
 

 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

 

BEFORE THE PATENT TRIAL AND APPEAL BOARD 

 

 

JUNIPER NETWORKS, INC. and PALO ALTO NETWORKS, INC., 

Petitioners, 

 

v. 

 

PACKET INTELLIGENCE LLC, 

Patent Owner. 

 

In re Inter Partes Review of: 

U.S. Patent Nos. 6,651,099, 6,665,725, 6,771,646, 6,839,751, and 6,954,789 

 

 

 

DECLARATION OF DR. JON B. WEISSMAN UNDER 37 C.F.R.  

§ 1.68 IN SUPPORT OF PETITION FOR INTER PARTES REVIEW  

 

EX 1006 Page 1



 

 

 i

TABLE OF CONTENTS 

I. INTRODUCTION ....................................................................................... 1 

A. Professional Background ................................................................... 1 

B. Documents and Information Considered ............................................ 4 

C. Summary of Opinions ........................................................................ 5 

II. LEGAL STANDARDS TO BE APPLIED .................................................. 8 

III. SUMMARY OF THE CHALLENGED PATENTS ....................................10 

A. Technology Overview .......................................................................10 

1. Network Protocols and Protocol Layering....................................10 

2. Network Packets ..........................................................................20 

3. Monitoring Network Traffic ........................................................21 

4. Control and Data Transmission in Network Protocols ..................23 

B. The ’099 Patent Overview ................................................................26 

C. The ’725 Patent Overview ................................................................32 

D. The ’646 Patent Overview ................................................................35 

E. The ’751 Patent Overview ................................................................37 

F. The ’789 Patent Overview ................................................................38 

G. Prosecution History Overview ..........................................................40 

1. The ’099 Patent’s Prosecution History .........................................40 

2. The ’725 Patent’s Prosecution History .........................................40 

3. The ’646 Patent’s Prosecution History .........................................42 

4. The ’751 Patent’s Prosecution History .........................................45 

5. The ’789 Patent’s Prosecution History .........................................49 

EX 1006 Page 2



 

 

 ii

H. Sandvine’s IPR Petitions ...................................................................49 

I. Nokia’s IPR Petitions ........................................................................51 

J. German Nullity Proceeding...............................................................53 

IV. SUMMARY OF THE PRIOR ART ............................................................57 

A. Riddle Overview ...............................................................................57 

1. Overview of Riddle ......................................................................58 

2. Riddle’s Hardware Components ..................................................62 

3. Riddle’s Parsing of Packets ..........................................................64 

4. Riddle’s Classifying Flows Based on Conversations ....................66 

5. Riddle’s Conversational Flow Analyzer .......................................74 

6. Riddle’s Traffic Identification Based on RTP and RTSP .............77 

B. Ferdinand Overview .........................................................................83 

C. Yu Overview ....................................................................................87 

D. RFC1945 Overview ..........................................................................90 

E. Baker Overview ................................................................................96 

F. Wakeman Overview .........................................................................99 

G. Hasani Overview ............................................................................ 104 

V. A PERSON OF ORDINARY SKILL IN THE ART ................................. 105 

VI. CLAIM CONSTRUCTION ...................................................................... 108 

A. “Conversational Flow” / “Conversational Flow-Sequence” ............ 108 

B. “State Of The Flow” / “State Of The Conversational Flow” ........... 115 

C. “The Flow” / “New Flow” / “Existing Flow” .................................. 117 

D. “State Operations” / “State Processing Operations” ........................ 121 

EX 1006 Page 3



 

 

 iii

E. “Flow-Entry Database …” Terms ................................................... 123 

F. “Parser Record” .............................................................................. 126 

G. “Child Protocol” ............................................................................. 127 

H. “Slicer” ........................................................................................... 127 

I. Means- and Step-Plus-Function Terms ........................................... 128 

VII. THE CLAIMS OF THE ’099 PATENT ARE UNPATENTABLE ........... 134 

A. For the ’099 Patent, Riddle in View of Ferdinand Renders 

Obvious Claims 1 and 2. ................................................................. 135 

1. Reasons to Modify Riddle in View of Ferdinand ....................... 135 

2. Independent ’099 Claim 1 .......................................................... 138 

3. Dependent ’099 Claim 2 ............................................................ 226 

B. For the ’099 Patent, Riddle in View of Ferdinand and Further in 

View of Baker Renders Obvious Dependent Claims 4 and 5. .......... 229 

1. Reasons to Modify the Combination of Riddle and Ferdinand and 

Further in View of Baker ........................................................... 230 

2. Dependent ’099 Claim 4 ............................................................ 233 

3. Dependent ’099 Claim 5 ............................................................ 241 

C. For the ’099 Patent, Riddle in View of Ferdinand and Further in 

View of Yu Renders Obvious Claims 1 and 2. ................................ 246 

1. Reasons to Modify the Combination of Riddle and Ferdinand 

Further in View of Yu ................................................................ 248 

2. Riddle in View of Ferdinand and Further in View of Yu Renders 

Obvious Identifying a “Conversational Flow-Sequence” and the 

Claimed State Tracking .............................................................. 249 

D. For the ’099 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of Yu Renders Obvious Dependent Claims 4 and 

5. 251 

EX 1006 Page 4



 

 

 iv 

E. For the ’099 Patent, Riddle in View of Ferdinand and Further in 

View of RFC1945 Renders Obvious Claims 1 and 2....................... 253 

1. Reasons to Modify the Combination of Riddle and Ferdinand 

Further in View of RFC1945 ..................................................... 258 

2. Riddle in View of Ferdinand and Further in View of RFC1945 

Renders Obvious Identifying A “Conversational Flow-Sequence.”

................................................................................................... 262 

F. For the ’099 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of RFC1945 Renders Obvious Dependent Claims 

4 and 5. ........................................................................................... 264 

VIII. THE CLAIMS OF THE ’725 PATENT ARE UNPATENTABLE ........... 265 

A. For the ’725 Patent, Riddle in View of Baker Renders Obvious 

Claims 10, 12, 13, 16, and 17. ......................................................... 266 

1. Reasons to Modify Riddle in View of Baker .............................. 266 

2. Independent ’725 Claims 10 and 17 ........................................... 269 

3. Dependent ’725 Claim 12 .......................................................... 331 

4. Dependent ’725 Claim 13 .......................................................... 333 

5. Dependent ’725 Claim 16 .......................................................... 338 

B. For the ’725 Patent, Riddle in View of Baker and Further in View 

of Yu Renders Obvious Claims 10, 12, 13, 16, and 17. ................... 339 

C. For the ’725 Patent, Riddle in View of Baker and Further in View 

of RFC1945 Renders Obvious Claims 10, 12, 13, 16, and 17. ......... 341 

IX. THE CLAIMS OF THE ’646 PATENT ARE UNPATENTABLE ........... 342 

A. For the ’646 Patent, Riddle in View of Ferdinand and Wakeman 

Renders Obvious Claims 1-3, 7, 16, and 18. ................................... 343 

1. Reasons to Modify Riddle in View of Ferdinand and Wakeman 343 

2. Independent ’646 Claim 1 .......................................................... 345 

EX 1006 Page 5



 

 

 v 

3. Dependent ’646 Claim 2 ............................................................ 380 

4. Dependent ’646 Claim 3 ............................................................ 383 

5. Independent ’646 Claim 7 .......................................................... 386 

6. Independent ’646 Claim 16 ........................................................ 411 

7. Dependent ’646 Claim 18 .......................................................... 416 

B. For the ’646 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of Yu Renders Obvious Claims 1-3, 7, 16, 

and 18. ............................................................................................ 419 

C. For the ’646 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of RFC1945 Renders Obvious Claims 1-3, 7, 

16, and 18. ...................................................................................... 421 

X. THE CLAIMS OF THE ’751 PATENT ARE UNPATENTABLE ........... 423 

A. For the ’751 Patent, Riddle in View of Ferdinand Renders 

Obvious Claims 1, 2, 5, 10, 14, 15, and 17. ..................................... 424 

1. Reasons to Modify Riddle in View of Ferdinand ....................... 424 

2. Independent ’751 Claim 1 .......................................................... 424 

3. Dependent ’751 Claim 2 ............................................................ 446 

4. Dependent ’751 Claim 5 ............................................................ 451 

5. Dependent ’751 Claim 10 .......................................................... 452 

6. Dependent ’751 Claim 14 .......................................................... 455 

7. Dependent ’751 Claim 15 .......................................................... 458 

8. Independent ’751 Claim 17 ........................................................ 461 

B. For the ’751 Patent, Riddle in View of Ferdinand and Further in 

View of Yu Renders Obvious Claims 1, 2, 5, 10, 14, 15, and 17. .... 465 

EX 1006 Page 6



 

 

 vi 

C. For the ’751 Patent, Riddle in View of Ferdinand and Further in 

View of RFC1945 Renders Obvious Claims 1, 2, 5, 10, 14, 15, 

and 17. ............................................................................................ 467 

XI. THE CLAIMS OF THE ’789 PATENT ARE UNPATENTABLE ........... 469 

A. For the ’789 Patent, Riddle in View of Ferdinand Renders 

Obvious Claims 1, 2, 13-17, 19, 20, and 42 .................................... 469 

1. Reasons to Modify Riddle in View of Ferdinand ....................... 470 

2. Independent ’789 Claim 1 .......................................................... 470 

3. Dependent ’789 Claim 2 ............................................................ 473 

4. Dependent ’789 Claim 13 .......................................................... 475 

5. Dependent ’789 Claim 14 .......................................................... 476 

6. Dependent ’789 Claim 15 .......................................................... 477 

7. Dependent ’789 Claim 16 .......................................................... 477 

8. Dependent ’789 Claim 17 .......................................................... 478 

9. Independent ’789 Claim 19 ........................................................ 480 

10. Dependent ’789 Claim 20 .......................................................... 488 

11. Dependent ’789 Claim 42 .......................................................... 488 

B. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of Baker Renders Obvious Dependent Claim 31 .................... 490 

1. Reasons to Modify the Combination of Riddle and Ferdinand 

Further in View of Baker ........................................................... 491 

2. Dependent ’789 Claim 31 .......................................................... 491 

C. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of Wakeman Renders Obvious Dependent Claims 33 and 34 492 

1. Reasons to Modify the Combination of Riddle and Ferdinand 

Further in View of Wakeman ..................................................... 492 

EX 1006 Page 7



 

 

 vii

2. Dependent ’789 Claim 33 .......................................................... 492 

3. Dependent ’789 Claim 34 .......................................................... 493 

D. For the ’789 Patent, Riddle in View of Ferdinand and Hasani 

Renders Obvious Claims 44, 48, and 49.......................................... 493 

1. Reasons to Modify the Combination of Riddle and Ferdinand 

Further in View of Hasani .......................................................... 493 

2. Independent ’789 Claim 44 ........................................................ 496 

3. Dependent ’789 Claim 48 .......................................................... 506 

4. Dependent ’789 Claim 49 .......................................................... 508 

E. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of Yu Renders Obvious Claims 1-2, 13-17, 19-20, and 42. .... 510 

F. For the ’789 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of Yu Renders Obvious Claim 31. ......................... 512 

G. For the ’789 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of Yu Renders Obvious Claims 33-34. ........... 514 

H. For the ’789 Patent, Riddle in View of Ferdinand and Hasani and 

Further in View of Yu Renders Obvious Claims 44 and 48-49. ...... 516 

I. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of RFC1945 Renders Obvious Claims 1-2, 13-17, 19-20, 

and 42. ............................................................................................ 518 

J. For the ’789 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of RFC1945 Renders Obvious Claim 31. .............. 519 

K. For the ’789 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of RFC1945 Renders Obvious Claims 33-34. . 521 

L. For the ’789 Patent, Riddle in View of Ferdinand and Hasani and 

Further in View of RFC1945 Renders Obvious Claims 44 and 48-

49. 522 

 

EX 1006 Page 8



 

 

 viii

Exhibit Description 

1001 U.S. Patent No. 6,651,099 (“the ’099 Patent”) 

1002 U.S. Patent No. 6,665,725 (“the ’725 Patent”) 

1003 U.S. Patent No. 6,771,646 (“the ’646 Patent”) 

1004 U.S. Patent No. 6,839,751 (“the ’751 Patent”) 

1005 U.S. Patent No. 6,954,789 (“the ’789 Patent”) 

1006 Declaration of Dr. Jon B. Weissman 

1007 Curriculum vitae of Dr. Weissman 

1008 U.S. Patent No. 6,412,000 (“Riddle”) 

1009 PCT Publication WO 92/19054 (“Ferdinand”) 

1010 RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0 (“RFC1945”) 

1011 U.S. Patent No. 6,625,150 (“Yu”) 

1012 Provisional Patent Application No. 60/112,859 (“the ’859 Provisional”) 

1013 PCT Publication WO 97/23076 (“Baker”) 

1014 U.S. Patent No. 5,740,175 (“Wakeman”) 

1015 U.S. Patent No. 5,805,808 (“Hasani”) 

1016 Provisional Patent Application No. 60/141,903 (“the ’903 Provisional”) 

1017 File History for U.S. Patent No. 6,651,099 

1018 File History for U.S. Patent No. 6,665,725 

1019 File History for U.S. Patent No. 6,771,646 

1020 File History for U.S. Patent No. 6,771,646 – February 10, 2004, Re-

sponse to Office Action 

1021 File History for U.S. Patent No. 6,839,751 

1022 File History for U.S. Patent No. 6,954,789 

EX 1006 Page 9



 

 

 ix 

Exhibit Description 

1023 Certified Translation of German Federal Patent Court Nos. 2Ni 26/16 

(EP) and 2(Ni 46/16) (July 12, 2018) 

1024 Provisional Patent Application No. 60/066,864 (“the ’864 Provisional”) 

1025 Redline showing a comparison of Riddle to Provisional Patent Applica-

tion No. 60/066,864 

1026 Claim Chart comparing claims 1, 8, and 11 of Riddle to the specifica-

tion of Provisional Patent Application No. 60/066,864 

1027 U.S. Patent Application 08/977,642 (“Packer Application”) 

1028 U.S. Patent Application 09/198,051 (“the ’051 Application”) 

1029 U.S. Patent No. 5,802,106 

1030 U.S. Patent No. 6,038,216 

1031 U.S. Patent No. 6,046,980 (“Packer”) 

1032 PointCast Inc. is Testing a New Screen-Saver Product, The Wall Street 

Journal (April 15, 1996) 

1033 Gillin, Paul. Editorial, Computer World (May 13, 1996) 

1034 Sneider, Daniel. Redefining News in the Era of Internet By Blending 

Print and Television, Silicon Valley Start-up Shakes up Traditional 

View of News, The Christian Science Monitor (June 26, 1996) 

1035 PointCast Inc. 1998 SEC Filings 

1036 U.S. Patent No. 6,807,558 

1037 RFC 765 – File Transfer Protocol (“RFC765”) 

1038 RFC 791 – Internet Protocol (“RFC791”) 

1039 RFC 793 – Transmission Control Protocol (“RFC793”) 

1040 RFC 1543 – Instructions to RFC Authors (“RFC1543”) 

1041 RFC 2026 – The Internet Standards Process – Revision 3 (“RFC2026”) 

1042 RFC 2616 – Hypertext Transfer Protocol – HTTP/1.1 (“RFC2616”) 

EX 1006 Page 10



 

 

 x 

Exhibit Description 

1043 International Standard ISO/IEC 7498 – Information Processing Sys-

tems – Open Systems Interconnection – Basic Reference Model – Part 

4: Management Framework (Nov. 15, 1989) 

1044 Internet Archive Affidavit for RFC1945 

1045 Internet Archive Affidavit for RFC 1889 – RTP: A Transport Protocol 

for Real-Time Applications (“RFC1889”) 

1046 Internet Archive Affidavit for RFC 2326 – Real Time Streaming Proto-

col (RTSP) (“RFC2326”) 

1047 Chart comparing Yu to Provisional Patent Application No. 60/112,859 

1048 Claim Chart comparing Yu’s claim 1 to the Provisional Patent Applica-

tion No. 60/112,859 

1049 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00769, Paper 

No. 10 (Opposition to Request for Rehearing) (September 15, 2017) 

1050 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00450, Paper 

No. 6 (Preliminary Response) (April 28, 2017) 

1051 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00451, Paper 

No. 6 (Preliminary Response) (April 28, 2017) 

1052 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00629, Paper 

No. 6 (Preliminary Response) (April 28, 2017) 

1053 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00630, Paper 

No. 6 (Preliminary Response) (April 28, 2017) 

1054 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00769, Paper 

No. 6 (Preliminary Response) (April 28, 2017) 

1055 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00862, Paper 

No. 6 (Preliminary Response) (June 5, 2017) 

1056 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00450, Paper 

No. 8 (Decision) (July 26, 2017) 

1057 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00451, Paper 

No. 8 (Decision) (July 26, 2017)  

EX 1006 Page 11



 

 

 xi 

Exhibit Description 

1058 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00629, Paper 

No. 8 (Decision) (July 26, 2017)  

1059 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00630, Paper 

No. 9 (Decision) (July 26, 2017)  

1060 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00769, Paper 

No. 8 (Decision) (July 26, 2017)  

1061 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00862, Paper 

No. 8 (Decision) (July 26, 2017) 

1062 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00863, Paper 

No. 6 (Decision) (August 31, 2017)  

1063 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00863, Paper 

No. 8 (Notice of Abandonment) (Dec. 1, 2017) 

1064 Sandvine Corp. v. Packet Intelligence, LLC, No. IPR2017-00863, Paper 

No. 9 (Adverse Judgment) (Dec. 20, 2017) 

1065 Nokia Corp. v. Packet Intelligence, LLC, No. IPR2019-01289, EX1006 

(Declaration of Dr. Kevin Jeffay) 

1066 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 55-21 (Packet Intelligence 

Technology Tutorial) (January 20, 2017) 

1067 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 66 (Claim Construction 

Memorandum and Order) (March 14, 2017) 

1068 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 244 (Transcript of Proceed-

ings held Oct. 10, 2017 AM Session) (October 17, 2017) 

1069 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 250 (Transcript of Proceed-

ings held Oct. 12, 2017 PM Session) (October 17, 2017) 

EX 1006 Page 12



 

 

 xii

Exhibit Description 

1070 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 314 (NetScout’s JMOL of 

No Infringement) (October 5, 2018) 

1071 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 314-1 (Declaration of Mi-

chael Lyons) (October 5, 2018) 

1072 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 314-4 (Excerpts of Russell 

Dietz’s Demonstrative Slides) (October 5, 2018) 

1073 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 323-1 (Declaration of Steven 

Udick) (October 26, 2018) 

1074 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 323-2 (Excerpts from Dr. 

Kevin Almeroth’s Direct Testimony Demonstrative Slides) (October 

26, 2018) 

1075 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 324-1 (Declaration of Sadaf 

R. Abdullah) (October 26, 2018) 

1076 Packet Intelligence LLC, v. NetScout Systems, Inc. et al., E.D. Tex. 

Case No. 2:16-CV-230-JRG, Docket Item 324-2 (Dr. Kevin Alme-

roth’s Rebuttal Testimony Demonstrative Slides) (October 26, 2018) 

1077 Packet Intelligence LLC, v. Ericsson Inc. et al., E.D. Tex. Case No. 

2:18-CV-00381-JRG, Docket Item 74 (Joint Claim Construction and 

Prehearing Statement) (June 7, 2019) 

1078 Packet Intelligence LLC, v. Cisco Systems, Inc., E.D. Tex. Case No. 

2:14-CV-252-JRG, Docket Item 89 (Packet Intelligence LLC’s Open-

ing Claims Construction Brief) (January 26, 2015) 

1079 Palo Alto Networks, Inc. v. Packet Intelligence LLC, N.D. Cal. Case 

No. 3:19-cv-02471, Joint Claim Construction and Preharing Statement 

(December 17, 2019) 

EX 1006 Page 13



 

 

 xiii

Exhibit Description 

1080 Patent Trial and Appeal Board Consolidated Trial Practice Guide (No-

vember 2019) 

1081 Chart of third-parties’ previously-proposed terms subject to §112(6) 

and corresponding structure  

1082 Table Comparing Claims 1, 10, and 17 of the ’725 Patent  

EX 1006 Page 14



  

 1 

I. INTRODUCTION 

1. I, Jon B. Weissman, submit this declaration in connection with inter partes 

review (“IPR”) proceedings before the United States Patent and Trademark Office 

for U.S. Patent Nos. 6,651,099; 6,665,725; 6,771,646; 6,839,751; and 6,954,789 

(the “Challenged Patents”). 

2. I have been retained on behalf of Juniper Networks, Inc. and Palo Alto Net-

works, Inc. to offer technical opinions with respect to the Challenged Patents and 

prior art cited herein.  

A. Professional Background 

3. I am a Full Professor of Computer Science at the University of Minnesota, 

where I lead the Distributed Computing Systems Group. I received my B.S. in Ap-

plied Mathematics and Computer Science from Carnegie-Mellon, and my M.S. and 

Ph.D. in Computer Science from the University of Virginia. My curriculum vitae is 

attached as Exhibit 1007. 

4. For my Ph.D. thesis, I developed the first automated scheduling system for 

parallel and distributed applications across heterogeneous local and wide-area net-

works. I thereafter worked as a software engineer for five years in the area of dis-

tributed systems.  

5. In 1995, I returned to academia and began my career as a professor. My re-

EX 1006 Page 15



  

 2 

search has been funded by NASA, the National Science Foundation, the Depart-

ment of Energy, and the Air Force, and has included the following projects related 

to the subject matter of the Challenged Patents (i.e., network traffic monitoring and 

processing, and real-time systems): 

• National Science Foundation, “Scaling the IoT with Constellation”; 

• National Science Foundation, “Location, location, location (L3): Support 

for Geo-Centric Applications”; 

• National Science Foundation, “One Thousand Points of Light: Accelerat-

ing Data-Intensive Applications By Proxy”; 

• National Science Foundation, “A Data Mining and Exploration Middle-

ware for Grid and Distributed Computing”; 

• National Science Foundation, “Toward Community Services: Putting 

Parallel Network Services On-line”; 

• National Science Foundation, “Resource Management for Parallel and 

Distributed Systems”; and 

• Air Force Office of Scientific Research, “Telecommunication Networks 

for Mobile and Distributed Computing and Communications.” 

6. I have published over 100 peer-reviewed technical articles, including some 

awarded or nominated for Best Paper at highly competitive international confer-

ences. Many of my published papers relate to the subject matter of the Challenged 

Patents, including this small sample (and many more listed on my CV): 

• “Rethinking Adaptability in Wide-Area Stream Processing Systems,” 

Albert Jonathan, Abhishek Chandra, and Jon Weissman, 

EX 1006 Page 16



  

 3 

10th USENIX Workshop on Hot Topics in Cloud Computing; 

• “Nebula: Distributed Edge Cloud for Data Intensive Computing,” 

Albert Jonathan, Mathew Ryden, Kwangsung Oh, Abhishek Chandra, 

and Jon Weissman, IEEE Transactions on Parallel and Distributed Sys-

tems; 

• “TripS: Automated Multi-tiered Data Placement in a Geo-distributed 

Cloud Environment,” Kwangsung Oh, Abhishek Chandra, and Jon 

Weissman, 10th ACM International Systems and Storage Conference; 

• “Redefining Data Locality for Cross-Data Center Storage,” 

Kwangsung Oh, Ajaykrishna Raghavan, Abhishek Chandra, and Jon 

Weissman, The 2nd International Workshop on Software-Defined Eco-

systems; 

• “Passive Network Performance Estimation for Large-scale, Data-Inten-

sive Computing,” Jinoh Kim, Abhishek Chandra, and Jon B. Weissman, 

IEEE Transactions on Parallel and Distributed Systems; 

• “DDDAS/ITR: A Data Mining and Exploration Middleware for Grid and 

Distributed Computing,” Jon B. Weissman, Vipin Kumar, Varun Chan-

dola, Eric Eilertson, Levent Ertoz, Gyorgy Simon, Seonho Kim, and 

Jinoh Kim, Workshop on Dynamic Data Driven Application Systems – 

DDDAS; 

• “Scheduling Parallel Applications in Distributed Networks,” Jon B. 

Weissman and Xin Zhao, Journal of Cluster Computing; 

• “Adaptive Resource Scheduling for Network Services,” Byoung-Dai Lee 

and Jon B. Weissman, IEEE 3rd International Workshop on Grid Com-

puting;  

• “Eliminating the Middle-Man: Peer-to-Peer Dataflow,” Adam Barker, 

EX 1006 Page 17



  

 4 

Jon B. Weissman, and Jano van Hemert, 17th IEEE International Sympo-

sium on High Performance Distributed Computing; and 

• “Optimizing Remote File Access for Parallel and Distributed Network 

Applications,” Jon B. Weissman, Mike Gingras, and Mahesh Marina, 

Journal of Parallel and Distributed Computing. 

7. Additionally, I have served on the boards of several flagship journals, in-

cluding IEEE Transactions on Parallel and Distributed Systems and IEEE Transac-

tions on Computers. I am a member and former steering committee chair of the 

ACM International Symposium on High Performance Parallel and Distributed Sys-

tems, the flagship conference in my area. And I serve as an investigator for both 

the Center for Research in Intelligent Storage (sponsored by the National Science 

Foundation) and the Digital Technology Center. 

8. I am being compensated at my standard consulting rate for my work on this 

declaration. My compensation is not dependent on and I have no financial interest 

in the outcome of these IPRs or any related litigation. 

B. Documents and Information Considered 

9. I have reviewed each of the Challenged Patents, including the claims of the 

patent in view of the specification. In addition, I have reviewed the Challenged Pa-

tents’ prosecution histories, the prior art discussed herein, and the remaining exhib-

its listed herein, as well as additional records from previous IPRs relating to the 

Challenged Patents. For convenience, portions of my declaration are based on the 

EX 1006 Page 18



  

 5 

declaration of Dr. Kevin Jeffay, submitted with IPR materials filed by Nokia.1 

C. Summary of Opinions 

10. In my opinion, claims 1, 2, 4, and 5 of the ’099 Patent are rendered obvious 

by the prior art. In the remainder of this declaration, I demonstrate that:  

• Riddle in view of Ferdinand renders obvious claims 1 and 2 of the ’099 

Patent; 

• Riddle in view of Ferdinand and further in view of Baker renders obvious 

claims 4 and 5 of the ’099 Patent; 

• Riddle in view of Ferdinand and further in view of Yu renders obvious 

claims 1 and 2 of the ’099 Patent;  

• Riddle in view of Ferdinand and Baker and further in view of Yu renders 

obvious claims 4 and 5 of the ’099 Patent; 

• Riddle in view of Ferdinand and further in view of RFC1945 renders ob-

vious claims 1 and 2 of the ’099 Patent; and 

• Riddle in view of Ferdinand and Baker and further in view of RFC1945 

renders obvious claims 4 and 5 of the ’099 Patent. 

11. In my opinion, claims 10, 12, 13, 16, and 17 of the ’725 Patent are rendered 

obvious by the prior art. In the remainder of this declaration, I demonstrate that:  

• Riddle in view of Baker renders obvious claims 10, 12, 13, 16, and 17 of 

the ’725 Patent; 

• Riddle in view of Baker and further in view of Yu renders obvious claims 

10, 12, 13, 16, and 17 of the ’725 Patent; and 

• Riddle in view of Baker and further in view of RFC1945 renders obvious 

                                                        

1 Ex. 1065. 

EX 1006 Page 19



  

 6 

claims 10, 12, 13, 16, and 17 of the ’725 Patent. 

12. In my opinion, claims 1, 2, 3, 7, 16, and 18 of the ’646 Patent are rendered 

obvious by the prior art. In the remainder of this declaration, I demonstrate that:  

• Riddle in view of Ferdinand and Wakeman renders obvious claims 1-3, 

7, 16, and 18 of the ’646 Patent; 

• Riddle in view of Ferdinand and Wakeman and further in view of Yu 

renders obvious claims 1-3, 7, 16, and 18 of the ’646 Patent 

• Riddle in view of Ferdinand and Wakeman and further in view of 

RFC1945 renders obvious claims 1-3, 7, 16, and 18 of the ’646 Patent. 

13. In my opinion, claims 1, 2, 5, 10, 14, 15, and 17 of the ’751 Patent are ren-

dered obvious by the prior art. In the remainder of this declaration, I demonstrate 

that:  

• Riddle in view of Ferdinand renders obvious claims 1, 2, 5, 10, 14, 15, 

and 17 of the ’751 Patent; 

• Riddle in view of Ferdinand and further in view of Yu renders obvious 

claims 1, 2, 5, 10, 14, 15, and 17 of the ’751 Patent; and 

• Riddle in view of Ferdinand and further in view of RFC1945 renders ob-

vious claims 1, 2, 5, 10, 14, 15, and 17 of the ’751 Patent. 

14. In my opinion, claims 1, 2, 13-17, 19, 20, 31, 33, 34, 42, 44, 48, and 49 of 

the ’789 Patent are rendered obvious by the prior art. In the remainder of this dec-

laration, I demonstrate that:  

• Riddle in view of Ferdinand renders obvious claims 1, 2, 13-17, 19, 20, 

and 42 of the ’789 Patent; 

EX 1006 Page 20



  

 7 

• Riddle in view of Ferdinand and further in view of Yu renders obvious 

claims 1, 2, 13-17, 19, 20, and 42 of the ’789 Patent; 

• Riddle in view of Ferdinand and further in view of RFC1945 renders ob-

vious claims 1, 2, 13-17, 19, 20, and 42 of the ’789 Patent; 

• Riddle in view of Ferdinand and further in view of Baker renders obvious 

claim 31 of the ’789 Patent; 

• Riddle in view of Ferdinand and Baker and further in view of Yu renders 

obvious claim 31 of the ’789 Patent; 

• Riddle in view of Ferdinand and Baker and further in view of RFC1945 

renders obvious claim 31 of the ’789 Patent; 

• Riddle in view of Ferdinand and further in view of Wakeman renders ob-

vious claims 33 and 34 of the ’789 Patent; 

• Riddle in view of Ferdinand and Wakeman and further in view of Yu 

renders obvious claims 33 and 34 of the ’789 Patent; 

• Riddle in view of Ferdinand and Wakeman and further in view of 

RFC1945 renders obvious claims 33 and 34 of the ’789 Patent;  

• Riddle in view of Ferdinand and further in view of Hasani renders obvi-

ous claims 44, 48, and 49 of the ’789 Patent; 

• Riddle in view of Ferdinand and Hasani and further in view of Yu ren-

ders obvious claims 44, 48, and 49 of the ’789 Patent; and 

• Riddle in view of Ferdinand and Hasani and further in view of RFC1945 

renders obvious claims 44, 48, and 49 of the ’789 Patent.2 

                                                        

2 Throughout my declaration, “the Challenged Claims” refers to all the analyzed 

claims in the ’099, ’725, ’646, ’751, and ’789 Patents. After review of the docu-

ments and materials cited herein, I have not identified any evidence of secondary 

EX 1006 Page 21



  

 8 

15. In this declaration, I also offer my opinion on how a person of ordinary skill 

in the art (“POSITA”) would have interpreted certain claim terms recited in the 

Challenged Patents at the time of the purported invention. I understand that the ear-

liest possible priority date for the Challenged Patents is June 30, 1999.  

II. LEGAL STANDARDS TO BE APPLIED 

16. Counsel has advised me of legal concepts that are relevant to IPRs, and I 

have applied these concepts in reaching my opinions in this declaration.  

Claim Language 

17. I understand that, during IPR, patent claim terms are given their ordinary 

and customary meaning to a POSITA in view of the specification and prosecution 

history, unless those sources show an intent to depart from such meaning. 

U.S. Patent’s Priority to an Earlier Filing Date 

18. I understand that a U.S. patent has an effective prior art date under pre-AIA 

35 U.S.C. §102(e) based on the filing date of an earlier-filed patent application if 

the patent’s relevant subject matter is described in the earlier-filed application, and 

at least one of the patent’s claims is supported by the written description of the ear-

lier-filed application in compliance with pre-AIA 35 U.S.C. §112, first paragraph. 

                                                        

considerations supporting non-obviousness of the Challenged Claims that would 

change my opinion that the Challenged Claims are obvious over the prior art. If 

and when presented, I will address any evidence and arguments that Patent Owner 

may raise regarding secondary considerations supporting non-obviousness. 

EX 1006 Page 22



  

 9 

Obviousness  

19. I understand that prior art references can render a patent claim obvious to a 

POSITA if the differences between the claimed subject matter and the prior art are 

such that the claimed subject matter would have been obvious at the time of the 

claimed invention. In analyzing obviousness, it is important to consider the scope 

of the claims, the level of skill in the relevant art, the scope and content of the prior 

art, the differences between the prior art and the claims, and any secondary consid-

erations of non-obviousness (such as commercial success, long-felt but unsolved 

needs, failure of others, unexpected results, copying, skepticism of experts, indus-

try praise, significant effort or high cost to develop, near simultaneous invention, 

industry acceptance via licensing), if present. 

20. I further understand that, when the claimed subject matter combines preex-

isting elements to yield no more than what one would have expected from such an 

arrangement, it is obvious. So in assessing obviousness, one must consider whether 

the claimed improvement is more than the predictable use of prior art elements ac-

cording to their established functions. While a motivation to combine or modify 

the prior art must exist, and an obviousness conclusion cannot rely on hindsight, 

there need not be a precise teaching in the prior art directed to the specific claimed 

subject matter. Rather, one can take account of the inferences and creative steps 

EX 1006 Page 23



  

 10

that a POSITA—a person of ordinary creativity, not an automaton—would em-

ploy. Additionally, neither the motivation nor the avowed purpose of the inven-

tor(s) controls this inquiry, since any need or problem known in the field at the 

time of the invention can provide a reason for combining elements. And when 

there is a reason to solve a problem with a finite number of predictable solutions, a 

POSITA has reason to pursue the known options within his or her technical grasp. 

For example, I understand that it is important to consider whether there existed at 

the time of the invention a known problem for which there was an obvious solu-

tion, as well as design incentives and other market forces that prompt variations in 

the same or other fields. 

III. SUMMARY OF THE CHALLENGED PATENTS 

A. Technology Overview 

1. Network Protocols and Protocol Layering 

21. When one computer communicates with another computer over a network, 

hardware and software on the source computer will create and transmit a message 

as a series of one or more data units to the destination computer. Network devices 

(including the source and destination computers) process these data units according 

to rules that facilitate communications over the network. These rules, grouped to-

gether, define a protocol for an aspect of the communication. To communicate 

EX 1006 Page 24



  

 11

messages between a source and a destination computer, multiple protocols, operat-

ing in concert, are required. 

22. These protocols are organized hierarchically as a series of hardware and 

software “layers” and are colloquially referred to as a “protocol stack.” The layers 

are numbered from the lowest, most basic or primitive protocol layer, to the high-

est, most functional protocol layer. Each layer is responsible for providing a dis-

crete communication service that builds upon the service(s) provided by the lower 

layer(s) to provide a more functional, full-featured communication service.  

23. Historically, the two most dominant models of protocol layers are the OSI 

(Open Systems Interconnect) model (sometimes referred to as the ISO model) and 

the TCP/IP protocol suite. As illustrated below in Figure 1, the OSI model defines 

a seven-layer protocol stack.3 Whereas the TCP/IP protocol suite defines a simpler 

five-layer protocol stack, which was the predominant protocol stack in the net-

working and distributed systems communities by the mid-1990’s. 

                                                        

3 In Sections III’s technology and patent overviews, I include original figures (such 

as Figure 1) that I directed and oversaw the creation of. 

EX 1006 Page 25



  

 12

 

24. In both models, the lowest layer, layer-1 or L1, is the physical layer. The 

physical-layer protocol is typically implemented exclusively in hardware and is 

concerned with the low-level details of transmitting binary data (1s and 0s) over a 

physical medium (fiber-optic cables, copper twisted-pair wiring, radio-frequency 

spectrum, etc.). Different physical media require different physical-layer protocols 

because the process of transmitting binary data on each medium is different. 

25. The next layer, layer-2 or L2, is the data-link layer, or simply the link layer. 

The data-link layer defines a transmission structure, typically called a frame, and is 

responsible for transmitting frames between computers on the same network. The 

most common example of a data-link layer protocol is the Ethernet protocol. The 

data-link layer uses the services of a physical-layer protocol to transmit the binary 

data of a frame on the network’s physical medium to a destination on the network. 

26. A frame consists of a header and a payload. The payload is the actual data 

EX 1006 Page 26



  

 13

being communicated across the network and may have additional, internal struc-

ture as described below. The header contains, among other things, a link layer ad-

dress of the computer generating the frame (a source address) and a link layer ad-

dress of the destination computer of the frame (a destination address). The link 

layer addresses in the header of a frame (shown below as the “Source Address” 

and “Destination Address” of Figure 2) are often referred to as hardware addresses, 

or Media Access Control (“MAC”) addresses. 

 

27. Data-link-layer protocols transmit frames between two computers on the 

same local-area network (“LAN”). LANs are created by a type of interconnection 

device called a switch, bridge, or access point, which individual computers connect 

to via some physical medium (e.g., the ubiquitous blue Ethernet cable). The typical 

EX 1006 Page 27



  

 14

interconnection device is capable of interconnecting a large number of computers.  

28. When a computer generates and transmits a data-link-layer frame, the frame 

is received by the interconnection device. The device examines the destination 

data-link layer address in the frame to determine the destination of the frame. 

Based on the data-link layer destination address carried in the frame, the frame is 

forwarded to the appropriate destination. “Forwarding” refers to the process used 

by a data-link layer network interconnection device to transmit a frame to (or to-

wards) its ultimate destination. 

29. LANs are limited in terms of both the number of computers that can be on a 

LAN as well as the geographic area served by the LAN. The physical media used 

to build the LAN and the physical-layer protocol used by the LAN constrain the 

size of the LAN. The type of interconnection device used to realize the LAN may 

also constrain the size of the LAN.  

30. LANs can be interconnected via a type of interconnection device called a 

router. Normally, two computers on two LANs interconnected via a router cannot 

exchange messages with each other using only a data-link-layer protocol because 

the addresses in the data-link-layer frame’s header are only known on the LAN on 

which the frame was generated. That is, a computer on one LAN cannot transmit 

data to a computer on another LAN using just a data-link-layer protocol because 

EX 1006 Page 28



  

 15

the source computer cannot address a frame to the destination computer. To trans-

mit data between two computers on different LANs in an internetwork, a higher-

layer protocol is required. 

31. The next layer in the protocol stack, layer-3 or L3, is the network layer. Net-

work-layer protocols solve the problem of communication between LANs by de-

fining a new transmission structure, called a datagram, and by defining a new ad-

dressing scheme that enables computers to address other computers anywhere in a 

network of interconnected LANs. Like a frame, a datagram consists of a header 

and a payload. The datagram header contains a new type of address, a network-

layer address, for routing datagrams between LANs. Thus, “routing” refers to the 

process of using network-layer destination addresses at an interconnection device 

to transmit datagrams and determine the networks onto which the datagrams 

should be transmitted. The most common network-layer protocol today is the In-

ternet Protocol (IP), in which case network-layer addresses are called IP addresses. 

Figure 3 provides an illustration of the IP datagram structure and components. 

EX 1006 Page 29



  

 16

 

32. Network-layer protocols can deliver datagrams between two computers on 

different LANs. But as datagrams transit those networks between source and desti-

nation, they are subject to a number of pathologies that can hinder communication 

or even make it impossible. These pathologies include the deletion, loss, reorder-

ing, or creation of duplicate datagrams. 

33. Protocols in the next layer in the protocol stack—the layer-4, L4, or 

transport-layer protocols—build upon network-layer protocols to provide a com-

munication service that ameliorates some or all of these pathologies. For example, 

in networks, such as the Internet, that use the IP network-layer protocol, the most 

common transport-layer protocol is the Transmission Control Protocol (“TCP”). 

The TCP transport-layer protocol provides, among other things, a reliable, in-order 

EX 1006 Page 30



  

 17

data delivery service that monitors transmissions to detect when datagrams have 

been lost and retransmits copies until they have been successfully received. 

34. As with other layers, the transport layer defines a new transmission structure 

called a segment that is comprised of a new header and payload. In the case of 

TCP, the header includes control information such as a sequence number for the 

segment. The sequence number is used by the destination computer to detect and 

reorder out-of-order segments, and to detect lost segments. In the header, the 

source computer corresponds to the source IP address carrying the TCP segment. 

And in the header, the destination computer corresponds to the destination IP ad-

dress. Figure 4 illustrates the structure and components of a TCP segment. 

 

EX 1006 Page 31



  

 18

35. The TCP header also contains port numbers that act like addresses identify-

ing which underlying communication protocols, such as HTTP, Telnet, and SMTP, 

are associated with the transmitted datagram. In a TCP segment, the header con-

tains two port numbers: a source port number and a destination port number. The 

source port number identifies which underlying communication protocol generated 

the datagram on the source computer. And the destination port number identifies 

which communication protocol should be associated with the datagram on the des-

tination computer.  

36. Port numbers can range from 0 to 65,535. But to make it easier to develop 

clients and servers for various protocols, the Internet Assigned Numbers Authority 

(IANA) has assigned port numbers between 0 and 1,023 for use by well-known 

protocols. For example, port 80 is reserved for the HTTP (web) protocol, so by de-

fault all web traffic is transmitted to web servers in TCP segments with port 80 as 

the destination port number. Similarly, port 25 is reserved for the SMTP (email) 

protocol, port 53 for the Domain Name System protocol (discussed below), port 21 

for the FTP protocol, port 22 for the SSH protocol, and port 443 for the HTTPS 

protocol. By convention, programmers only use reserved port numbers for commu-

nications those numbers are associated with. 

37. Combined, the IP source address, IP destination address, source port num-

ber, destination port number, along with an identifier of the transport protocol in 

EX 1006 Page 32



  

 19

use (e.g., TCP), uniquely identify all the datagrams exchanged during a communi-

cation session between a source computer (e.g., a client) and a destination com-

puter (e.g., a server). This 5-tuple, called a flow id, has been used to identify data-

grams within a single end-to-end (original sender to ultimate destination) commu-

nication session since the creation of the Internet. All five components of the flow 

id are required to determine the communication session to which a datagram be-

longs. 

38. The next and highest layer in the TCP/IP protocol suite model is the applica-

tion layer. Application-layer protocols also define a new transmission structure, 

simply called a message. The message is typically comprised of a new header and 

payload. The contents of the header vary by application-layer protocol but typi-

cally include addresses and control information relevant to the application (and 

hence are application protocol-specific). 

39. One common application-layer protocol is the Hypertext Transfer Protocol 

(“HTTP”) that is used to request and receive data from web servers. In the case of 

HTTP, the header contains an indication of the content that is being requested (the 

“address” of the content on the server) as well as other control information. The 

body of an HTTP message contains data such as the data for a requested web page. 

Two exemplary HTTP messages are (a) the HTTP request message sent from a cli-

ent such as a web browser to a server to request content from that server, and (b) 

EX 1006 Page 33



  

 20

the HTTP response message sent from a web server back to a client in response to 

previous request. 

40. The seven-layer OSI reference model illustrated in Figure 1 has two addi-

tional layers before the application layer, the layer-5 session layer and the layer-6 

presentation layer. The session layer controls the connections between computers, 

and the presentation layer establishes context between application-layer entities. 

The TCP/IP protocol suite does not include the session and presentation layers. In-

stead, the TCP/IP protocol suite assumes that the services associated with the ses-

sion and presentation layers are built into the application if they are needed. 

2. Network Packets 

41. Layers two and higher within the protocol stack each defines a unit of data 

transmission and its structure. The foregoing has purposefully used different terms 

for the transmission units in the protocol stack in the TCP/IP protocol suite model: 

data-link layer transmission units are frames, network-layer units are datagrams, 

transport-layer units are segments, and higher-layer units are messages. These are 

all terms of art that networking professionals used at the time of the invention of 

the Challenged Patents when trying to be precise in their descriptions of network 

operations, as illustrated in Figure 5 below. 

EX 1006 Page 34



  

 21

 
 

42. Nonetheless, networking professionals were (and are) often less precise and 

frequently used the term “packet” to refer generically to transmission units within 

the protocol stack. Thus, while it could be confusing, it was not uncommon for a 

POSITA to refer to link-layer transmission units as “Ethernet packets” instead of 

the more precise “Ethernet frames,” network-layer transmission units as “IP pack-

ets” instead of the more precise “IP datagrams,” etc. Given this informal use of 

“packet,” one must always consider the word’s context to understand exactly 

which transmission unit is being referred to. 

3. Monitoring Network Traffic 

43. For the technology involved in the Challenged Patents, IP datagrams are in 

one sense “received” only by the computer associated with the destination IP ad-

dress in the datagram’s header. However, in order to deliver the IP datagram to its 

EX 1006 Page 35



  

 22

destination, as described above, various data-link-layer frames containing the IP 

datagram will be received by intermediate devices such as routers, where the data-

gram will be examined and forwarded in a new data-link-layer frame to either the 

final destination or to another router along the path towards it. In the latter case, the 

network-layer IP datagram is not addressed to the router, but the router “receives” 

the IP datagram because the data-link-layer frame containing the datagram is ad-

dressed to the router. 

44. Beyond routers, it is possible for other devices in the network to receive IP 

datagrams, as well as data-link-layer frames, that are not addressed to the device. 

That is, as a data-link-layer frame transits a LAN, a device on the LAN can receive 

the frame even though the frame carries a different data-link-layer destination ad-

dress. This is possible because, for example, certain data-link-layer protocols (e.g., 

Ethernet) allow a computer to operate its network interface in so-called “promiscu-

ous”-mode wherein the computer can receive copies of any and all frames that 

transit its interface. The computer can then do anything with the frame it desires, 

including parse them to learn which higher-layer protocols (if any) are being used 

and even modify any data field of any determined higher-layer protocol. 

45. A common application of promiscuous-mode reception is for network moni-

toring. A device generically known as a network monitor is placed in a network 

such that it can “see” all network traffic on a network link. The device intercepts 

EX 1006 Page 36



  

 23

frames and examines them to determine the source computer, the communication 

session to which the frame belongs, and/or the application generating the frame. To 

determine such information, the monitor typically needs knowledge of various pro-

tocols above the data-link-layer protocol. The monitor then can maintain various 

statistics concerning the computer/session/application to which frames belong such 

as the total number of bytes or packets transmitted. 

46. An in-line monitoring device is often referred to as a “man-in-the-middle” 

device. Depending on the operations it performs on intercepted frames, its presence 

may or may not be discernable to the original source, the next receiver, or the ulti-

mate destination. If its presence is not discernable to sources or receivers, the man-

in-the-middle is said to be “transparent.” An important aspect of ensuring that a 

monitoring device is transparent is for the device to be able to intercept and pro-

cess frames in real-time. Ideally, this means that in all cases the device can inter-

cept and process a frame before the next frame arrives. 

4. Control and Data Transmission in Network Protocols 

47. Most application-layer protocols need to communicate both application data 

and control data. The former typically relates to data the user has requested or that 

is required for the user to take an action, whereas the latter relates to data required 

for the application to perform its function. Protocols such as HTTP transmit appli-

cation and control data on the same network connection between the client and 

EX 1006 Page 37



  

 24

server with the control data in the header of an application-layer message (e.g., an 

“HTTP GET” message) and the application data in the body or payload. 

48. But for a variety of reasons, other application-layer protocols establish sepa-

rate network connections for transmission of application data and control data. The 

best-known example of such a protocol is the file transfer protocol FTP. The FTP 

protocol was standardized in 1980.4 In the FTP protocol, a client will establish at 

least two connections to a server: one for communicating commands to control the 

file transfer and to send data about the state of the transfer, and the second to trans-

fer the actual file.5 An example of the two disjointed TCP connections used for 

FTP is shown below with one TCP connection on port 21 for control and one TCP 

connection on port 20 for transport (data). 

 

49. Certain transport protocols may also use separate connections for control 

and data transmission. The Real-Time Transport Protocol (“RTP”) is a transport 

                                                        

4 Ex. 1037 (RFC765 – File Transfer Protocol). 
5 Ex. 1037 (RFC765 – File Transfer Protocol), 6-7. 

EX 1006 Page 38



  

 25

protocol (commonly implemented as an application-layer protocol) used to carry 

real-time data such as audio and video data in multimedia applications such as a 

video or audio conference.6 In the case of RTP, a separate protocol called RTCP 

(“Real-Time Control Protocol”) is used to convey a variety of control and status in-

formation between conference participants.7 Since these protocols may convey in-

formation relating to the same application, RTP defines a session identifier that can 

be used to associate RTP flows and RTCP flows.8 For certain uses of RTP, multi-

ple RTCP flows may exist, in which case the session identifier enables a receiver 

(or a network monitor) to understand which control flows relate to which data 

flows. Notably, the RTP specification (discussed below) defines devices that may 

exist in the network that are neither the source nor final destination for multimedia 

data but exist to monitor the performance of RTP flows (by receiving and pro-

cessing the appropriate RTCP flows). 

50. Strictly speaking, RTCP is not tied to RTP and can be used with other proto-

cols that seek to transmit data in real-time, such as the Real-Time Streaming Proto-

col (“RTSP”) discussed in more detail below.9 RTCP can be used with RTSP to 

                                                        

6 RFC 1889 - RTP: A Transport Protocol for Real-Time Applications 

(“RFC1889”), 1. 
7 RFC1889, 3-4. 
8 RFC1889, 8. 
9 RFC 2326 - Real Time Streaming Protocol (RTSP) (“RFC2326”). 

EX 1006 Page 39



  

 26

create a streaming session where RTSP carries the media data and RTCP carries 

the control data for the session.10 RTSP, like RTP, enables a receiver (or network 

monitor) to associate an RTCP flow with an RTSP flow. An example of RTSP, 

RTP, and RTCP working together is shown below.11 

 

B. The ’099 Patent Overview 

51. The ’099 Patent discloses a packet monitor for examining packets passing 

through a connection point on a computer network to determine whether a packet 

is of an existing flow.12  

52. According to the ’099 Patent, some prior-art packet monitors classified 

packets into “connection flows,” while the patent seeks to classify packets into 

“conversational flows.” In the ’099 Patent’s words: 

The term “connection flow” is commonly used to describe all the packets 

involved with a single connection. A conversational flow, on the other 

                                                        

10 RFC2326, 1. 
11 RFC2326, 12-13. 
12 ’099 Patent, Abstract. 

EX 1006 Page 40



  

 27

hand, is the sequence of packets that are exchanged in any direction as a 

result of an activity—for instance, the running of an application on a server 

as requested by a client.13 

53. All the Challenged Patents, including the ’099 Patent, incorporate by refer-

ence Provisional Patent Application 60/141,903 (“the ’903 Provisional”), which 

disclosed how “PointCast” traffic created a conversational flow.14 PointCast was a 

screensaver program that would retrieve news, sports scores, stock quotes, 

weather, horoscopes, and other information from different sources on the internet 

to display when the computer was idle. The below exemplary figure illustrates 

PointCast running on a client computer and connecting to a Reuters server, a Time-

Warner Server, and a Boston Globe server to retrieve information to display on the 

screensaver. 

                                                        

13 ’099 Patent at 2:34–40.  
14 E.g., ’099 Patent, 1:6-11. 

EX 1006 Page 41



  

 28

 

54. Thus, as Patentee’s ’903 Provisional put it, PointCast would open multiple 

conversations that “packet-by-packet … might look like separate flows to prior art 

monitors. However, each of these connections is merely a sub-flow under the 

PointCast master flow.”15 

55. And according to the ’099 Patent, “[w]hat distinguishes [its claimed] inven-

tion from prior art network monitors is that it has the ability to recognize disjointed 

flows as belonging to the same conversational flow.”16  

56. The ’099 Patent’s Figure 3, “a functional block diagram of a process embod-

iment of the present invention,” shows a network packet monitor 300 that includes 

parser 301 (blue), flow-entry database 324 (yellow), and analyzer 303 (green) with 

                                                        

15 Ex. 1016 (Provisional Patent Application No. 60/141,903 (“’903 Provisional”)), 

7:16-25. 
16 ’099 Patent, 3:48–51. 

EX 1006 Page 42



  

 29

lookup engine 314 (purple), state processor 328 (red), and flow-entry updater 322 

(orange), as annotated below:17  

 

57. When monitoring packets, the monitor receives a packet 302 and deter-

mines whether the packet is part of a new flow or part of an existing flow rec-

orded in flow-entry database 324.18 To do so, the monitor’s parser 301 parses 

and extracts portions of packet 302 to generate an identifying “signature” that is 

used to recognize the packet’s flow.19  

58. The monitor’s compiler 310 sends protocol-specific information, such as 

                                                        

17 ’099 Patent, 11:43–45, 21:24-25:37. 
18 ’099 Patent, 13:54-61, 14:14-18. 
19 ’099 Patent, 11:59-65; ’646 Patent, 6:47-54; 11:59-62; 12:7-9. 

EX 1006 Page 43



  

 30

packet sender and recipient, to parser 301 to identify the packet’s flow.20 Using 

the protocol-specific information, parser’s pattern-structures-and-extraction-op-

erations database 308 provides the packet’s parsing-pattern-structures.21 Based 

on the parsing-pattern-structures, parser 301 parses packet 302 via pattern 

recognition process 304 to determine the protocol types and associated headers 

for each protocol layer that exists in packet 302.22  

59. The parser’s extraction process 306 extracts characteristic information 

from packet 302 using extraction masks that depend on the protocols used in 

the packet.23 Pattern-structures-and-extraction-operations database 308 supplies 

the extraction masks.24 At block 312, the parser processes the packet’s ex-

tracted characteristic information to build a unique flow signature (also called a 

“key”) for the packet’s flow.25 The flow signature includes a hash of the signa-

ture.26 The monitor records this information, which includes the signature, the 

hash, and the packet itself, as a parser record.27  

                                                        

20 ’099 Patent, 11:66–12:8. 
21 ’099 Patent, 12:12–22, 12:65–13:2. 
22 ’099 Patent, 12:12–22, 12:65–13:2. 
23 ’099 Patent, 12:12–22, 13:14–25. 
24 ’099 Patent, 12:12–22, 13:14–25. 
25 ’099 Patent, 13:20-23, Fig. 3. 
26 ’099 Patent, 13:30–36. 
27 ’099 Patent, 13:30-47. 

EX 1006 Page 44



  

 31

60. Then, the monitor’s analyzer 303 examines the parser record. The ana-

lyzer’s lookup engine 314 determines whether the examined packet belongs to 

a new flow or a known flow by comparing the parser record to flow-entries 

stored in database 324.28 Flow-entry database 324 “stores flow-entries that in-

clude the unique flow-signature, state information, and extracted information 

from the packet for updating flows,” and statistics about flows.29 If there is no 

flow-entry matching the signature in the parser record, then protocol-and-state-

identification process 318 determines the packet’s protocols and where in the 

state sequence for a flow for the protocol the packet belongs, by referencing da-

tabase 326 of state patterns and processes.30 If the packet is found to have a 

matching flow-entry in database 324, then process 320 determines if state pro-

cessor 328 needs to further classify the flow-entry’s signature.31 If there is no 

need for further classification, then process 322 updates the flow-entry in flow-

entry database 324.32 If state processing is needed, then state processor 328 per-

forms state operations according to state instructions from state-pattern-and-

processes database 326.33  

                                                        

28 ’099 Patent, 13:54–61, 14:3–13. 
29 ’099 Patent, 14:14–18. 
30 ’099 Patent, 14:39–46. 
31 ’099 Patent, 14:49–53. 
32 ’099 Patent, 14:53–54. 
33 ’099 Patent, 14:58–62. 

EX 1006 Page 45



  

 32

61. State processor 328 analyzes both new and existing flows in order to ana-

lyze all levels of the protocol stack, ultimately classifying flows by application 

(level 7 in the OSI model).34 State processor 328 processes from state-to-state 

based on predefined state transition rules and state operations specified in state-

pattern-and-processes database 326.35  

62. By maintaining a state of flows, monitor 300 provides for a “single packet 

protocol recognition of flows,” and a “multiple-packet recognition of flows.”36 

The analyzer’s process 334 finalizes the classification of the flow.37  

C. The ’725 Patent Overview 

63. The ’725 Patent discloses a method of performing protocol-specific 

operations on a packet passing through a connection point on a computer net-

work.38 The ’725 Patent incorporates by reference U.S. Patent Application No. 

09/608,237, which issued as the ’099 Patent.39 The ’725 Patent also includes the 

same Figure 3 as the ’099 Patent and similarly discloses a network packet monitor 

that includes a parser 301, a flow-entry database 324, and an analyzer 303.40 

                                                        

34 ’099 Patent, 14:63–66. 
35 ’099 Patent, 14:66–15:1. 
36 ’099 Patent, 15:18–22. 
37 ’099 Patent, 15:39– 41. 
38 ’725 Patent, 3:61-4:21. 
39 ’725 Patent, 2:21–30. 
40 ’725 Patent, 9:4-8, 10:58-65, Fig. 3. 

EX 1006 Page 46



  

 33

64. The ’725 Patent states that the method includes performing various steps, 

such as receiving the packet and a set of protocol descriptions for protocols that 

may be used in the packet, and performing protocol-specific operations on the 

packet based on the protocol descriptions.41 The set of protocol descriptions may 

include child protocols, information related to the location of the child protocol, 

and any protocol-specific operations to be performed on the packet for the particu-

lar protocol at a particular layer level.42 The protocol-specific operations may also 

include state processing operations.43  

65. The ’725 Patent’s Figure 4 shows an exemplary flowchart illustrating the 

process of compiling the protocol descriptions into a data structure: 

                                                        

41 ’725 Patent, Abstract, 4:63-5:12. 
42 ’725 Patent, 4:63-5:12, 41:59-65. 
43 ’725 Patent, 21:45-22:4. 

EX 1006 Page 47



  

 34

 

66. Much like the ’099 Patent, the ’725 Patent discloses that “[p]arser subsystem 

301 examines the packets using pattern recognition process 304 that parses the 

packet and determines the protocol types and associated headers for each protocol 

layer that exists in the packet 302.”44 Protocol description language (PDL) files 

336: 

[D]escribe[] both patterns and states of all protocols that … occur at 

any layer, including how to interpret header information, how to deter-

mine from the packet header information the protocols at the next layer, 

and what information to extract for the purpose of identifying a flow, 

and ultimately, applications and services.45  

                                                        

44 ’725 Patent, 9:17–20. 
45 ’725 Patent, 9:29–35. 

EX 1006 Page 48



  

 35

67. For each protocol, the respective PDL file provides the information needed 

by compiler/optimizer 310 to generate parsing/extraction database 308.46 And the 

’725 Patent specifies that database 308 tells the parser how to extract packet infor-

mation, including “one or more of what protocol-specific components of the packet 

to extract for the flow signature, how to use the components to build the flow sig-

nature, where in the packet to look for these components, where to look for any 

child protocols, and what child recognition patterns to look for.”47  

D. The ’646 Patent Overview 

68. The ’646 Patent discloses a packet monitor and method of examining 

packets passing through a connection point on a computer network.48 Like the ’099 

Patent, the ’646 Patent discloses a network packet monitor that includes a parser, a 

flow-entry database, an analyzer with a lookup engine, a state processor, and a 

flow-insertion engine.49 The ’646 Patent also includes the same Figure 3 as the 

’099 Patent, with the same or similar descriptions.50 In the ’646 Patent, the packet 

                                                        

46 ’725 Patent, 41:57–59. 
47 ’725 Patent, 41:59–65. 
48 ’646 Patent, 1:42-3:14. 
49 ’646 Patent, Abstract, 7:52-58, 9:45-52, Fig. 3.  
50 E.g., ’646 Patent, Fig. 2, 8:5–9:28, 27:66–29:61 (Parser 301 “parses the packet 

and determines the protocol types and associated headers for each protocol layer 

that exists in the packet 302,” “extracts characteristic portions (signature 

information) from the packet 302,” and “build[s] a unique flow signature (also 

called a ‘key’) for this flow.”). 

EX 1006 Page 49



  

 36

monitor further includes a packet acquisition device configured to receive packets 

passing through the connection point.51  

69. Due to the high speed at which packets pass through the computer network, 

the ’646 Patent discloses that it is advantageous to include a cache for the memory 

storing the flow-entry database:52  

One desirable property of such a cache system is a least recently used 

(LRU) replacement policy that replaces the LRU flow-entry when a cache 

replacement is needed.53  

Replacing least recently used flow-entries is preferred because it is likely 

that a packet following a recent packet will belong to the same flow.54  

70. After the monitor parses the packet, analyzer 303 determines whether the 

packet matches any of the previously-encountered flows by first looking in the 

cache of the flow-entry database 324.55 Analyzer 303 processes the packet by, for 

example, determining whether the packet belongs to an existing flow or a new, 

previously unencountered flow.56 If the latter, analyzer 303 performs state 

processing to determine whether the packet has been “fully characterized” and 

                                                        

51 ’646 Patent, 4:67-5:8. 
52 ’646 Patent, 2:37–62. 
53 ’646 Patent, 2:53–56. 
54 ’646 Patent, 2:56–58. 
55 ’646 Patent, 9:45-52. 
56 ’646 Patent, 11:51-12:34, Figs. 8, 12. 

EX 1006 Page 50



  

 37

whether the flow’s classification can be “finalized.”57 

E. The ’751 Patent Overview 

71. The ’751 Patent discloses “[a] method of and monitor apparatus for 

analyzing a flow of packets passing through a connection point on a computer 

network.”58 Like the ’099 and ’646 Patents, the ’751 Patent describes a network 

packet monitor that includes a flow-entry database and an analyzer.59 And like the 

’646 Patent, the ’751 Patent discloses a packet acquisition device configured to re-

ceive packets passing through the network’s connection point.60 

72. The ’751 Patent states that analyzer subsystem 303 processes each received 

packet to determine whether the packet matches any flow-entry in the flow-entry 

database 324, and, therefore, belongs to an existing flow.61 If so, the analyzer will 

perform state operations to update the flow-entry of the existing flow, including 

storing statistical measures kept in the flow-entry.62 If the packet does not match 

any flow-entry in the flow-entry database, the packet is part of a new flow and the 

analyzer will perform state operations for the initial state of the new flow and store 

                                                        

57 ’646 Patent, 9:45–12:34, 19:46–20:2, 30:13–36:28. 
58 ’751 Patent, Abstract. 
59 ’751 Patent. 
60 ’751 Patent. 
61 ’751 Patent, 10:56-13:44. 
62 ’751 Patent, Abstract, 4:18-26, 18:1-8. 

EX 1006 Page 51



  

 38

the new flow, including statistical measures, in the flow-entry database.63 

73. The ’751 Patent discloses that the flow-entry database 324 stores flow 

entries using a plurality of protocols and at plurality of layer levels, including 

above the network layer.64 

F. The ’789 Patent Overview 

74. The ’789 Patent discloses “[a] monitor for and a method of examining pack-

ets passing through a connection point on a computer network.”65 On its cover, the 

’789 Patent identifies that it is a continuation of the application that issued as the 

’099 Patent.  

75. Like the ’099 and ’646 Patents, the ’789 Patent discloses a network packet 

monitor that includes a parser, a flow-entry database, an analyzer with a lookup en-

gine, a state processor, and a flow-insertion engine.66 And like the ’646 and ’751 

Patents, the ’789 Patent discloses a packet acquisition device configured to receive 

packets passing through the network’s connection point.67 

76. The ’789 Patent’s Figure 11 shows an exemplary monitor configuration: 

                                                        

63 ’751 Patent, 13:11-27. 
64 ’751 Patent, 11:16-36, 21:43-46. 
65 ’789 Patent, Abstract. 
66 ’789 Patent, Abstract, 11:66-12:5, 13:60-67, Fig. 3. 
67 ’789 Patent, 9:11-20. 

EX 1006 Page 52



  

 39

 

77. Like the ’099, ’646, ’725, and ’751 Patents, the ’789 Patent discloses that the 

monitor receives a packet and determines whether the packet is part of an existing 

flow from a flow-entry database.68 For this determination, the ’789 Patent de-

scribes building a signature from portions of the packet for use to determine 

whether future packets are part of an existing flow.69 If the packet is of a new flow, 

then the monitor performs states operations indicative of an initial state that in-

                                                        

68 ’789 Patent, 13:5-54; 13:60-67. 
69 ’789 Patent, 13:5-54; 13:60-67. 

EX 1006 Page 53



  

 40

clude creating a signature and storing a new flow-entry in the flow-entry data-

base.70 If a packet is part of a known flow, then the monitor performs state opera-

tions to update the flow-entry in the flow-entry database.71 

G. Prosecution History Overview 

1. The ’099 Patent’s Prosecution History 

78. The ’099 Patent was filed on June 30, 2000, with 49 claims.72 On June 25, 

2003, the Examiner allowed claims 1-10.73 The Examiner noted that the prior art 

allegedly did not teach the claimed “state patterns/operations memory” or “state 

processor.”74 The Examiner rejected claims 11-59 under 35 U.S.C §102(e) as being 

anticipated by U.S. Patent No. 6,483,804 to Muller.75 In response to the rejection 

on July 8, 2003, the Applicants cancelled claims 11-59.76 The ’099 Patent then is-

sued November 18, 2003.77 

2. The ’725 Patent’s Prosecution History  

79. The ’725 Patent was filed on June 30, 2000, with 18 claims.78 On June 4, 

                                                        

70 ’789 Patent, 14:44-47, 15:21-23. 
71 ’789 Patent, 14:54-62. 
72 ’099 Prosecution History, 3 (Bib Data Sheet).  
73 ’099 Prosecution History, 210-211 (06/25/2003 Office Action, cover). 
74 ’099 Prosecution History, 212 (06/25/2003 Office Action, p.2). 
75 ’099 Prosecution History, 213 (06/25/2003 Office Action, p.3). 
76 ’099 Prosecution History, 584-590 (07/08/2003 Response to Office Action, pp.6-

7). 
77 ’099 Patent, cover. 
78 ’725 Prosecution History, 1 (File Wrapper Cover). 

EX 1006 Page 54



  

 41

2003, the Examiner rejected claims 1 and 16 under 35 U.S.C. §112 as indefinite 

and claims 1-3, 13-14, and 17-18 under 35 U.S.C. §102(b) as anticipated by U.S. 

Patent No. 5,860,585 to Bruell (“Bruell”).79 The Examiner indicated that claims 4-

11 and 15-16 contained allowable subject matter.80  

80. On June 13, 2003, the Applicants amended the claims based on the allowa-

ble subject matter indicated by the Examiner.81 The Applicants also argued that 

Bruell did not disclose the claimed invention.82 On June 27, 2003 the Applicants 

filed a supplemental response.83 In these responses the Applicants argued in perti-

nent part that Bruell does not disclose that “the state of a flow” being “an indica-

tion of all previous events in the flow.”84 

81. On July 1, 2003, the Examiner allowed the amended claims without provid-

ing any reasons for allowance.85 

                                                        

79 ’725 Prosecution History, 262-266 (06/04/2003 Office Action, cover). 
80 ’725 Prosecution History, 267-268 (06/04/2003 Office Action, p.4). 
81 ’725 Prosecution History, 275-277 (06/13/2003 Response to Office Action, p.2). 
82 ’725 Prosecution History, 289-292 (06/13/2003 Response to Office Action, 

p.16).  
83 ’725 Prosecution History, 293-298 (06/27/2003 Applicants’ Supplemental Re-

sponse, p.1). 
84 ’725 Prosecution History, 290-291, (06/13/2003 Response to Office Action, 

p.17), 293-298 (06/27/2003 Applicants’ Supplemental Response, p.1). 
85 ’725 Prosecution History, 316-317 (10/27/2003 Response to Rule 312 Commu-

nication, cover). 

EX 1006 Page 55



  

 42

3. The ’646 Patent’s Prosecution History 

82. On June 30, 2000, the ’646 Patent was filed with 20 claims.86 On September 

10, 2003, the Examiner rejected claims 7-11, 19, and 20 under 35 U.S.C. §102(e) 

as anticipated by U.S. Patent No. 4,458,310 to Chang (“Chang”) and claims 1 and 

2 under 35 U.S.C. §102(e) as anticipated by U.S. Patent No. 5,917,821 to Gobuyan 

(“Gobuyan”). The Examiner also rejected claims 3-6 under 35 U.S.C. §103(a) as 

being obvious over Gobuyan in view of Chang and claims 12-18 as being obvious 

over Chang in view of U.S. Patent No. 6,003,123 to Carter.87  

83. On February 10, 2004, the Applicants amended claim 1 to include “a con-

versational flow being an exchange of one or more packets in any direction as a re-

sult of an activity corresponding to the flow” and “a state processor … being to 

perform any state operations specified for the state of the flow ….”88 The Appli-

cants also added new claims 21-33.89 The Applicants distinguished the claimed in-

vention by arguing that Gobuyan did not disclose a “cache subsystem” or a “state 

processor.”90 The Applicants further argued: 

The present invention includes a process that recognizes a conversational 

flow. Gobuyan does not recognize a conversational flow, but instead looks 

                                                        

86 ’646 Prosecution History, 1 (File Wrapper Cover). 
87 ’646 Prosecution History, 190-203 (09/10/2003 Office Action, cover).  
88 ’646 Prosecution History, 342 (02/10/2004 Response to Office Action, p.2). 
89 ’646 Prosecution History, 344-346 (02/10/2004 Response to Office Action, p.4). 
90 ’646 Prosecution History, 348 (02/10/2004 Response to Office Action, cover). 

EX 1006 Page 56



  

 43

up only each packet’s destination address and source address. A conversa-

tional flow is not identified simply by the stations that are involved in a 

communication, but rather by the nature of the communication. E.g., the 

application program being invoked. Thus, even for the same two stations, 

the present invention identifies different conversational flows between two 

stations and maintains a different entry for each different conversational 

flow in a database. 

It is important to be able to distinguish between packets that are exchanged 

between a source and a destination, and a con[v]ersational flow as used in 

the present invention. A conversational flow is the sequence of packets that 

are exchanged in any direction as a result of a particular[sic] activity-for 

instance, the running of an application on a server as requested by a client. 

Different conversational flows may occur between the same two addresses. 

Each of these would have a separate entry in the flow database. … 

Unlike Gobuyan, the present invention is able to identify and classify 

conversational flows rather than only connection flows. The reason for 

this is that some conversational flows involve more than one connection, 

and some even involve more than one exchange of packets between a client 

and server. Thus, there may be different states to a flow. This is particu-

larly true when using client/server protocols such as RPC, DCOMP, and 

SAP, which enable a service to be set up or defined prior to any use of that 

service.91 

                                                        

91 Ex. 1020 (’646 Prosecution History, Feb. 10, 2004 Response to Office Action), 9 

(bold and italics in original and underlining added). It is my understanding that the 

certified file history for the ’646 Patent contains only the first page of the Feb. 10, 

2004, Response. ’646 Prosecution History, 341. The next page of the certified file 

EX 1006 Page 57



  

 44

84. The Applicants went on to describe examples of conversational flows: 

An example of such a case is the SAP (Service Advertising Protocol), a 

NetWare (Novell Systems, Provo, Utah) protocol used to identify the ser-

vices and addresses of servers attached to a network. In the initial ex-

change, a client might send a SAP request to a server for print service. The 

server would then send a SAP reply that identifies a particular address-for 

example, SAP#5-as the print service on that server. Such responses might 

be used to update a table in a router, for instance, known as a Server Infor-

mation Table. A client who has inadvertently seen this reply or who has 

access to the table (via the router that has the Service Information Table) 

would know that SAP#5 for this particular server is a print service. There-

fore, in order to print data on the server, such a client would not need to 

make a request for a print service, but would simply send data to be printed 

specifying SAP#5. Like the previous exchange, the transmission of data 

to be printed also involves an exchange between a client and a server, 

but requires a second connection and is therefore independent of the in-

itial exchange. In order to eliminate the possibility of disjointed conver-

sational exchanges, it is desirable for a network packet monitor to be able 

to “virtually concatenate” -that is, to link-the first exchange with the sec-

ond. If the clients were the same, the two packet exchanges would then 

                                                        

history includes the Feb. 20, 2004, Supplemental Response. This is clear from the 

fax mail markings on the top and bottom of each page as well as the signature. 

’646 Prosecution History, 342-347. Further, the Feb. 20, 2004 Supplemental Re-

sponse states a “response to an office action was filed 10 Feb. 2004.” Ex. 1020 

(Feb. 10, 2004 Response). Additionally, it is my understanding that this document 

was used in prior litigation, and that Patentee never disputed this document was the 

Feb. 10, 2004, Response. 

EX 1006 Page 58



  

 45

be correctly identified as being part of the same conversational flow.92 

85. Regarding the claimed “existing flow” and “new flow,” Applicant specified 

these flows refer to “conversational flows”: 

The analyzer subsystem …, for each packet, looks up a database of flow 

records for previously encountered conversational flows to determine 

whether a signature is from an existing flow…. [T]he analyzer further 

identifies the state of the existing flow, and performs any state pro-

cessing operations specified for the state. In the case of a newly en-

countered flow, the analyzer includes a flow insertion and deletion en-

gine for inserting new flows into the database of flows.93 

86. On April 14, 2004, the Examiner issued a Notice of Allowance that states 

“the closest prior art, Chang (U.S. Patent 4,458,310) discloses a cache memory 

subsystem that utilizes the use of flow entries, but fails to show that the ability to 

distinguish conversational data flow.”94 

4. The ’751 Patent’s Prosecution History 

87. On June 30, 2000, the ’751 Patent was filed with 21 claims.95 On July 10, 

                                                        

92 Ex. 1020 (’646 Prosecution History, Feb. 10, 2004 Response to Office Action), 9 

(throughout my declaration, all emphasis added unless otherwise noted). 
93 Ex. 1020 (’646 Prosecution History, Feb. 10, 2004 Response to Office Action), 

8. 
94 ’646 Prosecution History, 377 (04/14/2004 Notice of Allowance, p.4). 
95 ’751 Prosecution History, 82-85 (06/30/2000 Patent Claims, p.78). 

EX 1006 Page 59



  

 46

2003, the Examiner rejected claims 1-21 under 35 U.S.C. §102(e) as being antici-

pated by U.S. Patent No. 5,850,388 to Anderson (“Anderson”).96  

88. On November 3, 2003, the Applicants amended independent claims 1 and 17 

to include, for example, “identifying the last encountered state of the flow” and 

“performing any state operations.”97 The Applicants also asserted the purported in-

vention was distinguishable from the teachings of Anderson.98 For example, the 

Applicants asserted: 

The present invention includes a process that recognizes a conversational 

flow and then generates statistics for the conversational flow. Anderson 

does not recognize a conversational flow, but instead compiles statistics 

for particular stations, and/or for particular network protocols used. A con-

versational flow is not identified simply by the stations that are involved 

in a communication, but rather by the nature of the communication, e.g., 

the application program being invoked.… It is important to be able to dis-

tinguish between the term “connection flow” commonly used to describe 

all the packets involved with a single connection, and a con[v]ersational 

flow as used in the present invention. A conversational flow is the sequence 

of packets that are exchanged in any direction as a result of an activity-for 

instance, the running of an application on a server as requested by a client. 

Unlike Anderson, the present invention is able to identify and classify 

                                                        

96 ’751 Prosecution History, 172-179 (07/10/2003 Office Action, cover). 
97 ’751 Prosecution History, 221-235, (11/03/2003 Response to Office Action, 

cover). 
98 ’751 Prosecution History, 227-234 (11/03/2003 Response to Office Action, p.6). 

EX 1006 Page 60



  

 47

conversational flows rather than only connection flows, including gath-

ering statistics on the flows.99 

89. Regarding the claimed “existing flow,” Applicant specified these flows refer 

to “conversational flows”: 

As an aspect of the present invention includes, for any packet ascer-

tained to belong to an existing flow by looking up the database, identi-

fying the state of the flow, and carrying out any state operations defined 

that that [sic] state; [prior art] Anderson has no concept of state of the 

flow, or even of a conversational flow, so that no such state operations 

are therefore carried out.100  

Anderson’s “previous session” is not a previously encountered conver-

sational flow. Furthermore, Applicant’s lookup is to determine if a 

packet is part of an existing conversational flow…. Anderson’s “prior 

entries” are not the same as previously encountered conversational 

flows.101 

90. On December 23, 2013, the Examiner found the Applicants’ arguments un-

persuasive and again rejected claims 1-21 as being anticipated by Anderson.102 The 

Examiner also rejected claims 1-21 under 35 U.S.C. §102(e) as being anticipated 

by U.S. Patent No. 6,330,226 to Chapman and U.S. Patent No. 6,625,657 to 

                                                        

99 ’751 Prosecution History, 229 (11/03/2003 Response to Office Action, p.8). 
100 ’751 Prosecution History, 230-31 (11/03/2003 Response to Office Action, p.9-

10). 
101 ’751 Prosecution History, 232 (11/03/2003 Response to Office Action, p.11). 
102 ’751 Prosecution History, 243 (12/23/2003 Office Action, p.7). 

EX 1006 Page 61



  

 48

Bullard.103 

91. On April 15, 2004, there was a telephone interview between the Examiner 

and the Applicants.104 On April 19, 2004, the Applicants proposed amendments, 

which were discussed during the telephone interview.105 Those amendments in-

cluded, for example, adding the following limitations to claim 1 and similar limita-

tions to claim 17: 

“a conversational flow including an exchange of a sequence of one or more 

packets in any direction between two network entities as a result of a par-

ticular activity using a particular layered set of one or more network pro-

tocols, a conversational flow further having a set of one or more states, 

including an initial state” and 

“wherein at least one step of the set consisting of of [sic] step (a) and step 

(b) includes identifying the protocol being used in the packet from a plu-

rality of protocols at a plurality of protocol layer levels, such that the flow-

entry database is to store flow entries for a plurality of conversational flows 

using a plurality of protocols, at a plurality of layer levels, including levels 

above the network layer.”106 

                                                        

103 ’751 Prosecution History, 248, 253 (12/23/2003 Office Action, p.12, 17). 
104 ’751 Prosecution History, 637 (04/15/2004 Interview Summary, cover). 
105 ’751 Prosecution History, 639-648 (04/19/2004 Response to Final Office Ac-

tion, cover). 
106 ’751 Prosecution History, 642 (04/19/2004 Response to Final Office Action, 

p.3). 

EX 1006 Page 62



  

 49

92. On June 4, 2004, the Examiner allowed the amended claims without provid-

ing any reasons for allowance.107  

5. The ’789 Patent’s Prosecution History 

 

93. On October 14, 2003, the ’789 Patent was filed with 59 claims.108 That same 

day, Applicants filed a preliminary amendment cancelling claims 1-10.109 On Octo-

ber 1, 2004, the Examiner rejected claims 11-59 under 35 U.S.C. §102(e) as being 

anticipated by U.S. Patent No. 6,483,804 to Muller (“Muller”).110  

94. On March 2, 2005, the Applicants submitted a declaration of inventor Rus-

sell Dietz and accompanying exhibits that purportedly shows that the Applicants 

had conceived of and reduced to practice independent claims 11, 29, and 54 prior 

to Muller.111 The dates on the exhibits were redacted making it impossible to deter-

mine their exact date.112 On May 3, 2005, the Examiner allowed the claims.113  

H. Sandvine’s IPR Petitions 

95. I understand that Sandvine Corporation (“Sandvine”) filed petitions request-

ing IPR of all of the Challenged Patents, as summarized below.  

                                                        

107 ’751 Prosecution History, 651-652 (10/14/2003 Notice of Allowability, cover). 
108 ’789 Prosecution History, 2 (10/14/2003 Transmittal of New Application, 

cover). 
109 ’789 Prosecution History, 104-112 (10/14/2003 Preliminary Amendment, p.1). 
110 ’789 Prosecution History, 174-178 (10/01/2004 Office Action, cover). 
111 ’789 Prosecution History, 191-195 (03/02/2005 Declaration of Russell Dietz, 

cover). 
112 ’789 Prosecution History, 195-437 (Mr. Dietz Declaration Exhibits, p.1). 
113 ’789 Prosecution History, 445-447 (05/03/2005 Notice of Allowability, cover). 

EX 1006 Page 63



  

 50

IPR Patent Challenge Grounds 

IPR2017

-00450 

’646 • Obviousness of claims 1-3, 7-9, 12, and 15-20 over U.S. 

Pat. No. 6,115,393 (“Engel”) and U.S. Pat. No. 5,530,834 

(“Colloff”) 

• Obviousness of claims 13 and 14 over Engel, Colloff, 

and U.S. Pat. No. 6,182,146 (“Graham-Cumming”) 

• Obviousness of claims 10-11 over Engel, Colloff, and WO 

97/23076 (“Baker”) 

IPR2017

-00451 

’751 • Anticipation of claims 1-14, 17, and 19-21 by Engel 

• Obviousness of claims 15 and 16 over Engel and Graham-

Cumming 

• Obviousness of claim 18 over Engel and Colloff 

IPR2017

-00629 

’789 • Anticipation of claims 19-22, 25-26, 29-31, 36-40, and 42 

by Engel 

• Obviousness of claims 23-24 over Engel and Baker 

• Obviousness of claims 27-28, 32, 41, and 43 over Engel 

and Graham-Cumming 

• Obviousness of claims 33-35 over Engel and Colloff 

IPR2017

-00630 

 ’789 • Anticipation of claims 1-8, 11, 13, and 15 by Engel 

• Obviousness of claims 12, 44-45, and 47-48 over Engel 

and Baker 

• Obviousness of claims 14 and 16-18 over Engel and Gra-

ham-Cumming 

• Obviousness of claims 46 and 49 over Engel, Baker, and 

Graham-Gumming 

IPR2017

-00769 

’099 • Obviousness of claims 1-5 and 9-10 over Engel, Baker, 

and Graham-Cumming 

• Obviousness of claims 6-8 over Engel, Baker, Graham-

Cumming, and U.S. Pat. No. 4,532,606 (“Phelps”) 

IPR2017

-00862 

’725 Anticipation of claims 10, 12-13, and 15-17 by Engel 

EX 1006 Page 64



  

 51

IPR Patent Challenge Grounds 

IPR2017

-00863 

’725 Anticipation of claims 1 and 2 by Baker 

 

96. In IPR2017-00863, the Patent Trial and Appeal Board (the “Board”) insti-

tuted IPR for claims 1 and 2 of the ’725 Patent based on Baker, and Patentee 

thereafter abandoned those claims.114  

I. Nokia’s IPR Petitions 

97. I understand that Nokia Corporation and Nokia of America Corporation 

(collectively “Nokia”) filed petitions requesting IPR of all the Challenged Patents, 

as summarized below.  

