
EX 1009 Page 1

 PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

 (51) International Patent Classification 5 = (11) International Publication Number: W0 92/19054

H04J 3/14, 3/24, H04L 12/56

 29 October 1992 (29.10.92) (43) International Publication Date:

PCT/US92/02995 (74) Agent: PRAHL, Eric, L.; Fish & Richardson, 225 Franklin
Street, Boston, MA 02110-2804 (US).

 (21) International Application Number:

(22) International Filing Date: 10 April 1992 (10.04.92)

(81) Designated States: AT (European patent), BE (European
patent), CA, CH (European patent), DE (European pa~
tent), DK (European patent), ES (European patent), FR
(European patent), GB (European patent), GR (Euro-
pean patent), IT (European patent), JP, LU (European
patent), MC (European patent), NL (EurOpean patent),
SE (European patent).

(30) Priority data:
684,695 12 April 1991 (12.04.91) US

(71) Applicant: CONCORD COMMUNICATIONS, INC.
[US/US]; 753 Forest Street, Marlboro, MA 01752 (US).

(72) Inventors: FERDINAND, Engel ; 21 Joseph Road, Nor-
thborough, MA 01532 (US). JONES, Kendall, S. ; 90
Boulder Road, Newton Center, MA 02159 (US). RO-
BERTSON, Kary ; 398 North Road, Bedford, MA 01739
(US). THOMPSON, David, M. ; 5127 243rd Road, Red-
mond, WA 98053 (US). WHITE, Gerard ; 133 Massa-
poag Road, Tyngsborough, MA 01879 (US).

 Published

With international search report.

(54) Title: NETWORK MONITORING

2 2 2 1014

_Ia ram-14

6_m- 2:
2 2 2 4

I4
2 10 2 2 4

MONITOR m m BRIDGE s

FILESERVER m ROUTER 5
2 2 2 4 14

2 2 2 1o ,

6 m FILE SERVER MONITOR

m w W a“
4 2 2 , 2

2 10 2 2 4

MONITOR ROUTER

m . a“
2 2 2

 14

 (57) Abstract

 Monitoring is done of communications which occur in a network of nodes (2), each communication being effected by a
transmission of one or more packets among two or more communicating nodes (2), each communication complying with a prede-

fined communication protocol selected from among protocols available in the network. The contents of packets are detected pas-
sively and in real time, communication information (130, 152, 178) associated with multiple protocols is derived from the packet
contents.

EX 1009 Page 2

‘1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCI‘ on the front pages of pamphlets publishing international
applications under the PCl'.

AT Aualria Spain Madagascar
AU Australia l-inland Mali
BB Barltarlm France Mongolia
BE Belgium Gabon Mauritania
BF Burktna Faun United Kingdom Malawi
86 Bulgaria Guinea Netherlands
BJ Benin Greece Norway
BR Brazil Hungary Poland
CA Canada Italy Romania
CF Central African Republic Japan Russian Federation
CG Congo Democratic People‘s Republic Sudan
CH Swit/erland of Korea Sweden
Cl (Tote d'lvoire Republic of Korea Senegal

('atneroon l icchtenstein Soviet Union
('Iecltnslovaltin Sri lanka (‘ltad
(icnnany I unembourg Togo
Denmark Monaco United Statea of America

EX 1009 Page 2

EX 1009 Page 3

W0 92/19054 , PCI‘/US92/02995

—1—

NETWORK MONITORING

Background of the Invention

The invention relates to monitoring and managing

communication networks for computers.

5 Todays computer networks are large complex systems

with many components from a large variety of vendors.

These networks often span large geographic areas ranging

from a campus-like setting to world wide networks. While

the network itself can be used by many different types of

10 organizations, the purpose of these networks is to move

information between computers. Typical applications are

electronic mail, transaction processing, remote database,

query, and simple file transfer. Usually, the

organization that has installed and is running the

15 network needs the network to be running properly in order

to operate its business. Since these networks are

complex systems, there are various controls provided by

the different equipment to control and manage the

network. Network management is the task of planning,

20 engineering, securing and operating a network.

To manage the network properly, the Network

Manager has some obvious needs. First, the Network

Manager must trouble shoot problems. As the errors

develop in a running network, the Network Manager must

25 have some tools that notify him of the errors and allow

him to diagnose and repair these errors. Second, the

Network Manager needs to configure the network in such a

manner that the network loading characteristics provide

the best service possible for the network users. To do

30 this the Network Manager must have tools that allow him

visibility into access patterns, bottlenecks and general

loading. With such data, the Network Manager can

reconfigure the network components for better service.

There are many different components that need to

35 be managed in the network. These elements can be, but

EX 1009 Page 3

EX 1009 Page 4

W0 92/19054 PCT/US92/02995

_2-

are not limited to: routers, bridges, PC's, workstations,

minicomputers, supercomputers, printers, file servers,
switches and pbx's. Each component provides a protocol

for reading and writing the management variables in the
5 machine. These variables are usually defined by the

component vendor and are usually referred to as a

Management Information Base (MIB). There are some
standard MIB's, such as the IETF (Internet Engineering

Task Force) MIB I and MIB II standard definitions.

10 Through the reading and writing of MIB variables,
software in other computers can manage or control the

component. The software in the component that provides
remote access to the MIB variables is usually called an

agent. Thus, an individual charged with the

15 responsibility of managing a large network often will use
various tools to manipulate the MIB's of various agents

on the network.

Unfortunately, the standards for accessing MIBs

are not yet uniformly provided nor are the M18

20 definitions complete enough to manage an entire network.
The Network Manager must therefore use several different

types of computers to access the agents in the network.
This poses a problem, since the errors occurring on the
network will tend to show up in different computers and

25 the Network Manager must therefore monitor several

different screens to determine if the network is running

properly. Even when the Network Manager is able to

sufficient for the Network Manager to function properly.

30 Furthermore, there are many errors and loadings on

the network that are not reported by agents. Flow

control problems, retransmissions, on—off segment

loading, network capacities and utilizations are some of

the types of data that are not provided by the agents.

EX 1009 Page 4

EX 1009 Page 5

W0 92/l 9054 PCT/US92/02995

-3-

Simple needs like charging each user for actual network

usage are impossible.

Summary of the Invention

In general, in one aspect, the invention features

5 monitoring communications which occur in a network of

nodes, each communication being effected by a

transmission of one or more packets among two or more

communicating nodes, each communication complying with a

predefined communication.protocol selected from among

10 protocols available in the network. The contents of

packets are detected passively and in real time,

communication information associated with multiple

protocols is derived from the packet contents.

Preferred embodiments of the invention include the

15 following features. The communication information

derived from the packet contents is associated with

multiple layers of at least one of the protocols.

In general, in another aspect, the invention

features monitoring communication dialogs which occur in

20 a network of nodes, each dialog being effected by a

transmission of one or more packets among two or more

communicating nodes, each dialog complying with a

predefined communication protocol selected from among

protocols available in the network. Information about

25 the states of dialogs occurring in the‘network and which

comply with different selected protocols available in the

network is derived from the packet contents.

Preferred embodiments of the invention include the

following features. A current state is maintained for

30 each dialog, and the current state is updated in response

to the detected contents of transmitted packets. For

each dialog, a history of events is maintained based on

information derived from the contents of packets, and the

history of events is analyzed to derive information about

35 the dialog. The analysis of the history includes

EX 1009 Page 5

EX 1009 Page 6

W0 92/19054 PCT/US92/02995

_4—

counting events and gathering statistics about events;

The history is monitored for dialogs which are inactive,

and dialogs which have been inactive for a predetermined

period of time are purged.h For example, the current
5 state is updated to data state in response to observing

the transmission of at least two data related packets

from each node. Sequence numbers of data related packets

stored in the history of events are analyzed and

retransmissions are detected based on the sequence

10 numbers. The the current state is updated based on each

new packet associated with the dialog; if an updated
current state cannot be determined, information about

prior packets associated with the dialog is consulted as
an aid in updating the state. The history of events may

15 ‘be searched to identify the initiator of a dialog.

The full set of packets associated with a dialog

up to a point in time completely define a true state of

the dialog at that point in time, and the step of

updating the current state in response to the detected
20 contents of transmitted packets includes generating a

current state (e.g., "unknown") which may not conform to

the true state. The current state may be updated to the

true state based on information about prior packets

transmitted in the dialog. '

25 Each communication may involve multiple dialogs

corresponding to a specific protocol. Each protocol

layer of the communication may be parsed and analyzed to
isolate each dialog and statistics may be kept for each

dialog. The protocols may include a connectionless-type

30 protocol in which the state of a dialog is implicit in
transmitted packets, and the step of deriving information

about the states of dialogs includes inferring the states

of the dialogs from the packets. Keeping statistics for

protocol layers may be temporarily suspended when parsing

EX 1009 Page 6

EX 1009 Page 7

W0 92/l9054 7 PCT/US92/02995

-5-

and statistics gathering is not rapid enough to match the

rate of packets to be parsed.

In general, in another aspect, the invention

features monitoring the operation of the network with

5 respect to specific items of performance during normal

operation, generating a model of the network based on the

monitoring, and setting acceptable threshold levels for

the specific items of performance based on the model. In

preferred embodiments, the operation of the network is

10 monitored with respect to the specific items of

performance during periods which may include abnormal

operation.

In general, in another aspect, the invention

features the combination of a monitor connected to the

15 network medium for passively, and in real time,

monitoring transmitted packets and storing information

about dialogs associated with the packets, and a

workstation for receiving the information about dialogs

from the monitor and providing an interface to a user. In

20 preferred embodiments, the workstation includes means for

enabling a user to observe events of active dialogs.

In general, in another aspect, the invention

features apparatus for monitoring packet communications

in a network of nodes in which communications may be in

25 accordance with multiple protocols. The apparatus

includes a monitor connected to a communication medium of

the network for passively, and in real time, monitoring

transmitted packets of different protocols and storing

information about communications associated with the

30 packets, the communications being in accordance with

different protocols, and a workstation for receiving the

information about the communciations from the monitor and

providing an interface to a user. The monitor and the

workstation include means for relaying the information

35 about multiple protocols with respect to communication in

EX 1009 Page 7

EX 1009 Page 8

PCT/US92/02995
\N{)92/19054

10

15

20

25

30

35

-6—

the different protocols from the monitor to the

workstation in accordance with a single common network

management protocol. ,

In general, in another aspect, the invention

features diagnosing communication problems between two

nodes in a network of nodes interconnected by links. The

operation of the network is monitored with respect to

specific items of performance during normal operation. A
model of normal operation of the network is generated

based on the monitoring. Acceptable threshold levels are

set for the specific items of performance based on the

model. The operation of the network is monitored with

respect to the specific items of performance during

periods which may include abnormal operation. When
abnormal operation of the network with respect to

communication between the two nodes is detected, the

problem is diagnosed by separately analyzing the

performance of each of the nodes and each of the links
connecting the two nodes to isolate the abnormal

operation.

In general, in another aspect, the invention

features a method of timing the duration of a transaction

of interest occurring in the course of communication

between nodes of a network, the beginning of the

transaction being defined by the sending of a first

packet of a particular kind from one node to the other,
and the end of the transaction being defined by the

sending of another packet of a particular kind between

the nodes. In the method, packets transmitted in the

network are monitored passively and in real time. The

beginning time of the transaction is determined based on

the appearance of the first packet. A determination is

made of when the other packet has been transmitted. The

timing of the duration of the transaction is ended upon

the appearance of the other packet.

"U

EX 1009 Page 8

EX 1009 Page 9

W0 92/19054 PCT/US92/02995

_7-

In general, in another aspect, the invention

features, tracking node address to node name mappings in

a network of nodes of the kind in which each node has a

possibly nonunique node name and a unique node address

5 within the network and in which node addresses can be

assigned and reassigned to node names dynamically using a

name binding protocol message incorporated within a

packet. In the method, packets transmitted in the

network are monitored, and a table linking node names to

10 node addresses is updated based on information contained

in the name binding protocol messages in the packets.

One advantage of the invention is that it enables

a network manager to passively monitor multi-protocol

networks at multiple layers of the communications. In

15 addition, it organizes and presents network performance

statistics in terms of dialogs which are occurring at any

desired level of the communication. This technique of

organizing and displaying network performance statistics

provides an effective and useful view of network

20 performance and facilitates a quick diagnosis of network

problems.

other advantages and features will become apparent

from the following description of the preferred

embodiment and from the claims.

25 ' ' t ed od' ts

Fig. 1 is a block diagram of a network;

Fig. 2 shows the layered structure of a network

communication and a protocol tree within that layered

environment;

30 Fig. 3 illustrates the structure of an

ethernet/IP/TCP packet;

Fig. 4 illustrates the different layers of a

communication between two nodes;

Fig. 5 shows the software modules within the

35 Monitor;

EX 1009 Page 9

EX 1009 Page 10

PCI'/US92/02995
W0 92/19054

10

15

20

25

30

_8—

Fig. 6 shows the structure of the Monitor software

in terms of tasks and intertask communication mechanisms;

Figs. 7a-c show the STATS data structures which

store performance statistics relating to the the data

link layer;

Fig. 8 is a event/state table describing the

operation of the state machine for a TCP connection;

Fig. 9a is a history data structure that is

identified by a pointer found in the appropriate dialog

statistics data within STATS;

Fig. 9b is a record from the history table;

Fig. 10 is a flow diagram of the

Look_for_Data_State routine;

Fig. 11 is a flow diagram of the

Look_for_Initiator routine that is called by the

Look_for_pata_state routine;

Fig. 12 is a flow diagram of the

Look_for_Retransmission routine which is called by the

Look_at_fiistory routine;

Fig. 13 is a diagram of the major steps in

processing a frame through the Real Time Parser (RTP);

Fig. 14 is a diagram of the major steps in the

processing a statistics threshold event;

Fig. 15 is a diagram of the major steps in the

processing of a database update;

Fig. 16 is a diagram of the major steps in the

processing of a monitor control request;

Fig. 17 is a logical map of the network as

displayed by the Management Workstation;

Fig. 18 is a basic summary tool display screen;

Fig. 19 is a protocol selection menu that may be

invoked through the summary tool display screen;

Figs. 20a-g are examples of the statistical

variables which are displayed for different protocols;

a»

EX 1009 Page 10

EX 1009 Page 11

W0 92/19054 PCT/US92/02995

-9—

Fig. 21 is an example of information that is

displayed in the dialogs panel of the summary tool

display screen; .

Fig. 22 is a basic data screen presenting a rate

5 values panel, a count values panel and a protocols seen

panel;

Fig. 23 is a traffic matrix screen;

Fig. 24 is a flow diagram of the algorithm for

adaptively establishing network thresholds based upon

10 actual network performance;

Fig. 25 is a simple multi-segment network;

Fig. 26 is a flow diagram of the operation of the

diagnostic analyzer algorithm;

Fig. 27 is a flow diagram of the source node

15 analyzer algorithm;

Fig. 28 is a flow diagram of the sink node

analyzer algorithm;

Fig. 29 is a flow diagram of the link analysis

logic;

20 Fig. 30 is a flow diagram of the DLL problem

checking routine;

Fig. 31 is a flow diagram of the IP problem

checking routine;

Fig. 32 is a flow diagram of the IP link component

25 problem checking routine;

Fig. 33 is a flow diagram of the DLL link

component problem checking routine;

Fig. 34 shows the structure of the event timing

database;

30 Fig. 35 is a flow diagram of the operation of the

event timing module (ETM) in the Network Monitor;

Fig. 36 is a network which includes an Appletalk®

segment;

Fig. 37 is a Name Table that is maintained by the

35 Address Tracking Module (ATM);

EX 1009 Page 11

EX 1009 Page 12

PCI'/US92/02995
WO92/19054

Fig. 38 is a flow diagram of the operation of the

ATM; and

Fig. 39 is a flow diagram of the operation of the .
ATM.

5 Also attached hereto before the claims are the .

following appendices:

Appendix I identifies the SNMP MIB subset that is

supported by the Monitor and the Management Workstation

(2 pages);

Appendix II defines the extension to the standard10

MIB that are supported by the Monitor and the Management

Workstation (25 pages);

Appendix III is a summary of the protocol

variables for which the Monitor gathers statistics and a

15 brief description of the variables, where appropriate (17

pages);

Appendix IV is a list of the Summary Tool Values

Display Fields with brief descriptions (2 pages); and

Appendix V is a description of the actual screens

20 for the Values Tool (34 pages).

5 d t'on

T we :

A typical network, such as the one shown in Fig.

1, includes at least three major components, namely,

25 network nodes 2, network elements 4 and communication

lines 6. Network nodes 2 are the individual computers on

the network. They are the very reason the network

They include but are not limited to workstationsexists.

(WS), personal computers (PC), file servers (FS), compute

3o servers (CS) and host computers (e.g., a VAX), to name

but a few. The term server is often used as though it

was different from a node, but it is, in fact, just a

node providing special services.

In general, network elements 4 are anything that

35 participate in the service of providing data movement in

EX 1009 Page 12

EX 1009 Page 13

W0 92/19054 PCI‘/US92/02995

_11—

a network, i.e., providing the basic communications.

They include, but are not limited to, LAN's, routers,

bridges, gateways, multiplexers, switches and connectors.

Bridges serve as connections between different network

5 segments. They keep track of the nodes which are

connected to each of the segments to which they are

connected. When they see a packet on one segment that is

addressed to a node on another of their segments, they

grab the packet from the one segment and transfer it to

10 the proper segment. Gateways generally provide

connections between different network segments that are

operating under different protocols and serve to convert

communications from one protocol to the other. Nodes

send packets to routers so that they may be directed over

15 the appropriate segments to the intended destination

node.

Finally, network or communication lines 6 are the

components of the network which connect nodes 2 and

elements 4 together so that communicatons between nodes 2

20 may take place. They can be private lines, satellite

lines or Public Carrier lines. They are expensive

resources and are usually managed as separate entities.

Often networks are organized into segments 8 that are

connected by network elements 4. A segment 8 is a

25 section of a LAN connected at a physical level (this may

include repeaters). Within a segment, no protocols at

layers above the physical layer are needed to enable

signals from two stations on the same segment to reach

each other (i.e., there are no routers, bridges,

30 gateways...).

The Network Monitor and the Management Workstation:

In the described embodiment, there are two basic

elements to the monitoring system which is to be

described, namely, a Network Monitor 10 and a Management

EX 1009 Page 13

EX 1009 Page 14

PCT/US92/02995
W0 92/19054

10

15

20

25

30

35

Workstation 12. Both elements interact with each other

over the local area network (LAN).

Network Monitor 10 (referred to hereinafter simply

as Monitor 10) is the data collection module which is

attached to the LAN. It is a high performance real time

front end processor which collects packets on the network

and performs some degree of analysis to search for actual

or potential problems and to maintain statistical
information for use in later analysis. In general, it

performs the following functions. It operates in a

promiscuous mode to capture and analyze all packets on

the segment and it extracts all items of interest from

the frames. It generates alarms to notify the Management

Workstation of the occurence of significant events. It

receives commands from the Management Workstation,

processes them appropriately and returns responses.

Management Workstation 12 is the operator

interface. It collects and presents troubleshooting and

performance information to the user. It is based on the

SunNet Manager (SNM) product and provides a graphical

network-map-based interface and sophisticated data

presentation and analysis tools. It receives information
from Monitor 10, stores it and displays the information

in various ways. It also instructs Monitor 10 to perform

certain actions. Monitor 10, in turn, sends responses

and alarms to Management Workstation 12 over either the

primary LAN or a backup serial link 14 using SNMP with

the MIB extensions defined later.

These devices can be connected to each other over

various types of networks and are not limited to

connections over a local area network. As indicated in

Fig. 1, there can be multiple Workstations 12 as well as

multiple Monitors 10.

Before describing these components in greater

detail, background information will first be reviewed

EX 1009 Page 14

I.

EX 1009 Page 15

W0 92/l9054 PCT/US92/02995

regarding communication protocols which specify how

communications are conducted over the network and

regarding the structure of the packets.'

The Protocol Tree: .

5 As shown in Fig. 2, communication over the network

is organized as a series of layers or levels, each one

built upon the next lower one, and each one specified by

one or more protocols (represented by the boxes). Each

layer is responsible for handling a different phase of

10 the communication between nodes on the network. The

protocols for each layer are defined so that the services

offered by any layer are relatively independent of the

services offered by the neighbors above and below.

Although the identities and number of layers may differ

15 depending on the network (i.e., the protocol set defining

communication over the network), in general, most of them

share a similar structure and have features in common.

For purposes of the present description, the Open

Systems Interconnection (081) model will be presented as

20 representative of structured protocol architectures. The

OSI model, developed by the International Organization

for Standardization, includes seven layers. As indicated

in Fig. 2, there is a physical layer, a data link layer

(DLL), a network layer, a transport layer, a session

25 layer, a presentation layer and an application layer, in

that order. As background for what is to follow, the

function of each of these layers will be briefly

described.

The physical layer provides the physical medium

30 for the data transmission. It specifies the electrical

and mechanical interfaces of the network and deals with

bit level detail. The data link layer is responsible for

ensuring an error-free physical link between the

communicating nodes. It is responsible for creating and

35 recognizing frame boundaries (i.e., the boundaries of the

EX 1009 Page 15

EX 1009 Page 16

W0 92/19054 PCT/US92/02995

-14-

packets of data that are sent over the network.) The
network layer determines how packets are routed within
the network. The transport layer accepts data from the

layer above it (i.e., the session layer), breaks the

5 packets up into smaller units, if required, and passes
these to the network layer for transmission over the

network. It may insure that the smaller pieces all

arrive properly at the other end. The session layer is
the user's interface into the network. The user must

10 interface with the session layer in order to negotiate a

connection with.a process in another machine. The

presentation layer provides code conversion and data
reformatting for the user's application. Finally, the

application layer selects the overall network service for
15 the user's application.

Fig. 2 also shows the protocol tree which is

implemented by the described embodiment. A protocol tree

shows the protocols that apply to each layer and it

identifies by the tree structure which protocols at each

20 layer can run “on top of" the protocols of the next lower

layer. Though standard abbreviations are used to

identify the protocols, for the convenience of the

reader, the meaning of the abbreviations are as follows:

ARP Address Resolution Protocol

25 ETHERNET Ethernet Data Link Control

FTP File Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

LLC 802.2 Logical Link Control

30 MAC 802.3 CSMA/CD Media Access Control

NFS Network File System

NSP Name Server Protocol

RARP Reverse Address Resolution Protocol

SMTP Simple Mail Transfer Protocol

35 SNMP Simple Network Management Protocol

EX 1009 Page 16

EX 1009 Page 17

W0 92/19054 PCT/US92/02995

-15-

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

Two terms are commonly used to describe the protocol

5 tree, namely, a protocol stack and a protocol family (or

suite). A protocol stack generally refers to the

underlying protocols that are used when sending a message

over a network. For example, FTP/TCP/IP/LLC is a

protocol stack. A protocol family is a loose association

31) of protocols which tend to be used on the same network

(or derive from a common source). Thus, for example, the

TCP/IP family includes IP, TCP, UDP, ARP, TELNET and FTP.

The Decnet family includes the protocols from Digital

Equipment Corporation. And the SNA family includes the

15 protocols from IBM.

W:

The relevant protocol stack defines the structure

of each packet that is sent over the network. Fig. 3,

which shows an TCP/IP packet, illustrates the typical

20 structure of a packet. In general, each level of the

protocol stack takes the data from the next higher level

and adds header information to form a protocol data unit

(PDU) which it passes to the next lower level. That is,

as the data from the application is passed down through

25 the protocol layers in preparation for transmission over

the network, each layer adds its own information to the

data passed down from above until the complete packet is

assembled. Thus, the structure of a packet ressembles

that of an onion, with each PDU of a given layer wrapped

30 within the PDU of the adjacent lower level.

At the ethernet level, the PDU includes a

destination address (DEST MAC ADDR), a source address

(SRC MAC ADDR), a type (TYPE) identifying the protocol

which is running on top of this layer, and a DATA field

35 for the PDU from the IP layer.

EX 1009 Page 17

EX 1009 Page 18

W0 92/19054 PCT/US92/02995

-16-'

Like the ethernet packet, the PDU for the IP layer

includes an IP header plus a DATA field. The IP header

includes a type field (TYPE) for indicating the type of

service, a length field (LGTH) for specifying the total
5 length of the PDU, an identification field (ID), a

protocol field (PROT) for identifying the protocol which

is running on top of the IP layer (in this case, TCP), a

source address field (SRC ADDR) for specifying the IP

address of the sender, a‘destination address field (DEST

10 ADDR) for specifying the IP address of the destination

node, and a DATA field.

The PDU built by the TCP protocol also consists of

a header and the data passed down from the next higher

layer. In this case the header includes a source port

15 field (SRC PORT) for specifying the port number of the

sender, a destination port field (DEST PORT) for

specifying the port number of the destination, a sequence

number field (SEQ NO.) for specifying the sequence number

of the data that is being sent in this packet, and an

20 acknowledgment number field (ACK NO.) for specifying the

number of the acknowledgment being returned. It also

includes bits which identify the packet type, namely, an

acknowledgment bit (ACK), a reset connection bit (RST), a

synchronize bit (SYN), and a no more data from sender bit

25 (FIN). There is also a window size field (WINDOW) for

specifying the size of the window being used.

The Concept of a Dialog:

The concept of a dialog is used throughout the

following description. As will become apparent, it is a

30 concept which provides a useful way of conceptualizing,

organizing and displaying information about the

performance of a network - for any protocol and for any a

layer of the multi-level protocol stack.

As noted above, the basic unit of information in

35 communication is a packet. A packet conveys meaning

EX 1009 Page 18

EX 1009 Page 19

W0 92/19054 PCT/US92/02995

-17-

between the sender and the receiver and is part of a

larger framework of packet exchanges. The larger

exchange is called a dialog within the context of this

document. That is, a dialog is a communication between a

5 sender and a receiver, which is composed of one or more

packets being transmitted between the two. There can be

multiple senders and receivers which can change roles.

In fact, most dialogs involve exchanges in both

directions.

10 Stated another way, a dialog is the exchange of

messages and the associated meaning and state that is

inherent in any particular exchange at any layer. It

refers to the exchange between the peg; entities

(hardware or software) in any communication. In those

15 situations where there is a layering of protocols, any

particular message exchange could be viewed as belonging

to multiple dialogs. For example, in Fig. 4 Nodes A and

B are exchanging packets and are engaged in multiple

dialogs. Layer 1 in Node A has a dialog with Layer 1 in

20 Node B. For this example, one could state that this is

the data link layer and the nature of the dialog deals

with the message length, number of messages, errors and

perhaps the guarantee of the delivery. Simultaneously,

Layer n of Node A is having a dialog with Layer n of node

25 B. For the sake of the example, one could state that

this is an application layer dialog which deals with

virtual terminal connections and response rates. One can

also assume that all of the other layers (2 through n-l)

are also having simultaneous dialogs.

30 In some protocols there are explicit primitives

that deal with the dialog and they are generally referred

to as connections or virtual circuits. However, dialogs

exist even in stateless and connectionless protocols.

Two more examples will be described to help clarify the

35 concept further, one dealing with a connection oriented

EX 1009 Page 19

EX 1009 Page 20

W0 92/19054 PCT/US92/02995

protocol and the other dealing with a connectionless

protocol.

In a typical connection oriented protocol, Node A 5

sends a connection request (CR) message to Node B. The

5 CR is an explicit request to form a connection. This is ‘

the start of a particular dialog, which is no different

from the start of the connection. Nodes A and B could

have other dialogs active simultaneously with this

particular dialog. Each dialog is seen as unique. A

11) connection is a particular type of dialog.

In a typical connectionless protocol, Node A sends

Node B a message that is a datagram which has no

connection paradigm, in fact, neither do the protocol(s)

at higher layers. The application protocol designates

15 'this as a request to initiate some action. For example,

a file server protocol such as Sun Microsystems' Network

File System (NFS) could make a mount request. A dialog

comes into existence once the communication between Nodes

A and B has begun. It is possible to determine that

20 communication has occurred and to determine the actions

being requested. If in fact there exists more than one

communication thread between Nodes A and B, then these

would represent separate, different dialogs.

W:

25 MOnitor 10 includes a MIPS R3000 general purpose

microprocessor (from MIPS Computer Systems, Inc.) running

at 25 MHz. It is capable of providing 20 mips processing

power. Monitor 10 also includes a 64Kbyte instruction

cache and a 64Kbyte data cache, implemented by SRAM.

30 The major software modules of Monitor 10 are

implemented as a mixture of tasks and subroutine

libraries as shown in Fig. 5. It is organized this way

so as to minimise the context switching overhead incurred

during critical processing sequences. There is NO

35 PREEMPTION of any module in the monitor subsystem. Each

EX 1009 Page 20

EX 1009 Page 21

W0 92/1 9054 PCI‘/US92/02995

-19-

module is cognizant of_the fact that it should return

control to the kernel in order to let other tasks run.

Since the monitor subsystem is a closed environment, the

software is aware of real time constraints.

5 Among the major modules which make up Monitor 10

is a real time kernel 20, a boot/load module 22, a driver

24, a test module 26, an SNMP Agent 28, a Timer module

30, a real time parser (RTP) 32, a Message Transport

Module (MTM) 34, a statistics database (STATS) 36, an

10 Event Manager (EM) 38, an Event Timing Module (ETM) 40

and a control module 42. Each of these will now be

described in greater detail.

Real Time Kernel 20 takes care of the general

housekeeping activities in Monitor 10. It is responsible

15 for scheduling, handling intertask communications via

queues, managing a potentially large number of timers,

manipulating linked lists, and handling simple memory

management.

Boot/Load Module 22, which is FProm based, enables

20 Monitor 10 to start itself when the power is turned on in

the box. It initializes functions such as diagnostics,

and environmental initialization and it initiates down

loading of the Network Monitor Software including program

and configuration files from the Management Workstation.

25 Boot/load module 22 is also responsible for reloading

program and/or configuration data following internal

error detection or on command from the Management

Workstation. To accomplish down loading, boot/load

module 22 uses the Trivial File Transfer Protocol (TFTP).

30 The protocol stack used for loading is

TFTP/UDP/IP/ethernet over the LAN and TFTP/UDP/IP/SLIP

over the serial line. '

Device Driver 24 manages the network controller

hardware so that Monitor 10 is able to read and write

35 packets from the network and it manages the serial

EX 1009 Page 21

EX 1009 Page 22

W0 92/19054 PCI‘IUS92/02995

20

interface. It does so both for the purposes of

monitoring traffic (promiscuous mode) and for the

purposes of communicating with the Management Workstation
and other devices on the network. The communication

5 occurs through the network controller hardware of the

physical network (e.g. Ethernet). The drivers for the
LAN controller and serial line interface are used by the

boot load module and the MTM. They provide access to the

chips and isolate higher_layers from the hardware

10 specifics.

Test module 26 performs and reports results of

physical layer tests (TDR, connectivity,...) under
control of the Management Workstation. It provides

traffic load information in response to user requests

15 identifying the particular traffic data of interest. The
load information is reported either as a percent of

available bandwidth or as frame size(s) plus rate.

SNMP Agent 28 translates requests and information
into the network management protocol being used to

20 communicate with the management Workstation, e.g., the

Simple Network Management Protocol (SNMP).
Control Module 42 coordinates access to monitor

control variables and performs actions necessary when

these are altered. Among the monitor control variables

25 which it handles are the following:

set reset monitor - transfer control to reset

logic;

set time of day - modify monitor hardware clock

and generate response to Management Workstation;

30 get time of day - read monitor hardware clock and

generate response to Workstation;

EX 1009 Page 22

EX 1009 Page 23

W0 92/19054 PCT/US92/02995

_21—

set trap permit — send trap control ITM to EM and

generate response to Workstation;

get trap permit - generate response to

Workstation;

5 Control module 42 also updates parse control records

within STATS when invoked by the RTP (to be described) or

during overload conditions so that higher layers of

parsing are dropped until the overload situation is

resolved. When overload is over it restores full

10 parsing.

