PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification S : (11) International Publication Number: WO 92/19054
HO04J 3/14, 3/24, HO4L 12/56 Al (43) International Publication Date: 29 October 1992 (29.10.92)
(21) International Application Number: PCT/US92/02995 | (74) Agent: PRAHL, Eric, L.; Fish & Richardson, 225 Franklin

» Street, Boston, MA 02110-2804 (US).

~ (22) International Filing Date: 10 April 1992 (10.04.92)

. (81) Designated States: AT (European patent), BE (European
» (30) Priority data: patent), CA, CH (European patent), DE (European pa-
684,695 12 April 1991 (12.04.91) Us tent), DK (European patent), ES (European patent), FR

(European patent), GB (European patent), GR (Euro-

pean patent), IT (European patent), JP, LU (European

(71) Applicant: CONCORD COMMUNICATIONS, INC. patent), MC (European patent), NL (European patent),
[US/US]; 753 Forest Street, Marlboro, MA 01752 (US). SE (European patent).

(72) Inventors: FERDINAND, Engel ; 21 Joseph Road, Nor-
thborough, MA 01532 (US). JONES, Kendall, S. ; 90| Published
Boulder Road, Newton Center, MA 02159 (US). RO- With international search report.
BERTSON, Kary ; 398 North Road, Bedford, MA 01739
(US). THOMPSON, David, M. ; 5127 243rd Road, Red-
mond, WA 98053 (US). WHITE, Gerard ; 133 Massa-
poag Road, Tyngsborough, MA 01879 (US).

(54) Title: NETWORK MONITORING

-2
ANA I-L| [(—l I—;-I I/
,HM SEMENTH P | pc | | ws | [monm
14
IVAXI |com=unsssnven| stl amuee] 8
4

-
2 2 o2 e
6 ﬁ l PC l IFILE SERVEHI IMONITOFIl
{ I — =
MANAGEMENT] | vax ZB
ws
2 2 : 2
14

: 2 10 2
- . I PC | Wommnl | PC I | wsl
I
1 1 L
|VAx| |ws| IFILESERVEHI s L
2 2 2

[22

(57) Abstract

Monitoring is done of communications which occur in a network of nodes (2), each communication being effected by a
transmission of one or more packets among two or more communicating nodes (2), each communication complying with a prede-
fined communication protocol selected from among protocols available in the network. The contents of packets are detected pas-
sively and in real time, communication information (130, 152, 178) associated with multiple protocols is derived from the packet
contents.

EX 1009 Page

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ

BR
CA
CF
cG
CH
Ct

M
cs

DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCI" on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faxo
Bulgaria

Bunin

Brasil

Canada
Central African Republic
Congo
Switzerlind
Cote d'lvoire
Cameroon
Crechostovakia
Germany
Dennark

ES
Fl
FR

GB
GN
GR
HU

JP
Kp

KR
L1
LK
Ly
MC

Spiin

Finland

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

faly

Japan

Demacratic People’s Republic
of Korea
Republic of Korea
{ iechtensicin

Sri Lanka

[uxembourg
Monaco

MG
MI.
MN
MR
Mw
NL
NO
PL
RO
RU
SD
SE
SN

TD
TG
us

Madagascar

Mali

Mongolia
Mauritania
Malawi
Netherlands
Norway

Poland

Romania

Russian Federation
Sudan

Sweden

Senegal

Sovict Union

Chad

Togo

United States of America

LV

EX 1009 Page 2

WO 92/19054 : PCT/US92/02995

-] -

NETWORK MONITORING
Background of the Invention
The invention relates to monitoring and managing
communication networks for'computers.

5 Todays computer networks are large complex systems
with many components from a large variety of vendors.
These networks often span large geographic areas ranging
from a campus-like setting to world wide networks. While
the network itself can be used by many different types of

10 organizations, the purpose of these networks is to move
information between computers. Typical applications are
electronic mail, transaction processing, remote database,
query, and simple file transfer. Usually, the
organization that has installed and is running the

15 network needs the network to be running properly in order
to operate its business. Since these networks are
complex systems, there are various controls provided by
the different equipment to control and manage the
network. Network management is the task of planning,

20 engineering, securing and operating a network.

To manage the network properly, the Network
Manager has some obvious needs. First, the Network
Manager must trouble shoot problems. As the errors
develop in a running network, the Network Manager must

25 have some tools that notify him of the errors and allow
him to diagnose and repair these errors. Second, the
Network Manager needs to configure the network in such a
manner that the network loading characteristics provide
the best service possible for the network users. To do

30 this the Network Manager must have tools that allow him
visibility into access patterns, bottlenecks and general
loading. With such data, the Network Manager can
reconfigure the network components for better service.

There are many different components that need to
35 be managed in the network. These elements can be, but

EX 1009 Page 3

WO 92/19054 PCT/US92/02995

-2 -

are not limited to: routers, bridges, PC's, workstations,
minicomputers, supercomputers, printers, file servers,
switches and pbx's. Each component provides a protocol
for reading and writing the management variables in the

5 machine. These variables are usually defined by the
component vendor and are usually referred to as a
Managenment Information Base (MIB). There are some
standard MIB's, such as the IETF (Internet Engineering
Task Force) MIB I and MIB II standard definitions.

10 Through the reading and writing of MIB variables,
software in other computers can manage or control the
component. The software in the component that provides
remote access to the MIB variables is usually called an
agent. Thus, an individual charged with the

15 responsibility of managing a large network often will use
various tools to manipulate the MIB's of various agents
on the network.

Unfortunately, the standards for accessing MIBs
are not yet uniformly provided nor are the MIB

20 definitions complete enough to manage an entire network.
The Network Manager must therefore use several different
types of computers to access the agents in the network.
This poses a problem, since the errors occurring on the
network will tend to show up in different computers and

25 the Network Manager must therefore monitor several
different screens to determine if the network is running
properly. Even when the Network Manager is able to
accomplish this task, the tools available are not
sufficient for the Network Manager to function properly.

30 Furthermore, there are many errors and loadings on
the network that are not reported by agents. Flow
control problems, retransmissions, on-off segment
loading, network capacities and utilizations are some of
the types of data that are not provided by the agents.

EX 1009 Page 4

WO 92/19054 PCT/US92/02995

-3 -

Simple needs like charging each user for actual network
usage are impossible.
Summary of the Invention
In general, in one éspect, the invention features
5 monitoring communications which occur in a network of
nodes, each communication being effected by a
transmission of one or more packets among two or more
communicating nodes, each communication complying with a
predefined communication .protocol selected from among
10 protocols available in the network. The contents of
packets are detected passively and in real time,
communication information associated with multiple
protocols is derived from the packet contents.
Preferred embodiments of the invention include the
15 following features. The communication information
derived from the packet contents is associated with
multiple layers of at least one of the protocols.
In general, in another aspect, the invention
features monitoring communication dialogs which occur in
20 a network of nodes, each dialog being effected by a
transmission of one or more packets among two or more
communicating nodes, each dialog complying with a
predefined communication protocol selected from among
protocols available in the network. Information about
25 the states of dialogs occurring in the network and which
comply with different selected protocols available in the
network is derived from the packet contents.
Preferred embodiments of the invention include the
following features. A current state is maintained for
30 each dialog, and the current state is updated in response
to the detected contents of transmitted packets. For
each dialog, a history of events is maintained based on
information derived from the contents of packets, and the
history of events is analyzed to derive information about
35 the dialog. The analysis of the history includes

EX 1009 Page 5

WO 92/19054 PCT/US92/02995

-4 -

counting events and gathering statistics about events.
The history is monitored for dialogs which are inactive,
and dialogs which have been inactive for a predetermined
period of time are purged.. For example, the current

5 state is updated to data state in response to observing
the transmission of at least two data related packets
from each node. Sequence numbers of data related packets
stored in the history of events are analyzed and
retransmissions are detected based on the sequence

10 numbers. The the current state is updated based on each
new packet associated with the dialog; if an updated
current state cannot be determined, information about
prior packets associated with the dialog is consulted as
an aid in updating the state. The history of events may

15 be searched to identify the initiator of a dialog.

The full set of packets associated with a dialog
up to a point in time completely define a true state of
the dialog at that point in time, and the step of
updating the current state in response to the detected

20 contents of transmitted packets includes generating a
current state (e.g., "unknown") which may not conform to
the true state. The current state may be updated to the
true state based on information about prior packets
transmitted in the dialog. '

25 Each communication may involve multiple dialogs
corresponding to a specific protocol. Each protocol
layer of the communication may be parsed and analyzed to
isolate each dialog and statistics may be kept for each
dialog. The protocols may include a connectionless~type

30 protocol in which the state of a dialog is implicit in
transmitted packets, and the step of deriving information
about the states of dialogs includes inferring the states
of the dialogs from the packets. Keeping statistics for
protocol layers may be temporarily suspended when parsing

EX 1009 Page 6

-

WO 92/19054 , PCT/US92/02995

10

15

20

25

30

35

-5 =

and statistics gathering is not rapid enough to match the
rate of packets to be parsed.

In general, in another aspect, the invention
features monitoring the opération of the network with
respect to specific items of performance during normal
operation, generating a model of the network based on the
monitoring, and setting acceptable threshold levels for
the specific items of performance based on the model. 1In
preferred embodiments, the operation of the network is
monitored with respect to the specific items of
performance during periods which may include abnormal
operation.

In general, in another aspect, the invention
features the combination of a monitor connected to the
network medium for passively, and in real time,
monitoring transmitted packets and storing information
about dialogs associated with the packets, and a
workstation for receiving the information about dialogs
from the monitor and providing an interface to a user. In
preferred embodiments, the workstation includes means for
enabling a user to observe events of active dialogs.

In general, in another aspect, the invention
features apparatus for monitoring packet communications
in a network of nodes in which communications may be in
accordance with multiple protocols. The apparatus
includes a monitor connected to a communication medium of
the network for passively, and in real time, monitoring
transmitted packets of different protocols and storing
information about communications associated with the
packets, the communications being in accordance with
different protocols, and a workstation for receiving the
information about the communciations from the monitor and
providing an interface to a user. The monitor and the
workstation include means for relaying the information
about multiple protocols with respect to communication in

EX 1009 Page 7

PCT/US92/02995

WO 92/19054

10

15

20

25

30

35

-6 =

the different protocols from the monitor to the

workstation in accordance with a single common network

management protocol. ,

In general, in another aspect, the invention

features diagnosing communication problems between two

nodes in a network of nodes interconnected by links

. The

operation of the network is monitored with respect to
specific items of performance during normal operation. A
model of normal operation of the network is generated
based on the monitoring. Acceptable threshold levels are
set for the specific items of performance based on the
model. The operation of the network is monitored with

respect to the specific items of performance during
periods which may include abnormal operation. When
abnormal operation of the network with respect to

communication between the two nodes is detected, the

problem is diagnosed by separately analyzing the

performance of each of the nodes and each of the links

connecting the two nodes to isolate the abnormal

operation.

In general, in another aspect, the invention
features a method of timing the duration of a transaction
of interest occurring in the course of communication

between nodes of a network, the beginning of the
transaction being defined by the sending of a first

packet of a particular kind from one node to the other,

and the end of the transaction being defined by the
sending of another packet of a particular kind betw

een

the nodes. In the method, packets transmitted in the

network are monitored passively and in real time.
beginning time of the transaction is determined bas
the appearance of the first packet. A determinatio
made of when the other packet has been transmitted.
timing of the duration of the transaction is ended
the appearance of the other packet.

The
ed on

faw

n is
The
upon

EX 1009 Page 8

WO 92/19054 PCT/US92/02995

-7 -

In general, in another aspect, the invention
features, tracking node address to node name mappings in
a network of nodes of the kind in which each node has a
possibly nonunique node name and a unique node address

5 within the network and in which node addresses can be
assigned and reassigned to node names dynamically using a
name binding protocol message incorporated within a
packet. In the method, packets transmitted in the
network are monitored, and a table linking node names to

10 node addresses is updated based on information contained
in the name binding protocol messages in the packets.

One advantage of the invention is that it enables
a network manager to passively monitor multi-protocol
networks at multiple layers of the communications. 1In

15 addition, it organizes and presents network performance
statistics in terms of dialogs which are occurring at any
desired level of the communication. This technique of
organizing and displaying network performance statistics
provides an effective and useful view of network

20 performance and facilitates a quick diagnosis of network
problems.

Other advantages and features will become apparent
from the following description of the preferred
embodiment and from the claims.

25 ipti t ed odj ts

Fig. 1 is a block diagram of a network;

Fig. 2 shows the layered structure of a network
communication and a protocol tree within that layered
environment;

30 Fig. 3 illustrates the structure of an
ethernet/IP/TCP packet;

Fig. 4 illustrates the different layers of a
communication between two nodes;

Fig. 5 shows the software modules within the

35 Monitor;

EX 1009 Page 9

PCT/US92/02995

WO 92/19054

10

15

20

25

30

-8 -

Fig. 6 shows the structure of the Monitor software
in terms of tasks and intertask communication mechanisms;

Figs. 7a-c show the STATS data structures which .
store performance statistics relating to the the data
link layer; .

Fig. 8 is a event/state table describing the)
operation of the state machine for a TCP connection;

Fig. 9a is a history data structure that is
identified by a pointer found in the appropriate dialog
statistics data within STATS;

Fig. 9b is a record from the history table;

Fig. 10 is a flow diagram of the
Look_for_Data_State routine;

Fig. 11 is a flow diagram of the
Look for_Initiator routine that is called by the
Look_for_ Data_State routine;

Fig. 12 is a flow diagram of the
Look for_Retransmission routine which is called by the
Look_at_History routine;

Fig. 13 is a diagram of the major steps in
processing a frame through the Real Time Parser (RTP);

Fig. 14 is a diagram of the major steps in the
processing a statistics threshold event;

Fig. 15 is a diagram of the major steps in the
processing of a database update;

Fig. 16 is a diagram of the major steps in the
processing of a monitor control request;

Fig. 17 is a logical map of the network as
displayed by the Management Workstation;

Fig. 18 is a basic summary tool display screen;

Fig. 19 is a protocol selection menu that may be
invoked through the summary tool display screen; i

Figs. 20a-g are examples of the statistical
variables which are displayed for different protocols;

EX 1009 Page 10

WO 92/19054 PCT/US92/02995

- 9 -

Fig. 21 is an example of information that is
displayed in the dialogs panel of the summary tool
display screen; .

Fig. 22 is a basic data screen presenting a rate

5 values panel, a count values panel and a protocols seen
panel;

Fig. 23 is a traffic matrix screen;

Fig. 24 is a flow diagram of the algorithm for
adaptively establishing network thresholds based upon

10 actual network performance;

Fig. 25 is a simple multi-segment network;

Fig. 26 is a flow diagram of the operation of the
diagnostic analyzer algorithm;

Fig. 27 is a flow diagram of the source node

15 analyzer algorithm;

Fig. 28 is a flow diagram of the sink node
analyzer algorithm;

Fig. 29 is a flow diagram of the link analysis
logic;

20 Fig. 30 is a flow diagram of the DLL problem
checking routine;

Fig. 31 is a flow diagram of the IP problem
checking routine;

Fig. 32 is a flow diagram of the IP link component

25 problem checking routine;

Fig. 33 is a flow diagram of the DLL link
component problem checking routine;

Fig. 34 shows the structure of the event timing
database;

30 Fig. 35 is a flow diagram of the operation of the
event timing module (ETM) in the Network Monitor;

Fig. 36 is a network which includes an Appletalk®
segment;

Fig. 37 is a Name Table that is maintained by the

35 Address Tracking Module (ATM);

EX 1009 Page 11

PCT/US92/02995

WO 92/19054
Fig. 38 is a flow diagram of the operation of the
ATM; and
Fig. 39 is a flow diagram of the operation of the
ATM.
5 Also attached hereto before the claims are the

following appendices:
Appendix I identifies the SNMP MIB subset that is

supported by the Monitor and the Management Workstation
(2 pages);

10 Appendix II defines the extension to the standard
MIB that are supported by the Monitor and the Management
Workstation (25 pages);

Appendix III is a summary of the protocol
variables for which the Monitor gathers statistics and a

15 brief description of the variables, where appropriate (17

pages) ;
Appendix IV is a list of the Summary Tool Values
Display Fields with brief descriptions (2 pages); and
Appendix V is a description of the actual screens
20 for the Values Tool (34 pages).
S d tion
T work:
A typical network, such as the one shown in Fig.
1, includes at least three major components, namely,

25 network nodes 2, network elements 4 and communication
lines 6. Network nodes 2 are the individual computers on
the network. They are the very reason the network
exists. They include but are not limited to workstations
(WS), personal computers (PC), file servers (FS), compute

30 servers (CS) and host computers (e.g., a VAX), to name
but a few. The term server is often used as though it
was different from a node, but it is, in fact, just a
node providing special services.

In general, network elements 4 are anything that

35 participate in the service of providing data movement in

EX 1009 Page 12

WO 92/19054 PCT/US92/02995

- 11 -

a network, i.e., providing the basic communications.
They include, but are not limited to, LAN's, routers,
bridges, gateways, multiplexors, switches and connectors.
Bridges serve as connectioﬁs between different network
5 segments. They keep track of the nodes which are

connected to each of the segments to which they are
connected. When they see a packet on one segment that is
addressed to a node on another of their segments, they
grab the packet from the one segment and transfer it to

10 the proper segment. Gateways generally provide
connections between different network segments that are
operating under different protocols and serve to convert
communications from one protocol to the other. Nodes
send packets to routers so that they may be directed over

15 the appropriate segments to the intended destination
node.

Finally, network or communication lines 6 are the
components of the network which connect nodes 2 and
elements 4 together so that communicatons between nodes 2

20 may take place. They can be private lines, satellite
lines or Public Carrier lines. They are expensive
resources and are usually managed as separate entities.
Often networks are organized into segments 8 that are
connected by network elements 4. A segment 8 is a

25 section of a LAN connected at a physical level (this may
include repeaters). Within a segment, no protocols at
layers above the physical layer are needed to enable
signals from two stations on the same segment to reach
each other (i.e., there are no routers, bridges,

30 gateways...).

The Network Monitor and the Management Workstation:

In the described embodiment, there are two basic
elements to the monitoring system which is to be
described, namely, a Network Monitor 10 and a Management

EX 1009 Page 13

PCT/US92/02995

WO 92/19054

io0

15

20

25

30

35

Workstation 12. Both elements interact with each other

over the local area network (LAN).

Network Monitor 10 (referred to hereinafter simply

as Monitor 10) is the data collection module which is

attached to the LAN. It is a high performance real time
front end processor which collects packets on the network

and performs some degree of analysis to search for actual

or potential problems and to maintain statistical

information for use in later analysis. In general, it

performs the following functions. It operates in a

promiscuous mode to capture and analyze all packets on
the segment and it extracts all items of interest from
the frames. It generates alarms to notify the Management
Workstation of the occurence of significant events. It

receives commands from the Management Workstation,
processes them appropriately and returns responses.
Management Workstation 12 is the operator

interface. It collects and presents troubleshooting and
performance information to the user. It is based on the

SunNet Manager (SNM) product and provides a graphical
network-map-based interface and sophisticated data

presentation and analysis tools. It receives information
from Monitor 10, stores it and displays the information
in various ways. It also instructs Monitor 10 to perform
certain actions. Monitor 10, in turn, sends responses
and alarms to Management Workstation 12 over either the
primary LAN or a backup serial link 14 using SNMP with

the MIB extensions defined later.

These devices can be connected to each other over

various types of networks and are not limited to

connections over a local area network. As indicated in

Fig. 1, there can be multiple Workstations 12 as well

multiple Monitors 10.
Before describing these components in greater
detail, background information will first be reviewed

as

EX 1009 Page 14

%

WO 92/19054 PCT/US92/02995

regarding communication protocols which specify how
communications are conducted over the network and
regarding the structure of the packets.

The Protocol Tree: '

5 As shown in Fig. 2, communication over the network
is organized as a series of layers or levels, each one
built upon the next lower one, and each one specified by
one or more protocols (represented by the boxes). Each
layer is responsible for handling a different phase of

10 the communication between nodes on the network. The
protocols for each layer are defined so that the services
offered by any layer are relatively independent of the
services offered by the neighbors above and below.
Although the identities and number of layers may differ

15 depending on the network (i.e., the protocol set defining
communication over the network), in general, most of them
share a similar structure and have features in common.

For purposes of the present description, the Open
Systems Interconnection (0SI) model will be presented as

20 representative of structured protocol architectures. The
OSI model, developed by the International Organization
for Standardization, includes seven layers. As indicated
in Fig. 2, there is a physical layer, a data link layer
(DLL), a network layer, a transport layer, a session

25 layer, a presentation layer and an application layer, in
that order. As background for what is to follow, the
function of each of these layers will be briefly
described.

The physical layer provides the physical medium

30 for the data transmission. It specifies the electrical
and mechanical interfaces of the network and deals with
bit level detail. The data link layer is responsible for
ensuring an error-free physical link between the
communicating nodes. It is responsible for creating and

35 recognizing frame boundaries (i.e., the boundaries of the

EX 1009 Page 15

WO 92/19054 PCT/US92/02995

- 14 -

packets of data that are sent over the network.) The
network layer determines how packets are routed within
the network. The transport layer accepts data from the
layer above it (i.e., the session layer), breaks the
5 packets up into smaller units, if required, and passes

these to the network layer for transmission over the
network. It may insure that the smaller pieces all
arrive properly at the other end. The session layer is
the user's interface into the network. The user must

10 interface with the session layer in order to negotiate a
connection with a process in another machine. The
presentation layer provides code conversion and data
reformatting for the user's application. Finally, the
application layer selects the overall network service for

15 the user's application.

Fig. 2 also shows the protocol tree which is
implemented by the described embodiment. A protocol tree
shows the protocols that apply to each layer and it
identifies by the tree structure which protocols at each

20 layer can run "on top of" the protocols of the next lower
layer. Though standard abbreviations are used to
identify the protocols, for the convenience of the
reader, the meaning of the abbreviations are as follows:

ARP Address Resolution Protocol

25 ETHERNET Ethernet Data Link Control
FTP File Transfer Protocol
ICMP Internet Control Message Protocol
IP Internet Protocol
LIC 802.2 Logical Link Control

30 MAC 802.3 CSMA/CD Media Access Control
NFS Network File System
NSP Name Server Protocol
RARP Reverse Address Resolution Protocol
SMTP Simple Mail Transfer Protocol

35 SNMP Simple Network Management Protocol

EX 1009 Page 16

WO 92/19054 PCT/US92/02995

-15-
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
UDP User Datagram Protocol

Two terms are commonly used to describe the protocol
5 tree, namely, a profocol stack and a protocol family (or
suite). A protocol stack generally refers to the
underlying protocols that are used when sending a message
over a network. For example, FTP/TCP/IP/LLC is a
protocol stack. A protocol family is a loose association
10 of protocols which tend to be used on the same network
(or derive from a common source). Thus, for example, the
TCP/IP family includes IP, TCP, UDP, ARP, TELNET and FTP.
The Decnet family includes the protocols from Digital
Equipment Corporation. And the SNA family includes the
15 protocols from IBM.
The Packet:

The relevant protocol stack defines the structure
of each packet that is sent over the network. Fig. 3,
which shows an TCP/IP packet, illustrates the typical

20 structure of a packet. In general, each level of the
protocol stack takes the data from the next higher level
and adds header information to form a protocol data unit
(PDU) which it passes to the next lower level. That is,
as the data from the application is passed down through

25 the protocol layers in preparation for transmission over
the network, each layer adds its own information to the
data passed down from above until the complete packet is
assembled. Thus, the structure of a packet ressembles
that of an onion, with each PDU of a given layer wrapped

30 within the PDU of the adjacent lower level.