IPR Patent Challenge Grounds 

IPR2019

-01289 

’751 • Anticipation or obviousness of claims 1, 2, 5, 10, and 14-

15 by U.S. Pat. No. 6,412,000 (“Riddle”) or Riddle and 

U.S. Pat. No. 6,308,148 (“Bruins”) 

• Obviousness of claims 1, 2, 5, 10, and 14-15 over Riddle, 

Bruins, and RFC1945 - Hypertext Transfer Protocol -- 

HTTP/1.0 (“RFC1945”) 

• Obviousness of claims 1, 2, 5, 10, and 14-15 over Rid-

dle, Bruins, RFC1889 - RTP: A Transport Protocol for 

Real-Time Applications (“RFC1889”), and RFC2326 - 

Real Time Streaming Protocol (RTSP) (“RFC2326”) 

IPR2019

-01290 

’099 • Obviousness of claims 1, 2, 4, and 5 over Riddle, U.S. 

Pat. No. 6,091,725 (“Cheriton”), and Bruins 

• Obviousness of claims 1, 2, 4, and 5 over Riddle and 

RFC1945 

                                                        

114 Ex. 1062 (IPR2017-00863, Institution Decision); Ex. 1063 (Abandonment of 

Contest). 

EX 1006 Page 65



  

 52

IPR Patent Challenge Grounds 

• Obviousness of claims 1, 2, 4, and 5 over Riddle, Cheri-

ton, Bruins, RFC1889, and RFC2326 

IPR2019

-01291 

’725 • Obviousness of claims 10, 12-13, and 16-17 over Riddle 

and Baker 

• Obviousness of claims 10, 12-13, and 16-17 over Riddle 

and RFC1945 

• Obviousness of claims 10, 12-13, and 16-17 over Riddle, 

Baker, RFC1889, and RFC2326 

IPR2019

-01292 

’646 • Obviousness of claims 1-3, 16, and 18 over Riddle, U.S. 

Pat. No. 5,740,175 (“Wakeman”), and Bruins 

• Obviousness of claim 7 over Riddle, Wakeman, Cheri-

ton, and Bruins 

• Obviousness of claims 1-3, 16, and 18 over Riddle, 

Wakeman, Bruins, and RFC1945 

• Obviousness of claim 7 over Riddle, Wakeman, Cheri-

ton, Bruins, and RFC1945 

IPR2019

-01293 

’789 • Anticipation or obviousness of claims 1-2 and 13-17 by 

Riddle or Riddle and Bruins 

• Anticipation or obviousness of claims 44, and 48-49 by 

Riddle or Riddle, Bruins, and U.S. Pat. No. 5,805,808 

• Obviousness of claims 19-20, 31, and 42 over Riddle, 

Cheriton, and Bruins 

• Obviousness of claims 33-34 over Riddle, Cheriton, Bru-

ins, and Wakeman 

 

98. I understand that Patentee did not file responses to Nokia’s IPR petitions. In-

stead, Nokia and Patentee filed joint motions to terminate the IPR proceedings, 

which the Board granted on September 26, 2019. 

EX 1006 Page 66



  

 53

J. German Nullity Proceeding 

99. I understand that a European counterpart, EP 1196856 B1, to the Challenged 

Patents was subject to a Nullity Action in Germany, where the German Federal Pa-

tent Court found it “null and void.”115 

100. The table below compares EP 1196856 claim 1 to ’646 Patent claim 16, and 

shows that EP 1196856 claim 1 includes limitations not found in ’646 Patent claim 

16—i.e., the German court found patent claims narrower than the Challenged 

Claims invalid in view of the prior art. 

EP 1 196 856 B1 Claim 1 The ’646 Patent Claim 16 

A method of recognizing one or more 

conversational flows for packets pass-

ing through a connection point (121) 

on a computer network (102), each 

packet conforming to at least one pro-

tocol, wherein at least one said proto-

col defines one or more conversational 

flows that each includes a plurality of 

states of the flow including an initial 

state, and transitions from the initial 

state to at least one of the plurality of 

states of the flow, the method compris-

ing: 

[16. Pre] A method of examining pack-

ets passing through a connection point 

on a computer network, each packets 

[sic] conforming to one or more proto-

cols, the method comprising: 

receiving a packet (302) from a packet 

acquisition device; 

[16.1] (a) receiving a packet from a 

packet acquisition device; 

                                                        

115 Ex. 1023 (Certified Translation of German Federal Patent Court, Case Nos. 2Ni 

26/16 (EP) and 2Ni 46/16 (EP) (July 12, 2018)), 2. 

EX 1006 Page 67



  

 54

EP 1 196 856 B1 Claim 1 The ’646 Patent Claim 16 

performing at least one parsing opera-

tion (304) and/or at least one extrac-

tion operation (306) on the packet to 

create a parser record comprising a 

function (312) of selected portions of 

the packet; 

[16.2] (b) performing one or more 

parsing/extraction operations on the 

packet to create a parser record com-

prising a function of selected portions 

of the packet; 

wherein at least one of the parsing 

and/or extraction operations depend on 

one or more of the protocols to which 

the packet conforms; 

[16.6] wherein the parsing/extraction 

operations depend on one or more of 

the protocols to which the packet con-

forms.116 

looking up (314) in a flow-entry data-

base (324) comprising flow entries for 

any previously encountered conversa-

tional flows, the look up using at least 

some of the selected packet portions 

and determining (316) if the packet is 

of an existing conversational flow; 

[16.3] (c) looking up a flow-entry data-

base comprising none or more flow-

entries for previously encountered con-

versational flows, the looking up using 

at least some of the selected packet 

portions and determining if the packet 

is of an existing flow, the lookup being 

via a cache; 

if the packet is of an existing conversa-

tional flow, classifying the packet as 

belonging to the found existing con-

versational flow and performing (328, 

330) any state operation or operations 

specified in a database (326) for the 

state of the conversational flow; and 

[16.4] (d) if the packet is of an existing 

flow, classifying the packet as belong-

ing to the found existing flow; and 

                                                        

116 Note this limitation is presented out of order. 

EX 1006 Page 68



  

 55

EP 1 196 856 B1 Claim 1 The ’646 Patent Claim 16 

if the packet is of a new conversational 

flow, storing (322) a new flow-entry 

for the new conversational flow in the 

flow-entry database, including identi-

fying information for future packets to 

be identified with the new flow-entry, 

determining the state of the flow (318) 

using the database (326) and perform-

ing (328, 330) any state operation or 

operations specified in the database 

(326) for the state of the flow; 

[16.5] (e) if the packet is of a new 

flow, storing a new flow-entry for the 

new flow in the flow-entry database, 

including identifying information for 

future packets to be identified with the 

new flow-entry, 

wherein each conversational flow that 

includes a plurality of states is recog-

nized by transitioning through a 

 

plurality of states of the conversational 

flow, and at each state, carrying out 

one or more state operations specified 

in the database (326) for the state of 

the flow.” 

 

 

101. While I understand that these findings do not bind the Board, I find the Ger-

man court’s findings informative. First, the German court found that an FTP com-

munication, which includes two TCP connections, taught a “conversational flow.” 

As the German court wrote: 

The person skilled in the art was familiar with the fact that an FTP com-

munication is triggered via an initial TCP connection (“control channel”) 

and the associated user data transfer then takes place via a second TCP 

connection (“data channel”). That is, a normal FTP communication (OSI 

Layer 7) customarily comprises two TCP “connections” (OSI Layer 4) 

which are distinguished by the ports used (cf. above I 7.1.2). The basic 

EX 1006 Page 69



  

 56

idea of the Patent in Suit consists in that the claimed method is supposed 

to produce an assignment of these two connections to one another; i.e., it 

recognizes two apparently different connections (of a lower layer, here 

TCP) as linked (to a single connection of a higher layer, here FTP).117 

102. I agree with the German court that prior art teachings toward FTP communi-

cations meet the claimed “conversational flow,” at least under Patentee’s proposed 

construction of that term. As I detail below in Sections IV.A.4 and VII.A.2.e, such 

FTP communications include two or more TCP connections that result in the 

claimed “conversational flow.” 

103. Second, the German court found invalid Patentee’s proposed claim amend-

ments (termed “Alternative Applications”) that would have narrowed the alleged 

invention. In Alternative Applications 1 to 4, for example, Patentee sought to nar-

row the claims by “stating that such a conversational flow should comprise ‘more 

than one connection.’”118 And in Alternative Applications 5 to 9, Patentee sought 

to narrow the claims by stating that the conversational flow should comprise “more 

than one disjointed sub-flow.”119 Ultimately, the German court found Patentee’s 

proposed “Alternative Applications are also unsuccessful.”120 I agree with the Ger-

man court’s finding that the proposed amendments would not have successfully 

                                                        

117 Ex. 1023 (German Court Translation), 35-36 (emphasis in original). 
118 Ex. 1023 (German Court Translation), 24, §7.1. 
119 Ex. 1023 (German Court Translation), 24, §7.1. 
120 Ex. 1023 (German Court Translation), 34, §3. 

EX 1006 Page 70



  

 57

differentiated the claims over the prior art. 

IV. SUMMARY OF THE PRIOR ART 

104. In Section III.A above, I described the state of the pertinent art in 1999. The 

following prior art references show that every element of the Challenged Claims 

was known in the art by June 30, 1999. 

A. Riddle Overview 

105. U.S. Patent No. 6,412,000 (“Riddle”) is titled “Method for Automatically 

Classifying Traffic in a Packet Communications Network.” Riddle was not consid-

ered by the USPTO during the original prosecution of the Challenged Patents. 

106. I understand that a U.S. patent has an effective prior art date under pre-AIA 

35 U.S.C. §102(e) based on the filing date of an earlier-filed patent application if 

the patent’s relevant subject matter is described in the earlier-filed application, and 

at least one of the patent’s claims is supported by the earlier-filed application’s 

written description in compliance with pre-AIA 35 U.S.C. §112, first paragraph. 

107. The application that issued as Riddle was filed on November 23, 1998. Rid-

dle claims priority to U.S. Provisional Patent Application No. 60/066,864 (“’864 

Provisional”), which was filed on November 25, 1997.121 I understand that Riddle 

qualifies as prior art under at least 35 U.S.C. §102(e) based on its filing date, and 

under U.S.C. §102(e) based upon the filing date of the ’864 Provisional.  

                                                        

121 Riddle, cover. 

EX 1006 Page 71



  

 58

108. I understand that Exhibit 1025 is a redlined comparison of Riddle’s disclo-

sures and the ’864 Provisional’s disclosures. This comparison shows that the two 

disclosures are substantially the same. The differences between the two specifica-

tions are minor, such as changed straight quotations to smart quotations. Aside 

from the minor differences shown in Exhibit 1025, the ’864 Provisional contains 

every one of my declaration’s citations to Riddle.  

109. Further, Riddle’s claims 1, 8, and 11, for example, are supported by the writ-

ten description of the ’864 Provisional in compliance with 35 U.S.C. §112, first 

paragraph. Exhibit 1026 is a table showing how the ’864 Provisional’s disclosures 

support Riddle’s claims 1, 8, and 11. Further, many of Riddle’s claims, such as 

claims 1 and 8, are similar to the ’864 Provisional’s claims, such as claims 1 and 7.  

1. Overview of Riddle 

110. Riddle explains that the physical components of communication networks, 

including computer clients, servers, and routers, were well-known in the prior art 

by 1997.122 Riddle states that, in the 1990’s, there was a need to prioritize band-

width.123 According to Riddle, one solution to bandwidth issues was “by applying 

‘policies’ to control traffic classified as to type of service required in order to more 

                                                        

122 Riddle, Figs. 1A-1C. 
123 Riddle, 3:40-42. 

EX 1006 Page 72



  

 59

efficiently match resources with traffic.”124 In order to apply such policies, Riddle 

teaches a technique to manage “network bandwidth based on information ascer-

tainable from multiple layers of OSI network model.”125  

111. As explained in Section III.A.1, the Open Systems Interconnection (“OSI”) 

basic framework model is a standardized framework for network communications 

that was developed in the 1980s.126 Riddle’s Figure 1D shows the OSI model: 

 

112. As shown in Riddle’s Figure 1D, examples of well-known protocols that are 

prior art to the Challenged Patents include FTP, HTTP, TCP, UDP, IP, and Ether-

net. And as discussed above in Section IV.A.6, RTP and RTSP are other examples 

of well-known protocols that are prior art to the Challenged Patents. 

                                                        

124 Riddle, 3:43-45. 
125 Riddle, 1:54-57. 
126 Ex. 1043 (ISO/IEC 7498 Part 4: Management Framework). 

EX 1006 Page 73



  

 60

113. Riddle discloses that “there is no teaching in the prior art of methods for au-

tomatically classifying packet traffic based upon information gathered from a [sic] 

multiple layers in a multi-layer protocol network.”127 In order to apply policies to 

control traffic, Riddle teaches that traffic can be classified a number of ways in-

cluding by application or protocol. For example, Riddle states: 

Traffic may be classified by type, e.g. E-mail, web surfing, file transfer, at 

various levels. For example, to classify by network paradigm, examining 

messages for an IEEE source/destination service access point (SAP) or a 

sub-layer access protocol (SNAP) yields a very broad indicator, i.e., SNA 

or IP. More specific types exist, such as whether an IP protocol field in an 

IP header indicates TCP or UDP. Well known connection ports provide 

indications at the application layer, i.e., SMTP or HTTP.128 

114. Riddle states that classifying traffic by application was known in the art.129 

Riddle teaches automatically classifying packet flows for use in allocating band-

width resources by assigning service levels to packet flows.130 To do so, Riddle 

discloses “applying individual instances of traffic classification paradigms to 

packet network flows based on selectable information obtained from a plurality of 

layers of a multi-layered communication protocol in order to define a characteristic 

                                                        

127 Riddle, 3:36-39. 
128 Riddle, 3:46-54. 
129 Riddle, 3:55-4:2. 
130 Riddle, Abstract, 4:7-10. 

EX 1006 Page 74



  

 61

class, then mapping the flow to the defined traffic class.”131 This “automatic classi-

fication is sufficiently robust to classify a complete enumeration of the possible 

traffic.”132  

115. Further, Riddle discloses “techniques to automatically classify a plurality of 

heterogeneous packets in a packet telecommunications system for management of 

network bandwidth in systems such as a private area network, a wide area network 

or an internetwork.”133 As a result, “network managers need not know the technical 

aspects of each kind of traffic in order to configure traffic classes and service ag-

gregates bundle traffic to provide a convenience to the user, by clarifying pro-

cessing and enables the user to obtain group counts of all parts comprising a ser-

vice.”134  

116. Riddle and the related ’864 Provisional incorporate-by-reference the follow-

ing patent applications in their entirety: 

• U.S. Patent Application No. 09/198,051 (Ex. 1028);  

• U.S. Patent Application No. 08/762,828, issued as U.S. Patent No. 

5,802,106 (Ex. 1029); 

• U.S. Patent Application No. 08/977,642 (Ex. 1027), having attorney 

docket number 17814-5.10, and issued as U.S. Patent No. 6,046,980 (Ex. 

                                                        

131 Riddle, 4:10-15. 
132 Riddle, 4:15-17. 
133 Riddle, 4:55-60. 
134 Riddle, 4:18-23. 

EX 1006 Page 75



  

 62

1031); and 

• U.S. Patent Application No. 08/742,994, issued as U.S. Patent No. 

6,038,216 (Ex. 1030).135 

It is my understanding that, because of this incorporation by reference, the disclo-

sures of each of the above patent applications are a part of and fully included in the 

disclosures of Riddle and the ’864 Provisional. 

2. Riddle’s Hardware Components 

117. Riddle teaches that its monitoring method is “implemented in the C pro-

gramming language and is operational on a computer system such as shown in 

FIG. 1A.”136 And Riddle states that its “invention may be implemented in a client-

server environment, but a client-server environment is not essential.”137 As shown 

below in Figure 1A, Riddle shows that network systems include network interfaces 

40, storage subsystems 35, and network connection 45.138 

                                                        

135 Riddle, 1:13-18, 1:29-51; Ex. 1024 (U.S. Provisional Patent Application No. 

60/066,864 (“’864 Provisional”)), 3-4. 
136 Riddle, 5:55-57. 
137 Riddle, 5:57-59. 
138 Riddle, 6:1-7:34, Fig. 1B. 

EX 1006 Page 76



  

 63

 

118. Riddle’s monitoring system can include router 75, “a network access point” 

with token ring and ethernet adapters, as shown below in Figure 1C.139 Riddle 

specifies that such routers are aware of inter-network protocols (e.g., ICMP, RIP). 

 

                                                        

139 Riddle, 7:29-34, Fig. 1C. 

EX 1006 Page 77



  

 64

3. Riddle’s Parsing of Packets 

119. Riddle discloses that traffic classifier 304 detects the protocols and services 

in each packet.140 As shown below in Figure 3, Riddle’s traffic classifier 304 parses 

packets to identify the packet’s flow specification.141 Traffic classifier 304 stores 

those packets’ flow specifications, including traffic-type, in list 308 for classifica-

tion.142 

 

120. Riddle illustrates the parsing and classifying of packet traffic in flow chart 

401, as shown below in Figure 4A.143 At step 402, Riddle discloses parsing the 

                                                        

140 Riddle, 11:47-67, 12:27-32, 14:28-41, Fig. 3. 
141 Riddle, 11:47-67, 12:37-41. 
142 Riddle, 12:37-53. 
143 Riddle, 4:48-50, 12:42-63, Fig. 4A. 

EX 1006 Page 78



  

 65

flow specification from the packet flow being classified.144 Examples of infor-

mation extracted from parsed packet flows include: 

• Protocol family; 

• Direction of packet flow;  

• Protocol type; 

• Pair of hosts (i.e., source and destination network-layer addresses); 

• Pair of ports (i.e., source and destination transport-layer port numbers); and  

• HTTP protocol packets MIME type.145  

 

                                                        

144 Riddle, 12:43-44, Fig. 4A. 
145 Riddle, 12:50-53, claims 1, 8, 11. 

EX 1006 Page 79



  

 66

121. As shown above, at step 406, Riddle’s classifier analyzes whether the 

packet’s flow specification matches a traffic class.146 If the flow specification 

matches, at step 408, Riddle’s classifier enters the identifying characteristics of the 

traffic into the corresponding flow-entry in the saved list.147 And at steps 410 and 

412, a POSITA would have understood that Riddle’s classifier checks if the flow is 

a new flow or an existing flow (e.g., suppressing duplicates for existing flows).148  

4. Riddle’s Classifying Flows Based on Conversations 

122. Riddle teaches using a classification tree to organize the relationships be-

tween packet traffic passing through the monitor.149 Riddle details that “[e]ach 

node of the classification tree represents a class, and has a traffic specification, i.e., 

a set of attributes or characteristics describing the traffic associated with it.”150 An 

exemplary classification tree 302 is shown below in Riddle’s Figure 3. Riddle’s 

classifier 304 classifies pending traffic flows (e.g., a, b, and c) under particular 

member class nodes (e.g., classes A, B, and C) within tree 302.151  

                                                        

146 Riddle, 12:48-53, Fig. 4A. 
147 Riddle, 12:48-53, Fig. 4A. 
148 Riddle, 12:53-60, Fig. 4A. 
149 Riddle, 9:29-32, 12:37-41, Fig. 3. 
150 Riddle, 9:29-32. 
151 Riddle, 12:27-30. 

EX 1006 Page 80



  

 67

 

123. Riddle illustrates the classification process at Figure 4’s steps 404 to 412. At 

steps 404 and 406, Riddle teaches comparing a given traffic’s parsed specification 

with the classification tree to determine if the traffic matches a class.152 Riddle spec-

ifies that a traffic class is “[a]ll traffic between a client and a server endpoints. A 

single instance of a traffic class is called a flow. Traffic classes have properties or 

class attributes such as, directionality, which is the property of traffic to be flowing 

inbound or outbound.”153 Riddle further explains that “[a] flow is a single instance 

of a traffic class. For example, all packets in a TCP connection belong to the same 

flow. As do all packets in a UDP session.”154  

                                                        

152 Riddle, 12:44-50. 
153 Riddle, 5:42-45. 
154 Riddle, 5:17-20. 

EX 1006 Page 81



  

 68

124. Using traffic classes and classification trees, Riddle teaches a highly custom-

izable way to detect and classify traffic: “The present invention provides a method 

for classifying traffic according to a definable set of classification attributes se-

lectable by the manager, including selecting a subset of traffic of interest to be 

classified. The invention provides the ability to classify and search traffic based 

upon multiple orthogonal classification attributes.”155  

125. Riddle discloses defining traffic classes by application-level attributes: 

Traffic classes may be defined at any level of the IP protocol as well as 

for other non-IP protocols. For example, at the IP level, traffic may be 

defined as only those flows between a specificed [sic] set of inside and 

outside IP addresses or domain names. An example of such a low level 

traffic class definition would be all traffic between my network and other 

corporate offices throughout the Internet. At the application level, traffic 

classes may be defined for specific URIs within a web server. Traffic 

classes may be defined having “Web aware” class attributes. For exam-

ple, a traffic class could be created such as all URIs matching “*.html” for 

all servers, or all URI patterns matching “*.gif” for server X, or for access 

to server Y with URI pattern “/sales/*” from client Z, wherein ‘*’ is a wild-

card character, i.e., a character which matches all other character combi-

nations. Traffic class attributes left unspecified will simply match any 

value for that attribute. For example, a traffic class that accesses data ob-

jects within a certain directory path of a web server is specified by a URI 

                                                        

155 Riddle, 9:14-19. 

EX 1006 Page 82



  

 69

pattern of the directory path to be managed, e.g. “/sales/*”.156 

126. Riddle discloses Table 2, which includes examples of information for build-

ing traffic classes.157 Table 2 specifies exemplary client-side, server-side, and 

global components for a traffic class. As an example, one traffic class is a global 

FTP application (a client-server software program for transferring files using the 

FTP protocol) using a specific client-side IP address and a specific server-side IP 

address, as shown below in Table 2. 

 

127. As discussed above in Section IV.A, minor differences exist between Rid-

dle’s Table 2 and the related ’864 Provisional’s Table 2.158 For purposes of my 

analysis, I rely on Table 2 materials as they appear in the provisional application. 

                                                        

156 Riddle, 8:58-9:11. 
157 Riddle, 9:64-65. 
158 Ex. 1024 (’864 Provisional), 19; Ex. 1025 (Redline comparing Riddle to ’864 

Provisional), 16. 

EX 1006 Page 83



  

 70

Moreover, my understanding is the ’864 Provisional provides support for all of the 

changes appearing in Riddle’s Table 2. For example, Riddle’s Table 2 includes 

classifying based upon port numbers, which is shown throughout the provisional 

application at section 3.1.6 “Dynamic Ports” and other areas.159 

128. Riddle also describes a traffic class being based on a “service aggregate” for 

applications with multiple connections in a particular conversation flow between 

computers: 

A service aggregate is provided for certain applications that use more 

than one connection in a particular conversation between a client and a 

server. For example, an FTP client in conversation with an FTP server 

employs a command channel and a transfer channel, which are distinct 

TCP sessions on two different ports. In cases where two or three TCP or 

UDP sessions exist for each conversation between one client and one 

server, it is useful to provide a common traffic class i.e., the service aggre-

gate, containing the separate conversations. In practice, these types of 

conversations are between the same two hosts, but use different ports. Ac-

cording to the invention, a class is created with a plurality of traffic speci-

fications, each matching various component conversations.160 

As described in greater detail below, a “service aggregate” satisfies the construc-

tion of “conversational flow” under either party’s proposed construction because it 

                                                        

159 Ex. 1024 (’864 Provisional), 22. 
160 Riddle, 11:10-23. 

EX 1006 Page 84



  

 71

links multiple disjointed flows for a common application. Further, Riddle teaches 

its classifier defines a service aggregate class as part of the initial classification tree 

or while analyzing the traffic.161 

129. Riddle classifies flows by “a series of steps through a traffic class tree, with 

the last step (i.e., at the leaves on the classification tree) mapping the flow to a pol-

icy.”162 These classification steps include: 

[T]he classification process checks at each level if the flow being classified 

matches the attributes of a given traffic class. If it does, processing contin-

ues down to the links associated with that node in the tree. If it does not, 

the class at the level that matches determines the policy for the flow being 

classified. If no policy specific match is found, the flow is assigned the 

default policy. 

In a preferred embodiment, the classification tree is an N-ary tree with its 

nodes ordered by specificity. For example, in classifying a particular flow 

in a classification tree ordered first by organizational departments, the at-

tributes of the flow are compared with the traffic specification in each suc-

cessive department node and if no match is found, then processing pro-

ceeds to the next subsequent department node. If no match is found, then 

the final compare is a default “match all” category. If, however, a match is 

found, then classification moves to the children of this department node. 

The child nodes may be ordered by an orthogonal paradigm such as, for 

example, “service type.” Matching proceeds according to the order of 

                                                        

161 Riddle, 10:31-33, 13:54-59. 
162 Riddle, 9:20-25. 

EX 1006 Page 85



  

 72

specificity in the child nodes. Processing proceeds in this manner, travers-

ing downward and from left to right in FIGS. 2A and 2B, which describe 

a classification tree, searching the plurality of orthogonal paradigms. Key 

to implementing this a hierarchy is that the nodes are arranged in de-

creasing order of specificity. This permits search to find the most specific 

class for the traffic before more general.163 

130. Riddle illustrates an exemplary classification tree in Figure 2A, below, 

where Riddle’s packet classifier tests whether the parsed flow is for Department A 

resources (202) by comparing the packet’s source (client) IP to the range of IP ad-

dresses defined for subnet A.164 If it is, then the packet classifier updates the state 

and tests whether the flow is for an FTP outside port 2.0 (206) or for a worldwide 

web server (208).165 If the flow was not for Department A resources, then Riddle’s 

packet classifier tests whether the flow is for Department B resources (204) by 

comparing the packet’s source (client) IP to the range of IP addresses defined for 

subnet B.166 If it is, then the packet classifier updates the state and tests whether the 

flow is for an FTP server (210) or another worldwide web server (212).167 And if 

the flow was not for Department A or B resources, then the flow falls into a default 

                                                        

163 Riddle, 9:28-63. 
164 Riddle, 10:19-39. 
165 Riddle, 10:21-33, Fig. 2. 
166 Riddle, 10:19-39. 
167 Riddle, 10:21-26, 10:36-39, Fig. 2A. 

EX 1006 Page 86



  

 73

classification (205).168 

 

131. Riddle illustrates another exemplary classification tree in Figure 2B, as pro-

vided below. In Figure 2B, Riddle’s packet classifier tests whether the parsed flow 

is web traffic (220). If it is, then the packet classifier updates the state and tests 

whether the flow is for Department A (226) or Department B (228).169 If the flow 

is not web traffic (220), then Riddle’s packet classifier updates the state and tests 

whether the flow is for TCP traffic (224). If it is, then the packet classifier updates 

that state and tests whether the flow is for Department A (230) or Department B 

(232).170 And if the flow is not web or TCP traffic, then the flow falls into a default 

classification (225).171 

                                                        

168 Riddle, 10:52-56, Fig. 2A. 
169 Riddle, 10:40-47, Fig. 2B. 
170 Riddle, 10:40-51, Fig. 2B. 
171 Riddle, 10:52-56, Fig. 2B. 

EX 1006 Page 87



  

 74

 

5. Riddle’s Conversational Flow Analyzer 

132. As shown in Figure 4A’s flowchart, Riddle’s step 406 analyzes whether the 

packet’s flow specification matches a traffic class.172 If it does, then Riddle adds an 

entry to the traffic class’s list of identifying characteristics (step 408).173 And at 

steps 410 and 412, Riddle checks if the flow is a new flow or an existing flow. For 

example, Riddle may suppress duplicate flows and just update the traffic class’s 

list for the number of duplicates, byte count, and the time at which the most recent 

flow was encountered.174 This operation can be explained using an instance of an 

FTP application pre-defined as a traffic class. When Riddle’s monitor receives an 

initial FTP-command packet for a new FTP transfer, the monitor extracts the 

                                                        

172 Riddle, 12:48-53, Fig. 4A. 
173 Riddle, 12:50-53, Fig. 4A. 
174 Riddle, 12:53-60, Fig. 4A. 

EX 1006 Page 88



  

 75

packet’s flow specification and enters it into saved list 308. If that flow specifica-

tion matches the FTP application traffic classification, the monitor classifies the 

traffic type as an instance of the FTP application. Riddle’s monitor checks subse-

quently received FTP-command and FTP-data packets to see if they belong to the 

same FTP application classification, based on their respectively extracted flow 

specifications. If those flow specifications relate to the same instance of the FTP 

application, the monitor updates the identifying characteristics and statistics in the 

original entry in saved list 308 to reflect receipt of the new packets and suppresses 

duplicate traffic flow entries. Suppressing duplicates in this manner allows the user 

to obtain a group count of all parts of the transfer, and to track the bandwidth con-

sumed by the transfer.175 

                                                        

175 Riddle, 4:6-10, 4:18-23. 

EX 1006 Page 89



  

 76

           

133. And as shown above in Figure 4B’s flowchart, Riddle teaches analyzing 

whether the packet’s flow belongs to a service aggregate (step 426).176 Riddle de-

scribes analyzing whether the flow belongs to a conversation composed of multiple 

connection flows, and if so, creating a traffic class to match all connection flows of 

the conversation (step 428): 

In decisional step 426, the instance of saved traffic is examined to deter-

mine whether it belongs to a service aggregate. For example, an FTP ses-

sion has one flow that is used to exchange commands and responses and a 

                                                        

176 Riddle, 13:43-62, Fig. 4B. 

EX 1006 Page 90



  

 77

second flow that is used to transport data files. If the traffic does belong to 

a service aggregate, then in a step 428, a traffic class is created which will 

match all components of the service aggregate.177 

The ’864 Provisional further illustrates how a POSITA would have understood 

Riddle’s “service aggregate” relates multiple connection flows based on an FTP 

application’s specific software program activity: 

[T]he concept of “service aggregates” (service groups) [is] different 

traffic types that are associated together (ex. FTP has one stream that it 

uses to exchange commands and responses, and a second that the data 

files are actually sent over). Whenever we recognize the signature of 

one of these types of traffic, we create a traffic class (or class hierarchy) 

that can match all the components of the aggregate. This bundling is 

mainly a convenience to the user, makes it clearer what's going on, but 

also permits you to get group counts of all the parts that make up what 

the user thinks as the service.178 

6. Riddle’s Traffic Identification Based on RTP and RTSP 

134. Riddle describes identifying a traffic class based on the type of resource 

used by the traffic.179 Riddle provides examples of resources creating such connec-

tions, such as detecting Real Time Protocol and/or Real Time Steaming Protocol 

flows.180 

                                                        

177 Riddle, 13:54-61, 11:10-23, Fig. 4B. 
178 ’864 Provisional, 69. 
179 Riddle, 12:1-12. 
180 Riddle, 7-12. 

EX 1006 Page 91



  

 78

135. As I detail below regarding two pertinent RFC publications, RTP and RTSP 

are protocols that support functions suitable for applications transmitting real-time 

data, such as audio or video data. As with other protocols, such as FTP, both RTP 

and RTSP use a separate control flow with one or more linked dataflows.  

a. RFC 1889 - RTP: A Transport Protocol for Real-Time 

Applications  

136. RFC 1889 - RTP: A Transport Protocol for Real-Time Applications 

(“RFC1889”) is a printed publication available to the public on or around January 

1996. It is my understanding that RFC1889 is prior art to each of the Challenged 

Patents. 

137. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson authored 

RFC1889. Like other RFCs, RFC1889 was the product of an IETF working group. 

I obtained a copy of RFC1889, and made use of it, on or around 1996.181  

138. RFC1889 describes RTP, the real-time transport protocol, which provides: 

[E]nd-to-end network transport functions suitable for applications trans-

mitting real-time data, such as audio, video or simulation data, over mul-

ticast or unicast network services. RTP does not address resource reserva-

tion and does not guarantee quality-of-service for real-time services. The 

data transport is augmented by a control protocol (RTCP) to allow moni-

toring of the data delivery in a manner scalable to large multicast networks, 

                                                        

181 Ex. 1045 (RFC1889 Internet-Archive Affidavit) (illustrating RFC1889 was pub-

licly accessible and available for download by May 30, 1998). 

EX 1006 Page 92



  

 79

and to provide minimal control and identification functionality. RTP and 

RTCP are designed to be independent of the underlying transport and net-

work layers. The protocol supports the use of RTP-level translators and 

mixers.182 

139. RFC1889 explains that RTP has two “closely-linked parts.”183 Part one is 

“the real-time transport protocol (RTP), to carry data that has real-time proper-

ties.”184 And part two is “the RTP control protocol (RTCP), to monitor the quality 

of service and to convey information about the participants in an on-going ses-

sion.”185  

140. RFC1889 also discloses that audio and video are transmitted separately as 

“sessions” and that the protocol provides a means by which related sessions can be 

associated. For example, RFC1889 states: 

If both audio and video media are used in a conference, they are transmit-

ted as separate RTP sessions RTCP packets are transmitted for each me-

dium using two different UDP port pairs and/or multicast addresses. There 

is no direct coupling at the RTP level between the audio and video sessions, 

except that a user participating in both sessions should use the same dis-

tinguished (canonical) name in the RTCP packets for both so that the ses-

sions can be associated.186 

                                                        

182 Ex. 1045 (RFC1889 Internet-Archive Affidavit), 4. 
183 Ex. 1045 (RFC1889 Internet-Archive Affidavit), 5. 
184 Ex. 1045 (RFC1889 Internet-Archive Affidavit), 5. 
185 Ex. 1045 (RFC1889 Internet-Archive Affidavit), 5. 
186 Ex. 1045 (RFC1889 Internet-Archive Affidavit), 6. 

EX 1006 Page 93



  

 80

141. RFC1889 defines an RTP session as: 

The association among a set of participants communicating with RTP. For 

each participant, the session is defined by a particular pair of destination 

transport addresses (one network address plus a port pair for RTP and 

RTCP). The destination transport address pair may be common for all par-

ticipants, as in the case of IP multicast, or may be different for each, as in 

the case of individual unicast network plus a common port pair. In a mul-

timedia session, each medium is carried in a separate RTP session with its 

own RTCP packets. The multiple RTP sessions are distinguished by dif-

ferent port number pairs and/or different multicast addresses.187 

142. Moreover, RFC1889 details that RTP and RTCP are separate flows: 

RTP relies on the underlying protocol(s) to provide demultiplexing of RTP 

data and RTCP control streams. For UDP and similar protocols, RTP uses 

an even port number and the corresponding RTCP stream uses the next 

higher (odd) port number. If an application is supplied with an odd num-

ber for use as the RTP port, it should replace this number with the next 

lower (even) number.188 

b. RFC 2326 – Real Time Streaming Protocol (RTSP) 

143. RFC 2326 - Real Time Streaming Protocol (RTSP) (“RFC2326”) is a 

printed publication available to the public on or around April 1998. It is my under-

standing that RFC2326 is prior art to each of the Challenged Patents. 

                                                        

187 Ex. 1045 (RFC1889 Internet-Archive Affidavit), 7. 
188 Ex. 1045 (RFC1889 Internet-Archive Affidavit), 25. 

EX 1006 Page 94



  

 81

144. H. Schulzrinne, A. Rao, and R. Lanphier authored RFC2326. Like other 

RFCs, RFC2326 was the product of an IETF working group. I obtained a copy of 

RFC2326, and made use of it, on or around 1998.189  

145. RFC2326 describes RTSP, the real time streaming protocol, as: 

[A]n application-level protocol for control over the delivery of data with 

real-time properties. RTSP provides an extensible framework to enable 

controlled, on-demand delivery of real-time data, such as audio and video. 

Sources of data can include both live data feeds and stored clips. This pro-

tocol is intended to control multiple data delivery sessions, provide a 

means for choosing delivery channels such as UDP, multicast UDP and 

TCP, and provide a means for choosing delivery mechanisms based upon 

RTP (RFC 1889).190 

146. RFC2326 details that RTSP “establishes and controls either a single or sev-

eral time-synchronized streams of continuous media such as audio and video.”191 

RTSP “does not typically deliver the continuous streams itself, although interleav-

ing of the continuous media stream with the control stream is possible …. In other 

words, RTSP acts as a ‘network remote control’ for multimedia servers.”192 

147. Regarding the interplay between RTP and RTSP, RFC2326 specifies that 

                                                        

189 Ex. 1046 (RFC2326 Internet-Archive Affidavit) (illustrating RFC2326 was pub-

licly accessible and available for download by May 30, 1998). 
190 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 4. 
191 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 5-6. 
192 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 5-6. 

EX 1006 Page 95



  

 82

“streams controlled by RTSP may use RTP …, but the operation of RTSP does not 

depend on the transport mechanism used to carry continuous media.”193 The RTSP 

protocol “is intentionally similar in syntax and operation to HTTP/1.1 … so that 

extension mechanisms to HTTP can in most cases also be added to RTSP.”194 

148. RFC2326 explains that RTSP has separate control and data channels and re-

quires tracking of session states: 

RTSP controls a stream which may be sent via a separate protocol, inde-

pendent of the control channel. For example, RTSP control may occur 

on a TCP connection while the data flows via UDP. Thus, data delivery 

continues even if no RTSP requests are received by the media server. Also, 

during its lifetime, a single media stream may be controlled by RTSP re-

quests issued sequentially on different TCP connections. Therefore, the 

server needs to maintain “session state” to be able to correlate RTSP 

requests with a stream. The state transitions are described in Section 

A.195 

149. Further, RFC2326 teaches that RTSP requires state monitoring: “An RTSP 

server needs to maintain state by default in almost all cases….”196 Further, “RTSP 

requests are also not stateless; they may set parameters and continue to control a 

                                                        

193 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 5-6. 
194 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 5-6. 
195 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 9. 
196 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 5-6. 

EX 1006 Page 96



  

 83

media stream long after the request has been acknowledged.”197 Thus, both the 

RTSP client and server require a state machine.198  

B. Ferdinand Overview 

150. WO 92/19054 (“Ferdinand”) is titled “Network Monitoring,” and published 

on October 29, 1992.199 Ferdinand was not considered by the USPTO during the 

original prosecution of the Challenged Patents. 

151. As I discuss above, the German Federal Patent Court found a counterpart to 

the Challenged Patents “null and void.”200 I understand that, in so doing, the Ger-

man court found Ferdinand to be similar prior art.201 

152. Ferdinand relates to “monitoring and managing communication networks for 

computers.” For example, Ferdinand describes network monitor 10 analyzing and 

extracting information about packets passing through the network in real-time: 

Network Monitor 10 … is the data collection module which is attached to 

the LAN. It is a high performance real time front end processor which col-

lects packets on the network and performs some degree of analysis to 

search for actual or potential problems and to maintain statistical infor-

                                                        

197 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 9. 
198 Ex. 1046 (RFC2326 Internet-Archive Affidavit), 36-37. 
199 Ferdinand, cover. 
200 Ex. 1023 (German Court Translation), 2. 
201 Ex. 1023 (German Court Translation), 8, 30-32 (referring to Ferdinand as refer-

ence E2). 

EX 1006 Page 97



  

 84

mation for use in later analysis. In general, it performs the following func-

tions. It operates in a promiscuous mode to capture and analyze all packets 

on the segment and it extracts all items of interest from the frames. It gen-

erates alarms to notify the Management Workstation of the occurence of 

significant events. It receives commands from the Management Work-

station, processes them appropriately and returns responses.202 

153. As part of network monitor 10, Ferdinand discloses separate memories de-

voted to separate functionalities, such as a packet-buffer memory and system con-

trol blocks.203 And as shown below in Figures 5, Ferdinand describes network 

monitor 10 may include separate hardware components, including real time parser 

32, boot loader 22, and database 36 for storing flow-entry information of the exam-

ined packets:204 

 

                                                        

202 Ferdinand, 12:3-16. 
203 Ferdinand, 26:2-17. 
204 Ferdinand, 19:8-12, 27:16-28:17. 

EX 1006 Page 98



  

 85

154. As part of network monitor 10, Ferdinand discloses separate memories de-

voted to separate functionalities, such as a packet-buffer memory and system con-

trol blocks.205 And as shown below in Figures 5, Ferdinand describes network 

monitor 10 may include separate hardware components, including real time parser 

32, boot loader 22, and database 36 for storing flow-entry information of the exam-

ined packets:206 

155. The Challenged Patents, such as the ’099 Patent, describe storing flow-entry 

information such as protocol identifiers, source and destination addresses, and 

hashes.207 Similarly, Ferdinand teaches storing flow-entry information that includes 

unique flow signatures for identifying subsequent flows.208 Ferdinand teaches this 

flow-entry information includes, for example, protocol identifiers (shown below in 

green), source and destination addresses (shown in yellow), and hashes (shown in 

blue). Ferdinand discloses storing flow-entry information in database 36.209 

                                                        

205 Ferdinand, 26:2-17. 
206 Ferdinand, 19:8-12, 27:16-28:17. 
207 ’099 Patent, 13:22-36. 
208 Ferdinand 34:11-20 (addresses and hashes), 36:13-22 (protocols). 
209 Ferdinand, 26:15-18, 28:1-20, 35:34-36:4. 

EX 1006 Page 99



  

 86

  

EX 1006 Page 100

7/38
DLL SEG STATS

frames:
frameRate:
tmmofiudms:

r102DLL SEG ADDR 1 130

  
  
 
  
 

 
bytes:
byteRate:

 

   Dussewonz {‘0‘

O

 

  meastfiate:
"walnuts:
 
 
  

collisions;
collisonRate: 

 
  

alignment Errors;
alignment EnorRate:
 

  
enatFrames:

 

  
  

 

onetFrameRale; DLL PROTOCOL STATS n
In?-Ilcmees:

”mm“: mad
ruanvames: FRAMEMTE
rumFramaRate: L1316

8/38
DLL ADDR1 STATS
frames:
tmmofiate:
ImeBuckms:
tchmmes;
tchrameRate:
xthramos;
memeeRate:

  
 

152
  
  

   
  
  

 
  
 
 
 

TO DLL DMLOG
RECORD

[160
DLL DIALOGUNK1

  bytes:
bylefime:
byleBudwts:
rchytcs:
(cw/Enema:
xlmBytos:
xmtByleRate;

 

 
 
 

 
  

 

   
 

 

 

 

errors;
errorRaxe:
onorBuekots:
rchnors:
rev/Emma:
merron:
xmtEnorRm;

rchffSogs;
rchfiSegRazo:

 

   
  
  

 
 
 
 

 
 

 
 

 

["162
DLL PROTOCOL STATS :

 
xrchasts:
xmthestRate:
xmtBeastBuckms: 
 
 

  
xrmMmsts;
xthastRaxe;
xnnMcastBuckms: 
  

  
enotFrames:
enetFramefiaxe;
 

  
IlcFramos;
IleFrameRale:
 
  
 

rumFrames:
rumFrameRate:FIG 7B  

86

EX 1006 Page 100



  

 87

 

156. Further, Ferdinand teaches classifying the same types of traffic, such as FTP 

and other protocol types like TCP and UDP.210 And Ferdinand discloses displaying 

the results of its analysis to a user.211 

C. Yu Overview 

157. U.S. Patent No. 6,625,150 (“Yu”) is titled “Policy Engine Architecture.” Yu 

was not considered by the USPTO during the original prosecution of the Chal-

lenged Patents. 

                                                        

210 Ferdinand, 29:4-30:10, 39:23-40:16; Riddle, 10:1-18 (Table 2 showing TCP and 

UDP protocols). 
211 Riddle, 12:64-13:9, 14:1-5; Ferdinand, 60:10-15, Fig. 22. 

EX 1006 Page 101



  

 88

158. As discussed with respect to Riddle, I understand that a U.S. patent has an 

effective prior art date under pre-AIA 35 U.S.C. §102(e) based on the filing date of 

an earlier-filed patent application if the patent’s relevant subject matter is described 

in the earlier-filed application, and at least one of the patent’s claims is supported 

by the earlier-filed application’s written description in compliance with pre-AIA 

35 U.S.C. §112, first paragraph. 

159. The application that issued as Yu was filed on December 16, 1999. Yu 

claims priority to U.S. Provisional Patent Application No. 60/112,859 (“the ’859 

Provisional”), which was filed on December 17, 1998. I understand that Yu quali-

fies as prior art under at least 35 U.S.C. §102(e) prior art based on the ’859 Provi-

sional’s filing date. 

160.  I understand that Exhibit 1047 is a table showing how Yu’s disclosures are 

supported by the ’859 Provisional’s disclosures. This comparison shows that the 

two disclosures are substantially the same.  

161. Further, Yu’s single claim 1 is supported by the written description of the 

’859 Provisional in compliance with 35 U.S.C. §112, first paragraph. Exhibit 1048 

is a table showing how the ’859 Provisional’s disclosures support Yu’s single 

claim. 

EX 1006 Page 102



  

 89

162. Yu sets forth a “policy engine for handling incoming data packets” in a net-

work.212 Yu discloses that its “policy-based application examines every packet 

coming in from the network along the data path, compares it against flow classifi-

cation criteria, and performs the necessary actions based upon the policies defined 

in a policy database.”213 Further, Yu teaches that a flow classification criterion is “a 

rule to identify packets with a pattern of any random byte within a packet, and/or 

across many packets.”214  

163. As shown below in Figure 3, Yu’s policy architecture includes policy data-

base 202 and flow classifier logic 204 which “uses the policy database 202 to de-

termine the action specifications 203b that correspond to the policies of the flow to 

which the stream belongs.”215 

                                                        

212 Yu, Abstract. 
213 Yu, 1:22-26. 
214 Yu, 1:50-54. 
215 Yu, 3:23-25, 4:46-55, Fig. 3. 

EX 1006 Page 103



  

 90

 

D. RFC1945 Overview 

164. RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0 (“RFC1945”) is a 

printed publication available to the public on or around May 1996. RFC1945 was 

not considered by the USPTO during the original prosecution of the Challenged 

Patents. It is my understanding that RFC1945 is prior art to each of the Challenged 

Patents. 

165. In my declaration, I discuss various publications that are “Request For Com-

ments” (or “RFCs”) prepared and distributed under a formalized publication pro-

cess that is managed by the Internet Engineering Task Force (“IETF”). The IETF is 

EX 1006 Page 104



  

 91

an open international community of network designers, operators, vendors, and re-

searchers concerned with the evolution of the Internet architecture and protocols 

and the smooth operation of the Internet. IETF Working Groups perform the com-

munity’s technical activities, which are organized by topic into several areas. 

These working groups handle much of their work via mailing-lists to which anyone 

can subscribe. The IETF holds public meetings multiple times per year.  

166. Often, an RFC publication is the result of a working group tasked with ad-

dressing a particular problem of interest. Each working group’s work is in the 

open, and any networking community member is free to participate in these 

groups. 

167. The IETF prepares and releases RFC publications to the public in a formal-

ized and structured process, as described in RFC1543, dated October 1993, and 

RFC2026, dated October 1996. RFC1543 explains that RFCs are announced to 

members of mailing lists and distributed to the public online: 

RFCs are distributed online by being stored as public access files, and a 

short message is sent to the distribution list indicating the availability of 

the memo. 

The online files are copied by the interested people and printed or dis-

played at their site on their equipment. This means that the format of the 

online files must meet the constraints of a wide variety of printing and dis-

play equipment. (RFCs may also be returned via e-mail in response to an 

e-mail query, or RFCs may be found using information and database 

EX 1006 Page 105



  

 92

searching tools such as Gopher, Wais, WWW, or Mosaic.)216 

168. Three years later, RFC2026 reaffirmed that RFC publications are widely dis-

seminated on the Internet. For example, § 2.1 of RFC2026 explains: 

Each distinct version of an Internet standards-related specification is pub-

lished as part of the “Request for Comments” (RFC) document series. This 

archival series is the official publication channel for Internet standards 

documents and other publications of the IESG, IAB, and Internet commu-

nity. RFCs can be obtained from a number of Internet hosts using anony-

mous FTP, gopher, World Wide Web, and other Internet document-re-

trieval systems.217 

169. RFC2026 further explains that, once a standard is adopted, it will be for-

mally published: 

If a standards action is approved, notification is sent to the RFC Editor and 

copied to the IETF with instructions to publish the specification as an RFC. 

The specification shall at that point be removed from the Internet-Drafts 

directory.218 

170. Each RFC document is uniquely numbered. The publication date of each 

RFC is contained in the RFC, typically in the top right corner of the first page of 

the document. Section 4a of RFC1543 describes: 

This is the Month and Year of the RFC Publication. Indicated on the third 

                                                        

216 Ex. 1040 (RFC1543), 2. 
217 Ex. 1041 (RFC2026), 5. 
218 Ex. 1041 (RFC2026), 17. 

EX 1006 Page 106



  

 93

line on the right side.219 

171. Thus, before the priority date of the Challenged Patents and today, RFCs are 

well-known documents in the networking community and are commonly reviewed 

by people ranging from researchers, to industry professionals, to students, to gov-

ernment personnel. In my own research and teaching, I commonly track develop-

ments in various IETF working groups and obtain, read, and use both Internet 

Drafts as well as RFCs. 

172. RFCs typically contain technical specifications and organizational notes and 

can cover many different topics, including standardized network protocols. RFCs 

most typically represent the definitive statement of, or definition of, a protocol, ar-

chitecture, or use of a technology. For this reason, I, and numerous others, fre-

quently cite to RFCs in our scholarly writing. 

173. RFC1945 is the specification for version 1.0 of the HTTP protocol authored 

by T. Berners-Lee, R. Fielding, and H. Frystyk. RFC1945 states that it was pub-

lished in May 1996. This is consistent with my recollection as to when the RFC for 

HTTP/1.0 was publicly available. Although I do not recall precisely when I first 

obtained a copy for RFC1945 (from a publicly accessible website), I am certain I 

                                                        

219 Ex. 1040 (RFC1543), 6. 

EX 1006 Page 107



  

 94

had obtained a copy before 1997.220 More generally, I am not aware of any publi-

cation date stated on an RFC being inaccurate. Thus, I understand that RFC1945 

qualifies as prior art under at least pre-AIA 35 U.S.C. §102(b). 

174. RFC1945 detailed the requirements, parameters, and overall operation of 

HTTP/1.0 for consideration by all those of skill in the art. Although the RFC, like 

all RFCs, solicited comments from interested parties and was not necessarily the 

final version of HTTP/1.0, it was the de facto standard until the RFC was updated 

by RFC2068, in January 1997, which formally defined version 1.1 of Hypertext 

Transfer Protocol (“HTTP”). 

175. RFC1945 reflects common usage of the protocol referred to as “HTTP/1.0” 

(version 1.0 of the HTTP protocol).221 HTTP has been in use by the World-Wide 

Web global information initiative since 1990. HTTP “is an application-level proto-

col with the lightness and speed necessary for distributed, collaborative, hyperme-

dia information systems.”222 

176. RFC1945’s Section 10 provides the “Header Field Definitions.”223 Section 

10 “defines the syntax and semantics of all commonly used HTTP/1.0 header 

                                                        

220 Ex. 1044 (Internet-Archive Affidavit) (illustrating RFC1945 was publicly ac-

cessible and available for download at least by May 30, 1998). 
221 RFC1945, 1. 
222 RFC1945, 1. 
223 RFC1945, 37. 

EX 1006 Page 108



  

 95

fields.”224 Examples of HTTP header fields disclosed in RFC1945 include: “Con-

tent-Type,” “User-Agent,” and “Referer.”225 In RFC1945, “Referrer” was mis-

spelled “Referer.” The standard’s later versions did not correct this misspelling. 

177. RFC1945 describes the “Referer” as follows: 

The Referer request-header field allows the client to specify, for the 

server’s benefit, the address (URI) of the resource from which the Request-

URI was obtained. This allows a server to generate lists of back-links to 

resources for interest, logging, optimized caching, etc. It also allows obso-

lete or mistyped links to be traced for maintenance. The Referer field must 

not be sent if the Request-URI was obtained from a source that does not 

have its own URI, such as input from the user keyboard. 

Referer   = “Referer” “:” ( absoluteURI | relativeURI ) 

Example: 

Referer: http://www.w3.org/hypertext/DataSources/Overview.html 

If a partial URI is given, it should be interpreted relative to the Request 

URI. The URI must not include a fragment. 

Note: Because the source of a link may be private information or 

may reveal an otherwise private information source, it is strongly 

recommended that the user be able to select whether or not the 

Referer field is sent. For example, a browser client could have a 

toggle switch for browsing openly/anonymously, which would re-

                                                        

224 RFC1945, 37. 
225 RFC1945, 40-46. 

EX 1006 Page 109



  

 96

spectively enable/disable the sending of Referer and From infor-

mation.226 

178. As discussed above, Patentee has alleged that the use of the Referer field re-

sults in a “conversational flow.” Notably, the HTTP Referer field has not changed 

in subsequent versions of HTTP.227  

E. Baker Overview 

179. WO 97/23076 (“Baker”) is titled “System and Method for General Purpose 

Network Analysis,” and published on June 26, 1997. Baker was not considered by 

the USPTO during the original prosecution of the Challenged Patents. It is my un-

derstanding that Baker is prior art to each of the Challenged Patents. 

180. Baker’s teachings relate to “a network interface system” that has “one or 

more programmably configurable protocol descriptions which may be stored in 

and retrieved from an associated memory.”228 Baker further described its system as 

being directed to: 

[I]mproved systems and methods for parsing, filtering, generating and 

analyzing data (or frames of data) transmitted over a data communica-

tions network. In one particularly innovative aspect of the present inven-

tion, a single logic control module, which may be implemented in hard-

                                                        

226 RFC1945, 44-45. 
227 Ex. 1042 (RFC2616), 140-41. 
228 Baker, Abstract. 

EX 1006 Page 110



  

 97

ware or software, is utilized to perform any of a number of data manip-

ulation functions (for example, parsing, filtering, data generation or 

analysis functions) based upon one or more programmably configura-

ble protocol descriptions which may be stored in and retrieved from an 

associated memory.229 

181. Baker also discloses that its approach accommodates changes to existing 

network protocols and newly added protocols: 

The use of common control logic (i.e. the use of a single logic control 

module) and programmably configurable protocol descriptions allows 

changes to existing protocols to be made and support for new protocols 

to be added to a system in accordance with the present invention 

through configuration only--without the need for hardware and/or soft-

ware system modifications. Thus, those skilled in the art will appreciate 

that a network interface in accordance with the present invention may 

be configured and reconfigured, if necessary, in a highly efficient and 

cost effective manner to implement numerous data manipulation func-

tions and to accommodate substantial network modifications (for ex-

ample, the use of different data transmission hardware, protocols or 

protocol suites) without necessitating substantial system changes.230 

182. Baker further discloses storing protocol descriptions as “protocol description 

files (PDF).”231 As provided below, Baker’s Figure 1 shows database 14 of PDFs 

                                                        

229 Baker, 3:32-4:6. 
230 Baker, 4:7-21. 
231 Baker, 19:6-10. 

EX 1006 Page 111



  

 98

22, which network device control logic 16 uses to retrieve network frames based 

on extracted field values and filtering criteria contained in PDFs 22.232 

 

 

183. Baker’s PDFs include a protocol control record that defines the overall struc-

ture of a network protocol and references other information relating to the network 

protocol.233 Each PDF includes (i) a total bit length of the protocol header; (ii) a 

number of fields required to describe the header; and (iii) field records, each de-

scribing a protocol header field, including a byte offset from the start of the proto-

col header and, if appropriate, an associated lookup structure for determining the 

next protocol control record to use.234 

                                                        

232 Baker 10:10-35, Fig. 1. 
233 Baker, 12:25-32. 
234 Baker, 12:25-15:17, Tables 1, 2, and 4.  

EX 1006 Page 112



  

 99

184. Upon system initialization, a “ProtocolList” is constructed from the protocol 

and associated control record information extracted from all PDFs.235 The Proto-

colList is a sorted vector of all protocol records.236  

F. Wakeman Overview 

185. U.S. Patent No. 5,740,175 (“Wakeman”) is titled “Forwarding Database 

Cache For Integrated Switch Controller,” and issued on April 14, 1998. Wakeman 

was not considered by the USPTO during the original prosecution of the Chal-

lenged Patents. It is my understanding that Wakeman is prior art under at least 35 

U.S.C. §102(b) to each of the Challenged Patents. 

186. Wakeman describes a network switch that includes a content addressable 

memory (CAM) cache: 

A LAN network switch includes a RAM forwarding database which con-

tains the address-to-port mappings for all the workstations or other devices 

connected to the switch’s plurality of ports and further includes at least one 

CAM-cache connected to respective one or more of the switch’s ports. The 

CAM-cache, having an access time much faster than that of the forwarding 

database, stores selected ones of the address-to-port mappings. When it is 

desired for the switch to forward a packet, the destination address is ex-

tracted and the CAM-cache is accessed and searched. If the correct map-

ping is contained in the CAM- cache, the packet is immediately forwarded 

                                                        

235 Baker, 20:25-21:11. 
236 Baker, 20:25-21:11. 

EX 1006 Page 113



  

 100 

to the destination port without accessing the much larger and slower for-

warding database. Only if the CAM-cache does not contain the correct 

mapping is the forwarding database accessed to retrieve the correct map-

ping. The packet is then forwarded to the destination port, and the CAM-

cache is updated with this mapping so that succeeding packets having the 

same destination address-to-port mapping may be forwarded to the desti-

nation port by accessing only the fast CAM-cache and, by eliminating the 

need to access the much slower forwarding database, increasing the for-

warding speed of the switch.237 

187. Wakeman discusses prior-art network switch 10 as having forwarding data-

base (FSB) 12, which is shown below in Figure 1. Wakeman explains that data-

bases, such as FSB 12, are “typically implemented either as a hardware content ad-

dressable memory (CAM) or as RAM.”238 And Wakeman states that a hardware 

CAM “is very fast and can typically retrieve mappings in less than 100 ns. A 

RAM, on the other hand, requires a searching algorithm and typically requires sev-

eral micro- seconds to locate the correct mapping and, thus, is typically too slow to 

keep up with [switch engine] SE 11.”239 

                                                        

237 Wakeman, Abstract. 
238 Wakeman, 1:55-56. 
239 Wakeman, 1:56-61. 

EX 1006 Page 114



  

 101 

 

188. Wakeman discloses improving a CAM system by including a CAM cache: 

Upon receiving an incoming data packet, the MAC associated with the 

source port will, after extracting the destination address from the packet, 

access its associated CAM-cache to find the correct address-to-port map-

ping. If the correct mapping is contained in the CAM-cache, the packet 

may be immediately forwarded to the destination port without having to 

access the much larger and slower forwarding database. 

Where the CAM-cache does not contain the correct mapping, the MAC 

then causes the correct mapping to be retrieved from the forwarding data-

base. The packet may then be forwarded to the correct destination port. 

The CAM-cache is then updated with this mapping so that succeeding 

packets having the same destination address-to-port mapping may be 

EX 1006 Page 115



  

 102 

quickly forwarded to the destination port by accessing only the fast CAM-

cache, thereby eliminating the need to access the much slower forwarding 

database.240 

189. As shown below in Figure 2, Wakeman teaches network switch 20 having 

switch engine 11, forwarding database 12, media access controllers 17-20, and 

CAM-Caches 31-34.241 

 

190. Wakeman describes that “CAM caches 31-34 may be distributed across 

ports 13-16 of switch 20, where one of the CAM caches described above may ser-

vice more than one port.”242 And Wakeman describes the CAM cache’s internal ar-

chitecture and operation as follows: 

                                                        

240 Wakeman, 2:31-51. 
241 Wakeman, 1:20-28, 3:26-28, Fig. 2. 
242 Wakeman, 5:28-31. 

EX 1006 Page 116



  

 103 

CAM cache 31 which, in accordance with the preferred embodiment, in-

cludes a FIFO 35, a memory 36, a learning and aging block 38, and logic 

37. These elements are well understood in the art and thus will not be dis-

cussed below. The extracted source and destination addresses of the first 

packet are queued in FIFO 35 which, in turn, provides the destination ad-

dress to memory 36. If the correct destination mapping is contained in 

memory 36, there is thus a match and memory 36 provides the correct des-

tination port to logic 37 which, in turn, forwards the port location and a 

“hit” signal to MAC 17. MAC 17 then alerts SE 11 of the correct destina-

tion port. SE 11 informs MAC 18 that a packet is “addressed” thereto and 

directs the first packet to MAC 18 which, in turn, forwards the packet to 

segment 14a where it will be accepted by the workstation having the cor-

rect destination address. Thus, where the correct destination mapping is 

contained in CAM cache 31, accessing and searching FDB 12 is wholly 

unnecessary. Since the accessing speed of CAM cache is much faster than 

that of FDB 12, the inclusion of CAM caches 31-34 in a network switch 

as described above results in an increase in forwarding speed. Note that 

although the FDB 12 in switch 20 is preferably a RAM, CAM caches 31-

34 will decrease the access time and thus increase forwarding speeds irre-

spective of the particular construction of FDB 12 (e.g., where FDB 12 is a 

hardware CAM as opposed to RAM). 

If the correct destination mapping is not contained in memory 36, logic 37 

sends a “miss” signal to MAC 17 which then alerts SE 11 of the destination 

address extracted from the packet. SE 11 then searches FDB 12 to locate 

the correct destination mapping and, having retrieved the correct destina-

tion mapping, forwards the packet as described earlier with reference to 

EX 1006 Page 117



  

 104 

prior art switch 10.243 

191. As provided below, Wakeman’s Figure 3 illustrates the internal architecture 

of the CAM-Cache. 

 

G. Hasani Overview 

192. U.S. Patent No. 5,805,808 (“Hasani”) is titled “Real Time Parser For Data 

Packets In A Communications Network.” The patent application that issued as 

Hasani was filed on April 9, 1997 and ultimately issued on September 8, 1998. 

Hasani claims to be a continuation of U.S. patent applications filed on December 

29, 1994 and December 27, 1991. I understand that Riddle qualifies as prior art un-

der at least 35 U.S.C. §102(a) and §102(e) based on its filing and issue dates and 

                                                        

243 Wakeman, 3:54-4:20. 

EX 1006 Page 118



  

 105 

the filing dates of the related applications. It is my understanding that Hasani is 

prior art to each of the Challenged Patents. 

193. The ’099, ’725, ’646, and ’789 Patents list Hasani in their respective Refer-

ences Cited sections. But it is my understanding that Hasani was not cited in any 

rejection by the Examiners during the prosecution of the Challenged Patents. 

194. Hasani teaches a packet parser and details that it was known in the art to 

store parsing and extraction operations in a database.244 Hasani describes that its 

parser database contains memory locations for different parsing and extraction op-

erations.245 For example, Hasani shows how its parsing/extraction operations parse 

and extract information from an IEEE 802.2 medium access control (MAC) 

packet.246  And Hasani discloses that its teachings apply to “any standard packet 

format.”247  

V. A PERSON OF ORDINARY SKILL IN THE ART 

195. It is my understanding that I must analyze and apply the prior art cited above 

from the perspective of a person having ordinary skill in the art (“POSITA”) as of 

the time of the invention, which I understand is June 30, 1999 for purposes of IPR 

proceedings. When forming my opinions herein, I analyzed and applied the prior 

                                                        

244 Hasani, 8:1-53, Figures 3, 4 (parser database 182). 
245 Hasani, 6:12-57, Fig. 5B. 
246 Hasani, 5:9-24, 6:27-57, Fig. 5B. 
247 Hasani, 5:16-20. 

EX 1006 Page 119



  

 106 

art and claim constructions from the perspective of a POSITA as of the time of the 

invention.  

196. I understand that Patentee has previously taken the position: 

[A POSITA] in the late 1990s would have the equivalent of a four-year 

degree from an accredited institution (usually denoted as a B.S. degree) in 

computer science, computer engineering or the equivalent and experience 

with, or exposure to, packet analysis techniques. A [POSITA] would also 

have approximately 1-2 years of professional experience with packet net-

work communication protocols. Additional graduate education could sub-

stitute for professional experience, while significant experience in the field 

might substitute for formal education.248 

197. I also understand that the Board previously determined in IPR proceedings 

that a POSITA “had a bachelor’s degree in electrical engineering, computer engi-

neering, computer science, or a related field (or its equivalent), and one to two 

years of experience working in networking environments, including at least some 

experience with network traffic monitors and/or analyzers.”249  

198. For purposes of my analysis herein, I agree with the Board’s determination 

regarding a POSITA’s education and experience. 

199. I am well aware of the qualifications of such a skilled artisan because I have 

worked with, supervised, and hired engineers with similar capabilities. By the year 

                                                        

248 E.g., Ex. 1050 (IPR2017-00450 Prelim. Resp.), 27-28. 
249 E.g., Ex. 1056 (IPR2017-00450 Institution Decision), 13-14.  

EX 1006 Page 120



  

 107 

1999, I had been awarded a Ph.D. in computer science and had several years of 

practical experience in both industry (5 years) and academia (10 years, including 

M.S. and Ph.D.). As of the year 1999, I was teaching and working with individuals 

who met the above criteria of persons of ordinary skill in the art. In particular, I 

have taught and worked with distinct groups of graduate students. These students 

and colleagues possessed basic knowledge regarding networking environments, in-

cluding at least some experience with network traffic monitors and/or analyzers. 

One group entered the graduate program with B.S. degrees in CS/CE/EE and sev-

eral years of industry training (3 years was typical). Another group entered the pro-

gram with an M.S. degree to obtain a Ph.D. having gained significant experience 

during their M.S. coursework. Finally, I have worked with and taught advanced 

Ph.D. students that had at least two years of post-BS experience and knowledge 

gained while in the graduate program. During my time in industry, many of my 

colleagues possessed at least a B.S. in the relevant fields and had several years of 

work experience. 

200. These students and colleagues possessed knowledge of networking environ-

ments, including some experience with network traffic monitors and/or analyzers. 

Further, many of these students ultimately found employment at companies that 

had an expressed interest in and need for skills relating to computer networking en-

vironments, particularly network traffic monitoring and analysis, in this time 

EX 1006 Page 121



  

 108 

frame, further corroborating that these were ordinarily skilled artisans. 

201. Thus, I am familiar with the understanding and knowledge of persons of or-

dinary skill in the art as of 1999, and was at least as qualified as the POSITA that I 

have identified above. Thus, I understand the perspective of a POSITA, which I 

have applied in my analysis.  

VI. CLAIM CONSTRUCTION 

202.  For IPR petitions filed after November 13, 2018, I understand the Board 

construes claim terms as having their ordinary and customary meaning to a 

POSITA at the time of invention (i.e., the same standard used in district court). I 

have applied this standard in rendering my opinions on claim construction. In addi-

tion, I have been asked to assume that the claims are not indefinite. 

203. For IPR petitions filed before November 13, 2018, I understand the Board 

construed claim terms as having their broadest reasonable interpretation to a 

POSITA at the time of invention. Because Sandvine filed its IPR petitions in 2017, 

the Board used the broadest reasonable interpretation standard in those IPRs.250 

A. “Conversational Flow” / “Conversational Flow-Sequence” 

204. The terms “conversational flow” and “conversational flow-sequence” appear 

in every independent Challenged Claim, as well as many of their dependents. 

205. I understand that Palo Alto Networks has argued in district court that due to 

                                                        

250 E.g., Ex. 1062 (IPR2017-00863 Institution Decision). 

EX 1006 Page 122



  

 109 

contradictory positions Patentee has taken regarding the scope of this term, the 

term is indefinite as arguably susceptible to a broader (but indeterminate) scope 

than I understand Petitioners are proposing here. As noted above, I have been 

asked to assume the claims are not indefinite. I have also been asked to assume that 

statements made in the intrinsic record that clearly and unambigusouly limit the 

meaning and scope of “conversational flow” have a limiting effect. On that basis, 

and in view of the disclosures in the Challenged Patents, their prosecution histo-

ries, and prior IPR proceedings, it is my opinion that a POSITA would have under-

stood the terms “conversational flow” and “conversational flow-sequence” to 

mean: 

The sequence of packets that are exchanged in any direction as a result 

of specific software program activity, where such packets form multiple 

connection flows that are linked based on that activity. 

206. This construction is consistent with the specifications of the Challenged Pa-

tents. For example, the ’099 Patent, which is incorporated-by-reference by each of 

the other Challenged Patents, describes the difference between a “connection flow” 

and a “conversational flow” as follows: 

The term “connection flow” is commonly used to describe all the pack-

ets involved with a single connection. A conversational flow, on the 

other hand, is the sequence of packets that are exchanged in any direc-

EX 1006 Page 123



  

 110 

tion as a result of an activity—for instance, the running of an applica-

tion on a server as requested by a client.251 

What distinguishes this invention from prior art network monitors is 

that it has the ability to recognize disjointed flows as belonging to the 

same conversational flow.252 

207. Consistent with the Challenged Patents, the above construction differentiates 

“conversational flow” from a “connection flow.”  

208. In addition, Patentee has explicitly described that the exchanging of packets 

for a “conversational flow” results from specific software program activity: 

Essentially, the network monitor disclosed in the ’099 patent catego-

rizes network transmissions into “conversational flows,” which relate 

individual packets and connection flows based on specific application 

activity.253 

An “application” is a software program that runs on a computer, for 

example, a web browser, word processor, Skype, etc.254   

As noted above, the conversational flows of the ‘099 patent relate pack-

ets, and ultimately connection flows, when they are the result of an ap-

plication activity.255 

A conversational flow relates packets and flows between the client 

                                                        

251 E.g., ’099 Patent, 2:35-40. 
252 ’099 Patent, 3:47-51. 
253 Ex. 1054 (IPR2017-00769 Prelim. Resp.), 8, 50. 
254 Ex. 1049 (IPR2017-00769 Opp’n to Request for Rehearing), 13. 
255 Ex. 1054 (IPR2017-00769 Prelim. Resp.), 40. 

EX 1006 Page 124



  

 111 

and server as related to specific application activities. For example, 

with conversational flows, packets and flows related to one video 

stream are distinguished from a different video stream, even under the 

same protocol, from a video conference, or from Facebook–assuming 

all of the applications call to the same server.256 

[T]he conversational flows claimed require processing the information 

in each packet column (i.e., across OSI levels within a packet) and de-

termining if a given packet is related to existing flows. For example, 

Packet 1 and Packet 2, above, may be video and audio traffic, respec-

tively, originating from a Skype call, whereas Packet 3 might be gen-

erated by a different application (for example, an email message) and 

Packet 4 from still another application (for example, a web browser).  

Packets 1 and 2 are related because they are data streams originating 

from the same instance of an application (i.e., Skype), where Packets 

3 and 4 are data packets from separate applications.257 

209. While the above statements are directed to the prior IPR proceedings regard-

ing the ’099 Patent, Patentee made the same or substantially similar statements in 

the other prior IPR proceedings.258 

210. Further, in prior IPR proceedings, Patentee has acknowledged that a “con-

versational flow” is more than merely a single connection or “connection flow”: 

                                                        

256 Ex. 1054 (IPR2017-00769 Prelim. Resp.), 55. 
257 Ex. 1054 (IPR2017-00769 Prelim. Resp.), 46-47. 
258 E.g., Ex. 1050 (IPR2017-00450), 47, 51-52; Ex. 1051 (IPR2017-00451 Prelim. 

Resp.), 52, 57; Ex. 1053 (IPR2017-00630), 44-45, 46, 49; Ex. 1055 (IPR2017-

00862), 43-44, 47, 51-52. 

EX 1006 Page 125



  

 112 

The ’099 patent treats packets as complete units, such that information 

is extracted from the packets, entire packets are related to each other as 

part of a connection flow, and ultimately connection flows are related 

to each other when they are part of an application activity (i.e., a con-

versational flow).259 

According to the Patentees: “[i]n order to eliminate the possibility of 

disjointed conversational exchanges, it is desirable for a network packet 

monitor to be able to ‘virtually concatenate’—that is, to link—the first 

exchange with the second. If the clients were the same, the two packet 

exchanges would then be correctly identified as being part of the same 

conversational flow.”260  

[Prior art] stands in stark contrast with the concept of “connection 

flows” and “conversational flows” in ’099 patent where each packet is 

part of a single connection flow, and different connection flows are 

related to each other into conversational flows. 261 

[… T]o monitor those flows to establish relationships between indi-

vidual flows to create conversational flows taught in the ’099 pa-

tent.”262 

The problem with only tracking connection flows is that certain appli-

cations and protocols may generate multiple connections. In other 

words, a single application may spawn multiple connections for a single 

                                                        

259 E.g., Ex. 1054 (IPR2017-00769 Prelim. Resp.), 43-44. 
260 E.g., Ex. 1054 (IPR2017-00769 Prelim. Resp.), 16 (citing ’099 Patent, 3:1-6). 
261 E.g., Ex. 1054 (IPR2017-00769 Prelim. Resp.), 45. 
262 E.g., Ex. 1054 (IPR2017-00769 Prelim. Resp.), 48. 

EX 1006 Page 126



  

 113 

activity.263 

211. In a prior tutorial to a district court, Patentee used the software program 

Skype to demonstrate the alleged problem in the art the Challenged Patents ad-

dressed.264 Citing the below two figures, Patentee stated that a given Skype call 

generates multiple separate connection flows for video, audio, and control infor-

mation. And Patentee asserted that linking those separate connection flows based 

on that specific software program activity (i.e., the Skype call) creates one “con-

versational flow.” 

 

                                                        

263 E.g., Ex. 1054 (IPR2017-00769 Prelim. Resp.), 16. 
264 Ex. 1066 (Patentee’s Tutorial in NetScout district court case), 18-19. 

EX 1006 Page 127



  

 114 

 

212. In current district-court proceedings, I understand that the Patentee has pro-

posed “conversational flow” means: 

[T]he sequence of packets that are exchanged in any direction as a result 

of an activity—for instance, the running of an application on a server as 

requested by a client—and where some conversational flows involve more 

than one connection, and some even involve more than one exchange of 

packets between a client and server.265 

                                                        

265 1079 (Joint Claim Construction and Prehearing Statement in Palo Alto Network 

district court case); Ex. 1067 (Claim Construction Memo and Order in NetScout 

district court case) (Patentee adopting substantially similar construction); Ex. 1054 

(IPR2017-00769 Prelim. Resp.), 29;.  

EX 1006 Page 128



  

 115 

213. However, the Patentee’s proposed construction does not properly differenti-

ate a “conversational flow” from either a “connection flow.” And that proposed 

construction includes optional examples: “… for instance, the running of an appli-

cation on a server as requested by a client … some conversational flows involve 

more than one connection, and some even involve more than one exchange of 

packets between a client and server.” After removing those optional examples, Pa-

tentee’s proposal distills to “the sequence of packets exchanged as a result of an 

activity.” This does not differentiate “conversational flow” from “flow” or “con-

nection flow.”  

214. The prior art discussed below invalidates the Challenged Patents under both 

proposed constructions. As my below analysis demonstrates, the prior art teaches 

or renders obvious a “conversational flow” forming multiple connection flows that 

are linked by specific software program activity or under Patentee’s proposed con-

struction. 

B. “State Of The Flow” / “State Of The Conversational Flow” 

215. The term “state of the flow” appears in the following Challenged Claims: 

’099 claims 1 and 2; ’725 claim 16; ’646 claim 1; ’751 claims 1 and 10; and ’789 

claims 13 and 44. The term “state of the conversational [flow/flows]” appears in 

the following Challenged Claims: ’099 claim 1 and ’725 claim 17. 

216. I understand that in prior IPR proceedings, Patentee asserted that “state of 

EX 1006 Page 129



  

 116 

the flow” means “an indication of all previous events in the flow that lead to recog-

nition of the content of all of the protocol levels.”266 Patentee asserted the same 

meaning for “state of the conversational flow.”267 In support of this meaning, Pa-

tentee wrote: 

[D]epending on a packet’s relationship to other previously encountered 

packets, the disclosed monitor will perform certain operations: The exact 

operation of the state processor and functions performed by it will vary 

depending on the current packet sequence in the stream of a conversational 

flow. The state processor moves to the next logical operation stored from 

the previous packet seen with this same flow signature. If any processing 

is required on this packet, the state processor will execute instructions from 

a database of state instruction for this state until there are either no more 

left or the instruction signifies processing.268 

217. At the time of the purported invention, it was well known in the art that a 

“state of the flow” describes the status of the flow based on prior events in the 

flow. When discussing the “state of the flow,” the Challenged Patents specify: 

“[o]ne aspect of monitor 108 is its ability to maintain the state of a flow. The state 

of a flow is an indication of all previous events in the flow that lead to recognition 

                                                        

266 Ex. 1050 (IPR2017-00450 Prelim. Resp.), 31; Ex. 1051 (IPR2017-00451 Pre-

lim. Resp.), 32; Ex. 1052 (IPR2017-00629 Prelim. Resp.), 31; Ex. 1053 (IPR2017-

00630 Prelim. Resp.), 31; Ex. 1054 (IPR2017-00769 Prelim. Resp.), 31; Ex. 1055 

(IPR2017-00862 Prelim. Resp.), 30-31. 
267 Ex. 1055 (IPR2017-00862 Prelim. Resp.), 30-31. 
268 E.g., Ex. 1050 (IPR2017-00450 Prelim. Resp.), 30-31. 

EX 1006 Page 130



  

 117 

of the content of all the protocol levels, e.g., the ISO model protocol levels.”269 The 

Challenged Patents also disclose that this indication of previous events includes pa-

rameters like time, length of the conversational flow, and data rate: 

The preferred embodiment forms and remembers the state of any conver-

sational flow, which is determined by the relationship between individual 

packets and the entire conversational flow over the network. By remem-

bering the state of a flow in this way, the embodiment determines the con-

text of the conversational flow, including the application program it relates 

to and parameters such as the time, length of the conversational flow, data 

rate, etc.270 

218. My analysis herein is the same if Patentee’s construction is used or if the or-

dinary and customary meaning is used. 

C. “The Flow” / “New Flow” / “Existing Flow” 

219. The term “the flow” appears in the following Challenged Claims: ’099 

claims 1-2; ’725 claim 16; ’646 claim 1; ’751 claims 1, 5, 10, and 15; and ’789 

claims 13-14, 16, and 44. The term “new flow” appears in ’646 claims 1, 7, and 16; 

’751 claims 1, 10, and 17; and ’789 claims 1, 13, 19, and 44. Further, the term “ex-

isting flow” appears in ’646 claims 1, 7, and 16; ’751 claims 1, 10, and 17; and 

’789 claims 1, 13, 19, and 44. 

220. In view of the language and logical operation of the Challenged Claims, the 

                                                        

269 E.g., ’099 Patent, 10:28-32. 
270 E.g., ’099 Patent, 5:27-34. 

EX 1006 Page 131



  

 118 

prosecution history, and prior IPR proceedings, it is my opinion that a POSITA 

would have these terms to respectively mean “the conversational flow,” “new con-

versational flow,” and “existing conversational flow.” 

221. With respect to “the flow,” the only logical antecedent for this term is “con-

versational flow” previously recited in the Challenged Claims. For example, the 

last line of ’725 claim 10 recites “the packet as belonging to a conversational 

flow,” and ’725 claim 16, which depends from claim 10, further recites “the state 

of the flow of the packet.” The only logical antecedent for ’725 claim 16’s “the 

flow” is the previously recited “conversational flow.” 

222. With respect to “new flow” and “existing flow,” the logical operation of the 

claims results in each of these flows referring to a “conversational flow.”  For ex-

ample, ’646 claim 16 recites looking up a database of “previously encountered 

conversational flows to which a received packet may belong.” The consequence of 

this look up is a determination whether the received packet belongs to an existing 

conversational flow (included in the database) or a new conversational flow (not 

included in the database). The subsequent conditional operations recited in the 

claim depend on this determination: “(d) if the packet is of an existing flow, classi-

fying the packet…(e) if the packet is of a new flow, storing a new flow entry for 

the new flow.” This logical operation also applies to the other claims reciting “new 

EX 1006 Page 132



  

 119 

flow” and “existing flow.”271 

223. Further, the Patentee confirmed this understanding for “new flow” and “ex-

isting flow” during the prosecution of the ’646 Patent: 

The analyzer subsystem …, for each packet, looks up a database of flow 

records for previously encountered conversational flows to determine 

whether a signature is from an existing flow. The present invention de-

scribed the lookup mechanism in more detail. In one aspect, the analyzer 

further identifies the state of the existing flow, and performs any state 

processing operations specified for the state. In the case of a newly en-

countered flow, the analyzer includes a flow insertion and deletion en-

gine for inserting new flows into the database of flows.272 

224. During the prosecution of the ’751 Patent, the Patentee also confirmed this 

understanding for “[new/existing] flow”: 

An aspect of the present invention includes, for any packet ascertained 

to belong to an existing flow by looking up the database, identifying the 

state of the flow …. Anderson has no concept of state of the flow, or 

even of a conversational flow, so that no such state operations are there-

fore carried out…. 

