry in flow database UO are set above (in state 620), thus indicating that no more data is
to :rero and the current flow's activity indicator is once again 60 likely to follow this packet in this flow. Therefore, the
incremented. Thus, in one embodiment of the invention the existing flow is tom down but no new flow is created.
rolling over of a flow activity counter or indicator causes the Illustratively, the flow may be tom down by clearing the
re-initialization of the flow activity mechanism for flow flow's validity indicator (e.g., setting it to 7.ero). After state
database no. Thereafter, the counter is incremented and the 626, the illustrated procedure ends at state 670.
flow activity indicators are ag~ updatc_d as described 6S In state 628 (reached from state 616), operation code 2 is
previously. One skilled in the art will recogmz.c that there are selected for the packet. In the present context, operation
many other suitable methods that may be applied in an code 2 may indicate that the packet is compatible, matches

EX 1017 Page 288

r

l

US 6,483,804 Bl
43

a valid flow (e.g., the packet's flow key matches the flow key
of a valid flow in FDB 110), contains data and does not
constitute an attempt to re-synchroniz.c or reset a commu
nication flow/connection. However, the sequence number
extracted from the packet (in state 616) does not match the 5

expected sequence number from flow database 110. 11ris
may occur, for example, when a packet is received out of
order. Thus, the existing flow is tom down but no new flow
is established. Illustratively, the flow may be tom down by
clearing the flow's validity indicator (e.g., setting it to zero). 10

After state 628, the illustrated procedure ends at state 670.

44
cates that the packet is a control packet. In state 638, flow
database manager 108 determines whether one or more flags
extracted from the packet by the header pan;er match
expected or desired values. For example, in one embodiment
of the invention the TCP flags URG, PSH, RST and FIN
must be clear in order for DMA engine 120 to re-assemble
data from multiple related packets (e.g., packets having an
identical flow key). As discussed above, the TCP SYN bit
may also be examined. In the present context (e.g., a packet
with no data), the SYN bit is also expected to be clear (e.g.,
to store a value of zero). Ifthc flags (and SYN bit) have their
expected values the procedure continues at state 642. If,
however, any of these flags are set, an exceptional condition
may exist, thus making it possible that one or more functions

State 630 is entered from state 614 when it is determined
that the received packet constitutes an attempt to reset a
communication flow or connection (e.g., the TCP SYN bit is
set). In state 630, flow database manager 108 determines
whether more data is expected to follow. As explained in
conjunction with state 620, this determination may be made

15 offered by NIC 100 (e.g., data re-assembly, batch
processing, load distnbution) are unsuitable for this packet,
in which case the procedure proceeds to state 640.

In state 640, operation code 1 is selected for the packet.
illustratively, operation code 1 indicates that the packet is

on the basis of control information received by the flow
database manager from the header pan;er. If more data is
expected (e.g., the amount of data in the packet equals or
exceeds a threshold value), the procedure continues at state
634.

In state 632, operation code 2 is selected for the packet.
Operation code 2 was also selected in state 628 in a different
context In the present context, operation code 2 may
indicate that the packet is compabble, matches a valid flow
and contains data. Operation code 2 may also signify in this
context that the packet constitutes an attempt to
re-synchronize or reset a communication flow or connection,
but that no more data is expected once the flow/connection
is reset Therefore, the existing flow is tom down and no new
flow is established. Illustratively, the flow may be tom down

20 compatible and matches a valid flow, but does not contain
any data and one or more important flags or bits in the
packet's hcadcr(s) arc set. Thus, the existing flow is tom
down and no new flow is established. Illustratively, the flow
may be tom down by clearing the flow's validity indicator

25 (e.g., setting it to zero). After state 640, the illustrated
procedure ends at end state 670.

In state 642, the flow's activity indicator is updated (e.g.,
incremented) even though the packet contains no data. As
described above in conjunction with state 622, if the activity

by clearing the flow's validity indicator (e.g., setting it to
zero). After state 632, the illustrated procedure ends at state
670.

30 indicator rolls over, in a present embodiment of the inven
tion all flow activity indicators in the database are set to zero
and the current flow is again incremented. The flow's
validity indicator may also be reset, as well as the flow's

35
sequence number.

In state 644, operation code O is selected for the packet.
Illustratively, operation code O indicates that the packet is
compatible, matches a valid flow, and that the packet does
not contain any data. The packet may, for example, be a
control packet Operation code O further indicates that none

In state 634, flow database manager 108 responds to an
attempt to reset or re-synchronize a communication flow/
connection whereby additional data is expected. Thus, the
existing flow is tom down and replaced as follows. The
existing flow may be identified by the flow number retrieved '40 of the flags checked by header pan;er 106 and described

above (e.g., URG, PSH, RST and FIN) arc set. Thus, the
existing flow is not tom down and no new flow is estab
lished. After state 644, the illustrated procedure ends at end

in state 610 or by the packet's flow key. The flow's sequence
number (e.g., flow sequence number 522 in FIG. 5) is set to
the next expected value. illustratively, this value depends
upon the sequence number (e.g., TCP sequence number)
retrieved from the packet (e.g., by header parser 106) and the 45

amount of data included in the packet In one embodiment
of the invention these two values are added to determine a
new flow sequence number. As discussed previously, this
sum may need to be adjusted (e.g., by adding one). Also in
state 634, the flow activity indicator is updated (e.g., 50

incremcnted).As explained in conjunction with state 622, if
the flow activity indicator rolls over, the activity indicators
for all flows in the database are set to zero and the present
flow is again incremented. Finally, the flow validity indica
tor is set to indicate that the flow is valid. 55

In state 636, operation code 7 is selected for the packet.

state 670.
State 646 is entered from state 608 if the packet's flow key

does not match any of the flow keys of valid flows in the
flow database. In state 646, FDBM 108 determines whether
flow database 110 is full and may save some indication of
whether the database is full. In one embodiment of the
invention the flow database is considered full when the
validity indicator (e.g., flow validity indicator 520 of FIG. 5)
is set for every flow number (e.g., for every flow in the
database). If the database is full, the procedure continues at
state 650, otherwise it continues at state 648.

In state 648, the lowest flow number of an invalid flow
(e.g., a flow for which the associated flow validity indicator
is equal to zero) is determined. Illustratively, this flow
number is where a new flow will be stored if the received
packet warrants the creation of a new flow. After state 648,
the procedure continues at state 652.

In state 650, the flow number of the least recently active
flow is determined. As discussed above, in the illustrated
embodiment of the invention a flow's activity indicator (e.g.,
flow activity indicator 524 of FIG. 5) is updated (e.g.,

In the present context, operation code 7 indicates that the
packet is compatible, matches a valid flow and contains data.
Operation code 7 may further signify, in this context, that the
packet constitutes an attempt to re-synchronize or reset a 60

communication flow/connection and that additional data is
expected once the flow/connection is reset. In effect,
therefore, the existing flow is tom down and a new one (with
the same flow key) is stored in its place. After state 636, the
illustrated procedure ends at end state 670. 65 incremented) each time data is received for a flow.

State 638 is entered after state 612 wbcn it is determined
that the received packet contains no data. This often indi-

Therefore, in this embodiment the least recently active flow
can be identified as the flow having the least recently

EX 1017 Page 289

i

US 6,483,804 Bl
45 46

In state 664, an existing entry in the flow database is
replaced so that a new flow, initiated by the present packet,
can be stored. Therefore, the flow number of the least
recently active flow, identified in state 650, is retrieved. This

updated (e.g., lowest) flow activity indicator. illustratively, if
multiple flows have flow activity indicators set to a common
value (e.g., zero), one flow number may be chosen from
them at random or by some other criteria. After state 650, the
procedure continues at state 652. s flow may be replaced as follows. The sequence number of

the existing flow (e.g., flow sequence number 522 of FIG. 5)
is replaced with a value derived by combining a sequence
number extracted from the packet (e.g., TCP sequence

In state 652, flow database manager 108 determines
whether the packet contains data. illustratively, the control
information provided to FDBM 108 by the header parser
indicates whether the packet has data. If the packet does not
include data (e.g., the packet is a control packet), the

10
illustrated procedure continues at state 668.

In state 654, flow database manager 108 determines
whether the data received with the present packet appears to
contain the final portion of data for the associated datagram/
flow. As dcscnbed in conjunction with state 620, this deter
mination may be made on the basis of the amount of data 1s
included with the packet. If the amount of data is less than

number) with the size of the data portion of the packet. This
sum may need to be adjusted (e.g., by adding one). Then the
existing flow' s activity indicator (e.g., flow activity indicator
524) is replaced. For example, the value of a flow activity
counter may be copied into the flow activity indicator, as
discussed above. The flow's validity indicator {e.g., flow
validity indicator 520 of FIG. 5) is then set to indicate that
the flow is valid. Finally, the flow key of the new flow is
stored.

In state 666, operation code 7 is selected for the packet.
Operation code 7 was also selected in state 636. In the
present context, operation code 7 may indicate that the

a threshold value {a programmable value in the illustrated
embodiment), then no more data is expected and this is
likely to be the only data for this flow. In this case the
procedure continues at state 668. If, however, the data meets
or exceeds the threshold value, in which case more data may
be expected, the procedure proceeds to state 656.

In state 656, the values of certain flags are examined.

20 packet is compatible, did not match the flow key of any valid
flows and contains the first portion of data for a new flow.
Further, the packet's flags have compallble values aud
additional data is expected in the flow. Lastly, however, in

These flag,-; may include, for example, the URG, PSH, RST,
FIN bits of a TCP header. If any of the examined flag,-; do not 25
have their expected or desired values {e.g., if any of the flag,-;
are set), an exceptional condition may exist making one or
more of the functions of NIC 100 (e.g., data re-assembly,
batch processing, load distribution) unsuitable fur this
packet. In this case the procedure continues at state 668;

30
otherwise the procedure proceeds to state 658.

this context operation code 7 indicates that the flow database
is full, so an existing entry was tom down and the new one
stored in its place. After state 666, the illustrated procedure
ends at end state 670.

In state 668, operation code 5 is selected for the packet.
State 668 is entered from various states and operation code
5 thus represents a variety of possible conditions or situa
tions. For example, operation code 5 may be selected when
a No_.Assist signal is detected (in state 604) fur a packet. As
discussed above, the No_Assist signal may indicate that the
conesponding packet is not compatible with a set of pre-

In state 658, the flow database manager retrieves the
information stored in state 646 oonceming whether flow
database no is full If the database is full. the procedure
continues at state 664; otherwise the procedure continues at
state 660.

In state 660, a new flow is added to flow database no for
the present packet. illustratively, the new flow is stored at the
flow number identified or retrieved in state 648. The addition

3S selected protocols. In this embodiment of the invention,
incompaul,Ie packets are ineligible for one or more of the
various functions of NIC 100 (e.g., data re-assembly, batch
processing, load distribution).

of a new flow may involve setting a sequence number (e.g.,
flow sequence munber 522 from FIG. 5). Flow sequence -40
number 522 may be generated by adding a sequence number
(e.g., TCP sequence number) retrieved from the packet and

State 668 may also be entered, and operation code 5
selected, from state 652, in which case the code may indicate
that the received packet does not match any valid flow keys
and, further, contains no data (e.g., it may be a control
packet).

State 668 may also be entered from state 654. In this
the amount of data included in the packet. As discussed
above, this sum may need to be adjusted (e.g., by adding
one).

Sll2!l!1g a new flow fllay also include initializing an
activity maicator (e.g., flow activity indicator 524 of FIG. 5).

4S context operation code 5 may indicate that the packet does
not match any valid flow keys. It may fwther indicate that
the packet contains data, but that the size of the data portion
is less than the threshold discussed in conjunction with state In one embodiment of the invention this initialization

involves storing a value retrieved from a counter that is
incremented each time data is received for a flow. so
illustratively, · the oounter or a flow activit · · tor is
incremen 1 m e value, the counter
and all llow activity m cator:s are cleared or reset. Also in
state 660, a validity indicator (e.g., flow validity indicator
520ofFIG. 5) is set to indicate that the flow is valid. Finally, ss
the packet's flow key is also stored in the flow database, in
the entry corn:.sponding to the assigned flow number.

In state 662, operation code 6 is selected for the packet.
Illustratively, operation code 6 indicates ~ !be: packet is
wmpatibJe, · tch an valid flows and contains the 60

)w portion of data for a new flow. Further, the pac et' s
have their expected or necessary values, additional data is
expected in the flow and the flow database is not full. Thus,
operation code 6 indicates that there is no existing flow to
tear down and that a new llow has beep stoi;d in the flow 6S

~atabasc. After '.state 662, tlie illustrated procedure ends at
state 670.

654. In this context, it appears that the packet's data is
complete (e.g., comprises all of the data for a datagram),
meaning that there is no other data to re-assemble with this
packet's data and therefore there is no reason to make a new
entry in the database for this one-packet flow.

Finally, state 668 may also be entered from state 656. In
this context, operation code 5 may indicate that the packet
does not match any valid flow keys, oontains data, and more
data is expected, but at least one flag in one or more of the
packet's protocol header.; does not have its expected value.
For example, in one embodiment of the invention the TCP
flags URG, PSH, RST and FIN are expected to be clear. If
any of these flags are set an exceptional conditinn may exist,
thus making it possible that one of the functions offered by
NIC 100 is unsuitable for this packet.

As TABLE 1 reflects, there is no llow to tear down and no
nc:w flow is established when operation code 5 is selected.
Following state 668, the illustrated procedure ends at state
670.

EX 1017 Page 290

4,,»

lb”

US 6,483,804 B1
45

updated (e.3., lowest) flow activity indicator lllnstrativelyjf
multiple flows have flow activity indicators set to a common
value (eg, zero), one flow number may be chosen from
them at random or by some other criteria. After state 650, the
procedure continues at state 652.

In state 652, flow database manager 103 determines
whether the packet contains data. Illustratively, the control
information provided to FDBM 108 by the header parser
indicates whether the packet has data. If the packet does not
include data (e.g., the packet is a control packet), the
illustrated procedure continues at state 668.

In state 654, flow database manager 108 determines
whether the data received with the present packet appears to
contain the final portion ofdata for the associated datagram!
flow. As described in conjunction with state 620, this deter-
mination may be made on the basis of the amount of data
included with the packet. If the amount of data is less than
a threshold value (a programmable value in the illustrated
embodiment), then no more data is expected and this is
likelytobetheonlydataforthisflove lntbiscasethe
procedure continues at state 668. If, however, the data meets
or exceeds the threshold value, in which case more data may
be expected, the procedure proceeds to state 656.

In state 656, the values of certain flags are examined.
These flags may include, for example, the URG, PSH, RS‘I‘,
FIN bits of a TCP header Ifany of the examined flags do not
have their expected ordesired values (e..,g if any of the 132$
are set), an exceptional condition may exist making one or
more of the functions of MC 100 (cg.,data reassembly,
batch processing, load distribution) gunmitable for this
packet. In this case the procedure continues at state 668;
otherwise the procedure proceeds to state 658.

In state 658, the flow database manager retrieves the
information stored in state 646 concerning whether flow
database 110 is full. Ifthe databaseisfuILthe procedure
continues at state 664; otherwise the procedure continues at
state 660.

In state 660, a new flow is added to flow database 110 for
the present packet. Illustrativcly, the new flow is stored at the
flow number irkntified or retrieved instatc 648. The addition

of a new flow may involve setting a sequence number (e.g.,
flow sequence number 522 from FIG. 3 Flow sequence
number 522 may be generated by adding a sequent: number
(e.g., TCP sequence number) retrieved from the packet and
the amount of data included in the packet. As discussed
above, this sum may need to be adjusted (e.g., by adding
one).

S rin a new flow ay also include initializing an
activity indicator i e.g., flow activity indicator 524 of FIG. 5).In one embodiment of the invention this initialization

involves storing a value retrieved from a counter that ‘5
incremented each time data is received for a flow

Illusn'ativelg‘ ' '

and all flow activity in Gators are cleared or reset Also in
state 660, a validity indicator (e.g., flow validity indicator
520 of FIG. 5) is set to indicate that the flow is valid. Finally,
the packet’s flow key is also stored in the flow database, in
the entry corresponding to the assigned flow number.

In state 662, operation code 6'is selected for the packet.
Illustratively, operation code 6 indicatesgnat—tbegaeleet
MEEE$Mmmh an valid lion/SWand contains the
WW
have their expected or necessary values, addin‘onal data15
expected in the flow and the flow database is not full. Thus,
operation code 6 indicates. that there is no existing flow to
tear down and that a new flow has been store,d in the flow
database. After state 662, e illustrated procedure ends atstate 670.

3.0

15

35

45

SD

55

65

46

In state 664, an existing entry in the flow database is
replaced so that a new flow, initiated by the present packet,
can be stored. Therefore, the flow number of the least
recently active flow, identified in state 650, is retrieved. This
flow may be replaced as follows. The sequence number of
the existing flow (e.g., flow sequence number 522 of FIG. 5)
is replaud with a value derived by combining a sequence
number extracted from the packet (e.g., TCP sequence
number) with the size of the data portion of the packet. This
sum may need to be adjusted (e.g., by adding one). Then the
existing flow’s activity indicator (e.g., flow activity indicator
524) is replaced. For example, the value of a flow activity
counter may be wpied into the flow activity indicator, as
discussed above. The flow’s validity indicator (n.3,, flow
validity indicator 520 of FIG. 5) is then set to indicate that
the flow is valid. Finally, the flow key of the new flaw isstored.

In state 666, operation code 7 is selected for the packet.
Operation code 7 was also selected in state 636. In the
present context, operation code 7 may indicate that the
packet is compatible, did not match the flow key ofanyvalid
flows and contains the first portion of data for a new flow.
Further, the packet’s flags have compatible values and
additional data is expected in the flow. Lastly, however, in
this context operation code 7 indicates that the flow database
is full, so an existing entry was torn down and the new one
stored in its place, After state 666, the illustrated procedure
ends at end state 670.

In state 668, operation code 5 is selected for the packet.
State 668 is entered from various states and operation code
5 thus represents a variety of possible conditions or sima-
tions. For example, operation code 5 may be selected when
aNewsignal15 detected (in state 604) fior a packet As
disclosed above, the NoAsist signal may indicate that the
corresponding packetis not compatible with a set of pre-
selected protocols. In this embodiment of the invention,
incompatible packets are ineligible for one or more of the
various functions of NIC 100 (cg, data rte-assembly, batch
processing, load distribution).

State 668 may also be entered, and operation code 5
selected, from state 652, in which case the code may indicate
that the received packet does not match any valid flow keys
and, further, contains no data (e.g., it may be a control
packet).

State 668 may also be entered from state 654. In this
context operation code 5 may indicate that the packet does
not match any valid flow keys. It may further indicate that
the packet contaim data, but that the size of the data portion
is less than the threshold dimmed in conjunction with state
654. In this context, it appears that the packct’s data is
complete (e.g., comprises all of the data for a datagnm),
meaning that there is no other data to rte-assemble with this
packet’s data and therefore there is no reason to make a new
entry in the database for this one-packet flow.

Finally, state 668 may also be entered from state 656. In
this context, operation code 5 may indicate that the packet
does not match any valid flow keys, contains data, and more
data is expected, but at least one flag in one or more of the
packet’s protocol headers does not have its expected value.
For example, in one embodiment of the invention the TC?
flags URG, PSI-L RST and FIN are expected to be clear. If
any of these flag are set an exceptional condition may exist,
thus making it possible that one of the functions offered by
MC 100 is unsuitable for this packet.

As TAMI: 1 reflects, there is no flow to tear down and no
new flow is established when operation code 5 is selected.
Following state 668, the illustrated procedure ends at state
670.

EX 1017 Page 290

US 6,483,804 Bl
47 48

One skilled in the art will appreciate that the procedure
illustrated in FIGS. 6A-6E and discussed above is but one
suitable procedure for maintaining and updating a flow
database and for determining a packet's suitability for
certain processing functions. In particular, different opera- s
tion codes may be utiliud or may be implemented in a
different manner, a goal being to produce information for
later processing of the packet through NIC 100.

TABLE I-continued

Op.
Code Criteria for Selection

6 F"mt compatible packet of a new
flow; no flow was previooaly
catabliahed.

Result of Opcmtion Code

Set up a new llow;
There i,; no flow to tear
down;

Although operation codes arc assigned for all packets by
a flow database manager in the illustrated procedure, in an 10 7 Fi.mt compatible packet of a new
alternative procedure an operation code assigned by the llaw, but llow databuc ia full; no

Rc-usemble data with
packcta to follow.
Replace cmting flow;
Rc-uaemblc data with
pockets to follow. FDBM may be replaced or changed by another module of flow wu previoualy catabfuhcd.

NIC 100. This may be done to ensure a particular method of - Or -
treating certain types of packets. For example, in one Compatible pocket, SYN bit ia act

embodiment of the invention IPP module 104 assigns a and additional data will follow; a

f 15 flow WU previouaJy estabfuhcd.
predetermined operation code (e.g., operation code 2 o ---------------------

One Embodiment of a Load Distnbutor
In one embodiment of the invention, load distnbutor 1l2

enables the processing ouackcts thrt1ugli their protocol
~tacks to be ~utedoni: a numh!;[__ot proceS§Ors.
filustrativcly, loadistnbutor 1l2 generates an identifier
(e.g., a processor number) ol a r to which a packet

o · e multiple processors may e ocaled
wtthiB a hast compnrer system that is served by NIC 100. In
one alternative embodiment, one or more processors for
manipulating packets through a protocol stack arc located on
NIC 100.

Without an effective method of sharing or distributing the

TABLE 1) to jumbo packets (e.g., packets greater in size
than MI1J) so that OMA engine 120 will not re-assemble
them. In particular, the IPP module may independently
dctcmrine that the packet is a jumbo packet (e.g., from
information provided by a MAC module) and therefore 20

assign the predetermined code. Illustratively, header parser
106 and FDBM 108 perform their normal functions for a
jumbo packet and IPP module 104 receives a first operation
code assigned by the FDBM. However, the IPP module
replaces that code before storing the jumbo packet and 25
information concerning the packet. In one alternative
embodiment header parser 106 and/or flow database man
ager 108 may be configured to recognize a particular type of
packet (e.g., jumbo) and assign a predetermined operation
code.

30
processing burden, one processor could become overloaded
if it were required to process all or most network traffic
received at NIC 100, particularly in a high-speed network
cnvironmenL Toe resulting delay in processing network
traffic could deteriorate operations on the host computer

Toe operation codes applied in the embodiment of the
invention illustrated in FIGS. 6A-6E are presented and
explained in the following TABLE 1. TABLE 1 includes
illustrative criteria used to select each operation code and
illustrative results or effects of each code.

TABLE 1

Op.
Code Criteria fur Selection Ruult of Operation Code

O Compatible control packet with
clear llaga; a llow wu previooaly
catabliahed for this ftow by.

1 Compatible control packet with at
!cut one O..g or SYN bit &et; a
llow wu previCJUS!y catabliahcd.

Do not set up a new fl.ow;
Do not tear down existing
flow;
Do not re-uaemble data
(packet contains no data).
Do not set up a new 8.ow;
Tear down existing flow;
Do no re-uaemble data
(packet contains no data).

2 Compatible pacbt whose sequence Do not act up a new ftow;
nnmber dOC& not match aeqacnce Tear down existing flow;
number in flow database, or SYN Do not rc-asacmblc packet
bit ia act (indicating attempt to re- data.
establish a connection) but there ia
no more data to come; a flow was
previously .. btblished.
-Or-
Jumbo pack,:L

3 A compatible packet carrying a Do not set up a new flow;
final portion of flow data, or a O..g Tear down existing ftow;
ia set (but packet ia in sequence, Re-assemble data with
unlike operation code 2); a ftow previous packets.
we previously established.

4 Receipt of uat compatible packet Do not set up a new-~
in sequence; a flow wu previoualy Do not tear down CXl5bng

established. ftow;
Re-assemble data with
other packets.

5 Packet cannot be re-usembled Do not &el up a ftow;
because; incompatible, a flag is act, There is no O.ow to tear

packet contains no data or there is down;
no more data to come. No flow Do not rc-uacmblc.
was previously csbtblishcd.

35
system as well as other computer systems communicating
with the host system via the network.

As one skilled in the art will appreciate, simply distrib
uting packets among processors in a set of processors (e.g.,
such as in a round-robin scheme) may not be an efficient

40 plan. Such a plan could easily result in packets being
processed out of order. For example, if two packets from one
communication flow or connection that arc received at a
network interface in the correct order were submitted to two
different processors, the second packet may be processed

45 before the firsL This could occur, for example, if the
processor that received the first packet could not immedi
ately process the packet because it was busy with another
task. When packets are processed out of order a recovery
scheme must generally be initiated, thus introducing even

50 more inefficiency and more delay.
Therefore, in a present embodiment of the invention

packets arc distnbutcd among multiple proc;,;:wu:s b.ased
--1\ipon their now taenfities. As descnbed above, a header

parser may generate a flow key from layer three (e.g., IP)
55 and layer four (e.g., TCP) source and destination identifiers

retrieved from a packet's headers. Toe flow key may be used
to iden · the communication fl~et

e on _ us, in this em diment of the ~all
ackets having an identical flow ke submitted a

60 ~mgie ~r. As ong as the packets are received in order
1iy1illC 100, they should be provided to the host computer
and processed in order by their assigned processor.

Illustratively~ ets sent from one source entity
to one destination entity will have the same flo vcn

65 -~ack e a paratc datagrams, as long as their
layer three and layer four identifiers remain the same. As
~cive;separatdiows a.re set up and tom down for

EX 1017 Page 291

US 6,483,804 Bl
49

each datagram within one TCP end-to-end connection.
Thcrefore,just as all packets within one flow are sent to one
processor, all packets within a TCP end-to-end connection
will also be sent to the same processor. This helps ensure the
correct ordering of packets for the entire connection, even 5

between datagrams.
Depending upon the network environment in which NIC

100 operates (e.g., the protocols supported by network 102),
the flow key may be too large to use as an identifier of a
processor. In one embodiment of the invention described to
above, for example, a flow key measures 288 bits.
Meanwhile, the number of processors participating in the
load-balancing scheme may be much smaller. For example,
in the embodiment of the invention dcscnbcd below in
conjunction with FIG. 7, a maximum of sixty-four proccs- 15
sors is supported. Thus, in this embodiment only a six-bit
number is needed to identify the selected processor. The
larger flow key may therefore be mapped or hashed into a
smaller range of values.

FIG. 7 depicts one method of generating an identifier 20

(e.g., a processor number) to specify a processor to process
a packet received by NIC 100, based on the packet's flow
key. In this embodiment of the invention, network 102 is the
Internet and a received packet is formatted according to a
compatible protocol stack (e.g., Ethernet at layer two, IP at 25

layer three and TCP at layer four).
State 700 is a start state. In state 702 a packet is received

by NIC 100 and a header portion of the packet is parsed by
header parser 106 (a method of parsing a packet is described
in a previous section). In state 704, load distributor 112 30

receives the packet's flow key that was generated by header
parser 106.

50
parallel with the storage of the packet in a host memory
buffer. As descnbed in a following section, in one embodi
ment of the invention a descriptor ring in the host comput-
er's memory is constructed to hold the processor number
and possibly other information concerning the packet (e.g.,
a pointer to the packet, its size, its TCP checksum).

A descriptor ring in this embodiment is a data structure
comprising a number of entries, or "descriptors," for storing
information to be used by a network interface circuit's host
computer system. In the illustrated embodiment, a descriptor
temporarily stores packet information after the packet has
been received by NIC 100, but before the packet is pro
cessed by the host computer system. The information stored
in a descriptor may be used, for example, by the device
driver for NIC 100 or for processing the packet through its
protocol stack.

In state 7U, an interrupt or other alert is issued to the host
computer to inform it that a new packet has been delivered
from NIC 100. In an embodiment of the invention in which
NIC 100 is coupled to the host computer by a PCI
(Peripheral Component Interconnect) bus, the INTA signal
may be asserted across the bus. A PCI controller in the host
receives the signal and the host operating system is alerted
(e.g., via an interrupt).

In state 714, software operating on the host computer
(e.g., a device driver for NIC 100) is invoked (e.g., by the
host computer's operating system interrupt handler) to act
upon a newly received packet. The software gathers infor
mation from one or more descriptors in the descriptor ring
and places information needed to complete the processing of
each new packet into a queue for the specified processor
(i.e., according to the processor number stored in the pack
et's descriptor). Illustratively, each descriptor corresponds to
a separate packet. The information stored in the processor
queue for each packet may include a pointer to a buffer
containing the packet, the packet's TCP checksum, offi;ets of
one or more protocol headers, etc. In addition, each proces
sor participating in the load distnbution scheme may have an
associated queue for processing network packets. In an
alternative embodiment of the invention, multiple queues
may be used (e.g., for multiple priority levels or fur different
protocol stacks).

Illustratively, one processor on the host computer system
is configured to receive all alerts and/or interrupts associated

Because a packet's flow key is 288 bits wide in this
embodiment, in~ tuncuon JS performecho
gene~aluc that is smaller fti" m1t"gmtude;-1bc hash 35
operation may, for example, comprise a thirty-two bit CRC
(cyclic redundancy check) function such as ATM
(Asynchronous Transfer Mode) Adaptation Layer 5 (AAI5).
AAlS generates thirty-two bit numbers that arc fairly evenly
distnlruted among the 232 possible values. Another suitable 40

method of hashing is the standard Ethernet CRC-32 func
tion. Other hash functions that arc capable of generating
relatively small numbers from relatively large flow keys,
where the numbers generated arc well distnbuted among a
range of values, are also suitable.

• the rc§ll)ting hash value, in state 708 a modulus
operation is performed ov~e number of' proce~
ablefor distributing or sharing the processing. Illustratively,
software executing on the host computer (e.g., a device
driver for NIC 100) programs or stores the number of 50
processors such that it may be read or retrieved by load
distnbutor 112 (e.g., in a register). The number of processors
available for load balancing may be all or a subset of the
number of processors installed on the host computer system.

45 with the receipt of network packets from NIC 100 and to
alert the appropriate software routine or device driver. This
initial processing may, alternatively, be distnbuted among
multiple processors. In addition, in one embodiment of the

In the illustrated embodiment, the number of processors 55
available in a host computer system is programmable, with
a maximum value of sixty-four. The result of the modulus
operation in this embodiment, therefore, is the number of the
processor (e.g., from zero to sixty-three) to which the packet
is to be submitted for processing. In this embodiment of the 60

invention, load distributor 112 is implemented in hardware,
thus allowing rapid execution of the hashing and modulus
functions. In an alternative embodiment of the invention,
virtually any number of processors may be accommodated.

In state 710, the number of the processor that will process 65

the packet through its protocol stack is stored in the host
computer's memory. illustratively, state 710 is performed in

invention a portion of the retrieval and manipulation of
descriptor contents is performed as part of the handling of
the interrupt that is generated when a new packet is stored
in the descriptor ring. The processor selected to process the
packet will perform the remainder of the retrieval/
manipulation procedure.

In state 716, the processor designated to process a new
packet is alerted or woken. In an embodiment of the inven
tion operating on a Solaris'™ workstation, individual pro
cesses executed by the processor are configured as
"threads." A thread is a process running in a normal mode
(e.g., not at an interrupt level) so as to have minimal impact
on other processes executing on the workstation. A normal
mode process may, however, execute at a high priority.
Alternatively, a thread may run at a relatively low interrupt
level.

A thread responsible for processing an incoming packet
may block itself when it has no packets to process, and
awaken when it has work to do. A "condition variable" may

EX 1017 Page 292

)

US 6,483,804 Bl
51 52

be used to indicate whether the thread bas a packet to illustrated in FIG. 7 without exceeding the scope of the
process. Illustratively, the condition variable is set to a first invention. In particular, one skilled in the art will appreciate
value when the thread is to process a packet (e.g., when a that many alternative procedures for assigning a fl.ow's
packet is received for processing by the processor) and is set packets to a processor and delivering those packets to the
to a second value when there are no more packets to process. s processor may be employed.
In the illustrated embodiment of the invention, one condition One Embodiment of a Packet Queue
variable may be as.sociated with each processor's queue. As described above, ~cket 'J!eue 116 stores packets

In an alternative embodiment, the indicated processor is received from IPP module ~or to Jh.~bly by

al eel • n6 b " all" A DMA engme 120 and ihekJmnsf«~..hosL.computer
ert m state Y a cross-processor c · cross- system. Fro. 8 depicts packet queue 116 according to one

processor call is one way of communicating among proces- 10 embodiment of the invention.
sors whereby one processor is interrupted remotely by In the illustrated embodiment, packet queue 116 is imple-
another processor. Other methods by which one processor mented as a FIFO (First-In First-Out) queue containing up to
alerts, or dispatches a process to, another processor may be 256 entries. Each packet queue entry in this embodiment
used in place of threads and cross-processor calls. stores one packet plus various infurmation concerning the

In state 718, a thread or other process on the selected 1s packet. For example, entry 800 includes packet portion 802
processor begins processing the packet that was stored in the plus a packet status portion. Because packets of various sizes
processor's queue. Methods of processing a packet through are stored in packet queue 116, packet portion 802 may
its protocol stack are well known to those skilled in the art include filler 802a to supplement the packet so that the
and need not be descnoed in detail. Toe illustrated procedure packet portion ends at an appropriate boundary (e.g., byte,
then ends with end state 720. 20 word, double word).

In one alternative embodiment of the invention. a high- Filler 802a may comprise random data or data having a
speed network inlerface is configured to receive and process specified pattern. Filler 802 a may be distinguished from the
ATM (Asynchronous Transfer Mode) traffic. In this storedpacketbythepattemofthefillerdataorbyatagfield.
embodiment, a load distributor is implemented as a set of Wustratively, packet status infurmation includes TCP
instructions (e.g., as software) rather than as a hardware 2S checksum value 804 and packet length 806 (e.g., length of
module. As one skilled in the art is aware, ATM traflic is the packet stored in packet portion 802). Storing the packet
connection-oriented and may be identified by a virtual length may allow the packet to be easily identified and
connection identifier (VCI), which corresponds to a virtual retrieved from packet portion 802. Packet status information
circuit established between the packet's source and destina- may also include diagnostic/status information 808.
lion entities. Each packet that is part of a virtual circuit 30 Diagnostic/stall.IS information 808 may include a flag indi-
includes the Va in iis header. eating that the packet is bad (e.g., incomplele, received with

Advantageously, a va is relatively small in size (e.g., an eaor), an indicator that a checksum was or was not
sixteen bits). In this alternative embodiment, therefore, a computed for the packet, an indicator that tbe checksum has
packet's va may be used in place of a flow key for the a certain value, an offset to the portion of tbe packet on
purpose of distributing or sharing the burden of processing 3S which the checksum was compuied, etc. Other flags or
packets through their protocol stacks. lliustratively, traffic indicatois may also be included for diagnostics, filtering, or
from dilTurent VCis is sent to different processois, but, to other purposes. In one embodiment of the invention. the
ensure correct ordering of packets, all packets having the packet's fl.ow key (descnbed above and used to identify the
same va are sent to the same processor. When an ATM fl.ow comprising tbe packet) and/or llow number (e.g., the
packet is received at a network interface, the Va is retrieved "° corresponding index of the packet's fl.ow in fl.ow database
from its header and provided to the load disln'butor. The 110) are included in diagnostic/status infurmatinn 808. In
modulus of the va over the number of processors that are another embodiment, a tag field to identify or delimit filler
available for load dislnbution is then computed. Similar to 802a is included in diagnostic/status information 808.
the illustraled embodinient, the packet and ilS as.sociated In one alternative embodiment of the invention. any or all
processor number are then provided to the host computer. 4S of the packet status information described above is stored in

As described above, load distribution in a pmsent embodi- control queue 118 rather than packet queue 116.
ment of the invention is performed on the basis of a packet's In the illustrated embodiment of the invention packet
layer three and/or layer four source and destination entity queue 116 is implemented in hardware (e.g., as random
identifiers. In an alternative embodiment of the invention, access memoi:y). In this embodiment, checksum value 804 is
however, load distribution may be performed on the basis of so sixteen bits in size and may be stored by checksum generator
layer two addresses. In this allemative embodiment, packets 114. Packet length 806 is fourteen bits large and may be
having the same Ethernet source and destination addresses, stored by header parser 106. Ymally, portions of diagnostic/
for example, are sent lo a single processor. status information 808 may be stored by one or more of IPP

As one of skill in the art will recognu.e, however, this may module 104, header p= 106, fl.ow database manager 108,
result in a processor receiving many more packets than it ss load distributor 112 and checksum generalor 114.
would if layer three and/or layer four identifieis were used. Packet queue 116 in FIG. 8 is indexed with two pointers.
For example, if a large amount of traffic is received through Read pointer 810 identifies the next entry to be read from the
a router situaled near (in a logical sense) to the host queue, while write pointer 812 identifies the entry in which
computer, the source Ethernet address for all of the traffic the next received packet and related information is to be
may be the router's address even though the traffic is from 60 stored. As explained in a subsequent section, the packet
a multitude of dilTurent end users and/or computers. In stored in packet portion 802 of an entry is extracted from
contrast, if the host computer is on the same Ethernet packet queue 116 when its data is to be-reassembled by
segment as all of the end users/computers, the layer two DMA engine 120 and/or transferred to the host computer
source addresses will show grealer variety and allow more system.
effective load sharing. 6S One Embodiment of a Control Queue

Other methods of distributing the processing of packets In one embodiment of the invention,~118
received from a network may differ from the embodiment stores control and status information concerning a packet

EX 1017 Page 293

US 6,483,804 Bl
53

received by NIC 100. In this embodiment, control queue 118 ,
retains information used to enable the batch processing of /
protocol headers and/or the re-assembly of data from mul-/'
tiple related packets. Control queue 118 may also store
information to be used by the host computer or a series of 5
instructions operating on a host computer (e.g., a device
driver for NIC 100). The information stored in control queue
118 may supplement or duplicate information stored in
packet queue 116.