At the ethernet level, the PDU includes a
destination address (DEST MAC ADDR), a source address
(SRC MAC ADDR), a type (TYPE) identifying the protocol
which is running on top of this layer, and a DATA field

35 for the PDU from the IP layer.

EX 1009 Page 17

WO 92/19054 PCT/US92/02995

- 16 -

Like the ethernet packet, the PDU for the IP layer
includes an IP header blus a DATA field. The IP header
includes a type field (TYPE) for indicating the type of
service, a length field (LGTH) for specifying the total

5 length of the PDU, an identification field (ID), a
protocol field (PROT) for identifying the protocol which
is running on top of the IP layer (in this case, TCP), a
source address field (SRC ADDR) for specifying the IP
address of the sender, a_ destination address field (DEST

10 ADDR) for specifying the IP address of the destination
node, and a DATA field.

The PDU built by the TCP protocol also consists of
a header and the data passed down from the next higher
layer. In this case the header includes a source port

15 field (SRC PORT) for specifying the port number of the
sender, a destination port field (DEST PORT) for
specifying the port number of the destination, a sequence
number field (SEQ NO.) for specifying the sequence number
of the data that is being sent in this packet, and an

20 acknowledgment number field (ACK NO.) for specifying the
number of the acknowledgment being returned. It also
includes bits which identify the packet type, namely, an
acknowledgment bit (ACK), a reset connection bit (RST), a
synchronize bit (SYN), and a no more data from sender bit

25 (FIN). There is also a window size field (WINDOW) for
specifying the size of the window being used.

The Concept of a Dialog:

The concept of a dialog is used throughout the
following description. As will become apparent, it is a

30 concept which provides a useful way of conceptualizing,
organizing and displaying information about the
performance of a network - for any protocol and for any ¢
layer of the multi-level protocol stack.

As noted above, the basic unit of information in

35 communication is a packet. A packet conveys meaning

EX 1009 Page 18

WO 92/19054 PCT/US92/02995

- 17 -

between the sender and the receiver and is part of a
larger framework of paéket exchanges. The larger
exchange is called a dialog within the context of this
document. That is, a dialog is a communication between a
5 sender and a receiver, which is composed of one or more
packets being transmitted between the two. There can be
multiple senders and receivers which can change roles.
In fact, most dialogs involve exchanges in both
directions. .

10 Stated another way, a dialog is the exchange of
messages and the associated meaning and state that is
inherent in any particular exchange at any layer. It
refers to the exchange between the peer entities
(hardware or software) in any communication. In those

15 situations where there is a layering of protocols, any
particular message exchange could be viewed as belonging
to multiple dialogs. For example, in Fig. 4 Nodes A and
B are éxchanging packets and are engaged in multiple
dialogs. Layer 1 in Node A has a dialog with Layer 1 in

20 Node B. For this example, one could state that this is
the data link layer and the nature of the dialog deals
with the message length, number of messages, errors and
perhaps the guarantee of the delivery. Simultaneously,
Layer n of Node A is having a dialog with Layer n of node

25 B. For the sake of the example, one could state that
this is an application layer dialog which deals with
virtual terminal connections and response rates. One can
also assume that all of the other layers (2 through n-1)
are also having simultaneous dialogs.

30 In some protocols there are explicit primitives
that deal with the dialog and they are generally referred
to as connections or virtual circuits. However, dialogs
exist even in stateless and connectionless protocols.

Two more examples will be described to help clarify the

35 concept further, one dealing with a connection oriented

EX 1009 Page 19

WO 92/19054 PCT/US92/02995

- 18 -
protocol and the other dealing with a connectionless
protocol.

In a typical connection oriented protocol, Node A s
sends a connection request'(CR) message to Node B. The
5 CR is an explicit request to form a connection. This is
the start of a particular dialog, which is no different
from the start of the connection. Nodes A and B could
have other dialogs active simultaneously with this
particular dialog. Each dialog is seen as unique. A

10 connection is a particular type of dialog.

In a typical connectionless protocol, Node A sends
Node B a message that is a datagram which has no
connection paradigm, in fact, neither do the protocol (s)
at higher layers. The application protocol designates

15 this as a request to initiate some action. For example,
a file server protocol such as Sun Microsystems' Network
File System (NFS) could make a mount request. A dialog
comes into existence once the communication between Nodes
A and B has begqun. It is possible to determine that

20 communication has occurred and to determine the actions
being requested. If in fact there exists more than one
communication thread between Nodes A and B, then these
would represent separate, differént dialogs.

Inside the Network Monitor:

25 Monitor 10 includes a MIPS R3000 general purpose
microprocessor (from MIPS Computer Systems, Inc.) running
at 25 MHz. It is capable of providing 20 mips processing
power. Monitor 10 also includes a 64Kbyte instruction
cache and a 64Kbyte data cache, implemented by SRAM.

30 The major software modules of Monitor 10 are
implemented as a mixture of tasks and subroutine
libraries as shown in Fig. 5. It is organized this way
so as to minimise the context switching overhead incurred
during critical processing sequences. There is NO

35 PREEMPTION of any module in the monitor subsystem. Each

EX 1009 Page 20

WO 92/19054 PCT/US92/02995

- 19 -

module is cognizant of the fact that it should return
control to the kernel in order to let other tasks run.
Since the monitor subsystem is a closed environment, the
software is aware of real time constraints.

5 Among the major modules which make up Monitor 10
is a real time kernel 20, a boot/load module 22, a driver
24, a test module 26, an SNMP Agent 28, a Timer module
30, a real time parser (RTP) 32, a Message Transport
Module (MTM) 34, a statistics database (STATS) 36, an

10 Event Manager (EM) 38, an Event Timing Module (ETM) 40
and a control module 42. Each of these will now be
described in greater detail.

Real Time Kernel 20 takes care of the general
housekeeping activities in Monitor 10. It is responsible

15 for scheduling, handling intertask communications via
gqueues, managing a potentially large number of timers,
manipulating linked lists, and handling simple memory
management.

Boot/Load Module 22, which is FProm based, enables

20 Monitor 10 to start itself when the power is turned on in
the box. It initializes functions such as diagnostics,
and environmental initialization and it initiates down
loading of the Network Monitor Software including program
and configuration files from the Management Workstation.

25 Boot/load module 22 is also responsible for reloading
program and/or configuration data following internal
error detection or on command from the Management
Workstation. To accomplish down loading, boot/load
module 22 uses the Trivial File Transfer Protocol (TFTP).

30 The protocol stack used for loading is
TFTP/UDP/IP/ethernet over the LAN and TFTP/UDP/IP/SLIP
over the serial line. '

Device Driver 24 manages the network controller
hardware so that Monitor 10 is able to read and write

35 packets from the network and it manages the serial

EX 1009 Page 21

WO 92/19054 PCT/US92/02995

- 20 -

interface. It does so both for the purposes of
monitoring traffic (prémiscuous mode) and for the
purposes of communicating with the Management Workstation
and other devices on the network. The communication

5 occurs through the network controller hardware of the
physical network (e.g. Ethernet). The drivers for the
LAN controller and serial line interface are used by the
boot load module and the MTM. They provide access to the
chips and isolate higher layers from the hardware

10 specifics.

Test module 26 performs and reports results of
physical layer tests (TDR, connectivity,...) under
control of the Management Workstation. It provides
traffic load information in response to user requests

15 identifying the particular traffic data of interest. The
joad information is reported either as a percent of
available bandwidth or as frame size(s) plus rate.

SNMP Agent 28 translates requests and information
into the network management protocol being used to

20 communicate with the Management Workstation, e.g., the
Simple Network Management Protocol (SNMP) .

Control Module 42 coordinates access to monitor
control variables and performs actions necessary when
these are altered. Among the monitor control variables

25 which it handles are the following:
set reset monitor - transfer control to reset

logic;

set time of day - modify monitor hardware clock
and generate response to Management Workstation;

30 get time of day - read monitor hardware clock and

generate response to Workstation;

EX 1009 Page 22

WO 92/19054 PCT/US92/02995

- 21 -

set trap permit - send trap control ITM to EM and
generate response to Workstation;

get trap permit - génerate response to

Workstation;

5 Control module 42 also updates parse control records
within STATS when invoked by the RTP (to be described) or
during overload conditions so that higher layers of
parsing are dropped until the overload situation is
resolved. When overload is over it restores full

10 parsing.

Timer 30 is invoked periodically to perform
general housekeeping functions. It pulses the watchdog
timer at appropriate intervals. It also takes care of
internal time stamping and kicking off routines like the

15 EM routine which periodically recalculates certain
numbers within the statistical database (i.e., STATS).

Real Time Parser (RTP) 32 sees all frames on the
network and it determines which protocols are being used
and interprets the frames. The RTP includes a protocol

20 parser and a state machine. The protocol parser parses a
received frame in the "classical" manner, layer-by-layer,
lowest layer first. The parsing is performed such that
the statistical objects in STATS (i.e., the network
parameters for which performance data is kept) are

25 maintained. Which layers are to have statistics stored
for them is determined by a parse control record that is
stored in STATS (to be described later). As each layer
is parsed, the RTP invokes the appropriate functions in
the statistics module (STATS) to update those statistical

30 objects which must be changed.

The state machine within RTP 32 is responsible for
tracking state as appropriate to protocols and
connections. It is responsible for maintaining and
updating the connection oriented statistical elements in

EX 1009 Page 23

WO 92/19054 PCT/US92/02995

- 22 -

STATS. 1In order to track connection states and events,
the RTP invokes a routine within the state machine. This
routine determines the state of a connection based on
past observed frames and keeps track of sequence numbers.
5 It is the routine that determines if a connection is in
data transfer state and if a retransmission has occurred.
The objectives of the state machine are to keep a brief
history of events, state transitions, and sequence
numbers per connection; .to detect data transfer state so

10 that sequence tracking can begin; and to count
jnconsistencies but still maintain tracking while falling
into an appropriate state (e.g. unknown) .

RTP 32 also performs overload control by
determining the number of frames awaiting processing and

15 invoking control module 42 to update the parse control
records so as to reduce the parsing depth when the number
becomes too large.

Statistics Module (STATS) 36 is where Monitor 10
keeps information about the statistical objects it is

20 charged with monitoring. A statistical object represents
a network parameter for which performance information is
gathered. This information is contained in an extended
MIB (Management Information Base), which is updated by
RTP 32 and EM 38.

25 STATS updates statistical objects in response to
RTP invocation. There are at least four statistical
object classes, namely, counters, timers, percentages
(%), and meters. Each statistical object is implemented
as appropriate to the object class to which it belongs.

30 That is, each statistical object behaves such that when
invoked by RTP 32 it updates and then generates an alarm
if its value meets a preset threshold. (Meets means that
for a high threshold the value is equal to or greater
than the threshold and for a low threshold the value is

EX 1009 Page 24

WO 92/19054 PCT/US92/02995

- 23 -

equal to or less than the threshold. Note that a single
object may have both high and low thresholds.)

STATS 36 is responsible for the maintenance and
initial analysis of the database. This includes

5 coordinating access to the database variables, ensuring
appropriate interlocks are applied and generating alarms
when thresholds are crossed. Only STATS 36 is aware of
the internal structure of the database, the rest of the
system is not.

10 STATS 36 is also responsible for tracking events
of interest in the form of various statistical
reductions. Examples are counters, rate meters, and rate
of change of rate meters. It initiates events based on
particular statistics reaching configured limits, i.e.,

15 thresholds. The events are passed to the EM which sends
a trap (i.e., an alarm) to the Management Workstation.
The statistics within STATS 36 are readable from the
Management Workstation on request.

STATS performs lookup on all addressing fields.

20 It assigns new data structures to address field values
not currently present. It performs any hashing for fast
access to the database. More details will be presented
later in this document.

Event Manager (EM) 38 extracts statistics from

25 STATS and formats it in ways that allow the Workstation
to understand it. It also examines the various
statistics to see if their behavior warrants a
notification to the Management Workstation. If so, it
uses the SNMP Agent software to initiate such

30 notifications.

If the Workstation asks for data, EM 38 gets the
data from STATS and sends it to the Workstation. It also
performs some level of analysis for statistical,
accounting and alarm filtering and decides on further

35 action (e.g. delivery to the Management Workstatioh).

EX 1009 Page 25

WO 92/19054 PCT/US92/02995

- 24 -

EM 38 is also responsible for controlling the delivery of
events to the Managemeht Workstation, e.g., it performs
event filtering. The action to be taken on receipt of an
event (e.g. threshold exceeded in STATS) is specified by
5 the event action associated with the threshold. The .
event is used as an index to select the defined action
(e.g. report to Workstation, run local routine xxxX,
ignore). The action can be modified by commands from the
Management Workstation (e.g., turn off an alarm) or by
10 the control module in an overload situation. 2n update
to the event action, however, does not affect events
previously processed even if they are still waiting for
transmission to the Management Workstation. Discarded
events are counted as such by EM 38.
15 EM 38 also implements a throttle mechanism to
limit the rate of delivery of alarms to the console based
on configured limits. This prevents the rapid generation
of mulfiple alarms. In essence, Monitor 10 is given a
maximum frequency at which alarms may be sent to the
20 Workstation. Although alarms in excess of the maximum
frequency are discarded, a count is kept of the number of
alarms that were discarded.
EM 38 invokes routines from the statistics module
(STATS) to perform periodic updates such as rate
25 calculations and threshold checks. It calculates time
averages, e.g., average traffic by source stations,
destination stations. EM 38 requests for access to
monitor control variables are passed to the control
module.
30 EM 38 checks whether asynchronous traps (i.e.,
alarms) to the Workstation are permitted before
generating any.
EM 38 receives database update requests from the
Management Workstation and invokes the statistics module

35 (STATS) to process these.

EX 1009 Page 26

WO 92/19054 PCY/USIZ/VZIIS

- 25 =

Message Transport Module (MTM) 34, which is DRAM
based, has two distincf but closely related functions.
First, it is responsible for the conversion of
Workstation commands and responses from'the internal

5 format used within Monitor 10 to the format used to
communicate over the network. It isolates the rest of
the system from the protocol used to communicate within
Management Workstation. It translates between the
internal representation of data and ASN.1l used for SNMP.

10 It performs initial decoding of Workstation requests and
directs the requests to appropriate modules for
processing. It implements SNMP/UDP/IP/LLC or ETHERNET
protocols for LAN and SNMP/UDP/IP/SLIP protocols for
serial line. It receives network management commands

15 from the Management Workstation and delivers these to the
appropriate module for action. Alarms and responses
destined for the Workstation are also directed via this
module.

Second, MTM 34 is responsible for the delivery and

20 reception of data to and from the Management Workstation
using the protocol appropriate to the network. Primary
and backup communication paths are provided transparently

~ to the rest of the monitor modules (e.g. LAN and dial up
link). It is capable of full duplex delivery of messages

25 between the console and monitoring module. The messages
carry event, configuration, test and statistics data.

Event Timing Module (ETM) 40 keeps track of the
start time and end times of user specified transactions
over the network. In essence, this module monitors the

30 responsiveness of the network at any protocol or layer
specified by the user.

Address Tracking Module 42 keeps track of the node
name to node address bindings on networks which implement
dynamic node addressing protocols.

EX 1009 Page 27

WO 92/19054

10

15

20

25

30

PCT/US92/02995

Memory management for Monitor 10 is handled in
accordance with following guidelines. The available

memory is divided into four blocks

during system

initialization. one block includes receive frame

puffers. They are used for receiving LAN traffic and for

receiving secondary link traffic.

These are organized as

l1inked lists of fixed sized buffers. A second block
includes system control message blocks. They are used
for intertask messages within Monitor 10 and are

organized as a linked list of free

blocks and multiple

linked lists of in process intertask messages. A third
block includes transmit buffers. They are used for
creation and transmission of workstation alarms and

responses and are organized as a linked list of fixed
sized buffers. A fourth block is the statistics. This
is allocated as a fixed size area at system
jnitialization and managed by the statistics module

during system operation.

e o onitor;

The structure of the Monitor in terms of tasks and

intertask messages is shown in Fig.
blocks represent interrupt service

6. The rectangular
routines, the ovals

represent tasks and the circles represent input queues.

Each task in the system has
which it uses to receive all input.

a single input queue
All inter-process

communications take place via messages placed onto the
input queue of the destination task. Each task waits on
a (well known) input queue and processes events or inter-
task messages (i.e., ITM's) as they are received. Each
task returns to the kernel within an appropriate time

period defined for each task (e.g.
fixed number of events).

after processing a

Interrupt service routines (ISR's) run on receipt

of hardware generated interrupts.

They invoke task level

EX 1009 Page 28

£

WO 92/19054 PCT/US92/02995

- 27 =

processing by sending an ITM to the input queue of the
appropriate task. b

The kernel scheduler acts as the base loop of the

system and calls any runnable tasks as éubroutines. The

5 determination of whether a task is runnable is made from
the input queue, i.e., if this has an entry the task has
work to perform. The scheduler scans the input queues
for each task in a round robin fashion and invokes a task
with input pending. Each task processes items from its

10 input queue and returns to the scheduler within a defined
period. The scheduler then continues the scan cycle of
the input queues. This avoids any task locking out
others by processing a continuously busy input queue. A
task may be given an effectively higher priority by

15 providing it with multiple entries in the scan table.

Database accesses are generally performed using
access routines. This hides the internal structure of
the database from other modules and also ensures that
appropriate interlocks are applied to shared data.

20 The EM processes a single event from the input
queue and then returns to the scheduler.

The MTM Xmit task processes a single event from
its input queue and then returns control to the
scheduler. The MTM Recv task processes events from the

25 input queue until it is empty or a defined number (e.g.
10) events have been processed and then returns control
to the scheduler.

The timer task processes a single event from the
input queue and then returns control to the scheduler.

30 RTP continues to process frames until the input
queue is empty or it has processed a defined number (e.g.
10) frames. It then returns to the scheduler.

The following sections contain a more detailed

description of some of the above-identified software
35 modules.

EX 1009 Page 29

WO 92/19054 PCT/US92/02995

- 28 =

T Statistics Module (STATS):
The functions of the statistics module are:
to define statistics records;
to allocate and initialize statistics records;
5 * to provide routines to lookup statistics records,
e.g. lookup_ id_addr;

* to provide routines to manipulate the statistics
within the records, e.g. stats_age, stats_incr and
stats_rate;

10 * to provide routines to free statistics records,

e.g. stats_allocate and stats_deallocate

It provides these services to the Real Time Parser
(RTP) module and to the Event Manager (EM) module.

STATS defines the database and it contains

15 subroutines for updating the statistics which it keeps.

STATS contains the type definitions for all
statistics records (e.g. DLL, IP, TCP statistics). It
provides an initialization routine whose major function
is to allocate statistics records at startup from

20 cacheable memory. It provides lookup routines in order
to get at the statistics. Each type of statistics record
has its own lookup routine (e.g. lookup_ip_address) which
returns a pointer to a statistics record of the
appropriate type or NULL.

25 As a received frame is being parsed, statistics
within statistics records need to be manipulated (e.g.
incremented) to record relevant information about the
frame. STATS provides the routines to manipulate those
statistics. For example, there is a routine to update

30 counters. After the counter is incremented/decremented
and if there is a non-zero threshold associated with the
counter, the internal routine compares its value to the
threshold. If the threshold has been exceeded, the Event
Manager is signaled in order to send a trap to the

35 Workstation. Besides manipulating statistics, these

EX 1009 Page 30

WO 92/19054

10

15

20

25

30

PCT/US92/02995

- 29 -

routines, if necessary, signal the Event Manager via an

Intertask Message (ITM) to send a trap to the Management

Workstation.

The following is an.example of some of the

statistics records that are kept in STATS.

o

O 0O 0O 0O OO OO OO O 0 O

o
o

monitor statistics

mac statistics for segment

llc statisics for segment

statistics per -ethernet/lsap type for segment

ip statistics for segment

icmp statistics for segment

tcp statistics for segment

udp statistics for segment

nfs statistics for segment

ftp control statistics for segment
ftp data statistics for segment
telnet statistics for segment

smtp statistics for segment
arp statistics

statistics
statistics

address

0O 0O 0 0O 0 0 0O O 0

statistics
statistics
statistics
statistics
statistics
statistics
statistics
statistics

per
per

per
per
per
per
per
per
per
per

arp statistics

o statistics

o statistics

per
per

for segment

mac address
ethernet type/lasp per mac

ip address (includes icmp)
tcp socket

udp socket

nfs socket

ftp control socket

ftp data socket

telnet socket

smtp socket

per ip address

mac address pair
ip pair (includes icmp)

EX 1009 Page 31

WO 92/19054

10

15

20

25

30

0O 0O 0O OO O O

o

statistics
statistics
statistics
statistics
statistics
statistics
statistics

connection histories per udp and tcp socket

per
pef
per
per
per
per
per

PCT/US92/02995

- 30 -

tcp connection

udp pair

nfs pair

ftp control connection
ftp data connection
telnet connection

smtp connection

All statistics are organized similarly across protocol
types. The details of the data structures for the DLL

level are presented later.
As noted earlier, there are four statistical

object classes (i.e., variables), namely, counts, rates,
percentages (%), and meters. They are defined and

implemented as follows.
A count is a continuously incrementing variable

which rolls around to 0 on overflow.
command from the user (or from software) .

It may be reset on
A threshold

may be applied to the count and will cause an alarm when
the threshold count is reached. The threshold count
fires each time the counter increments past the threshold
value. For example, if the threshold is set to 5, alarms

are generated when the count is 5, 10,-15,...

A rate is essentially a first derivative of a
count variable. The rate is calculated at a period

appropriate to the variable.

minimum, maximum and average value is maintained.

Thresholds may be set on high values of the rate.

maximums and minimums may be reset on command. The
threshold event is triggered each time the rate
calculated is in the threshold region.

As commonly used, the % is calculated at a period

appropriate to the variable. For each % variable a

For each rate variable, a

The

EX 1009 Page 32

WO 92/19054 PCT/US92/02995

10

15

20

25

30

- 31 -

minimum, maximum and average value is maintained. A
threshold may be set on high values of the %¥. The
threshold event is triggered each time the % calculated
is in the threshold region.

Finally, a meter is a variable which may take any
discrete value within a defined range. The current value
has no correlation to past or future values. A threshold
may be set on a maximum and/or minimum value for a meter.

The rate and % fields of network event variables
are updated differently than counter or meter fields in
that they are calculated at fixed intervals rather than
on receipt of data from the network.

Structures for statistics kept on a per address or
per address pair basis are allocated at initialization
time. There are several sizes for these structures.
Structures of the same size are linked together in a free
pool. As a new structure is needed, it is obtained from
a free queue, initialized, and linked into an active
list. Active lists are kept on a per statistics type
basis.

As an address or address pair (e.g. mac, ip,
tcp...) is seen, RTP code calls an appropriate lookup
routine. The lookup routine scans active statistics
structures to see if a structure has already been
allocated for the statistics. Hashing algorithms are
used in order to provide for efficient lookup. If no
structure has been allocated, the lookup routine examines
the appropriate parse control records to determine
whether statistics should be kept, and, if so, it
allocates a structure of the appropriate size,
initializes it and links it into an active list.