Furthermore, Applicant’s lookup is to determine if a packet is part of 

an existing conversational flow.273 

                                                        

271 E.g., ’646 claims 1 and 7; ’751 claims 1, 17; ’789 claims 1, 19, 44. 
272 Ex. 1020 (2/10/2004 Office Action Response), 8. 
273 Ex. 1021 (11/03/2003 Office Action Response, 9-11), 228, 230-31. 

Ex. 1020 (2/10/2004 Office Action Response for ’646 Patent), 8. 

EX 1006 Page 133



  

 120 

225. Additionally, in prior IPR proceedings, the Board found that the claimed 

“new flow” and “existing flow” mean “new conversational flow” and “existing 

conversational flow”: 

Similar to [’646] claim 1, independent claims 7 and 16 each recite a 

database of flow-entries for previously encountered “conversational 

flows ….” [C]laim [16] requires “conversational flows” at least due to 

the language of limitations (d) and (e). Limitation (d) covers the situa-

tion where there is an “existing” conversational flow and limitation 

(e) covers storing a new flow-entry in the database for a “new” con-

versational flow.274 

226. Moreover, in another prior IPR proceedings, the Board found that the 

claimed “new flow” and “existing flow” mean “new conversational flow” and “ex-

isting conversational flow”: 

[’789 C]laim 19 … requires “conversational flows” at least due to the 

language of limitation (f). Limitation (f) covers the situation where 

there is an “existing” conversational flow and the situation of storing 

a new flow-entry in the database for a “new” conversational flow.275 

227. In current district-court proceedings, I understand that the Patentee has pro-

posed each of these terms to mean “[n]o construction necessary; Alternatively: a 

                                                        

274 Ex. 1056 (IPR2017-00450 Institution Decision), 24, n.9. 
275 Ex. 1058 (IPR2017-00629 Institution Decision), 11, n.5. 

EX 1006 Page 134



  

 121 

stream of packets being exchanged between any two addresses in the network”276 

My analysis herein is the same if Patentee’s construction is used or if “the conver-

sational flow,” “new conversational flow, and “existing conversational flow” are 

used. 

D. “State Operations” / “State Processing Operations” 

228. The term “state operations” or “state processing operations” appears in the 

following Challenged Claims: ’099 claim 1; ’725 claims 16-17; ’646 claim 1; ’751 

claims 1, 10, and 14; and ’789 claims 13, 15, 17, 44, and 49. 

229. I understand that in prior IPR proceedings, Patentee asserted that “state oper-

ation” means “an operation to be performed while the state processor is in a partic-

ular state.”277 

230. Regarding “state operations,” the Challenged Patents disclose:  

The state processor 328 analyzes both new and existing flows in order to 

analyze all levels of the protocol stack, ultimately classifying the flows by 

application (level 7 in the ISO model). It does this by proceeding from 

state-to-state based on predefined state transition rules and state operations 

as specified in state processor instruction database 326. A state transition 

                                                        

276 Ex. 1079 (Joint Claim Construction and Prehearing Statement in Palo Alto Net-

work district court case). 
277 Ex. 1050 (IPR2017-00450 Prelim. Resp.), 34; Ex. 1051 (IPR2017-00451 Pre-

lim. Resp.), 34; Ex. 1052 (IPR2017-00629 Prelim. Resp.), 33; Ex. 1053 (IPR2017-

00630 Prelim. Resp.), 33; Ex. 1054 (IPR2017-00769 Prelim. Resp.), 33; Ex. 1055 

(IPR2017-00862 Prelim. Resp.), 34 (addressing “state processing operations”). 

EX 1006 Page 135



  

 122 

rule is a rule typically containing a test followed by the next-state to pro-

ceed to if the test result is true. An operation is an operation to be per-

formed while the state processor is in a particular state—for example, in 

order to evaluate a quantity needed to apply the state transition rule. The 

state processor goes through each rule and each state process until the 

test is true, or there are no more tests to perform.278 

231. Patentee has acknowledged that “the claims themselves often define specific 

state operations required for a given claim.”279 For example, the following are state 

operations recited in the claims of the Challenged Patents: 

• ’646 claim 13, and ’789 claim 27: “wherein the set of possible state oper-

ations that the state processor is configured to perform includes search-

ing for one or more patterns in the packet portions”; 

• ’646 claim 15, ’751 claim 14, ’789 claim 15, and ’789 claims 30, 45: 

“wherein the state operations include updating the flow-entry, including 

[storing] identifying information for future packets to be identified with 

the flow-entry’: 

• ’751 claim 13: “wherein the reporting is part of the state operations for 

the state of the flow”; 

• ’751 claim 15, and ’789 claims 14 and 16: “wherein the state processing 

of each received packet of a flow furthers the identifying of the applica-

tion program of the flow”; 

                                                        

278 E.g., ’099 Patent, 14:63-15:9. 
279 Ex. 1050 (IPR2017-00450 Prelim. Resp.), 34; Ex. 1051 (IPR2017-00451 Pre-

lim. Resp.), 34-35; Ex. 1052 (IPR2017-00629 Prelim. Resp.), 33; Ex. 1053 

(IPR2017-00630 Prelim. Resp.), 33; Ex. 1054 (IPR2017-00769 Prelim. Resp.), 33; 

Ex. 1055 (IPR2017-00862 Prelim. Resp.), 34. 

EX 1006 Page 136



  

 123 

• ’751 claim 16: “wherein one or more metrics related to the state of the 

flow are determined as part of the state operations specified for the state 

of the flow”; 

• ’789 claims 17 and 46: “wherein the state operations include searching 

the parser record for the existence of one or more reference strings”; 

and 

• ’789 claim 47: “wherein one of the state operations specified for at least 

one of the states includes creating a new flow-entry for future packets to 

be identified with the flow, the new flow-entry including identifying in-

formation for future packets to be identified with the flow-entry.” 

232. My analysis herein is the same if Patentee’s construction is used or if the or-

dinary and customary meaning is used. 

E. “Flow-Entry Database …” Terms 

233. The “flow-entry database …” terms appear in the following Challenged 

Claims: ’099 claim 1; ’646 claims 1, 7, and 16; ’751 claim 1 and 17; and ’789 

claims 1, 19, 33, and 44. 

234. In view of the disclosures in the Challenged Patents, their prosecution histo-

ries, and prior IPR proceedings, it is my opinion that a POSITA would have under-

stood the “flow-entry database …” terms to require a “database having a separate 

entry for each encountered conversational flow.”  

235. In every embodiment of the Challenged Patents, the specification describes 

the flow-entry database as having a separate entry for each known conversational 

EX 1006 Page 137



  

 124 

flow and creating a new entry for each new conversational flow. For example, the 

’099 Patent states: 

The parser record is passed onto lookup process 314 which looks in an 

internal data store of records of known flows that the system has al-

ready encountered, and decides (in 316) whether or not this particular 

packet belongs to a known flow as indicated by the presence of a flow-

entry matching this flow in a database of known flows 324. A record 

in database 324 is associated with each encountered flow….  

The flow-entry database 324 stores flow-entries that include the 

unique flow-signature, state information, and extracted information 

from the packet for updating flows, and one or more statistical [sic] 

about the flow. Each entry completely describes a flow.280 

The cache subsystem 1115 is an associated cache …. Whenever there 

is a cache miss, the contents of the cache memory pointed to by the 

bottom CAM are replaced by the flow-entry from the flow-entry data-

base 324281 

… If the flow needs to be inserted or deleted from the database of 

flows, control is then passed on to the flow insertion/deletion engine 

1110 for that flow signature and packet entry.282 

236. Similarly, the ’903 Provisional, which each Challenged Patent incorporates-

                                                        

280 ’099 Patent, 13:54-14:18. 
281 ’099 Patent, 24:9-18. 
282 ’099 Patent, 26:37-40. 

EX 1006 Page 138



  

 125 

by-reference, describes the flow-entry database as “For every flow that has al-

ready been encountered, as indicated by a flow entry being present in the flow 

database, there are various criteria for recognizing a packet’s particular state 

level.”283 

237. Further, the prosecution history confirms that Patentee viewed its purported 

invention as requiring a database having a separate entry for each encountered con-

versational flow. For example, in response to a rejection of the ’646 claims by the 

Patent Office, Patentee summarized the invention by explaining the “flow-entry 

database” requirements:  

The present invention includes a process that recognizes a conversa-

tional flow. [Examiner’s relied-upon art] Gobuyan does not recognize 

a conversational flow, but instead looks up only each packet’s destina-

tion address and source address…. [E]ven for the same two stations, the 

present invention identifies different conversational flows between two 

stations and maintains a different entry for each different conversa-

tional flow in a database.…  

It is important to be able to distinguish between packets that are ex-

changed between a source and a destination, and a con[v]ersational 

flow as used in the present invention…. Different conversational flows 

may occur between the same two addresses. Each of these would have 

                                                        

283 ’903 Provisional, 26:26-28; ’903, 43:1-8. 

EX 1006 Page 139



  

 126 

a separate entry in the flow database. Gobuyan, however, being con-

cerned with routing and bridging, cannot distinguish between different 

conversational flows.284  

It is my understanding that it is proper to interpret claims consistently across pa-

tents derived from same parent application and sharing common terms. Based on 

the Patentee’s statements made during the prosecution of the ’646 Patent, a 

POSITA would have understood that Patentee represented that each conversational 

flow as having a separate entry in the flow-entry database. 

238. In current district-court proceedings, I understand that Patentee has proposed 

“flow-entry database” to mean “a database configured to store entries, where each 

entry describes a flow.”285 This proposed construction appears broad as it fails to 

address what flow-entries the “database” must store to practice the claims. 

239. My analysis herein is the same if Patentee’s construction is used or if the 

“flow-entry database” terms require a “database having a separate entry for each 

encountered conversational flow.” 

F. “Parser Record” 

240. The term “parser record” appears in the following Challenged Claims: ’646 

claims 7 and 16, and ’789 claims 1, 17, 19, 42, and 44. 

                                                        

284 Ex. 1020 (’646 History), 9-10 (some emphasis in original) (i 
285 Ex. 1067 (Claim Construction Memo and Order in NetScout district court case), 

7-10. 

EX 1006 Page 140



  

 127 

241. In a previous district court proceeding, I understand that the court construed 

“parser record” to have its plain meaning.286 

242. For purposes of inter partes review, I have applied the district court’s con-

struction to the term “parser record.” 

G. “Child Protocol” 

243. The term “child protocol” appears in the challenged claims 10 and 17 of the 

’725 Patent. 

244. In a previous district court proceeding, I understand that the court construed 

“child protocol” to mean “a protocol that is encapsulated within another proto-

col.”287 And in another district court proceeding, I understand that Patentee agreed 

to this same construction.288  

245. My analysis herein is the same if the district court’s construction is used or if 

the ordinary and customary meaning is used. 

H. “Slicer” 

246. The term “slicer” appears in the challenged claim 19 of the ’789 Patent. 

247. It is my understand that Palo Alto Networks and Patentee have agreed 

                                                        

286 Ex. 1067 (Claim Construction Memo and Order in NetScout district court case), 

10-16. 
287 Ex. 1067 (Claim Construction Memo and Order in NetScout district court case), 

5 
288 Ex. 1077 (Joint Claim Construction and Prehearing Statement in Ericsson dis-

trict court case), 1. 

EX 1006 Page 141



  

 128 

“slicer” means “component or process that performs extraction operations on a 

packet.”289  

248. My analysis herein is the same if the agreed-upon construction is used or if 

the ordinary and customary meaning is used. 

I. Means- and Step-Plus-Function Terms 

249. In prior district court proceedings, I understand that the accused infringers 

proposed that the following terms are means- and step-plus-function terms: 

Claim Means- & Step-Plus-Function Terms Corresponding Structure 

’099 

claim 1 

“a parser subsystem … the parser 

subsystem configured to examine 

the packet accepted by the buffer, 

extract selected portions of the ac-

cepted packet, and form a function 

of the selected portions sufficient to 

identify that the accepted packet is 

part of a conversational flow-se-

quence” 

Pattern recognition engine 

1006, extraction engine 

(slicer) 1007, and parser out-

put buffer memory 1010 of 

the hardware parser subsys-

tem of Fig. 10, as described at 

21:60-67 and 22:14-63 of 

’099 Patent 

’099 

claim 1 

“a lookup engine … configured to de-

termine using at least some of the se-

lected portions of the accepted packet 

if there is an entry in the flow-entry 

database for the conversational flow 

sequence of the accepted packet” 

Lookup/update engine (LUE) 

1107 of Fig. 11, as described 

at 23:29-62 of ’099 Patent 

’099 

claim 1 

“a protocol/state identification mecha-

nism … the protocol/state identifica-

tion engine configured to determine 

the protocol and state of the conversa-

tional flow of the packet” 

state processor instruction da-

tabase 326 and hardware or 

processor running the algo-

rithm, as described at 14:38-

46 of ’099 Patent 

                                                        

289 Ex. 1079 (Joint Claim Construction and Prehearing Statement in Palo Alto Net-

work district court case). 

EX 1006 Page 142



  

 129 

Claim Means- & Step-Plus-Function Terms Corresponding Structure 

In addition, I understand that 

Palo Alto Networks has ar-

gued in district court that this 

claim term is an indefinite 

means-plus-function term be-

cause there is no adequate 

disclosure of a corresponding 

structure.  As noted above, I 

have been asked to assume 

the claims are not indefinite, 

and therefore express no 

opinion here on whether this 

term is definite.  

’099 

claim 1 

“a state processor … the state proces-

sor, configured to carry out any state 

operations specified in the state pat-

terns/operations memory for the pro-

tocol and state of the flow of the 

packet, the carrying out of the state 

operations furthering the process of 

identifying which application program 

is associated with the conversational 

flow-sequence of the packet, the state 

processor progressing through a series 

of states and state operations until 

there are no more state operations to 

perform for the accepted packet, in 

which case the state processor updates 

the flow- entry, or until a final state is 

reached that indicates that no more 

analysis of the flow is required, in 

which case the result of the analysis is 

announced” 

State processor (SP) 1108 of 

Figs. 11 and 13, as described 

at 25:3-26:44 of ’099 Patent 

’646 

claim 1 

“a lookup engine … configured to 

lookup whether a received packet be-

longs to a flow-entry in the flow- en-

try database, to looking up being the 

Lookup/update engine (LUE) 

1107 of Fig. 11, as described 

at 19:10-43 of ’646 Patent 

EX 1006 Page 143



  

 130 

Claim Means- & Step-Plus-Function Terms Corresponding Structure 

cache subsystem” 

’646 

claim 1 

“a state processor … the state proces-

sor being to perform any state opera-

tions specified for the state of the flow 

starting from the last encountered 

state of the flow in the case that the 

packet is from an existing flow, and to 

perform any state operations required 

for the initial state of the new flow in 

the case that the packet is from an ex-

isting flow” 

State processor (SP) 1108 of 

Figs. 11 and 13, as described 

at 20:49-22:20 of ’646 Patent 

’646 

claim 2 

“a parser subsystem … the parser sub-

system configured to extract identify-

ing information from a received 

packet” 

Pattern recognition engine 

(PRE) 1006, extraction en-

gine (slicer) 1007, and parser 

output buffer memory 1010 

of the hardware parser sub-

system of Fig. 10, as de-

scribed at 17:43-51 and 

17:64-18:43 of ’646 Patent 

’646 

claim 7 

“a parser subsystem … the parsing 

subsystem configured to extract se-

lected portions of the accepted packet 

and to output a parser record contain-

ing the selected portions… wherein 

the operation of the parser subsystem 

depends on one or more of the proto-

cols to which the packet conforms” 

Pattern recognition engine 

(PRE) 1006, extraction en-

gine (slicer) 1007, and parser 

output buffer memory 1010 

of the hardware parser sub-

system of Fig. 10, as de-

scribed at 17:43-51 and 

17:64-18:43 of ’646 Patent 

EX 1006 Page 144



  

 131 

Claim Means- & Step-Plus-Function Terms Corresponding Structure 

’646 

claim 7 

“a lookup engine … configured to 

lookup whether the particular packet 

whose parser record is output by the 

parser subsystem has a matching 

flow- entry, the looking up using at 

least some of the selected packet por-

tions and determining if the packet is 

of an existing flow… the lookup en-

gine configured such that if the packet 

is of an existing flow, the monitor 

classifies the packet as belonging to 

the found existing flow” 

Lookup/update engine (LUE) 

1107 of Fig. 11, as described 

at 19:10-43 of ’646 Patent 

’646 

claim 7 

“a flow insertion engine … configured 

to create a flow-entry in the flow-en-

try database, the flow-entry including 

identifying information for future 

packets to be identified with the new 

flow-entry” 

Flow insertion/deletion en-

gine (FIDE) 1110 of Figs. 11-

12, as described at 19:30-35 

and 22:21-23:17 of ’646 Pa-

tent 

’646  

claim 16 

“performing one or more parsing/ex-

traction operations on the packet to 

create a parser record comprising a 

function of selected portions of the 

packet” 

Acts of processing packet 

components (steps 503-512), 

extracting packet components 

and building a packet signa-

ture (steps 603-610), and 

hashing signature buffer ele-

ment based on hash elements 

in pattern node of element da-

tabase (steps 703-708) of 

Figs. 5-7, as described at 

3:48-57 and 14:40-15:64 of 

’646 Patent 

’751 

claim 17 

“an analyzer subsystem … configured 

to lookup for each received packet 

whether a received packet belongs to a 

flow-entry in the flow-entry database, 

to update the flow-entry of the exist-

ing flow including storing one or more 

statistical measures kept in the flow-

UFKB buffer, a lookup/up-

date engine (LUE), a state 

processor (SP), a flow inser-

tion and deletion engine 

(FIDE), a memory for storing 

the database of flows, a cache 

EX 1006 Page 145



  

 132 

Claim Means- & Step-Plus-Function Terms Corresponding Structure 

entry in the case that the packet is of 

an existing flow, and to store a new 

flow-entry for the new flow in the 

flow-entry database, including storing 

one or more statistical measures kept 

in the flow-entry if the packet is of a 

new flow” 

coupled to the memory con-

taining the flow database, and 

a host bus interface, as de-

scribed in 2:30-43, 20:18-53 

of ’751 Patent 

’789 

claim 1 

“performing one or more parsing/ex-

traction operations on the packet to 

create a parser record comprising a 

function of selected portions of the 

packet” 

Acts of processing packet 

components (steps 503-512), 

extracting packet components 

and building a packet signa-

ture (steps 603-610), and 

hashing signature buffer ele-

ment based on hash elements 

in pattern node of element da-

tabase (steps 703-708) of 

Figs. 5-7, as described at 

7:65-8:6 and 18:61-20:20 of 

’789 Patent 

’789 

claim 19 

“a parser subsystem … the parsing 

subsystem configured to extract se-

lected portions of the accepted packet 

and to output a parser record contain-

ing the selected portions … wherein 

the operation of the parser subsystem 

depends on one or more of the proto-

cols to which the packet conforms” 

Pattern recognition engine 

(PRE) 1006, extraction en-

gine (slicer) 1007, and parser 

output buffer memory 1010 

of the hardware parser sub-

system of Fig. 10, as de-

scribed at 22:2-8 and 22:22-

23:3 of ’789 Patent 

EX 1006 Page 146



  

 133 

Claim Means- & Step-Plus-Function Terms Corresponding Structure 

’789 

claim 19 

“a lookup engine … configured to 

lookup whether the particular packet 

whose parser record is output by the 

parser subsystem has a matching 

flow- entry, the looking up using at 

least some of the selected packet por-

tions and determining if the packet is 

of an existing flow… the lookup en-

gine configured such that if the packet 

is of an existing flow, the monitor 

classifies the packet as belonging to 

the found existing flow” 

Lookup/update engine (LUE) 

1107 of Fig. 11, as described 

at 23:38-24:3 of ’789 Patent 

’789 

claim 19 

“a flow insertion engine … configured 

to create a flow-entry in the flow-en-

try database, the flow-entry including 

identifying information for future 

packets to be identified with the new 

flow-entry … if the packet is of a new 

flow, the flow insertion engine stores 

a new flow-entry for the new flow in 

the flow-entry database, including 

identifying information for future 

packets to be identified with the new 

flow-entry” 

Flow insertion/deletion en-

gine (FIDE) 1110 of Figs. 11-

12, as described at 23:58-63 

and 26:53-27:50 of ’789 Pa-

tent 

 

250. In prior district court proceedings, I understand that Patentee has stated that 

no construction is necessary for each of the terms listed in the above table because 

none of the terms is a means- or step-plus-function term.290  

251. For IPR purposes only, I have applied the Patentee’s proposed construction, 

                                                        

290 E.g., Ex. 1077 (Joint Claim Construction and Prehearing Statement in Ericsson 

district court case), 18-31; Ex. 1078 (Patentee’s Opening Claim Construction Brief 

in Cisco district court case), 20-22, 33-34.  

EX 1006 Page 147



  

 134 

i.e., that each of these terms is not a means- or step-plus-function terms and that 

the ordinary and customary meaning applies, since the prior art invalidates the 

Challenged Claims under either construction. 

252. For all remaining claim terms, I used the ordinary and customary meaning to 

a POSITA at the time of the purported invention.  

253. As explained below in Sections VII to XI, the prior art discloses or renders 

obvious every claim element even if any of these terms are interpreted more nar-

rowly. 

VII. THE CLAIMS OF THE ’099 PATENT ARE UNPATENTABLE 

254. For the ’099 Patent, the Challenged Claims include independent claim 1 and 

claims 2 and 4, which each depends from claim 1, and claim 5, which depends 

from claim 4. As I detail below, it is my opinion: 

• Riddle in view of Ferdinand renders obvious ’099 claims 1 and 2; 

• Riddle in view of Ferdinand and further in view of Baker renders obvious 

’099 claims 4 and 5; 

• Riddle in view of Ferdinand and further in view of Yu renders obvious ’099 

claims 1 and 2; 

• Riddle in view of Ferdinand and Baker and further in view of Yu renders ob-

vious ’099 claims 4 and 5; 

• Riddle in view of Ferdinand and further in view of RFC1945 renders obvi-

ous ’099 claims 1 and 2; 

• Riddle in view of Ferdinand and Baker and further in view of RFC1945 ren-

ders obvious ’099 claims 4 and 5. 

EX 1006 Page 148



  

 135 

A. For the ’099 Patent, Riddle in View of Ferdinand Renders Obvi-

ous Claims 1 and 2. 

255. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’099 claims 1 and 2 is disclosed or rendered obvious by the prior 

art. Specifically, it is my opinion that ’099 claims 1 and 2 are obvious in light of 

Riddle in view of Ferdinand. 

1. Reasons to Modify Riddle in View of Ferdinand 

256. Riddle and Ferdinand are in the same field of endeavor and contain overlap-

ping disclosures with similar purposes. Riddle discloses a packet monitor that con-

nects to a network for parsing and examining traffic packets.291 And Riddle teaches 

its monitor stores flow-entry lists of packet identifying information and looks up 

flow-entries stored in the flow-entry lists.292 Further, Riddle’s monitor performs 

state operations to identify previously-encountered conversational flows or to store 

a new flows.293 

257. Similarly, Ferdinand discloses a packet monitor. For example, Ferdinand 

teaches that network monitor 10 having a “processor which collects packets on the 

network and performs some degree of analysis … to maintain statistical infor-

mation for use in later analysis.”294  

                                                        

291 Riddle, 4:7-17, 12:27-41, Fig. 3, 4A-4B. 
292 Riddle, 12:37-59, Figs. 3, 4A-4B. 
293 Riddle, 9:14-27, 12:44-53, claim 8, Figs. 4A-4B. 
294 Ferdinand, 12:3-9. 

EX 1006 Page 149



  

 136 

258. At the time of the Challenged Patents’ priority date, it was well-known and 

ubiquitous for networking devices to include database storage structures, buffers, 

caches, and distinct processing engines. Ferdinand illustrates this fact by describ-

ing a packet monitor having these features.295 For example, Ferdinand describes 

that its monitor includes a database for storing information about parsed packets.296 

And Ferdinand teaches its monitor includes a packet buffer, database cache, and 

distinct processing engines.297 

259. As I describe below regarding each relevant claim element, a POSITA 

would have been motivated and found it obvious to store Riddle’s hierarchical 

classification tree and flow-entries in a database. Before the time of the invention, 

a POSITA would have been motivated to do so because storing Riddle’s trees and 

lists in a database would allow multiple network operators to access simultane-

ously the classification information. As illustrated by Ferdinand, a POSITA would 

have appreciated the increased functionality of storing Riddle’s data in a data-

base—including searching, analyzing, and modifying the flow-entries.298 Such mo-

tivation would further Riddle’s desired goal of determining whether the examined 

packet belongs to a service aggregate, such as an FTP session.299  

                                                        

295 E.g., Ferdinand, 19:8-12, 26:2-7, 28:14-17, Figs. 5, 7A-7C. 
296 Ferdinand, 19:8-12, 22:18-23:23, 28:14-17, Figs. 5, 7A-7C. 
297 Ferdinand, 20:22-22:12, 26:2-7, Fig. 5. 
298 E.g., Ferdinand 41:32-42:3, 44:8-14, 47:3-48:11. 
299 E.g., Riddle, 11:9-24, 13:36-62, Fig. 4B. 

EX 1006 Page 150



  

 137 

260. And as I describe below regarding each relevant claim element, a POSITA 

would have been motivated and found it obvious to have separate memory portions 

for Riddle’s buffering, parsing/extraction operations, and state patterns/operations. 

Before the time of the invention, a POSITA would have been motivated to do so 

because Riddle’s memory including a packet-buffer would provide a mechanism to 

store packets that may otherwise be dropped. A POSITA would have appreciated 

this provides the added benefit of improving performance by limiting packet drops. 

And as illustrated by Ferdinand, a POSITA would have been further motivated to 

include a cache coupled to Riddle’s flow-entry database memory to reduce look-up 

times.300 

261. Finally, to the extent Patentee argues that the Challenged Claims require dis-

tinct hardware components for the claimed parsing, lookups, protocol/state identifi-

cation, and state processing/operations, a POSITA would have been motivated and 

found it obvious for Riddle’s monitor to have distinct hardware components. Be-

fore the time of the invention, a POSITA would have been motivated to do so be-

cause using separate components allows for increased performance of Riddle’s 

monitor. And the Challenged Patents acknowledge that a POSITA would have 

been appreciated the benefits and drawbacks to using separate hardware compo-

nents versus software running on fast processors:  

                                                        

300 E.g., Ferdinand, 28:14-24, 54:18-22. 

EX 1006 Page 151



  

 138 

Note that while we are describing a particular hardware implementa-

tion of the invention embodiment of FIG. 3, it would be clear to one 

skilled in the art that the flow of FIG. 3 may alternatively be imple-

mented in software running on one or more general-purpose proces-

sors, or only partly implemented in hardware… To one skilled in the 

art it would be clear that more and more of the system may be imple-

mented in software as processors become faster.301 

2. Independent ’099 Claim 1 

262. It is my opinion that independent claim 1 of the ’099 Patent is obvious in 

light of Riddle in view of Ferdinand. 

a. ’099 Claim 1’s Preamble: “A packet monitor for examin-

ing packets passing through a connection point on a 

computer network in real-time, the packets provided to 

the packet monitor via a packet acquisition device con-

nected to the connection point, the packet monitor com-

prising” 

263. Riddle discloses all elements of this preamble. As discussed above in Sec-

tion IV.A.3, Riddle teaches automatically examining and classifying packet flows 

passing through a network using traffic classifier 304.302 Riddle’s Figure 3 illus-

trates the classifier 304, which parses packets and examines traffic flows for classi-

fication (traffic flows a, b, and c), as annotated below. 

                                                        

301 ’099 Patent, 21:25-38. 
302 Riddle, Abstract, 4:6-17, 12:27-41, 14:22-40, Fig. 3. 

EX 1006 Page 152



  

 139 

 

264. Riddle details that its traffic classification system may be implemented in a 

classifier in a network-connected computer system, such as, in server 20, which 

acts as a packet monitor, and network interface 40, which acts as a packet acquisi-

tion device, shown below in annotated Figures 1A and 1B. 

 

EX 1006 Page 153



  

 140 

 

265. Riddle describes that its packet monitor examines packets as the packets 

pass through connection points of network connection 45 (shown above in green) 

via a system gateway.303 Riddle specifies that its packet examining method may 

cover any type of computer networking environment and is not limited to a client-

server environment.304 And as the ’099 Patent teaches, a connection point is simply 

where the packet monitor is connected to the network.305 

266. Riddle details that its packet acquisition device, such as interface 40, is con-

nected to a network connection point and provides packets to the packet monitor, 

                                                        

303 Riddle, 5:53-67, 6:9-15, Figs. 1A-1B. 
304 Riddle, 5:53-67. 
305 ’099 Patent, 8:55-9:11, Fig. 1 showing connection points 121, 123, 125. 

EX 1006 Page 154



  

 141 

such a traffic classifier 304 in server 20.306 And for networks connecting multiple 

clients and servers of Figure 1A, Riddle teaches examining packets via a network 

routing means, which may include router 75, shown below in annotated Figure 1C, 

or traffic classifier 304.307 Riddle details that router 75 acts as a “system gateway 

… which may also be a gateway having a firewall or a network bridge.”308 Based 

on these disclosures, a POSITA would have understood that Riddle’s system gate-

way is a connection point on the computer network. 

 

267. Further, Riddle discloses examining packets in real-time to manage network 

bandwidth based on flow classification. Riddle emphasizes the need to allocate 

                                                        

306 Riddle, 6:5-15, Figs. 1A-1B. 
307 Riddle, 7:10-34, claim 8, Figs. 1C, 3. 
308 Riddle, 7:21-24. 

EX 1006 Page 155



  

 142 

bandwidth to flows based on information ascertainable from multiple OSI layers of 

each flow.309 As Riddle explains, bandwidth management improves data transmis-

sion efficiency and avoids unwanted data transfer stoppage: 

Certain pathological loading conditions can result in instability, overload-

ing and data transfer stoppage. Therefore, it is desirable to provide some 

mechanism to optimize efficiency of data transfer while minimizing the 

risk of data loss. Early indication of the rate of data flow which can or must 

be supported is imperative. In fact, data flow rate capacity information is 

a key factor for use in resource allocation decisions. For example, if a par-

ticular path is inadequate to accommodate a high rate of data flow, an al-

ternative route can be sought out.310 

To improve bandwidth management, Riddle describes “policies to assign available 

bandwidth from a single logical link to network flows.”311 And Riddle teaches ex-

amining and classifying traffic flows to allocate bandwidth consistent with those 

policies.312 From these disclosures, a POSITA would have understood that Riddle 

teaches traffic-examination and classification in real-time to assign available band-

width. 

                                                        

309 Riddle, 1:54-61.  
310 Riddle, 2:4-13, 1:54-61. 
311 Riddle, 2:66-67. 
312 Riddle, Abstract, 4:6-23, 10:19-51. 

EX 1006 Page 156



  

 143 

268. Indeed, Riddle seeks to provide “a method for analyzing real traffic in a cus-

tomer’s network and automatically producing a list of the ‘found traffic’”313 Riddle 

specifies that its monitor can determine a packet’s traffic class, such as Real Time 

Protocol used for point-to-point telephony.314 Based on these disclosures, a 

POSITA would have understood that Riddle teaches examining packets in real-

time to optimally assign bandwidth based on flow rates. 

269. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of U.S. Patent 6,046,980 (“Packer”) as though fully set forth in Riddle. 

Like Riddle, Packer describes a traffic classification system and specifies that traf-

fic flows are examined “continuously and automatically.”315 This teaching further 

shows that Riddle discloses examining packets in real-time. 

b. ’099 Claim Element 1.1: “(a) a packet-buffer memory 

configured to accept a packet from the packet acquisition 

device” 

270. Riddle discloses this claim element alone or renders it obvious in view of 

Ferdinand. As I detail below, Riddle teaches buffering packets in a router’s queue 

(including storage subsystem 35 of interface 40), which is a packet-buffer memory. 

271. Specifically, Riddle describes its packet monitor as being implemented in a 

                                                        

313 Riddle, 3:67-4:2, Abstract, 3:32-39, 4:6-9, 10:57-59. 
314 Riddle, 12:3-12. 
315 Ex. 1031 (U.S. Patent No. 6,046,980 (“Packer”)), 4:12-16. 

EX 1006 Page 157



  

 144 

router.316 Riddle also discloses its router includes queues of packets.317 A POSITA 

would have understood that Riddle’s queue functions as a buffer within the router 

because Riddle’s buffering of packets in its router’s queue is a packet-buffer 

memory. 

272. Regarding the structural components of the packet monitor, Riddle discloses 

storing data in storage subsystem 35: 

The hardware configurations are in general standard and will be described 

only briefly. In accordance with known practice, server 20 includes one or 

more processors 30 which communicate with a number of peripheral de-

vices via a bus subsystem 32. These peripheral devices typically include a 

storage subsystem 35, comprised of a memory subsystem 35a and a file 

storage subsystem 35b holding computer programs (e.g., code or instruc-

tions) and data, a set of user interface input and output devices 37, and an 

interface to outside networks, which may employ Ethernet, Token Ring, 

ATM, IEEE 802.3, ITU X.25, Serial Link Internet Protocol (SLIP) or the 

public switched telephone network. … Client 25 has the same general con-

figuration, although typically with less storage and processing capability. 

Thus, while the client computer could be a terminal or a low-end personal 

computer, the server computer is generally a high-end workstation or 

mainframe, such as a SUN SPARC server. Corresponding elements and 

subsystems in the client computer are shown with corresponding, but 

                                                        

316 Riddle, 7:21-24, claim 8. 
317 Riddle, 2:51-54.  

EX 1006 Page 158



  

 145 

primed, reference numerals.318 

Riddle’s storage subsystem 35 includes memory subsystem 35a and file storage 

subsystem 35b for storing programs and data as shown below in annotated Figure 

1A. As discussed above, Riddle’s network interface 40 is a packet acquisition de-

vice. Riddle’s Figure 1A shows network interface 40 being coupled to storage sub-

system 35.  

 

273. Moreover, Riddle discloses that its packet monitor may be implemented in a 

router.319 And Riddle’s router includes queues of packets.320 Based on these disclo-

sures, a POSITA would have understood that Riddle’s buffering of packets in its 

router’s queue is a packet-buffer memory. 

                                                        

318 Riddle, 6:1-23. 
319 Riddle, 16:54-60. 
320 Riddle, 2:51-54. 

EX 1006 Page 159



  

 146 

274. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of Packer as though fully set forth in Riddle. Packer incorporates-by-ref-

erence a set of appendices with exemplary source code illustrating the functionali-

ties of the traffic classification system.321 Packer’s Appendix B specifies that the 

traffic classification system receives TCP flows in both directions for temporary 

storage in packet-buffer memory: 

TCB – transport control block – TCP State information for both direc-

tions 

/* 

* BCB – Buffer Control Block. Contains packet info, including parsed 

* flow spec, as well as pointers to various layers of the actual 

* packet buffer 

*/322  

This teaching further shows that Riddle discloses a packet-buffer memory config-

ured to accept packets. 

275. To the extent Riddle does not disclose a packet-buffer memory, a POSITA 

would have been motivated and found it obvious to include a packet-buffer 

memory in Riddle’s routing device based upon a POSITA’s own knowledge of 

network devices or the disclosures in Ferdinand. Before the priority date of the 

                                                        

321 Ex. 1031 (Packer), 1:54-2:3. 
322 Ex. 1027 (U.S. Patent Application No. 08/977,642 (“Packer Application”), Ap-

pendices), 71-72. 

EX 1006 Page 160



  

 147 

Challenged Patents, a POSITA would have known that packet-buffer memories, 

such as queues, were found in every routing device.323 As the ’099 Patent and Fer-

dinand acknowledge, a POSITA would have understood that a packet buffer tem-

porarily stores incoming packets until the device is ready to process the packets.324 

In doing so, the packet buffer avoids packet loss because it provides a mechanism 

to store packets that may otherwise be dropped. Ferdinand discloses an exemplary 

packet-buffer memory, such as a frame buffer, which is used to accept packets in 

network monitors:  

The available memory is divided into four blocks during system initializa-

tion. One block includes receive frame buffers. They are used for receiv-

ing LAN traffic and for receiving secondary link traffic. These are orga-

nized as linked lists of fixed sized buffers.325  

276. Based on Ferdinand’s teachings, a POSITA would have been motivated to 

include a packet-buffer memory in Riddle’s monitor to temporarily store received 

packets and to improve performance by limiting packet drops. Including a packet-

buffer memory in a packet acquisition device in accordance with the teachings of 

Riddle and Ferdinand amounts to nothing more than combining known prior-art 

technologies used in their ordinary and predictable manner to queue packet traffic. 

                                                        

323 E.g., Riddle, 2:51-55. 
324 ’099 Patent, 22:60-23:3; Ferdinand, 49:2-12. 
325 Ferdinand, 26:2-7, 41:17-31, 49:11-12. 

EX 1006 Page 161



  

 148 

c. ’099 Claim Element 1.2: “(b) a parsing/extraction oper-

ations memory configured to store a database of pars-

ing/extraction operations that includes information de-

scribing how to determine at least one of the protocols 

used in a packet from data in the packet” 

277. Riddle discloses this claim element. Regarding the claimed “parsing/extrac-

tion operation memory,” Riddle discloses that its packet monitor includes storage 

subsystem 35 for storing “computer programs (e.g., code or instructions) and data” 

as discussed above regarding ’099 claim element 1.1.326 As I detail below, these 

programs and data include a database of parsing/extraction operations to determine 

the protocols used in a packet from the data in the packet. 

(1) Riddle teaches the claimed memory being “config-

ured to store a database of parsing/extraction oper-

ations”  

278. Riddle teaches that traffic flow classification includes parsing and extracting 

information from flow packets. For example, Riddle illustrates the steps for auto-

matically classifying traffic in a flowchart beginning with Figure 4A, as annotated 

below. “In a step 402, a flow specification is parsed from the flow being classi-

fied.”327 Following the parsing, steps 404 and 406 compare the parsed specification 

information and determine whether the examined flow matches a preexisting traf-

fic class.328 And at step 408, an entry is made into a saved list with the extracted 

                                                        

326 Riddle, 6:1-23, 6:43-50, Figs. 1A-1B. 
327 Riddle, 12:42-44, Fig. 4A. 
328 Riddle, 12:44-50, Fig. 4A. 

EX 1006 Page 162



  

 149 

identifying information such as “protocol type (SAP), IP protocol number, server 

port, traffic type if known, MIME type, a time of occurrence of the traffic.”329 

Thus, Riddle discloses parsing/extraction operations to determine the protocols 

used in a packet. 

 

279. Moreover, Riddle describes parsing/extraction operations as:  

A method for automatically classifying traffic in a packet communications 

network … comprising the steps of: parsing a packet into a first flow spec-

ification, wherein said first flow specification contains at least one instance 

of any one of the following: a protocol family designation, a direction of 

packet flow designation, a protocol type designation, a pair of hosts, a pair 

of ports, in HTTP protocol packets, a pointer to a MIME type. 330 

                                                        

329 Riddle, 12:50-53, Fig. 4A. 
330 Riddle, claims 1, 8, 11. 

EX 1006 Page 163



  

 150 

Riddle also describes each “particular host” as having an IP Internet Address, 

wehre a pair of hosts (e.g., a client and server) communicating over different 

ports.331 Thus, a POSITA would have understood that Riddle’s “a pair of hosts” re-

fers to the network-layer source and destination addresses (e.g., IP addresses) and 

that “a pair of ports” refers to the transport-layer source and destination port num-

bers. This further details how Riddle’s parsing/extraction operations determine the 

protocols used in a packet. 

280. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of U.S. Patent Application No. 09/198,051 (“the ’051 Application”) as 

though fully set forth in Riddle. The ’051 Application describes a traffic classifica-

tion system and specifies parsing/extraction operations to examine packets: 

A method for automatically determining a policy for allocating bandwidth 

resources in a packet telecommunication environment, wherein traffic flow 

for a plurality of service types are grouped into at least one class according 

to a hierarchical classification paradigm, said method comprising the steps: 

extracting a flow specification from a traffic flow having a traffic direc-

tion, a host side from the traffic class and at least one of any of the follow-

ing: A global service, a port number[,] an IP Address/Domain name; a 

MAC Address, and an IP precedence ….332  

                                                        

331 Riddle, 7:62-63, 11:13-15. 
332 Ex. 1028 (U.S. Patent Application No. 09/198,051 (“’051 Application”)), 23. 

EX 1006 Page 164



  

 151 

281. Riddle details that traffic classifier 304, which performs the parsing and ex-

traction operations, communicates with knowledge base 306 (shown below in Fig-

ure 3). And Riddle states that knowledge base 306 stores the operations for deter-

mining a packet’s traffic class.333  

 

282. Riddle specifies storing knowledge base 306 in a database and that classifier 

304 uses knowledge base 306 to determine a packet’s classification information: 

FIG. 3 depicts components of a system for automatically classifying traffic 

according to the invention. A traffic tree 302 in which new traffic will be 

classified under a particular member class node. A traffic classifier 304 

detects services for incoming traffic. Alternatively, the classifier may start 

with a service and determine the hosts using it. A knowledge base 306 

contains heuristics for determining traffic classes. The knowledge base 

                                                        

333 Riddle, 12:30-36, Fig. 3. 

EX 1006 Page 165



  

 152 

may be embodied in a file or a relational database. In a particular em-

bodiment, the knowledge is contained within a data structure resident in 

memory. A plurality of saved lists 308 stores classified traffic pending in-

corporation into traffic tree 302. In select embodiments, entries for each 

instance of traffic may be kept. In alternate embodiments, a copy of an 

entry and a count of duplicate copies for the entry is maintained.334 

(2) Riddle further teaches the claimed “includ[ing] in-

formation describing how to determine at least one 

of the protocols used in a packet from data in the 

packet”  

283. Riddle details that its stored knowledge base 306 includes information de-

scribing how to determine the protocols used by a packet in a flow from data con-

tained in the packet.335 Riddle seeks to address the purported lack of prior art 

“methods for automatically classifying packet traffic based upon information gath-

ered from … multiple layers in a multi-layer protocol network.”336 In doing so, 

Riddle teaches that its packet monitor examines packets to manage bandwidth 

“based on information ascertainable from multiple layers of OSI network 

model.”337  

284. As shown in Riddle’s Figure 1D provided below, it was well known in the 

art before the priority date of the Challenged Patents that the OSI network model 

                                                        

334 Riddle, 12:26-41, Fig. 3. 
335 Riddle, 12:30-36 (referring to “the heuristics for determining traffic classes”). 
336 Riddle, 3:36-39. 
337 Riddle, 1:54-57. 

EX 1006 Page 166



  

 153 

diagrams the relationship between the layers of the TCP/IP protocol suite. These 

layers include the application layer 88, the transport layer 86, the network layer 84, 

the data link layer 82, and the physical layer 80.338  

 

285. Riddle details how its parsing/extraction operations determine the protocols 

used in the packet from the packet’s data. Riddle states that its operations include 

defining traffic class characteristics based on packet protocol information:  

“The method comprises applying individual instances of traffic classification para-

digms to packet network flows based on selectable information obtained from a 

plurality of layers of a multi-layered communication protocol in order to define a 

characteristic class, then mapping the flow to the defined traffic class.”339 And Rid-

                                                        

338 Riddle, 7:35-8:46, Fig. 1D. 
339 Riddle, 4:10-15. 

EX 1006 Page 167



  

 154 

dle specifies its operations are “sufficiently robust to classify a complete enumera-

tion of the possible traffic.”340 Further, Riddle explains that its operations “auto-

matically classify a plurality of heterogeneous packets in a packet telecommunica-

tions system for management of network bandwidth in systems such as a private 

area network, a wide area network or an internetwork.”341  

286. By parsing packets, Riddle seeks to classify traffic flows by “traffic class.” 

Riddle defines a traffic class as “[a]ll traffic between a client and a server end-

points…. Traffic classes have properties or class attributes such as, directionality, 

which is the property of traffic to be flowing inbound or outbound.”342 And Riddle 

defines a “flow” as “a single instance of a traffic class. For example, all packets in 

a TCP connection belong to the same flow. As do all packets in a UDP session.”343 

287. In determining a flow’s traffic class, Riddle also determines the flow’s one 

or more protocols: 

Traffic classes may be defined at any level of the IP protocol as well as 

for other non-IP protocols. For example, at the IP level, traffic may be 

defined as only those flows between a specificed [sic] set of inside and 

outside IP addresses or domain names. An example of such a low level 

traffic class definition would be all traffic between my network and other 

corporate offices throughout the Internet. At the application level, traffic 

                                                        

340 Riddle, 4:15-17. 
341 Riddle, 4:55-60. 
342 Riddle, 5:42-45. 
343 Riddle, 5:17-20. 

EX 1006 Page 168



  

 155 

classes may be defined for specific URIs within a web server. Traffic 

classes may be defined having “Web aware” class attributes. For exam-

ple, a traffic class could be created such as all URIs matching “*.html” for 

all servers, or all URI patterns matching “*.gif” for server X, or for access 

to server Y with URI pattern “/sales/*” from client Z, wherein ‘*’ is a wild-

card character, i.e., a character which matches all other character combi-

nations. Traffic class attributes left unspecified will simply match any 

value for that attribute. For example, a traffic class that accesses data ob-

jects within a certain directory path of a web server is specified by a URI 

pattern of the directory path to be managed, e.g. “/sales/*” …. 

The present invention provides a method for classifying traffic according 

to a definable set of classification attributes selectable by the manager, in-

cluding selecting a subset of traffic of interest to be classified. The inven-

tion provides the ability to classify and search traffic based upon multiple 

orthogonal classification attributes. 

Traffic class membership may be hierarchical. Thus, a flow may be classi-

fied by a series of steps through a traffic class tree, with the last step (i.e., 

at the leaves on the classification tree) mapping the flow to a policy. The 

policy is a rule of assignment for flows. Web traffic may also be classified 

by HTTP header types such as Content-Type (MIME type) or User-

Agent.344 

288. Riddle’s Table 2 provides examples of information from which traffic clas-

ses may be built.345 This table illustrates that Riddle’s monitor may use packet data 

                                                        

344 Riddle, 8:47-9:27. 
345 Riddle, 9:64-65. 

EX 1006 Page 169



  

 156 

to determine the protocols used in the packet. Based on Table 2, an exemplary traf-

fic class may be defined for an FTP application using a client IP address inside a 

network and a server IP address outside a network. 

 

289. Similarly, the ’051 Application, which Riddle incorporates-by-reference as 

though fully set forth in Riddle, includes a Table 2 providing examples of infor-

mation from which traffic classes may be built.346 The ’051 Application’s Table 2 

shows that exemplary global components for web service applications may include 

“*.html,” “*.gif,” and “/sales/*”: 

                                                        

346 Ex. 1028 (’051 Application), 17. 

EX 1006 Page 170



  

 157 

 

290. Riddle further teaches classifying traffic based on “protocol layer independ-

ent categories,” such as application-layer information: 

Network traffic is automatically classified under existing classes, begin-

ning with the broadest classes, an inbound traffic class and an outbound 

traffic class, in protocol layer independent categories. For example, a 

particular instance of traffic may be classified according to its transport 

layer characteristics, e.g., Internet Protocol port number, as well as its 

application layer information, e.g., SMTP. Characteristics such as MIME 

types may also be automatically identified. Standard protocols, such as, 

IPX, SNA, and services, such as, SMTP and FTP are recognized for auto-

matic classification. Classification is performed to the most specific level 

determinable. For example, in select embodiments, non-IP traffic, such 

as SNA, may be classified only by protocol, whereas Internet Protocol 

traffic may be classified to the /etc/services level. Classification beyond a 

terminal classification level is detected and prevented. For example, in a 

EX 1006 Page 171



  

 158 

select embodiment, a class matching “ipx” or “nntp” will not be further 

automatically classified.347 

291. Riddle further details how the packets are examined to determine the proto-

cols used in the packet: 

In a preferable embodiment, classification can extend to examination of 

the data contained in a flow’s packets. Certain traffic may be distinguished 

by a signature even if it originates with a server run on a non-standard port, 

for example, an HTTP conversation on port 8080 would not be otherwise 

determinable as HTTP from the port number. Further analysis of the data 

is conducted in order to determine classification in instances where: 1) 

FTP commands are used to define server ports, 2) HTTP protocol is used 

for non-web purposes. The data is examined for indication of push traffic, 

such as pointcast, which uses HTTP as a transport mechanism. These uses 

may be isolated and classified into a separate class. Marimba and pointcast 

can be distinguished by looking into the data for a signature content header 

in the get request. Pointcast has URLs that begin with “/FIDO-1/.” Other 

applications in which protocol can be inferred from data include Telnet 

traffic. Both tn3270 and tn3270E (emulation) may be detected by looking 

into data and given a different class. Telnet traffic has option negotiations 

which may indicate an appropriate class.348 

292. Riddle also provides additional detail on determining the packet’s protocols. 

For example, Riddle discusses detecting Real Time Protocol (RTP) and Real Time 

                                                        

347 Riddle, 11:57-12:9. 
348 Riddle, 11:47-67. 

EX 1006 Page 172



  

 159 

Streaming Protocol (RTSP): 

A traffic class may be inferred from determining the identity of the creator 

of a resource used by the traffic class. For example, the identity of traffic 

using a certain connection can be determined by finding the identity of the 

creator of the connection. This method is used to detect Real Time Proto-

col (RTP) for point-to-point telephony, RTP for broadcast streaming, 

CCITT/ITU H320-telephony over ISDN, H323-internet telephony over the 

internet (bidirectional) and RTSP real time streaming protocol for movies 

(unidirectional).349 

293. Based on these disclosures regarding databases and parsing/extraction opera-

tions, a POSITA would have understood that Riddle’s storage subsystem 35 stores 

instructions (i.e., code) in the form of knowledge base 306 embodied in a relational 

database. And that these instructions include parsing/extraction operations with in-

formation from flow packets for classifying packets and flows into traffic classes 

by determining one or more protocols used in the flow. 

d. ’099 Claim Element 1.3: “(c) a parser subsystem coupled 

to the packet buffer and to the pattern/extraction350 oper-

ations memory” 

294. Riddle discloses a parser subsystem. Specifically, Riddle teaches a processor 

programmed to perform parsing/extraction operations: 

A system for automatically classifying traffic in a packet communications 

                                                        

349 Riddle, 12:1-12. 
350 As best understood, it appears that the claimed “pattern/extraction” should read 

“parsing/extraction.” 

EX 1006 Page 173



  

 160 

network … comprising … a network routing means; and, a processor 

means operative to: parse a packet into a first flow specification, wherein 

said first flow specification contains at least one instance of any one of the 

following: a protocol family designation, a direction of packet flow desig-

nation, a protocol type designation, a pair of hosts, a pair of ports, in HTTP 

protocol packets, a pointer to a MIME type.351 

295. As shown below in annotated Figure 1A, Riddle’s system includes parser 

subsystem’s processor 30 that communicates with parsing/extraction operations 

memory 35 and the router including the buffer.352 

 

296. As discussed above with respect to ’099 claim element 1.2, Riddle discloses 

a parsing/extraction operations memory. And as discussed above with respect to 

                                                        

351 Riddle, claim 8. 
352 Riddle, 6:1-15, Fig. 1A. 

EX 1006 Page 174



  

 161 

’099 claim element 1.1, the Riddle discloses a packet buffer or the combination of 

Riddle and Ferdinand renders that claim element obvious. Thus, Riddle discloses 

its parser subsystem being coupled to the parsing/extraction operations memory 

and the packet buffer (or renders obvious the packet buffer in view of Ferdinand). 

e. ’099 Claim Element 1.4: “the parser subsystem config-

ured to examine the packet accepted by the buffer, ex-

tract selected portions of the accepted packet, and form a 

function of the selected portions sufficient to identify that 

the accepted packet is part of a conversational flow-se-

quence” 

297. Riddle discloses this claim element. As I detail below, Riddle describes ex-

tracting portions of packet using its processor and memory subsystem, which is the 

claimed “parser subsystem.” 

(1) Riddle teaches the claimed parser subsystem is 

“configured to examine the packet accepted by the 

buffer, extract selected portions of the accepted 

packet” 

298. Riddle teaches that its parser subsystem operates to apply “individual in-

stances of traffic classification paradigms to packet network flows based on se-

lectable information obtained from a plurality of layers of a multi-layered commu-

nication protocol in order to define a characteristic class, then mapping the flow to 

the defined traffic class.”353 As part of this examination and extraction process, 

                                                        

353 Riddle, Abstract, 4:10-15. 

EX 1006 Page 175



  

 162 

Riddle’s system employs a relational database (knowledge base 306) to store heu-

ristics (i.e., operations) for determining traffic classes based on parsing/extracting 

portions of a packet and matching those portions’ attributes to a traffic class.354  

299. As shown in Figure 4A’s flowchart, Riddle’s traffic classifier examines 

packets accepted by the monitor and extracts packet portions: “parse flow specifi-

cation from a packet of the flow” (step 402).355 And Riddle specifies examining a 

number of packet flows and extracting flow specification portions from the flows: 

A method for automatically classifying traffic in a packet communications 

network, said network having any number of flows, including zero, com-

prising the steps of: parsing a packet into a first flow specification, wherein 

said first flow specification contains at least one instance of any one of the 

following: a protocol family designation, a direction of packet flow desig-

nation, a protocol type designation, a pair of hosts, a pair of ports, in HTTP 

protocol packets, a pointer to a MIME type.356 

300. Based on these teachings, a POSITA would have understood that the proces-

sor and memory subsystem portions in Riddle’s router work together to examine 

packets and extract packet portions. And as described above regarding ’099 claim 

elements 1.1 and 1.3, to the extent Riddle does not disclose the claimed “buffer,” 

                                                        

354 Riddle, 12:26-41, 9:28-42, 9:48-49. 
355 Riddle, 12:42-53, Fig. 4A. 
356 Riddle, claims 1, 11. 

EX 1006 Page 176



  

 163 

the combination of Riddle and Ferdinand renders obvious a buffer accepting pack-

ets. 

(2) Riddle teaches the claimed parser subsystem is 

“configured to … form a function of the selected 

portions sufficient to identify that the accepted 

packet is part of a conversational flow-sequence” 

301. Riddle discloses its parser forms a function (i.e., a flow specification) of 

packet portions to identify the packet is part of a conversational flow-sequence in 

at least two ways: (a) classifying based on service aggregates and (b) classifying 

based on PointCast. 

(a) Riddle’s Service Aggregates Are The 

Claimed “Conversational Flow-Se-

quence” 

302. Riddle’s parser subsystem is configured to form a function of the selected 

packet portions “sufficient to identify that the accepted packet is part of a conver-

sational flow-sequence,” as recited in this claim element. For example, as I detail 

below, Riddle discloses identifying whether a packet is part of “service aggre-

gates.” Riddle’s service aggregate is a traffic class that links separate connection 

flows based on the application associated with the flows. 

303. Riddle’s service aggregates meet the claimed “conversational flow-se-

quences” and “conversational flows” recited throughout the Challenged Claims, 

under either proposed construction for those terms. And Riddle teaches using these 

EX 1006 Page 177



  

 164 

service aggregates to form a function of selected packet portions sufficient to iden-

tify that the accepted packet is part of a conversational flow-sequence.  

304. As discussed above in Section III.A.4, the FTP protocol became standard-

ized in 1980.357 In the FTP protocol, a client establishes at least two connections to 

a server: (i) a first connection for communicating commands to control the file 

transfer and to send data about the state of the transfer, and (ii) a second connec-

tion for transferring the file.358  

305. Below, I illustrate an example of two separate TCP connections used for 

FTP with one TCP connection on port 21 for control and another TCP connection 

on port 20 for data transport. 

 

306. Taking into account this well-known background information, Riddle details 

classifying separate packet flows by a common “service aggregates” traffic class 

for applications using multiple flows between a client and a server: 

A service aggregate is provided for certain applications that use more 

                                                        

357 Ex. 1037 (RFC765 – File Transfer Protocol). 
358 Ex. 1037 (RFC765), 6-7. 

EX 1006 Page 178



  

 165 

than one connection in a particular conversation between a client and a 

server. For example, an FTP client in conversation with an FTP server 

employs a command channel and a transfer channel, which are distinct 

TCP sessions on two different ports. In cases where two or three TCP or 

UDP sessions exist for each conversation between one client and one 

server, it is useful to provide a common traffic class i.e., the service aggre-

gate, containing the separate conversations. In practice, these types of 

conversations are between the same two hosts, but use different ports. Ac-

cording to the invention, a class is created with a plurality of traffic speci-

fications, each matching various component conversations.359 

As this passage illustrates, Riddle teaches that its monitor employs service aggre-

gates for applications that may use more than one connection for a particular con-

versation. 

307. Riddle specifies that its parser subsystem checks whether the parser packet 

portion is part of a service aggregate (i.e., a conversational flow): 

FIG. 4B depicts a flowchart 403 of the processing steps for integrating 

traffic classes into a classification tree in an alternative embodiment.… In 

a step 420, an instance of saved traffic is retrieved from the saved traffic 

list 308. Next in a decisional step 422, the instance of saved traffic is ex-

amined to determine whether it is well-known (e.g. registered SAP, proto-

col type, assigned port number) and a name representing its type exists. If 

this is so then processing continues with a test of whether the saved traf-

fic belongs to a service aggregate in step 426. Otherwise, in a step 423 the 

                                                        

359 Riddle, 11:10-23. 

EX 1006 Page 179



  

 166 

instance of saved traffic is examined to determine whether it appears to be 

a server connection port of an unregistered IP port (or a port that has not 

been configured). If this is not so then, processing continues with the next 

traffic class in the saved list in step 420. In decisional step 426, the in-

stance of saved traffic is examined to determine whether it belongs to a 

service aggregate. For example, an FTP session has one flow that is used 

to exchange commands and responses and a second flow that is used to 

transport data files. If the traffic does belong to a service aggregate, then 

in a step 428, a traffic class is created which will match all components 

of the service aggregate. In a further step 425, a new traffic class is created 

to match the instance of saved traffic. The class may be flat or hierar-

chical.360 

As shown below, Riddle illustrates this check for “service aggregate” conversa-

tional flows in Figure 4A and 4B’s flowchart. For example Riddle’s step 406 

checks whether “traffic matches a class?” and step 426 checks whether “saved traf-

fic belongs to a service aggregate?” And when describing command options for 

controller 304, Riddle details in Table 3 specifies the controller may “detect ser-

vices in both directions.”361 

 

                                                        

360 Riddle, 13:36-62, Fig. 4B. 
361 Riddle, 14:28-40. 

EX 1006 Page 180



  

 167 

 

308. The ’864 Provisional further illustrates how a POSITA would have under-

stood Riddle’s service aggregates relate multiple connection flows based on an 

FTP application’s specific software program activity: 

[T]he concept of “service aggregates” (service groups) [is] different 

traffic types that are associated together (ex. FTP has one stream that it 

uses to exchange commands and responses, and a second that the data 

files are actually sent over). Whenever we recognize the signature of 

one of these types of traffic, we create a traffic class (or class hierarchy) 

that can match all the components of the aggregate. This bundling is 

mainly a convenience to the user, makes it clearer what's going on, but 

also permits you to get group counts of all the parts that make up what 

EX 1006 Page 181



  

 168 

the user thinks as the service.362 

309. Further, as I detail above in Section IV.A.6, Riddle describes creating traffic 

classes based on data relating to RTP and RTSP.363 A POSITA would have under-

stood RTP and RTSP are analogous to FTP, and that those protocols use a separate 

control flow with one or more linked dataflows.364 As such, a POSITA would have 

appreciated this is another example of a common “service aggregate” traffic class 

for applications using multiple flows between a client and a server. 

310. When addressing FTP applications, Riddle teaches “subclassifying” compo-

nents of conversational flows: 

Subclassification of traffic into a tree is performed by matching the hosts 

and then searching for particular services. Traffic specifications are ag-

gregate kinds of traffic for a traffic class, e.g., different components of 

FTP may reside under class FTP. Subclassification is performed by first 

locating a class that matches, and then performing finer grade match-

ings. Processing commences with a decision on what traffic is to be sub-

classified. A marker is placed in the match_all default node so that when 

match processing reaches the marker, the autoclassification processing de-

picted in flowchart 403, determines that it has not found an existing class 

for the traffic being classified.365 

                                                        

362 ’864 Provisional, 69. 
363 Riddle, 12:1-12. 
364 Ex. 1045, 4-5 (RFC1889 illustrating well-known RTP information); Ex. 1046, 

9-10 (RFC2326 illustrating well-known RTSP information). 
365 Riddle, 11:24-36. 

EX 1006 Page 182



  

 169 

311. Riddle teaches displaying subclassifications to the user, which further illus-

trates these subclassifications are for disjointed packet flows: 

In an optional step 413 (not show), after the processing of flowchart 

401 completes or at periodic intervals or on demand, a list of traffic 

classes produced in steps 402 through 412 are displayed to a network 

manager. … The display can be hierarchical, as depicted in lines (3) 

below:  

FTP       (3) 

   FTP-cmd 

   FTP-data 

to host1 

   tcp 

      FTP 

          FTP-cmd 

          FTP-data 

      HTTP 

          images 

          java 

         text 

      port 9999 ….366 

312. The above hierarchical classification tree illustrates “conversational flows” in 

three ways. First, under the FTP application, the tree shows linking disjointed FTP 

                                                        

366 Riddle, 12:64-13:23, 11:13-23. As shown in ’864 Provisional (see page 22), the 

first line “FTP” of Riddle’s exemplary classification tree should be directly above 

the subclassifications “FTP-cmd” and “FTP-data.” 

EX 1006 Page 183



  

 170 

connections FTP-cmd and FTP-data. Second, under “tcp” below “to host1,” the tree 

shows linking disjointed FTP connections FTP-cmd and FTP-data under the FTP 

subclass. Third, under “tcp” below “to host1,” the tree shows linking images, java, 

and text under the HTTP subclass. 

313. Riddle’s claims 1 and 2 further teach that service aggregates are conversa-

tional flows. These claims show that service aggregates are a sequence of packets 

exchanged in any direction as a result of activity, such as running an application, 

forming multiple connection flows linked by that activity. In pertinent part, claim 1 

recites “said network having any number of flows” and “parsing a packet into a 

first flow specification.”367 Claim 2 depends from claim 1 and includes the further 

step of: 

[F]or at least a second flow having a second flow specification, recogniz-

ing said second flow specification and said first flow specification to com-

prise together a service aggregate; thereupon, 

[A]ssociating said first flow specification and said second flow specifica-

tion with a newly-created classification tree node, said newly-created clas-

sification tree type node having a first traffic specification corresponding 

to said first flow specification and a second traffic specification corre-

sponding to said second flow specification.368 

314. As discussed above in Section III.J, I agree with the German court’s finding 

                                                        

367 Riddle, claim 1. 
368 Riddle, claim 2. 

EX 1006 Page 184



  

 171 

that an FTP communication, which comprises two TCP connections, taught a “con-

versational flow.” And similarly, Riddle teaches identifying multiple flows as part 

of an FTP communication. As the German court recognized, the identification of 

flows as part of an FTP communication (as Riddle discusses) teaches identifying 

packets as being part of a conversational flow-sequence. 

315. For these reasons, it is my opinion that Riddle teaches forming a function of 

selected packet portions sufficient to identify that the accepted packet is part of a 

conversational flow-sequence. 

(b) Riddle’s PointCast Traffic Is The 

Claimed “Conversational Flow-Se-

quence”  

316. As another example of a “conversational flow-sequence,” Riddle teaches 

that its parser subsystem parses packet to identify whether packet portions are 

PointCast traffic. And as discussed above, Patentee’s U.S. Provisional Patent Ap-

plication No. 60/141,903 (“’903 Provisional” ) discloses that identifying PointCast 

traffic creates a conversational flow.369  

317. PointCast was known in the relevant art before the priority date of the Chal-

lenged Patents. It is my understanding that PointCast Inc. formed in 1992.370 From 

                                                        

369 Ex. 1016 (’903 Provisional), 7:16-25. 
370 Ex. 1035 (PointCast Inc. 1998 SEC Filings), 89. 

EX 1006 Page 185



  

 172 

1992 to 1995, PointCast Inc. primarily sold software allowing users to automati-

cally acquire, format, and present news and other content from certain online ser-

vices. And in 1995, PointCast redirected its focus towards the development of the 

PointCast Network, which launched in 1996.371 The company described the 

PointCast Network as follows: 

The PointCast Network automatically appears whenever the computer 

is idle, replacing a screensaver with a constant stream of useful, person-

alized news and information. Viewers can effortlessly absorb headlines, 

stock quotes and other personalized news on screen or in the scrolling 

ticker, and can click on any headline to obtain in-depth information.372  

318. PointCast’s software used “push-technology” to retrieve information from 

the Internet and push it (via download) to the user’s computer.373 The PointCast 

Network would run in the background of a user’s computer and collect information 

free of charge.374 When the computer was idle, the PointCast Network acts as a 

“screen saver that draws a continuous steam of … information from a server on the 

’net.”375 In 1996, the PointCast Network displayed information “channels” on a 

                                                        

371 Ex. 1035 (PointCast Inc. 1998 SEC Filings), 28. 
372 Ex. 1035 (PointCast Inc. 1998 SEC Filings), 7; Ex, 1032 (Wall Street Journal 

PointCast article), 1. 
373 Ex. 1032 (Wall Street Journal PointCast article), 1. 
374 Ex. 1033 (Computer World PointCast article), 2. 
375 Ex. 1033 (Computer World PointCast article), 2; Ex.1034 (Christian Science 

Monitor PointCast article), 1. 

EX 1006 Page 186



  

 173 

screen saver such as news, weather, and stocks.376 These channels provided infor-

mation derived from different sources including Reuters, TimeWarner, the Los An-

geles Times, and the Boston Globe.377 

319. As shown in the below exemplary figure, the PointCast Network application 

software would run on a client computer and connect to a Reuters server, a Time-

Warner server, and a Boston Globe server.  

 

320. Patentee’s ’903 Provisional, which is incorporated-by-reference in each of 

the Challenged Patents, acknowledges that it was known in the art that each cli-

ents’ computer receives multiple, separate traffic flows associated with the 

PointCast Network application:  

                                                        

376 Ex. 1034 (Christian Science Monitor PointCast article), 2. 
377 Ex. 1034 (Christian Science Monitor PointCast article), 2. 

EX 1006 Page 187



  

 174 

The state processor processes single and multi packet protocol recogni-

tion. It may have to search through a series of possible states to deter-

mine the flow’s actual state. The result of this processing is a consoli-

dated flow entry. This enables the monitor to correctly determine dis-

jointed flows. For example, a PointCast session (PointCast, Inc., Cu-

pertino, CA) will open multiple conversations packet-by-packet that 

might look like separate flows to prior art monitors. However, each of 

these connections is merely a sub-flow under the PointCast master 

flow, so a single flow that consolidates all of the information for the 

flow is desired. The analyzer is able to so consolidate individual con-

nections since the state of the overall flow is maintained by the moni-

tor.378 

321. Patentee’s ’903 Provisional also acknowledges that PointCast traffic flows 

include a PointCast-specific identification signature: “During the initial connection 

between a PointCast server and client, specific key tokens exist in the data ex-

change that will result in a signature for PointCast.”379 

322. As I detail below, Riddle teaches creating a single flow to describe dis-

jointed PointCast Network flows. During the district court trial between Patentee 

and NetScout, inventor Russell Dietz testified that creating a single flow to de-

scribe disjointed flows is a type of conversational flow (while referring to the be-

low demonstrative): 

                                                        

378 Ex. 1016 (’903 Provisional), 7:16-25, 74:5-8. 
379 Ex. 1016 (’903 Provisional), 28:22-24. 

EX 1006 Page 188



  

 175 

Q. Using this example that you have here, what was the problem that 

you and your group noticed in the mid-’90s time frame? 

A. Well, the problem that we noticed was that more and more connec-

tion flows were -- were -- were related to what it is that you were doing 

in the application and how that was happening was missing. So  

-- so, in other words, you couldn’t really see it. So let me show you 

another slide that gives you a view of what was going on. So basically, 

what I’ve done here is think of that app or that web page that you’re 

using made up of lots of these different connection flows. And the prob-

lem is, is that each of them are different or – or as becoming a very big 

problem because wireless network providers and other kinds of net-

works that were coming up in front of and around the Internet were 

having a very difficult time being able to make sure that the services 

that were provided to present those apps or web pages to you were being 

delivered and that they could figure out that that app that you’re running 

is actually related to all of those connection flows. 

Q. And how did you and your team of other inventors solve that prob-

lem of not being able to group those different connections? 

A. Well, you know, what we did was we came up with a way -- a new 

way of associating all of those packets that I -- that I described, pulling 

information out of all those packets that I described earlier, and -- and 

-- and associating that information back with all of these different -- 

these different connection flows. Basically, we created a new view into 

that app. And on -- on the -- on the next slide, I can show you what that 

looked like. So what we -- what we came up with was a way to take 

EX 1006 Page 189



  

 176 

information from all of those different packets in each of those connec-

tion flows and create a conversational flow. And the conversational 

flow, as we see in this picture, can be 3 or 300 or 30 different connec-

tion flows, but they’re all associated now to that one application, the 

app on your phone and that web page. 

Q. And is conversational flow the term that’s used in your team’s pa-

tents? 

A. Yes, it is.380 

 

                                                        

380 Ex. 1068 (10/10/17 Trial Transcript in NetScout district court case), 55:11-

57:15); Ex. 1072 (R. Dietz Demonstrative Slide in NetScout district court case), 3; 

Ex. 1071 (M. Lyons Declaration in NetScout district court case), ¶4. 

EX 1006 Page 190



  

 177 

323. Riddle discloses creating a single flow class for multiple, separate PointCast 

flows.381 Riddle describes examining packet flows for an indication of push traffic, 

such as PointCast traffic using HTTP to transport data.382 Riddle teaches isolating 

and classifying PointCast’s push traffic into a separate class.383 Riddle identifies 

PointCast flows by examining packet headers for signature content in the get re-

quest. By searching the packet headers for URLs that begin with “/FIDO-1/,” Rid-

dle teaches classifying these separate flows as PointCast flows.384 As was known in 

the art before the priority date of the Challenged Patents, tag FIDO-1 was used to 

fetch concatenated connection flows.385 

324. Riddle discloses creating a single flow class for these disjointed PointCast 

flows. By searching packet headers for URLs that begin with “/FIDO-1/,” Riddle 

teaches classifying these separate flows as PointCast flows: 

In a preferable embodiment, classification can extend to examination of 

the data contained in a flow’s packets. Certain traffic may be distinguished 

by a signature even if it originates with a server run on a non-standard port, 

for example, an HTTP conversation on port 8080 would not be otherwise 

determinable as HTTP from the port number. Further analysis of the data 

is conducted in order to determine classification in instances where: 1) FTP 

                                                        

381 Riddle, 11:57-12:9. 
382 Riddle, 11:47-67. 
383 Riddle, 11:47-67. 
384 Riddle, 11:57-12:9. 
385 Ex. 1036 (U.S. Patent No. 6,807,558), 30:62-31:17, 33:28-44, 39:14-40:21. 

EX 1006 Page 191



  

 178 

commands are used to define server ports, 2) HTTP protocol is used for 

non-web purposes. The data is examined for indication of push traffic, 

such as pointcast, which uses HTTP as a transport mechanism. These 

uses may be isolated and classified into a separate class. Marimba and 

pointcast can be distinguished by looking into the data for a signature 

content header in the get request. Pointcast has URLs that begin with 

“/FIDO-1/.” Other applications in which protocol can be inferred from 

data include Telnet traffic. Both tn3270 and tn3270E (emulation) may be 

detected by looking into data and given a different class. Telnet traffic has 

option negotiations which may indicate an appropriate class.386 

As was known in the art before the priority date of the Challenged Patents, tag 

FIDO-1 was used to fetch concatenated connection flows.387 

325. Moreover, Riddle discloses that one of its autoclassification processes in-

cludes PointCast traffic and that a flow specification’s outside service field may 

identify PointCast traffic.388 And Riddle specifies: “Network managers need not be 

aware of services which are known to be derivative of others, e.g., pointcast and ma-

rimba are special cases of HTTP and tn3270 is a special case of Telnet, in order to 

work with the system.”389  

326. As discussed above, the PointCast Network application software would run 

                                                        

386 Riddle, 11:47-67. 
387 Ex. 1036 (U.S. Pat. No. 6,807,558), 30:62-31:17, 33:28-44, 39:14-40:21. 
388 Riddle, 14:54-63, 15:16-20. 
389 Riddle, 15:28-31. 

EX 1006 Page 192



  

 179 

on a client computer and connect to a series of servers. Riddle teaches creating a 

single class for such disjointed PointCast connections by searching packet headers 

for URLs that begin with /FIDO-1/.390 In doing so, Riddle classifies these connec-

tions as PointCast flows. 

327. In sum, Patentee’s ’903 Provisional describes multiple flows being associ-

ated with the PointCast Network application. And Riddle teaches identifying and 

associating packet portions as PointCast traffic. Thus, by examining packet por-

tions for URLs that begin with /FIDO-1/ to classify PointCast traffic, a POSITA 

would have understood that Riddle’s parser subsystem forms a function of selected 

packet portions sufficient to identify that an accepted packet is part of a conversa-

tional flow-sequence. 

f. ’099 Claim Element 1.5: “(d) a memory storing a flow-

entry database including a plurality of flow-entries for 

conversational flows encountered by the monitor” 

328. Riddle renders obvious this claim element alone or in view of Ferdinand. As 

discussed with respect to ’099 claim elements 1.1 and 1.2, Riddle discloses that its 

monitor includes storage subsystem 35 having memory subsystem 35a and file 

storage subsystem 35b for storing computer programs (e.g., code or instructions) 

and data.391  

                                                        

390 Riddle, 11:11-23, 11:47-12:9, 15:16-20. 
391 Riddle, 6:1-23, 6:43-50, Figs. 1A-1B. 

EX 1006 Page 193



  

 180 

329. Riddle’s system stores flow-entries in a series of lists 308 that include a plu-

rality of flow-entries encountered by the monitor. As illustrated below in annotated 

Figure 3, Riddle discloses a plurality of saved lists 308 that store classified traffic 

pending incorporation into traffic tree 302.392 Riddle details that “entries for each 

instance of traffic may be kept” or “a copy of an entry and a count of duplicate 

copies for the entry is maintained.”393 Riddle retrieves flow-entries stored in lists 

308, and incorporates the saved lists 308 into the classification tree, such as traffic 

tree 302, where each node of the tree represents a traffic class.394 

 

330. Riddle’s Figure 4A, provided below, shows the process of parsing a flow 

specification from a packet, then storing the flow specifications in the saved list: 

FIG. 3 depicts components of a system for automatically classifying traffic 

                                                        

392 Riddle, 12:37-38, Fig. 3. 
393 Riddle, 12:39-41. 
394 Riddle, 9:28-33, 8:47-50, 13:35-62, Fig. 4B. 

EX 1006 Page 194



  

 181 

according to the invention. A traffic tree 302 in which new traffic will be 

classified under a particular member class node…. A plurality of saved 

lists 308 stores classified traffic pending incorporation into traffic tree 

302. In select embodiments, entries for each instance of traffic may be 

kept. In alternate embodiments, a copy of an entry and a count of duplicate 

copies for the entry is maintained.  

FIG. 4A depicts a flowchart 401 of processing steps for automatically clas-

sifying traffic. In a step 402, a flow specification is parsed from the flow 

being classified. Then in a step 404, the flow specification parsed from 

the flow in step 402 is compared with the traffic specifications in each 

node of the classification tree. Rules are checked starting from most spe-

cific to least specific. In a decisional step 406, a determination is made if 

traffic matches one of the classes being classified. If this is so, then in a 

step 408, an entry is made in a list of identifying characteristics, such as 

protocol type (SAP), IP protocol number, server port, traffic type if 

known, MIME type, a time of occurrence of the traffic. In an optional 

step 410, duplicate instances having the same identifying characteristics 

are suppressed, in favor of keeping a count of the duplicates and a most 

recent time traffic with these identifying characteristics was encountered. 

In an optional step 412, a byte count of traffic of this type has been detected 

is included…. 

In an optional step 413 (not show), after the processing of flowchart 401 

completes or at periodic intervals or on demand, a list of traffic classes 

produced in steps 402 through 412 are displayed to a network manager. 

The list may be sorted by any well-known criteria such as: 1) most “hits” 

during a recent interval, 2) most recently-seen (most recent time first), 3) 

EX 1006 Page 195



  

 182 

most data transferred (bytes/second) during some interval, or a moving av-

erage.395 

 

331. As I discuss above with respect to ’099 claim element 1.3, Riddle teaches 

identifying a service aggregate flow as one type of traffic.396 Riddle explains that a 

service aggregate links together into a “conversation” multiple connection flows 

based on specific software program activity (e.g., Pointcast traffic).397 As such, 

Riddle discloses storing separate flow-entries for these previously encountered 

                                                        

395 Riddle, 12:27-13:5. 
396 Riddle, 11:10-22, 13:53-59. 
397 Riddle, 11:11-23, 11:60-63. 

EX 1006 Page 196



  

 183 

conversational flows, such as PointCast traffic. 

332. Riddle’s Figure 4B is a flowchart illustrating further processing of the pack-

ets parsed in Figure 4A to determine whether a traffic class, such as a service ag-

gregate, needs to be created for the flow:  

FIG. 4B depicts a flowchart 403 of the processing steps for integrating 

traffic classes into a classification tree in an alternative embodiment. Pro-

cessing steps of flowchart 403 periodically at a defined interval of seconds, 

having a value of 30 in the preferable embodiment, incorporate newly clas-

sified traffic into the classification tree. In a step 420, an instance of saved 

traffic is retrieved from the saved traffic list 308. Next in a decisional step 

422, the instance of saved traffic is examined to determine whether it is 

well-known (e.g. registered SAP, protocol type, assigned port number) and 

a name representing its type exists. If this is so then processing continues 

with a test of whether the saved traffic belongs to a service aggregate in 

step 426. Otherwise, in a step 423 the instance of saved traffic is examined 

to determine whether it appears to be a server connection port of an unreg-

istered IP port (or a port that has not been configured). If this is not so then, 

processing continues with the next traffic class in the saved list in step 420. 

In decisional step 426, the instance of saved traffic is examined to deter-

mine whether it belongs to a service aggregate. For example, an FTP ses-

sion has one flow that is used to exchange commands and responses and a 

second flow that is used to transport data files. If the traffic does belong to 

a service aggregate, then in a step 428, a traffic class is created which will 

match all components of the service aggregate. In a further step 425, a new 

traffic class is created to match the instance of saved traffic. The class may 

EX 1006 Page 197



  

 184 

be flat or hierarchical.398 

333. As the above passage explains, Riddle’s monitor retrieves previously stored 

data from the saved lists (step 420, shown below in green).399 If the saved traffic is 

well known, Riddle’s monitor tests whether the retrieved traffic belongs to a ser-

vice aggregate “conversational flow” (step 426, shown below in red).400 If it does, 

Riddle teaches creating a traffic class that “will match all components of the ser-

vice aggregate” (step 428, shown below in red).401 

 

                                                        

398 Riddle, 13:35-62, Fig. 4B. 
399 Riddle, 13:40-52, 4:49-51, Fig. 4B. 
400 Riddle, 13:52-56, Fig. 4B. 
401 Riddle, 13:56-59, Fig. 4B. 

EX 1006 Page 198



  

 185 

334. As such, based on Riddle’s teachings regarding classification trees illus-

trated in Figures 4A-4B’s flowcharts, a POSITA would have understood that Rid-

dle’s saved lists 308 store in memory a plurality of flow-entries. 

335. A POSITA would have been motivated and found it obvious to store Rid-

dle’s lists 308, and related tree 302, in a flow-entry database based upon a 

POSITA’s own knowledge of network devices. As discussed with respect to ’099 

claim element 1.2, Riddle describes databases, such as relational database 306, for 

storing the heuristics for determining traffic classes.402 Further, it was well known 

to a POSITA to store data related to network traffic in a database in a network de-

vice. Routers, such as Riddle’s “network routing means,” were well known to use 

databases for storing routing information learned through protocols.403 Such data-

bases allow for faster lookup of routing information. At the time of the prior art, 

such databases were often a set of hardware tables for even faster lookup.404 For 

routers routing information, Riddle discloses storing packet classification infor-

mation in multiple lists.405 Thus, storing Riddle’s flow-entries in a database 

amounts to nothing more than a simple implementation leading to the predictable 

                                                        

402 Riddle, 12:32-35. 
403 Riddle, 6:1-15; ’099 Prosecution History, 213-214 (06/25/2003 Office Action, 

p.3). 
404 Riddle, 6:1-15, 15:1-15; Ferdinand, 23:19-23, 28:16-24; ’099 Prosecution His-

tory, 213-214 (06/25/2003 Office Action, p.3). 
405 Riddle, 12:37-38, 12:61-63. 

EX 1006 Page 199



  

 186 

result of saving Riddle’s classification information in a flow-entry database as a set 

of tables. 

336. To the extent Riddle alone does not render obvious memory storing a flow-

entry database, a POSITA would have been motivated and found it obvious to 

store Riddle’s lists 308 in a flow-entry database based on Ferdinand’s teachings.  