FIG. 9 depicts control queue 118 in one embodiment of
10

the invention. The illustrated control queue contains one
entry for each packet stored in packet queue 116 (e.g., up to
256 entries). In one embodiment of the invention each entry
in control queue 118 corresponds to the entry (e.g., packet)
in packet queue 116 having the same number. FIG. 9 depicts
entry 900 having various fields, such as CPU number 902, 15
No_Assist signal 904, operation code 906, payload offset
908, payload size 910 and other status information 912. An
entry may also include other status or control information
(not shown in FIG. 9). Entries in control queue 118 in
alternative embodiments of the invention may comprise 20

different information.

54
FIG. 9 depicts a read pointer and a write pointer for

indexing control queue 118. Read pointer 914 indicates an
entry to be read by DMA engine 120. Write pointer 916
indicates the entry in which to store information concerning
the next packet stored in packet queue 116.

In an alternative embodiment of the invention, a second
read pointer (not shown in FIG. 9) may be used for indexing
control queue 118. As descnbed in a later section, when a
packet is to be transferred to the host computer, information
drawn from entries in the control queue is searched to
detemrine whether a related packet (e.g., a packet in the
same flow as the packet to be transferred) is also going to be
transferred. If so, the host computer is alerted so that
protocol headers from the related packets may be processed
collectively. In this alternative embodiment of the invention,
related packets are identified by matching their flow num-
bers (or flow keys) in status information 912. The second
read pointer may be used to look ahead in the control queue
for packets with matching flow numbers.

In one embodiment of the invention CPU number 902
may be stored in the control queue by load distributor 112
and No_.Assist signal 904 may be stored by header parser
106. Operation code 906 may be stored by flow database
manager 108, and payload offset 908 and payload size 910
may be stored by header parser 106. Portions of other status
information may be written by the preceding modules and/or
others, such as IPPmodule 104 and checksum generator 114.
In one particular embodiment of the invention, however,
many of these items of information arc stored by IPP module
104 or some other module acting in somewhat of a coordi
nator role.
One Embodiment of a DMA Engine

FIG. 10 is a _block diagram of DMA (Direct Memory
Access) engine~ m one embodiment of the invention.
One purpose of DMA engine 120 in this embodiment is to
transfer packets from packet gyeue 116 into buffers in host

CPU (or processor) number 902, discussed in a previous
section, indicates which one of multiple processors on the
host computer system should process the packet's protocol
headers. illustratively, CPU number 902 is six bits in size. 25
No_Assist signal 904, also described in a preceding section,
indicates whether the packet is compatible with (e.g., is
formatted according to) any of a set of pre-selected protocols
that may be parsed by header parser 106. No_Assist signal
904 may comprise a single flag (e.g. one bit). In one
embodiment of the invention the state or value of No_Assist 30

signal 904 may be used by flow databllliC manager 108 to
detemrine whether a packet's data is re-assembleable and/or
whether its headers may be processed with thn-;e of related
packets. In particular, the FDBM may use the No_Assist
signal in determining which operation code to assign to the 35
packet.

~computer memory. ~ausc related packets (e.g., packets
_ffiat arc part of one flow) can he idcntificd-by-tbciHlow
numbers or flow keys, data from the related pa<*ets.u:ncy..l>e

Operation code 906 provides information to DMA engine
120 to assist in the re-assembly of the packet's data. As
descnbed in a previous section, an operation code may
indicate whether a packet includes data or whether a pack
et's data is suitable for re-assembly. illustratively, operation
code 906 is three bits in size. Payload offset 908 and payload
size 910 correspond to the offset and size of the packet's
TCP payload (e.g., TCP data), respectively. These fields may
be seven and fourteen bits large, respectively.

,40 transferrco. together (e.g., in the same buffer). By using one
'buffcrfor data from oneliow, the data can be provided-ttran
a.pplication program or other destination in a highly efficient
rrra:mrer.1i'or example, after thcbost computer ;'ceives the
data. a page-flip operation may be performed to transfer the

45 data to an application's memory space rather than perform
ing numerous copy operations. In the illustrated embodiment, other status information

912 includes diagnostic and/or status information concern
ing the packet. Status information 912 may include a starting
position for a checksum calculation (which may be seven
bits in size), an offset of the layer three (e.g., IP) protocol so
header (which may also be seven bits in size), etc. Status
information 912 may also include an indicator as to whether
the size of the packet exceeds a first threshold (e.g., whether
the packet is greater than 1522 bytes) or falls under a second
threshold (e.g., whether the packet is 256 bytes or less). This ss
information may be useful in re-assembling packet data.
Illustratively, these indicators comprise single-bit flags.

In one alternative embodinient of the invention, .§1.!_tus
informi!J:i_gq..9µ includes a pac_ket'._!; fl~w key and{of-_flow
num~r (e.g., the ipdex of the packet's lrowhfflow·da:tabase 60

llO). The flow key or flow number may, for example, be
lli;cd for debugging or other diagnostic purposes. In one
embodiment of the invention, the packet's flow number may
be stored in status information 912 so that multiple packets,
in a single flow may be identified. Such related packet may\·~
then be collectively transferred to and/or processed by a host\
computer.

With reference back to FIGS. lA-B, a packet that is to be
transferred into host memory by DMAengine 120 is stored
in packet queue 116 after being received from network 102.
Header parser 106 parses a header portion of the packet and
generates a flow key, and flow database manager 108 assigns
an operation code to the packet. In addition, the communi
cation flow that includes the packet is registered in flow
database 110. The packet's flow may be identified by its flow
key or flow number (e.g., the index of the flow in flow
database 110). Finally, information concerning the packet
(e.g., operation code, a packet size indicator, flow number)
is stored in control queue 118 and, possibly, other portions
or modules of NIC 100, and the packet is transferred to the
host computer by DMA engine 120. During the transfer
process, the DMA engine may draw upon information stored
in the control queue to copy the packet into an appropriate
buffer, as described below. Dynamic packet batching module
122 may also use information stored in the control queue, a;;
discussed in detail in a following section. ,__,

With reference now to FIG. 10, one embodiment of a
DMA engine is presented. In this embodiment, DMA man-

f)
r.i'

EX 1017 Page 294

I
I

i
i

l

US 6,483,804 Bl
ss 56

ager 1002 manages the transfer of a packet, from packet a packet, a buffer may be identified within DMAeagine UO
queue llfi, into one or more buffers in host computer by the index of the free descriptor within the free descriptor
memory. Free ring manager 1012 identifies or receives ring that referenced the buffer. One drawback to this scheme
empty buffers from host memory and completion ring man- when the ring contains a limited number of descriptors,
ager 1014 releases the buffers to the host computer, as 5 however, i.s that a particular buffer's descriptor may need to
descnbed below. The free ring manager and completion ring be re-used before its buffer has been released to the host
managers may be controlled with logic contained in DMA computer. Thus, either a method of avoiding or skipping the
manager 1002. In the illustrated embodiment, flow re-use of such a descriptor must be unplemented or the
re-~mbly table 1004, he~er table ~006, M1U _table 1008 buffer referenced by the descriptor must be released before
and Jumbo table 1010 store information concermng buffers
used to store different types of packets (as descnbed below). 10 the descnrtor 1i: needed agam. Or. m ano~er alternative, a
Information stored in one of these: tables may include a free desc~ptor ~ may be 0 ~ such a ~aige St7.C that a lengthy
reference to, or some other means of identifying, a buffer. In ~r even vlrlllall}'. ~te period of ~ may pass from the
FIG. 10 DMA engine 120 is partially or fully unplemented tlme a free descriptor IS first used until it needs to be re-used.
in h~are. Thus, in the illustrated embodiment of the invention free

Empty buffers into which packets may be stored are 15 ring ~anag?r 1012 ref?eves a d~tor from the free
identified via a free descriptor ring that is maintained in host descriptor nng, stores its buffer identifier (e.g., memory
memory. As one skilled in the art is aware, a descriptor ring address) in a free buffer array, and provides the array index
is a data structure that is logically arranged as a circular and/or buffer identifier to flow re-assembly table 1004,
queue. A descriptor ring contains descriptors for storing header table 1006, M1U table 1008 or jumbo table 1010.
information (e.g., data, flag, pointer, address). In one 20 Free ring manager 1012 attempts to ensure that a buffer is
embodiment of the invention, each descriptor stores its always available for a packet. Thus, in one embodiment of
index within the free descriptor ring and an identifier (e.g., the invention free ring manager 1012 includes descriptor
memory address. pointer) of a free buffer that may be used cache 1012a configured to store a number of descriptors
to store packets. In this embodiment a buffer is identified in (e.g., up to eight) at a time. Whenever there are less than a
a descriptor by its address in memory, although other means 25 threshold number of entries in the cache (e.g., five), addi-
of identifying a memory buffer are also suitable. In one tional descriptors may be retrieved from the free descriptor
embodiment of the invention a descriptor index is thirteen ring. Advantageously, the descriptors are of such a size (e.g.,
bits large, allowing for a maximum of 8,192 descriptors in sixteen bytes) that some multiple (e.g., four) of them can be
the ring. and a. buffer address is sixty-four bits in size. efficiently retrieved in a sixty-four byte cache line transfer

In the embodiment of FIG. 10, software that executes on 30 from the host computer.
a host computer, such as a device driver for NIC 100, Returning now to the illustrated embodiment of the
maintains a free buffer array or other data structure (e.g., list, invention, each buffer in host memozy is one memozy page
table) for storing references to (e.g., addresses of) the buffers in size. However, buffers and the packets stored in the
identified in free descriptors. As descriptors are retrieved buffers may be divided into multiple categories based on
from the ring their buffer identifiers are placed in the array. 35 packet size and whether a packet's data is being
Thus, when a buffer is needed for the storage of a packet, it re-assembled. Re-assembly refers to the accumulation of
may be identified by its index (e.g., cell, element) in the free data from multiple packets of a single flow into one buffer
buffer array. Then, when the buffer is no longer needed, it fur elficient transfer from kernel space to user or application
may be released to the host computer by placing its array space within host memory. In particular, re-assembleable
index or reference in a. completion descriptor. A packet -40 packets may be defined as packets that conform to a pre-
stored in the buffer can then be retrieved by aoces&ing the selected protocol (e.g., a protocol that is parseable by header
buffer identified in the specified element of the array. Thus, parser 106). By filling a memozy page with data fur one
in this embodiment of the invention the size of a descriptor destination, page-flipping may be performed to provide a
index(e.g.,thirteenbits)maynotlinlitthenumberofbuffers page in kernel space to the application or user space.A
that may be assigned by free ring manager 1012. In 45 packet's category (e.g., whether re-assembleable or non-rc-
particular, virtually any number of buffers or descriptors assembleable) may be determined from information
could be managed by the software. For example, in one retrieved from the control queue or flow database manager.
alternative embodiment of the invention buffer identifiers In particular, and as dcscnbed previously, an operation code
may be stored in one or more linked lists after being may be used to determine whether a packet contains a
retrieved from descriptors in a free descriptor ring. When the 50 re-assembleable portion of data.
buffer is released to the host computer. a reference to the In the illustrated embodiment of the invention, data por-
head of the buffer's linked list may be provided. The list lions of related, re-assembleable, packets are placed into a
could then be navigated to locate the particular buffer (e.g., first category of buffers-which may be termed re-assembly
by its address). buffers. A second categozy of buffers, which may be called

As one skilled in the art will appreciate, the inclusion of 55 header buffers, stores the headers of those packets whose
a lunited number of descriptors in the free descriptor ring data portions are being re-assembled and may also store
(e.g., 8,192 in this embodiment) means that they may be small packets (e.g., those less than or equal to 256 bytes in
re-used in a round-robin fashion. In the presently described size). A third category of buffers, MfU buffers, stores
embodinient, a descriptor is just needed long enough to non-re-assembleable packets that are larger than 256 bytes,
retrieve its buffer identifier (e.g., address) and place it in the 60 but no larger than M1U size (e.g., 1522 bytes). Finally, a
free buffer array, after which it may be re-used relatively fourth category of buffers, jumbo buffers, stores jumbo
quickly. In other embodiments of the invention free descrip- packets (e.g., large packets that are greater than 1522 bytes
tor rings having different numbers of free de:scriptors may he in size) that are not being re-assembled. Illustratively, a
used, thus allowing some control over the rate at which free jumbo packet may be stored intact {e.g., its headers and data
descriptors must be re-used. 65 portions kept together in one buffer) or its headers may be

In one alternative embodiment of the invention, instead of stored in a header buffer while its data portion i.s stored in an
using a separate data strueture to identify a buffer for storing appropriate (e.g., jumbo) non-re-assembly buffer.

EX 1017 Page 295

US 6,483,804 Bl
57 58

In one alternative embodiment of the invention, no dis- buffer array or similar data struct.ure will likely be far
tinction is made between MlU and jumbo packets. Thus, in smaller. Using array positions thus saves space compared to
this alternative embodiment, just three types of buffers are using buffer identifiers. Nonetheless, buffer identifiers may
used: re-assembly and header buffers, as descnbed above, be used to directly identify buffers in an alternative embodi-
plus non-re-assembly buffers. Illu.stratively, all non-small 5 ment of the invention, rather than filtering access to them
packets (e.g., larger than 256 bytes) that are not throughafreebufferarray.However,completiondescriptors
re-assembled are plaoed in a non-re-assembly buffer. would have to be correspondingly larger in order to accom-

In another alternative embodiment, jumbo packets may be modate them.
re-assembled in jumbo buffers. In particular, in this embodi- A completion descriptor may also include one or more
ment data portions of packets smaller than a predetermined 10 flags indicating the type or size of a packet, whether the
size (e.g., MTIJ) are re-assembled in normal re-assembly packet data should be re-assembled, whether the packet is

the last of a datagram, whether the host computer should
buffers while data portions of jumbo packets (e.g., packets delay processing the packet to await a related packet, etc. As
greater in si:ze than MTIJ) are re-assembled in jumbo described in a following section, in one embodiment of the
buffers. Re-assembly of jumbo packets may be particularly invention dynamic packet batching module 122 determines,
effective fur a communication flow that comprises jumbo 15 at the time a packet is transferred to the host computer,
frames of a size such that multiple frames can fit in one whether a related pack.et will be sent shortly. If so, the host
buffer. Header portions of both types of packets may be computer may be advised to delay processing the transferred
stored in one type of header buffer or, alternatively, different packet and await the related packet in order to allow more
header buffers may be used for the headers of the different efficient processing.
types of re-assembleable packets. 20 A packet's completion descriptor may be marked appro-

In yet another alternative embodiment of the invention priately when the buffer identified by its buffer identifier is
buffers may be of varying sizes and may be identified in to be released to the host computer. For example, a flag may
diJlerent descriptor rings or other data structures. For be set in the descriptor to indicate that the packet's buffer is
example, a first descriptor ring or other mechanism may be being released from DMA engine 120 to the host computer
used to identify buffers of a first size for storing large or 2S or software operatiog on the host computer (e.g., a driver
jumbo packets. A secood ring may store descriptors refer- associated with NIC 100). In one embodiment of the
encing buffers for MlU-sized packets, and another ring may invention. completion ring manager 1014 includes comple-
contain descriptors for identifying page-sized buffers (e.g., lion descriptor cache 1014a. Completion descriptor cache
for data re-assembly). 1014a may store one or more completion descriptors for

A buffer used to store portions of more than one type of 30 collective transfer from DMA engine 120 to the bast com·
pack.et-such as a header buffer used to store headers and puter.
small packets, or a non-re-assembly buffer used to store Thus, empty buffers are retrieved from a free ring and
M1U and jumbo packets-may be teIIDed a "hybrid" buffer. used buffers are released to the host computer through a

Illustratively, each time a packet or a portion of a packet completion ring. One reason that a separate ring is employed
is stored in a buffer, completion ring manager 1014 popu- 35 to release used buffers to the host computer is that buffers
lates a descriptor in a completion descriptor ring with may not be released in the order in which they were taken.
information concerning the packeL Included in the informa- In one embodiment of the invention, a buffer (especially a
lion stored in a completion descriptor in this embodiment is flow re-assembly buffer) may not be released until it is full.
a number or reference identifying the free buffer lllTII.Y cell Alternatively, a buffer may be released at virtually any time,
or element in which an identifier (e.g., memory address) of 40 such as when the end of a communication flow is detected.
a buffer in which a portion of the packet is stored. The Free descriptors and completion descriptors are further
information may also include an offset into the buffer (e.g., described below in conjunction with FIG. 12.
to the beginning of the packet portion), the identity of Another reason that separate rings are used for free and
another free buffer array entry that stores a buffer identifier completion descriptors is that the number of completion
for a buffer containing another portion of the packet, a size 45 descriptors that are required in an embodiment of the
of the packet, etc. A packet may be stored in multiple buffers, invention may e:xx:eed the number of free descriptors pro-
for example, if the packet data and header are stored vided in a free descriptor ring. For example, a buffer
separately (e.g., the packet's data is being re-assembled in a provided by a free descriptor may be used to store multiple
re-assembly buffer while the packet's header is placed in a headers and/or small packets. Each time a header or small
header buffer). In addition. data portions of a jumbo packet 50 pack.et is stored in the header buffer, however, a separate
or a re-assembly packet may span two or more buffers., completion descriptor is generated. In an embodiment of the
depending on the size of the data portion. invention in which a header buffer is eight kilobytes in si:ze,

A distinction should be kept in mind between a buffer a header buffer may store up to thirty-two small packets. For
identifier (e.g., the memory address of a buffer) and the entry each packet stored in the header buffer, another completion
in the free buffer array in which the buffer identifier is stored. 55 descriptor is generated.
In particular, it has been descn'bed above that when a FIG. ll includes diagrams of illustrative embodiments of
memory buffer is released to a host computer it is identified flow re-assembly table 1004, header table 1006, MlU table
to the host computer by its position within a free buffer array 1008 and jumbo table 1010. One alternative embodiment of
(or other suitable data structure) rather than by its buffer the invention includes a non-re-assembly table in place of
identifier. The host computer retrieves the buffer identifier 60 M1U table 1008 and jumbo table 1010, corresponding to a
from the specified array element and accesses the specified single type of non-re-assembly buffer fur both MlU and
buffer to locate a packet stored in the buffer. As one skilled jumbo packets. Jumbo table 1010 may also be omitted in
in the art will appreciate, identifying memory buffers in another alternative embodiment of the invention in which
completion descriptors by th~ buffers' _Posi?~ in a free jumbo buffers are retrieved or identified only when needed.
buffer array can be more efficient. than ~ntifying them by 65 Because a jumbo buffer is used only once in this alternative
their memory addresses. In particular, m FIG. 10 buffer embodiment, there is no need to maintain a table to track its
identifiers are sixty-four bits in size while an index in a free use.

EX 1017 Page 296

US 6,483,804 Bl
59 60

Flow re-assembly table 1004 in the illustrated embodi- Jumbo table 1010 stores information concerning one or
ment stores information concerning the re-assembly of pack- more jumbo buffers for storing jumbo packets (e.g., packets
ets in one or more communication flows. For each flow that larger than 1522 bytes) that are not being re-assembled.
is active through DMA engine 120, separate flow Jumbo buffer index 1132 identifies the element within the
re-assembly buffers may be used to store the flaw's data. s free buffer array that stores a buffer identifier corresponding
More than one buffer may be used for a particular flow, but to a jumbo buffer. Next address 1134 identifies tbe location
each flow has one entry in flow re-assembly table 1004 with in the jumbo buffer at which to store the next packel Validity
which to track the use of a buffer. As described in a previous indicator ll34i indicates the validity of tbe table entry.
section, one embodiment of the invention supports the Illustratively, the validity indicator is set to a valid state
interleaving of up to sixty-four flows. Thus, flow 10 when a first packet is stored in the jumbo buffer and is set
re-assembly buffer table 1004 in this embodiment maintains to an invalid state when the buffer is to be released to the
up to sixty-four entries. A flow's entry in the flow
re-assembly table may match its flow number(e.g., the index host computer.
of the flow's flow key in flow database 110) or, in an In the embodiment of the invention depicted in FIG. 11,
alternative embodinlent, an entry may be used for any flow. a pack.et wger than a specified size (e.g., 256 bytes) is not

In FIG. 11, an entry in flow re-assembly table 1004 1s re-assembled if it is incompat:iole with the pre-selected
includes flow re-assembly buffer index 1100, next address protocols for NIC 100 (e.g., TCP, IP, Ethernet) or if the
1104 and validity indicator 1106. Flow re-assembly buffer packet is too large (e.g., greater than 1522 bytes). Although
index 1100 comprises the index. or position, within a free two types of buffers (e.g., M1U and jumbo) are used for
buffer array or other data structure for storiog buffer iden- non-re-assembleable packets in this embodiment, in an
tifiers identified in free descriptors, of a buffer for storing 20 alternative embodiment of the invention my number may be
data from the associated flow. Illustratively, this value is used, including one. Packets less than the specified size are
written into each completion descriptor associated with a generally not re-assembled. Instead, as described above,
packet whose data portion is stored in the buffer. This value they are stored intact in a header buffer.
may be used by software operating on the host computer to In the embodiment of tbe invention depicted in FIG. 11,
access the buffer and process the data. Next address 1104 25 next address fields may store a memory address, offset,
identifies the location within the buffer (e.g., a memory pointer, counter or other means of identifying a position
address) at which to store the next portion of data. within a buffer. Advantageously, the next address field of a
lllustrativel y, this field is updated each tinle data is added to table or table entry is initially set to the address of the buffer
the buffer. Validity indicator 1106 indicates whether the assigned to store packets of the type associated with the table
entry is valid. illustratively, each entry is set to a valid state 30 (and, for re-assembly table 1004, the particular flow). As the
(e.g.,storesafirstvalue)whenafustportionofdataisstored buffer is populated, the address is updated to identify the
in the flow's re-assembly buffer and is invalidated (e.g., location in the buffer at which to store the next packet or
stores a second value) when the buffer is full. When an entry portion of a packet.
is invalidated, the buffer may be released or returned to the illustratively, each validity indicator stores a first value
host computer (e.g., because it is full). JS (e.g., one) to indicate validity, and a second value (e.g., zero)

Header table 1004> in the illustrated embodiment stores to indicate invalidity. In the illustrated embodiment of the
information concerning one or more header buffers in which invention, each index field is thirteen bits, each address field
packet headers and small packets arc stored. In the illus- is sixty-four bits and the validity indieffl>rs are each one bit
trated embodinlent of the invention, only one header buffer in size.
is active at a time. That is, headers and small packets arc 40 Tables 1004, 1006, 1008 and 1010 may take other forms
stored in one buffer until it is released, at which time a new and remain within the scope of the invention as contem-
buffer is used. In this embodiment, header table 1004> plated. For example, these data stru.ctmcs may take the form
includes header buffer index lll2, next address 1114 and of arrays, lists, databases, etc., and may be implemented in
validity indicator 1116. Similar to flow re-u.scmbly table hardware or software. In the illustrated embodiment of the
1004, header buffer index lll2 identifies the cell or element 4S invention, header table 1004>, MTU table 1008 and jumbo
in the free buffer array that contains a buffer identifier for a table 1010 each contain only one entry at a tinle. Thus, only
header buffer. Next address 1114 identifies the location one header buffer, M1U buffer and jumbo buffer are active
within the header buffer at which to store the next header or (e.g., valid) at a tinle in this embodiment. In an alternative
small packet. This identifier, which may be a counter, may embodinlent of the invention, multiple header buffers, MTU
beupdatedeacbtimeaheaderorsmallpaclmtisstoredinthe so buffers and/or jumbo buffers may be used (e.g., valid) at
header buffer. Validity indicator 1116 indicates whether the once.
header buffer table and/or the header buffer is valid. This In one embodiment of the invention, certain categories of
indicator may be set to valid when a first packet or header buffers (e.g., header, non-re-assembly) may store a pre-
is stored in a header buffer and may be invalidated when it determined number of packets or packet portions. For
is released to the host computer. ss eJCample, where the memory page size of a host computer

M1U table 1008 stores information concerning one or proces.'lDr is eight kilobytes, a header buffer may store a
more MTU buffers for storiog MTU packets (e.g., packets maximum of thirty-two entries, each of which is 256 bytes.
larger than 256 bytes but less than 1523 bytes) that are not Illustratively, even when one packet or header is less than
being re-assembled. MTU buffer index ll22 identifies the 256 bytes, the next entry in the buffer is stored at the next
free buffer array element that contains a buffer identifier 60 256-byte boundary. A counter may be associated with the
(e.g., address) of a buffer for storing MTU packets. Next buffer and decremented (or incremented) each tinle a new
address ll24 identifies the location in the current MTU entry is stored in the buffer. After thirty-two entries have
buffer at which to store the next packcl Validity indicator been made, the buffer may be released.
ll26 indicates the validity of the table entry. 'The validity In one embodiment of the invention, buffers other than
indicator may be set to a valid state when a first packet is 65 header buffers may be divided into fixed.size regions. For
stored in the MTU buffer and an invalid state when the buffer example, in an eight-kilobyte MTU buffer, each MTU
is to be released to the host computer. packet may be allocated two kilobytes. Any space remaining

EX 1017 Page 297

US 6,483,804 Bl
61 62

in a packet's area after the packet is stored may be left an operation code may be stored in control queue 118 for
unused or may be padded. each packet stored in packet queue ll6. Thus, when DMA

In one altemalivc embodiment of the invention, entries in engine 120 detects a packet in packet queue ll6, it may fetch
a header buffer and/or non-re-assembly buffer (e.g., MTIJ, the com:.sponding information in the control queue and act
jumbo) an: aligned for more efficient transfer. In particular, 5 appropriate I y.
two bytes of padding (e.g., random bytes) arc stored at the An operation code may indicate whether a packet is
beginning of each entry in such a buffer. Because a packet's compatJ.blc with the protocols pre-selected fur NIC 100. In
layer two Ethernet header is fourteen bytes long, by adding an illustrative embodiment of the invention, only compatJ.blc
two pad bytes each packet's layer three protocol header packets an: eligible for data re-assembly and/or other
(e.g., IP) will be aligned with a sixteen-byte boundary. 10 enhanced operations offered by NIC 100 (e.g., packet batch-
Sixtccn-bytc alignment, as one skilled in the art will ing or load distribution). An operation code may also reflect
appreciate, allows efficient copying of packet contents (such the size of a packet (e.g., less than or greater than a
as the layer three header). The addition of two bytes may, predetermined size), whether a packet contains data or is a
however, decrease the size of the maximum packet that may control packet, and whether a. packet initiates, continues or
be stored in a. header buffer (e.g., to 254 bytes). 15 ends a flow. In this embodiment of the invention, eight

As explained above, counters and/or padding may also be different operation codes are used. In alternative embodi-
uscd with non-re-assembly buffers. Some non-re- ments of the invention more or less than eight codes may be
asscmbleable packets (e.g., jumbo packets) may, however, used. TABLE 1 lists operation codes that may be used in one
be split into separate header and data portions, with each embodiment of the invention.
portion being stored in a separate buffer-similar to the 20 FIGS. 12A-12B illustrate descriptors from a free descrip-
re-asscmbly of flow packets. In one embodiment of the tor ring and a completion descriptor ring in one embodiment
invention padding is only used with header portions of split of the invention. FIG.12A also depicts a free buffer array for
packets. Thus, when a non-re-assembled (e.g., jumbo) storing buffer idcntifiei:s retrieved from free descriptors.
packet is split, padding may be applied to the header/small Free descriptor ring 1200 is maintained in host memory
buffer in which the packet's header portion is stored but not 25 and is populated with descriptors such as free descriptor
to the non-re-assembly buffer in which the packet's data 1202. illustratively, free descriptor 1202 comprises ring
portion is stored. When, however, a non-re-assembly packet index 1204, the index of descriptor 1202 in free ring 1200,
is stored with its header and data together in a. non-re- and bufferidentificr 1206. A bufferidcntifier in this cmbodi-
assembly buffer, then padding may be applied to that buffer. mcnt is a memory address, but may, alternatively, comprise

In another alternative embodiment of the invention, a 30 a pointer or any other suitable means of identifying a buffer
second level of padding may be added to each entry in a in host memory.
buffer that stores non-re assembled paek.&t.s that arc larger In the illustrated embodiment, free buffer my 1210 is
than 256 bytes (e.g., M11J packets and jumbo packets that constructed by software operatiog on a host computer (e.g.,
a.re not split). In this alternative embodiment, a cache line of a device driver). An entry in free buffer amy 1210 in this
stomge (e.g., sixty-four bytes for a SolarisTK woiksl.ation) is 35 embodiment includes array index field 1212, which may be
skipped in the buffer before storing each packeL The extra used to identify the entry, and buffer identifier field 1214.
padding area may be used by software that processes the Each entry's buffer identifier field thus stores a buffer
packets and/or their completion descriptors. The software identifier retrieved from a free descriptor in free descriptor
may use the extra padding area for routing or as temporary ring 1200.
storage fur information needed in a secondary or later phase 40 In one embodiment of the invention, free ring manager
of processing. 1012 of DMAcngine 120 retrieves descriptor 1202 from the

For example, before actually processing the packet, the ring and stores buffer identifier 1206 in free buffer array
software may store some data that promotes efficient multi- 1210. The free ring manager also passes the buffer identifier
tasking in the padding area. The information is then avail- to fl.ow re-assembly table 1004, header table 1006, MIU
able when the packet is finally extracted from the buffer. In 45 table 1008 or jumbo table 1010 as needed. In another
particular, in one embodiment of the invention a network embodiment the free ring manager extracts dcscriptoi:s from
interface may generate one or more data values to identify the free descriptor ring and stores them in a descriptor cache
multicast or alternate addresses that correspond to a layer until a buffer is needed, at which time the buffer's buffer
two address of a packet received from a network. The identifier is stored in the free buffer array. In yet another
multicast or alternate addresses may be stored in a network so embodiment, a descriptor may be used (e.g., the buffer that
interface memory by software operatiog on a host computer it references may be used to store a packet) while still in the
(e.g., a device driver). By storing the data value(s) in the cache.
padding, enhanced routing functions can be performed when In one embodiment of the invention descriptor 1202 is
the host computer processes the packet. sixteen bytes in length. In this embodiment, ring index 1204

Reserving sixty-four bytes at the beginning of a buffer 55 is thirteen bits in size, buffer identifier 1206 (and buffer
also allows header information to be modified or prepeuded identifier field 1214 in free buffer array 1210) is sixty-four
if necessary. For example, a regular Ethernet header of a bits, and the remaining space may store other information or
packet may, becalllie of routing requiremenl8, need to be may not be used. The size of array index field 1212 depends
replaced with a much larger FDD1 (Fiber Distnbuted Data upon the dimensions of array 1210; in one embodiment the
Interface) header. One skilled in the art will recognize the 60 field is thirteen bits in size.
size disparity between these headei:s. Advantageously, the Completion descriptor ring 1220 is also maintained in
reserved padding area may be used for the FDDI header host memory. Dcscriptoi:s in completion ring 1220 are
rather than allocating another block of memory. written or configured when a packet is transferred to the host

In a present embodiment of the invention DMA engine computer by DMAengine 120. The information written to a
120 may determine which category a packet belongs in, and 65 descriptor, such as descriptor 1222, is used by software
which type of buffer to store the packet in, by examining the operating on the host computer (e.g., a driver associated with
packet's operation code. As described in a previous section, NIC 100) to process the packet. Illustratively, an ownership

l
EX 1017 Page 298

1

US 6,483,804 Bl
63 64

indicator (described below) in the descriptor indicates packet's header within the buffer (e.g., header buffer) in
whether DMA eagine 120 has finished using the descriptor. which the header was stored The header oflilet may take the
For example, this field may be set to a particular value (e.g., form of a number of bytes into the buffer at which the header
zero) when the DMA engine finishes using the descriptor can be found Alternatively, the oflilet may be an index value,
and a different value (e.g., one) when it is available for use s reporting the index position of the header. For example, in
by the OMA engine. However, in another embodiment of the one embodiment of the invention mentioned above, entries
invention, DMA engine 120 issues an interrupt to the host in a header buffer arc stored in 256-byte units. Thus, each
computer when it releases a completion descriptor. Yet entry begins at a 256-byte boundary regardless of the actual
another means of alerting the host computer may be size of the entries. The 256-byte entries may be numbered or
employed in an alternative embodiment. Descriptor 1222, in 10 indexed within the buffer.
one embodiment of the invention, is thirty-two bytes in In the illustrated embodiment, flow number 1250 is the
length. packet's flow number (e.g., the index in flow database 110

In the illustrated embodiment of the invention. infonna- of the packet's flow key). Flow number 1250 may be used
tion stored in descriptor 1222 concerns a traosfern:d packet to identify packets in the same flow. Operation code 1252 is
and/or the buffer it was stored in. and includes the following 1s a code generated by flow database manager 108, as
fields. Data size 1230 reports the amount of data in the descnbed in a previous section, and used by DMA engine
packet (e.g., in bytes). The data size field may contain a ;r.cro 1.20 to process the packet and transfer it into an appropriate
if there is no data portion in the packet or no data buffer (e.g., buffer. Methods of transferring a packet depending upon its
flow re-assembly buffer, non-re-assembly buffer, jumbo operation code are descnoed in detail in the following
buffer, M1U buffer) was used. Data buffer index 1232 is the 20 section. No_Assist signal 1254, also described in a previous
index, within free buffer array 1210, of the buffer identifier section, may be set or raised when the packet is not
for the flow re-assembly buffer, non-re-assembly buffer, compatible with the protocols pre-selected for NIC 100. One
jumbo buffer or M1U buffer in which the packet's data was result of incompatibility is that header parser 106 may not
stored. When the descriptor com:sponds to a small packet extensively parse the packet, in which case the packet will
fully stored in a header buffer, this field may store a zero or 25 not receive the subsequent benefits. Processor identifier
remain unused. Data offset 1234 is the offilet of the packet's 1256, which may be generated by load distnbutor 112,
data within the flow re-assembly buffer, non-re-assembly identifies a host computer system processor for processing
buffer,jumbo buffer or M1U buffer (e.g., the location of the the packeL As described in a previous section, load distnbu-
first byte of data within the data buffer). tor 112 attempts to share or distnbute the load of processing

In HG. llB, flags field 1236 includes one or more flags 30 network packets among multiple processors by having all
concerning a buffer or packcL For example, if a header packets within one flow processed by the same processor.
buffer or data is being released (e.g., because it is full), a Layer three header offilet 1258 reports an offset within the
release header or release data flag, respectively, is seL A packet of the first byte of the packet's layer three protocol
release flow flag may be used to indicate whether a flow has, (e.g., IP) header. With this value, software operating on the
at least temporarily, ended. In other words, if 1. release flow 35 host computer may easily strip of!' one or more headers or
flag is set (e.g., stores a value ofone), this indicates that there header portions.
are no other packets waitiog in the packet queue that are in Checksum value 1260 is a checksum computed for this
the same flow as the packet associated with descriptor 1222. packet by checksum generator 114. Packet length 1262 is the
Otherwise, if this flag is not set (e.g., stores a value of zero), length (e.g., in bytes) of the entire packet.
software operating on the host computer may queue this '40 Ownership indicator 1264 is used in the presently
packet to await one or more additional flow packets so that described embodiment of the invention to indicate whether
they may be processed collectively. A split flag may be NIC 100 or software operating on the host computer "owns"
included in flags field 1236 to identify whether a packet's completion descriptor 1222. In particular, a fiIBt value (e.g.,
contents (e.g., data) spans multiple buffers. Illustratively, if zero) is placed in the ownership indicator field when NIC
the split flag is set, there will be an entry in next data buffer 45 100 (e.g., DMAengine 120) bas completed configuring the
index 1241, descnoed below. descriptor. IDustratively, this first value is understood to

Descriptor type 1238, in the presently described embodi- indicate that the software may now process the descriptor.
ment of the invention, may take any of three values. A first When finished processing the descriptor, the software may
value (e.g., one) indicates that DMAengine 120 is releasing store a second value (e.g., one) in the ownership indicator to
a flow buffer for a flow that is stale (e.g., no packet has been so indicate that NIC 100 may now use the descriptor for
received in the flow for some period of time). A second value another packet.
(e.g., two) may indicate that a non-re-assembleable packet One skilled in the art will recognize that there are numer-
was stored in a buffer.A third value (e.g., thrce)maybe used ous methods that may be used to inform host software that
to indicate that a flow packet (e.g., a packet that is part of a a descriptor has been used by, or returned to, DMA engine
flow through NIC 100) was stored in a buffer. 55 120. In one embodiment of the invention, for example, one

Next buffer index 1241 stores an index, in free buffer or more registers, pointers or other data structures are
array 1210, of an entry containing a buffer identifier corre- maintained to indicate which completion descriptors in a
sponding to a buffer storiog a subsequent portion of a packet completion descriptor ring have or have not been used 1n
if the entire packet, or its data., could not lit into the first particular, a head register may be used to identify a first of
assigned buffer. The oflilet in the next buffer may be assumed 60 a series of descriptors that are owned by host software, while
to be zero. Header size 1242 reports the length of the header a tail register identifies the last descriptor in the series. DMA
(e.g., in bytes). The header size may be set to zero if the engine 120 may update these registers as it configures and
header buffer was not used for this packet (e.g., the packet releases descriptors. Thus, by examining these registers the
is not being re-assembled and is not a small packet). Header host software and the DMA engine can determine how many
buffer index 1244 is the index, in free buffer array 1210, of 65 descriptors have or have not been used.
the buffer identifier for the header buffer used to store this Finally, other information, flags and indicators may be
packet's header. Header oflilet 1246 is the offi.et of the stored in other field 1266. Other information that may be

EX 1017 Page 299

US 6,483,804 Bl
65 66

stored in one embodiment of the invention includes the work with alternative methods of obtaining and returning
length and/or olfset of a TCP payload, tlags indicating a buffers for storing packets.
small packet (e.g., less than 257 bytes) or a jumbo pack.et FIG. 13 is a top-level view of the logic controlling DMA
(e.g., more than 1522 bytes), a tlag indicating a bad pack.et engine 120 in this embodiment of the invention. State 1300
(e.g., CRC error), a check.sum starting position, etc. s is a start state.