Timer 30 is invoked periodically to perform

general housekeeping functions. It pulses the watchdog

timer at appropriate intervals. It also takes care of

internal time stamping and kicking off routines like the

15 EM routine which periodically recalculates certain

numbers within the statistical database (i.e., STATS).

Real Time Parser (RTP) 32 sees all frames on the

network and it determines which protocols are being used

and interprets the frames. The RTP includes a protocol

20 parser and a state machine. The protocol parser parses a

received frame in the "classical" manner, layer—by—layer,

lowest layer first. The parsing is performed such that

the statistical objects in STATS (i.e., the network

parameters for which performance data is kept) are

25 maintained. Which layers are to have statistics stored

for them is determined by a parse control record that is

stored in STATS (to be described later). As each layer

is parsed, the RTP invokes the appropriate functions in

the statistics module (STATS) to update those statistical

30 objects which must be changed.

The state machine within RTP 32 is responsible for

tracking state as appropriate to protocols and

connections. It is responsible for maintaining and

updating the connection oriented statistical elements in

EX 1009 Page 23

EX 1009 Page 24

W0 92/19054 PCTIUS92/02995

-22..

STATS. In order to track connection states and events,

the RTP invokes a routine within the state machine. This

routine determines the state of a connection based on

past observed frames and keeps track of sequence numbers.
5 It is the routine that determines if a connection is in

data transfer state and if a retransmission has occurred.

The objectives of the state machine are to keep a brief

history of events, state transitions, and sequence

numbers per connection;.to detect data transfer state so

10 that sequence tracking can begin; and to count

inconsistencies but still maintain tracking while falling

into an appropriate state (e.g. unknown).

RTP 32 also performs overload control by

determining the number of frames awaiting processing and

15 invoking control module 42 to update the parse control

records so as to reduce the parsing depth when the number

becomes too large.

Statistics Module (STATS) 36 is where Monitor 10

keeps information about the statistical objects it is

20 charged with monitoring. A statistical object represents

a network parameter for which performance information is

gathered. This information is contained in an extended

MIB (Management Information Base), which is updated by

RIP 32 and EM 38.

25 STATS updates statistical objects in response to

RTP invocation. There are at least four statistical

object classes, namely, counters, timers, percentages

(%), and meters. Each statistical object is implemented

as appropriate to the object class to which it belongs.

30 That is, each statistical object behaves such that when

invoked by RTP 32 it updates and then generates an alarm

if its value meets a preset threshold. (Meets means that

for a high threshold the value is equal to or greater

than the threshold and for a low threshold the value is

EX 1009 Page 24

EX 1009 Page 25

W0 92/19054 PCT/US92/02995

—23—

equal to or less than the threshold. Note that a single

object may have both high and low thresholds.)

STATS 36 is responsible for the maintenance and

initial analysis of the database. This includes

5 coordinating access to the database variables, ensuring

appropriate interlocks are applied and generating alarms

when thresholds are crossed. Only STATS 36 is aware of

the internal structure of the database, the rest of the

system is not.

10 STATS 36 is also responsible for tracking events

of interest in the form of various statistical

reductions. Examples are counters, rate meters, and rate

of change of rate meters. It initiates events based on

particular statistics reaching configured limits, i.e.,

15 thresholds. The events are passed to the EM which sends

a trap (i.e., an alarm) to the Management Workstation.

The statistics within STATS 36 are readable from the

Management Workstation on request.

STATS performs lookup on all addressing fields.

20 It assigns new data structures to address field values

not currently present. It performs any hashing for fast

access to the database. More details will be presented

later in this document.

Event Manager (EM) 38 extracts statistics from

25 STATS and formats it in ways that allow the Workstation

to understand it. It also examines the various

statistics to see if their behavior warrants a

notification to the Management Workstation. If so, it

uses the SNMP Agent software to initiate such

30 notifications.

If the Workstation asks for data, EM 38 gets the

data from STATS and sends it to the Workstation. It also

performs some level of analysis for statistical,

accounting and alarm filtering and decides on further

35 action (e.g. delivery to the Management Workstation).

EX 1009 Page 25

EX 1009 Page 26

W0 92/l9054 PCI‘/US92/02995

-24-

BM 38 is also responsible for controlling the delivery of
events to the Management Workstation, e.g., it performs

event filtering. The action to be taken on receipt of an ,

event (e.g. threshold exceeded in STATS) is specified by

5 the event action associated with the threshold. The J

event is used as an index to select the defined action

(e.g. report to WOrkstation, run local routine xxxx,

ignore). The action can be modified by commands from the

Management Workstation (e.g., turn off an alarm) or by
10 the control module in an overload situation. An update

to the event action, however, does not affect events

previously processed even if they are still waiting for
transmission to the management Workstation. Discarded

events are counted as such by EM 38.

15 EM 38 also implements a throttle mechanism to

limit the rate of delivery of alarms to the console based

on configured limits. This prevents the rapid generation

of multiple alarms. In essence, Monitor 10 is given a

maximum frequency at which alarms may be sent to the

20 WOrkstation. Although alarms in excess of the maximum

frequency are discarded, a count is kept of the number of

alarms that were discarded.

EM 38 invokes routines from.the statistics module

(STATS) to perform periodic updates such as rate

25 calculations and threshold checks. It calculates time

averages, e.g., average traffic by source stations,

destination stations. EM 38 requests for access to

monitor control variables are passed to the control

module.

30 EM 38 checks whether asynchronous traps (i.e.,

alarms) to the Workstation are permitted before

generating any.

EM 38 receives database update requests from the

Management Workstation and invokes the statistics module

35 (STATS) to process these.

EX 1009 Page 26

EX 1009 Page 27

W0 92/l9054 PCT/US92/02995

—25_

Message Transport Module (MTM) 34, which is DRAM

based, has two distinct but closely related functions.

First, it is responsible for the conversion of

Workstation commands and responses from the internal
5 format used within Monitor 10 to the format used to

communicate over the network. It isolates the rest of

the system from the protocol used to communicate within

Management Workstation. It translates between the

internal representation of data and ASN.1 used for SNMP.

10 It performs initial decoding of Workstation requests and

directs the requests to appropriate modules for

processing. It implements SNMP/UDP/IP/LLC or ETHERNET

protocols for LAN and SNMP/UDP/IP/SLIP protocols for

serial line. It receives network management commands

15 from the Management Workstation and delivers these to the

appropriate module for action. Alarms and responses

destined for the Workstation are also directed via this

module.

Second, MTM 34 is responsible for the delivery and

20 reception of data to and from the Management Workstation

using the protocol appropriate to the network. Primary

and backup communication paths are provided transparently

. to the rest of the monitor modules (e.g. LAN and dial up

link). It is capable of full duplex delivery of messages

25 between the console and monitoring module. The messages

carry event, configuration, test and statistics data.

Event Timing Module (ETM) 40 keeps track of the

start time and end times of user specified transactions

over the network. In essence, this module monitors the

30 responsiveness of the network at any protocol or layer

specified by the user.

Address Tracking Module 42 keeps track of the node

name to node address bindings on networks which implement

dynamic node addressing protocols.

EX 1009 Page 27

EX 1009 Page 28

W0 92/19054 PCT/US92/02995

Memory management for Monitor 10 is handled in

accordance with following guidelines. The available

memory is divided into four blocks during system
initialization. One block includes receive frame

5 buffers. They are used for receiving LAN traffic and for

receiving secondary link traffic. These are organized as
linked lists of fixed sized buffers. A second block

includes system control message blocks. They are used

for intertask messages within Monitor 10 and are

10 organized as a linked list of free blocks and multiple
linked lists of in process intertask messages. A third

block includes transmit buffers. They are used for

creation and transmission of workstation alarms and

responses and are organized as a linked list of fixed
15 sized buffers. A fourth block is the statistics. This

is allocated as a fixed size area at system

initialization and managed by the statistics module

during system operation.

WM;

20 The structure of the Monitor in terms of tasks and

intertask messages is shown in Fig. 6. The rectangular

blocks represent interrupt service routines, the ovals

represent tasks and the circles represent input queues.
Each task in the system has a single input queue

25 which it uses to receive all input. All inter—process

communications take place via messages placed onto the

input queue of the destination task. Each task waits on

a (well known) input queue and processes events or inter-

task messages (i.e., ITM's) as they are received. Each

30 task returns to the kernel within an appropriate time

period defined for each task (e.g. after processing a
fixed number of events).

Interrupt service routines (ISR's) run on receipt

of hardware generated interrupts. They invoke task level

EX 1009 Page 28

i;

EX 1009 Page 29

W0 92/l9054 PCT/US92/02995

27

processing by sending an ITM to the input queue of the

appropriate task. _ i

The kernel scheduler acts as the base loop of the

system and calls any runnable tasks as subroutines. The
5 determination of whether a task is runnable is made from

the input queue, i.e., if this has an entry the task has

work to perform. The scheduler scans the input queues

for each task in a round robin fashion and invokes a task

with input pending. Each task processes items from its

10 input queue and returns to the scheduler within a defined

period. The scheduler then continues the scan cycle of

the input queues. This avoids any task locking out

others by processing a continuously busy input queue. A

task may be given an effectively higher priority by

15 providing it with multiple entries in the scan table.

Database accesses are generally performed using

access routines. This hides the internal structure of

the database from other modules and also ensures that

appropriate interlocks are applied to shared data.

,20 The EM processes a single event from the input

queue and then returns to the scheduler.

The MTM Xmit task processes a single event from

its input queue and then returns control to the

scheduler. The MTM Recv task processes events from the

25 input queue until it is empty or a defined number (e.g.

10) events have been processed and then returns control

to the scheduler.

The timer task processes a single event from the

input queue and then returns control to the scheduler.

30 RTP continues to process frames until the input

queue is empty or it has processed a defined number (e.g.

10) frames. It then returns to the scheduler.

The following sections contain a more detailed

description of some of the above-identified software

35 modules.

EX 1009 Page 29

EX 1009 Page 30

W0 92/19054 PCT/US92/02995

-23..

T S a ‘st' 5 od e .STATS :

The functions of the statistics module are:

* to define statistics records; .

* to allocate and initialize statistics records;

5 * to provide routines to lookup statistics records, ‘

e.g. lookup_id_addr;

* to provide routines to manipulate the statistics
within the records, e.g. stats_age, stats_incr and

stats_rate;

10 * to provide routines to free statistics records,

e.g. stats_allocate and stats_deallocate

It provides these services to the Real Time Parser

(RTP) module and to the Event Manager (EM) module.
STATS defines the database and it contains

15 subroutines for updating the statistics which it keeps.

STATS contains the type definitions for all

statistics records (e.g. DLL, IP, TCP statistics). It

provides an initialization routine whose major function
is to allocate statistics records at startup from

20 cacheable memory. It provides lookup routines in order

to get at the statistics. Each type of statistics record
has its own lookup routine (e.g. lookup_ip_address) which

returns a pointer to a statistics record of the

appropriate type or NULL.

25 As a received frame is being parsed, statistics

within statistics records need to be manipulated (e.g.

incremented) to record relevant information about the

frame. STATS provides the routines to manipulate those

statistics. For example, there is a routine to update

30 counters. After the counter is incremented/decremented

and if there is a non-zero threshold associated with the

counter, the internal routine compares its value to the

threshold. If the threshold has been exceeded, the Event

Manager is signaled in order to send a trap to the

35 WOrkstation. Besides manipulating statistics, these

EX 1009 Page 30

EX 1009 Page 31

W0 92/19054 PCT/US92/02995

_29—

routines, if necessary, signal the Event Manager via an

Intertask Message (ITM) to send a trap to the Management

Workstation.

The following is an example of some of the

5 statistics records that are kept in STATS.

10

15

20

25

30

00000000000000
0

0

monitor statistics

mac statistics for segment

llc statisics for segment

statistics per ethernet/lsap type for segment

ip statistics for segment

icmp statistics for segment

tcp statistics for segment

udp statistics for segment

nfs statistics for segment

ftp control statistics for segment

ftp data statistics for segment

telnet statistics for segment

smtp statistics for segment

arp statistics for segment

statistics

statistics

address

000000000
00

statistics

statistics

statistics

statistics

statistics

statistics

statistics

statistics

per

per

per

per

per

per

per

per

per

per

arp statistics

statistics

statistics

per

per

mac address

ethernet type/lasp per mac

ip address (includes icmp)

tcp socket

udp socket

nfs socket

ftp control socket

ftp data socket

telnet socket

smtp socket

per ip address

mac address pair

ip pair (includes icmp)

EX 1009 Page 31

EX 1009 Page 32

W0 92/19054 PCT/US92/02995

-30..

statistics per tcp connection

statistics per udp pair

statistics per nfs pair ,

statistics per ftp control connection

statistics per ftp data connection

statistics per telnet connection

statistics per smtp connection

0000000
0 connection histories per udp and top socket

All statistics are organized similarly across protocol

10 types. The details of the data structures for the DLL
level are presented later.

As noted earlier, there are four statistical

object classes (i.e., variables), namely, counts, rates,

percentages (%), and meters. They are defined and

15 implemented as follows.

A count is a continuously incrementing variable

which rolls around to 0 on overflow. It may be reset on

command from the user (or from software). A threshold

may be applied to the count and will cause an alarm when
20 the threshold count is reached. The threshold count

fires each time the counter increments past the threshold

value. For example, if the threshold is set to 5, alarms

are generated when the count is 5, 10,-15,...

A rate is essentially a first derivative of a

25 count variable. The rate is calculated at a period

appropriate to the variable. For each rate variable, a
minimum, maximum and average value is maintained.

Thresholds may be set on high values of the rate. The

maximums and minimums may be reset on command. The

30 threshold event is triggered each time the rate

calculated is in the threshold region.

As commonly used, the % is calculated at a period

appropriate to the variable. For each % variable a

EX 1009 Page 32

EX 1009 Page 33

W0 92/l9054 PCT/US92/02995

-31—

minimum, maximum and average value is maintained. A

threshold may be set on high values of the %. The

threshold event is triggered each time the % calculated

is in the threshold region..

5 Finally, a meter is a variable which may take any

discrete value within a defined range.' The current value

has no correlation to past or future values. A threshold

may be set on a maximum and/or minimum value for a meter.

The rate and % fields of network event variables

10 are updated differently than counter or meter fields in

that they are calculated at fixed intervals rather than

on receipt of data from the network.

Structures for statistics kept on a per address or

per address pair basis are allocated at initialization

15 time. There are several sizes for these structures.

Structures of the same size are linked together in a free

pool. As a new structure is needed, it is obtained from

a free queue, initialized, and linked into an active

list. Active lists are kept on a per statistics type

20 basis.

As an address or address pair (e.g. mac, ip,

tcp...) is seen, RTP code calls an appropriate lockup

routine. The lockup routine scans active statistics

structures to see if a structure has already been

25 allocated for the statistics. Hashing’algorithms are

used in order to provide for efficient lockup. If no

structure has been allocated, the lockup routine examines

the appropriate parse control records to determine

whether statistics should be kept, and, if so, it

30 allocates a structure of the appropriate size,

initializes it and links it into an active list.

Either the address of a structure or a NULL is

returned by these routines. If NULL is returned, the RTP

does not stop parsing, but it will not be allowed to

EX 1009 Page 33

EX 1009 Page 34

W0 92/19054 PCI'/US92/02995

-32-

store the statistics for which the structure was

requested.

The RTP updates statistics within the data base as ;

it runs. This is done via macros defined for the RTP.

5 The macros call on internal routines which know how to ;

manipulate the relevant statistic. If the pointer to the
statistics structure is NULL, the internal routine will

not be invoked.

The EM causes rates to be calculated. The STATS

11) module supplies routines (e.g. stats_rate) which must be

called by the EM in order to perform the rate

calculations. It also calls subroutines to reformat the

data in the database in order to present it to the

WOrkstation (i.e., in response to a get from the

15 workstation).

The calculation algorithms for the rate and %

fields of network event variables are as follows.

The following rates are calculated in units per

second, at the indicated (approximate) intervals:

20 1. 10 second intervals:

e.g. DLL frame, byte, ethernet, 802.3, broadcast,

multicast rates

2. 60 second intervals

e.g., all DLL error, ethertype/dsap rates

25 all IP rates.

TCP packets, bytes, errors, retransmitted packets,

retransmitted bytes, acks, rsts

UDP packet, error, byte rates

FTP file transfer, byte transfer, error rates

30 For these rates, the new average replaces the

previous value directly. Maximum and minimum values are
retained until reset by the user.

The following rates are calculated in units per

hour at the indicated time intervals:

35 1. 15 minute interval.

EX 1009 Page 34

EX 1009 Page 35

W0 92/l9054 PCT/US92/02995

—33_

e.g., TCP - connection rate

Telnet connection rate

FTP session rate

The hourly rate is calculated from a sum of the

5 last twelve 5 minute readings, as obtained from the

buckets for the pertinent parameter. Each new reading

replaces the oldest of the twelve values maintained.

Maximum and minimum values are retained until reset by
the user.

10 ' There are a number of other internal routines in

STATS. For example, all statistical data collected by

the Monitor is subject to age out. Thus, if no activity

is seen for an address (or address pair) in the time

period defined for age out, then the data is discarded

15 and the space reclaimed so that it may be recycled. In

this manner, the Monitor is able to use the memory for

active elements rather than stale data. The user can

select the age out times for the different components.

The EM periodically kicks off the aging mechanism to

20 perform this recycling of resources. STATS provides the

routines which the EM calls, e.g. stats_age.

There are also routines in STATS to allocate and

de-allocate Statistics, e.g., stats_allocate and

stats_de-allocate. The allocate routine is called when

25 stations and dialogs are picked up by the Network

Monitor. The de-allocate routine is called by the aging

routines when a structure is to be recycled.

Th a S uct es ' STATS

The general structure of the database within STATS

30 is illustrated by Figs. 7a-c, which shows information

that is maintained for the Data Link Layer (DLL) and its

organization. A set of data structures is kept for each

address associated with the layer. In this case there

are three relevant addresses, namely a segment address,

35 indicating which segment the node is on, a MAC address

EX 1009 Page 35

EX 1009 Page 36

W0 92/19054 PCT/US92/02995

_34—.

for the node on the segment, and an address which

identifies the dialog occurring over that layer. The

dialog address is the combination of the MAC addresses

for the two nodes which make up the dialog. Thus, the

5 overall data structure has three identifiable components: ;

a segment address data structure (see Fig. 7a), a MAC

address data structure (see Fig. 7b) and a dialog data

structure (see Fig. 7c).

The segment address structure includes a doubly

10 linked list 102 of segment address records 104, each one

for a different segment address. Each segment address

record 104 contains a forward and backward link (field

106) for forward and backward pointers to neighboring

records and a hash link (field 108). In other words, the

15 segment address records are accessed by either walking

down the doubly linked list or by using a hashing

mechanism to generate a pointer into the doubly linked
list to the first record of a smaller hash linked list.

Each record also contains the address of the segment

20 (field 110) and a set of fields for other information.

Among these are a flags field 112, a type field 114, a

parse_control field 116, and an EM_control field 118.

Flags field 112 contains a bit which indicates whether

the identified address corresponds to the address of

25 another Network Monitor. This field only has meaning in

the MAC address record and not in the segment or dialog

address record. Type field 114 identifies the MIB group

which applies to this address. Parse control field 116

is a bit mask which indicates what subgroups of

30 statistics from the identified MIB group are maintained,

if any. Flags field 112, type field 114 and parse

control field 116 make up what is referred to as the

parse control record for this MAC address. The Network

Monitor uses a default value for parse control field 116

35 upon initialization or whenever a new node is detected.

EX 1009 Page 36

EX 1009 Page 37

W0 92/19054 PCT/US92/02995

-35-

The default value turns off all statistics gathering.

The statistics gathering for any particular address may
subsequently be turned on by the Workstation through a

Network Monitor control command that sets the appropriate
5 bits of the parse control field to one.

EM_control field 118 identifies the subgroups of

statistics within the MIB group that have changed since
the EM last serviced the database to update rates and

other variables. This field is used by the EM to

10 identify those parts of STATS which must be updated or
for which recalculations must be performed when the EM
next services STAT.

Each segment address record 104 also contains

three fields for time related information. There is a

15 start_time field 120 for the time that is used to perform
some of the rate calculations for the underlying
statistics; a first_seen field 122 for the time at which

the Network Monitor first saw the communication; and a
last_seen field 124 for the time at which the last

20 communication was seen. The 1ast_seen time is used to

age out the data structure if no activity is seen on the

segment after a preselected period of time elapses. The

25 Management Workstation for display.

Finally, each segment address record includes a

stats_pointer field 126 for a pointer to a DLL segment
statistics data structure 130 which contains all of the

statistics that are maintained for the segment address.

30 If the bits in parse_control field 116 are all set to

off, indicating that no statistics are to be maintained

for the address, then the pointer in stats_pointer field
126 is a null pointer.

The list of events shown in data structure 130 of
35 Fig. 7a illustrates the type of data that is collected

EX 1009 Page 37

EX 1009 Page 38

W0 92/19054 PCI'/US92/02995

—36_

for this address when the parse control field bits are

set to on. Some of the entries in DLL segment statistics

data structure 130 are pointers to buckets for historical

data. In the case where buckets are maintained, there

5 are twelve buckets each of which represents a time period

of five minutes duration and each of which generally

contains two items of information, namely, a count for

the corresponding five minute time period and a MAX rate

for that time period. MAX rate records any spikes which

10 have occurred during the period and which the user may

not have observed because he was not viewing that

particular statistic at the time.

At the end of DLL segment statistics data

structure 130, there is a protocol_Q pointer 132 to a

15 linked list 134 of protocol statistics records 136

identifying all of the protocols which have been detected

running on top of the DLL layer for the segment. Each

record 136 includes a link 138 to the next record in the

list, the identity of the protocol (field 140), a frames

20 count for the number of frames detected for the

identified protocol (field 142); and a frame rate (field

144).

The MAC address data structure is organized in a

similar manner to that of the segment data structure (see

25 Fig. 7b). There is a doubly linked list 146 of MAC

address records 148, each of which contains the same type

of information as is stored in DLL segment address

records 104. A pointer 150 at the end of each MAC

address record 148 points to a DLL address statistics

30 data structure 152, which like the DLL segment address 4

data structure 130, contains fields for all of the

statitics that are gathered for that DLL MAC address.

Examples of the particular statistics are shown in Fig.

7b.

EX 1009 Page 38

EX 1009 Page 39

W0 92/19054 PCT/US92/02995

-37-

At the end of DLL address statistics data

structure 152, there are two pointer fields 152 and 154,
one for a pointer to a record 158 in a dialog link queue
160, and the other for a pointer to a linked list 162 of

5 protocol statistics records 164. Each dialog link queue

entry 158 contains a pointer to the next entry (field

168) in the queue and it contains a dialog_addr pointer

170 which points to an entry in the DLL dialog queue

which involves the MAC address. (see Fig. 7c). Protocol

10 statistics records 164 have the same structure and

contain the same categories of information as their

counterparts hanging off of DLL segment statistics data
structure 130.

The above-described design is repeated in the DLL

15 dialog data structures. That is, dialog record 172

includes the same categories of information as its

counterpart in the DLL segment address data structure and

the MAC address data structure. The address field 174

contains the addresses of both ends of the dialog
20 concatenated together to form a single address. The

first and second addresses within the single address are

arbitrarily designated nodes 1 and 2, respectively. In

the stats_pointer field 176 there is a pointer to a

dialog statistics data structure 178 containing the

25 relevant statistics for the dialog. The entries in the

first two fields in this data structure (i.e., fields 180

and 182) are designated protocol entries and protocols.

Protocol entries is the number of different protocols

which have been seen between the two MAC addresses. The

30 protocols that have been seen are enumerated in the

protocols field 182.

DLL dialog statistics data structure 178,

illustrated by Fig. 7c, includes several additional

fields of information which only appear in these ,
35 structures for dialogs for which state information can be

EX 1009 Page 39

EX 1009 Page 40

W0 92/19054 PCI'/US92/02995

kept (e.g. TCP connection). The additional fields

identify the transport protocol (e.g., TCP) (field 184)

and the application which is running on top of that

protocol (field 186). They also include the identity of

5 the initiator of the connection (field 188), the state of ;

the connection (field 190) and the reason that the

connection was closed, when it is closed (field 192).

Finally, they also include a state_pointer (field 194)

which.points to a history data structure that will be

10 described in greater detail later. Suffice it to say,

that the history data structure contains a short history

of events and states for each end of the dialog. The

state machine uses the information contained in the

history data structure to loosely determine what the

15 state of each of the end nodes is throughout the course

of the connection. The qualifier "loosely" is used

because the state machine does not closely shadow the

state of the connection and thus is capable of recovering

from loss of state due to lost packets or missed

20 communications.

The above-described structures and organization

are used for all layers and all protocols within STATS.

W

The RTP runs as an application task. It is

25 scheduled by the Real Time Kernel scheduler when received

frames are detected. The RTP parses the frames and

causes statistics, state tracking, and tracing operations

to be performed.

The functions of the RTP are:

30 * obtain frames from the RTP Input Queue;

* parse the frames;

* maintain statistics using routines supplied by the

STATS module;

* maintain protocol state information;

EX 1009 Page 40

EX 1009 Page 41

W0 92/19054 PCI’/US92/02995

—39—

* notify the MTM via an ITM if a frame has been

received with the Network Monitor's address as the

destination address; and .

* notify the EM via an ITM if a frame has been

5 received with any Network Monitor's address as the

source address.

The design of the RTP is straightforward. It is a

collection of routines which perform protocol parsing.

The RTP interfaces to the Real Time Kernel in order to

10 perform RTP initialization, to be scheduled in order to

parse frames, to free frames, to obtain and send an ITM

to another task; and to report fatal errors. The RTP is

invoked by the scheduler when there is at least one frame

to parse. The appropriate parse routines are executed

15 per frame. Each parse routine invokes the next level

parse routine or decides that parsing is done.

Termination of the parse occurs on an error or when the

frame has been completely parsed.

Each parse routine is a separately compilable

20 module. In general, parse routines share very little

data. Each knows where to begin parsing in the frame and

the length of the data remaining in the frame.

The following is a list of the parse routines that

are available within RTP for parsing the different'

25 protocols at the various layers.

Data Link Layer Parse - rtp_dll_parse:

This routine handles Ethernet, IEEE 802.3, IEEE

802.2, and SNAP. See RFC 1010, Assigned Numbers

for a description of SNAP (Subnetwork Access

30 Protocol).

Address Resolution Protocol Parse - rtp_arp_parse

ARP is parsed as specified in RFC 826.

Internet Protocol Parse - rtp_ip_parse

IP Version 4 is parsed as specified in RFC 791 as

35 amended by RFC 950, RFC 919, and RFC 922.

EX 1009 Page 41

EX 1009 Page 42

W0 92/19054 PCT/US92/02995

-40-

Internet Control Message Protocol Parse - rtp_icmp_parse

ICMP is parsed as specified in RFC 792.

Unit Data Protocol Parse - rtp_udp_parse

UDP is parsed as specified in RFC 768.

5 Transmission Control Protocol Parse - rtp_tcp_parse

TCP is parsed as specified in RFC 793.

Simple Hail Transfer Protocol Parse - rtp_smtp_parse

SHTP is parsed as specified in RFC 821.

File Transfer Protocol Parse - rtp_ftp_parse

10 FTP is parsed as specified in RFC 959.

Telnet Protocol Parse - rtp_telnet;parse

The Telnet protocol is parsed as specified in RFC

854.

Network File System Protocol Parse - rpt_nfs_parse

15 The NFS protocol is parsed as specified in RFC

1094.

The RTP calls routines supplied by STATS to look

up data structures. By calling these lockup routines,

global pointers to data structures are set up. Following

20 are examples of the pointers to statistics data

structures that are set up when parse routines call

Statistics module lockup routines.

mac_segment, mac_dst_segment, mac_this_segment,

mac_src, mac_dst, mac_dialog

25 ip_src_segment, ip_dst_segment, ip_this_segment,

ip_src, ip_dst, ip_dialog

tcp_src_segment, tcp_dst_segment,

tcp_this_segment,

tcp_src, tcp_dst, tcp_src_socket, tcp_dst_socket,

30 tcp_connection

The mac_src and mac_dst routines return pointers

to the data structures within STATS for the source MAC

address and the destination MAC address, respectively.

The lookup_mac_dialog routine returns a pointer to the

35 data structure within STATS for the dialog between the

EX 1009 Page 42

EX 1009 Page 43

W0 92/l9054 PCT/US92/02995

-41—

two nodes on the MAC layer. The other STATS routines

supply similar pointers for data structures relevant to

other protocols.

The RTP routines are aware of the names of the 7

5 statistics that must be manipulated within the data base

(e.g. frames, bytes) but are not aware of the structure

of the data. When a statistic is to be manipulated, the

RTP routine invokes a macro which manipulates the

appropriate statistics in data structures. The macros

10 use the global pointers which were set up during the

lookup process described above.

After a frame has been parsed (whether the parse

was successful or not), the RTP routine examines the

destination mac and ip addresses. If either of the

15 addresses is that of the Network Monitor, RTP obtains a

low priority ITM, initializes it, and sends the ITM to

the MTM task. One of the fields of the ITM contains the

address of the buffer containing the frame.

The RTP must hand some received frames to the EM

20 in order to accomplish the autotopology function

(described later). After a frame has been parsed

(whether the parse was successful or not), the RTP

routine examines the source mac and ip addresses. If

either of the addresses is that of another Network'

25 Monitor, RTP obtains a low priority ITM, initializes it

and sends the ITM to the EM task. The address data

structure (in particular, the flags field of the parse

control record) within STATS for the MAC or the IP

address indicates whether the source address is that of

30 another Network Monitor. One of the fields of the ITM

contains the address of the buffer containing the frame.

The RTP receives traffic frames from the network

for analysis. RTP operation may be modified by sending

control messages to the Monitor. RTP first parses these

35 messages, then detects that the messages are destined for

EX 1009 Page 43

EX 1009 Page 44

W0 92/19054 PCT/US92/02995

-42-

the Monitor and passes them to the MTM task. Parameters

which affect RTP operation may be changed by such control

messages. .

The general operation of the RTP upon receipt of a

5 traffic frame is as follows:

Get next frame from input queue

get address records for these stations
For each level of active parsing

{

10 get pointer to start of protocol header

call layer parse routine

determine protocol at next level

set pointer to start of next layer protocol

}end of frame parsing

15 if this is a monitor command add to MTM input

queue

if this frame is from another monitor, pass

to EM

check for overload -if yes tell control

20 munching:

In the described embodiment, the state machine

determines and keeps state for both addresses of all TCP

connections. TCP is a connection oriented transport

protocol, and TCP clearly defines the connection in terms
25 of states of the connection. There are other protocols

which do not explicitly define the communication in terms

of state, e.g. connectionless protocols such as NFS.

Nevertheless, even in the connectionless protocols there

is implicitly the concept of state because there is an

30 expected order to the events which will occur during the
course of the communication. That is, at the very least,

one can identify a beginning and an end of the

communication, and usually some sequence of events which

will occur during the course of the communication. Thus,

EX 1009 Page 44

EX 1009 Page 45

W0 92/l 9054 PCT/US92/02995

-43-

even though the described embodiment involves a

connection oriented protocol, the principles are

applicable to many connectionless protocols or for that

matter any protocol for which one can identify a

5 beginning and an end to the communication under that

protocol.