Either the address of a structure or a NULL is
returned by these routines. If NULL is returned, the RTP
does not stop parsing, but it will not be allowed to

EX 1009 Page 33

WO 92/19054 PCT/US92/02995

- 32 -

store the statistics for which the structure was

requested.
The RTP updates statistics within the data base as

it runs. This is done via macros defined for the RTP.

5 The macros call on internal routines which know how to
manipulate the relevant statistic. If the pointer to the
statistics structure is NULL, the internal routine will
not be invoked.

The EM causes rates to be calculated. The STATS
10 module supplies routines (e.g. stats_rate) which must be
called by the EM in order to perform the rate
calculations. It also calls subroutines to reformat the
data in the database in order to present it to the
Workstation (i.e., in response to a get from the
15 Workstation).
The calculation algorithms for the rate and %
fields of network event variables are as follows.
The following rates are calculated in units per
second, at the indicated (approximate) intervals:
20 1. 10 second intervals:
e.g. DLL frame, byte, ethernet, 802.3, broadcast,
multicast rates
2. 60 second intervals
e.g., all DLL error, ethertype/dsap rates

25 all IP rates.
TCP packets, bytes, errors, retransmitted packets,

retransmitted bytes, acks, rsts

UDP packet, error, byte rates

FTP file transfer, byte transfer, error rates

30 For these rates, the new average replaces the

previous value directly. Maximum and minimum values are
retained until reset by the user.

The following rates are calculated in units per
hour at the indicated time intervals:

35 1. 15 minute interval.

EX 1009 Page 34

WO 92/19054 PCT/US92/02995

10

15

20

25

30

35

- 33 =

e.g., TCP - connection rate

Telnet connection rate

FTP session rate

The hourly rate is calculated from a sum of the
last twelve 5 minute readings, as obtained from the
buckets for the pertinent parameter. Each new reading
replaces the oldest of the twelve values maintained.
Maximum and minimum values are retained until reset by
the user.

There are a number of other internal routines in
STATS. For example, all statistical data collected by
the Monitor is subject to age out. Thus, if no activity
is seen for an address (or address pair) in the time
period defined for age out, then the data is discarded
and the space reclaimed so that it may be recycled. In
this manner, the Monitor is able to use the memory for
active elements rather than stale data. The user can
select the age out times for the different components.
The EM periodically kicks off the aging mechanism to
perform this recycling of resources. STATS provides the
routines which the EM calls, e.q. stats_age.

There are also routines in STATS to allocate and
de-allocate Statistics, e.g., stats_allocate and
stats_de-allocate. The allocate routine is called when
stations and dialogs are picked up by the Network
Monitor. The de-allocate routine is called by the aging
routines when a structure is to be recycled.

Th a_Structures in STATS

The general structure of the database within STATS
is illustrated by Figs. 7a-c, which shows information
that is maintained for the Data Link Layer (DLL) and its
organization. A set of data structures is kept for each
address associated with the layer. 1In this case there
are three relevant addresses, namely a segment address,
indicating which segment the node is on, a MAC address

EX 1009 Page 35

WO 92/19054 PCT/US92/02995

- 34 -~

for the node on the segment, and an address which
identifies the dialog occurring over that layer. The
dialog address is the combination of the MAC addresses
for the two nodes which make up the dialog. Thus, the

5 overall data structure has three identifiable components: =
a segment address data structure (see Fig. 7a), a MAC
address data structure (see Fig. 7b) and a dialog data
structure (see Fig. 7c).

The segment address structure includes a doubly

10 linked list 102 of segment address records 104, each one
for a different segment address. Each segment address
record 104 contains a forward and backward link (field
106) for forward and backward pointers to neighboring
records and a hash link (field 108). In other words, the

15 segment address records are accessed by either walking
down the doubly linked list or by using a hashing
mechanism to generate a pointer into the doubly linked
1ist to the first record of a smaller hash linked list.
Each record also contains the address of the segment

20 (field 110) and a set of fields for other information.
Among these are a flags field 112, a type field 114, a
parse_control field 116, and an EM_control field 118.
Flags field 112 contains a bit which indicates whether
the identified address corresponds to the address of

25 another Network Monitor. This field only has meaning in
the MAC address record and not in the segment or dialog
address record. Type field 114 identifies the MIB group
which applies to this address. Parse control field 116
is a bit mask which indicates what subgroups of

30 statistics from the identified MIB group are maintained,
if any. Flags field 112, type field 114 and parse
control field 116 make up what is referred to as the
parse control record for this MAC address. The Network
Monitor uses a default value for parse control field 116

35 upon initialization or whenever a new node is detected.

EX 1009 Page 36

WO 92/19054

10

15

20

25

30

35

PCT/US92/02995

- 35 =

The default value turns off all statistics gathering.
The statistics gathering for any particular address may
subsequently be turned on by the Workstation through a
Network Monitor control command that séts the appropriate
bits of the parse control field to one.

EM control field 118 identifies the subgroups of
statistics within the MIB group that have changed since
the EM last serviced the database to update rates and
other variables. This field is used by the EM to
identify those parts of STATS which must be updated or
for which recalculations must be performed when the EM
next services STAT.

Each segment address record 104 also contains
three fields for time related information. There is a
start_time field 120 for the time that is used to perform
some of the rate calculations for the underlying
statistics; a first seen field 122 for the time at which
the Network Monitor first saw the communication; and a
last_seen field 124 for the time at which the last
communication was seen. The last_seen time is used to
age out the data structure if no activity is seen on the
segment after a preselected period of time elapses. The
first_seen time is a statistic which may be of interest
to the network manager and is thus retrievable by the
Management Workstation for display.

Finally, each segment address record includes a
stats_pointer field 126 for a pointer to a DLL segment
statistics data structure 130 which contains all of the
statistics that are maintained for the segment address.
If the bits in parse_control field 116 are all set to
off, indicating that no statistics are to be maintained
for the address, then the pointer in stats_pointer field
126 is a null pointer.

The list of events shown in data structure 130 of
Fig. 7a illustrates the type of data that is collected

EX 1009 Page 37

WO 92/19054 PCT/US92/02995

- 36 -

for this address when the parse control field bits are
set to on. Some of the entries in DLL segment statistics
data structure 130 are pointers to buckets for historical
data. In the case where buckets are maintained, there
5 are twelve buckets each of which represents a time period
of five minutes duration and each of which generally
contains two items of information, namely, a count for
the corresponding five minute time period and a MAX rate
for that time period. MAX rate records any spikes which
10 have occurred during the period and which the user may
not have observed because he was not viewing that
particular statistic at the time.
At the end of DLL segment statistics data
structure 130, there is a protocol_Q pointer 132 to a
15 linked list 134 of protocol statistics records 136
identifying all of the protocols which have been detected
running on top of the DLL layer for the segment. Each
record 136 includes a link 138 to the next record in the
list, the identity of the protocol (field 140), a frames
20 count for the number of frames detected for the
identified protocol (field 142); and a frame rate (field
144).
The MAC address data structure is organized in a
similar manner to that of the segment data structure (see
25 Fig. 7b). There is a doubly linked list 146 of MAC
address records 148, each of which contains the same type
of information as is stored in DLL segment address
records 104. A pointer 150 at the end of each MAC
address record 148 points to a DLL address statistics
30 data structure 152, which like the DLL segment address
data structure 130, contains fields for all of the
statitics that are gathered for that DLL MAC address.
Examples of the particular statistics are shown in Fig.
7b.

EX 1009 Page 38

WO 92/19054 _ PCT/US92/02995

10

15

20

25

30

35

- 37 -

At the end of DLL address statistics data
structure 152, there are two pointer fields 152 and 154,
one for a pointer to a record 158 in a dialog link queue
160, and the other for a pointer to a linked list 162 of
protocol statistics records 164. Each dialog link queue
entry 158 contains a pointer to the next entry (field
168) in the queue and it contains a dialog_addr pointer
170 which points to an entry in the DLL dialog queue
which involves the MAC address. (see Fig. 7c). Protocol
statistics records 164 have the same structure and
contain the same categories of information as their
counterparts hanging off of DLL segment statistics data
structure 130.

The above-described design is repeated in the DLL
dialog data structures. That is, dialog record 172
includes the same categories of information as its
counterpart in the DLL segment address data structure and
the MAC address data structure. The address field 174
contains the addresses of both ends of the dialog
concatenated together to form a single address. The
first and second addresses within the single address are
arbitrarily designated nodes 1 and 2, respectively. In
the stats_pointer field 176 there is a pointer to a
dialog statistics data structure 178 containing the
relevant statistics for the dialog. The entries in the
first two fields in this data structure (i.e., fields 180
and 182) are designated protocol entries and protocols.
Protocol entries is the number of different protocols
which have been seen between the two MAC addresses. The
protocols that have been seen are enumerated in the
protocols field 182.

DLL dialog statistics data structure 178,
illustrated by Fig. 7c, includes several additional
fields of information which only appear in these 7
structures for dialogs for which state information can be

EX 1009 Page 39

WO 92/19054 PCT/US92/02995

kept (e.g. TCP connection). The additional fields
identify the transport>protocol (e.g., TCP) (field 184)
and the application which is running on top of that
protocol (field 186). They also include the identity of
5 the initiator of the connection (field 188), the state of .

the connection (field 190) and the reason that the
connection was closed, when it is closed (field 192).
Finally, they also include a state pointer (field 194)
which points to a history data structure that will be

10 described in greater detail later. Suffice it to say,
that the history data structure contains a short history
of events and states for each end of the dialog. The
state machine uses the information contained in the
history data structure to loosely determine what the

15 state of each of the end nodes is throughout the course
of the connection. The qualifier "loosely" is used
because the state machine does not closely shadow the
state of the connection and thus is capable of recovering
from loss of state due to lost packets or missed

20 communications.

The above-described structures and organization
are used for all layers and all protocols within STATS.
Real Time Parser (RTP)

The RTP runs as an application task. It is

25 scheduled by the Real Time Kernel scheduler when received
frames are detected. The RTP parses the frames and
causes statistics, state tracking, and tracing operations
to be performed.

The functions of the RTP are:

30 * obtain frames from the RTP Input Queue;

parse the frames;

maintain statistics using routines supplied by the

STATS module;

* maintain protocol state information;

EX 1009 Page 40

WO 92/19054 PCT/US92/02995

10

15

20

25

30

35

= 39 -

* notify the MTM via an ITM if a frame has been
received with the Network Monitor's address as the
destination address; and .

* notify the EM via an ITM if a frame has been
received with any Network Monitor's address as the
source address.

The design of the RTP is straightforward. It is a
collection of routines which perform protocol parsing.
The RTP interfaces to the Real Time Kernel in order to
perform RTP initialization, to be scheduled in order to
parse frames, to free frames, to obtain and send an ITM
to another task; and to report fatal errors. The RTP is
invoked by the scheduler when there is at least one frame
to parse. The appropriate parse routines are executed
per frame. Each parse routine invokes the next level
parse routine or decides that parsing is done.
Termination of the parse occurs on an error or when the
frame has been completely parsed.

Each parse routine is a separately compilable
module. In general, parse routines share very little
data. Each knows where to begin parsing in the frame and
the length of the data remaining in the frame.

The following is a list of the parse routines that
are available within RTP for parsing the different
protocols at the various layers.

Data Link Layer Parse - rtp dll_parse:

This routine handles Ethernet, IEEE 802.3, IEEE

802.2, and SNAP: See RFC 1010, Assigned Numbers

for a description of SNAP (Subnetwork Access

Protocol).

Address Resolution Protocol Parse - rtp_arp parse
ARP is parsed as specified in RFC 826.

Internet Protocol Parse - rtp_ip parse
IP Version 4 is parsed as specified in RFC 791 as
amended by RFC 950, RFC 919, and RFC 922.

EX 1009 Page 41

WO 92/19054 PCT/US92/02995

- 40 -

Internet Control Message Protocol Parse - rtp_icmp_parse
ICMP is parsed as specified in RFC 792.
Unit Data Protocol Parse - rtp_udp_parse
UDP is parsed as specified in RFC 768.
5 Transmission Control Protocol Parse - rtp_tcp_parse .
TCP is parsed as specified in RFC 793.
Simple Mail Transfer Protocol Parse - rtp_smtp_parse
SMTP is parsed as specified in RFC 821.
File Transfer Protocol Parse - rtp_ftp_parse
10 FTP is parsed as specified in RFC 959.
Telnet Protocol Parse - rtp_telnet parse
The Telnet protocol is parsed as specified in RFC

854.
Network File System Protocol Parse - rpt_nfs_parse

15 The NFS protocol is parsed as specified in RFC
1094.

The RTP calls routines supplied by STATS to look
up data structures. BY calling these lookup routines,
global pointers to data structures are set up. Following

20 are examples of the pointers to statistics data
structures that are set up when parse routines call
Statistics module lookup routines.
mac_segment, mac_dst_segment, mac_this_segment,
mac_src, mac_dst, mac_dialog
25 ip_src_segment, ip_dst_segment, ip_this_segment,
ip src, ip_dst, ip_dialog

tcp_src_segment, tcp_dst_segment,

tcp_this_segment,

tcp_src, tcp_dst, tcp_src_socket, tcp_dst_socket,

30 tcp_connection

The mac_src and mac_dst routines return pointers
to the data structures within STATS for the source MAC
address and the destination MAC address, respectively.
The lookup mac_dialog routine returns a pointer to the

35 data structure within STATS for the dialog between the

EX 1009 Page 42

WO 92/19054 PCT/US92/02995

- 41 -

two nodes on the MAC layer. The other STATS routines
supply similar pointers for data structures relevant to
other protocols. .
The RTP routines aré aware of the names of the
5 statistics that must be manipulated within the data base
(e.g. frames, bytes) but are not aware of the structure
of the data. When a statistic is to be manipulated, the
RTP routine invokes a macro which manipulates the
appropriate statistics in data structures. The macros
10 use the global pointers which were set up during the
lookup process described above.

After a frame has been parsed (whether the parse
was successful or not), the RTP routine examines the
destination mac and ip addresses. If either of the

15 addresses is that of the Network Monitor, RTP obtains a
low priority ITM, initializes it, and sends the ITM to
the MTM task. One of the fields of the ITM contains the
address of the buffer containing the frame.

The RTP must hand some received frames to the EM

20 in order to accomplish the autotopology function
(described later). After a frame has been parsed
(whether the parse was successful or not), the RTP
routine examines the source mac and ip addresses. If
either of the addresses is that of another Network

25 Monitor, RTP obtains a low priority ITM, initializes it
and sends the ITM to the EM task. The address data
structure (in particular, the flags field of the parse
control record) within STATS for the MAC or the IP
address indicates whether the source address is that of

30 another Network Monitor. One of the fields of the ITM
contains the address of the buffer containing the frame.

The RTP receives traffic frames from the network
for analysis. RTP operation may be modified by sending
control messages to the Monitor. RTP first parses these

35 messages, then detects that the messages are destined for

EX 1009 Page 43

WO 92/19054 PCT/US92/02995

- 42 -

the Monitor and passes them to the MTM task. Parameters
which affect RTP operation may be changed by such control
messages. _
The general operation of the RTP upon receipt of a
5 traffic frame is as follows:
Get next frame from input queue
get address records for these stations
For each level of active parsing
{
10 get pointer to start of protocol header
call layer parse routine
determine protocol at next level
set pointer to start of next layer protocol

}end of frame parsing

15 if this is a monitor command add to MTM input
queue
if this frame is from another monitor, pass
to EM

check for overload -if yes tell control
20 The State Machine:

In the described embodiment, the state machine
determines and keeps state for both addresses of all TCP
connections. TCP is a connection oriented transport
protocol, and TCP clearly defines the connection in terms

25 of states of the connection. There are other protocols
which do not explicitly define the communication in terms
of state, e.g. connectionless protocols such as NFS.
Nevertheless, even in the connectionless protocols there
is implicitly the concept of state because there is an

30 expected order to the events which will occur during the
course of the communication. That is, at the very least,
one can identify a beginning and an end of the
communication, and usually some sequence of events which
will occur during the course of the communication. Thus,

EX 1009 Page 44

WO 92/19054 PCT/US92/02995

10

15

20

25

30

35

- 43 -

even though the described embodiment involves a
connection oriented protocol, the principles are
applicable to many connectionless protocols or for that
matter any protocol for whibh one can identify a
beginning and an end to the communication under that
protocol.

Whenever a TCP packet is detected, the RTP parses
the information for that layer to identify the event
associated with that packet. It then passes the
identified event along with the dialog identifier to the
state machine. For each address of the two parties to
the communication, the state machine determines what the
current state of the node is. The code within the state
machine determines the state of a connection based upon a
set of rules that are illustrated by the event/state
table shown in Fig. 8.

The interpretation of the event/state table is as
follows. The top row of the table identifies the six
possible states of a TCP connection. These states are
not the states defined in the TCP protocol specification.
The left most column identifies the eight events which
may occur during the course of a connection. Within the
table is an array of boxes, each of which sits at the
intersection of a particular event/state combination.
Each box specifies the actions taken by the state machine
if the identified event occurs while the connection is in
the identified state. When the state machine receives a
new event, it may perform three types of action. It may
change the recorded state for the node. The state to
which the node is changed is specified by the S="STATE"
entry located at the top of the box. It may increment or
decrement the appropriate counters to record the
information relevant to that event's occurrence. (In the
table, incrementing and decrementing are signified by the
++ and the -- symbols, respectively, located after the

EX 1009 Page 45

WO 92/19054 o PCT/US92/02995

- 44 -

jdentity of the variable being updated.) Or the state
machine may take other actions such as those specified in
the table as start close timer, Look_for_Data_State, or
Look_at History (to be described shortly). The

5 particular actions which the state machine takes are
specified in each box. An empty box indicates that no
action is taken for that particular event/state
combination. Note, however, that the occurrence of an
event is also likely to have caused the update of

10 statistics within STATS, if not by the state machine,
then by some other part of the RTP. Also note that it
may be desirable to have the state machine record other
events, in which case the state table would be modified
to identify those other actions.

15 Two events appearing on the table deserve further
explanation, namely, close timer expires and inactivity
timer expires. The close timer, which is specified by
TCcP, is started at the end of a connection and it
establishes a period during which any old packets for the

20 connection which are received are thrown away (i.e.,
ignored). The inactivity timer is not specified by TCP
but rather is part of the Network Monitor's resource
management functions. Since keeping statistics for
dialogs (especially old dialogs) consumes resources, it

25 is desirable to recycle resources for a dialog if no
activity has been seen for some period of time. The
jnactivity timer provides the mechanism for accomplishing
this. It is restarted each time an event for the
connection is received. If the jnactivity timer expires

30 (i.e., if no event is received before the timer period
ends), the connection is assumed to have gone inactive
and all of the resources associated with the dialog are
recycled. This involves freeing them up for use by other

dialogs.

EX 1009 Page 46

WO 92/19054 PCT/US92/02995

- 45 =

" The other states and events within the table
differ from but are consistent with the definitions
provided by TCP and should be self evident in view of
that protocol specification.

5 The event/state table can be read as follows.
Assume, for example, that node 1 is in DATA state and the
RTP receives another packet from node 1 which it
determines to be a TCP FIN packet. According to the
entry in the table at the intersection of FIN/DATA (i.e.,

10 event/state), the state machine sets the state of the
connection for node 1 to CLOSING, it decrements the
active connections counter and it starts the close timer.
When the close timer expires, assuming no other events
over that connection have occurred, the state machine

15 sets node 1's state to CLOSED and it starts the
inactivity timer. If the RTP sends another SYN packet to
reinitiate a new connection before the inactive timer
expires, the state machine sets node 1's state to
CONNECTING (see the SYN/CLOSED entry) and it increments

20 an after close counter.

When a connection is first seen, the Network
Monitor sets the state of both ends of the connection to
UNKNOWN state. If some number of data and acknowledgment
frames are seen from both connection ends, the states of

25 the connection ends may be promoted to DATA state. The
connection history is searched to make this determination
as will be described shortly.

Referring to Figs. 9a-b, within STATS there is a
history data structure 200 which the state machine uses

30 to remember the current state of the connection, the
state of each of the nodes participating in the
connection and a short history of state related
information. History data structure 200 is identified by
a state pointer found at the end of the associated dialog

35 gtatistics data structure in STATS (see Fig. 7c). Within

EX 1009 Page 47

WO 92/19054 PCT/US92/02995

- 46 -

history data structure 200, the state machine records the
current state of node 1 (field 202), the current state of
node 2 (field 206) and other data relating to the
corresponding node (fields 204 and 208). The other data

5 includes, for example, the window size for the receive
and transmit communications, the last detected sequence
numbers for the data and acknowledgment frames, and other
data transfer information.

History data structure 200 also includes a history

10 table (field 212) for storing a short history of events
which have occurred over the connection and it includes
an index to the next entry within the history table for
storing the information about the next received event
(field 210). The history table is implemented as a

15 circular buffer which includes sufficient memory to
store, for example, 16 records. Each record, shown in
Fig. 9b, stores the state of the node when the event was
detected (field 218), the event which was detected (i.e.,
received) (field 220), the data field length (field 222),

20 the sequence number (field 224), the acknowledgment
sequence number (field 226) and the identity of the
initiator of the event, i.e., either node 1 or node 2 or
0 if neither (field 228).

Though the Network Monitor operates in a

25 promiscuous mode, it may occasionally fail to detect or
it may, due to overload, lose a packet within a
communication. If this occurs the state machine may not
be able to accurately determine the state of the
connection upon receipt of the next event. The problem

30 is evidenced by the fact that the next event is not what
was expected. When this occurs, the state machine tries
to recover state by relying on state history information
stored in the history table in field 212 to deduce what
the state is. To deduce the current state from

35 historical information, the state machine uses one of the

EX 1009 Page 48

WO 92/19054 PCT/US92/02995

- 47 -

two previously mentioned routines, namely,
Look_for_ Data_State and Look_at_ History.
Referring to Fig. 10, Look_for_ Data_sState routine

230 searches back through the history one record at a

5 time until it finds evidence that the current state is
DATA state or until it reaches the end of the circular
buffer (step 232). Routine 230 detects the existence of
DATA state by determining whether node 1 and node 2 each
have had at least two data events or two acknowledgment

10 combinations with no intervening connect, disconnect or
abort events (step 234). If such a sequence of events is
found within the history, routine 230 enters both node 1
and node 2 into DATA state (step 236), it increments the
active connections counter (step 238) and then it calls a

15 Look_for_ Initiator routine to look for the initiator of
the connection (step 240). If such a pattern of events
is not found within the history, routine 230 returns
without changing the state for the node (step 242).

As shown in Fig. 11, Look_for_Initiator routine

20 240 also searches back through the history to detect a
telltale event pattern which identifies the actual
initiator of the connection (step 244). More
specifically, routine 240 determines whether nodes 1 and
2 each sent connect-related packets. If they did,

25 routine 240 identifies the initiator as the first node to
send a connect-related packet (step 246). If the search
is not successful, the identity of the connection
initiator remains unknown (step 248).