In alternative embodiments of the invention only infor- In state 1302, a pack.et is stored in packet queue 116 and
mation and tlags needed by the host computer (e.g., driver associated information is stored in control queue 118. One
software) are included in descriptor 1222. Thus, in one embodiment of a packet queue is depicted in FIG. 8 and one
alternative embodiment one or more fields other than the embodiment of a control queue is depicted in FIG. 9. DMA
following may be omitted: data size 1230, data buffer inde,: 10 engine 120 may detect the eltistence of a packet in packet
1232, data offset 1234, a split flag, nen data buffer inde,: queue 116 by comparing the queue's read and write pointers.
1240, header size 1242, header buffer inde,: 1244, header As long as they do not refi:rence the same entry, then it is
olfset 1246 and ownership indicator 1264. understood that a packet is stored in the queue.Alternatively,

In addition, a completion descriptor may be organized in DMA engine 120 may enmine control queue 118 to deter-
virtually any form; the order of the fields of descriptor 1222 15 mine whether an entry eltists there, which would indicate
in FIG. 12 is merely one possible configuration. It is that a packet is stored in packet queue 116. As long as the
advantageous, however, to locate ownership indicator 1264 control queue's read and write pointers do not reference the
towards the end of a completion descriptor since this indi- same entry, then an entry is stored in the control queue and
cator may be used to inform host software when the DMA a packet must be stored in the packet queue.
engine has finished populating the descriptor. If the owner- 20 In state 13D4, the packet's associated entry in the control
ship indicator were placed in the beginning of the descriptor, queue is i:ead. illustratively, the control queue entry includes
the software may read it and attempt to use the descriptor the packet's operation code, the status of the packet's
before the DMA engine bas finished writing to iL No_Assist signal (e.g., indicating whether or not the packet

One skilled in the art will recognize that other systems and is compatible with a pre-selected protocol), one or more
methods than those descnbed in this section may be imple- 25 indicatom cooceming the size of the packet (and/or its data
mented to identify storage areas in which to place packets portion), etc.
being transferred from a network to a host computer without In state 1306, DMA engine 120 retrieves the packet's flow
exceeding the scope of the invention. number. As described previously, a packet's tlow number is

· Methods of Transferring a Packet into a Memory Buffer by the inde,: of the packet's flow in fl.ow database 110. A
a DMA Engine 30 packet's ftow number may, as described in a following

FIGS. 13-20 are flow charts describing procedures for section, be provided to and used by dynamic packet batching
transferring a packet into a host memory buffer. In these module 122 to enable the collective processing of headers
procedures, a. packet's operation code helps determine from related packets. In one embodiment of the invention, a
which buffer or buffers the packet is stored in.An illustrative packet's flow number may be provided to any of a number
selection of operation codes that may be used in this 35 of NIC modules (e.g., IPP module UM, packet batching
procedure are listed and explained in TABLE 1. module 122, DMA engine 120, control queue 118) after

The illustrated embodiments of the invention employ four being generated by flow database manager 1(18. The flow
categories of host memory buffers. the sizes of which are number may also be stored in a separate data structure (e.g.,
programmable. The buffer sizes are programmable in order a register) until needed by dynamic packet batching module
to accommodate various host pb.tforms, but are pro- 40 122 and/or DMA engine 120. In one embodiment of the
grammed to be one memory page in size in present embodi- inventionDMAengine 120 retrieves a packet's fl.ow number
ments in order to enhance the efficiency of handling and from dynamic packet batching module 122. In an a.lternative
processing netwotk traffic. For example, the embodiments embodiment of the invention, the flow number may be
discussed in this section are directed to the use of a host retrieved from a different location or module.
computer system employing a SPARCn< processor, and so 45 Then, in states 1308-1318, DMA engine 120 determines
each buffer is eight kilobytes in size. These embodiments are the appropriate manner of processing the packet by exam-
easily adjusted, however, for host computer systems ining the pa.cket's operation code. The operation code may,
employing memory pages having other dimensions. for enmple, indicate which buffer the engine should transfer

One type of buffer is for re-assembling data from a flow, the packet into and whether a tlow is to be set up or tom
another type is for headeIS of packets being re-assembled 50 down in flow re-assembly buffer table 1004.
and for small packets (e.g., those less than or equal to 256 The illustrated procedure continues at state 1400 (FIG.
bytesinsize)thatarenotre-assembled.Athirdtypeofbuffer 14) if the operation code is 0, slate 1500 (FIG. 15) for
stores packets up to MTU size (e.g., 1522 bytes) that are not operation code 1, state 1600 (FIG.16) for operation code 2,
re-assembled,andafourth typestoresjumbopacketsthat are state 1700 (FIG. 17) for operation code 3, state 1800 (FIG.
greater than MTU size and which are not re-assembled. ss 18) for operation code 4, state 1900 (FIG.19) for operation
These buffeIS are called flow re-assembly, header, MTU and code 5 and state 2000 (FIG. 20) fur operation codes 6 and
jumbo buffeIS, respectively. 7.

The procedures descnbed in this section make use of free A Method of Transferring a Packet with Operation Code 0
descriptors and completion descriptors as depicted in FIG. FIG. 14 depicts an illustrative procedure in which DMA
12. In particular, in these procedures free descriptors 60 engine 120 transfers a packet associated with operation code
retrieved from a free descriptor ring stoi:e buffer identifiers O to a host memory buffer. As reflected in TABLE 1,
(e.g., memory addresses, pointers) for identifying buffers in operation code O indicates in this embodiment that the
which to store a portion of a packet. A used buffer may be packet is compal:lble with the protocols that may be pamed
returned to a host computer by identifying the location by NIC 100. As explained above, compal:lble packets an:
within a free buffer array or other data structure used to store 65 eligible for re-assembly, such that data from multiple pack.-
the buffer's buffer identifier. One skilled in the art will ets of one flow may be stored in one buffer that can then be
recognize that these procedui:es may be readily adapted to efficiently provided (e.g., via a page-flip) to a user or

EX 1017 Page 300

1

US 6,483,804 Bl
67 68

program's memory space. Packets having operation code 0, the packet batching module determines that another packet
however, are small and contain no flow data for re-assembly. in the same flow will soon be transferred to the host
They are thus likely to be control packets. Thcrefurc, no new computer, the release flow flag will be cleared (e.g., a zero
flow is set up, no existing flow is tom down and the entire will be stored). This indicates that the host computer should
packet may be placed in a header buffer. s await the next fiow packet before processing this one. Then,

In state 1400, DMA engine 120 (e.g., DMA manager by collectively processing multiple packets from a single
1002) determines whether there is a valid (e.g., active) flow, the packets can be processed more efficiently while
header buffer. Illustratively, this determination is made by requiring less processor time.
examining validity indicator 1116 of header buffer table In the descriptor type field, a value is stored to indicate
1006, which manages the active header buffer. If the validity 10 that a flow packet was transferred to host memory. Also, a
indicator is set (e.g., equal to one). then there is a header predetermined value (e.g., zero) is stored in the ownership
buffer ready to receive this packet and the procedure con- indicatorfieldtoindicatethatDMAengine120isdoncusing
tinues at state 1404. the descriptor and/or is releasing a packet to the host

Otherwise, in state 1402 a header huller is prepared or computer. Illustratively, the host computer will detect the
initialized for storing small packets (e.g., packets less tha.n 1s change in the ownership indicator (e.g., from one to zero)
257 bytes in size) and headers of re-assembled packets (and, and use the stored information to process the packet. In one
possibly, headers of othcrpackets---&uch as jumbo packets). alternative embodiment of the invention, DMA engine 120
In the illustrated embodiment, this initia.li7.ation process ~es an interrupt or other signal to alert the host computer
involves obtaining a free ring descriptor and retrieving its that a descriptor is being released. In another alternative
buffer identifier (e.g., its reference to an available host 20 embodiment, the host computer polls the NIC to determine
memory buffer). The buffer identifier may then be stored in when a packet has been received and/or transferred. In yet
a data structure such as free buffer array 1210 (shown in another alternative embodiment, the descriptor type field is
FIG. 12A). As described above, in one embodiment of the used to inform the host computer that the DMA engine is
invention free ring manager 1012 maintains a cache of releasing a descriptor. In this alternative embodiment, when
descriptors referencing empty hullers. Thus, a descriptor 25 a non-zero value is plaa:d in the descriptor type field the
may be retrieved from this cache and its bulier allocated to host computer may understand that the DMA engine is
header buffer table 1006. lf the cache is empty, new descrip- releasing the descriptor.
tors may be retrieved from a free descriptor ring in host In a present embodiment of the invention, the ownership
memory to replenish the cache. indicator field is not changed until DMA engine 120 is

When a new buffer identifier is retrieved from the cache 30 finished with any other processing involving this packet or
or from the free descriptor ring, the buffer identifier's is finished making all entries in the descriptor. For example,
position in the free huller array is placed in header buffer as descnbed below a header buffer or other buffer may be
index l1J2 of header buffer table 1006. Further, an initial found to be full at some time after state 1406. By delaying
storage location in the buffer identifier (e.g., its starting the setting of the ownership indicator, a release header :llag
address) is stored in next address field 1114 and validity 35 can be set before the descriptor is reclaimed by the host
indicator 1116 is set to a valid state. computer, thus avoiding the use of another descriptor.

In state 1404, the packet is copied or transferred (e.g., via In state 1408, it is determined whether the header buffer
a DMA operation) into the header buffer at the address or is full. In this embodiment of the invention, where each
location specified in the next address field of header buffer buffer is eight kilobytes in size and entries in the header
table 1006. As described above, in one embodiment of the "40 buffer are no larger than 256 bytes, up to thirty-two entries
invention pad bytes arc inserted before the packet in order to may be stored in a header bulier. Thus, a counter may be
align the beginning of the packet's layer three (e.g~ IP) used to keep track of entries placed in each new header
header with a sixteen-byte boundary. In addition, a header buffer and the buffer can be considered full when thirty-two
buffer may be logically partitioned into cells of prcdeter- entries are stored. Other methods of determining whether a
mined size (e.g., 256 bytes), in which case the packet or 4S huller is full are also suitable. For cxaniple, after a packet is
padding may begin at a cell boundary. stored in the header bulier a new next address field may be

In state 1406, a completion descriptor is written or con- calculated and the difference between the new next address
figured to provide information to the host computer (e.g., a field and the initial address of the buffer may be compared
software driver) for processing the packet. In particular, the to the size of the buffer (e.g., eight kilobytes). If less than a
header buffer index (e.g. the index within the free buffer so predetermined number of bytes (e.g., 256) are uouscd, the
array of the buffer identifier that referena:s the header buffer may be considered full.
huller) and the packet's offset in the header buffer are placed If the buffer is full, in state 1410 the header buffer is
in the descriptor. Illustratively, the offset may identify the invalidated to ensure that it is not used again. Illustratively,
location of the cell in which the header is stored, or it may this involves setting the header huller table's validity indi-
identify the first byte of the packet. The size of the packet is SS cator to invalid and communicating this status to the host
also stored in the descriptor, illustratively within a header computer via a descriptor. In this embodiment of the inven-
size field A data size field within the descriptor is set to zero tion a release header flag in the descriptor is seL If the
to indicate that the entire packet was placed in the header descriptor that was written in state 1406 was already
buffer (e.g., there was no data portion to store in a separate released (e.g., its ownership indicator field changed),
data buffer). A release header flag is set in the descriptor if 60 another descriptor may be used in this state. If another
the header buffer is full. However, the header buffer may not descriptor is used simply to report a full header buffer, the
be tested to see if it is full until a later state of this procedure. descriptor's header size and data size fields may be set to
In such an embodiment of the invention, the release header zero to indicate that no new packet was transferred with this
fiag may be set (or cleared) at that time. descriptor.

As described in a later section, in one embodiment of the 65 If the header buffer is not full, then in state 1412 the next
invention a release flow fiag may also be set, depending address field of header buffer table 1006 is updated to
upon dynamic packet batching module 122. For exaniplc, if indicate the address at which to store the next header or

EX 1017 Page 301

1
j

US 6,483,804 Bl
69 70

small packet. The processing associated with a packet hav- within the header buffer are placed in the descriptor. The
ing operation code O then ends with end state 1499. In one index within the free buffi:r array of the entry containing the
embodiment of the invention. the ownership indicator field re-assembly buffer's buffi:r identifier is stored in a data index
of a descriptor that is written in state 1406 is not changed, field of the descriptor. The size of the packet is stored in a
or an inteI11lpt is not issued, until end state 1499. Delaying 5 header size field and a data size field is set to ?J:ro to indicate
the notification of the host computer allows the descriptor to that no separate buffer was used for storing this packet's
be updated or modified for as long as possible before turning data. A release header flag is set in the descriptor if the
it over to the host. header buffer is full and a release data flag is set to indicate
A Method of Transferring a Packet with Operation Code 1 that no more data will be placed in this flow's present

FIG.15 depicts an illustrative procedure in which DMA 10 re-assembly buffer (e.g., it is being released). In addition, a
engine 120 transfers a packet associated with operation code release flow flag is set to indicate that DMA engine 120 is
1 to a host memory buffer. As reflected in TABLE 1, in this tearing down the packet's flow. The header buffer may not
embodiment operation code 1 indicates that the packet is be tested to sec if it is full until a later state of this procedure.
compatible with the protocols that may be parsed by NIC In such an embodiment of the invention, the release header
100. A packet having operation code 1, however, may be a 15 flag may be set at that time.
control packet having a particular flag seL No new flow is set In state 1510, the flow's entry in flow re-assembly buffi:r
up, but a flow should already exist and is to be tom down; table 1004 is invalidated. After state 1510, the procedure
there is no data to re-assemble and the entire packet may be continues at state 1514.
stored in a header buffer. In state 1512, a completion descriptor is configured with

In state 1500, DMA engine 120 (e.g., DMA manager 20 information somewhat different than that of state 1508. In
1002) determines whether there is a valid (e.g., active) particular, the header buffer index, the offset to this packet
header buffer. Illustratively, this determination is made by within the header buffi:r and the packet size are placed
examining validity indicator 1116 of header buffer table within the same descriptor fields as above. The data size field
1006, which manages the active header buffer. If the validity is set to zero, as above, but no data index needs to be stored
indicator is set, then there is a header buffer ready to receive 25 and no release data flag is set (e.g., because there is no flow
this packet and the procedure continues at state 1504. n:-asscmbly buffer to release). A n:lease header flag is still

Otherwise, in state 1502 a new header buffer is prepared set in the descriptor if the header buffer is full and a release
or initialized fur storing small packets and headers of flow flag is again set to indicate that DMA engine 120 is
re-assembled packets. Illustratively, this initialization pro- tearing down the packet's flow. Also, the descriptor type
ccss involves obtaining a free ring descriptor from a cache 30 field is changed to a value indicating that DMA engine 120
maintained by free ring manager 1012 and retrieving its transferred a flow packet into host memory.
reference to an empty buffer. If the cache is empty, new In state 1514, it is determined whether the header buffer
descriptors may be retrieved from the free descriptor ring in is now fall. In this embodiment of the invention, where each
host memory to replenish the cache. buffer is eight kilobytes in size and entries in the header

When a new descriptor is obtained from the cache or from 35 buffer arc no larger than 256 bytes, a counter is used to keep
the free descriptor ring, its buffer identifier (e.g., pointer, track of entries placed into each new header buffer. The
address, index) is stored in free buffer array 1210 and its buffer is considered full wben thirty-two entries are storcd.
initial storage location (e.g., address or cell location) is If the buffer is full, in state 1516 the header buffer is
stored in next address field 1114 of header buffer table 1006. invalidated. Illustratively, this involves setting the header
The index or position of the buffer identifier within the free 40 buffer table's validity indicator to invalid and communicat-
buffer array is stored in header buffer index 1112. Finally, ing this status to the host computer via the descriptor
validity indicator 1116 is set to a valid state. configured in state 1508 or state 1512. In this embodiment

In state 1504 the packet is copied into the header buffer at of the invention a release header flag in the descriptor is set
the address or location specified in the next address field of to indicate that the header buffer is full.
header buffer table 1006. As descn"bcd above, in one 45 If the header buffer is not full, then in state 1518 the next
embodiment of the invention pad bytes arc inserted before address field of header buffer table 1006 is updated to
the packet in order to align the beginning of the packet's indicate the address at which to store the next header or
layer three (e.g., IP) header with a sixteen-byte boundary. small packet.
And, the packet (with or without padding) may be placed The processing associated with a packet having operation
into a pre-defined area or cell of the bulfur. so code 1 then ends with end state 1599. In this end state, the

In the illustrated embodiment, operation code 1 indicates descriptor used for this packet is turned over to the host
that the packet's existing flow is to be tom down. Thus, in computer by changing its ownership indicator field (e.g.,
state 1506 it is determined whether a flow re-assembly buffi:r from one to zero), issuing an interrupt, or some other
is valid (e.g., active) for this flow by examining the flow's mechanism.
validity indicator in flow re-assembly buffer table 1004. If, 55 One skilled in the art will appreciate that in an alternative
for example, the indicator is valid, then there is an active embodiment of the invention a change in the descriptor type
buffer storing data from one or more packets in this flow. field to any value other than the value (e.g., 7.Cro) it bad when
Illustratively, the flow is tom down by invalidatiog the flow DMA engine 120 was using it, may constitute a surrender of
re-assembly buffer and releasing it to the host computer. If "ownership" of the descriptor to the host computer or
there is no valid flow re-assembly buffer for this flow, the 60 software operating on the host computer. Toe host computer
illustrated procedure continues at stale 1512. Otherwise, the will detect the change in the descriptor type field and
procedure proceeds to state 1508. subsequently use the stored information to process the

In state 1508, a completion descriptor is configured to packet.
release the flow's re-assembly buffer and to provide infor- A Method of Transferring Packet with Operation Code 2
mation to the host computer for processing the current 65 FIGS. 16A-16F illustrate a procedure in which DMA
packet. In particular, the header buffi:r index and the offset engine 120 transfers a packet associated with operation code
ofthefirstbytcofthepacket(orlocationofthepacket'scell) 2 to a host memory buffer. As reflected in TABLE 1,

EX 1017 Page 302

1
'

US 6,483,804 Bl
71 72

operation rode 2 may indicate that the packet is compatible (e.g., DMA manager 1002) determines whether there is a
with the protocols that may be parsed by NIC 100, but that valid (e.g., active) header buffer. illustratively, this determi-
it is out of sequence with another packet in the same fl.ow. nation is made by examining validity indicator lll6 of
It may also indicate an attempt to re-establish a fl.ow, but that header buffer table 1006, which manages the active header
no more data is likely to be received after this packet For 5 buffer. If the validity indicator is set, then there should be a
operation code 2, no new fl.ow is set up and any existing fl.ow header buffer ready to receive this packet and the procedure
with the packet's fl.ow number is to be torn down. The continues at state 1614.
packet's data is not to be re-assembled with data from other Otherwise, in state 1612 a new header buffer is prepared
packets in the same fl.ow. or initialized for storing small packets and headers of

Becan.sc an existing flow is to be tom down (e.g., the 10 re-assembled packets. This initialization process may
flow's re-assembly buffer is to be invalidated and released to involve obtaining a free ring descriptor from a cache main-
the host computer), in state 1600 it is determined whether a tained by free ring manager 1012 and retrieving its reference
flow re-assembly buffer is valid (e.g., active) for the flow to an empty buffer. If the cache is empty, new descriptors
having the flow number that was read in state 1306. This may be retrieved from the free descriptor ring in host
determination may be ma.de by examining the validity 15 memory to replenish the cache.
indicator in the fl.ow's entry in flow re-assembly buffer table When a new descriptor is obtained from the cache or from
1004. illustratively, if the indicator is valid then there is an the free descriptor ring, the buffer identifier (e.g., pointer,
active buffer storing data from one or more packets in the address, index) contained in the descriptor is stored in a free
flow. If there is a valid flow re-assembly buffer for this flow, buffer array. The buffer's initial address or some other
the illustrated procedure continues at state 1602. Otherwise, 20 indicator of the first storage location in the buffer is placed
the procedure proceeds to state 1606. in next address field lll4 of header buffer table 1006. The

In state 1602, a completion descriptor is written or con- buffer identifier's position or index within the free bufrer
figured to release the existing flow re-assembly buffer. In array is stored in header buffer index lll2, and validity
particular, the flow re-assembly buffer's index (e.g., the indicator lll6 is set to a valid state.
location within the free buffer array that contains the buffer 2S In state 1614 the packet is copied or transferred (e.g., via
identifier corresponding to the flow rc,-=bly buffer) is a DMA operation) into the header buffer at the address or
written to the descriptor. In this embodiment of the location specified in the next address field of header bufrer
invention, no offset needs to be stored in the descriptor's table 1006. As dcscribcd above, in one embodiment of the
data offset field and the data size field may be set to zero invention pad bytes arc inserted before the header in order
because no new data was stored in the re-assembly buffer. 30 to align the beginning of the packet's layer three protocol
Similarly, the header buffer is not yet being released, there- (e.g., IP) header with a sixteen-byte boundary. In addition,
fore the header index and header offset fields of the descrip- the packet may be positioned within a cell of predetermined
tor need not be used and a zero may be stored in the header size (e.g., 256 bytes) within the header buffer.
size field. In state 1616, a completion descriptor is written or con-

illustratively, the descriptor's release header flag is 35 figured to provide necessary infOllllation to the host com-
cleared (e.g., a zero is stored in the flag) because the header puter (e.g., a software driver) for processing the packi:L In
buffer is not to be released. Toe release data flag is set (e.g., particular, the header bulfer index (e.g. the position within
a one is stored in the flag), however, because no more data the fiec buffer array of the header bulfer's buffer identifier)
will be placed in the released fl.ow re-assembly buffer. and the packet's offset within the header buffer arc placed in
Further, a release flow flag in the descriptor is also set, to 40 the descriptor. illustratively, this off.set may serve to identify
indicate that the flow associated with the released flow the first byte of the packet, the first pad byte before the
re-assembly buffer is being tom down. packet or the beginning of the packet's cell within tbe buffer.

The descriptor type field may be changed to a value The size of the packet is also stored in the descriptor in a
indicating that DMA engine 120 is releasing a stale flow header size field. A data size field within the descriptor may
buffer (e.g., a flow re-assembly buffer that has not been used 45 be set to 2:ero to indicate that the entire packet was placed in
for some tinle). Finally, the descriptor is turned over to the the header buffer (e.g., no separate data portion was stored).
host computer by changing its ownership indicator field or A release header flag is set in the descriptor if the header
by issuing an intenupt or using some other mechanism. In buffer is full. However, the header buffer may not be tested
one embodiment of the invention, however, the descriptor is to sec if it is full until a later state of this procedure. In such
not released to the host computer until end state 16!J!J. 50 an embodiment of the invention, the release header flag may

Then, in state 1604, the flow re-assembly buffer is invali- be set (or cleared) at that tinle. A release data flag is cleared
dated by modifying validity indicator 1106 in the flow's (e.g.,settoavalueofzero),becausethereisooseparatedata
entry in flow re-assembly buffer table 1004 appropriately. portion being conveyed to the host computer.

In state 1606, it is determined whether the present packet Also, the descriptor type field is changed to a value
is a small packet (e.g., less than or equal to 256 bytes in 55 indicating that DMA engine 120 transferred a non-re-
size), suitable for storage in a header bufrer. If so, the assembleable packet into host memory. And, a prcdcter-
illustrated procedure proceeds to state 1610. Information mined value (e.g., zero) is stored in the descriptor's own-
stored in packet queue 116 and/or control queue 118 may be ership indicator field to indicate that DMA engine 120 is
used to make this determination. releasing a packet to the host computer and turning over

In state 1608, it is determined whether the present packet 60 ownership of the descriptor. In one embodiment of the
is a jumbo packet (e.g., greater than 1522 bytes in size), such invention the ownen;hip indicator field is not changed until
that it should be stored in a jumbo buffer. If so, the illustrated end state 1699 below. In one alternative embodiment of the
procedure proceeds to stale 1650. If not, the procedure invention, DMA engine 120 issues an interrupt or other
continues at state 1630. signal to alert the host computer that a descriptor is being

In state 1610 (reached from state 1606), it has been 65 released.
determined that the present packet is a small packet suitable In state 1618, it is determined whether the header buffer
for storage in a header buffer. Therefore, DMA engine 120 is full. In this embodiment of the invention, where each

EX 1017 Page 303

US 6,483,804 Bl
73 74

buffer is eight kilobytes in size and entries in the header placed in the MTU buffer (e.g., no separate header portion
buffer are no larger than 256 bytes, a counter may be used wasstored in a header buffer).Arelease data flag is set in the
to keep track of entries placed into each new header buffer. descriptor if the MTU buffer is full. However, the MTU
The buffer is considered full when thirty-two entries are buffer may not be tested to see if it is full until a later state
stored. 5 of this procedure. In such an embodiment of the invention,

If the buffer is full, in state 1620 the header buffer is the release data flag may be set (or cleared) at that time. A
invalidated to ensure that it is not used again. Illustratively, release header flag is cleared (e.g., set to zero), because there
this involves setting the header buJl'cr table's validity indi- is no separate header portion being conveyed to the host
cator to an invalid state and communicating this status to the computer.
host computer. In this embodiment of the invention, a 10 Further, the descriptor type :field is changed to a value
release header flag in the descriptor is set. The illustrated indicating that DMA engine 120 transferred a non-re-
procedurc then ends with end state 16!1!1. assembleable packet into bost memory. Also, a predeter-

If the header buffer is not full, then in state 1622 the next mined value (e.g., zero) is stored in the descriptor's own-
address :field of header buffer table 1006 is updated to ership indicator field to indicate that DMA engine 120 is
indicate the &ddrcss or cell boundary at which to store the 15 releasing a packet to the host computer and turning over
next header or small packet The illustrated procedure then ownership of the descriptor. In a present embodiment of the
ends with end state 16!1!1. invention the ownership field is not set until end state 16!1!1

ln state 1630 (reached from state 1608), it has been below. In one alternative embodiment of the invention,
determined that the packet is not a small packet or a jumbo DMA engine 120 issues an interrupt or other signal to alert
packet. The packet may, therefore, be stored in a non-re- 20 the host computer that a descriptor is being released, or
assembly buffer (e.g., an MTU buffer) llSCd to store packets communicates this event to the host computer through the
that are up to MTU in size (e.g., 1522 bytes). Thus, in state descriptor type field
1630 DMA engine 120 determines whether a valid (e.g., In state 1638, it is determined whether the MTU buffer is
active) MTU buffer exists. Illustratively, this determination full. In this embodiment of the invention, where each buffer
is made by examining validity indicator 1126 of MTU buffer 25 is eight kilobytes in size and entries in the MTU buffer arc
table 1008, which man&ges m active MTU buffer. If the allotted two kilobytes, a counter may be used to keep track
validity indicator is set, then there is an MTU buffer ready of entries placed into each new header buffer. The buffer
to roceive this packet and the procedure continues at state may be considered full when a predetermined number of
1634. entries (e.g., four) are stored. In an alternative embodiment

Otherwise, in state 1632 a new MTU buffer is prepared or 30 of the invention DMA engine 120 determines how much
initiafu:ed for storing non-rc-assembleable packets up to storage space within the buffer has yet to be used. If no space
1522 bytes in size. lliustrlltively, this initilllization process remains, or if less than a predetermined amount of space is
involves obtaining a free ring descriptor from a cache still &vailable, the buffer may be considered full
maintained by free ring manllger 1012 and retrieving its If the MTU buffer is full, in state 1640 it is invalidated to
reference to an empty buffer (e.g., a buffer identifier). If the 3S en.sure that it is not used again. Illustratively, this involves
cache is empty, new descriptors may be retrieved from the setting the MTU buffer table's validity indicator lo invalid
free descriptor ring in host memory to replenish the cache. and communicating this status to the host computer. In this

When a new descriptor is obtained from the cache or from embodiment of the invention, a release data flag in the
the free descriptor ring. the buffer identifier (e.g., pointer, descriptor is set. The illustrated procedure then ends with
address, index) contained in the descriptor is stored in the 40 end state 16!1!1.
free buffer arr&y. The buffer's initial llddress or some other If the MTU buffer is not full, then in state 1642 the next
indication of the fust storage location in the buffer is placed address field ofM1U buffer table 1008 is updated lo indicate
in next address field 1124 of M1U buffer table 1008. Further, the address or location (e.g., cell boundary) at which to store
the position of the buffer identifier within the frce buffer the next packet The illustrated procedure then cods with end
array is stored in MTU buffer index 1122 and validity 45 state 16!19.
indicator 1126 is set to a valid state. In state 1650 (reached from state 1608). it bas been

In state 1634 the packet is copied or transferred (e.g., via determined that the packet is a jumbo packet (e.g., that it is
a DMA operation) into the MTU buffer at the address or greater than 1522 bytes in size). In this embodiment of the
location specified in the next address field As descnbed invention jumbo packets are stored in jumbo buffers and, if
above, in one embodiment of the invention pad bytes may be so splitting of jumbo packets is enabled (e.g., as determined in
inserted before the header in order lo align the beginning of state 1654 below), headers of jumbo packets arc stored in a
the packet's layer three protocol (e.g., IP) header with a header buffer. DMA engine 120 determines whether a valid
sixteen-byte boundary. In mother embodiment of the inven- (e.g., active) jumbo buffer exists. lliustratively, this deter-
tion packets may be aligned in an MTU buffer in cells of mination is made by examining validity indicator 1136 of
predefined size (e.g., two kilobytes), similar to entries in a 5S jumbo buffer table 1010, which manages the active jumbo
header buffer. buffer. If the validity indicator is set, then there is a jumbo

In state 1636, a completion descriptor is written or con- buffer ready to receive this packet and the procedure con-
figured to provide necessary information to the host com- tinues al state 1654. As explained above, a jumbo buffer
puter (e.g., a software driver) for processing the packet. In table may nol be used in an embodiment of the invention in
particular, the MTU buffer index (e.g. the free buffer array 60 which a jumbo buffer is used only once (e.g., to store just
element that contains the buffer identifier for the MTU one, or just part of one, jumbo packet).
buffer) and offset (e.g., the offset of the fust byte of this Otherwise, in state 1652 a new jumbo buffer is prepared
packet within the M1U buffer) are placed in the descriptor or initialized for storing a non-rc-assembleable packet that is
in data index and data offset fields, respectively. The size of larger than 1522 bytes. This initialization process may
the packet is also stored in the descriptor, illustratively 6S involve obtaining a free ring descriptor from a cache main-
within a data size field. A header size field within the tained by free ring manager 1012 and retrieving its reference
descriptor is set to :r.ero to indicate that the entire packet was to an empty buffer (e.g., a buffer identifier). If the cache is

EX 1017 Page 304

1
i

US 6,483,804 Bl
75

empty, new descriptors may be retrieved from the free
descriptor ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from

76
the descriptor may be released by issuing an interrupt or
other alert. In yet another embodiment, changing the
descriptor type field (e.g., to a non-zero value) may signal
the release of the descriptor. In one embodiment of the the free descriptor ring, its buffer identifier (e.g., pointer,

address, index) is stored in a free buffer array (or other data
structure). Toe buffer's initial address or other indication of
the first storage location in the buffer is placed in next
address field 1134 of jumbo buffer table 1010. Also, the
location of the buffer identifier within the free buffer array
is stored in jumbo buffer index 1132 and validity indicator
1136 is set to a valid state.

5 invention the ownership indicator is not set until end state
1699 below. After state 1660, the illustrated procedure
resumes at state 1668.

In state 1662, a first portion of the packet is stored in the
present (e.g., valid) jumbo buffer, at the location identified in

lO :a:t1~s!~~t ::e~fi::ci:,3i~~=i6tc:=~r:n~
buffer is prepared and the remainder of the packet is stored
in that buffer. Then, in state 1654 DMA engine 120 determines whether

splitting of jumbo buffers is enabled. H enabled, the header
of a jumbo packet is stored in a header buffer while the
packet's data is stored in one or more jumbo buffers. If not
enabled, the entire packet will be stored in one or more
jumbo buffers. lliustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmable indicator (e.g., flag, bit, register) that may be
set by software operating on the host computer (e.g., a
device driver). H splitting is enabled, the illustrated proce
dure continues at state 1670. OthcIWisc, the procedure
continues with state 1656.

In state 1666, a completion descriptor is written or con
figured. Toe contents are sinrilar to those described in state

15 1660 but this descriptor must reflect that two jumbo buffers
were used to store the packet.

Thus, the jumbo buffer index (e.g., the index, within the
free buffer array, of the buffer identifier that identifies the
header buffer) and the offset of the packet within the first

20 jumbo buffer are placed in the descriptor, as above. Toe size
of the packet (e.g., the packet length) is stored in a data size
field.

A header size field is cleared (e.g., a zero is stored) to
indicate that the header buffer was not used (e.g., the header
was not stored separately from the packet's data). Because
there is no scpante packet header, header index and header
offset fields arc not used (e.g., the values stored in their fields
do not matter).

A release header flag is cleared and a release data flag is

In state 1656, DMA engine 120 determines whether the
packet will fit into one jumbo buffer. For example, in an 2S
embodiment of the invention using eight kilobyte pages, if
the packet is larger than eight kilobytes a second jumbo
buffer will be needed to store the additional contents. H the
packet is too large, the illustrated procedure continues at
state 1662. 30 set to indicate that no more data will be placed in these

jumbo buffers (e.g., because they arc being released).
Further, a split packet flag is set to reflect the use of a second
jumbo buffer, and the index (within the free buffer array) of
the buffer identifier for the second buffer is stored in a next

In state 1658, the packet is copied or transferred (e.g., via
a DMA operation) into the current jumbo buffer, at the
location specified in the next address field 1134 of jumbo
buffer table 1010. When the packet is transferred intact like
this, padding may be added to align a header portion of the
packet with a sixteen-byte boundary. One skilled in the art
will appreciate that the next address field may not need to be
updated to account for this new packet because the jumbo
buffer will be released. In other words, in one embodiment
of the invention a jumbo buffer may be used just once (e.g.,
to store one packet or a portion of one packet).