Whenever a TCP packet is detected, the RTP parses

the information for that layer to identify the event

associated with that packet. It then passes the

10 identified event along with the dialog identifier to the

state machine. For each address of the two parties to

the communication, the state machine determines what the

current state of the node is. The code within the state

machine determines the state of a connection based upon a

15 set of rules that are illustrated by the event/state

table shown in Fig. 8.

The interpretation of the event/state table is as

follows. The top row of the table identifies the six

possible states of a TCP connection. These states are

20 not the states defined in the TCP protocol specification.

The left most column identifies the eight events which

may occur during the course of a connection. Within the

table is an array of boxes, each of which sits at the

intersection of a particular event/state combination.

25 Each box specifies the actions taken by the state machine

if the identified event occurs while the connection is in

the identified state. When the state machine receives a

new event, it may perform three types of action. It may

change the recorded state for the node. The state to

30 which the node is changed is specified by the S="STATE"

entry located at the top of the box. It may increment or

decrement the appropriate counters to record the

information relevant to that event's occurrence. (In the

table, incrementing and decrementing are signified by the

35 ++ and the -- symbols, respectively, located after the

EX 1009 Page 45

EX 1009 Page 46

W0 92/19054 ' ' PCI'IUS92/02995

-44..

identity of the variable being updated.) Or the state
machine may take other actions such as those specified in
the table as start close timer, Look_for_Data_State, or

Look_at_History (to be described shortly). The
5 particular actions which the state machine takes are

specified in each box. An empty box indicates that no
action is taken for that particular event/state

combination. Note, however, that the occurrence of an
event is also likely to have caused the update of

10 statistics within STATS, if not by the state machine,
then by some other part of the RTP. Also note that it
may be desirable to have the state machine record other
events, in which case the state table would be modified
to identify those other actions.

15 Two events appearing on the table deserve further
explanation, namely, close timer expires and inactivity
timer expires. The close timer, which is specified by
TCP, is started at the end of a connection and it
establishes a period during which any old packets for the

20 connection which are received are thrown away (i.e.,
ignored). The inactivity timer is not specified by TCP
but rather is part of the Network Monitor's resource

management functions. Since keeping statistics for
dialogs (especially old dialogs) consumes resources, it

25 is desirable to recycle resources for a dialog if no
activity has been seen for some period of time. The
inactivity timer provides the mechanism for accomplishing
this. It is restarted each time an event for the
connection is received. If the inactivity timer expires

30 (i.e., if no event is received before the timer period
ends), the connection is assumed to have gone inactive
and all of the resources associated with the dialog are

recycled. This involves freeing them up for use by other
dialogs.

EX 1009 Page 46

EX 1009 Page 47

W0 92/19054 PCT/US92/02995

-45-

“ The other states and events within the table

differ from but are consistent with the definitions

provided by TCP and should be self evident in view of

that protocol specification.

5 The event/state table can be read as follows.

Assume, for example, that node 1 is in DATA state and the

RTP receives another packet from node 1 which it

determines to be a TCP FIN packet. According to the

entry in the table at the intersection of FIN/DATA (i.e.,

10 event/state), the state machine sets the state of the

connection for node 1 to CLOSING, it decrements the

active connections counter and it starts the close timer.

When the close timer expires, assuming no other events

over that connection have occurred, the state machine

15 sets node 1's state to CLOSED and it starts the

inactivity timer. If the RTP sends another SYN packet to

reinitiate a new connection before the inactive timer

expires, the state machine sets node 1's state to

CONNECTING (see the SYN/CLOSED entry) and it increments

20 an after close counter.

When a connection is first seen, the Network

Monitor sets the state of both ends of the connection to

UNKNOWN state. If some number of data and acknowledgment

frames are seen from both connection ends, the states of

25 the connection ends may be promoted to DATA state. The

connection history is searched to make this determination

as will be described shortly.

Referring to Figs. 9a-b, within STATS there is a

history data structure 200 which the state machine uses

30 to remember the current state of the connection, the

state of each of the nodes participating in the

connection and a short history of state related

information. History data structure 200 is identified by

a state_pointer found at the end of the associated dialog

35 statistics data structure in STATS (see Fig. 7c). Within

EX 1009 Page 47

EX 1009 Page 48

W0 92/19054 PCT/US92/02995

-46-

history data structure 200, the state machine records the
current state of node 1 (field 202), the current state of

node 2 (field 206) and other data relating to the

corresponding node (fields 204 and 208). The other data
5 includes, for example, the window size for the receive

and transmit communications, the last detected sequence

numbers for the data and acknowledgment frames, and other

data transfer information.

History data structure 200 also includes a history

10 ‘table (field 212) for storing a short history of events
which have occurred over the connection and it includes

an index to the next entry within the history table for

storing the information about the next received event

(field 210). The history table is implemented as a
15 circular buffer which includes sufficient memory to

store, for example, 16 records. Each record, shown in

Fig. 9b, stores the state of the node when the event was
detected (field 218), the event which was detected (i.e.,
received) (field 220), the data field length (field 222),

20 the sequence number (field 224), the acknowledgment

sequence number (field 226) and the identity of the
initiator of the event, i.e., either node 1 or node 2 or

0 if neither (field 228).

Though the Network Monitor operates in a

25 promiscuous mode, it may occasionally fail to detect or
it may, due to overload, lose a packet within a
communication. If this occurs the state machine may not

be able to accurately determine the state of the

connection upon receipt of the next event. The problem

30 is evidenced by the fact that the next event is not what

was expected. When this occurs, the state machine tries
to recover state by relying on state history information

stored in the history table in field 212 to deduce what

the state is. To deduce the current state from

35 historical information, the state machine uses one of the

EX 1009 Page 48

EX 1009 Page 49

W0 92/19054 PCT/US92/02995

-47-

two previously mentioned routines, namely,

Look_for_Data_State and Look_at_History.

Referring to Fig. 10, Look_for_Data_State routine

230 searches back through the history one record at a

5 time until it finds evidence that the current state is

DATA state or until it reaches the end of the circular

buffer (step 232). Routine 23o detects the existence of

DATA state by determining whether node 1 and node 2 each

have had at least two data events or two acknowledgment

10 combinations with no intervening connect, disconnect or

abort events (step 234). If such a sequence of events is

found within the history, routine 230 enters both node 1

and node 2 into DATA state (step 236), it increments the

active connections counter (step 238) and then it calls a

15 ‘Look_for_Initiator routine to look for the initiator of

the connection (step 240). If such a pattern of events

is not found within the history, routine 230 returns

without changing the state for the node (step 242).

As shown in Fig. 11, Look_for_Initiator routine

20 240 also searches back through the history to detect a

telltale event pattern which identifies the actual

initiator of the connection (step 244). More

specifically, routine 240 determines whether nodes 1 and

2 each sent connect-related packets. If they did,

25 routine 240 identifies the initiator as the first node to

send a connect-related packet (step 246). If the search

is not successful, the identity of the connection

initiator remains unknown (step 248).

The Look_at_History routine is called to check

30 back through the history to determine whether data

transmissions have been repeated. In the case of

retransmissions, the routine calls a

Look_for_Retransmission routine 250, the operation of

which is shown in Fig. 12. Routine 250 searches back

35 through the history (step 252) and checks whether the

EX 1009 Page 49

EX 1009 Page 50

W0 92/19054 PCI‘/US92/02995

-43-

same initiator node has sent data twice (step 254). It

detects this by comparing the current sequence number of

the packet as provided by the RTP with the sequence

numbers of data packets that were previously sent as

5 reported in the history table. If a retransmission is -

spotted, the retransmission counter in the dialog

statistics data structure of STATS is incremented (step

256). If the sequence number is not found within the

history table, indicating that the received packet does

10 not represent a retransmission, the retransmission

counter is not incremented (step 258).

Other statistics such as Window probes and keep

alives may also be detected by looking at the received

frame, data transfer variables, and, if necessary, the

15 history.

Even if frames are missed by the Network Monitor,

because it is not directly “shadowing" the connection,

the Network Monitor still keeps useful statistics about

the connection. If inconsistencies are detected the

20 Network Monitor counts them and, where appropriate, drops

back to UNKNOWN state. Then, the Network Monitor waits

for the connection to stabilize or deteriorate so that it

can again determine the appropriate state based upon the

history table.

25W:

The transactions which represent the major portion

of the processing load within the Monitor, include

monitoring, actions on threshold alarms, processing

database get/set requests from the Management

30 Workstation, and processing monitor control requests from

the Management Workstation. Each of these mechanisms

will now be briefly described.

Monitoring involves the message sequence shown in

Fig. 13. In that figure, as in the other figures

35 involving message sequences, the numbers under the

EX 1009 Page 50

EX 1009 Page 51

W0 92/19054 PCT/US92/02995

—49-

heading SEQ. identify the major steps in the sequence.

The following steps occur:

1. ISR puts Received traffic frame ITM on RTP input

queue -

5 2. request address of pertinent data structure from

STATS (get parse control record for this station)

3. pass pointer to RTP

4. update statistical objects by call to statistical

update routine in STATS using pointer to pertinent

10 data structure

5. parse completed - release buffers

The major steps which follow a statistics

threshold event (i.e., an alarm event) are shown in Fig.

14. The steps are as follows:

15 1. statistical object update causes threshold alarm

2. STATS generates threshold event ITM to event

manager (EM)

3. look up appropriate action for this event

4. perform local event processing

20 5. generate network alarm ITM to MTM Xmit (if

required)

6. format network alarm trap for Workstation from

event manager data

7. send alarm to Workstation

25 The major steps in processing of a database update

request (i.e., a get/set request) from the Management

Workstation are shown in Fig. 15. The steps are as

follows:

1. LAN ISR receives frame from network and passes it

30 to RTP for parsing

2. RTP parses frame as for any other traffic on

segment.

3. RTP detects frame is for monitor and sends

received Workstation message over LAN ITM to MTM
35 Recv.

EX 1009 Page 51

EX 1009 Page 52

W0 92/19054 PCT/US92/02995

4. MTM Recv processes protocol stack.

5. MTM Recv sends database update request ITM to EM.

6. EM calls STATS to do database read or database

write with appropriate IMPB

5 7. STATS performs database access and returns

response to EM.

8. EM encodes response to Workstation and sends

database update response ITM to MTM Xmit

9. MTM Xmit transmits.

10 The major steps in processing of a monitor control

request from the Management Workstation are shown in Fig.
16. The steps are as follows:

1. Lan ISR receives frame from network and passes

received frame ITM to RTP for parsing.

15 7 2. RTP parses frame as for any other traffic on

segment.

3. RTP detects frame is for monitor and sends

received workstation message over LAN ITM to MTM

Recv.

20 4. MTM Recv processes protocol stack and decodes

workstation command.

5. MTM Recv sends request ITM to EM.

6. EM calls Control with monitor control IMPB.

7. Control performs requested operation and generates

25 response to EM.

8. EM sends database update response ITM to MTM Knit.

9. MTM Xmit encodes response to Workstation and

transmits.

W0 5 at' te c :

30 The interface between the Monitor and the

Management Workstation is based on the SNMP definition

(RFC 1089 SNMP; RFC 1065 SKI; RFC 1066 SNMP MIB - Note:
RFC means Request for Comments). All five SNMP PDU types

are supported:

35 get-request

EX 1009 Page 52

EX 1009 Page 53

W0 92/19054 PCT/US92/02995

-51..

get-next—request

get-response

set-request

trap

5 The SNMP MIB extensions are designed such that where

possible a user request for data maps to a single complex

MIB object. In this manner, the get-request is simple

and concise to create, and the response should contain

all the data necessary to build the screen. Thus, if the

10 user requests the IP statistics for a segment this maps

to an IP Segment Group.

The data in the Monitor is keyed by addresses

(MAC, IP) and port numbers (telnet, FTP). The user may

wish to relate his data to physical nodes entered into

15 the network map. The mapping of addresses to physical

nodes is controlled by the user (with support from the

Management Workstation system where possible) and the

Workstation retains this information so that when a user

requests data for node 'Joe' the Workstation asks the

20 Monitor for the data for the appropriate address(es).

The node to address mapping need not be one to one.

Loading and dumping of monitors uses TFTP (Trivial

File Transfer Protocol). This operates over UDP as does

SNMP. The Monitor to Workstation interface follows the

25 SNMP philosophy of operating primarily in a polled mode.

The Workstation acts as the master and polls the Monitor

slaves for data on a regular (configurable) basis.

The information communicated by the SNMP is

represented according to that subset of ASN.1 (ISO 8824

30 Specification of ASN.1) defined in the Internet standard

Structure of Management Information (SMI - RFC 1065).

The subset of the standard Management Information Base

(MIB) (RFC 1066 SNMP MIB) which is supported by the

Workstation is defined in Appendix III. The added value

35 provided by the Workstation is encoded as enterprise

EX 1009 Page 53

EX 1009 Page 54

W0 92/19054 PCI‘/US92/02995

-52-

specific extensions to the MIB as defined in Appendix IV.
The format for these extensions follows the SMI

recomendations for object identifiers so that the ,

Workstation extensions fall in the subtree

5 1.3.6.1.4.1.x.1. where x is an enterprise specific node _

identifier assigned by the IAB.

Appendix V is a summary of the network variables

for which data is collected by the Monitor for the

extended MIB and which can be retrieved by the

10 workstation. The summary includes short decriptions of

the meaning and significance of the variables, where

appropriate.

W:

The Management Workstation is a SUN Sparcstation

15 (also referred to as a Sun) available from Sun

Microsystems, Inc. It is running the Sun flavor of Unix
and uses the Open Look Graphical User Interface (GUI) and

the SunNet Manager as the base system. The options

required are those to run SunNet Manager with some

20 additional disk storage requirement.

The network is represented by a logical map

illustrating the network components and the relationships

between them, as shown in Fig. 17. A hierarchical

network map is supported with navigation through the

25 layers of the hierarchy, as provided by SNM. The

Management Workstation determines the topology of the
network and informs the user of the network objects and

their connectivity so that he can create a network map.

To assist with the map creation process, the Management

30 Workstation attempts to determine the stations connected

to each LAN segment to which a Monitor is attached.

Automatic determination of segment topology by detecting

stations is performed using the autotopology algorithms

as described in copending U.S. Patent Application S.N.

35 ***,*** entitled "Automatic Topology Monitor for Multi—

EX 1009 Page 54

EX 1009 Page 55

W0 92/19054 PCT/US92/02995

_53—

Segment Local Area Network" filed on January 14, 1991

(Attorney Docket No. 13283-NE.APP), incorporated herein

by reference. .

In normal operation} each station in the network

5 is monitored by a single Monitor that is located on its

local segment. The initial determination of the Monitor

responsible for a station is based on the results of the

autotopology mechanism. The user may override this

initial default if required.

10 The user is informed of new stations appearing on

any segment in the network via the alarm mechanism. As

for other alarms, the user may select whether stations

appearing on and disappearing from the network segment

generate alarms and may modify the times used in the

15 aging algorithms. When a new node alarm occurs, the user

must add the new alarm to the map using the SNM tools.

In this manner, the SNM system becomes aware of the

nodes.

The sequence of events following the detection of

20 a new node is:

1. the location of the node is determined

automatically for the user.

2. the Monitor generates an alarm for the

user indicating the new node and providing'

25 some or all of the following information:

mac address of node

ip address of node

segment that the node is believed to

be

30 located on

Monitor to be responsible for the

node

3. the user must select the segment and add

the node manually using the SNM editor

EX 1009 Page 55

EX 1009 Page 56

W0 92/19054 PCT/US92/02995

-54..

4. The update to the SNM database will be

detected and the file reread. The

Workstation database is reconstructed and

the parse control records for the Monitors

5 updated if required.

5. The Monitor responsible for the new node

has its parse control record updated via

SNMP set request(s).

An internal record of new nodes is required for

10 the autotopology. When a new node is reported by a

Network Monitor, the Management Workstation needs to have

the previous location information in order to know which
Network Monitors to involve in autotopology. For

example, two nodes with the same IP address may exist in
15 separate segments of the network. The history makes

possible the correlation of the addresses and it makes

possible duplicate address detection.
Before a new Monitor can communicate with the

Management Workstation via SNMP it needs to be added to
20 the SNM system files. As the SNM files are cached in the

database, the file must be updated and the SNM system

forced to reread it.

Thus, on the detection of a new Monitor the

25 Monitor to the Workstation:

1. The Monitor issues a trap to the

Management Workstation software and

requests code to be loaded from the Sun

Microsystems boot/load server.

30 2. The code load fails as the Monitor is not

known to the unix networking software at

this time.

3. The Workstation confirms that the new

Monitor does not exceed the configured

35 system limits (e.g. 5 Monitors per

EX 1009 Page 56

EX 1009 Page 57

W0 92/19054 PCI'/US92/02995

-55..

Workstation) and terminates the

initialization sequence if limits are

exceeded. An alarm is issued to the user

indicating the presence of the new Monitor

5 and whether it can be supported.

4. The user adds the Monitor to the

SNMP.HOSTS file of the SNM system, to the

etc/hosts file of the Unix networking

system and to the SNM map.

10 5. When the files have been updated the user

resets the Monitor using the set tool

(described later).

6. The Monitor again issues a trap to the

Management Workstation software and

15 requests code to be loaded from the Sun

boot/load server.

7. The code load takes place and the Monitor

issues a trap requesting data from the

Management Workstation.

20 8. The Monitor data is issued using SNMP set

requests.

Note that on receiving the set request, the SNMP proxy

rereads in the (updated) SNMP.HOSTS file which now

includes the new Monitor. Also note that the SNMP hosts

25 file need only contain the Monitors, not the entire list

of nodes in the system.

9. On completion of the set request(s) the Monitor

run command is issued by the Workstation to bring

the Monitor on line.

30 The user is responsible for entering data into the

SNM database manually. During operation, the Workstation

monitors the file write date for the SNM database. When

this is different from the last date read, the SNM

database is reread and the Workstation database _

35 reconstructed. In this manner, user updates to the SNM

EX 1009 Page 57

EX 1009 Page 58

W0 92/19054 PCT/US92/02995

database are incorporated into the Workstation database

as quickly as possible without need for the user to take

any action. 7 .

When the Workstation is loaded, the database is

5 created from the data in the SNM file system (which the

user has possibly updated). This data is checked for

consistency and for conformance to the limits imposed by

the WOrkstation at this time and a warning is generated

to the user if any problems are seen. If the data errors

10 are minor the system continues operation; if they are

fatal the user is asked to correct them and Workstation

operation terminates.

The monitoring functions of the Management

Workstation are provided as an extension to the SNM

15 system. They consist of additional display tools (i.e.,

summary tool, values tool, and set tool) which the user

invokes to access the Monitor options and a Workstation

event log in which all alarms are recorded.

As a result of the monitoring process, the Monitor

20 makes a large number of statistics available to the

operator. These are available for examination via the

Workstation tools that are provided. In addition, the

Monitor statistics (or a selected subset thereof) can be

made visible to any SNMP manager by providing it with

25 knowledge of the extended MIB. A description of the

statistics maintained are described elswhere.

Network event statistics are maintained on a per

network, per segment and per node basis. Within a node,

statistics are maintained on a per address (as

30 appropriate to the protocol layer - IP address, port

number, ...) and per connection basis. Per network

statistics are always derived by the Workstation from the

per segment variables maintained by the Monitors.

Subsets of the basic statistics are maintained on a node

35 to node and segment to segment basis.

EX 1009 Page 58

EX 1009 Page 59

W0 92/l9054 PCT/US92/02995

-57-

If the user requests displays of segment to

segment traffic, the Workstation calculates this data as

follows. The inter segment traffic is derived from the

node to node statistics for the intersecting set of

5 nodes. Thus, if segment A has nodes 1, 2, and 3 and

segment 8 has nodes 20, 21, and 22, then summing the node

to node traffic for

l -> 20,21,22

2 -> 20,21,22

10 3 -> 20,21,22

produces the required result. On-LAN/off-LAN traffic for

segments is calculated by a simply summing node to node

traffic for all stations on the LAN and then subtracting

this from total segment counts.

15 Alarms are reported to the user in the following

ways:

1. Alarms received are logged in a Workstation log.

2. The node which the alarm relates to is highlighted

on the map.

20 3. The node status change is propagated up through

the (map) hierarchy to support the case where the

node is not visible on the screen. This is as

provided by SNM.

Summary Tool

25 After the user has selected an object from the map

and invokes the display tools, the summary tool generates

the user's initial screen at the Management Workstation.

It presents a set of statistical data selected to give an

overview of the operational status of the object (e.g., a

30 selected node or segment). The Workstation polls the

Monitor for the data required by the Summary Tool display
screens.

The Summary Tool displays a basic summary tool

screen such as is shown in Fig. 18. The summary tool

35 screen has three panels, namely, a control panel 602, a

EX 1009 Page 59

EX 1009 Page 60

W0 92/19054 PCI‘/US92/02995

—58_

values panel 604, and a dialogs panel 606. The control

panel includes the indicated mouse activated bottons.

The functions of each of the buttons is as follows. The

file button invokes a traditional file menu. The view

5 button invokes a view menu which allows the user to i

modify or tailor the visual protperties of the tool. The

properties button invokes a properties menu containing

choices for viewing and sometimes modifying the

properties of objects. -The tools button invokes a tools

10 menu which provides access to the other Workstation

tools, e.g. Values Tool.

The Update Interval field allows the user to

specify the frequency at which the displayed statistics

are updated by polling the Monitor. The Update Once

15 .button enables the user to retrieve a single screen

update. When the Update Once button is invoked not only

is the screen updated but the update interval is

automatically set to "none".

The type field enables the user to specify the

20 type of network objects on which to operate, i.e.,

segment or node.

The name button invokes a pop up menu containing

an alphabetical list of all network objects of the type

selected and apply and reset buttons. The required name

25 can then be selected from the (scrolling) list and it

will be entered in the name field of the summary tool

when the apply button is invoked. Alternatively, the

user may enter the name directly in the summary tool name

field.

30 The protocol button invokes a pop up menu which

provides an exclusive set of protocol layers which the

user may select. Selection of a layer copies the layer

name into the displayed field of the summary tool when

the apply operation is invoked. An example of a protocol

35 selection menu is shown in Fig. 19. It displays the

EX 1009 Page 60

EX 1009 Page 61

W0 92/l9054 7 PCT/US92/02995

-59-

available protocols in the form of a protocol tree with

multiple protocol familes. The protocol selection is two

dimensional. That is, the user first selects the

protocol family and then the particular layer within that

5 family.

As indicated by the protocol trees shown in Fig.

19, the capabilities of the Monitor can be readily

extended to handle other protocol families. The

particular ones which are implemented depend upon the

10 needs of the particular network environment in which the

Monitor will operate.

The user invokes the apply button to indicate that

the selection process is complete and the type, name,

protocol, etc. should be applied. This then updates the

15 screen using the new parameter set that the user

selected. The reset button is used to undo the ‘
selections and restore them to their values at the last

apply operation.

The set of statistics for the selected parameter

20 set is displayed in values panel 604. The members of the

sets differ depending upon, for example, what protocol

was selected. Figs. 20a-g present examples of the types

of statistical variables which are displayed for the DLL,

IP, UDP, TCP, ICMP, NFS, and ARP/RARP protocols, '

25 respectively. The meaning of the values display fields

are described in Appendix I, attached hereto.

Dialogs panel 606 contains a display of the

connection statistics for all protocols for a selected

node. Within the Management Workstation, connection

30 lists are maintained per node, per supported protocol.

When connections are displayed, they are sorted on "Last

Seen" with the most current displayed first. A single

list returned from the Monitor contains all current

connection. For TCP, however, each connection also

35 contains a state and TCP connections are displayed as

EX 1009 Page 61

EX 1009 Page 62

W0 92/19054 PCT/US92/02995

-60-

Past and Present based upon the returned state of the

connection. For certain dialogs, such as TCP and NFS

over UDP, there is an associated direction to the dialog,

i.e., from the initiator (source) to the receiver (sink).
5 For these dialogs, the direction is identified in a DIR. ,

field. A sample of information that is displayed in

dialogs panel 606 is presented in Fig. 21 for current
connections.

Values Tool

10 The values tool provides the user with the ability

to look at the statistical database for a network object

in detail. When the user invokes this tool, he may

select a basic data screen containing a rate values panel

620, a count values panel 622 and a protocols seen panel

15 626, as shown in Fig. 22, or he may select a traffic
matrix screen 628, as illustrated in Fig. 23.

In rate values and count values panels 620 and

622, value tools presents the monitored rate and count

statistics, respectively, for a selected protocol. The

20 parameters which are displayed for the different

protocols (i.e., different groups) are listed in Appendix
II. In general, a data element that is being displayed
for a node shows up in three rows, namely, a total for

the data element, the number into the data element, and

25 the number out of the data element. Any exceptions to

this are identified in Appendix II. Data elements that

are displayed for segments, are presented as totals only,

with no distinction between Rx and Tx.

When invoked the Values Tool displays a primary

30 screen to the user. The primary screen contains what is

considered to be the most significant information for the

selected object. The user can view other information for

the object (i.e., the statistics for the other

parameters) by scrolling down.

EX 1009 Page 62

EX 1009 Page 63

W0 92/19054 7 PCT/US92/02995

-61-

The displayed information for the count values and

rate values panels 620 and 622 includes the following.

An alarm field reports whether an alarm is currently

active for this item. It displays as "*" if active alarm

5 is present. A Current Value/Rate field reports the

current rate or the value of the counter used to generate

threshold alarms for this item. This is reset following

each threshold trigger and thus gives an idea of how

close to an alarm threshold the variable is. A Typical

10 Value field reports what this item could be expected to

read in a "normal" operating situation. This field is

filled in for those items where this is predictable and

useful. It is maintained in the Workstation database and

is modifiable by the user using the set tool. An

15 Accumulated Count field reports the current accumulated

value of the item or the current rate. A Max Value field

reports the highest value recently seen for the item.

This value is reset at intervals defined by a user

adjustable parameter (default 30 minutes). This is not a

20 rolling cycle but rather represents the highest value

since it was reset which may be from 1 to 30 minutes ago

(for a rest period of 30 minutes). It is used only for

rates. A Min Value field reports the lowest value

recently seen for the item. This operates in the same

25 manner as Max Value field and is used only for rates.

A Percent (%) field reports only for the following

variables:

off seg counts:

100(in count / total off seg count)

30 100(out count / total off seg count)

100(transit count / total off seg count)

100(local count / total off seg count)

off seg rates

100(transit rate / total off seg rate), etc.

35 protocols

EX 1009 Page 63

EX 1009 Page 64

W0 92/19054 PCI‘/US92/02995

—62-

100(framerate this protocol / total frame

rate)

On the right half of the basic display, there the

following addtional fieldsi a High Threshold field and a

5 Sample period for rates field.

Set Tool

The set tool provides the user with the ability to

modify the parameters controling the operation of the
Monitors and the Management Workstation. These

10 parameters affect both user interface displays and the
actual operation of the Monitors. The parameters which

can be operated on by the set tool can be divided into

the following categories: alarm thresholds, monitoring

control, segment MOnitor administration, and typical

15 values.

The monitoring control variables specify the

actions of the segment Monitors and each Menitor can have

a distinct set of control variables (e.g., the parse

control records that are described elsewhere). The user

20 is able to define those nodes, segments, dialogs and

protocols in which he is interested so as to make the
best use of memory space available for data storage.

This mechanism allows for load sharing, where mulitple

Monitors on the same segment can divide up the total

25 number of network objects which are to be monitored so

that no duplication of effort between them takes place.
The monitor administration variables allow the

user to modify the operation of the segment Monitor in a

more direct manner than the monitoring control variables.

30 Using the set tool, the user can perform those operations
such as reset, time changes etc. which are normally the

prerogative of a system administrator.
Note that the above descriptions of the tools

available through the Management Workstation are not

35 meant to imply that other choices may not be made

EX 1009 Page 64

EX 1009 Page 65

W0 92/1 9054 PCT/US92/02995

-63—

regarding the particular information which is displayed

and the manner in which it is displayed.

S ‘ w ' s :

The Workstation sets the thresholds in the Network

5 Monitor based upon the performance of the system as

observed over an extended period of time. That is, the

Workstation periodically samples the output of the

Network Monitors and assembles a model of a normally

functioning network. Then, the Workstation sets the

10 thresholds in the Network Monitors based upon that model.

If the observation period is chosen to be long enough and

since the model represents the "average" of the network

performance over the observation period, temporary

undesired deviations from normal behavior are smoothed

15 out over time and model tends to accurately reflect

normal network behavior.

_ Referring the Fig. 24, the details of the training

procedure for adaptively setting the Network Monitor

thresholds are as follows. To begin training, the

20 Workstation sends a start learning command to the Network

Monitors from which performance data is desired (step

302). The start learning command disables the thresholds

within the Network Monitor and causes the Network Monitor

to periodically send data for a predefined set of network

25 parameters to the Management Workstation. (Disabling the

thresholds, however, is not necessary. One could have

the learning mode operational in parallel with monitoring

using existing thresholds.) The set of parameters may be

any or all of the previously mentioned parameters for

30 which thresholds are or may be defined.

Throughout the learning period, the Network

Monitor sends "snapshots" of the network's performance to

the Workstation which, in turn, stores the data in a

performance history database 306 (step 304). The network

35 manager sets the length of the learning period.

EX 1009 Page 65

EX 1009 Page 66

W0 92/19054 PCI'IUS92/02995

-64-

Typically, it should be long enough to include the full
range of load conditions that the network experiences so
that a representative performance history is generated.
It should also be long enough so that short periods of

5 overload or faulty behavior do not distort the resulting
averages.

After the learning period has expired, the network

manager, through the Management Workstation, sends a stop
learning command to the Monitor (step 308). The Monitor

10 ceases automatically sending further performance data

updates to the Workstation and the Workstation processes
the data in its performance history database (step 310).

The processing may involve simply computing averages for
the parameters of interest or it may involve more

15 sophisticated statistical analysis of the data, such as
computing means, standard deviations, maximum and minimum
values, or using curve fitting to compute rates and other'

pertinent parameter values.
After the Workstation has statistically analyzed

20 the performance data, it computes a new set of thresholds
for the relevant performance parameters (step 312). To

do this, it uses formulas which are appropriate to the

particular parameter for which a threshold is being
computed. That is, if the parameter is one for which one

25 would expect to see wide variations in its value during
network monitoring, then the threshold should be set high
enough so that the normal expected variations do not
trigger alarms. 0n the other hand, if the parameter is
of a type for which only small variations are expected

30 and larger variations indicate a problem, then the
threshold should be set to a value that is close to the

average observed value. Examples of formulae which may
be used to compute thresholds are:

* Highest value seen during learning period;

EX 1009 Page 66

EX 1009 Page 67

W0 92/l9054 PCT/US92/02995

65

* Highest value seen during learning period +

10%;

* Highest value seen during learning period +

50%; I

5 * Highest value seen during learning period +

user-defined percent;

* Any value of the parameter other than zero;

* Average value seen during learning period +

50%; and

10 * Average value seen during learning period +

user-defined percent.

As should be evident from these examples, there is a

broad range of possibilities regarding how to compute a

particular threshold. The choice, however, should

15 reflect the parameter's importance in signaling serious

network problems and its normal expected behavior (as may

be evidenced from the performance history acquired for

the parameter during the learning mode).