For example, Ferdinand describes a statistics database (STATS) 36 for storing 

classification information: 

STATS 36 is responsible for the maintenance and initial analysis of the 

database…. STATS 36 is also responsible for tracking events of interest in 

the form of various statistical reductions…. STATS performs lookup on 

all addressing fields. It assigns new data structures to address field values 

not currently present. It performs any hashing for fast access to the data-

base. 406 

STATS defines the database and it contains subroutines for updating the 

statistics which it keeps. STATS contains the type definitions for all statis-

tics records (e.g. DLL, IP, TCP statistics).407 

337. Ferdinand illustrates the flow-entry database structure in Figures 7A-7C, 

provided below. For example, Ferdinand’s flow-entry information includes proto-

col identifiers (shown in green), source and destination addresses (shown in yel-

low), and hashes (shown in blue), among others. Ferdinand also discloses that its 

                                                        

406 Ferdinand, 23:3-22. 
407 Ferdinand, 28:14-17. 

EX 1006 Page 200



  

 187 

database’s access routines allow for the hiding of the database’s internal structure 

from other modules in the system: “Database accesses are generally performed us-

ing access routines. This hides the internal structure of the database from other 

modules and also ensures that appropriate interlocks are applied to shared data.”408 

 

                                                        

408 Ferdinand, 27:16-19. 

EX 1006 Page 201



  

 188 

 

338. As explained above, both Riddle and Ferdinand relate to devices that clas-

sify traffic. Riddle and Ferdinand both describe classifying the same types of traf-

fic, such as FTP and other protocol types like TCP and UDP.409 And like Riddle, 

Ferdinand discloses displaying the results of its analysis to a user.410 As such, a 

POSITA would have found it desirable to implement Riddle’s saved lists in a flow-

entry database, based on Ferdinand’s teachings. A POSITA would have been moti-

vated to do so because of the increased functionality of storing data in a database 

including searching, analyzing, and modifying the flow-entries. Such motivation 

                                                        

409 Riddle, 10:1-18 (Table 2); Ferdinand, 29:4-30:10, 39:23-40:16. 
410 Riddle, 12:64-13:9, 14:1-5; Ferdinand, 60:10-15, Fig. 22. 

EX 1006 Page 202



  

 189 

would further Riddle’s desired goal of determining whether the packet monitor has 

received duplicate flow-entries.411 Moreover, this implementation would have al-

lowed multiple network operators to access simultaneously Riddle’s classification 

information consistent with Riddle’s preference for storing multiple saved lists.412 

A POSITA would have appreciated accessing Riddle’s multiple list is similar to 

accessing a set of database tables because Riddle discloses its traffic classification 

information and heuristics may be stored in a file or relational database.413  And 

Ferdinand specifies that using such a database allows for hiding the database’s in-

ternal structure from other system modules, which would be another motivation to 

implement Riddle’s saved lists in a flow-entry database.414 

339. Modifying Riddle’s monitor would have led to predictable results given that 

Riddle’s saved lists include similar information as that saved in Ferdinand’s data-

base. As such, including Riddle’s classification information in a flow-entry data-

base is nothing more than an obvious implementation to a POSITA based on Ferdi-

nand’s teachings. 

                                                        

411 Riddle, 12:53-57, Fig. 4A (step 410). 
412 Riddle, 12:37-38, 12:61-63. 
413 Riddle, 12:34-35. 
414 Ferdinand, 27:16-19, 54:13-17. 

EX 1006 Page 203



  

 190 

g. ’099 Claim Element 1.6: “(e) a lookup engine connected 

to the parser subsystem and to the flow-entry database, 

and configured to determine using at least some of the 

selected portions of the accepted packet if there is an en-

try in the flow-entry database for the conversational flow 

sequence of the accepted packet” 

340. Riddle discloses this claim element. As I detail below, Riddle describes us-

ing portions of packets to determines if there is a stored flow-entry. To make this 

determination, Riddle uses its processor and memory subsystem, which is the 

claimed “lookup engine.” 

341. As discussed with respect to ’099 claim elements 1.5, Riddle teaches a stor-

age subsystem having a flow-entry database that includes a plurality of flow-en-

tries for conversational flows encountered by the monitor or that such a flow-entry 

database is obvious. Riddle, for example, discloses a plurality of flow-entries in the 

form of a plurality of saved lists 308 storing classified traffic pending incorpora-

tion into traffic tree 302 and measurement data such as byte counts (step 412).415 

Riddle further states that “entries for each instance of traffic may be kept” or “a 

copy of an entry and a count of duplicate copies for the entry is maintained.”416 

And Riddle describes retrieving previously stored data from the saved lists (Figure 

4B’s step 420). 

                                                        

415 Riddle, 12:37-38, Fig. 3. 
416 Riddle, 12:39-41, Fig. 4A. 

EX 1006 Page 204



  

 191 

342. As shown in Figure 4B, Riddle teaches looking up whether a flow matches a 

traffic class in relation to classifying a service aggregate based on a plurality of in-

dicators.417 Further, as shown in Figure 4A, Riddle describes comparing parsed 

packet information to store flow-entry information (step 404) to ultimately sup-

press duplicate entries when classifying network traffic (step 410). When suppress-

ing duplicates for service aggregates (i.e., “conversational flows”), Riddle details 

that the suppression step 410 uses packet portions to determine if the packet be-

longs to a previously-encountered conversational flow sequence, such as service 

aggregate traffic.418 Based on Riddle’s discussion of the related flowcharts in Fig-

ures 4A-4B, a POSITA would have understood that Riddle’s monitor uses packet 

portions to determine if there is a flow-entry for any previously-encountered con-

versational flow sequence and looks up whether a received packet belongs to a 

flow-entry (for example, class A) in traffic tree 302 corresponding to a conversa-

tional-flow sequence. 

343. Further, when determining whether a flow-entry for a conversational flow 

already exists, Riddle discloses a device working with the parser subsystem to ex-

amine entries in the flow-entry database. As such, a POSITA would have under-

stood that such a device is a lookup engine running on Riddle’s processor having 

                                                        

417 Riddle, 13:42-47, claim 5, Fig. 4B.  
418 Riddle, 12:42-49. 

EX 1006 Page 205



  

 192 

programming code performing the above-described lookup functions: “The method 

for automatically classifying heterogeneous packets in a packet telecommunica-

tions environment of the present invention is implemented in the C programming 

language and is operational on a computer system such as shown in FIG. 1A.”419 

Moreover, Riddle describes a “processor means” that performs the function of 

matching a parsed flow specification to a traffic class.420  

344. Further, a POSITA would have understood that Riddle’s elements for deter-

mining if the flow-entry database has a conversational flow-entry achieve Riddle’s 

goals of examining and classifying traffic.421 As such, a POSITA would have un-

derstood that these lookup engine elements are connected to Riddle’s parser sub-

system and flow-entry database. 

h. ’099 Claim Element 1.7: “(f) a state patterns/operations 

memory configured to store a set of predefined state tran-

sition patterns and state operations such that traversing 

a particular transition pattern as a result of a particular 

conversational flow-sequence of packets indicates that 

the particular conversational flow-sequence is associated 

with the operation of a particular application program, 

visiting each state in a traversal including carrying out 

none or more predefined state operations” 

345. Riddle discloses this claim element. As discussed with respect to ’099 claim 

                                                        

419 Riddle, 5:53-57. As I detail above with respect to ’099 claims elements 1.3-1.4, 

Riddle’s operations run on a processor having programming code. 
420 Riddle, claim 8. 
421 Riddle, 4:6-15. 

EX 1006 Page 206



  

 193 

elements 1.1, 1.2, and 1.5, Riddle discloses that its monitor includes storage sub-

system 35 having memory subsystem 35a and file storage subsystem 35b storing 

“computer programs (e.g., code or instructions) and data.”422 Riddle’s memory and 

file storage contain a set of predefined state transition patterns and state operations, 

such as those stored in knowledge base database 308.423  

(1) Riddle teaches the claimed storing of “state transi-

tion patterns and state operations”  

346. As discussed above in Section VI.D, Patentee has previously proposed to 

construe a “state operation” as “an operation to be performed while the state pro-

cessor is in a particular state.” And as discussed in that section, the Challenged Pa-

tents provide examples of state operations, such as updating flow-entries, creating 

new flow-entries, reporting metrics, identifying flow’s application program, and 

searching records. Riddle teaches this claim element under Patentee’s proposed 

construction for “state operations” or that terms ordinary and customary meaning. 

347. Further, the ’099 Patent states that “a state transition rule is a rule typically 

containing a test followed by the next-state to proceed to if the test result is 

true.”424 This is consistent with how a POSITA would have understood rules for 

traversing state transition patterns. 

                                                        

422 Riddle, 6:1-23, 6:43-50, Figs. 1A-1B. 
423 Riddle, 12:26-41, Fig. 3. 
424 ’099 Patent, 15:2-4. 

EX 1006 Page 207



  

 194 

348. Riddle details that its monitor classifies flows by “a series of steps through a 

traffic class tree, with the last step (i.e., at the leaves on the classification tree) 

mapping the flow to a policy.”425 And such class trees are common data classifica-

tion structures in which each of the tree’s leaf nodes correspond to last encountered 

flow states. At the time of the purported invention, a POSITA would have under-

stood that Riddle’s steps walk through a set of state transition patterns and state op-

erations. For example, Riddle details checks nodes in the classification tree to 

match a packet’s flow identification information to a given traffic class: 

A classification tree is a data structure representing the hierarchical aspect 

of traffic class relationships. Each node of the classification tree represents 

a class, and has a traffic specification, i.e., a set of attributes or character-

istics describing the traffic associated with it. Leaf nodes of the classifica-

tion tree may contain policies. According to a particular embodiment, the 

classification process checks at each level if the flow being classified 

matches the attributes of a given traffic class. If it does, processing con-

tinues down to the links associated with that node in the tree. If it does 

not, the class at the level that matches determines the policy for the flow 

being classified. If no policy specific match is found, the flow is assigned 

the default policy. 

In a preferred embodiment, the classification tree is an N-ary tree with its 

nodes ordered by specificity. For example, in classifying a particular flow 

                                                        

425 Riddle, 9:20-25. 

EX 1006 Page 208



  

 195 

in a classification tree ordered first by organizational departments, the at-

tributes of the flow are compared with the traffic specification in each suc-

cessive department node and if no match is found, then processing pro-

ceeds to the next subsequent department node. If no match is found, then 

the final compare is a default “match all” category. If, however, a match is 

found, then classification moves to the children of this department node. 

The child nodes may be ordered by an orthogonal paradigm such as, for 

example, “service type.” Matching proceeds according to the order of 

specificity in the child nodes. Processing proceeds in this manner, travers-

ing downward and from left to right in FIGS. 2A and 2B, which describe 

a classification tree, searching the plurality of orthogonal paradigms. Key 

to implementing this a hierarchy is that the nodes are arranged in de-

creasing order of specificity. This permits search to find the most specific 

class for the traffic before more general.426 

349. To illustrate Riddle’s state transition patterns and state operations, it is worth 

outlining Riddle’s teachings regarding its exemplary classification trees shown in 

Figures 2A, 2B, and 3. Figures 2A and 2B depict bandwidth allocations between 

Departments A and B.427 As provided below, Figure 2A shows Riddle’s packet 

classifier traverses a traffic tree to check traffic classes for Departments A and B. 

At resource node 202, Riddle’s classifier tests if the instant flow is intended for 

Department A inside host subnet A (in yellow) by comparing, for instance, the 

                                                        

426 Riddle, 9:28-63. 
427 Riddle, 10:19-24. 

EX 1006 Page 209



  

 196 

packet’s source (client) IP to the range of IP address defined for subnet A.428 If so, 

then the state is updated and the classifier proceeds to the next state operation (in 

blue) to test if the flow is for an FTP outside port 2.0 (206) or the web (208).429 If 

the flow was not for Department A, then the classifier proceeds to the next state 

operation (in yellow) to test if the flow is intended for Department B inside host 

subnet B (204) by comparing the packet’s source (client) IP to the range of IP ad-

dresses defined for subnet B.430 If so, then the state is updated and the classifier 

proceeds to the next state operation (in blue) to test if the flow is for an FTP server 

(210) or the web (212). If the flow was not for Departments A or B, then the classi-

fier gives the flow a default classification (205).431 These tests are state transitions 

indicating whether a particular conversational flow is associated with a particular 

application program, e.g., an FTP program or web browser.432 As such, Riddle’s 

Figure 2A illustrates a set of rules with each node containing a test followed by the 

next state if the test result is true. 

                                                        

428 Riddle: 10:28-39. 
429 Riddle: 10:28-39. 
430 Riddle: 10:19-39, Table 2. 
431 Riddle: 10:19-56, Table 2. 
432 Riddle, 10:19-39.  

EX 1006 Page 210



  

 197 

 

350. As provided below, Figure 2B shows another classification tree in which 

Riddle’s packet classifier tests if the instant flow is web traffic (220 in yellow).433 

If so, then the state is updated and classifier proceeds to the next state operation (in 

blue) to test if the flow is for Department A (226) or Department B (228).434 If the 

flow is not web traffic (220), then the classifier proceeds to the next state operation 

(in yellow) to test if the flow is a TCP flow (224).435 If so, then the state is updated 

and the classifier proceeds to the next state operation (in blue) to test if the flow is 

for Department A (230) or Department B (232).436 If the flow was not a web or TC 

flow, then the classifier gives the flow a default classification (225).437 These tests 

                                                        

433 Riddle, 10:40-51. 
434 Riddle, 10:40-51. 
435 Riddle, 10:40-51. 
436 Riddle, 10:40-51. 
437 Riddle, 10:40-56. 

EX 1006 Page 211



  

 198 

are state transitions indicating whether a particular conversational flow is associ-

ated with a particular application program, e.g., an FTP program or web 

browser.438 Again, Riddle’s Figure 2B illustrates a set of rules with each node con-

taining a test followed by the next state if the test result is true. 

 

351. Further, Riddle teaches displaying a hierarchical classification tree that lists 

a stored set of pre-defined state transition patterns and state operations related to 

FTP. For example, Riddle describes classes “to host 1,” “tcp,” and “FTP.”439 As 

each packet is received, Riddle’s classification proceeds along this hierarchy lead-

ing to matching of a flow with the operation of a particular FTP application pro-

gram. Based on these teachings, a POSITA would have understood that transition-

                                                        

438 Riddle, 10:19-39.  
439 Riddle, 13:11-22. 

EX 1006 Page 212



  

 199 

ing from one class to the next in Riddle’s hierarchy involves traversing set of pre-

defined state transition patterns and state operations (e.g., saving TCP-session in-

formation from classified TCP packets exchanged with the host; and aggregating 

saved TCP-sessions belonging to the instance of FTP application being classified).  

352. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of Packer as though fully set forth in Riddle. Packer further describes a 

traffic classification system illustrated by the flowchart of Figure 5F, provided be-

low. In describing this flowchart, Packer specifies traversing a set of predefined 

state-transition patterns and state operations by recursively processing through 

matching child-class definitions: 

FIG. 5F depicts a flowchart 511 showing the component steps of traffic 

classification step 504 of FIG. 5A. The processing steps of flowchart 

511 determine a class and a policy for a flow, such as new flow 300, by 

traversing a classification tree such as the classification tree 201 in FIG. 

2A. Processing begins with a first node in the classification tree 201, 

such as department A node 202. In a step 570, a traffic specification of 

a child node, such as FTP node 206 is compared with a flow specifica-

tion of the new flow 300. In a decisional step 572, if a match is discov-

ered, then in a step 574, the processing of flowchart 511 is applied to 

the child node 206 recursively. Otherwise, if child node 206 does not 

match the new flow, then in a decisional step 576, processing deter-

mines whether any sibling nodes exist for the child node 206. If pro-

cessing detects the existence of a sibling of child node 206, such as 

EX 1006 Page 213



  

 200 

child node 208, then processing continues on node 208 with step 570. 

Otherwise, if there are no further child nodes for node 202, then in a 

decisional step 578, a determination is made whether the node is a leaf 

node having a policy. If no policy exists, then in a step 580, processing 

backtracks to a parent node and looks for a policy associated with the 

parent node to apply to the new flow 300. Otherwise, if a policy is as-

sociated with the node 202, then in a step 582, the policy is associated 

with the new flow 300.440  

                                                        

440 Ex. 1031 (Packer), 18:1-26. 

EX 1006 Page 214



  

 201 

 

353. Below, I have annotated Riddle’s Figure 4B to illustrate traversing a state 

transition pattern for a particular conversational flow-sequence. Illustrated by steps 

426-428 (in red), Riddle’s classification tree can include a state operation of deter-

mining if the traffic belongs to a “service aggregate” application (i.e., “conversa-

tional flow-sequence) with multiple connections between computers.441 

                                                        

441 Riddle, 11:10-23. 

EX 1006 Page 215



  

 202 

 

(2) Riddle teaches the claimed “traversing a particular 

transition pattern as a result of a particular conver-

sational flow-sequence of packets indicates that the 

particular conversational flow-sequence is associ-

ated with the operation of a particular application 

program, visiting each state in a traversal including 

carrying out none or more predefined state opera-

tions” 

354. For the flowchart steps shown in Figure 4A, Riddle describes analyzing in-

formation that identifies the characteristics of the traffic as the classifier parses the 

flow’s packets and matching the parsed packets to a class: 

FIG. 4A depicts a flowchart 401 of processing steps for automatically 

classifying traffic. In a step 402, a flow specification is parsed from the 

EX 1006 Page 216



  

 203 

flow being classified. Then in a step 404, the flow specification parsed 

from the flow in step 402 is compared with the traffic specifications in 

each node of the classification tree. Rules are checked starting from 

most specific to least specific.442 

355. Further, Riddle describes that, after an initial classification, its classifier per-

forms “subclassification” in a sequential manner through finer-grade matchings as 

the classifier identifies characteristics, such as identifying the hosts and services, 

leading to matching of a flow with the operation of a particular application pro-

gram.443 In accordance with the transition pattern of the classification tree, Riddle 

further teaches its classifier advances through the sequence of packets of a particu-

lar flow to parse and classify those packets. This results in Riddle’s classifier per-

forming a corresponding predefined state operation at each node to update the 

identifying characteristics of the flow. 

356. Returning to the example of FTP operations above in Riddle’s Figure 2A, 

Riddle describes traversing a particular transition pattern that includes (1) compar-

ing the packets’ source (client) IP to the range of IP addresses defined for subnet B 

and, if so, (2) determining if the sequence of packets involves the FTP protocol.444 

In doing so, Riddle teaches testing for subclassifications when encountering packet 

                                                        

442 Riddle, 12:42-48. 
443 Riddle, 11:25-31, 13:11-22. 
444 Riddle, 10:19-39. 

EX 1006 Page 217



  

 204 

information relating to FTP applications such as Figure 2A’s classes 206, 210: 

Subclassification of traffic into a tree is performed by matching the hosts 

and then searching for particular services. Traffic specifications are ag-

gregate kinds of traffic for a traffic class, e.g., different components of 

FTP may reside under class FTP. Subclassification is performed by first 

locating a class that matches, and then performing finer grade match-

ings. Processing commences with a decision on what traffic is to be sub-

classified. A marker is placed in the match_all default node so that when 

match processing reaches the marker, the autoclassification processing de-

picted in flowchart 403, determines that it has not found an existing class 

for the traffic being classified.445 

When testing for such subclassifications, Riddle’s classifier performs an operation 

to determine if the flow is an FTP command flow or an FTP data flow.446 

357. Moreover, with flows involving FTP applications, Riddle teaches perform-

ing state operations to determine if the flow belongs to a service aggregate (i.e., a 

conversational flow-sequence).447 As Riddle details: 

A service aggregate is provided for certain applications that use more 

than one connection in a particular conversation between a client and a 

server. For example, an FTP client in conversation with an FTP server 

employs a command channel and a transfer channel, which are distinct 

TCP sessions on two different ports. In cases where two or three TCP 

                                                        

445 Riddle, 11:24-36. 
446 Riddle, 11:12-15. 
447 Riddle, 11:10-23; 13:52-57; Fig. 4B. 

EX 1006 Page 218



  

 205 

or UDP sessions exist for each conversation between one client and one 

server, it is useful to provide a common traffic class i.e., the service 

aggregate, containing the separate conversations.448  

As shown in Figure 2A, a POSITA would have understood that traversing this ex-

ample transition pattern (Client IP/Subnet B/FTP/FTP-cmd/FTP service aggregate) 

as a result of a particular conversational flow-sequence of packets, indicates an as-

sociation with the FTP-application program initiated on the user’s (client’s) com-

puter.449  

358. Further, Riddle describes additional examples of traversing a transition pat-

tern resulting from a particular conversational flow-sequence of packets. One ex-

ample is Riddle’s examined packet relating PointCast traffic. As discussed above 

regarding ’099 claim element 1.4, Riddle’s conversational flow-sequences are as-

sociated with the operation of a particular application program, such as PointCast 

Network application software. 

359. The Challenged Patents explain that searching for one or more patterns in 

the parsed packet information is an example of a state operation.450 Riddle dis-

closes searching for patterns/strings in HTTP headers and data: “Web traffic may 

                                                        

448 Riddle, 11:10-23. 
449 As explained regarding ’099 claim element 1.4, Riddle’s “conversational flow-

sequence[s]” are associated with the operation of a particular application program.  
450 ’646 Patent, claim 13; ’789 Patent, claims 17, 27, 46. 

EX 1006 Page 219



  

 206 

also be classified by HTTP header types such as Content-Type (MIME type) or 

User-Agent.”451 Thus, when checking whether a flow is for web applications at 

Figure 2A’s boxes 208 or 212, a POSITA would have understood that Riddle’s 

classifier performs a state operation that searches for one or more patterns, such as 

searching for URI patterns matching “/FIDO-1/” indicating PointCast traffic.452 To 

a POSITA, this classification pattern identifies a single PointCast client accessing 

multiple news-type servers.453 As shown in Figure 2A, Riddle’s sequence of pack-

ets traversing this example transition pattern (Client IP/Subnet 

B/Web/HTTP/Pointcast) indicates an association with the PointCast application 

program initiated on the user’s computer.454 

360. Another example of traversing a transition pattern resulting from a particular 

conversational flow-sequence of packets is Riddle creating a new flow-entry for 

previously unencountered traffic flows. The Challenged Patents explain that state 

operations may include creating a new flow-entry for future packets to be identi-

fied with the flow.455 

                                                        

451 Riddle, 9:24-26; 8:67-9:11, 11:48-59. 
452 Riddle, 11:57-63, 14:53-64, 15:16-31. 
453 Ex. 1034, 2. 
454 As I explain above with respect to ’099 element 1.4, each of Riddle “conversa-

tional flow-sequence” is associated with the operation of a particular application 

program. 
455 ’789 Patent, claim 47. 

EX 1006 Page 220



  

 207 

361. When classifying flows, Riddle teaches creating a new flow-entry for previ-

ously unencountered traffic flows and suppressing duplicate entries at Figure 4A’s 

steps 408 and 410: 

In a decisional step 406, a determination is made if traffic matches one 

of the classes being classified. If this is so, then in a step 408, an entry is 

made in a list of identifying characteristics, such as protocol type (SAP), 

IP protocol number, server port, traffic type if known, MIME type, a time 

of occurrence of the traffic. In an optional step 410, duplicate instances 

having the same identifying characteristics are suppressed, in favor of 

keeping a count of the duplicates and a most recent time traffic with these 

identifying characteristics was encountered.456 

362. Thus, when checking whether a flow is for web or FTP applications at Fig-

ure 2A’s boxes 206, 208, 210, or 212, a POSITA would have understood that Rid-

dle’s classifier performs a state operation every time it creates a new flow-entry per 

step 408.  

363. Yet another example of traversing a transition pattern resulting from a par-

ticular conversational flow-sequence of packets is Riddle determining metrics re-

lating to parsed packet information. The Challenged Patents explain that state oper-

ations may include determining metrics that relate to the examined flow. 457
 

364. Riddle discloses determining and reporting metrics related to flows, such as 

                                                        

456 Riddle, 12:48-57. 
457 ’751 Patent, claims 11-13, 16. 

EX 1006 Page 221



  

 208 

byte count, most hits, time most recently seen, most data transferred, moving aver-

age, bytes per second, most recently used, most hits, and number of bytes re-

ceived.458 For example, Riddle states “[i]n an optional step 412, a byte count of 

traffic of this type has been detected is included.”459 Riddle also teaches sorting 

packet information based on determined metrics: 

The list may be sorted by any well-known criteria such as: 1) most 

“hits” during a recent interval, 2) most recently-seen (most recent time 

first), 3) most data transferred (bytes/second) during some interval, or 

a moving average. The user may choose an interval length or display 

cutoff point (how many items, how recent, at least B bytes per second, 

or other thresholds).460 

365. Further, Riddle describes using time stamp metrics to organize traffic clas-

ses: “In a further step 425, a new traffic class is created to match the instances of 

saved traffic…. In a related embodiment in place of step 425, a display of traffic 

classes, sorted by most recently used, most hits, number of bytes received during 

any interval, which is determined by a plurality of time stamps, is available on de-

mand to a network manager.”461  

                                                        

458 Riddle, 12:53-13:8, 14:1-5. 
459 Riddle, 12:57-59. 
460 Riddle, 13:1-8. 
461 Riddle, 13:59-14:5. 

EX 1006 Page 222



  

 209 

366. A further example of traversing a transition pattern resulting from a particu-

lar conversational flow-sequence of packets is Riddle updating flow-entries. The 

Challenged Patents explain that state operations may include updating a flow-en-

try.462 

367. Riddle describes updating flow-entries when encountering pertinent parsed 

packet information: 

In an optional step 410, duplicate instances having the same identifying 

characteristics are suppressed, in favor of keeping a count of the dupli-

cates and a most recent time traffic with these identifying character-

istics was encountered. In an optional step 412, a byte count of traffic 

of this type has been detected is included.463 

And Riddle’s flowchart details the monitor will “parse flow specification from a 

packet of the flow” (step 402), “compare flow specification with existing classifi-

cation tree” (step 404), determine if “traffic matches a class?” (step 406), “enter 

into a saved list characteristics of the traffic” (step 408), “suppress duplicates” 

(step 410), and “determine byte count for traffic and include with traffic specifica-

tion in saved list” (step 412).464 

368. For existing flows, Riddle describes storing “a count of the duplicates and a 

                                                        

462 ’646 Patent, claim 15; ’751 Patent, claim 13; ’789 Patent, claims 15, 30, 45. 
463 Riddle, 12:53-59. 
464 Riddle, Figure 4A. 

EX 1006 Page 223



  

 210 

most recent time traffic with these identifying characteristics was encountered.”465 

The time stored shows the last encountered state of the flow. When suppressing 

duplicates, a POSITA would have understood that Riddle teaches performing state 

operations relating to flow-entry updating: the count of the duplicates, the most re-

cent time traffic with the same identifying characteristics was encountered, and the 

byte count of the detected traffic. 

369. Accordingly, a POSITA would have understood Riddle describes a stored 

set of predefined state transition patterns and operations where each state is visiting 

during transversal. And, for the reasons described above, a POSITA would have 

understood that these states relate to an indication of all previous events in the flow 

that lead to recognition of the content of all of the protocol levels. 

(3) Riddle in view of Ferdinand renders obvious 

claimed “state patterns/operations memory” being 

separate from other claimed memories 

370. To the extent Patentee argues ’099 claim elements 1.1-1.4, and 1.6 require 

separate physical memories, i.e., one packet-buffer memory, one parsing/extraction 

operations memory, and one flow-entry database memory, the combination of Rid-

dle and Ferdinand renders these claim elements obvious. Regarding the packet-

buffer memory recited in ’099 claim element 1.1, a POSITA would have found it a 

simple implementation to have a distinct packer-buffer memory based on the 

                                                        

465 Riddle, 12:56-57. 

EX 1006 Page 224



  

 211 

teachings of Riddle and Ferdinand.  

371. Regarding the parsing/extraction operation memory and the flow-entry data-

base memory, using different memories for different functionalities was well un-

derstood by a POSITA.466 Indeed, Riddle already discloses two distinct memories, 

a memory subsystem 35a and a file storage subsystem 35b.467 Thus, a POSITA 

would have found it a simple implementation to have a distinct operation memory 

and flow-entry database memory based on the teachings of Riddle and Ferdinand.  

372. Using different memories for different functionalities was well understood 

by a POSITA.468 Ferdinand confirms this by disclosing dividing memory into four 

separate blocks with each block devoted to a different functionality.469 The ad-

vantages of using different memories for different functionalities was well known 

to a POSITA.470 And a POSITA would have been motivated to provide Riddle’s 

high speed, real-time monitor with dedicated memories because, for example, dedi-

cating memories to processors or processing functions ensures memory access 

times are reduced and system performance increased due to reduced contention for 

                                                        

466 ’099 Prosecution History, 213-214 (06/25/2003 Office Action, p.3). 
467 Riddle, 6:5-8, Fig. 1A. 
468 ’099 Prosecution History, 213-214 (06/25/2003 Office Action, p.3); Riddle, 6:5-

8, Fig. 1A. 
469 Ferdinand, 26:2-18. 
470 ’099 Prosecution History, 213-214 (06/25/2003 Office Action, p.3); Riddle, 6:5-

8, Fig. 1A. 

EX 1006 Page 225



  

 212 

memory.471 

i. ’099 Claim Element 1.8: “(g) a protocol/state identifica-

tion mechanism coupled to the state patterns/operations 

memory and to the lookup engine, the protocol/state 

identification engine472 configured to determine the pro-

tocol and state of the conversational flow of the packet; 

and 

373. Riddle discloses this claim element. As I discuss above, Riddle teaches the 

following claim elements: 

• Lookup engine (element 1.6); 

• Examining packets and determining the protocols used in the packets (el-

ement 1.2); 

• Identifying packets as part of a conversational-flow sequence (element 

1.4); and 

• State patterns/operations memory and determining the state of the con-

versational flow of a packet (element 1.7). 

To collectively execute these operations, Riddle describes a processor and code, 

which is the claimed “protocol/state identification mechanism.” My above discus-

sions regarding claim elements 1.2, 1.4, and 1.6-1.7 show how Riddle discloses a 

protocol/state identification mechanism coupled to the state patterns/operations 

                                                        

471 ’099 Prosecution History, 213-214 (06/25/2003 Office Action, p.3); Riddle, 6:5-

8, Fig. 1A. 
472 As best understood, it appears that the claimed “protocol/state identification en-

gine” should read “protocol/state identification mechanism.” 

EX 1006 Page 226



  

 213 

memory and to the lookup engine. Moreover, these discussions show Riddle’s pro-

tocol/state identification engine determines the protocol and state of the conversa-

tion flow of the packet. 

374. Riddle specifies that its “[t]raffic classes may be defined at any level of the 

IP protocol as well as for other non-IP protocols.”473 As I discuss above with re-

spect to claim element 1.7, Riddle discloses determining protocol (e.g., IP, TCP, 

etc.) and the state of the conversational flow via traffic classifier 304, and pro-

cessing through Riddle’s classification trees 302 stored in knowledge base 306.474  

 

375. As I discuss above, by searching for patterns/referencing strings in headers 

and data, Riddle determines the packet’s protocols and states.475 For example, a 

                                                        

473 Riddle, 8:58-59. 
474 Riddle, 12:27-36. 
475 Riddle, 9:24-26, 11:48-49. 

EX 1006 Page 227



  

 214 

POSITA would have understood that an IP’s header’s IP-protocol field indicates 

TCP or UDP for Riddle’s monitor.476 Another examples are well-known ports indi-

cate application-layer protocols (e.g., SMTP or HTTP), and HTTP data containing 

“/FIDO-1/” indicates PointCast traffic.477 As the conversation-flow sequence of 

packets traverse Riddle’s classification tree, a POSITA would have understood that 

the state is updated upon making each classification node match, and determining 

the next branch of classification.478 

376. As discussed with respect to claim element 1.2 and 1.7, Riddle discloses a 

processor and corresponding code for determining the protocol and state opera-

tions. For example, Riddle teaches: “The method for automatically classifying het-

erogeneous packets in a packet telecommunications environment of the present in-

vention is implemented in the C programming language and is operational on a 

computer system such as shown in FIG. 1A.”479 Based on these teachings, a 

POSITA would have recognized Riddle’s processor and corresponding code is the 

claimed “protocol/state identification [mechanism/engine].” And a POSITA would 

have understood that Riddle’s protocol/state identification mechanism, state pat-

terns/operations memory, and lookup engine work together to achieve Riddle’s 

                                                        

476 Riddle, 3:51-54. 
477 Riddle, 11:57-62. 
478 Riddle, 10:59-12:63; Figs. 2A, 2B, 3, 4A ,4B. 
479 Riddle, 5:53-57. 

EX 1006 Page 228



  

 215 

goal of classifying traffic.480 

377. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of Packer as though fully set forth in Riddle. As shown below in anno-

tated Figure 3, Packer describes packet acquisition taking place and a “protocol fi-

nite state machine” examining the packet to determine whether the flow is new 

(300), the flow is ending (298), or belongs to an existing flow (299). This further 

illustrates Riddle teaches the monitor storing a set of predefined state transition 

patterns and operations. 

                                                        

480 Riddle, 4:6-15. 

EX 1006 Page 229



  

 216 

 

j. ’099 Claim Element 1.9: “(h) a state processor coupled 

to the flow-entry database, the protocol/state identifica-

tion engine, and to the state patterns/operations memory, 

the state processor, configured to carry out any state op-

erations specified in the state patterns/operations 

memory for the protocol and state of the flow of the 

packet” 

378. Riddle discloses this claim element. As discussed with respect to claim ele-

ment 1.5, Riddle alone or in view of Ferdinand renders obvious storing a flow-en-

try database. And as discussed with respect to claim elements 1.7-1.8, Riddle de-

scribes a protocol/state identification mechanism, state patterns/operations 

memory, and how the state operations are carried out for the protocol and state of 

EX 1006 Page 230



  

 217 

the flow. For executing these operations, Riddle teaches a processor and code, 

which is the claimed “state processor.”481 

379. As I discuss above with respect to claim element 1.8, Riddle discloses that 

processor 30 performs specified state operations for the protocol and flow state 

during the packet classification process discussed: “The method for automatically 

classifying heterogeneous packets in a packet telecommunications environment of 

the present invention is implemented in the C programming language and is opera-

tional on a computer system such as shown in FIG. 1A.”482 As illustrated in Figure 

1A, a POSITA would have understood that Riddle’s processor is coupled to com-

ponents like protocol/state identification engine, state patterns/operations memory, 

and the memory storing flow-entry lists.483  

380. Further, Riddle describes the processor parses the packet to identify the flow 

specification and then carries out state operations to match the packet’s specifica-

tion to traffic flow classes:  

A system for automatically classifying traffic in a packet telecommuni-

cations network, said network having any number of flows, including 

zero, comprising: 

                                                        

481 Regarding processors, the ’099 Patent states that a POSITA could implement 

the individual hardware elements of the Challenged Patents with software running 

on a single processor. ’099 Patent, 21:25-38. 
482 Riddle, 5:53-57. 
483 Riddle, 5:53-6:23, claim 8, Figs. 1A-1C, 3. 

EX 1006 Page 231



  

 218 

a plurality of network links upon which said traffic is carried; a net-

work routing means; and, 

a processor means operative to: 

parse a packet into a first flow specification, wherein said first flow 

specification contains at least one instance of any one of the following: 

a protocol family designation, 

a direction of packet flow designation, a protocol type designation, 

a pair of hosts, a pair of ports, 

in HTTP protocol packets, a pointer to a MIME type; thereupon, 

match the first flow specification of the parsing step to a plurality 

of classes represented by a plurality of said classification tree type 

nodes, each said classification tree type node having a traffic specifi-

cation and a mask, according to the mask; thereupon,  

if a matching classification tree type node was not found in the 

matching step, associating said first flow specification with one or 

more newly-created classification tree type nodes; thereupon, incorpo-

rating said newly-created classification tree type nodes into said plural-

ity of said classification tree type nodes.484 

381. Based on these teachings, a POSITA would have recognized that Riddle’s 

processor is configured to carry out state operations specified in the state pat-

terns/operations memory to achieve Riddle’s goal of classifying traffic. Further, a 

                                                        

484 Riddle, claim 8. 

EX 1006 Page 232



  

 219 

POSITA would have understood that Riddle’s processor is coupled to components 

like protocol/state identification engine, state patterns/operations memory, and the 

memory storing flow-entry lists.485 As I discuss above regarding ’099 claim ele-

ment 1.5, Riddle alone or in view of Ferdinand renders obvious storing flow-entry 

lists in a database. 

382. Further, Riddle discloses applying policies associated with “leaf” nodes of 

the classification tree.486 As discussed above in Section IV.A.1, Riddle incorpo-

rates-by-reference the teachings of Packer as though fully set forth in Riddle. As 

shown below in annotated Figure 5F, Packer similarly applies policies associated 

with “leaf” nodes of the classification tree: “The processing steps of flowchart 511 

determine a class and a policy for a flow[.]”487 As such, a POSITA would have un-

derstood that each of Riddle’s traffic classes, e.g., FTP-server or World-Wide-Web 

traffic classes, can have its own respective policies.488 And a POSITA would have 

understood that Riddle’s processor ultimately applies each relevant policy based on 

the state of the flow, as illustrated in Packer’s Figure 5B489 

                                                        

485 Riddle, 5:53-6:23, claim 8, Figs. 1A-1C. 
486 Riddle, 9:29-42, Packer, 18:3-5 (“The processing steps of flowchart 511 deter-

mine a class and a policy for a flow[.]”, Fig. 5F. 
487 Packer, 18:3-5, Fig. 5F. 
488 Riddle, 10:36-39. 
489 Riddle, 9:29-42, claim 3, Packer, Fig. 5F. 

EX 1006 Page 233



  

 220 

 

383. To the extent Patentee asserts that the “parser subsystem,” “lookup engine,” 

“protocol/state identification mechanism” and “state processor” of claim elements 

1.3, 1.6, 1.8 and 1.9 require separate pieces of hardware, it would have been obvi-

ous to a POSITA to implement Riddle’s processor and programming code to be 

separate hardware components. This is because using dedicated hardware for vari-

ous functions, especially functions as common as parsing, data lookup, and proto-

col/state identification, would have been obvious to a POSITA because dedicated 

hardware allows for faster operation for faster networks, as described in the ’099 

patent itself and/or Ferdinand: 

EX 1006 Page 234



  

 221 

Each of the individual hardware elements through which the data flows 

in the system are now described with reference to FIGS. 10 and 11. 

Note that while we are describing a particular hardware implementation 

of the invention embodiment of FIG. 3, it would be clear to one skilled 

in the art that the flow of FIG. 3 may alternatively be implemented in 

software running on one or more general-purpose processors, or only 

partly implemented in hardware. An implementation of the invention 

that can operate in software is shown in FIG. 14. The hardware embod-

iment (FIGS. 10 and 11) can operate at over a million packets per sec-

ond, while the software system of FIG. 14 may be suitable for slower 

networks. To one skilled in the art it would be clear that more and 

more of the system may be implemented in software as processors be-

come faster.490 

384. Further, Ferdinand discloses its monitor can include separate hardware com-

ponents for performing various functions, such real time parser (RTP) 32, database 

36, boot/load 22, and memory transport module 34, event manager 38, and control 

module 42.491 As provided below, Ferdinand’s Figure 5 illustrates its monitor hav-

ing separate hardware components. 

                                                        

490 ’099 Patent, 21:25-38. 
491 Ferdinand, 19:5-13. 

EX 1006 Page 235



  

 222 

 

385. Desiring increased performance, a POSITA would have been motivated to 

utilize dedicated hardware components for parsing, lookups, protocol/state identifi-

cation, and state processing/operations. On the other hand, a POSITA would have 

understood that Riddle’s use of a processor for these functions is less expensive 

and a more extensible solution than using dedicated hardware components. 

k. ’099 Claim Element 1.10: “the carrying out of the state 

operations furthering the process of identifying which ap-

plication program is associated with the conversational 

flow-sequence of the packet, the state processor pro-

gressing through a series of states and state operations 

until there are no more state operations to perform for 

the accepted packet, in which case the state processor 

updates the flow-entry, or until a final state is reached 

that indicates that no more analysis of the flow is re-

quired, in which case the result of the analysis is an-

nounced” 

386. Riddle discloses this claim element. As discussed with respect to claim ele-

ment 1.7, Riddle describes parsing a packet and carrying out state operations to 

EX 1006 Page 236



  

 223 

identify which application program is associated with the conversational flow-se-

quence of the packet. Riddle describes this process when identifying whether the 

packet belongs to a service aggregate class.492 

387. Further, as discussed with respect to claim elements 1.7 and 1.9, Riddle 

teaches the state processor progresses through a series of states and state operations 

until there are no more state operations to perform for the accepted packet. For ex-

ample, Riddle describes progressing through a traffic class tree which corresponds 

to progressing through a series of states and state operations. As incorporated-by-

reference into Riddle, Packer’s Figure 5F illustrates progress through a series of 

states and state operations. 

388. Riddle also discloses that it will update the flow-entry when traffic matches 

a class. Riddle states: 

FIG. 4A depicts a flowchart 401 of processing steps for automatically 

classifying traffic. In a step 402, a flow specification is parsed from the 

flow being classified. Then in a step 404, the flow specification parsed 

from the flow in step 402 is compared with the traffic specifications in 

each node of the classification tree. Rules are checked starting from 

most specific to least specific. In a decisional step 406, a determina-

tion is made if traffic matches one of the classes being classified. If 

this is so, then in a step 408, an entry is made in a list of identifying 

                                                        

492 Riddle, 4:18-23, 11:10-36, 13:45-62, Fig. 4B. 

EX 1006 Page 237



  

 224 

characteristics, such as protocol type (SAP), IP protocol number, 

server port, traffic type if known, MIME type, a time of occurrence of 

the traffic.493 

And Riddle’s flowchart details that the monitor will “parse flow specification from 

a packet of the flow” (step 402), “compare flow specification with existing classifi-

cation tree” (step 404), determine if “traffic matches a class?” (step 406), and “en-

ter into a saved list characteristics of the traffic” (step 408).494 

389. If the monitor determines the parsed packet information does not match a 

traffic class, Riddle states that the packet will be given a default policy: 

All traffic which does not match any user specified traffic class falls 

into an automatically created default traffic class which has a default 

policy. In FIG. 2A, the default category is depicted by a default node 

205, and in FIG. 2B, the default category is depicted by a default node 

225.495  

390. As shown in Figures 2A and 2B, Riddle’s “default” state indicates that no 

more analysis of the flow is required. 

391. Upon completing the packet’s examination, classification, and processing, 

Riddle teaches reaching a final state and then reports the results of this analysis and 

related metrics:  

                                                        

493 Riddle, 12:42-53. 
494 Riddle, Fig. 4A. 
495 Riddle, 10:52-56, Figs. 2A-2B. 

EX 1006 Page 238



  

 225 

In an optional step 413 (not show), after the processing of flowchart 401 

completes or at periodic intervals or on demand, a list of traffic classes 

produced in steps 402 through 412 are displayed to a network manager. 

The list may be sorted by any well-known criteria such as: 1) most “hits” 

during a recent interval, 2) most recently-seen (most recent time first), 3) 

most data transferred (bytes/second) during some interval, or a moving av-

erage. The user may choose an interval length or display cutoff point (how 

many items, how recent, at least B bytes per second, or other thresholds). 

The Network manager may then take some action (e.g. pushing a button) 

to select the traffic types she wishes to add to the classification tree. The 

display can be hierarchical, as depicted in lines (3) below:  

FTP496 (3) 

   FTP-cmd 

   FTP-data 

to host1 

   tcp 

      FTP 

          FTP-cmd 

          FTP-data 

      HTTP 

          images 

          java 

         text 

                                                        

496 As shown in the ’864 Provisional (Ex. 1024, 24), the first line “FTP” of Rid-

dle’s exemplary classification tree should be directly above the subclassifications 

“FTP-cmd” and “FTP-data.” 

EX 1006 Page 239



  

 226 

      port 9999  

(3) 

wherein the “port 9999” entry is an inference corresponding to an ap-

plication checking for repeated or simultaneous connections made to a 

specific port.  

In a related embodiment, a threshold for display or class creation of 

well-known traffic types is provided.497  

392. As taught in the above passage, Riddle discloses displaying the received 

traffic sorted by metrics, such as the most “hits” (i.e., the count of duplicates), most 

recently seen, most data transferred, how may items, how recent, bytes per second, 

most recently used, number of bytes received during any interval, or other thresh-

olds. 

393. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious claim 1 of the ’099 Patent. 

3. Dependent ’099 Claim 2 

394. Riddle discloses all the limitations of this claim. Claim 2 depends from inde-

pendent claim 1 and recites: “A packet monitor according to claim 1, wherein the 

flow-entry includes the state of the flow, such that the protocol/state identification 

mechanism determines the state of the packet from the flow-entry in the case that 

the lookup engine finds a flow-entry for the flow of the accepted packet.” 

                                                        

497 Riddle, 12:64-13:23, 14:1-5. 

EX 1006 Page 240



  

 227 

395. As discussed with respect to ’099 claim element 1.5, Riddle describes a stor-

age subsystem for storing a flow-entry database having a plurality of flow-entries 

for conversational flow encountered by the monitor. For example, and as shown 

below in Figure 3, Riddle discloses a plurality of saved lists 308 storing classified 

traffic packets pending incorporation into traffic tree 302.498 

 

396. As another example, Riddle teaches that its monitor parses flow packets to 

identify the packet’s flow specification and stores the specification in the data-

base’s flow-entries which contain the state of the flow: 

FIG. 4A depicts a flowchart 401 of processing steps for automatically clas-

sifying traffic. In a step 402, a flow specification is parsed from the flow 

being classified. Then in a step 404, the flow specification parsed from the 

flow in step 402 is compared with the traffic specifications in each node of 

                                                        

498 Riddle, 12:27-38, Fig. 3. 

EX 1006 Page 241



  

 228 

the classification tree. Rules are checked starting from most specific to 

least specific. In a decisional step 406, a determination is made if traffic 

matches one of the classes being classified. If this is so, then in a step 408, 

an entry is made in a list of identifying characteristics, such as protocol 

type (SAP), IP protocol number, server port, traffic type if known, MIME 

type, a time of occurrence of the traffic. In an optional step 410, duplicate 

instances having the same identifying characteristics are suppressed, in fa-

vor of keeping a count of the duplicates and a most recent time traffic with 

these identifying characteristics was encountered. In an optional step 412, 

a byte count of traffic of this type has been detected is included.499  

Riddle illustrates the updating of flow-entries containing the state of the flow in 

Figure 4A’s flowchart that details the monitor will “enter into a saved list charac-

teristics of the traffic” (step 408) and “suppress duplicates” of packet characteris-

tics (step 410). And as I discuss with respect to ’099 claim element 1.7, Riddle 

teaches that its flow-entries include the flow’s traffic-type, which are sequentially 

refined. 

397. As detailed with respect to ’099 claim element 1.8, the ’099 Patent discloses 

that one determines the state of the flow by the relationship of packets and the en-

tire conversational flow.500 And the Challenged Patents specify that the state of the 

flow includes “parameters such as the time, length of the conversational flow, data 

                                                        

499 Riddle, 12:42-59. 
500 ’099 Patent, 5:27-34. 

EX 1006 Page 242



  

 229 

rate, etc.”501 Thus, a POSITA would have understood that Riddle’s monitor deter-

mines the state of the flow, at least, by determining metrics like the count of dupli-

cates, the most recent time the monitor encountered a flow with the same identify-

ing characteristics, and a byte count of the detected flow.502 Riddle details that at 

least the “time of occurrence of the traffic” metrics are stored in the flow-entry.503 

Consistent with that detail, a POSITA would have understood that Riddle’s other 

metrics also identify characteristics for storage in the flow-entry. 

398. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious claim 2 of the ’099 Patent. And for all the reasons set forth above, it 

is my opinion that Riddle in view of Ferdinand renders obvious claims 1 and 2 of 

the ’099 Patent. 

B. For the ’099 Patent, Riddle in View of Ferdinand and Further in 

View of Baker Renders Obvious Dependent Claims 4 and 5. 

399. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’099 claims 4 and 5 is disclosed or rendered obvious in light of 

Riddle in view of Ferdinand and further in view of Baker. ’099 claims 4 and 5 de-

pend from independent claim 1, which is obvious over Riddle in view of Ferdi-

nand, as shown above in Section VII.A.  

                                                        

501 E.g., ’099 Patent, 5:27-34. 
502 Riddle, 12:53-13:8, 14:1-5, Fig. 4A (steps 410, 412). 
503 Riddle, 12:42-59. 

EX 1006 Page 243



  

 230 

1. Reasons to Modify the Combination of Riddle and Ferdi-

nand and Further in View of Baker 

400. Riddle and Baker are in the same field of endeavor and contain overlapping 

disclosures with similar purposes.  

401. Riddle discloses classifying packets in a data communications network into 

traffic classes based upon protocols such as FTP, HTTP, TCP, UDP, and/or Ether-

net.504 In doing so, Riddle already contains a description of each protocol. One of 

the expressly stated advantages of Riddle’s monitor “is that network managers 

need not know the technical aspects of each kind of traffic in order to configure 

traffic classes.”505 Given that network managers using Riddle’s monitor do not 

need to know the technical aspects of each kind of traffic, a POSITA would have 

appreciated that it would be desirable to include a mechanism to update the proto-

cols that Riddle’s monitor can classify. 

402. Baker teaches parsing, filtering, generating and analyzing data (or frames of 

data) transmitted over a data communications network based on one or more pro-

grammably configurable protocol descriptions which may be stored and retrieved 

from an associated memory.506 Baker discloses storing protocol descriptions as 

                                                        

504 Riddle, Fig. 1D, Table 2. 
505 Riddle, 15:37-40. 
506 Baker, 3:32-4:6. 

EX 1006 Page 244



  

 231 

“protocol description files (PDF).”507 

403. As such, before the time of the purported invention, a POSITA would have 

been motivated and found it obvious to make the packet flow classifier of Riddle 

more configurable based on a POSITA’s general knowledge and Baker’s teach-

ings.  

404. In particular, it would have been obvious to a POSITA to modify Riddle’s 

teaching of a traffic classification system with Baker’s teaching of PDFs so that 

Riddle’s processor receives commands in a high-level protocol description lan-

guage describing protocols and translates those commands into parsing/extraction 

operations because a POSITA understood the advantageousness for Riddle’s clas-

sification system to allow for updating protocol descriptions.508 This would be 

highly desirable in Riddle’s monitor because Riddle envisions that the network 

managers using the monitor do not know the technical details of the protocols.509 

405. Moreover, Baker provides an explicit motivation to combine: “[I]t would be 

highly desirable to be able to parse all protocols with a single configurable soft-

ware (or hardware) module so that support for additional protocols could be added 

                                                        

507 Baker, 19:6-10 (“In the presently preferred embodiment, each of these protocol 

description records with its associated field, statistics, lookup, and filter record in-

formation is also written to a protocol specific protocol description file (PDF).”). 
508 Baker, 19:6-10. 
509 Riddle, 15:28-31. 

EX 1006 Page 245



  

 232 

to a system without requiring substantial modification to the system or its control 

logic.”510 A POSITA would have realized that combining Baker with Riddle pro-

vides the advantage of making Riddle’s monitor more configurable without requir-

ing substantial modification to the monitor itself. 

406. Additionally, Baker states that its invention may be used with network moni-

tors such as those disclosed in Riddle. Baker’s invention “may be employed in any 

system where it is useful to be able to examine and perform various operations on 

contiguous bit-fields in data structures, wherein each data structure is composed of 

predefined fields of one or more contiguous bits.”511 Baker also discloses that the 

invention “may be incorporated in a network device, such as a network analyzer, 

bridge, router, or traffic generator, including a CPU and a plurality of input de-

vices, storage devices, and output devices.”512 These are the same types of devices 

as Riddle’s monitor.513 Given Baker’s disclosures, this combination is nothing 

more than a simple substitution of one known element for another used in their or-

dinary and predictable manner to update Riddle’s protocols. 

                                                        

510 Baker, 3:3-8. 
511 Baker, 6:18-22. 
512 Baker, 4:27-30 
513 Riddle, 5:55-57, claim 8, Figs. 1A, 1B, 1C. 

EX 1006 Page 246



  

 233 

407. Further, Riddle discloses traffic classification based upon the Ethernet proto-

col and Baker discloses PDFs for the Ethernet protocol.514 And Baker describes 

PDFs for Generic Protocols which could be other protocols used in Riddle.515 

Thus, a POSITA would have been motivated to modify the teachings of Riddle to 

increase the ability to handle updated PDFs as taught by Baker.516 This analysis ap-

plies to each of the ’099 claim elements described below that rely on Riddle in 

view of Baker.517 

2. Dependent ’099 Claim 4 

408. Riddle in view of Ferdinand and further in view of Baker renders obvious 

this claim. Claim 4 depends from independent claim 1 and recites:  

A packet monitor according to claim 1, further comprising: a compiler 

processor coupled to the parsing/extraction operations memory, the 

compiler processor configured to run a compilation process that in-

cludes:  

receiving commands in a high-level protocol description language 

that describe the protocols that may be used in packets encountered by 

the monitor, and  

translating the protocol description language commands into a plu-

rality of parsing/extraction operations that are initialized into the pars-

ing/extraction operations memory. 

                                                        

514 Riddle, Fig 1D, 7:47-53; Baker, Table 12, 21:32-22:1. 
515 Baker, Table 13. 
516 Baker, Table 13. 
517 Baker, Table 13. 

EX 1006 Page 247



  

 234 

409. As I discuss with respect to ’099 claim elements 1.2 and 1.3, Riddle teaches 

a processor (e.g., processor 30) coupled to the parsing/extraction operations 

memory that identifies information relating to protocols used in each packet.518 

Given that Riddle’s monitor extracts packet portions to identify packet-protocol 

data, a POSITA would have understood that Riddle’s processor uses a protocol de-

scription language to initialize parsing/extraction operations. Further, Riddle dis-

closes that the processor operates to identify a parsed flow’s “protocol family des-

ignation” and “protocol type designation.”519 And Riddle states that its packet clas-

sifier “is implemented in the C programming language,” which is a high-level lan-

guage.520 In doing so, Riddle discloses “apply individual instances of traffic classi-

fication paradigms to packet network flows based on selectable information ob-

tained from a plurality of layers of a multi-layered communication protocol in or-

der to define a characteristic class, then mapping the flow to the defined traffic 

class.”521 Based on Riddle’s teachings, a POSITA would have understood that Rid-

dle selects this protocol-specific information based on high-level protocol descrip-

tion language. 

410. As I further discuss with respect to ’099 claim elements 1.2 and 1.3, Riddle 

                                                        

518 Riddle, 6:1-15, claim 8, Fig. 1A. 
519 Riddle, 12:50-53, claim 8. 
520 Riddle, 5:53-57. 
521 Riddle, 4:10-15, 4:56-65, 5:53-57, 9:13-19. 

EX 1006 Page 248



  

 235 

discloses generating classification trees containing parsing/extraction operations 

that are stored in memory. For example, Riddle states that the “function of the clas-

sifier 304 is controlled by a command language interface.”522 Moreover, Riddle 

discloses translating the high level “syntax of the traffic specifications” into a plu-

rality of parsing/extraction operations that are initialized into the parsing/extraction 

operations memory.523  

411. Further, Riddle teaches that a network manager, based on high-level traffic 

descriptions, configures the network flow classifier via a user interface.524 Riddle 

discloses that the manager takes actions on packets and flows encountered by the 

monitor based on protocol-type by performing high-level actions.525 Examples of 

these actions include pushing a button on the interface presented to the manager, or 

using a command language interface.526 Riddle explains that one advantage of its 

monitor “is that network managers need not know the technical aspects of each 

kind of traffic in order to configure traffic classes.”527 Given that managers using 

Riddle’s monitor do not need to know the technical aspects of each kind of traffic, 

                                                        

522 Riddle, 14:28-29. 
523 Riddle, 14:67-15:31. 
524 Riddle, 12:65-13:10. 
525 Riddle, 12:65-13:10, 14:27-66. 
526 Riddle, 12:65-13:10, 14:27-66. 
527 Riddle, 15:37-40. 

EX 1006 Page 249



  

 236 

a POSITA would have appreciated the desirability to include a mechanism to up-

date the protocols that Riddle’s monitor can classify. 

412. Baker discloses running a compilation process for high-level, human-reada-

ble protocol description files (PDFs) and initializing state transition patterns/opera-

tions relating to the PDFs:  

[T]he initialization of the system includes a determination of the pres-

ence of PDF files and the extraction of the protocol and associated con-

trol record information from all of the PDF files found. The number of 

PDF files is determined, and a ProtocolList is constructed consisting of 

a sorted vector of protocol records at least the size of the number of 

PDF files found. The name of each protocol record found is inserted in 

the ProtocolList. The PDF files are then read to memory in the sequence 

described above for the PDF file writing. The lookup records that indi-

cate a next protocol are associated with the appropriate entries in the 

ProtocolList.528 

413. Baker discloses examples of protocol descriptions, such as Tables 12 and 13 

which are provided below. Table 12 provides protocol descriptions for the Ether-

net, and Table 13 provides protocol descriptions for Baker’s “Generic Protocol.”529 

                                                        

528 Baker, 17:7-18, 2:63-3:7, 11:26-12:6. 
529 Baker, 21:32-22:1, Tables 12-13. 

EX 1006 Page 250



  

 237 

          

414. Further, Baker discloses a software code example in the high-level program-

ming language of C++.530 This code example describes extracting the control infor-

mation from the PDF files, creating a protocol definition in memory with required 

data structures, and inserting records into the ProtocolList, as shown in 

“PCOL.CPP.”531  

415. It is my understanding that the ’099 patent incorporates-by-reference disclo-

sures of the ’725 patent.532 I note that the ’725 patent describes a “protocol descrip-

tion language” as follows: 

                                                        

530 Baker, 128:20-132:24. 
531 Baker, 128:20-132:24. 
532 ’099 Patent, 1:15-20. 

EX 1006 Page 251



  

 238 

Input to the compiler includes a set of files that describe each of the 

protocols that can occur. These files are in a convenient protocol de-

scription language (PDL) which is a high level language. PDL is used 

for specifying new protocols and new levels, including new applica-

tions. The PDL is independent of the different types of packets and pro-

tocols that may be used in the computer network. A set of PDL files is 

used to describe what information is relevant to packets and packets 

that need to be decoded. The PDL is further used to specify state anal-

ysis operations. Thus, the parser subsystem and the analyzer subsys-

tems can adapt and be adapted to a variety of different kinds of headers, 

layers, and components and need to be extracted or evaluated, for ex-

ample, in order to build up a unique signature.533 

The ’725 Patent additionally states: 

The protocol description language (PDL) files 336 describes both pat-

terns and states of all protocols that an occur at any layer, including 

how to interpret header information, how to determine from the packet 

header information the protocols at the next layer, and what information 

to extract for the purpose of identifying a flow, and ultimately, applica-

tions and services.… This information is input into compiler and opti-

mizer 310.534 

416. The ’725 Patent discloses examples of PDL files that include commands for 

a particular protocol.535 Similarly, Baker discloses that each PDF file describes 

                                                        

533 ’725 Patent, 41:24-37. 
534 ’725 Patent, 9:29-40; Fig. 4. 
535 ’725 Patent, 45:1-94:67 (including PDL files for several protocols). 

EX 1006 Page 252



  

 239 

commands for a particular protocol.536 As the following examples illustrate, 

Baker’s disclosures regarding its PDF files teach the ’099 claim 4’s high-level pro-

tocol description language. 

417. First, according to the ’725 Patent, an exemplary command in a high-level 

protocol description language is a “HEADER” attribute that “describe[s] the length 

of the protocol header.”537 Baker similarly discloses a “numBits” attribute that de-

scribes “the total bit length of the protocol header.”538  

418. Second, according to the ’725 Patent, another exemplary command in a 

high-level protocol description language is a “PROTOCOL” definition used to 

“define the order of the FIELDs and GROUPs within the protocol header.”539 Sim-

ilarly, Baker discloses a “fields” attribute that references the associated “field rec-

ords that describe the protocol header” where each field record includes, for exam-

ple, a “fblen” attribute describing “the length of the field in bits” and a “fdwoff” at-

tribute describing “the byte offset from the start of protocol header,” among other 

                                                        

536 Baker, 11:22-25 (“[E]ach of these protocol description records with its associ-

ated field, statistics, lookup, and filter record information is also written to a proto-

col specific protocol description file (PDF).”). 
537 ’725 Patent, 48:41-50,  and col. 73 (“HEADER { LENGTH=14 }”). 
538 Baker, Table 1 (“numBits” attribute), 11:32, 57:1 (fread(&num_bits, 

sizeof(num_bits), 1, fp); // Read fixed header length in bits). 
539  ’725 Patent, 47:34-48:18, col. 79 (PROTOCOL section provides “Detailed 

packet layout for the IP datagram. This includes all fields and format. All offsets 

are relative to the beginning of the header.”). 

EX 1006 Page 253



  

 240 

attributes.540  

419. Third, according to the ’725 Patent, a further exemplary command in a high-

level protocol description language is a “CHILDREN” attribute “used to describe 

how children protocols are determined.”541 Similarly, Baker discloses a “ptr2np” 

attribute of each field record that includes a “pointer to lookup structure/class . . . 

next protocol definition to use (0 = none)” and the “next protocol lookup records” 

are described with reference to Table 4 as including a “Protocol” attribute describ-

ing the “pointer to protocol description record,” among other attributes.542  

420. As such, a POSITA would have understood that Baker’s PDFs are protocol 

descriptions provided in a protocol description language. This is because, upon ini-

tialization, Baker teaches that the system is able to “extract[] the protocol and asso-

ciated control record information” from the file, construct a ProtocolList, and read 

the PDF file into memory in the sequence described at col. 11:26-12:6. Thus, 

Baker’s PDFs include commands in a high-level language that describe protocols 

that may be encountered by the monitor and, for example, how to interpret header 

information and how to determine from the packet header information the protocol 

                                                        

540 Baker, Table 1 (“fields” attribute), Table 2 (“fblen” and “fdwoff” attributes), 

11:36-40, 11:49-50, 147:35-36. 
541  ’725 Patent, 49:45-55, col. 79 (“CHILDREN { DESTINATION=Protocol }”). 
542 Baker, Table 2 (“ptr2np” attribute), Table 4 (“Protocol” attribute), 8:13-15, 

148:10-12, 165:37-166:5, 177:4-26. 

EX 1006 Page 254



  

 241 

at the next layer. Baker thus teaches protocol description files that are provided in a 

protocol description language, and are written in a protocol description language as 

described in by the ’725 Patent at col. 41:24-37. 

421. Thus, a POSITA would have found it obvious in view of Baker’s teachings 

to modify Riddle’s processor with compilation processes that (a) receive com-

mands in a high-level protocol description language describing protocols and (b) 

translate those commands into parsing/extraction operations. A POSITA would 

have been motivated to do so because such compilation processes allow for easily 

updating protocol information. Further, Baker explains the benefit of using such 

PDFs as “it would be highly desirable to be able to parse all protocols with a single 

configurable software (or hardware) module so that support for additional proto-

cols could be added to a system without requiring substantial modification to the 

system or its control logic.”543 Based on Baker’s teachings, a POSITA would have 

understood that modifying Riddle’s monitor provides the advantage of making the 

monitor more configurable without requiring substantial modification to the moni-

tor itself. 

3. Dependent ’099 Claim 5 

422. Riddle in view of Ferdinand and further in view of Baker renders obvious 

this claim. Claim 5 depends from dependent claim 4 and recites:  

                                                        

543 Baker, 3:3-8. 

EX 1006 Page 255



  

 242 

A packet monitor according to claim 4, wherein the protocol descrip-

tion language commands also describe a correspondence between a set 

of one or more application programs and the state transition pat-

terns/operations that occur as a result of particular conversational flow-

sequences associated with an application program, wherein the com-

piler processor is also coupled to the state patterns/operations memory, 

and wherein the compilation process further includes translating the 

protocol description language commands into a plurality of state pat-

terns and state operations that are initialized into the state patterns/op-

erations memory. 

423. As I describe with respect to ’099 claim elements 1.7 to 1.10, Riddle teaches 

a correspondence between a set of one or more application programs, such as FTP 

and PointCast programs, and the state transition patterns/operations that occur as a 

result of processing a particular conversational flow-sequence through the process 

of generating classification tree (e.g., Figures 2A-2B) containing parsing/extraction 

operations that are used to classify a conversational flow.544 

424. Further, as I detail with respect to ’099 claim 4, Baker discloses receiving 

commands in a high-level protocol description language that describe the protocols 

that may be used in packets encountered by the monitor. And Baker teaches trans-

lating the protocol description language commands into a plurality of state pat-

terns/operations. For example, and as shown below, Baker discloses that Figure 11 

                                                        

544 E.g., Riddle, 9:20-63, 10:19-56, 13:11-22, Figs. 2A, 2B, 3. 

EX 1006 Page 256



  

 243 

describes frame parsing control logic (i.e., how successive protocol headers are 

parsed), and parsing the remaining information as application data and frame 

pad.545 Figure 11 also shows setting states (blue boxes) followed by specific opera-

tions (red boxes):  

The ParseFrame control logic systematically parses through each net-

work frame (at 104 to 108 and 128) until all known protocol headers 

have been parsed. Any remaining frame bits are parsed as application 

data (at 110, 112 and 130) and/or pad data (at 114, 116 and 132).546 

                                                        

545 Baker, 26:26-32, Fig. 11. 
546 Baker, 36:28-36, 37:17-38:24, Fig. 11;. 

EX 1006 Page 257



  

 244 

 

425. As shown below, Baker teaches that Figure 12 shows protocol-specific op-

tion operations.547 For example, Figure 12 includes step 160 inquiring whether the 

CurrentProtocol supports optional fields, and if so, those frames are parsed using 

the ParseFields control logic at step 164.548 

                                                        

547 Baker, 37:1-16, 38:25-39:19, Fig. 12. 
548 Baker, 38:25-33. 

EX 1006 Page 258



  

 245 

 

426. Thus, a POSTIA would have found it obvious in view of Baker’s teachings 

to use flexible parsing operations with Riddle’s “service aggregates” and URI 

searches.549 Because it would allow Riddle’s classification system to easily update 

protocol descriptions, a POSITA would have been motivated to place Riddle’s ag-

gregation methods into a configurable system as taught by Baker. A POSITA 

would have understood that such a modification of Riddle results in a compiler 

processor, as discussed in claim 4, coupled to the state patterns/operations 

                                                        

549 Baker, 3:3-8. 

EX 1006 Page 259



  

 246 

memory. 

C. For the ’099 Patent, Riddle in View of Ferdinand and Further in 

View of Yu Renders Obvious Claims 1 and 2. 

427. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’099 claims 1 and 2 is disclosed or rendered obvious in light of 

Riddle in view of Ferdinand and further in view of Yu. Specifically, my opinions 

regarding Riddle in view of Ferdinand are exactly the same as those above in Sec-

tion VII.A, but further include the teachings of Yu. Thus, as if fully set forth here, I 

incorporate the discussion from Section VII.A regarding the obviousness of ’099 

Claims 1 and 2 over Riddle in view of Ferdinand. 

428. As discussed above, all of the Challenged Claims require “conversational 

flows” or a “conversational-flow sequence.” For example, ’099 claim element 1.7 

recites “the particular conversational-flow sequence is associated with the opera-

tion of a particular application program.” While Riddle itself teaches identifying 

conversational flows, Yu further demonstrates identifying conversational flows 

through its “flow classification.”550 Further, Yu teaches flow classification logic 

that “keeps track of the flow’s state until matching criteria is met” when identify-

ing whether a packet belongs to a conversational flow.551 

                                                        

550 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
551 Yu, 4:62-64. 

EX 1006 Page 260



  

 247 

429. Yu defines a “stream” which is analogous to the ’099 Patent’s “connection 

flow.” Specifically, Yu defines a “stream” as “packets that have the same source 

and destination address, source and destination port, and protocol type.”552 Further, 

Yu defines a “flow” as “all packets that match the same flow classification specifi-

cation” and specifies that “a flow may include one or more streams.”553  

430. Yu teaches that its flow classification specification provides the screening 

criteria for the flow classifier logic to sort network traffic into “flows” (which may 

include multiple streams, i.e., connection flows), such as defining a specific pair of 

hosts running a specific application.554 And Yu details that “the matching criteria 

used by a flow classifier to classify a flow may include a specific value, a range, or 

wildcard on interface port numbers, protocols, IP addresses, TCP ports, applica-

tions, application data, or any user specifiable criteria.”555 As such, Yu teaches 

identifying the ’099 Patent’s “conversational flow” by Yu’s flow classifier linking 

multiple “streams” into a “flow” based on application or application data. 

431. Moreover, Yu describes state tracking: 

[M]ultiple packets may be required for more sophisticated flow classi-

fication (stateful packet inspection), since the policy decisions (action 

                                                        

552 Yu, 4:1-4. 
553 Yu, 3:47-49; 4:7-8. 
554 Yu, 3:32-36. 
555 Yu, 1:56-60. 

EX 1006 Page 261



  

 248 

specifications) may come from different applications which may have 

implemented different flow classifiers. In those cases, the application’s 

flow classification logic keeps track of the flow’s state until a match-

ing criteria is met.556  

432. During this “learning” process, Yu teaches that the required policies may be 

bound to each stream of a “flow” so that actions can be taken on future packets 

without intervention from the “host” application.557 Upon creating a hash value 

from well-known fields, Yu specifies using this hash value to find corresponding 

policies to reduce further complicated pattern-matching.558 

1. Reasons to Modify the Combination of Riddle and Ferdi-

nand Further in View of Yu 

433. Riddle, Ferdinand, and Yu are in the same field of endeavor and contain 

overlapping disclosures with similar purposes.  

434. As I detail above, Riddle discloses a monitor that examines and classifies 

packets in a flow.559 Similarly, Yu teaches examining packets in a flow.560 Both 

                                                        

556 Yu, 4:57-64. 
557 Yu, 4:67-5:13. 
558 Yu, 4:23-29. 
559 E.g., Riddle, Abstract, 12:26-13:62, claim 8. 
560 Yu, 1:22-26 (“policy-based application examines every packet coming in from 

the network”); Riddle, 12:43-44 (“a flow specification is parsed from the flow be-

ing classified”). 

EX 1006 Page 262



  

 249 

references teach determining an application relating to the packet flow.561 And both 

references disclose applying a policy to a flow of identically classified packets.562 

Based on these similarities and teachings, a POSITA would have looked to Yu for 

ways to implement Riddle’s monitor. 

435. Yu teaches that “multiple packets may be required for more sophisticated 

flow classification (stateful packet inspection).”563 And Yu discloses that “[f]low 

classification and analysis technique is more than just looking into the packet’s ad-

dress, port number and protocol type and or other header information. It often in-

volves state tracking for newer applications.”564 Thus, a POSITA would have been 

motivated to use multiple packets to classify a flow, as Yu teaches, to manage ap-

plication policies to classify flows.565 

2. Riddle in View of Ferdinand and Further in View of Yu 

Renders Obvious Identifying a “Conversational Flow-Se-

quence” and the Claimed State Tracking 

436. To the extent Riddle does not disclose or render obvious identifying a “con-

versational flow sequence” or the claimed state tracking, the combination of Riddle 

                                                        

561 Yu, 3:34-36 (“flow classification specification 203a can be…running a specific 

application”); Riddle, 8:64-66 (Traffic classes may also be defined “[a]t the appli-

cation level”). 
562 Yu, 4:1-9 (“[a]ll packets belonging to the same stream are to be regulated by the 

same policy”); Riddle, 13: 63-64 (“policy is determined for the traffic class”). 
563 Yu, 4:57-62. 
564 Yu, 1:63-67. 
565 Yu, 2:45-50, 5:1, 6:19-21. 

EX 1006 Page 263



  

 250 

and Ferdinand, and further in view of Yu renders obvious these claim elements.  

437. As I discuss above, a POSITA would have understood that Riddle teaches 

storing its state-based logic on storage subsystem 35 along with the other computer 

programs, code, and instructions.566 Thus, in accordance with Yu’s teachings, im-

plementing Riddle’s packet classifier to use hardware acceleration coupled with 

software logic for stateful packet inspection would not have changed Riddle’s prin-

ciple of operation. As Riddle already describes processing steps in Figures 4A-4B, 

using Yu’s state-traffic logic in Riddle’s monitor amounts to nothing more than 

combining known prior art technologies used in their ordinary and predictable 

manner to examine and classify flows in Riddle’s monitor. 

438. Further, a POSITA would have understood that the combination of Riddle 

and Ferdinand and further in view of Yu results in Yu’s state-tracking logic exam-

ining flow specifications parsed by Riddle for incoming packets to thereby track 

the flow’s state. And a POSITA would have appreciated that this straightforward 

combination would not adversely impact Riddle’s existing processing logic.  

439. For all the above reasons, a POSITA would have been motivated to combine 

the teachings of Riddle, Ferdinand, and Yu to render obvious identifying that an 

accepted packet is part of a “conversational flow-sequence” as well as carrying out 

state operations with the state processor progressing through a series of states and 

                                                        

566 Riddle, 6:5-8. 

EX 1006 Page 264



  

 251 

state operations. 

440. As set forth in my analysis of the ’099 Patent in Sections VII.A.2 and 

VII.A.3 above, Riddle and Ferdinand disclose or render obvious all the remaining 

elements of ’099 claims 1 and 2. As such, it is also my opinion that Riddle in view 

of Ferdinand and further in view of Yu renders obvious claims 1 and 2 of the ’099 

Patent. 

D. For the ’099 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of Yu Renders Obvious Dependent Claims 4 and 

5. 

441. As I discuss above in Section VII.C, Riddle in view of Ferdinand and further 

in view of Yu renders obvious independent ’099 claim 1. Further, as I discuss 

above in Section VII.B, Riddle in view of Ferdinand and further in view of Baker 

render obvious ’099 claims 4 and 5. Because claims 4 and 5 depend from inde-

pendent claim 1, it is also my opinion that a POSITA would have recognized that 

each and every limitation of the ’099 claims 4 and 5 is disclosed or rendered obvi-

ous in light of Riddle in view of Ferdinand and Baker and further in view of Yu. 

Specifically, my opinions regarding Riddle in view of Ferdinand and Baker are ex-

actly the same as those above in Section VII.B, but further include the teachings of 

Yu. Thus, as if fully set forth here, I incorporate the discussion from Section VII.B, 

regarding the obviousness of ’099 Claims 4 and 5 over Riddle in view of Ferdi-

nand and further in view of Baker. 

EX 1006 Page 265



  

 252 

442. As discussed above, all Challenged Claims require “conversational flows” or 

a “conversational-flow sequence.” For example, ’099 claim element 1.7 recites 

“the particular conversational-flow sequence is associated with the operation of a 

particular application program.” While Riddle itself teaches identifying conversa-

tional flows, Yu further demonstrates identifying conversational flows through its 

“flow classification.”567 Further, Yu teaches flow classification logic that “keeps 

track of the flow’s state until matching criteria is met” when identifying whether a 

packet belongs to a conversational flow.568 

443. For all the reasons set forth in VII.C, a POSITA would have been motivated 

to combine the teachings of Riddle, Ferdinand, Baker, and Yu to render obvious 

identifying that an accepted packet is part of a “conversational flow-sequence” as 

well as carrying out state operations with the state processor progressing through a 

series of states and state operations as recited in claim 1. 

444. As set forth in my analysis in above Sections VII.B.2 and Error! Reference 

source not found. above, Riddle, Ferdinand, and Baker disclose or render obvious 

all the remaining elements of ’099 claims 4 and 5. As such, it is also my opinion 

that Riddle in view of Ferdinand and Baker and further in view of Yu renders obvi-

ous claims 4 and 5 of the ’099 Patent. 

                                                        

567 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
568 Yu, 4:62-64. 

EX 1006 Page 266



  

 253 

E. For the ’099 Patent, Riddle in View of Ferdinand and Further in 

View of RFC1945 Renders Obvious Claims 1 and 2. 

445. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’099 claims 1 and 2 is disclosed or rendered obvious in light of 

Riddle in view of Ferdinand and further in view of RFC1945. Specifically, my 

opinions regarding the combination of Riddle and Ferdinand are exactly the same 

as those above in Section VII.A, but further include the teachings of RFC1945. 

Thus, as if fully set forth here, I incorporate the discussion from Section VII.A re-

garding the obviousness of ’099 Claims 1 and 2 over Riddle in view of Ferdinand. 

As discussed above, all of the Challenged Claims require “conversational flows” or 

a “conversational-flow sequence.” For example, ’099 claim element 1.7 recites 

“the particular conversational-flow sequence is associated with the operation of a 

particular application program.” While Riddle itself teaches identifying conversa-

tional flows, RFC1945 further demonstrates identifying conversational flows 

through the additional example of the use of HTTP header fields. 

446. As I detail below, RFC1945 shows that HTTP header fields (such as host, 

URL, User Agent, User Agent Profile) and HTTP Referrer569 fields were known in 

the art and being used to relate traffic flows. For example, RFC1945 describes the 

“refer[r]er” request header field as:570 

                                                        

569 It is common in the art for this term to be misspelled as “Referer.” 
570 RFC1945, 44-45 

EX 1006 Page 267



  

 254 

 

 

447. The HTTP Referrer field identifies the address of the webpage that is linked 

to a resource being requested. By checking the HTTP Referrer field, a POSITA 

would have been able to determine where the HTTP request originated.571 

448. In prior district court litigations, Patentee has acknowledged that it was 

known in the art that HTTP fields can be used to identify a conversational flow. 

For example, Patentee’s technical expert, Dr. Almeroth, used the below slide to as-

sert that an accused infringer created a “conversational flow” through the use of the 

HTTP Referrer field.572 This slide shows the HTTP Referrer field as the only field 

                                                        

571 RFC1945, 37-46. 
572 Ex. 1076 (Dr. Almeroth’s Demonstrative Slide in NetScout district court case), 

5; Ex. 1075 (S. Abdullah Declaration in NetScout district court case), ¶3. 

EX 1006 Page 268



  

 255 

that links together the separate flows shown in blue. 

 

449. Moreover, Dr. Almeroth, testified: 

So here’s the -- the next step of the animation, please. Multiple requests. 

There’s one response. That fills in part of it. And then the next request 

and response. And so now you have three separate flows. 

They’re separate flows. Each flow has information about that connec-

tion. But one of the things that you see in these second and third con-

nections -- or flows, is what’s called a referrer. In this case, what’s 

being described is information in a connection in a flow record that 

can be -- then be used to associate that flow record with another flow. 

So in this case, because the user device made a request to the Facebook 

server, that caused subsequent requests to be made, and those subse-

quent requests were at the behest of the first one, then the referrer is 

EX 1006 Page 269



  

 256 

Facebook. 

So if you go to the next step, what I’ve highlighted here is how the 

information in a particular flow record can be used to associate those 

flow records together to create what’s called a conversational flow. 

So the idea is the flow-entries can be separate, they can contain infor-

mation about that flow, but that information can then be correlated with 

information from other flows so that the analyzer understands that those 

are related flows.573 

450. Dr. Almeroth further testified that the HTTP Referrer header field may sat-

isfy the requirements of a “conversational flow” by correlating connection flows. 

For example, Dr. Almeroth testified: 

I had presented evidence about the HTTP referrer and this other infor-

mation that’s also part of the flow record. And that was what I used in 

my example animation to show how information in the NetScout G10 

and GeoBlade, the two infringing products, used that information to tie 

one flow-entry back to another flow-entry. And because that infor-

mation was in the flow record, it demonstrates the capability for that 

flow-entry to be correlated with other flow-entries. It says it has these 

fields in it, and those fields correlate with the other flow-entry in the 

accused products.574 

                                                        

573 Ex. 1069 (10/12/17 Trial Transcript in NetScout district court case), 25:14-

26:12. 
574 Ex. 1069 (10/12/17 Trial Transcript in NetScout district court case), 48:23-

50:14. 

EX 1006 Page 270



  

 257 

451. In the above testimony, Dr. Almeroth refers to the below demonstrative 

which highlights use of the HTTP host, URL, User Agent, User Agent Profile, and 

HTTP Referrer fields as evidence of the claimed “conversational flow.”575 As illus-

trated by RFC1945, these HTTP headers fields were well-known to a POSITA be-

fore the priority date of the Challenged Patents. For example, a POSITA would 

have understood that HTTP Referrer fields were used to relate traffic flows. Ac-

cordingly, at least under Patentee’s “conversational flow” construction, Patentee’s 

reliance on the HTTP Referrer field as linking connection flows into a conversa-

tional flow demonstrates the obviousness of identifying conversation flows in Rid-

dle’s system. 

                                                        

575 Ex. 1074 (Dr. Almeroth’s Direct Testimony Demonstrative Slide in NetScout 

district court case), 27-30; Ex. 1073 (S. Udick Declaration in NetScout district 

court case), ¶3. 

EX 1006 Page 271



  

 258 

 

1. Reasons to Modify the Combination of Riddle and Ferdi-

nand Further in View of RFC1945 

452. Riddle, Ferdinand, and RFC1945 are in the same field of endeavor and con-

tain overlapping disclosures with similar purposes. Indeed, it would have been rou-

tine for a POSITA to consider RFC1945 when implementing Riddle’s teachings as 

such RFC publications were regularly relied upon by those in the field at the time 

of the purported in invention. 

453. Riddle discloses that HTTP traffic may be classified by HTTP header types. 

Riddle, for example, states that “[w]eb traffic may also be classified by HTTP 

EX 1006 Page 272



  

 259 

header types such as Content-Type (MIME type) or User-Agent.”576 Thus, Riddle 

teaches classifying traffic using one of the HTTP fields, such as User-Agent. As 

discussed above regarding Dr. Almeroth’s testimony, I understand Patentee previ-

ously relied on this HTTP field when attempting to show an accused product in-

fringes the Challenged Patents. 

454. RFC1945 discloses 16 different HTTP header fields, including Content-

Type and User-Agent.577 And RFC1945 teaches the use of such fields, such as the 

HTTP Referrer field, to associate web traffic together.578A POSITA would have 

understood that in addition to Content-Type and User-Agent, any of the 14 other 

HTTP header fields, such as the HTTP Referrer field, are useable to classify web 

traffic. 