35 index field.
Further, the descriptor type field is changed to a value

indicating that DMA engine 120 transferred a non-re
asscmbleable packet into host memory. Finally, a predeter
mined value (e.g., zero) is stored in the descriptor's own-

40 crship indicator field, or some other mechanism is
employed, to indicate that DMA engine 120 is releasing a
packet to the host computer and turning over ownership of
the descriptor. In one embodiment of the invention, the
descriptor is not released to the host computer until end state

In state 1660, a completion descriptor is written or con
figured to release the jumbo buffer and to provide informa
tion to the host computer for processing the packet. Toe
jumbo buffer index (e.g., the position within the free buffer
array of the buffer identifier for the jumbo buffer) and the
offset of the packet within the jumbo buffer arc placed in the
descriptor. lliustrativcly, these values are stored in data
index and data offset fields, respectively. Toe size of the
packet (e.g., the packet length) may be stored in a data size so
field.

45 1699 below.
In state 1668, the jumbo buffer entry or entries in jumbo

buffer table 1010 arc invalidated (e.g., validity indicator
1136 is set to invalid) to ensure that they arc not used again.
In the procedure dcscnbed above a jumbo packet was stored
in, at most, two jumbo buffers. In an alternative embodiment
of the invention a jumbo buffer may be stored across any
number of buffers. Toe descriptor(s) configured to report the
transfer of such a packet is/are constructed accordingly, as
will be obvious to one skilled in the art.

After state 1668, the illustrated procedure ends with end
state 1699.

In state 1670 (reached from state 1654), it has been
determined that the present jumbo packet will be split to
store the packet header in a header buffer and the packet data

A header size field is cleared (e.g., a zero is stored) to
indicate that the header buffer was not used (e.g., the header
was not stored separately from the packet's data). Because
there is no separate packet header, header index and header ss
offset fields are not used or are set to zero (e.g., the values
stored in their fields do not matter). A release header flag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo buffer (e.g., because it is
being released).

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-rc
asscmbleablc packet into host memory. And, a predeter
mined value (e.g., zero) is stored in the descriptor's own
ership indicator field to indicate that DMA engine 120 is 65
releasing a packet to the host computer and turning over
ownership of the descriptor. In an alternative embodiment,

60 in one or more jumbo buffers. Therefore, DMAcngine 120
(e.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. illustratively, this determi
nation is made by examining validity indicator lll6 of
header buffer table 1006, which manages the active header
buffer. H the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1674.

EX 1017 Page 305

.,.

US 6,483,804 Bl
77 78

Otherwise, in slate 1672 a new header buffer is prepared packet into host memory. Also, a predetermined value (e.g.,
or initialized for storing small packets and headers of other zero) is stored in the descriptor's ownership indicator field
packets. illustratively, this initialization process involves to indicate that DMA engine 120 is releasing a packet to the
obtaining a free ring descriptor from a cache maintained by host computer and turning over ownership of the descriptor.
free ring manager 1012 and retrieving its reference to an s In one embodiment of the invention the ownership indicator
empty buffer. If the cache is empty, new descriptors may be is not changed until end state 16!>!) below. In an alternative
retrieved from the free descriptor ring in host memory to embodiment. the descriptor may be released by issuing an
replenish the cache. interrupt or other alert. In yet another alternative

When a new descriptor is obtained from the cache or from embodiment. changing the descriptor type value may signal
the free descriptor ring, the buffer identifier (e.g., pointer, 10 the release of the descriptor.
address, index) contained in the descriptor is stored in a free After state 1680, the illustrated procedure proceeds to
buffer array. Toe buffer's initial address or some other state 1688.
indication of the first storage location or cell in the buffer is In state 1682, a first portion of the packet's data is stored
placed in next address field 1114 of header buffer table 1006. in the present (e.g., valid) jumbo buffer, at the location
Also, the index of the buffer identifier within the free buffer 1s identified in the buffer's next address field 1134.
array is stored in header buffer index 1112 and validity Because all of the packet's data will not fit into this buffer,
indicator lllli is set to a valid state. in state 1684 a new jumbo buffer is prepared and the

In state 1674 the packet's header is copied or transferred remainder of the packet is stored in that buffer.
(e.g., via a DMA operation) into the header buffer at the In state 1686, a completion descriptor is written or con-
address or location specified in the next address field of 20 fignred. Toe contents are sinlilar to those described in states
header buffer table 1006. As described above, in one 1680 but this descriptor must reflect that two jumbo buffers
embodiment of the invention pad bytes are inserted before were used to store the packet. The header buffer index (e.g.
the header in order to align the beginning of the packet's the index of the free buffer array element containing the
layer three protocol (e.g., IP) header with a sixteen-byte header buffer's bufferidentifier) and offset (e.g., the location
boundary. In addition, the packet's header may be positioned 25 of this packet's header within the header buffer) are placed
within a cell of predetermined size (e.g., 256 bytes) within in the descriptor in header index and header offset fields,
the buffer. n::spectively. Toe jumbo buffer index (e.g., the index, within

In state 1676, DMA engine 120 determines whether the the free buffer array, of the buffer identifier that references
packet'sdata(e.g.,theTCPpayload)willfitintoonejumbo the jumbo buffer) and the offset of the first byte of the
buffer. If the packet is too large, the illustrated procedure 30 packet's data within the jumbo buffer are placed in data
continues at state 1682. index and data offset fields, respectively. Header size and

In sl.lte 1678, the packet's data is copied or transfern::d data size fields are used to store the size of the packet's
(e.g.,viaaDMAopcration)intothecurrentjumbobu.lier,at header (e.g., as measured by the offset of the packet's
the location specified in the next address field 1134 of jumbo payload from the start of the packet) and data (e.g., payload
buffer table 1010. One skilled in the art will appreciate that 35 size), n::spectively.
the next address field may not need to be updated to account A release header ilag is set in the descriptor if the header
for this new packet because the jumbo buffer will be buffer is full. However, the header buffer may not be tested
released. In other words, in one embodiment of the invention to see if it is full until a later state of this procedure. In such
a jumbo buffer may be used just once (e.g., to store one an embodiment of the invention. the release header flag may
packet or a portion of one packet). 40 be set (or cleared) at that time.A release data flag is also set,

In state 1680, a completion descriptor is written or con- because no more data will be placed in the jumbo buffer
fignrcd to release the jumbo buffer and to provide informa- (e.g., it is being released to the host computer). Further, a
lion to the host computer for processing the packet. The split packet flag is set to indicate that a second jumbo buffer
header buffer index (e.g. the index of the header buffer's was used, and the location (within the free buffer array or
buffer identifier within the free buffer array) and offset of the 45 other data structun::) of the second buffer's buffer identifier
packet's header within the buffer are placed in the descriptor is ston::d in a next index field
in header index and header offset fields, respectively. The descriptor type field is changed to a value indicating
lliustratively, this offset may serve to identify the first byte that DMA engine 120 transfern::d a non-n::-assembleable
of the header, the first pad byte before the header or the packet into host memory. Finally, a predetermined value
location of the cell in which the header is stored. The jumbo so (e.g., zero) is stored in the descriptor's ownership indicator
buffer index (e.g., the position or index within the free buffer field to indicate that DMA engine 120 is releasing a packet
array of the bufferidentifier that identifies the jumbo buffer) to the host computer and turning over ownership of the
and the offset of the fust byte of the packet's data within the descriptor. In one embodiment of the invention the owner-
jumbo buffer are placed in data index and data offset fields, ship indicator is not changed until end state 16!>9 below.
respectively. Header size and data size fields are used to ss In slate 1688, the jumbo buffer's entry in jumbo buffer
store the size of the packet's header (e.g., the offset of the table 1010 is invalidated (e.g., validity indicator 1136 is set
payload within the packet) and data (e.g., payload size), to invalid) to ensure that it is not used again. In the procedure
respectively. described above, a jumbo packet was stored in, at most. two

A release header ilag is set in the descriptor if the header jumbo buffers. In an alternative embodiment of the invention
buffer is full. However, the header buffer may not he tested 60 a jumbo packet may be stored across any number of buffers.
to see if it is full until a later state of this procedure. In such The descriptor that is confignrcd to report the transfer of
an embodiment of the invention, the release header flag may such a packet is constructed accordingly, as will be obvious
be set (or cleared) at that time. A release data flag is also set. to one skilled in the art.
because no more data will be placed in the jumbo buffer In state 16!>0, it is determined whether the header buffer
(e.g., it is being released to the host computer). 65 is full. In this embodiment of the invention, where each

The descriptor type field is changed to a value indicating buffer is eight kilobytes in size and entries in the header
that DMA engine 120 transforn::d a non-re-assembleable buffer are no larger than 256 bytes, a counter may be used

EX 1017 Page 306

US 6,483,804 Bl
79 80

lo keep track of entries placed into each new header buffer. beginning of the packet's layer three protocol (e.g., IP)
The buffer may be considered full when thirty-two entries header with a sixteen-byte boundary. In addition, the header
are stored. may be positioned within a cell of predetermined size (e.g.,

If the buffer is full, in state 1692 the header buffer is 256 bytes) within the header buffer.
invalidated to ellSllR: that it is not used again. Illustratively, 5 In the illustrated embodiment, operation code 3 indicates
this involves setting the header buffer table's validity indi- that an existing flow is lo be tom down (e.g., the flow
cator to invalid and communicating this status to the host re-assembly buffer is to be invalidated and released to the
computer. In this embodiment of the invention, a release host computer). Thus, in state 1706 it is determined wbether
header flag in the descriptor is set. 1be illustrated prooedure a flow re-assembly buffer is valid (e.g., active) for this flow

· 16n by examining the validity indicator in the flow's entry in
then ends Wlth end state " 9• 10 flow re-assembly buffer table 1004. illustratively, if the

If the header buffer is not full, then in state 1694 the next indicator is valid then there should be an active buffer
address field of header buffer table 1006 is updated to storing data from one or more packets in this flow. If there
indicate the address at which to store the next header or is a valid flow re-assembly buffer for this flow, the illustrated
small packet. Toe illustrated procedure then ends with end procedure continues at state 1712. Otherwise, the procedure
state 1699. 1S prooeeds to state 1708.

In end state 1699, a descriptor may be turned over to the In state 1708, a new flow re-assembly buffer is prepared
host computer by changing a value in the descriptor's to store this packet's data. Illustratively, a free ring descrip-
descriptor type field (e.g., from one to zero), as described torisobtainedfromacachemaintaincdbyfreeringmanager
above. Illustratively, the bost computer (or software operat- 1012 and its reference to an empty buffer is retrieved. If the
ing on the host computer) detects the change and under- 20 cache is empty, new descriptoIS may be retrieved from the
stands that DMA engine 120 is returning ownership of the free descriptor ring in host memory to replenish the cache.
descriptor to the host computer. When a new descriptor is obtained from the cache or from
A Method of Transferring a Packet with Operation Code 3 the free descriptor ring, the buffer identifier (e.g., pointer,

FIGS. 17 A-17C illustrate one procedure in which DMA address, index) contained in the descriptor is stored in a free
engine 120 transfers a packet associated with operation code 2S buffer array. 1be buffer's initial address or other indication
3 to a host memory buffer. As reflected in 'D\BI.E 1, of its first storage location is placed in next address field
operation code 3 may indicate that the packet is compatible 1104 of the flow's entry in flow re-assembly buffer table
with a protocol that can be parsed by NIC 100 and that it 1004. Toe flow's entry in tbe re-assembly buffer table may
carries a final portion of data for its flow. No new flow is set be recognized by its flow number. The location within the
up, but a flow should already exist and is to be tom down. 30 free buffer array of the buffer identifier is stored in
1be packet's data is to be re-assembled with data from re-assembly buffer index 1102, and validity indicator 1106 is
previous flow packets. Because the packet is to be set to a valid state.
re-assembled, the packet's header should be stored in a In state 1710, the packet's data is copied or transferred
header buffer and its data in the flow's re-assembly buffer. (e.g., via a DMA operation) into the address or location
Toe flow's active re-assembly buffer may be identified by 35 specified in the next address field of the flow's entry in flow
the How's entry in flow re-assembly bul!er table 1004. re-assembly buffer table 1004.

1n state 1700, DMA engine 120 (e.g., DMA manager In state 1712, a completion descriptor is written or con-
1002) determines whether there is a valid (e.g., active) fignred to release the How's re-assembly buffer and to
header buffer. Illustratively, this determination is made by provide information to the host computer for processing the
examining validity indicator 1116 of header buffer table 40 packet. In particular, the header buffer index (e.g., the index,
1006, which manages the active header buffer. If the validity within the free buffer amiy, of the header buffer's identifier)
indicator is set (e.g., equal to one), then it is assumed that and the offset of the packet's header within the header buffer
there is a header buffer ready to reoeive this packet and the are placed in the descriptor. Illustratively, this offset sexves
procedure continnes at state 1704. to identify the first byte of the header, the first pad byte

Otherwise, in state 1702 a new header buffer is prepared 45 preceding the header or the cell in which the header is stored.
or initialized for storing small packets and headers of The flow re-assembly buffer index (e.g., the index, within
re-assembled packets. This initialization process may the free buffi:r array, of the flow re-assembly buffer's
involve obtaining a free ring descriptor from a cache main- identifier) and the offset of the packet's data within that
tained by free ring manager 1012 and retrieving its buffer buffer are also stored in the descriptor.
identifier (e.g., a reference to an available memory buffer). so The size of the packet's data (e.g., the size of the packet's
If the cache is empty, new descriptors may be retrieved from TCP payload) and header (e.g., the offset of the TCP payload
the free descriptor ring in host memory to replenish the within the packet) portions are stored in data size and header
cache. size fields, respectively. 1be descriptor type field is given a

illustratively, when a new descriptor is obtained from the value that indicates that a flow packet has been transferred
cache or from the free descriptor ring. the buffer identifier ss to host memory. A release header flag may be set if the
(e.g., pointer, address, index) contained in the descriptor is header buffer is full and a release data flag may be set to
stored in a free buffer array. The buffer's initial address or indicate that no more data will be placed in this flow
some other indication of the first storage location or cell in re-assembly buffer (e.g., because it is being released). In
the buffer is placed in next address field 1114 of header addition, a release flow flag is set to indicate that DMA
buffer table 1006. Further, the index of the bul!er identifier 60 engine 120 is tearing down the packet's flow. Toe header
within the free buffer array is stored in header buffer index buffer may not be tested to see if it is full until a later state
1ll2 and validity indicator 1116 is set to a valid state. of this proccdnre. In such an embodiment, the release header

1n state 1704 the packet's header is copied or transferred flag may be set (or cleared) at that time.
into the header buffer at the address or location specified in Then, in state 1714, the flow re-assembly buffer is invali-
the next address field of header bul!er table 1006. As 6S dated by modifying validity indicator 1106 in the flow's
described above, in one embodiment of the invention pad entry in flow re-assembly buffer table 1004 appropriately.
bytes may be inserted before the header in order to align the After state 1714, the procedure continues at state 1730.

j
EX 1017 Page 307

l

US 6,483,804 Bl
81 82

In state 1716, DMA engine 120 determines whether the within the packet) arc stored in data size and header size
packet's TCP payload (e.g., the packet's data portion) will fit fields, respectively. The descriptor type field is given a value
into the valid flow re-assembly buffer. If not, the illustrated that indicates that a flow packet has been transferred to host
procedure continues at state 1722. memory. A release header flag is set if the header buffer is

In state 1718, the packet data is copied or transferred (e.g., s full and a release data flag is set to indicate that no more data
via a DMA operation) into the :flow's re-assembly buffer, at will be placed in this flow re-assembly buffer. A release flow
the location specified in the next address field 1104 of the flag is set to indicate that DMA engine 120 is tearing down
fl.ow's entry in :flow re-assembly table 1004. One skilled in the packet's flow.
the art will appreciate that the next address field may or may Because two re-assembly buffers were used, a split packet
not be updated to account for this new packet because the 10 flag is set and the index, within the free buffer array, of the
re-assembly buffer is being released. re-assembly buffer's buffer identifier is stored in a next index

field. Additionally, because the packet contains the final
In state 1720, a completion descriptor is written or con- portion of data for the flow, a release next data buffer flag

figured to release the fl.ow's re-assembly buffer and to may also be set to indicate that the second flow re-assembly
provide information to the host computer for processing the buffer is being released.
packet. The header buffer index (e.g., the location or index, 15 In state 1728, the fl.ow's entry in flow re-assembly buffer
within the free buffer array, of the header buffer's identifier) table 1004 is invalidated to ensure that it is not used again.
and the offset of the packet's header within the header buffer In state 1730, it is determined whether the header buffer
are placed in the descriptor. The flow re-assembly buffer is full. In this embodiment of the invention, where each
index (e.g., the location or index within the free buffer array buffer is eight kilobytes in size and entries in the header
of the fl.ow re-assembly buffer's identifier) and the offset of 20 buffer are no larger than 256 gytes, a counter is used to keep
the packet's data within that buffer are also stored in the track of entries placed into each new header buffer. The
descriptor. buffer is considered full when thirty-two entries a.re stored.

Thesizeofthepacket'sdata(e.g., thesizeofthepacket's H the buffer is full, in state 1732 the header buffer is
TCP payload) and header (e.g., the offset of the TCP payload invalidated to ensw:e that it is not used again. lliustrativcly,
within the packet) are stored in data size and header size 25 this involves setting the header buffer table's validity indi-
fields, respectively. The descriptor type field is given a value cator to invalid and communicating this status to the host
that indicates that a flow packet has been transferred to host computer. In this embodiment of the invention a release
memory. A release header flag is set if the header buffer is header flag in the descriptor is set.
full and a release data flag is set to indicate that no more data If the header buffer is not full, then in state 1734 the next
will he placed in this flow re-assembly buffer (e.g., because 30 1.ddrcss field of header buffer table 1006 is updated to
it is being released). As explained above, the header buffer indicate the address at which to store the next header or
may not be tested to see if it is full until a later state of this small padcet.
procedure, at which time the release header flag may be set. The processing associated with a packet having operation
Finally, a release fl.ow flag is set to indicate that DMAengine code 3 then ends with end state 1799. In this end state, the
120 is tearing down the packet's fl.ow. After state 1720, the 35 descriptor used for this packet is turned over to the host
illustrated procedure resumes at state 1728. computer by changing its ownership indicator field (e.g.,

In state 1722, a first portion of the packet's payload (e.g., from one to zero). Alternatively, some other mechanism may
data) is stored in the :flow's present (e.g., valid) re-assembly he used, such as issuing an interrupt or changing the
buffer, at the location identified in the buffer's next address descriptor' descriptor type field. Illustratively, the descriptor
field 1104. 40 type field would be changed to a value indicating that DMA

Because the full payload will not fit into this buffer, in engine 120 trm&ferrcd a flow packet into host memory.
state 1724 a new fl.ow re-assembly buffer is prepared and the In one alternative embodiment of the invention an opti-
remainder of the payload is stored in that buffer. In one mization may be performed when processing a packet with
embodiment of the invention information concerning the operation code 3. This opt.inrization takes advantage of the
first buffer is stored in a completion descriptor. This infor- 4S knowledge that the packet contains the last portion of data
IDation may include the position within the free buffer array for its flow. In particular, instead of loading a descriptor into
of the first buffer's buffer identifier and the offset of the first flow re-assembly buffer table 1004 the descriptor may be
portion of data within the buffer. The fl.ow's entry in flow used where it is-in a descriptor cache IDaintaincd by free
re-assembly buffer table 1004 may then be updated for the ring manager 1012.
second buffer (e.g., store a first address in next address field so For enmple, instead of retrieving a buffer identifier froID
1104 and the location of buffer's identifier in the free buffer a descriptor and storing it in an array in state 1708 above,
array in re-assembly buffer index 1102). only to store one packet's data in the identified buffer before

In stale 1726, a completion descriptor is written or con- releasing it, it IDay be more efficient to use the descriptor
figured. The contents are similar to those described for states without removing it from the cache. In this embodiment,
1712 and 1720 but this descriptor must reflect that two ss when a completion descriptor is written the values stored in
re-assembly buffers were used. its data index and data offset fields a.re retrieved from a

Thus, the header buffer index (e.g., the position within the descriptor in the descriptor cache. Similarly, when the first
free buffer array of the buffer identifier corresponding to the portion of a code 3 packet's data fits into the flow's active
header buffer) and the offset of the packet's header within buffer but a new one is needed just for the remaining data,
the header buffer are placed in the descriptor, as above. The 60 a descriptor in the descriptor cache may again be used
first flow re-assembly buffer index (e.g., the position, within without first loading it into a free buffer array and the flow
the free buffer array, of the buffer identifier corresponding to re-assembly buffer table. In this situation, the completion
the first flow re-assembly buffer used to store this packet's descriptor's next index field is retrieved from the descriptor
payload) and the offset of the packet's first portion of data in the descriptor cache.
within that buffer arc also stored in the descriptor. 65 A Method of Transferring a Packet with Operation Code 4

The size of the packet's data (e.g., the size of the packet's FIGS. 18A-18D depict an illustrative procedure in which
TCP payload) and header (e.g., the offset of the TCP payload DMA engine 120 transfers a packet associated with opera-

EX 1017 Page 308

r
l
'

US 6,483,804 Bl
83 84

lion code 4 lo a host memory buffer. As reflected in TABLE address, index) contained in the descriptor is stored in a free
1, operation code 4 in this embodiment indicates that the buffer array. The buffer's initial address or other indicator of
packet is compatible with the protocols that may be parsed its :titst storage location is placed in next address field 1104
by NIC 100 and continues a flow that is already established. of the flow's entry in flow re-assembly buffer table 1004.
No new flow is set up, the existing flow is not to be tom s Toe flow's entry in the table may be recognized by its flow
down, and the packet's data is to be re-assembled with data number. Toe location of the buffer identifier in the free buffer
from other flow packets. Because the packet is to be array is stored in re-assembly buffer index: 1102, and validity
rc-a55embled, the packet's header should be stored in a indicator 1106 is set to a valid state.
header buffer and its data in the flaw's re-assembly buffer. In state 1812, the packet's data is copied or transferred

In stale 1800, DMA engine 120 determines whether there)
is a valid (e.g., active) header buffer. Illustratively, this 10 (e.g., via a DMA operation into the address or location
determination is made by examining validity indicator 1116 specified in the next address field of the flow's entry in flow
of header buffer table 1006, which manages the active re-assembly buffer table 1004.
header buffer. If the valiruty indicator is set, then there In state 1814, a completion descriptor is written or con-
should be a header buffer ready to receive this packet and the figured to provide information to the host computer for
procedure continues at state 1804. 15 processing the packet. In particular, the header buffer index

Otherwise, in stale 1802 a new header buffer is prepared (e.g., the index within the free buffer array of the buffer
or initialized for storiog small packets and headers of identifier that identifies the header buffer) and the offset of
re-assembled packets. Illustratively, this initialization pro- the packet's header within the header buffer arc placed in the
cess involves obtaining a free ring descriptor from a cache descriptor. Illustratively, this offset may serve to identify the
maintained by free ring manager 1012 and retrieving its 20 :titst byte of the header, the :titst pad byte preceding the
reference to an empty buffer. If the cache is empty, new header or the header's cell within the header buffer. Toe flow
descriptors may be retrieved from the free descriptor ring in re-assembly buffer index (e.g., the index within the free
host memory to replenish the cache. buffer array of the buffer identifier that identifies the flow

When a new descriptor is obtained from the cache or from re-assembly buffer) and the offsct of the packet's data within
the free descriptor ring, the buffer identifier (e.g., pointer, 25 that buffer arc also stored in the descriptor.
address, index) contained in the descriptor is stored in a free Toe size of the packet's data (e.g., the size of the packet's
buffer array. The buffer's initial address or some other TCPpayload)andheader(e.g.,thcoffsctoftheTCPpayload
indication of the :titst storage location in the buffer is place within the packet) are stored in data size and header size
in next address field 1114 of header buffer table 1006. Also, fields, respectively. Toe descriptor type field is given a value
the position or index of the buffer identifier within the free 30 indicating that a flow packet bas been transferred to host
buffer may is stored in header buffer index 1112 and validity memory. A release header flag is set if the header buffer is
indicator 1116 is set to a valid state. fill but a release data flag is not set, because more data will

In state 1804 the packet's header is oopied or transferred be placed in this fl.ow re-assembly buffer. The header buffer
into the header buffer at the address or location specified in may not be tested to sec if it is full until a later state of this
the next address field of header buffer table 1006. As 35 procedure. In such an embodiment, the release header flag
descnbcd above, in one embodiment of the invention pad may be set (or cleared) at that time.
bytes arc inserted before the header in order to align the In one embodiment of the invention a release fl.ow flag
beginning of the packet's layer three protocol (e.g., IP) may also be set, depending upon dynamic packet b:i.tching
header with a sixteen-byte bonndary. In addition, the pack- module 1.22. For example, if the packet batching module
et's header may be positioned within a cell of predetermined ..o determines that another packet in the same flow will soon be
size (e.g., 256 bytes) within the buffer. transferred to the host compnter, the release flow flag will be

In the illustrated embodiment, operation code 4 indicates cleared (e.g .. a zero will be stored). This indicates that the
that an existing flow is to be continued. Thus, in state 1806 host computer should await the next flow packet before
it is determined whether a flow re-assembly buffer is valid processing this one. By collectively processing multiple
(e.g., active) for this flow by examining the validity indicator 45 packets from a single fl.ow, the packets can be processed
in the flaw's entry in flow re-assembly buffer table 1004. more efficiently and less processor time is required. If,
IDustrativcly, if the indicator is valid then there is an active however, no other packets in the same flow are identified, the
buffer storing data from one or more packets in this flow. If release flow flag may be set (e.g., a one is stored) to indicate
there is a valid flow re-assembly buffer for this flow, the that the host computer should process the flow packets it bas
illustrated procedure continues at state 1808. Otherwise, the so received so far, without waiting for more.
procedure proceeds to state 1810. In state 1816, the llow's entry in flow re-assembly buffer

In state 1808, it is determined whether the packet's data table 1004 is updated. In particular, nc:r:t address field 1104
(e.g., its TCP payload) portion is too large for the current is updated to identify the location in the re-assembly buffer
fl.ow re-assembly buffer. If the data portion is too large, two at which the next flow packet's data should be stored. After
flow re-assembly buffers will be used and the illustrated 55 state 1816, the illustrated procedure continues at state 1838.
procedure proceeds to state 1830. Otherwise, the procedure In stale 1820 (reached from state 1808), it is known that
continues at stale 1820. the packet's data, or TCP payload, will fit within the fiow's

In state 1810, because it was found (in state 1806) that current re-assembly buffer. Thus, the packet data is copied or
there was no valid fl.ow re-assembly buffer for this packet, transferred into the buffer at the location identified in next
a new flow re-assembly buffer is prepared. Illustratively, a 60 address field 1104 of the flow' s entry in flow re-assembly
free ring descriptor is obtained from a cache maintained by buffer table 1004.
free ring manager 1012 and its reference to an empty buffer In state 1822, a completion descriptor is written or con-
is retrieved If the cache is empty, new descriptors may be figured to provide information to the host computer for
retrieved from the free descriptor ring in host memory to processing the packet. In particnlar, the header buffer index
replenish the cache. 65 (e.g., the index within the free buffer array of the buffer

When a new descriptor is obtained from the cache or from identifier that identifies the header buffer) and the offset of
the free descriptor ring, the buffer identifier (e.g., pointer, the packet's header within the header buffer are placed in the

EX 1017 Page 309

US 6,483,804 Bl
85 86

descriptor. 1be flow re-assembly buffer index (e.g., the a new buffer is retrieved and the remaining data from the
index within the free buffer array of the buffer identifier that packet is stored in the new buffer. In one embodiment of the
identifies tbe flow re-assembly buffer) and the offset of the invention, after the fust portion of data is stored information
packet's data within that buffer are also stored in the from the flow's entry in flow re-assembly table 1004 is
descriptor. s stored in a completion descriptor. lliuslratively, this infor-

The size of tbe packet's data (e.g., the size of the packet's mation includes re-assembly buffer index 1102 and the offset
TCPpayload) andbeader(e.g .. the offset of the TCP payload of the fust portion of data within the full buffer. Then the
within the packet) are stored in data size aod header size new descriptor can be loaded-its index is stored in
fields, respectively. The descriptor type field is given a value re-asaembly buffer index 1102 and an initial address is stored

in next address 1104. indicating that a flow packet bas been transferred to host 10
memory. A release header flag is set if the header buffer is In state 1834, a completion descriptor is written or con-

figured to provide information to the host computer for
full bu! a release data flag is set only if the flow re-assembly processing the packet. In particular, the header buffi:r index
buffer is now full. The h~der and flow re-~mbly buffers (e.g., tbe locatinn of the header buffer's buffer identifier
m~y not be tested to see if they ~ full until a later state of within the free buffer array) and the offsct of the packet's
this procooure. In s~h an embodiment, the flags may be set 15 header within the header buffi:r are placed in the descriptor.
(or cleared) at th~ time. . • The How re-assembly buffer index (e.g., the location of the

In one embodiment of the mvention a release flow flag flow re-assembly buffer's buffer identifier within the free
may also be set, depending upon dynamic packet batching buffer array) and the offset of the packet's data within that
module 122. For example, if the packet batching module buffer are also stored in the descriptor.
determines that another packet in the same flow will soon be 20 The size of the packet's data (e.g .. the size of the packet's
transferred to the host computer, the release flow flag will be TCP payload) and header (e.g., the offsct of tbe TCP payload
cleared. This indicates that the host computer should await within the packet) are stored in data size and header size
the next flow packet before processing this one. By collcc- fields, respectively. The descriptor type field is given a value
lively processing multiple packets from a single flow, the indicating that a flow packet h_as be:n transferred to ho~
packets can be processed more efficiently and less processor 25 memory. A release header fl~ JS set if the header buffer JS

time is required. If, however, no other packets in the same full and a release _data. flag JS set because the first flow
flow are identified, the release flow flag may be set to re-assembly buffer JS '?e~. released. ~e header buffer may
indicate that tbe host computer should process tbe flow not be tested to see if 1t lS ~ until a later state of this
packets received so far, without waiting for more. procooure. In such an embodim~nt, the release header flag

In state 1824, the flow re-assembly buffer is examined to 30 may be set (or cleared) at that time. .
determine if it · full In the tl described bodini t Because two re-assembly buffers were used, a split packet

• • JS • • presen Y em . ~n flag in the descriptor is set and the index, within the free
of the mvention this test JS conducted by fust dete~g descriptor ring, of the descriptor that references the second
bow much data ~e.g., bow many bytes) bas been stored m the re-assembly buffer is stored in a next index field.
buffer. lliustratively, the flow'~ next address field and the In one embodinient of the invention a release flow flag
am~~~ of data stored from this packet arc summed. The?, 35 may also be set, depending upon dynamic packet batching
the IDlllal buffer address (e.g., before any data was stored m module 122. For example, if the packet batcbii;ig module
it) is subtracted from this sum. This value, representing bow determines that another packet in the same flow will soon be
much data is now stored in the buffcr, is then compared to transferred to the host computer, the release flow flag will be
the size of the buffer (e.g., eight kilobytes). cleared. This indicates that the host computer should await

If the amount of data currently stored in tbe buffer equals 40 the next flow packet before processing this one. By collec-
the size of the buffi:r, then it is full. In the presently descnbed lively processing multiple packets from a single flow, the
embodiment of the invention it is desirable to completely fill packets can be processed more efficiently and less processor
flow re-assembly buffers. Thus, a flow re-assembly buffer is time is required. If. however, no other packets in the same
not considered full until ils storage space is completely flow are identified, the release flow flag may be set to
populated with flow data. This scheme enables the efficient 45 indicate that the host computer should process the flow
processing of network packets. packets received so far, without waiting for more.

If the flow re-assembly buffer is full, in state 1826 the In state 1836, next address field 1104 in the flow's entry
buffer is invalidated to ensure it is not used again. in flow re-assembly buffer table 1004 is updated to indicate
Illustratively, this involves setting the header buffer table's the address in the new buffer at which to store the next
validity indicator to invalid and communicating this status to 50 portion of flow data.
the host computer. In this embodiment of the invention, a In state 1838, it is determined whether the header buffi:r
release data flag in the descriptor is set. After state 1826, the is full. In this embodiment of the invention, where each
procedure continues at state 1838. buffer is eight kilobytes in size and entries in the header

If the flow re-assembly buffer is not full, then in state 1828 buffer are no larger than 256 bytes, a counter may be used
next address field 1104 in the flow's entry in flow 55 to keep track of entries placed into each new header buffer.
re-assembly buffer table 1004 is updated to indicate the The buffer is considered full when thirty-two entries are
address at which to store the next portion of flow data. After stored.
state 1828, the procedure continues at state 1838. If the buffer is full, in state 1840 the header buffer is

In state 1830 (reached from state 1808), it is known that invalidated to ensure that it is not used again. IDustratively,
the packet's data will not fit into the flow's current 60 this involves setting the header buffer table's validity indi-
rc-assembly buffer. Therefore, some of the data is stored in cator to invalid and communicating this status to the host
the current buffer and the remainder in a new buffer. In computer. In this embodiment of the invention, a release
particular, in state 1830 a first portion of data (e.g., an header flag in the descriptor is set.
amount sufficient to fill the buffer) is copied or transferred If the header buffer is not full, then in state 1842 the next
into the current flow re-assembly buffer. 6S address field of header buffer table 1006 is updated to

In state 1832, a new descriptor is loaded from a descriptor indicate the address at which to store the next header or
cache maintained by free ring manager 1012. Its identifier of small packet.