After the thresholds are computed, the Workstation

20 loads them into the Monitor and instructs the Monitor to

revert to normal monitoring using the new thresholds

(step 314).

This procedure provides a mechanism enabling the

network manager to adaptively reset thresholds in

25 response to changing conditions on the network, shifting

usage patterns and evolving network topology. As the

network changes over time, the network manager merely

invokes the adaptive threshold setting feature and

updates the thresholds to reflect those changes.

30 e ' s ' o e:

The Management Workstation includes a diagnostic

analyzer module which automatically detects and diagnoses

the existence and cause of certain types of network

problems. The functions of the diagnostic module may

35 actually be distributed among the Workstation and the

EX 1009 Page 67

EX 1009 Page 68

W0 92/19054 PCI'IUS92/02995

-55-

Network Monitors which_are active on the network. In

principle, the diagnostic analyzer module includes the

analysis functions.

5 The Management Workstation contains a reference

model of a normally operating network. The reference

model is generated by observing the performance of the
network over an extended period of time and computing

averages of the performance statistics that were observed
10 during the observation period. The reference model

provides a reference against which future network
performance can be compared so as to diagnose and analyze
potential problems. The Network Monitor (in particular,
the STATS module) includes alarm thresholds on a selected

15 set of the parameters which it monitors. Some of those

thresholds are set on parameters which tend to be

indicative of the onset or the presence of particular

network problems.

During monitoring, when a Monitor threshold is

20 exceeded, thereby indicating a potential problem (e.g. in
a TCP connection), the Network Monitor alerts the

Workstation by sending an alarm. The Workstation

notifies the user and presents the user with the option

of either ignoring the alarm or invoking a diagnostic

25 algorithm to analyze the problem. If the user invokes
the diagnostic algorithm, the Workstation compares the
current performance statistics to its reference model to

analyze the problem and report its results. (Of course,
this may also be handled automatically so as to not

30 require user intervention.) The Workstation obtains the
data on current performance of the network by retrieving

the relevant performance statistics from all of the

segment Network Monitors that may have information useful
to diagnosing the problem.

EX 1009 Page 68

EX 1009 Page 69

W0 92/l 9054 PCT/US92/02995

10

15

20

25

35

_67-

The details of a specific example involving poor

TCP connection performance will now be described. This

example refers to a typical network on which the

diagnostic analyzer resides, such as the network

illustrated in Fig. 25. It includes three segments

labelled $1, $2, and $3, a router R1 connecting $1 to $2,

a router R2 connecting $2 to S3, and at least two nodes,

node A on 51 which communicates with node B on $3. On

each segment there is also a Network Monitor 324 to

observe the performance of its segment in the manner

described earlier. A Management Workstation 320 is also

located on $1 and it includes a diagnostic analyzer

module 322. For this example, the sympton of the network

problem is degraded peformance of a TCP connection

between Nodes A and B.

A TCP connection problem may manifest itself in a

number of ways, including, for example, excessively high

numbers for any of the following:

errors

packets with bad sequence numbers

packets retransmitted

bytes retransmitted

out of order packets

out of order bytes

packets after window closed

bytes after window closed

average and maximum round trip times

or by an unusually low value for the current window size.

By setting the appropriate thresholds, the Monitor is

programmed to recognize any one or more of these

symptons. If any one of of the thresholds is exceeded,

the Monitor sends an alarm to the Workstation. The

Workstation is programmed to recognize the particular

alarm as related to an event which can be further

analyzed by its diagnostic analyzer module 322. Thus,

EX 1009 Page 69

EX 1009 Page 70

W0 92/19054 PCI‘/US92/02995

-68-

the Workstation presents the user with the option of

invoking its diagnostic capabilities (or automatically

invokes the diagnostic capabilities).

In general terms, when the diagnostic analyzer is

5 invoked, it looks at the performance data that the ’

segment Monitors produce for the two nodes, for the

dialogs between them and for the links that interconnect

them and compares that data to the reference model for

the network. If a significant divergence from the

10 reference model is identified, the diagnostic analyzer

informs the Workstation (and the user) about the nature

of the divergence and the likely cause of the problem.

In conducting the comparison to "normal" network

performance, the network circuit involved in

15 communications between nodes A and B is decomposed into

its individual components and.diagnostic analysis is

performed on each link individually in the effort to

isolate the problem further.

The overall structure of the diagnostic algorithm

20 400 is shown in Fig. 26. When invoked for analyzing a

possible TCP problem between nodes A and B, diagnostic

analyzer 322 checks for a TCP problem at node A when it
is acting as a source node (step 402). To perform this

check, diagnostic algorithm 400 invokes a source node

25 analyzer algorithm 450 shown in Fig. 27. If a problem is
identified, the Workstation reports that there is a high

probability that node A is causing a TCP problem when

operating as a source node and it reports the results of

the investigation performed by algorithm 450 (step 404).

30 If node A does not appear to be experiencing a TCP

problem when acting as a source node, diagnostic analyzer
322 checks for evidence of a TCP problem at node B when

it is acting as a sink node (step 406). To perform this

check, diagnostic algorithm 400 invokes a sink node

35 analyzer algorithm 470 shown in Fig. 28. If a problem is

EX 1009 Page 70

EX 1009 Page 71

W0 92/1 9054 PCT/US92/02995

—69-

identified, the Workstation reports that there is a high

probability that node B is causing a TCP problem when

operating as a sink node and it reports the results of

the investigation performed by algorithm 470 (step 408).

5 Note that source and sink nodes are concepts which

apply to those dialogs for which a direction of the

communication can be defined. For example, the source

node may be the one which initiated the dialog for the

purpose of sending data to the other node, i.e., the sink

10 node.

If node B does not appear to be experiencing a TCP

problem when acting as a sink node, diagnostic analyzer

322 checks for evidence of a TCP problem on the link

between Node A and Node B (step 410). To perform this

15 check, diagnostic algorithm 400 invokes a link analysis

algorithm 550 shown in Fig. 29. If a problem is

identified, the Workstation reports that there is a high

probability that a TCP problem exists on the link and it

reports the results of the investigation performed by

20 link analysis algorithm 550 (step 412).

If the link does not appear to be experiencing a

TCP problem, diagnostic analyzer 322 checks for evidence

of a TCP problem at node B when it is acting as a source

node (step 414). To perform this check, diagnostic

25 algorithm 400 invokes the previously mentioned source

algorithm 450 for Node B. If a problem is identified,

the Workstation reports that there is a medium

probability that node B is causing a TCP problem when

operating as a source node and it reports the results of

30 the investigation performed by algorithm 450 (step 416).

If node B does not appear to be experiencing a TCP

problem when acting as a source node, diagnostic analyzer

322 checks for a TCP problem at node A when it is acting

as a sink node (step 418). To perform this check,

35 diagnostic algorithm 400 invokes sink node analyzer

EX 1009 Page 71

EX 1009 Page 72

W0 92/19054 PCT/US92/02995

-70-

algorithm 470 for Node A. If a problem is identified,
the Network Monitor reports that there is a medium

probability that node A is causing a TCP problem when
operating as a sink node and it reports the results of

5 the investigation.performed by algorithm 470 (step 420).

Finally, if node A does not appear to be

experiencing a TCP problem when acting as a sink node,

diagnostic analyzer 322 reports that it was not able to
isolate the cause of a TCP problem (step 422).

10 The algorithms which are called from within the

above-described diagnostic algorithm will now be

described. Referring to Fig. 27, source node analyzer

algorithm 450 checks whether a particular node is causing
a TCP problem when operating as a source node. The

15 strategy is as follows. To determine whether a TCP

problem exists at this node which is the source node for
the TCP connection, look at other connections for which

this node is a source. If other TCP connections are

okay, then there is probably not a problem with this
20 node. This is an easy check with a high probability of

being correct. If no other good connections exist, then
look at the lower layers for possible reasons. Start at

DLL and work up as problems at lower layers are more

fundamental, i.e., they cause problems at higher layers

25 whereas the reverse is not true.

7 In accordance with this approach, algorithm 450

first determines whether the node is acting as a source

node in any other TCP connection and, if so, whether the

other connection is okay (step 452). If the node is

30 performing satisfactorily as a source node in another TCP
connection, algorithm 450 reports that there is no

problem at the source node and returns to diagnostic
algorithm 400 (step 454). If algorithm 450 cannot

identify any other TCP connections involving this node

35 that are okay, it moves up through the protocol stack

EX 1009 Page 72

EX 1009 Page 73

(9

W0 92/l 9054 PCT/US92/02995

-71-

checking each level for a problem. In this case, it then

checks for DLL problems at the node when it is acting as

a source node by calling an DLL problem checking routine

510 (see Fig. 30) (step 456). If a DLL problem is found,

5 that fact is reported (step 458). If no DLL problems are

found, algorithm 450 checks for an IP problem at the node

when it is acting as a source by calling an IP problem

checking routine 490 (see Fig. 31) (step 460). If an IP

problem is found, that fact is reported (step 462). If

10 no IP problems are found, algorithm 450 checks whether

any other TCP connection in which the node participates

as a source is not okay (step 464). If another TCP

connection involving the node exists and it is not okay,

algorithm 450 reports a TCP problem at the node (step

15 466). If no other TCP connections where the node is

acting as a source node can be found, algorithm 450
exits.

Referring to Fig. 28, sink node analyzer algorithm

470 checks whether a particular node is causing a TCP

20 problem when operating as a sink node. It first

determines whether the node is acting as a sink node in

any other TCP connection and, if so, whether the other

connection is okay (step 472). If the node is performing

satisfactorily as a sink node in another TCP connection,

25 algorithm 470 reports that there is no problem at the

source node and returns to diagnostic algorithm 400 (step

474). If algorithm 470 cannot identify any other TCP

connections involving this node that are okay, it then

checks for DLL problems at the node when it is acting as

30 a sink node by calling DLL problem checking routine 510’

(step 476). If a DLL problem is found, that fact is

reported (step 478). If no DLL problems are found,

algorithm 470 checks for an IP problem at the node when

it is acting as a sink by calling IP problem checking

35 routine 490 (step 480). If an IP problem is found, that

EX 1009 Page 73

EX 1009 Page 74

W0 92/19054 PCI‘IUS92/02995

-72..

fact is reported (step 482). If no IP problems are

found, algorithm 470 checks whether any other TCP
connection in which the node participates as a sink is

not okay (step 484). If another TCP connection involving
5 the node as a sink exists and it is not okay, algorithm .

470 reports a TCP problem at the node (step 486). If no
other TCP connections where the node is acting as a sink

node can be found, algorithm 470 exits.

Referring to Fig.-31, IP problem checking routine

10 490 checks for IP problems at a node. It does this by

comparing the IP performance statistics for the node to
the reference model (steps 492 and 494). If it detects

any significant deviations from the reference model, it

reports that there is an 1? problem at the node (step

15 496). If no significant deviations are noted, it reports

that there is no IP problem at the node (step 498).

As revealed by examining Fig. 30, DLL problem

checking routine 510 operates in a similar manner to IP

problem checking routine 490, with the exception that it
20 examines a different set of parameters (i.e., DLL

parameters) for significant deviations.

Referring the Fig. 29, link analysis logic 550

first determines whether any other TCP connection for the

link is operating properly (step 552). If a properly

25 operating TCP connection exists on the link, indicating
that there is no link problem, link analysis logic 550

reports that the link is okay (step 554). If a properly

operating TCP connection cannot be found, the link is
decomposed into its constituent components and an IP link

30 component problem checking routine 570 (see Fig. 32) is
invoked for each of the link components (step 556). IP

link component problem routine 57o evaluates the link

component by checking the IP layer statistics for the

relevant link component.

EX 1009 Page 74

EX 1009 Page 75

W0 92/1 9054 PCT/US92/02995

-73-

The decomposition of the link into its components

arranges them in order of their distance from the source

node and the analysis of the components proceeds in that

order. Thus, for example, the link components which make

5 up the link between nodes A and B include in order:

segment 61, router R1, segment 82, router R2, and segment

S3. The IP data for these various components are

analyzed in the following order:

IP data for segment 81

10 IP data for address R1

IP data for source node to R1

IP data for S1 to 82

IP data for 82

IP data for address R2

15 IP data for 83

IP data for $2 to S3

” IP data for $1 to 83

As shown in Fig. 32, IP link component problem

checking routine 570 compares IP statistics for the link

20 component to the reference model (step 572) to determine

whether network performance deviates significantly from

that specified by the model (step 574). If significant

deviations are detected, routine 570 reports that there

is an IP problem at the link component (step 576).

25 Otherwise, it reports that it found no IP problem (step

578).

Referring back to Fig. 29, after completing the IP

problem analysis for all of the link components, logic

550 then invokes a DLL link component problem checking

30 routine 580 (see Fig. 33) for each link component to

check its DLL statistics (step 558).

DLL link problem routine 580 is similar to IP link

problem routine 570. As shown in Fig. 33, DLL link

problem checking routine 580 compares DLL statistics for

35 the link to the reference model (step 582) to determine

EX 1009 Page 75

EX 1009 Page 76

W0 92/l9054 PCT/US92/02995

-74-

whether network performance at the DLL deviates

significantly from that specified by the model (step

584). If significant deviations are detected, routine
580 reports that there is a DLL problem at the link

5 component (step 586). otherwise, it reports that no DLL '

problems were found (step 588).

Referring back to Fig. 29, after completing the

DLL problem analysis for all of the link components,

logic 550 checks whether there is any other TCP on the

10 link (step 560). If another TCP exists on the link

(which implies that the other TCP is also not operating
properly), logic 550 reports that there is a TCP problem
on the link (step 562). Otherwise, logic 550 reports

that there was not enough information from the existing

15 packet traffic to determine whether there was a link

problem (step 564)

If the analysis of the link components does not

isolate the source of the problem and if there were

components for which sufficient information was not

20 available (due possibly to lack of traffic over through

that component), the user may send test messages to those

components to generate the information needed to evaluate

its performance.

The reference model against which comparisons

25 are made to detect and isolate malfunctions may be

generated by examining the behavior of the network over
an extended period of operation or over multiple periods

of operation. During those periods of operation, average
values and maximum excursions (or standard deviations)

30 for observed statistics are computed. These values

provide an initial estimate of a model of a properly
functioning system. As more experience with the network

is obtained and as more historical data on the various

statistics is accumulated the thresholds for detecting

35 actual malfunctions or imminent malfunctions and the

EX 1009 Page 76

EX 1009 Page 77

W0 92/19054 PCT/US92/02995

-75-

reference model can be revised to reflect the new

experience. '

What constitutes a significant deviation from the

reference model depends upon the particular parameter

5 involved. Some parameters will not deviate from the

expected norm and thus any deviation would be considered

to be significant, for example, consider ICMP messages of

type "destination unreachable," IP errors, TCP errors.

other parameters will normally vary within a wide range

10 of acceptable values, and only if they move outside of

that range should the deviation be considered

significant. The acceptable ranges of variation can be

determined by watching network performance over a

sustained period of operation.

15 The parameters which tend to provide useful

information for identifying and isolating problems at the

node level for the different protocols and layers include

the following.

192

20 error rate

header byte rate

packets retransmitted

bytes retransmitted

packets after window closed

25 bytes after window closed

222

error rate

header byte rate

;2

30 error rate

header byte rate

fragmentation rate

all ICMP messages of type destination

EX 1009 Page 77

EX 1009 Page 78

PCT/US92/02995
WO 92/19054

_ 76 _

unreachable, parameter problem,

redirection

ELL

error rate .

5 runts ‘

For diagnosing network segment problems, the above-

identified parameters are also useful with the addition

of the alignment rate and the collision rate at the DLL.

All or some subset of these parameters may be included

10 among the set of parameters which are examined during the

diagnostic procedure to detect and isolate network

problems.

The above-described technique can be applied to a

wide range of problems on the network, including among

15 others, the following:

TCP Connection fails to establish

UDP Connection performs poorly

UDP not working at all

IP poor performance/high error rate

20 IP not working at all

DLL poor performance/high error rate

DLL not working at all

For each of these problems, the diagnostic approach would

be similar to that described above, using, of course,

25 different parameters to identify the potential problem

and isolate its cause.

The Event Timing Hodule

Referring again to Fig. 5, the RTP is programmed

to detect the occurrence of certain transactions for

30 which timing information is desired. The transactions

typically occur within a dialog at a particular layer of

the protocol stack and they involve a first event (i.e.,

an initiating event) and a subsequent partner event or

response. The events are protocol messages that arrive

EX 1009 Page 78

EX 1009 Page 79

W0 92/1 9054 PCT/US92/02995

-77-

at the Network Monitor, are parsed by the RTP and then

passed to Event Timing Module (ETM) for processing. A

transaction of interest might be, for example, a read of

a file on a server. In that case, the initiating event

5 is the read request and the partner event is the read

response. The time of interest is the time required to

receive a response to the read request (i.e., the

transaction time). The transaction time provides a

useful measure of network performance and if measured at

10 various times throughout the day under different load

conditions gives a measure of how different loads affect

network response times. The layer of the communicaton

protocol at which the relevant dialog takes place will of

course depend upon the nature of the event.

15 In general, when the RTP detects an event, it

transfers control to the ETM which records an arrival

time for the event. If the event is an initiating event,

the ETM stores the arrival time in an event timing

database 300 (see Fig. 34) for future use. If the event

20 is a partner event, the ETM computes a difference between

that arrival time and an earlier stored time for the

initiating event to determine the complete transaction

time.

Event timing database 300 is an array of records

25 302. Each record 302 includes a dialog field 304 for

identifying the dialog over which the transactions of

interest are occurring and it includes an entry type

field 306 for identifying the event type of interest.

Each record 302 also includes a start time field 308 for

30 storing the arrival time of the initiating event and an

average delay time field 310 for storing the computed

average delay for the transactions. A more detailed

description of the operation of the ETM follows.

Referring to Fig. 35, when the RTP detects the

35 arrival of a packet of the type for which timing

EX 1009 Page 79

EX 1009 Page 80

W0 92/19054 PCT/US92/02995

-78-

information is being kept, it passes control to the ETM

along with relevant information from the packet, such as
the dialog identifier and the event type (step 320). The

ETM then determines whether it is to keep timing

5 information for that particular event by checking the ;

event timing database (step 322). Since each event type

can have multiple occurrences (i.e., there can be

multiple dialogs at a given layer), the dialog identifier
is used to distinguish between events of the same type

10 for different dialogs and to identify those for which

information has been requested. All of the dialog/events

of interest are identified in the event timing database.

If the current dialog and event appear in the event

timing database, indicating that the event should be

15 timed, the ETH determines whether the event is a starting

event or an ending event so that it may be processed

properly (step 324). For certain events, the absence of
a start time in the entry field of the appropriate record

302 in event timing database 300 is one indicator that

20 the event represents a start time; otherwise, it is an

end time event. For other events, the ETH determines if

the start time is to be set by the event type as

specified in the packet being parsed. For example, if
the event is a file read a start time is stored. If the

25 event is the read completion it represents an end time.

In general, each protocol event will have its own

intrinsic meaning for how to determine start and end

times.

Note that the arrival time is only an estimate of

30 the actual arrival time due to possible queuing and other

processing delays. Nevertheless, the delays are

generally so small in comparison to the transaction times
being measured that they are of little consequence.

In step 324, if the event represents a start time,

35 the ETM gets the current time from the kernal and stores

EX 1009 Page 80

EX 1009 Page 81

W0 92/19054 PCT/US9_2/02995

-79-

it in start time field 308 of the appropriate record in

event timing database 300 (step 326). If the event

represents an end time event, the ETM obtains the current

time from the kernel and computes a difference between

5 that time and the corresponding start time found in event

timing database 300 (step 328). This represents the

total time for the transaction of interest. It is

combined with the stored average transaction time to

compute a new running average transaction time for that

10 event (step 330).

Any one of many different methods can be used to

compute the running average transaction time. For

example, the following formula can be used:

New Avg. = [(5 * Stored Avg.) + Transaction

15 Time]/6.

After six transaction have been timed, the computed new

average becomes a running average for the transaction

times. The ETM stores this computed average in the

appropriate record of event timing database 300,

20 replacing the previous average transaction time stored in

that record, and it clears start time entry field 308 for

that record in preparation for timing the next

transaction.

After processing the event in steps 322, 326, and

25 330, the ETM checks the age of all of the start time

entries in the event timing database 300 to determine if

any of them are too "old" (step 332). If the difference

between the current time and any of the start times

exceeds a preselected threshold, indicating that a

30 partner event has not occurred within a reasonable period

of time, the ETM deletes the old start time entry for

that dialog/event (step 334). This insures that a missed

packet for a partner event does not result in an

erroneously large transaction time which throws off the

35 running average for that event.

EX 1009 Page 81

EX 1009 Page 82

W0 92/19054 PCI‘/US92/02995

-30-

If the average transaction time increases beyond a

preselected threshold set for timing events, an alarm is
sent to the Workstation. 7

Two examples will now be described to illustrate

5 the operation of the ETM for specific event types. In
the first example, Node A of Fig. 25 is communicating

with Node B using the NFS protocol. Node A is the client

while Node B is the server. The Network Monitor resides

on the same segment as node A, but this is not a

10 requirement. When Node A issues a read request to Node
B, the Network Monitor sees the request and the RIP
within the Network Monitor transfers control to the ETM.

Since it is a read, the ETM stores a start time in the

Event Timing Database. Thus, the start time is the time

15 at which the read was initiated.

After some delay, caused by the transmission

delays of getting the read message to node B, node B

performs the read and sends a response back to node A.
After some further transmission delays in returning the

20 read response, the Network Monitor receives the second

packet for the event. At the time, the ETM recognizes
that the event is an end time event and updates the

average transaction time entry in the appropriate record
with a new computed running average. The ETM then'

25 compares the average transaction time with the threshold
for this event and if it has been exceeded, issues an

alarm to the Workstation.

In the second example, node A is communicating

with Node B using the Telnet protocol. Telnet is a

30 virtual terminal protocol. The events of interest take

place long after the initial connection has been
established. Node A is typing at a standard ASCII (VT100

class) terminal which is logically (through the network)
connected to Node B. Node B has an application which is

35 receiving the characters being typed on Node A and, at

EX 1009 Page 82

EX 1009 Page 83

W0 92/l9054 ' PCT/US92/02995

-31-

appropriate times, indicated by the logic of the

applications, sends characters back to the terminal

located on Node A. Thus, every time node A sends

characters to B, the Network Monitor sees the

5 transmission.

In this case, there are several transaction times

which could provide useful network performance

information. They include, for example, the amount of

time it takes to echo characters typed at the keyboard

10 through the network and back to the display screen, the

delay between typing an end of line command and seeing

the completion of the application event come back or the

network delays incurred in sending a packet and receiving

acknowledgment for when it was received.

15 In this example, the particular time being

measured is the time it takes for the network to send a

packet and receive an acknowledgement that the packet has

arrived. Since Telnet runs on top of TCP, which in turn

runs on top of IP, the Network Monitor monitors the TCP

20 acknowledge end-to-end time delays.

Note that this is a design choice of the

implementation and that all events visible to the Network

Monitor by virtue of the fact that information is in the

packet could be measured.

25 When Node A transmits a data packet to Node B, the

Network Monitor receives the packet. The RTP recognizes

the packet as being part of a timed transaction and

passes control to the ETM. The ETM recognizes it as a

start time event, stores the start time in the event

30 timing database and returns control to the RTP after

checking for aging.

When Node B receives the data packet from Node A,

it sends back an acknowledgment packet. When the Network

Monitor sees that packet, it delivers the event to the

35 ETM, which recognizes it as an end time event. The ETM

EX 1009 Page 83

EX 1009 Page 84

W0 92/19054 PCI'/US92/02995

calculates the delay time for the complete transaction

and uses that to update the average transaction time.

The ETH then compares the new average transaction time
with the threshold for this event. If it has been

5 exceeded, the ETM issues an alarm to the Workstation.
Note that this example is measuring something very

different than the previous example. The first example

measures the time it takes to traverse the network,

perform an action and return that result to the
10 requesting node. It measures performance as seen by the

user and it includes delay times from the network as well

as delay times from the File Server.

The second example is measuring network delays

without looking at the service delays. That is, the ETM

15 is measuring the amount of time it takes to send a packet
to a node and receive the acknowledgement of the receipt

of the message. In this example, the ETM is measuring

transmissions delays as well as processing delays

associated with network traffic, but not anything having

20 'to do with non-network processing.

As can be seen from the above examples, the ETM

can measure a broad range of events. Each of these

events can be measured passively and without the

cooperation of the nodes that are actually participating
25 in the transmission.

WWW)-
Address tracker module (ATM) 43, one of the

software modules in the Network Monitor (see Fig. 5),

operates on networks on which the node addresses for
30 particular node to node connections are assigned

dynamically. An AppletalkG Network, developed by Apple
Computer Company, is an example of a network which uses
dynamic node addressing. In such networks, the dynamic
change in the address of a particular service causes

35 difficulty troubleshooting the network because the

EX 1009 Page 84

EX 1009 Page 85

W0 92/19054 PCI‘/US92/02995

network manager may not know where the various nodes are

and what they are called. In addition, foreign network

addresses (e.g., the IP addresses used by that node for

communication over an IP network to which if is

5 connected) can not be relied upon to point to a

particular node. ATM 43 solves this problem by passively

monitoring the network traffic and collecting a table

showing the node address to node name mappings.

In the following description, the network on which

10 the Monitor is located is assumed to be an AppletalkO

Network. Thus, as background for the following

discussion, the manner in which the dynamic node

addressing mechanism operates on that network will first

be described.

15 When a node is activated on the AppletalkO

Network, it establishes its own node address in

accordance with protocol referred to as the Local Link

Access Protocol (LLAP). That is, the node guesses its

own node address and then verifies that no other node on

20 the network is using that address. The node verifies the

uniqueness of its guess by sending an LLAP Enquiry

control packet informing all other nodes on the network

that it is going to assign itself a particular address

unless another node responds that the address has already

25 been assigned. If no other node claims that address as

its own by sending an LLAP acknowledgment control packet,

the first node uses the address which it has selected.

If another node claims the address as its own, the first

node tries another address. This continues until, the

30 node finds an unused address.

When the first node wants to communicate with a

second node, it must determine the dynamically assigned

node address of the second node. It does this in

accordance with another protocol referred to as the Name

35 Binding Protocol (NBP). The Name Binding Protocol is

EX 1009 Page 85

EX 1009 Page 86

W0 92/19054 PCT/US92/02995

used to map or bind human understandable node names with
machine understandable node addresses. The NBP allows

(i.e., a node name) into a node address. The node
5 needing to communicate with another node broadcasts an

NBP Lookup packet containing the name for which a node
address is being requested. The node having the name

being requested responds with its address and returns a

Lookup Reply packet containing its address to the

10 original requesting node. The first node then uses that
address its current communications with the second node.

Referring to Fig. 36, the network includes an

AppletalkO Network segment 702 and a TCP/IP segment 704,
each of which are connected to a larger network 706

15 through their respective gateways 708. A Monitor 710,

including a Real Time Parser (RTP) 712 and an Address

Tracking Module (ATM) 714, is located on Appletalk

network segment 702 along with other nodes 711. A

Management Workstation 716 is located on segment 704. It
20 is assumed that MOnitor 710 has the features and

capabilities previously described; therefore, those
features not specifically related to the dynamic node

addressing capability will not be repeated here but

rather the reader is referred to the earlier discussion.

25 Suffice it to say that Monitor 710 is, of course, adapted

to operate on Appletalk Network segment 702, to parse and
analyze the packets which are transmitted over that

segment according to the AppletalkO family of protocols
and to communicate the information which it extracts from

30 the network to Management Workstation 716 located on

segment 704.

Within Monitor 710, ATM 714 maintains a name table

data structure 730 such as is shown in Fig. 37. Name

Table 720 includes records 722, each of which has a node

35 name field 724, a node address field 726, an IP address

EX 1009 Page 86

EX 1009 Page 87

W0 92/19054 I'L l I U335!0/07:

-85—

field 728, and a time field 729. ATM 714 uses Name Table

720 to keep track of the mappings of node names to node

address and to IP address. The relevance of each of the

fields of records 722 in Name Table 720 are explained in

5 the following description of how ATM 714 operates.

In general, Monitor 710 operates as previously

described. That is, it passively monitors all packet

traffic over segment 702 and sends all packets to RTP 712

for parsing. When RTP 712 recognizes an Appletalk

10 packet, it transfers control to ATM 714 which analyzes

the packet for the presence of address mapping

information.

The operation of ATM 714 is shown in greater

detail in the flow diagram of Fig. 38. When ATM 714

15 receives control from RTP 712, it takes the packet (step

730 and strips off the lower layers of the protocol until

it determines whether there is a Name Binding Protocol

message inside the packet (step 732). If it is a NBP

message, ATM 714 then determines whether it is new name

20 lockup message (step 734). If it is a new name Lookup

message, ATM 714 extracts the name from the message

(i.e., the name for which a node address is being

requested) and adds the name to the node name field 724

of a record 722 in Name Table 720 (step 736).

25 If the message is an NBP message but it is not a

Lookup message, ATM 714 determines whether it is a Lookup

Reply (step 738). If it is a Lookup Reply, signifying
that it contains a node name/node address binding, ATM

714 extracts the name and the assigned node address from

30 the message and adds this information to Name Table 720.

ATM 714 does this by searching the name fields of records

722 in Name Table 720 until it locates the name. Then,

it updates the node address field of the identified

record to contain the node address which was extracted

35 from the received NBP packet. ATM 714 also updates time

EX 1009 Page 87

EX 1009 Page 88

W0 92/19054 PCT/US92/02995

-86-

field 729 to record the time at which the message was

processed.

After ATM 714 has updated the address field of the

appropriate record, it determines whether any records 722
5 in Name Table 720 should be aged out (step 742). ATM 714

compares the current time to the times recorded in the

time fields. If the elapsed time is greater than a

preselected time period (e.g. 48 hours), ATM 714 clears

the record of all information (step 744). After that, it

10 awaits the next packet from RTP 712.

As ATM 714 is processing each a packet and it

determines either that it does not contain an NBP message

(step 732) or it does not contain a Lookup Reply message

(step 738), ATM 714 branches to step 742 to perform the

15 age out check before going on to the next packet from RTP

712.

The Appletalk to IP gateways provide services that

allow an Appletalk Node to dynamically connect to an IP

address for communicating with IP nodes. This service

20 extends the dynamic node address mechanism to the IP

world for all Appletalk nodes. While the flexibility

provided is helpful to the users, the network manager is

faced with the problem of not knowing which Appletalk

Nodes are currently using a particular IP address and

25 thus, they can not easily track down problems created by

the particular node.

ATM 714 can use passive monitoring of the IP

address assignment mechanisms to provide the network

manager a Name-to-IP address mapping.

30 If ATM 714 is also keeping IP address information, :

it implements the additional steps shown in Fig. 39 after

completing the node name to node address mapping steps.

ATM 714 again checks whether it is an NBP message (step

748). If it is an NBP message, ATM 714 checks whether it

35 is a response to an IP address request (step 750). IP

EX 1009 Page 88

EX 1009 Page 89

W0 92/19054 PCI‘/US92/02995

-87-

address requests are typically implied by an NBP Lookup

request for an IP gateway. The gateway responds by

supplying the gateway address as well as an IP address

that is assigned to the requesting node. If the NBP

5 message is an IP address response, ATM 714 looks up the

requesting node in Name Table 720 (step 752) and stores

the IP address assignment in the IP address field of the

appropriate record 722 (step 754).