455. Further, RFC1945 reflects common usage of the HTTP 1.0 protocol and 

Riddle demonstrates that a POSITA would have been aware of the HTTP proto-

col.579 For example, Riddle states: “The Hypertext Transfer Protocol is a simple 

protocol built on top of Transmission Control Protocol (TCP). It is the mechanism 

which underlies the function of the World Wide Web. The HTTP provides a 

                                                        

576 Riddle, 9:24-27. While this exact sentence does not appear in the ’864 Provi-

sional, its content is supported by other sections of the ’864 Provisional. Ex. 1024 

(’864 Provisional), 16 (lines 15-24), 67 (“MIME-type”), 68 (“MIME-Type”). 
577 RFC1945, 37-46. 
578 RFC1945, 44-45. 
579 Riddle, 9:24-27. 

EX 1006 Page 273



  

 260 

method for users to obtain data objects from various hosts acting as servers on the 

Internet.”580  

456. Riddle teaches using other “web aware” class attributes in defining traffic 

classes. Those “web aware” attributes include HTTP hosts and HTTP URIs: 

At the application level, traffic classes may be defined for specific URIs 

within a web server. Traffic classes may be defined having “Web aware” 

class attributes. For example, a traffic class could be created such as all 

URIs matching “*.html” for all servers, or all URI patterns matching 

“*.gif” for server X, or for access to server Y with URI pattern “/sales/*” 

from client Z, wherein ‘*’ is a wildcard character, i.e., a character which 

matches all other character combinations. Traffic class attributes left un-

specified will simply match any value for that attribute. For example, a 

traffic class that accesses data objects within a certain directory path of a 

web server is specified by a URI pattern of the directory path to be man-

aged, e.g. “/sales/*”.581 

As discussed above regarding Dr. Almeroth’s testimony, I understand Patentee 

previously asserted those two “web aware” HTTP fields show an accused product 

identifies packets are part of a conversational flow. 

457. RFC1945 defines a URI as: 

URIs have been known by many names: WWW addresses, Universal Doc-

                                                        

580 Riddle, 8:41-45. 
581 Riddle, 8:64-9:11. 

EX 1006 Page 274



  

 261 

ument Identifiers, Universal Resource Identifiers, and finally the combina-

tion of Uniform Resource Locators (URL) and Names (URN). As far as 

HTTP is concerned, Uniform Resource Identifiers are simply formatted 

strings which identify--via name, location, or any other characteristic--a 

network resource.582 

458. By disclosing general schemes for defining traffic classes, including that 

traffic classes may be defined based on URIs, Riddle discloses that traffic classes 

may be defined by HTTP host and HTTP URI fields. Moreover, a POSITA would 

have been aware of the common protocol HTTP/1.0 described in RFC1945 when 

considering the role of HTTP and TCP in Internet transmissions as set forth in Rid-

dle.583 

459. Based on the knowledge of a POSITA and the teachings of RFC1945, a 

POSITA would have been motivated to modify Riddle to use other header fields, 

such as the HTTP Referrer field, to classify based on the conversational flow of 

web traffic.584 Riddle provides motivation to do so by stating “[w]eb traffic may 

also be classified by HTTP header types such as Content-Type (MIME type) or 

User-Agent.”585 Riddle’s statement is open-ended and gives two examples of the 

HTTP header fields that may be used. As Riddle already discloses using other 

                                                        

582 RFC1945, 10, 14 (endnote citations omitted). 
583 Riddle, 9:24-27; 8:41-45. 
584 RFC1945, 37-46. 
585 Riddle, 9:25-27. 

EX 1006 Page 275



  

 262 

HTTP header fields in defining classes, using RFC1945’s HTTP Referrer field 

when Riddle classifies flows amounts to nothing more than combining known prior 

art technologies used in their ordinary and predictable manner to examine and clas-

sify flows in Riddle’s monitor. 

460. Combining the teachings of Riddle and RFC1945 yields the ability to create 

a traffic class based upon URIs (such as HTTP host or HTTP URL), the user agent, 

and/or the HTTP Referrer. In doing so, a POSITA would have appreciated that 

Riddle in view of Ferdinand and further in view of RFC1945 creates traffic classes 

that contain the information that I understand Patentee has previously accused of 

infringement of the Challenged Patents (as discussed above regarding Dr. Alme-

roth’s testimony). 

2. Riddle in View of Ferdinand and Further in View of 

RFC1945 Renders Obvious Identifying A “Conversational 

Flow-Sequence.” 

461. As set forth in my analysis of ’099 claim element 1.4 in Section VII.A.2.e 

above, Riddle discloses using HTTP header types, such as User-Agent, to classify 

HTTP traffic. As discussed above, Patentee asserted using HTTP fields like User-

Agent to classify flows is an example of identifying a conversational flow. 

462.  To the extent Riddle does not disclose or render obvious identifying a “con-

versational flow sequence,” Riddle in view of Ferdinand and further in view of 

EX 1006 Page 276



  

 263 

RFC1945 renders obvious this claim element, at least under Patentee’s interpreta-

tion of “conversational flow.”  

463. RFC1945 further demonstrates identifying conversational flows through its 

teachings regarding HTTP header fields. Based on the knowledge of a POSITA 

and the teachings of RFC1945 as discussed above in this section, a POSITA would 

have been motivated to modify Riddle to use other header fields, such as the HTTP 

Referrer field, to classify based on the conversational flow of web traffic.586 

464. Combining the teachings of Riddle, Ferdinand, and RFC1945 yields the abil-

ity to create a traffic class based upon URIs, the user agent, and/or the HTTP Re-

ferrer. In doing so, a POSITA would have appreciated that the combination of Rid-

dle and Ferdinand and further in view of RFC1945 creates traffic classes that con-

tain the information that I understand Patentee has previously accused of infringe-

ment of the Challenged Patents. For all the reasons discussed above in this section, 

a POSITA would have been motivated to combine the teachings of Riddle, Ferdi-

nand, and RFC1945 to render obvious extracting selected packet portions and 

forming a function of the selected portions sufficient to identify that the accepted 

packet is part of a conversational flow-sequence. 

465. As set forth in my analysis of the ’099 Patent in Sections VII.A.2 and 

VII.A.3 above, Riddle and Ferdinand disclose or render obvious all the remaining 

                                                        

586 RFC1945, 37-46. 

EX 1006 Page 277



  

 264 

elements of ’099 claims 1 and 2. As such, it is also my opinion that Riddle in view 

of Ferdinand and further in view of RFC1945 renders obvious claims 1 and 2 of 

the ’099 Patent, at least under the Patentee’s interpretation of “conversational 

flow.” 

F. For the ’099 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of RFC1945 Renders Obvious Dependent Claims 

4 and 5. 

466. As I discuss above in Section VII.E, Riddle in view of Ferdinand and further 

in view of RFC1945 renders obvious independent ’099 claim 1. Further, as I dis-

cuss above in Section VII.B, Riddle in view of Ferdinand and further in view of 

Baker render obvious ’099 claims 4 and 5. Because claims 4 and 5 depend from in-

dependent claim 1, it is also my opinion that a POSITA would have recognized 

that each and every limitation of the ’099 claims 4 and 5 is disclosed or rendered 

obvious in light of Riddle in view of Ferdinand and Baker and further in view of 

RFC1945. Specifically, my opinions regarding Riddle in view of Ferdinand and 

Baker are exactly the same as those above in Section VII.B, but further include the 

teachings of RFC. Thus, as if fully set forth here, I incorporate the discussion from 

Section VII.B, regarding the obviousness of ’099 Claims 4 and 5 over Riddle in 

view of Ferdinand and further in view of Baker. 

467. As discussed above, all Challenged Claims require “conversational flows” or 

a “conversational-flow sequence.” For example, ’099 claim element 1.7 recites 

EX 1006 Page 278



  

 265 

“the particular conversational-flow sequence is associated with the operation of a 

particular application program.” While Riddle itself teaches identifying conversa-

tional flows, RFC1945 further demonstrates identifying conversational flows 

through the additional example of the use of HTTP header fields. 

468. For all the reasons set forth in VII.E, a POSITA would have been motivated 

to combine the teachings of Riddle, Ferdinand, Baker, and RFC to render obvious 

identifying that an accepted packet is part of a “conversational flow-sequence” as 

recited in claim 1. 

469. As set forth in my analysis in above Sections VII.B.2 and Error! Reference 

source not found. above, Riddle, Ferdinand, and Baker disclose or render obvious 

all the remaining elements of ’099 claims 4 and 5. As such, it is also my opinion 

that Riddle in view of Ferdinand and Baker and further in view of RFC1945 ren-

ders obvious claims 4 and 5 of the ’099 Patent. 

VIII. THE CLAIMS OF THE ’725 PATENT ARE UNPATENTABLE 

470. For the ’725 Patent, the challenged claims include independent claims 10 

and 17 and dependent claims 12, 13, and 16. As I detail below, it is my opinion 

that Riddle in view of Baker renders obvious ’725 claims 10, 12, 13, 16, and 17. It 

is also my opinion that Riddle in view of Baker and further in view of Yu renders 

obvious ’725 claims 10, 12, 13, 16, and 17. Further, it is my opinion that Riddle in 

view of Baker and further in view of RFC1945 renders obvious ’725 claims 10, 12, 

EX 1006 Page 279



  

 266 

13, 16, and 17. 

A. For the ’725 Patent, Riddle in View of Baker Renders Obvious 

Claims 10, 12, 13, 16, and 17. 

471. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’725 claims 10, 12, 13, 16, and 17 is disclosed or rendered obvi-

ous by the prior art. Specifically, it is my opinion that ’725 claims 10, 12, 13, 16, 

and 17 are obvious in light of Riddle in view of Baker. 

1. Reasons to Modify Riddle in View of Baker 

472. As I discuss above regarding ’099 claims 4 and 5 in Section VII.B.1, Riddle 

and Baker are in the same field of endeavor and contain overlapping disclosures 

with similar purposes. For example, Riddle discloses classifying packets in a data 

communications network into traffic classes based upon protocols such as FTP, 

HTTP, TCP, UDP, and/or Ethernet.587 And Baker, for example, teaches parsing, 

filtering, generating and analyzing data (or frames of data) transmitted over a data 

communications network based on one or more programmably configurable proto-

col descriptions which may be stored and retrieved from an associated memory.588 

As if fully set forth here, I incorporate the discussion from Section VII.B.1. 

473. Based on the teachings of Riddle and Baker and before the time of the pur-

ported invention, a POSITA would have been motivated and found it obvious to 

                                                        

587 Riddle, Fig. 1D, Table 2. 
588 Baker, 3:32-4:6. 

EX 1006 Page 280



  

 267 

make the packet flow classifier of Riddle more configurable based on a POSITA’s 

general knowledge and Baker’s teachings.  

474. In particular, it would have been obvious to a POSITA to modify Riddle’s 

teaching of a traffic classification system with Baker’s teaching of PDFs so that 

Riddle’s traffic classification system could include receiving PDFs because a 

POSITA understood it would be advantageous for Riddle’s classification system to 

allow for updating protocol descriptions.589 This would be highly desirable in Rid-

dle’s monitor because Riddle envisions that the network managers using the moni-

tor do not know the technical details of the protocols.590 

475. Moreover, Baker provides an explicit motivation to combine: “[I]t would be 

highly desirable to be able to parse all protocols with a single configurable soft-

ware (or hardware) module so that support for additional protocols could be added 

to a system without requiring substantial modification to the system or its control 

logic.”591 A POSITA would have realized that combining Baker with Riddle pro-

vides the advantage of making Riddle’s monitor more configurable without requir-

ing substantial modification to the monitor itself. 

476. Additionally, Baker states that its invention may be used with network moni-

tors such as those disclosed in Riddle. Baker’s invention “may be employed in any 

                                                        

589 Baker, 19:6-10. 
590 Riddle, 15:28-31. 
591 Baker, 3:3-8. 

EX 1006 Page 281



  

 268 

system where it is useful to be able to examine and perform various operations on 

contiguous bit-fields in data structures, wherein each data structure is composed of 

predefined fields of one or more contiguous bits.”592 Baker also discloses that the 

invention “may be incorporated in a network device, such as a network analyzer, 

bridge, router, or traffic generator, including a CPU and a plurality of input de-

vices, storage devices, and output devices.”593 These are the same types of devices 

as Riddle’s monitor.594 Given Baker’s disclosures, this combination is nothing 

more than a simple substitution of one known element for another used in their or-

dinary and predictable manner to update Riddle’s protocols. 

477. Further, Riddle discloses traffic classification based upon the Ethernet proto-

col and Baker discloses PDFs for the Ethernet protocol.595 And Baker describes 

PDFs for Generic Protocols which could be other protocols used in Riddle.596 

Thus, a POSITA would have been motivated to modify the teachings of Riddle to 

increase the ability to handle updated PDFs as taught by Baker.597 This analysis ap-

plies to each of the ’725 claim elements described below that rely on Riddle in 

view of Baker.598 

                                                        

592 Baker, 6:18-22. 
593 Baker, 4:27-30 
594 Riddle, 5:55-57, claim 8, Figs. 1A, 1B, 1C. 
595 Riddle, Fig 1D, 7:47-53; Baker, Table 12, 21:32-22:1. 
596 Baker, Table 13. 
597 Baker, Table 13. 
598 Baker, Table 13. 

EX 1006 Page 282



  

 269 

2. Independent ’725 Claims 10 and 17 

478. It is my opinion that independent claims 10 and 17 of the ’725 Patent are ob-

vious in light of Riddle in view of Baker. 

a. ’725 Claim 10’s Preamble and 17’s Preamble: “A 

method of performing protocol specific operations on a 

packet passing through a connection point on a computer 

network, the method compromising” 

479. Riddle discloses all elements of this preamble. As I detail below, Riddle de-

scribes a method of performing protocol specific operations. And the combination 

of Riddle and Baker renders obvious performing protocol specific operations as 

shown below regarding ’725 claim elements 10.3 and 17.3. 

480. Riddle teaches performing protocol specific operations on packets passing 

through a network connection point. Riddle implements its methods using the C 

programming language and operating them on a computer system such as shown in 

Riddle’s Figure 1A.599 As provided below, Figure 1A shows a computer network 

including client 25 or server 20, on which Riddle’s invention is implemented. Cli-

ent 25 and server 20 connect to the network at connection points, e.g., network in-

terfaces 40 and 40’.600  

                                                        

599 Riddle, 5:55-57. 
600 Riddle, Fig. 1A, 6:9-15. 

EX 1006 Page 283



  

 270 

 

481. For networks connecting multiple clients and servers of Figure 1A, Riddle 

teaches network access through a “network routing means” and routers, such as 

router 75, shown below in Figure 1C, for implementing Riddle’s methods, or in an-

other traffic classifier 304.601 A POSITA would have understood, consistent with 

Riddle’s teachings of traffic classification for bandwidth management, that Rid-

dle’s invention could be implemented in routers, such as router 75 depicted in Fig-

ure 1C. As shown in that figure, Riddle’s router 75 is coupled to the connection 

point. Thus, Riddle discloses a method of performing protocol specific operations 

on a packet passing through a connection point on a computer network. 

                                                        

601 Riddle, 7:10-34, claim 8, Figs. 1C, 3. 

EX 1006 Page 284



  

 271 

 

b. ’725 Claim Elements 10.1 and 17.1: “(a) receiving the 

packet” 

482. Riddle discloses this claim element alone and/or renders it obvious in view 

of Baker. Riddle teaches methods for automatically classifying packet flows for 

use in allocating bandwidth resources by a rule of assignment of a service level.602 

Riddle’s methods includes “applying individual instances of traffic classification 

paradigms to packet network flows based on selectable information obtained from 

a plurality of layers of a multi-layered communication protocol in order to define a 

characteristic class, then mapping the flow to the defined traffic class.”603 To clas-

sify packet flows, a POSITA would have understood that Riddle’s monitor re-

ceives packets at network interface 40, for example. 

                                                        

602 Riddle, Abstract, 4:7-10. 
603 Riddle, Abstract, 4:10-15. 

EX 1006 Page 285



  

 272 

483. Riddle’s automatic classification methods include parsing a flow specifica-

tion from a packet, which a POSITA would have understood occurs after the 

packet is received by the monitor.604 Further, Riddle discloses that “traffic classi-

fier 304 detects services for incoming traffic.”605 To detect services for incoming 

traffic, i.e., packets, a POSITA would have understood Riddle’s monitor receives 

those packets. 

484. Additionally, Baker discloses receiving network data: 

In one preferred form, the system of the present invention may employ 

a CPU or other hardware implementable method for analyzing data from 

a network in response to selectively programmed parsing, filtering, sta-

tistics gathering, and display requests. Moreover, the system of the pre-

sent invention may be incorporated in a network device, such as a net-

work analyzer, bridge, router, or traffic generator, including a CPU and 

a plurality of input devices, storage devices, and output devices, wherein 

frames of network data may be received from an associated network, 

stored in the storage devices, and processed by the CPU based upon one 

or more programmably configurable protocol descriptions also stored in 

the storage devices.606 

 

                                                        

604 Riddle, claims 1, 8, Fig. 4A, step 402 (“parse flow specification from a packet 

of the flow”). 
605 Riddle, 12:30-31, Fig. 3. 
606 Baker, 4:22-35. 

EX 1006 Page 286



  

 273 

c. ’725 Claim Elements 10.2 and 17.2: “(b) receiving a set 

of protocol descriptions for a plurality of protocols that 

conform to a layered model, a protocol description for a 

particular protocol at a particular layer level including” 

485. Riddle discloses this claim element alone and/or renders it obvious in view 

of Baker. Moreover, the Board previously found Baker taught this claim ele-

ment.607  

(1) Riddle discloses receiving protocol descriptions 

486. Riddle discloses using protocol descriptions for the creation of traffic clas-

ses. Riddle discloses “management of network bandwidth based on information as-

certainable from multiple layers of OSI network model.”608 Riddle’s methods in-

clude “applying individual instances of traffic classification paradigms to packet 

network flows based on selectable information obtained from a plurality of layers 

of a multi-layered communication protocol in order to define a characteristic class, 

then mapping the flow to the defined traffic class.”609 And Riddle specifies that its 

“automatic classification is sufficiently robust to classify a complete enumeration 

of the possible traffic.”610 

                                                        

607 Ex. 1062 (IPR2017-00863 Institution Decision), 11-12. 
608 Riddle, 1:54-57. 
609 Riddle, Abstract, 4:10-15. 
610 Riddle, Abstract, 4:15-17. 

EX 1006 Page 287



  

 274 

487. As provided below, Riddle’s Table 2 provides an exemplary list of infor-

mation used to build traffic classes.611 Thus, as an example, a traffic class could be 

defined for an IP address and/or a port number, as well as a URI612 pattern. 

 

488. Riddle proposes classifying traffic “in protocol layer independent categories. 

For example, a particular instance of traffic may be classified according to its 

transport layer characteristics, e.g., Internet Protocol port number, as well as its ap-

plication layer information, e.g., SMTP.”613 A POSITA would have understood 

that Riddle’s invention also classifies traffic based upon the Ethernet protocol as 

shown in the prior art OSI network model of Figure 1D. 

                                                        

611 Riddle, 9:64-65. 
612 Riddle, Table 1 (“A Universal Resource Identifier is the name of the location 

field in a web reference address. It is also called a URL or Universal Resource 

Locator.”) 
613 Riddle, 10:57-11:9. 

EX 1006 Page 288



  

 275 

(2) Baker teaches receiving protocol descriptions 

489. Baker discloses storing protocol descriptions as “protocol description files 

(PDF).”614 As shown below in Baker’s Figure 1, PDFs 22 are stored in data storage 

device 14 and accessible by network device control logic 16.615  

 

490. Baker discloses that the network interface system stores the programmably 

configurable PDFs and is programmed to receive PDFs and run an initializa-

tion/compilation process (i.e., receiving a set of protocol descriptions) as follows: 

[T]he initialization of the system includes a determination of the pres-

ence of PDF files and the extraction of the protocol and associated con-

trol record information from all of the PDF files found. The number of 

                                                        

614 Baker, 19:6-10 (“In the presently preferred embodiment, each of these protocol 

description records with its associated field, statistics, lookup, and filter record in-

formation is also written to a protocol specific protocol description file (PDF).”). 
615 Baker, 10:10-25, Fig. 1. 

EX 1006 Page 289



  

 276 

PDF files is determined, and a ProtocolList is constructed consisting of 

a sorted vector of protocol records at least the size of the number of 

PDF files found. The name of each protocol record found is inserted in 

the ProtocolList. The PDF files are then read to memory in the sequence 

described above for the PDF file writing. The lookup records that indi-

cate a next protocol are associated with the appropriate entries in the 

ProtocolList.616 

491. Moreover, the claims of Baker confirm that the PDFs are received. For ex-

ample, claim 3 recites: “storing at least one programmably configurable protocol 

description in a memory,” “retrieving said at least one protocol description from 

said memory”, and “providing said at least one protocol description to a logic con-

trol module,” “upon receiving said at least one protocol description.”617  

492. Baker’s PDFs may include a protocol control record and a plurality of field 

data records.618 An example of a protocol control record is shown below in Baker’s 

Table 1, and the field data records are shown below in Baker’s Table 2. 

                                                        

616 Baker, 20:35-21:11. 
617 Baker, claim 3, claims 5-8 (claiming “storing,” “retrieving,” “providing,” and 

“receiving” “[programmable configurable] protocol descriptions”), claims 9-11 

(claiming “storing,” “delivering,” and “retriev[ing]” “programmable configurable 

protocol descriptions”). 
618 Baker, 12:25-28. 

EX 1006 Page 290



  

 277 

 

 

 

EX 1006 Page 291

TABLE 1

PROTOCOL COMO}. RECORD

nn W'Ctiption
nunJoana length of protocol aa-e in bytea lncludlng auu.

tenLaator

_— an. of protocol control record la accrual
mm a- of (ale control record la atorod n

total Mt length of protocol hence: control rocord la

  

  
  
 

 

  
  
  

  

neacrlhlng

m_
mm—
mm! - -- towlate baa been output to file
”not -la blt width {or rotocol m: a: ~lay
m-_

ovtlona pointer to cotton control record to une l! tbla

.. tonal llama

m— ”later to -rotocol apecluc routing table

  

 

TABLE 2

FIELD SUB-RECORDS

mm

(lag indlcatlng value to actual length of Iran.

  

 

 
  

(mltl .11")

u— 1 ~ .. .. m s.
bytc ouaet hon ttart o! protocol bead-r 0: 32-bit Hold

a“m: o: blta to loft abut ”-51: value
n“ Ian-her of Mt. to rl-ut ahltt 32-bit value

 

277

EX 1006 Page 291



  

 278 

  

493. Baker specifically discloses supporting the Ethernet protocol, and also de-

scribes supporting protocols “for any possible protocol specification”:  

It will be appreciated by those skilled in the art that any possible organ-

ization of fields for any possible protocol specification is contemplated 

for the network interface system 10 of the present invention.619  

Further, Baker specifically mentions configuring “IP, TCP, UDP and IPX check-

sum capabilities” as part of the application control logic, and provides source code 

                                                        

619 Baker, 21:32-22:5, 12:21-24. 

EX 1006 Page 292



  

 279 

to support such capabilities for these protocols.620 

494. Baker relates to programmably configurable protocol descriptions for lay-

ered models such as the OSI model.621 A POSITA would have understood that the 

OSI model is a layered model. For example, as provided below, Riddle’s Figure 

1D shows that the OSI model is prior art to the Challenged Patents.622 

 

495. Baker provides two example protocol descriptions in Tables 12 and 13, as 

annotated below, that further confirm the protocol descriptions include protocols 

                                                        

620 Baker, 34:16-21, 135:28-141:8, 213:24-35. 
621 Baker, Abstract, 1:22-25 (“Bridges operate at the data-link layer and routers at 

the network layer of the OSI reference model”), 4:14-21 (“[N]etwork interface in 

accordance with the present invention may be configured and reconfigured … to 

accommodate substantial network modifications (for example, the use of different 

data transmission hardware, protocols or protocol suites) without necessitating sub-

stantial system changes”), 12:21-24 (“It will be appreciated by those skilled in the 

art that any possible organization of fields for any possible protocol specification is 

contemplated for the network interface system 10 of the present invention.”). 
622 Riddle, Fig. 1D. 

EX 1006 Page 293



  

 280 

that conform to a layered model.623 

 

496. The Ethernet protocol definition shown above in Baker’s Table 12 specifies 

one possible upper level protocol, the Generic Protocol (GP) which is indicated by 

placing hexadecimal value 0×8888 in the protocol type field.624  

497. Baker’s Table 13 below shows that the Generic Protocol (GP) Specification 

has an 8-bit upper level protocol identifier field which shows placeholders for a 

network manager to program upper level protocols. 

                                                        

623 Baker, Tables 12 and 13. 
624 Baker, 21:32-22:1. 

EX 1006 Page 294



  

 281 

 

498. Table 14 further confirms that Baker’s PDFs use a layered model. Table 14 

shows a variable “ParseLvl” that is described as “Zero based protocol level in ISO 

reference model of protocol being parsed (current protocol).”625 Again, a POSITA 

would understand the ISO reference model to be referring to the International Or-

ganization of Standardization’s OSI layered model discussed above. 

                                                        

625 Baker, Table 14. 

EX 1006 Page 295



  

 282 

499. To the extent that Riddle does not explicitly disclose this claim element, it 

would have been obvious to a POSITA to modify Riddle in view of Baker since 

both involve layered models in data communications networks. Baker relates to 

programmably configurable protocol descriptions for layered models such as the 

OSI model.626 Further, Figure 1D of Riddle shows that the OSI model is prior art to 

the Challenged Patents.627 Further, Riddle discloses traffic classification based 

upon the Ethernet protocol and Baker discloses PDFs for the Ethernet protocol.628 

Baker also discloses PDFs for Generic protocols which could be the other proto-

cols used in Riddle.629 Thus, a POSITA would be motivated to modify the teach-

ings of Riddle to increase the ability to handle updated PDFs as taught by Baker. 

                                                        

626 Baker, Abstract, 1:22-25 (“Bridges operate at the data-link layer and routers at 

the network layer of the OSI reference model”), 4:14-21 (“[N]etwork interface in 

accordance with the present invention may be configured and reconfigured … to 

accommodate substantial network modifications (for example, the use of different 

data transmission hardware, protocols or protocol suites) without necessitating sub-

stantial system changes”), 12:21-24 (“It will be appreciated by those skilled in the 

art that any possible organization of fields for any possible protocol specification is 

contemplated for the network interface system 10 of the present invention.”). 
627 Riddle, Fig. 1D. 
628 Riddle, Fig 1D, 7:47-53; Baker, Table 12, 21:32-22:1. 
629 Baker, Table 13. 

EX 1006 Page 296



  

 283 

d. ’725 Claim Elements 10.3 and 17.3: “(i) if there is at 

least one child protocol of the protocol at the particular 

layer level, the-one or more child protocols of the partic-

ular protocol at the particular layer level, the packet in-

cluding for any particular child protocol of the particular 

protocol at the particular layer level information at one 

or more locations in the packet related to the particular 

child protocol”630 

500.  Riddle discloses this claim element alone and/or renders it obvious in view 

of Baker. Moreover, the Board previously found Baker taught this claim ele-

ment.631 

501. First, the claimed “if there is at least one child protocol of the protocol at the 

particular layer level, the-one or more child protocols of the particular protocol at 

the particular layer level” relates to the protocol descriptions Riddle received in 

’725 claim elements 10.2 and 17.2.632 Second, the claim language “the packet in-

cluding for any particular child protocol of the particular protocol at the particular 

layer level information at one or more locations in the packet related to the particu-

lar child protocol” relates to Riddle’s received packets in ’725 claim elements 10.1 

and 17.1. Overall, this claim element describes that, if a child protocol exists, in-

structions are provided for identifying the child protocol. 

                                                        

630 It is my understanding that the ’725 Patent’s Certificate of Correction corrects a 

typographical error in claim element 10.3. 
631 Ex. 1062 (IPR2017-00863 Institution Decision), 12-15. 
632 ’725 Patent, Abstract, 3:60-4:21. 

EX 1006 Page 297



  

 284 

(1) Riddle teaches protocol descriptions that identify 

child protocols 

502. Regarding protocol descriptions, Riddle describes programming its system 

to parse layered protocols, including identifying one or more child protocols at 

each layer.633 Riddle describes that “[t]raffic classes may be defined at any level of 

the IP protocol as well as for any other non-IP protocols.”634 Riddle also discloses 

that “[t]raffic class membership may be hierarchical. Thus, a flow may be classi-

fied by a series of steps through a traffic class tree, with the last step (i.e., at the 

leaves on the classification tree) mapping the flow to a policy.”635 Further, Riddle 

states: 

A classification tree is a data structure representing the hierarchical as-

pect of traffic class relationships. Each node of the classification tree 

represents a class, and has a traffic specification, i.e. a set of attributes 

or characteristics describing the traffic associated with it. Leaf nodes of 

the classification tree may contain policies. According to a particular 

embodiment, the classification process checks at each level if the flow 

being classified matches the attributes of a given traffic class. If it 

does, processing continues down to the links associated with that node 

in the tree. If it does not, the class at the level that matches determines 

the policy for the flow being classified. If no policy specific match is 

                                                        

633 Riddle, Abstract, Fig. 1D, 4:10-17. 
634 Riddle, 8:59-60.  
635 Riddle, 9:20-24. 

EX 1006 Page 298



  

 285 

found, the flow is assigned the default policy.636 

503. Additionally, even within a particular layer (such as the session/application 

layer described in Figure 1D), a particular protocol such as FTP may contain sub-

components or child protocols. For example, Riddle explains its use of “subclassi-

fication” for FTP traffic:  

Subclassification of traffic into a tree is performed by matching the 

hosts and then searching for particular services. Traffic specifications 

are aggregate kinds of traffic for a traffic class, e.g., different compo-

nents of FTP may reside under class FTP. 

Subclassification is performed by first locating a class that matches, 

and then performing finer grade matchings. Processing commences 

with a decision on what traffic is to be subclassified. A marker is placed 

in the match_all default node so that when match processing reaches 

the marker, the autoclassification processing depicted in flowchart 403, 

determines that it has not found an existing class for the traffic being 

classified.637 

504. Riddle discloses examples such as identifying the child protocol TCP in the 

IP protocol, and identifying the child protocols HTTP and FTP within the TCP 

protocol.638 Also, Riddle states that the HTTP Protocol “is a simple protocol built 

                                                        

636 Riddle, 9:28-41. 
637 Riddle, 11:24-36. 
638 Riddle, 10:62-11:2; 13:10-22; Figs 2A, 2B. 

EX 1006 Page 299



  

 286 

on top of the Transmission Control Protocol (TCP).”639 HTTP, shown in the Appli-

cation Layer of Figure 1D, is a child protocol of TCP, which is shown in the 

Transport Layer.640 Based on the plain meaning of child protocol, or Packet Intelli-

gence’s former proposed construction of “a protocol that is encapsulated within an-

other protocol,” HTTP is a child protocol of TCP since it is encapsulated within 

TCP. 

505. Similarly, Riddle shows FTP is a child protocol of TCP: 

File Transfer Protocol (FTP) is a standard TCP/IP protocol for transfer-

ring files from one machine to another. FTP clients establish sessions 

through TCP connections with FTP servers in order to obtain files.641  

506. Further, Riddle teaches examining data in a packet. For example, Riddle ex-

plains that HTTP “facilitates the transfer of data objects across networks via a sys-

tem of uniform resource indicators,” or URLs.642 Riddle notes that: 

[C]lassification can extend to examination of the data contained in a 

flow's packets. Certain traffic may be distinguished by a signature even 

if it originates with a server run on a non-standard port, for example, an 

HTTP conversation on port 8080 would not be otherwise determinable 

as HTTP from the port number. Further analysis of the data is con-

ducted in order to determine classification in instances where: 1) FTP 

                                                        

639 Riddle, 8:41-42. 
640 Riddle, Fig. 1D. 
641 Riddle, 8:22:26, Fig. 1D. 
642 Riddle, 8:38-40, Table 1. 

EX 1006 Page 300



  

 287 

commands are used to define server ports, 2) HTTP protocol is used for 

non-web purposes. The data is examined for indication of push traffic, 

such as pointcast, which uses HTTP as a transport mechanism. These 

uses may be isolated and classified into a separate class. Marimba and 

pointcast can be distinguished by looking into the data for a signature 

content header in the get request. Pointcast has URLs that begin with 

“/FIDO-1/.”643 

507. With regards to the claimed “the packet …,” Riddle notes that “classification 

can extend to data contained in a flow’s packets.”644 

508. Further, Riddle’s claim 1 describes “parsing a packet into a first flow speci-

fication” and “matching the first flow specification of the parsing step to a plurality 

of classes represented by a plurality of tree type nodes, each tree type node having 

a traffic specification.” And Riddle’s claim 4 further extends that method to in-

clude child classification when reciting “subclassification” process: 

[I]f a matching classification tree type node was found in the matching 

step, said matching classification tree type node having at least one 

child classification tree type node, applying the matching, associating, 

and incorporating steps to a particular child classification tree type 

node as part of the classification.645 

509. Further, claim 8 of Riddle explains that a processor “parse[s] a packet into a 

                                                        

643 Riddle, 11:48-63. 
644 Riddle, 11:48-49. 
645 Riddle, claim 4. 

EX 1006 Page 301



  

 288 

first flow specification” after which the processor “match[es] the first flow specifi-

cation of the parsing step to a plurality of classes represented by a plurality of tree 

type nodes, each tree type node having a traffic specification and a mask.” Addi-

tionally, claim 10 includes “[t]he method of claim 8 wherein said matching step is 

applied to hierarchically-recognized classes.”  

(2) Baker teaches protocol descriptions that identify 

child protocols 

510. Baker teaches descriptions for layered protocols, including protocol descrip-

tions identifying one or more child protocols at each of a plurality of layers in a 

packet.646 For example, Baker discloses “the protocol descriptions may take the 

form of one or more protocol description files for each supported network protocol 

and may include a protocol header record and plurality of field sub-records having 

data corresponding to an associated protocol and fields defined therein.”647 Further, 

Baker states “the system of the present invention also preferably includes logic for 

determining a next protocol description structure required to continue analyzing a 

network frame.”648  

                                                        

646 Baker, Abstract, 1:22-25, 2:1-7, 2:28-3:8. 
647 Baker, 4:35-5:3. 
648 Baker, 5:31-33. 

EX 1006 Page 302



  

 289 

 

511. The relationship between children and parent protocols are shown below in 

Baker’s Tables 1 and 2. For example, Table 1 shows field records that describe the 

protocols’ header at bytes 28-31.  

512.  “The field records referenced at bytes 28-31 in [Table 1] above are prefera-

bly organized as shown in Table 2” shown below.649 Baker’s Table 2 below shows 

at bytes 28-31 a pointer to a lookup structure/class for the next protocol or defini-

tion to use. 

                                                        

649 Baker, 13:15-20. 

EX 1006 Page 303



  

 290 

 

513. Baker states: “The next protocol lookup records referenced in the field sub-

record table (Table 2) at bytes 28-31 are preferably organized as shown in Table 

4.”650 As annotated below, lookup structures such as those in Baker’s Table 4 “can 

be used for determining the next protocol control record to use…. This ability to 

specify branches on field values allows protocols with multiple overlapping struc-

tures to be specified and parsed dynamically.”651 

                                                        

650 Baker, 14:20-30. 
651 Baker, 15:10-17. 

 

EX 1006 Page 304



  

 291 

 

514. Baker provides two sample protocol descriptions, Ethernet and General Pro-

tocol, that further show this claim element has been met. The Ethernet protocol 

definition shown below in Table 12 specifies one possible upper level protocol, the 

Generic Protocol (GP) which is indicated by placing hexadecimal value 0×8888 in 

the protocol type field.652  

                                                        

652 Baker, 21:32-22:1. 

EX 1006 Page 305



  

 292 

 

515. The Ethernet protocol description is further shown in Figs. 4-4D. These fig-

ures demonstrate one or more child protocols GP. For example, Baker’s Figure 4D 

is shown below. 

 

516. Baker’s Table 13 below shows that the Generic Protocol (GP) Specification 

has an 8-bit upper level protocol identifier field which shows placeholders for a 

network manager to program upper level protocols.653 Table 13 also shows Src 

                                                        

653 Baker, Table 13. 

EX 1006 Page 306



  

 293 

Socket for the socket of upper-layer protocol sender and a Dst Socket for the 

socket of Upper layer protocol receiver.654 

 

517. The GP protocol description is further shown below in Baker’s Figures 5C 

to 5E. For example, Figs. 5C, 5D, and 5E show the GP protocol description for GP, 

including four child protocols GP1, GP2, GP3, and GP4. 

                                                        

654 Baker, Table 13. 

EX 1006 Page 307



  

 294 

 

 

 

518. Further, Baker discloses receiving packets with specific locations for child 

protocol related information. Example Frames 1 and 2 that use the aforementioned 

PDFs are shown below. Baker’s “Frame 1 shown below has a hardware length of 

eighty-two 8-bit bytes and consists of a fourteen byte Ethernet header, a twenty 

EX 1006 Page 308



  

 295 

byte GP header with no option bytes, and forty-eight bytes of application data.”655  

 

519. Baker’s “Frame 2 shown below has a hardware length of sixty 8-bit bytes 

and consists of a fourteen byte Ethernet header, a twenty-eight byte GP header in-

cluding eight option bytes, and eighteen bytes of pad to achieve the sixty byte 

Ethernet minimum frame length requirement.”656  

 

520. Additionally, each PDF protocol control record may include a “NumBits” at-

tribute that is the “total bit length of the protocol header.”657 For example, the 

Ethernet Control Record shown below in Baker’s Figure 4 sets the NumBits attrib-

ute to 112, indicating the total length of the Ethernet header. 

                                                        

655 Baker, 25:29-34. 
656 Baker, 26:10-14. 
657 Baker, Table 1, 19:17, 56:30-57:11. 

EX 1006 Page 309



  

 296 

 

521. Further, as annotated below in Figure 4a, Baker’s Ethernet PDF “Type” field 

sub-record includes a “Bit Offset” indicating that the Type field is 96-bits offset 

from the start of the Ethernet header658:  

 

522. Applying control logic to the Ethernet Type field and associated lookup 

structure in Baker’s Figures 4a and 4d, respectively, the associated Protocol field 

found with the range containing 0x8888 value will be used to update the NextPro-

tocol variable.659 Using Baker’s Figure 5C as an example, it may be seen how val-

ues may be used to continue parsing at different locations in the current protocol 

description.660 For example, a value of 0x01 would indicated “GP1”.661 

523. Thus, alone and/or in combination (by way of Riddle receiving Baker’s 

                                                        

658 Baker, Fig. 4A, 29:32-30:4. 
659 Baker, 29:32-30:2. 
660 Baker, 30:5-7. 
661 Baker, Fig. 5C. 

 

 

EX 1006 Page 310



  

 297 

PDFs) Riddle and Baker teach receiving a protocol description for a particular pro-

tocol at a particular layer level including if there is at least one child protocol of the 

protocol at the particular layer level, the-one or more child protocols of the particu-

lar protocol at the particular layer level. It would have been obvious to a POSITA 

to modify Riddle in view of Baker since both involve layered models in data com-

munications networks, which include child protocols. Baker relates to programma-

bly configurable protocol descriptions for layered models such as the OSI 

model.662 Further, Figure 1D of Riddle shows that the OSI model is prior art to the 

Challenged Patents.663 

524. Further, Riddle discloses traffic classification based upon the Ethernet proto-

col and Baker discloses PDFs for the Ethernet protocol.664 Baker also discloses 

PDFs for Generic Protocols which could be the other protocols used in Riddle.665 

Baker provides an explicit motivation to combine: “[I]t would be highly desirable 

                                                        

662 Baker, Abstract, 1:22-25 (“Bridges operate at the data-link layer and routers at 

the network layer of the OSI reference model”), 4:14-21 (“[N]etwork interface in 

accordance with the present invention may be configured and reconfigured … to 

accommodate substantial network modifications (for example, the use of different 

data transmission hardware, protocols or protocol suites) without necessitating sub-

stantial system changes”), 12:21-24 (“It will be appreciated by those skilled in the 

art that any possible organization of fields for any possible protocol specification is 

contemplated for the network interface system 10 of the present invention.”). 
663 Riddle, Fig. 1D. 
664 Riddle, Fig 1D, 7:47-53; Baker, Table 12, 21:32-22:1. 
665 Baker, Table 13. 

EX 1006 Page 311



  

 298 

to be able to parse all protocols with a single configurable software (or hardware) 

module so that support for additional protocols could be added to a system without 

requiring substantial modification to the system or its control logic.”666 A POSITA 

would have realized that modifying Riddle’s traffic classification system with 

PDFs, as taught by Baker, provides the advantage of making Riddle’s network 

monitor more configurable without requiring substantial modification to Riddle. 

Thus, a POSITA would have been motivated to modify the teachings of Riddle to 

increase the ability to handle updated PDFs as taught by Baker. 

525. Regarding the second part of the claim element, when Riddle or Baker re-

ceives packets, such as packets conforming to the OSI model, it has satisfied the 

portion of the claim element that requires “the packet including for any particular 

child protocol of the particular protocol at the particular layer level information at 

one or more locations in the packet related to the particular child protocol.” This 

portion of the claim element is further satisfied for the reasons disclosed above for 

’725 claim elements 10.1, 10.3, 17.1, and 17.3. 

e. ’725 Claim Elements 10.4 and 17.4: “(ii) the one or 

more locations in the packet where information is stored 

related to any child protocol of the particular protocol” 

526. Riddle discloses this claim element alone and/or renders it obvious in view 

of Baker. For example, as previously discussed, Riddle discloses programming a 

                                                        

666 Baker, 3:3-8. 

EX 1006 Page 312



  

 299 

system to look for information in a packet relating to the TCP child protocol of IP, 

and the FTP and HTTP child protocols of TCP. Riddle additionally teaches that 

HTTP is a protocol built on top of the TCP protocol. Also, Riddle explicitly states 

that classification extends to examination of the data contained in the flow’s pack-

ets. Additionally, PointCast traffic, which uses HTTP as a transport mechanism, 

“can be distinguished by looking into the data for a signature content header in the 

get request.”667 Further, Baker identifies specific byte locations in Ethernet and GP 

PDFs that relate to the child protocols.668 Moreover, the Board previously found 

Baker taught this claim element.669  

527. The analysis above for ’725 claim elements 10.3 and 17.3 show Riddle and 

Baker disclose programming a system to identify the one or more locations in the 

packet where information is stored related to any child protocol of the particular 

protocol. I incorporate by reference the disclosure for ’725 claim elements 10.3 

and 17.3 as if fully set forth herein. For example, that discussion shows specific 

byte locations in Ethernet and GP PDFs that relate to the child protocols. 

                                                        

667 Riddle, 11:50-63. 
668 Baker, Tables 12-13, Frames 1-2. 
669 Ex. 1062 (IPR2017-00863 Institution Decision), 15-17. 

EX 1006 Page 313



  

 300 

f. ’725 Claim Elements 10.5 and 17.5: “(iii) if there is at 

least one protocol specific operation to be performed on 

the packet for the particular protocol at the particular 

layer level, the one or more protocol specific operations 

to be performed on the packet for the particular protocol 

at the particular layer level” 

528. Riddle discloses this claim element alone and/or renders it obvious in view 

of Baker. Moreover, the Board previously found Baker taught this claim ele-

ment.670 

529. The ’725 Patent states that “protocol specific operations may include parsing 

and extraction operations to extract identifying information. The protocol specific 

operations may also include state processing operations defined for a particular 

state of a conversational flow of the packet.”671 The ’725 Patent describes that its 

protocol description language (“PDL”) files contain information on “how to inter-

pret header information, how to determine from the packet header information the 

protocols at the next layer, and what information to extract for the purpose of iden-

tifying a flow, and ultimately, applications and services.”672 The ’725 Patent in-

cludes several exemplary PDL files for protocols, such as Ethernet, IEEE 802.2, 

IEEE 802.3, TCP, UDP, RPC, NFS, and HTTP, include information describing the 

                                                        

670 Ex. 1062 (IPR2017-00863 Institution Decision), 17-18. 
671 ’725 Patent, Abstract, 2:21-31. 
672 ’725 Patent, 9:29–35. 

EX 1006 Page 314



  

 301 

protocol and what information may be parsed or extracted.673 The PDL files pro-

vided in the ’725 Patent do not include the instructions for parsing or extracting.674  

530. Riddle discloses the protocol specific operations in at least two ways. First, 

Riddle discloses performing parsing and extraction operations to extract identify-

ing information. In order to classify traffic, Riddle explicitly discloses parsing/ex-

traction operations on flows using the method outlined below in annotated Figure 

4A.675  

                                                        

673 ’725 Patent, 51:5-55:25, col. 77-col.93. 
674 ‘725 Patent, 51:5-55:25, col. 77-col.93.   
675 Riddle, 12:42-53, Fig. 4A (Step 402’s “parse flow specification from a packet 

of the flow”). 

EX 1006 Page 315



  

 302 

 

531. Further, as discussed above regarding ’099 claim element 1.7, Riddle dis-

closes performing state operations. I incorporate by reference that discussion as if 

fully set forth herein. And a POSITA would have understood that after parsing step 

402, Riddle has extracted identifying characteristics to perform steps 404 (“com-

pare flow specification with existing classification tree”), 406 (“traffic matches a 

class?”), and 408 (“enter into a saved list characteristics of the traffic”). Similarly, 

EX 1006 Page 316



  

 303 

a POSITA would have understood that Riddle has extracted identifying character-

istics to perform Figure 4B’s step 422 (“saved traffic known well?”), step 423 

(“saved traffic a server at unregistered IP port ?”), and step 426 (“saved traffic be-

longs to a service aggregate?”).676 

532. Like Riddle, Baker also discloses receiving configurable protocol descrip-

tions that include information to perform parsing and extraction operations. For ex-

ample, Baker teaches: 

Parsing, the process wherein network frames are broken up into their 

individual protocols and fields, is necessary for filtering with offsets 

relative to protocol headers, gathering field based statistics, generating 

network traffic, routing data frames, verifying field values, and display-

ing network frames in human readable form. In conventional systems, 

the parsing process has an overall structure which incorporates control 

logic for each supported protocol. Therefore, additional control logic 

must be developed when support for a new protocol is added to a con-

ventional system. As the development of additional control logic, 

whether implemented in hardware or software, may be both time con-

suming and expensive, it would be highly desirable to be able to parse 

all protocols with a single configurable software (or hardware) mod-

ule so that support for additional protocols could be added to a system 

without requiring substantial modification to the system or its control 

logic.677 

                                                        

676 Riddle, 13:36-62, Fig. 4B. 
677 Baker, 2:28-3:8. 

EX 1006 Page 317



  

 304 

533. Baker continues: 

The present invention is directed to improved systems and methods for 

parsing, filtering, generating and analyzing data (or frames of data) 

transmitted over a data communications network. In one particularly 

innovative aspect of the present invention, a single logic control mod-

ule, which may be implemented in hardware or software, is utilized to 

perform any of a number of data manipulation functions (for example, 

parsing, filtering, data generation or analysis functions) based upon one 

or more programmably configurable protocol descriptions which may 

be stored in and retrieved from an associated memory.678 

534. Baker additionally states: 

The system of the present invention also preferably includes logic for 

extracting field values from particular network frames, performing 

validation and error checking, and making parsing decisions based 

upon field values and information in the programmably configurable 

protocol descriptions.679 

535. Baker further states: 

Accordingly, it is an object of the present invention to provide an im-

proved system for network analysis wherein the system may determine 

which protocols and which protocol fields exist in a network frame 

(also referred herein as parsing) using common control logic com-

bined with configurable protocol descriptions.680 

                                                        

678 Baker, 3:32-4:6. 
679 Baker, 5:4-9. 
680 Baker, 7:1-6. 

EX 1006 Page 318



  

 305 

536. Baker provides flow charts for its parsing and extraction operations: 

The flow chart shown in FIG. 11 outlines ParseFrame control logic in 

accordance with the present invention and shows how successive pro-

tocol headers are parsed, and how remaining information is parsed as 

application data and frame pad. The flow chart in FIG. 12 outlines 

ParseProtocol control logic in accordance with one form of the present 

invention and shows how fixed and optional fields may be parsed in a 

selected protocol. The flow chart shown in FIG. 13 outlines ParseFields 

control logic in accordance with the present invention and shows how 

decisions are made and operations performed on extracted field val-

ues.681 

537. Each of Baker’s Figures 11, 12, and 13 show recursive parsing and extrac-

tion operations that will proceed until all appropriate information has been 

parsed.682 For example, Baker describes the process outlined in Figure 13: 

Referring back to the ParseFields control logic shown in FIG. 13, the 

ParseFields control logic parses the fields in each protocol header con-

tained in a particular network frame by using field values obtained in 

accordance with information specified in associated protocol descrip-

tions. The ParseFields control logic is applied for each protocol descrip-

tion required for a particular network frame. If the ParseFields control 

logic were applied to the exemplary frame, “Frame (1),” described 

                                                        

681 Baker, 26:27-27:3, Figs. 11, 12, and 13. 
682 Baker, Fig. 11 (104, 106, 108, 128), (Fig. 12 (decision 154 “all bits parsed”), 

Fig. 13 (206 “another field to parse”). 

EX 1006 Page 319



  

 306 

above, the network interface system 10 of the present invention would 

apply the ParseFields control logic with the protocol descriptions for 

the Ethernet protocol shown in Table 12, the GP shown in Table 13, 

and an unspecified Data protocol description.683 

538. Baker’s claims further confirm that the received PDFs include parsing oper-

ations. For example, claim 3 of Baker shows that the programmably configurable 

protocol description, i.e., PDF, contain the characteristics necessary to perform the 

parsing operations of a particular protocol. Baker’s claim 3 requires: 

A machine implemented process for parsing data transmitted over a 

data communications network, said process comprising the steps of: 

storing at least one programmably configurable protocol description 

in a memory, said at least one programmably configurable protocol 

description comprising a protocol control record and at least one 

field sub record for defining a plurality of characteristics of said data 

transmitted over said data communications network; 

retrieving said at least one protocol description from said memory; and 

providing said at least one protocol description to a logic control mod-

ule, said logic control module, upon receiving said at least one pro-

tocol description, being configured to parse data received from 

said data communications network based upon said characteris-

tics defined by said protocol description.684 

539. Further, Baker’s claim 9 requires: 

                                                        

683 Baker, 30:10-23. 
684 Baker, claim 3. 

EX 1006 Page 320



  

 307 

A method for parsing data transmitted over a data communications net-

work, said method comprising the steps of: 

storing in a first memory a plurality of programmably configurable pro-

tocol descriptions, said programmably configurable protocol de-

scriptions defining a plurality of characteristics of said data trans-

mitted over said data communications network; 

storing in a second memory a program for controlling a data parsing 

function to be executed by a processing unit, said program including 

instructions for causing said processing unit to selectively retrieve 

at least one of said programmably configurable protocol descrip-

tions from said first memory and to vary the execution of said data 

parsing function based upon said at least one retrieved protocol 

description; 

delivering to said processing unit said program for controlling said data 

parsing function; 

enabling said processing unit to execute said data parsing function; and 

delivering to said processing unit said data transmitted over said data 

communications network.685 

540. Thus, it would have been obvious to a POSITA to modify Riddle in view 

of Baker. Baker describes that Baker’s invention is used with network monitors, 

such as those disclosed in Riddle. Baker’s invention “may be employed in any 

system where it is useful to be able to examine and perform various operations 

                                                        

685 Baker, claim 9.  

EX 1006 Page 321



  

 308 

on contiguous bit-fields in data structures, wherein each data structure is com-

posed of predefined fields of one or more contiguous bits.”686 Baker also dis-

closes that his invention “may be incorporated in a network device, such as a 

network analyzer, bridge, router, or traffic generator, including a CPU and a 

plurality of input devices, storage devices, and output devices.”687 These are the 

same type of devices Riddle’s invention is used on.688 And a POSITA would 

have understood that the modifying Riddle’s monitor to use PDF files as taught 

by Baker’s amounts to nothing more than combining known prior art technolo-

gies used in their ordinary and predictable manner to organize Riddle’s protocol 

specific operations. 

541. Additionally, Baker provides an explicit motivation to combine: “[I]t 

would be highly desirable to be able to parse all protocols with a single configu-

rable software (or hardware) module so that support for additional protocols 

could be added to a system without requiring substantial modification to the 

system or its control logic.”689 A POSITA would have recognized that modify-

ing Riddle with the teachings of Baker’s PDF files provides the advantage of 

                                                        

686 Baker, 6:18-22. 
687 Baker, 4:27-30. 
688 Riddle, 5:55-57, claim 8, Figs. 1A, 1B, 1C. 
689 Baker, 3:3-8. 

EX 1006 Page 322



  

 309 

making Riddle’s network monitor more configurable without requiring substan-

tial modification to Riddle. Thus, a POSITA would be motivated to modify the 

teachings of Riddle to increase the ability to handle updated PDFs as taught by 

Baker.  

g. ’725 Claim Elements 10.6 and 17.6: “(c) performing the 

protocol specific operations on the packet specified by 

the set of protocol descriptions based on the base proto-

col of the packet and the children of the protocols used in 

the packet” 

542. Riddle alone discloses this claim element and/or renders it obvious in view 

of Baker. Moreover, the Board previously found Baker taught this claim ele-

ment.690 

543. The combination of Riddle and Baker renders obvious performing protocol 

specific operations on the packet specified by the set of protocol descriptions based 

on the base protocol of the packet and the children of the protocols used in the 

packet. Riddle’s methods include “applying individual instances of traffic classifi-

cation paradigms to packet network flows based on selectable information ob-

tained from a plurality of layers of a multi-layered communication protocol in or-

der to define a characteristic class, then mapping the flow to the defined traffic 

                                                        

690 Ex. 1062 (IPR2017-00863 Institution Decision), 19. 

EX 1006 Page 323



  

 310 

class.”691 In Riddle, traffic may be classified at any level based upon selectable in-

formation, such as “any level of the IP protocol as well as for other non-IP proto-

cols.”692 

544. In order to classify traffic, Riddle describes parsing/extraction operations on 

flows using the method outlined in Figures 4A and 4B.693 After parsing step 402, a 

POSITA would have understood that Riddle’s monitor uses extracted identifying 

characteristics to compare the flow information to classification tree (step 404), de-

termine whether flow matches a traffic class (step 406), and enter flow characteris-

tics into a saved list (step 408). Similarly, a POSITA would have understood that 

Riddle’s monitor uses extracted identifying characteristics to determine whether 

the save class is well known (step 422), whether the saved traffic is a server con-

nection port of an unregistered IP port (step 423), and whether the traffic class 

matches all components of a service aggregate flow (step 426). 

545. Further, a POSITA would have understood that the combination of Riddle 

and Baker would use Baker’s PDFs in Riddle as discussed above with respect to 

’725 claim elements 10.2 and 17.2. In doing so Riddle’s parsing operation, shown 

in steps 402, and extraction operation, such as steps 404, 406, and 408, would use 

                                                        

691 Riddle, Abstract, 4:10-15. 
692 Riddle, 8:47-9:27, 10:57-11:9. 
693 Riddle, 12:42-53, Fig. 4A (Step 402, 404, 406, 408); 13:36-62, Fig. 4B (Steps 

422, 423, 426). 

EX 1006 Page 324



  

 311 

the parsing operations contained in Baker’s PDFs. 

546. Baker’s parsing control logic performs protocol specific operations, e.g., 

parsing/extraction, on the packet as specified by the set of PDFs based on the base 

layer protocol (e.g., Ethernet) of the packet and the children of the protocols used 

in the packet (e.g., GP and others). For example, Baker describes part of the logic 

included in Figure 13: 

Referring back to the ParseFields control logic shown in FIG. 13, the 

ParseFields control logic parses the fields in each protocol header con-

tained in a particular network frame by using field values obtained in 

accordance with information specified in associated protocol descrip-

tions. The ParseFields control logic is applied for each protocol de-

scription required for a particular network frame. If the ParseFields 

control logic were applied to the exemplary frame, “Frame (1),” de-

scribed above, the network interface system 10 of the present inven-

tion would apply the ParseFields control logic with the protocol de-

scriptions for the Ethernet protocol shown in Table 12, the GP shown 

in Table 13, and an unspecified Data protocol description.694 

                                                        

694 Baker, 30:10-23. 

EX 1006 Page 325



  

 312 

h. ’725 Claim Element 10.7: “wherein the protocol specific 

operations include one or more parsing and extraction 

operations on the packet to extract selected portions of 

the packet to form a function of the selected portions for 

identifying the packet as belonging to a conversational 

flow” 

547. Riddle discloses this element. Riddle’s “service aggregates” identifies con-

versational flows for applications using more than one connection by creating a 

function based on extracted information (i.e., signature), such as looking for a 

PointCast signature (“/FIDO-1/”) in the header of an HTTP get request.695. As 

shown above in ’725 claim elements 10.3-10.5 and 17.3-17.5, the combination of 

Riddle and Baker renders obvious the protocol specific operations include one or 

more parsing and extraction operations on the packet to extract selected portions of 

the packet. 

548. Riddle also discloses extracting selected portions of the packet to form a 

function of the selected portions for identifying the packet as belonging to a con-

versational flow in at least two independent ways – through the disclosure of “ser-

vice aggregates,” and through the disclosure of classifying PointCast traffic. 

(1) Riddle’s service aggregates teach the claimed “to 

form a function of the selected portions for identi-

fying the packet as belonging to a conversational 

flow” 

549. As discussed with respect to ’099 claim element 1.4 in Section VII.A.2.e, 

                                                        

695 Riddle, 11:10-2, 11:47-67, 15:28-31; Ex. 1016 (’903 Provisional), 7:16-25. 

EX 1006 Page 326



  

 313 

Riddle teaches forming a function of selected packet portions for identifying that 

packet as belong to a “conversational flow” by classifying separate packet flows by 

a common “service aggregate” traffic class for applications using multiple flows 

between a client and a server.696 I incorporate by reference that discussion as if 

fully set forth herein. Riddle, for example, discloses classifying based on a service 

aggregate flow that links separate application-specific conversations: 

A service aggregate is provided for certain applications that use more 

than one connection in a particular conversation between a client and 

a server. For example, an FTP client in conversation with an FTP 

server employs a command channel and a transfer channel, which are 

distinct TCP sessions on two different ports. In cases where two or three 

TCP or UDP sessions exist for each conversation between one client 

and one server, it is useful to provide a common traffic class i.e., the 

service aggregate, containing the separate conversations. In practice, 

these types of conversations are between the same two hosts, but use 

different ports. According to the invention, a class is created with a plu-

rality of traffic specifications, each matching various component con-

versations.697 

550. The ’864 Provisional further illustrates how a POSITA would have under-

stood Riddle’s service aggregates relate multiple connection flows based on an 

                                                        

696 Riddle, 11:10-36, 12:64-13:62, claim 2, Figs. 2A-2B, 4B; RFC765, 6-7; Ex. 

1023 (German Court Translation), 35-36. 
697 Riddle, 11:10-23. 

EX 1006 Page 327



  

 314 

FTP application’s specific software program activity: 

[T]he concept of “service aggregates” (service groups) [is] different 

traffic types that are associated together (ex. FTP has one stream that it 

uses to exchange commands and responses, and a second that the data 

files are actually sent over). Whenever we recognize the signature of 

one of these types of traffic, we create a traffic class (or class hierarchy) 

that can match all the components of the aggregate. This bundling is 

mainly a convenience to the user, makes it clearer what's going on, but 

also permits you to get group counts of all the parts that make up what 

the user thinks as the service.698 

551. As I detail above in Section IV.A.6, Riddle describes creating traffic classes 

based on data relating to RTP and RTSP.699 A POSITA would have understood 

RTP and RTSP are analogous to FTP, and that those protocols use a separate con-

trol flow with one or more linked dataflows.700 As such, a POSITA would have ap-

preciated this is another example of a common “service aggregate” traffic class for 

applications using multiple flows between a client and a server.701 

552. As such, Riddle’s identification of service aggregates meets the claimed ex-

tracting selected packet portions “to form a function of the selected portions for 

identifying the packet as belonging to a conversational flow.” 

                                                        

698 ’864 Provisional, 69. 
699 Riddle, 12:1-12. 
700 Ex. 1045, 4-5 (RFC1889 illustrating well-known RTP information); Ex. 1046, 

9-10 (RFC2326 illustrating well-known RTSP information). 
701 Riddle, 11:10-23. 

EX 1006 Page 328



  

 315 

(2) Riddle’s PointCast flows teach the claimed “to 

form a function of the selected portions for identi-

fying the packet as belonging to a conversational 

flow” 

553. As discussed with respect to ’099 claim element 1.4 in Section VII.A.2.e, 

Riddle teaches forming a function of selected packet portions for identifying that 

packet as belong to a “conversational flows” by classifying separate packet flows 

as being PointCast traffic.702 I incorporate by reference that discussion as if fully 

set forth herein. Riddle, for example, discloses examining packet portions for 

URLs that begin with /FIDO-1/ to classify flows as corresponding to PointCast ap-

plications.703 And as discussed, Patentee’s ’903 Provisional acknowledges it was 

known that separate PointCast flows include a signature specific to PointCast traf-

fic and those flows are associated with the PointCast Network application.704  

554. As such, Riddle’s identification of PointCast flows meets the claimed ex-

tracting selected packet portions “to form a function of the selected portions for 

identifying the packet as belonging to a conversational flow.” 

                                                        

702 Riddle, 11:47-67, 15:28-31; Ex. 1016 (’903 Provisional), 7:16-25; Ex. 1032 

(Wall Street Journal PointCast article), 1; Ex. 1033 (Computer World PointCast ar-

ticle); Ex. 1034 (Christian Science Monitor PointCast article); Ex. 1036 (’558 Pa-

tent), 33:28-44. 
703 Riddle, 11:47-67. 
704 Ex. 1016 (’903 Provisional), 7:16-25, 28:22-24. 

EX 1006 Page 329



  

 316 

i. ’725 Claim Element 17.7: “wherein the packet belongs to 

a conversational flow of packets having a set of one or 

more states, and wherein the protocol specific operations 

include one or more state processing operations that are 

a function of the state of the conversational flow of the 

packet, the state of the conversational flow of the packet 

being indicative of the sequence of any previously en-

countered packets of the same conversational flow as the 

packet” 

555. Riddle discloses this claim element. Riddle discloses “conversational flows” 

in two independent ways: (1) Riddle identifies “conversational flow[s]” through 

Riddle’s disclosure of “service aggregates,” and (2) Riddle identifies “conversa-

tional flow[s]” through Riddle’s ability to classify PointCast traffic. I have de-

scribed both of these “conversational flow[s]” above in ’725 claim element 10.7. I 

incorporate that discussion as if fully set forth herein. 

556. Riddle discloses that these conversational flows have one or more states 

(e.g., TCP session for FTP-cmd followed by TCP session for FTP-data; PointCast 

HTTP connection, get request, “inbound” traffic), and that classification includes 

performing one or more state processing operations that are indicative of any pre-

viously encountered packets for the same conversational flow.705 For example, 

Riddle discloses keeping track of when traffic with the same identifying character-

istics was last encountered.706 

                                                        

705 Riddle, 9:20-22, 11:10-23, 11:48-67, 13:10-22, 14:63.  
706 Riddle, 12:56-57. 

EX 1006 Page 330



  

 317 

557. Riddle further discloses performing protocol specific operations that include 

five different state processing operations that are a function of the state of the con-

versational flow of the packet. 

558. First, the Challenged Patents’ claims confirm that state operations include 

“searching for one or more patterns in the packet portions.”707 Riddle explicitly 

states it searches for patterns: 

a traffic class could be created such as all URIs matching “*.html” for 

all servers, or all URI patterns matching “*.gif” for server X, or for 

access to server Y with URI pattern “/sales/*” from client Z, wherein 

‘*’ is a wildcard character, i.e., a character which matches all other 

character combinations. Traffic class attributes left unspecified will 

simply match any value for that attribute. For example, a traffic class 

that accesses data objects within a certain directory path of a web server 

is specified by a URI pattern of the directory path to be managed, e.g. 

“/sales/*”.708 

559. Riddle further discloses that “Web traffic may also be classified by HTTP 

header types such as Content-Type (MIME type) or User-Agent.”709 Moreover, in 

Riddle’s preferred embodiment, classification extends to examination of the data 

contained in a flow’s packets.710 Accordingly, at block 208 or 212, an operation 

                                                        

707 ’646 claim 13, ’789 claim 27; ’789 claim 17, ’789 claim 46 (“searching the par-

ser record for the existence of one or more reference strings”). 
708 Riddle, 8:67-9:11. 
709 Riddle, 9:24-26. 
710 Riddle, 11:48-49. 

EX 1006 Page 331



  

 318 

may be performed that searches for one or more patterns, such as searching for 

URI patterns matching “*.html”, “*.gif”, or a directory path, e.g. “/sales/*”. 

560. Second, ’789 Patent claim 47 confirms that creating a new flow-entry for fu-

ture packets to be identified with the flow is a state operation.711 When Riddle clas-

sifies flows it creates a new flow entry and suppresses duplicate entries: 

In a decisional step 406, a determination is made if traffic matches one 

of the classes being classified. If this is so, then in a step 408, an entry 

is made in a list of identifying characteristics, such as protocol type 

(SAP), IP protocol number, server port, traffic type if known, MIME 

type, a time of occurrence of the traffic. In an optional step 410, dupli-

cate instances having the same identifying characteristics are sup-

pressed, in favor of keeping a count of the duplicates and a most recent 

time traffic with these identifying characteristics was encountered.712 

561. Accordingly, at Riddle’s blocks 206, 208, 210, and/or 212 a state operation 

is performed every time a new flow entry is created per step 408 of Figure 4. 

562. Third, state operations are performed at blocks 206 or 210 because they re-

late to FTP applications which Riddle proposes handling as “service aggre-

gates.”713 Riddle further discloses using subclassification for FTP: 

                                                        

711 ’789 claim 47 (“wherein one of the state operations specified for at least one of 

the states includes creating a new flow-entry for future packets to be identified 

with the flow, the new flow-entry including identifying information for future 

packets to be identified with the flow-entry.”). 
712 Riddle, 12:48-57. 
713 Riddle, 11:10-23. 

EX 1006 Page 332



  

 319 

Subclassification of traffic into a tree is performed by matching the hosts 

and then searching for particular services. Traffic specifications are ag-

gregate kinds of traffic for a traffic class, e.g., different components of 

FTP may reside under class FTP. Subclassification is performed by 

first locating a class that matches, and then performing finer grade 

matchings. Processing commences with a decision on what traffic is to 

be subclassified. A marker is placed in the match_all default node so 

that when match processing reaches the marker, the autoclassification 

processing depicted in flowchart 403, determines that it has not found 

an existing class for the traffic being classified.714  

563. Thus a POSITA would have understood that Riddle’s subclassification takes 

place at block 208 or 212 because these blocks relate to FTP applications. In order 

to perform subclassification, an operation would be performed to determine if the 

flow was for an FTP command or data channel. 

564. Fourth, ’751 claim 16 shows that determining metrics related to the flow is 

a state operation.715 Further, claims 11-13 of the ’751 Patent clarify that reporting 

metrics can be part of a state operation. These claims require: 

11. A method according to claim 10, further including reporting one or 

more metrics related to the flow of a flow-entry from one or more of the 

statistical measures in the flow-entry. 

12. A method according to claim 11, wherein the reporting is carried out 

                                                        

714 Riddle, 11:24-36. 
715 ’751 claim 16 (“wherein one or more metrics related to the state of the flow are 

determined as part of the state operations specified for the state of the flow”). 

EX 1006 Page 333



  

 320 

from time to time, and wherein the one or more metrics are base metrics 

related to the time interval from the last reporting time. 

13. A method according to claim 12, wherein the reporting is part of the 

state operations for the state of the flow.716 

565. Riddle discloses determining and reporting metrics related to flows such as 

byte count, most hits, time most recently seen, most data transferred, moving aver-

age, bytes per second, most recently used, most hits, and number of bytes re-

ceived.717 For example, Riddle states “[i]n an optional step 412, a byte count of 

traffic of this type has been detected is included.”718 And Riddle states that display-

ing results to a user include: 

The list may be sorted by any well-known criteria such as: 1) most 

“hits” during a recent interval, 2) most recently-seen (most recent time 

first), 3) most data transferred (bytes/second) during some interval, or 

a moving average. The user may choose an interval length or display 

cutoff point (how many items, how recent, at least B bytes per second, 

or other thresholds).719 

566. Further, Riddle states “[i]n a related embodiment in place of step 425, a dis-

play of traffic classes, sorted by most recently used, most hits, number of bytes re-

ceived during any interval, which is determined by a plurality of time stamps, is 

                                                        

716 ’751 Patent, claims 11-13. 
717 Riddle, 12:53-13:8, 14:1-5. 
718 Riddle, 12:57-59. 
719 Riddle, 13:1-8. 

EX 1006 Page 334



  

 321 

available on demand to a network manager.”720 

567. Fifth, the Challenged Patents’ claims show that updating a flow entry is a 

state operation.721 Regarding Figure 4A, Riddle states: 

In an optional step 410, duplicate instances having the same identifying 

characteristics are suppressed, in favor of keeping a count of the dupli-

cates and a most recent time traffic with these identifying characteris-

tics was encountered. In an optional step 412, a byte count of traffic of 

this type has been detected is included.722 

568. In Riddle, the state of the conversational flow of the packet is also indicative 

of the sequence of any previously encountered packets of the same conversational 

flow as the packet. The state of the flow is determined by the relationship of pack-

ets and the entire conversational flow.723 The Challenged Patents are clear that the 

state of the flow includes “parameters such as the time, length of the conversa-

tional flow, data rate, etc.”724 Accordingly, Riddle discloses determining the state 

                                                        

720 Riddle, 14:1-5. 
721 E.g., ’646 claim 15 (“wherein the state operations include updating the flow-en-

try, including identifying information for future packets to be identified with the 

flow-entry”); ’751 claim 14, ’789 Patent claims 15, 30, 45. 
722 Riddle, 12:53-59, Fig. 4A (Step 402’s “parse flow specification from a packet 

of the flow”; Step 404’s “compare flow specification with existing classification 

tree”; Step 406’s “traffic matches a class?”; Step 408’s “enter into a saved list 

characteristics of the traffic”; Step 410’s “suppress duplicates”; Step 412’s “deter-

mine byte count for traffic and include with traffic specification in saved list”). 
723 ’099 Patent, 5:27-34. 
724 ’099 Patent, 5:27-34. 

EX 1006 Page 335



  

 322 

of the flow, at least, by determining metrics such as a count of the duplicates, the 

most recent time traffic with the same identifying characteristics was encountered, 

and a byte count of the detected traffic.725 

569. Further, the ’903 Provisional, which the ’725 Patent incorporates-by-refer-

ence, acknowledges that an exemplary “pending” state occurs when the state pro-

cessor is to perform a string search on a packet, and that an “identified state” that 

occurs when the protocol identifier (i.e., the application program) for the flow is 

known.726 Further. the ’903 Provisional contemplates a “single-packet protocol 

recognition of flows” where, for example, “only a single state transition has to oc-

cur to be able to pinpoint the application that produced the packet.”727 

570. In Riddle, since traffic class membership is hierarchical, “a flow may be 

classified by a series of steps through a traffic class tree, with the last step (i.e., at 

the leaves on the classification tree) mapping the flow to a policy.”728 “[T]he clas-

                                                        

725 Riddle, 12:53-13:8, 14:1-5, Fig. 4A (Step 410’s “suppress duplicates”; Step 

412’s “determine byte count for traffic and include with traffic specification in 

saved list”). 
726Ex. 1016 (’903 Provisional), 104:1-2 (“Once a Flow Record enters the “MSG 

Pend 1” state, the next packet will cause the state processor to perform a string 

search for a group of substrings.”), 76:16-20 (“The Lookup and Update Engine 

also outputs … the protocol identifier for the flow … the corresponding flow is in 

the IDENTIFIED state.”), 103:5-106:8. 
727 Ex. 1016 (’903 Provisional), 12:22-26, 31:33-35. 
728 Riddle, 9:20-25. 

EX 1006 Page 336



  

 323 

sification process checks at each level if the flow being classified matches the at-

tributes of a given traffic class.”729 Based on this recursive process, the state of the 

flow (e.g., a “branch” attribute match) determines the next classification check 

(e.g., the “leaf” attribute). For example, a flow containing an HTTP header will be 

identified as an “HTTP” flow in a first state. Further investigation into the flow 

based on that identification includes a search for “/FIDO-1/” in the payloads of 

subsequent packets. If found, the flow enters a new state and Riddle identifies this 

flow as part of the PointCast conversational flow. And future packets within the 

flow are automatically considered as “PointCast” since the state of the flow is 

“identified.” As such, a POSITA would have understood that Riddle identifies fu-

ture flows with similar paths through the classification tree. 

571. Additionally, Baker performs protocol specific operations that include state 

operations. For example, and as shown below, Baker’s Figure 11 describes frame 

parsing control logic (i.e., how successive protocol headers are parsed), and pars-

ing the remaining information as application data and frame pad.730  

572. For example, Baker discloses: 

The ParseFrame control logic systematically parses through each net-

work frame (at 104 to 108 and 128) until all known protocol headers 

                                                        

729 Riddle, 9:28-41. 
730 Baker, 26:26-32, Fig. 11.  

EX 1006 Page 337



  

 324 

have been parsed. Any remaining frame bits are parsed as application 

data (at 110, 112 and 130) and/or pad data (at 114, 116 and 132).731 

573. Figure 11 shows setting states (blue boxes) followed by specific operations 

(red boxes):  

 

574. Baker explains the processing in Fig. 11: 

                                                        

731 Baker, 36:28-36, 37:17-38:24, Fig. 11. 

EX 1006 Page 338



  

 325 

Referring again to Fig. 11, once the system has received a network 

frame (at 100), defined by an interface number (Srcintf), a frame loca-

tion (FramePtr) and a hardware length (HwLen), the frame is resolved 

into its protocol and field components using the system of the present 

invention. 

Using the exemplary frame, “Frame (2),” described above as an exam-

ple, the system (at 102) in Fig. 11 would obtain from the receiving net-

work interface device SrcIntf, the receiving interface number, 

FramePtr, a pointer length. to the frame, and HwLen, the hardware 

frame length. The hardware length of frame (2) is 480 bits. ParseLen, 

the number of bits in the frame that have been parsed, ParseLvl and 

CurField, the index of the protocol field being processed are reset to 

zero, and CurrentProtocol, is set up with the initial protocol description 

structure of the receiving interface number which for frame (2) is the 

Ethernet Protocol description 35 defined in Figs. 4 - 4d. FrameLen is 

set to the value of HwLen, and ParsePtr is set to the value of FramePtr. 

Each field in the Ethernet Protocol description as shown in Fig. 4a is 

parsed (at 106) using the ParseProtocol control logic shown in Fig. 13. 

The ParseProtocol control logic updates ProtoParseLen, the number of 

bits parsed in the CurrentProtocol, HeaderLen, the protocol header size 

determined during parsing, and returns NextProtocol, a reference to the 

next applicable protocol description structure to use during parsing. 

ParseProtocol also updates ParsePtr and ParseLen by adding Pro-

toParseLen to them. If NextProtocol is NULL, the remaining frame bits 

will be treated as Data and/or Pad bits. 

EX 1006 Page 339



  

 326 

After the Ethernet protocol fields in frame (2) are parsed (at 106) by the 

ParseProtocol control logic shown in Fig. 13, HeaderLen, ParseLen and 

ProtoParseLen will be 112 bits, NextProtocol will refer to the GP 

shown in Figs. 5-S(e), and ParsePtr will point at the start of line 2 in 

frame (2). CurrentProtocol will be updated with the NextProtocol value 

of GP (at 130) and the GP fields in frame (2) are parsed (at 106) by the 

ParseFields control logic shown in Fig. 13, which will update Header-

Len and ProtoParseLen to be 160 bits, and return NextProtocol as 

NULL. ParsePtr will point at the start of line 3 in frame (2), and Parse-

Len will be updated to 272 bits.732 

575. Moreover, Baker’s Figure 12 shows protocol-specific option operations.733 

If the CurrentProtocol supports optional fields, then those frames are parsed using 

the ParseFields control logic.734 

                                                        

732 Baker, 37:17-38:24. 
733 Baker, 37:1-16, 38:25-39:19, Fig. 12. 
734 Baker, 38:25-33. 

EX 1006 Page 340



  

 327 

 

576. Baker’s ParseFields control logic is exemplified in combined Figure 13 

(below): 

EX 1006 Page 341



  

 328 

 

577. Baker further describes the ParseFields logic as: 

[T]he ParseFields control logic parses the fields in each protocol header 

contained in a particular network frame by using field values obtained 

EX 1006 Page 342



  

 329 

in accordance with information specified in associated protocol de-

scriptions. The ParseFields control logic is applied for each protocol 

description required for a particular network frame. If the ParseFields 

control logic were applied to the exemplary frame, "Frame (l}, 11 de-

scribed above, the network interface system 1 O of the present inven-

tion would apply the ParseFields control logic with the protocol de-

scriptions for the Ethernet protocol shown in Table 12, the GP shown 

in Table 13, and an unspecified Data protocol description. 

The ParseFields routine is entered (at 200) with 25 ParsePtr pointing at 

the start of a protocol header in a particular network frame and Current 

Protocol set to an appropriate protocol description. Parsing starts at Pro-

tocol bit and field zero when CurField and ProtoParseLen are cleared 

(at 202), also, HeaderLen is set to the configured protocol control rec-

ord NumBits value, and LocalProto, the local next protocol return value 

variable is cleared. Using the Ethernet protocol description shown in 

Fig. 4 as an example, HeaderLen would be set to 112 bits.  

The control loop (at 204 through 224) continues until the last field has 

been parsed (at 206), all bits in the header have been parsed (at 208), or 

all bits in the frame have been parsed (at 209). 

For each field a value is retrieved by the system (at 210). If there is a 

filter criteria for the field it is applied (at 232) by the ApplyFilter control 

logic. The System Filter Status is set to FILTER FRAME and NextCri-

teriaIndex is set to zero for every configured filter channel prior to the 

start of frame processing and after each frame is processed (at 124 in 

Fig. 11).735
 

                                                        

735 Baker, 30:11-31:9 

EX 1006 Page 343



  

 330 

578. The ParseFields logic provides protocol-specific operations and sets states. 

The ParseFields logic applies, for example, the protocol descriptions for the 

Ethernet protocol, the GP protocol, other unspecified protocols, or “application 

data”.736 The ParseFields logic includes filter logic to identify packets based on a 

filter criteria, which could be implemented using an offset, bit-length, comparison 

value, and/or mask values.737 While Baker specifically refers to two different 

states based on a filter match, Baker contemplates additional states.738 Therefore, 

a POSITA would have understood that Baker’s filters could be used to identify 

additional protocols or applications based on comparison values to application 

data, and set the flow states accordingly.  

579. In view of Baker, it would have been obvious to a POSITA to use flexible 

parsing operations with Riddle’s “service aggregates” and URI searches. As 

Baker explains: “[I]t would be highly desirable to be able to parse all protocols 

with a single configurable software (or hardware) module so that support for addi-

tional protocols could be added to a system without requiring substantial modifi-

cation to the system or its control logic.”739 Accordingly, a POSITA would have 

been motivated to place Riddle’s aggregation methods into a single, configurable 

                                                        

736 Baker, 30:17-23; 36:34-35. 
737 Baker, 2:11-17. 
738 Baker, 17:13-15 (“These states may include: PASS_FRAME (accept this frame) 

and FILTER FRAME (discard this frame).”). 
739 Baker, 3:3-8. 

EX 1006 Page 344



  

 331 

system, as taught by Baker, because this would allow Riddle’s classification sys-

tem to easily update protocol descriptions. 

580. For the above reasons, it is my opinion that Riddle in view of Baker renders 

obvious claim 10 of the ’725 Patent. 

3. Dependent ’725 Claim 12 

581. Riddle discloses all the limitations of this claim. Claim 12 depends from in-

dependent claim 10 and recites:  

A method according to claim 10, wherein which protocol specific op-

erations are performed is step (c) depends on the contents of the packet 

such that the method adapts to different protocols according to the con-

tents of the packet. 

582. As I showed above, Riddle teaches protocol specific operations performed in 

’725 claim element 10.6 in two ways: (i) performing parsing and extraction opera-

tions to extract identifying information; and (ii) performing state operations. 

583. At least the state operations disclosed in Riddle depend on the contents of 

the packet and therefore the method adapts to different protocols according to the 

contents of the packet. For example, Riddle discloses the following state pro-

cessing operations:  

• Searching for patterns/referencing strings; 

• Creating a new flow-entry for future packets to be identified with 

the flow; 

• Performing state operations related to “service aggregates”; 

EX 1006 Page 345



  

 332 

• Determining metrics; and  

• Updating flow entries.  