EX 1017 Page 310

'

US 6,483,804 Bl
87 88

The processing associated with a packet having operation Otherwise, m state 1906 a new M1U buffer is prepared or
code 4 then ends with end state 1899. In this end state, the initialm:d for storing non-re--assembleable packets up to
descriptor used for this packet is turned over to the host 1522 bytes in size. ffiustratively, this initialization process
computer by changing its owoership iodicator field (e.g., involves obtaining a free ring descriptor from a cache
from one to zero). In one alternative embodiment of the 5 maintained by free ring manager 1012 aod retrieving its
invention, DMA engine 120 isslles an interrupt or uses other buffer identifier (e.g., a reference to an empty host memory
means to alert the host computer that a descriptor is being buffer). 1f the cache is empty, new descriptors may be
released. retrieved from the free descriptor ring in host memory to

In one alternative embodiment of the invention the opti- replenish the cache.
miution described above for packets associated with opera- 10 When a new descriptor is obtained from the cache or from
lion code 3 may be performed when proci:ssing a packet
with operation code 4. This optimiution is useful, for the free descriptor ring, the buffer identifier (e.g., pointer,
example, when a code 4 packet's data is too large to fit in the address. index) contained in the descriptor is stored in a free
current flow re-assembly buffer. Instead of loading a new buffer array. The buffer's initial address or some other
descriptor for the second portion of data, the descriptor may indication of the first storage location in the buffer is placed
be used where it is-in a descriptor cache maintained by free 15 in next address field 1124 of MTU buffer table 1008. The
ring manager 1012. This allows DMA engine 120 to finish buffer identifier's index or position within the free buffer
transferring the packet and tum over the completion dcscrip- array is stored in M1U buffer index 1122, and validity
tor before adjusting flow re-assembly buffer table 1004 to indicator 1126 is set to a valid state.
reflect a new buffer. In state 1908 the packet is copied or transferred (e.g., via

In particular, instead of loading information from a new 20 a DMA operation) into the MIU buffer at the address or
descriptor in state 1832 above, it may be more efficient to location specified in the next address field of MTU buffer
use the descriptor without removing it from the cache. In this table 1008. As described above, in one embodiment of the
embodiment a new buffer for storing a remainder of the invention pad bytes may be inserted before the header in
packet's data is accessed by retrieving its buffer identifier order to align the beginning of the packet's layer three
from a descriptor m the free ring manager's descriptor 25 protocol (e.g., IP) header with a sixteen-byte boundary. In
cache. The data is stored in the buffer and, after the packet's addition, the packet may be positioned within a cell of
completion descriptor is configured and released, the nee- predetermined size (e.g., two kilobytes) within the MIU
essary information is loaded into the flow re-assembly table buffer.
as dcscnbcd above. ffiustratively, re-assembly buffer index In state 1910, a completion descriptor is written or con-
1102 stores the buffer identifier's index withm the free buffer 30 figured to provide necessary information to the host com-
array, and an initial memory address of the buffer, taking into puter for processing the packet. In particular, the M1U
account the newly stored data, is placed in next address buffer index (e.g. the location within the free buffer array of
1104. the buffer identifier for the M1U buffer) aod offset (e.g., the
A Method of Transf.erring a Packet with Operation Code 5 offset to the packet or the packet's cell within the buffer) are

F1GS.19A-19E depict a procedure in which OMA engine 35 placed in the descriptor in data index and data offset fields,
120 transfers a packet associated with operation code 5 to a respectively. The si7.C of the packet is stored in a data size
host memory buffer. As reflected in TABLE 1, operation field A header si7.C field withm the descriptor may be set to
code 5 in one embodiment of the invention may indicate that zero to indicate that the entire packet was placed in lhe MTU
a packet is incompall'ble with the protocols that may be buffer (e.g., no separate header portion was stored in a
parsed by NIC 100. It may also indicate that a pacbt ,40 header buffer). A releai;c data flag is set in the descriptor if
contains all of the datafor a new flow (e.g., no more data will the MTU buffer is full. The MIU buffer may not, however,
be received for the packet's flow). Therefore, for operation be tested to sec if it is full until a later state of this procedure.
code 5, no new flow is set up and there should not be any In such an embodiment of the invention, the release data flag
flow to tear down. The packet's data, if there is any, is not may be set (or cleared) at that time. A release header flag
to be re-assembled. 45 may be cleared (e.g., not set), because there is no separate

In state 1900, it is determined whether the present packet header portion being conveyed to the host computer.
is a small packet (e.g., less than or equal to 256 bytes in size) Further, the descriptor type field is changed to a value
suitable for storage in a header buffer. If so, the illustrated indicating that DMA engine 120 transferred a non-rc-
procedure proceeds to state 1920. assembleable packet into host memory. Also, a predeter-

Otherwise, in state 1902 it is determined whether the so mined value (e.g., zero) is stored in the descriptor's owo-
present packet is a jumbo packet (e.g., greater than 1522 ership indicator field to indicate that DMA engine 120 is
bytes in size), such that it should be stored in a jumbo buffer. releasing a packet to the host computer and turning over
If so, the illustrated procedure proceeds to state 1940. If not, ownership of the descriptor. In one embodiment of the
the procedure continues at state 1904. invention, the owoership indicator is not set until end state

In state 1904, it has been determined that the packet is not 55 1999 below. In an alternative embodiment of the mvention,
a small packet or a jumbo packet. The packet may, therefore, the descriptor may be released by issuing an interrupt or
be stored m a non-re-assembly buffer used to store packets other alert. In yet another alternative embodiment, changing
that arc no greater in size than MTU (Maximum Transfer the descriptor's descriptor type field may signal the descrip-
Unit) in size, which is 1522 bytes in a present embodiment. tor's release.
This buffer may be called an MTU buffer. Therefore, DMA 60 1n state 1912, DMA engine 120 determines whether the
engine 120 determines whether a valid (e.g., active) MIU M1U buffer is full. In this embodiment of the mvention,
buffer exists. Illustratively, this determination is made by where each buffer is eight kilobytes in size, each entry in the
examining validity indicator 1126 of M1U buffer table 1008, M1U buffer may be allotted two kilobytes of space and a
which manages the active MTIJ buffer. If the validity counter may be used to keep track of entries placed into an
indicator is set, then there should be a MTU buffer ready to 65 M1U buffer. The buffer may be considered full when a
receive this packet and the procedure continues at state predetermined number of entries (e.g., four) arc stored. lo an
1908. alternative embodiment of the invention entries in an Ml1J

EX 1017 Page 311

US 6,483,804 Bl
89 90

buffer may or may not be allocated a certain amount of descriptor if the header buffer is full. However, the header
space, in which case DMA engine 120 may calculate how buffer may not be tested to see if it is full until a later state
much storage space within the buffer has yet to be used. If of this procedure. In such an embodiment of the invention,
no space remains, or if less than a predetermined amount of the release header flag may be set (or cleared) at that time.
space is still available, the buffer may he considered full. s A release data flag may be cleared (e.g., not set), because

If the MIU buffer is full, in state 1914 the buffer is there is no separate data portion being conveyed to the host
invalidated to ensure that it is not used again. Illustratively, computer.
this involves setting the M1U buffer table's validity indi- The descriptor type field is changed to a value indicating
cator to invalid and communicating this status to the host that DMA engine 120 1111DSfcrrcd a non-re-asscmbleable
computer. In this embodiment of the invention a release data 10 packet into host memory. Also, a predetermined value (e.g.,
flag in the descriptor is set. The illustrated procedure then zero) is stored in the descriptor's ownership indicator field
ends with end state 1999. to indicate that DMAengine 120 is releasing a packet to the

If the M1U buffer is not full, then in state 1916 the next host computer and turning over ownership of the descriptor.
address field of MIU buffer table 1008 is updated to indicate In one embodiment of the invention the ownership indicator
the address at which to store the next packet. The illustrated 1s is not set until end state 1999 below.
procedure then ends with end state 1999. In state 1928 it :is determined whether the header buffer is

In state 1920 (reached from state 1900), it has been full. In this embodiment of the invention, where each buffer
determined that the present packet is a small packet suitable is eight kilobytes in size and entries in the header buffer are
for storage in a header buffer. Thereforc, DMA engine 120 no larger than 256 bytes, a COUDter is used to keep track of
(e.g., DMA manager 1002) determines whether there is a 20 entries placed into each new header buffer. The buffer is
valid (e.g., active) header buffer. Illustratively, this determi- considered full when thirty-two entries are stored
nation is made by examining validity indicator 1116 of If the buffer is full, in state 1930 the header buffer is
header buffer table 1006, which manages the active header invalidated to ensure that it is not used again. Illustratively,
buffer, If the validity indicator is set, then there :is a header this involves 11Ctting the header buffer table's validity indi-
buffer ready to receive this packet and the procedure con- 2S cator to invalid and communicating this statns to the host
tinues at state 1924. computer. In this embodiment of the invention a release

Otherwise, in state 1922 a new header buffer is prepared header flag in the descriptor :is set. The illustrated procedure
or initialized for storing small packets and headers of then ends with end state 1999.
re-assembled packets. Illustratively, this initialization pro- If the header buffer is not fill, then in state 1932 the next
ccss involves obtaining a free ring descriptor from a C11.Che 30 address field of header buffer table 1006 is updated to
maintained by free ring manager 1012 and retrieving its indicate the address at which to storc the ncn header or
reference to an empty buffer. If the cache is empty, new small packet. The illustrated procedurc then ends with end
descriptors may be retrieved from the free descriptor ring in state 1999.
host memory to replenish the cache. In state 1940 (reached from state 1902), it has been

When a new descriptor is obtained from the cache or from 35 determined that the packet is a jumbo packet (e.g., that it is
the fi:ce descriptor ring, the buffer identifier (e.g., pointer, greater than 1522 bytes in size). Io this embodiment of the
address, index) contained in the descriptor is stored in a free invention a jumbo packet's data portion is stored in a jumbo
buffer array. The buffer's initial address or some other buffer. Its header is also stored in the jumbo buffer unless
indicator of the first storage location or cell in the buffer is splitting of jumbo packets is enabled, in which case its
placed in next address field 1114 of header buffer table 1006. 40 header is stored in a header buffer. DMA engine 120 thus
Further, the buffer identifier's position within the free buffer determines whether a valid (e.g.. acti~) jumbo buffer eirists.
array is stored in header buffer index 1112 and validity Illustratively, this determination is made by examining
indicator 1116 is set to a valid state. validity indicator 1136 of jumbo buffer table 1010, which

In state 1924 the packet is copied or transferred (e.g., via manages an active jumbo buffer. If the validity indicator is
a DMA operation) into the header buffer at the address or 4S set, then there is a jumbo buffer ready to receive this packet
location specified in the next address field of header buffer and the procedure continues at state 1944.
table 1006. As described above, in one embodiment of the Otherwise, in state 1942 a new jumbo buffer is prepared
invention pad bytes may he inserted before the header in or initialized for storing a non-re-assemble able packet that is
order to align the beginning of the packet's layer three larger than 1522 bytes. Illustratively, this initialization pro-
protocol (e.g., IP) header with a sixteen-byte boundary. In so ccss involves obtaining a free ring descriptor from a cache
addition, the packet may be positioned within a cell of maintained by free ring manager 1012 and retrieving its
pn:determined size (e.g., 256 bytes) within the buffi:r. reference to an empty buffer. If the cache is empty, new

In state 1926, a completion descriptor is written or con- descriptors may be retrieved from the free descriptor ring in
figured to provide necessary information to the host com- host memory to replenish the cache.
puter (e.g., a software driver) for processing the packet. In ss When a new descriptor is obtained from the cache or from
particular, the header buffi:r index (e.g. the index of the free the free descriptor ring, the buffer identifier (e.g., pointer,
buffer array element that contains the header buffer's address, index) contained in the descriptor is stored in a free
identifier) and offset are placed in the descriptor, in header buffer array. The buffer's initial address or other indication
index and header offset fields, respectively. Illustratively, of the first storage location within the buffer is placed in next
this offset serves to identify the first byte of the packet, the 60 address field 1134 of jumbo buffer table 1010. The position
first pad byte preceding the packet or the location of the of the buffer identifier within the free buffer array is stored
packet's cell within the buffer. The size of the packet is also in jumbo buffer index 1132, and validity indicator 1136 is set
stored in the descriptor, illustratively within a header size to a valid state.
field. A data size field within the descriptor may be set to Then, in state 1944, DMA engine 120 determines whether
zero to indicate that the entire packet was placed in the 65 splitting of jumbo buffers is enabled. If enabled, the header
header buffer (e.g., no separate data portion was stored in of a jumbo packet is stored in a header buffer while the
another buffer). A rcleasc header flag may be set in the packet's data is stored in one or more jumbo buffers. If not

EX 1017 Page 312

US 6,483,804 Bl
91 92

enabled, the entire packet will be stored in one or more 1950 but this descriptor must reflect that two jumbo buffers
jumbo buffers. lliustratively, splitting of jumbo packets is were used to store the packet. lbus, the jumbo buffer index
enabled or disabled according to the configuration of a (e.g., the index, within the free buffer array, of the array
programmable indicator(e.g., flag. bit, register) that is set by element containing the header buffer's buffer identifier) and
software operating on the host computer (e.g., a device s the offset of the first byte of the packet within the first jumbo
driver). If splitting is enabled, the illustrated procedure buffer arc placed in the descriptor, as above. The size of the
continues at state 1960. Otherwise, the procedure proceeds packet (e.g., the packet length) is stored in a data size field.
to state 1946. . . A header size field may be cleared (e.g., a :zero is stored)

In stat~ 1946? DMA c!1gmc 120 dctemnncs whe~r the to indicate that the header buffer was not used (e.g. the
packet will fit 10to one Jumbo buffer. For example, m an , '

bod . 1 f th · ,: · ight kilob te if 10 header was not stored separately from the packet s data).
em 1IIICD o e 10venuoo US1Dg e Y pages, Be th · k h ad h ad · d and
the packet is laxger than eight kilobytes a second jumbo cause ere JS no separate pac et c er, e er m ex
buffer will be needed to store the additional contents. If the header ~ffset_fields may or may not be used (e.g., the values
packet is too laxge the illustrated procedure continues at stored 10 theu fields do not matter).
state 1952. ' A release header flag is cleared and a release data flag is

Otherwise, in state 1948 the packet is copied or tram- 15 :-et to indicate that no more data will be p~aced in these
ferred (e.g., via a DMA operation) into the current jumbo Jumbo buffers (e.g., because they are bemg released).
buffer, at the location specified in the next address field 1134 Further, a split packet flag is set to indicate that a second
of jumbo buffer table 1010. When the packet is transferred jumbo buffer was used, and the index (within the free buffer
intact like this, padding may be added to align a header array) of the buffer identifier for the second buffer is stored
portion of the packet with a sixteen-byte boundary. One 20 in a next index field.
skilled in the art will appreciate that the next address field The descriptor type field is changed to a value indicating
may not need to be updated to account for this new packet that DMA engine 120 transferred a noo-re-assemblcable
because the jumbo buffer will be released. In other words, in packet into bost memory. And, a predetermined value (e.g.,
one embodiment of the invention a jumbo buffer is only used zero) is stored in the descriptor's ownership indicator field
once (e.g., to store one packet or a portion of one packet). In 25 to indicate that DMA engine 120 is releasing a packet to the
an alternative embodiment of the invention a. jumbo buffer host computer and turning over ownership of the descriptor.
may store portions of two or more packets, in which case In one embodiment of the invention the ownership indicator
next address field 1134 may need to be updated. is not changed until end state 1999 below.

In state 1950, a completion descriptor is written or con- In state 1958, the jumbo buffer's entry in jumbo buffer
figured to release the jumbo buffer a.ad to provide informa- 30 table 1010 is invalidated (e.g., validity indicator 1136 is set
tion to the host computer for processing the packet. The to invalid) to ensure that it is not used again. In the procedure
jumbo buffer index (e.g., the index, within the free buffer described above, a.jumbo packet was stored in, at most, two
arra.y, of the buffer identifier that corresponds to the jumbo jumbo buffers. In an alternative embodiment of the
buffer) and the offset of the first byte of the packet within the invention, a jumbo buffer may be stored across a.ny number
jumbo buffer a.re placed in the descriptor, in data index and 35 of buffers. The descriptor that is configured to report the
data size fields, respectively. The size of the packet (e.g., the transfer of such a packet is constructed accordingly, as will
packet length) is stored in a data size field. be obvious to one skilled in the art.

A header size field may be cleared (e.g., a Zlll'O is stored) After state 1958, the illustrated procedure ends at end
to indicate that the header bu.lfcr was not used (e.g., the state 19911.
header was not stored separately from the packet's data). "° In state 1960 (reached from state 1944), it has been
Because the packet was stored intact, header index and determined that the present jumbo packet will be split to
header offset fields may or may not be used (e.g., the values store the pac.ket header in a header bulfcr a.ad the packet data
stored in their fields do not matter). A release header flag is in one or more jumbo buffers. Therefore, DMA engine 120
cleared and a release data flag is set to indicate that oo more (e.g., DMA manager 1002) first determines whether there is
data will be placed in this jumbo buffer (e.g., because it is 45 a valid (e.g., active) header buffer. Illustratively, this deter-
being released). mination is made by examining validity indicator 1116 of

The descriptor type field is changed to a value indicating header buffer table 1006, which manages the active header
that DMA engine 120 transferred a non-re-asscmbleable buffer. If the validity indicator is set, then there is a header
packet into bost memory. Finally, 1. predetermined value buffer ready to receive this packet and the procedure con-
(e.g., zero) is stored in the descriptor's ownership indicator 50 tinues at state 1964.
field to indicate that DMA engine 120 is releasing a packet Otherwise, in state 1962 a new header buffer is prepared
to the host computer and turning over ownership of the or initialized for storing small packets and headers of other
descriptor. In one embodiment of the invention, the owner- packets. lliu.strativcly, this initialization process involves
ship indicator is not changed until end state 1999 below. obtaining a free ring descriptor from a cache maintained by
After state 1950, the illustrated procedure resumes at state 55 free ring manager 1012 and retrieving its reference to an
1958. In one alternative embodiment of the invention, OMA empty buffer. If the cache is empty, new descriptors may be
engine 120 issues an interrupt or 115CS some other means, retrieved from the free descriptor ring in host memory to
possibly not until cod state 1999, to alert the host computer replenish the cache.
that a descriptor is being released When a new descriptor is obtained from the cacbe or from

In state 1952, a first portion of the packet is stored in the 60 the free descriptor ring, the buffer identifier (e.g., pointer,
prci;ent (e.g., valid) jumbo buffer, at the location identified in address, index) contained in the descriptor is stored in a free
the buffer's next address field 1134. Because the whole buffer array. The buffer's initial address or some other
packet will not fit into this buffer, in state 19S4 a new jumbo indication of the first storage location or cell in the buffer is
buffer is prepared and the remainder of the packet is stored placed in next address field 1114 of header buffer table 1006.
in that buffer. 65 The index or position of the buffer identifier within the free

In state 1956, a completion descriptor is written or con- buffer array :is stored in header buffer index 1112, and
figured. The contents arc similar to those described in state validity indicator 1116 is set to a valid state.

EX 1017 Page 313

US 6,483,804 Bl
93

In state 1964 the packet's header is copied or transferred
(e.g., via a DMA operation) into the header buffer at the
address or location specified in the next address field of
header buffer table 1006. As descnbed above, in one
embodiment of the invention pad bytes may be inserted
before the header in order to align the beginning of the
packet's layer three protocol (e.g., IP) header with a sixteen
byte boundary. In addition, the header may be positioned
within a cell of predetermined size (e.g., 256 bytes) in the
buffer.

In state 1966, DMA engine 120 determines whether the
packet's data (e.g., the TCP payload) will fit into one jumbo
buffer. If the packet is too luge to fit into one (e.g., the
current jumbo buffer), the illustrated procedure continues at
state 19n.

In state 1968, the packet's data is copied or transferred
(e.g., via a DMA operation) into the current jumbo buffer, at
the location specified in the next addre!S field 1134 of jumbo
buffer table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo buffer will be
released. In other words, in one embodiment of the invention
a jumbo buffer is only used once (e.g., to store one packet
or a portion of one packet).

In state 1970, a completion descriptor is written or con
figured to release the jumbo buffer and to provide informa
tion to the host computer for processing the packeL The
header buffer index (e.g. the free buffer array position of the
buffer identifier corresponding to the header buffer) and
offset of the packet's header are placed in the descriptor in
header index and header offset fields, respectively.
Illustratively, this offset serves to identify the first byte of the
header, the first pad byte preceding the header or the cell in
which the header is stored. The jumbo buffer index (e.g., the
index within the free buffer array of the buffer identifier that
references the jumbo buffer) and the offset of the first byte
of the packet's data within the jumbo buffer are placed in
data index and data offset fields, respectively. Header size
and data size fields are used to store the size of the packet's
header (e.g., the offset of the payload within the packet) and
data (e.g., payload size), respectively.

A release header flag may be set in the descriptor if the
header buffer is full. However, the header buffer may not be
tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release header
flag may be set (or cleared) at that time. A release data flag
is also set, because no more data will be placed in the jumbo
buffer (e.g., it is being released to the host computer).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Also, a predetermined value (e.g.,
zero) is stored in the descriptor's ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not set until end state 1999 below.

After state 1970, the illustrated procedure proceeds to
state 1978.

In state 1972, a first portion of the packet's data is stored
in the present (e.g., valid) jumbo buffer, at the location
identified in the buffer's next address field ll34. Because all
of the packet's data will not fit into this buffer, in state 1974
a new jumbo buffer is prepared and the remainder of the
packet is stored in that buffer.

In state 1976, a completion descriptor is written or con
figured. The contents are similar to those described in states
1970 but this descriptor must reflect that two jumbo buffers

94
were used to store the packet. The header buffer index (e.g.
the free buffer array element that contains the header buffer's
identifier) and offset of the header are placed in the descrip
tor in header index and header offset fields, respectively. The

5 jumbo buffer index (e.g., the free buffer array element
containing the jumbo buffer's buffer identifier) and the offset
of the first byte of the packet's data within the jumbo buffer
are placed in data index and data offset fields, respectively.
Header size and data size fields are used to store the size of

10
the packet's header (e.g., the offset of the payload within the
packet) and data (e.g., payload size), respectively.

A release header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may

15 be set (or cleared) at that time. A release data flag is also set,
because no more data will be placed in the jumbo buffer
(e.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a second jumbo buffer
was used, and the position or index within the free buffer

20 array of the second buffer's buffer identifier is stored in a
next index field.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value

25 (e.g., zero) is stored in the descriptor's ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention the owner
ship indicator is not set until end state 1999 below. In an

30 alternative embodiment of the invention DMA engine 120
issues an interrupt or uses some other signal to alert the host
computer that a descriptor is being released.

In state 1978, the jumbo buffer's entry in jumbo buffer
table 1010 is invalidated (e.g., validity indicator 1136 is set

35 to invalid) to en.sun: that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodiment of the invention
a jumbo buffer may be stored acro!S any number of buffers.
The descriptor that is configured to report the transfer of

'40 such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1980, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header

45 buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1982 the header buffer is
50 invalidated to ensure that it is not used again. illustratively,

this involves setting the header buffer table's validity indi
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptor is set. The illustrated procedure

55 then ends with end state 1999.
If the header buffer is not full, then in state 1984 the next

address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet. The illustrated procedure then ends with end

60 state 1999.
In end state 1999, a descriptor may be turned over to the

host computer by storing a particular value (e.g., zero) in the
descriptor's ownership indicator field as descnbed above.
Illustratively, the host computer (or software operating on

65 the host computer) detects the change and understands that
DMAengine 120 is returning ownership of the descriptor to
the host computer.

EX 1017 Page 314

I
US 6,483,804 Bl

95
A Method of Transferring a Packet with Operation Code 6
or Operation Code 7

HGS. 20A-20B depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera
tion code 6 or 7 to a host memory buffer. As reflected in 5

TABLE 1, operation codes 6 and 7 may indicate that a
packet is compatible with the protocols pre-selected for NIC
100 and is the first packet of a new flow. The difference
between these operation codes in this embodiment of the
invention is that operation code 7 is used when an existing 10

flow is to be replaced (e.g., in flow database no and/or flow
re-assembly buffer table 1004) by the new flow. With
operation code 6, in contrast, no flow needs to be tom down.
For both codes, however, a new flow is set up and the
associated packet's data may be re-assembled with data 15

from other packets in the newly established flow. Because
the packet data is to be re-assembled, the packet's header
should be stored in a header buffer and its data in a new flow
re-assembly buffer.

As described in a previous section, the flow that is tom 20

down to make room for a new flow (in the case of operation
code 7) may be the least recently used flow. Because flow
database no and flow re-assembly buffer table 1004 contain
only a limited number of entries in the presently dcscnbed
embodiment of the invention, when they arc full and a new 25

flow arrives an old one must be tom down. Choosing the
least recently active flow for replacement is likely to have
the least impact on nctwmk traffic through NIC 100. In one
embodiment of the invention OMA engine 120 tears down
the flow in flow re-assembly buffer table 1004 that has the 30

same flow number as the flow that has been replaced in flow
database no.

In state 2000, DMA engine 120 determines whether there
is a valid (e.g., active) header buffer. lliustrativcly, this
determination is made by examining validity indicator ill6 35

of header buffer table 1006, which manages the active
header buffer. If the validity indicator is set, then there is a
header buffer ready to receive this packet and the procedure
continues at state 2004.

Otherwise, in state 2002 a new header buffer is prepared 40

or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new 45

descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free 50

buffer array. The buffer's initial address or some other
indication of the first storage location or cell in the buffer is
placed in next address field ll4 of header buffer table 1006.
The position or index of the buffer identifier within the free
buffer array is stored in header buffer index ll12, and 55

validity indicator ll6 is set to a valid state.

96
to make room for a new flow. This requires the release of any
flow re-assembly buffer that may be associated with the flow
being tom down.

Thus, in state 2006 it is determined whether a flow
re-assembly buffer is valid (e.g., active) for a flow having the
flow number that was read from control queue 118 for this
packet. As explained in a previous section, for operation
code 7 the flow number represents the entry in flow database
110 (and flow re-assembly buffer table 1004) that is being
replaced with the new flow. DMAcnginc 120 thus examines
the validity indicator in the flaw's entry in flow re-assembly
buffer table 1004. Illustratively, if the indicator is valid then
there is an active buffer storing data from one or more
packets in the flow that is being replaced. If there is a valid
flow re-assembly buffer for this flow, the illustrated proce
dure continues at state 2008. Otherwise, the procedure
proceeds to state 2010. It will be understood that the
illustrated procedure will normally proceed to state 2008 for
operation code 7 and state 2010 for operation oode 6.

In state 2008, a completion descriptor is written or con
figured to release the replaced flaw's re-assembly buffer. In
particular, the flow re-assembly buffer index (e.g., the index
within the free buffer array of the flow re-assembly buffer's
buffer identifier) is written to the descriptor. In this embodi
ment of the invention, no offset needs to be stored in the
descriptor's data offset field and the data size field is set to
zero because no new data was stored in the buffer that is
being released. Similarly, the header buffer is not yet being
released, and therefore the header index and header offset
fields of the descriptor need not be used and a zero may be
stored in the header size field.

The descriptor's release header flag is cleared (e.g., a zero
is stored in the flag) because the header buffer is not being
released. The ICleasc data flag is set (e.g., a one is stoICd in
the flag), however, because no more data will be placed in
the released flow re-assembly buffer. Further, a release flow
flag in the descriptor is set to indicate that the flow associ
ated with the released flow re-assembly buffer is being tom
down.

The descriptor type field is changed to a value indicating
that DMAcnginc 120 is releasing a stale flow buffer (e.g.,
a flow re-assembly buffer that has not been used for some
time). Finally, the descriptor used to release the replaced
flaw's re-assembly buffer and terminate the associated flow
is turned over to the host computer by changing its owner
ship indicator field (e.g., from one to zero). In one alternative
embodiment of the invention, OMA engine 120 issues an
interrupt or employs some other means of alerting the host
computer that a descriptor is being released.

In state 2010, a new flow re-assembly buffer is prepared
for the flow that is being set up. Illustratively, a free ring
descriptor is obtained from a cache maintained by free ring
manager 1012 and its buffer identifier (e.g., a reference to an
empty memory buffer) is retrieved. If the cache is empty,
new descriptors may be retrieved from the free descriptor
ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer's initial address or other indication
of the first storage location in the buffer is placed in next
address field 1104 of the flaw's entry in flow re-assembly
buffer table 1004. The flaw's entry in the table may be
recognized by its flow number. The position or index of the

In state 2004 the packet's header is copied or transferred
into the header buffer at the address or location specified in
the next address field of header buffer table 1006. As
descnbcd above, in one embodiment of the invention pad 60

bytes may be inserted before the header in order to align the
beginning of the packet's layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the pack
et's header may be positioned in a cell of predetermined size
(e.g., 256 bytes) within the buffer. 65 buffer identifier within the free buffer array is stored in

re-assembly buffer index 1102, and validity indicator 1106 is
set to a valid state.

As discussed above, operation code 7 indicates that an old
flow is to be tom down in flow re-assembly buffer table 1004

EX 1017 Page 315

...

US 6,483,804 Bl
97 98

In state 2012, the packet's data is copied or transfem:d The processing associated with a packet having operation
(e.g., via a DMA operation) into the address or location codes 6 and7 then ends with endstate20!11Un this end state,
specified in the next address :field of the flow's entry in flow the descriptor used for this packet (e.g., the descriptor that
re-assembly buffer table 1004. was configured in state 2014) is turned over to the host

In state 2014, a completion descriptor is written or con- s computer by changing its ownership indicator field (e.g.,
figured to provide information to the host computer for from one to zero). In one alternative embodiment of the
processing the packet. In particular, the header buffer index invention, DMA engine 120 issues an interrupt or employs
(e.g., the location or position within the free buffer array of other means (e.g., such as the descriptor's descriptor type
the buffer identifier that references the header buffer) and the :field) to alert the host computer that a descriptor is being
offset of the packet's header within the header buffer are 10 released.
placed in the descriptor. Illustratively, the offset identifies One Embodiment of a Packet Batching Module
the :first byte of the header, the :first pad byte preceding the
header or the location of the header's cell in the header FIG. 21 is a diagram of dynamic packet batching module
buffer. 122 in one embodiment of the invention. In this

Toe flow re-assembly buffer index (e.g., the location or embodiment, packet batching module 122 alerts a host
position, within the free buffer array, of the buffer identifier 15 computer to the transfer, or impending transfer, of multiple
that references the flow re-assembly buffer) and the offset of packets from one oommunication flow. The related packets
the packet's data within that buffer are also stored in the may then be processed through an appropriate protocol stack
descriptor. It will be recognized, however, that the offset collectively, rather than processing one at a time. As one
reported for this packet's data may be zero, because the skilled in the art will recognize, this increases the efficiency
packet data is stored al the very beginning of the new flow 20 with which network traffic may be handled by the host
re-assembly buffer. computer.

Toe size of the packet's data (e.g., the size of the packet's In the illustrated embodiment, a packet is transfem:d from
TCP payload) and header(e.g., the offset of the TCP payload NIC 100 to the host computer by DMAengine 120 (e.g., by
within the packet) are stored in data size and header size copying its payload into an appropriate buffer). When a
fields, respectively. The descriptor type field is changed to a 2S packet is tra.nsfem:d, packet batching module 122 deter-
value indicatiug that DMA engine 120 transferred a flow mines whether a related packet (e.g., a packet in the same
packet into host memory. A release header flag is set if the flow) will soon be transferred as well. In particular, packet
header buffer is full but a release data flag is not set, because batching module 122 examines packets that are to be trans-
more data will be placed in this flow re-assembly buffer. The ferred after the present packet. One .skilled in the a.rt will
header buffer may not be tested to see if it is full until a later 30 appreciate that the higher the rate of packet arriva.1 at NIC
state of this procedure. In such an embodiment, the release 100, the more packets that arc likely to await transfer to a
header flag may be set (or cleared) at that time. host computer at a given time. The more packets that await

In one embodiment of the invention a release flow flag transfer, the more packets that may be examined by the
may also be set, depending upon dynamic packet batching dynamic packet batching module and the greater the benefit
module 122. For example, if the packet batching module 35 it may provide. In particular, as the number of packets
determines that another packet in the same flow will soon be awaiting transfer increases, packet batching module 122
transferred to the host computer, the release flow flag will be may identify a greater number of related packets for collec-
cleared (e.g., a zero will be stored). This indicates thai the tive processing. As the number of packets processed
host computer should await the next flow packet befon: together increases, the amount of host processor time
processing this one. By collectively p!UCCS5ing multiple 40 required to process each packet decreases.
packets from a single flow, the packets can be processed Thus, if a n:lated packet is found the packet batching
more efficiently and less processor time will be required for module alerts the host computer so that the packets may be
netwoik traffic. If, however, no other packets in the same processed a.s a group. As descnbed in a previous section, in
flow are identified, the release flow flag may be set to one embodiment of the invention dynamic packet batching
indicate that the host computer should process the flow 45 module 122 a.lerts the host computer to the availability of a
packets received so far, without waiting for more. related packet by clearing a release flow flag in a completion

In state 2016, the flow's entry in flow re-assembly buffer descriptor associated with a transferred packet. The flag
table 1004 is updated. In particular, next address field 1104 may, for example, be cleared by DMA engine 120 in
is updated to identify the location in the re-assembly buffer response to a signal or alert from dynamic packet batching
at which the next flow packet's data should be stored. so module 122.

In state 2018, it is determined whether the header buffer In contrast, in an alternative embodiment of the invention
is full. In this embodiment of the invention, where each dynamic packet batching module 122 or DMA engine 120
buffer is eight kilobytes in size and entries in the header may alert the host computer when no related packets are
buffer are no larger than 256 bytes, a counter may be used found or when, for some other reason, the host processor
to keep track of entries pla.ccd into each new header buffer. 55 should not delay processing a transferred packet. In
The buffer is considered full when thirty-two entries arc particular, a release flow flag may be set when the host
stofCd. computer is not expected to receive a packet related to a

If the buffer is full, in state 2020 the header buffer is transferred packet in the near future (e.g., thus indicating
invalidated to ensure that it is not used again. Illustratively, that the associated flow is being released or torn down). For
this involves setting the header buffer table's validity indi- 60 example, it may be determined that the transferred packet is
ca.tor to invalid a.nd communicating this status to the host the last packet in its flow or that a particular packet doesn't
computer. In this embodiment of the invention, a release even belong to a flow (e.g., this may be reflected in the
header flag in the descriptor is set. packet's associated operation code).

If the header buffer is not full, then in state 2022 the next With reference now to FIG. 21, packet batching module
address field of header buffer table 1006 is updated to 65 122 in one embodiment of the invention includes memory
indicate the address at which to store the next header or 2102 and controller 2104. Illustratively, each entry in
small packet. memory 2102, such as entry 2106, comprises two fields:

EX 1017 Page 316

US 6,483,804 Bl
99 100

flow number 2108 and validity indicator 2110. In alternative In the illustrated embodiment of the invention, an entry's
embodiments of the invention, other information may be flow number is received from a register in which it was
stored in memory 2102. Read pointer 2112 and write pointer placed for temporary storage. A packet's flow number may
2114 serve as indices into memory 2102. be temporarily stored in a register, or other data structure, in

In the illustrated embodiment, memory 2102 is an asso- 5 order to f.acilitate its timely delivery to packet batching
ciative memory (e.g., a CAM) configured to store up to 256 module 122. Temporary storage of the flow number also
entries. Each entry corresponds to and represents a packet allows the How database manager to turn its attention to a
stored in packet queue 116. As described in a previous later packet. Allow IIlllllber may, for example, be provided
section, packet queue 116 may also contain up to 256 to dynamic packet batching module 122 at nearly the same
packets in one embodiment of the invention. When a packet 10 time that the associated packet is stored in packet queue 116.
is, or is about to be transferred, by DMA engine 120 from
packet queue 116 to the host computer, memory 2102 may illustratively, the flow number may be stored in the register
be searched for an entry having a flow number that matches by flow database manager 108 or by IPP module 104. In an
the flow number of the transfi:rred packel Because memory alternative embodiment, the flow number is received from
2102 is a CAM in this embodiment, all entries in the control queue 118 or some other module of NIC 100.
memory may be searched simultaneously or nearly simul- 15 In the illustrated embodiment of the invention, memory
taneously. In this embodiment, memory 2102 is imple- 2102 contaios an entry corresponding to each packet in
mented in hardware, with the entries logically arranged as a packet queue 116. When a packet in the packet queue is
ring. In alternative embodiments, memory 2102 may be transferred to a host computer (e.g., when it is written to a
virtually any type of data structure (e.g., array, table, list, re-assembly buffer), controller 2104 invalidates the memory
queue) implemented in hardware or software. In one par- 20 entry that corresponds to that packet. Memory 2102 is then
ticular alternative embodiment, memory 2102 is imple- searched for another entry having the same flow number as
mented as a RAM, in which case the entries may be the transfi:rred packet. Afterwards, when a new packet is
examined in a serial manner. stored in packet queue 116, perhaps in place of the trans-

The maximum of 256 entries in the illustrated embodi- ferred packet, a new entry is stored in memory 2102.
ment matches the maximum number of packets that may be 25 In an alternative embodiment of the invenlion, memory
stored in a packet queue. Because the depth of memory 2102 2102 may be configured to bold entries for only a subset of
matches the depth of the packet queue, when a packet is the maximum number of packets stored in packet queue 116
stored in the packet queue its flow number may be auto- (e.g .. justre-assembleablepackets).Entriesinmemory2102
matically stored io memory 2102. Although the same num- may still be populated when a packet is stored io the packet
ber of entries are provided for in this embodiment, io an 30 queue. However, if memory 2102 is full when a new packet
alternative embodiment of the invention memory 2102 may is received, then CICation of an entry for the new packet must
be configured to hold a smaller or greater number of entries wait until a packet is transferred aod its entry in memory
than the packet queue. And. as discussed in a previous 2102 invalidated. Therefore, in this alternative embodiment
section, for each packet stored in the packet queue, related entries io memory 2102 may be created by extracting
information may also be stored in the control queue. 35 information from entries in control queue 118 rather than

In the illustrated embodiment of the invention, How packet queue 116. Controller 2104 would therefore continu-
number 2108 is the index into flow database 110 of the flow ally attempt to copy information from entries in control
comprising the corresponding packet As descnl,ed above, in queue 118 into memory 2102. The function of populating
one embodiment of the invention a flow includes packets memory 2102 may be performed independently or semi-
carrying data from one datagram sent from a source enlity to '40 independently of the function of actually comparing the flow
a destination entity. illustratively, each related packet has the numbers of memory entries to the flow number of a packet
same flow key and the same flow number. Flow number being transferred to the host computer.
2108 may comprise the index of the packet's flow key in In this alternative embodiment a second read pointer may
flow database 110. be used to index control queue 118 to assist in the population

Validity indicator 2110 indicates whether the ioformation 45 of memory 2102. In particular, the second read pointer may
stored in the entry is valid or current. In this embodiment, be used by packet batching module 122 to find aod fetch
validity indicator 2110 may store a first value (e.g., one) entries for memory 2102. filustratively, if the second, or
when the entry contains valid data, and a secood value (e.g., "lookahead" read pointer references the same entry as the
zero) when the data is invalid. For example, validity indi- control queue's write pointer, then it could be determined
cator 2110 in entry 2106 may be set to a valid state when the so that no new entries were added to control queue US since
corresponding entry in packet queue 116 contains a packet the last check by controller 2104. Otherwise,, as long as there
awaiting transfer to the host computer and belongs to a flow is an empty (e.g., invalid) entry in memory 2102, the
(e.g., which may be indicated by the packet's operation necessary ioformation (e.g., flow number) may be copied
code). Similarly, validity indicator 2110 may be set to an into memory 2102 for the packet corresponding to the entry
invalid state when the entry is no longer needed (e.g., when 55 referenced by the lookahead read pointer. The lookahead
the corresponding packet is transferred to the host read pointer would then be incremented.
computer). Returning now to HG. 21, read pointer 2112 of dynamic