After storing the IP address assignment

10 information, ATM 714 locates all other records 722 in

Name Table 720 which contain that IP address. Since the

IP address has been assigned to a new node name, those

old entries are no longer valid and must be eliminated.

Therefore, ATM 714 purges the IP address fields of those

15 records (step 756). After doing this cleanup step, ATM

714 returns control to RTP 712.

other embodiments are within the following claims.

For example, the Network Monitor can be adapted to

identify node types by analyzing the type of packet

20 traffic to or from the node. If the node being monitored

is receiving mount requests, the Monitor would report

that the node is behaving like node a file server. If

the node is issuing routing requests, the Monitor would

report that the node is behaving like a router. In

25 either case, the network manager can check a table of

what nodes are permitted to provide what functions to

determine whether the node is authorized to function as

either a file server or a router, and if not, can take

appropriate action to correct the problem.

EX 1009 Page 89

EX 1009 Page 90

W0 92/19054 PCT/US92/02995

-88-

APPENDIX I

SNMP MIB Subset Supported

This is the subset of the standard MIB which can be
obtained by monitoring.

Refer to RFC 1066 Management Information Base for an
explanation on the items which follow.

System group:
none

Interfaces group

inype
ifPhysAddress

ifOperstatus
ifInOctets

ifInUcasthts

ifInNUcasthts

ifOutOctets

ifOutUcasthts

ifOutNUcasthts

Address Translation group
none

IP group

ipForwarding
ipDefaultTTL
ipInReceives
ipIanrErrors
ipInAddrErrors
ipFoeratagrams
ipReastequ
ipFragCreates

IP Address Table

ipAddress
ipAdEnthastAddr

IP Routing Table
none

ICMP group

icmpInMsgs

icmplnErrors

icmpInDestUnreachs
icmpInTimeExcds
icmpInParmProbs
icmpInSchuenchs
icmpInRedirects
icmpInEchoes

App. I — l

EX 1009 Page 90

EX 1009 Page 91

W0 92/19054 PCT/US92/02995

-89-

iompInEchoReps
icmpInTimestamps
icmpInTimestampReps
icmpInAddrMasks

icmpInAddrmaskReps
icmpOutMsgs
imchutDestrUnreachs .

icmpOutTimeExcds \
icmpOutParmProbs

icmpOutSchuenchs
icmpOutRedirects
icmpOutEchoes
icmpOutEchoReps
icmpOutTimestamps
icmpOutTimestampReps
iompOutAddrMasks
icmpOutAddrmaskReps

TCP group

tcpActiveOpens

tcpPassiveOpens
tcpAttempFails
tcpEstabResets

tcpCurrEstab

tcpInSegs

tchutSegs

tchetransSegs

topConnTable

UDP group

udenDatagrams
udenErrors

udeutDatagrams

udeutErrors

EGP group

egpInMsgs

egpInErrors

engutMsgs

engutErrors

App. I - 2

EX 1009 Page 91

EX 1009 Page 92

W0 92/19054 PCT/US92/02995

-90..

APPENDIX II

313 Definitions for Network nonitor

1. Col-on BIB Definitions

Definitions

MIB_BUCKETS_PER_RATE 12
HIB_PROTOCOLS_PER_DIAIDG 10
HibBucketsPerRate 12
HibProtocolsPerDialog 10

HIB_HAX_PROTOCOL - 10
HIB_MAX_KOST_ACTIVE 5
MIB_HAX_DIALOG 3

structures Used

typedef struct {
Byte year
Byte month
Byte date
Byte day
Byte hour
Byte minute
Byte second
Byte unused

} HibTineOfDay

typedef struct mib_count32_type {
Uint32 accum (Long term accum. count)
Uint32 current (Present running count)
Uint32 highThld

} HibCount32

typedef struct mib_count64_type {
Uint64 accum (Long term accum. count)
Uint64 current (Present running count)
Uint64 highThld

} HibCount64

typedef struct mib_meter_type {
Uint32 current
Uint32 high
Uint32 low
Uint32 highThld

} HibMeter
typedef struct mib_average_meter_type {
Uint32 current

EX 1009 Page 92

EX 1009 Page 93

W0 92/19054 PCTIUS92/02995

_ 91 _.

Uint32 high
Uint32 low

Uint32 _ highThld

} MibAverageMeter

typedef struct mib_percent;type {
Uint32 current

Uint32 high
Uint32 low

Uint32 highThld
} MibPercent

typedef struct mib_rolling_rate_type {
Uint32 current

Uint32 high
Uint32 low

Uint32 highThld

} HibRollingRate

typedef MibRollingRate MibRatePerS
typedef HibRollingRate MibRatePerH

typedef Uint32 MibShortRatePers

typedef Uint32 HibShortRatePerM

typedef struct mib_short_count32_type {
Uint32 current (Present running count)

Uint32 accum (Long term accum. count)

} MibShortCountBZ

typedef struct mib_bucket_rate_type {
Uint32 current (Present rate) 7

Uint32 rates[MIB_BUCKETS_PER_RATE](12 5 minute
count buckets)

Uint32 maxRates[MIB_BUCKETS_PER_3ATE](12 5-min.
max

rate buckets)

} MibBucketRate

Most Active Table Definitions

typedef struct mib_most_active_entry_type {
MibAddress address

App. II - 2

EX 1009 Page 93

EX 1009 Page 94

PCT/US92/02995
WO92/19054

.. 92 ..

MibCount32 packetCount
HibRatePerS packetRate

} MinostActiveEntry

typedef struct mib_post_active_tab1e_type { i
Uint32 numEntries
Uint32 nextEntry
HibMostActiveEntry mostActiveEntry[MIB_MAX_MOST_ACTIVE] 5

} MinostActiveTable

Protocol Tabla Dotinitionl

typedef struct mib_protocol_sntry_type {
Uint32 protocol
HibCount32 packetCount
HibRatePerS packetRate

} HibProtocolEntry

typedef struct mib_protocol_table_type {
Uint32 numEntries
Uint32 nextEntry

MibProtocolEntry protocolEntry[HIB_MAX_PROTOCOL]
} MibProtocolTable

Dialog Tabla Definitions

typedef struct mib_transport;type {
Uint32 transportProtocol
Uint32 applicationProtocol
Uint32 initiator
Uint32 connectionRetries
Uint32 addr1_window
Uint32 addr2_yindow
Uint32 state

Uint32 closeReason

} HibTransportType

typedef struct mib_dialog_sntry_type {
HibAddress addresses
Uint32 protocolEntries
Uint32

protocols [HIB_PROTOCOLS_PER_DIALOG]
MibTimeOfDay gmt
Uint32 startTime 3
Uint32 lastTime ‘
Uint32 alarmsSent
MibCountBZ packets

HibRatePerS packetRate

App. II - 3

EX 1009 Page 94

EX 1009 Page 95

(1

W0 92/19054 PCI‘/US92/02995

_ 93 _

MibCount32 bytes
MibRatePerS byteRate
MibCountSZ errors

MibRatePerS - errorRate

MibCountaz fragments
MibRatePers fragmentRate
MibCount32 rexmits

MibRatePers rexmitRate

MibCount32 flothrls

MibRatePerS flothrlRate

MibTransportType transport
} MibDialogEntry

Values for the initiator tiold

ConnectionInitiatorUnknown 0

ConnectionlnitiatorAddrl 1

ConnectionlnitiatorAddrz 2

VCIUOI for th. connectionClosoRoason filld

ConnectionCloseUnknown

ConnectionCIOSeFin
ConnectionCIOseRst IUD-'0

Value: for tho oonnootionstato field

ConnectionstateUnknown o

ConnectionStateConnocting 1
Connectionstatenata 2

ConnectionstateClosing
ConnectionStateClosed lbw

typedef struct mib_dialog_tab1e_type {
Uint32 numEntries

Uint32 nextEntry
MibDialogEntry dialogEntry[MIB_MAX_DIALOG]

} MibDialogTable

2. Data link layer nib definitions for Network uonitor
nib.

2.1 dll augment -8unlary Tool

typedef struct {

MibShortCount32 frames

MibBucketRate frameRate

App. II - 4

EX 1009 Page 95

EX 1009 Page 96

W0 92/19054

HibShortCountsz

MibBucketRate

HibShortCount32

HibBucketRate

Uint32

Uint32

Uint32

HibShortCountBZ

HibBucketRate

MibShortCountzz

HibBucketRate

HibShortCountBZ

HibBucketRate

HibShortCountaz

HibBuckstRate

HibShortCountaz

KibBucketRate

HibShortCountsz

HibShortRatePerS

HibShortCount32

HibShortRatePers

} MibDllSegSunstats

2.2 dll Boglont -Valuos

typedef struct {
HibCount32

HibRatePerS

HibCountzz

HibRatePers

HibCount32

HibRatePerS

HibCount32

HibRatePers

HibCount32

xibRatePerS

HibCount32

HibRatePerS

MibCount32

HibRatePerS

HibCount32

HibRatePerS

MibCountBZ

HibRatePerS

MibCount32

HibRatePerS

MibCount32

HibRatePerS

MibCountSZ

HibRatePerS

MibCount32

MibRatePerS

-94..

bytes

byteRate
errors

errorRate

protocolCount
mostAotiveCount

pairCount
rchffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate
transits

transitRate
boasts

-bcastRate

mcasts

mcastRate

collisions

collisionRate

alignmtErrors

alignmtErrorRate

Tool

frames

franeRate

bytes

byteRate
errors

errorRate

rchffSegs

rchffSegRate

xmtOffSegs

xntOffSegRate
transits

transitRate

beasts

bcastRate

mcasts

mcastRate

collisions

collisionRate

alignmtErrors

alignmtErrorRate
enetFrames

enetFrameRate

llcFrames

llcFrameRate

runtFrames

runtFrameRate

PCT/US92/02995

EX 1009 Page 96

EX 1009 Page 97

W0 92/19054

} MibDllSegValStats

-95..

2.3 dll Address - Bunniry Tool

typedef struct {
MibShortCountBZ

MibBucketRate

MibShortCount32

MibBucketRate

HihShortCountaz

HibBucketRate

Uint32

Uint32

Uint32

MibShortCount32

MibBucketRate

HibShortCountsz

MibBucketRate

MibShortCount32

MibBucketRate

HibShortCount32

MibBucketRate

} MibDllAddrSumStats

frames

frameRate

bytes

byteRate
errors

errorRate

protocolCount
mostActiveCount

pairCount
rcv0ffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate
xnthasts

xmthastRnte

xntncasts

xthcastRate

2.4 411 Addresa- Values Tool

typedef struct {
MibCount32

HibRatePerS

MibCount32

MibRatePerS

MibCountBZ

MibRatePerS

MibCountaz

MihRatePerS

MibCount32

HibRatePerS

MibCountSZ

HibRatePerS

MibCountaz

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePers

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCountBZ

MibRatePerS

rchrames

rchrameRate

rchytes

rchyteRate
rchrrors

rchrrorRate

xthrames

xthrameRater

xntBytes

xmtByteRate
xmtErrors

xntErrorRate

xmthasts

xmthastRate

xmtncasts

xthcastRate

rchffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate
enetFrames

enetFrameRate

llcFrames

llcFrameRate

PCT/US92/02995

App. II - 6

EX 1009 Page 97

EX 1009 Page 98

PCT/US92I02995
\N()92/l9054

-96—

HibCOuntBZ runtFrames
MibRatePerS runtFrameRate

} MibDllAddrValStats

3. 1? layer lib dotinitions for Notvork Monitor nib.

3.1 1p Sognont - Bun-ary Tool

typedef struct {
HibShortCount32

HibBucketRate

HibShortCountBZ

HibBucketRate

MibShortCountsz

HibBucketRate

Uint32

Uint32

Uint32

HibShortCountaz

MibBucketRate

HibShortCount32

HibBucketRate

HibShortCountaz

HibBucketRate

HibShortCountBZ

HibBuoketRate

HibShortCount32

HibBucketRate

HibShortCount32

KibBucketRate

HibShortCount32

HibBucketRate

} MiprSegSunstats

pkts

errors

errorRate

protocolCount
nostActiveCount

pairCount
rchffSegs

rchffSegRate
xmtOffSegs

xmtOffSegRate

transits

transitRate
flowctrls

flothrlRate
beasts

boastRate

mcasts

mcastRate

frgmts

frgmtRate

3.2 1p Sag-out - values Tool

typedef struct {
KibCOuntBZ

HibRatePerS

HichuntBZ

HibRatePerS

HibCount32

HibRatePers

HibCount32

MibRatePerS

HibCount32

MibRatePerS

HihCountSZ

HibRatePerS

pkts

pktRate

bytes

byteRate
errors

errorRate

rchffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate
transits

transitRate

EX 1009 Page 98

EX 1009 Page 99

‘!

W0 92/19054

MibCountaz

MibRatePerS

MibCountBZ

MibRatePerS

HibCount32

MibRatePerS

MibCountSZ

MibRatePerS

} MiprSegValStats

_97—

boasts

boastRate

mcasts

mcastRate

hdrBytes

hdrByteRate

frgmts

frgmtRate

3.3 19 Address - Bullnry Tool

typedef struct {
HibShortCountBZ

HibBucketRate

HibShortCountaz

MibBucketRate

HibShortCountaz

HibBucketRate

Uint32

Uint32

Uint32

MibShortCountaz

MibBucketRate

HibShortCount32

HibBucketRate

HibShortCount32

HibBucketRate

HibShortCount32

HibBucketRate

MibShortCount32

HibBucketRate

MibShortCount32

HibBucketRate

} MiprAddrSumstats

pktRate

pkts

bytes

byteRate
errors

errorRate

protocolCount
mostActiveCount

pairCount

rchffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate
flowctrls

flowctrlRate

frgmts

frgmtRate
xmthasts

xmthastRate

xmtucasts

xthcastRate

3.4 1p Address - Valuos Tool

typedef struct {
MihCountBZ

HibRatePerS

MibCountaz

MibRatePers

MibCountaz

MibRatePerS

MibCount32

MibRatePerS

HibCountBZ

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

rchkts

rchktRate

rchytes

rchyteRate
rchrrors

rchrrorRate

xthkts

xthktRate

xmtBytes

xmtByteRate
xmtErrors

xmtErrorRate

rchdrBytes

rchdrByteRate

PCT/US92/02995

App. II - 8

EX 1009 Page 99

EX 1009 Page 100

W0 92/19054

HibCount32

HibRatePerS

MibCountSZ

MibRatePerS

MibCountaz

HibRatePerS

MibCountaz

HibRatePerS

HibCount32

HibRatePerS

KibCount32

HibRatePerS

HibCount32

MibRatePers

} HiprAddrvaIStats

- 98 _

xthdrBytes

xthdrByteRate

rchrgmts

rchrgmtRate
xthrgmts

xthrgmtRate
xmthasts

xmthastRate

xmtncasts

xthcastRate

rchffSegs

rchffSegRate
xmtOffSegs

xmtOffSegRate

PCI‘/US92/02995

4. ICE? layor nib definitions for Network monitor nib.

4.1 iolp Boglont - Bunnnry Tool

typedef struct {
HibShortCount32

HibBucketRate

HibShortCount32

HibBucketRate

HibShortCount32

HibBucketRate

Uint32 '

Uint32

HibShortCountaz

HibBucketRate

HibShortCountaz

HibBuckstRate

MibShortCountaz

HibBucketRate

HibShortCount32

HibShortCount32

HibShortCount32

HibShortCount32

HibShortCount32

HibShortCountBZ

MibShortCount32

HibShortCount32

MibShortCountSZ

HibShortCountSZ

MibShortCount32

} HibIcmpSegSumStats

pkts

pktRate

bytes

byteRate

errors

errorRate

mostActiveCount

pairCount

rchffSegs

rchffSegRate
xmtOffSegs

xmtOffSegRate
transits

transitRate

echoReq

echoReply
destUnr

schuench

redir

timeExceeded

paramProblem
timestampReq

timestampReply
addrMaskReq

addrMaskReply

App. II - 9

EX 1009 Page 100

EX 1009 Page 101

W0 92/19054 PCT/US92/02995

-99-

4.2 icnp augment - Values Tool

typedef struct {

MibCountSZ pkts

MibRatePerS pktRate

MibCountaz bytes

MibRatePerS byteRate

MibCount32 errors

MibRatePerS errorRate

HibCount32 rchffSegs

MibRatePerS rchffSegRate

MibCountBZ xmtOffSegs
MibRatePerS xmtOffSegRate
MibCountaz transits

MibRatePerS transitRate

HibCount32 echoReq
HibRatePerS echoReqRate
MibCount32 echoReply
MibRatePerS echoReplyRate

HibCountBZ destUnrNet

MibRatePers destUnrNetRate

MibCountBZ destUnrHost

HibRatePers destUnrHostRate

MibCount32 destUanrotocol

MibRatePerS destUanrotocolRate

MibCountSZ destUanort

HibRatePerS destUanortRate

MibCount32 destUanrgmt

MibRatePers destUanrgmtRate
MibCountBZ destUanrcRoute

HibRatePers destUanrcRouteRate

MibCountBZ destUnrNetUnknown

HibRatePerS destUnrNetUnknownRate

MibCountBZ destUnrHostUnknown

MibRatePerS destUnrHostUnknownRate

MibCountSZ destUanrcHostIsolated

MibRatePerS destUanrcHostIsolatedRate

MibCount32 destUnrNetProhibited

MibRatePerS destUnrNetProhibitedRate

MibCount32 destUnrHostProhibited

MibRatePerS destUnrHostProhibitedRate

MibCount32 destUnrNetTos

MibRatePerS destUnrNetTosRate

MibCountSZ destUnrHostTos

App. II-lO

EX 1009 Page 101

EX 1009 Page 102

W0 92/19054 PCI'IUS92/02995

- 100 -

MibRatePerS destUnrHostTosRate

MibCount32 » schuench
MibRatePerS schuenchRate

HibCount32 redirNet
HibRatePerS - redirNetRate
MibCount32 redirHost
MibRatePerS redirHostRate
HibCountsz redirNetTos
HibRatePers redirNetTosRate
HibCount32 redirHostTos
HibRatePers redirHostTosRate

HibCount32 . tineExceededInTransit
HibRatePerS timeExceededInTransitRate
HibCountBZ timeExceededInReass
HibRatePers timeExceededInReassRate

HibCount32 paramProblen
HibRatePers paramProblenRate
HibCountaz paramProblenOption
HibRatePerS paramProblemOptionRate

HibCountSZ timestampReq
HibRatePerS tinestanpReqRate
HibCount32 timestanpReply
MibRatePerS timestampReplyRate

HibCount32 addrMaskReq
HihRatePerS addrMaskReqRate
HibCount32 addrMaskReply
HibRatePerS addrMaskReplyRate

} HibIcmpSegvalstats

4.3 iclp Adar-:3 - Sunnnry Tool

typedef struct {
HibShortCountaz pkts
HibBucketRate pktRate

MibShortCountSZ bytes
HibBucketRate byteRate

HibShortCount32 errors

MibBucketRate errorRate
Uint32 mostActiveCount
Uint32 pairCount

HibShortCountSZ rchffSegs
HibBucketRate rchffSegRate

App. II - 11

EX 1009 Page 102

u.

EX 1009 Page 103

wo 92/19054 PCT/US92/02995

- 10 1 -

MibShortCount32 xmtOffSegs

MibBucketRate xmtOffSegRate

MibShortCount32 echoReq

MibShortCountBZ echoReply
MibShortCountBZ destUnr

HibShortCount32 schuench'
MibShortCountBZ redir

HibShortCountaz paramProblem
MibShortCountaz timeExceeded

MibShortCountaz timestampReq
MibShortCountBZ timestampReply
HibShortCount32 addrMaskReq

MibShortCount32 addrMaskReply

} MibIcnpAddrSumstats

4.4 icnp derosn- Values T001

typedef struct {

fl

MibCountaz rchkts

HibRatePerS rchktRate

HibCountsz rchytes
HibRatePerS rchyteRate
HibCount32 rchrrors

HibRatePerS rchrrorRate

MibCount32 xthkts

MibRatePerS xthktRate

HibCount32 xmtBytes

MibRatePerS xmtByteRate
uichuntaz xmtErrors

HibRatePers xmtErrorRate

HibCount32 rchffSegs

HibRatePerS rchffSegRate

HibCountsz xmtOffSegs

MibRatePerS xmtOffSegRate

HibCountBZ rchestUnrNet

MibRatePers rchestUnrNetRate

MibCountBZ rchestUnrHost

MibRatePerS rchestUnrHostRate

MibCountSZ rchestUanrotocol

MibRatePers rchestUanrotocolRate

MibCountaz rchestUanort

MibRatePerS rchestUanortRate

MibCount32 rchestUanrgmt

MibRatePerS rchestUanrgmtRate
MibCountSZ rchestUanrcRoute

MibRatePerS rchestUanrcRouteRate

MibCount32 rchestUnrNetUnknown

App. II — 12

EX 1009 Page 103

EX 1009 Page 104

W0 92/19054

HibRatePerS

MibCount32

HibRatePerS

HibCount32

MibRatePerS

HibCountBZ

HibRatePerS

MibCount32

MibRatePerS

HibCountaz

HibRatePerS

MibCountsz

HibRatePerS

HibCountSZ

MibRatePers

MibCount32

HibRatePers

MibCOunt32

MibRatePers

MibCountBZ

HibRatePerS

MibCount32

MibRatePers

HibCount32

HibRatePerS

HibCount32

MibRatePerS

HibCount32

HibRatePerS

MibCountaz

HibRatePerS

HibCount32

HibRatePerS

HibCount32

HibRatePerS

HibCountaz

HibRatePerS

HibCountsz

HibRatePerS

MibCountBZ

HibRatePerS

HibCount32

HibRatePerS

PCI'/US92/02995

-102-

rchestUnrNetUhknownRate

rchestUnrHostUnknown

rchestUnrHostUnknownRate

rchestUanrcHostIsolated

rchestUanrcHostIsolatedRate
rchestUnrNetProhibited

rchestUnrNetProhibitedRate

rchestUnrHostProhibited

rchestUnrHostProhibitedRate
rchestUnrNetTos

rchestUnrNetTosRate

rchestUnrHostTos

rchestUnrHostTosRate

rchineExceededInTransit
rchineExceededInTransitRate

rchineExceededInReass

rchineExceededInReassRate

rcharamProblem

rcharanProblemRate

rcharamProblemOption
rcharamProblemOptionRate

rcvSchuench

rcvSchuenchRate

rcvRedirNet

rcvRedirNetRate

rcvRedirHost

rcvRedirHostRate

rcvRedirNetTos

rcvRedirNetTosRate

rcvRedirHostTos

rcvRedirHostTosRate

rchchoReq

rchchoReqRate

rchchoReply

rchchoReplyRate

rchimestampReq

rchimestampReqRate
rchimestampReply

rchimestampReplyRate

rchddrHaskReq

rchddrHaskReqRate

rchddrMaskReply

rchddrMaskReplyRate

App. II - l3

EX 1009 Page 104

EX 1009 Page 105

W0 92/19054

MibCount32

MibRatePerS

MibCOuntBZ

MibRatePers

MibCount32

MibRatePerS

MibCountsz

MibRatePerS

MibCountBZ

MibRatePers

MibCountaz

MibRatePerS

HibCountsz

MibRatePers

HibCount32

MibRatePers

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCountaz

MibRatePerS

HibCountaz

MibRatePerS

MibCount32

MibRatePerS

MibCountBZ
MibRatePerS

MibCountBZ

MibRatePers

MibCount32

MibRatePerS

MibCountBZ

HibRatePers

MibCount32

MibRatePerS

MibCountBZ

MibRatePerS

MibCount32

MibRatePerS

MibCountBZ

MibRatePerS

MibCountBZ

MibRatePers

MibCountBZ

MibRatePerS

MibCount32

PCT/US92/02995

- 103 -

xmtDestUnrNet

xmtDestUnrNetRate

xmtDestUnrHost

xmtDestUnrHostRate

xmtDestUanrotocol

xmtDestUanrotocolRate
xmtDestUanort

xmtDestUanortRate

xmtDestUanrgmt

xmtDestUanrgmtRate
xmtDestUanrcRoute

xmtDestUanrcRouteRate

xmtDestUnrNetUnknown

xmtDestUnrNetUnknownRate

-xmtDestUnrHostUnknown

xmtDestUnrHostUnknownRate

xmtDestUanrcHostIsolated

xmtDestUanrcHostIsolatedRate

xmtDestUnrNetProhibited

xmtDestUnrNetProhibitedRate

xmtDestUnrHostProhibited

xmtDestUnrHostProhibitedRate

xmtDestUnrNetTos

xmtDestUnrNetTosRate

xmtDestUnrHostTos

xmtDestUnrHostTosRate

xmtTineExceededInTransit

xmtTineExceededInTransitRate

xmtTineExceededInReass

xmtTimeExceededInReassRate

xtharamProblem

xtharamProblemRate

xtharamProblemOption

xtharamProblemOptionRate

xmtSchuench

xmtSchuenchRate

xmtRedirNet

xmtRedirNetRate

xmtRedirHost

xmtRedirHostRate

xmtRedirNetTos

xmtRedirNetTosRate

xmtRedirHostTos

xmtRedirHostTosRate

xmtEchoReq

xmtEchoReqRate

xmtEchoReply

App. II - 14

EX 1009 Page 105

EX 1009 Page 106

W0 92/19054

}

HibRatePerS

MibCountsz

HibRatePerS

HibCount32

MibRatePers

MibCountBZ

HibRatePerS

HibCountBZ

HibRatePerS

-104-

xmtEchoReplyRate

xmtTimestampReq

xmtTimestampReqRate
xmtTimestampReply

PCl'/US92/02995

xmtTimestampReplyRate

xmtAddrMaskqu

xmtAddrMaskReqRate

xntAddrMaskReply

xmtAddrHaskReplyRate

5. TOP layer nib definition: to: Network nonitor lib.

5.1 top sognont - Bunnary Tool

typedef struct {

HibShortCount32

MibBucketRate

HibShortCountaz

HibBucketRate

HibShortcOunt32

HibBucketRate

Uint32

Uint32

Uint32

HibShortCOuntBZ

MibBucketRate

MibShortCountsz

HibBucketRate

MibShortCountBZ

MibBucketRate

HibShortCount32

MibBuoketRate

MibShortCount32

MibBucketRate

MibShortCountBZ

MibBucketRate

} MichpSegSumStats

pkts

pktRate
bytes

byteRate

errors

errorRate

protocolCount
mostActiveCount

pairCount

rchffSegs

rcv0ff$egRate
xmtOffSegs

xmtOffSegRate
transits

transitRate

flowctrls

flothrlRate

frgmts

frgmtRate

rexmts

rexmtRate

5.2 top Segment - Values Tool

App. II - 15

EX 1009 Page 106

EX 1009 Page 107

W0 92/l9054

typedef struct {

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCountBZ

MibRatePerS

MibCount32

MibRatePers

MibCountBZ

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

HibCOunt32

MibRatePerS

MibCountaz

MibRatePers

MibCount32

MibRatePerS

MibCOuntSZ

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCountBZ

MibRatePerS

MibCountBZ

MibRatePerS

— 105 -

pkts

pktRate

bytes

byteRate

errors

errorRate

rchffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate
transits

transitRate

hdrBytes

hdrByteRate

frgmts

frgmtRate

flowctrls

flowctrlRate

rexmts

rexmtRate

rexmtBytes

rexmtByteRate

keepAlives
keepAliveRate

windowProbes

windowProbeRate

outOfOrder

outOfOrderRate

afterWindow

afterWindowRate

afterClose

afterCloseRate

urgs

urgRate

rsts

rstRate

App.