The Look_at_History routine is called to check

30 back through the history to determine whether data
transmissions have been repeated. In the case of
retransmissions, the routine calls a
Look_for_ Retransmission routine 250, the operation of
which is shown in Fig. 12. Routine 250 searches back

35 through the history (step 252) and checks whether the

EX 1009 Page 49

WO 92/19054 PCT/US92/02995

- 48 -

same initiator node has sent data twice (step 254). It
detects this by comparing the current sequence number of
the packet as provided by the RTP with the sequence
numbers of data packets that were previously sent as

5 reported in the history table. 1If a retransmission is -
spotted, the retransmission counter in the dialog
statistics data structure of STATS is incremented (step
256) . If the sequence number is not found within the
history table, indicating that the received packet does

10 not represent a retransmission, the retransmission
counter is not incremented (step 258).

Other statistics such as Window probes and keep
alives may also be detected by looking at the received
frame, data transfer variables, and, if necessary, the

15 history.

Even if frames are missed by the Network Monitor,
because it is not directly "shadowing" the connection,
the Network Monitor still keeps useful statistics about
the connection. If inconsistencies are detected the

20 Network Monitor counts them and, where appropriate, drops
back to UNKNOWN state. Then, the Network Monitor waits
for the connection to stabilize or deteriorate so that it
can again determine the appropriate state based upon the

history table.

25 Principal Transactions of Network Monitor Modules:

The transactions which represent the major portion
of the processing load within the Monitor, include
monitoring, actions on threshold alarms, processing
database get/set requests from the Management

30 Workstation, and processing monitor control requests from
the Management Workstation. Each of these mechanisns
will now be briefly described.

Monitoring involves the message sequence shown in
Fig. 13. 1In that figure, as in the other figures

35 involving message sequences, the numbers under the

EX 1009 Page 50

WO 92/19054 PCT/US92/02995

= 49 -

heading SEQ. identify the major steps in the sequence.
The following steps occur:
1. ISR puts Received traffic frame ITM on RTP input
qgueue .
5 2. request address of pertinent data structure from
STATS (get parse control record for this station)
3. pass pointer to RTP
4. update statistical objects by call to statistical
update routine in STATS using pointer to pertinent
10 data structure
5. parse completed - release buffers
The major steps which follow a statistics
threshold event (i.e., an alarm event) are shown in Fig.
14. The steps are as follows:
15 1. statistical object update causes threshold alarm
2. STATS generates threshold event ITM to event
manager (EM)
3. look up appropriate action for this event
4. perform local event processing
20 5. generate network alarm ITM to MTM Xmit (if
required)
6. format network alarm trap for Workstation from
event manager data
7. send alarm to Workstation
25 The major steps in processing of a database update
request (i.e., a get/set request) from the Management
Workstation are shown in Fig. 15. The steps are as
follows:
1. LAN ISR receives frame from network and passes it

30 to RTP for parsing
2. RTP parses frame as for any other traffic on
segment.
3. RTP detects frame is for monitor and sends

received Workstation message over LAN ITM to MTM
35 Recv.

EX 1009 Page 51

WO 92/19054 PCT/US92/02995

4. MTM Recv processes protocol stack.

5. MTM Recv sends database update request ITM to EM.

6. EM calls STATS to do database read or database
write with appropriéte IMPB

5 7. STATS performs database access and returns

response to EM.

8. EM encodes response to Workstation and sends
database update response ITM to MTM Xmit

9. MTM Xmit transmits.

10 The major steps in processing of a monitor control
request from the Management Workstation are shown in Fig.
16. The steps are as follows:

1. Lan ISR receives frame from network and passes
received frame ITM to RTP for parsing.

15 2. RTP parses frame as for any other traffic on

segment.

3. RTP detects frame is for monitor and sends
received workstation message over LAN ITM to MTM
Recv.

20 4. MTM Recv processes protocol stack and decodes

workstation command.

5. MTM Recv sends request ITM to EM.

6. EM calls Control with monitor control IMPB.

7. control performs requested operation and generates

25 response to EM.

8. EM sends database update response ITM to MIM Xmit.
g. MTM Xmit encodes response to Workstation and

transmits.
Workstati te ce:
30 The interface between the Monitor and the

Management Workstation is based on the SNMP definition
(RFC 1089 SNMP; RFC 1065 SMI; RFC 1066 SNMP MIB - Note:
RFC means Request for Comments). All five SNMP PDU types
are supported:

35 get-request

EX 1009 Page 52

WO 92/19054 PCT/US92/02995

- 51 -

get-next-request
get-response
set-request
trap
5 The SNMP MIB extensions are designed such that where
possible a user request for data maps to a single complex
MIB object. 1In this manner, the get-request is simple
and concise to create, and the response should contain
all the data necessary to build the screen. Thus, if the
10 user requests the IP statistics for a segment this maps
to an IP Segment Group.
The data in the Monitor is keyed by addresses
(MAC, IP) and port numbers (telnet, FTP). The user may
wish to relate his data to physical nodes entered into
15 the network map. The mapping of addresses to physical
nodes is controlled by the user (with support from the
Management Workstation system where possible) and the
Workstation retains this information so that when a user
requests data for node 'Joe' the Workstation asks the
20 Monitor for the data for the appropriate address(es).
The node to address mapping need not be one to one.
Loading and dumping of monitors uses TFTP (Trivial
File Transfer Protocol). This operates over UDP as does
SNMP. The Monitor to Workstation interface follows the
25 SNMP philosophy of operating primarily in a polled mode.
The Workstation acts as the master and polls the Monitor
slaves for data on a regular (configurable) basis.
The information communicated by the SNMP is
represented according to that subset of ASN.1 (ISO 8824
30 Specification of ASN.1l) defined in the Internet standard
Structure of Management Information (SMI - RFC 1065).
The subset of the standard Management Information Base
(MIB) (RFC 1066 SNMP MIB) which is supported by the
Workstation is defined in Appendix III. The added value
35 provided by the Workstation is encoded as enterprise

EX 1009 Page 53

WO 92/19054 PCT/US92/02995

- 52 =

specific extensions to the MIB as defined in Appendix IV.
The format for these extensions follows the SMI
recomendations for object identifiers so that the
Workstation extensions fall in the subtree

5 1.3.6.1.4.1.%x.1. where x is an enterprise specific node
identifier assigned by the IAB.

Appendix V is a summary of the network variables
for which data is collected by the Monitor for the
extended MIB and which can be retrieved by the

10 Workstation. The summary includes short decriptions of
the meaning and significance of the variables, where
appropriate.

The Management Workstation:

The Management Workstation is a SUN Sparcstation

15 (also referred to as a Sun) available from Sun
Microsystems, Inc. It is running the Sun flavor of Unix
and uses the Open Look Graphical User Interface (GUI) and
the SunNet Manager as the base system. The options
required are those to run SunNet Manager with some

20 additional disk storage requirement.

The network is represented by a logical map
illustrating the network components and the relationships
between them, as shown in Fig. 17. A hierarchical
network map is supported with navigation through the

25 layers of the hierarchy, as provided by SNM. The
Management Workstation determines the topology of the
network and informs the user of the network objects and
their connectivity so that he can create a network map.
To assist with the map creation process, the Management

30 Workstation attempts to determine the stations connected
to each LAN segment to which a Monitor is attached.
Automatic determination of segment topology by detecting
stations is performed using the autotopology algorithms
as described in copending U.S. Patent Application S.N.

35 %%, %%* entitled "Automatic Topology Monitor for Multi-

EX 1009 Page 54

WO 92/19054 PCT/US92/02995

10

15

20

25

30

- 53 -

Segment Local Area Network" filed on January 14, 1991
(Attorney Docket No. 13283-NE.APP), incorporated herein
by reference. .

In normal operation} each station in the network
is monitored by a single Monitor that is located on its
local segment. The initial determination of the Monitor
responsible for a station is based on the results of the
autotopology mechanism. The user may override this
initial default if required.

The user is informed of new stations appearing on
any segment in the network via the alarm mechanism. As
for other alarms, the user may select whether stations
appearing on and disappearing from the network segment
generate alarms and may modify the times used in the
aging algorithms. When a new node alarm occurs, the user
must add the new alarm to the map using the SNM tools.
In this manner, the SNM system becomes aware of the
nodes.

The sequence of events following the detection of
a new node is:

1. the location of the node is determined
automatically for the user.
2. the Monitor generates an alarm for the

user indicating the new node and providing
some or all of the following information:
mac address of node
ip address of node
segment that the node is believed to
be
located on
Monitor to be responsible for the
node
3. the user must select the segment and add
the node manually using the SNM editor

EX 1009 Page 55

WO 92/19054 PCT/US92/02995

- 54 -

4. The update to the SNM database will be
detected and the file reread. The
Workstation database is reconstructed and
the parse control records for the Monitors
5 updated if required.
5. The Monitor responsible for the new node
has its parse control record updated via
SNMP set request(s).
an internal record of new nodes is required for
10 the autotopology. When a new node is reported by a
Network Monitor, the Management Workstation needs to have
the previous location information in order to know which
Network Monitors to involve in autotopology. For
example, two nodes with the same IP address may exist in
15 separate segments of the network. The history makes
possible the correlation of the addresses and it makes
possible duplicate address detection.
Before a new Monitor can communicate with the
Management Workstation via SNMP it needs to be added to
20 the SNM system files. As the SNM files are cached in the
database, the file must be updated and the SNM systenm
forced to reread it.
Thus, on the detection of a new Monitor the
following events need to occur in order to add the
25 Monitor to the Workstation:
1. The Monitor issues a trap to the
Management Workstation software and
requests code to be loaded from the Sun
Microsystems boot/load server.
30 2. The code load fails as the Monitor is not
known to the unix networking software at
this time.
3. The Workstation confirms that the new
Monitor does not exceed the configured

35 system limits (e.g. 5 Monitors per

EX 1009 Page 56

WO 92/19054 PCT/US92/02995

10

15

20

25

30

35

- 55 =

Workstation) and terminates the
initialization sequence if limits are
exceeded. An alarm is issued to the user
indicating the presence of the new Monitor
and whether it can be supported.

4. The user adds the Monitor to the
SNMP.HOSTS file of the SNM system, to the
etc/hosts file of the Unix networking
system and to the SNM map.

5. When the files have been updated the user
resets the Monitor using the set tool
(described later).

6. The Monitor again issues a trap to the
Management Workstation software and
requests code to be loaded from the Sun
boot/load server.

7. The code load takes place and the Monitor
issues a trap requesting data from the
Management Workstation.

8. The Monitor data is issued using SNMP set
requests.

Note that on receiving the set request, the SNMP proxy
rereads in the (updated) SNMP.HOSTS file which now
includes the new Monitor. Also note that the SNMP hosts
file need only contain the Monitors, not the entire 1list
of nodes in the systen.

9. Oon completion of the set request(s) the Monitor
run command is issued by the Workstation to bring
the Monitor on line.

The user is responsible for entering data into the
SNM database manually. During operation, the Workstation
monitors the file write date for the SNM database. When
this is different from the last date read, the SNM
database is reread and the Workstation database _
reconstructed. In this manner, user updates to the SNM

EX 1009 Page 57

PCT/US92/02995

WO 92/19054

10

15

20

25

30

35

database are incorporated into the Workstation database
as quickly as possible without need for the user to take
any action. 7 3

When the Workstation is loaded, the database is
created from the data in the SNM file system (which the
user has possibly updated). This data is checked for
consistency and for conformance to the limits imposed by
the Workstation at this time and a warning is generated
to the user if any problems are seen. If the data errors
are minor the system continues operation; if they are
fatal the user is asked to correct them and Workstation
operation terminates.

The monitoring functions of the Management
Workstation are provided as an extension to the SNM
system. They consist of additional display tools (i.e.,
summary tool, values tool, and set tool) which the user
invokes to access the Monitor options and a Workstation
event log in which all alarms are recorded.

As a result of the monitoring process, the Monitor
makes a large number of statistics available to the
operator. These are available for examination via the
Workstation tools that are provided. In addition, the
Monitor statistics (or a selected subset thereof) can be
made visible to any SNMP manager by providing it with
knowledge of the extended MIB. A description of the
statistics maintained are described elswhere.

Network event statistics are maintained on a per
network, per segment and per node basis. Within a node,
statistics are maintained on a per address (as
appropriate to the protocol layer - IP address, port
number, ...) and per connection basis. Per network
statistics are always derived by the Workstation from the
per segment variables maintained by the Monitors.

Subsets of the basic statistics are maintained on a node

to node and segment to segment basis.

EX 1009 Page 58

WO 92/19054 PCT/US92/02995

- 57 =

If the user requests displays of segment to
segment traffic, the Workstation calculates this data as
follows. The inter segment traffic is derived from the
node to node statistics for the intersecting set of

5 nodes. Thus, if segment A has nodes 1, 2, and 3 and
segment B has nodes 20, 21, and 22, then summing the node
to node traffic for

1 -> 20,21,22

2 => 20,21,22

10 3 => 20,21,22
produces the required result. On-LAN/off-LAN traffic for
segments is calculated by a simply summing node to node
traffic for all stations on the LAN and then subtracting
this from total segment counts.

15 Alarms are reported to the user in the following
ways:
1. Alarms received are logged in a Workstation log.
2. The node which the alarm relates to is highlighted

on the map.

20 3. The node status change is propagated up through
the (map) hierarchy to support the case where the
node is not visible on the screen. This is as
provided by SNM.

Summary Tool
25 After the user has selected an object from the map
and invokes the display tools, the summary tool generates
the user's initial screen at the Management Workstation.
It presents a set of statistical data selected to give an
overview of the operational status of the object (e.g., a
30 selected node or segment). The Workstation polls the
Monitor for the data required by the Summary Tool display
screens.
The Summary Tool displays a basic summary tool
screen such as is shown in Fig. 18. The summary tool
35 screen has three panels, namely, a control panel 602, a

EX 1009 Page 59

WO 92/19054 PCT/US92/02995

- 58 -

values panel 604, and a dialogs panel 606. The control
panel includes the indicated mouse activated bottons.
The functions of each of the buttons is as follows. The
file button invokes a traditional file menu. The view
5 button invokes a view menu which allows the user to s
modify or tailor the visual protperties of the tool. The
properties button invokes a properties menu containing
choices for viewing and sometimes modifying the
properties of objects. -The tools button invokes a tools

10 menu which provides access to the other Workstation
tools, e.g. Values Tool.

The Update Interval field allows the user to
specify the frequency at which the displayed statistics
are updated by polling the Monitor. The Update Once

15 button enables the user to retrieve a single screen
update. When the Update Once button is invoked not only
is the screen updated but the update interval is
automatically set to "none".

The type field enables the user to specify the

20 type of network objects on which to operate, i.e.,
segment or node.

The name button invokes a pop up menu containing
an alphabetical list of all network objects of the type
selected and apply and reset buttons. The required name

25 can then be selected from the (scrolling) list and it
will be entered in the name field of the summary tool
when the apply button is invoked. Alternatively, the
user may enter the name directly in the summary tool name
field.

30 The protocol button invokes a pop up menu which
provides an exclusive set of protocol layers which the
user may select. Selection of a layer copies the layer
name into the displayed field of the summary tool when
the apply operation is invoked. 2An example of a protocol

35 selection menu is shown in Fig. 19. It displays the

EX 1009 Page 60

WO 92/19054 , PCT/US92/02995

- 59 =

available protocols in the form of a protocol tree with

multiple protocol familes. The protocol selection is two

dimensional. That is, the user first selects the

protocol family and then the particular layer within that
5 family.

As indicated by the protocol trees shown in Fig.
19, the capabilities of the Monitor can be readily
extended to handle other protocol families. The
particular ones which are implemented depend upon the

10 needs of the particular network environment in which the
Monitor will operate.

The user invokes the apply button to indicate that
the selection process is complete and the type, name,
protocol, etc. should be applied. This then updates the

15 screen using the new parameter set that the user
selected. The reset button is used to undo the
selections and restore them to their values at the laét
apply operation.

The set of statistics for the selected parameter

20 set is displayed in values panel 604. The members of the
sets differ depending upon, for example, what protocol
was selected. Figs. 20a-g present examples of the types
of statistical variables which are displayed for the DLL,
Ip, UDP, TCP, ICMP, NFS, and ARP/RARP protocols,

25 respectively. The meaning of the values display fields
are described in Appendix I, attached hereto.

Dialogs panel 606 contains a display of the
connection statistics for all protocols for a selected
node. Within the Management Workstation, connection

30 lists are maintained per node, per supported protocol.
When connections are displayed, they are sorted on "Last
Seen" with the most current displayed first. A single
list returned from the Monitor contains all current
connection. For TCP, however, each connection also

35 contains a state and TCP connections are displayed as

EX 1009 Page 61

WO 92/19054 PCT/US92/02995

- 60 -

Past and Present based upon the returned state of the
connection. For certain dialogs, such as TCP and NFS
over UDP, there is an associated direction to the dialog,
i.e., from the initiator (sburce) to the receiver (sink).

5 For these dialogs, the direction is identified in a DIR.
field. A sample of information that is displayed in
dialogs panel 606 is presented in Fig. 21 for current
connections.

Values Tool
10 The values tool provides the user with the ability

to look at the statistical database for a network object
in detail. When the user invokes this tool, he may
select a basic data screen containing a rate values panel
620, a count values panel 622 and a protocols seen panel
15 626, as shown in Fig. 22, or he may select a traffic
matrix screen 628, as illustrated in Fig. 23.
In rate values and count values panels 620 and
622, value tools presents the monitored rate and count
statistics, respectively, for a selected protocol. The
20 parameters which are displayed for the different
protocols (i.e., different groups) are listed in Appendix
II. In general, a data element that is being displayed
for a node shows up in three rows, namely, a total for
the data element, the number into the data element, and
25 the number out of the data element. Any exceptions to
this are identified in Appendix II. Data elements that
are displayed for segments, are presented as totals only,
with no distinction between Rx and Tx.
When invoked the Values Tool displays a primary
30 screen to the user. The primary screen contains what is
considered to be the most significant information for the
selected object. The user can view other information for
the object (i.e., the statistics for the other

parameters) by scrolling down.

EX 1009 Page 62

WO 92/19054 , PCT/US92/02995

- 61 -

The displayed information for the count values and
rate values panels 620 and 622 includes the following.
An alarm field reports whether an alarm is currently
active for this item. It displays as "*" if active alarm
5 is present. A Current Value/Rate field reports the
current rate or the value of the counter used to generate
threshold alarms for this item. This is reset following
each threshold trigger and thus gives an idea of how
close to an alarm threshold the variable is. A Typical
10 Value field reports what this item could be expected to
read in a "normal" operating situation. This field is
filled in for those items where this is predictable and
useful. It is maintained in the Workstation database and
is modifiable by the user using the set tool. An
15 Accumulated Count field reports the current accumulated
value of the item or the current rate. A Max Value field
reports the highest value recently seen for the item.
This value is reset at intervals defined by a user
adjustable parameter (default 30 minutes). This is not a
20 rolling cycle but rather represents the highest value
since it was reset which may be from 1 to 30 minutes ago
(for a rest period of 30 minutes). It is used only for
rates. A Min Value field reports the lowest value
recently seen for the item. This operates in the same
25 manner as Max Value field and is used only for rates.
A Percent (%) field reports only for the following
variables:
off seg counts:
100(in count / total off seg count)
30 100 (out count / total off seg count)
100 (transit count / total off seg count)
100(local count / total off seg count)
off seg rates
100(transit rate / total off seg rate), etc.
35 protocols '

EX 1009 Page 63

WO 92/19054 PCT/US92/02995

100 (frame rate this protocol / total frame
rate)
on the right half of the basic display, there the
following addtional fields: a High Threshold field and a
5 Sample period for rates field.

Set Tool
The set tool provides the user with the ability to

modify the parameters controling the operation of the
Monitors and the Management Workstation. These
10 parameters affect both user interface displays and the
actual operation of the Monitors. The parameters which
can be operated on by the set tool can be divided into
the following categories: alarm thresholds, monitoring
control, segment Monitor administration, and typical
15 values.
The monitoring control variables specify the
actions of the segment Monitors and each Monitor can have
a distinct set of control variables (e.g., the parse
control records that are described elsewhere). The user
20 is able to define those nodes, segments, dialogs and
protocols in which he is interested so as to make the
best use of memory space available for data storage.
This mechanism allows for load sharing, where mulitple
Monitors on the same segment can divide up the total
25 number of network objects which are to be monitored so
that no duplication of effort between them takes place.
The monitor administration variables allow the
user to modify the operation of the segment Monitor in a
more direct manner than the monitoring control variables.
30 Using the set tool, the user can perform those operations
such as reset, time changes etc. which are normally the
prerogative of a system administrator.
Note that the above descriptions of the tools
available through the Management Workstation are not
35 meant to imply that other choices may not be made

EX 1009 Page 64

WO 92/19054 PCT/US92/02995

- 63 -

regarding the particular information which is displayed
and the manner in which it is displayed.
S i W i s :
The Workstation sets the thresholds in the Network

5 Monitor based upon the performance of the system as
observed over an extended period of time. That is, the
Workstation periodically samples the output of the
Network Monitors and assembles a model of a normally
functioning network. Then, the Workstation sets the

10 thresholds in the Network Monitors based upon that model.
If the observation period is chosen to be long enough and
since the model represents the "average" of the network
performance over the observation period, temporary
undesired deviations from normal behavior are smoothed

15 out over time and model tends to accurately reflect
normal network behavior.

- Referring the Fig. 24, the details of the training
procedure for adaptively setting the Network Monitor
thresholds are as follows. To begin training, the

20 Workstation sends a start learning command to the Network
Monitors from which performance data is desired (step
302). The start learning command disables the thresholds
within the Network Monitor and causes the Network Monitor
to periodically send data for a predefined set of network

25 parameters to the Management Workstation. (Disabling the
thresholds, however, is not necessary. One could have
the learning mode operational in parallel with monitoring
using existing thresholds.) The set of parameters may be
any or all of the previously mentioned parameters for

30 which thresholds are or may be defined.

Throughout the learning period, the Network
Monitor sends "snapshots" of the network's performance to
the Workstation which, in turn, stores the data in a
performance history database 306 (step 304). The network

35 manager sets the length of the learning period.

EX 1009 Page 65

WO 92/19054 PCT/US92/02995

- 64 -

Typically, it should be long enough to include the full
range of load conditions that the network experiences SO
that a representative performance history is generated.
It should also be long enough so that short periods of

5 overload or faulty behavior do not distort the resulting
averages.

After the learning period has expired, the network
manager, through the Management Workstation, sends a stop
learning command to the Monitor (step 308). The Monitor

10 ceases automatically sending further performance data
updates to the Workstation and the Workstation processes
the data in its performance history database (step 310).
The processing may involve simply computing averages for
the parameters of interest or it may involve more

15 sophisticated statistical analysis of the data, such as
computing means, standard deviations, maximum and minimum
values, or using curve fitting to compute rates and other
pertinent parameter values.

After the Workstation has statistically analyzed

20 the performance data, it computes a new set of thresholds
for the relevant performance parameters (step 312). To
do this, it uses formulas which are appropriate to the
particular parameter for which a threshold is being
computed. That is, if the parameter is one for which one

25 would expect to see wide variations in its value during
network monitoring, then the threshold should be set high
enough so that the normal expected variations do not
trigger alarms. On the other hand, if the parameter is
of a type for which only small variations are expected

30 and larger variations indicate a problem, then the
threshold should be set to a value that is close to the
average observed value. Examples of formulae which may
be used to compute thresholds are:

* Highest value seen during learning period;

EX 1009 Page 66

WO 92/19054 PCT/US92/02995

65
* Highest value seen during learning period +
10%;
* Highest value seen during learning period +
50%; '
5 * Highest value seen during learning period +

user-defined percent;

* Any value of the parameter other than zero;
* Average value seen during learning period +
50%; and
10 * Average value seen during learning period +

user-defined percent.