Flow validity indicator 2110 may also be set to an invalid packet batching module 122 identifies the current entry in
state when a corresponding packet's operation code indi- memory 2102 (e.g., the entry corresponding to the packet at
cates that the packet does not belong to a flow. It may also 60 the front of the packet queue or the nen packet to be
be set to an invalid state when the corresponding packet is transferred). Illustratively, this pointer is incremented each
a control packet (e.g., contains no data) or is otherwise time a packet is transferred to the host computer. Write
non-re-assembleable (e.g., because it is out of sequence, pointer 2114 identifies the posilion at which the next entry
incompauble with a pre-selected protocol, has an unex- in memory 2102 is to be stored. Illustratively, the write
pected control flag set). Validity indicator 2110 may be 6S pointer is incremented each time an entry is added to
managed by controller 2104 during operation of the packet memory 2102. One manner of collectively processing head-
batching module. ers from related packets is to form them into one "super-

EX 1017 Page 317

..,

US 6,483,804 Bl
101 102

"header. In this method, the packets' data portions are stored shortly after or before the packet is transferred. Because
separately (e.g., in a separate memory page or buffer) from memory 2102 may be associative in nature, the search
the super-header. operation may be conducted quickly, thus introducing little,

Illustratively, a super-header comprises one combined if any, delay into the transfer process.
header for each layer of the packets' associated protocol 5 FIG. 22A may be considered a method of searching for a
stack (e.g., one TCP header and one IP header). To form each related packet, while FIG. 22B may be considered a method
layer's portion of a super-header, the packet's individual of populating the dynamic packet batching module's
headeri; may be merged to make a regular-srz.ed header memory.
whose fields accurately reflect the assembled data and FIGS. 22A-22B each reflect one "cycle" of a dynamic
combined headers. For example, merged header fields relat- 10 packet batching operation (e.g., one search and creation of

one new memory entry). Illustratively, however, the opera-
ing to payload or header length would indicate the size of the lion of packet batching module 122 runs continuously. That
aggregated data or aggregated headers, the sequence number is, at the end of one cycle of operation another cycle
of a merged TCP header would be set appropriately, etc. The immediately begins. In this manner, controller 2104 strives
super-header portion may then be processed through its to ensure memory 2102 is populated with entries for packets
protocol stack similar to the manner in which a single 15 as they are stored in packet queue 116. If memory 2102 is
packet's header is processed. not large enough to store an entry for each packet in packet

This method of collectively processing related packets' queue 116, then controller 2104 attempts to keep the
headers (e.g., with "super-"headers) may require modifica- memory as full as possible and to quickly replace an
tion of the instructions for processing packets (e.g., a device invalidated entry with a new one.
driver). For example, because multiple headers are merged 20 State 2200 is a start state for a memory search cycle. In
for each layer of the protocol stack, the software may require state 2202, it is determined whether a packet (e.g., the packet
modification to recogime and handle the super-headers. In at the front of the packet queue) is being transferred to the
one embodiment of the invention the number of headers host computer. This determination may, for example, be
folded or merged into a super-header may be limited In an based on the operation of DMAengine 120 or the status of
alternative embodiment of the invention the headers of all :ZS a pointer in packet queue 116 or control queue 118.
the aggregated packets, regardless of number, may be com- Illustratively, state 2202 is initiated by DMA engine 120 as
bincd. a packet is copied into a buffer in the host computer. One

In another method of collectively processing related pack- purpose of state 2202 is simply to determine whether
els' header portions,, packet data and headers may again be memory 2102 should be searched for a packet related to one
stored separately (e.g., in separate memory pages). But, 30 that was, will be, or is being transferred. Until a packet is
instead of combining the packets' headers for each layer of transferred, or about to be transfemd, the illustrated proce-
tbe appropriate protocol stack to foan a super-header, they dure continues in state 2202.
may be submitted for individual processing in quick sue- When, however, it is time for a search to be conducted
cession. For example, all of the packets' layer two headers (e.g., a packet is being transferred), the method continues at
may be processed in a rapid sequence-one after the other- 35 state 2204. In state 2204, the entry in memory 2102 corre-
then all of the layer three headers, etc. In this manner, packet sponding to the packet being transferred is invalidated.
processing instructions need not be modified, but headers Illustratively, this consists of storing a predetermined value
are still processed more efficiently. In particular, a set of (e.g., zero) in validity indicator 2110 for the packet's entry.
instructions (e.g., for each protocol layer) may be loaded In a present embodiment of the invention read pointer 2112
once for all related packets rather than being separately 40 identifies the entry corresponding to the packet to be trans-
loaded and executed for each packet. ferred. As one skilled in the art will n:cognu.e, one reason for

As discussed in a previous section, data portions of related invalidating a transf.crred packet's entry is 50 that when
packets may be transferred into storage areas of predeter- memory 2102 is searched for an entry associated with a
mined size (e.g., memory pages) for efficient transfer from packet related to the transferred packet, the transfened
the host computer's kernel space into application or user 45 packet's own entry will not be identified
space. Where the transferred data is of memory page size, In one embodiment of the invention the transferred pack-
the data may be transferred using highly efficient "page- et's flow number is copied into a register (e.g., a hardware
flipping," wherein a full page of data is provided to appli- register) when dynamic packet batching module 122 is to
cation or user memory space. search for a related packet. This may be particularly helpful

FIGS. 22A-22B present one method of dynamic packet 50 (e.g., to assist in comparing the flow number to flow
batching with packet batching module 122. In the illustrated numbers of other packets) if memory 2102 is implemented
method, memory 2102 is populated with flow numbers of as a RAM instead of a CAM.
packets stored in packet queue 116. In particular, a packet's In state 2206, read pointer 2112 is incremented to point to
flow number and operation code are retrieved from control the next entry in memory 2102. lf read pointer is incre-
queue 118, IPP module 104, flow database manager 108 or 55 mented to the same entry that is referenced by write pointer
other module(s) of NIC 100. The packet's flow number is 2114, and that entry is also invalid (as indicated by validity
stored in the flow number portion of an entry in memory indicator 2110), it may be deteanined that memory 2102 is
2102, and validity indicator 2110 is set in accordance with now empty.
the operation code. For example, if the packet is not Then, in state 2208, memory 2102 is searched for a packet
rc-asscmbleable (e.g., codes 2 and 5 in TABLE 1), the 60 related to the packet being transferred (e.g., the memory is
validity indicator may be set to zero; otherwise it may be set searched for an entry having the same flow number). As
to one. described above, entries in memory 2102 are searched

The illustrated method may operaie in parallel to the associatively in one embodiment of the invention. Thus, the
operation of DMA engine 120. In other words, dynamic result of the search operation may be a single signal indi-
packet batching module 122 may search for packets related 65 eating whether or not a match was found.
to a packet in the process of being transmrred to a host In the illustrated embodiment of the invention, only valid
memory buffer. Alternatively, a search may be conducted entries (e.g., those having a value of one in their validity

EX 1017 Page 318

US 6,483,804 Bl
103 104

indicators) are searched. As explained above, an entcy may In state 2228, write pointer 2ll4 is incremented to the
be marked invalid (e.g., its validity indicator stores a value next entry of memory 2102, after which the illustrated
of zero) if the associated packet is considered incompatible. method ends at end state 2230. If write pointer 2ll4 refer-
Entries for incompallble packets may be disregarded ences the same entry as read pointer 2112, it may be
because their data is not ordinarily re-assembled and their 5 determined that memory 2102 is full. One skilled in the art
headers are not normally batched. In an alternative embodi- will recogniz.e that many other suitable methods of manag-
ment of the invention, all entries may be searched but a ing pointers for memory 2102 may be employed.
match is reported only if a matching entcy is valid. As mentioned above, in one embodiment of the invention

In state 2210, the host computer is alerted to the avail- one or both of the memory search and memory population
ability or non-availability of a related packet. In this eIDbodi-

10
operations rwl contiouously. Thus, end state 2230 may be

IDentoftheinvention,thehostcomputerisalertedbystoring removed from the procedure illustrated in FIG. 22B, in
a predetermined value in a specific field of the transferred which case the procedure would return to state 2222 after
packet's completion descriptor (described in a previous state 2228.
section). As discnssed in the previous section, when a packet Advantageously, in the illustrated embodiIDent of the
is transferred a descriptor in a descriptor ring in host invention the benefits provided to the host computer by
memory is populated with information concerning the 15 dynamic packet batching module 122 increase as the host
packet (e.g., an identifier of its location in host memory, its computer becomes increasingly busy. In particular, the
size, an identifier of a processor to process the packet's greater the load placed on a host processor, the more delay
headers). In particular, a release llow llag or indicator is set that will be incurred until a packet received from NIC 100
to a first value (e.g., zero) if a related packet is found, and may be processed. As a result, packets may queue up in
a second value if no related packet is found. Illustratively, 20 packet queue ll6 and,. the more packets in the packet queue,
DMA engine 120 E,SU.es the alert or stores the necessary the more entries that can be maintained in memory 2102.
information to indicate the existence of a related packet in The more entries that are stored in memory 2102, the
response to notification from dynamic packet batching mod- further ahead dynamic packet batching module can look for
ule 122. Other methods of notifying the host computer of the a related packet. The further ahead it scans, the more likely
presence of a related packet are also suitable (e.g., an 25 it is that a re Jared packet will be found. As more related
indicator, !lag, key), as will be appreciated by one skilled in packets are found and identified to the host computer for
the art. collective processing, the amount of processor time spent on

In FIG. 22B, state 2220 is a start state for a IDemory network traffic decrea.scs and overall processor utilization
population cycle. increases.

In state 2222, it is determined whether a new packet has 30 One skilled in the art will appreciate that other systems
been received at the netwolk interface. ruustratively, a new and methods IDay be employed to identify multiple packets
entry is made in the packet batching module's memory for from a single communica.tion llow or collllCCtion without
each packet received from the netwodc.. The receipt of a new exceeding the srope of the present invention.
packet may be signaled by IPP module 104. For example, Early Random Packet Discard in One Embodiment of the
the receipt of a new packet may be indicated by the storage 35 Invention
of the packet's llow number, by IPP module 104, in a Packets may arrive at a network interface from a network
teIDporary location (e.g., a regisrer). Until a new packet is at a rate faster than they can be transferred to a host
received, the illustrated procedure waits. When a packet is computer. When such a situation exists, the network inter-
received, the procedure continues at state 2224. face must often drop, or discard,. one or more packets.

In state 2224, if IDemory 2102 is configured to store fewer 40 Therefore, in one embodiment of the present invention a
entries than packet queue ll6 (and,. possibly, control queue system and method for randomly discarding a packet are
ll8), memory 2102 is examined to determine if it is full. provided. Systems and methods discussed in this section

In one embodiment of the invention memory 2102 may be may be applicable to other communication devices as well,
considered full if the validity indicator is set (e.g., equal to such as gateways, routers, bridges, modems, etc.
one) for each entry or for the entry referenced by write 45 As one skilled in the art will recogni7.e, one reason that a
pointer 2ll4. H the memory is full, the illustrated procedure packet may be dropped is that a network interface :is already
waits until the memory is not full. As one skilled in the art storing the maximum number of packets that it can store for
will recognize, memory 2102 and other data structures in transfer to a host computer. In particular, a queue that holds
NIC 100 may be tested for saturation (e.g., whether they are packets to be transferred to a host compurer, such as packet
filled) by comparing their read and write pointers. 50 queue ll6 (shown in FIG. IA), may be fully populated when

In state 2226, a new packet is represented in meIDory another packet is received from a network. Either the new
2102 by storing its flow number in the entcy identified by packet or a packet already stored in the queue may be
write pointer 2ll4 and storing an appropriate value in the dropped.
entry's validity indicator field. If, for exaIDple, the packet is Partly because of the bursty nature of much netwolk
not re-assembleable (e.g., as indicated by its operation 55 trafru:, multiple packets may often be dropped when a
code), the entry's validity indicator may be set to an invalid network interface is congested. And, in SODle network
state. For purposes of the operation of dynamic packet interfaces, if successive packets are dropped one particular
batching module 122, a TCP control packet may or may not network connection or flow (e.g., a connection or flow that
be considered re-assembleable. Thus, depending upon the includes all of the dropped packets) may be penalized even
implementation of a particular embodiment the validity 60 if it is not responsible for the high rate of packet arrival. If
indicator for a packet that is a TCP control packet may be set a network connection or flow is penalized too heavily, the
to a valid or invalid state. network entity generating the traffic in that connection or

In an alternative embodiment of the invention an entcy in !low may tear it down in the belief that a "broken pipe" has
IDemory 2102 is populated with information from the con- been encountered As one skilled in the art will recognize, a
trol queue entry identified by the l!CCOnd read pointer 65 broken pipe occurs when a network entity interprets a
descnoed above. This pointer may then be incremented to communication problem as indicating that a connection bas
the nem entry in control queue ll8. been severed.

EX 1017 Page 319

US 6,483,804 Bl
105 106

For certain network traffic (e.g., TCP traffic), the dropping the network interface may not be able to control the rate of
of a packet may initiate a method of flow control in which packet transmittal to the host computer.
a network entity's window (e.g., number of packets it In the illustrated embodiment, packet queue 2400 is
transmits before waiting for an acknowledgement) shrinks divided into a plurality of zones or regions, any of which
or is reset to a very low number. Thus, every time a packet 5 may overlap or share a common boundary. Packet queue
from a TCP communicant is dropped by a network intedace 2400 may be divided into any number of regions, and the
at a receiving entity, the communicant must re-synchronize invention is not limited to the three regiom depicted in FJG.
its connection with the receiving entity. If one or a subset of 24. Illustratively, region zero (represented by the numeral
communicants arc responsible for a large percentage of 2402) encompasses the portion of packet queue 2400 from
network traffic received at the entity, then it seems fair that 10 0 KB (e.g., no packets are stored in the queue) to 8 KB (e.g.,
those communicants should be penalized in proportion to the half full). Region one (represented by the numeral 2404)
amount of traffic that it is responsible for. encompasses the portion of the packet queue from 8 KB to

In addition, it may be wise lo prevent certain packets or 12 KB. Region two (represented by the nwneral 2406)
types of packets from being discarded. For example, dis- encompasses the remllining portion of the packet queue,
carding a sma.ll control packet may do very little to a.lleviate 15 from 12 KB to 16 KB. In an alternative embodiment, regions
congestion in a network interface and yet have a drastic and may only be defined for a portion of packet queue 2400. For
negative effect upon a network ronnection or flow. Fnrtber, example, only the upper half (e.g., above 8 KB) may be
if a network interface is optimized for packets adbering to a divided into one or more regions.
particular protocol, it may be more efficient to avoid drop- The number and size of the different regions and the
ping such packets. Even further, particular connections, :zo location of boundaries between the regions may vary
flows or applications may be prioritized, in which case according lo several factors. Among the factors are the type
higher priority traffic should not be dropped. of packets received at the network interface (e.g., the pro-

Thus, in one embodiment of a network interface accord- tocols according to which the packets are configured), the
ing lo the present invention, a method is provided for size of the packets, the rate of packet arrival (e.g., expected
randomly discarding a packet when a communication 25 rate, average rate, peak ntc), the rate of packet transfer to the
device's packet queue is full or is filled to some threshold host computer, the size of the packet queue, etc. For
level. Intelligence may be added lo such a method by example, in another embodiment of the invention, packet
selecting certain types of packets for discard (e.g., packets queue 2400 is divided into five regions. A first region
from a particular flow, connection or application) or except- extends from O KB to 8 KB; a second region ranges from 8
ing certain types of packets from being discarded (e.g., 30 KB to 10 KB; a. third from 10 KB to 12 KB; a fuurtb from
control packets, packets conforming to a. particular protocol 12 KB to 14 KB; and a. final region extends from 14 KB to
or set of protocols). 16 KB.

A provided method is random in that discarded pa.ckets During operation of a. network interface according to a
are selected randomly from those packets that are considered present embodiment, traffic indicator 2408 indicates bow
discardable. Applying a random discard policy may be 35 full packet queue 2400 is. Traffic indicator 2488, in one
sufficient to a.void broken pipes by distributing the impact of embodiment of the invention, romprises read pointer 810
dropped packets among mnltiple connections or flows. In and/or write pointer 812 (shown in FJG. 8). In the presently
addition, if a small number of transmitting entities arc discu.sscd embodiment in which packi:t queue 2400 is fully
respoDSil>lc for a majority of the traffic received at a network partitioned, traffic indicator 2408 will generally be located in
interface, dropping packets randomly may eru;ure that the ,ro one of the regions into which the packet queue was divided
offending entities are penalized proportionately. Different or at a dividing boundary. Thus, during opention of a
embodiments of the invention that are discussed below network interface appropriate action may be taken, as
provide various combinations of randomness and descn'bed below, depending upon how full the packet queue
intelligence, and one of these attributes may be omitted in is (e.g., depending upon which region is identified by traffic
one or more embodiments. 45 indicator 2408).

FJG. 24 depicts a system and method for randomly In FJG. 24, counter 2410 is incremented as packets arrive
discarding packets in a present embodiment of the invention. at packet queue 2400. In the illustrated embodiment, counter
In this embodiment, packet queue 2400 is a hardware FJFO 2410 continuously cycles through a limited range of values,
(e.g., first-in first-out) queue that is 16 KB in size. In other such as zero through seven. In one embodiment of the
embodiments of the invention the pa.cket queue may be so invention, each time a new packet is received the rounter is
smaller or larger or may comprise another type of data incremented by one. In an alternative embodiment, counter
structure (e.g., list, array, table, heap) implemented in bard- 2410 may not be incremented when certain "non-
ware or software. discardablc" packets are received. Various illustrative crite-

Similar to packet queue ll6 discussed in a previous ria for identifying non-disca.rdable packets are presented
section, packet queue 2400 receives pa.ckets from a network ss below.
and bolds them for transfer to a host computer. Packets For one or more regions of packet queue 2400, an
arriving from a network may arrive from the network at a associated programmable probability indicator indicates the
high rate and may be processed or examined by one or more probability that a packet will be dropped when traffic indi-
modules (e.g., header parser 106, tlow database manager cator 2408 indicates that the level of traffic in the packet
108) prior to being stored in packet queue 2400. For 60 queue has reached the associated region. Therefore, in the
example, where the network is capable of transmitting one illustnted embodiment probability indicator 2412 indicates
gigabit of traffic per second, packets conforming to one set the probability that a packet will be dropped while the packet
of prolocols (e.g., Ethernet, IP and TCP) may be received at queue is less than half full (e.g., when traffic indicator 2408
a rate of approximately 1.48 million packets per second. is located in region zero). Sinlilarly, probability indicators
After being stored in packet queue 2400, packets are trans- 6S 2414 and 2416 specify the probability that a new packet will
fcrred to a host computer al a rate partially dependent upon be dropped when traffic indicalor 2408 identifies regions one
events and conditions internal to the host computer. Thus, and two, respectively.

EX 1017 Page 320

US 6,483,804 Bl
105 106

For certain network traffic (e.g., TCP traffic), the dropping the network interface may not be able to control the rate of
of a packet may initiate a method of fl.ow control in which packet transmittal to the host computer.
a network entity's window (e.g., number of packets it Io the illustrated embodiment, packet queue 2400 is
transmits before waiting for an acknowledgement) shrinks divided into a plurality of zones or regions, any of which
or is reset to a very low number. Thus, every time a packet 5 may overlap or share a common boundary. Packet queue
from a TCP communicant is dropped by a network interface 2400 may be divided into any number of icgions, and the
at a receiving entity, the communicant must re-synchronize invention is not limited to the th?Ce icgions depicted in FIG.
its connection with the receiving entity. If one or a subset of 24. Illustratively, icgion zero (reprei;ented by the numeral
communicants are responsible for a large percentage of 2402) encompasses the portion of packet queue 2400 from
network traffic received at the entity, then it seems fair that 10 0 KB (e.g., no packets are stored in the queue) to 8 KB (e.g.,
those communicants should be penalized in proportion to the half full). Region one (represented by the numeral 2404)
amount of traffic that it is responsible for. encompasses the portion of the packet queue from 8 KB to

In addition, it may be wise to prevent certain packets or 12 KB. Region two (represented by the numeral 2406)
types of packets from being discarded. For example, dis- encompasses the remaining portion of the packet queue,
carding a small control packet may do very little to alleviate 15 from 12 KB to 16 KB. In an alternative embodiment, regions
congestion in a network interface and yet have a drastic and may only be defined for a portion of packet queue 2400. For
negative effect upon a network connection or fl.ow. Further, example, only the upper half (e.g.. above 8 KB) may be
if a network interface is optimized for packets adhering to a divided into one or more regions.
particular protocol, it may be more efficient to avoid drop- The number and size of the difli:rent regions and the
ping such packets. Even further, particular connections, 20 location of boundaries between the regions may vary
llows or applications may be prioritized, in which case according to scvcral factoIS. Among the factors are the type
higher priority traf!ic should not be dropped. of packets ?CCeived at the network interface (e.g., the pro-

Thus, in one embodiment of a oetwm:k interface accord- tocols according to which the packets are configured), the
ing to the present invention, a method is provided for size of the packets, the rate of packet arrival (e.g., expected
randomly discarding a packet when a communication 25 rate, average rate, peak rate), the mte of packet transfer to the
device's packet queue is full or is filled to some threshold host computer, the six.e of the packet queue, etc. For
level. Intelligence may be added to such a method by example, in mother embodiment of the invention, packet
selecting certain types of packets for discard (e.g., packets queue 2400 is divided into five regions. A first region
from a particular llow, connection or application) or except- extends from O KB to 8 KB; a second region ranges from 8
ing certain types of packets from being discarded (e.g., 30 KB to 10 KB; a third from 10 KB to 12 KB; a fourth from
control packets, packets conforming to a particular protocol 12 KB to 14 KB; and a final region extends from 14 KB to
or set of protocols). 16 KB.

A provided method is random in that discarded packets During operation of a network interface according to a
are selected randomly from those packets that are considered present embodiment, traffic indicator 2408 indicates how
discardable. Applying a random discard policy may be 35 full packet queue 2400 is. Traffic indicator 2408, in one
sufficient to avoid broken pipes by distributing the impact of embodiment of the invention, comprises icad pointer 810
dropped packets among multiple connections or flows. 1n and/or write pointer 812 (shown in FIG. 8). In the presently
addition, if a small number of transmitting entities are discussed embodiment in which packet queue 2400 is fully
respoI1S1ble for a majority of the traffic received at a network partitioned, traffic indicator 2408 will generally be located in
interface, dropping packets randomly may ensure that the 40 one of the regions into which the packet queue was divided
o:IIendiog entities are penalized proportionately. Di:1Iereot or at a dividing boundary. Thus, during operation of a
embodiments of the inventino that are discussed below network interface appropriate action may be taken, as
provide various combinations of randomness and described below, depending upon how full the packet queue
intelligence, aod one of these attributes may be omitted in is (e.g., depending upon which region is identified by traffic
one or moic embodiments. 45 indicator 2408).

FIG. 24 depicts a system aod method for randomly 1n FIG. 24, counter 2410 is incremented as packets arrive
discarding packets in a present embodiment of the invention. at packet queue 2400. In the il111Strated embodiment, counter
lo this emhodinieot, packet queue 2400 is a hardware FIFO 2410 continuously cycles tllrough a limited range of values,
(e.g., first-in first-out) queue that is 16 KB in size. 1n other such as zero through seven. 1n one embodiment of the
embodiments of the inventinn the packet queue may be so invention, ea.ch time a new packet is received the counter is
smaller or larger or may comprise another type of data incremented by one. In an alternative embodiment, counter
structure (e.g., list, array, table, heap) implemented in hard- 2410 may not be incremented when certain "ooo-
ware or software. disca.rdable" packets are received. Various illustrative crite-

Similar to packet queue 116 discussed in a previo11S ria for identifying non-discardable packets are presented
section, packet queue 2400 receives packets from a network 55 below.
aod holds them for transfer to a host computer. Packets For one or more regions of packet queue 2400, an
arriving from a network may arrive from the network at a associated programmable probability indicator indicates the
high rate and may be processcd or examined by one or more probability that a packet will be dropped when traffic indi-
modules (e.g., header parser 106, flow database manager cator 2408 indicates that the level of traffic in the packet
108) prior to being stored in packet queue 2400. For 60 queue has reached the associated region. Therefore, in the
example, where the network is capable of transmitting one illustrated embodiment probability indicator 2412 indicates
gigabit of traffic per second, packets conforming to one set the probability that a packet will be dropped while the packet
of protocols (e.g., Ethernet, IP and TCP) may be received at queue is less than half full (e.g., when traffic indicator 2408
a rate of approximately 1.48 million packets per second. is located in region zero). Similarly, probability indicators
After being stored in packet queue 2400, packets are trans- 6S 2414 and 2416 specify the probability that a new packet will
ferred to a host computer at a rate partially depeodeot upon be dropped when traffic indicator 2408 identifies regions one
events and conditions internal to the host computer. Thus, and two, respectively.

EX 1017 Page 321

US 6,483,804 Bl
107 108

In the illustrated embodiment, probability indicators however, in another embodiment of the invention intelli-
2412, 2414 and 2416 each comprise a set, or mask, of gence is added in the process of excluding certain types of
sub-indicators such as bits or flags. Illustratively, the DUIDber packets frODJ being discarded.
of sub-indicators in a probability indicator matches the range It will be understood that probability indicators and a
of counter values--in this case, eight. In one embodiment of s counter simply constitute one system for enabling the ran-
the invention, each sub-indicator may have one of two dODJ discard of packets in a network interface. Other mecha-
values (e.g., :zero or one) indicating whether a pack.et is nisms are also suitable. In one alternative embodiment, a
dropped. Thus, the sub-clements of a probability indicator random nmnber generator may be employed in place of a
may be nUDJbered from :zero to seven (illustratively, from counter and/or probability indicators to enable a random

discard policy. For example, when a random number is
right to left) to com:spond to the eight possible values of 10 generated, such as M, the Mth pack.et (or every Mth packet)
counter 2410. For each position in a probability indicator a&r the nUDJber is generated may be dropped. or, the
that stores a fust value (e.g., one), when the value of counter random number may specify a probability of dropping a
2410 matches the number of that bit., the nen di.sca.rdable packet. The random number may thus be limited to (e.g.,
pack.et received for packet queue 2400 will be dropped. As bashed into) a certain range of valllCS or probabilities. As
discussed above, certain types of packets (e.g., control 15 another alternative, a random number generator may be used
packets) may not be dropped. Illustratively, counter 2410 is in tandem with multiple regions or thresholds witbin a
only incremented for discardable packets. packet queue. In this alternative embodiment a program-

In FIG. 24, probability indicator 2412 (e.g., 00000000) mable value, represented here as N, may be associated with
indicatcs that no packets are to be dropped as long as the a region or queue threshold. Then, when a traffic indicator
packet queue is less than half full (e.g., as long as traffic 20 reaches that threshold or region, the Nth packet (or every
indicator 2408 is in region uro). Probability indicator 2414 Nth packet) may be dropped until another threshold or
(e.g., 00000001) indicates that ewry eighth packet is to be boundary is reached.
dropped when there is at least 8 KB stored in the packet In yet another altcmative embodiment of the invention,
queue. In other woros, when traffic indicator 2408 is located the probability of dropping a packet is expressed as a binary
in region one, there is a 125% probability that a discardab]e 25 fraction. As one skilled in the art will recognize, a binary
packet will be dropped. In particular, when counter 2410 fraction consists of a series of bits in which each bit
eqaa1s um the next discardable packet., or a packet already represents one half of the magnitude of its more significant
stored in the packet queue, is discarded. Probability indica- neighbor. For example, a binary fraction may use four digits
tor 2416 (e.g., 01010101) speci.fi.es that every other discard- in one embodiment of the invention. From left to right, the
able packet is to be dropped. There is thus a 50% probability 30 bits may represent 05, 0.25, 0.125 and 0.0625, respectively.
that a discardable packet will be dropped when the queue is Thus, a binary fraction of 1010 wollld be interpreted as
more than three-quarters full. Illustratively, when a packet is indicating a 62.5% probability of dropping a packet (e.g.,
dropped, counter 2410 is still incremented. 50% plus 125%). The more positions (e.g., bits) used in a

As another example, in the alternative embodiment binary fraction, the greater precision that may be attained.
descnbed above in which the packet queue is divided into 3S In one implementation of this alternative embodiment a
five regions, suitable probability indicators may include the separatc packet counter is associated with each digit. The
following. For regions 2:ero and one, 00000000; for region counter for the Jeftmost bit increments at twice the rate of the
two, 00000001; for region three, 00000101; and for region next counter, which increments twice as fast as the next
four, 01111111. Thus, in this alternative embodiment, region counter, etc. In other words, when the counter for the most
one is treated as an extension to region zc:ro. Further, the -40 significant (e.g., left) bit increments from O to 1 the other
probability of dropping a packet has a wider range, from 0% countcrs do not change. When the most significant counter
to 87.5%. increments again, from 1 back to 0, then the next counter

In ooe alternative embodiment described above, only a increments from O to 1. Likewise, the counter for the third
portion of a packet queue is partitioned into regions. In this bit does not increment from O to 1 until the second countcr
alternative embodiment, a default probability or null prob- '45 retllms to 0. In summary, the counter for the most significant
ability (e.g., 00000000) of dropping a packet may be asso- bit-changes (i.e., increments) each time a pack.et is received.
ciated with the un-partitioned portion. Illustratively, this The counter for the next most significant bit maintains each
ensures that no packets are dropped before the level of traffic value (ie., 0 or 1) for two packets before incrementing.
stored in the queue reaches a first threshold. Even in an Similarly, the counter for the third most significant bit
embodiment where the entire queue is partitioned, a default so maintains each counter value for four packets before incre-
or null probability may be associated with a region that mealing and the counter for the least significant bit main-
encompasses or borders a O KB threshold. tains its values for eight packets before incrementing.

Just as a pack.et queue may be divided into any nUDJber of Each time a packet is received or a counter is incremented
regions for purposes of the present invention, probability the counters are compared to the probability indicator (e.g.,
indicators may comprise bit masks of any size or magnitude, 55 the specified binary fraction). In one embodiment the deter-
and need not be of equal size or magnitude. Further, prob- mination of whether a packet is dropped depends upon
ability indicators are programmable in a present whicb of the fraction's bits are equal lo one. Illustratively,
embodiment, thus allowing them to be altered even during for each fraction bit equal to one a random packet is dropped
the operation of a network interface. if the corresponding counter is equal to one and the counters

One skilled in the art will recognize that discarding 60 for any bits of higher significance are equal to zero. Thus for
packets on the basis of a probability indicator injects ran- the example fraction 1010, whenever the most significant
domncss into the discard process. A random early discard bit's counter is equal to one a random packet is dropped. In
policy may be sufficient to avoid the problem of broken addition, a random packet is also dropped whenever the
pipes disc!lssed above. In particular, in one embodiment of counter for the third bit is equal to one and the counters for
the invention, all packets are considered discardablc, such 65 the first two bits are equal to zero.
that all packets are counted by counter 2410 and all are A person skilled in the art may also derive other suitable
candidates for being dropped. As already discussed, mechanisms for specifying and eoforcing a probability of

EX 1017 Page 322

US 6,483,804 Bl
109 110

dropping a packet received at a network interface without retransmitted. In oonlrasl, the comrequences may be more
exceeding the scope of the present invention. severe if a few packets are dropped from a file transfer

As already mentioned, intelligence may be imparted to a connection. The packets will likely need to be retransmitted,
random discard policy in order to avoid discarding certain and the transmitting entity's window may be shrunk as a
types of packets. In a previollS section, methods of parsing s result-thus decreasing the rate of file trllllSfer.
a packet received from a network were described. In In yet another alternative embodiment of the invention, a
particular, in a present embodiment of the invention a packet probability indicator may oomprise a bit mask in which each
received from a network is pan;cd before it is placed into a bit corresponds to a separate, specific flow through the
packet queue such as packet queue 2400. During the parsing network interface. In particular, the bits may correspond to
procedure various information concerning the packet may be 10 the flows maintained in the flow database described in a
gleaned. This infonnation may be used to inject intelligence previous section.
into a random discard policy. In particular, one or more fields Although embodiments of the invention discussed thus
of a packet header may be copied, an originating or desti- far in this section involve discarding packets as they arrive
nation entity of the packet may be identified, a protocol may at a packet queue, in an alternative embodiment packets may
be identified, etc. 15 be discarded from within the packet queue. In particular, as

Thus, in various embodiments of the invention, certain the packet queue is filled (e.g., as a traffic indicator reaches
packets or types of packets may be immune from being pre-defined regions or thresholds), packets already stored in
discarded. In the embodiment illustrated in FIG. 24, for the queue may be discarded at random according to one or
example, control packets are immune. As one skilled in the more probability indicatots. In the embodiment illustrated in
art will appreciate, control packets oflen contain information 20 FIG. 24, for example, when traffic indicator 2408 reaches a
essential to the establishment, m-establishment or mainte- certain threshold, such as the boundary between regions one
nance of a communication connection. Dropping a control and two or the end of the queue, packets may be deleted in
packet may thllS have a more serious and damaging elfect one or more regions according to related probability indi-
than dropping a packet that is not a control pack.el In cators. Such probability indicators would likely have dilfer-
addition, because control packets generally do not contain 25 cot values than those indicated in FIG. 24.
data. dropping a control packet may save very little space in In a present embodiment of the invention, probability
the packet queue. indicators and/or the specifications (e.g., boundaries) into

Many other criteria for immunizing pa<:Gts are possible. which a packet queue is partitioned are programmable and
For example, when a packet is parsed according to a may be adjusted by software operating on a host computer
procedlll'C described in a previous section, a No_Assist flag 30 (e.g., a device driver). Criteria for immunizing packets may
or signal may be associated with the packet to indicate also be programmable. Methods of discarding packets in a
whether the packet is compatible with a set of pre-selected network interface or other communication device may thus
communication protocols. Illustratively, if the flag is set to be altered in accordance with the embodiments described in
a first value (e.g., one) or the signal is raised, the packet is this section, even during continued operation of such a
considered incompatible and is therefore ineligible for cer- 35 device:. Various other embodiments and criteria for ran-
tain processing enhancements (e.g., re-assembly of packet domly discarding packets and/or applying criteria for the
data, batch proce&>ing of packet headers, load-balancing). intelligent discard of packets will be apparent to those
Because a packet for which a No_Assist flag is set to the skilled in the art.
first value may be a packet conforming to an unexpected FIGS. 2SA-2SB comprise a flow chart demonstrating one
protocol or unique formal, it may be better not to drop such .w method of implementing a policy for randomly discarding
packets. For example, a network manager may want to packets in a network interface according to the embodiment
ensure receipt of all such packets in order to determine of the invention substantially similar lo the embodiment
wbether a parsing procedlll'C should be augmented with the illustrated in FIG. 24. In this embodiment, a packet is
ability to parse additional protocols. received while packet queue 2400 is not yet full. As one

Another reason for immunizing a No_Assist packet (e.g., 45 skilled in the will appreciate, this embodiment provides a
packets that are incompatible with a set of selected method of determining whether to discard the pack.el Once
protocols) from being disca:rded concerns the reaction to packet queue 2400 is full, when another packet is received
dropping the packet. Because the packet's protocols were the network interface generally must drop a packct-ither
not identified, it may not be known how the packet's the one just received or one already stored in the queue--in
protocols respond to the loss of a packet. In particular, if the 50 which case the only decision is which packet to drop.
sender of the packet does not lower its transmission rate in In FIG. 25A, state 2500 is a start state. State 2500 may
response to the dropped packet (e.g., as a form of congestion reflect the initialization of the network interface (and packet
control), then there is no benefit to dropping it. queue 2400) or may reflect a point in the operation of the

A packet's flow number may be used to immunize certain network interface al which one or more parameters or
packets in another alternative embodiment of the invention. 55 aspects concerning the packet queue and the random discard
As discussed in a previous section, a network interface may policy arc to be modified.
include a flow database and flow database manager to In state 2502, one or more regions arc identified in packet
maintain a recoro of multiple communication flows received queue 2480, perhaps by specifying boundaries such as the 8
by the network interface. It may be efficacious to prevent KB and 12 KB boundaries depicted in FIG. 24. Although the
packets from one or more certain flows from being dis- 60 regions depicted in FIG. 24 fully encompass packet queue
carded. Immunized flows may include a flow involving a 2400 when viewed in unison, regions in an alternative
high-priority network entity, a flow involving a particular embodiment of the invention may encompass less than the
application, etc. For example, it may be considered rela- entire queue.
lively less damaging to discard packets from an animated or In state 2504, one or more probability indicators are
slrcanling graphics application in which a packet, or a few 65 assigned and configured. In the illustrated embodiment, one
packets, may be lost without seriously affecting the desti- probability indicator is associated with each region.
nation entity and the packets may not even need to be Alternatively, multiple regions may be associated with one

EX 1017 Page 323

US 6,483,804 Bl
111

probability indicator. Even further, one or more regions may
not be explicitly associated with a probability indicator, in
which case a default or null probability indicator may be
assumed. As described above, a probability indicator may
take: the: form of a multi-bit mask, whereby the: number of s
bits in the mask reflect the: range of possµ,le values main
tained by a packet counter. In another embodiment of the
invention, a probability indicator may take: the: form of a
random number or a threshold value: against which a ran
domly generated number is compared when a decision must 10
be: whc:tbc:r to discard a packet.