PCT/US92/02995

II - 16

EX 1009 Page 107

EX 1009 Page 108

W0 92/19054

MibCountsz

MibRatePerH

MibCount32

HibRatePerH

HibCountsz

HibRatePerH

HibCountBZ

} HichpSegValstats

— 106 —

successfulConnections

PCI'/US92/02995

successfulConnectionRate
connectionRetries
connectionRetryRate
failedConnections
failedConnectionRate
activeConnectiOns

5.3 top Adar-as — Bun-ary Tool

typedef struct {

nibShortcOunt32

MibBucketRate

MibShortCountBZ

HibBucketRate

MibShortCountaz

HibBucketRate

Uint32

Uint32

Uint32

HibShortCount32

HibBucketRate

HibShortCountaz

HibBucketRate

MibShortCountaz

HibBucketRate

HibShortCountBZ

HibBucketRate

HibShortCountSZ

MibBucketRate

} HichpAddrSumStats

- pktRate
pkts

bytes

byteRate

errors

errorRate

protocolCount
mostActiveCount

pairCount

rchffSegs

rchffSegRate
xmtOffSegs

xmtOffSegRate

flothrls

flowctrlRate

frgmts

frgmtRate

rexmts

rexmtRate

5.4 tcp Address- Values Tool

typedef struct {

MibCount32

MibRatePerS

MibCount32

MibRatePerS

rchkts

rchktRate

xthkts

xthktRate

App. II - l7

EX 1009 Page 108

1|

EX 1009 Page 109

W0 92/l 9054

MibCountSZ

MibRatePerS

MibCount32

MibRatePerS

HibCount32

MibRatePerS

MibCount32

MibRatePers

HibCountaz

MibRatePerS

MibCountaz

HibRatePerS

MibCountSZ

MibRatePerS

MibCountSZ

uibRatePerS

MibCount32

MibRatePers

MibCount32

MibRatePerS

MibCountaz

MibRatePers

MibCount32

MibRatePers

MibCountaz

MibRatePerS

HibCount32

HibRatePerS

HibCount32

MibRatePers

MibCount32

MibRatePerS

MibCount32

HibRatePerS

HibCount32

HibRatePerS

MibCount32

MibRatePers

MibCountBZ

MibRatePerS

MibCount32

MibRatePerS

PCT/US92/02995

-1o7-

rchytes

rchyteRate

xmtBytes

xmtByteRate

rchrrors

rchrrorRate

xmtErrors

xmtErrorRate

rchffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate

rchdrBytes

rchdrByteRate

xthdrBytes

xthdrByteRate

rchrgmts

rchrgmtRate

xthrgmts

xthrgntRate

rcvRexmts

rcvRexmtRate

xmtRexmts

xmtRexmtRate

rcvRexmtBytes

rcvRexmtByteRate

xntRexmtBytes

xmtRexmtByteRate

rcheepAlives

rcheepAliveRate

xtheepAlives
xtheepAliveRate

rcvWindowProbes

rcvWindowProbeRate

xthindowProbes

xmtwindowProbeRate

rchutOfOrder

rchutOfOrderRate

xmtOutOfOrder

xmtOutOfOrderRate

rchfterWindow

rchfterWindowRate

App. II - 18

EX 1009 Page 109

EX 1009 Page 110

W0 92/19054

HibCountBZ

HibRatePerS

HibCountaz

HibRatePerS

MibCountsz

MibRatePerS

KihCountaz

HibRatePerS

HibCountaz

HibRatePerS

HibCount32

HibRatePerS

HibCount32

HibRatePerS

HibCOunt32

HihRatePerH

MibCountBZ

HibRatePerH

HibCountSZ

HibRatePerH

Hibacuntsz

- 108 -

xmtAfterWindow

PCT/US92/02995

xmtAfterWindowRate

rchfterClose

rchfterCloseRate

xmtAfterClose

xmtAfterClbseRate

rchrgs

rchrgRate

xthrgs

xthrgRate

rcvRsts

rcvRstRate

xmtRsts

xmtRstRate

successfulConnections

successfulConnectionRate

connectionRetries

connectionRetryRate
failedConnections

failedCOnnectionRate

activeConnections

6. UDP lay-r nib dcfinitions for Hatvork Monitor nib.

6.1 udp Soglcnt -Bulnary Tool

typedef struct {
MibShortCount32

MihBucketRate

HibShortCountsz

HibBucketRate

MibShortCountaz

HibBucketRate

HibShortCountBZ

MibShortCountBZ

HibShortCountsz

MibShortCountSZ

HibBucketRate

HibShortCount32

HibBucketRate

HibShortCount32

HibBucketRate

MibShortCountBZ

MibBucketRate

} MibUdpSegSumStats

pkts

pktRate

bytes

byteRate
errors

errorRate

protocolCount
mostActivecOunt

pairCount
rchffSegs

rchffSegRate
xmtOffSegs

xmtOffSegRate
transits

transitRate

flowctrls

flothrlRate

App. II — 19

EX 1009 Page 110

EX 1009 Page 111

If

WU 91/ 19034

- 109 -

6.2 udp Seguent - Values Tool

typedef struct {
MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibShortCount32

HibShortCountBZ

MibShortCount32

MibCount32

HibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCount32

MibRatePerS

MibCount32

HibRatePerS

} MibUdpSegValStats

pkts

pktRate

bytes

byteRate
errors

errorRate

protocolCount
mostActiveCount

pairCount

rchffSegs

rchfszgRate

xmtOffSegs

xmtOffSegRate
transits

transitRate

flowctrls

flowctrlRate

hdrBytes

hdrByteRate

6.3 udp Addrosl - Bunnnty Tool

typedef struct {
MibShortCountSZ

MibBucketRate

M1bShortCount32

MibBucketRate

MibShortCountaz

MibBucketRate

MibShortCount32

MibShortCount32

MibShortCountBZ

MibShortCountBZ

MibBucketRate

MibShortCount32

MibBucketRate

MibShortCount32

MibBucketRate

} MibUdpAddrSumStats

pkts

pktRate

bytes

byteRate
errors

errorRate

protocolCount
mostActiveCount

pairCount

rchffSegs

rchffSegRate

xmtOffSegs

xmtOffSegRate
flowctrls

flowctrlRate

6.4 udp Address- Values Tool

typedéf struct {
MibCount32

MibRatePerS

MibCount32

rchkts

rchktRate

rchytes

I’Cl / U59ZIUZ993

App. II - 20

EX 1009 Page 111

EX 1009 Page 112

W0 92/19054

HibRatePerS

HibCount32
MibRatePerS

MibCountaz

HibRatePers

MibCount32

HibRatePerS

HibCount32

HibRatePerS

HibCount32

HibRatePers

HibCount32

PCI'/US92/02995

- 110 -

rchyteRate
rchrrors

rchrrorRate

xthkts

xthktRate

xmtBytes

xmtByteRate
xmtErrors

xmtErrorRate

rchdrBytes

rchdrByteRate

xthdrBytes

7. Ionitor nib dotinitionl for network monitor nib.

typedef struct {
int

char

} MibPhoneNumber

typedef struct {
HacAddress

IpAddress
Uint32

Uint32

Uint32

Uint32

HibPhoneNumber

IpAddress
Uint32

Uintaz

Uint32

Uint32

} HibWsParameters

typedef struct {
HihAddress

Uint32

HibDeviceType
Uint32

} HibParseControl

typedef struct {
Uint32

Uint32

length

no[80]

lanMacAddr

lanIpAddr

laantpTimeout
laantpRetryLimit
lanSnmpTimeout
lanSnnpRetryLinit

serialPhoneNo

serialeAddr
serialetpTineout
serialetpRetryLimit
serialSnmpTimeout
serialSnmpRetryLimit

address

flags

type

parseControl

numEntries

nextEntry

HibParseControl mibParseControl[HIB_MAX_PCR]

} MibParseControlOpaque

typedef struct {
MacAddress

Byte

macAddr

data[256]

App . II - 21

EX 1009 Page 112

EX 1009 Page 113

WU VII 19034 FL! I U591/Ul993

- 111 -

Uint32 length
derived

} MibAutoTopology

7.1 Monitor Control Group

typedef struct {
Uint32 monReset

MibTimeOfDay monTOD

Uint32 trappermit
Uint32 dupAddrTrapPermit
Uint32 newNodeTrapPermit
Uint32 shakeTime

Uint32 wsMonLink

Uint32 minTrapInterval
Uint32 runMonitor

HibWsParameters primaryWsParams
MibWsParameters secondaryWsParams
Uint32 debugLevel
Uint32 ' parsectrl
Uint32 monitorSegment
HihAutoTopology autoTopology
} HibMonitorControl

7.2 lonitor stntintioo Group

typedef struct {

HibCountaz dllDropped
MibRatePerS d11DroppedRate
MibCount32 ipDropped
MibRatePers ipDroppedRate

HibCountBZ icmpDropped
MibRatePers icmpDroppedRate
HibCount32 tchropped
MibRatePerS tchroppedRate
MibCount32 udpDropped
MibRatePerS udpDroppedRate
MibCount32 arpDropped

HibRatePerS arpDroppedRate
MibCount32 ' nstropped

MibRatePerS nstroppedRate
MibCount32 dbProblem

MibShortCountSZ cpuUtilization

MibShortCountBZ memoryUtilization

8. Alnrn nib Definitions

App. II - 22

EX 1009 Page 113

EX 1009 Page 114

W0 92/19054
PCI'/US92/02995

-112-

8.1 Counter alarn structure

typedef struct {
Uint32

MibTimeOfDay
Uint32

MibAddress

HibAddress

Uint32

Uint32

MibCount32

Uint32

OPTIONAL

Byte

OPTIONAL

} MibAlarmCounter

8.2 Rate alarm structure

typedef struct {
Uint32

HibTineOfDay
Uint32

HihAddress

HihAddress

Uint32

Uint32

MibRollingRate
Uint32

Uint32

OPTIONAL

Byte

OPTIONAL

} HibAlarmRate

alarm_c1ass
gmt

time_ticks
mon_address
address

type
number

value

user_data_1ength

user_data[MAX_ALARM;DATA]

a1arm_elass
gmt

time_ticks
mon_address
address

type
number

value

rate_type
user_data_1ength

user_data[MAX_ALARM_DATA]

8.3 Power-up alarm structure

typedef struct {
Uint32

HibTimeOfDay
Uint32

MibAddress

Uint32

Uint32

Uint32

Uint32

alarm‘class
gmt

time_ticks
mon_address
alarm_reason
load_type
cpu_hw;rev
mon_link_hw_rev

App . II - 23

EX 1009 Page 114

EX 1009 Page 115

WU 7‘] 19034

Uint32

MibPhoneNumber

Uint32

Uint32

Uint32

Uint32

Uint32

} MibAlarmPowerUp

I’D! / U591]U£993

- 113 -

mgmt_link_hw_rev
mon_phone_no

error_type

error_code

error_param_1

error_param_2
error_param_3

8.4 Link-up tiara structur-

typedef struct {
Uint32

HibTimeOfDay
Uint32

MibAddress

Uint32

Uint32

Uint32

Uint32

Uint32

MibPhoneNumber

Uint32

Uint32

Uint32

Uint32

Uint32

} HibAlarmLinkUp

alarm_c1ass
gmt

time_ticks
mon_address
alarn_reason
load_type
cpu_hw_rev
mon_link_hw_rev
mgmt_link_hw;rev

mon_phone_no
error_type
error_code
error_paran_1

error_param_2
error_param_3

8.5 New nod. alarm structur-

typedef struct {
Uint32

MihTimeOfDay
Uint32

MibAddress

HibAddress

} MibAlarmNewNode

alarm_class
gmt

time_ticks
mon_address

node_address

App . II - 24

EX 1009 Page 115

EX 1009 Page 116

W0 92/19054 PCT/US92/02995

- 114 -

APPENDIX III

PROTOCOL VARIABLES

The following is a list of some of the network
variables for which data is gathered by the Monitor and a

brief explanation of the variable, where appropriate.

D Va 133

Frames

A frame is a series of bytes with predefined bit

sequences that mark the frame's beginning and ending
points. A DLL (data link layer) entity sends a message
by putting it in a frame and transmitting it on the
physical network. It's called a frame because the
beginning and ending bit sequences "frame" the message.

Enclosed within the frame are the messages built by

higher level protocols, such as IP and UDP. For
example, an IP datagram must be placed in a frame
before it can be transmitted.

Ethernet frames range from 64 to 1518 bytes in length.

Bytes

Monitor maintains a count and rate for bytes

transmitted and received by all monitored objects. For
example, for any node, you can monitor the number of
bytes in or out to measure the traffic load with
respect to that node. For a segment, you can monitor
the number of bytes in and out of all nodes on the
segment.

Error Frames

A DLL Error Frame is logged in the following cases:
* If the frame is Ethernet, none are logged.
* If the frame is IEEE 802.3:

- Value of length parameter in header less than
3.

Alignment Errors

The number of frames observed for the selected segment

with alignment errors. An alignment error is a frame
with a length that is not an exact multiple of 8 bits.
The following variables are available only for

segments.

App. III - 1

EX 1009 Page 116

EX 1009 Page 117

WU 346/ 1303“ FL] / UDHA/Ulyyb

- 115 -

Collisions

The number of collisions observed on the selected

segment. A collision occurs when two stations attempt
to transmit simultaneously. A certain number of
collisions are normal. The following variables are
available only for segments.

A higher than typical value can mean that the physical
interface for a single station has malfunctioned and in
not following the protocol.

Broadcast frame

A broadcast frame is a special frame that is received
by all stations on the network. Common uses for

broadcast frames include ARP (Address Resolution
Protocol) and network testing.

Multicast Frame

A multicast frame is a special frame that is received
by a predetermined set of stations. Multicasting is
used to send a message to a set of stations using a
single frame, thus reducing network loading.

Off-segment

Off-segment frames are frames that the Monitor observes

on the local segment, but are destined for or

originated by nodes not on the local segment. All off-
segment frames then are either routed to, from, or
across the local segment.

Off-segment variables

off-segment variables are a measure of the amount of

routing or bridging that is occurring. Excessive off-
segment traffic may mean that certain nodes on one

segment are communicating primarily with nodes on other
segments. If you identify these nodes and move them to

the segments where their primary communications
partners are, you may lessen the overall loading on
your network.

Off-segment Transit Frames

The number of frames observed on the selected segment
not into or out of a node on the selected segment. For
these frames, the selected segment is an intermediate

hop in a route between the originating and destination

App. III - 2

EX 1009 Page 117

EX 1009 Page 118

PCT/US92/02995W0 92/19054

- 116 -

segments. (This variable applies only to segments, not
to nodes.)

IP va 'ables

IP Packets 2

An IP packet or datagram is a string of bytes that is
transferred as a unit across the IP network. It has

two parts: the IP header, which contains control
information such as the source and destination IP

addresses; and the data to be transferred to the
destination user.

Bytes

The Monitor maintains a count and rate for bytes into

and out of all monitored objects. For example, you can

monitor the number of bytes into or out of a chosen

node to measure the traffic load with respect to that

node. You can monitor the number of bytes into and out

of all nodes on the segment.

IP Error Packets

An IP error packet is logged when the monitor observes

a packet with an error in its IP header. Possible
errors are as follows:

* IP header length is less than 20 bytes,
* IP header length is greater than the length of the

IP packet

* Packet length is less than the IP header length.
* If offset is set for fragmentation, but the frame

should not be fragmented.

IP Fragments

If an IP datagram is too large to pass through a
subnetwork or router, the IP router that is

transmitting the original datagram divides it into
fragment datagrams. The destination station
reassembles the original datagram once it has received

all the fragments.

Fragmentation usually occurs because packets are being
routed through a network segment that has physical
technology or configuration that restricts the IP

datagram size to one smaller that the IP datagram size

used on the originating segment.

App. III - 3

EX 1009 Page 118

EX 1009 Page 119

W0 92/ 19054 PCT/US92/02995

-ll7-

For example, the maximum frame size in an IEEE 802.5

physical network is 16000 octets, whereas the maximum
frame size on an Ethernet physical network is about
1500 octets. In this case, a large frame originating
on the IEEE 802.5 network would have to be divided into

many fragments before it could be transmitted onto the
Ethernet network.

Note that a fragment is a complete and correct IP
datagram. Do not confuse IP fragments with the
Ethernet fragment errors.

Higher than typical values for these parameters may
mean that one or more commonly-used communications
routes are forcing fragmentation to occur.

Example: new nodes have been added that access a server

across a fragmenting route. The number of additional

packets causes delays on the server's segment. The
solution is to reconnect the new nodes to a different

segment that has a non-fragmenting route to the server.

IP Header Bytes

The header is the portion of the IP packet that
contains control information used by the protocol, such
as source and destination IP addresses.

Broadcast and Multicast packets

A broadcast packet is special packet that is received
by all stations on the network.

A multicast packet is a packet that is received by a
predefined set of stations. Multicasting is used to
send a message to a set of stations using a single
packet.

IP Off-segment Packets

Off-segment packets are packets that the Monitor

observes on the local segment, but are destined for, or
originated by, stations not on the local segment. All
off-segment packets, then, are either routed to, from,
or across the local segment.

Off-segment values are a measure of the amount of

routing or bridging that is occurring. Excessive off—
segment traffic may mean that certain stations on one

segment are communicating primarily with stations on
other segments. If you identify these stations and

App. III — 4

EX 1009 Page 119

EX 1009 Page 120

W0 92/19054 PCT/US92/02995

- 118 -

move then to the segments where their primary
communications partners are, you may lessen the overall
loading on your network.

Off-segment Transit Packets

This parameter applies only to segment, not to nodes.
The number of IP packets observed on the selected

segment not destined for or originated by an object on
the selected segment. For these packets, the selected
segment is an intermediate hop in a route between the

originating and destination segments.

Off-segment Transit Packets Rate

This parameter applies only to segments, not to nodes.
The number of off-segment IP packets observed per
second on the selected segment, not into or out of an

object on the selected segment. For these packets, the
selected segment is an intermediate hop in a route
between the originating and destination segments.

Iggg Variables

ICHP Packets

ICHP (Internet Control Message Protocol) packets are
used to control, test, and report problems with, the
network. Reading through the ICMP variable
descriptions should give you a good idea of how ICMP is
used. A high number of ICE? packets from any source
wastes traffic capacity that could otherwise be used
for data packets.

Bytes

The Monitor maintains a count and rate for the number

of ICMP bytes in and out of all monitored objects. A
high number of ICMP bytes from any source wastes
traffic capacity that could otherwise be used for data.

ICMP Errors

An ICMP error is logged when the Monitor observes an
ICMP packet with an error in its ICMP header. For

example, a packet may have a length field with an

illegal value in it. A node that generates ICMP errors
may be having software problems.

App. III - 5

EX 1009 Page 120

EX 1009 Page 121

WU 92/ I 9054 PC] I U591/0199b

- 119 -

Off-segment

Off-segment packets are packets that the Monitor
observes on the local segment that are destined for or
sent by nodes not on the local segment. All off-
segment packets are either routed to, from, or across
the local segment.

A high number of ICMP packets from any source wastes
traffic capacity that could otherwise be used for data
packets. If there are a high number of in or transit
off-segment ICMP packets, the source is on a different
segment.

Destination Unreachable Packets

If for some reason a gateway cannot deliver an IP
packet, it sends and ICMP Destination Unreachable

packet to the sender. This packet informs the sender
that the packet could not be delivered, and gives a
reason. The Monitor keeps count of ICMP Destination

Unreachable packets into and out of all objects, by
reason. These are listed below.

Net unreachable

The network is having routing problems. Possible
routing problems include: a non-operational link a node
or router has an incorrect routing table

Host unreachable

See net unreachable.

Protocol unreachable

Port unreachable

Frag needed / DF set

This means fragmentation is needed but Don't Fragment
flag was set. 'This message is sent when a router

cannot forward a packet because it is too large for the
next subnetwork in the route. Find out why
fragmentation is being disallowed by the sending node -
it may not be necessary. If it is necessary, then you
must find Or create an alternate route.

Source route failed

App. III - 6

EX 1009 Page 121

EX 1009 Page 122

W0 92/19054 PCT/USQZ/02995

-120-

Destination net unknown

The destination network is not in the router's current

routing table. This may be because the source node

entered the address incorrectly (a software problem) or

because the router's routing table is corrupt or ’
incomplete.

Destination host unknown .

See destination net unknown

Source host isolated

Destination net prohibited (communication with
destination network administratively prohibited)

Net unreachable / TOS

This means network is unreachable for this Type of

Service. This message is sent when a router cannot

forward a packet because the specified Type of Service
is not available for this route. Find out why this

Type of Service is being specified. It may be
unnecessary.

Host unreachable / TOS

This means host is unreachable for this Type of
Service.

Time to Live Exceeded Packets

An IP packet is allowed to remain in transit for a
fixed time. This time is called "time to live" and is

specified in the IP packet by the sender. If this time
expires before the packet is delivered, the packet is
discarded. This mechanism prevents packets that get
"stuck" in circular routes from congesting the network
forever.

This mechanism is enforced by the gateways that route
the packet through the network. Each gateway reduces

the packet's timer value by an appropriate amount, and
then checks to make sure that it has not reached zero.

If the timer has reached zero, the gateway discards the .

packet and transmits an ICMP Time to Live Count
Exceeded packet back to the sender.

App. III - 7

EX 1009 Page 122

EX 1009 Page 123

WU 31/ 19034 I’Cl/ U391/01993

- 121 -

Packets may get stuck in loops (circular routes)
because a gateway or router has incorrect information
in its routing table (example).

Reassembly Time Exceeded Packets

In routing an IP packet across a network, it is
sometimes necessary to fragment it into smaller

packets. This must be done to get it across a segment
that cannot handle the packet at its original size.

Once a packet has been fragmented, it is not
reassembled until the fragments reach the final
destination. Since it is possible that one or more
fragments will be lost before reaching the destination,
the destination node waits only a fixed period of time
to receive all the fragments. This is the reassembly
time.

If the destination node has not received all of the

fragments when the reassembly time expires, it sends an
ICMP Fragment Reassembly Time Exceeded packet to the
sender.

This problem typically occurs because one or more of
the fragments has been lost.

Parameter Problem Packets

Part of each IP packet (the header) contains control
information. A parameter is a unit of control

information. For example, one parameter specifies the
length of the packet, and another specifies whether or
not fragmentation of this packet is allowed.

If a gateway detects a serious problem with a
parameter, and it is not reportable through one of the
other ICMP messages (such as Destination Unreachable),
it sends an ICMP Parameter Problem packet back to the
sender.

There is currently one specific reason tracked for the
ICMP Parameter Problem packet:

Param option missing (missing option parameter)

Source Quench Packets

Gateways use the source quench mechanism to slow the

rate of incoming packets. If a gateway is receiving
packets too fast for it to keep up with, it will send

App. III — 8

EX 1009 Page 123

EX 1009 Page 124

W0 92/19054 PCI‘/US92/02995

-122-

an ICMP Source Quench Packet to one or more nodes to
tell them to slow down.

Redirect Packets

The redirect mechanism allows gateways to send 5
information about routes to hosts. This works as

follows:

Each node maintains a table that contains, for each of

the nodes with which it communicates, the physical

address of a gateway. This gateway is the first step
in the route to the destination node. When a node

sends a datagram to a node that is not on its segment,
it send it to the gateway indicating in its routing
table for the destination node.

Gateways maintain more or less complete routing
information. They check all datagrams to be routed off
a segment to make sure that the optimum route is being
used. For example, if there are two gateways available
to Node a, and Node A attempts to send a datagram to

Node B across Gateway 1 when Gateway 2 would be better,

Gateway 1 will detect the problem.

When this occurs, the detecting gateway issues an ICMP
Redirect packet to the sending node. This packet tells
the node how it should change its routing table.

Nodes use this mechanism to learn routes from gateways.

All a node really needs on startup is to know the
address of a gateway. It attempts to route all of its
off-segment messages through this gateway, and builds
its routing table from the ICMP Redirect packets it
receives back.

An ICMP Redirect packet contains a diagnostic code that

specifies additional information. The Monitor counts
the occurrences of each of these:

Redirect for net

This packet means that datagrams to nodes on this
network should be routed differently.

Redirect for host _

This packet means that a datagram to this host should
be routed differently.

App. III - 9

EX 1009 Page 124

EX 1009 Page 125

WU 75/ 1703‘! FL I I UB’L/ 01.97:

- 123 -

Redirect to TOS net

This is a redirect for the network and type of service.
This packet means that datagrams to hosts on this
network should be routed differently in order to obtain
this type of service.

Redirect TOS host

This is a redirect for the host and type of service.
This packet means that a datagram to this host should
be routed differently in order to obtain this type of
service.

Echo Packets

The echo mechanism is used to verify that a destination
is currently reachable, or to test the delay time
between nodes. Echo is often referred to as "ping."
The echo mechanism involves two ICMP packets: Echo
Request and Echo Reply. The Monitor maintains counts
'for both of these.

Note that some diagnostic tools issue a series of ICMP
Echo Request packets and then monitor and analyze the
ICMP Echo Response packets.

A high number of these packets wastes traffic capacity.

Echo Request

This is a request that the addressed node send back an
Echo Response packet.

Echo Response

This is a response packet sent by a node when it has
received an Echo Request packet.

Timestamp Packets

The timestamp mechanism is used by nodes to synchronize
their clocks. Node A sends an ICMP Timestamp Request
packet to Node B, requesting that Node B return the
current time of its system clock. Node B sends an ICMP
Timestamp Response packet with the requested time to
Node A. Node A can roughly synchronize its clock with
Node B based on the response timestamp.

App. III - 10

EX 1009 Page 125

EX 1009 Page 126

W0 92/19054 PCT/US92/02995

- 124 —

Timestamp Request

This is a request that the addressed node send back a
Timestamp Response packet.

Timestamp Response

This is a response packet sent by a node when it has
received a Timestamp Request packet.

Address Mask Packets

The IP protocol's addressing scheme allows sites to

group multiple physical networks (segments) into a
single addressable subnet. The subnet addressing
scheme allows a site to determine, to an extent, which

IP address bits identify the network (including subnet)

and which identify nodes in the local subnet. For

example, a site may determine that the first three
octets in the IP address specify the network, and the

last octet specifies the node in the network.

The division of address bits between network and node

is represented by an address mask. The address mask is
a string of 32 bits, where each bit used to specify

network is set to 1, and bits that identify node are
set to O.

A node learns the address mask for its local subnet by

requesting the information from a gateway. To do so it
sends an ICMP Address Mask Request message to the

gateway. If it does not know the address of the
gateway, it may broadcast the request. The gateway
replies with an ICMP Address Mask Response.

Address Mask Request

This is a request that the addressed node send back an

Address Mask Response packet.

Address Mask Response

This is a response packet sent by a node when it has
received an Address Mask Request packet.

Tag variables a

TCP Packets

A TCP packet (sometimes referred to as a segment) is a

string of bytes that is transferred as a unit across

App. III - 11

EX 1009 Page 126

EX 1009 Page 127

WU 91/ l 90:94 I’LL] / U391/01993

- 125 -

the IP network. It has two parts: the TCP header,
which contains control information such as the source
and destination TCP ports; and the data to be
transferred to the destination user.

Bytes

The Monitor maintains a count and rate for bytes into
and out of all monitored objects. For example, you can
monitor the number of bytes into or out of a chosen
node to measure the traffic load with respect to that
node. You can monitor the number of bytes into and out
of all nodes on the segment. The byte count includes
header and data bytes.

Header Bytes

The header is the portion of the TCP packet that
contains control information used by the protocol, such
as source and destination TCP ports. Comparing the
number of TCP header bytes to the total number of TCP
bytes gives an idea of the amount of TCP overhead on a
connection.

Error Packets

A TCP error is logged for each packet observed with one
of the following problems:*

length of TCP packet is less than 20 bytes
* TCP Header length is less than 20 bytes
* TCP header length is greater than the length of

the TCP packet

* TCP header length is greater than 20 bytes but the
length of the TCP packet is less than the TCP
header length.

Retransmissions

A Retransmission is a TCP packet that contains some
data that has already been sent at least once. A
Retransmission may or may not be an exact duplicate of
the packet already transmitted.

Note that if the underlying packet delivery system
(DLL) creates a duplicate, it is counted as a
retransmission.

When a TCP entity sends a data packet to its remote
partner, it waits a predetermined period of time
(tracked by a retransmission timer) for an
acknowledgement (ACK) from the remote partner. If this

App. III — 12

EX 1009 Page 127

EX 1009 Page 128

W0 92/19054 PCT/US92/02995

-126-

time expires without the ACK being received, it
retransmits the data contained in the presumably lost
packet. It may retransmit a packet identical to the

one lost, or it may combine data from multiple lost
packets into a new packet, or it may combine lost data
with new data into a new packet.

Excessive retransmissions can mean that a gateway is
overloaded or down, that a system is overloaded, or
that network parameters are misconfigured. In general,
small dedicated networks should see few

retransmissions. Larger, more diverse networks with
routers, bridges and gateways with different
capabilities and capacities are likely to have more
retransmissions.

Bytes Retransmitted

Byte Retransmitted are TCP data bytes that have already
been sent at least once.

See Retransmissions.

Out of Order Packets

Out of Order Packets are packets containing bytes with
lower sequence numbers than bytes in previously seen
packets.

Packets do not necessarily arrive in the order they
were sent in. The receiving node puts the data in the
correct order once it has received all packets. A high
value may mean that some packets are being sent by way
of a slower route, or that there is an overloaded or
down bridge or router.

Out of Order Bytes

Out of Order Bytes are bytes with lower sequence
numbers than bytes seen in previous packets.

Data out of Window Packets

Data out of Window Packets are packets that contains
data that is not within the boundaries of the receiving
partner's currently advertised window. The data is &
either acknowledged data or data that the partner is
not ready to receive.

App. III - 13

EX 1009 Page 128

EX 1009 Page 129

W0 92/l9054 PCI‘/US92/02995

~ 127 -

Bytes out of Window

Bytes out of Window are bytes that are not within the
boundaries of the receiving partner's currently
advertised window. The data is either acknowledged
data or data that the partner is not ready to receive.

Packets after Close

Packets after Close are packets observed after a
connection has been closed. These may be packets that
had been "lost" on the network, or it may indicate a
malfunction in the sending station.

RST Packets

A packet in which the RST (reset) bit is set.

VSYN Control Packets

A packet in which the SYN bit is set.

FIN Control Packets

A packet in which the FIN bit is set.

URG Control Packets

An URG Control Packet is a packet in which the Urgent
pointer is set.

The packet contains data that the receiving application
should process as soon as possible. For example, the
control-key sequences used by some applications are
often sent as Urgent data.

Keepalives

A Keepalive is a TCP packet that a user sends to check
to see if a connection is still active. The Keepalive
packet contains either not data or one garbage byte of
data that is outside the remote partner's last
advertised window. The remote partner responds with
either an ACK, confirming that the connection is alive,
or a RST, indicating that the connection had been
dropped.

Although widely implemented, the keepalive mechanism is
not part of the TCP protocol, so you will not
necessarily see keepalive activity.

App. III - 14

EX 1009 Page 129

EX 1009 Page 130

PCT/US92/02995W0 92/19054

-128-

Keepalives mean that a connection has been up for a
long time without and activity. Resources may be
unnecessarily tied up.

Window Probes

A Window Probe is a TCP packet that is sent to check
the size of the remote partner's window when the last
advertised window size was zero. The Window Probe

packet contains one byte of data. The remote partner
responds with an ACK packet, which contains the size of
the remote partner' 5 current window size.

Non-data packets, which may include window update
information, may be lost and are not be retransmitted.

It may therefore become necessary to check the remote
partner's window size if that information has not been

received for some period of time. This can mean that a

node is runnind a faulty TCP implementation, that
timers are misconfigured, or packets are being lost.

Window Update Only Packets

A Window Update Only packet is a packet that contains
no data, but in which the advertised window size has

been updated.

App. III - 15

(r-

EX 1009 Page 130

EX 1009 Page 131

WU 92/ 19054 PCI‘I US92/UZ995

-129-

APPENDIX IV

Summary Tool - Values Display FieldsW

Packet Rate

Byte Rate

Errors

Broadcast Pkt Rate

Multicast Pkt Rate

Source Quenches

Fragmenm

Flow Controls

UDP

TCP

NFS

Retransmissions

Off Segment Packets

in

00!

Transit

Local

Most Acuve Protocols

total packers per second at this protocol layer received and transmitted at
segment or node

total bytes per second at this protocol layer received and transmitted at
segment or node

total errors at this protocol layer received and transmitted at segment or node

total number packeLs per second at this protocol layer addressed to broadcast
address

total number packets per second at this protocol layer addressed to multicast
address

total number of lCMP source quench packets received and transmitted from
this segment or node.

total number of IP fragmented packets received and uansmitted from this
segment or node.

total number of ICMP source quench packets received and transmitted on
this UDP port.

total n'u'mber of lCMP source quench packets received and transmitted on
this TC? pon.

total number of lCMP source quench packets received and transmitted on
this NFS port.

total number of TCP packets retransmitted on this TCP port.

‘i'ctraffic at this protocol layer received by nodes on this segment
originating from other segments

in = lCXKpacket rate / packet rate rcv from of! seg)

‘2: traffic at this protocol layer transmitted by nodes on this segment to nodes
on other segments

out = 100(packet rate / packet rate mil to all sex)

f2: traffic at this protocol layer originating from other segments which are
addressed to nodes not on this segment

transit = l00(packet rate / packet rate transit)

‘5 Traffic at this protocol layer which originates and terminates on this
segment

local = 100 -(in 4- out + transit)

The five most active protocoLs mnning above this layer (ie the users of this
layer). The protocols are displayed as ‘1: and ranked in decreuing order.

protocol % = l00(protocol packet rate/packet rate)

kw w- L

EX 1009 Page 131

EX 1009 Page 132

WO 92/19054 PCT/US92/02995

-l30-

The five most active nodes at this protocol layer . The nodes are displayed asMost Active Nodes ' ,
‘36 and ranked tn decreasing order.

node ‘1: = lCXXnode packet ratefpacket me) ‘

lCMPTypes Seen The total number of these specific lCMP packet types transmitted and
received on this segment or node.

Total Segment Bandwidth 'nie % of the available bandwidth used by this protocol. If the screen is a
segment display it ts ‘1: used by all nodes on the segment. if it is a node
display it ts the ‘5 used by that node.

‘5 = 100(8 ' frame rate/10000030)

Total Active Dialogs The number of dialogs detected for the node or segment at this protocol
layer.

__________________.___—_.—————-————

APO” - Q.

EX 1009 Page 132

EX 1009 Page 133

WU 91/ 19034 PC[I U592/UZ995

- 131 -

5. Actual Screens {ac \{a\uesToo\ APPENDIX v

5.1 Data Link Group

W

This screen summarizes the data link parameters.

5. 1.2 nggyfls

1 This is a "complete values" screen. It shows all of the values for the DLL

protocol layer.

[0 The user comes from a context of a specific segment or node and this

screen must preserve that context.