As should be evident from these examples, there is a
broad range of possibilities regarding how to compute a
particular threshold. The choice, however, should

15 reflect the parameter's importance in signaling serious
network problems and its normal expected behavior (as may
be evidenced from the performance history acquired for
the parameter during the learning mode).

After the thresholds are computed, the Workstation

20 loads them into the Monitor and instructs the Monitor to
revert to normal monitoring using the new thresholds
(step 314).

This procedure provides a mechanism enabling the

network manager to adaptively reset thresholds in

25 response to changing conditions on the network, shifting
usage patterns and evolving network topology. As the
network changes over time, the network manager merely
invokes the adaptive threshold setting feature and
updates the thresholds to reflect those changes.

30 e Dj sti o e:

The Management Workstation includes a diagnostic
analyzer module which automatically detects and diagnoses
the existence and cause of certain types of network
problems. The functions of the diagnostic module may

35 actually be distributed among the Workstation and the

EX 1009 Page 67

WO 92/19054 PCT/US92/02995

- 66 -

Network Monitors which are active on the network. In
principle, the diagnostic analyzer module includes the
following elements for performing its fault detection and
analysis functions. .

5 The Management Workstation contains a reference
model of a normally operating network. The reference
model is generated by observing the performance of the
network over an extended period of time and computing
averages of the performance statistics that were observed

10 during the observation period. The reference model
provides a reference against which future network
performance can be compared so as to diagnose and analyze
potential problems. The Network Monitor (in particular,
the STATS module) includes alarm thresholds on a selected

15 set of the parameters which it monitors. Some of those
thresholds are set on parameters which tend to be
indicative of the onset or the presence of particular
network problems.

During monitoring, when a Monitor threshold is

20 exceeded, thereby indicating a potential problem (e.g. in
a TCP connection), the Network Monitor alerts the
Workstation by sending an alarm. The Workstation
notifies the user and presents the user with the option
of either ignoring the alarm or invoking a diagnostic

25 algorithm to analyze the problem. If the user invokes
the diagnostic algorithm, the Workstation compares the
current performance statistics to its reference model to
analyze the problem and report its results. (Of course,
this may also be handled automatically so as to not

30 require user intervention.) The Workstation obtains the
data on current performance of the network by retrieving
the relevant performance statistics from all of the
segment Network Monitors that may have information useful

to diagnosing the problem.

EX 1009 Page 68

WO 92/19054 PCT/US92/02995

- 67 -

The details of a specific example involving poor
TCP connection performance will now be described. This
example refers to a typical network on which the
diagnostic analyzer resides, such as the network

5 illustrated in Fig. 25. It includes three segments
labelled S1, S2, and S3, a router Rl connecting S1 to S2,
a router R2 connecting S2 to S3, and at least two nodes,
node A on S1 which communicates with node B on S3. On
each segment there is also a Network Monitor 324 to

10 observe the performance of its segment in the manner
described earlier. A Management Workstation 320 is also
located on S1 and it includes a diagnostic analyzer
module 322. For this example, the sympton of the network
problem is degraded peformance of a TCP connection

15 between Nodes A and B.

A TCP connection problem may manifest itself in a
number of ways, including, for example, excessively high
numbers for any of the following:

errors

20 packets with bad sequence numbers

packets retransmitted

bytes retransmitted

out of order packets

out of order bytes

25 packets after window closed

bytes after window closed

average and maximum round trip times
or by an unusually low value for the current window size.
By setting the appropriate thresholds, the Monitor is

30 programmed to recognize any one or more of these
symptons. If any one of of the thresholds is exceeded,
the Monitor sends an alarm to the Workstation. The
Workstation is programmed to recognize the particular
alarm as related to an event which can be further

35 analyzed by its diagnostic analyzer module 322. Thus,

EX 1009 Page 69

WO 92/19054 PCT/US92/02995

- 68 -

the Workstation presents the user with the option of
invoking its diagnostic capabilities (or automatically
invokes the diagnostic capabilities).
In general terms, when the diagnostic analyzer is

5 invoked, it looks at the performance data that the
segment Monitors produce for the two nodes, for the
dialogs between them and for the links that interconnect
them and compares that data to the reference model for
the network. If a significant divergence from the

10 reference model is identified, the diagnostic analyzer
informs the Workstation (and the user) about the nature
of the divergence and the likely cause of the problem.
In conducting the comparison to "normal" network
performance, the network circuit involved in

15 communications between nodes A and B is decomposed into
jts individual components and diagnostic analysis is
performed on each link individually in the effort to
isolate the problem further.

The overall structure of the diagnostic algorithm

20 400 is shown in Fig. 26. When invoked for analyzing a
possible TCP problem between nodes A and B, diagnostic
analyzer 322 checks for a TCP problem at node A when it
is acting as a source node (step 402). To perform this
check, diagnostic algorithm 400 invokes a source node

25 analyzer algorithm 450 shown in Fig. 27. If a problem is
identified, the Workstation reports that there is a high
probability that node A is causing a TCP problem when
operating as a source node and it reports the results of
the investigation performed by algorithm 450 (step 404) .

30 If node A does not appear to be experiencing a TCP
problem when acting as a source node, diagnostic analyzer
322 checks for evidence of a TCP problem at node B when
it is acting as a sink node (step 406). To perform this
check, diagnostic algorithm 400 invokes a sink node

35 analyzer algorithm 470 shown in Fig. 28. If a problem is

EX 1009 Page 70

WO 92/19054 PCT/US92/02995

- 69 -

identified, the Workstation reports that there is a high
probability that node B is causing a TCP problem when
operating as a sink node and it reports the results of
the investigation performed by algorithm 470 (step 408).

5 Note that source and sink nodes are concepts which
apply to those dialogs for which a direction of the
communication can be defined. For example, the source
node may be the one which initiated the dialog for the
purpose of sending data to the other node, i.e., the sink

10 node.

If node B does not appear to be experiencing a TCP
problem when acting as a sink node, diagnostic analyzer
322 checks for evidence of a TCP problem on the link
between Node A and Node B (step 410). To perform this

15 check, diagnostic algorithm 400 invokes a link analysis
algorithm 550 shown in Fig. 29. If a problem is
identified, the Workstation reports that there is a high
probability that a TCP problem exists on the link and it
reports the results of the investigation performed by

20 link analysis algorithm 550 (step 412).

If the link does not appear to be experiencing a
TCP problem, diagnostic analyzer 322 checks for evidence
of a TCP problem at node B when it is acting as a source
node (step 414). To perform this check, diagnostic

25 algorithm 400 invokes the previously mentioned source
algorithm 450 for Node B. If a problem is identified,
the Workstation reports that there is a medium
probability that node B is causing a TCP problem when
operating as a source node and it reports the results of

30 the investigation performed by algorithm 450 (step 416).

If node B does not appear to be experiencing a TCP
problem when acting as a source node, diagnostic analyzer
322 checks for a TCP problem at node A when it is acting
as a sink node (step 418). To perform this check,

35 diagnostic algorithm 400 invokes sink node analyzer

EX 1009 Page 71

WO 92/19054 PCT/US92/02995

- 70 -

algorithm 470 for Node A. If a problem is identified,
the Network Monitor reports that there is a medium
probability that node A is causing a TCP problem when
operating as a sink node and it reports the results of

5 the investigation performed by algorithm 470 (step 420).

Finally, if node A does not appear to be

experiencing a TCP problem when acting as a sink node,
diagnostic analyzer 322 reports that it was not able to
isolate the cause of a TCP problem (step 422).

10 The algorithms which are called from within the
above-described diagnostic algorithm will now be
described. Referring to Fig. 27, source node analyzer
algorithm 450 checks whether a particular node is causing
a TCP problem when operating as a source node. The

15 strategy is as follows. To determine whether a TCP
problem exists at this node which is the source node for
the TCP connection, look at other connections for which
this node is a source. If other TCP connections are
okay, then there is probably not a problem with this

20 node. This is an easy check with a high probability of
being correct. If no other good connections exist, then
look at the lower layers for possible reasons. Start at
DLL and work up as problems at lower layers are more
fundamental, i.e., they cause problems at higher layers

25 whereas the reverse is not true.

" In accordance with this approach, algorithm 450
first determines whether the node is acting as a source
node in any other TCP connection and, if so, whether the
other connection is okay (step 452). If the node is

30 performing satisfactorily as a source node in another TCP
connection, algorithm 450 reports that there is no
problem at the source node and returns to diagnostic
algorithm 400 (step 454). If algorithm 450 cannot
identify any other TCP connections involving this node

35 that are okay, it moves up through the protocol stack

EX 1009 Page 72

WO 92/19054 PCT/US92/02995

10

15

20

25

30

35

- 71 -

checking each level for a problem. In this case, it then
checks for DLL problems at the node when it is acting as
a source node by calling an DLL problem checking routine
510 (see Fig. 30) (step 456). If a DLL'problem is found,
that fact is reported (step 458). If no DLL problems are
found, algorithm 450 checks for an IP problem at the node
when it is acting as a source by calling an IP problem
checking routine 490 (see Fig. 31) (step 460). If an IP
problem is found, that fact is reported (step 462). If
no IP problems are found, algorithm 450 checks whether
any other TCP connection in which the node participates
as a source is not okay (step 464). If another TCP
connection involving the node exists and it is not okay,
algorithm 450 reports a TCP problem at the node (step
466). If no other TCP connections where the node is
acting as a source node can be found, algorithm 450
exits.

Referring to Fig. 28, sink node analyzer algorithm
470 checks whether a particular node is causing a TCP
problem when operating as a sink node. It first
determines whether the node is acting as a sink node in
any other TCP connection and, if so, whether the other
connection is okay (step 472). If the node is performing
satisfactorily as a sink node in another TCP connection,
algorithm 470 reports that there is no problem at the
source node and returns to diagnostic algorithm 400 (step
474). 1If algorithm 470 cannot identify any other TCP
connections involving this node that are okay, it then
checks for DLL problems at the node when it is acting as
a sink node by calling DLL problem checking routine 510
(step 476). If a DLL problem is found, that fact is
reported (step 478). If no DLL problems are found,
algorithm 470 checks for an IP problem at the node when
it is acting as a sink by calling IP problem checking
routine 490 (step 480). If an IP problem is found, that

EX 1009 Page 73

WO 92/19054 PCT/US92/02995

- 72 -

fact is reported (step 482). If no IP problems are
found, algorithm 470 checks whether any other TCP
connection in which the node participates as a sink is
not okay (step 484). If another TCP connection involving

5 the node as a sink exists and it is not okay, algorithm
470 reports a TCP problem at the node (step 486). If no
other TCP connections where the node is acting as a sink
node can be found, algorithm 470 exits.

Referring to Fig. 31, IP problem checking routine

10 490 checks for IP problems at a node. It does this by
comparing the IP performance statistics for the node to
the reference model (steps 492 and 494). If it detects
any significant deviations from the reference model, it
reports that there is an IP problem at the node (step

15 496). If no significant deviations are noted, it reports
that there is no IP problem at the node (step 498).

As revealed by examining Fig. 30, DLL problem
checking routine 510 operates in a similar manner to IP
problem checking routine 490, with the exception that it

20 examines a different set of parameters (i.e., DLL
parameters) for significant deviations.

Referring the Fig. 29, link analysis logic 550
first determines whether any other TCP connection for the
link is operating properly (step 552). If a properly

25 operating TCP connection exists on the link, indicating
that there is no link problem, link analysis logic 550
reports that the link is okay (step 554). If a properly
operating TCP connection cannot be found, the link is
decomposed into its constituent components and an IP link

30 component problem checking routine 570 (see Fig. 32) is
invoked for each of the link components (step 556). IP
link component problem routine 570 evaluates the link
component by checking the IP layer statistics for the

relevant link component.

EX 1009 Page 74

WO 92/19054 PCT/US92/02995

- 73 -

The decomposition of the link into its components
arranges them in order of their distance from the source
node and the analysis of the components proceeds in that
order. Thus, for example, the link components which make

5 up the link between nodes A and B include in order:
segment S1, router Rl, segment S2, router R2, and segment
S3. The IP data for these various components are
analyzed in the following order:

IP data for segment S1
10 IP data for address Rl
IP data for source node to R1
IP data for S1 to S2
IP data for S2
IP data for address R2
15 IP data for S3
IP data for S2 to S3
) IP data for S1 to S3

As shown in Fig. 32, IP link component problem

checking routine 570 compares IP statistics for the link

20 component to the reference model (step 572) to determine
whether network performance deviates significantly from
that specified by the model (step 574). If significant
deviations are detected, routine 570 reports that there
is an IP problem at the link component (step 576).

25 Otherwise, it reports that it found no IP problem (step
578) .

Referring back to Fig. 29, after completing the IP
problem analysis for all of the link components, logic
550 then invokes a DLL link component problem checking

30 routine 580 (see Fig. 33) for each link component to
check its DLL statistics (step 558).

DLL link problem routine 580 is similar to IP link
problem routine 570. As shown in Fig. 33, DLL 1link
problem checking routine 580 compares DLL statistics for

35 the link to the reference model (step 582) to determine

EX 1009 Page 75

WO 92/19054 PCT/US92/02995

- 74 -

whether network performance at the DLL deviates
significantly from that specified by the model (step
584). If significant deviations are detected, routine
580 reports that there is a DLL problem at the link

5 component (step 586). Otherwise, it reports that no DLL
problems were found (step 588).

Referring back to Fig. 29, after completing the
DLL problem analysis for all of the link components,
logic 550 checks whether-there is any other TCP on the

10 link (step 560). If another TCP exists on the link
(which implies that the other TCP is also not operating
properly), logic 550 reports that there is a TCP problem
on the link (step 562). Otherwise, logic 550 reports
that there was not enough information from the existing

15 packet traffic to determine whether there was a link
problem (step 564)

If the analysis of the link components does not
isolate the source of the problem and if there were
components for which sufficient information was not

20 available (due possibly to lack of traffic over through
that component), the user may send test messages to those
components to generate the information needed to evaluate
its performance.

The reference model against which comparisons

25 are made to detect and isolate malfunctions may be
generated by examining the behavior of the network over
an extended period of operation or over multiple periods
of operation. During those periods of operation, average
values and maximum excursions (or standard deviations)

30 for observed statistics are computed. These values
provide an initial estimate of a model of a properly
functioning system. As more experience with the network
is obtained and as more historical data on the various
statistics is accumulated the thresholds for detecting

35 actual malfunctions or imminent malfunctions and the

EX 1009 Page 76

WO 92/19054 PCT/US92/0299>

- 75 -

reference model can be revised to reflect the new
experience. '

What constitutes a significant deviation from the
reference model depends upon the particular parameter

5 involved. Some parameters will not deviate from the

expected norm and thus any deviation would be considered
to be significant, for example, consider ICMP messages of
type "destination unreachable," IP errors, TCP errors.
Other parameters will normally vary within a wide range

10 of acceptable values, and only if they move outside of
that range should the deviation be considered
significant. The acceptable ranges of variation can be
determined by watching network performance over a
sustained period of operation.

15 The parameters which tend to provide useful
information for identifying and isolating problems at the
node level for the different protocols and layers include
the following.

Icp
20 error rate

header byte rate

packets retransmitted

bytes retransmitted

packets after window closed
25 bytes after window closed

upp

error rate
header byte rate

Ipr
30 error rate
header byte rate
fragmentation rate
all ICMP messages of type destination

EX 1009 Page 77

PCT/US92/02995

WO 92/19054
- 76 -
unreachable, parameter problem,
redirection
DLL
error rate .
5 runts ‘

10

15

20

25

30

For diagnosing network segment problems, the above-
identified parameters are also useful with the addition
of the alignment rate and the collision rate at the DLL.
All or some subset of these parameters may be included
among the set of parameters which are examined during the
diagnostic procedure to detect and isolate network
problems.

The above-described technique can be applied to a
wide range of problems on the network, including among
others, the following:

TCP Connection fails to establish

UDP Connection performs poorly

UDP not working at all

IP poor performance/high error rate

IP not working at all

DLL poor performance/high error rate

DLL not working at all
For each of these problems, the diagnostic approach would
be similar to that described above, using, of course,
different parameters to identify the potential problem

and isolate its cause.

The Event Timing Module
Referring again to Fig. 5, the RTP is programmed

to detect the occurrence of certain transactions for
which timing information is desired. The transactions
typically occur within a dialog at a particular layer of
the protocol stack and they involve a first event (i.e.,
an initiating event) and a subsequent partner event or
response. The events are protocol messages that arrive

EX 1009 Page 78

WO 92/19054 PCT/US92/02995

- 77 -

at the Network Monitor, are parsed by the RTP and then
passed to Event Timing Module (ETM) for processing. A
transaction of interest might be, for example, a read of
a file on a server. In that case, the initiating event
5 1is the read request and the partner event is the read
response. The time of interest is the time required to
receive a response to the read request (i.e., the
transaction time). The transaction time provides a
useful measure of network performance and if measured at

10 various times throughout the day under different load
conditions gives a measure of how different loads affect
network response times. The layer of the communicaton
protocol at which the relevant dialog takes place will of
course depend upon the nature of the event.

15 In general, when the RTP detects an event, it
transfers control to the ETM which records an arrival
time for the event. If the event is an initiating event,
the ETM stores the arrival time in an event timing
database 300 (see Fig. 34) for future use. If the event

20 is a partner event, the ETM computes a difference between
that arrival time and an earlier stored time for the
initiating event to determine the complete transaction
time.

Event timing database 300 is an array of records

25 302. Each record 302 includes a dialog field 304 for
identifying the dialog over which the transactions of
interest are occurring and it includes an entry type
field 306 for identifying the event type of interest.
Each record 302 also includes a start time field 308 for

30 storing the arrival time of the initiating event and an
average delay time field 310 for storing the computed
average delay for the transactions. A more detailed
description of the operation of the ETM follows.

Referring to Fig. 35, when the RTP detects the

35 arrival of a packet of the type for which timing

EX 1009 Page 79

WO 92/19054 PCT/US92/02995

- 78 -

information is being kept, it passes control to the ETM
along with relevant information from the packet, such as
the dialog identifier and the event type (step 320). The
ETM then determines whether it is to keep timing

5 information for that particular event by checking the
event timing database (step 322). Since each event type
can have multiple occurrences (i.e., there can be
multiple dialogs at a given layer), the dialog identifier
is used to distinguish between events of the same type

10 for different dialogs and to identify those for which
information has been requested. All of the dialog/events
of interest are identified in the event timing database.
If the current dialog and event appear in the event
timing database, indicating that the event should be

15 timed, the ETM determines whether the event is a starting
event or an ending event so that it may be processed
properly (step 324). For certain events, the absence of
a start time in the entry field of the appropriate record
302 in event timing database 300 is one indicator that

20 the event represents a start time; otherwise, it is an
end time event. For other events, the ETM determines if
the start time is to be set by the event type as
specified in the packet being parsed. For example, 1if
the event is a file read a start time is stored. If the

25 event is the read completion it represents an end time.
In general, each protocol event will have its own
intrinsic meaning for how to determine start and end
times.

Note that the arrival time is only an estimate of

30 the actual arrival time due to possible queuing and other
processing delays. Nevertheless, the delays are
generally so small in comparison to the transaction times
being measured that they are of little consequence.

In step 324, if the event represents a start time,
35 the ETM gets the current time from the kernal and stores

EX 1009 Page 80

WO 92/19054 PCT/US92/02995

- 79 -

it in start time field 308 of the appropriate record in
event timing database 300 (step 326). If the event
represents an end time event, the ETM obtains the current
time from the kernel and cémputes a difference between

5 that time and the corresponding start time found in event
timing database 300 (step 328). This represents the
total time for the transaction of interest. It is
combined with the stored average transaction time to
compute a new running average transaction time for that

10 event (step 330).

Any one of many different methods can be used to
compute the running average transaction time. For
example, the following formula can be used:

New Avg. = [(5 * Stored Avg.) + Transaction

15 Time]/6.

After six transaction have been timed, the computed new
average becomes a running average for the transaction
times. The ETM stores this computed average in the
appropriate record of event timing database 300,

20 replacing the previous average transaction time stored in
that record, and it clears start time entry field 308 for
that record in preparation for timing the next
transaction.

After processing the event in steps 322, 326, and

25 330, the ETM checks the age of all of the start time
entries in the event timing database 300 to determine if
any of them are too "old" (step 332). If the difference
between the current time and any of the start times
exceeds a preselected threshold, indicating that a

30 partner event has not occurred within a reasonable period
of time, the ETM deletes the old start time entry for
that dialog/event (step 334). This insures that a missed
packet for a partner event does not result in an
erroneously large transaction time which throws off the

35 running average for that event.

EX 1009 Page 81

WO 92/19054 PCT/US92/02995

- 80 -

If the average transaction time increases beyond a
preselected threshold set for timing events, an alarm is
sent to the Workstation.

Twd examples will now be descrlbed to illustrate

5 the operation of the ETM for specific event types. In
the first example, Node A of Fig. 25 is communicating
with Node B using the NFS protocol. Node A is the client
while Node B is the server. The Network Monitor resides
on the same segment as node A, but this is not a

10 requirement. When Node A issues a read request to Node
B, the Network Monitor sees the request and the RTP
within the Network Monitor transfers control to the ETM.
Since it is a read, the ETM stores a start time in the
Event Timing Database. Thus, the start time is the time
15 at which the read was initiated.

After some delay, caused by the transmission
delays of getting the read message to node B, node B
performs the read and sends a response back to node A.
After some further transmission delays in returning the

20 read response, the Network Monitor receives the second
packet for the event. At the time, the ETM recognizes
that the event is an end time event and updates the
average transaction time entry in the appropriate record
with a new computed running average. The ETM then

25 compares the average transaction time with the threshold
for this event and if it has been exceeded, issues an
alarm to the Workstation.

In the second example, node A is communicating
with Node B using the Telnet protocol. Telnet is a

30 virtual terminal protocol. The events of interest take
place long after the initial connection has been
established. Node A is typing at a standard ASCII (VT100
class) terminal which is logically (through the network)
connected to Node B. Node B has an application which is

35 receiving the characters being typed on Node A and, at

EX 1009 Page 82

WO 92/19054 : PCT/US92/02995

- 81 -

appropriate times, indicated by the logic of the
applications, sends characters back to the terminal
located on Node A. Thus, every time node A sends
characters to B, the Netwofk Monitor sees the

5 transmission.

In this case, there are several transaction times
which could provide useful network performance
information. They include, for example, the amount of
time it takes to echo characters typed at the keyboard

10 through the network and back to the display screen, the
delay between typing an end of line command and seeing
the completion of the application event come back or the
network delays incurred in sending a packet and receiving
acknowledgment for when it was received.

15 In this example, the particular time being
measured is the time it takes for the network to send a
packet and receive an acknowledgement that the packet has
arrived. Since Telnet runs on top of TCP, which in turn
runs on top of IP, the Network Monitor monitors the TCP

20 acknowledge end-to-end time delays.

Note that this is a design choice of the
implementation and that all events visible to the Network
Monitor by virtue of the fact that information is in the
packet could be measured.