In state 2506, if certain types of packets are to be
prc:vc:nted from bc:ing discarded. criteria are c:xprc:s.sed to
identify the: exempt packets. Some packets that may be
exempted are control packets, packets conforming to 15

unknown or certain known protocols, packets belonging to
a particu1ar network connc:clion or flow, etc. In one: embodi
ment of the: invention, no packets are exempt from being
discarded.

In state 2508, a packet or traffic counter is initialized. As 20

descnbc:d above, the: counter may be: incremented, possibly
through a limited range: of values, when a discard.able packet
is received for storage: in packet queue: 2400. The limited
range of counter values may correspond to the number of
bits in a mask form of a probability indicator. Altc:matively, 25
the counter may be: configured to increment through a
greater range:, in which case a countc:r value may be: filtc:rc:d
through a modulus or hash function prior to bc:ing compared
to a probability indicator as described bc:low.

In state 2510, a packet is received from a network and 30

may be: procc:ssed through one or more: modules (e.g., a
bead er parser, an IPP module) prior to its arrival at packet
queue 2400. Thus, in state 2510 tbe packet is ready to be
stored in tbe paclcet queue. One or more packets may already
be stored in the: packet queue and a traffic indicator (e.g., a 35
pointer or index) identifies tbe lc:vc:l of traffic stored in the
queue (e.g., by a storage: location and/or region in the
queue).

In state 2512, it may be: determined whether the received
packet is discard.able. For example:, if the raodom discard <40

policy that is in effect allows for the exemption of some
packets from being discarded, in state 2512 it is determined
whether the received packet meets any of the exemption
criteria. If so, the illustrated procedure continues at state
2522. Othc:rwisc:, the procedure continues at state 2514. 45

In state 2514, an active region of packet queue: 2400 is
identified. In particu1ar, the: region of the packet queue: to
which the queue is presently populated with traffic is deter·
mined. The level of traffic stored in the queue depends upon
the: number and size of packets that have: been stored in the 50

queue to await transfer to a host computer. The slower the
transfer process, the higher tbe level of traffic may reach in
the queue. Although the level of traffic stored in the queue
rises and falls as packets are stored and transferred, the level
may be identified at a given time by examining tbe traffic 55

indicator. The traffic indica1or may comprise a pointer
identifying the position of the last or next packet to be stored
in the queue. Such a pointer may be compared to another
pointer that identifies the next packet to be transfc:ncd to the
host computer in order to reveal bow much traffic is stored 60

in the queue.
In state 2516, the: counter value (e.g., a value between zero

and seven in the embodiment of FIG. 24) is compared to the
probability indicator associated with the active region. As
previously descnbc:d, the: counter is incremented as discard- 6S

able: packets arc received at the queue. This comparison is
conducted so as to determine whether the: received packet

112
should be discarded.As explained above,in the embodiment
of FIG. 24 the setting of the probability indicator bit
corresponding to the counter value is examined. For
example, if the counter bas a value of N, then bit number N
of the: probability indicator mask is examined. If the bit is set
to a first state (e.g., one) the packet is to be discarded;
otherwise it is not to be discarded.

In state 2518, the counter is incremented to reflect the
receipt of a discardable packet, whether or not the packet is
to be discarded. In the presently discussed embodiment of
the invention, if the counter contains its maximum value:
(e.g., seven) prior to bc:ing incremented, incrementing it
entails resetting it to its minimum value (e.g., zero).

In state: 2520, if tbe packet is to be discarded the illustrated
procedure continues at state 2524. Othc:rwise., the procedure
continues at state 2522. In state 2522, the: packet is stored in
packet queue 2400 and the illustrated procedure ends with
end state 2526. In state 2524, the packet is discarded and the
illustrated procedure ends with end state 2526.

Sun, Sun Microsystems, SPARC and Solaris are trade
marks or rc:gistc:rc:d trademarks of Sun Microsystems, Incor
porated in the United States and other countries.

The foregoing descriptions of embodiments of the: inven
tion have been prc:sc:nted for pw:poscs of illustration and
description only. They arc not intended to be: exhaustive: or
to limit the invention to the: forms disclosed. Many modi
fications and variations will be apparent to practitioners
skilled in the arL Accordingly, the: above disclOSIIRI is not
intc:ndc:d to limit the invention; the: scope: of the invention is
defined by the appended claims.

What is claimed is:
1. A method of identifying multiple packets in a commu

nication flow betwc:cn a source entity and a destination
entity, comprising:

storing a first flow identifier of a first packet received from
a source: entity for a destination entity, wherein said first
flow identifier comprises an identifier of the: source
entity and an identifier of the destination entity;

storing said first packet in a packet memory for transfer
toward the: destination entity;

storing a sc:cond flow identifier of a second packet;
storing said second packet in said packet memory;
determining whether said first flow identifier matches said

sc:cond flow identifier;
storing a first indicator in the: destination entity if a first

communication flow identified by said first flow iden
tifier comprises said second packet; and

storing a second indicator in the destination entity if said
first packet is the only packet stored in the: packet
memory that is part of said first communication flow.

2. The method of claini 1, further comprising, prior to said
storing a first flow identifier, parsing said first packet to
rc:tricvc: said identifier of the source entity and said identifier
of the destination entity.

3. A method of identifying one or more packets in a
communication flow between a source entity and a destina
tion entity, comprising:

receiving a first packet at a communication device;
identifying a first communication flow comprising said

first packet with a first flow identifier configured to
identify both the source entity and the destination
entity;

determining whether said first communication flow also
comprises a second packet received at said communi
cation device after said first packet was rc:ccived at said
communication device:; and

EX 1017 Page 324

US 6,483,804 Bl
113

transferring said first packet to a host computer for
processing in accordance with a communication pro
tocol associated with said first packet.

4. The method of claim 3, further comprising:
transferring said second packet to said host computer; 5

wherein said host computer is configured to collectively
process a header portion of said first packet and a
header portion of said second packet in accordance
with said communication protocol.

5. The method of claim 3, wherein said identifying lO

comprises:

receiving a flow key generated by concatenating an iden
tifier of the source entity and an identifier of the
destination entity;

15
wherein said first flow identifier comprises said flow key.
6. The method of claim 3, wherein said identifying

comprises:

receiving an index of said first communication flow in a
flow database; 20

wherein said first flow identifier comprises said indeL
7. The method of claim 3, wherein said determining

comprises comparing said first flow identifier with a second
flow identifier associated with a second packet received at
said communication device. 25

8. The method of claim 7, wherein said determining
further comprises:

storing said first flow identifier in a llow memory; and

storing said second !low identifier in said flow memory;
30

and

comparing said stored first !low identifier and said stored
second flow identifier.

!>. The method of claim 8, wherein said !low memory is
an associative memory in said communication device. 35

10. The method of claim 3, further comprising storing said
first packet in a packet memory.

11. The method of claim 10, wherein said determining
comprises comparing said first flow identifier confignred to
identify said first communication flow with a second flow 40
identifier configured to identify a second communication
flow comprising a packet stored in said packet memory.

U. The method of claim 3, further comprising informing
said host computer of said transfer of said first packet.

13. The method of claim 12, wherein said informing 45

comprises configuring an indicator in a host memory.
14. The method of claim 13, wherein said indicator is

configured to indicate that said host computer should delay
processing said first packet until said second packet is
transferred to said host computer. so

15. The method of claim 13, wherein said indicator
indicates that said host computer should not delay process
ing said first packet.

16. A method of transferring a packet from a network
interface to a host computer, comprising:

receiving a first packet at a network intetface;

storing said first packet in a packet memory;

receiving a first flow identifier confignred to identify a
communication flow comprising said first packet;

storing said first flow identifier in a flow memory;
searching said flow memory for a second packet in said

communication flow received at the network interface
after said first packet;

55

60

transferring said first packet to said host computer; and 65
configuring an indicator in a host memory to indicate

whether processing of said first packet by said host

114
computer should be delayed to await transfer of said
second packet to said host memory.

17. The method of claim 16, wherein said generating
comprises:

receiving an index of said communication flow in a flow
database;

wherein said flow identifier comprises said index.
18. The method of claim 16, wherein said receiving

comprises:
receiving a flow key comprising an identifier of a source

of said first packet and an identifier of a destination of
said first packet;

wherein said flow identifier comprises said flow key.
1!>. The method of claim 16, wherein said packet memory

comprises said flow memory.
20. The method of claim 16, wherein said configuring

comprises:
storing a first indicator in a host memory if said commu

nication flow comprises said second packet; and
storing a second indicator in said host memory if said first

packet is the only packet in said packet memory that is
part of said communication flow.

.21. A computer system fur procc;sing a packet received
from a network interface, comprising:

a network. intetface configured to receive a first packet
from a network and transfer said first packet to a host
computer memory, said network interface comprising:
a packet memory confignred to store said first packet;
a flow memory fur storing a first flow number associ-

ated with said first packet, wherein said first flow
number is confignred to identify a communication
flow comprising said first packet;

a packet batcher configured to determine whether the
communicatioo flow includes a second packet stored
in said packet memory after said first packet; and

a notifier configured to:
store a first code in a host indicator if said packet

memory includes the second packet; and
store a second code in said host indicator if said

packet memory does not include the second
packet; and

a processor fur processing a header portion of said first
packet.

22. A computer readable storage medium storing instruc
tions that, when executed by a computer, cause the computer
to perform a method of transferring a packet from a network
interface to a host computer, the method comprising:

receiving a first packet at a communication device;
identifying a first communication flow comprising said

first packet with a first flow identifier configured to
identify both the source entity and the destination
entity;

determining whether said first communication flow also
comprises a second packet received at said communi
cation device after said first packet was received at said
communication device; and

transferring said first packet to a host computer for
processing in accordance with a communication pro
tocol associated with said first packet.

23. A processor readable storage medium containing a
data structure configured to store information concerning a
packet to be transferred from a network. interface to a host
computer, the data structure including one or more entries,
each entry comprising:

a flow number configured to identify a communication
flow comprising a first packet received at the network

EX 1017 Page 325

"
US 6,483,804 Bl

115
interface from a source entity for a destination entity
associated with the host computer; and

116
a packet batching module configured to determine

whether a second packet received at the communication
interface is part of the communication flow. a validity indicator configured to provide:

a first indication if said first packet is ready for transfer
to the host computer; and

26. A method of processing a packet through a commu-
5 nication interface, the method comprising:

a second indication if said first packet is a control
packet;

wherein said data structure is searched for a second entry
containing said flow number when said first packet is
transferred to the host computer to determine if said 10

communication flow also comprises a second packet
received at the netwoik interface after said first packet.

24. Toe method of claim 3, wherein said identifying
comprises:

15
parsing said first packet to retrieve an identifier of the

source entity and an identifier of the destination entity;
and

combining said source entity identifier and said destina
tion entity identifier to form said first flow identifier. 20

25. A communication interface, comprising:
a header parser configured to pan;c a header of a first

packet received at the communication interface,
wherein the first packet was issued from a source entity
for a destination entity;

a flow database configured to facilitate management of a
communication flow comprising the first packet, the
flow database comprising:

25

a flow key configured to identify the communication
flow using identifiers of tbc source entity and the 30

destination entity;
an activity indicator configured to indicate a recency

with which a packet in the communication flow has
been received; and

a validity indicator for indicating whether the commu- 35

nication flow is valid;
a code generator configured to generate an operation code

for the first packet, to facilitate forwarding of the first
packet toward the destination entity; and

receiving a first packet from a network, wherein the first
packet is part of a communication flow between a
source entity and a destination entity;

determining whether a header portion of the first packet
conforms to one of a set of communication protocols;

assembling a flow identifier to identify the communica
tion flow, wherein said flow identifier comprises a
source entity identifier and a destination entity identi
fier;

updating a flow database configured to facilitate manage
ment of communication flows through the communi
cation interface, wherein said updating comprises:
configuring a flow activity indicator associated with the

communication flow to reflect receipt of the first
packet; and

configuring a flow validity indicator associated with the
communication flow to indicate that the communi
cation flow is valid;

assigning an operation code to the first packet, said
operation code indicating whether a portion of data in
the first packet is reassembleable with another portion
of data in another packet in the communication flow;
and

determining whether a second packet received at the
communication interface is part of the communication
flow.

27. Toe method of claim 3, further comprising:
storing a first indicator in the host computer if said first

communication flow comprises said second packet; and
storing a second indicator in the host computer if said first

packet is the only packet stored in the communication
device that is part of said communication flow.

• • • • •

EX 1017 Page 326

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 17, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/608,237

FILING DATE: June 30, 2000

PATENT NUMBER: 6,651,099

ISSUE DATE: November 18, 2003

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

~?~
P.R. GRANT

Certifying Officer

PART~ OF (.JJ.,PART(S)

EX 1017 Page 327

n»‘1

....

M.

 ‘nuw
-nuns-indium“.m'cu'v'mfbm--I

..awn-umm-u-nm-nwwuiufi-- up»

a

-._ ,.

 EA.

--W‘Vflmfluwunfunny-WM":’-muuuqIn
n—

r

e
-Q-n“

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/608,237

FILING DATE: 11111630, 2000

PATENT NUMBER: 6,651,099

ISSUE DATE: Nat-ember 18. 2003

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 17. 2018

By .-\uthority of the

Under Secretary of Commerce for Intellectuat Property
and Director of the United States Patent and Trademark Office

1’. R. GRANT

Certifying Officer

PART 91 or (CAPARTtS)

EX 1017 Page 327

i

(12) United States Patent
Hegde

(54) AUTOM,U'IC Fll:I'ERING AND CREATION
OF VIRI'UAL IANS AMONG A PLURALITY
OF SWITCH PORTS

(75) Inventor: Gopal D. Hegde, San Jose, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject lo any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/172,723

(22) Filed: Oct. 13, 1998

(51) Int. CJ.7 B04L 12/28; H04L 12/56
(52) U.S. CJ • 370/389; 370/392; 370/395.53;

370/395.32
(58) Field of Search 370/389, 352,

(56)

370/353, 354, 356, 360, 390, 392, 396,
398, 395.3, 395.31, 395.42, 3955, 39553,
401, 413, 415, 417, 422, 428, 395.32, 432

References Cited

U.S. PATENT DOCUMENTS

5,715,250 A
5,920,699 A

1/1998 Watanabe 370/395
7/1999 Bare 395/200.55

(List continued on next page.)

01HER PUBLICKllONS

Douglas E. Comer and David L. Stevens, Adross Discovery
and Binding (ARP), Intemetworking with TCP/IP, vol. II:
Design, Implementation, and Internal,;, Chapter 4, 1994,
pp.39-59.

(List continued on next page.)

Primary EA"aminer-:Oouglas Olms
Assistant Examiner-Phirio Sam

r---- --
1
I
I
I
I
I
I
I

l 60
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

75 PAC1<£f
IIIJITTR

1111111111111 II 110 111111101 111111111 DI 111111111111111
US006570875Bl

(10) Patent No.: US 6,570,875 Bl
May 27, 2003 (45) Date of Patent:

(74) Attorney, Agent, or Finn-Pillsbury Winthrop LLP

(57) ABSTRACT

In a method and apparatus for performing multiprotocol
switching and routing, incoming data packets are examined
and the flow (i.e., source and destination) with which they
are associated is determined. A fl.ow table contains forward
ing information that can be applied to all the packets
belonging to the flow. If an entry is not present in the table
for the particular flow, the packet is forwarded to the CPU
to be processed. The CPU can then update the table with new
forwarding information to be applied to all future packets of
the same fl.ow. When the forwarding information is already
present in the table, packets can be forwarded at wire-speed.
A dedicated ASIC is preferably employed to contain the
table, as well as the engine for examining the packets and
forwarding them according to the stored information.
Decision-making tasks are thus more efficiently partitioned
between the switch and the CPU so as to minimize process
ing overhead. Processes executing on the CPU maintain
information regarding filters, mirrors, priorities, and
VI.ANs. Such information is further integrated with the flow
table forwarding information when flows corresponding lo
the established filters, mirrors, priorities and VLANs are
detected. Accordingly, filters, mirrors, priorities and VI.ANs
can be automatically implemented when forwarding deci
sions arc made, which implementation is done at wire
speeds. According to another aspect, VLANs are automati
cally created and updated based on the automatic detection
of multicast groups existing among the hosts connected lo
the ports of the switch. After such VLANs are established,
broadcast packets destined for the detected multicast groups
are forwarded only along ports whose hosts are members
thereof, thereby preventing needless and burdensome traffic
from congesting other network segments and host connec
tion.

14 Claims, 14 Drawing Sheets

I I
L----------------------------------J

EX 1017 Page 328

:

(12) United States Patent
Hegde

llllllllllllllllllllllllllllllllllHlHlllllIIHIIIIIIIIHIII
U3006570875B1

US 6,570,875 Bl
May 27, 2003

(10) Patent No;

(45) Date of Patent:

(54) AUTOMATIC FILTERING AND CREATION
OF VIRTUAL LANS AMONG A PLURALITY
OF SWITCH PORTS

(75) Inventor: Gupal I). Hegde, San Jose, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(Us)

(‘) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 1546)) by 0 days.

(21) Appl.Nu.:09/172,723

(22) Filed: 0a.13,1998

(51) Int. 01.7 HML 12m; non 12/55
(52) US. Cl. .-.. 370/389; 370/392; 370139553;

370139532

(58) Field of Search 370/389, 352,
370/353, 354, 356, 360, 390, 392, 396,

398, 3953, 39531, 395.42, 3955, 39553,
401, 413, 415, 417, 422, 428, 395.32, 432

(56) References Cited
U.S. PATENT DOCUMENTS

5,715,250 A 2/1998 Watambc
5,920,699 A 7/1999 Bare

(List continued on next page.)
OTHER PUBLICATIONS

Douglas E" Corner and David L. Stevens, AdFESS Discovery
and Binding (ARE, lntemctworking with TCP/‘IP, vol. I]:
Design, Implementation, and Internals, Chapter 4, 1994,
131339—59.

370395
395/20055

(List continued on next page)

Primary Examiner—Douglas Olms
Assistant Exammer—Phirin Sam

(74) Auomey, Agent, or Firm~Pillsbury Winthrop LLP

(57) ABSTRACT

In a method and apparatus for performing multiprolocol
switching and touring, incoming data packets are examined
and the flow (i.e., source and destination) with which they
an: associated is determined. Aflow table contains forward-

ing information that an be applied to all the packets
belonging to the flow. If an entry is not present in the table
for the particular flow, the packet is forwarded to the CPU
to be processed. The CPU can then update the table with new
forwarding information to he applied to all future packets of
the same flow. When the forwarding information is already
present in the table, packets can be forwarded at wire-speed.
A dedicated ASIC is preferably employed to contain the
table, as well as the engine for examining the packets and
forwarding them according to the stored information.
Decision-making tasks are thus more efficiently partitioned
between the switch and the CPU so as to minimize process-
ing overhead. Processes executing on the CPU maintain
information regarding filters, mirrors, priorities, and
W3. Such information is further integrated with the flow
table forwarding information when flows corresponding to
the established filters, mirrors, priorities and VLANs are
detected. Accordingly, filters, mirrors, priorities and VLANS
can be automatically implemented when forwarding deci-
sions are made, which implementation is done at wire
speeds. According to another met, VLANs are automati—
cally created and updated based on the automatic detection
of multicast groups existing among the hosts connected to
the ports of the switch. After such VLANs are established,
broadcat packets destined for the detected mulficast groups
are forwarded only along ports whose hosts are members
thereof, thereby preventing needles; and burdensome traffic
from congesting other network segments and host connec-
tion.

14 Claims, 14 Drawing Sheets

....__-.._._..__..-_......J
L__._..__.__.._....

EX 1017 Page 328

US 6,570,875 Bl
P1.ge 2

U.S. PATENT DOCUMENTS

6,005,863 A • 12/1999 Deng et al. 370/392
6,047,325 A 4(].000 Jain ct al. 109!2'1:7
6,091,725 A • 7(].000 Cheriton cl al .•...•.•..... 370/392
6,094,435 A • 7(].000 Hoffman ct al 370/414
6,128,298 A 10(].000 Wootton ct al. •• 370/392
6,216,167 Bl • 4/2001 Momirov 709(238
6,243,758 Bl • 6/2001 Ok:anoue 709(238
6,246,680 Bl • 6/2001 Muller et al .•...••.•...••.. 370/389
6,256,306 Bl • 7/2001 Bcllengcr 370/389
6,272,134 Bl • 8/2001 Bass ct al. 370/390
6,331,983 Bl • 11/2001 Haggerty ct al.•... 370/400

6,335,935 B2 • 1!2002 Kadambi ct al. 370/396

OTIIER PUBLlCAJ10NS

Douglas E. Comer and David L. Stevens,RIP: Active Route
Propagation and Passive Acquisition, Internetworking with
TCP/IP, vol. Il: Design, Implementation, and Internals,
Chapter 18, 1994, pp. 355-379.
Keith Turner, Is It a Switch or Is It a Router, PC Magazine,
Nov. 18, 1997.

• cited by examiner

EX 1017 Page 329

US 6,570,875 B1
Page 2

U.S. PATENT DOCUMENTS 6,335,935 132 ~ 1/2002 Kadambi ct a1. 370/396

6,005,863 A ‘ 12/1999 Deng eta].
6,047,313 A 4mm Jain ct a].
6,091,7fi A ‘ 7/2000 Chm-Eton :1 al.
6,094,435 A ‘ 7/2000 Hoffman cl a1.
6,128,298 A 1012000 Wootton at a].

 OTHER PUBLICATIONS

.. 709/227

-- 370/392 Douglas E. Comer and David L. Stevens, RIP: Active Route
.- 370/414 Pmpagation and PassiveAcqm’sitian, Inlemelworldng with
.. 370/392 TCP/IP, vol. 1]: Design, Implementation, and Internals,6,216,167 131 ' 4/2001 Momirov 709/88

6,243,758 131 ' 6/2001 Okanoue 709/88 Chap” 18’ 1994’ PP' 355—379 ,
6,246,680 Bl ' 6/2001 Muller e: a]. 370589 Kcilh Tumcr, I: It a Snatch or]: It a Router, PC Magazmc,
6,256,306 131 ' 7/2001 Bellenger .. 370/389 Nov. 18, 1997.
6,272,134 Bl * 8/2001 Basset a1. , 370/390
6,331,925 131 5 12/2001 Haggerty et a1. 370/400 * cited by examiner

;~~—1"“9tfirrmmgrau—w"

EX 1017 Page 329

U.S. Patent May 27,2003

LAN

so

Sheet 1 of 14

" ' \
\

' I I
I

' I I
I
I
I
I
I
I
I
I

' I
I
I
I
I

' I • I • • I
I

_I

Multiprotocol
Switch

FIG .. 1

US 6,570,875 Bl

WAN

40

EX 1017 Page 330

US 6,570,875 B1Sheet 1 of 14May 27, 2003U.S. Patent

WAN

i41b5%.

FIG. 1

EX 1017 Page 330

j.

U.S. Patent

r---
1
I
I
I
I
I
I
I
I
I
I

,..I
/ I

o-/ I
"'If" I

I

fg
\
I

I
I
}--.,,.

I \
I
I
I I \

I I
I

I \
I \

I '-
1

\

May27,2003

• ..
•

LO
CD

Sheet 2 of 14

,-----, 0

~ ,,

c::,
DO

::::,
a..
(.)

L-----------------

c::,
O')

US 6,570,875 Bl

N
•

(!)

LL.

----1
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I _____ _J

EX 1017 Page 331

Nw.mvr¢

US 6,570,875 B1Sheet 2 of 14May 27, 2003US. Patent

mmtnm

.M

M5%
_fl

”E05:W3SimE_258.

_59:

WzopéamzouPE
~

13E5:8:5%"god_Em2:;
W

w\I\xmo,1,OO_r...........A.......I;,

3...5$..J.§4fl.d.:.§.fil.lux.e"31..."me....

mm
EX 1017 Page 331

U.S. Patent May27,2003 Sheet 3 of 14 US 6,570,875 Bl

85

r-----------~--·---------------------------------1 •
I t
I I
I I

• • I I
I t
I J . . • • • • . .
:, f"a•~ 76-l •.. 76-F 78-1. .. 7S-M :
I -q Mirron •
I I

I ' . ' J I . .
• • I I
I J
I t
' . I I
I I
I I

' . : I :
: I :

I
- Priorities

77-l ... 77-P

- -

-.....
.....

VLANs

I
I

I 11-1 ... 11-R

19-1 ••• 79--V I • . . . • • I • .
' ' I .
• . • • • • • • . . • .
' • • .
• . . :

' . . .
'--~-----~------------------------------------'

Toso

FIG.3

EX 1017 Page 332

US 6,570,875 B1Sheet 3 of 14May 27, 2003US. Patent

 To 50

FIG. 3

EX 1017 Page 332

U.S. Patent May 27,2003

r
I
I
I

TO 701

60
I
\ -...... _____ _} __ _

100

SWITCH ENGINE

Sheet 4 of 14 US 6,570,875 Bl

------1
I
I
I
I
I

r---- - ----- 1 1TO 50
1/0 QUEUE PORT INTERFACE 1 I TO 75\

I
I
I
I
I
I
I
I
I

......_ ____ ____. 105 l 1 I

I 1/0 QUEUE PORT INTERFACE 2 I l

TO ao:
I
I
I

ADDRESS REGISTERS
DOMAIN REGISTERS
PRIORITY REGISTERS

CPU INTERFACE

110

2 , 1
, 1 , ,

1/0 QUEUE PORT INTERFACE .._..I ..._.
1

.,_
I N-1 . N-1

1
1

I 1/0 QUEUE PORT INTERFACE N 11

N I L ______ , _____ J I

/ I

'120 :
I I

I
I 130 MEMORY INTERFACE

I
I
I I

I
I
I L ____ _

TO 90

FIG.4

I
I
I _ _______ J

EX 1017 Page 333

US. Patent May 27, 2003 Sheet 4 of 14 US 6,570,875 B1

so
I

\‘\

F""""""4“““““““““““““““““““““ ~I

I 100 I
| l

TO 70I I
I SWIICH ENGINE r____________ T {To 50

T0 75! Va ($qu PORT INTERFACE I II I
I I

I I I/O (22qu PORT NIERFACE 2 I}
I ADDRESS REGISIERS I I;
I DOMAIN REGISTERS I """ {I
I PRIORITY REGISTERS VONQIIEUE P!“ W“- II I

moi ' "°I"E"E- “
I CPU INTERFACE L ______ T _____ J;
I l i
I \120 I

I no I
I 130 MEMORY INTERFACE I
I I
| I
I I
I I

I_______________ __J

; T0 90

EX 1017 Page 333

70

~

EHlERNET{
AREA

IP AREA

IPX AREA

160
BASE PROTOCOL

140

ADDRESS
RESOLUTION

HASH

~H ENTRY

150

ADDRESS -- PROTOCOL ENTRY
(FROM 105) t-----'P...;.:.:RO=TOCOL=-ENTRY='---1

PROTOCOL OFFSET-....._ 1-----==l=AB,,....L£=-:-r---1
(FROM 150) J1---:..:.=.:.=-=.:..:..:.a.,---i

PROTOCOL INCREMENT..fl
(FROM 150)

BASE ADDRESS
(FROM 105) - FlLlER TAG

FlLlER TAGS
FLTR ADDR
(FROM 160)-- FlllER TAG

ADDRESS RESOLU110N RECORD1i------- BASE RECORD
ADDRESS

ADDRESS (FROM 105)
RESOLUTION RECORD OFFSET
RECORDS (FROM 140)

ADDRESS RESOLlffiON RECORD }NUM RECORDS

ADDRESS RESOLUTION RECORD (FROM 140) 190

BASE ADDRESS
(FROM 105)

PRIORITY TAG

PRIORITY TAGS

170
PRIORllY TAG

ADDRESS~--~ PRIORITY TAG
(FROM 150)

NawDRK ID ENTRY

NawDRK ENTRY
TABLE

NETWORK ID ENTRY

MIRROR TAG

MIRROR TAGS

MIRROR TAG

BASE NETWORK
ADDRESS

(FROM 105)

NElWORK OFFSET
(FROM 160)

BASE ADDRESS
(FROM 105)

210
MIRROR ADDR
(FROM 160) FIG.5

0 •
r:.,J.
•

EX 1017 Page 334

Wynn-uh" . .. V L A L ,L ,.

Jualud'S'fl

14° ‘50 BASAEDgEggRD
T. (FROM 105)

li AREA Raw" (FROM 14o)

5‘ A _D B!\ (FROM 14°) 190 g
‘ BASE ADDRESS PRIORTTY TAG "’

1px AREA (FROM 105) — é

BASE PROTOCOL 170 PRIOR“ ECADDRES PRIO ITY G

ADDRE1555 (FROM 150) _ §
(”*0” 0’ pmmamm BASE WORK g

PROTOCOL OFFSETW—TABLEHWY-A NEIwom ENTRY ADDRESS 3(FROM 150) TABLE (FROM 105) 3
PROTOCOL INCRBJENT A NETWORK OFFSET

W 150) 'PPTTT- «Row .50)

(FROM 105) M_RRORTAG (FROM 105)

L MlRROR ms 210 %FUR ADDR—-— MIRROR ADDR 9
(FROM 160)—’ (FROM 160) ‘3

FIG.5 9so
\1
UI

wy—L

EX 1017 Page 334

U.S. Patent

S10

Proceu
Packet
(Fi1. 7)

May27,2003

S2

S4

S6

SJ2

Sheet 6 of 14 US 6,570,875 Bl

Power Up

FIG.6

EX 1017 Page 335

US. Patent May 27, 2003 Sheet 6 of 14 US 6,570,875 B1

EX 1017 Page 335

U.S. Patent May27,2003 Sheet 7 of 14

S20 N

y

Check
Protocol

y

Process Packet at
Layer3+
(Fig. 8)

y

N

S24

S28

N

FIG. 7

US 6,570,875 Bl

UpdateVLAN
(Fig. 14)

Process Packet
atLayer2
(Fig. 13)

S22

EX 1017 Page 336

US. Patent May 27, 2003 Sheet 7 of 14 US 6,570,875 31

Update VLAN
(Fig. 14)

Muhicast
Packet?

$20 522yK<0!th~A¢~o~wvvw-

Process Packet at

Layer 3+
(Fig. 8)

EX 1017 Page 336

U.S. Patent

S40

S42

S60

May 27,2003

Get Source and Dest.
Info from Packet

Header

Check Flow Table
for Entries for

Source and Dest.
(Fig. 11)

Forward t.o CPU
for Processing

(Fig. 9)

N

Forward Packet
According to

Defiluh Broadi::ast
Enable for Protocol

FIG.8

Sheet 8 of 14 US 6,570,875 Bl

S46

Forward Packet
According t.o

y Flow Table
(Fig. 12)

sso
Forward Packet on
Port(s) Indicated

y by Source Flow
Table Ell1ty

S56

Forward to CPU
for Processing

y (Fig. 9)

EX 1017 Page 337

US. Patent May 27,2003 Sheet 8 of 14 US 6,570,875 Bl

Ge! Source and Dear.
Info from Packet

Header

for Entries for
Source and Desi.

(Fig. l l)
 g

5 S42 Check Flow TableII

3

S46

Forward PacketEntries in Flow

g Table for Source ”6°“me
and DcsL? Y Flow Table

(Fig. 12)

$48 $50
Forward Packet on

Only Dan. Porfls) Indium!

Umesnlvul? Y by Some Flow
Table Entry

N 556SS4

Forward to CPU

Only Source for Processing

Unresolved? Y (Fig. 9)

N

558

Forward to CPU

for homing
(Figr 9)

S60

Fox-wad Packet

According to
Dcfnnh Broadcast

Enable for Protocol

EX 1017 Page 337

U.S. Patent

S7

End

Sl4

May27,2003 Sheet 9 of 14

Create Source
">---a.i Entry 111d Link to

Huh (Fig. 10)

Forward Pacbt
Accordin& To
Flow Table

(Fig. 12)

72

US 6,570,875 Bl

--M---------·---------------------·-,

FIG.9

S90

Create
Destinatioll &dry
111d Link to Hash

(Fig. 10)

Proaram
Dest. Swap

Field

Gct:ARP

S96

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I • • I • • • I
I
I • I
I
I
I
I
I
I
I ________ }

EX 1017 Page 338

“par“;my
US. Patent May 27, 2003 Sheet 9 0f 14 US 6,570,875 B1”my,

Same CmteSme
Unresolverl? EncylndLinkto

Huh (Fig. 10)

S7 72
N

. .

Umlvador
Broadcast? N

S7

Y S7

Packet
to

N

Prunes Ind

AM Form ------------------------------------1
8mm? Y

3i
3

S7 .‘i E19

sn 5
S

Pucks: Sand AR? E
W IPIIPX'I Ream on Pm :
3mg? ‘1 n, ofIRS. Rom E

586 E
58 m: : §

N 590 : EI

Get Ethaw Ga AR? 3
End Address for [PX W ..—.....JServaiClimt

884 8

S94

896

mm
FIG. 9 Dav. Swap

Fiald

Ii
EX 1017 Page 338

U.S. Patent May 27,2003

S100

Sheet 10 of 14

GET LAST TWEl.VE BITS
Of UNRESOLVED

ADDRESS

US 6,570,875 Bl

S104

CREATE VALID HASH
ENTRY

S106 INCREMENT NUMBER

S112

S120

CRfATE PROTOCOL
ENTRY

S122

STORE PROTOCOL ENTRY IN
PROTOCOL ENTRY TABLE AT
INCREMENT ACCORDING TO

S108

PROTOCOL CARRIED BY PACKET

S126

OF RECORDS IN ~ ______ __.
ENTRY

CREATE ADDRESS
RESOLUTION

RECORD ENTRY

CREATE NETWORK
ENTRY

STORE NETWORK
ENTRY AND LINK TO
PROTOCOL ENTRY

FIG.10

S114

SORT ADDRESS
RESOLUTION RECORD
ENTRIES ASSOCIATED

WITH HASH

S124
S118

LINK ADDRESS
RESOLUTION RECORD TO
DEFAULT PROTOCOL AND

NEJWORK ENTRIES

EX 1017 Page 339

US. Patent May 27, 2003 Sheet 10 of 14 US 6,570,875 B1

; GET [551%ng BTTSg 0F
* $190 ADDRESS

ST04

5102

VALID BURY EXIST CREATE VNJD W
FOR THTS HASH? ENTRY

a $105 INCREHENT Hum
E OF RECORDS TN HASH
3 ENTRY

5108 CREME ADDRESS

RESOLUTDN $1 14
31 12 RECORD ENTRY

$110

SORT MIDRESS

STORE ADDRESS NUMBER OF RESULTING“ RECORD
RESOLUTION RECORD RECORDS) T? ENTRIB ASSOCKTED

ENTRY WITH HASH

5120

CREATE PROTOW.
BTW

STORE PROTOCOL ENTRY IN 3‘ 24
PROTOCOL ENTRY TABLE AT
TNCREMENT ACCORDING TO

PROTOCOL CARRIED BY PACKET

EX 1017 Page 339

U.S. Patent

StJO

May27,2003

Extract last twelve
bits of address

Hash onto address
resolution hash using

last twelve bits

Get address resolution
record entry for this

addn:ss pointed to by
hash entry

Exit
(To Fig. 8
stepS44)

N

Sheet 11 of 14

Sl44

Exit
(To Fig. 8
step S44)

US 6,570,875 Bl

Get Protocol Offset
for this address and

>-_._Y __ --IIIIJII pointed to by address

Sl46

S141

resolution record
entry

Get Protocol Entry by
incrementing from

Protocol Offset
according to protocol

carried by packet

Get Network Entry
pointed to by

Protocol Entry

FIG.11

EX 1017 Page 340

US. Patent ‘ May 27, 2003 Sheet 11 of 14 US 6,570,875 Bl

$130

Extract last twelve
bits of address

5132

Hash onto address

rcsoiution hash using
last twelve bits’3

3

Get address resolution

record entry for this
addtess pointed to by

hash «my
Got Pmtoco] Envy by

inmmeming finm
Protocol Offset

weanling to protocol
carried by packet

EX 1017 Page 340

I

I
U.S. Patent May27,2003 Sheet 12 of 14 US 6,570,875 Bl

FIG.12

y N

EX 1017 Page 341

US. Patent May 27, 2003 Sheet 12 of 14 US 6,570,875 B1.,-.qup.»4.~..uuv‘
S150 5152

DoSmmd qu)n . .m

rsmumm Y mm

FIG. 12 N8154

Dumbo Pants)
Ami-ted With

Dalmatian

8156 S!“

EX 1017 Page 341

'
U.S. Patent

S200

' '•
'

May 27,2003

Get Source and Dest.
Info from Packet

Header

Check Flow Table
for Entries for

Source and Dest.
(Fig. II)

y

Sheet 13 of 14

FIG.13

US 6,570,875 Bl

Forward Packet
According to
Flow Table
(Fig. 12)

Forward Packet
to Pon Indicated

by Dest. Flow
Table Entry

Forward Packet on
Ports Indicamd by
Source Broadcast

Enable

EX 1017 Page 342

US. Patent May 27, 2003 Sheet 13 0f14 US 6,570,875 B1

$180

Get Source and D252.
Info from Packet

Header

l 82
5 Chuck Flow Table

far Entries for
Source and Desi.