APPENDIX V - 1

EX 1009 Page 133

EX 1009 Page 134

W0 92/19054

W

~132-

PCT/US92/02995

______’______________————————————
Standard Column Headings

________________________—————-—————
Frames

Rcv

th

Total

Frm rate

Rev

th

Total

Bytes
Rcv

th

Total

Byte rate
Rcv

th

Total

Errors
Rcv

th

Total

Error rate
Rev

th

Total

802.3 frames
Rev

th

Total

ethernet frames
Rev

th

Total

802.3 frame rate
Rev .

th

Total

ethernet frame rate
Rev

th

Total

Boast th

Beast rate

Mcast th

Mcast rate

Off seg
Rcv

th

mansm APPENDIX V — 2

EX 1009 Page 134

EX 1009 Page 135

WU 74/ IVUD‘D FL] I U391] "£993

- 133 -

[locall
Total

Off seg rate
Rcv

th

[Transitl

[local]
Total

Runts th

[Allignmentl
[Collisions]

Protocol Pkt Count Pkt Rate %
________________—____————-—————-——-————
Protocol 1

Protocol 2

Protocol n

W
_________________._——-—-———————-———-

Extended Column Headings
____________________———————-—-—

rows as {or primary screen

5.2 I? Group

5.2.! DgfimmB

This screen provides information for the IP network layer running on the segment or
node.

W

1 This is a "complete values' screen. It shows all of the values for the IP
protocol type

2 The user ‘comes from a context of a specific segment or node and this

screen must preserve that context

APPENDIX V — 3

EX 1009 Page 135

EX 1009 Page 136

W0 92/19054 PCT/US92/02995

- 134 -

Standard Column Headings
—’______________——-————————'——
Pkts

Pkt rate

Bytes

Byte rate
Errors

Error rate

Frags

Frag rate
Header bytes
Header rate

Beast Xrnt

Beast rate

Mcast th

Mcast rate

00’ seg

Off seg rate

Protocol Pkt Count Pkt Rate %

Protocol 1

Protocol 2

Protocol It

WW
__________________________—————————————-
Extended Column Headings

rows as for primary screen

5.3 ICMP Group

ESIEE'I'

This screen provides Information for the lCMP protocol s/w running on the segment or
node. ,

W

1 This is a "complete values" screen. It shows all of the values for the ICMP
protocol type

2 The user comes from a context of a specific segment or node and this
screen must preserve that context.

APPENDIX V - i4

EX 1009 Page 136

EX 1009 Page 137

WU 91/ 19034

W

'135-

PC] / U59Z/UZ99D

W

Standard Column Headings
_____________________————-—————
Pkts

Pkt rate

Bytes

Byte rate
Errors

Error rate

Off seg

Off seg rate
D.U. net

D.U. host

D.U. Prot

D.U. port

D.U. frag
D.U. Src route

D.U. Net Unk.

D.U. Host Unk.

D.U. Src Host 1501.

D.U. Dnet Ad Prob

D.U. DhostAd Prob

D.U. Net Unr.

D.U. Time Xd Trans

D.U. Time Xd Reass

Param prob

Param opt miss.

src quench
redir net

redir host

redir tos net

redir tos host

Echo req

Echo Resp

Ts req

Ts resp

Addr mask req

Addr mask resp

APPENDIX V - S

EX 1009 Page 137

EX 1009 Page 138

W0 92/19054 PCT/US92/02995

- 136 -

Wm

______________________._._.——————

Extended Column Headings
/__—__————

rows as for primary screen

5.4 01)? Group

EHEET

This screen provides information for the UDP protocol s/w running on the segment or
node.

W

1 This is a "complete values" screen. It shows all of the values for the UDP
protocol type '

2 The user comes from a context of a specific segment or node and this
screen must preserve that context.

WWW

____________________.___——————-———

Standard Column Headings

_________________________—————————-—-—-
Pkts .

Pkt rate

Bytes

Byte rate
Errors

Error rate

Header bytes
Header rate

all seg

off seg rate

Protocol Pkt Count Pkt Rate %
_____________________._——————————
Protocol 1

Protocol 2

Protocol n

W

____________________________——————————

Extended Column Headings
________________________————————————
rows as for primary screen

APPENDIX V - o

EX 1009 Page 138

{H

EX 1009 Page 139

WU 71M 13034 Phil Ub9l/Ul’9b

- 137 -

5.5 TCP Group

W

This screen provides information for the TCP protocol s/w running on the segment or
node.

W

1 This Is a "complete values" screen. It shows all of the values for the TCP

protocol type

ID The user comes from a context of a specific segment or node and this
screen must preserve that context

APPENDIX V - 7

EX 1009 Page 139

EX 1009 Page 140

W0 92/19054 PCI‘/US92/02995

-l38-

Want:

.——__—_—____————————————————

Standard Column Headings
/—
number connections

Pkts

Pkt rate

bytes

Byte rate
header bytes

Hdr byt rt
errors

Error rate

persists

keep allves
rexmits

bytes rexrnit
ack only pkt

window probes

pkts urg only
window update only

control pkts

dup only pkts

part dup pkts
dup bytes
out order pkts

out order bytes

data pkts afier window
bytes after window
pkts after close
dup acks

ack pkts

off seg

off seg rate

Protocol Pkt Count Pkt Rate %
_____________—————————-—
Protocol 1

Protocol 2

Protocol :1

WW

_______________________——————

Extended Column Headings
___________________.__._———-—————-—
rows as for primary screens

APPENDIX V - 8

EX 1009 Page 140

EX 1009 Page 141

WU ya 1 3034 PCI '/ U592/UZ993

- 139 -

5.6 NFS Group

fiL§.LLEflflnfinn

These screens provide lnformatlon {or the NFS protocol s/w running on the segment or
node. The screens show the breakdown of actlvtty by servers and clients for
mesystems. directories and files

:LfiJlLkdhufl:;£uganua1:r

1 This is a "complete values" screen. It shows all of the values {or the NFS
protocol type

2 The user comes from a context of either a segment or a node and this
screen must preserve that context.

APPENDIX v - 9

EX 1009 Page 141

EX 1009 Page 142

W0 92/19054 PCl'/US92/02995

- 14o -

WWW
/-’———

Standard Column Headings

//
total nfs ops

nfs ops rate

read 01:55
read rate

write ops

bytes read
bte read rate

bytes written

bytes written rate
write rate

write cache

create file

remove file

rename file

create dtr

remove dlr

null ops

get file attr
set flle attr

look ups
read link

create link

create gym Ink

get {sys attr
mount

unmount

readmount

unmountall

readggort

File Systems on Server
_____________________.____———————-———
file system 1

file system 2

file system n

W

__._______________________———-————————-

Extended Column Headings
_________________________.__———————-——
rows as for primary screens

5.6.5 Navigation

APPENDIX V - if)

EX 1009 Page 142

EX 1009 Page 143

WU VA] 1 703‘! I'L I I UDVAI 053,3

- 14 l -

Double clicking on a file system Invokes the file system screen for the
system.

selected file

W

1 This ls a "complete values" screen. It shows
protocol type for this file system.

all of the values for the NFS

2 The user comes from a context of elther an nfs client or server and thls
screen must preserve that context.

APPENDIX V — 11

EX 1009 Page 143

EX 1009 Page 144

W0 92/19054 PCI‘/US92/02995

- l4 2 -

7 r -

-—-/‘_——’_
Standard Column Headings

”-f/M
total nl’s ops

ni’s ops rate

read ops

read op rate

vmte ops

write op rate

bytes read
bte read rate

bytes written

bytes written rate
write cache

create the

remove file

rename file

create dir

remove dlr

null ops

get file attr
set file attr

look ups
read link

create link

create sym ink

get fsys attr
mount

unmount

Directories in File System

’/
directory 1

directory 2

directory n

W

_——__——._____’_________________——————

Extended Column Headings

rows as {or primary screens

5.6.9 Navigation

Double eliciting on a directory invokes the directory screen for the selected directory.

MW

APPENDIX v - 12

EX 1009 Page 144

EX 1009 Page 145

l!

WU VII 13034 FL I / U391] "£993

- 143 -

This is a "complete values" screen. it shows all of the values {or the NFS
protocol type {or this directory.

The user comes from a context of an his the system and this screen must
preserve that context.

APPENDIX v — 13

EX 1009 Page 145

EX 1009 Page 146

W0 92/19054 PCT/US92/02995

‘144-

WWW
/__________————

Standard Column Headings

/_______——————
total nfs ops

nfs ops rate

read ops

read ops rate
write ops

write ops rate

bytes read
bte read rate

bytes wn'tten

bytes written rate
write cache

create file

remove file

rename file

null ops

get file attr
set file attr

look ups

read link

create link

create sym Ink

M
Attributes

____________________________——————
type ‘
mode

rtlinks

uid

gtd
size

blocksize

rdev

blocks

meid

aume

W
Files in Directory

APPEKDIX Y - 1:.

EX 1009 Page 146

EX 1009 Page 147

wu 34/ l 9034 PCl'l US92/02995

Extended Column Headings
____________________________———-—————-—————
rows as for primary screens

5.6.13 Navigation

Double clicking on a file invokes the file screen {or the selected me.

1 This is a "complete values" screen. It shows all of the values {or the NFS
protocol type for this file.

2 The user comes from a context of an nfs file directory and this screen must
preserve that context.

APPENDIX V — 15

EX 1009 Page 147

EX 1009 Page 148

W0 92/19054 PCT/US92/02995

-146-

W

M.”
Standard Column Headings

______________________———————————-—-
total nfs ops

nfs ops rate

read ops

read ops rate

write ops

write ops rate

bytes read
bte read rate

bytes written

bytes written rate
write cache

null ops

get file attr
set me attr

look ups
read link

create link

M
, Attributes

_____________________._———-——————-—
type
mode

nlinks

uid

gid
size

blocksize

rdev

blocks

fileid

atime

mtime

ctime

W

___________________._.__——————————-

Extended Column Headings
_______________________—_———————————-
rows as for primary screens

5.7 AR? Group

APPENDIX V - l6

EX 1009 Page 148

EX 1009 Page 149

l!

vvu yA/ 1703-} PL] / UDBAI U197:

“'14 -

mm 7

This screen provides InformatJon {or the AR? protocol s/w running on the segment or
node.

WELLS

1 This is a "complete values" screen. It shows all of the values for the AR?
protocol type

2 The user comes from a context of either a segment or a node and this
screen must preserve that context.

APPENDIX v — 17

EX 1009 Page 149

EX 1009 Page 150

W0 92/19054 PCT/US92/02995

- 148 -

7 ' Q r

_______________________————————————
Standard Column Headings

________________________———————————-

WEN-91¢

______________________.___———————————-

Extended Column Headings

rows as for primary screens

5.8 RARP Group

This screen provides information for the EAR? protocol s/w running on the segment or
node.

W

1 This is a "complete values" screen. It shows all of the values for the RARP
protocol type

2 The user comes from a context of either a segment or a node and this
screen must preserve that context.

APPENDIX V - 18

EX 1009 Page 150

EX 1009 Page 151

(Q

WU 94/ 19034 PC[I US92/UZ995

—149-

W
____________.__________—_—

Standard Column Headings

TBD

W
_____________.___—_——————————-—-———-——-——

Extended Column Headings
_____________________________—

rows as for primary screens

5.9 Telnet Group

EEIQE”

This screen provides information {or the Telnet protocol s/w running on the segment or
node.

W

1 This is a "complete values" screen. it shows all of the values for the Telnet

protocol type

2 The user comes from a context of either a segment or a node and this

screen must preserve that context.

________________.___.—___._———————-————

Standard Column Headings

Extended Column Headings
—M

rows as for primary screens

5.10 FTP Group

This screen provides information for the FTP protocol s/w running on the segment or
node.

APPENDIX V — 19

EX 1009 Page 151

EX 1009 Page 152

W0 92/19054 PCI‘/US92/02995

- 150 -

Will-L?

1 This is a "complete values" screen. It shows all of the values for the FTP
protocol type

2 The user comes from a context of either a segment or a node and this
screen must preserve that context.

fiLiaiifiiflnanlfizzzenlanuuu
_____________________—————————————

Standard Column Headings

TBD

l 4 r

______________________—————————————

Extended Column Headings

rows as for primary screens

5.11 Dialogue Data Group

This screen displays all of the Data available {or a particular dialogue. This screen is
shown when the user clicks on an entry in the Summary Tool dialogue information.

Each dialog screen represents a single dialog. Thus at the UDP or TCP level two nodes
may have multiple dialogs (each with a unique port pair) and each of these will be
represented as a seperate entity.

Because the user cannot uniquely identify the dialog he requires from the menus (he
does not know the port numbers involved) the only mechanism to invoke these screens
is by selection of a dialog from the approx-late summary screen. This problem also
prevents the user from 'clicking' through all the dialogs on ports between a node pair
(may be addressed in later phase).

'. 1.2

1 This is a "complete values" screen. It shows all of the values available for
the selected connection.

2 There are several different contexts for this screen. The user may select
this option from the summary tools for all protocols. This screen must
reflect the node. layer and specific connection context from which the user
entered

APPENDIX v — 20

EX 1009 Page 152

EX 1009 Page 153

l!

wu VA] 19034 PL: 1'] USER/01993

- 151 -

The content of this screen B essentially the same as the corresponding row
entry from the mine matrix screen for the DLL and 1? layers. Their

digninclusion is to provide the user with a consistent navigaion para
accross the layers (and to provide this functionality in release 1 which
does at include the Traffic matrix support).

The data set displayed in this screen will be appropriate to the protocols
used between the nodes. The variables shown are those selected for
TCP/IP protocols. Where nodes converse using multiple protocols this will
be expanded to select data from each protocl set.

APPENDIX V — 21

EX 1009 Page 153

EX 1009 Page 154

WO 92/19054 PCI‘/US92/02995

- 152 -

W

node name node name
mac address mac address

EX 1009 Page 155

W0 92/l9054 PCI‘/US92/02995

- 153 -

5aLlJL£IflBflflL§ZI££B4E2KE

This is invoked by selection of the ICMP entry from the 1? screen.

node name node name
mac address mac address

1}; address 1;; address
Standard Column Headings

________________._—.——————————-—-——-———-———-—-——

Pkts

Bytes
Errors

Off seg
D.U. net

D.U. host

D.U. Prot

D.U. port

D.U. frag
D.U. Src route

D.U. Net Unk

D.U. Host Unk.

D.U. Src Host isol.

D.U. Dnet Ad Prob

D.U. Dhost Ad Prob

D.U. Net Unr.

D.U. Time Xd Trans

D.U. Time Xd Reass

Par-am prob

Param opt miss.

src quench
redir net

redir host

redir tos net

redir tos host

Echo req

Echo Resp

Ts req

Ts resp

Addr mask req

Addr mask resp '

EaL131§£§2ndg£usazzenlsuuuu
_—_____—___—__—___~—-——-————-——————-

Extended Column Headings
_________________—.____—_————————-———-—————

rows as for primary screens

APPENDIX v — 23

EX 1009 Page 155

EX 1009 Page 156

W0 92/1 9054 PCT/US92/02995

- 154 -

WW

node name node name
mac address mac address
ip address ip address _
port number port number
Application Protocol: , 7
start time last seen time

Standard Column Headings

____________________————————————-———
Pkfs

bytes
errors

1p {rags
flow ctl

WM
___________________.____—————————

Extended Column Headings
_________________—————-—————————
rows as for primary screens

M

APPENDIX V - 24

EX 1009 Page 156

EX 1009 Page 157

W0 92/l 9054 PCT/US92/02995

- 155 —

Wm

node name node name

mac address mac address

ip address ip address
port number port number
Application Protocol:
Connection Status: [active. closed-0k. closed reset. unknown]

start time last seen time

Standard Column Headings

Pkts

bytes

header bytes
errors

pkts bad seq #

bytes not acked

persists

keep alives

pkts rexmit

bytes rexmit

ack only pkt

window probes

pkts urg only

window update only

control pkts

dup only pkts

part dup pkts

dup bytes

out order pkts

out order bytes

data pkts afier window

bytes after window

pkts after close

dup acks
acks unsent data

ack pkts ‘

bytes acked by acks
current window

APPENDIX V - 25

EX 1009 Page 157

EX 1009 Page 158

WO 92/19054 PCT/US92/02995

-156-

W
______________________——————————-—
Extended Column Headings

rows as for primary screens ' "—‘—

1.1 -

node name node name
mac address mac address
ip address ip address
port number port number
start time last seen time

Standard Column Headings

variables as for NFS Group

Extended Column Headings

rows as for primary screens ‘—

5.1 1.15 Navigation

As for NFS group a hieararchy of screens is available:
1 client to server

2 client to file system

3 client to directory

4 client to file

5.12 Traffic Matrix Group (Not in release 1)

This screen shows traffic distribution between a selected node (or segment) and other
nodes (or segments) in the network.

For the DLL and 1? layers it is essentially a repeat of the dialogue screens. For the UDP
and TCP layers however it represents a summation over multiple connections between
the two nodes.

W

APPENDIX v - 25

EX 1009 Page 158

EX 1009 Page 159

W0 92/l9054 PCT/US92/02995

- 157 -

1 The user comes from a context of a specific segment or node plus a
protocol level and this screen must preserve this context.

2 If the selection propagated from the Summary Tool is a segment then the
distribution is segment to segment. if the selection is a node then the
distribution is node to node.

3 Values are shown in order of heaviest traffic to lightest.

4 The initial screen has the heaviest pairs of nodes or segments. Scrolled
screens contain progiessively lighter traffic loads.

5 The user can select the column by which the nodes are to be ordered and
request reordering. This allows the user to use this screen look at flow
control for example.

6 Double clicking on a node or segment in the display area allows the user
to move to this object as the focus of the traffic matrix ie if the user is
looking at a matrix for node A and selects node B (which is one oi" the
nodes in the matrix) they will get the traffic matrix for B.

7 Double clicking on the node which is the focus of the matrix (eg A in the
above example) selects the next segment or node. consistent with the
current view. Node views click to other nodes on the segment. Segment
views click to other segments. The segment (or) node selection will be
ordered alphabetically.

8 The data maintained between two nodes (or segments) will be aged out if
no communication between them occurs for a defined period (settable by

the user -eventually).

APPENDIX V - 7‘_l

EX 1009 Page 159

EX 1009 Page 160

W0 92/l9054 PCP/US92/02995

- 158 -

W

NodetSegment) Name

frm {rm byte byte err err flow flow tfl'c
rate rate rate ctl ct rt 96

________________________——————————-————
node(segment) l

node(segment)2

nodetsegmentm

This scrolls down to accomodate all nodes (or segments) required.

W

_____________________——————————————

frag frag tcp tcp
rate rexmxt rexm 11'.

___________________._.__—————————————
rows as primary screen ,

W

Node(Segment) Name

_______________________————————————

pkt pkt err err frag frag icmp flw flw tfl’c
rate rate ~ rate ctl ct rt 96

nodetsegmentll

node(segment)2

node(seément)n

This scrolls dowri to accomodate all nodes (or segments) required.

APPENDIX V - 28

EX 1009 Page 160

EX 1009 Page 161

wu 91/ 19034 PCT/US92/02995

-159-

W

This is invoked by selection of the ICMP entry for a node (segment) pair. The user is
vectored to the 1? traffic matrix screen in this case.

W

Node(Segment) Name

pkt pkt err err act rxmt rxmt flw flw tfl'c #
rate rate conn rate ctl ct rt % conns

___________________..___——-————————-

nodeisegment) 1

node(segment)2

node(seément)n

This scrolls down to accomodate all nodes (or segments) required.

APPENDIX V — 29

EX 1009 Page 161

EX 1009 Page 162

W0 92/1 9054 PCT/US92/02995

-150-

W

Nodc(chmcnt) Name

ctv flow flow tfl’c
pkt pkt err err a

rate rate conn ct] ctl rt %

nodc(scgmcnt)1 ' " '—————" ‘
node(scgment)2 -

- r

node(ségmcnt)n

This scrolls down to accomodatc all nodes (or segments) required.

APPENDIX V — 30

EX 1009 Page 162

EX 1009 Page 163

wu 74/ 1 Huaq I’Cl‘l US92/02995

'161-

W

W

Node(Segment) Name

r

pkt pkt err err actv flow flow tffe
rate rate conn ctl ctl rt %

_________________._.__.____—————————-

node(segment) 1

node(segment)2

node(se.gment)n
File systems on this node

_______________________—————————

file system 1

file system 2

file system 11

This scrolls down as required.

5.12.9.1.l Navigation

Double clicking on a file system invokes the file system screen for the selected file
system.

APPENDIX V - 31

EX 1009 Page 163

EX 1009 Page 164

“’0 92/l9054 PCI‘/US92/02995

-162-

W

Node(Segmentl Name

File System name

I!!!

pkt pkt err err actv flow flow tfl'c
rate rate conn oil oil rt%

nodeiscgmentll ' ‘—
nodeisegmentl2

nodeiseémentln
Directories on this file system

________________________————————————
directory 1

directory 2

directory :1

This scrolls down as required.

5.12.9.2.1 Navigation

Double clicking on a directory invokes the directory screen for the selected directory.

Node($egmentl Name

File System name

directory name

________________________—————-——————-——
pkt pkt err err aetv flow flow tfl'c

rate rate conn oil oil rt%
______________________——-——-———-—
nodeisegmentll , ,

node(segmentl2

node(segmentln ,
files in this directory (-

________________________——————-—————-———
file 1

file 2

file n

APPENDIX V - 3:

EX 1009 Page 164

EX 1009 Page 165

WU 92/ l 9054 PCT/US92/02995

- 163 -

This scrolls down as required.

5. 12.9.3.1 Navigation

Double clicking on a file invokes the file screen for the selected file.

APPENDIX V - 33

EX 1009 Page 165

EX 1009 Page 166

W0 92/19054 PCT/US92/02995

-164-

W

Node(Segment) Name
File System name

directory name

file name

pkt - pkt err err actv flow flow tfl'c
rate rate > com on ct! rt 96

node(segment)1 I
node(segment)2

node(se.gment)n

This scrolls down as required.

5. 13 Summary Screen for 'h’amc Matrix

Segl Seg2 Sega Segn

Segl frame frame frame
byte byte byte
error error error

Seg2 frame frame frame
byte ' ' byte byte
error error error

Seg3 frame frame frame
byte byte byte
error error error

Sega frame frame frame
byte byte byte
error error error

APPENDIX V - 3..

EX 1009 Page 166

EX 1009 Page 167

VVU 7A] 17UD‘.

\Oflfld‘Uth-JNH
H+4HN+4o

«sump-4

\OQQO‘UIbUNH
10

11

12

FL. I / U394” "£993

- 165 -

Claims

1. A method for monitoring communications which

occur in a network of nodes, each communication being

effected by a transmission of one or more packets among
two or more communicating nodes, each communication

complying with a predefined communication protocol

selected from among protocols available in said network,
said method comprising

detecting passively and in real time the contents

of packets, and

deriving, from said detected contents of said

packets, communication information associated with

multiple said protocols.

2. The method of claim 1 wherein said step of

deriving communication information includes deriving

communication information from associated with multiple
layers of at least one of said protocols.

3. A method for monitoring communication dialogs

which occur in a network of nodes, each dialog being

effected by a transmission of one or more packets among

two or more communicating nodes, each dialog complying
with a predefined communication protocol selected from

among protocols available in said network, said method

comprising

detecting the contents of packets, and

deriving from said detected contents of said

packets, information about the states of dialogs

occurring in said network and which comply with different

selected protocols available in said network.

4. The method of claim 3 wherein said step of

deriving information about the states of dialogs
comprises

EX 1009 Page 167

EX 1009 Page 168

W0 92/I 9054

0‘01

Hm~amtnpt»a:H
N

mewtur—suuw
mLnpc»h)H
2

PCT/US92/02995

-166-

maintaining a current state for each dialog, and

updating the current state in response to the

detected contents of transmitted packets.

5. The method of claim 3 wherein said step of

deriving information about the states of dialogs

Ix

comprises

maintaining, for each dialog, a history of events

based on information derived from the contents of

packets, and

analyzing the history of events to derive

information about the dialog.

6. The method of claim 5 wherein said step of

analyzing the history includes counting events.

7. The method of claim 5 wherein said step of

analyzing the history includes gathering statistics about
events.

8. The method of claim 5 further comprising

monitoring the history of events for dialogs which

are inactive, and

purging from the history of events dialogs which

have been inactive for a predetermined period of time.

9. The method of claim 4 wherein said step of

deriving information about the states of dialogs

comprises

updating said current state in response to

observing the transmission of at least two data related

packets between nodes.

10. The method of claim 5 wherein said step of

analyzing the history of events comprises

EX 1009 Page 168

EX 1009 Page 169

WU 92/ l 9054 PCT/US92/02995

GUI-bu

O‘UIobUNH

mfimmdfi-UNH

-167'-

analyzing sequence numbers of data related packets

stored in said history of events, and

detecting retransmissions based on said sequence

numbers.

11. The method of claim 4 further comprising

updating the current state based on each new

packet associated with said dialog, and

if an updated current state cannot be determined,

consulting information about prior packets associated

with said dialog as an aid in updating said state.

12. The method of claim 5 further comprising

searching said history of events to identify the

initiator of a dialog.

13. The method of claim 5 further comprising

searching the history of events for packets which

have been retransmitted.

14. The method of claim 4 wherein

the full set of packets associated with a dialog

up to a point in time completely define a true state of

the dialog at that point in time,

said step of updating the current state in

response to the detected contents of transmitted packets

comprises generating a current state which may not

conform to the true state.

15. The method of claim 5 wherein the step of

updating the current state comprises updating the current

state to "unknown".

16. The method of claim 14 further comprising

updating the current state to the true state based on

EX 1009 Page 169

EX 1009 Page 170

W0 92/19054 PCT/US92/0299S

-168-

3 information about prior packets transmitted in the

dialog.

17. The method of claim 15 further comprising

updating the current state to the true state based on
information about prior packets transmitted in thepc»Nr4
dialog.

18. The method of claim 3 wherein said step of

deriving information about the states of dialogs

occurring in said network comprises parsing said packets
in accordance with more than one but fewer than allmw-wa:H
layers of a protocol.

19. The method of claim 3 wherein each said

communication protocol includes multiple layers, and each

dialog complies with one of said layers.
LONH

20. The method of claim 3 wherein said protocols

include a connectionless-type protocol in which the state

of a dialog is implicit in transmitted packets, and saidmmm-wwp—a U]S'U 0HI D;(DH.4<’5Q P:3H)5n)d” H-O:1 mU‘8fl rt'3‘(D mrt9)(1'mI’ll 0H) n:Hn! |-'OQm

packets.

21. The method of claim 4 further comprising

parsing said packets in accordance a protocol and

temporarily suspending parsing of some layers of

said protocol when parsing is not rapid enough to match

the rate of packets to be parsed. .

22. A method of analyzing the performance of a

network of nodes which communicate via dialogs, each

dialog being effected by a transmission of one or more

packets among two or more communicating nodes, each

m'p‘UNHmuP-ri-I
EX 1009 Page 170

EX 1009 Page 171

\k

Ll

WU 72/ 1 3034 I’Cl '/ USSR/02995

\OODQG
10

11

12

13

14

15

bt»a:H

\OmflmmbUNl-I
HHrareH uhbJNI-JO

bc»a:H

- 169 -

dialog complying with a predefined communication protocol

selected from among protocols available in said network,

said method comprising

monitoring the operation of the network with

respect to specific items of performance during normal

operation,

generating a model of said network based on said

monitoring, and

setting acceptable threshold levels for said

specific items of performance based on said model.

23. The method of claim 22 further comprising

monitoring the operation of the network with

respect to the specific items of performance during

periods which may include abnormal operation.

24. Apparatus for monitoring communication

dialogs which occur in a network of nodes, each dialog

being effected by a transmission of one or more packets

among two or more communicating nodes, each dialog

complying with a predefined communication protocol

selected from among protocols available in said network,

said apparatus comprising

a monitor connected to the network medium for

passively, and in real time, monitoring transmitted

packets and storing information about dialogs associated

with said packets, and

a workstation for receiving said information about

dialogs from said monitor and providing an interface to a
user.

25. The apparatus of claim 24 wherein said

workstation further comprises

means for enabling a user to observe events of

acitve dialogs.

EX 1009 Page 171

EX 1009 Page 172

W0 92/I9054 PCI‘/US92/02995

\DmQO‘UIW>WNI-‘

HF'O‘HhardHm~Jm01.»wh)::S

\om~JmU1.>unoH
H O

meNl—I

-l70-

26. Apparatus for monitoring packet

communications in a network of nodes in which

communications may be in accordance with multiple

protocols, said apparatus comprising
a monitor connected to a communication medium of

the network for passively, and in real time, monitoring

transmitted packets of different protocols and storing

information about communications associated with said

packtes, said communications being in accordance with

different protocols, and

a workstation for receiving said information about

said communciations from said monitor and providing an

interface to a user,

said monitor and said workstation including means

for relaying said information about multiple protocols

with respect to communication in said different protocols

from said monitor to said workstation in accordance with

a single common network management protocol.

27. A method of diagnosing communication problems

between two nodes in a network of nodes interconnected by

links, comprising

monitoring the operation of the network with

respect to specific items of performance during normal

operation,

generating a model of normal operation of said

network based on said monitoring, and

setting acceptable threshold levels for said

specific items of performance based on said model.

28. The method of claim 27 further comprising the

steps of

monitoring the operation of the network with

respect to the specific items of performance during

periods which may include abnormal operation, and

N

EX 1009 Page 172

EX 1009 Page 173

WU HA1 130:4 I’Cl‘l US92/02995

\Omflm
F'H F‘o

\OQQO‘tUIhUNI—I
H+4H+4H+4HmLnaL»N+4o

meGLflthH

-171-

when abnormal operation of the network with

respect to communication between the two nodes is

detected, diagnosing the problem by separately analyzing

the performance of each of the nodes and each of the

links connecting the two nodes to isolate the abnormal

operation.

29. A method of timing the duration of a

transaction of interest occurring in the course of

communication between nodes of a network, the beginning

of said transaction being defined by the sending of a

first packet of a particular kind from one node to the

other, and the end of said transaction being defined by

the sending of another packet of a particular kind

between the nodes, comprising

passively and in real time monitoring packets

transmitted in the network,

beginning to time said transaction upon the

appearance of said first packet,

determining when the other packet has been

transmitted, and

ending the timing of the duration of the

transaction upon the appearance of the other packet.

30. A method for tracking node address to node

name mappings in a network of nodes of the kind in which

each node has a possibly nonunique node name and a unique

node address within the network and in which node

addresses can be assigned and reassigned to node names

dynamically using a name binding protocol message

incorporated within a packet, said method comprising

monitoring packets transmitted in said network,
and

EX 1009 Page 173

EX 1009 Page 174

W0 92/19054 PCI‘/US92/02995

-l72-

10 updating a table linking node names to node

11 addresses based on information contained in said name

12 binding protocol messages in said packets.

EX 1009 Page 174

EX 1009 Page 175

PCP/US92/02995
WU SA] 19034

NNNFGENNmEENNEEEa550mEamotzoza3vNN2N
NNNv

m2,NV!aEmzmo<z<zEEmmSommotzo:mm>mwmHEEEo2NN
EN

.vNNNmum!IMFDOEEEw>mwww:=n_aw.

NOD—EmEEEOE—ZOEavNN_owVF N

1/38

vNNNmNwan—EmEmm>mmmMERE—200Eo
3

m>>m>>$0.520.)—IaE._.zm_>_m_0<2<s_3opNNN

SUBSTITUTE SHEET

EX 1009 Page 175

EX 1009 Page 176

wu 3L! 1 vuaq PC 1I U592/“2993

2/38

”$3230” M.SNMP .SMTP TELNET XWINDOWS

PRESENTATION

LAYER

SESSION

LAYER

TRANSPORT

LAYER UDP TCP

ICMP 'NETWORK - ARP’RARP

*

LAYER

LINK

LAYER ETHERNET

PHYSICAL

LAYER

FIG 2

SUBSTITUTE SHEET

EX 1009 Page 176

EX 1009 Page 177

FL 1 I U591]“£993VVU 7‘! .I 7UD‘I

3/38

mOHn:

hmzmehw
mGE

>>Ooz_>>

zzEx.
_>w0ozEon.Eon.n.mm<xo<5mm0mm

SUBSTITUTE SHEET

EX 1009 Page 177

EX 1009 Page 178

WU 9/./ I VUD-I:

4/38

NODEA NODEB

LAYER nw»LAYER n
. C

O .