25 When Node A transmits a data packet to Node B, the
Network Monitor receives the packet. The RTP recognizes
the packet as being part of a timed transaction and
passes control to the ETM. The ETM recognizes it as a
start time event, stores the start time in the event

30 timing database and returns control to the RTP after
checking for aging.

When Node B receives the data packet from Node A,
it sends back an acknowledgment packet. When the Network
Monitor sees that packet, it delivers the event to the

35 ETM, which recognizes it as an end time event. The ETM

EX 1009 Page 83

WO 92/19054 PCT/US92/02995

calculates the delay time for the complete transaction
and uses that to update the average transaction time.
The ETM then compares the new average transaction time
with the threshold for this event. If it has been

5 exceeded, the ETM issues an alarm to the Workstation.

Note that this example is measuring something very
different than the previous example. The first example
measures the time it takes to traverse the network,
perform an action and return that result to the

10 requesting node. It measures performance as seen by the
user and it includes delay times from the network as well
as delay times from the File Server.

The second example is measuring network delays
without looking at the service delays. That is, the ETM

15 is measuring the amount of time it takes to send a packet
to a node and receive the acknowledgement of the receipt
of the message. In this example, the ETM is measuring
transmissions delays as well as processing delays
associated with network traffic, but not anything having

20 to do with non-network processing.

As can be seen from the above examples, the ETM
can measure a broad range of events. Each of these
events can be measured passively and without the
cooperation of the nodes that are actually participating

25 in the transmission.

The Address Tracker Module (ATM)

Address tracker module (ATM) 43, one of the

software modules in the Network Monitor (see Fig. 5),
operates on networks on which the node addresses for

30 particular node to node connections are assigned
dynamically. An Appletalk® Network, developed by Apple
Computer Company, is an example of a network which uses
dynamic node addressing. In such networks, the dynamic
change in the address of a particular service causes

35 difficulty troubleshooting the network because the

EX 1009 Page 84

WO 92/19054 PCT/US92/02995

network manager may not know where the various nodes are
and what they are called. 1In addition, foreign network
addresses (e.g., the IP addresses used by that node for
communication over an IP network to which if is

5 connected) can not be relied upon to point to a
particular node. ATM 43 solves this problem by passively
monitoring the network traffic and collecting a table
showing the node address to node name mappings.

In the following description, the network on which

10 the Monitor is located is assumed to be an Appletalk®
Network. Thus, as background for the following
discussion, the manner in which the dynamic node
addressing mechanism operates on that network will first
be described.

15 When a node is activated on the Appletalk®
Network, it establishes its own node address in
accordance with protocol referred to as the Local Link
Access Protocol (LLAP). That is, the node guesses its
own node address and then verifies that no other node on

20 the network is using that address. The node verifies the
uniqueness of its guess by sending an LLAP Enquiry
control packet informing all other nodes on the network
that it is going to assign itself a particular address
unless another node responds that the address has already

25 been assigned. If no other node claims that address as
its own by sending an LLAP acknowledgment control packet,
the first node uses the address which it has selected.

If another node claims the address as its own, the first
node tries another address. This continues until, the

30 node finds an unused address.

When the first node wants to communicate with a
second node, it must determine the dynamically assigned
node address of the second node. It does this in
accordance with another protocol referred to as the Name

35 Binding Protocol (NBP). The Name Binding Protocol is

EX 1009 Page 85

WO 92/19054 PCT/US92/02995

used to map or bind human understandable node names with
machine understandable node addresses. The NBP allows
nodes to dynamically translate a string of characters
(i.e., a node name) into a node address. The node

5 needing to communicate with another node broadcasts an
NBP Lookup packet containing the name for which a node
address is being requested. The node having the name
being requested responds with its address and returns a
Lookup Reply packet containing its address to the

10 original requesting node. The first node then uses that
address its current communications with the second node.

Referring to Fig. 36, the network includes an
Appletalk® Network segment 702 and a TCP/IP segnent 704,
each of which are connected to a larger network 706

15 through their respective gateways 708. A Monitor 710,
including a Real Time Parser (RTP) 712 and an Address
Tracking Module (ATM) 714, is located on Appletalk
network segment 702 along with other nodes 711. A
Management Workstation 716 is located on segment 704. It

20 is assumed that Monitor 710 has the features and
capabilities previously described; therefore, those
features not specifically related to the dynamic node
addressing capability will not be repeated here but
rather the reader is referred to the earlier discussion.

25 sSuffice it to say that Monitor 710 is, of course, adapted
to operate on Appletalk Network segment 702, to parse and
analyze the packets which are transmitted over that
segment according to the Appletalk® family of protocols
and to communicate the information which it extracts from

30 the network to Management Workstation 716 located on
segment 704.

Within Monitor 710, ATM 714 maintains a name table
data structure 730 such as is shown in Fig. 37. Name
Table 720 includes records 722, each of which has a node

35 name field 724, a node address field 726, an IP address

EX 1009 Page 86

WO 92/19054 FFOCl/ VD7l Valrd

- 85 -

field 728, and a time field 729. ATM 714 uses Name Table

720 to keep track of the mappings of node names to node

address and to IP address. The relevance of each of the

fields of records 722 in Name Table 720 are explained in
5 the following description of how ATM 714 operates.

In general, Monitor 710 operates as previously
described. That is, it passively monitors all packet
traffic over segment 702 and sends all packets to RTP 712
for parsing. When RTP 712 recognizes an Appletalk

10 packet, it transfers control to ATM 714 which analyzes
the packet for the presence of address mapping
information.

The operation of ATM 714 is shown in greater
detail in the flow diagram of Fig. 38. When ATM 714

15 receives control from RTP 712, it takes the packet (step
730 and strips off the lower layers of the protocol until
it determines whether there is a Name Binding Protocol
message inside the packet (step 732). If it is a NBP
message, ATM 714 then determines whether it is new name

20 Lookup message (step 734). If it is a new name Lookup
message, ATM 714 extracts the name from the message
(i.e., the name for which a node address is being
requested) and adds the name to the node name field 724
of a record 722 in Name Table 720 (step 736).

25 If the message is an NBP message but it is not a
Lookup message, ATM 714 determines whether it is a Lookup
Reply (step 738). If it is a Lookup Reply, signifying
that it contains a node name/node address binding, ATM
714 extracts the name and the assigned node address from

30 the message and adds this information to Name Table 720.
ATM 714 does this by searching the name fields of records
722 in Name Table 720 until it locates the name. Then,
it updates the node address field of the identified
record to contain the node address which was extracted

35 from the received NBP packet. ATM 714 also updates time

EX 1009 Page 87

WO 92/19054 PCT/US92/02995

_86-
field 729 to record the time at which the message was
processed.

After ATM 714 has updated the address field of the
appropriate record, it determines whether any records 722

5 in Name Table 720 should be aged out (step 742). ATM 714
compares the current time to the times recorded in the
time fields. If the elapsed time is greater than a
preselected time period (e.g. 48 hours), ATM 714 clears
the record of all information (step 744). After that, it

10 awaits the next packet from RTP 712.

As ATM 714 is processing each a packet and it
determines either that it does not contain an NBP message
(step 732) or it does not contain a Lookup Reply message
(step 738), ATM 714 branches to step 742 to perform the

15 age out check before going on to the next packet from RTP
712.

The Appletalk to IP gateways provide services that
allow an Appletalk Node to dynamically connect to an IP
address for communicating with IP nodes. This service

20 extends the dynamic node address mechanism to the IP
world for all Appletalk nodes. While the flexibility
provided is helpful to the users, the network manager is
faced with the problem of not knowing which Appletalk
Nodes are currently using a particular IP address and

25 thus, they can not easily track down problems created by
the particular node.

ATM 714 can use passive monitoring of the IP
address assignment mechanisms to provide the network
manager a Name-to-IP address mapping.

30 If ATM 714 is also keeping IP address information, .
it implements the additional steps shown in Fig. 39 after
completing the node name to node address mapping steps.
ATM 714 again checks whether it is an NBP message (step
748). If it is an NBP message, ATM 714 checks whether it

35 is a response to an IP address request (step 750). IP

EX 1009 Page 88

WO 92/19054 PCT/US92/02995

- 87 -

address requests are typically implied by an NBP Lookup
request for an IP gateway. The gateway responds by
supplying the gateway address as well as an IP address
that is assigned to the reqﬁesting node. If the NBP

5 message is an IP address response, ATM 714 looks up the
requesting node in Name Table 720 (step 752) and stores
the IP address assignment in the IP address field of the
appropriate record 722 (step 754).

After storing the IP address assignment

10 information, ATM 714 locates all other records 722 in
Name Table 720 which contain that IP address. Since the
IP address has been assigned to a new node name, those
old entries are no longer valid and must be eliminated.
Therefore, ATM 714 purges the IP address fields of those

15 records (step 756). After doing this cleanup step, ATM
714 returns control to RTP 712.

Other embodiments are within the following claims.

For example, the Network Monitor can be adapted to
identify node types by analyzing the type of packet

20 traffic to or from the node. If the node being monitored
is receiving mount requests, the Monitor would report
that the node is behaving like node a file server. If
the node is issuing routing requests, the Monitor would
report that the node is behaving like a router. 1In

25 either case, the network manager can check a table of
what nodes are permitted to provide what functions to
determine whether the node is authorized to function as
either a file server or a router, and if not, can take
appropriate action to correct the problem.

EX 1009 Page 89

WO 92/19054 PCT/US92/02995

- 88 -
APPENDIX I

SNMP MIB Subset Supported

This is the subset of the standard MIB which can be
obtained by monitoring.

Refer to RFC 1066 Management Information Base for an
explanation on the items which follow.

System group:
none

Interfaces group
ifType
ifpPhysAddress
ifoperstatus
ifInOctets
ifInUcastPkts
ifInNUcastPkts
ifoutoOctets
ifoutUcastPkts
jfoutNUcastPkts

Address Translation group
none

IP group
ipForwarding
ipDefaultTTL
ipInReceives
ipInHdrErrors
ipInAddrErrors
ipForwDatagrams
ipReasnmReqds
ipFragCreates

IP Address Table
ipAddress
ipAdEntBcastAddr

IP Routing Table
none

ICMP group
icmpInMsgs
icmplnErrors
icmpInDestUnreachs
icmpInTimeExcds
icmpInParmProbs
icmpInSrcQuenchs
icmpInRedirects
icmpInEchoes

App. I - 1

EX 1009 Page 90

WO 92/19054 PCT/US92/02995

- 89 -~
icmpInEchoReps
icmpInTimestamps
icmpInTimestampReps
icmpInAddrMasks
icmpInAddrmaskReps
icmpOutMsgs
imcpOutDestrUnreachs .
icmpoutTimeExcds -
icmpOutParmProbs
icmpOutSrcQuenchs
icmpOutRedirects
icmpOutEchoes
icmpoOutEchoReps
icmpOutTimestamps
icmpOutTimestampReps
icmpOutAddrMasks
icmpOutAddrmaskReps

TCP group
tcpActiveOpens
tcpPassiveOpens
tcpAttempFails
tcpEstabResets
tcpCurrEstab
tcpInSegs
tcpOutSegs
tcpRetransSegs
tcpConnTable

UDP group
udpInDatagrams
udpInErrors
udpOutDatagrams
udpOutErrors

EGP group
egplnMsgs
egpInErrors
egpOutMsgs
egpOutErrors

App. I - 2

EX 1009 Page 91

WO 92/19054 PCT/US92/02995

- 90 -

APPENDIX II

MIB Definitions for Network Monitor

1. Common MIB Definitions

Definitions
MIB BUCKETS_PER_RATE 12
MIB_PROTOCOLS_PER_DIALOG 10
MibBucketsPerRate 12
MibProtocolsPerDialog 10
MIB MAX PROTOCOL : 10
MIB_MAX_ MOST_ ACTIVE 5
MIB_MAX DIALOG 3

structures Used

typedef struct {

Byte year
Byte month
Byte date
Byte day
Byte hour
Byte minute
Byte second
Byte unused

} MibTimeOfDay

typedef struct mib_count32_type {

Uint32 accunm (Long term accum. count)
Uint32 current (Present running count)
Uint32 highThld

} MibCount32

typedef struct mib_counté4_type {

Uinteé4 accum (Long term accum. count)
Uinté4 current (Present running count)
Uinteé4 highThld

} MibCounté4

typedef struct mib meter_type ({

Uint32 current
Uint32 high

Uint32 low

Uint32 highThld

} MibMeter

typedef struct mib_average meter_type {
Uint32 current

App. II - 1

EX 1009 Page 92

WO 92/19054 PCT/US92/02995

- 91 -
Uint32 high
Uint32 low
Uint32 - highThld

} MibAverageMeter

typedef struct mib_percent type {

Uint32 current
Uint32 high
Uint32 low
Uint32 highThld

} MibPercent

typedef struct mib rolling rate_type {

Uint32 current
Uint32 high
Uint32 low
Uint32 highThld

} MibRollingRate

typedef MibRollingRate MibRatePersS
typedef MibRollingRate MibRatePerH

typedef Uint32 MibShortRatePers
typedef Uint32 MibsShortRatePerM

typedef struct mib_short_count32_type {

Uint32 current (Present running count)
Uint32 accum (Long term accum. count)
} MibShortcCount32

typedef struct mib_bucket_rate_type {

Uuint32 current (Present rate) ,
Uint32 rates[MIB BUCKETS_PER RATE](12 5 minute
count buckets)

Uint32 maxRates [MIB_BUCKETS_PER_RATE](12 5-min.
max

rate buckets)
} MibBucketRate

Most Active Table Definitions

typedef struct mib _most_active_entry type {
MibAddress address

App. II - 2

EX 1009 Page 93

PCT/US92/02995

WO 92/19054
- 92 -
MibCount32 packetCount
MibRatePersS packetRate

} MibMostActiveEntry

typedef struct mib_most_active_table type { .

Uint32 numEntries

Uint32 nextEntry

MibMostActiveEntry mostActiveEntry[MIB_MAX MOST ACTIVE]
} MibMostActiveTable

Protocol Table Definitions

typedef struct mib_protocol_entry_type {

Uuint32 protocol
MibCount32 packetcount
MibRatePers packetRate

} MibProtocolEntry

typedef struct mib_protocol_table_type {
Uint32 numEntries

Uint32 nextEntry
MibProtocolEntry protocolEntry[MIB_MAX PROTOCOL]

} MibProtocolTable

Dialog Table Definitions

typedef struct mib_transport_type {

Uint32 transportProtocol
Uint32 applicationProtocol
Uint32 initiator

Uint32 connectionRetries
Uint32 addrl_window

Uint32 addr2_window
Uint32 state

uUint32 closeReason

} MibTransportType

typedef struct mib_dialog_entry_ type {

MibAddress addresses

Uint32 protocolEntries

Uint32

protocols[MIB_PROTOCOLS_PER_DIALOG]

MibTimeOfDay gnt

Uint32 startTime .
Uint32 lastTime)
Uint32 alarmsSent

MibCount32 packets

MibRatePersS packetRate

App. II - 3

EX 1009 Page 94

“

PCT/US92/02995

WO 92/19054

- 93 =
MibCount32 bytes
MibRatePers byteRate
MibCount32 errors
MibRatePers errorRate
MibCount32 fragments
MibRatePers fragmentRate
MibCount32 rexmits
MibRatePers rexmitRate
MibCount32 flowCtrls
MibRatePers flowCtrlRate
MibTransportType transport

} MibDialogEntry

Values for the initiator field

ConnectionInitiatorUnknown 0
ConnectionInitiatorAddri 1
ConnectionInitiatoraAddr2 2

Values for the connectionCloseReason field

ConnectionCloseUnknown 0
ConnectionCloseFin 1
ConnectionCloseRst 2

Values for the connectionstate field

ConnectionStateUnknown 0
ConnectionStateConnecting 1
ConnectionStateData 2
ConnectionStateClosing 3
ConnectionStateClosed 4

typedef struct mib dialog_table_type {

Uint32 nunEntries
Uint32 nextEntry
MibDialogEntry dialogEntry[MIB_MAX DIALOG]

} MibDialogTable

2. Data link layer mib definitions for Network Monitor

mib.

2.1 dll Ssegment -sSummary Tool

typedef struct {
MibShortCount32
MibBucketRate

frames
frameRate

App. II - 4

EX 1009 Page 95

WO 92/19054

MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
Uint32
Uint32
Uint32
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibShortRatePerS
MibShortCount32
MibShortRatePerS
} MibDllSegSumStats

PCT/US92/02995

- 94 -

bytes
byteRate

errors
errorRate

protocolCount

mostActivecCount

paircCount

rcvoffSegs
rcvOffSegRate

xmtOffSegs
xmtOffSegRate

transits
transitRate

bcasts

-bcastRate

mcasts
mcastRate

collisions
collisionRate

alignmtErrors
alignmtErrorRate

2.2 dll Segment -Values Tool

typedef struct {
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePerS
MibCount32
MibRatePersS

frames
frameRate
bytes
byteRate
errors
errorRate
rcvOoffSegs
rcvoffSegRate
xmtOffSegs
xatOffSegRate
transits
transitRate
bcasts
bcastRate
mcasts
mcastRate
collisions
collisionRate
alignmtErrors
alignmtErrorRate
enetFrames
enetFrameRate
llcFrames
llcFrameRate
runtFrames
runtFrameRate

App.

IT - 5

EX 1009 Page 96

WO 92/19054 PCT/US92/02995

- 95 -~
} MibDllSegValStats

2.3 dll Address - sunniry Tool

typedef struct {

MibShortcCount32 frames
MibBucketRate frameRate
MibShortCount32 bytes
MibBucketRate byteRate
MibShortCount32 errors
MibBucketRate errorRate
Uint32 protocolCount
Uint32 mostActiveCount
Uint32 pairCount
MibShortCount32 rcvoffSegs
MibBucketRate rcvoffSegRate
MibShortCount32 xmtOffSegs
MibBucketRate xmtOffSegRate
MibShortCount32 xmtBcasts
MibBucketRate xmtBcastRate
MibShortCount32 xmtMcasts
MibBucketRate xmtMcastRate

} MibDllAddrsSumStats

2.4 dll1 Address- Values Tool

typedef struct {
MibCount32 rcvFrames
MibRatePers rcvFrameRate
MibCount32 rcvBytes
MibRatePers rcvByteRate
MibCount32 rcvErrors
MibRatePers rcvErrorRate
MibCount32 xmtFrames
MibRatePersS xmtFrameRate
MibCount32 xmtBytes
MibRatePersS xmtByteRate
MibCount32 xmtErrors
MibRatePersS xmtErrorRate
MibCount32 xmtBcasts
MibRatePers xmtBcastRate
MibCount32 xmtMcasts
MibRatePers xmtMcastRate
MibCount32 rcvoffSegs
MibRatePersS rcvoffSegRate
MibCount32 xmtOffSegs
MibRatePersS xmtOffSegRate
MibCount32 enetFrames
MibRatePers enetFrameRate
MibCount32 llcFrames
MibRatePersS llcFrameRate

App. II - 6

EX 1009 Page 97

PCT/US92/02995

WO 92/19054
..96_
MibCount32 runtFrames
MibRatePersS runtFrameRate

} MibDllAddrvValsStats

3. IP layer mib definitions for Network Monitor mib.
3.1 ip Segment - Summary Tool

typedef struct {

MibsShortCount32 pkts
MibBucketRate pktRate
MibShortCount32 bytes
MibBucketRate byteRate
MibShortCount32 - errors
MibBucketRate errorRate
Uint32 protocolCount
Uint32 mostActiveCount
Uint32 pairCount
MibShortCount32 rcvoffSegs
MibBucketRate rcvOffSegRate
MibshortCount32 xmtOffSegs
MibBucketRate xmtOffSegRate
MibShortCount32 transits
MibBucketRate transitRate
MibsShortCount32 flowCtrls
MibBucketRate flowCtrlRate
MibShortCount32 bcasts
MibBucketRate bcastRate
MibsShortCount32 mcasts
MibBucketRate mcastRate
MibShortCount32 frgmts
MibBucketRate frgmtRate

} MibIpSegSumsStats

3.2 ip Segment - Values Tool

typedef struct {

MibCount32 pkts
MibRatePerS pktRate
MibCount32 bytes
MibRatePersS byteRate
MibCount32 errors
MibRatePersS errorRate
MibCount32 rcvoffSegs
MibRatePerS rcvOoffSegRate
MibCount32 xmtOffSegs
MibRatePersS xmtOffSegRate
MibCount32 transits
MibRatePersS transitRate

App. II = 7

EX 1009 Page 98

WO 92/19054

MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS
} MibIpSegValStats

PCT/US92/02995

- Q7 -

bcasts
bcastRate
mcasts
mcastRate
hdrBytes
hdrByteRate
frgmts
frgmtRate

3.3 ip Address - Summary Tool

typedef struct {
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
vUint32
Uint32
Uint32
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate

} MibIpAddrSumStats

pktRate

pkts

bytes
byteRate
errors
errorRate
protocolCount
mostActiveCount
paircount
rcvOoffSegs
rcvOoffSegRate
xmtOffSegs
xntOffSegRate
flowCtrils
flowCtrlRate
frgmts
frgmtRate
xmtBcasts
xmtBcastRate
xmtMcasts
xmtMcastRate

3.4 ip Address - Values Tool

typedef struct {
MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePers

rcvPkts
rcvPktRate
rcvBytes
rcvByteRate
rcvErrors
rcvErrorRate
xmtPkts
xmtPktRate
xmtBytes
xmtByteRate
xmtErrors
xmtErrorRate
rcvHdrBytes
rcvHdrByteRate

App. II - 8

EX 1009 Page 99

WO 92/19054

MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePerS
MibCount32
MibRatePersS
MibCount32
MibRatePers
} MibIpAddrValsStats

- 98 -

xmtHdrBytes
xmtHdrByteRate
rcvFrgmts
rcvFrgmtRate
xmtFrgmts
xmtFrgmtRate
xmtBcasts
xmtBcastRate
xmtMcasts
xmtMcastRate
rcvOoffSegs
rcvOoffSegRate
xmtOffSegs
xmtOffSegRate

PCT/US92/02995

4. ICMP layer mib definitiomns for Network Monitor mib.

4.1 icmp Segment - Summary Tool

typedef struct {
MibShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

Uint32
Uint32

MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate

MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
} MibIcmpSegSumStats

pkts
pktRate

bytes
byteRate

errors
errorRate

mostActiveCount
paircount

rcvOffSegs
rcvoffSegRate

xmtOffSegs
xmtOoffSegRate

transits
transitRate

echoReq
echoReply
destUnr
srcQuench
redir
timeExceeded
paramProblem
timestampRegq
timestampReply
addrMaskReq
addrMaskReply