(Fig. l !)

$184

8186

 Entries in How
Table for Source

and 0:51.?
8188 5'90

Forward Packet
9631- to Fun Indicated

N by Dcst. Flow
Table Entry

3192

Forward Poem on

Some Pom Indicmd by
Unresolved?

Y

Notify CPU

Forward Packet
on All Parts

5200

FIG. 13
EX 1017 Page 342

I

U.S. Patent May27,2003 Sheet 14 of 14 US 6,570,875 Bl

FROM FIG.7
S22 S214

CREA1E FLOW
TABLE ENTRIES FOR

y y ADDRESS AND
RECORD PORT IN

BROADC'AST ENABLE
FlEJ.D

UPDA1E
BROA()CA.)f

ENAf3LE FlEl.D S216 S222
WITH PORT

CRfATE FLOW
TAB!.£ ENTRIES FOR

ADDRESS AND
N RECORD PORT IN

B~ ENABLE
FE.D

UPDATE
IP MULTir>ST 8ROADCASf

GROUP S226 ENABLE FlELD S224 WITH PORT

CRfAl[FLOW
TABLE ENTRIES FOR

ADDRESS AND
N N RECORD PORT IN

BRQAOCA.g ENABl.E
F1B.D

UPO.\TE
BROADCAST S232

ENABLE FIELD S234
WITH PORT

FIG. 14

EX 1017 Page 343

U.S. Patent May 27, 2003 Sheet 14 of 14 US 6,570,875 B1

mom m7

322 3214

T CREATE now
mums—95m FIRST ABLE WES FOR

ADDRESS AND
MULBCASI GROUP? Y Y RECORD pom in

81mm ENABLE

N 3210 N 3212 new
UPDATE

BROADCAST

ENABLE FIEU) 3215 3222
mm mm

I cum FéswroaABE Em
mam man-:5 9:151

ADDRESS AND
uummsr GROUP? Y FOR ms zone; RECORD Pom In

W ENABLE

N 3218 V

UPDATE

iP mumcm BROADCAST

GROUP 3226 WE”? HELD 3224

 CREATE FLOW

TABUE ENleES FOR

ADDRESS AND

RECORD PORT IN

BROADCAST ENABLE

FIELD

$232

EX 1017 Page 343

'
US 6,570,875 Bl

1
AUTOMATIC Flll'ERING AND CREATION
OF VIRTUAL IANS AMONG A PLURALITY

OF SWITCH PORTS

2
administrative overhead is required to create and maintain
VLAN groups, and to assign and update membecships in the
groups.

Accordingly, there remains a need in the art for a switch-
RELATED APPI1CAI10N 5 ing device that can support prioritization and QoS guaran

tees of network traffic and/or create VLANs automatically
without any administrator intervention. The present inven
tion fulfills this need.

This application is related to co-pending U.S. application
Ser. No. 09/058,335, filed Apr. 10, 1998, and entitled,
"Method And Apparatus For Multiprotocol Switching And
Routing," commonly owned by the assignee of the present

10
application, the contents of which are incorporated herein by
reference.

SUMMARY OF lllE INVENTION

BACKGROUND OF TIIE INVENTION

1. Field of the Invention

An object of the invention is to provide a method aoo
apparatus that can forward packels to tlieir destination at
high throughput rates without requiring substantial process-

15 ing overhead.

Toe present invention relales to packet switches and
routeis, and more particularly, to a switching and routing
method and apparatus capable of automatically filtering
flows of packcls between switch ports allowing for creation
of a high performance hardware usisted firewall for Intranet 20

applications and automatically creating virtual LANs among
switch ports. In addition, the present invention descn'bes a
mechanism to reserve bandwidth for end to end applications
and provide guaranteed qnality of service (QoS) for them.

2. Description of the Related Art 25

Packet switches and routecs forward data packets between
nodes in a network. However, securing machines and data
from unauthorized access is fast becoming a very important
issue for corporate networks. According to industry experts, 30
more than 70% of breaking are internal (ie. employees
stealing sensitive information from their own company).
Also HR department in a company would not want engi
neeis to get access to payroll data. This has created a need

Another object of the invelltion is to provide a method aod
apparatus that can both switch and route packets with the
same minimal processing overhead.

Another object of tlie invention is to provide a method aod
apparatus that is capable of both switching and routing
packets at wire speed.

Another object of the invention is to provide a method aod
apparatus that is capable of wire-speed switching and rout
ing of packets tliat are associated with all possible Layer 2
and Layer 3 traffic protocols.

Another object of the invention is to provide a method and
apparatus that provides wire-speed switching and routing
functionality in a switched internetwork, but does not
require reconfiguration of existing end stations or network
infrastructure.

Another object of the iDVention is to provide a method and
apparatus that provides wire-speed application of filtecs of
flows between nodes in a switched internetwork.

35 Another object of the invention is to provide a method aod for a high performance firewall to secure and separate
dillerent netwodcs. In conventional routers, this is done by
software which inspects every packet that is being routed
aod determines whether any filters have been configured for
that session. This information is typically manually config
=d by a system administrator. However, the processing 40
required to inspect packets and apply the appropriate filter
significantly reduces the packets rate through the router. The
rate further reduces if a large number of filters have been
configured.

Multimedia networking (voice and video Oil LAN/WAN) 45

requires Qnality of Service guarantees. Protocols such as
Resource Reservatioll Protocol (RSVP), Real 11D1e Protocol
(R'fP), Real THDe Control Protocol (RTCP) have been
defined to provide these services on LANs/WANs. Under
lyillg hardware however needs to support prioritization of so
tn.ffic and bandwidth reservation for these protocols to
operate. Network traffic contains normal and high priority
data. A good switch should be able to prioritize traffic in such
a way that while high priority traffic gets its share of
b~~dth, low priority traffic does llot starve completely. ss
This is called Weighted Fair Queuing (WFQ). This invention
descn'bes mechanisms to provide these services in hardware.

like~, virtual LANs {VlANs) are often desired for
controlling broadcast and multicast packet flows in com
puter networks. Broadcast wd multicast packets are typi- 60

cally forwarded Oil all ports of a i,-witch and each node
connecte~ to the switch will have to process mch packets.
Some SWitches allow system administrators to manually set
up ~s among groups of nodes such that broadcasls and
multicasts from llodes belonging to one group are confined 65

to that group. This reduces the number of packets that nodes
on the switched network must process. However, much

apparatus that provides wire-speed application of mirrors of
flows between nodes in a switched internetwork.

Another object of the invention is to provide a method and
apparatus that provides wire-speed application of priorities
for flows between nodes in a switched internetwork.

Another object of the invention is to provide a method and
apparatus that el!hanccs network security.

Another object of the invention is to provide a method an
apparatus that reduces unnecessary network traffic.

Another object of the invention is to provide a method alld
apparatus that provides wire-speed i,-witch and routiog func
tionality while supporting application or network level filters
for intranet security applications.

Anotlier object of the invention i"> to provide a method aod
apparatus that provides wire-speed switch and routing func
tionality while supporting VLANs that are created automati
cally witli no administrator intervention.

Anotherobject of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting bandwidth reservation.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting multilevel priority queueing.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting weighted fair queueing.

The present invention fulfills these objecls, among othecs,
by providing a method and apparatus for performing mul
tiprotocol switching and routiog. lnooming data packets are
examined and the flow (i.e., source aDd destination) with
which they are associated is determined. A flow table

EX 1017 Page 344

US 6,570,875 B1
1

AUTOMATIC FILTERING AND CREATION
OF VIRTUAL LANS AMONG A PLURALITY

0F SWITCH PORTS

RELATED APPIJCATION

This application is related to ctr-pending US. application
Ser, No. 091058335, filed Apr. 10, 1998, and entitled,
“Method And Apparatus For Multiprotocol Switching And
Routing,” mmmonly owned by the assignee of the present
application, the contents ofwhich are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to packet switches and
routers, and more particularly, to a switching and routing
method and apparatus capable of automatically filtering
flows of packets between switch ports allowing for creation
of a high performance hardware assisted firewall for Intranet
applications and automatimlly creating virtual LANs among
switch ports. In addition, the present invention describes a
mechanism to reserve bandwidth for end to end applications
and provide guaranteed quality of service (008) for them.

2. Description of the Related Art
Packet switches and routers forward data packets between

nodes in a network. However, securing machines and data
from unauthorized access is fast becoming a very important
issue for corporate networks. According to industry experts,
more than 70% of breaking are internal (Le. employees
stealing sensitive information from their own company).
Also HR department in a company would not want mgr}
necrs to get access to payroll data. This has created a need
for a high performance firewall to secure and separate
different networks. In conventional routers, this is done by
software which inspects every packet that: is being routed
and determines whether any filters have been configured for
that session. This information is typically manually config-
ured by a system administrator. However, the processing
required to inspect packets and apply the appropriate filter
significantly reduces the packets rate through the router. The
rate further reduces if a large number of filters have been
configured.

Multimedia networking (voice and video on LAN/WAN)
requires Quality of Service guarantees. Protocols such as
Resource Reservation Protocol (RSVP), Real Tune Protocol
(RIF), Real Time Control Protocol (RTCP) have been
defined to provide these services on IANsFWANs. Under—
lying hardware however needs to support prioritization of
trtfiic and bandwidth reservation for these protocok to
operate. Network traffic contains normal and high priority
data. A good switch should be able to prioritize traffic in such
a way that while high priority trellis: gets its share of
bandwidth, low priority tnfiic does not starve completely.
This rscalled Weighted Fair Queuing (WFQ). This invention
describes mechanisms to provide these services in hardware.

Likewise, Virtual LANS (VIANS) are often desired for
controlling broadcast and multicast packet flows in com—
Puter networks. Broadcast and mttlticast packets are typi—
cally forwarded on all ports of a switch and each node
connected to the switch will have to process such packets.
501116 swatches allow system administrators to manually set
“P We among groups of nodes arch that broadcasts and
"mil-10m from nodes belonging to one group are confined
to that group, This reduces the number ofpaekcts that nodes
on “‘3 swrtched network must process. However, much

10

15

20

30

35

45

50

55

60

65

2

administrative overhead is required to create and maintain
VLAN groups, and to assign and update memberships in the
groups.

Accordingly, there remains a need in the art for a switch-
ing device that can support prioritization and QoS guaran-
tees of network traffic andlor create VLANS automatically
without any administrator intervention. The present inven-
tion fulfills this need.

SUMMARY OF THE INVENTION

An object of the invention is to provide a method and
apparatus that can forward packets to their destination at
high throughput rates without requiring substantial process:
ing overhead.

Another object of the invention is to provide a method and
apparatus that can both switch and route packets with the
same minimal processing overhead.

Another object of the invention is to provide a method and
apparatus that is capable of both switching and routing
packets at wire speed.

Another object of the invention is to provide a method and
apparatus that is capable of wire—speed switching and rout-
ing of packets that are associated with all possible Layer 2
and Layer 3 traffic protocols.

Another object of the invention is to provide a method and
apparatus that provides wire-speed switching and routing
functionality in a switched intemetwork, but does not
require reconfiguration of existing end stations or network
infrastmcture.

Another object of the invention is to provide a method and
apparatus that provides wire-speed application of filters of
flows between nodes in a switched inter-network.

Another object of the invention is to provide a method and
apparatus that provides wire-mica! application of mirrors of
flows between nodes in a switched intemetwork.

Another object of the invention is to provide a method and
apparatus that provides wire-speed application of priorities
for flows between nodes in a switched inter-network.

Another object of the invention is to provide a method and
apparatus that enhances network security.

Another object of the invention is to provide a method an
apparatus that reduces unnecessary network traffic.

Another object of the invention is to provide a method and
apparatus that provides wire-speed switch and routing func—
tionality while supporting application or network level filters
for intranet security applications.

Another object of the invention is to provide a method and
apparatus that provides wirespeed switch and routing func-
tionality while supporting VLANs that are created automati«
catty with no administrator intervention.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting bandwidth reservation.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting multilevel priority queueing.

Another object of the invention is to provide a method and
apparams for wire speed switching and routing functionality
while supporting weighted fair queueing.

The present invention fulfills these objects, among others,
by providing a method and apparatus for performing mul-
tiprotoool switching and routing. incoming data packets are
examined and the flow (i.e., source and destination) with
which they are associated is determined. A flow table

EX 1017 Page 344

I

US 6,570,875 Bl
3

contains forwarding information that can be applied to the
flow. lf an entry is not present in the table for the particular
flow, the packet is forwarded to the CPU to be processed.
The CPU can then update the table with new forwarding
infonnation to be applied to all future packets of the same 5

flow. When the forwarding information is already present in
the table, packets can thus be forwarded at wire-speed. A
high speed static memory is preferably used to contain the
table. A dedicated ASIC is preferably used to implement the
engine for examining individual packets and forwarding 10

them according to the stored information. Decision-making
tasks are thus more efficiently partitioned between the
switch and the CPU so as to minimize processing overhead.

Information regarding filters, priorities, and VLANs is
maintained by processes executing on the CPU and are 15

programmed into the forwarding table for the hardware to
apply when it detects a matching flow.

According to another aspect of the invention, Internet
Group Management Protocol (IGMP) packets {for IP mul
ticast control), Zone Information Protocol (ZIP) packets (for 20

AppleTalk) and NetBios & DLC/ILC packets with multi
cast addresses are forwarded to the CPU by !he hardware.
The CPU can then create and update VLANs automatically
for those multicast groups in the forwarding table with no
administrator intervention. Once such VLANs arc 25

established, packets destined for the detected multicast
groups are forwarded only on the ports whose hosts are
members thereof. preventing needless and burdensome traf-
fic from congesting other nctwmk segments and host con-
nections. 30

A further aspect of the invention provides mechanisms fur
administrators to reserve bandwidths and assign priorities to
traffic flows. Protocols such as RSVP can then be used to
automatically reserve bandwidth for certain flows. This 35
provides Quality of Service guarantees fur traffic being
switched.

BRIEF DESCRIPTION OF TIIE DRAWINGS

4
FIG. 9 is a flowchart illustrating a method used to process

unresolved Layer 3+ data packets received in a multiproto
col switch according to the present invention;

FIG. 10 is a flowchart illustrating a method used to create
flow pr0Ce5Sing entries in a multiprotocol switch according
to the present invention;

FIG.11 is a flowchart illustrating a method used to resolve
flow processing information according to flow identification
information contained in data packets processed in a mul
tiprotocol switch according lo the present invention;

FIG. 12 is a flowchart illustrating a method used to
forward data packets according to flow processing informa
tion progranimed for the particular flow with which the data
packets are associated in a multiprot(J(X)l switch according to
the present invention;

FIG. 13 is a flowchart illustrating a method used to
process data packets according to Layer 2 protocols in a
multiprotocol switch according to the present invention; aod

FIG. 14 is a flowchart illustrating a method used to
automatically configure and update VLAN information in a
multiprotocol switch built according to the present inven
tion.

DETAILED DESCRIPTION OF TIIE
PREFERRED EMBODIMENTS

A device and method capable of performing wire-speed
multiprotocol switching and routing of data packets between
nodes in a network is descn"bed in the aforementioned
related co-pending U.S. application Ser. No. 09/058,335.
FIG. 1 is a block diagram illustrating a switch architecture
in accordance with the present invention, which switch
architecture is more fully descnbed in the co-pending appli
cation. It includes a multiprotocol switch 40 having N
input/output ports 50-1 ... 50-N. The input/output ports can

These and other objects and advantage5 of the present
invention will become apparent to those skilled in the art
after considering the following detailed specification,
together with the accompanying drawings wherein:

FIG. 1 is a block diagrani illustrating a packet switching
a.rchitccture in accordance with the present invention;

be attached to nodes in a local area network (LAN) or they
can be attached to di.trerent network segments or different
networks in a wide area network (WAN) directly or via
routers. As explained in more detail in the co-pending

40 application, the multiprotocol switch has the ability to
forward packets among and between local nodes and exter
nal netwodc:s attached to it at wire speeds, and in accordance
with a plurality of Layer 2 and Layer 3 protocols.

FIG. 2 is a block diagram illustrating a multiprotocol
switch of the present invention in an architecture such as that
illustrated in FIG. 1;

FIG. 3 is a block diagram illustrating a configuration table
of the present invention in a multiprotocol switch such as
that illustrated in FIG. 2;

45
FIG. 2 further illustrates a multiprotocol switch 40 in

accordance with the principles of the invention. In addition
to input/output ports 50, it includes a switch module 60 aed
a flow table 70. Switch module 60 further communicates
with a packet buffer 75, a CPU 80 and a shared memory 90.

50
Flow table 70 aed shared memory 90 arc mapped memory
spaces that are accessiole by both switch module 60 and
CPU 80. CPU 80 also communicates with a routing table 65,
a configuration table 85 and a system administrator 45. FIG. 4 is a block diagram illustrating a switch module of

the present invention in a multiprotocol switch such as that
illustrated in FIG. 2;

FIG. 5 is a block diagram illustrating a fl.ow table of the
55

present invention in a multiprotocol switch such as that
illustrated in FIG. 2;

Although shown separately for clarity, switch module 60
and flow table 70 are preferably implemented together as an
application specific integrated circuit {ASIC). Such an
implementation permits data packets to be switched between
ports 50 at wire speed in accordance with flows, filters aed
priorities specified in flow table 70. However, other specific FIG. 6 is a flowchart illustrating a method used during

operation of a multiprotocol switch according to the present
invention;

FIG. 7 is a flowchart illustrating a method \Lo;ed to proce5S
data packets received in a multiprotocol switch according to
the present invention;

FIG. 8 is a flowchart illustrating a method used to process
data packets according to Layer 3+ protocols in a multipro
locol switch according to the present invention;

60 implementations of switch module 60 and flow table 70 in
accordance with the invention will be apparent to those
skilled in the art after being taught by the following disclo
sures of their logical functions and data structures, for
example.

65 CPU 80 can be implemented by a MIPS microprocessor
made by IDT Inc. of Santa Clara., Calif., and shared memory
90 can be implemented by a fast sta.tic RAM (SRAM) such

I
'

EX 1017 Page 345

US 6,570,875 B1
3

contains forwarding information that can be applied to the
flow. If an entry is not present in the table for the particular
flow, the packet is forwarded to the CPU to be processed.
The CPU can then update the table with new forwarding
information to be applied to all future packets of the same
flow. When the forwarding information is already present; in
the table, packets can thus be forwarded at wire-speed. A
high speed static memory is preferably used to contain the
table. A dedicated ASIC is preferably used to implement the
engine for examining individual packets and forwarding
them according to the stored information. Decision-making
tasks are thus more efliciently partitioned between the
switch and the CPU so as to minimize processing overhead.

Information regarding filters, priorities, and We is
maintained by processes executing on the CPU and are
programmed into the forwarding table for the hardware to
apply when it detects a matching flow.

According to another aspect of the invention, lntemet
Group Management Protocol (IGMP) packets (for [P mul-
ticast control), Zone Information Protoml (ZIP) packets (for
Apple'l‘alk) and NetBios & DLC/ILC packets with multi-
cast addresses are forwarded to the (EU by the hardware.
The CPU can then create and update VLANS automatically
for those multimst groups in the forwarding table with no
administrator intervention. Once such VLANS are

established, packets destined for the detected multicast
groups are forwarded only on the ports whose hosts are
members thereof, preventing needless and burdensome traf-
fic from congesting other network segments and host con-
nections.

Afurther aspect ofthe invention provides mechanisms for
administrators to reserve bandwidths and assign priorities to
tramc flows. Protocols such as RSVP can then be used to

automatically reserve bandwidth for certain flows. This
provides Quality of Service guarantees for trafic beingswitckd.

BRIEF DESCRIFI‘ION OF THE DRAWlNGS

These and other objects and advantages of the present
invention will become apparent to those skilled in the art
after considering the following detailed specifican’on,
together with the accompanying drawings wherein:

FIG. 1 is a block diagram illustrating a padret switching
architecture in accordance with the present invention;

FIG. 2 is a block diagram illustrating a multiprotoeol
sudtoh of the present invention in an architecture such as that
illustrated in FIG. 1;

FIG. 3 is ablock diagram illustrating a configuration table
of the present invention in a multiprotocol switch such as
that illustrated in FIG. 2;

FIG. 4 is a block diagram illustrating a switch module of
the present invention in a multiprotoool switch such as that
Illustrated in FIG. 2;

FIG. 5 is a block diagram illustrating a flow table of the
present invention in a multiprotocol switch such as that
Illustrated in FIG. 2;

FIG. 6 is a flowchart illustrating a method used during
operation of a multiprotocol switch according to the present
Invention;

FIG. 7 is a flowchart illustrating a method used to process
data packets received in a multiprotocol switch according to
the present invention;

FIG. 8 is a flowchart illustrating a method used to process
dun packets according to Layer 3+ protocols in a multipro—
toC01 switch acwrding to the present invention;

10

15

20

25

30

45

50

55

65

4
FIG. 9 is a flowchart illustrating a method used to process

unresolved Layer 3+ data packets received in a multiproto-
col switch according to the present invention;

FIG. 10 is a flowchart illustrating a method used to create
flow processing entries in a multiprotoool switch according
to the present invention;

FIG. 11 is a flowchart illustrating a method used to resolve
flow processing information according to flow identification
information contained in data packets processed in a mulw
tiprotoool switch according to the present invention;

FIG. 12 is a flowchart illustrating a method used to
forward data packets according to flow processing informa—
tion programmed for the particular flowr with which the data
packets are associated in a multiprotoool switch according to
the present invention;

FIG. 13 is a flowchart illustrating a method used to
process data packets according to Layer 2 protocols in a
multiprotocol switch according to the present invention; and

FIG. 14 '5 a flowchart illustrating a method used to
automatically configure and update VLAN information in a
multiprotoeol switch built according to the present inven-
lion.

DEEAllfiD DESCRIPTION OF THE
PREFERRED EMBODIMENTS

A device and method capable of performing wire-speed
multipmtocol switching and routing of data packets between
nodes in a network is described in the afiorementioned
related err-pending US. application Ser. No. 09.058.335.
FIG. 1 is a block diagram illustrating a switch architecture
in accordance with the present invention, which switch
architecture is more fully described in the co-pcnding appli-
cation. It includes a multiprotocol switch 40 having N
input/output ports 5&1 . . . SON. The input/output pons can
be attached to nodes in a local area network (LAN) or they
can be attached to different network segments or diflcrent
networks in a Wide area network (WAN) directly or via
routers. As explained in more detail in the err-pending
application, the multiprotoool switch has the ability to
forward packets among and between local nodes and exter-
nal networks attached to it at wire speeds, and in accordance
with a plurality of Layer 2 and Layer 3 protocols.

FIG. 2 further illustrates a mnltiprotoool switch 40 in
accordance with the principles of the invention. In addition
to input/output ports 50,1} includes a switch module 60 and
a flow table 70. Switch module 60 further communicates
with a packet butler 75, a CPU 80 and a shared memory 90.
Flow table 70 and shared memory 90 are mapped memory
spaces that are accessible by both switch module 60 and
CPU 80. CPU 80 also communicates with a routing table 65,
a configuration table 85 and a system administrator 45.

Although shown separately for clarity, switch module 60
and flow table '70 are preferably implemented together as an
application specific integrated circuit (ASIC). Such an
implementation permits data packets to he switched between
puns 50 at wire speed in accordance with flows, filters and
priorities specified in flow table 70. However, other specific
implementations of switch module 60 and flow table 70 in
accordance with the invention will be apparent to those
skilled in the art after being taught by the following disclo-
sures of their logical functions and data structures, for
example.

CPU 80 can be implemented by a MIPS microprocessor
made by IDT Inc. of Santa Clara, Calif., and shared memory
99 can be implemented by a fast static RAM (SRAM) such

EX 1017 Page 345

.-

I

US 6,570,875 Bl
5 6

as that manufactured by ISSI. Packet buffer 75 for storing configuration table 85 is a list of VLANs 79-1 ... 79-V,
packets can be implemented using Synchronous DRAM which list includes each established VI.AN and the members
(SDRAM) such as that manufactured by Samsung, Inc. CPU thereof. Filters, priorities, mirrors and can be port-specific,
80 partitions packet buffer 75 on a periport basis. The host-specific, application-specific, or protocol-specific. 'That
amollilt of memory allocated to each partition depends on s is, for example, a filter may be established between two ports
port speed. So, for example, a gigabit port is allocated more of the switch (e.g. foibid any communication between ports
memory than a 10/100 Mbps port. A and B), between two hosts connected to ports of the switch

(e.g. forbid any communication between host A having
Although not shown for clarity, it should be understood Ethernet address X, and host B having Ethernet addres.'I Y),

that CPU 80 includes program and data memory for storing
10

between two applications rllilning on hosts connected to
programs that arc executed by CPU 80 and data needed by ports of the switch (e.g. forbid any telnet sesi;ions between
those programs. Such data can include routing tables and the hosts A and B), or between two hosts using a certain protocol
like. Programs executed by CPU 80 can include conven- (e.g. foibid JCMP communications between IP hosts A and
tional routing update and costing functions implemented B). When a priority level is assigned to a port, host,
with known protocols such as Routing Infon:nation Protocol application or protocol, packets associated therewith are
(RIP) for setting and maintaining conventional routing table 15 forwarded via a selected one of multiple priority queues. as
information in routing tables fi5, as well as processes for will be described in more detail below. A mirror permits
setting and maintaining system configuration infon:nation packets destined for one port, host or application to be
for the network in configuration table 85 in accordance with duplicated and forwarded on one or more ports.
commands by system administrator 45, which system con- In addition to the VlANs automatically created and
figuration information can include routing domains for 20 maintained by the present invention, as will be described in
example. Such conventional routing processes are in addi- more detail below, the list of VLANs 79-1 ... 79-V allows
tion to the novel processes pcrfon:ned by the multiprotocol

system administrators to manually create and maintain
switch of the present invention that will be descnbed in more VLANs, or to disable automatic creation of VLANs, by the
detail below. However, a detailed description of such con- switch.
ventional processes will not be given so as not to obscure the 25
invention. Routing domains 81-1 ... 81-R contain the lists of routing

domains established for the network and the members
. Ports 50 are preferably RJ45 10/100 Mb ports, and can thereof. For example, a typical routing domain configuration
mclude port modules such as, for enmplc, a 8xl0/100 Mb for IP networks involves assigning ports to routing domains
port module (100 Base TX), a 1-Gigabit port module, or a

30
and specifying a separate IP address and subnet mask for

4x100 Base FX port module. each routing domain. For IPX networks, administrators need
The term "routing domain" is used in this document to to configure an IPX network address and a frame type for the

dcscnbc multiple ports (50-1 ... 50-N) that belong to the routing domain in addition to specifying ports that belong to
same IP or IPX network. All the ports that belong to a the routing domain. Such configuration information for IP
routing domain have the same IP ~ddress ~ subnet mask 35 and IPX networks arc maintained and updated by processes
or same IPX address. Each routing domam represents a executing on CPU 80 and stored as routing domains 81-1 ...
virtual router port on the switch. 81-R in configuration table 85. Each individual port can

In the architecture shown in FIG. 2, data packets arrive at belong to only one routing domain. In accordance with an
ports 50-1 ... 50-N. As will be dcscnbed in more detail aspect of the invention that will be described in more detail
below, switch module 60 continually monitors each of the 40 below, the routing domain configurations are used to auto-
ports for incoming traffic. When a data packet arrives, it matically configure rules in flow table 70 such that IP and
checks the packet header for information that identifies the IPX flows of packets from nodes belonging to the same
flow to which the packet belongs. For example, a flow of routing domain are switched at Layer 3+ at wire speed,
packets between two hosts in the network can be identified while IP and IPX flows of packets from communicating
by the Ethernet and/or IP/IPX addresses of the hosts, and 4s nodes on different routing domains are routed at wire speed
perhaps further by IP/IPX sockets and the protocol by which at Layer 3+.
the hosts are communicating. This flow identification infor- FIG. 4 further illustrates a switch module fiO in accor-
mation is extracted from the header of each packet that dance with the architecture illustrated in FIG. 3. As can be
traveISCS the network through t?e multiprotocol swit~h. seen, it includes switch engine 100, address registers 105,
IP/IPX data packets are buffered m packet buffer 75 while so domain configuration registers 115, priority level configu-
flow identification and forwarding processing is performed. ration registers 125, CPU interface 110, port interfaces

Software processes executing on CPU 80 handle inter- 120-1 ... 120..N with associated 1/0 queues, and memory
being with a system administrator 45 to retrieve, store and interface 130. As is further apparent from the figure, switch
manage configuration information in configuration table 85. engine 100 accesses information contained in flow table 70,
The software processes and interfaces can be implemented 55 address registers 105, domain configuration registers 115
in many ways known to those skilled in the art, and so they and priority level configuration registers 125, and manages
will not be described in detail here so as not to obscure the packets buffered in packet buffer 75. CPU interface 110
invention. However, some of the contents of configuration communicates with CPU 80, thereby providing communi-
table 85 should be noted. In addition to conventional system cation means between CPU 80 and switch engine 100,
configuration information such as routing domains, this 60 address registers 105, domain configuration registers 11S,
table includes information relating to filters, priorities, band· priority level configuration registers US, port interfaces
width reservations for applications and VLANs established 120..1 ... 120..N, and memory interface 130. Port interfaces
between ports and hosts of the network. 120-1 ... 120-N respectively communicate with ports

As further illustrated in FIG. 3 in addition to routing S0..l ... 50-N, and memory interface 130 manages access
domain settings 81-1 ... 81-R, seU: of filters 76-1 ... 7fi-F, 65 to shared. memory 9~. It ~ould be noted that ~ this
priorities 77-1 ... 77 .p, and mirrors 78-1 . . . 78-M, arc conligurauon,, both SWitch ~ngme 100 and CPU 80 (via CPU
maintained in configuration table 85. Also maintained in interface 110 and memory mterface 130) can forward pack-

EX 1017 Page 346

US 6,570,875 B1
5

as that manufactured by 1831. Packet buffer 75 for storing
packets can be implemented using Synchronous DRAM
(SDRAM) such as that manufactured by Samsung, Inc. CPU
80 partitions packet buffer 75 on a periport basis The
amount of memory allocated to each partition depends on
port speed. 80, for example, a gigabit port is allocated more
memory than a 10mm Mhps port.

Although not shown for clarity, it should he understood
that CPU 80 includes program and data memory for storing
programs that are executed by CPU 80 and data needed by
those programs. Such data can include routing tables and the
like. Programs executed by CPU 80 can include conven-
tional routing update and costing functions implemented
with known protocols such as Routing Information Protocol
(RIP) for setting and maintaining conventional routing table
information in routing tables 65, as well as processes for
setting and maintaining system configuration information
for the network in configuration table 85 in accordance with
commands by system achm'nistrator 45, which system con-
figuration information can include routing domains for
example. Such conventional routing processes are in addi-
tion to the novel pms performed by the multiprotoool
switchof the present invention that will he described in more
detail below. However, a detailed description of such mn-
ventiomlpmwill not be given so as not to obscure the
invention.

Ports 50 are preferably R145 10/100 Mb ports, and can
include port modules such as, for example, a leOflOU Mb
port module (1C0 Base TX), 2: l—Gigabit port module, or a
4x100 Base FX port module.

The term “routing domain” is used in this document to
describe multiple ports (50—1 . . . 50—N) that belong to the
same IP or [PX network. All the ports that belong to a
routing domain have the same IP address and subnet mask
or same [PX address. Each routing domain represents a
virtual router port on the switch.

In the architecture shown in FIG. 2, data. packels arrive at
ports 50- . . . 50-N. As will be described in more detail
below, switch module 60 continually monitors each of the
ports for incoming traffic. When a data packet arrives, it
checks the packet header for information that identifies the
flow to which the packet belongs. For example, a flow of
packets between two hosts in the network can be identified
by the Ethernet and/or IP/IPX addresses of the hosts, and
perhaps further by IP/IPX sockets and the protocol bywhich
the hosts are communicating. This flow identification infor-
mation is extracted floor the header of each packet that
traverses the network through the multiprotocol switch.
IPIIPX data packets are buttered in packet buffer 75 while
flow identification and forwarding processing is performed.

Software processes executing on CPU 80 handle inter-
facing with a system administrator 45 to retrieve, store and
manage configuration information in configuration table 85.
The software processes and interfam can be implemented
in many ways known to those skilled in the art, and so they
Fill not be described in detail here so as not to obscure the
mvcntion. However, some of the contents of configuration
table 85 should be noted. In addition to conventional system
COnfiguration information such as routing domains, this
table includes information relating to filters, priorities, band»
width reservations for applications and VLANs established
between ports and hosts of the network.

As further illustrated in FIG. 3, in addition to routing
dOrnain settings 81.] . . . BI-R, sets of filters 764 . . . 76-F,
Pliorities 77-1 . . . ’f7—P, and mirrors 784 . . . 78-M, are
mlintained in configuration table 85. Also maintained in

10

15

35

45

’50

55

65

6
configuration table 85 is a list of VLANS 794 . . . 79-V,
which list includes each established VLAN' and the members
thereof. Filters, priorities, mirrors and can be portaspecific,
host-specific, application—specific, or pmtocolvspecific. That
is, for example, a filter may be established between two ports
of the switch (cg. forbid any communication between ports
A and B), between two hosts connected to ports of the switch
(cg. forbid any communication between host A having
Ethernet address X, and host B having Ethernet address Y),
between two applications running on hosts connected to
ports of the switch (cg. forbid any telnet sessions between
hostsA and B), orbetween two hosts using a certain protocol
(eg. forbid ICMP mmmunicatiom between 11’ hosts A and
B). When a priority level is assigned to a port, host,
application or protocol, packets associated therewith are
forwarded via a selected one of multiple priority queues, as
will be described in more detail below. A mirror permits
packets dmtined for one port, host or application to be
duplicated and forwarded on one or more ports.

In addition to the VLANs automatically created and
maintained by the present invention, as will be described in
more detail below, the list of VLANS 79-1 . . . 79-V allows
system administrators to manually create and maintain
VLANs, or to disable automatic creation of VLANS, by theswitch.

Routing domains 81—1 . . . 81-R contain the lists ofrouting
domains established [or the network and the members
thereof. For example, a typical routing domain configuration
for IP networks involves assigning ports to routing domains
and specifying a separate 1? address and subnct mask for
each routing domain. For IPX networks, administrators need
to configure an [PX netwodr address and a frame type for the
routing domain in addition to specifying ports that belong to
the routing domain. Such configuration information for IP
and IPX networks are maintained and updated by processes
executing on CPU 80 and stored as routing domains 8L1 . . .
Sl-R in configuration table 85. Each individual port can
belong to only one muting domain. In accordance with an
aspect of the invention that will be described in more detail
below, the routing domain configurations are used to auto-
matically configure rules in flow table 70 such that IP and
[PX flows of packets from nodes belonging to the same
routing domain are switched at Layer 3+ at wire speed,
while I? and {PX flows of packets from communicating
nodes on different muting domains are routed at wire speed
at Layer 3+.

FIG. 4 further illustrates a switch module 60 in accor-
dance with the architecture illustrated in FIG. 3. As can be

seen, it includes switch engine 100, address registers 105,
domain configuration registers 115, priority level configu-
ration registers 125, CPU interface 110, port interfaces
1204 . . . 120-N with associated U0 qucum, and memory
interface 130. As is further apparent from the figure, switch
engine 100 accesses information contained in flow table 70,
address registers 105, domain configuration registers 115
and priority level configuration registers 125, and manages
packets buffered in packet butter 75. CPU interface 110
communicates with CPU 80, thereby providing communi-
cation meam between CPU 80 and switch engine 100,
address registers 105, domain oonfigluation registers 115,
priority level configuration registers 125, port interfaces
1204 . . . 120-N, and memory interface 130. Port interfaces
120—1 . . . 120.11 respectively communicate with ports
50~1 . . . 50-N, and memory interface 130 manages access
to shared memory 90. It should be noted that in this
configuration, both switch engine 100 and CPU 80 (via CPU
interface 110 and memory interface 130) can forward pack-

EX 1017 Page 346