—°— PACKETS '
LAYER 1 LAYER 1

SUBSTITUTE SHEET

PCI/ US92/UZ995

EX 1009 Page 178

EX 1009 Page 179

"U 75/ l 7UD-i FL, I / U391] U133?

5/38

KERNEL 2_Q

TEST _Q

BOOT/LOAD 22

2

STATS 35

. RTP EVENT TIMING
MODULE 4;;

32 ADDRESS TRACKER

MTM

BA

DRIVER

24

43

 CONTROL 42

FIG 5

SUBSTITUTE SHEET

EX 1009 Page 179

EX 1009 Page 180

WU 74/ 1 703-9 FL I I U39“ 0.593:

6/38

SERIAL LAN LAN SERIAL

REC'V REC'V XMIT XMIT

ISR ISR ISR ISR

C C

0%$9;
0

@ 0

FIG 6,

SUBSTITUTE SHEET

EX 1009 Page 180

EX 1009 Page 181

VYU 7A] 17U3‘l’

7/38

DLL SEG STATSDLL SEG ADDR1 ‘71:;
LINK

HASH LINK

ADDRESS

FLAGS

TYPE

PARSE-CONTROL

EM-CONTROL

START-TIME

FIRST-SEEN

LAST-SEEN

STAT-PTS

DLL SEG ADDR 2 5 “04

.

frames;

frameRate;

frameBuckets;

bytes;

byteRate;

byteBuckets;

errors;

errorRate;

errorBuckets;

rchffSegs;

rchffSegRate;

rchffSegBuckets;

xmtOffSegs;
xmtOffSegRate;

xmtOffSegBuckets;

transits;

transitRate;

transitBuckets;

 boasts;

bcastRate;

bcastBuckets;

 mcasts;

mcastRate ;

mcastBuckets;

 collisions;

collisonRate;

alignment Errors;

alignment ErrorRate;

enetFrames;

enetFrameRate;

 llcFrames;

IIcFrameRate;

 runtFrames;

runtFrameRate;

PC1‘IUS92/0299S

'f-130

[—134

DLL PROTOCOL STATS 1

LINK

PROTOCOL

FRAMERATE

DLL PROTOCOL STATS 2

LINK

PROTOCOL

FRAMES

FRAMERATE

136

138

140

142

144

136

DLL PROTOCOL STATS n

LINK

PROTOCOL

FRAMES

FRAMERATE

EX 1009 Page 181

EX 1009 Page 182

WU flu I HUD-I PCI‘I US92/02995

8/38

frames;

MAC ADDR 1

frameRate;

LINK

figgfflgf‘s-
rchrameRate;

xthrames;

xthrameRate;
PARSE-CONTHOL

bytes; TODLLD'ALOG
byteRate; RECORD
byteBucketS: ,

rcvaytes: f1“)rchyteRate:

xmtBytes: DLL DIALOG LINK 1 ‘58

MAC ADDRZ “8 xm’BY‘eRate‘ _i168
errors; DIALOG-ADDR-PTR 17o

- errorRate; 0
“ errorBuckets: .

rchrrors: .
 rchrrorRate:

xmtErrors:

xmtErrorRate;

MAC ADDR r 148 revofisegs;
rchffSegRate;

'7‘ rchffSegBuckets;

xmtOffSegRate;

xmtOffSegBuckets;

 fBZ
DLL PROTOCOL STATS :

 xmthasts;

xmthastRate;

xmthastBuckets;

LINK

 xthcasts;

xthcastRate;

xthcastBuckets;

 enetFrames;

enetFrameRate;

 llcFrames;

IlcFrameRate;

runtFrames;

runtFrameRate;

dialogQ;

protocolQ

FIG 7B
154

156
L164

SUBSTITflE§§J§I§ESI

EX 1009 Page 183

WU 9M 1903-} PC] / US92/UZ995

9/38

(171
DLL DIALOG 1 172

LINK
 174

 DLL DIALOG STATS 178

protocolEntries;

protocols [10]

 180

182

startTime;

IastTime;

a|armsSent;

packets;

packetRate:

176 bytes;

' em"

' ll errorRate;
M fragments;

1 6 fragmentRate;
rexmts;

' rexmtRate;
' flothris;
' 172 flothrlRate;

184 transportProtocol;
'7'— 186 applicationProtocol;
“ 188 initiator; FOR UDP & TCP

‘76 190 “a“; DIALOGS
192 closeReason;
194 statePointer;

FIG 7C

SUBSTE?UTE Sui-123E? EX 1009 Page 183

EX 1009 Page 184

I’L I / UDHLI ULVVD'1 U 75/ .l 7U.“l

1 0/38

302303:m._o>owm230222:um0250.6umwhim<55mo“.2004225222:um9505um%
++mm0._ommE<

230222:

230222:um230222:umm>_.ro<z_0mm0._o025040
14&

WEE<55202200.—52:mmgoESE
m0E

mmmaxm5.2:.m>_._.o<z_

mmnEDOmmEw._o>owm

++mmgommE<

230222:umImmogoGEL?

230222:um0250.6um
ImmoqommE<

whim<5020...200..

Ex“.8any

9530um

-.zzoomag:zzouDEEmmomaofimmwogommmmogowmm$88me
$85no:5

35mEaHim55IE92:2059mo”.69m8v59ES-.228max:”.20mmfido0250.6um0260.20umm00mmmw<m._mm20¢2004xo<<._.<0

i$90$5$2:$06:25$2:$90E5$2:$90:25$2:$90:25-.zzoom>_5<-.228m>_8<I2288;:$520noso++228m>zo<xEmaImmomo”.0.5020:.omzzoo 396mm505mm526mm528:
mmmixm

$2:$30:2552:W85E55::wmodE52:mop.3E29:E69ESQ:E69ME;Ea20<m9.0m.
2:62:23.m

886$886%888um2255.2:.m2255.2:.m3:87.28.m

++mmgommE<

“.20Homzzoo200mmHomzzoo

02.5m2200um

 <53ozfiomzzoo22,0222:%

EX 1009 Page 184
SUBSTITUTE SHEET

EX 1009 Page 185

W U 74/ 1 7034 I’Clvl US92/UZ995

11/38

216

HISTORY TABLE ENTRY

SUBSTITUTE SHEET

EX 1009 Page 185

EX 1009 Page 186

WU yu I 9034 PCT/US92/02995

12/38 230

SEARCH BACK THROUGH HISTORY 232 7

234

DO NODES 1 AND 2 EACH HAVE AT LEAST

TWO DATA OR ACK COMBINATIONS WITH NO

NO CONNECT/DISCONNECT/ABORT

INTERSPERSE BETWEEN THEM?

42

FIG10

242

SEARCH BACK THROUGH HISTORY

 FIG 11
244

DID NODES 1 & 2 EACH SEND

CONNECT-RELATED PACKETS 248

YES

CONNECTION

CONNECTION INITIATOR IS INITIATOR
FIRST NODE IN HISTORY UNKNOWN

EXIT EXIT

SUBSTITUTE SHEET

EX 1009 Page 186

EX 1009 Page 187

wu ”I 1 HUD-I PL"! / U592/UZ99:

1 3/38

250

SEARCH BACK THROUGH HISTORY 252 .4:

DID SAME INITIATOR NODE

SEND DATA TWICE?

258

NO RETRANSMISSION

HAS OCCURRED

RETRANSMISSION HAS OCCURED

RETRANSMISSION ++

EXIT

256

FIG 12

SUBSTITUTE SHEET

EX 1009 Page 187

EX 1009 Page 188

WU 74/ 1 yup-i l’Cl / US92/UZ995

1 4/38

SEQ. ISR RTP STATS TR

SEQ. STATS EM MTM Xmit WORKSTATION

FIG 14

SUBSTITUTE SHEET

EX 1009 Page 188

EX 1009 Page 189

w U MI 1 9034 PCl'/ US92/02995

15/38

SEQ. LanlSR RTP MTM Recv EM STATS MTM Xmit WS

SEQ. LanlSR RTP MTM Recv EM CONTROL MTM Xmit WS

SUBSTETUTE SHEL'T EX 1009 Page 189

EX 1009 Page 190

w u 91/ ”U34 PCT/ [1592/02995

16/38

FIG 17

'2“: 5‘ i" ”‘3'SUBSTE- LT... 53 it“ EX 1009 Page 190

EX 1009 Page 191

w u 75/ l 703-! I’LL] / US92/U2995

1 7/38

Update Interval: None,

Type= -an_ Dam

602

604

. , 606
Dialogs / Connections

SUBSTITUTE SHEET

EX 1009 Page 191

EX 1009 Page 192

WU 9U 19034 I’L'l/ UD9ZIU£99D

1 8/38

0 Protocol Tree: <Seg. or Node Name>

Protocol: @ UDP

FTP Dec/DecNet
SMTP'

m. Telnet Novell
X Windows

Application ..

NFSP
Presentation ...

Session

Ethernet/802.3

Data Link ...
SUBSTITUTE SHEET

EX 1009 Page 192

EX 1009 Page 193

hi

W'U 91/19UD4 PCf/US92/02995

Data Link 19,38

Current 5 Min. 15 Min. 10 Min. Max 60 Min. Max Accum.Val.

Frame Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn,nnn

Byte Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn,nnn

ENOFSI nnn,nnn nnn,nnn nnn,nnn - - n,nnn,nnn

Broadcast Frm. Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn,nnn

MUlticaSthm- Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn.nnn

Off Segment Frames

In: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

Out: nnn % nnn % nnn % nnn % nnn % n,nnn.nnn

"Transit: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

Most Active Protocols (Frm. Rate)

1234567890123456 nnn %

Most Active Nodes (Frm. Rate)

1234567890123456 nnn %

<protocol> nnn % <node> nnn %

<protocol> nnn % <node> nnn %

<protocol> nnn % <node> nnn %

<protocol> nnn % <node> nnn %

Total Segment Bandwidth: nnn % Total Active Dialogs: nn, nnn

FIG 20A

IF’

Current 5 Min. 15 Min. 10 Min. Max 60 Min. Max Accum.Val.

Packet Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn.nnn
Byte Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn,nnn

Errors: nnn,nnn nnn,nnn nnn,nnn - - n,nnn.nnn
Broadcast Pkt- Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn.nnn
Multicastht. Rate: nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls nn,nnn ls n,nnn.nnn

Flow COHII'OISI nnn,nnn nnn,nnn nnn,nnn - - n,nnn,nnn

Fragments: nnn,nnn nnn,nnn nnn,nnn - - n,nnn.nnn

Off Segment Packets

In: nnn % - nnn % nnn % nnn % nnn % n,nnn,nnn

Out: nnn % nnn % nnn % nnn % nnn % n,nnn.nnn

"Transit: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

Most Active Protocols (Pkt. Rate)

1234567890123456 nnn -%

<protocol> nnn %

<protocol> nnn %

<protocol> nnn °/o

<protocol> nnn %

Total Segment Bandwidth: nnn %

SUBSTETU?E SHEET

Most Active Nodes (Pkt. Rate)

1.234567890123456 nnn %

<node> nnn %

<node> nnn %

<node> nnn %

<node> nnn %

Total Active Dialogs: nn. nnn

FIG 208

EX 1009 Page 193

EX 1009 Page 194

lPr

WU 71.] IVUDW

UD P Current 5 Min.
Packet Rate: nn,nnn /s nn,nnn /s

Byte Rate: nn,nnn /s nn,nnn ls

Errors: nnn,nnn nnn,nnn

Flow Controls: nnn,nnn nnn,nnn

Off Segment Packets
In: nnn % nnn %

Out: nnn % nnn %

"Transit: nnn % nnn %

Most Active Protocols (Pkt. Rate)

1234567890123456 nnn %

<protocol> nnn %

<protocol> nnn %

<protocol> nnn %

<protocol> nnn %

Total Segment Bandwidth: nnn %

TCP

Current 5 Min.

Packet Rate: nn,nnn ls nn,nnn ls

Byte Rate: nn,nnn Is nn,nnn ls

EffOI'SI nnn,nnn nnn,nnn

Flow COUtI'OISI nnn,nnn nnn,nnn

Retransmissions: nnn,nnn nnn,nnn

Off Segment Packets

In: nnn %- nnn %

Out: nnn % nnn %

"Transit: nnn % nnn %

Most Active Protocols (Pkt. Rate)

1234567890123456 nnn °/o

<protocol> nnn %

<protocol> nnn %

<protocol> nnn %

<protocol> nnn %

Total Segment Bandwidth: nnn %

FL 1 / UDBA/ 01993

20/38

15 Min. 10 Min. Max 60 Min. Max Accum.Val.

nn,nnn /s nn,nnn /s nn,nnn /s n,nnn,nnn

nn,nnn /s nn,nnn /s nn,nnn ls n,nnn,nnn

nnn,nnn - - n,nnn,nnn

nnn,nnn - - n,nnn,nnn

nnn % nnn % nnn % n,nnn,nnn

nnn % nnn % nnn % n,nnn,nnn

nnn % nnn % nnn % n,nnn,nnn

Most Active Nodes (Pkt. Rate)

1234567890123456 nnn %

<node> nnn %

<node> nnn %

<node> nnn %

<node> nnn %

Total Active Dialogs: nn, nnn

15 Min. 10 Min. Max 60 Min. Max Accum.Val.

nn,nnn /s nn,nnn /s nn,nnn /s n,nnn,nnn

nn,nnn ls nn,nnn Is nn,nnn /s n,nnn,nnn

nnn,nnn - - n,nnn,nnn

nnn,nnn - - n,nnn,nnn

nnn,nnn - - n,nnn,nnn

nnn % nnn % nnn % n,nnn,nnn

nnn °/o nnn % nnn % n.nnn.nnn

nnn °/o nnn % nnn % n,nnn,nnn

Most Active Nodes (Pkt. Rate)

1234567890123456 nnn °/o

<node> nnn %

<node> nnn %

<node> nnn %

<node> nnn %

Total Active Connections: nn. nnn

FIG 20D

SUBSTITUTE SHEET

EX 1009 Page 194

EX 1009 Page 195

I’i

WU 7L/ IVUDH' FL 1 / Ubyll U£993

21/38

ICDAAF’
Current 5 Min. 15 Min. 10 Min. Max 60 Min. Max Accum.Val.

Packet Rate: nn,nnn Is nn,nnn /s nn,nnn rs nn,nnn ls nn,nnn ls n,nnn,nnn
Byte Rate: nn,nnn ls nn,nnn ls nn,nnn /s nn,nnn /s nn,nnn /s n,nnn,nnn

Errors: nnn,nnn nnn,nnn nnn,nnn - - n,nnn,nnn

Off Segment Packets

In: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

Out: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

“Transit: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

ICMP Types Seen (Count) Most Active Nodes (Pkt. Rate)

Address Mask: nnn,nnn Redirect: nnn,nnn 1234567890123456 nnn %
Dst. Unreachable: nnn,nnn Source Quench: nnn,nnn <node> nnn %

Echo: nnn,nnn Time Exceeded: nnn,nnn <node> nnn %
Param. Problem: nnn,nnn Time Stamp: nnn,nnn <node> nnn %

<node> nnn "/0

Total Segment Bandwidth: nnn % ,

FIG 20E

NFS

Current 5 Min. 15 Min. '10 Min. Max 60 Min. Max Accum.Val.

Packet Flate: nn,nnn /s nn,nnn Is nn,nnn ls nn,nnn ls nn,nnn /s n,nnn,nnn
Byte Rate: nn,nnn /s nn,nnn /s nn,nnn ls nn,nnn ls nn,nnn ls n,nnn,nnn

Errors: nnn,nnn nnn,nnn nnn,nnn - - n,nnn,nnn
Flow Controls: nnn,nnn nnn,nnn nnn,nnn - - n,nnn,nnn

Off Segment Packets

In: nnn % nnn °/o nnn % nnn % nnn % n,nnn,nnn
Out: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

"Transit: nnn °/o nnn % nnn °/o nnn % nnn % n,nnn,nnn

Total Segment Bandwidth: nnn %

Most Active Nodes (Pkt. Rate)

1.234567890123456 nnn °/o

<node> nnn °/o

<node> nnn %

<node> nnn %

<node> nnn %

Total Active Dialogs: nn. nnn

FIG 20F

SUBSTITUTE SHEET

EX 1009 Page 195

EX 1009 Page 196

(’1

PC] / U592/UZ995WU 74/ l VUDQ

22/38

Ar /Rar
p p Current 5 Min. 15 Min. 10 Min. Max 60 Min. Max Accum.Va1.
Packet Rate: nn,nnn /s nn,nnn /s nn,nnn ls nn,nnn /s nn,nnn /s n,nnn,nnn

Byte Rate: nn,nnn /s nn,nnn ls nn,nnn /s nn,nnn ls nn,nnn /s n,nnn.nnn
Errors: nnn,nnn nnn,nnn nnn,nnn - - n,nnn,nnn

Off Segment Packets

In: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

Out: nnn % nnn % nnn % nnn % nnn % n.nnn,nnn

“Transit: nnn % nnn % nnn % nnn % nnn % n,nnn,nnn

Most Active Nodes (Pkt. Rate)

1234567890123456 nnn %

<node> nnn %

<node> nnn %

<node> nnn %

<node> nnn %

Total Segment Bandwidth: nnn %

FIG 20G

Packets

Stan Last Summary
Time Seen Dir. Partner Node Protocols Rate % Count Errors
hh:mm:ss hhzmmzss1234 12345678901234561234567890123456nn,nnn Is nnn % n.nnn,nnn nnn,nnn

1023204 15:31:47 To robin XNS,XEROX-PUP 325/3 6% 2,641 0
07:21:38 13:25:51 From hawk DOD-1P, X25 87/5 3% 127 1

BBN-SIMNET '.
10/31/90 0822130 ? hawk APPLETALK 13/3 1% 24.192 4

FIG 21

SUBSTITUTE SHEET

EX 1009 Page 196

EX 1009 Page 197

wu 34/ lvua-l I’Ll/ U391/0199D

23/38

E Data Tool

Update Rate “We

Type— -snamL— -.___
-Protocol... DLL

Rate Values High Sampling
Current T p'cal Hi - hest Lowest Threshold Rate

Frame Rate (Is)

In 0 117 0 0

Out 0 117 0 0

Total 0 117 0 0
Oil Seg. Frame Rate (/5)

ln 0 0 0 0

Out 0 0 0 0

Lacie ° ° ° 0a me ae s

rt: () o o o o 520
Out 0 0 0 0

Total 0 o o 0

Byte Raitreos) 0 0 0

 Highest Lowest High Threshold
hart: halt: 0. It '

Count Values WWW
hair: ha -

lat-h. ‘

Frames

in 17.786 5,000 2,786
Out 14.097 0 14,097

Total 31,883 0 16.883
Oil Seg. Frames

, In 2,943 0 2,943

Out 2,728 o 2.728 622
Total 5.671 0 5,671

Local Frames 7
in 14,843 0 0

Out 1 1,369 0 1 1 .369
Total 26,212 0 11.212

Bytes
In 0


~~~~~~~~~ Count ~——-—-——--

Delta Hi Delta Low Delta Total

DOD [P 31,678
' 205

Protocols Seen  
 

Current Hihest

0/5
 

 
 

   

 
 

SUBSTITUTE SHEET

EX 1009 Page 197



EX 1009 Page 198

"U 71-! 17UJ'I I’LJ / UbBL/UZ99D

24/38

 
FIG 23

SUBSTITUTE SHEET

EX 1009 Page 198



EX 1009 Page 199

I’L'I / U592/UZ995
VVU 7L] 1 VUD-l'

25/38

302
SEND LEARNING COMMAND

TO MONITOR

PERIODICALLY SAMPLE & STORE

SNAPSHOTS OF RELEVANT

PERFORMANCE PARAMETERS

   PERFORMANCE

HISTORY

DATABASE

   
 

 

  

AFTER LEARNING PERIOD HAS 308

I
I
I

:

EXPIRED, SEND STOP LEARNING

COMMAND TO MONITOR ;
I

I
I

I

I

 

 COMPUTE STATISTICS FOR

RELEVANT PERFORMANCE

PARAMETERS

 
  

ESTABLISH NEW SET OF 312
THRESHOLDS FOR RELEVANT

PARAMETERS

314
SEND NEW SET OF

THRESHOLDS TO MONITOR

 
FIG 24

SUBSTITUTE SHEET

EXIT

EX 1009 Page 199



EX 1009 Page 200

w u 34/ 1 9U34 PCT/ US92/02995

26/38

SEGMENT S1

SEGMENT 82
324

MONITOR ROLFgER

SEGMENT $3

 
FIG 25

SUBSTITUTE SHEET

EX 1009 Page 200



EX 1009 Page 201

wu 74/ 1 yua» l’Cl / US92/UZ995

/\ 400 27/33
024

IS THERE TCP PROBLEM AT NODE A (SOURCE)?

YES 404

TELL USER THERE IS A HIGH  
  

  
  

 

  
  

  

  
    

  
 

NO PROBABILITY PROBLEM AT EXIT
NODE A (SOURCE) AND REPORT

DETAILS OF INVESTIGATION

406

IS THERE TCP PROBLEM AT NODE B (SINK)? 408
YES

TELL USER THERE IS A HIGH

No PROBABILITY PROBLEM AT EXIT
NODE B (SINK) AND REPORT
DETAILS OF INVESTIGATION

IS THERE TOP PROBLEM ON LINK? 41°

YES

412

TELL USER THERE IS A HIGH

No PROBABILITY OF PROBLEM ON EX”
LINK AND REPORT DETAILS OF

INVESTIGATION

414

IS THERE TOP PROBLEM AT NODE B (SOURCE)?

YES 416

TELL USER THERE IS A

NO MEDIUM PROBABILITY OF PROBLEM EXIT
ON NODE B (SOURCE) AND REPORT

DETAILS OF INVESTIGATION

' 418

IS THERE TOP PROBLEM AT NODE A (SINK)?

YES 420
NO

422 TELL USER THERE IS A

MEDIUM PROBABILITY OF PROBLEM EX”

NOT ABLE TO ON NODE A (SINK) AND REPORT
ISOLATE DETAILS OF INVESTIGATION

LOCATION OF

PROBLEM

EXIT

SUBSTITUTE SHEET

EX 1009 Page 201



EX 1009 Page 202

WU BAI [HUD-I I’Ll / U592/Ul993

28/38

[\450
452

IS ANY OTHER TCP FOR THIS YES

SOURCE NODE OK?
454

NO REPLY NO NODE PROBLEM

455 EXIT

IS THERE A DLL PROBLEM YES

FOR THIS SOURCE NODE 458

No REPLY DLL PROBLEM FOR NODE

EXIT460

IS THERE AN IP PROBLEM YES
FOR THIS SOURCE NODE 462

NO REPLY IP PROBLEM FOR NODE

464
EXIT

  

  
ARE ANY OTHER TCP'S ON

THIS SOURCE NODE NOT OK?
466

' REPLY TCP PROBLEM ON NODE

YES

EX” FIG 27

SUBSTITUTE SHEET

EX 1009 Page 202



EX 1009 Page 203

WU 34/ IHUD-I I’LQI/Ub9l/Ul99:

29/38

fi 470
472

IS ANY OTHER TCP FOR THIS YES
i)

SINK NODE OK. 474

NO REPLY NO NODE PROBLEM

476

IS THERE A DLL PROBLEM YES

FOR THIS SINK NODE?
478

r REPLY DLL PROBLEM FOR NODE
NO WHEN ACTING AS SINK

480

IS THERE AN IP PROBLEM YES
FOR THIS NODE WHEN 482

ACTING AS A SINK

REPLY IP PROBLEM FOR NODE

N0 WHEN ACTING AS SINK

434

 

  

ANY OTHER TCP'S ON THIS

SINK NODE OK?
' 488

REPLY TCP PROBLEM ON NODE

WHEN ACTING AS SINK

EX'T FIG 28

 

ll
SUBSTITUTE SHE

u k

T

EX 1009 Page 203



EX 1009 Page 204

w U 74/ 1 VUD-I I’LL] / U592/UZ993

 

30/38

LINK ANALYSIS

LOGIC ,I'\ 550
552

IS ANY OTHER TCP ON YES
'2

THIS LINK OK. 554
NO 554

REPLY NO LINK PROBLEM
DECOMPOSE LINK

556

IS LINK COMPONENT YES
PROBLEM AT IP?

557

REPLY IP PROBLEM ON LINK
NO

558

IS THERE A LINK YES
COMPONENT PROBLEM 559

AT DLL?

NO REPLY DLL PROBLEM ON LINK

560

IS THERE ANOTHER TCP YES
ON THIS LINK?

562

NO REPLY TCP PROBLEM ON LINK

564

REPLY THAT THERE IS
NOT ENOUGH INFO TO FIG 29
DETERMINE IF THERE

IS A LINK PROBLEM 
EX 1009 Page 204



EX 1009 Page 205

wu bu/ HUM PCl‘l US92/02995

31/38

p490
492

CHECK IP STATISTICS AGAINST

MODEL

494

ARE THERE ANY SIGNIFICANT

DEVIATIONS FROM IP MODEL?

YES 496

REPLY IP PROBLEM AT NODE

   
  

   498

REPLY NO IP

PROBLEM AT NODE

FIG 31 EXIT

[\ 510
512

CHECK DLL STATISTICS

AGAINST MODEL

514

ARE THERE ANY SIGNIFICANT

DEVIATIONS FROM DLL MODEL?

YES 516

REPLY DLL PROBLEM AT NODE 518

REPLY NO DLL

PROBLEM AT NODE

FIG 30 Em

   

    
  

SUBSTITUTE SHEc-r EX 1009 Page 205I.-



EX 1009 Page 206

WU 91/ 1903-}

CHECK DLL STATISTICS FOR L N

COMPONENT AGAINST MODEL

8

PCI‘/ US92/02995

 

32/38

fi 570
572

CHECK IP STATISTICS FOR LINK

COMPONENT AGAINST MODE

5

L

74

  

 

  
  

  
ARE THERE ANY SIGNIFICANT

DEVIATIONS FROM IP LINK

COMPONENT MODEL?

YES 576

578
REPLY IP PROBLEM AT LINK

REPLY NO IP

PROBLEM AT LINK

COMPONENT

 
  

 

 

EXIT

FIG 32

p580
582

EXIT

  K

4

l

5

  

  
 

ARE THERE ANY SIGNIFICANT
DEVIATIONS FROM DLL LINK

COMPONENT MODEL?

YES 586

588

REPLY DLL PROBLEM AT LINK KT
COMPONENT

REPLY NO DLL

PROBLEM AT LINK

COMPONENT

FIG 33 EXIT

SUBSTITUTE SHEET»

  

  
 

EXIT

EX 1009 Page 206



EX 1009 Page 207

wu 91/191134 PCT/US92/02995

33/38

 

~ ' 1'2? 63' It?“



EX 1009 Page 208

LL

V'U 7A] 17".)”

34/38

 

 
 

320

 

  

GET NEXT PACKET

TIME THIS EVENT?

YES

IS IT A START TIME?

NO

COMPUTE TRANSACTION

TIME

COMPUTE AVERAGE

TRANSACTION TIME

332
AGE ENTRIES?

DELETE OLD

ENTRIES

 

 
 

 
 

334

FL 1 / Ule/Ul99:

326

 

  ADD TIME TO EVENT

TIMING DATABASE

  

FIG 35

EX 1009 Page 208



EX 1009 Page 209

1)

WU YA/ l VUD-I

711 711

35/38

I’Cl / [1592/02995

- - FILE SERVER

GATEWAY

708

UNIX

711

708

GATEWAY

NFS FILE SERVER MANAGEMENT

WS

SUBSTITUTE

FIG

SHEET

70

MONITOR 710

714 712

704

36

EX 1009 Page 209



EX 1009 Page 210

wu 94/ 19034 PCT/ US92/02995

36/38

 
FIG 37

SUBSTITUTE SHEET EX 1009 page 210



EX 1009 Page 211

LA.

WU 92/ 19054 PCT/ US92/02995

37/38

730

GET NEXT PACKET  

 
 

7

IS IT NEW NAME LOOK UP?

0

738

AGE NAMES?

SUBSTITUTE 52%:

 

 

  
736

ADD NAME TO

TABLE  

 744
DELETE OLD

NAMES  

FIG 38

«-if
f

EX 1009 Page 211



EX 1009 Page 212

WU 91/ lVUD-i FL I l UDHL/Ul993

38/38

DO NAME TABLE WORK

748

”0 IS IT NPB?

IS IT AN IP

ADDRESS RESPONSE?

YES

LOOK UP

REQUESTOR NAME

IN NAME TABLE

  

 

 

 

  
750

 
 752

 
  

 754

ADD REQUESTOR NAME,
REQUESTOR ADDRESS

AND IF ADDRESS

TO NAME TABLE

 
  

  
 

756

  
PURGE OLD lP

ADDRESS

  758

 FIG 39

SUBSTITUTE SHEET
EX 1009 Page 212



EX 1009 Page 213

A. CLASSIFICATION 01" SUBJECT MATI'ER

m5) :HMJ 3/14; H04: 3124; H041. 12156
Us CL 13mm, 17. 94.1; 340375.52

Accordingtn hum-mm Pam Classification ape) or no both manual clussifiutionsnd me

Minimum dommcutstion arched (classification system follow by classification symbols)

U.s. : 370/60;371I20.1; 340182536, 825.07. 825.53; 3641514. 550

Documfionsumhedotlmthsn minimum documentation»!!! mun: suchdocumcds m ‘moluled in thc fields latched

Electmnicdmhueoonsulmdduringlhc imemafionslsouchmslmofdm bssclnd, mmle. “2th used)

USPl‘O APS (Naomi-k Maxim);

(Pumas! snslyur)

C. DOCUMENTS CONSIDERED T0 PE RFJJEVANT

Chfiou of dowmmt, with indication, when uppmprism, of tho mun pun-Isa Relevant to claim No.

us. A, 5,101,402 (Chin a u) 31 Msmh 1992 (31.03.92). Column 6. line 32 to column 1i
8. line 10. Figs. 15 and 15.

US, A, 4,887,250 (Cuties! ct II) 12 Deounba'1989 (12.12.89). Column 3. lines 21-51;

Column 5. linu 50-68; Column 6. line 48 to column 7, line 38; Fig. 6.

US, A, 5,025,491 ('I'suchiys at a!) 18 June 199-1 (18.06.91)

US. A. 4.811.080 (SW) 28 Much 1989 (2835.89) column 4, line 23.31; column 5. lines 1.24-26

19-37: olsim 1; Fig.1 and 3.

E] FurtherdocuumnmlismdiuuwoonunmuonnfBoxC. E] Seculmtfamflymncx.
Specials-unshared“:

mmummxummiuw
bbcpmofpmiulhrw

WMMuusflufi-mem

Mullah-y “Mammal-“5
“umuhmwuwmum
WW(-ymfi-l)

mmunufldeusmi-wofiu

wwwmhummmumu

Dmofthcuctusloomplaiouofdwwumfiomlsarch Duofmilixigoftlwinlcmlfionalsurchxwon

08 JULY 1992

Narmandmsiling sddmsofthclSAl
WflgmflTfldomrh
BoxPCl'

 
EX 1009 Page 213