App. II - 9

EX 1009 Page 100

WO 92/19054 PCT/US92/02995

- 99 -

4.2 icmp Segment - Values Tool

typedef struct {

MibCount32 pkts

MibRatePers pktRate

MibCount32 bytes

MibRatePers byteRate

MibCount32 errors

MibRatePers errorRate

MibCount32 rcvoffSegs

MibRatePers rcvOoffSegRate
MibCount32 xmtOf£fSegs

MibRatePers xmtOffSegRate
MibCount32 transits

MibRatePers transitRate

MibCount32 echoReq

MibRatePers echoRegRate

MibCount32 echoReply

MibRatePers echoReplyRate
MibCount32 destUnrNet
MibRatePers destUnrNetRate
MibCount32 destUnrHost
MibRatePers destUnrHostRate
MibCount32 destUnrProtocol
MibRatePerS destUnrProtocolRate
MibCount32 destUnrPort
MibRatePers destUnrPortRate
MibCount32 destUnrFrgmt
MibRatePers destUnrFrgmtRate
MibCount32 destUnrSrcRoute
MibRatePers destUnrSrcRouteRate
MibCount32 destUnrNetUnknown
MibRatePersS destUnrNetUnknownRate
MibCount32 destUnrHostUnknown
MibRatePers destUnrHostUnknownRate
MibCount32 destUnrSrcHostIsolated
MibRatePers destUnrSrcHostIsolatedRate
MibCount32 destUnrNetProhibited
MibRatePers destUnrNetProhibitedRate
MibCount32 destUnrHostProhibited
MibRatePersS destUnrHostProhibitedRate
MibCount32 destUnrNetTos
MibRatePersS destUnrNetTosRate
MibCount32 destUnrHostTos

App. II - 10

EX 1009 Page 101

PCT/US92/02995

WO 92/19054
- 100 -

MibRatePers destUnrHostTosRate
MibCount32 » srcQuench
MibRatePersS srcQuenchRate
MibCount32 redirNet
MibRatePers : redirNetRate
MibCount32 redirHost
MibRatePersS redirHostRate
MibCount32 redirNetTos
MibRatePers redirNetTosRate
MibCount32 redirHostTos
MibRatePers redirHostTosRate
MibCount32 . timeExceededInTransit
MibRatePers timeExceededInTransitRate
MibCount32 timeExceededInReass
MibRatePers timeExceededInReassRate
MibCount32 paramProblem
MibRatePersS paramProblemRate
MibCount32 paramProblemOption
MibRatePers paramProblemOptionRate
MibCount32 | timestampReq
MibRatePersS timestampRegRate
MibCount32 timestampReply
MibRatePersS timestampReplyRate
MibCount32 addrMaskReq
MibRatePers addrMaskRegRate
MibCount32 addrMaskReply
MibRatePersS addrMaskReplyRate

} MibIcmpSegValstats

4.3 icmp Address - Summary Tool

typedef struct {

MibShortCount32 pkts
MibBucketRate pktRate
MibsShortCount32 bytes
MibBucketRate byteRate
Mibshortcount32 errors
MibBucketRate errorRate

Uint32 mostActiveCount
Uint32 pairCount
MibShortCount32 rcvoffsSegs
MibBucketRate rcvOoffSegRate

app. II - 11

EX 1009 Page 102

(ha

WO 92/19054

MibShortCount32
MibBucketRate

MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32

} MibIcmpAddrsSumStats

PCT/US92/02995

- 101 -

xmtOffSegs
xmtOffSegRate

echoReq
echoReply
destUnr
srcQuench
redir
paramProblem
timeExceeded
timestampReq
timestampReply
addrMaskReq
addrMaskReply

4.4 icmp Address- Values Tool

typedef struct {

MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS

MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS

MibCount32
MibRatePers
MibCount32
MibRatePersS

MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32

rcvPkts
rcvPktRate
rcvBytes
rcvByteRate
rcvErrors
rcvErrorRate

xmtPkts
xmtPktRate
xmtBytes
xmtByteRate
xnmtErrors
xmtErrorRate

rcvoffSegs
rcvOffSegRate
xmtOffSegs
xmtOffSegRate

rcvDestUnrNet
rcvDestUnrNetRate
rcvDestUnrHost
rcvDestUnrHostRate
rcvDestUnrProtocol
rcvDestUnrProtocolRate
rcvDestUnrPort
rcvDestUnrPortRate
rcvDestUnrFrgmt
rcvDestUnrFrgmtRate
rcvDestUnrSrcRoute
rcvDestUnrSrcRouteRate
rcvDestUnrNetUnknown

App. II - 12

EX 1009 Page 103

WO 92/19054

MibRatePers
MibCount32
MibRatePersS
MibCount32

MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePersS

MibCount32
MibRatePers
MibCount32
MibRatePersS

MibCount32
MibRatePersS
MibCount32
MibRatePers

MibCount32
MibRatePerS

MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePersS
MibCount32
MibRatePersS

MibCount32
MibRatePers
MibCount32
MibRatePers

MibCount32
MibRatePers
MibCount32
MibRatePersS

MibCount32
MibRatePers
MibCount32
MibRatePersSs

PCT/US92/02995

- 102 -

rcvDestUnrNetUnknownRate
rcvDestUnrHostUnknown
rcvDestUnrHostUnknownRate
rcvDestUnrSrcHostIsolated

rcvDestUnrSrcHostIsolatedRate

rcvDestUnrNetProhibited

rcvDestUnrNetProhibitedRate

rcvDestUnrHostProhibited

rcvDestUnrHostProhibitedRate

rcvDestUnrNetTos
rcvDestUnrNetTosRate
rcvDestUnrHostTos
rcvDestUnrHostTosRate

rcvTimeExceededInTransit

rcvTimeExceededInTransitRate

rcvTimeExceededInReass

revTimeExceededInReassRate

rcvParamProblen
rcvParamProblemRate
rcvParamProblemOption
rcvParamProblemOptionRate

rcvSrcQuench
rcvSrcQuenchRate

rcvRedirNet
rcvRedirNetRate
rcvRedirHost
rcvRedirHostRate
rcvRedirNetTos
rcvRedirNetTosRate
rcvRedirHostTos
rcvRedirHostTosRate

rcvEchoReq
rcvEchoRegRate
rcvEchoReply
rcvEchoReplyRate

rcvTimestampReq
rcvTimestampRegRate
rcvTimestampReply
rcvTimestampReplyRate

rcvAddrMaskReq
rcvAddrMaskRegRate
rcvAddrMaskReply
rcvAddrMaskReplyRate

App.

IT - 13

EX 1009 Page 104

WO 92/19054

MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePerSs
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32

MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePers

MibCount32
MibRatePers
MibCount32
MibRatePers

MibCount32
MibRatePers
MibCount32
MibRatePers

MibCount32
MibRatePers

MibCount32
MibRatePers
MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePers

MibCount32
MibRatePers
MibCount32

PCT/US92/02995

- 103 -

xmtDestUnrNet
xmtDestUnrNetRate
xnmtDestUnrHost
xnmtDestUnrHostRate
xmtDestUnrProtocol
xmtDestUnrProtocolRate
xmtDestUnrPort
xmtDestUnrPortRate
xmtDestUnrFrgnt
xmtDestUnrFrgmtRate
xmtDestUnrSrcRoute
xmtDestUnrSrcRouteRate
xntDestUnrNetUnknown
xnmtDestUnrNetUnknownRate

-xmtDestUnrHostUnknown

sxmtDestUnrHostUnknownRate
xmtDestUnrSrcHostIsolated

xntDestUnrSrcHostIsolatedRate
xmtDestUnrNetProhibited
xntDestUnrNetProhibitedRate
xmtDestUnrHostProhibited
xmtDestUnrHostProhibitedRate
xmtDestUnrNetTos
xmtDestUnrNetTosRate
xmtDestUnrHostTos
xmtDestUnrHostTosRate

xmtTimeExceededInTransit
xntTimeExceededInTransitRate
xntTimeExceededInReass
xntTimeExceededInReassRate

xmtParamProblem
xmtParamProblemRate
xmtParamProblemOption
xmtParamProblemOptionRate

xmtSrcQuench
xmtSrcQuenchRate

xmtRedirNet
xmtRedirNetRate
xmtRedirHost
xmtRedirHostRate
xmtRedirNetTos
xmtRedirNetTosRate
xmtRedirHostTos
xmtRedirHostTosRate

xmtEchoReq
xmtEchoRegRate
xmtEchoReply

App. II - 14

EX 1009 Page 105

WO 92/19054

}

MibRatePers

MibCount32
MibRatePersS
MibCount32
MibRatePers

MibCount32
MibRatePersS
MibCount32
MibRatePersS

- 104 -

xmtEchoReplyRate

xmtTimestampReq

xmtTimestampRegRate
xmtTimestampReply

PCT/US92/02995

xmtTimestampReplyRate

xmtAddrMaskReq

xmtAddrMaskRegRate
xmtAddrMaskReply
xmtAddrMaskReplyRate

5. TCP layer mib definitions for Network Monitor mib.

5.1 tcp gogn.nt - gsummary Tool

typedef struct {

MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

Uint32
Uint32
Uint32

MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

MibsShortCount32
MibBucketRate

} MibTcpSegSumStats

pkts
pktRate

bytes
byteRate

errors
errorRate

protocolCount
mostActiveCount

paircount

rcvoffSegs
rcvOoff£SegRate

xntOoffSegs
xmtOffSegRate

transits
transitRate

flowCtrls
flowCtrlRate

frgmts
frgmtRate

rexmts
rexmtRate

5.2 tcp Segment - Values Tool

App.

II - 15

EX 1009 Page 106

WO 92/19054

typedef struct {

MibCount32
MibRatePers

MibCount32
MibRatePers

MibCount32
MibRatePers

MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS

MibCount32
MibRatePers
MibCount32
MibRatePersS

MibCount32
MibRatePers

MibCount32
MibRatePers

MibCount32
MibRatePersS

MibCount32
MibRatePers

MibCount32
MibRatePersS

MibCount32
MibRatePers

MibCount32
MibRatePers

MibCount32
MibRatePers

MibCount32
MibRatePers

MibCount32
MibRatePerSs

PCT/US92/02995

- 105 -

pkts
pktRate

bytes
byteRate

errors
errorRate

rcvOffSegs
rcvOoffSegRate
xmtOffSegs
xmtOffSegRate
transits
transitRate

hdrBytes
hdrByteRate
frgmts
frgmtRate

flowCtrls
flowCtrlRate

rexmts
rexmtRate

rexmtBytes
rexmtByteRate

keepAlives
keepAliveRate

windowProbes
windowProbeRate

outofOrder
outOfOrderRate

afterWwindow
afterWwindowRate

afterClose
afterCloseRate

urgs
urgRate

rsts
rstRate

App.

IT - 16

EX 1009 Page 107

WO 92/19054

MibCount32
MibRatePerH
MibCount32
MibRatePerH
MibCount32
MibRatePerH
MibCount32

} MibTcpSegValsStats

PCT/US92/02995

- 106 -

successfulConnections
successfulConnectionRate
connectionRetries
connectionRetryRate
failedConnections
failedConnectionRate
activeConnections

5.3 tcp Address - Summary Tool

typedef struct {

MibShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

Uint32
Uint32
Uint32

MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate

MibshortCount32
MibBucketRate

MibsShortCount32
MibBucketRate

MibShortCount32
MibBucketRate

} MibTcpAddrsSumStats

pkts
pktRate

bytes
byteRate

errors
errorRate

protocolCount
mostActiveCount
pairCount

rcvoffSegs
rcvoffSegRate

xmtOff£Segs
xmtOffSegRate

flowCtrls
flowCtrlRate

frgmts
frgmtRate

rexmts
rexmtRate

5.4 tcp Address- values Tool

typedef struct {

MibCount32
MibRatePersS
MibCount32
MibRatePerS

rcvPkts
rcvPktRate
xntPkts
xmtPktRate

App. II - 17

EX 1009 Page 108

WO 92/19054 PCT/US92/02995
- 107 -

MibCount32 rcvBytes
MibRatePersS rcvByteRate
MibCount32 xmtBytes
MibRatePers xmtByteRate
MibCount32 rcvErrors
MibRatePers rcvErrorRate
MibCount32 xmtErrors
MibRatePers xmtErrorRate
MibCount32 rcvoffSegs
MibRatePers rcvOoffSegRate
MibCount32 xmtOffSegs
MibRatePers xmtOffSegRate
MibCount32 rcvHdrBytes
MibRatePers rcvHdrByteRate
MibCount32 xmtHdrBytes
MibRatePers smtHdrByteRate
MibCount32 rcvFrgmts

MibRatePers rcvFrgmtRate
MibCount32 xmtFrgmts

MibRatePersS xmtFrgmtRate
MibCount32 rcvRexmts
MibRatePers rcvRexmtRate
MibCount32 xmtRexmts
MibRatePers xmtRexmtRate
MibCount32 rcvRexmtBytes
MibRatePers rcvRexmtByteRate
MibCount32 xmtRexmtBytes
MibRatePers xmtRexmtByteRate
MibCount32 rcvKeepAlives
MibRatePersS rcvKeepAliveRate
MibCount32 xmtKeepAlives
MibRatePers xmtKeepAliveRate
MibCount32 rcvWindowProbes
MibRatePers rcvWindowProbeRate
MibCount32 xmtWindowProbes
MibRatePers xmtWindowProbeRate
MibCount32 rcvoutofOorder
MibRatePersS rcvoutOforderRate
MibCount32 xmtOutOfOrder
MibRatePers xmtoutOfOorderRate
MibCount32 rcvAfterwindow
MibRatePers rcvAfterWwindowRate

App. II - 18

EX 1009 Page 109

WO 92/19054

MibCount32
MibRatePersS

MibCount32
MibRatePersS
MibCount32
MibRatePersS

MibCount32
MibRatePersS
MibCount32
MibRatePers

MibCount32
MibRatePersS
MibCount32
MibRatePersS

MibCount32
MibRatePerH
MibCount32
MibRatePerH
MibCount32
MibRatePerH
MibCount32

- 108 -

xmtAfterWwindow

PCT/US92/02995

xmtAfterwindowRate

rcvAfterClose

rcvAfterCloseRate

xntAfterClose

xmtAfterCloseRate

rcvUrgs
rcvUrgRate
xnmtUrgs
xmtUrgRate

rcvRsts
rcvRstRate
xmtRsts
xmtRstRate

successfulConnections
successfulConnectionRate
connectionRetries
connectionRetryRate
failedConnections
failedConnectionRate
activeConnections

6. UDP layer mib definitions for Network Monitor mib.

6.1 udp Segment -Summary Tool

typedef struct {

MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate

} MibUdpSegSumStats

pkts
pktRate

bytes
byteRate

errors
errorRate

protocolCount
mostActiveCount

pairCount
rcvoffSegs
rcvOffSegRate
xmtOffSegs
xntOffSegRate
transits
transitRate
flowCtrils
flowCtrlRate

App. II - 19

EX 1009 Page 110

WO J2/7 19004

FOCIIUDIZ/VLTTS

- 109 -

6.2 udp Segment - Values Tool

typedef struct {
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS
MibShortCount32
MibShortCount32
MibShortCount32
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePersS

} MibUdpSegValStats

pkts

PKktRate

bytes
byteRate
errors
errorRate
protocolCount
mostActiveCount
pairCount
rcvoffSegs
rcvOoffSegRate
xmtOffSegs
xmtOffSegRate
transits
transitRate
flowCtrls
flowCtrlRate
hdrBytes
hdrByteRate

6.3 udp Address - Summary Tool

typedef struct {
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibShortCount32
MibShortCount32
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate
MibShortCount32
MibBucketRate

} MibUdpAddrSumStats

pkts
pktRate

bytes
byteRate

errors
errorRate

protocolCount

mostActiveCount

paircount

rcvOoffSegs
rcvOoffSegRate

xntOffSegs
xmtOffSegRate

flowCtrls
flowCtrlRate

6.4 udp Address~ Values Tool

typedef struct {
MibCount32
MibRatePersS
MibCount32

rcvPkts
rcvPktRate
rcvBytes

App. II - 20

EX 1009 Page 111

WO 92/19054

MibRatePersS
MibCount32
MibRatePerS
MibCount32
MibRatePersS
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32
MibRatePers
MibCount32

PCT/US92/02995

- 110 -~

rcvByteRate
rcvErrors
rcvErrorRate
xmtPkts
xmtPktRate
xmtBytes
xmtByteRate
xmtErrors
xmtErrorRate
rcvHdrBytes
rcvHdrByteRate
xmtHArBytes

7. Monitor mib definitions for Network Monitor mib.

typedef struct {
int
char

} MibPhoneNumber

typedef struct {
MacAddress
IpaAddress
Uint32
Uint32
Uint32
Uint32
MibPhoneNumber
IpAddress
Uint32
Uint32
Uint32
Uint32

} MibWsParameters

typedef struct {
MibAddress
Uint32
MibDeviceType
Uint32

} MibParseControl

typedef struct {
Uint32
Uint32

length
no(80]

lanMacAddr
lanIpAddr
lanTftpTimeout
lanTftpRetryLimit
lanSnmpTimeout
lanSnmpRetryLimit
serialPhoneNo
serialIpAddr
serialTftpTimeout
serialTftpRetryLimit
serialSnmpTimeout
serialSnmpRetryLimit

address
flags

type
parseControl

numEntries
nextEntry

MibParseControl mibParseControl[MIB MAX PCR]
} MibParseControlOpaque

typedef struct {
MacAddress
Byte

macAddr
data[256]

App.

IT - 21

EX 1009 Page 112

WU Jal 17004

FUL/UDILINLTTD

- 111 -

Uint32 length

derived

} MibAutoTopology

7.1 Monitor Control Group

typedef struct {
Uint32 monReset
MibTimeOfDay monTOD
Uint32 trapPermit
Uint32 dupAddrTrapPermit
Uint32 newNodeTrapPermit
Uint32 shakeTime
Uint32 wsMonLink
Uint32 minTrapInterval
Uuint32 runMonitor
MibWsParameters primaryWsParams
MibWsParameters secondaryWsParams
Uint32 debuglLevel
Uint32 parsectrl
Uint32 monitorSegment
MibAutoTopology autoTopology
} MibMonitorControl

7.2 Monitor Statistics Group

typedef struct {
MibCount32 dllDropped
MibRatePers dllDroppedRate
MibCount32 ipDropped
MibRatePers ipDroppedRate
MibCount32 icmpDropped
MibRatePers icmpDroppedRate
MibCount32 tcpDropped
MibRatePers tcpDroppedRate
MibCount32 udpDropped
MibRatePers udpDroppedRate
MibCount32 arpDropped
MibRatePers arpDroppedRate
MibCount32 nfsDropped
MibRatePers nfsDroppedRate
MibCount32 dbProblem
MibShortCount32 cpuUtilization
MibShortCount32 memoryUtilization

8. Alarm Nib Definitions

App. II - 22

EX 1009 Page 113

WO 92/19054

PCT/US92/02995

- 112 -

8.1 Counter alarm structure

typedef struct {
Uint32
MibTimeOfDay
Uint32
MibAddress
MibAddress
Uint32
uint32
MibCount32
Uint32

OPTIONAL
Byte

OPTIONAL
} MibAlarmCounter

8.2 Rate alarm structure

typedef struct {
Uint32
MibTimeOfDay
Uint32
MibAddress
MibaAddress
Uint32
Uint32
MibRollingRate
Uint32
Uint32

OPTIONAL
Byte

OPTIONAL
} MibAlarmRate

alarm_class

gnmt
time_ticks
mon_address
address
type
number
value
user_data_length

user_data[MAX ALARM DATA]

alarm_class

gnt
time_ticks
mon_address
address
type
number

value
rate_type
user_data_length

user_data[MAX ALARM DATA]

8.3 Power-up alaram structure

typedef struct {
Uint32
MibTimeOfDay
Uint32
MibAddress
Uint32
Uint32
Uint32
Uint32

alarm_class

gmt
time_ticks
mon_address
alarm_reason
load_type
cpu_hw_rev
mon_link hw rev

App.

IT - 23

EX 1009 Page 114

WU J47 17009 FCY/UDTL/IVLTTO

- 113 -
Uint32 mgmt_link_hw_rev
MibPhoneNumber mon_phone_no
Uint32 error_type
Uint32 error_code
Uint32 error_param_1
Uint32 error_param_2
Uint32 error_param_ 3

} MibAlarmPowerUp

8.4 Link-up alarm structure

typedef struct {

Uint32 alarm_class
MibTimeOfDay gmt

Uint32 time_ticks
MibAddress mon_address
Uint32 alarm reason
Uint32 load_type
Uint32 cpu_, hw _rev
Uint32 mon_link_hw_rev
Uint32 mgmt_1link_hw _rev
MibPhoneNumber mon_phone_no

Uint32 error_type
Uint32 error_code
Uint32 error_param_1
Uint32 error_param 2
Uint32 error_param_3

} MibAlarmLinkUp

8.5 New node alarm structure

typedef struct {

Uint32 alarm_class
MibTimeOfDay gnmt

Uint32 time_ticks
Mibaddress mon_address
MibAddress node_address

} MibAlarmNewNode

App. II - 24

EX 1009 Page 115

WO 92/19054 PCT/US92/02995

- 114 -
APPENDIX III

PROTOCOL VARIABLES

The following is a list of some of the network
variables for which data is gathered by the Monitor and a
brief explanation of the variable, where appropriate.

D va les

Frames
A frame is a series of bytes with predefined bit
sequences that mark the frame's beginning and ending
points. A DLL (data link layer) entity sends a message
by putting it in a frame and transmitting it on the
physical network. It's called a frame because the
beginning and ending bit sequences "frame" the message.

Enclosed within the frame are the messages built by
higher level protocols, such as IP and UDP. For
example, an IP datagram must be placed in a frame
before it can be transmitted.

Ethernet frames range from 64 to 1518 bytes in length.

Bytes

Monitor maintains a count and rate for bytes
transmitted and received by all monitored objects. For
example, for any node, you can monitor the number of
bytes in or out to measure the traffic load with
respect to that node. For a segment, you can monitor
the number of bytes in and out of all nodes on the
segment.

Error Frames

A DLL Error Frame is logged in the following cases:
* If the frame is Ethernet, none are logged.
* If the frame is IEEE 802.3:
- Value of length parameter in header less than
3.

Alignment Errors
The number of frames observed for the selected segment
with alignment errors. An alignment error is a frame
with a length that is not an exact multiple of 8 bits.

The following variables are available only for
segnments.

App. IIT - 1

EX 1009 Page 116

WU J&/ 17U00% FCl/UST &l VaTTO

- 115 -
Collisions

The number of collisions observed on the selected
segment. A collision occurs when two stations attempt
to transmit simultaneously. A certain number of
collisions are normal. The following variables are
available only for segments.

A higher than typical value can mean that the phy51cal
interface for a single station has malfunctioned and in
not following the protocol.

Broadcast frame

A broadcast frame is a special frame that is received
by all stations on the network. Common uses for
broadcast frames include ARP (Address Resolution
Protocol) and network testing.

Multicast Frame

A multicast frame is a special frame that is received
by a predetermined set of stations. Multlcastlng is
used to send a message to a set of stations using a
single frame, thus reducing network loading.

Off-segment

Off-segment frames are frames that the Monitor observes
on the local segment, but are destined for or
originated by nodes not on the local segment. All off-
segment frames then are either routed to, from, or
across the local segment.

Off-segment variables

Off-segment variables are a measure of the amount of
routing or bridging that is occurring. Excessive off-
segment traffic may mean that certain nodes on one
segment are communicating primarily with nodes on other
segments. If you identify these nodes and move them to
the segments where their primary communications
partners are, you may lessen the overall loading on
your network.

Off-segment Transit Frames
The number of frames observed on the selected segment
not into or out of a node on the selected segment. For

these frames, the selected segment is an intermediate
hop in a route between the originating and destination

App. III - 2

EX 1009 Page 117

WO 92/19054 PCT/US92/02995

- 116 -

segments. (This variable applies only to segments, not
to nodes.)