584. Riddle teaches that each of these state operations depends on the content of 

the packet. For searching state operation (1), Riddle’s various searches for pat-

terns/referencing strings will depend on the contents of the packet.740 For creating 

new flow-entry (2), Riddle teaches creating a new flow-entry only for new 

flows.741 For service aggregates, Riddle describes creating a subset of flows only 

that meet the requirements of a service aggregate.742 For determining metrics (4), 

Riddle calculates metrics (e.g., byte count, most hits, most recently seen, most data 

transferred, moving average, bytes per second, most recently used, most hits, and 

number of bytes received) depending on the contents of the packet.743 And or up-

dating entries (5), Riddle will only updates flow entries for previously encountered 

flows.744 

585. Whether these state operations are performed depends on the content of the 

packet. For example, (1) Riddle’s invention will search for patterns/referencing 

strings for certain traffic classes, e.g., web traffic745, (2) a new flow-entry is only 

                                                        

740 Riddle, 8:67-9:11, 9:24-26, 11:48-49. 
741 Riddle, 12:48-57, 13:36-62, Figs. 4A-4B. 
742 Riddle, 11:10-36. 
743 Riddle, 12:53-13:8, 13:36-14:5, Fig. 4A-4B. 
744 Riddle, 12:53-59, Fig. 4A. 
745 Riddle, 8:64-9:5, 9:24-26, 11:48-49. 

EX 1006 Page 346



  

 333 

created for new flows746, (3) state operations related to “service aggregates” are 

performed for appropriate traffic, e.g., FTP traffic747, (4) the metrics that are deter-

mined (e.g., byte count, most hits, time most recently seen, most data transferred, 

moving average, bytes per second, most recently used, most hits, and number of 

bytes received) will depend on the packet748, and (5) updating flow entries depends 

on the packet’s characteristics such as time encountered and byte count.749 

4. Dependent ’725 Claim 13 

586. Riddle in view of Baker renders obvious this claim. Claim 13 depends from 

independent claim 10 and recites:  

A method according to claim 10, wherein the protocol descriptions are 

provided in a protocol description language. 

587. The ’725 Patent discloses an embodiment in which “a protocol description 

language,” as recited in claim 10, is a PDL file: 

A set of PDL files is used to describe what information is relevant to 

packets …. [¶] There is one file for each packet type and each protocol. 

Thus, there is a PDL file for Ethernet packets and there is a PDL file 

for frame relay packets.750 

                                                        

746 Riddle, 12:48-57, Fig. 4A. 
747 Riddle, 11:10-36 ;13:52-59. 
748 Riddle, 12:48-13:8, 14:1-5, Fig. 4A 
749 Riddle, 12:48-59, Fig. 4A. 
750 ’725 Patent, 41:30-40. 

EX 1006 Page 347



  

 334 

588. Similarly, Baker teaches that “protocol description files (PDF)” contain pro-

tocol descriptions: “In the presently preferred embodiment, each of these protocol 

description records with its associated field, statistics, lookup, and filter record in-

formation is also written to a protocol specific protocol description file (PDF).”751 

Baker also discloses that its PDFs include a protocol control record and a plurality 

of field data records.752 And as I describe with respect to ’725 claim elements 10.2-

10.6 and 17.2-17.6, Baker teaches an exemplary PDF for Ethernet packets and an-

other for Generic Protocols.753 Accordingly, a POSITA would have understood that 

a PDF, such as those taught by Baker, provide a “protocol description language.” 

589. As I discuss above in Section VII.B.2 regarding ’099 claim 4, the ’725 pa-

tent describes a “protocol description language” as follows: 

Input to the compiler includes a set of files that describe each of the 

protocols that can occur. These files are in a convenient protocol de-

scription language (PDL) which is a high level language. PDL is used 

for specifying new protocols and new levels, including new applica-

tions. The PDL is independent of the different types of packets and pro-

tocols that may be used in the computer network. A set of PDL files is 

used to describe what information is relevant to packets and packets 

                                                        

751 Baker, 19:6-10. 
752 Baker, 12:25-28. 
753 Baker, Tables 12-13. 

EX 1006 Page 348



  

 335 

that need to be decoded. The PDL is further used to specify state anal-

ysis operations. Thus, the parser subsystem and the analyzer subsys-

tems can adapt and be adapted to a variety of different kinds of headers, 

layers, and components and need to be extracted or evaluated, for ex-

ample, in order to build up a unique signature.754
 

The protocol description language (PDL) files 336 describes both pat-

terns and states of all protocols that an occur at any layer, including 

how to interpret header information, how to determine from the packet 

header information the protocols at the next layer, and what information 

to extract for the purpose of identifying a flow, and ultimately, applica-

tions and services. … This information is input into compiler and opti-

mizer 310.755 

590. The ’725 Patent discloses examples of PDL files that include commands for 

a particular protocol.756 Similarly, Baker discloses that each PDF file describes 

commands for a particular protocol.757 As the following examples illustrate, 

Baker’s disclosures regarding its PDF files teach the ’725 claim 13’s protocol de-

scriptions provided in a protocol description language. 

591. First, according to the ’725 Patent, an exemplary command in a high-level 

                                                        

754 ’725 Patent, 41:24-37. 
755 ’725 Patent, 9:29-40; Fig. 4. 
756 ’725 Patent, 45:1-94:67 (including PDL files for several protocols). 
757 Baker, 11:22-25 (“[E]ach of these protocol description records with its associ-

ated field, statistics, lookup, and filter record information is also written to a proto-

col specific protocol description file (PDF).”). 

EX 1006 Page 349



  

 336 

protocol description language is a “HEADER” attribute that “describe[s] the length 

of the protocol header.”758 Baker similarly discloses a “numBits” attribute that de-

scribes “the total bit length of the protocol header.”759  

592. Second, according to the ’725 Patent, another exemplary command in a 

high-level protocol description language is a “PROTOCOL” definition used to 

“define the order of the FIELDs and GROUPs within the protocol header.”760 Sim-

ilarly, Baker discloses a “fields” attribute that references the associated “field rec-

ords that describe the protocol header” where each field record includes, for exam-

ple, a “fblen” attribute describing “the length of the field in bits” and a “fdwoff” at-

tribute describing “the byte offset from the start of protocol header,” among other 

attributes.761  

593. Third, according to the ’725 Patent, a further exemplary command in a high-

level protocol description language is a “CHILDREN” attribute “used to describe 

how children protocols are determined.”762 Similarly, Baker discloses a “ptr2np” 

                                                        

758 ’725 Patent, 48:41-50, col. 73 (“HEADER { LENGTH=14 }”). 
759 Baker, Table 1 (“numBits” attribute), 11:32, 57:1 (fread(&num_bits, 

sizeof(num_bits), 1, fp); // Read fixed header length in bits). 
760  ’725 Patent, 47:34-48:18, col. 79 (PROTOCOL section provides “Detailed 

packet layout for the IP datagram. This includes all fields and format. All offsets 

are relative to the beginning of the header.”). 
761 Baker, Table 1 (“fields” attribute), Table 2 (“fblen” and “fdwoff” attributes), 

11:36-40, 11:49-50, 147:35-36. 
762  ’725 Patent, 49:45-55, col. 79 (“CHILDREN { DESTINATION=Protocol }”). 

EX 1006 Page 350



  

 337 

attribute of each field record that includes a “pointer to lookup structure/class . . . 

next protocol definition to use (0 = none)” and the “next protocol lookup records” 

are described with reference to Table 4 as including a “Protocol” attribute describ-

ing the “pointer to protocol description record,” among other attributes.763  

594. As such, a POSITA would have understood that Baker’s PDFs are protocol 

descriptions provided in a protocol description language. This is because, upon ini-

tialization, Baker teaches that the system is able to “extract[] the protocol and asso-

ciated control record information” from the file, construct a ProtocolList, and read 

the PDF file into memory in the sequence described at col. 11:26-12:6. Accord-

ingly, Baker’s PDFs include commands in a high-level language that describe pro-

tocols that may be encountered by the monitor and, for example, how to interpret 

header information and how to determine from the packet header information the 

protocol at the next layer. Baker thus teaches protocol description files that are pro-

vided in a protocol description language, and are written in a protocol description 

language as described in by the ’725 Patent at col. 41:24-37. 

595. As discussed previously, it would have been obvious to a POSITA to mod-

ify Riddle’s protocol descriptions in view of Baker, by providing those protocol 

                                                        

763 Baker, Table 2 (“ptr2np” attribute), Table 4 (“Protocol” attribute), 8:13-15, 

148:10-12, 165:37-166:5, 177:4-26. 

EX 1006 Page 351



  

 338 

description in a protocol description language. A POSITA would have been moti-

vated to provide Riddle’s protocol descriptions in a protocol description language, 

as taught by Baker, because this would allow Riddle’s classification system to 

easily update protocol descriptions via PDFs, as discussed above with respect to 

’725 claim elements 10.2, 10.6, 17.2, and 17.6. 

5. Dependent ’725 Claim 16 

596. Riddle discloses all the limitations of this claim. Claim 16 depends from in-

dependent claim 10 and recites:  

A method according to claim 10, wherein the protocol specific opera-

tions further include one or more state processing operations that are a 

function of the state of the flow of the packet. 

597. The discussion above for ’725 claim element 17.7 shows this element has 

been met. Specifically, that discussion shows that Riddle discloses performing 

state processing operations that are a function of the state of the flow of the packet 

such as whether saved traffic belongs to a service aggregate and determining met-

rics.764 

598. For all the above reasons, it is my opinion that Riddle in view of Baker ren-

ders obvious claims 10, 12, 13, 16, and 17 of the ’725 Patent. 

                                                        

764 Riddle, 12:53-13:8, 13:36-14:5, Figs. 4A-4B. 

EX 1006 Page 352



  

 339 

B. For the ’725 Patent, Riddle in View of Baker and Further in View 

of Yu Renders Obvious Claims 10, 12, 13, 16, and 17. 

599. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’725 claims 10, 12, 13, 16, and 17 is disclosed or rendered obvi-

ous in light of Riddle in view of Baker and further in view of Yu. Specifically, my 

opinions regarding Riddle in view of Baker are exactly the same as those above in 

Section VIII.A, but further include the teachings of Yu. Thus, as if fully set forth 

here, I incorporate the discussion from Section VIII.A regarding the obviousness of 

’725 claims 10, 12, 13, 16, and 17 over Riddle in view of Baker. 

600. As discussed above, all of the Challenged Claims require “conversational 

flows” or a “conversational-flow sequence.” For example, ’725 claim element 10.7 

recites “form[ing] a function of the selected portions for identifying the packet as 

belonging to a conversational flow.” While Riddle itself teaches identifying con-

versational flows, Yu further demonstrates identifying conversational flows 

through its “flow classification.”765 Further, Yu teaches flow classification logic 

that “keeps track of the flow’s state until matching criteria is met” when identify-

ing whether a packet belongs to a conversational flow.766 

                                                        

765 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
766 Yu, 4:62-64. 

EX 1006 Page 353



  

 340 

601. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, Yu teaches 

identifying the claimed “conversational flow” by Yu’s flow classifier linking mul-

tiple “streams” into a “flow” based on application or application data.767 And as 

discussed in Section VII.C, Yu teaches state tracking that binds policy decisions to 

each stream of a flow so that actions are taken on future packets without interven-

tion from the “host” application.768 Moreover, as discussed in Section VII.C, Yu 

specifies using hash values to find corresponding policies to reduce further compli-

cated pattern-matching.769 I incorporate by reference that discussion as if fully set 

forth herein. 

602. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, I explain how 

a POSITA would have been motivated to combine Yu’s teachings into Riddle’s 

monitor. I incorporate by reference that discussion as if fully set forth herein. 

603. For the same reasons, it is my opinion that combining the teachings of Rid-

dle in view of Baker and further in view of Yu renders obvious all the claim ele-

ments relating to “conversational flows,” as well as carrying out state processing 

operations that are a function of the packet’s conversational flow state.  

                                                        

767 Yu, 1:56-60, 3:32-49; 4:1-8. 
768 Yu, 4:57-5:13. 
769 Yu, 4:23-29. 

EX 1006 Page 354



  

 341 

604. As set forth in my analysis of the ’725 Patent in Sections VIII.A.2 through 

VIII.A.5 above, Riddle and Baker disclose or render obvious all the remaining ele-

ments of ’725 claims 10, 12, 13, 16, and 17. Thus, it is my opinion that Riddle in 

view of Baker and further in view of Yu renders obvious ’725 claims 10, 12, 13, 

16, and 17. 

C. For the ’725 Patent, Riddle in View of Baker and Further in View 

of RFC1945 Renders Obvious Claims 10, 12, 13, 16, and 17. 

605. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’725 Patent claims 10, 12, 13, 16, and 17 is disclosed or rendered 

obvious in light of Riddle in view of Baker and further in view of RFC1945. Spe-

cifically, my opinions regarding Riddle in view of Baker are exactly the same as 

those above in Section VIII.A, but further include the teachings of RFC1945. Thus, 

as if fully set forth here, I incorporate the discussion from Section VIII.A regarding 

the obviousness of ’725 Patent claims 10, 12, 13, 16, and 17 over Riddle in view of 

Baker. 

606. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’725 claim element 10.7 reciting “form[ing] a function of the 

selected portions for identifying the packet as belonging to a conversational flow.” 

While Riddle discloses identifying packets as belonging to a conversational flow, 

RFC1945 further demonstrates identifying packets as belonging to a conversational 

flow through the additional example of the use of HTTP header fields. 

EX 1006 Page 355



  

 342 

607. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I 

understand that Patentee and its technical expert have taken the position that the 

HTTP Referrer field can be used to create a conversational flow. I incorporate by 

reference that discussion as if fully set forth herein.  

608. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I ex-

plain how a POSITA would have been motivated to combine RFC1945’s teachings 

into Riddle’s monitor. I incorporate by reference that discussion as if fully set forth 

herein.  

609. For the same reasons, it is my opinion that combining the teachings of Rid-

dle, Baker, and RFC1945 renders obvious all the claim elements relating to “con-

versational flows,” at least under Patentee’s interpretation of that term. 

610. As set forth in my analysis of the ’725 Patent in Sections VIII.A.2 through 

VIII.A.5 above, Riddle and Baker disclose or render obvious all the remaining ele-

ments of ’725 claims 10, 12, 13, 16, and 17. Thus, it is my opinion that Riddle in 

view of Baker and further in view of RFC1945 renders obvious ’725 claims 10, 12, 

13, 16, and 17 at least under Patentee’s interpretation of “conversational flow.” 

IX. THE CLAIMS OF THE ’646 PATENT ARE UNPATENTABLE 

611. For the ’646 Patent, the challenged claims include independent claims 1, 7, 

EX 1006 Page 356



  

 343 

and 16 as well as dependent claims 2, 3, and 18. As I detail below, it is my opinion 

that Riddle in view of Ferdinand and Wakeman renders obvious ’646 claims 1-3, 7, 

16, and 18. It is also my opinion that Riddle in view of Ferdinand and Wakeman 

and further in view of Yu renders obvious ’646 claims 1-3, 7, 16, and 18. Moreo-

ver, it is my opinion that Riddle in view of Ferdinand and further in view of 

RFC1945 renders obvious ’646 claims 1-3, 7, 16, and 18.  

A. For the ’646 Patent, Riddle in View of Ferdinand and Wakeman 

Renders Obvious Claims 1-3, 7, 16, and 18. 

612. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’646 claims 1-3, 7, 16, and 18 is disclosed or rendered obvious by 

the prior art. Specifically, it is my opinion that ’646 claims 1-3, 7, 16, and 18 are 

obvious in light of Riddle in view of Ferdinand and Wakeman. 

1. Reasons to Modify Riddle in View of Ferdinand and Wake-

man 

613. As described above with respect to the ’099 Patent in Section VII.A.1, a 

POSITA would have been motivated and found it obvious to combine the teach-

ings of Riddle and Ferdinand.  

614. Riddle, Ferdinand, and Wakeman are in the same field of endeavor and con-

tain overlapping disclosures with similar purposes. For example, as described 

above in Sections IV.A and VII.A.1, Riddle discloses a packet monitor that parses 

packets, stores flow-entries lists of packet identifying information, looks up flow-

EX 1006 Page 357



  

 344 

entries, and carries out state operations to identify a previously-encounter conver-

sational flow or to store a new conversational flow.770  

615. And as described above in Section IV.F, Wakeman discloses a network 

switch that includes a content addressable memory (CAM) cache coupled to a 

switch engine and forwarding database.771 Wakeman teaches using the switch for 

source and destination of Ethernet packets.772 

616. As I describe below regarding each relevant claim element, a POSITA 

would have found it obvious to modify Riddle’s lookup engine with a cache sub-

system as taught by Wakeman. In particular, a POSITA would have been moti-

vated to employ a CAM-cache with Riddle’s lookup engine because caches were 

well known to reduce look-up times to improve system responsiveness.773 And 

Wakeman details that its CAM-cache could be used for source and destination of 

Ethernet packets.774 Based on Wakeman’s teachings, a POSITA would have appre-

ciated the benefits of using a CAM-cache to manage commonly encountered en-

tries of Riddle’s flow-entry lists as those lists also include destination and source 

addresses for Ethernet packets to improve system performance.  

                                                        

770 E.g., Riddle, 8:47-9:27, 12:26-53, claim 8, Figs. 4A-4B. 
771 E.g., Wakeman, 3:26-28, 3:54-4:20, Figs. 2-3. 
772 Wakeman, 1:15-18. 
773 ’646 Patent, 2:36-51; ’646 Prosecution History, 197-198 (09/10/2003 Office 

Action, p.7). 
774 Wakeman, 1:15-18. 

EX 1006 Page 358



  

 345 

2. Independent ’646 Claim 1 

617. It is my opinion that independent claim 1 of the ’646 Patent is obvious in 

light of Riddle in view of Ferdinand and in light of Riddle in view of Ferdinand 

and Wakeman. 

a. ’646 Claim 1’s Preamble: “A packet monitor for examin-

ing packet[s]775 passing through a connection point on a 

computer network, each packet[] conforming to one or 

more protocols, the monitor comprising” 

618. Riddle discloses all elements of this preamble. As discussed with respect to 

’099 claim 1’s preamble in Section VII.A.2.a, Riddle teaches a packet monitor for 

examining and classifying packets passing through a network connection point us-

ing traffic classifier 304.776 I incorporate by reference that discussion as if fully set 

forth herein. For example, Riddle’s classifier 304 parses and examines multiple 

packets of traffic flow, such as traffic flows a, b, and c shown in Figure 3. As 

shown below in Figure 1A, Riddle details that its traffic classification system may 

be implemented in server 20 (shown below in red), which acts as a packet moni-

tor.777  

                                                        

775 It is my understanding that corrections to claim language are based on ’646 Pa-

tent’s Certificates of Correction. 
776 Riddle, 4:6-17, 7:21-24, 12:27-41, 14:22-40, Fig. 3. 
777 Riddle, 5:53-67, 6:9-15, 7:21-24, Figs. 1A-1C. 

EX 1006 Page 359



  

 346 

 

619. As I detail above regarding ’099 claim 1’s preamble, Riddle describes that 

its packet monitor examines packets as the packets pass through connection points 

of network connection 45 (shown above in green).778 And for networks connecting 

multiple clients and servers of Figure 1A, Riddle teaches examining packets via a 

network routing means, routers (e.g., router 75) or in another traffic classifier 

304.779 Riddle details that router 75 acts as a “system gateway … which may also 

be a gateway having a firewall or a network bridge.”780 Based on these disclosures, 

a POSITA would have understood that Riddle’s system gateway is a connection 

point on the computer network. And as the ’646 Patent teaches, a connection point 

                                                        

778 Riddle, 5:53-67, 6:9-15, Figs. 1A-1B. 
779 Riddle, 7:10-34, claim 8, Figs. 1C, 3. 
780 Riddle, 7:21-24. 

EX 1006 Page 360



  

 347 

is simply where the packet monitor is connected to the network.781 

620. Further, Riddle describes “each packet conforming to one or more proto-

cols,” as recited in ’646 claims 1’s preamble. Riddle, for example, states that its 

system “relates to digital packet telecommunications, and particularly to manage-

ment of network bandwidth based on information ascertainable from multiple lay-

ers of OSI network model.”782 Riddle specifies that its system address the lack of 

“teaching in the prior art of methods for automatically classifying packet traffic 

based upon information gathered from a [sic] multiple layers in a multi-layer pro-

tocol network.”783  

621. As shown in Riddle’s Figure 1D provided below, it was well known in the 

art before the priority date of the Challenged Patents that the OSI network model 

diagrams the relationship between the layers of the TCP/IP protocol suite. These 

layers include the application layer 88, the transport layer 86, the network layer 84, 

the data link layer 82, and the physical layer 80.784  

                                                        

781 ’646 Patent, 4:54-5:8, Fig. 1 showing connection points 121, 123, 125. 
782 Riddle, 1:54-57. 
783 Riddle, 3:36-39. 
784 Riddle, 7:35-8:46, Fig. 1D. 

EX 1006 Page 361



  

 348 

 

622. Riddle describes these prior art layers in detail: 

FIG. 1D is illustrative of the constituents of the Transmission Control Pro-

tocol/Internet Protocol (TCP/IP) protocol suite. The base layer of the 

TCP/IP protocol suite is the physical layer 80 …. 

Overlying the physical layer is the data link layer 82. The data link layer 

provides the function and protocols to transfer data between network re-

sources and to detect errors that may occur at the physical layer. … 

Network layer protocols 84 overlay the datalink layer and provide the 

means for establishing connections between networks. … 

The transport layer protocols 86 provide end-to-end transport services 

across multiple heterogenous networks. The User Datagram Protocol 

(UDP) provides a connectionless, datagram oriented service which pro-

vides a non-reliable delivery mechanism for streams of information. The 

Transmission Control Protocol (TCP) provides a reliable session-based 

service for delivery of sequenced packets of information across the Inter-

net. TCP provides a connection oriented reliable mechanism for infor-

mation delivery. 

EX 1006 Page 362



  

 349 

The session, or application layer 88 provides a list of network applica-

tions and utilities, a few of which are illustrated here. For example, File 

Transfer Protocol (FTP) is a standard TCP/IP protocol for transferring files 

from one machine to another. FTP clients establish sessions through TCP 

connections with FTP servers in order to obtain files. Telnet is a standard 

TCP/IP protocol for remote terminal connection. A Telnet client acts as a 

terminal emulator and establishes a connection using TCP as the transport 

mechanism with a Telnet server. The Simple Network Management Pro-

tocol (SNMP) is a standard for managing TCP/IP networks. … The Hy-

pertext Transfer Protocol (HTTP) facilitates the transfer of data objects 

across networks via a system of uniform resource indicators (URI). 

The Hypertext Transfer Protocol is a simple protocol built on top of Trans-

mission Control Protocol (TCP). It is the mechanism which underlies the 

function of the World Wide Web. The HTTP provides a method for users 

to obtain data objects from various hosts acting as servers on the Inter-

net.785 

623. Based upon these disclosures, a POSITA would have understood that Riddle 

discloses receiving each packet conforming to one or more protocols, such as the 

protocols disclosed in the OSI model. 

b. ’646 Claim Element 1.1: “(a) a packet acquisition device 

coupled to the connection point and configured to receive 

packets passing through the connection point” 

624. Riddle discloses this claim element. As discussed with respect to ’099 Claim 

                                                        

785 Riddle, 7:35-8:46. 

EX 1006 Page 363



  

 350 

1’s preamble in Section VII.A.2.a, Riddle teaches a packet acquisition device (e.g., 

network interface 40) connected to the connection point.786 I incorporate by refer-

ence that discussion as if fully set forth herein. As shown below in annotated Fig-

ures 1A and 1B, Riddle illustrates an exemplary traffic classification system with 

packet monitor (server 20) coupled to a packet acquisition device (network inter-

face 40) receiving packets over network connection 45. And Riddle teaches that its 

memory subsystem 35a holds data, e.g., packets, in preparation for parsing and ex-

amination.787 

 

                                                        

786 Riddle, 6:5-15, Figs. 1A-1B. 
787 Riddle, 6:1-23, claim 8, Figs. 1A-1B; Ex. 1027 (Packer Application, Appen-

dices, incorporated-by-reference into Riddle), 71-72. 

EX 1006 Page 364



  

 351 

 

625. For networks connecting multiple clients and servers of Figure 1A, Riddle 

describes a network routing means, which may include router 75, depicted in Fig-

ure 1C that a POSITA would have understood as having a packet acquisition de-

vice coupled to one or more connection points.788 And as I explain above regarding 

the ’646 claim 1’s preamble, Riddle details that router 75 acts as a “system gate-

way,”789 which a POSITA would have understood is a connection point.  

626. With respect to receiving packets, Riddle describes methods to automatically 

classifying packet flows to help allocate bandwidth resources.790 Riddle teaches 

                                                        

788 Riddle, 7:21-34, 16:54-60. 
789 Riddle, 7:21-24. 
790 Riddle, Abstract, 4:7-10. 

EX 1006 Page 365



  

 352 

“applying individual instances of traffic classification paradigms to packet network 

flows based on selectable information obtained from a plurality of layers of a 

multi- layered communication protocol in order to define a characteristic class, 

then mapping the flow to the defined traffic class.”791 Riddle specifies that its sys-

tem’s “automatic classification is sufficiently robust to classify a complete enumer-

ation of the possible traffic.”792 Further, Riddle’s methods provide “techniques to 

automatically classify a plurality of heterogeneous packets in a packet telecommu-

nications system for management of network bandwidth in systems such as a pri-

vate area network, a wide area network or an internetwork.”793 As such, in order to 

classify packet flows, a POSITA would have understood that Riddle’s acquisition 

device is configured to receive packets. 

c. ’646 Claim Element 1.2: “(b) a memory for storing a da-

tabase comprising flow-entries for previously encoun-

tered conversational flows to which a received packet 

may belong, a conversational flow being an exchange of 

one or more packets in any direction as a result of an ac-

tivity corresponding to the flow” 

627. Riddle renders obvious this claim element alone or in view of Ferdinand.  

(1) Riddle teaches the claimed “memory for storing a 

database comprising flow-entries” 

628. As discussed with respect to ’099 claim element 1.5 in Section VII.A.2.f, 

                                                        

791 Riddle, Abstract, 4:10-15. 
792 Riddle, Abstract, 4:15-17. 
793 Riddle, 4:55-60. 

EX 1006 Page 366



  

 353 

Riddle teaches its monitor includes storage subsystem 35 and stores flow-entry 

lists of previously-encountered flows.794 I incorporate by reference that discussion 

as if fully set forth herein. For example, Riddle’s Figure 4A shows the process of 

parsing a flow specification from a packet and then storing the flow specifications 

in the saved lists 308.795 And Riddle teaches incorporating saved lists 308 into the 

classification tree (for example, traffic tree 302), where each node of the tree repre-

sents a traffic class.796 In Figure 4B, Riddle discloses accessing previously-encoun-

tered flow-entries stored in the lists 308.797 Riddle’s Figures 4A and 4B are pro-

vided below with step 420 (in green) showing retrieving previously stored flow-en-

try data and steps 426 and 428 (in red) showing testing and creating a traffic class 

that “will match all components of the service aggregate.”798 

                                                        

794 Riddle, 6:1-23, 6:43-50, 12:37-59, Figs. 1A-1B, 3. 
795 Riddle, 12:42-59, Fig. 4A. 
796 Riddle, 9:28-33, 8:47-50. 
797 Riddle, 13:35-62, Fig. 4B. 
798 Riddle, 13:52-59; ’864 Provisional, 69. 

EX 1006 Page 367



  

 354 

      

629. And as I discuss above regarding ’099 claim element 1.5, Riddle alone ren-

ders obvious storing Riddle’s flow-entry lists in a database. I incorporate by refer-

ence that discussion as if fully set forth herein. For example, as I discuss above re-

garding ’099 claim element 1.2, Riddle teaches that relational database 306 stores 

the heuristics for determining traffic classes.799 And it was well known to a 

POSITA to store data relating to the network traffic in databases allows for faster 

lookup.800 Thus, storing Riddle’s flow-entries in a database as a set of tables 

                                                        

799 Riddle, 12:32-35. 
800 Riddle, 6:1-15, 15:1-15; Ferdinand, 23:19-23, 28:16-24; ’099 Prosecution His-

tory, 213-214 (06/25/2003 Office Action, p.3). 

EX 1006 Page 368



  

 355 

amounts to nothing more than a simple implementation leading to predictable re-

sults. 

630. As I discuss above regarding ’099 claim element 1.5, Riddle in view of Fer-

dinand renders obvious storing Riddle’s flow-entry lists in a database. I incorporate 

by reference that discussion as if fully set forth herein. For example, Ferdinand de-

scribes organizing and storing classification information in STATS database 36.801 

Riddle and Ferdinand both describe classifying the same types of traffic, such as 

FTP and other protocol types like TCP and UDP.802 And like Riddle, Ferdinand 

discloses displaying the results of its analysis to a user.803  

631. A POSITA would have been motivated to implement Riddle’s lists in a 

flow-entry database, based on Ferdinand’s teachings to allow multiple network op-

erators to access simultaneously Riddle’s classification information and to increase 

functionality of storing data in a database including searching, analyzing, and mod-

ifying the flow-entries.804 Modifying Riddle’s monitor would have led to predicta-

ble results given that Riddle’s saved lists include similar information as that saved 

in Ferdinand’s database. As such, storing Riddle’s classification information in a 

                                                        

801 Ferdinand, 23:3-22, 28:14-17, Figs. 7A-7C. 
802 Riddle, 10:1-18 (Table 2); Ferdinand, 29:4-30:10, 39:23-40:16. 
803 Riddle, 12:64-13:9, 14:1-5; Ferdinand, 60:10-15, Fig. 22. 
804 Riddle, 12:37-38, 12:61-63. 

EX 1006 Page 369



  

 356 

flow-entry database as a set of tables is nothing more than an obvious implementa-

tion based on Ferdinand’s teachings. 

(2) Riddle’s service aggregates teach the claimed “pre-

viously encountered conversational flows to which 

a received packet may belong, a conversational 

flow being an exchange of one or more packets in 

any direction as a result of an activity correspond-

ing to the flow” 

632. As I discuss above with respect to ’099 claim element 1.4 in Section 

VII.A.2.e, Riddle teaches storing “conversational flows” by classifying separate 

packet flows by a common “service aggregates” traffic class for applications using 

multiple flows between a client and a server.805 I incorporate by reference that dis-

cussion as if fully set forth herein. Riddle, for example, discloses classifying based 

on a service aggregate flow that links separate application-specific conversations: 

A service aggregate is provided for certain applications that use more 

than one connection in a particular conversation between a client and 

a server. For example, an FTP client in conversation with an FTP 

server employs a command channel and a transfer channel, which are 

distinct TCP sessions on two different ports. In cases where two or three 

TCP or UDP sessions exist for each conversation between one client 

and one server, it is useful to provide a common traffic class i.e., the 

service aggregate, containing the separate conversations. In practice, 

these types of conversations are between the same two hosts, but use 

                                                        

805 Riddle, 11:10-36, 12:64-13:62, claim 2, Figs. 2A-2B, 4B; RFC765, 6-7; Ex. 

1023 (German Court Translation), 35-36. 

EX 1006 Page 370



  

 357 

different ports. According to the invention, a class is created with a plu-

rality of traffic specifications, each matching various component con-

versations.806 

633. As further discussed above in ’099 claim element 1.4, Riddle specifies that 

its parser subsystem checks whether the parser packet portion is part of a service 

aggregate (i.e., a conversational flow) shown in Figure 4B.807 As shown below, 

Riddle illustrates this check for “service aggregate” conversational flows in Figure 

4B’s flowchart. And when describing command options for controller 304, Riddle 

details in Table 3 specifies the controller may “detect services in both direc-

tions.”808 

634. As I detail above in Section IV.A.6, Riddle describes creating traffic classes 

based on data relating to RTP and RTSP.809 A POSITA would have understood 

RTP and RTSP are analogous to FTP, and that those protocols use a separate con-

trol flow with one or more linked dataflows.810 And, as detailed above, a POSITA 

would have appreciated this is another example of a common “service aggregate” 

traffic class for applications using multiple flows between a client and a server. 

                                                        

806 Riddle, 11:10-23. 
807 Riddle, 13:36-62, Fig. 4B. 
808 Riddle, 14:28-40. 
809 Riddle, 12:1-12. 
810 Ex. 1045, 4-5 (RFC1889 illustrating well-known RTP information); Ex. 1046, 

9-10 (RFC2326 illustrating well-known RTSP information). 

EX 1006 Page 371



  

 358 

 

As such, Riddle teaches the claimed storing of “previously encountered conversa-

tional flows to which a received packet may belong, a conversational flow being an 

exchange of one or more packets in any direction as a result of an activity corre-

sponding to the flow.” 

635. Moreover, as discussed above in Section III.J, I agree with the German 

court’s finding that an FTP communication, which comprises two TCP connec-

tions, taught a “conversational flow.” Riddle similarly teaches identifying multiple 

flows as part of an FTP communication. As the German court recognized, the iden-

tification of flows as part of an FTP communication (as Riddle discusses) teaches 

EX 1006 Page 372



  

 359 

identifying packets as being part of a conversational flow-sequence. 

(3) Riddle’s PointCast flows teach the claimed “previ-

ously encountered conversational flows to which a 

received packet may belong, a conversational flow 

being an exchange of one or more packets in any 

direction as a result of an activity corresponding to 

the flow” 

636. As discussed with respect to ’099 claim element 1.4 in Section VII.A.2.e, 

Riddle teaches storing “conversational flows” by classifying separate packet flows 

as being PointCast traffic.811 I incorporate by reference that discussion as if fully 

set forth herein. Riddle, for example, discloses examining packet portions for 

URLs that begin with /FIDO-1/ to classify flows as corresponding to PointCast 

Network applications.812 And as discussed, Patentee’s ’903 Provisional acknowl-

edges it was known that separate PointCast flows include a signature specific to 

PointCast traffic and those flows are associated with the PointCast Network appli-

cation.813  

d. ’646 Claim Element 1.3: “(c) a cache subsystem coupled 

to the flow-entry database memory providing for fast ac-

cess of flow-entries from the flow-entry database” 

637. Riddle in view of Ferdinand renders obvious this claim element. Similarly, 

                                                        

811 Riddle, 11:47-67, 15:28-31; Ex. 1016 (’903 Provisional), 7:16-25; Ex. 1032 

(Wall Street Journal PointCast article), 1; Ex. 1033 (Computer World PointCast ar-

ticle); Ex. 1034 (Christian Science Monitor PointCast article); Ex. 1036 (’558 Pa-

tent), 33:28-44. 
812 Riddle, 11:47-67. 
813 Ex. 1016 (’903 Provisional), 7:16-25, 28:22-24. 

EX 1006 Page 373



  

 360 

Riddle in view of Wakeman renders obvious this claim element. As discussed 

above regarding ’646 Claim Element 1.2, Riddle discloses a memory for storing a 

flow-entry database or renders it obvious in view of Ferdinand. I incorporate by 

reference that discussion as if fully set forth herein. 

638. Riddle describes examining flow-entries from stored flow-entry lists that 

would have rendered obvious utilizing a cache with the flow-entry database 

memory:  

In [Figure 4B’s] step 420, an instance of saved traffic is retrieved from 

the saved traffic list 308. Next in a decisional step 422, the instance of 

saved traffic is examined to determine whether it is well known (e.g. 

registered SAP, protocol type, assigned port number) and a name rep-

resenting its type exists. If this is so then processing continues with a 

test of whether the saved traffic belongs to a service aggregate in step 

426.814 

639. Further, using a cache subsystem to speed up processing of flows was well 

known in the art. For example, the ’646 Patent states that it was well-known at the 

time of the priority date to use caches to provide fast access to a subset of the con-

tents that are likely to be accessed in larger, slower memory: 

Because of the high speed that packets may be entering the system, it is 

desirable to maximize the hit rate in a cache system. Typical prior-art 

                                                        

814 Riddle, 13:40-47. 

EX 1006 Page 374



  

 361 

cache systems are used to expediting memory accesses to and from mi-

croprocessor systems. Various mechanisms are available in such prior 

art systems to predict the lookup such that the hit rate can be maximized. 

Prior art caches, for example, can use a lookahead mechanism to predict 

both instruction cache lookups and data cache lookups. Such lookahead 

mechanisms are not available for a cache subsystem for the packet moni-

toring application. When a new packet enters the monitor, the next cache 

access, for example from the lookup engine, may be for a totally different 

conversational flow than the last cache lookup, and there is no way ahead 

of time of knowing what flow the next packet will belong to.815 

640. Ferdinand discloses several examples of well-known caches used in network 

monitors. For example, Ferdinand teaches that its monitor includes two sets of 

64KB cache: “Monitor 10 also includes a 64Kbyte instruction cache and a 64Kbyte 

data cache, implemented by SRAM.”816 

641. With respect to its flow-entry database (STATS 36), Ferdinand details that 

the database is coupled to a cache: 

STATS defines the database and it contains subroutines for updating the 

statistics which it keeps. STATS … provides an initialization routine 

whose major function is to allocate statistics records at startup from cache-

able memory. It provides lookup routines in order to get at the statistics.817 

                                                        

815 ’646 Patent, 2:36-51. 
816 Ferdinand, 18:27-29. 
817 Ferdinand, 28:14-21. 

EX 1006 Page 375



  

 362 

And Ferdinand teaches storing SunNet Manager (“SNM”) files in a cache coupled 

to a workstation database.818 

642. Based on a POSITA’s own knowledge and Ferdinand’s teachings, a 

POSITA would have been motivated and found it obvious to modify the flow-entry 

database memory with a common routing component link a cache subsystem. Be-

fore the priority date of the Challenged Patents, a POSITA would have known that 

caches were commonly-used components in routing devices.819 Based on Ferdi-

nand’s teachings, a POSITA would have been motivated to modify Riddle’s data-

base memory with a cache because caches were well known to reduce look-up 

times.820 A POSITA would have appreciated that a cache, such as Ferdinand’s, was 

easily modified to store Riddle’s flow-entry lists, because an inate function of a 

cache is to store information, such as Riddle’s flow-entry list. In view of Ferdi-

nand, using a cache for storing Riddle’s flow-entry data amounts to nothing more 

than an obvious implementation of known prior art technologies used in the ordi-

nary and predictable manner to provide a cache for frequently accessed flow en-

tries in Riddle’s monitor. 

                                                        

818 Ferdinand, 54:18-22. 
819 ’646 Patent, 2:36-51; ’646 Prosecution History, 193-200 (09/10/2003 Office 

Action, p.3). 
820 ’646 Patent, 2:36-51; ’646 Prosecution History, 197-198 (09/10/2003 Office 

Action, p.7). 

EX 1006 Page 376



  

 363 

643. As I detail below with respect to ’646 claim 3, Wakeman teaches another ex-

ample of a well-known cache subsystem. Wakeman discusses prior-art network 

switch 10 as having forwarding database (FSB) 12, which is shown below in Fig-

ure 1. Wakeman explains that databases, such as FSB 12, are “typically imple-

mented either as a hardware content addressable memory (CAM) or as RAM.”821 

And Wakeman states that a hardware CAM “is very fast and can typically retrieve 

mappings in less than 100 ns.”822 

 

644. Wakeman discloses a CAM cache: 

                                                        

821 Wakeman, 1:55-56. 
822 Wakeman, 1:56-58. 

EX 1006 Page 377



  

 364 

Upon receiving an incoming data packet, the MAC associated with the 

source port will, after extracting the destination address from the packet, 

access its associated CAM-cache to find the correct address-to-port map-

ping. If the correct mapping is contained in the CAM-cache, the packet 

may be immediately forwarded to the destination port without having to 

access the much larger and slower forwarding database. 

Where the CAM-cache does not contain the correct mapping, the MAC 

then causes the correct mapping to be retrieved from the forwarding data-

base. The packet may then be forwarded to the correct destination port. 

The CAM-cache is then updated with this mapping so that succeeding 

packets having the same destination address-to-port mapping may be 

quickly forwarded to the destination port by accessing only the fast CAM-

cache, thereby eliminating the need to access the much slower forwarding 

database.823 

645. As shown below in Figure 2, Wakeman teaches network switch 20 having 

switch engine 11, forwarding database 12, media access controllers 17-20, and 

CAM-Caches 31-34.824 

                                                        

823 Wakeman, 2:31-49. 
824 Wakeman, 1:20-28, 3:36-45, Fig. 2. 

EX 1006 Page 378



  

 365 

 

646. Wakeman describes that “CAM caches 31-34 may be distributed across 

ports 13-16 of switch 20, where one of the CAM caches described above may ser-

vice more than one port.”825 And Wakeman describes the CAM cache’s internal ar-

chitecture and operation as follows: 

CAM cache 31 which, in accordance with the preferred embodiment, in-

cludes a FIFO 35, a memory 36, a learning and aging block 38, and logic 

37. These elements are well understood in the art and thus will not be dis-

cussed below. The extracted source and destination addresses of the first 

packet are queued in FIFO 35 which, in turn, provides the destination ad-

dress to memory 36. If the correct destination mapping is contained in 

memory 36, there is thus a match and memory 36 provides the correct des-

tination port to logic 37 which, in turn, forwards the port location and a 

                                                        

825 Wakeman, 5:28-31. 

EX 1006 Page 379



  

 366 

“hit” signal to MAC 17. MAC 17 then alerts SE 11 of the correct destina-

tion port. SE 11 informs MAC 18 that a packet is “addressed” thereto and 

directs the first packet to MAC 18 which, in turn, forwards the packet to 

segment 14a where it will be accepted by the workstation having the cor-

rect destination address. Thus, where the correct destination mapping is 

contained in CAM cache 31, accessing and searching FDB 12 is wholly 

unnecessary. Since the accessing speed of CAM cache is much faster than 

that of FDB 12, the inclusion of CAM caches 31-34 in a network switch 

as described above results in an increase in forwarding speed. Note that 

although the FDB 12 in switch 20 is preferably a RAM, CAM caches 31-

34 will decrease the access time and thus increase forwarding speeds irre-

spective of the particular construction of FDB 12 (e.g., where FDB 12 is a 

hardware CAM as opposed to RAM). 

If the correct destination mapping is not contained in memory 36, logic 37 

sends a “miss” signal to MAC 17 which then alerts SE 11 of the destination 

address extracted from the packet. SE 11 then searches FDB 12 to locate 

the correct destination mapping and, having retrieved the correct destina-

tion mapping, forwards the packet as described earlier with reference to 

prior art switch 10.826 

647. As provided below, Wakeman’s Figure 3 illustrates the internal architecture 

of the CAM-Cache. 

                                                        

826 Wakeman, 3:54-4:20. 

EX 1006 Page 380



  

 367 

 

648. For the additional reasons set forth in Wakeman’s teachings, it would have 

been obvious to a POSITA to modify Riddle’s memory storing the flow-entry data-

base with a cache subsystem. Based on Wakeman’s teachings, a POSITA would 

have been motivated to use a CAM-cache because caches were well known to re-

duce look-up times.827 Wakeman envisions that its CAM-cache would be used for 

source and destination of Ethernet packets.828 And Riddle’s monitor may be used 

in an Ethernet network connecting a host (e.g., SPARC workstation 71) and an-

other host (e.g., VAX6000 computer 72), and can classify traffic classes defined by 

                                                        

827 ’646 Patent, 2:36-51; ’646 Prosecution History, 197-198 (09/10/2003 Office 

Action, p.7). 
828 Wakeman, 1:5-18. 

EX 1006 Page 381



  

 368 

inside and outside IP addresses.829 In view of Wakeman, it would have been obvi-

ous to a POSITA to modify Riddle’s memory storing the flow-entry database to 

improve the database by providing faster access and retrieval of likely-to-be-ac-

cessed flow-entries, such as for Ethernet packet source and destination address.830 

In making such a modification, a POSITA would have further modified Riddle’s 

memory, which would contain the flow-entry database and is accessible by criteria 

such as “most ‘hits’ during a recent interval” or “most recently-seen (most recent 

time first),”831 with the CAM-cache. The flow-entry database of the Riddle-Ferdi-

nand combination with the teachings of Wakeman’s CAM-cache would have pro-

vided for fast access of a set of likely-to-be-accessed flow-entries.832 

e. ’646 Claim Element 1.4: “(d) a lookup engine coupled to 

the packet acquisition device and to the cache subsystem 

and configured to lookup whether a received packet be-

longs to a flow-entry in the flow-entry database, the look-

ing up being [via] the cache subsystem; and” 

649. Riddle in view of Ferdinand or Wakeman renders obvious this claim ele-

ment. As discussed above regarding ’646 claim element 1.2, Riddle alone or in 

view of Ferdinand renders obvious a memory for storing a flow-entry database. I 

incorporate by reference that discussion as if fully set forth herein. 

                                                        

829 Riddle, 7:24-28, 8:58-62, Fig. 1C. 
830 Wakeman, 1:15-18. 
831 Riddle, 12:65-13:10. 
832 Wakeman, 4:31-40, 5:22-27, Fig. 3 (logic 38 maintains likely-to-be-accessed 

flow-entries). 

EX 1006 Page 382



  

 369 

650. As discussed with respect to ’099 Claim Element 1.6 in Section VII.A.2.g, 

Riddle discloses a lookup engine configured to determine whether a received 

packet belongs to a flow-entry in the flow-entry database.833 I incorporate by refer-

ence that discussion as if fully set forth herein. For example, and as shown in Fig-

ure 4B, Riddle teaches looking up whether a flow matches a traffic class in relation 

to classifying a service aggregate based on a plurality of indicators.834 From the 

pertinent steps in flowcharts of Figures 4A-4B, a POSITA would have understood 

that Riddle discloses looking up whether a received packets belongs to a flow-en-

try (e.g., class A) in traffic tree 302 corresponding to a conversational flow. 

651. Thus, Riddle discloses an entity that examines flow entries to determine if a 

received packet belongs to a stored flow-entry. A POSITA would understand that 

the lookup engine in Riddle is a processor and that corresponding code performs 

the functions discussed above as Riddle discloses that its monitor is “for automati-

cally classifying heterogeneous packets in a packet telecommunications environ-

ment of the present invention is implemented in the C programming language and 

is operational on a computer.”835 And as discussed above regarding ’646 claim ele-

ment 1.2, Riddle alone or in view of Ferdinand renders obvious a flow-entry data-

base. 

                                                        

833 Riddle, 12:37-49, claim 8, Figs. 3, 4A-4B. 
834 Riddle, 13:42-47, claim 5, Fig. 4B.  
835 Riddle, 5:53-57. 

EX 1006 Page 383



  

 370 

652. Further, Riddle teaches that its lookup engine is coupled to the packet acqui-

sition device. For example, as shown in Figure 1A, Riddle teaches that it was 

known in the art for the engine’s processor (e.g., CPU 30) to be couple to the 

packet acquisition device (e.g., network interface 40).836 Similarly, Riddle’s claim 

8 recites a system having a packet acquisition device (e.g., network routing means) 

coupled to the lookup engine (e.g., a processor means). 

653. Further, a POSITA would have understood that Riddle’s lookup engine and 

packet acquisition device work together to achieve the goal of classifying traffic.837 

And in view of Ferdinand’s and Wakeman’s teachings regarding caches, a 

POSITA would have been motivated to modify Riddle’s lookup engine with a 

cache subsystem and the packet acquisition device. As discussed in regarding ’646 

claim element 1.3, it would have been obvious to POSITA to modify Riddle with a 

cache subsystem to improve Riddle’s performance based upon the admitted prior 

art, Ferdinand’s and Wakeman’s teachings, or the knowledge of a POSITA. When 

Riddle’s monitor is modified with a cache subsystem as discussed regarding ’646 

claim element 1.3, then a POSITA would have understood the looking up would be 

done via the cache subsystem. 

                                                        

836 Riddle, 6:5-15, Fig. 1A. 
837 Riddle, 4:15-17. 

EX 1006 Page 384



  

 371 

f. ’646 Claim Element 1.5: “(e) a state processor coupled 

to the lookup engine and to the flow-entry-database 

memory, the state processor being to perform any state 

operations specified for the state of the flow starting from 

the last encountered state of the flow in the case that the 

packet is from an existing flow, and to perform any state 

operations required for the initial state of the new flow in 

the case that the packet is [not] from an existing flow” 

654. Riddle discloses this claim element. As discussed above regarding ’646 

claim element 1.2, Riddle alone or in view of Ferdinand renders obvious a memory 

for storing a flow-entry database. I incorporate by reference that discussion as if 

fully set forth herein. As I detail below, Riddle discloses traversing steps of a traf-

fic classification tree, which teaches the claimed “state processor” limitations. 

655. As discussed with respect to ’099 claim elements 1.9 and 1.10 in Sections 

VII.A.2.j and VII.A.2.k, Riddle discloses a state processor coupled to the flow-en-

try database memory and being able to perform state operations for existing and 

new flows.838 And as discussed above regarding ’099 claim element 1.7 in Section 

VII.A.2.h, Riddle details traversing steps of a traffic classification tree.839 Riddle’s 

classification is a common data structure in which each of the tree’s leaf nodes cor-

responds to last encountered flow states.840 I incorporate by reference those discus-

sions as if fully set forth herein.  

                                                        

838 Riddle, 5:53-57, 12:42-13:23, 14:1-5, claim 8, Fig. 4A. 
839 Riddle, 10:19-56, Figs. 2A-2B, 3. 
840 Riddle, 9:28-41. 

EX 1006 Page 385



  

 372 

656. Further, Riddle discloses that its processor performs state operations: 

A system for automatically classifying traffic in a packet telecommuni-

cations network, said network having any number of flows, including 

zero, comprising: 

a plurality of network links upon which said traffic is carried; a 

network routing means; and, 

a processor means operative to: 

parse a packet into a first flow specification… thereupon, 

match the first flow specification of the parsing step to a plu-

rality of classes represented by a plurality of said classification tree 

type nodes, each said classification tree type node having a traffic 

specification and a mask, according to the mask; thereupon,  

if a matching classification tree type node was not found in the 

matching step, associating said first flow specification with one or 

more newly-created classification tree type nodes; thereupon, incorpo-

rating said newly-created classification tree type nodes into said plural-

ity of said classification tree type nodes.841 

657. A POSITA would have understood that Riddle’s state processor, lookup en-

gine, and flow-entry database memory work together to achieve the goal of classi-

fying traffic.842 Thus, a POSITA would have understood that the state processor is 

coupled to the lookup engine and to the flow-entry-database memory. 

658. Riddle describes storing previously-encountered flows: 

                                                        

841 Riddle, claim 8, 5:53-57. 
842 Riddle, 4:15-17. 

EX 1006 Page 386



  

 373 

A traffic classifier 304 detects services for incoming traffic. … A plurality 

of saved lists 308 stores classified traffic pending incorporation into traffic 

tree 302. In select embodiments, entries for each instance of traffic may 

be kept. In alternate embodiments, a copy of an entry and a count of 

duplicate copies for the entry is maintained.843 

659. As discussed above regarding ’099 claim element 1.7, Riddle teaches per-

forming state operations of on existing flows. For example, Riddle’s Figure 2A il-

lustrates FTP operations for traversing a particular transition pattern that includes 

(1) comparing the packets’ source (client) IP to the range of IP addresses defined 

for subnet B and, if so, (2) determining if the sequence of packets involves the FTP 

protocol.844 In doing so, Riddle teaches testing for subclassifications when encoun-

tering packet information relating to FTP applications such as Figure 2A’s classes 

206, 210.845 When testing for such subclassifications, Riddle’s classifier performs 

an operation to determine if the flow is an FTP command flow or an FTP data 

flow.846 

660. Moreover, as discussed above regarding ’099 claim element 1.7, Riddle 

teaches performing state operations for flows involving FTP applications to deter-

                                                        

843 Riddle, 12:30-41. 
844 Riddle, 10:19-39. 
845 Riddle, 11:24-36. 
846 Riddle, 11:12-15. 

EX 1006 Page 387



  

 374 

mine if the flow belongs to a service aggregate (i.e., a conversational flow-se-

quence).847 As shown in Riddle’s Figure 2A, a POSITA would have understood 

that traversing this example transition pattern (Client IP/Subnet B/FTP/FTP-

cmd/FTP service aggregate) as a result of a particular conversational flow-se-

quence of packets, Riddle teaches an association with the FTP-application program 

initiated on the user’s (client’s) computer. 

661. For example, Riddle discloses applying policies associated with “leaf” nodes 

of the classification tree.848 Based on Riddle’s teachings, a POSITA would have 

understood that each traffic class, such as FTP-server or World-Wide-Web traffic 

classes, can have its own respective policies.849 As a result, Riddle’s processor ulti-

mately applies a policy based on the state of the flow. Packer, which Riddle incor-

porates-by-reference, illustrates this application in Figure 5F provided below.850 

                                                        

847 Riddle, 11:10-23; 13:52-57; Fig. 4B. 
848 Riddle, 9:29-42, Packer, 18:3-5 (“The processing steps of flowchart 511 deter-

mine a class and a policy for a flow[.]”, Fig. 5F. 
849 Riddle, 10:36-39. 
850 Riddle, 9:29-42, Claim 3; Packer, Fig. 5F. 

EX 1006 Page 388



  

 375 

 

662. As I discuss with respect to ’646 claim element 1.2, Riddle teachings storing 

previously-encountered conversational flows.851 Riddle discloses performing state 

operations on existing conversational flows, such as updating flow-entries when 

traffic matches a class and suppressing duplicates.852 When suppressing duplicates 

for existing flows, Riddle teaches performing the state operation of updating flow-

entries.853 

                                                        

851 Riddle, 12:30-41. 
852 Riddle, 12:42-59. 
853 Riddle, 12:42-59, claim 15, Fig. 4A. 

EX 1006 Page 389



  

 376 

663. For new conversational flows, Riddle discloses the state operation of creat-

ing a new flow-entry.854 The Challenged Patents describe creating a new flow-en-

try as an example of a state operation.855 

664. For both existing and new conversational flows, Riddle describes perform-

ing the state operation of determining statistical metrics.856 The Challenged Patents 

describe determining statistical metrics as an example of a state operation.857 As 

such, a POSITA would have understood that Riddle determines the packet’s state 

of conversational flow, at least by determining metrics like the count of duplicates, 

most recent time the monitor encountered a flow with the same identifying charac-

teristics, and byte count of the detected flow.858 

665. In addition, as discussed above regarding ’099 claim element 1.7, the Chal-

lenged Patents explain that state operations may include (a) searching for one or 

more patterns in the parsed packet information, (b) creating a new flow-entry, (c) 

                                                        

854 Riddle Figure 4A’s step 408. 
855 E.g., ’789 Patent, claim 47. 
856 Riddle, 12:42-13:8, 14:1-5, Fig. 4A. 
857 E.g., ’646 Patent, 10:38-46, 16:25-43; ’751 Patent, claim 16. 
858 Riddle, 12:53-13:8, 14:1-5, Fig. 4A (steps 410, 412).  

EX 1006 Page 390



  

 377 

determining metrics that relate to the examined flow, and (d) updating a flow-en-

try.859 As detailed above in ’099 claim element 1.7, Riddle teaches each of these 

types of state operations.860 

666. Riddle further describes displaying a hierarchical classification tree that 

shows state operations related to FTP. For example, Riddle presents classes “to 

host 1,” “tcp,” and “FTP.”861 As such, a POSITA would have understood that tran-

sitioning from one class to the next in this hierarchy involves operations. 

667. Regarding Figure 4A, Riddle also describes analyzing information identify-

ing the characteristics of the traffic as the classifier parses packets of a flow and 

matches the parsed packets to a class.862 Riddle describes that, after an initial clas-

sification, “sub-classification” proceeds in a sequential manner by performing finer 

grade matchings as characteristics such as the hosts and services are identified, 

leading to matching of a flow with operation of a particular application program. 863 

In accordance with the classification tree, Riddle describes advancing through the 

sequence of packets in a particular traffic flow to parse and classifying the packets. 

                                                        

859 ’646 Patent, claim 13; ’789 Patent, claims 17, 27, 46 (searching for patterns); 

’789 Patent, claim 47 (creating new flow-entry); ’751 Patent, claims 11-13, 16 (de-

termining metrics); ’646 Patent, claim 15; ’751 Patent, claim 13; ’789 Patent, 

claims 15, 30, 45. 
860 E.g., Riddle, 11:48-63, 12:48-13:8, 13:59-14:5, Figs. 4A-4B. 
861 Riddle, 13:11-22. 
862 Riddle, 12:42-48. 
863 Riddle, 11:25-31, 13:11-22. 

EX 1006 Page 391



  

 378 

This results in performing a corresponding state operation at each node to update 

the identifying characteristics of the flow. 

668. To the extent Patentee asserts that the “lookup engine,” “state processor,” 

and “parser subsystem” of ’646 claim elements 1.4-1.5 and 2.1 require separate 

pieces of hardware, it would have been obvious to a POSITA to modify Riddle’s 

processor and programming code to be separate hardware components. This is be-

cause using dedicated hardware for various functions, especially functions as com-

mon as parsing, data lookup, and state processing, would have been well under-

stood by a POSITA. As acknowledged by the Challenged Patents, such a modifica-

tion would have been obvious to a POSITA: 

Each of the individual hardware elements through which the data flows in 

the system are now described with reference to FIGS. 10 and 11. Note that 

while we are describing a particular hardware implementation of the in-

vention embodiment of FIG. 3, it would be clear to one skilled in the art 

that the flow of FIG. 3 may alternatively be implemented in software 

running on one or more general-purpose processors, or only partly im-

plemented in hardware. An implementation of the invention that can op-

erate in software is shown in FIG. 14. The hardware embodiment (FIGS. 

10 and 11) can operate at over a million packets per second, while the soft-

ware system of FIG. 14 may be suitable for slower networks. To one 

skilled in the art it would be clear that more and more of the system may 

EX 1006 Page 392



  

 379 

be implemented in software as processors become faster.864 

669. Further, Ferdinand discloses its monitor can include separate hardware com-

ponents for performing various functions, such real time parser (RTP) 32, database 

36, boot/load 22, and memory transport module 34, event manager 38, and control 

module 42.865 As provided below, Ferdinand’s Figure 5 illustrates its monitor hav-

ing separate hardware components. 

 

670. Desiring increased performance, a POSITA would have been motivated to 

utilize dedicated hardware components for parsing, lookups, and state processing. 

On the other hand, a POSITA would have understood that Riddle’s use of a proces-

sor for these functions is less expensive and a more extensible solution than using 

dedicated hardware components. 

                                                        

864 ’646 Patent, 17:7-21. 
865 Ferdinand, 19:5-13. 

EX 1006 Page 393



  

 380 

671. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious claim 1 of the ’646 Patent. And it is my opinion that Riddle in view 

of Ferdinand and Wakeman renders obvious claim 1 of the ’646 Patent. 

3. Dependent ’646 Claim 2 

672. Riddle discloses all the limitations of this claim. Claim 2 depends from inde-

pendent claim 1. 

a. ’646 Claim Element 2.1: “a parser subsystem coupled to 

the packet acquisition device and to the lookup engine 

such that the acquisition device is coupled to the lookup 

engine via the parser subsystem, the parser subsystem 

configured to extract identifying information from a re-

ceived packet” 

673. Riddle discloses this claim element. As discussed with respect to ’099 claim 

elements 1.3 and 1.4 in Sections VII.A.2.d and VII.A.2.e, Riddle teaches a parser 

subsystem configured to extract selected portions of the accepted packet.866 I incor-

porate by reference those discussions as if fully set forth herein. For example, Rid-

dle discloses a processor programmed to perform extraction operations: 

[A] processor means operative to: parse a packet into a first flow specifi-

cation, wherein said first flow specification contains at least one instance 

of any one of the following: a protocol family designation, a direction of 

packet flow designation, a protocol type designation, a pair of hosts, a pair 

of ports, in HTTP protocol packets, a pointer to a MIME type.867 

                                                        

866 Riddle, 6:1-15, 12:26-53, claim 8, Figs. 1A, 4A. 
867 Riddle, claim 8. 

EX 1006 Page 394



  

 381 

674. Further, Riddle explains that its parser subsystem operates to apply “individ-

ual instances of traffic classification paradigms to packet network flows based on 

selectable information obtained from a plurality of layers of a multi-layered com-

munication protocol in order to define a characteristic class, then mapping the flow 

to the defined traffic class.”868 As part of this examination and extraction process, 

Riddle’s system employs a relational database (knowledge base 306) to store heu-

ristics (i.e., operations) for determining traffic classes based on parsing/extracting 

portions of a packet and matching those portions’ attributes to a traffic class.869  

675. As shown in Figure 4A’s flowchart, Riddle’s traffic classification monitor 

includes parsing and extracting packet portions: “parse flow specification from a 

packet of the flow” (step 402), “traffic matches a class?” (step 406), and “enter into 

saved list characteristics of the traffic” (step 408).870 Following the parsing, rules 

are checked and if the flow matches a traffic class an entry is made into a saved list 

with the extracted identifying information such as “protocol type (SAP), IP proto-

col number, server port, traffic type if known, MIME type, a time of occurrence of 

the traffic.”871 

676. A POSITA would have understood that Riddle’s parser subsystem, packet 

                                                        

868 Riddle, 4:10-15. 
869 Riddle, 12:26-41, 9:28-42, 9:48-49. 
870 Riddle, 12:42-53, Fig. 4A. 
871 Riddle, 12:50-53. 

EX 1006 Page 395



  

 382 

acquisition device, and lookup engine work together to achieve the goal of classi-

fying traffic.872 Thus, a POSITA would have understood that Riddle’s parser sub-

system is coupled to the packet acquisition device and to the lookup engine such 

that the acquisition device is coupled to the lookup engine via the parser subsys-

tem. 

b. ’646 Claim Element 2.2: “wherein each flow-entry is 

identified by identifying information stored in the flow-

entry, and wherein the cache lookup uses a function of 

the extracted identifying information” 

677. Riddle in view of Ferdinand renders obvious this claim element. This claim 

element is similar to ’646 claim elements 1.2 and 7.4, and is disclosed or rendered 

obvious by the prior art for the same reasons. I incorporate by reference my discus-

sion regarding ’646 claim elements 1.2 and 7.4 as if fully set forth herein. 

678. As shown in Figure 4A’s flowchart, Riddle teaches parsing packet and ex-

tracting a flow specification used to classify the packet flow: 

FIG. 4A depicts a flowchart 401 of processing steps for automatically clas-

sifying traffic. In a step 402, a flow specification is parsed from the flow 

being classified. Then in a step 404, the flow specification parsed from the 

flow in step 402 is compared with the traffic specifications in each node of 

the classification tree. Rules are checked starting from most specific to 

least specific. In a decisional step 406, a determination is made if traffic 

matches one of the classes being classified. If this is so, then in a step 408, 

                                                        

872 Riddle, 4:15-17. 

EX 1006 Page 396



  

 383 

an entry is made in a list of identifying characteristics, such as protocol 

type (SAP), IP protocol number, server port, traffic type if known, MIME 

type, a time of occurrence of the traffic.873 

And as shown in Figure 4A’s step 408, Riddle discloses entering characteristics of 

the traffic into the saved list.874  

679. As discussed regarding ’646 claim elements 1.3 and 1.4, Riddle in view of 

Ferdinand, Wakeman, or by common knowledge of POSITA would have rendered 

obvious the modification of Riddle’s lookup engine with a cache subsystem such 

that the looking up is via the cache subsystem. Based on the teachings of Riddle in 

view of Ferdinand and/or Wakeman, a POSITA would have understood that Rid-

dle’s lookup engine modified with the cache subsystem results in the cache lookup 

using a function of the extracted identifying information. 

680. As such, it is my opinion that Riddle in view of Ferdinand and Wakeman 

renders obvious dependent claim 2 of the ’646 Patent. 

4. Dependent ’646 Claim 3 

681. Riddle in view of Ferdinand and Wakeman renders obvious this claim. 

Claim 3 depends from dependent claim 2 and recites: “A packet monitor according 

to claim 2, wherein the cache subsystem is an associative cache subsystem includ-

ing one or more content addressable memory cells (CAMs).” 

                                                        

873 Riddle, 12:42-53. 
874 Riddle, 12:42-59, Fig. 4A. 

EX 1006 Page 397



  

 384 

682. The ’646 Patent describes the well-known cache design paradigm that in-

cludes content addressable memory cells: 

The cache subsystem 1115 is an associative cache that includes a set of 

content addressable memory cells (CAMs) each including an address por-

tion and a pointer portion pointing to the cache memory (e.g., RAM) con-

taining the cached flow-entries. The CAMs are arranged as a stack ordered 

from a top CAM to a bottom CAM. The bottom CAM’s pointer points to 

the least recently used (LRU) cache memory entry. Whenever there is a 

cache miss, the contents of cache memory pointed to by the bottom CAM 

are replaced by the flow-entry from the flow-entry database 324. This now 

becomes the most recently used entry, so the contents of the bottom CAM 

are moved to the top CAM and all CAM contents are shifted down. Thus, 

the cache is an associative cache with a true LRU replacement policy.875 

Consistent with the ’646 Patent, a POSITA would have understood that an associa-

tive cache was a well-known cache design paradigm in which a memory block can 

appear in any cache line and that the cache line is a form of a content addressable 

memory. 

683. Riddle in view of Wakeman renders obvious claim 3. In Section IV.F, I de-

tailed the features of Wakeman, which is incorporated by reference as if fully set 

forth herein. As detailed above, a POSITA would have understood that Wakeman’s 

                                                        

875 ’646 Patent, 19:56-20:2. 

EX 1006 Page 398



  

 385 

CAM cache can be a fully associative cache. This is due to Wakeman not disclos-

ing a cache placement policy, which indicates there being no constraints on place-

ment within Wakeman’s cache. And at the time of Challenged Patent’s priority 

date (as well as today), an associative cache was a common type of cache readily 

known to a POSITA. Using an associative cache, or any other type of well-known 

cache, was readily understood by a POSITA for expediting memory accesses to 

and from processors.876 

684. As set forth regarding ’646 claim element 1.3, it would have been obvious to 

a POSITA to couple Riddle’s flow-entry to a cache subsystem. A POSITA would 

have been motivated to do so to improve performance as taught by the admitted 

prior art, Wakeman, Ferdinand, or the knowledge of a POSITA. For example, in 

view of Wakeman, a POSITA would have been motivated to use a CAM-cache be-

cause such caches were well-known to reduce look-up times. Wakeman envisions 

that its CAM-cache would be used for source and destination addresses of Ethernet 

packets. A POSITA would have appreciated the benefits to using a CAM-cache to 

store Riddle’s flow-entry lists as those lists also include destination and source ad-

dresses for Ethernet packets based on Wakeman’s teachings. 

685. As such, it is my opinion that Riddle in view of Ferdinand and Wakeman 

                                                        

876 ’646 Patent, 2:36-51; ’646 Prosecution History, 193-200 (09/10/2003 Office 

Action, p.3). 

EX 1006 Page 399



  

 386 

renders obvious dependent claim 3 of the ’646 Patent. 

5. Independent ’646 Claim 7 

686. It is my opinion that independent claim 7 of the ’646 Patent is obvious in 

light of Riddle in view of Ferdinand or in light of Riddle in view of Ferdinand and 

Wakeman. 

a. ’646 Claim 7’s Preamble: “A packet monitor for examin-

ing packets passing through a connection point on a 

computer network, each packet conforming to one or 

more protocols, the monitor comprising” 

687. Riddles discloses all elements of this preamble. This preamble is identical to 

the preamble of ’646 claim 1, and is disclosed by the prior art for the same reasons. 

I incorporate by reference my discussions regarding the preamble of ’646 claim 1 

as if fully set forth herein. 

b. ’646 Claim Element 7.1: “a packet acquisition device 

coupled to the connection point and configured to receive 

packets passing through the connection point” 

688. Riddle discloses this claim element. This claim element is identical to ’646 

claim element 1.1, and is disclosed by the prior art for the same reasons. I incorpo-

rate by reference my discussions regarding ’646 claim element 1.1 as if fully set 

forth herein. 

c. ’646 Claim Element 7.2: “an input buffer memory cou-

pled to and configured to accept a packet from the packet 

acquisition device” 

689. Riddle alone discloses this claim element and/or renders it obvious in view 

EX 1006 Page 400



  

 387 

of Ferdinand. As discussed with respect to ’099 claim element 1.1 in Section 

VII.A.2.b, Riddle teaches buffering packets in a router’s queue in preparation for 

parsing and examination.877 I incorporate by reference that discussion as if fully set 

forth herein. For example, Riddle teaches that its monitor includes storage subsys-

tem 35 of interface 40 for storing data.878  

690. To the extent Riddle does not disclose an input buffer memory, a POSITA 

would have been motivated and found it obvious to modify Riddle’s memory stor-

age with an input buffer based upon a POSITA’s own knowledge of network de-

vices and/or the teachings of Ferdinand. Before the priority date of the Challenged 

Patents, a POSITA would have known that an input buffer memory, such as 

queues, were found in every routing device because, for example, a POSITA 

would have understood that an input buffer memory temporarily stores incoming 

packets until the device is ready to process the packets. In doing so, the input 

buffer memory avoids packet loss because it provides a mechanism to store pack-

ets that may otherwise be dropped. Ferdinand discloses an exemplary input 

memory, such a frame buffer, which is used to accept packets in network monitors:  

The available memory is divided into four blocks during system initializa-

                                                        

877 Riddle, 2:51-54, 6:1-23, 7:21-24, claim 8, Figs. 1A-1B; Ex. 1027 (Packer Ap-

plication, Appendices, incorporated-by-reference into Riddle), 71-72. 
878 Riddle, 6:1-23. 

EX 1006 Page 401



  

 388 

tion. One block includes receive frame buffers. They are used for receiv-

ing LAN traffic and for receiving secondary link traffic. These are orga-

nized as linked lists of fixed sized buffers.879  

691. Based on Ferdinand’s teachings, a POSITA would have been motivated to 

modify Riddle’s monitor with an input buffer memory so as to temporarily store 

received packets and to improve performance by limiting packet drops. And using 

a buffer with Riddle’s monitor amounts to nothing more than an obvious imple-

mentation to temporarily store packets in Riddle’s monitor based on Ferdinand’s 

teachings.  

d. ’646 Claim Element 7.3: “a parser subsystem coupled to 

the input buffer memory, the parsing subsystem config-

ured to extract selected portions of the accepted packet 

and to output a parser record containing the selected 

portions” 

692. Riddle discloses this claim element. As discussed with respect to ’099 claim 

elements 1.3 and 1.4 in Sections VII.A.2.d and VII.A.2.e, Riddle teaches a parser 

subsystem configured to extract selected portions of the accepted packet.880 I incor-

porate by reference those discussions as if fully set forth herein. For example, Rid-

dle discloses a processor programmed to perform extraction operations as shown 

below in Figure 1A.881 

                                                        

879 Ferdinand, 26:2-7, 41:17-31, 49:11-12. 
880 Riddle, 6:1-15, 12:26-53, claim 8, Figs. 1A, 4A. 
881 Riddle, claim 8, Fig. 1A. 

EX 1006 Page 402



  

 389 

 

(1) Riddle discloses the claimed “parser subsystem 

configured to extract select portions of the ac-

cepted packet” 

693. Riddle explains that its parser subsystem operates to apply “individual in-

stances of traffic classification paradigms to packet network flows based on se-

lectable information obtained from a plurality of layers of a multi-layered commu-

nication protocol in order to define a characteristic class, then mapping the flow to 

the defined traffic class.”882 As part of this examination and extraction process, 

Riddle’s system employs a relational database (knowledge base 306) to store heu-

ristics (i.e., operations) for determining traffic classes based on parsing/extracting 

portions of a packet and matching those portions’ attributes to a traffic class.883  

                                                        

882 Riddle, 4:10-15. 
883 Riddle, 12:26-41, 9:28-42, 9:48-49. 

EX 1006 Page 403



  

 390 

694. As shown in Figure 4A’s flowchart, Riddle’s traffic classification monitor 

includes parsing and extracting packet portions: “parse flow specification from a 

packet of the flow” (step 402), “traffic matches a class?” (step 406), and “enter into 

saved list characteristics of the traffic” (step 408).884 Following the parsing, rules 

are checked and if the flow matches a traffic class an entry is made into a saved list 

with the extracted identifying information such as “protocol type (SAP), IP proto-

col number, server port, traffic type if known, MIME type, a time of occurrence of 

the traffic.”885 

695. And Riddle specifies extracting flow specification portions from the flows: 

A method for automatically classifying traffic in a packet communications 

network, said network having any number of flows, including zero, com-

prising the steps of: parsing a packet into a first flow specification, wherein 

said first flow specification contains at least one instance of any one of the 

following: a protocol family designation, a direction of packet flow desig-

nation, a protocol type designation, a pair of hosts, a pair of ports, in HTTP 

protocol packets, a pointer to a MIME type.886 

As previously discussed, a POSITA would have understood that Riddle’s “pair of 

hosts” refers to the network-layer source and destination addresses (e.g., IP ad-

dresses) and the “pair of ports” refers to the transport-layer source and destination 

                                                        

884 Riddle, 12:42-53, Fig. 4A. 
885 Riddle, 12:50-53. 
886 Riddle, claims 1, 11. 

EX 1006 Page 404



  

 391 

port numbers.  

696. Similarly, Riddle describes extracting information from a packet for Figure 

4B’s step 422 (determining whether traffic is well known), step 423 (determining 

whether traffic belongs to a server connection port of an unregistered IP port), and 

step 426 (whether traffic belongs to a service aggregate).887 

(2) Riddle discloses the claimed “parser subsystem 

configured … to output a parser record containing 

the selected portions” 

697. The ’646 Patent describes that a “parser record” may include a signature, a 

hash, the packet itself, flags related to the packet, or parts of the packet’s payload: 

In one embodiment, the parser passes data from the packet—a parser rec-

ord—that includes the signature (i.e., selected portions of the packet), the 

hash, and the packet itself to allow for any state processing that requires 

further data from the packet. An improved embodiment of the parser sub-

system might generate a parser record that has some predefined structure 

and that includes the signature, the hash, some flags related to some of the 

fields in the parser record, and parts of the packet’s payload that the parser 

subsystem has determined might be required for further processing, e.g., 

for state processing.888 

698. Riddle discloses that its parser subsystem extracts selected portions of the 

accepted packet and outputs a parser record containing the selected portions in the 

                                                        

887 Riddle, 13:36-62, Fig. 4B. 
888 ’646 Patent, 9:29-39. 

EX 1006 Page 405



  

 392 

same way. As shown in Figure 4A’s flowchart, Riddle teaches flow parsing (step 

402) in order to compare the flow with traffic classes (steps 404 and 406). Riddle 

further describes extracting identifying characteristics, i.e. signature, for the 

flow.889 And Riddle specifies parsing and extracting portions of the received 

packet. For example, Riddle discloses extracting patterns and/or reference strings 

from headers.890  

699. To the extent Patentee asserts that the parser record requires hashing a signa-

ture, i.e., identifying characteristics, for the packet, such a modification would have 

been obvious to a POSITA based upon a POSITA’s own knowledge and Riddle’s 

disclosures. For example, the ’646 Patent states that hashing signatures and the 

benefits of doing so were well known to a POSITA.891 This is demonstrated by 

Riddle. As discussed above in Section IV.A.1, Riddle incorporates-by-reference 

Packer as though fully set forth in Riddle. Packer teaches using hash tables 402 and 

408 to index flows for TCP connections.892 A POSITA would have known that a 

hash table of TCP flows, like Packer’s, uses a hash function for identifying charac-

teristics of the TCP connection (such as source address, destination address, and/or 

ports). And a POSITA would have known that one benefit of using a hash function 

                                                        

889 Riddle, 12:42-59. 
890 Riddle, 8:67-9:27. 
891 ’646 Patent, 9:22-28. 
892 Ex. 1031 (Packer, incorporated-by-reference into Riddle), 15:43-51, Fig. 4A. 

EX 1006 Page 406



  

 393 

is to decrease lookup times. Thus, the addition of a hash function to Riddle’s parser 

record is nothing more than the use of a known technique to improve similar de-

vices in the same way. 

700. Further, a POSITA would have understood that Riddle’s packet acquisition 

device, memory, and parser subsystem work together to achieve the goal of classi-

fying traffic.893 Thus, a POSITA would have understood that the parser subsystem 

is coupled to the input buffer memory so that packets can be read and contents ex-

tracted and processed. 

e. ’646 Claim Element 7.4:”a memory [for] storing a data-

base of one or more flow-entries for any previously en-

countered conversational flows, each flow-entry identi-

fied by identifying information stored in the flow-entry” 

701. Riddle renders obvious this element alone or in view of Ferdinand. This 

claim element is similar to ’646 claim element 1.2, and is disclosed or rendered ob-

vious by the prior art for the same reasons. I incorporate by reference my discus-

sion regarding ’646 claim element 1.2 as if fully set forth herein. 

702. Riddle teaches the claimed “each flow-entry identified by identifying infor-

mation stored in the flow-entry.” For example, Riddle discloses entering character-

istics of the traffic into the saved list (step 408).894 As discussed regarding ’646 

claim element 1.2, Riddle discloses identifying conversational flows in the form of 

                                                        

893 Riddle, 4:15-17. 
894 Riddle, 12:42-59, Fig. 4A. 

EX 1006 Page 407



  

 394 

identifying service aggregate flows and PointCast flows. And Riddle discloses that 

each flow-entry includes a flow specification and indicators, i.e., identifying infor-

mation, to identify entries.895 

703. To the extent Patentee asserts ’646 claim elements 7.2 and 7.4 require sepa-

rate physical memories, i.e., one input buffer memory and one memory for storing 

a database, the combination of Riddle and Ferdinand renders these claim elements 

obvious. Regarding the input buffer memory, the combination of Riddle and Ferdi-

nand would have resulted in a distinct input buffer memory as described regarding 

’646 claim element 7.2.  

704. Riddle already discloses two distinct memories, a memory subsystem 35a 

and a file storage subsystem 35b.896 Thus, the combination of Riddle and Ferdi-

nand would have resulted in at least two separate memories. Using different mem-

ories for different functionalities was well understood by a POSITA as confirmed 

by Ferdinand, which discloses dividing memory into four separate blocks with 

each block devoted to a different functionality.897 As discussed above, the ad-

vantages of using different memories for different functionalities was well known 

to a POSITA. And a POSITA would have been motivated to provide Riddle’s high 

                                                        

895 Riddle, 12:42-50, claims 1-2, 5, 8, 11, Figs. 4A-4B. 
896 Riddle, 6:5-8, Fig. 1A. 
897 Ferdinand, 26:2-18. 

EX 1006 Page 408



  

 395 

speed, real-time monitor with dedicated memories because, for example, dedicat-

ing memories to processors or processing functions ensures memory access times 

are reduced and system performance increased due to reduced contention for 

memory. 

f. ’646 Claim Element 7.5: “a lookup engine coupled to the 

output of the parser subsystem and to the flow-entry 

memory and configured to lookup whether the particular 

packet whose parser record is output by the parser sub-

system has a matching flow-entry, the looking up using at 

least some of the selected packet portions and determin-

ing if the packet is of an existing flow” 

705. Riddle discloses this claim element. This claim element is substantially simi-

lar to ’646 claim element 1.4, and is disclosed by Riddle for the reasons previously 

discussed. I incorporate by reference my discussion regarding ’646 claim element 

1.4 as if fully set forth herein. For example, Riddle’s Figure 4B depicts looking up 

whether a flow matches a traffic class in relation to classifying a service aggregate 

based on a plurality of indicators.898 As another example, Riddle’s Figure 4A de-

picts a flowchart that describes parsing packet flows and automatically classifying 

those packets.899 Figure 4A includes step 410 where duplicates are suppressed. By 

suppressing duplicates, Riddle’s monitor looks up whether the particular packet 

whose parser record is output by the parser subsystem has a matching flow-entry, 

                                                        

898 Riddle, 13:42-47, claim 5, Fig. 4B.  
899 Riddle, 12:42-63, Fig. 4A. 

EX 1006 Page 409



  

 396 

by way of using at least some of the selected packet portions (i.e., identifying char-

acteristics) and determining if the packet is of an existing flow.900  

706. As discussed regarding ’646 claim element 1.4, a POSITA would have un-

derstood that Riddle’s lookup engine is a processor and that corresponding code 

performs the functions discussed above.901 For example, Riddle’s claim 8 recites 

that the matching of a parsed flow specification to a traffic class may be performed 

by a “processor means.” Further, a POSITA would have understood that Riddle’s 

lookup engine, parser subsystem, and memory work together to achieve the goal of 

classifying traffic. Thus, a POSITA would have understood that Riddle’s lookup 

engine is coupled to the output of the parser subsystem and to the flow-entry 

memory. 

g. ’646 Claim Element 7.6: “a cache subsystem coupled to 

and between the lookup engine and the flow-entry data-

base memory providing for fast access of a set of likely-

to-be-accessed flow-entries from the flow-entry database; 

and” 

707. Riddle in view of Ferdinand and/or Wakeman renders obvious this claim el-

ement. This claim element is substantially similar to ’646 claim elements 1.3 and 

1.4 and is disclosed in the prior art for the same reasons previously discussed. I in-

corporate by reference my discussion from ’646 claim elements 1.3 and 1.4 as if 

                                                        

900 Riddle, 12:43-59, Fig. 4A (steps 402, 408, 410). 
901 Riddle, 5:53-57. 

EX 1006 Page 410



  

 397 

fully set forth herein. 

708. As discussed in ’646 claim element 1.3, a POSITA would have found it ob-

vious to modify Riddle with a cache subsystem to improve performance based 

upon the admitted prior art, Ferdinand, Wakeman, or the knowledge of a POSITA. 

Ferdinand teaches using frame and transmit buffers as well as a cache couple to the 

database. Before the priority date of the Challenged Patents, a POSITA would have 

known that caches, such as queues, were found in every routing device. A POSITA 

would have been motivated to modify Riddle’s database memory with a cache, as 

taught by Ferdinand, because caches were well known to reduce look-up times. 

Based on Ferdinand’s teachings, a POSITA would have appreciated the simple im-

plementation of coupling a cache to Riddle’s lookup engine and flow-entry storage 

for fast access to the flow-entries. Using a cache with Riddle’s modified flow-entry 

database amounts to nothing more than an obvious implementation based on Ferdi-

nand’s teachings. 

709. Further, a POSITA would have understood that the combination of Riddle 

and Ferdinand results in the cache subsystem being coupled to and between the 

lookup engine and the flow-entry database in order to achieve Riddle’s goal of 

classifying traffic. A POSITA would have found it logical to position the cache 

subsystem between the lookup engine and flow-entry database to achieve Riddle’s 

EX 1006 Page 411



  

 398 

goals.902 

710. The combination of Riddle and Ferdinand would have provided for fast ac-

cess of a set of likely-to-be-accessed flow-entries. As discussed above, it was well 

known in the art that caches reduce look-up times.903 And Ferdinand teaches its 

caches allow for fast access to rewritable memory.904 In view of Ferdinand, a 

POSITA would have appreciated that a cache was easily modified to store Riddle’s 

flow-entries for fast access to likely-to-be-accessed flow-entries.  

711. Similarly, in view of Wakeman, a POSITA would have been motivated to 

modify Riddle’s flow-entry storage with a cache in order to, for example, reduce 

look-up times. And a POSITA would have found it logical to position the cache 

subsystem between the lookup engine and a flow-entry database to achieve Rid-

dle’s goals. 

712. The combination of Riddle and Wakeman would have provided for fast ac-

cess of a set of likely-to-be-accessed flow-entries. Wakeman discloses that its 

CAM-cache provides fast access: 

Since the accessing speed of CAM cache is much faster than that of FDB 

12, the inclusion of CAM caches 31-34 in a network switch as described 

                                                        

902 ’646 Patent, 2:36-51; ’646 Prosecution History, 193-200 (09/10/2003 Office 

Action, p.3). 
903 646 Patent, 2:36-51; ’646 Prosecution History, 197-198 (09/10/2003 Office Ac-

tion, p.7). 
904 Ferdinand, 18:25-29, 28:16-20. 

EX 1006 Page 412



  

 399 

above results in an increase in forwarding speed. Note that although the 

FDB 12 in switch 20 is preferably a RAM, CAM caches 31-34 will de-

crease the access time and thus increase forwarding speeds irrespective of 

the particular construction of FDB 12 (e.g., where FDB 12 is a hardware 

CAM as opposed to RAM).905 

The packet is then forwarded to the destination port, and the CAM-cache 

is updated with this mapping so that succeeding packets having the same 

destination address-to-port mapping may be forwarded to the destination 

port by accessing only the fast CAM-cache and, by eliminating the need to 

access the much slower forwarding database, increasing the forwarding 

speed of the switch.906  

Applicants have found that where CAM caches 31-34 are of such a size 

that approximately 90% of all packet forwarding is service by CAM caches 

31-34 without resort to FDB 12, switch 20 achieves forwarding speeds as 

much as ten times faster as compared to with conventional network 

switches utilizing only a RAM FDB 12.907 

713. Further, Wakeman describes the CAM’s fast access is for a set of likely-to-

be-accessed entries. Wakeman discloses that learning/aging logic 38 is responsible 

for determining what entries are stored in the CAM-cache.908 When CAM’s 

memory is full and entries need to be removed, Wakeman teaches that learning/ag-

                                                        

905 Wakeman, 4:5-13. 
906 Wakeman, Abstract. 
907 Wakeman, 5:22-27. 
908 Wakeman, 4:31-40, Fig. 3. 

EX 1006 Page 413



  

 400 

ing logic 38 removes either: (1) the least frequently access entry or (2) the least re-

cently accessed entry. In doing so, Wakeman’s learning/aging logic ensures that 

the CAM-cache contains entries that are likely to be accessed, such frequently-ac-

cessed entries or most-recently-accessed entries.909  

714. As such, a POSITA would have understood that the previously described in-

clusion of CAM-cache into Riddle’s monitor, based on Wakeman’s teachings, pro-

vides fast access and would also be for a set of likely-to-be-accessed flow-entries. 

h. ’646 Claim Element 7.7: “a flow insertion engine cou-

pled to the flow-entry memory and to the lookup engine 

and configured to create a flow-entry in the flow-entry 

database, the flow-entry including identifying infor-

mation for future packets to be identified with the new 

flow-entry” 

715. Riddle discloses this claim element. As discussed regarding ’646 claim ele-

ment 7.4, it would have been obvious to store Riddle’s flow-entry lists in a flow-

entry database.910 For example, as discussed regarding ’646 claim element 7.3, 

Riddle teaches parsing traffic to extract identifying information (step 402), com-

paring that information to traffic specifications (step 404), determining whether the 

traffic matches one of the classes being classified (step 406), and entering the iden-

tifying characteristics into a saved list (step 408).911  

                                                        

909 Wakeman, 4:31-40. 
910 Riddle, 12:37-38, Fig. 3. 
911 Riddle, 12:42-59, Fig. 4A. 

EX 1006 Page 414



  

 401 

716. Riddle’s step 408 shows that its monitor creates a flow-entry in the flow-en-

try database with identifying information. Further, Riddle’s step 410 (“suppress 

duplicates”) shows that monitor uses the identifying information for future packets 

to be identified with the flow-entry because duplicates can only be suppressed if 

they are identified. 

717. A POSITA would have understood that Riddle’s flow insertion engine corre-

sponds to Riddle’s processor and the corresponding code performing the functions 

discussed above: “The method for automatically classifying heterogeneous packets 

in a packet telecommunications environment of the present invention is imple-

mented in the C programming language and is operational on a computer system 

such as shown in FIG. 1A.”912 Further, a POSITA would have understood that Rid-

dle’s flow insertion engine, lookup engine, and memory work together to achieve 

the goal of classifying traffic. Thus, a POSITA would have understood that Rid-

dle’s flow insertion engine is coupled to the flow-entry memory and to the lookup 

engine. 

718. To the extent Patentee asserts that the “parser subsystem,” “lookup engine,” 

and “flow insertion engine” of ’646 claim element 7.3, 7.5, and 7.7-7.10 require 

separate pieces of hardware, it would have been obvious to a POSITA to modify 

Riddle’s processor and programming code to be separate hardware components. 

                                                        

912 Riddle, 5:53-57. 

EX 1006 Page 415



  

 402 

This is because using dedicated hardware for various functions, especially func-

tions as common as parsing, data lookup, and protocol/state identification, would 

have been readily understood by a POSITA. The Challenged Patents acknowledge 

that such a modification would have been obvious to a POSITA: 

Each of the individual hardware elements through which the data flows in 

the system are now described with reference to FIGS. 10 and 11. Note that 

while we are describing a particular hardware implementation of the in-

vention embodiment of FIG. 3, it would be clear to one skilled in the art 

that the flow of FIG. 3 may alternatively be implemented in software 

running on one or more general-purpose processors, or only partly im-

plemented in hardware. An implementation of the invention that can op-

erate in software is shown in FIG. 14. The hardware embodiment (FIGS. 

10 and 11) can operate at over a million packets per second, while the soft-

ware system of FIG. 14 may be suitable for slower networks. To one 

skilled in the art it would be clear that more and more of the system may 

be implemented in software as processors become faster.913 

719. Further, Ferdinand discloses its monitor can include separate hardware com-

ponents for performing various functions, such real time parser (RTP) 32, database 

36, boot/load 22, and memory transport module 34, event manager 38, and control 

module 42.914 As provided below, Ferdinand’s Figure 5 illustrates its monitor hav-

ing separate hardware components. 

                                                        

913 ’646 Patent, 17:6-21. 
914 Ferdinand, 19:5-13. 

EX 1006 Page 416



  

 403 

 

720. Desiring increased performance, a POSITA would have been motivated to 

utilize dedicated hardware components for parsing, lookups, and flow insertions. 

On the other hand, a POSITA would have understood that Riddle’s use of a proces-

sor for these functions is less expensive and a more extensible solution than using 

dedicated hardware components. 

i. ’646 Claim Element 7.8: “the lookup engine configured 

such that if the packet is of an existing flow, the monitor 

classifies the packet as belonging to the found existing 

flow; and” 

721. Riddle discloses this claim element. As discussed in detail with respect to 

’646 claim element 7.5, Riddle teaches a lookup engine and the classification of 

traffic. 

722. If the examined packet is of an existing conversational flow, Riddle dis-

closes that its monitor classifies the packet as belonging to the found existing flow 

EX 1006 Page 417



  

 404 

via the detection and suppression of duplicates: 

FIG. 4A depicts a flowchart 401 of processing steps for automatically clas-

sifying traffic. In a step 402, a flow specification is parsed from the flow 

being classified. Then in a step 404, the flow specification parsed from the 

flow in step 402 is compared with the traffic specifications in each node of 

the classification tree. Rules are checked starting from most specific to 

least specific. In a decisional step 406, a determination is made if traffic 

matches one of the classes being classified. If this is so, then in a step 408, 

an entry is made in a list of identifying characteristics, such as protocol 

type (SAP), IP protocol number, server port, traffic type if known, MIME 

type, a time of occurrence of the traffic. In an optional step 410, duplicate 

instances having the same identifying characteristics are suppressed, in 

favor of keeping a count of the duplicates and a most recent time traffic 

with these identifying characteristics was encountered. In an optional 

step 412, a byte count of traffic of this type has been detected is included.915 

723. Further, Riddle’s flowcharts detail the monitor will “parse flow specification 

from a packet of the flow” (step 402), “compare flow specification with existing 

classification tree” (step 404), determine if “traffic matches a class?” (step 406), 

“enter into a saved list characteristics of the traffic” (step 408), “suppress dupli-

cates” (step 410), and determine if “saved traffic belongs to a service aggregate?” 

(step 426).916 For example, at Figure 4A’s steps 410 and 412, Riddle checks if the 

                                                        

915 Riddle, 12:42-59. 
916 Riddle, Figures 4A-4B. 

EX 1006 Page 418



  

 405 

flow is a new flow or an existing flow (e.g., suppressing duplicates for existing 

flows).917 If the traffic does belong to a service aggregate, then in a step 428, a 

“traffic class is created which will match all components of the service aggre-

gate.”918 

j. ’646 Claim Element 7.9: “if the packet is of a new flow, 

the flow insertion engine stores a new flow-entry for the 

new flow in the flow-entry database, including identifying 

information for future packets to be identified with the 

new flow-entry” 

724. Riddle discloses this claim element. As discussed in detail with respect to 

’646 claim element 7.7, which is incorporated by reference as if fully set forth 

herein, Riddle teaches its flow insertion engine is coupled to the lookup engine for 

creating new flow-entries. 

725. As discussed above regarding ’646 claim element 1.5, Riddle describes iden-

tifying packet flows using a classification tree. Riddle’s claims 1-3, 8, and 11 detail 

creating new tree nodes if a packet is of a new conversational flow for identifying 

future packets with the new conversational flows. For example, Riddle’s claim 1 

recites:  

A method for automatically classifying traffic in a packet communica-

tions network, said network having any number of flows, including 

                                                        

917 Riddle, 12:53-60, Fig. 4A. 
918 Riddle, 13:52-61, Fig. 4B. 

EX 1006 Page 419



  

 406 

zero, comprising the steps of: parsing a packet into a first flow specifi-

cation … thereupon, matching the first flow specification of the parsing 

step to a plurality of classes represented by a plurality nodes of a clas-

sification tree type, each said classification tree type node having a traf-

fic specification; thereupon, if a matching classification tree type node 

was not found in the matching step, associating said first flow speci-

fication with one or more newly-created classification tree type nodes; 

thereupon, incorporating said newly-created classification tree type 

nodes into said plurality of classification tree type nodes. 

726. As shown in Figure 4A’s flowchart, Riddle teaches that flow-entries include 

information to identify future packets with stored flow-entries: 

In a decisional step 406, a determination is made if traffic matches one of 

the classes being classified. If this is so, then in a step 408, an entry is 

made in a list of identifying characteristics, such as protocol type (SAP), 

IP protocol number, server port, traffic type if known, MIME type, a time 

of occurrence of the traffic. In an optional step 410, duplicate instances 

having the same identifying characteristics are suppressed, in favor of 

keeping a count of the duplicates and a most recent time traffic with these 

identifying characteristics was encountered. In an optional step 412, a byte 

count of traffic of this type has been detected is included.919 

727. Riddle’s flowchart details the monitor will “parse flow specification from a 

packet of the flow” (step 402), “compare flow specification with existing classifi-

cation tree” (step 404), determine if “traffic matches a class?” (step 406), “enter 

                                                        

919 Riddle, 12:42-59. 

EX 1006 Page 420



  

 407 

into a saved list characteristics of the traffic” (step 408), “suppress duplicates” 

(step 410), and “determine byte count for traffic and include with traffic specifica-

tion in saved list” (step 412).920 Riddle’s step 408 shows checking saved flow-entry 

list to determine whether a flow corresponds to a saved flow is a new flow. And 

Riddle’s step 410 shows using identification information for future packets to be 

identified with the stored flow-entries because step 410’s duplicates can only be 

suppressed if they are identified. 

728. Regarding identifying service aggregate flows in Figure 4B (annotated be-

low), Riddle details storing a new flow-entry for a new conversational flow in-

cludes information to identify future packets with the new flow-entry: 

In decisional step 426, the instance of saved traffic is examined to de-

termine whether it belongs to a service aggregate. For example, an FTP 

session has one flow that is used to exchange commands and responses 

and a second flow that is used to transport data files. If the traffic does 

belong to a service aggregate, then in a step 428, a traffic class is cre-

ated which will match all components of the service aggregate. In a 

further step 425, a new traffic class is created to match the instance 

of saved traffic.921 

                                                        

920 Riddle, Figure 4A. 
921 Riddle, 13:53-61, 15:16-27. 

EX 1006 Page 421



  

 408 

 

k. ’646 Claim Element 7.10: “wherein the operation of the 

parser subsystem depends on one or more of the proto-

cols to which the packet conforms” 

729. Riddle discloses this claim element. Riddle specifies that its parser subsys-

tem operates to apply “individual instances of traffic classification paradigms to 

packet network flows based on selectable information obtained from a plurality of 

layers of a multi-layered communication protocol in order to define a characteristic 

EX 1006 Page 422



  

 409 

class, then mapping the flow to the defined traffic class.”922 As part of this opera-

tion, Riddle discloses a relational database (knowledge base 306) to store heuristics 

(i.e., operations) for determining traffic classes based on parsing/extracting por-

tions of a packet and matching those portion’s attributes to a traffic class.923 For ex-

ample, Riddle discloses detecting “Marimba and pointcast” traffic by “looking into 

the data for a signature content header in the get request” and Real Time Protocol 

(RTP) traffic by determining “the identity of the creator of the connection.”924 

730. As a result, a POSITA would have understood that the operation of Riddle’s 

parser subsystem depends on one or more of the protocols to which the examined 

packet conforms. 

731. Riddle’s parsing varies based upon the protocol since Riddle discloses clas-

sifying traffic at any level: 

Traffic classes may be defined at any level of the IP protocol as well as 

for other non-IP protocols. For example, at the IP level, traffic may be 

defined as only those flows between a specificed [sic] set of inside and 

outside IP addresses or domain names. An example of such a low level 

traffic class definition would be all traffic between my network and other 

corporate offices throughout the Internet. At the application level, traffic 

classes may be defined for specific URIs within a web server. Traffic 

                                                        

922 Riddle, Abstract, 4:10-15. 
923 Riddle, 12:26-41, 9:28-42, 9:48-49. 
924 Riddle, 11:48-67, 12:3-12. 

EX 1006 Page 423



  

 410 

classes may be defined having “Web aware” class attributes. For exam-

ple, a traffic class could be created such as all URIs matching “*.html” for 

all servers, or all URI patterns matching “*.gif” for server X, or for access 

to server Y with URI pattern “/sales/*” from client Z, wherein ‘*’ is a wild-

card character, i.e., a character which matches all other character combi-

nations. Traffic class attributes left unspecified will simply match any 

value for that attribute. For example, a traffic class that accesses data ob-

jects within a certain directory path of a web server is specified by a URI 

pattern of the directory path to be managed, e.g. “/sales/*” . … 

The present invention provides a method for classifying traffic according 

to a definable set of classification attributes selectable by the manager, in-

cluding selecting a subset of traffic of interest to be classified. The inven-

tion provides the ability to classify and search traffic based upon multiple 

orthogonal classification attributes. 

Traffic class membership may be hierarchical. Thus, a flow may be classi-

fied by a series of steps through a traffic class tree, with the last step (i.e., 

at the leaves on the classification tree) mapping the flow to a policy. The 

policy is a rule of assignment for flows. Web traffic may also be classified 

by HTTP header types such as Content-Type (MIME type) or User-

Agent.925 

732. Riddle’s Table 2 provides examples of information used to build traffic clas-

ses.926 Based on Table 2, an exemplary traffic class may be defined depending on 

one or more protocols to which the packet conforms. 

                                                        

925 Riddle, 8:47-9:27. 
926 Riddle, 9:64-65. 

EX 1006 Page 424



  

 411 

 

733. Thus, in order to determine if traffic matches a class at any level in the IP 

protocol stack, a POSITA would have understood that the operation of Riddle’s 

parsing subsystem depends on the one or more of the protocols of the received 

packets. 

734. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious claim 7 of the ’646 Patent. 

6. Independent ’646 Claim 16 

735. It is my opinion that independent claim 16 of the ’646 Patent is obvious in 

light of Riddle in view of Ferdinand and in light of Riddle in view of Ferdinand 

and Wakeman. 

EX 1006 Page 425



  

 412 

a. ’646 Claim 16’s Preamble: “A method of examining 

packets passing through a connection point on a com-

puter network, each packets [sic] conforming to one or 

more protocols, the method comprising” 

736. Riddle discloses all elements of this preamble. This preamble is similar to 

the preambles of ’646 claims 1 and 7, and is disclosed by the prior art for the same 

reasons. I incorporate by reference my discussions regarding the preambles of ’646 

claims 1 and 7 as if fully set forth herein. The prior art’s substantive disclosures are 

located above in my discussion regarding the preamble of ’646 claim 1. 

b. ’646 Claim Element 16.1: “(a) receiving a packet from a 

packet acquisition device” 

737. Riddle discloses this claim element. This claim element is similar to ’646 

claim elements 1.1 and 7.1, and is disclosed by the prior art for the same reasons. I 

incorporate by reference my discussions regarding ’646 claim elements 1.1 and 7.1 

as if fully set forth herein. The prior art’s substantive disclosures are located above 

in my discussion regarding ’646 claim element 1.1. 

c. ’646 Claim Element 16.2: “(b) performing one or more 

parsing/extraction operations on the packet to create a 

parser record comprising a function of selected portions 

of the packet” 

738. Riddle discloses this claim element. This claim element is similar to ’646 

claim element 7.3, and is disclosed by the prior art for the same reasons. I incorpo-

rate by reference my discussions regarding ’646 claim element 7.3 as if fully set 

EX 1006 Page 426



  

 413 

forth herein. The prior art’s substantive disclosures are located above in my discus-

sion regarding ’646 claim element 7.3. For example, Riddle teaches performing 

parsing/extraction operations on packets that create a parser record that includes a 

flow specification of the packet. Riddle’s flow specification is a function of the se-

lected portions of the examined packet. 

d. ’646 Claim Element 16.3: “(c) looking up a flow-entry 

database comprising none or more flow-entries for previ-

ously encountered conversational flows, the looking up 

using at least some of the selected packet portions and 

determining if the packet is of an existing flow, the 

lookup being via a cache” 

739. Riddle renders obvious this element alone and/or in view of Ferdinand. This 

claim element is substantially similar to ’646 claim elements 1.2, 1.3, and 1.4, and 

is disclosed or rendered obvious by the prior art for the same reasons. I incorporate 

by reference my discussions regarding ’646 claim elements 1.2 to 1.4 as if fully set 

forth herein. The prior art’s substantive disclosures are located above in my discus-

sion regarding ’646 claim elements 1.2 to 1.4. For example, as discussed above, 

Riddle alone or in view of Ferdinand’s teachings would have motivated a POSITA 

to store Riddle’s lists in a flow-entry database that includes flow-entries for previ-

ously encountered flows. 

740. As discussed regarding ’646 claim element 1.2, Riddle discloses identifying 

conversational flows in the form of identifying service aggregate flows and 

PointCast flows. 

EX 1006 Page 427



  

 414 

741. As discussed regarding ’646 claim element 1.3, 1.4, and 7.6, from the per-

spective of a POSITA, Riddle in view of Ferdinand and/or Wakeman would have 

rendered obvious to modify the lookup engine with a cache such that the lookup is 

via the cache and using at least some of the selected packet portions and determin-

ing if the packet is of an existing flow. As discussed regarding ’646 claim elements 

1.4 and 7.5, Riddle teaches that its monitor determines whether each received 

packet is of an existing flow by using selected packet portions, i.e., identifying 

characteristics. In doing so, Riddle describes determining whether a flow belongs 

to a service aggregate, and tracking packet duplicates and the most recent time traf-

fic with the same identifying characteristics previously encountered. According to 

Riddle, this allows for determining if the received packet is of an existing conver-

sational flow. 

e. ’646 Claim Element 16.4: “(d) if the packet is of an exist-

ing flow, classifying the packet as belonging to the found 

existing flow; and” 

742. Riddle discloses this claim element. This claim element is substantially simi-

lar to ’646 claim element 7.8, and is disclosed by the prior art for the same reasons. 

I incorporate by reference my discussions regarding ’646 claim element 7.8 as if 

fully set forth herein. The prior art’s substantive disclosures are located above in 

my discussion regarding ’646 claim element 7.8. For example, Riddle discloses 

EX 1006 Page 428



  

 415 

that its monitor classifies the packet as belonging to the found existing conversa-

tional flow via the detecting whether the flow belong to a service aggregate and/or 

suppressing of duplicates.927 

f. ’646 Claim Element 16.5: “(e) if the packet is of a new 

flow, storing a new flow-entry for the new flow in the 

flow- entry database, including identifying information 

for future packets to be identified with the new flow- en-

try” 

743. Riddle discloses this claim element or renders it obvious in view of Ferdi-

nand. This claim element is substantially similar to ’646 claim element 7.9, and is 

disclosed by the prior art for the same reasons. I incorporate by reference my dis-

cussions regarding ’646 claim element 7.9 as if fully set forth herein. The prior 

art’s substantive disclosures are located above in my discussion regarding ’646 

claim element 7.9. For example, Riddle discloses creating a flow-entry in the flow-

entry database for each new conversational flow that includes identifying infor-

mation.928 

g. ’646 Claim Element 16.6: “wherein the parsing/extrac-

tion operations depend on one or more of the protocols 

to which the packet conforms” 

744. Riddle discloses this claim element. This claim element is substantially simi-

                                                        

927 Riddle, 12:42-59, 13:36-62, Figs. 4A-4B. 
928 E.g., Riddle, 12:42-59, 13:36-62, Figs. 4A-4B. 

EX 1006 Page 429



  

 416 

lar to ’646 claim element 7.10, and is disclosed by the prior art for the same rea-

sons. I incorporate by reference my discussions regarding ’646 claim element 7.10 

as if fully set forth herein. The prior art’s substantive disclosures are located above 

in my discussion regarding ’646 claim element 7.10. For example, Riddle discloses 

that its parsing/extraction operations use a relational database 306 to store heuris-

tics based on information obtained a multi-layered communication protocol to de-

fine traffic classes for parsed packet portions.929 

745. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious independent claim 16 of the ’646 Patent. 

7. Dependent ’646 Claim 18 

746. Riddle discloses all the limitations of this claim. Claim 18 depends from in-

dependent claim 16 and recites:  

A method according to claim 16, wherein the function of the selected 

portions of the packet forms a signature that includes the selected 

packet portions and that can identify future packets, wherein the lookup 

operation uses the signature and wherein the identifying information 

stored in the new or updated flow-entry is a signature for identifying 

future packets. 

747. Riddle describes the storage of identifying characteristics extracted from 

each parsed packet portion that can identify future packets:  

                                                        

929 Riddle, 4:10-15, 12:26-41, 8:47-9:49. 

EX 1006 Page 430



  

 417 

FIG. 4A depicts a flowchart 401 of processing steps for automatically 

classifying traffic. In a step 402, a flow specification is parsed from the 

flow being classified. Then in a step 404, the flow specification parsed 

from the flow in step 402 is compared with the traffic specifications in 

each node of the classification tree. Rules are checked starting from 

most specific to least specific. In a decisional step 406, a determination 

is made if traffic matches one of the classes being classified. If this is 

so, then in a step 408, an entry is made in a list of identifying charac-

teristics, such as protocol type (SAP), IP protocol number, server port, 

traffic type if known, MIME type, a time of occurrence of the traffic. 

In an optional step 410, duplicate instances having the same identifying 

characteristics are suppressed, in favor of keeping a count of the dupli-

cates and a most recent time traffic with these identifying characteris-

tics was encountered. In an optional step 412, a byte count of traffic of 

this type has been detected is included.930 

748. And Riddle’s flowchart details that the monitor will “parse flow specifica-

tion from a packet of the flow” (step 402), “compare flow specification with exist-

ing classification tree” (step 404), determine if “traffic matches a class?” (step 

406), and “enter into a saved list characteristics of the traffic” (step 408), and “sup-

press duplicates” (step 410).931 Riddle’s step 408 describes using identifying infor-

mation, i.e., a signature, to create a flow-entry in the flow-entry database for new 

                                                        

930 Riddle, 12:42-59. 
931 Riddle, Fig. 4A. 

EX 1006 Page 431



  

 418 

flows. Riddle’s identifying information includes selected portions of the packet, 

such as protocol type, IP protocol number, server port, traffic type, MIME type, 

and/or a time of occurrence of the traffic.932 And Riddle’s step 410 describes using 

the stored packet portion’s signature to identify future packets to suppress dupli-

cates of previously identified packet flows. With respect to Figure 4B, Riddle de-

tails creating a new traffic class for a new service aggregate (i.e., conversational 

flow).933 

749. To the extent Patentee argues that forming a packet portion signature re-

quires hashing a signature for the packet, such a modification would have been ob-

vious to a POSITA based upon a POSITA’s own knowledge and Riddle’s disclo-

sures. The ’646 Patent states that hashing signatures and the benefits of doing so 

were well known to a POSITA.934 And like the ’646 Patent, Riddle demonstrates 

hashing signatures. As discussed above in Section IV.A.1, Riddle incorporates-by-

reference Packer as though fully set forth in Riddle. Packer teaches using hash ta-

bles 402 and 408 to index flows for TCP connections.935 A POSITA would have 

known that a hash table of TCP flows, like Packer’s, uses a hash function for iden-

tifying characteristics of the TCP connection (such as source address, destination 

                                                        

932 Riddle, 12:42-59. 
933 Riddle, 11:11-23, 13:36-62 (Fig. 4B’s steps 425, 428).  
934 ’646 Patent, 9:22-28. 
935 Ex. 1031 (Packer), 15:43-51, Fig. 4A. 

EX 1006 Page 432



  

 419 

address, and/or ports). And a POSITA would have known one benefit of using a 

hash function is to decrease lookup times. Thus, the addition of a hash function to 

Riddle’s signature is nothing more than the use of a known technique to improve 

similar devices in the same way. 

750. As such, it is my opinion that Riddle discloses all the limitations of depend-

ent claim 16 of the ’646 Patent. And for all the reasons set forth above, it is my 

opinion that Riddle in view of Ferdinand and Wakeman renders obvious claims 1-

3, 7, 16, and 18 of the ’646 Patent. 

B. For the ’646 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of Yu Renders Obvious Claims 1-3, 7, 16, 

and 18. 

751. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’646 claims 1-3, 7, 16, and 18 is disclosed or rendered obvious in 

light of Riddle in view of Ferdinand and Wakeman and further in view of Yu. Spe-

cifically, my opinions regarding Riddle in view of Ferdinand and Wakeman are ex-

actly the same as those above in Section IX.A, but further include the teachings of 

Yu. Thus, as if fully set forth here, I incorporate the discussion from Section IX.A 

regarding the obviousness of ’646 Claims 1-3, 7, 16, and 18 over Riddle in view of 

Ferdinand and Wakeman. 

752. As discussed above, all of the Challenged Claims require “conversational 

EX 1006 Page 433



  

 420 

flows.” For example, ’646 claim element 1.2 recites “previously encountered con-

versational flows to which a received packet may belong.” While Riddle itself 

teaches identifying conversational flows, Yu further demonstrates identifying con-

versational flows through its “flow classification.”936 Further, Yu teaches flow 

classification logic that “keeps track of the flow’s state until matching criteria is 

met” when identifying whether a packet belongs to a conversational flow.937 

753. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of Yu in Section VII.C, Yu 

teaches identifying the claimed “conversational flow” by Yu’s flow classifier link-

ing multiple “streams” into a “flow” based on application or application data.938 

And as discussed in Section VII.C, Yu teaches state tracking that binds policy deci-

sions to each stream of a flow so that actions can be taken on future packets with-

out intervention from the “host” application.939 Moreover, as discussed in Section 

VII.C, Yu specifies using hash values to find corresponding policies to reduce fur-

ther complicated pattern-matching.940 I incorporate by reference that discussion as 

if fully set forth herein. 

                                                        

936 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
937 Yu, 4:62-64. 
938 Yu, 1:56-60, 3:32-49; 4:1-8. 
939 Yu, 4:57-5:13. 
940 Yu, 4:23-29. 

EX 1006 Page 434



  

 421 

754. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, I explain how 

a POSITA would have been motivated to combine Yu’s teachings into Riddle’s 

monitor. I incorporate by reference that discussion as if fully set forth herein.  

755. For the same reasons, it is my opinion that combining the teachings of Rid-

dle, Ferdinand, Wakeman, and Yu renders obvious all the claim elements relating 

to “conversational flows” as well as carrying out state operations with the state 

processor progressing through a series of states and state operations. 

756.  As set forth in my analysis of the ’646 Patent in Sections IX.A.2 through 

IX.A.7 above, Riddle, Ferdinand, and Wakeman disclose or render obvious all the 

remaining elements of ’646 claims 1-3, 7, 16, and 18. Thus, it is my opinion that 

Riddle in view of Ferdinand and Wakeman and further in view of Yu renders obvi-

ous ’646 claims 1-3, 7, 16, and 18. 

C. For the ’646 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of RFC1945 Renders Obvious Claims 1-3, 7, 

16, and 18. 

757. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’646 claims 1-3, 7, 16, and 18 is disclosed or rendered obvious in 

light of Riddle in view of Ferdinand and Wakeman, and further in view of 

RFC1945. Specifically, my opinions regarding Riddle in view of Ferdinand and 

Wakeman are exactly the same as those above in Section IX.A, but further include 

EX 1006 Page 435



  

 422 

the teachings of RFC1945. Thus, as if fully set forth here, I incorporate the discus-

sion from Section IX.A regarding the obviousness of ’646 Claims 1-3, 7, 16, and 

18 over Riddle in view of Ferdinand and Wakeman. 

758. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’646 claim element 1.2 recites “previously encountered con-

versational flows to which a received packet may belong.” While Riddle itself 

teaches identifying conversational flows, RFC1945 further demonstrates identify-

ing conversational flows through the additional example of the use of HTTP 

header fields. 

759. As discussed with respect to the obviousness of ’099 claims 1 and 2 in view 

Riddle, Ferdinand, and RFC1945 in Section VII.E, I understand that Patentee and 

its technical expert have taken the position that the HTTP Referrer field can be 

used to create a conversational flow. I incorporate by reference that discussion as if 

fully set forth herein.  

760. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I ex-

plain how a POSITA would have been motivated to combine RFC1945’s teachings 

into Riddle’s monitor. I incorporate by reference that discussion as if fully set forth 

herein. For the same reasons, it is my opinion that combining the teachings of Rid-

EX 1006 Page 436



  

 423 

dle, Ferdinand, Wakeman, and RFC1945 renders obvious all the claim elements re-

lating to “conversational flows,” at least under Patentee’s interpretation for that 

term. 

761. As set forth in my analysis of the ’646 Patent in Sections IX.A.2 through 

IX.A.7 above, Riddle, Ferdinand, and Wakeman disclose or render obvious all the 

remaining elements of ’646 claims 1-3, 7, 16, and 18. Thus, it is my opinion Riddle 

in view of Ferdinand and Wakeman and further in view of RFC1945 renders obvi-

ous ’646 claims 1-3, 7, 16, and 18 at least under Patentee’s interpretation of “con-

versational flow.” 

X. THE CLAIMS OF THE ’751 PATENT ARE UNPATENTABLE 

762. For the ’751 Patent, the challenged claims include independent claims 1 and 

17 as well as dependent claims 2, 5, 10, 14, and 15. As I detail below, it is my 

opinion that a POSITA would have recognized that each and every limitation of 

those claims is disclosed or rendered obvious by the prior art. Specifically, it is my 

opinion that Riddle in view of Ferdinand renders obvious all those claims. It is also 

my opinion that Riddle in view of Ferdinand and further in view of Yu renders ob-

vious ’751 claims 1, 2, 5, 10, 14, 15, and 17. Moreover, it is my opinion that Rid-

dle in view of Ferdinand and further in view of RFC1945 renders obvious ’751 

claims 1, 2, 5, 10, 14, 15, and 17.  

EX 1006 Page 437



  

 424 

A. For the ’751 Patent, Riddle in View of Ferdinand Renders Obvi-

ous Claims 1, 2, 5, 10, 14, 15, and 17. 

763. It is my opinion that a POSITA would have recognized that each and every 

limitation of ’751 claims 1, 2, 5, 10, 14, 15, and 17 is disclosed or rendered obvi-

ous by the prior art. Specifically, it is my opinion that ’751 claims 1, 2, 5, 10, 14, 

16, and 17 are obvious over Riddle in view of Ferdinand. 

1. Reasons to Modify Riddle in View of Ferdinand 

764. As described above with respect to the ’099 Patent in Section VII.A.1, a 

POSITA would have been motivated and found it obvious to combine the teach-

ings of Riddle and Ferdinand. 

2. Independent ’751 Claim 1 

a. ’751 Claim 1’s Preamble: “A method of analyzing a flow 

of packets passing through a connection point on a com-

puter network, the method comprising” 

765. Riddle discloses all elements of this preamble. This preamble is similar to 

the preambles of ’646 claim 1 and ’099 claim 1, except that they are apparatus 

claims.941 ’751 claim 1’s preamble is disclosed in the prior art for the same reasons, 

and I incorporate my discussions of the preambles of ’646 claim 1 and ’099 claim 

1 as if fully set forth herein. 

                                                        

941 ’646 claim 1 and ’099 claim 1 both recite “[a] packet monitor for examining 

packet[s] passing through a connection point on a computer network ….” 

EX 1006 Page 438



  

 425 

b. ’751 Claim Element 1.1: “(a) receiving a packet from a 

packet acquisition device coupled to the connection 

point” 

766. Riddle discloses this claim element, which is similar to ’725 element 10.1 

and ’646 claim element 1.1 and disclosed in the prior art for the same reasons.942 I 

incorporate by reference my discussions of those elements as if fully set forth 

herein. 

c. ’751 Claim Element 1.2: “(b) for each received packet, 

looking up a flow-entry database for containing one or 

more flow-entries for previously encountered conversa-

tional flows, the looking up to determine if the received 

packet is of an existing flow” 

767. Riddle renders obvious this element alone and/or in view of Ferdinand. As I 

explain in my discussion of ’099 claim element 1.5, which I incorporate by refer-

ence as if fully set forth herein, Riddle teaches flow-entry lists that stores flow-en-

tries of previously-encountered flows.943 For example, Riddle’s Figure 4A shows 

the process of parsing a flow specification from a packet and then storing the flow 

                                                        

942 ’725 claim 10’s preamble recites a “method of performing protocol specific op-

erations on a packet passing through a connection point on a computer network,” 

the first step of which—i.e., element 10.1—is “receiving the packet.” ’646 claim 

element 1.1 recites “a packet acquisition device coupled to the connection point 

and configured to receive packets passing through the connection point.” 
943 Riddle, 12:37-59, Fig. 3. 

EX 1006 Page 439



  

 426 

specifications in the saved list.944 And Riddle’s Figure 4B shows accessing previ-

ously-encountered flow-entries stored in the database to determine if the received 

packet is of an existing flow.945  

768. As discussed with respect to ’099 claim element 1.5 and ’646 claim element 

1.2, a POSITA would have been motivated and found it obvious to store Riddle’s 

flow-entries in a database based upon a POSITA’s own knowledge of network de-

vices or the disclosures in Ferdinand.  

769. Further, as discussed with respect to ’099 claim element 1.4 and ’646 claim 

element 1.2, Riddle’s identification of flows as “service aggregates” and/or classi-

fication of separate flows as PointCast traffic teaches the claimed flow-entries for 

previously encountered “conversational flows.”  

d. ’751 Claim Element 1.3: “a conversational flow includ-

ing an exchange of a sequence of one or more packets in 

any direction between two network entities as a result of 

a particular activity using a particular layered set of one 

or more network protocols, a conversational flow further 

having a set of one or more states, including an initial 

state” 

770. Riddle discloses this claim element. In the preceding section for ’751 claim 

element 1.2, I noted at least two ways in which Riddle teaches flow-entries for pre-

viously-encountered “conversational flows.” For similar reasons, Riddle further 

                                                        

944 Riddle, 12:42-59, Fig. 4A. 
945 Riddle, 13:35-62, Fig. 4B. 

EX 1006 Page 440



  

 427 

discloses the claimed “conversational flow including an exchange of a sequence of 

one or more packets in any direction between two network entities as a result of a 

particular activity.” For example, Riddle describes (i) conversational flows for FTP 

activities between two network entities and (ii) conversational flows for PointCast 

activities between two network entities. 

771. Further, Riddle describes network activity using the claimed “particular lay-

ered set of one or more network protocols.” For example, Riddle details using ser-

vice aggregates (claimed “conversational flows”) for identifying a packet’s set of 

network protocols: 

A service aggregate is provided for certain applications that use more than 

one connection in a particular conversation between a client and a server. 

For example, an FTP client in conversation with an FTP server employs 

a command channel and a transfer channel, which are distinct TCP ses-

sions on two different ports. In cases where two or three TCP or UDP 

sessions exist for each conversation between one client and one server, 

it is useful to provide a common traffic class i.e., the service aggregate, 

containing the separate conversations. In practice, these types of conver-

sations are between the same two hosts, but use different ports. According 

to the invention, a class is created with a plurality of traffic specifications, 

each matching various component conversations.946 

                                                        

946 Riddle, 11:10-23; 13:54-61; ’864 Provisional, 69. 

EX 1006 Page 441



  

 428 

As the above passage illustrates, Riddle teaches correlating transport-layer connec-

tions (e.g., TCP or UDP connections) to identify an application-layer conversation 

(e.g., an FTP application). Similarly, Riddle identifies a conversational flow result-

ing from PointCast activity by relating multiple application-layer HTTP connec-

tions with URLs that begin with “/FIDO-1/.”947 As was known in the art before the 

priority date of the Challenged Patents, tag FIDO-1 was used to fetch concatenated 

connection flows.948 

772. Each of Riddle’s described protocols (e.g., FTP, HTTP, TCP, UDP) and lay-

ers (e.g., application, transport) were well known in the prior art. For example, 

Riddle’s Figure 1D confirms that the OSI model shown below is “PRIOR ART.”949  

 

                                                        

947 Riddle, 11:47-67. 
948 Ex. 1036 (U.S. Patent No. 6,807,558), 30:62-31:17, 33:28-44, 39:14-40:21. 
949 Riddle, 7:35-8:46, 1D. 

EX 1006 Page 442



  

 429 

773. Additionally, Riddle specifies its conversational flows include the claimed 

“set of one or more states, including an initial state.” For example, Riddle de-

scribes determining the state of the packet’s flow to identify potential duplicates 

stored in its flow-entry lists: 

In an optional step 410, duplicate instances having the same identifying 

characteristics are suppressed, in favor of keeping a count of the duplicates 

and a most recent time traffic with these identifying characteristics was 

encountered. In an optional step 412, a byte count of traffic of this type has 

been detected is included.950 

In Figure 4A, Riddle’s flowchart details the monitor will “parse flow specification 

from a packet of the flow” (step 402), “compare flow specification with existing 

classification tree” (step 404), determine if “traffic matches a class?” (step 406), 

“enter into a saved list characteristics of the traffic” (step 408), “suppress dupli-

cates” (step 410), and “determine byte count for traffic and include with traffic 

specification in saved list” (step 412). 

774. The Challenged Patents’ claims show that updating a flow entry is a state 

operation.951 When suppressing duplicates, Riddle teaches updating the flow entry 

                                                        

950 Riddle, 12:53-59. 
951 E.g., ’646 claim 15 (“wherein the state operations include updating the flow-en-

try, including identifying information for future packets to be identified with the 

flow-entry”); ’751 claim 14; ’789 claims 15, 30, 45. 

EX 1006 Page 443



  

 430 

with “a count of the duplicates and a most recent time traffic with these identifying 

characteristics was encountered.”952  

775. Further, the Challenged Patents’ claims show that determining metrics is a 

state operation.953 Riddle similarly discloses determining metrics, such as a count 

of the duplicates, a most recent time traffic with these identifying characteristics 

was encountered, and a byte count of traffic of this type that has been detected.954  

776. As such, Riddle discloses the claimed “conversational flow further having a 

set of one or more state, including an initial state.” For the three states discussed 

above, a POSITA would have understood Riddle’s initial state to be a count of zero 

duplicates, the time when the initial traffic with these identifying characteristics 

was received, and the byte count of the initial traffic. 

777. Further, as I discuss regarding ’099 claim element 1.7, which I incorporate 

by reference as if fully set forth herein, Riddle provides an example state transition 

pattern (e.g., Client IP/Subnet B/FTP/FTP-cmd/FTP service aggregate) for flow 

belongs to a service aggregate with flows involving FTP applications.955 As exem-

plified in Figure 4B, Riddle’s classification tree includes determining the state of a 

                                                        

952 Riddle, 12:53-59, Fig. 4A. 
953 E.g., ’751 claim 16 (“wherein one or more metrics related to the state of the 

flow are determined as part of the state operations specified for the state of the 

flow”). 
954 Riddle, 12:53-59, Fig. 4A. 
955 Riddle, 11:10-23; 13:52-57; Fig. 4B. 

EX 1006 Page 444



  

 431 

service aggregate flow (i.e., “conversational flow”) at Step 426, and determines the 

initial state of a new service aggregate flow at Step 428.956 And Packer, which Rid-

dle incorporates-by-reference, describes a traffic-classification system illustrated in 

Figure 5F, below.957 Packer further describes traversing a set of predefined states 

by recursively processing though matching child-class definitions.958 

 

                                                        

956 Riddle, 11:10-23, 13:36-62, Fig. 4B. 
957 Riddle, 1:38-44. 
958 Ex. 1031 (Packer), 18:1-26. 

EX 1006 Page 445



  

 432 

e. ’751 Claim Element 1.4: “(c) if the packet is of an exist-

ing flow, identifying the last encountered state of the 

flow, performing any state operations specified for the 

state of the flow, and updating the flow-entry of the exist-

ing flow including storing one or more statistical 

measures kept in the flow-entry; and” 

778. Riddle discloses this claim element, which is similar to ’646 claim elements 

7.8 and 16.4 and disclosed in the prior art for the same reasons. I incorporate by 

reference my discussions of those elements as if fully set forth herein. 

779. As discussed regarding ’751 claim element 1.3, Riddle teaches performing 

the state operation of determining whether flow matches a traffic class in relation 

to classifying a service aggregate , and determining statistical metrics such as (i) a 

count of the duplicates, (ii) the most recent time traffic with the same identifying 

characteristics was encountered, and (iii) a byte count of the detected traffic.959 For 

existing flows, Riddle specifies storing “a count of the duplicates and a most recent 

time traffic with these identifying characteristics was encountered.”960 

780. As described in the Challenged Patents, the packet monitor determines the 

state of the flow based on the relationship of packets and the entire flow.961 And 

the Challenged Patents state that the state of the flow includes “parameters such as 

                                                        

959 Riddle, 12:42-13:8, 14:1-5, Fig. 4A. 
960 Riddle, 12:56-57, Fig. 4A. 
961 E.g., ’099 Patent, 5:27-34. 

EX 1006 Page 446



  

 433 

the time, length of the conversational flow, data rate, etc.”962 Moreover, the Chal-

lenged Patents’ claims show that updating a flow entry is a state operation963 and 

determining metrics is a state operation.964  

781. Further, Riddle describes displaying a hierarchical classification tree that 

shows state operations related to FTP. For example, Riddle presents classes “to 

host 1,” “tcp,” and “FTP.”965 As previously discussed, a POSITA would have un-

derstood that transitioning from one class to the next in this hierarchy involves 

state operations.  

782. In connection with Figure 4A, Riddle describes analyzing information iden-

tifying the characteristics of the traffic as the classifier parses packets of a flow and 

matches the parsed packets to a class.966 Riddle describes that after an initial classi-

fication, “sub-classification” proceeds in a sequential manner by performing finer 

grade matchings as characteristics such as the hosts and services are identified, 

leading to matching of a flow with operation of a particular application program. 967 

                                                        

962 E.g., ’099 Patent, 5:27-34. 
963 E.g., ’646 claim 15 (“wherein the state operations include updating the flow-en-

try, including identifying information for future packets to be identified with the 

flow-entry”); ’751 claim 14; ’789 claims 15, 30, 45. 
964 ’751 claim 16 (“wherein one or more metrics related to the state of the flow are 

determined as part of the state operations specified for the state of the flow”). 
965 Riddle, 13:11-22. 
966 Riddle, 12:42-48. 
967 Riddle, 11:25-31, 13:11-22. 

EX 1006 Page 447



  

 434 

In accordance with the classification tree, Riddle’s classifier advances through the 

sequence of packets in a particular traffic flow to parse and classify those packets. 

This results in Riddle’s classifier performing a corresponding state operation at 

each node to update the identifying characteristics of the flow. 

783. Accordingly, Riddle teaches this claim element because Riddle’s monitor 

can identify the last encountered state of the flow and perform any state operations 

specified for the state of the flow. And Riddle teaches updating the flow-entry of 

the existing flow, including determining whether flow matches a traffic class in re-

lation to classifying a service aggregate , and storing one or more statistical 

measures kept in the flow-entry by determining and updating metrics such as (i) a 

count of the duplicates, (ii) the most recent time traffic with the same identifying 

characteristics was encountered, and (iii) a byte count of the detected traffic.968 

                                                        

968 Riddle, 12:53-13:8, 14:1-5, Fig. 4A (Step 410 “suppress duplicates” and Step 

412 “determine byte count for traffic and include with traffic specification in saved 

list”). 

EX 1006 Page 448



  

 435 

f. ’751 Claim Element 1.5: “(d) if the packet is of a new 

flow, performing any state operations required for the in-

itial state of the new flow and storing a new flow-entry 

for the new flow in the flow-entry database, including 

storing one or more statistical measures kept in the flow-

entry” 

784. Riddle discloses this claim element, which is similar to ’646 claim elements 

7.9 and 16.5 and disclosed in the prior art for the same reasons. I incorporate by 

reference my discussions of those elements as if fully set forth herein.  

785. As discussed above regarding ’751 claim element 1.2, Riddle alone and/or in 

view of Ferdinand renders obvious a flow-entry database for storing flow-entries. 

For example, Riddle describes storing flow-entries in lists 308: 

A traffic classifier 304 detects services for incoming traffic. … A plurality 

of saved lists 308 stores classified traffic pending incorporation into traffic 

tree 302. In select embodiments, entries for each instance of traffic may be 

kept. In alternate embodiments, a copy of an entry and a count of duplicate 

copies for the entry is maintained. 

FIG. 4A depicts a flowchart 401 of processing steps for automatically clas-

sifying traffic…. In a decisional step 406, a determination is made if traffic 

matches one of the classes being classified. If this is so, then in a step 408, 

an entry is made in a list of identifying characteristics, such as protocol 

type (SAP), IP protocol number, server port, traffic type if known, MIME 

type, a time of occurrence of the traffic. In an optional step 410, duplicate 

instances having the same identifying characteristics are suppressed, in fa-

vor of keeping a count of the duplicates and a most recent time traffic with 

these identifying characteristics was encountered. In an optional step 412, 

EX 1006 Page 449



  

 436 

a byte count of traffic of this type has been detected is included…. 

In an optional step 413 (not show), after the processing of flowchart 401 

completes or at periodic intervals or on demand, a list of traffic classes 

produced in steps 402 through 412 are displayed to a network manager. 

The list may be sorted by any well-known criteria such as: 1) most “hits” 

during a recent interval, 2) most recently-seen (most recent time first), 3) 

most data transferred (bytes/second) during some interval, or a moving av-

erage.969 

786. For new flow entries, Riddle discloses the state operation of creating a new 

flow entry such as Figure 4A’s step 408 and a new class in Figure 4B’s step 425 

for service aggregate classes. A POSITA would have understood that Riddle’s cre-

ation of a new flow entry and a new class are examples of state operations for the 

initial state of the new flow. Indeed, the Challenged Patents confirm that creating a 

new flow entry with identifying information is a state operation: 

A method … wherein one of the state operations specified for at least one 

of the states includes creating a new flow-entry for future packets to be 

identified with the flow, the new flow-entry including identifying infor-

mation for future packets to be identified with the flow-entry.970 

787. Further, as shown above, Riddle discloses the state operations of updating 

flow-entries and determining metrics such as (a) determining whether flow matches 

                                                        

969 Riddle, 12:27-13:5. 
970 ’789 Claim 47. 

EX 1006 Page 450



  

 437 

a traffic class in relation to classifying a service aggregate, (b) a count of the dupli-

cates (which would be zero for a new flow), (c) a most recent time traffic with these 

identifying characteristics was encountered, and (d) a byte count of traffic of this 

type that has been detected. Riddle teaches these updates and metrics are stored in 

the saved list.971 The ’751 Patent acknowledges that determining metrics is a state 

operation.972 As such, a POSITA would have understood that each of Riddle’s state 

operations is an example of state operations for the initial state of the new flow. 

788. Thus, Riddle discloses that, if the packet is of a new flow, the monitor per-

forms any state operations required for the initial state of the new flow and stores a 

new flow-entry for the new flow in the flow-entry database, including creating a new 

traffic class for newly-encountered service aggregate and storing one or more statis-

tical measures kept in the flow-entry. 

g. ’751 Claim Element 1.6: “wherein every packet passing 

through the connection point is received by the packet 

acquisition device, and” 

789. Riddle discloses this claim element, which is similar to ’099 claim element 

1.1 and ’646 claim elements 1.1 and 7.1 and disclosed in the prior art for the same 

reasons. I incorporate by reference my discussions of those elements as if fully set 

forth herein.  

                                                        

971 Riddle, 12:30-59, 13:36-62. 
972 ’751 Claim 16. 

EX 1006 Page 451



  

 438 

790. As discussed above regarding the preamble of ’099 claim 1, Riddle’s Figure 

1A shows a packet monitor and a packet acquisition device (e.g., network inter-

faces 40) connected to the connection point.973 And as shown in Figure 1C, Riddle 

teaches that router 75 contains a network interface and system gateway, which con-

tains a packet acquisition device coupled to the connection point.974 As illustrated 

in the ’751 Patent’s Figure 1, a POSITA would have understood that the connec-

tion point is where the packet monitor connects to the network.975  

791. Riddle describes creating flow-entries for “each instance of traffic,” which 

indicates all traffic is received by the acquisition device: 

A traffic classifier 304 detects services for incoming traffic.… A plurality 

of saved lists 308 stores classified traffic pending incorporation into traffic 

tree 302. In select embodiments, entries for each instance of traffic may 

be kept. In alternate embodiments, a copy of an entry and a count of 

duplicate copies for the entry is maintained.976 

792. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of U.S. Patent 6,046,980 (“Packer”) as though fully set forth in Riddle. 

                                                        

973 Riddle, 6:9-15, Fig. 1A. 
974 Riddle, 7:21-34, claim 8, Fig. 1C. 
975 ’751 Patent, 6:3-19, Fig. 1 (showing connection points 121, 123, 125). 
976 Riddle, 12:30-41. 

EX 1006 Page 452



  

 439 

Like Riddle, Packer describes a traffic classification system and specifies that traf-

fic flows are examined “continuously and automatically”977 and that “a determina-

tion is made whether the total rate of all flows is greater than a maximum limit.”978 

This teaching further shows that Riddle discloses examining every packet passing 

through the connection point. 

793. One of the goals of Riddle is “analyzing real traffic in a customer’s network 

and automatically producing a list of the ‘found traffic.’”979 To accomplish this 

goal, a POSITA would have understood that Riddle teaches examining every 

packet that passes through the connection point and is received by the packet ac-

quisition device before being sent to traffic classifier 304. 

794. Similarly, Riddle describes classifying a “complete enumeration of the pos-

sible traffic” and providing a default class for “all traffic” that does not match a 

user-specified class, which creates a new class to match an instance of otherwise 

non-matching traffic.980 By creating a class for otherwise non-matching traffic, 

along with keeping detailed metrics of traffic and checking for duplicates, a 

                                                        

977 Ex. 1031 (Packer), 4:12-16. 
978 Ex. 1031 (Packer), 18:58-60; 18:61-62. 
979 Riddle, 4:1-2, Abstract, 10:57-11:9. 
980 Riddle, 4:16-17, 10:52-56. 

EX 1006 Page 453



  

 440 

POSITA would have understood that Riddle receives every packet passing through 

the connection point.981 

h. ’751 Claim Element 1.7: “wherein at least one step of the 

set consisting of of [sic] step (a) and step (b) includes 

identifying the protocol being used in the packet from a 

plurality of protocols at a plurality of protocol layer lev-

els” 

795. Riddle discloses this claim element. Riddle specifies that each examined 

packet conforms to one or more protocols. For example, Riddle states its system 

maintains “network bandwidth based on information ascertainable from multiple 

layers of OSI network model.”982 And Riddle seeks to classify packet traffic “based 

upon information gathered from … multiple layers in a multi-layer protocol net-

work.”983  

796. Riddle’s Figure 1D shows the relationship diagram of the well-known prior 

art layers of the TCP/IP protocol suite. This includes the application layer 88, the 

transport layer 86, the network layer 84, the data link layer 82, and the physical 

layer 80, as shown below in Riddle’s Figure 1D. 

                                                        

981 Riddle, 10:52-56, 12:50-59, 13:1-31, 13:59-60. 
982 Riddle, 1:54-57. 
983 Riddle, 3:36-39. 

EX 1006 Page 454



  

 441 

 

797. Riddle describes these prior art layers in detail: 

FIG. 1D is illustrative of the constituents of the Transmission Control Pro-

tocol/Internet Protocol (TCP/IP) protocol suite. The base layer of the 

TCP/IP protocol suite is the physical layer 80 …. 

Overlying the physical layer is the data link layer 82. The data link layer 

provides the function and protocols to transfer data between network re-

sources and to detect errors that may occur at the physical layer. … 

Network layer protocols 84 overlay the datalink layer and provide the 

means for establishing connections between networks. … 

The transport layer protocols 86 provide end-to-end transport services 

across multiple heterogenous networks….  

The session, or application layer 88 provides a list of network applica-

tions and utilities, a few of which are illustrated here. For example, File 

Transfer Protocol (FTP) is a standard TCP/IP protocol for transferring files 

from one machine to another…. The Hypertext Transfer Protocol is a sim-

ple protocol built on top of Transmission Control Protocol (TCP). It is the 

EX 1006 Page 455



  

 442 

mechanism which underlies the function of the World Wide Web.984 

798. To classify packets, Riddle teaches assigning service levels to traffic clas-

ses.985 This includes “applying individual instances of traffic classification para-

digms to packet network flows based on selectable information obtained from a 

plurality of layers of a multi-layered communication protocol in order to define a 

characteristic class, then mapping the flow to the defined traffic class.”986  

799. Riddle details that its packet classification includes identifying the protocol 

being used in the packet at a plurality of protocol layer levels: 

Traffic classes may be defined at any level of the IP protocol as well as 

for other non-IP protocols…. At the application level, traffic classes may 

be defined for specific URIs within a web server. Traffic classes may be 

defined having “Web aware” class attributes. For example, a traffic class 

could be created such as all URIs matching “*.html” for all servers, or all 

URI patterns matching “*.gif” for server X, or for access to server Y with 

URI pattern “/sales/*” from client Z, wherein ‘*’ is a wildcard character, 

i.e., a character which matches all other character combinations…. 

The present invention provides a method for classifying traffic according 

to a definable set of classification attributes selectable by the manager, 

including selecting a subset of traffic of interest to be classified. The in-

vention provides the ability to classify and search traffic based upon mul-

tiple orthogonal classification attributes. 

                                                        

984 Riddle, 7:35-8:46. 
985 Riddle, Abstract 4:7-10, 4:60-66. 
986 Riddle, 4:10-15. 

EX 1006 Page 456



  

 443 

Traffic class membership may be hierarchical. Thus, a flow may be classi-

fied by a series of steps through a traffic class tree, with the last step (i.e., 

at the leaves on the classification tree) mapping the flow to a policy. The 

policy is a rule of assignment for flows. Web traffic may also be classified 

by HTTP header types such as Content-Type (MIME type) or User-

Agent.987 

800. Further, Riddle describes classifying traffic based on packet characteristics 

beyond protocol-layer categories:  

Network traffic is automatically classified under existing classes, begin-

ning with the broadest classes, an inbound traffic class and an outbound 

traffic class, in protocol layer independent categories. For example, a 

particular instance of traffic may be classified according to its transport 

layer characteristics, e.g., Internet Protocol port number, as well as its 

application layer information, e.g., SMTP. Characteristics such as MIME 

types may also be automatically identified. Standard protocols, such as, 

IPX, SNA, and services, such as, SMTP and FTP are recognized for auto-

matic classification. Classification is performed to the most specific level 

determinable. For example, in select embodiments, non-IP traffic, such 

as SNA, may be classified only by protocol, whereas Internet Protocol 

traffic may be classified to the /etc/services level. Classification beyond a 

terminal classification level is detected and prevented. For example, in a 

select embodiment, a class matching “ipx” or “nntp” will not be further 

automatically classified.988 

                                                        

987 Riddle, 8:57-9:27. 
988 Riddle, 10:57-11:9. 

EX 1006 Page 457



  

 444 

801. As shown below, Riddle’s Table 2 includes exemplary information from 

which traffic classes may be built.989 For example, a traffic class may be a service 

aggregate defined for an FTP application (using application-layer protocol) with 

TCP connections (using transport-layer protocol). 

 

802. Moreover, Riddle describes displaying classified traffic to a network man-

ager.990 Riddle includes an example display showing a hierarchical arrangement of 

FTP, TCP, and HTTP protocols used in the packet that were identified from a plu-

rality of protocols at a plurality of protocol layer levels: 

In an optional step 413 (not show), after the processing of flowchart 

401 completes or at periodic intervals or on demand, a list of traffic 

classes produced in steps 402 through 412 are displayed to a network 

manager. … The display can be hierarchical, as depicted in lines (3) 

below:  

FTP       (3) 

                                                        

989 Riddle, 9:64-65. 
990 Riddle, 12:64-13:23. 

EX 1006 Page 458



  

 445 

   FTP-cmd 

   FTP-data 

to host1 

   tcp 

      FTP 

          FTP-cmd 

          FTP-data 

      HTTP 

          images 

          java 

          text 

      port 9999 ….991 

i. ’751 Claim Element 1.8: “such that the flow-entry data-

base is to store flow entries for a plurality of conversa-

tional flows using a plurality of protocols, at a plurality 

of layer levels, including levels above the network layer” 

803. Riddle alone and/or in view of Ferdinand renders obvious this claim ele-

ment. As shown above regarding ’751 claim elements 1.2-1.3, Riddle discloses 

storing flow-entries for a plurality of conversational flows using protocol layer lev-

els above the network layer. And as discussed above regarding ’751 claim element 

1.2, Riddle alone and/or in view of Ferdinand renders obvious storing flow-entries 

                                                        

991 Riddle, 12:64-13:23. As shown in Ex. 1024 (’864 Provisional) (see page 24), 

the first line “FTP” of Riddle’s exemplary classification tree should be directly 

above the subclassifications “FTP-cmd” and “FTP-data.” 

EX 1006 Page 459



  

 446 

in a database. I incorporate by reference my discussion for ’751 claims elements 

1.2 and 1.3 as if fully set forth herein. 

804. For example, as discussed regarding ’751 claim elements 1.2-1.3, Riddle 

discloses storing service aggregates (claimed “conversational flows”) for a plural-

ity of TCP or UDP connections (transport layer) to determine an FTP application 

(application layer). As another example, Riddle teaches identifying conversational 

flows for PointCast connections by relating multiple HTTP connections (applica-

tion layer) with URLs that begin with “/FIDO-1/.”992 Both of these examples meet 

the claimed “conversational flows using a plurality of protocols, at a plurality of 

layer levels, including levels above the network layer.” 

805. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious claim 1 of the ’751 Patent.  

3. Dependent ’751 Claim 2 

806. Riddle discloses all the limitations of claim 2, which depends from inde-

pendent claim 1. 

a. ’751 Claim Element 2.1: “wherein step (b) includes ex-

tracting identifying portions from the packet” 

807. Riddle discloses this claim element. As shown in Figure 4A, Riddle’s steps 

402 to 408 disclose parsing and extracting information from a packet: 

• Step 402 - “Parse flow specification from a packet of the flow”; 

                                                        

992 Riddle, 11:47-67. 

EX 1006 Page 460



  

 447 

• Step 406 - “Traffic matches a class?”; and  

• Step 408 - “Enter into saved list characteristics of the traffic.”993  

If the parsed packet matches a traffic class, Riddle teaches that an entry is made 

into a saved list with the extracted identifying information such as “protocol type 

(SAP), IP protocol number, server port, traffic type if known, MIME type, a time 

of occurrence of the traffic.”994 

808. Further, Riddle’s claims 1, 8, and 11 provide examples of identification in-

formation parsed and extracted from a packet:  

[Parse/parsing] a packet into a first flow specification, wherein said first 

flow specification contains at least one instance of any one of the follow-

ing: a protocol family designation,  

a direction of packet flow designation,  

a protocol type designation,  

a pair of hosts,  

a pair of ports,  

in HTTP protocol packets, a pointer to a MIME type. 

As discussed above, a POSITA would have understood that Riddle’s “pair of 

hosts” refers to the network-layer source and destination addresses, and Riddle’s 

“pair of ports” refers to the transport-layer source and destination port numbers. 

                                                        

993 Riddle, 12:42-53. 
994 Riddle, Fig. 4A, 12:50-53. 

EX 1006 Page 461



  

 448 

b. ’751 Claim Element 2.2: “wherein the extracting at any 

layer level is a function of the protocol being used at the 

layer level, and” 

809. Riddle discloses this claim element. Riddle teaches managing “network 

bandwidth based on information ascertainable from multiple layers of OSI network 

model.”995 And Riddle’s Figure 1D illustrates the well-known prior art relationship 

between the layers of the TCP/IP protocol suite, including the application, 

transport, network, data-link, and physical layers.996  

810. To classify extracted packet portions, Riddle teaches assigning service levels 

to traffic classes.997 This includes “applying individual instances of traffic classifi-

cation paradigms to packet network flows based on selectable information ob-

tained from a plurality of layers of a multi-layered communication protocol in 

order to define a characteristic class, then mapping the flow to the defined traffic 

class.”998 Riddle specifies the “automatic classification is sufficiently robust to 

classify a complete enumeration of the possible traffic.”999  

811. Riddle details that its packet classification may be defined at any level of the 

OSI model: 

Traffic classes may be defined at any level of the IP protocol as well as 

                                                        

995 Riddle, 1:54-57. 
996 Riddle, 7:35-8:46, Fig. 1D. 
997 Riddle, Abstract 4:7-10, 4:60-66. 
998 Riddle, 4:10-15. 
999 Riddle, Abstract, 4:15-17. 

EX 1006 Page 462



  

 449 

for other non-IP protocols…. At the application level, traffic classes may 

be defined for specific URIs within a web server. Traffic classes may be 

defined having “Web aware” class attributes. For example, a traffic class 

could be created such as all URIs matching “*.html” for all servers, or all 

URI patterns matching “*.gif” for server X, or for access to server Y with 

URI pattern “/sales/*” from client Z, wherein ‘*’ is a wildcard character, 

i.e., a character which matches all other character combinations…. 

The present invention provides a method for classifying traffic according 

to a definable set of classification attributes selectable by the manager, 

including selecting a subset of traffic of interest to be classified. The in-

vention provides the ability to classify and search traffic based upon mul-

tiple orthogonal classification attributes. 

Traffic class membership may be hierarchical. Thus, a flow may be classi-

fied by a series of steps through a traffic class tree, with the last step (i.e., 

at the leaves on the classification tree) mapping the flow to a policy. The 

policy is a rule of assignment for flows. Web traffic may also be classified 

by HTTP header types such as Content-Type (MIME type) or User-

Agent.1000 

812. As shown below, Riddle’s Table 2 includes exemplary information extracted 

from a packet from which traffic classes may be built.1001 For example, a traffic 

class may be a service aggregate defined for an FTP application using a client IP 

address and a server IP address. 

                                                        

1000 Riddle, 8:57-9:27. 
1001 Riddle, 9:64-65. 

EX 1006 Page 463



  

 450 

 

813. Based on these teachings, a POSITA would have understood that Riddle’s 

packet information extraction is a function of the layer protocols being used in traf-

fic classes created by the network manager. 

c. ’751 Claim Element 2.3: “wherein the looking up uses a 

function of the identifying portions” 

814. Riddle discloses this claim element, which relates to the looking up step of 

’751 claim element 1.2 and the extracting of the identifying portions of ’751 claim 

element 2.1. 

815. As illustrated in Figure 4A, Riddle discloses using the packet’s identifying 

portions to look up flow-entries: 

FIG. 4A depicts a flowchart 401 of processing steps for automatically clas-

sifying traffic. In a step 402, a flow specification is parsed from the flow 

being classified. Then in a step 404, the flow specification parsed from 

the flow in step 402 is compared with the traffic specifications in each 

EX 1006 Page 464



  

 451 

node of the classification tree. Rules are checked starting from most spe-

cific to least specific. In a decisional step 406, a determination is made if 

traffic matches one of the classes being classified. If this is so, then in a 

step 408, an entry is made in a list of identifying characteristics, such as 

protocol type (SAP), IP protocol number, server port, traffic type if 

known, MIME type, a time of occurrence of the traffic. In an optional 

step 410, duplicate instances having the same identifying characteristics 

are suppressed, in favor of keeping a count of the duplicates and a most 

recent time traffic with these identifying characteristics was encountered. 

In an optional step 412, a byte count of traffic of this type has been detected 

is included.1002 

816. Based on these teachings, a POSITA would have understood that Riddle’s 

monitor uses the identifying characteristics (such as protocol type, IP protocol 

number, server port, traffic type, MIME type, a time of occurrence of the traffic) to 

determine whether the parsed packet matches a traffic class (e.g., service aggre-

gate) and/or is a duplicate. Thus, Riddle teaches its flow-entry lookup uses a func-

tion of the parsed packet’s identifying portions. 

4. Dependent ’751 Claim 5 

817. Riddle discloses all limitations of claim 5, which recites: “A method accord-

ing to claim 1, further including reporting one or more metrics related to the flow 

of a flow-entry from one or more of the statistical measures in the flow-entry.” 

                                                        

1002 Riddle, 12:42-59; see also step 402 to 412 of Riddle’s Fig. 4. 

EX 1006 Page 465



  

 452 

818. After progressing through the steps of Figure 4A’s flowchart 401, Riddle 

discloses reporting one or metrics by displaying the results to a network manager: 

In an optional step 413 (not show), after the processing of flowchart 401 

completes or at periodic intervals or on demand, a list of traffic classes 

produced in steps 402 through 412 are displayed to a network manager. 

The list may be sorted by any well-known criteria such as: 1) most “hits” 

during a recent interval, 2) most recently-seen (most recent time first), 3) 

most data transferred (bytes/second) during some interval, or a moving av-

erage. The user may choose an interval length or display cutoff point (how 

many items, how recent, at least B bytes per second, or other thresh-

olds).1003  

Thus, Riddle discloses displaying the received traffic sorted by metrics, such as 

most “hits” (i.e., the duplicate count), most recently seen, most data transferred, or 

moving average. 

5. Dependent ’751 Claim 10 

819. Riddle discloses all the limitations of claim 10, which depends from inde-

pendent claim 1. 

                                                        

1003 Riddle, 12:64-13:8, 14:1-5. 

EX 1006 Page 466



  

 453 

a. ’751 Claim Element 10.1: “wherein step (c) includes if 

the packet is of an existing flow, identifying the last en-

countered state of the flow and performing any state op-

erations specified for the state of the flow starting from 

the last encountered state of the flow; and” 

820. Riddle discloses this claim element. As explained in my discussion of ’751 

claim element 1.4, which I incorporate by reference, Riddle teaches, if the packet is 

of an existing flow, identifying the last encountered state of the flow and perform-

ing any state operations specified for the state of the flow.1004 The only additional 

requirement of ’751 claim element 10.1 is that the state operations start from the 

last encountered state of the flow. 

821. As shown regarding ’751 claim element 1.4, Riddle discloses performing the 

state operations for the state of the flow by updating flow entries, including deter-

mining whether a flow belongs to a stored service aggregate flow (i.e., conversa-

tional flow), and determining statistical metrics for (i) a count of the duplicates, (ii) 

the most recent time traffic with the same identifying characteristics was encoun-

tered, and (iii) the byte count of the detected traffic.1005  

822. A POSITA would have understood that each of these state operations start 

from the last encountered state. For example, Riddle’s service aggregate flow 

                                                        

1004 ’751 claim element 1.4 recites “(c) if the packet is of an existing flow, identify-

ing the last encountered state of the flow, performing any state operations specified 

for the state of the flow ….” 
1005 Riddle, 12:42-59, 13:1-8, 13:36-14:5, Figs. 4A-4B. 

EX 1006 Page 467



  

 454 

check starts from previous encounter.1006 Similarly, Riddle’s count of duplicates 

starts from the previous count.1007 And Riddle’s most recent time traffic was en-

countered starts with the previous time.1008 Further, Riddle’s byte count starts from 

the previous byte count.1009 

823. As I discuss above with respect to ’751 claim element 1.4, Riddle describes 

displaying a hierarchical classification tree that shows state operations related to 

FTP. For example, Riddle presents classes “to host 1,” “tcp,” and “FTP.”1010 A 

POSITA would have understood that transitioning from one class to the next in this 

hierarchy involves performing state operations specified for the state of the flow 

starting from the last encountered state of the flow. Examples of these state opera-

tions include saving TCP-session information from classified TCP packets ex-

changed with the host, and aggregating saved TCP-sessions belonging to the in-

stance of FTP application being classified. 

824. As I also discussed with respect to ’751 claim element 1.4, in connection 

with Figure 4A, Riddle describes analyzing information identifying the characteris-

tics of the traffic as the classifier parses packets of a flow and matches the parsed 

                                                        

1006 Riddle, 13:36-62, Fig. 4B. 
1007 Riddle, 12:42-59, Fig. 4A. 
1008 Riddle, 12:42-59, 13:1-8, 14:1-5, Fig. 4A. 
1009 Riddle, 12:42-59, 13:1-8, 14:1-5, Fig. 4A. 
1010 Riddle, 13:11-22. 

EX 1006 Page 468



  

 455 

packets to a class.1011 Riddle describes that after an initial classification, “sub-clas-

sification” proceeds in a sequential manner by performing finer grade matchings as 

characteristics such as the hosts and services are identified, leading to matching of 

a flow with operation of a particular application program. 1012 In accordance with 

the classification tree, Riddle’s classifier advances through the sequence of packets 

in a particular traffic flow to parse and classify those packets. This results in Rid-

dle’s classifier performing a corresponding state operation at each node to update 

the identifying characteristics of the flow. 

b. ’751 Claim Element 10.2: “wherein step (d) includes if 

the packet is of a new flow, performing any state opera-

tions required for the initial state of the new flow” 

825. Riddle discloses this claim element, which is similar to ’751 claim element 

1.5 and disclosed in the prior art for the same reasons.1013 I incorporate by refer-

ence my discussions of ’751 claim element 1.5 as if fully set forth herein. 

6. Dependent ’751 Claim 14 

826. Riddle discloses all limitations of claim 14, which recites: “A method ac-

cording to claim 10, wherein the state operations include updating the flow-entry, 

including storing identifying information for future packets to be identified with 

                                                        

1011 Riddle, 12:42-48. 
1012 Riddle, 11:25-31, 13:11-22. 
1013 The only difference is that ’751 claim element 1.5 also recites “storing a new 

flow-entry for the new flow in the flow-entry database, including storing one or 

more statistical measures kept in the flow-entry.” 

EX 1006 Page 469



  

 456 

the flow-entry.” The claim recites elements similar to ’646 claim elements 7.9 and 

16.5, and is disclosed in the prior art for the same reasons. I incorporate by refer-

ence my discussions of those elements as if fully set forth herein.  

827. As explained in my discussion of ’751 claim 10, which I incorporate by ref-

erence, Riddle teaches updating flow entries with (a) whether flow belongs to pre-

viously-encountered service aggregate flow, (b) the count of the duplicates, (c) the 

most recent time traffic with the same identifying characteristics was encountered, 

and (d) the byte count of the detected traffic.1014  

828. Further, Riddle’s claims 1-3, 8, and 11 detail creating new tree nodes if a 

packet is of a new flow so future packets can be identified with the new flows. For 

example, Riddle’s claim 1 recites:  

A method for automatically classifying traffic in a packet communica-

tions network, said network having any number of flows, including 

zero, comprising the steps of: parsing a packet into a first flow specifi-

cation … thereupon, matching the first flow specification of the parsing 

step to a plurality of classes represented by a plurality nodes of a clas-

sification tree type, each said classification tree type node having a traf-

fic specification; thereupon, if a matching classification tree type node 

was not found in the matching step, associating said first flow speci-

fication with one or more newly-created classification tree type nodes; 

thereupon, incorporating said newly-created classification tree type 

                                                        

1014 Riddle, 12:53-58, 13:36-62, Figs. 4A-4B. 

EX 1006 Page 470



  

 457 

nodes into said plurality of classification tree type nodes. 

829. As shown in Figure 4A’s flowchart, Riddle teaches that flow-entries include 

information to identify future packets with stored flow-entries: 

In a decisional step 406, a determination is made if traffic matches one of 

the classes being classified. If this is so, then in a step 408, an entry is 

made in a list of identifying characteristics, such as protocol type (SAP), 

IP protocol number, server port, traffic type if known, MIME type, a time 

of occurrence of the traffic. In an optional step 410, duplicate instances 

having the same identifying characteristics are suppressed, in favor of 

keeping a count of the duplicates and a most recent time traffic with these 

identifying characteristics was encountered. In an optional step 412, a byte 

count of traffic of this type has been detected is included.1015 

830. Regarding identifying service aggregate flows in Figure 4B, Riddle de-

scribes storing a new flow-entry for a new flow. Riddle’s new flow-entry includes 

information to identify future packet with the new flow entry.1016  

831. As such, a POSITA would have understood that Riddle’s identifying infor-

mation (such as protocol type, IP protocol number, server port, traffic type, MIME 

type, a time of occurrence of the traffic) is identifying information for future pack-

ets to be identified with the flow-entry. 

                                                        

1015 Riddle, 12:37-59; see also steps 402 to 412 of Riddle’s Fig. 4A. 
1016 Riddle, 13:53-61, 15:16-27, Fig. 4B. 

EX 1006 Page 471



  

 458 

7. Dependent ’751 Claim 15 

832. Riddle discloses all the limitations of claim 15, which recites: “A method ac-

cording to claim 14, further including receiving further packets, wherein the state 

processing of each received packet of a flow furthers the identifying of the applica-

tion program of the flow.” The claim recites elements similar to ’099 claim ele-

ments 1.7 and 1.10, and disclosed in the prior art for the same reasons. I incorpo-

rate by reference my discussions of those elements as if fully set forth herein. 

833. For example, Riddle discusses classifying packets based upon at least two 

protocols, a transport-layer protocol and an application-layer protocol: 

Network traffic is automatically classified under existing classes, begin-

ning with the broadest classes, an inbound traffic class and an outbound 

traffic class, in protocol layer independent categories. For example, a par-

ticular instance of traffic may be classified according to its transport 

layer characteristics, e.g., Internet Protocol port number, as well as its 

application layer information, e.g., SMTP.1017 

Accordingly, as the protocol layers of each packet are examined, a POSITA would 

have understood that Riddle’s monitor identifies the transport session, IP session, 

and then the particular instance of traffic, such as an SMTP e-mail program. Riddle 

teaches processing each packet and using the application-layer protocol to identify 

the flow’s application program, such as an SMTP e-mail program.  

                                                        

1017 Riddle, 10:59-65. 

EX 1006 Page 472



  

 459 

834. For the transport-layer protocol, Riddle describes an example of classifying 

using the TCP protocol.1018 Riddle discloses that “Internet/Intranet technology is 

based largely on the TCP/IP protocol suite, where IP, or Internet Protocol, is the 

network layer protocol and TCP, or Transmission Control Protocol, is the transport 

layer protocol.”1019  

835. At the time of the Challenged Patents’ priority date, a POSITA would have 

known that TCP connections are initialized by a three-way handshake. Thus, a 

POSITA would have understood that Riddle’s monitor examines each received 

packet of the handshake to identify the TCP connection. For example, the 1981 

RFC793 describes initializing TCP connections as follows: 

For a connection to be established or initialized, the two TCPs must syn-

chronize on each other’s initial sequence numbers. This is done in an ex-

change of connection establishing segments carrying a control bit called 

“SYN” (for synchronize) and the initial sequence numbers. As a shorthand, 

segments carrying the SYN bit are also called “SYNs”. Hence, the solution 

requires a suitable mechanism for picking an initial sequence number and 

a slightly involved handshake to exchange the ISN’s. 

The synchronization requires each side to send it’s own initial sequence 

number and to receive a confirmation of it in acknowledgment from the 

other side. Each side must also receive the other side’s initial sequence 

                                                        

1018 Riddle, 2:2-29, 10:1-18 (Table 2), Figs. 1B, 1C (TCP at transport layer 86). 
1019 Riddle, 2:14-17. 

EX 1006 Page 473



  

 460 

number and send a confirming acknowledgment. 

1) A --> B SYN my sequence number is X 

2) A <-- B ACK your sequence number is X 

3) A <-- B SYN my sequence number is Y 

4) A --> B ACK your sequence number is Y 

Because steps 2 and 3 can be combined in a single message this is called 

the three way (or three message) handshake. 

A three way handshake is necessary because sequence numbers are not tied 

to a global clock in the network, and TCPs may have different mechanisms 

for picking the ISN’s.1020 

836. As the above RFC793 passages illustrate, a POSITA would have understood 

that Riddle’s monitor receives multiple packets and examines each packet in order 

to identify a TCP protocol connection using the three-way handshake. Moreover, a 

POSITA would have understood that this three-way handshake is completed before 

any higher-layer protocol information (such as application-layer information) can 

be sent or received.  

837. Riddle further describes hierarchical classifications such as “to host 1,” 

“tcp,” and “FTP.”1021 As each packet is received, Riddle’s classification proceeds 

along this hierarchy, leading to matching of a flow with the operation of a particu-

lar application program. 

                                                        

1020 Ex. 1039 (RFC793), 31-32. 
1021 Riddle, 13:11-22. 

EX 1006 Page 474



  

 461 

838. As another example, Riddle presents classifying PointCast traffic, which in-

volves a sequence of packets traversing a transition pattern (e.g., HTTP connec-

tion, Pointcast get request, inbound traffic) indicating an association with the 

PointCast application program initiated on the user’s computer. 

839. Because Riddle discloses identifying packets based on TCP protocol infor-

mation and application-layer information, Riddle teaches receiving further packets, 

wherein the state processing of each received packet of a flow furthers the identify-

ing of the application program of the flow. 

8. Independent ’751 Claim 17 

840. It is my opinion that independent claim 17 of the ’751 Patent is obvious in 

light of Riddle in view of Ferdinand. 

a) ’751 Claim 17’s Preamble: “A packet monitor for exam-

ining packets passing through a connection point on a 

computer network, each packets [sic] conforming to one 

or more protocols, the monitor comprising” 

841. Riddle discloses all elements of this preamble. This preamble is substantially 

identical to the preamble of ’646 claim 1 and disclosed by the prior art for the same 

EX 1006 Page 475



  

 462 

reasons.1022 I incorporate by reference my discussion of ’646 claim 1’s preamble as 

if fully set forth herein.1023 

b. ’751 Claim Element 17.1: “(a) a packet acquisition de-

vice coupled to the connection point and configured to 

receive packets passing through the connection point” 

842. Riddle discloses this claim element, which is identical to ’646 claim element 

1.1 and disclosed by the prior art for the same reasons. I incorporate by reference 

my discussion of ’646 claim element 1.1 as if fully set forth herein.1024 

c. ’751 Claim Element 17.2: “(b) a memory for storing a 

database for containing one or more flow-entries for pre-

viously encountered conversational flows to which a re-

ceived packet may belong” 

843. Riddle alone and/or in view of Ferdinand renders obvious this claim ele-

ment. This element is similar to ’099 claim element 1.5 and ’646 claim element 

1.2, and is disclosed by the prior art for the same reasons. I incorporate by refer-

ence my discussions of those elements as if fully set forth herein.1025 

                                                        

1022 The only difference is the correction of typographical errors in ’646 claim 1. 

The ’646 Patent, Aug. 3, 2004 Certificate of Correction. 
1023 ’751 claim 17’s preamble is also identical to the preambles of ’646 claim 7 (ex-

cept for a corrected typographical error) and ’789 claim 19, my discussions of 

which likewise incorporate my discussion of ’646 claim 1’s preamble. 
1024 ’751 claim element 17.1 is also identical to ’646 claim element 7.1 and ’789 

claim element 19.1, my discussions of which likewise incorporate my discussion of 

’646 claim element 1.1. 
1025 As explained in those discussions, Riddle discloses identifying conversational 

flows in the form of identifying service aggregate flows and PointCast flows, and 

Riddle in view of Ferdinand discloses or renders obvious a memory for storing a 

flow-entry database. 