IP Variables
IP Packets i

An IP packet or datagram is a string of bytes that is
transferred as a unit across the IP network. It has
two parts: the IP header, which contains control
information such as the source and destination IP
addresses; and the data to be transferred to the
destination user.

Bytes

The Monitor maintains a count and rate for bytes into
and out of all monitored objects. For example, you can
monitor the number of bytes into or out of a chosen
node to measure the traffic load with respect to that
node. You can monitor the number of bytes into and out
of all nodes on the segment.

IP Error Packets

An IP error packet is logged when the monitor observes
a packet with an error in its IP header. Possible
errors are as follows:

* IP header length is less than 20 bytes

* IP header length is greater than the length of the

IP packet
* Packet length is less than the IP header length.
* If offset is set for fragmentation, but the frame

should not be fragmented.
IP Fragments

If an IP datagram is too large to pass through a
subnetwork or router, the IP router that is
transmitting the original datagram divides it into
fragment datagrams. The destination station
reassembles the original datagram once it has received
all the fragments.

Fragmentation usually occurs because packets are being
routed through a network segment that has physical
technology or configuration that restricts the IP
datagram size to one smaller that the IP datagram size
used on the originating segment.

App. III - 3

EX 1009 Page 118

WO 22/19U54 PCT/US92/02995

- 117 -

For example, the maximum frame size in an IEEE 802.5
physical network is 16000 octets, whereas the maximum
frame size on an Ethernet physical network is about
1500 octets. 1In this case, a large frame originating
on the IEEE 802.5 network would have to be divided into
many fragments before it could be transmitted onto the
Ethernet network.

Note that a fragment is a complete and correct IP
datagram. Do not confuse IP fragments with the
Ethernet fragment errors.

Higher than typical values for these parameters may
mean that one or more commonly-used communications
routes are forcing fragmentation to occur.

Example: new nodes have been added that access a server
across a fragmenting route. The number of additional
packets causes delays on the server's segment. The
solution is to reconnect the new nodes to a different
segment that has a non-fragmenting route to the server.

IP Header Bytes

The header is the portion of the IP packet that
contains control information used by the protocol, such
as source and destination IP addresses.

Broadcast and Multicast packets

A broadcast packet is special packet that is received
by all stations on the network.

A multicast packet is a packet that is received by a
predefined set of stations. Multicasting is used to
send a message to a set of stations using a single
packet.

IP Off-segment Packets

Off-segment packets are packets that the Monitor
observes on the local segment, but are destined for, or
originated by, stations not on the local segment. All
off-segment packets, then, are either routed to, from,
or across the local segment.

Off-segment values are a measure of the amount of
routing or bridging that is occurring. Excessive off-
segment traffic may mean that certain stations on one
segment are communicating primarily with stations on
other segments. If you identify these stations and

App. III - 4

EX 1009 Page 119

WO 92/19054 PCT/US92/0299>

- 118 -
move then to the segments where their primary
communications partners are, you may lessen the overall
loading on your network.

Off-segment Transit Packets

This parameter applies only to segment, not to nodes.
The number of IP packets observed on the selected
segment not destined for or originated by an object on
the selected segment. For these packets, the selected
segment is an intermediate hop in a route between the
originating and destination segments.

Off-segment Transit Packets Rate

This parameter applies only to segments, not to nodes.
The number of off-segment IP packets observed per
second on the selected segment, not into or out of an
object on the selected segment. For these packets, the
selected segment is an intermediate hop in a route
between the originating and destination segments.

ICMP Variables

ICMP Packets

ICMP (Internet Control Message Protocol) packets are
used to control, test, and report problems with, the
network. Reading through the ICMP variable
descriptions should give you a good idea of how ICMP is
used. A high number of ICMP packets from any source
wastes traffic capacity that could otherwise be used
for data packets.

Bytes

The Monitor maintains a count and rate for the number
of ICMP bytes in and out of all monitored objects. A
high number of ICMP bytes from any source wastes
traffic capacity that could otherwise be used for data.

ICMP Errors
An ICMP error is logged when the Monitor observes an
ICMP packet with an error in its ICMP header. For
example, a packet may have a length field with an

illegal value in it. A node that generates ICMP errors
may be having software problems.

App. III - 5

EX 1009 Page 120

WO J4/7170054 FUL1/UDILIVLTTO

- 119 -
Off-segment

Off-segment packets are packets that the Monitor
observes on the local segment that . are destined for or
sent by nodes not on the local segment. All off-
segment packets are either routed to, from, or across
the local segment.

A high number of ICMP packets from any source wastes
traffic capacity that could otherwise be used for data
packets. If there are a high number of in or transit
off-segment ICMP packets, the source is on a different
segment.

Destination Unreachable Packets

If for some reason a gateway cannot deliver an IP
packet, it sends and ICMP Destination Unreachable
packet to the sender. This packet informs the sender
that the packet could not be delivered, and gives a
reason. The Monitor keeps count of ICMP Destination
Unreachable packets into and out of all objects, by
reason. These are listed below.

Net unreachable
The network is having routing problems. Possible
routing problems include: a non-operational link a node
or router has an incorrect routing table

Host unreachable
See net unreachable.

Protocol unreachable

Port unreachable

Frag needed / DF set
This means fragmentation is needed but Don't Fragment
flag was set. This message is sent when a router
cannot forward a packet because it is too large for the
next subnetwork in the route. Find out why
fragmentation is being disallowed by the sending node -
it may not be necessary. 1If it is necessary, then you
must find or create an alternate route.

Source route failed

App. III - 6

EX 1009 Page 121

WO 92/19054 PCT/US92/02995

- 120 -
Destination net unknown

The destination network is not in the router's current
routing table. This may be because the source node
entered the address incorrectly (a software problem) or
because the router's routing table is corrupt or

incomplete.
Destination host unknown

See destination net unknown
Source host isolated

Destination net prohibited (communication with
destination network administratively prohibited)

Net unreachable / TOS

This means network is unreachable for this Type of
Service. This message is sent when a router cannot
forward a packet because the specified Type of Service
is not available for this route. Find out why this
Type of Service is being specified. It may be
unnecessary.

Host unreachable / TOS

This means host is unreachable for this Type of
Service.

Time to Live Exceeded Packets

An IP packet is allowed to remain in transit for a
fixed time. This time is called "time to live" and is
specified in the IP packet by the sender. If this time
expires before the packet is delivered, the packet is
discarded. This mechanism prevents packets that get
"stuck" in circular routes from congesting the network
forever.

This mechanism is enforced by the gateways that route

the packet through the network. Each gateway reduces

the packet's timer value by an appropriate amount, and

then checks to make sure that it has not reached zero.

If the timer has reached zero, the gateway discards the .
packet and transmits an ICMP Time to Live Count

Exceeded packet back to the sender.

App. III - 7

EX 1009 Page 122

WU J&/ 17U09 FCRIUDTLIVLTTO

- 121 -

Packets may get stuck in loops (circular routes)
because a gateway or router has incorrect information
in its routing table (example).

Reassembly Time Exceeded Packets

In routing an IP packet across a network, it is
sometimes necessary to fragment it into smaller
packets. This must be done to get it across a segment
that cannot handle the packet at its original size.

Once a packet has been fragmented, it is not
reassembled until the fragments reach the final
destination. Since it is possible that one or more
fragments will be lost before reaching the destination,
the destination node waits only a fixed period of time
to receive all the fragments. This is the reassembly
time.

If the destination node has not received all of the
fragments when the reassembly time expires, it sends an
ICMP Fragment Reassembly Time Exceeded packet to the
sender.

This problem typically occurs because one or more of
the fragments has been lost.

Parameter Problem Packets

Part of each IP packet (the header) contains control
information. A parameter is a unit of control
information. For example, one parameter specifies the
length of the packet, and another specifies whether or
not fragmentation of this packet is allowed.

If a gateway detects a serious problem with a
parameter, and it is not reportable through one of the
other ICMP messages (such as Destination Unreachable),
it sends an ICMP Parameter Problem packet back to the
sender.

There is currently one specific reason tracked for the
ICMP Parameter Problem packet:

Param option missing (missing option parameter)
Source Quench Packets
Gateways use the source quench mechanism to slow the

rate of incoming packets. If a gateway is receiving
packets too fast for it to keep up with, it will send

App. III - 8

EX 1009 Page 123

WO 92/19054 PCT/US92/02995

- 122 -

an ICMP Source Quench Packet to one or more nodes to
tell them to slow down.

Redirect Packets

The redirect mechanism allows gateways to send
information about routes to hosts. This works as
follows:

Each node maintains a table that contains, for each of
the nodes with which it communicates, the physical
address of a gateway. This gateway is the first step
in the route to the destination node. When a node
sends a datagram to a node that is not on its segment,
it send it to the gateway indicating in its routing
table for the destination node.

Gateways maintain more or less complete routing
information. They check all datagrams to be routed off
a segment to make sure that the optimum route is being
used. For example, if there are two gateways available
to Node a, and Node A attempts to send a datagram to
Node B across Gateway 1 when Gateway 2 would be better,
Gateway 1 will detect the problem.

When this occurs, the detecting gateway issues an ICMP
Redirect packet to the sending node. This packet tells
the node how it should change its routing table.

Nodes use this mechanism to learn routes from gateways.
All a node really needs on startup is to know the
address of a gateway. It attempts to route all of its
off-segment messages through this gateway, and builds
its routing table from the ICMP Redirect packets it
receives back.

An ICMP Redirect packet contains a diagnostic code that
specifies additional information. The Monitor counts
the occurrences of each of these:

Redirect for net

This packet means that datagrams to nodes on this
network should be routed differently.

Redirect for host i

This packet means that a datagram to this host should
be routed differently.

App. III - 9

EX 1009 Page 124

VYT J&l R TUO% U1/ UBF&/VLTIO

- 123 =~
Redirect to TOS net

This is a redirect for the network and type of service.
This packet means that datagrams to hosts on this
network should be routed differently in order to obtain
this type of service.

Redirect TOS host

This is a redirect for the host and type of service.
This packet means that a datagram to this host should
be routed differently in order to obtain this type of
service.

Echo Packets

The echo mechanism is used to verify that a destination
is currently reachable, or to test the delay time
between nodes. Echo is often referred to as "ping."
The echo mechanism involves two ICMP packets: Echo
Request and Echo Reply. The Monitor maintains counts
for both of these.

Note that some diagnostic tools issue a series of ICMP
Echo Request packets and then monitor and analyze the
ICMP Echo Response packets.

A high number of these packets wastes traffic capacity.

Echo Request

This is a request that the addressed node send back an
Echo Response packet.

Echo Response

This is a response packet sent by a node when it has
received an Echo Request packet.

Timestamp Packets

The timestamp mechanism is used by nodes to synchronize
their clocks. Node A sends an ICMP Timestamp Request
packet to Node B, requesting that Node B return the
current time of its system clock. Node B sends an ICMP
Timestamp Response packet with the requested time to
Node A. Node A can roughly synchronize its clock with
Node B based on the response timestamp.

App. III - 10

EX 1009 Page 125

WO 92/19054 PCT/US92/02995

- 124 -
Timestamp Regquest

This is a request that the addressed node send back a
Timestamp Response packet.

Timestamp Response .

This is a response packet sent by a node when it has
received a Timestamp Request packet.

Address Mask Packets

The IP protocol's addressing scheme allows sites to
group multiple physical networks (segments) into a
single addressable subnet. The subnet addressing
scheme allows a site to determine, to an extent, which
IP address bits identify the network (including subnet)
and which identify nodes in the local subnet. For
example, a site may determine that the first three
octets in the IP address specify the network, and the
last octet specifies the node in the network.

The division of address bits between network and node
is represented by an address mask. The address mask is
a string of 32 bits, where each bit used to specify
network is set to 1, and bits that identify node are
set to 0.

A node learns the address mask for its local subnet by
requesting the information from a gateway. To do so it
sends an ICMP Address Mask Request message to the
gateway. If it does not know the address of the
gateway, it may broadcast the request. The gateway
replies with an ICMP Address Mask Response.

Address Mask Request

This is a request that the addressed node send back an
Address Mask Response packet.

Address Mask Response

This is a res?onse packet sent by a node when it has
received an Address Mask Request packet.

TCP Variables s
TCP Packets

A TCP packet (sometimes referred to as a segment) is a
string of bytes that is transferred as a unit across

App. IIT - 11

EX 1009 Page 126

WO J4&/ 27004 FCL/UDITA/IVaTTO

- 125 -
the IP network. It has two parts: the TCP header,
which contains control information such as the source

and destination TCP ports; and the data to be
transferred to the destination user.

Bytes

The Monitor maintains a count and rate for bytes into
and out of all monitored objects. For example, you can
monitor the number of bytes into or out of a chosen
node to measure the traffic load with respect to that
node. You can monitor the number of bytes into and out

of all nodes on the segment. The byte count includes
header and data bytes.

Header Bytes

The header is the portion of the TCP packet that
contains control information used by the protocol, such
as source and destination TCP ports. Comparing the
number of TCP header bytes to the total number of TCP

bytes gives an idea of the amount of TCP overhead on a
connection.

Error Packets

A TCP error is logged for each packet observed with one
of the following problenms:

* length of TCP packet is less than 20 bytes

* TCP Header length is less than 20 bytes

* TCP header length is greater than the length of
the TCP packet

* TCP header length is greater than 20 bytes but the
length of the TCP packet is less than the TCP
header length.

Retransmissions

A Retransmission is a TCP packet that contains some
data that has already been sent at least once. A
Retransmission may or may not be an exact duplicate of
the packet already transmitted.

Note that if the underlying packet delivery system
(DLL) creates a duplicate, it is counted as a
retransmission.

When a TCP entity sends a data packet to its remote
partner, it waits a predetermined period of time

(tracked by a retransmission timer) for an
acknowledgement (ACK) from the remote partner. If this

App. III - 12

EX 1009 Page 127

WO 92/19054 PCT/US92/02995

- 126 -
time expires without the ACK being received, it
retransmits the data contained in the presumably lost
packet. It may retransmit a packet identical to the
one lost, or it may combine data from multiple lost
packets into a new packet, or it may combine lost data
with new data into a new packet. .

Excessive retransmissions can mean that a gateway is
overloaded or down, that a system is overloaded, or
that network parameters are misconfigured. 1In general,
small dedicated networks should see few
retransmissions. Larger, more diverse networks with
routers, bridges and gateways with different
capabilities and capacities are likely to have more
retransmissions.

Bytes Retransmitted

Byte Retransmitted are TCP data bytes that have already
been sent at least once.

See Retransmissions.
Out of Order Packets

Out of Order Packets are packets containing bytes with
lower sequence numbers than bytes in previously seen
packets.

Packets do not necessarily arrive in the order they
were sent in. The receiving node puts the data in the
correct order once it has received all packets. A high
value may mean that some packets are being sent by way
of a slower route, or that there is an overloaded or
down bridge or router.

Out of Order Bytes

Out of Order Bytes are bytes with lower sequence
numbers than bytes seen in previous packets.

Data out of Window Packets
Data out of Window Packets are packets that contains
data that is not within the boundaries of the receiving
partner's currently advertised window. The data is .

either acknowledged data or data that the partner is
not ready to receive.

App. III - 13

EX 1009 Page 128

WO 92/19054 PCT/US92/02995

- 127 -
Bytes out of Window

Bytes out of Window are bytes that are not within the
boundaries of the receiving partner's currently
advertised window. The data is either acknowledged
data or data that the partner is not ready to receive.

Packets after Close

Packets after Close are packets observed after a
connection has been closed. These may be packets that
had been "lost" on the network, or it may indicate a
malfunction in the sending station.

RST Packets

A packet in which the RST (reset) bit is set.
‘SYN Control Packets

A packet in which the SYN bit is set.
FIN Control Packets

A packet in which the FIN bit is set.
URG Control Packets

An URG Control Packet is a packet in which the Urgent
pointer is set.

The packet contains data that the receiving application
should process as soon as possible. For example, the
control-key sequences used by some applications are
often sent as Urgent data.

Keepalives

A Keepalive is a TCP packet that a user sends to check
to see if a connection is still active. The Keepalive
packet contains either not data or one garbage byte of
data that is outside the remote partner's last
advertised window. The remote partner responds with
either an ACK, confirming that the connection is alive,
or a RST, indicating that the connection had been
dropped.

Although widely implemented, the keepalive mechanism is
not part of the TCP protocol, so you will not
necessarily see keepalive activity.

App. III - 14

EX 1009 Page 129

WO 92/19054 PCT/US92/02995

- 128 -
Keepalives mean that a connection has been up for a

long time without and activity. Resources may be
unnecessarily tied up.

Window Probes

A Window Probe is a TCP packet that is sent to check
the size of the remote partner's window when the last
advertised window size was zero. The Window Probe
packet contains one byte of data. The remote partner
responds with an ACK packet, which contains the size of
the remote partner's current window size.

Non-data packets, which may include window update
information, may be lost and are not be retransmitted.
It may therefore become necessary to check the remote
partner's window size if that information has not been
received for some period of time. This can mean that a
node is runnind a faulty TCP implementation, that
timers are misconfigured, or packets are being lost.

Window Update Only Packets
A Window Update Only packet is a packet that contains

no data, but in which the advertised window size has
been updated.

s

App. III - 15

EX 1009 Page 130

WU Ja/ 17054

PCL/UDIL/NZTIS

- 129 -
APPENDIX IV

Summary Tool - Values Display Fields

Packet Rate
Byte Rate

Errors
Broadcast Pkt Rate

Multicast Pkt Rate
Source Quenches
Fragments

Flow Controls
uUDP

TCP

NFS
Retransmissions

Off Segment Packets
in

out

Transit

Most Acuve Protocols

towad packets per second at this protocol layer received and transmitted at
segment or node

total bytes per second at this protocol layer received and transmitted at
segment or node

total errors at this protocol layer received and transmitied at segment or node

total number packets per second at this protocol layer addressed 1o broadeast
address

total number packets per second at this protocol layer addressed to multicast
address

total number of ICMP source quench packets received and transmitted from
this segment or node.

tota) number of [P fragmented packets received and transmitted from this
segment or node.

total number of ICMP source quench packets received and transmitted on
this UDP port

total number of ICMP source quench packets received and transmitted on
this TCP port.

total number of ICMP source quench packets received and transmitted on
this NFS port.

total number of TCP packets retransmitied on this TCP port.

%waffic at this protocol layer received by nodes on this segment
originating from other segments

in = 100(packet rate / packet rate rcv (rom off seg)

% traffic at this protocol layer transmitted by nodes on this segment to nodes
on other segments

out = 100(packet rate / packet rate xmt to off seg)

% wraffic at this protocol Liyer originating from other segments which are
addressed 1o nodes not on this segment

transit = 100(packet rate / packet rate transit)

% Traffic a1 this protocol layer which originates and terminates on this
segment

local = 100 -(in + out + transit)

The five most active protocols running above this layer (ic the users of this
layer). The protocols are displayed as % and ranked in decreasing order.

protocol % = 100(protocoi packet rate/packet rate)

Ao W - |

EX 1009 Page 131

WO 92/19054 PCT/US92/02995

- 130 -

Most Actuve Nodes The five most active nodes at this protocol layer . The nodes are displayed as
% and ranked in decreasing order.

node % = 100(node packet rate/packel rate)

ICMP Types Seen The total number of these specific ICMP packet types transmiited and
received on this segment or node.

Total Segment Bandwidth The % of the available bandwidth used by this protocol. If the screen is 3
segment display it is % used by all nodes on the segment, if it is a node
display it is the % used by that node.

% = 100(8 * frame rate / 10000000)

Total Active Dialogs The number of dialogs detected for the node or segment at this protocol
layer.

APP AN - 2

EX 1009 Page 132

WO Jo/ 2004

PCL/UDTL/ULTTD

- 131 -

5. Actual Screens {o¢ \Ju\wes Vool APPENDIX V

5.1 Data Link Group

3.1.1 Definition

This screen summarizes the data link parameters.

5.1.2 Defaults

1 This ts a "complete values” screen. It shows all of the values for the DLL

protocol layer.

to

The user comes {rom a context of a specific segment or node and this
screen must preserve that context.

APPENDIX V - |

EX 1009 Page 133

WO 92/19054 PCT/US92/02995

- 132 -

5,.1.3 Primary Screen Lauoul

Standard Column Headings

Frames
Rev
Xmt
Total
Frm rate
Rev
Xmt
Total
Bytes
Rcv
Xmt
Total
Byte rate
Rev
Xmt
Total
ErTors
Rev
Xmt
Total
Error rate
Rev
Xmt
Total
802.3 frames
Rev
Xmt
Total
ethernet frames
Rev
Xmt
Total
802.3 frame rate
Rev X
Xmt
Total
ethernet frame rate
Rev
Xmt
Total
Bceast Xmt
Bcast rate
Mcast Xmt
Mcast rate
Off seg
Recv
Xmt

[Transit]
APPENDIX V - 2

EX 1009 Page 134

WU J&l LIUOS FOULI/UDIL/IVLTTID

- 133 -
[locall
Total
Off seg rate
Recv
Xmt
[Transit)
[local]
Total
Runts Xmt
[Allignment]
[Collisions]

Protocol Pkt Count Pkt Rate %%

Protocol 1
Protocol 2

Protocol n

5.1.4 Secondary Screen Layout

Extended Column Headings

rows as for primary screen

5.2 IP Group

5.2.1 Definition

This screen provides information for the IP network layer running on the segment or
node.

5.2.2 Defaults

1 This is a "complete values' screen. It shows all of the values for the IP
protocol type

2 The user ‘comes from a context of a specific segment or node and this

screen must preserve that context

APPENDIX V - 3

EX 1009 Page 135

WO 92/19054 PCT/US92/02995

- 134 -

Standard Column Headings

Pkts

Pkt rate
Bytes

Byte rate
ErTors
Error rate
Frags

Frag rate
Header bytes
Header rate
Beast Xmt
Bcast rate
Mcast Xmt
Mcast rate
Off seg

Off seg rate

Protocol Pkt Count Pkt Rate %

Protocol 1
Protocol 2

Protocol n

5,2.4 Secondary Screen Lavouf

Extended Column Headings
rows as jor primary screen

5.3 ICMP Group

5.3.1 Definit

This screen provides information for the ICMP protocol s/w running on the segment or
node. :

5.3.2 Defaults

1 This is a "complete values"” screen. It shows all of the values for the ICMP
protocol type

2 The user comes from a context of a specific segment or node and this

screen must preserve that context.

APPENDIX V - 4

EX 1009 Page 136

WU J47 19009

5.3.3 Primary Screen Lauoul

- 135 -

FU1/UDIe/V2770

Standard Column Headings

Pkts

Pkt rate

Bytes

Byte rate

Errors

Error rate

Off seg

Off seg rate

D.U. net

D.U. host

D.U. Prot

D.U. port

D.U. frag

D.U. Src route
D.U. Net Unk.
D.U. Host Unk.
D.U. Src Host isol.
D.U. Dnet Ad Prob
D.U. Dhost Ad Prob
D.U. Net Unr.
D.U. Time Xd Trans
D.U. Time Xd Reass
Param prob
Param opt miss.
src quench

redir net

redir host

redir tos net

redir tos host
Echo req

Echo Resp

Ts req

Ts resp

Addr mask req
Ad<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>