EX 1006 Page 476



  

 463 

d. ’751 Claim Element 17.3: “a conversational flow includ-

ing an exchange of a sequence of one or more packets in 

any direction between two network entities as a result of 

a particular activity using a particular layered set of one 

or more network protocols, a conversational flow further 

having a set of one or more states, including an initial 

state; and” 

844. Riddle discloses this claim element, which is identical to ’751 claim element 

1.3 and disclosed by the prior art for the same reasons. I incorporate by reference 

my discussion of ’751 claim element 1.3 as if fully set forth herein. 

e. ’751 Claim Element 17.4: “(c) an analyzer subsystem 

coupled to the packet acquisition device configured to 

lookup for each received packet whether a received 

packet belongs to a flow-entry in the flow-entry data-

base” 

845. Riddle discloses this claim element, which is similar to ’099 claim element 

1.6 and ’646 claim element 1.4 and disclosed by the prior art for the same reasons. 

I incorporate by reference my discussion of ’099 claim element 1.6 and ’646 claim 

element 1.4 as if fully set forth herein.1026 

                                                        

1026 As explained in those discussions, Riddle packet acquisition device is coupled 

to the analyzing engine’s processor discloses an engine configured to lookup 

whether a received packet belongs to a flow-entry in the flow-entry database. Rid-

dle, 12:37-49, 13:36-62, claim 8, Figs. 3, 4A-4B. Riddle details this engine in-

cludes a processor and corresponding code to perform the function of looking up 

whether a received packet belongs to stored flow-entry. Riddle, 5:53-57, 12:37-49, 

13:36-62, claim 8, Figs. 3, 4A-4B. And a POSITA would have appreciated that 

Riddle discloses an “analyzer subsystem” because the processor and corresponding 

code is a system in Riddle’s monitor that analyzes parsed packet information. Ad-

ditionally, as discussed above regarding ’646 claim element 1.4, Riddle discloses 

that its packet acquisition device is coupled to the analyzing engine’s processor. 

EX 1006 Page 477



  

 464 

f. ’751 Claim Element 17.5: an analyzer subsystem config-

ured “to update the flow-entry of the existing flow includ-

ing storing one or more statistical measures kept in the 

flow-entry in the case that the packet is of an existing 

flow, and” 

846. Riddle discloses this claim element, which is similar to ’751 claim element 

1.4 and disclosed by the prior art for the same reasons. I incorporate by reference 

my discussion of ’751 claim element 1.4 as if fully set forth herein. 

g. ’751 Claim Element 17.6: an analyzer subsystem config-

ured “to store a new flow-entry for the new flow in the 

flow-entry database, including storing one or more sta-

tistical measures kept in the flow-entry if the packet is of 

a new flow” 

847. Riddle alone and/or in view of Ferdinand renders obvious this claim ele-

ment, which is similar to ’751 claim element 1.5 and disclosed by the prior art for 

the same reasons. I incorporate by reference my discussion of ’751 claim element 

1.5 as if fully set forth herein. 

h. ’751 Claim Element 17.7: “wherein the analyzer subsys-

tem is further configured to identify the protocol being 

used in the packet from a plurality of protocols at a plu-

rality of protocol layer levels, and” 

848. Riddle discloses this claim element, which is similar to ’751 claim element 

1.7 and disclosed by the prior art for the same reasons. I incorporate by reference 

my discussion of ’751 claim element 1.7 as if fully set forth herein. 

EX 1006 Page 478



  

 465 

i. ’751 Claim Element 17.8: “wherein the database is to 

store flow entries for a plurality of conversational flows 

using a plurality of protocols, at a plurality of layer lev-

els, including levels above the network layer” 

849. Riddle alone and/or in view of Ferdinand renders obvious this claim ele-

ment, which is substantially similar to ’751 claim element 1.8 and disclosed by the 

prior art for the same reasons. I incorporate by reference my discussion of ’751 

claim element 1.8 as if fully set forth herein. 

850. Thus, for all the above reasons, it is my opinion that Riddle in view of Ferdi-

nand renders obvious claims 1, 2, 5, 10, 14, 15, and 17 of the ’751 Patent. 

B. For the ’751 Patent, Riddle in View of Ferdinand and Further in 

View of Yu Renders Obvious Claims 1, 2, 5, 10, 14, 15, and 17. 

851. It further is my opinion that a POSITA would have recognized that each and 

every limitation of ’751 claims 1, 2, 5, 10, 14, 15, and 17 is disclosed or rendered 

obvious by Riddle in view of Ferdinand and further in view of Yu. Specifically, 

my opinions regarding Riddle in view of Ferdinand are exactly the same as those 

set forth above in Section X.A, but further include the teachings of Yu. Thus, as if 

fully set forth here, I incorporate the discussion from Section X.A regarding the 

obviousness of ’751 claims 1, 2, 5, 10, 14, 15, and 17 over Riddle in view of Ferdi-

nand. 

852. As noted, all the Challenged Claims require “conversational flows.” For ex-

EX 1006 Page 479



  

 466 

ample, ’751 claim element 1.2 recites “looking up a flow-entry database for con-

taining one or more flow-entries for previously encountered conversational flows.” 

While Riddle itself teaches identifying conversational flows, Yu further demon-

strates identifying conversational flows through its “flow classification.”1027 Fur-

ther, Yu teaches flow classification logic that “keeps track of the flow’s state until 

matching criteria is met” when identifying whether a packet belongs to a conversa-

tional flow.1028 

853. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of Yu in Section VII.C, Yu 

teaches identifying the claimed “conversational flow” by Yu’s flow classifier link-

ing multiple “streams” into a “flow” based on application or application data.1029 

And as discussed in Section VII.C, Yu teaches state tracking that binds policy deci-

sions to each stream of a flow so that actions can be taken on future packets with-

out intervention from the “host” application.1030 Moreover, as discussed in Section 

VII.C, Yu specifies using hash values to find corresponding policies to reduce fur-

ther complicated pattern-matching.1031 I incorporate by reference that discussion as 

if fully set forth herein. 

                                                        

1027 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
1028 Yu, 4:62-64. 
1029 Yu, 1:56-60, 3:32-49; 4:1-8. 
1030 Yu, 4:57-5:13. 
1031 Yu, 4:23-29. 

EX 1006 Page 480



  

 467 

854. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, I explain how 

a POSITA would have been motivated to combine Yu’s teachings into Riddle’s 

monitor. I incorporate by reference that discussion as if fully set forth herein.  

855. For the same reasons, it is my opinion that combining the teachings of Rid-

dle, Ferdinand, and Yu renders obvious all the claim elements relating to “conver-

sational flows” as well as performing state operations relating to the flow’s state. 

856.  As set forth in my analysis of the ’751 Patent in Sections X.A.2 through 

X.A.8 above, Riddle and Ferdinand disclose or render obvious all the remaining el-

ements of ’751 claims 1, 2, 5, 10, 14, 15, and 17. Thus, it is my opinion that Riddle 

in view of Ferdinand and further in view of Yu renders obvious ’751 claims 1, 2, 5, 

10, 14, 15, and 17. 

C. For the ’751 Patent, Riddle in View of Ferdinand and Further in 

View of RFC1945 Renders Obvious Claims 1, 2, 5, 10, 14, 15, and 

17. 

857. It further is my opinion that a POSITA would have recognized that each and 

every limitation of ’751 claims 1, 2, 5, 10, 14, 15, and 17 is disclosed or rendered 

obvious by Riddle in view of Ferdinand and further in view of RFC1945. Specifi-

cally, my opinions regarding Riddle in view of Ferdinand are exactly the same as 

those set forth above in Section X.A, but further include the teachings of 

RFC1945. Thus, as if fully set forth here, I incorporate the discussion from Section 

EX 1006 Page 481



  

 468 

X.A regarding the obviousness of ’751 claims 1, 2, 5, 10, 14, 15, and 17 over Rid-

dle in view of Ferdinand. 

858. As noted, all the Challenged Claims require “conversational flows.” For ex-

ample, ’751 claim element 1.2 recites “looking up a flow-entry database for con-

taining one or more flow-entries for previously encountered conversational flows.” 

While Riddle itself teaches identifying conversational flows, RFC1945 further 

demonstrates identifying conversational flows through the additional example of 

the use of HTTP header fields. 

859. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I 

understand that Patentee and its technical expert have taken the position that the 

HTTP Referrer field can be used to create a conversational flow. I incorporate by 

reference that discussion as if fully set forth herein.  

860. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I ex-

plain how a POSITA would have been motivated to combine RFC1945’s teachings 

into Riddle’s monitor. I incorporate by reference that discussion as if fully set forth 

herein. 

861. For the same reasons, it is my opinion that combining the teachings of Rid-

dle, Ferdinand, and RFC1945 renders obvious all the claim elements relating to 

EX 1006 Page 482



  

 469 

“conversational flows,” at least under Patentee’s interpretation for that term. 

862. As set forth in my analysis of the ’751 Patent in Sections X.A.2 through 

X.A.8 above, Riddle and Ferdinand disclose or render obvious all the remaining el-

ements of ’751 claims 1, 2, 5, 10, 14, 15, and 17. Thus, it is my opinion that Riddle 

in view of Ferdinand and further in view of RFC1945 renders obvious ’751 claims 

1, 2, 5, 10, 14, 15, and 17 at least under Patentee’s interpretation of “conversational 

flow.” 

XI. THE CLAIMS OF THE ’789 PATENT ARE UNPATENTABLE 

863. For the ’789 Patent, the challenged claims include independent claims 1, 19, 

and 44 as well as dependent claims 2, 13-17, 20, 31, 33, 34, 42, 48, and 49. As I 

detail below, it is my opinion that a POSITA would have recognized that each and 

every limitation of those claims is disclosed or rendered obvious by the prior art. 

Specifically, it is my opinion that Riddle in view of Ferdinand renders obvious 

’789 claims 1, 2, 13-17, 19, 20, and 42; Riddle in view of Ferdinand and further in 

view of Baker renders obvious ’789 claim 31; Riddle in view of Ferdinand and fur-

ther in view of Wakeman renders obvious ’789 claims 33 and 34; and Riddle in 

view of Ferdinand and further in view of Hasani renders obvious ’789 claims 44, 

48, and 49.  

A. For the ’789 Patent, Riddle in View of Ferdinand Renders Obvi-

ous Claims 1, 2, 13-17, 19, 20, and 42 

864. It is my opinion that a POSITA would have recognized that each and every 

EX 1006 Page 483



  

 470 

limitation of ’789 claims 1, 2, 13-17, 19, 20, and 42 is disclosed or rendered obvi-

ous by the prior art. Specifically, it is my opinion that ’789 claims 1, 2, 13-17, 19, 

20, and 42 are obvious over Riddle in view of Ferdinand. 

1. Reasons to Modify Riddle in View of Ferdinand 

865. As described above with respect to the ’099 Patent in Section VII.A.1, a 

POSITA would have been motivated and found it obvious to combine the teach-

ings of Riddle and Ferdinand.  

2. Independent ’789 Claim 1 

a. ’789 Claim 1’s Preamble: “A method of examining pack-

ets passing through a connection point on a computer 

network, each packets [sic] conforming to one or more 

protocols, the method comprising” 

866. Riddle discloses all elements of this preamble. This preamble is similar to 

the apparatus-type claim preambles of ’646 claim 1 and ’099 claim 1, identical to 

the method-type preamble of ’646 claim 16, and is disclosed in the prior art for the 

same reasons. I incorporate by reference my discussions of those preambles as if 

fully set forth herein.1032 

                                                        

1032 My discussion of ’646 claim 16’s preamble, which is identical to ’789 claim 

1’s preamble, likewise incorporates my discussions of the preambles of ’646 claim 

1 and ’099 claim 1. 

EX 1006 Page 484



  

 471 

b. ’789 Claim Element 1.1: “(a) receiving a packet from a 

packet acquisition device” 

867. This claim element is identical to ’646 claim element 16.1, similar to ’646 

claim element 1.1, and disclosed in the prior art for the same reasons. I incorporate 

by reference my discussion of ’646 claim elements 1.1 and 16.1 as if fully set forth 

herein. 

c. ’789 Claim Element 1.2: “(b) performing one or more 

parsing/extraction operations on the packet to create a 

parser record comprising a function of selected portions 

of the packet” 

868. This claim element is similar to ’646 claim element 7.3, and disclosed or 

rendered obvious by the prior art for the same reasons.1033 I incorporate by refer-

ence my discussion of ’646 claim element 7.3 as if fully set forth herein.1034 

d. ’789 Claim Element 1.3: “(c) looking up a flow-entry da-

tabase comprising none or more flow-entries for previ-

ously encountered conversational flows, the looking up 

using at least some of the selected packet portions and 

determining if the packet is of an existing flow” 

869. This claim element is identical to ’646 claim element 16.3 (which addition-

ally recites “the lookup being via a cache”), is similar to ’646 claim element 1.2, 

                                                        

1033 ’646 claim element 7.3 recites “a parser subsystem … configured to extract se-

lected portions of the accepted packet and to output a parser record containing the 

selected portions.” 
1034 My discussion of ’646 claim element 16.2, which is identical to ’789 claim ele-

ment 1.2, likewise incorporates my discussion of ’646 claim element 7.3. 

EX 1006 Page 485



  

 472 

and disclosed or rendered obvious by the prior art for the same reasons. I incorpo-

rate by reference my discussions of ’646 claim elements 1.2 and 16.3 as if fully set 

forth herein. 

e. ’789 Claim Element 1.4: “(d) if the packet is of an exist-

ing flow, classifying the packet as belonging to the found 

existing flow; and” 

870. This claim element is identical to ’646 claim element 16.4, similar to ’646 

claim element 7.8, and disclosed or rendered obvious by the prior art for the same 

reasons.1035 I incorporate by reference my discussions of ’646 claim elements 7.8 

and 16.4 as if fully set forth herein. 

f. ’789 Claim Element 1.5: “(e) if the packet is of a new 

flow, storing a new flow-entry for the new flow in the 

flow-entry database, including identifying information 

for future packets to be identified with the new flow-en-

try,” 

871. This claim element is similar to ’646 claim element 7.9 and disclosed or 

rendered obvious by the prior art for the same reasons. I incorporate by refer-

ence my discussion of ’646 claim element 7.9 as if fully set forth herein.1036 

                                                        

1035 ’646 claim element 7.8 recites that the lookup engine is configured so that the 

monitor performs this classification. 
1036 My discussion of ’646 claim element 16.5, which is identical to ’789 claim ele-

ment 1.5, likewise incorporates my discussion of ’646 claim element 7.9. 

EX 1006 Page 486



  

 473 

g. ’789 Claim Element 1.6: “wherein the parsing/extraction 

operations depend on one or more of the protocols to 

which the packet conforms” 

872. This claim element is similar to ’646 claim element 7.10 and disclosed or 

rendered obvious by the prior art for the same reasons. I incorporate by reference 

my discussion of ’646 claim element 7.10 as if fully set forth herein.1037 

873. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious independent claim 1 of the ’789 Patent. 

3. Dependent ’789 Claim 2 

874. Riddle discloses all the limitations of claim 2, which recites: “A method ac-

cording to claim 1, wherein each packet passing through the connection point is 

examined in real time.” The claim recites elements similar to the preamble of ’099 

claim 1, and is disclosed in the prior art for the same reasons. I incorporate by ref-

erence my discussions of the preamble of ’099 claim 1 as if fully set forth herein. 

875. For example, Riddle discloses examining packets in real-time to manage net-

work bandwidth based on flow classification. Riddle emphasizes the need to allo-

cate bandwidth to flows based on information ascertainable from multiple OSI lay-

                                                        

1037 My discussion of ’646 claim element 16.6, which is identical to ’789 claim ele-

ment 1.6, likewise incorporates my discussion of ’646 claim element 7.10. 

EX 1006 Page 487



  

 474 

ers of each flow, which improves data transmission efficiency and avoids un-

wanted data transfer stoppage.1038 To improve bandwidth management, Riddle de-

scribes “policies to assign available bandwidth from a single logical link to net-

work flows.”1039 And Riddle teaches examining and classifying traffic flows to al-

locate bandwidth consistent with those policies.1040 From these disclosures, a 

POSITA would have understood that Riddle teaches traffic-examination and classi-

fication in real-time to assign available bandwidth. 

876. Indeed, Riddle seeks to provide “a method for analyzing real traffic in a cus-

tomer’s network and automatically producing a list of the ‘found traffic’”1041 Rid-

dle specifies that its monitor can determine a packet’s traffic class, such as Real 

Time Protocol used for point-to-point telephony.1042 Based on these disclosures, a 

POSITA would have understood that Riddle teaches examining packets in real-

time to optimally assign bandwidth based on flow rates. 

877. In addition, Riddle describes classifying a “complete enumeration of the 

possible traffic,” providing a default class for “all traffic” that does not match a 

user specified class, creating a new class to match an instance of otherwise non-

                                                        

1038 Riddle, 1:54-61, 2:4-13.  
1039 Riddle, 2:66-67. 
1040 Riddle, Abstract, 4:6-23, 10:19-51. 
1041 Riddle, 3:67-4:2, Abstract, 3:32-39, 4:6-9, 10:57-59. 
1042 Riddle, 12:3-12. 

EX 1006 Page 488



  

 475 

matching traffic, keeping detailed metrics of traffic, and checking for duplicates, 

for which purposes a POSITA would have understood Riddle to be teaching to ex-

amine each packet passing through the connection point.1043 

878. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of U.S. Patent 6,046,980 (“Packer”) as though fully set forth in Riddle. 

Like Riddle, Packer describes a traffic classification system and specifies that traf-

fic flows are examined “continuously and automatically.”1044 This teaching further 

shows that Riddle discloses examining packets in real-time. 

879. Further, as discussed above, a POSITA would have understood that the 

claimed “connection point” is where the packet monitor is connected to the net-

work.1045 Accordingly, Riddle discloses wherein each packet passing through the 

connection point is examined in real time. 

4. Dependent ’789 Claim 13 

880. Riddle discloses all the limitations of claim 13, which depends from inde-

pendent claim 1. 

                                                        

1043 Riddle, 4:16-17, 10:52-56, 12:50-59, 13:1-31, 13:59-60, . 
1044 Ex. 1031 (Packer), 4:12-16. 
1045 ’789 Patent, Fig. 1 (showing connection points 121, 123, 125), 9:4-19. 

EX 1006 Page 489



  

 476 

a. ’789 Claim Element 13.1: “wherein step (d) includes if 

the packet is of an existing flow, obtaining the last en-

countered state of the flow and performing any state op-

erations specified for the state of the flow starting from 

the last encountered state of the flow; and” 

881. Riddle discloses this claim element, which is substantially identical to ’751 

claim element 10.1,1046 similar to ’751 claim element 1.4, and disclosed in the prior 

art for the same reasons. I incorporate by reference my discussions of ’751 claim 

elements 1.4 and 10.1 as if fully set forth herein. 

b. ’789 Claim Element 13.2: “wherein step (e) includes if 

the packet is of a new flow, performing any state opera-

tions required for the initial state of the new flow” 

882. Riddle discloses this claim element, which is similar to ’751 claim element 

1.5 and disclosed in the prior art for the same reasons.1047 I incorporate by refer-

ence my discussion of ’751 claim element 1.5 as if fully set forth herein.1048 

5. Dependent ’789 Claim 14 

883. Riddle discloses all the limitations of claim 14, which recites: “A method ac-

cording to claim 13, wherein the state processing of each received packet of a flow 

                                                        

1046 ’751 claim element 10.1 recites “identifying” instead of “obtaining.” 
1047 As noted, ’751 claim element 1.5 encompasses ’751 claim element 10.2 and, in 

addition, recites “storing a new flow-entry for the new flow in the flow-entry data-

base, including storing one or more statistical measures kept in the flow-entry.” 
1048 My discussion of ’751 claim element 10.2, which is identical to ’789 claim ele-

ment 13.2, likewise incorporates my discussion of ’751 claim element 1.5. 

EX 1006 Page 490



  

 477 

furthers the identifying of the application program of the flow.” This claim is sub-

stantially identical to ’751 dependent claim 15 (which additionally recites “further 

including receiving further packets”) and is disclosed in the prior art for the same 

reasons. I incorporate by reference my discussion of ’751 dependent claim 15 as if 

fully set forth herein, including my discussion of ’099 claim elements 1.7 and 1.10, 

which I incorporate by reference into my discussion of ’751 dependent claim 15. 

6. Dependent ’789 Claim 15 

884. Riddle discloses all limitations of claim 15, which recites: “A method ac-

cording to claim 13, wherein the state operations include updating the flow-[entry], 

including storing identifying information for future packets to be identified with 

the flow-entry.”1049 This claim is substantially identical to ’751 dependent claim 14 

and disclosed in the prior art for the same reasons.1050 I incorporate by reference 

my discussion of ’751 dependent claim 14 as if fully set forth herein, including my 

discussion of ’646 claim elements 7.9 and 16.5, which I incorporate by reference 

into my discussion of ’751 dependent claim 14. 

7. Dependent ’789 Claim 16 

885. Riddle discloses all the limitations of claim 16, which recites: “A method ac-

cording to claim 15, wherein the state processing of each received packet of a flow 

                                                        

1049 It is my understanding that the ’789 Patent’s Certificate of Correction corrects 

a typographical error in this claim. 
1050 The only difference is that ’751 claim 14 depends from ’751 claim 10. 

EX 1006 Page 491



  

 478 

furthers the identifying of the application program of the flow.” This claim is sub-

stantially similar to ’751 dependent claim 15 (which additionally recites “further 

including receiving further packets”) and is disclosed in the prior art for the same 

reasons.1051 I incorporate by reference my discussion of ’751 dependent claim 15 as 

if fully set forth herein, including my discussion of ’099 claim elements 1.7 and 

1.10, which I incorporate by reference into my discussion of ’751 dependent claim 

15. 

8. Dependent ’789 Claim 17 

886. Riddle discloses all the limitations of claim 17, which recites: “A method ac-

cording to claim 13, wherein the state operations include searching the parser rec-

ord for the existence of one or more reference strings.” 

887. Patentee’s ’903 Provisional (incorporated-by-reference into the ’789 Patent) 

describes searching the packet payload for one or more “specific” or “key” strings, 

such as the word “image,” “gif,” “PCN-The Poin” (which relates to PointCast), or 

“.hts HTTP/1.0,” among others.1052 

888. Riddle states it searches for patterns, which are reference strings: 

[A] traffic class could be created such as all URIs matching “*.html” for 

                                                        

1051 ’789 dependent claim 16 also is substantially identical to ’789 dependent claim 

14. The only difference is that the former depends from claim 15, while the latter 

depends from claim 13. 
1052 Ex. 1016 (’903 Provisional), 42, 108-110, 223-225. 

EX 1006 Page 492



  

 479 

all servers, or all URI patterns matching “*.gif” for server X, or for ac-

cess to server Y with URI pattern “/sales/*” from client Z, wherein ‘*’ is 

a wildcard character, i.e., a character which matches all other character 

combinations. Traffic class attributes left unspecified will simply match 

any value for that attribute. For example, a traffic class that accesses data 

objects within a certain directory path of a web server is specified by a URI 

pattern of the directory path to be managed, e.g. “/sales/*”.1053 

889. Riddle also discloses searching for PointCast URLs that begin with “/FIDO-

1/.”1054  

890. Riddle further discloses that “Web traffic may also be classified by HTTP 

header types such as Content-Type (MIME type) or User-Agent.”1055 Moreover, in 

Riddle’s preferred embodiment, classification can extend to examination of the 

data contained in a flow’s packets.1056 Accordingly, Riddle discloses state opera-

tions that search the parser record for one or more patterns, such as searching for 

URI patterns matching “*.html”, “*.gif”, a directory path, e.g. “/sales/*” or 

PointCast URLs that begin with “/FIDO-1/”.1057 

                                                        

1053 Riddle, 8:67-9:11. 
1054 Riddle, 11:47-67. 
1055 Riddle, 9:24-26 
1056 Riddle, 11:48-49. 
1057 Riddle, 8:67:9-11, 11:47-67. 

EX 1006 Page 493



  

 480 

9. Independent ’789 Claim 19 

a. ’789 Claim 19’s Preamble: “A packet monitor for exam-

ining packets passing through a connection point on a 

computer network, each packets [sic] conforming to one 

or more protocols, the monitor comprising” 

891. Riddle discloses all elements of this preamble. This preamble is identical to 

the preamble of ’646 claim 1 and disclosed by the prior art for the same reasons. I 

incorporate by reference my discussion of ’646 claim 1’s preamble as if fully set 

forth herein.1058 

b. ’789 Claim Element 19.1: “(a) a packet acquisition de-

vice coupled to the connection point and configured to 

receive packets passing through the connection point” 

892. This claim element is identical to ’646 claim element 1.1 and disclosed in 

the prior art for the same reasons. I incorporate by reference my discussion of ’646 

claim element 1.1 as if fully set forth herein.1059 

                                                        

1058 ’789 claim 19’s preamble is also identical to the preambles of ’646 claim 7 (ex-

cept for a corrected typographical error) and ’751 claim 17, my discussions of 

which likewise incorporate my discussion of ’646 claim 1’s preamble. 
1059 ’789 claim element 19.1 is also identical to ’646 claim element 7.1 and ’751 

claim element 17.1, my discussions of which likewise incorporate my discussion of 

’646 claim element 1.1. 

EX 1006 Page 494



  

 481 

c. ’789 Claim Element 19.2: “(b) an input buffer memory 

coupled to and configured to accept a packet from the 

packet acquisition device” 

893. This claim element is identical to ’646 claim element 7.2 and is disclosed in 

the prior art for the same reasons. I incorporate by reference my discussion of ’646 

claim element 7.2 as if fully set forth herein. 

d. ’789 Claim Element 19.3: “(c) a parser subsystem cou-

pled to the input buffer memory and including a slicer, 

the parsing subsystem configured to extract selected por-

tions of the accepted packet and to output a parser rec-

ord containing the selected portions” 

894. This claim element is identical to ’646 claim element 7.3 except ’789 claim 

element 19.3 also recites “and including a slicer.” I incorporate by reference my 

discussion of ’646 claim element 7.3 as if fully set forth herein. 

895. The ’789 Patent describes that the extraction engine is a slicer, which is 

shown below in ’789 Patent’s Figure 3.1060 The ’789 Patent also states that: “For 

each protocol recognized, the slicer extracts important packet elements from the 

packet. These form a signature (i.e., key) for the packet. The slicer also preferably 

generates a hash for rapidly identifying a flow that may have this signature from a 

database of known flows.”1061 Further, “[t]he protocol table includes the parame-

ters needed by the pattern analysis and recognition process 304 (implemented by 

                                                        

1060 ’789 Patent, 5:59 (“extraction engine (slicer)”), 22:31-32 (“the extraction en-

gine (also called a ‘slicer’) 1007”). 
1061 ’789 Patent, 6:20-24. 

EX 1006 Page 495



  

 482 

PRE 1006) to evaluate the header information in the packet that is associated with 

that protocol, and parameters needed by extraction process 306 (implemented by 

slicer 1007) to process the packet header.”1062 Additionally, “the operations of the 

extraction engine [i.e., the slicer] are those carried out in blocks 306 and 312 of 

FIG. 3.”1063  

 

896. Riddle teaches the claimed “slicer” under that term’s ordinary customary 

meaning and the construction agreed upon by Patentee and Palo Alto Networks. As 

discussed regarding ’646 claim element 7.3, Riddle teaches a parser subsystem that 

                                                        

1062 ’789 Patent, 17:44-51. 
1063 ’789 Patent, 22:35-37. 

EX 1006 Page 496



  

 483 

extracts selected portions of packets. That discussion also shows how Riddle dis-

closes a slicer by way of demonstrating that Riddle parses packets into flow speci-

fications. As such, Riddle discloses ’789 claim element 19.3 for the same reasons 

as set forth above for ’646 claim element 7.3. I incorporate by reference my discus-

sion of ’646 claim element 7.3 as if fully set forth herein.  

e. ’789 Claim Element 19.4: “(d) a memory for storing a 

database comprising none or more flow-entries for previ-

ously encountered conversational flows, each flow-entry 

identified by identifying information stored in the flow-

entry” 

897. This claim element is similar to ’646 claim element 1.2 and disclosed or ren-

dered obvious by the prior art for the same reasons. I incorporate by reference my 

discussion of ’646 claim element 1.2 as if fully set forth herein.1064 

898. To the extent Patentee argues that ’789 elements 19.2 and 19.4 require sepa-

rate physical memories, i.e., one input buffer memory and one memory for storing 

a database, Riddle in view of Ferdinand renders these elements obvious for the 

same reasons set forth above in my discussion of ’646 claim element 7.4, which I 

also incorporate by reference.  

                                                        

1064 ’789 claim element 19.4 is also substantially similar to ’646 claim element 7.4, 

my discussion of which likewise incorporates my discussion of ’646 claim element 

1.2. 

EX 1006 Page 497



  

 484 

f. ’789 Claim Element 19.5: “(e) a lookup engine coupled 

to the output of the parser subsystem and to the flow-en-

try memory and configured to lookup whether the partic-

ular packet whose parser record is output by the parser 

subsystem has a matching flow-entry, the looking up us-

ing at least some of the selected packet portions and de-

termining if the packet is of an existing flow; and” 

899. This claim element is identical to ’646 claim element 7.5 and is disclosed in 

the prior art for the same reasons. I incorporate by reference my discussion of ’646 

claim element 7.5 as if fully set forth herein. 

g. ’789 Claim Element 19.6: “(f) a flow insertion engine 

coupled to the flow-entry memory and to the lookup en-

gine and configured to create a flow-entry in the flow-en-

try database, the flow-entry including identifying infor-

mation for future packets to be identified with the new 

flow-entry” 

900. This claim element is identical to ’646 claim element 7.7 and is disclosed in 

the prior art for the same reasons. I incorporate by reference my discussion of ’646 

claim element 7.7 as if fully set forth herein. 

901. To the extent Patentee argues that Riddle’s processor programmed with code 

cannot satisfy the “parser subsystem,” “lookup engine,” and/or “flow insertion en-

gine” in ’789 claim elements 19.3, 19.5, 19.6, 19.7, 19.8, or 19.9 because these 

limitations require separate pieces of hardware, it would have been obvious to a 

POSITA to modify Riddle’s processor and programming code to be separate hard-

ware components. This is because using dedicated hardware for various functions, 

EX 1006 Page 498



  

 485 

especially functions as common as parsing, data lookup, and protocol/state identifi-

cation, would have been readily understood by a POSITA. And the Challenged Pa-

tents acknowledge that a POSITA would have appreciated the benefits and draw-

backs of using separate hardware components versus software running on fast pro-

cessors: 

Each of the individual hardware elements through which the data flows in 

the system are now described with reference to FIGS. 10 and 11. Note that 

while we are describing a particular hardware implementation of the in-

vention embodiment of FIG. 3, it would be clear to one skilled in the art 

that the flow of FIG. 3 may alternatively be implemented in software 

running on one or more general-purpose processors, or only partly im-

plemented in hardware. An implementation of the invention that can op-

erate in software is shown in FIG. 14. The hardware embodiment (FIGS. 

10 and 11) can operate at over a million packets per second, while the soft-

ware system of FIG. 14 may be suitable for slower networks. To one 

skilled in the art it would be clear that more and more of the system may 

be implemented in software as processors become faster.1065 

902. Further, Ferdinand discloses its monitor can include separate hardware com-

ponents for performing various functions, such as real time parser (RTP) 32, data-

base 36, boot/load 22, and memory transport module 34, event manager 38, and 

                                                        

1065 ’789 Patent, 21:32-47; ’099 Patent, 21:25-38. 

EX 1006 Page 499



  

 486 

control module 42.1066 As provided below, Ferdinand’s Figure 5 illustrates its mon-

itor having separate hardware components. 

 

903. Desiring increased performance, a POSITA would have been motivated to 

utilize dedicated hardware components for parsing/extraction, lookups, and inser-

tions. On the other hand, a POSITA would have understood that Riddle’s use of a 

processor for these functions is less expensive and a more extensible solution than 

using dedicated hardware components. 

                                                        

1066 Ferdinand, 19:5-13. 

EX 1006 Page 500



  

 487 

h. ’789 Claim Element 19.7: “the lookup engine configured 

such that if the packet is of an existing flow, the monitor 

classifies the packet as belonging to the found existing 

flow; and” 

904. This claim element is identical to ’646 claim element 7.8 and is disclosed in 

the prior art for the same reasons. I incorporate by reference my discussion of ’646 

claim element 7.8 as if fully set forth herein. 

i. ’789 Claim Element 19.8: “if the packet is of a new flow, 

the flow insertion engine stores a new flow-entry for the 

new flow in the flow-entry database, including identifying 

information for future packets to be identified with the 

new flow-entry” 

905. This claim element is identical to ’646 claim element 7.9 and is disclosed in 

the prior art for the same reasons. I incorporate by reference my discussion of ’646 

claim element 7.9 as if fully set forth herein. 

j. ’789 Claim Element 19.9: “wherein the operation of the 

parser subsystem depends on one or more of the proto-

cols to which the packet conforms” 

906. This claim element is identical to ’646 claim element 7.10 and is disclosed 

in the prior art for the same reasons. I incorporate by reference my discussion of 

’646 claim element 7.10 as if fully set forth herein. 

907. For the above reasons, it is my opinion that Riddle in view of Ferdinand ren-

ders obvious independent claim 19 of the ’789 Patent. 

EX 1006 Page 501



  

 488 

10. Dependent ’789 Claim 20 

908. Claim 20 recites: “A monitor according to claim 19, wherein each packet 

passing through the connection point is accepted by the packet buffer memory and 

examined by the monitor in real time.”  

909. In my discussion of ’789 claim element 19.1, I explained that Riddle dis-

closes a packet acquisition device coupled to the connection point and configured 

to receive packets passing through the connection point. In my discussion of ’789 

claim element 19.2, I explained that Riddle teaches an input buffer memory cou-

pled to and configured to accept a packet from the packet acquisition device. In my 

discussion of ’099 claim 1’s preamble, I explained that Riddle discloses monitor-

ing packets in real time. And as I discuss regarding ’789 claim 2, Riddle monitors 

each packet passing through the connection point in real time. For the same rea-

sons set forth in those discussions, which I incorporate by reference as if fully set 

forth herein, Riddle discloses claim 20’s “wherein each packet passing through the 

connection point is accepted by the packet buffer memory and examined by the 

monitor in real time.” 

11. Dependent ’789 Claim 42 

910. Riddle discloses all the limitations of claim 42, which recites: “A monitor 

according to claim 19, wherein the lookup engine begins processing as soon as a 

parser record arrives from the parser subsystem.” 

EX 1006 Page 502



  

 489 

911. As I noted in the previous section, and as I explained in my discussion of 

’099 claim 1’s preamble, Riddle discloses monitoring packets in real-time. And as 

previously discussed, a POSITA would have understood that real-time monitoring 

occurs when Riddle’s lookup engine begins processing as soon as a parser record 

arrives from the parser subsystem. 

912. For example, Riddle discloses examining packets in real-time to manage net-

work bandwidth based on flow classification. Riddle emphasizes the need to allo-

cate bandwidth to flows based on information ascertainable from multiple OSI lay-

ers of each flow, which improves data transmission efficiency and avoids un-

wanted data transfer stoppage.1067 To improve bandwidth management, Riddle de-

scribes “policies to assign available bandwidth from a single logical link to net-

work flows.”1068 From these disclosures, a POSITA would have understood that 

Riddle teaches traffic-examination and classification in real-time to assign availa-

ble bandwidth. 

913. Indeed, Riddle seeks to provide “a method for analyzing real traffic in a cus-

tomer’s network and automatically producing a list of the ‘found traffic’”1069 Rid-

dle specifies that its monitor can determine a packet’s traffic class, such as Real 

                                                        

1067 Riddle, 1:54-61, 2:4-13.  
1068 Riddle, 2:66-67. 
1069 Riddle, 3:67-4:2, Abstract, 3:32-39, 4:6-9, 10:57-59. 

EX 1006 Page 503



  

 490 

Time Protocol used for point-to-point telephony.1070 Based on these disclosures, a 

POSITA would have understood that Riddle teaches examining packets in real-

time to optimally assign bandwidth based on flow rates. 

914. As discussed above in Section IV.A.1, Riddle incorporates-by-reference the 

teachings of U.S. Patent 6,046,980 (“Packer”) as though fully set forth in Riddle. 

Like Riddle, Packer describes a traffic classification system and specifies that traf-

fic flows are examined “continuously and automatically.”1071 This teaching further 

shows that Riddle discloses examining packets in real-time by its lookup engine 

processing as soon as a parser record arrives from the parser. 

915. Thus, for all the above reasons, it is my opinion that Riddle in view of Ferdi-

nand renders obvious claims 1, 2, 13-17, 19, 20, and 42 of the ’789 Patent. 

B. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of Baker Renders Obvious Dependent Claim 31 

916. It is my opinion that a POSITA would have recognized that each and every 

limitation of ’789 claim 31 is disclosed or rendered obvious by the prior art. Spe-

cifically, it is my opinion that ’789 claim 31 is obvious over Riddle in view of Fer-

dinand and further view of Baker. 

                                                        

1070 Riddle, 12:3-12. 
1071 Ex. 1031 (Packer), 4:12-16. 

EX 1006 Page 504



  

 491 

1. Reasons to Modify the Combination of Riddle and Ferdi-

nand Further in View of Baker 

917. As described above with respect to the ’099 Patent in Section VII.B.1 and 

VII.B.2, a POSITA would have been motivated and found it obvious to combine 

the teachings of Riddle in view of Ferdinand and further in view of Baker.  

2. Dependent ’789 Claim 31 

918. Claim 31 recites:  

A packet monitor according to claim 19, further comprising a compiler 

processor coupled to the parsing/extraction operations memory,1072 the 

compiler processor configured to run a compilation process that in-

cludes receiving commands in a high-level protocol description lan-

guage that describe the protocols that may be used in packets encoun-

tered by the monitor and any children protocols thereof, and translating 

the protocol description language commands into a plurality of pars-

ing/extraction operations that are initialized into the parsing/extraction 

operations memory. 

919. This claim is identical to ’099 claim 4, and disclosed in the prior art for the 

same reasons. I incorporate by reference my discussions of ’099 claim 4 as if fully 

set forth herein. 

                                                        

1072 As best understood, it appears that “the parsing/extraction operations memory” 

may refer to ’789 claim 19’s “input buffer memory.” 

EX 1006 Page 505



  

 492 

C. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of Wakeman Renders Obvious Dependent Claims 33 and 34 

920. It is my opinion that a POSITA would have recognized that each and every 

limitation of ’789 claims 33 and 34 is disclosed or rendered obvious by the prior 

art. Specifically, it is my opinion that ’789 claims 33 and 34 are obvious over Rid-

dle in view of Ferdinand and Wakeman. 

1. Reasons to Modify the Combination of Riddle and Ferdi-

nand Further in View of Wakeman 

921. As described above with respect to the ’646 Patent in Section VII.A.1, a 

POSITA would have been motivated and found it obvious to combine the teach-

ings of Riddle in view of Ferdinand and further in view of Wakeman. 

2. Dependent ’789 Claim 33 

922. Claim 33 recites: “A packet monitor according to claim 19, further compris-

ing: a cache subsystem coupled to and between the lookup engine and the flow-en-

try database memory providing for fast access of a set of likely-to-be-accessed 

flow entries from the flow-entry database.” This claim is identical to ’646 claim el-

ement 7.6, similar to ’646 claim elements 1.3 and 1.4, and disclosed in the prior art 

for the same reasons. I incorporate by reference my discussions of those elements 

as if fully set forth herein. 

EX 1006 Page 506



  

 493 

3. Dependent ’789 Claim 34 

923. Claim 34 recites: “A packet monitor according to claim 33, wherein the 

cache subsystem is an associative cache subsystem including one or more content 

addressable memory cells (CAMs).” This claim is identical to ’646 dependent 

claim 3 and disclosed in the prior art the same reasons. I incorporate by reference 

my discussion of ’646 dependent claim 3 as if fully set forth herein. 

924. Thus, for all the above reasons, it is my opinion that Riddle in view of Ferdi-

nand and Wakeman renders obvious claims 33 and 34 of the ’789 Patent. 

D. For the ’789 Patent, Riddle in View of Ferdinand and Hasani 

Renders Obvious Claims 44, 48, and 49 

925. It is my opinion that a POSITA would have recognized that each and every 

limitation of ’789 claims 44, 48, and 49 is disclosed or rendered obvious by the 

prior art. Specifically, it is my opinion that ’789 claims 44, 48, and 49 are obvious 

over Riddle in view of Ferdinand and Hasani. 

1. Reasons to Modify the Combination of Riddle and Ferdi-

nand Further in View of Hasani 

926. Riddle and Hasani are in the same field of endeavor and contain overlapping 

disclosures with similar purposes. As described above in Sections IV.A and 

VII.A.1, Riddle discloses a packet monitor that parses packets and stores pars-

EX 1006 Page 507



  

 494 

ing/extraction operations to carry out state operations to identify a previously-en-

countered conversational flow or to store a new conversational flow.1073 Further, 

Riddle seeks to address “methods for automatically classifying packet traffic based 

upon information gathered from … multiple layers in a multi-layer protocol net-

work.”1074 And Riddle details methods to automatically classify traffic based on 

protocol layer independent categories: 

Network traffic is automatically classified under existing classes, begin-

ning with the broadest classes, an inbound traffic class and an outbound 

traffic class, in protocol layer independent categories. For example, a 

particular instance of traffic may be classified according to its 

transport layer characteristics, e.g., Internet Protocol port number, as 

well as its application layer information, e.g., SMTP. Characteristics 

such as MIME types may also be automatically identified. Standard 

protocols, such as, IPX, SNA, and services, such as, SMTP and FTP 

are recognized for automatic classification. Classification is performed 

to the most specific level determinable. For example, in select embodi-

ments, non-IP traffic, such as SNA, may be classified only by proto-

col, whereas Internet Protocol traffic may be classified to the /etc/ser-

vices level. Classification beyond a terminal classification level is de-

tected and prevented. For example, in a select embodiment, a class 

                                                        

1073 E.g., Riddle, 8:47-9:27, 12:26-53, claim 8, Figs. 4A-4B. 
1074 Riddle, 3:36-39. 

EX 1006 Page 508



  

 495 

matching “ipx” or “nntp” will not be further automatically classi-

fied.1075 

927. And as described above in Section IV.G, Hasani discloses a packet parser 

and a database of parsing/extraction operations.1076 And Hasani details that its 

stored parsing/extraction operations include information used to determine proto-

col dependent extraction operations from packet data.1077  

928. As I describe below regarding ’789 claim element 44.2 and claim 49, a 

POSITA would have been motivated and found it obvious for Riddle’s stored pars-

ing/extraction operations to include information on how to determine protocol de-

pendent extraction operations from packet data that indicate a protocol used in the 

packet. A POSITA further would have been motivated to do so because Hasani 

teaches protocol dependent packet extraction operations aid in extracting infor-

mation specific to well-known standards, such as IEEE 802.2.1078 

929. Further, a POSITA would have been motivated to have Riddle’s parsing/ex-

traction operations include information used to determine protocol dependent ex-

traction operations from packet data because the POSITA would have appreciated 

                                                        

1075 Riddle, 10:57-11:9; 12:1-12 (discussing detection of RTP and RTSP proto-

cols). 
1076 Hasani, 6:12-57, Figs. 3, 4, 5B. 
1077 Hasani, 5:9-34, 11:28-39. 
1078 Hasani, 5:9-34, 11:28-39. 

EX 1006 Page 509



  

 496 

that this modification would make access and maintenance of these operations 

more efficient.1079 

2. Independent ’789 Claim 44 

a. ’789 Claim 44 Preamble: “A method of examining pack-

ets passing through a connection point on a computer 

network, the method comprising” 

930. Riddle discloses all elements of this preamble. This preamble is similar to 

the preamble of ’646 claim 1 and disclosed in the prior art for the same reasons. I 

incorporate by reference my discussion of the preamble of ’646 claim 1 as if fully 

set forth herein. 

b. ’789 Claim Element 44.1: “(a) receiving a packet from a 

packet acquisition device” 

931. This claim element is similar to ’646 claim element 1.1 and disclosed in the 

prior art for the same reasons. I incorporate by reference my discussion of ’646 

claim element 1.1 as if fully set forth herein.1080 

                                                        

1079 ’789 Prosecution History, 176-177 (10/05/2004 Office Action, p.3). 
1080 ’789 claim element 44.1 is also identical to ’646 claim element 16.1 and ’789 

claim element 1.1, my discussions of which likewise incorporate my discussion of 

’646 claim element 1.1 

EX 1006 Page 510



  

 497 

c. ’789 Claim Element 44.2: “(b) performing one or more 

parsing/extraction operations on the packet according to 

a database of parsing/extraction operations to create a 

parser record comprising a function of selected portions 

of the packet, the database of parsing/extraction opera-

tions including information on how to determine a set of 

one or more protocol dependent extraction operations 

from data in the packet that indicate a protocol is used in 

the packet” 

932. Riddle discloses this claim element, which is similar to ’789 claim element 

1.2, the only difference being that this element recites “a database of parsing/ex-

traction,” with “the database of parsing/extraction operations including information 

on how to determine a set of one or more protocol dependent extraction operations 

from data in the packet that indicate a protocol is used in the packet.” Further, ’789 

claim element 1.2 is similar to ’646 claim element 7.3, and I incorporate by refer-

ence my discussion of ’789 claim element 1.2 and ’646 claim element 7.3 as if 

fully set forth herein. As explained in those discussions, Riddle discloses perform-

ing one or more parsing/extraction operations on the packet to create a parser rec-

ord comprising a function of selected portions of the packet. 

933. Further, Riddle discloses a database of parsing/extraction operations includ-

ing information on how to determine a set of one or more protocol-dependent ex-

EX 1006 Page 511



  

 498 

traction operations from data in the packet. For example, Riddle discloses that traf-

fic classes are determined using a knowledge base that may be stored in a database 

306 in memory.1081  

934. Riddle also discloses that the knowledge base 306 stored in memory in-

cludes information describing how to determine at least one of the protocols used 

by a packet in a flow from data in the packet, i.e., the heuristics for determining 

traffic classes. Riddle relates “to digital packet telecommunications, and particu-

larly to management of network bandwidth based on information ascertainable 

from multiple layers of OSI network model.”1082 And the OSI network model is 

prior art to both Riddle and the Challenged Patents, as Riddle’s Figure 1D con-

firms: 

 
 

                                                        

1081 Riddle, 12:26-41 (“Automatic Traffic Classification Processing”), Fig. 3. 
1082 Riddle, 1:54-57. 

EX 1006 Page 512



  

 499 

935. Riddle realized that “there is no teaching in the prior art of methods for auto-

matically classifying packet traffic based upon information gathered from a [sic] 

multiple layers in a multi-layer protocol network.”1083 

936. Riddle teaches methods for automatically classifying packet flows for use in 

allocating bandwidth resources by a rule of assignment of a service level.1084 The 

methods disclosed in Riddle comprise “applying individual instances of traffic 

classification paradigms to packet network flows based on selectable information 

obtained from a plurality of layers of a multi- layered communication protocol in 

order to define a characteristic class, then mapping the flow to the defined traffic 

class.”1085 Riddle’s “automatic classification is sufficiently robust to classify a 

complete enumeration of the possible traffic.”1086 Further, Riddle’s invention pro-

vides “techniques to automatically classify a plurality of heterogeneous packets in 

a packet telecommunications system for management of network bandwidth in sys-

tems such as a private area network, a wide area network or an internetwork.”1087  

937. In Riddle, a traffic class is defined as, “All traffic between a client and a 

server endpoints. A single instance of a traffic class is called a flow. Traffic classes 

                                                        

1083 Riddle, 3:36-39. 
1084 Riddle, Abstract, 4:7-10. 
1085 Riddle, Abstract, 4:10-15. 
1086 Riddle, Abstract, 4:15-17. 
1087 Riddle, 4:55-60. 

EX 1006 Page 513



  

 500 

have properties or class attributes such as, directionality, which is the property of 

traffic to be flowing inbound or outbound.”1088 Riddle further defines, “[a] flow is a 

single instance of a traffic class. For example, all packets in a TCP connection be-

long to the same flow. As do all packets in a UDP session.”1089 

938. When Riddle classifies traffic, it determines the protocols being used.1090 For 

instance, Riddle could define a traffic class for an FTP application using a client IP 

address inside a network, and server IP address outside a network.1091 Further, Rid-

dle teaches that it will automatically classify traffic based on protocol layer inde-

pendent categories,1092 and provide additional confirmation that protocols are de-

tected.1093 And from these disclosures, a POSITA would have understood Riddle to 

disclose a storage system 35 for storing instructions (code) in form of a knowledge 

base embodied in a relational database, for parsing and extracting information from 

flows (i.e., from the packets of a flow) to classify packets or flows into traffic clas-

ses by determining one or more protocols used in the flow. 

                                                        

1088 Riddle, 5:42-45 
1089 Riddle, 5:17-20. 
1090 Riddle, 8:47-9:27 (“Traffic Class” and “Classifying Traffic”). Additionally, 

Table 2 provides examples of information from which traffic classes may be built. 

Riddle, 9:64-65. A traffic class could be defined for an FTP application using a cli-

ent IP address inside a network, and server IP address outside a network. 
1091 Riddle, Table 2, 9:64-65. 
1092 Riddle, 10:57-11:9 (“Automatic Traffic Classification”). 
1093 Riddle, 12:1-12 (discussing detecting Real Time Protocol (RTP) and Real 

Time Streaming Protocol (RTSP)). 

EX 1006 Page 514



  

 501 

939. To the extent Patentee argues that Riddle’s knowledge base 306 does not 

contain the claimed “information on how to determine a set of one or more proto-

col dependent extraction operations from data in the packet that indicate a protocol 

is used in the packet,” a POSITA would have found it obvious to include that in-

formation based on Riddle, a POSITA’s own knowledge, or Hasani.  

940. As discussed above, Riddle discloses performing state operations including 

determining and updating statistical metrics such as the duplicate count, the most 

recent time traffic with the same identifying characteristics was encountered, and 

the byte count. Each of these state operations is dependent upon the protocol since 

Riddle discloses creating traffic classes based upon protocols.1094  

941. Moreover, as noted in my discussion of ‘099 claim element 1.2, Riddle dis-

closes “[a] knowledge base 306” that “contains heuristics for determining traffic 

classes.”1095 And a POSITA would have understood that the state operations that 

                                                        

1094 Riddle, Table 2, Figs. 2A, 2B, 8:46-9:27, 10:27-11:23. When received packets 

match a traffic class (step 406), Riddle then determines the received time (step 

408), counts duplicates (step 410), and determines byte count (step 412). Riddle, 

Fig. 4A, 12:42-60. Each of these state operations are dependent upon the protocol 

because they are determined when received packets match a traffic class which is 

protocol specific. 
1095 Riddle, 12:32-35. 

EX 1006 Page 515



  

 502 

Riddle performs are stored in knowledge base 306 because they relate to how Rid-

dle classifies traffic based upon protocols (i.e., the stored heuristics are “protocol 

dependent”).  

942. Further, Hasani discloses storing parsing and extraction operations for pack-

ets in a database.1096 In particular, Hasani details that its stored parsing and extrac-

tion operations include information used to determine protocol dependent extrac-

tion operations from packet data.1097 For example, Hasani discloses creating a for-

warding vector based on stored protocol-dependent information: 

Each of the MAC layer, LLC layer, and PID fields contains a variety of 

allowable data. Parser 180 has as input: the results of reading the MAC 

layer fields as presented on RMC bus 172; and the results of parser 180 

reading the MAC, the LLC header fields, and the PID field of the packet 

from the RMC bus 172. Parser 180 also has as input a parser database 

182. A memory allocation diagram 230 for parser database 182 is 

shown in FIG. 5B. By comparing the contents of the parser database 

182 with the contents of the fields of the packet, the parser creates a 

forwarding vector for the packet. The forwarding vector is transferred 

on line 184 to control block 186 of the packet memory, and also to 

packet memory controller 188. The forwarding vector then determines 

the fate of the packet by providing information to the packet memory 

controller 188.1098 

                                                        

1096 Hasani, 6:27-57, Figs. 3, 4 (parser database 182), 5. 
1097 Hasani, 5:9-34, 11:28-39. 
1098 Hasani, 6:12-26. 

EX 1006 Page 516



  

 503 

943. Similarly, Hasani teaches protocol-dependent packet filtering: 

Protocol IDentifications, PID, Field Filtering  

Section 240, BLOCK 10-14, is allocated to filtering the PID field.  

LLC filtering based on PID is required for SNAP SAP packets. The 

Protocol IDentifier field, PID, of the packet is five (5) bytes long. FIG. 

11 shows a PID entry in the parser database, found in PID section 240 

of FIG. 5B. The description of PID Section 240 is similar to the de-

scription for the destination addresses, DA section 234, except that the 

PID section 240 has five blocks of memory rather than six (6), corre-

sponding to the PID field of the packet. Also, BIT <63> in each entry 

is reserved for the Unknown user.  

The DSAP entries and PID entries are two mutually exclusive filtering 

fields. That is, a packet is either filtered on DSAP or on PID. For a 

SNAP SAP packet the filtering is based upon the five (5) bytes of PID. 

For a NON SNAP PACKET the filtering is based on one byte of DSAP 

From the DSAP and the PID fields, the parser supports 64 unique val-

ues.1099 

944. Hasani teaches that such protocol-dependent packet extraction operations aid 

in extracting information specific to well-known standards, such as IEEE 802.2.1100 

As Hasani notes, “the standard IEEE 802.2 MAC and LLC headers may contain a 

maximum of twenty two (22) bytes,” and the “arrival rate of bits is, in some cases, 

                                                        

1099 Hasani, 11:28-46. 
1100 Hasani, 5:9-34, 11:28-39. 

EX 1006 Page 517



  

 504 

faster than the CPU of the host computer can execute software to read the packets 

into memory.”1101 Hasani’s relational database therefore is necessary to sort and 

store the packets arriving at a computer from a LAN at the speed at which the bits 

arrive at the interface.1102 

945. Thus, a POSITA would have known that a relational database could store 

protocol-dependent state operations, and based on Riddle’s disclosures or in view 

of Hasani, would have been motivated to store “protocol dependent state opera-

tions” in Riddle’s database because it would make access and maintenance of these 

operations more efficient. Further, it would accomplish Riddle’s objective of ex-

amining packets in real-time.1103 As such, using Hasani’s database organization in 

Riddle’s knowledge base 306, amounts to nothing more than combining known 

prior art technologies used in their ordinary and predictable manner to store pars-

ing/extraction operations. 

                                                        

1101 Hasani, 1:47-59. 
1102 E.g., Hasani, 2:1-3. 
1103 Riddle, 1:54-2:13, 2:66-67, 3:67-4:2, 12:3-12; Ex. 1031 (Packer, incorporated-

by-reference into Riddle), 4:12-16. 

EX 1006 Page 518



  

 505 

d. ’789 Claim Element 44.3: “(c) looking up a flow-entry 

database comprising none or more flow-entries for previ-

ously encountered conversational flows, the looking up 

using at least some of the selected packet portions, and 

determining if the packet is of an existing flow” 

946. This claim element is substantially identical to ’646 claim element 16.3, sim-

ilar to ’646 claim element 1.2, and disclosed in the prior art for the same rea-

sons.1104 I incorporate by reference my discussion of ’646 claim elements 1.2 and 

16.3 as if fully set forth herein.1105 

e. ’789 Claim Element 44.4: “(d) if the packet is of an exist-

ing flow, obtaining the last encountered state of the flow 

and performing any state operations specified for the 

state of the flow starting from the last encountered state 

of the flow; and” 

947. This claim element is identical to ’789 claim element 13.1, similar to ’751 

claim element 10.1, and disclosed in the prior art for the same reasons.1106 I incor-

porate by reference my discussion of ’789 claim element 13.1 and ’751 claim ele-

ment 10.1 as if fully set forth herein. 

                                                        

1104 The only difference between ’789 claim element 44.3 and ’646 claim element 

16.3 is that the latter requires “the lookup being via a cache.” 
1105 ’789 claim element 44.3 is also identical to ’789 claim element 1.3, my discus-

sion of which likewise incorporates my discussion of ’646 claim element 1.1 
1106 ’751 claim element 10.1 requires “if the packet is of an existing flow, identify-

ing the last encountered state of the flow and performing any state operations spec-

ified for the state of the flow starting from the last encountered state of the flow.” 

EX 1006 Page 519



  

 506 

f. ’789 Claim Element 44.5: “(e) if the packet is of a new 

flow, performing any analysis required for the initial 

state of the new flow and storing a new flow-entry for the 

new flow in the flow-entry database, including identifying 

information for future packets to be identified with the 

new flow-entry” 

948. This claim element is similar to ’751 claim element 1.5, with the only differ-

ence being that this element requires “performing any analysis required for the ini-

tial state of the new flow.” All limitations of ’789 claim element 44.5 are disclosed 

in the prior art for the reasons set forth above in my discussions of ’751 claim ele-

ment 1.5 and ’646 claim element 1.5, which explains how Riddle discloses “per-

forming any state operations required for the initial state of the new flow.”1107 I in-

corporate by reference my discussions of ’751 claim element 1.5 and ’646 claim 

element 1.5 as if fully set forth herein.  

949. Thus, for all the above reasons, it is my opinion that Riddle in view of Ferdi-

nand and Hasani renders obvious independent claim 44 of the ’789 Patent. 

3. Dependent ’789 Claim 48 

950. Riddle discloses all the limitations of claim 48, which recites: “A method ac-

cording to claim 44, further comprising forming a signature from the selected 

packet portions, wherein the lookup operation uses the signature and wherein the 

                                                        

1107 ’646 claim element 1.5 recites a state processor “to perform any state opera-

tions required for the initial state of the new flow in the case that the packet is [not] 

from an existing flow.” 

EX 1006 Page 520



  

 507 

identifying information stored in the new or updated flow-entry is a signature for 

identifying future packets.” 

951. The ’789 Patent describes a signature as “selected parts of a packet that will 

allow monitor 108 to identify efficiently any packets that belong to the same 

flow.”1108 And as shown in Figure 4A, Riddle discloses creating a flow-entry in the 

flow-entry database for new flows with identifying information, i.e., the signature. 

That identifying information includes selected portions of the packet, e.g., “identi-

fying characteristics, such as protocol type (SAP), IP protocol number, server port, 

traffic type if known, MIME type, a time of occurrence of the traffic.”1109 

952. To the extent Patentee argues that the signature, i.e., identifying characteris-

tics, must be hashed, then such a modification would have been obvious to a 

POSITA based upon the disclosure of Riddle or a POSITA’s own knowledge for 

the same reasons set forth above in my discussion of ’646 claim element 7.3, 

which I incorporate by reference.1110 

                                                        

1108 ’789 Patent, 10:60-63. 
1109 Riddle, 12:42-59, Fig. 4A at 402 (“parse flow specification from a packet of 

the flow”), 404 (“compare flow specification with existing classification tree”), 

406 (“traffic matches a class?”), 408 (“enter into a saved list characteristics of the 

traffic”), and 410 (“suppress duplicates”). 
1110 Like the ’646 Patent, the ’789 Patent acknowledges that hashing signatures and 

the benefits of doing so were well known to POSITAs. ’789 Patent, 13:37-43. As 

discussed above in Section IV.A.1 and my discussion of ’646 claim element 7.3, 

Riddle incorporates-by-reference Packer, which teaches using hash tables to index 

flows for TCP connections. Ex. 1031 (Packer), 15:43-51, Fig. 4A. A POSITA 

EX 1006 Page 521



  

 508 

4. Dependent ’789 Claim 49 

953. Riddle discloses all the limitations of claim 49 or renders it obvious in view 

of Hasani. Claim 49 recites: “A method according to claim 44, wherein the state 

operations are according to a database of protocol dependent state operations.” 

954. As discussed above, Riddle discloses performing state operations including 

determining and updating statistical metrics such as the duplicate count, the most 

recent time traffic with the same identifying characteristics was encountered, and 

the byte count. Each of these state operations is dependent upon the protocol since 

Riddle discloses creating traffic classes based upon protocols.1111  

955. Moreover, as noted in my discussion of ‘099 claim element 1.2, Riddle dis-

closes “[a] knowledge base 306” that “contains heuristics for determining traffic 

classes.”1112 And a POSITA would have understood that the state operations that 

                                                        

would have appreciated that the same, well-known function could be applied in the 

combinations identified herein, decreasing look up times. 
1111 Riddle, Table 2, Figs. 2A, 2B, 8:46-9:27, 10:27-11:23. When received packets 

match a traffic class (step 406), Riddle then determines the received time (step 

408), counts duplicates (step 410), and determines byte count (step 412). Riddle, 

Fig. 4A, 12:42-60. Each of these state operations are dependent upon the protocol 

because they are determined when received packets match a traffic class which is 

protocol specific. Additionally, as noted in my discussion of ‘099 claim element 

1.2, Riddle discloses “[a] knowledge base 306” that “contains heuristics for deter-

mining traffic classes.” Riddle, 12:32-35. And a POSITA would have understood 

that the state operations that Riddle performs are stored in knowledge base 306 be-

cause they relate to how Riddle classifies traffic. 
1112 Riddle, 12:32-35. 

EX 1006 Page 522



  

 509 

Riddle performs are stored in knowledge base 306 because they relate to how Rid-

dle classifies traffic (i.e., the stored heuristics are “protocol dependent”).  

956. To the extent Patentee argues that Riddle’s database does not contain “proto-

col dependent state operations,” such a modification would be obvious to a 

POSITA based on Riddle, a POSITA’s own knowledge, or Hasani. As discussed 

above regarding ’789 claim element 44.2 Hasani discloses storing parsing and ex-

traction operations for packets in a database.1113 In particular, Hasani details that its 

stored parsing and extraction operations include information used to determine 

protocol dependent extraction operations from packet data.1114 For example, Hasani 

teaches protocol-dependent packet filtering and creating a forwarding vector based 

on stored protocol-dependent information.1115 And Hasani details that such proto-

col-dependent packet extraction operations aid in extracting information specific to 

well-known standards, such as IEEE 802.2.1116 Thus, Hasani’s relational database 

was necessary to sort and store the packets arriving at computer from a LAN at the 

speed at which the bits arrive at the interface.1117 

                                                        

1113 Hasani, 6:27-57, Figs. 3, 4 (parser database 182), 5. 
1114 Hasani, 5:9-34, 11:28-46. 
1115 Hasani, 6:12-26. 
1116 Hasani, 5:9-34, 11:28-39, 1:47-59 (“[T]he standard IEEE 802.2 MAC and LLC 

headers may contain a maximum of twenty two (22) bytes…. This arrival rate of 

bits [was], in some cases, faster than the CPU of the host computer can execute 

software to read the packets into memory.”). 
1117 E.g., Hasani, 2:1-3. 

EX 1006 Page 523



  

 510 

957. As detailed above regarding ’789 claim element 44.2, based on Riddle’s and 

Hasani’s teachings, a POSITA would have been motivated to store “protocol de-

pendent state operations” in Riddle’s database because it would make access and 

maintenance of these operations more efficient. Further, it would accomplish Rid-

dle’s objective of examining packets in real-time.1118 So even if Riddle did not dis-

close storing “protocol dependent state operations” in knowledge base 306, doing 

so amounts to nothing more than combining known prior art technologies used in 

their ordinary and predictable manner to store parsing/extraction operations. 

958. Thus, for all the above reasons, it is my opinion that Riddle in view of Ferdi-

nand and Hasani renders obvious claims 44, 48, and 49 of the ’789 Patent. 

E. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of Yu Renders Obvious Claims 1-2, 13-17, 19-20, and 42. 

959. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claims 1-2, 13-17, 19-20, and 42 is disclosed or rendered ob-

vious in light of Riddle in view of Ferdinand and further in view of Yu. Specifi-

cally, my opinions regarding Riddle in view of Ferdinand are exactly the same as 

those above in Section XI.A, but further include the teachings of Yu. Thus, as if 

fully set forth here, I incorporate the discussion from Section XI.A regarding the 

                                                        

1118 Riddle, 1:54-2:13, 2:66-67, 3:67-4:2, 12:3-12; Ex. 1031 (Packer, incorporated-

by-reference into Riddle), 4:12-16. 

EX 1006 Page 524



  

 511 

obviousness of ’789 claims 1-2, 13-17, 19-20, and 42 over Riddle in view of Ferdi-

nand. 

960. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 1.3 recites “flow-entries for previously 

encountered conversational flows.” While Riddle itself teaches identifying conver-

sational flows, Yu further demonstrates identifying conversational flows through 

its “flow classification.”1119 Further, Yu teaches flow classification logic that 

“keeps track of the flow’s state until matching criteria is met” when identifying 

whether a packet belongs to a conversational flow.1120 

961. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of Yu in Section VII.C, Yu 

teaches identifying the claimed “conversational flow” by Yu’s flow classifier link-

ing multiple “streams” into a “flow” based on application or application data.1121 I 

incorporate by reference that discussion as if fully set forth herein. 

962. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, I explain how 

a POSITA would have been motivated to combine Yu’s teachings into Riddle’s 

monitor. I incorporate by reference that discussion as if fully set forth herein. For 

                                                        

1119 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
1120 Yu, 4:62-64. 
1121 Yu, 1:56-60, 3:32-49; 4:1-8. 

EX 1006 Page 525



  

 512 

the same reasons, it is my opinion that combining the teachings of Riddle, Ferdi-

nand, and Yu renders obvious all the claim elements relating to “conversational 

flows.” 

963.  As set forth in my analysis of the ’789 Patent in Sections XI.A.2 through 

XI.A.11 above, Riddle and Ferdinand disclose or render obvious all the remaining 

elements of ’789 claims 1-2, 13-17, 19-20, and 42. Thus, it is my opinion that Rid-

dle in view of Ferdinand and further in view of Yu renders obvious ’789 claims 1-

2, 13-17, 19-20, and 42. 

F. For the ’789 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of Yu Renders Obvious Claim 31. 

964. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claim 31 is disclosed or rendered obvious in light of Riddle 

in view of Ferdinand and Baker and further in view of Yu. Specifically, my opin-

ions regarding Riddle in view of Ferdinand and Baker are exactly the same as 

those above in Section XI.B, but further include the teachings of Yu. Thus, as if 

fully set forth here, I incorporate the discussion from Section XI.B regarding the 

obviousness of ’789 claim 31 over Riddle in view of Ferdinand and Baker. 

965. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 19.4 recites “flow-entries for previously 

encountered conversational flows” wherein claim 31 depends from claim 19.  

EX 1006 Page 526



  

 513 

While Riddle itself teaches identifying conversational flows, Yu further demon-

strates identifying conversational flows through its “flow classification.”1122 Fur-

ther, Yu teaches flow classification logic that “keeps track of the flow’s state until 

matching criteria is met” when identifying whether a packet belongs to a conversa-

tional flow.1123 

966. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of Yu in Section VII.C, Yu 

teaches identifying the claimed “conversational flow” by Yu’s flow classifier link-

ing multiple “streams” into a “flow” based on application or application data.1124 I 

incorporate by reference that discussion as if fully set forth herein. 

967. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, I explain how 

a POSITA would have been motivated to combine Yu’s teachings into Riddle’s 

monitor. I incorporate by reference that discussion as if fully set forth herein. For 

the same reasons, it is my opinion that combining the teachings of Riddle, Ferdi-

nand, Baker, and Yu renders obvious all the claim elements relating to “conversa-

tional flows.” 

968.  As set forth in my analysis of the ’789 Patent in Sections XI.B.2 above, 

                                                        

1122 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
1123 Yu, 4:62-64. 
1124 Yu, 1:56-60, 3:32-49; 4:1-8. 

EX 1006 Page 527



  

 514 

Riddle, Ferdinand, and Baker disclose or render obvious all the remaining elements 

of ’789 claim 31 which depends from claim 19. Thus, it is my opinion that Riddle 

in view of Ferdinand and Baker and further in view of Yu renders obvious ’789 

claim 31. 

G. For the ’789 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of Yu Renders Obvious Claims 33-34. 

969. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claims 33-34 is disclosed or rendered obvious in light of Rid-

dle in view of Ferdinand and Wakeman and further in view of Yu. Specifically, my 

opinions regarding Riddle in view of Ferdinand and Wakeman are exactly the 

same as those above in Section XI.C, but further include the teachings of Yu. Thus, 

as if fully set forth here, I incorporate the discussion from Section XI.C regarding 

the obviousness of ’789 claims 33-34 over Riddle in view of Ferdinand and Wake-

man. 

970. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 19.4 recites “flow-entries for previously 

encountered conversational flows” wherein claims 33-34 depend from claim 19.  

EX 1006 Page 528



  

 515 

While Riddle itself teaches identifying conversational flows, Yu further demon-

strates identifying conversational flows through its “flow classification.”1125 Fur-

ther, Yu teaches flow classification logic that “keeps track of the flow’s state until 

matching criteria is met” when identifying whether a packet belongs to a conversa-

tional flow.1126 

971. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of Yu in Section VII.C, Yu 

teaches identifying the claimed “conversational flow” by Yu’s flow classifier link-

ing multiple “streams” into a “flow” based on application or application data.1127 I 

incorporate by reference that discussion as if fully set forth herein. 

972. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, I explain how 

a POSITA would have been motivated to combine Yu’s teachings into Riddle’s 

monitor. I incorporate by reference that discussion as if fully set forth herein. For 

the same reasons, it is my opinion that combining the teachings of Riddle, Ferdi-

nand, Wakeman, and Yu renders obvious all the claim elements relating to “con-

versational flows.” 

973.  As set forth in my analysis of the ’789 Patent in Sections XI.C.2 through 

                                                        

1125 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 
1126 Yu, 4:62-64. 
1127 Yu, 1:56-60, 3:32-49; 4:1-8. 

EX 1006 Page 529



  

 516 

XI.C.3 above, Riddle, Ferdinand, and Wakeman disclose or render obvious all the 

remaining elements of ’789 claims 33-34 which depends from claim 19. Thus, it is 

my opinion that Riddle in view of Ferdinand and Wakeman and further in view of 

Yu renders obvious ’789 claims 33-34. 

H. For the ’789 Patent, Riddle in View of Ferdinand and Hasani and 

Further in View of Yu Renders Obvious Claims 44 and 48-49. 

974. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claims 44 and 48-49 is disclosed or rendered obvious in light 

of Riddle in view of Ferdinand and Hasani and further in view of Yu. Specifically, 

my opinions regarding Riddle in view of Ferdinand and Hasani are exactly the 

same as those above in Section XI.D, but further include the teachings of Yu. 

Thus, as if fully set forth here, I incorporate the discussion from Section XI.D re-

garding the obviousness of ’789 Claims 44 and 48-49 over Riddle in view of Ferdi-

nand and Hasani. 

975. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 44.3 recites “flow-entries for previously 

encountered conversational flows.” While Riddle itself teaches identifying conver-

sational flows, Yu further demonstrates identifying conversational flows through 

its “flow classification.”1128 Further, Yu teaches flow classification logic that 

                                                        

1128 Yu, 1:56-60, 3:32-36, 3:47-49; 4:1-8. 

EX 1006 Page 530



  

 517 

“keeps track of the flow’s state until matching criteria is met” when identifying 

whether a packet belongs to a conversational flow.1129 

976. As discussed with respect to the obviousness of ’099 claims 1 and 2 over 

Riddle in view of Ferdinand and further in view of Yu in Section VII.C, Yu 

teaches identifying the claimed “conversational flow” by Yu’s flow classifier link-

ing multiple “streams” into a “flow” based on application or application data.1130 I 

incorporate by reference that discussion as if fully set forth herein. 

977. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of Yu in Section VII.C, I explain how 

a POSITA would have been motivated to combine Yu’s teachings into Riddle’s 

monitor. I incorporate by reference that discussion as if fully set forth herein. For 

the same reasons, it is my opinion that combining the teachings of Riddle, Ferdi-

nand, Hasani, and Yu renders obvious all the claim elements relating to “conversa-

tional flows.” 

978.  As set forth in my analysis of the ’789 Patent in Sections XI.D.2 through 

XI.D.4 above, Riddle, Ferdinand, and Hasani disclose or render obvious all the re-

maining elements of ’789 claims 44 and 48-49. Thus, it is my opinion that Riddle 

in view of Ferdinand and Hasani and further in view of Yu renders obvious ’789 

                                                        

1129 Yu, 4:62-64. 
1130 Yu, 1:56-60, 3:32-49; 4:1-8. 

EX 1006 Page 531



  

 518 

claims 44 and 48-49. 

I. For the ’789 Patent, Riddle in View of Ferdinand and Further in 

View of RFC1945 Renders Obvious Claims 1-2, 13-17, 19-20, and 

42. 

979. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claims 1-2, 13-17, 19-20, and 42 is disclosed or rendered ob-

vious in light of Riddle in view of Ferdinand and further in view of RFC. Specifi-

cally, my opinions regarding Riddle in view of Ferdinand are exactly the same as 

those above in Section XI.A, but further include the teachings of RFC1945. Thus, 

as if fully set forth here, I incorporate the discussion from Section XI.A regarding 

the obviousness of ’789 claims 1-2, 13-17, 19-20, and 42 over Riddle in view of 

Ferdinand. 

980. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 1.3 recites “flow-entries for previously 

encountered conversational flows.” While Riddle itself teaches identifying conver-

sational flows, RFC1945 further demonstrates identifying conversational flows 

through the additional example of the use of HTTP header fields. 

981. As discussed with respect to the obviousness of ’099 claims 1 and 2 in view 

Riddle, Ferdinand, and RFC1945 in Section VII.E, I understand that Patentee and 

its technical expert have taken the position that the HTTP Referrer field can be 

used to create a conversational flow. I incorporate by reference that discussion as if 

EX 1006 Page 532



  

 519 

fully set forth herein.  

982. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I ex-

plain how a POSITA would have been motivated to combine RFC1945’s teachings 

into Riddle’s monitor. I incorporate by reference that discussion as if fully set forth 

herein. For the same reasons, it is my opinion that combining the teachings of Rid-

dle, Ferdinand, and RFC1945 renders obvious all the claim elements relating to 

“conversational flows.” 

983.  As set forth in my analysis of the ’789 Patent in Sections XI.A.2 through 

XI.A.11 above, Riddle and Ferdinand disclose or render obvious all the remaining 

elements of ’789 claims 1-2, 13-17, 19-20, and 42. Thus, it is my opinion that Rid-

dle in view of Ferdinand and further in view of RFC1945 renders obvious ’789 

claims 1-2, 13-17, 19-20, and 42. 

J. For the ’789 Patent, Riddle in View of Ferdinand and Baker and 

Further in View of RFC1945 Renders Obvious Claim 31. 

984. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claim 31 is disclosed or rendered obvious in light of Riddle 

in view of Ferdinand and Baker and further in view of RFC1945. Specifically, my 

opinions regarding Riddle in view of Ferdinand and Baker are exactly the same as 

those above in Section XI.B, but further include the teachings of RFC1945. Thus, 

as if fully set forth here, I incorporate the discussion from Section XI.B regarding 

EX 1006 Page 533



  

 520 

the obviousness of ’789 claim 31 over Riddle in view of Ferdinand and Baker. 

985. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 19.4 recites “flow-entries for previously 

encountered conversational flows” wherein claim 31 depends from claim 19.  

While Riddle itself teaches identifying conversational flows, RFC1945 further 

demonstrates identifying conversational flows through the additional example of 

the use of HTTP header fields. 

986. As discussed with respect to the obviousness of ’099 claims 1 and 2 in view 

Riddle, Ferdinand, and RFC1945 in Section VII.E, I understand that Patentee and 

its technical expert have taken the position that the HTTP Referrer field can be 

used to create a conversational flow. I incorporate by reference that discussion as if 

fully set forth herein.  

987. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I ex-

plain how a POSITA would have been motivated to combine RFC1945’s teachings 

into Riddle’s monitor. I incorporate by reference that discussion as if fully set forth 

herein. For the same reasons, it is my opinion that combining the teachings of Rid-

dle, Ferdinand, Baker, and RFC1945 renders obvious all the claim elements relat-

ing to “conversational flows.” 

988.  As set forth in my analysis of the ’789 Patent in Sections XI.B.2 above, 

EX 1006 Page 534



  

 521 

Riddle, Ferdinand, and Baker disclose or render obvious all the remaining elements 

of ’789 claim 31 which depends from claim 19. Thus, it is my opinion that Riddle 

in view of Ferdinand and Baker and further in view of RFC1945 renders obvious 

’789 claim 31. 

K. For the ’789 Patent, Riddle in View of Ferdinand and Wakeman 

and Further in View of RFC1945 Renders Obvious Claims 33-34. 

989. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claims 33-34 is disclosed or rendered obvious in light of Rid-

dle in view of Ferdinand and Wakeman and further in view of RFC1945. Specifi-

cally, my opinions regarding Riddle in view of Ferdinand and Wakeman are ex-

actly the same as those above in Section XI.C, but further include the teachings of 

RFC1945. Thus, as if fully set forth here, I incorporate the discussion from Section 

XI.C regarding the obviousness of ’789 claims 33-34 over Riddle in view of Ferdi-

nand and Wakeman. 

990. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 19.4 recites “flow-entries for previously 

encountered conversational flows” wherein claims 33-34 depend from claim 19.  

While Riddle itself teaches identifying conversational flows, RFC1945 further 

demonstrates identifying conversational flows through the additional example of 

the use of HTTP header fields. 

991. As discussed with respect to the obviousness of ’099 claims 1 and 2 in view 

EX 1006 Page 535



  

 522 

Riddle, Ferdinand, and RFC1945 in Section VII.E, I understand that Patentee and 

its technical expert have taken the position that the HTTP Referrer field can be 

used to create a conversational flow. I incorporate by reference that discussion as if 

fully set forth herein.  

992. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I ex-

plain how a POSITA would have been motivated to combine RFC1945’s teachings 

into Riddle’s monitor. I incorporate by reference that discussion as if fully set forth 

herein. For the same reasons, it is my opinion that combining the teachings of Rid-

dle, Ferdinand, Wakeman, and RFC1945 renders obvious all the claim elements re-

lating to “conversational flows.” 

993.  As set forth in my analysis of the ’789 Patent in Sections XI.C.2 through 

XI.C.3 above, Riddle, Ferdinand, and Wakeman disclose or render obvious all the 

remaining elements of ’789 claims 33-34 which depends from claim 19. Thus, it is 

my opinion that Riddle in view of Ferdinand and Wakeman and further in view of 

RFC1945 renders obvious ’789 claims 33-34. 

L. For the ’789 Patent, Riddle in View of Ferdinand and Hasani and 

Further in View of RFC1945 Renders Obvious Claims 44 and 48-

49. 

994. It is my opinion that a POSITA would have recognized that each and every 

limitation of the ’789 claims 44 and 48-49 is disclosed or rendered obvious in light 

EX 1006 Page 536



  

 523 

of Riddle in view of Ferdinand and Hasani and further in view of RFC1945. Spe-

cifically, my opinions regarding Riddle in view of Ferdinand and Hasani are ex-

actly the same as those above in Section XI.D, but further include the teachings of 

RFC1945. Thus, as if fully set forth here, I incorporate the discussion from Section 

XI.D regarding the obviousness of ’789 Claims 44 and 48-49 over Riddle in view 

of Ferdinand and Hasani. 

995. As discussed above, all of the Challenged Claims require “conversational 

flows.” For example, ’789 claim element 44.3 recites “flow-entries for previously 

encountered conversational flows.” While Riddle itself teaches identifying conver-

sational flows, RFC1945 further demonstrates identifying conversational flows 

through the additional example of the use of HTTP header fields. 

996. As discussed with respect to the obviousness of ’099 claims 1 and 2 in view 

Riddle, Ferdinand, and RFC1945 in Section VII.E, I understand that Patentee and 

its technical expert have taken the position that the HTTP Referrer field can be 

used to create a conversational flow. I incorporate by reference that discussion as if 

fully set forth herein.  

997. As discussed with respect the obviousness of ’099 claims 1 and 2 over Rid-

dle in view of Ferdinand and further in view of RFC1945 in Section VII.E, I ex-

plain how a POSITA would have been motivated to combine RFC1945’s teachings 

into Riddle’s monitor. I incorporate by reference that discussion as if fully set forth 

EX 1006 Page 537



  

 524 

herein. I incorporate by reference that discussion as if fully set forth herein. For the 

same reasons, it is my opinion that combining the teachings of Riddle, Ferdinand, 

Hasani, and RFC1945 renders obvious all the claim elements relating to “conversa-

tional flows.” 

998.  As set forth in my analysis of the ’789 Patent in Sections XI.D.2 through 

XI.D.4 above, Riddle, Ferdinand, and Hasani disclose or render obvious all the re-

maining elements of ’789 claims 44 and 48-49. Thus, it is my opinion that Riddle 

in view of Ferdinand and Hasani and further in view of RFC1945 renders obvious 

’789 claims 44 and 48-49. 

  

EX 1006 Page 538



  

 525 

999. I declare that all statements made herein of my own knowledge are true, and 

that all statements made on information and belief are believed to be true; and that 

these statements were made with the knowledge that willful false statements and 

the like so made are punishable by fine or imprisonment, or both, under Section 

1001 of Title 18 of the United States Code. 

 

 

Dated:  February 3, 2020 By:  

              Jon B. Weissman 
 

 

 

 

 

 

 

EX 1006 Page 539


