light-emitting elements $E_{i,1}$ to $E_{i,n}$ of the ith row. Hence, in all the pixel circuits $D_{i,1}$ to $D_{i,n}$ of the ith row, a driving current equal to the gray level designation current I_{DATA} flows from the common signal supply line Z_i to the light-emitting elements $E_{i,1}$ to $E_{i,n}$ of the ith row through the drains 23s and sources 23s of the third transistors 23. Hence, the light-emitting elements $E_{i,1}$ to $E_{i,n}$ emit light. More specifically, in each of the pixel circuits Di,1 to Di,n during the non-selection period TNSE, the first transistor 21 functions to electrically disconnect the corresponding signal line Yi from the third transistor 23 such that the gray level designation current IDATA flowing to the signal line Yi does not flow to the third transistor 23. The second transistor 22 functions to hold the voltage between the gate 23g and the source 23s of the third transistor 23, which is converted during the selection period TSE, by confining the charges in the capacitor 24. In all the pixel circuits Di,1 to Di,n of the ith row, when the common signal is set to the voltage VHIGH during the non-selection period TNSE, the third transistor 23 functions to supply a driving current of a level corresponding to the held gate-source voltage level to the light-emitting element Ei, j. Hence, the light-emitting elements $E_{\text{i,1}}$ to $E_{\text{i,n}}$ of the ith row do not emit light during each of the 5 15 selection periods TSE of the first to mth rows. The light-emitting elements $E_{i,1}$ to $E_{i,n}$ emit light during each of the \underline{m} non-selection periods $T_{\mbox{\scriptsize NSE}}$ in one scanning period TSC. The current value of the driving current that flows to the light-emitting elements $E_{i,1}$ to Ei,n when the common signal is at VHIGH is the same as that of the current flowing to the third transistor 23 of each of the pixel circuits Di,1 to Di,n. is, the current value is equal to that of the gray level designation current IDATA that flows to the third transistor 23 of each of the pixel circuits $D_{i,1}$ to Di,n during the selection period TSE of the ith row. During the selection period TSE of the ith row, when the current value that flows to the third transistor 23 of each of the pixel circuits Di, 1 to Di, n of the ith row is set, the driving current of each of the light-emitting elements Ei,1 to Ei,n has a desired current value. Hence, the light-emitting elements Ei,1 to Ei,n emit light at a desired gray level luminance. 20 As described above, in this embodiment, even when the current vs. voltage characteristic of the third transistor 23 changes between the pixel circuits D_{1,1} to D_{m,n}, the gray level designation current I_{DATA} having a predetermined current value is forcibly supplied between the source 23s and the drain 23d of the third transistor 23 during the selection period T_{SE}. In addition, when the voltage between the source 23s and the drain 23d of the third transistor 23 is always saturated, as shown in FIG. 7, the common signal of the voltage $V_{\rm HIGH}$ is output to the common signal supply lines Z_1 to Z_m during the non-selection period . $T_{\rm NSE}$. Accordingly, a driving current having a current value equal to the gray level designation current $I_{\rm DATA}$ is supplied between the source 23s and the drain 23d of the third transistor 23. For this reason, the luminance does not vary between the light-emitting elements $E_{1,1}$ to E_m , n of the pixels. That is, in this embodiment, even when a luminance gray level signal having the same voltage level is output to pixels, any in-plane variation in luminance between the pixels can be suppressed. Hence, the organic EL display 1 of this embodiment can display a high-quality image. During the non-selection period $T_{\rm NSE}$, the common signal changes to $V_{\rm HIGH}$ m times. The light emission duty of the light-emitting element $E_{\rm i,j}$ is about 50%. To the contrary, in a simple matrix driving display having m light-emitting elements arrayed in the vertical direction and n light-emitting elements arrayed in the horizontal direction, the light emission duty is 1/m. In the simple matrix driving display, as the resolution becomes high, the light emission duty of the light-emitting element decreases. In the organic EL display 1 of this embodiment, however, even when the resolution becomes high, the light emission duty of the 15 20 light-emitting element $E_{i,j}$ does not decrease. The organic EL display 1 can display an image at a high luminance, high contrast, and high resolution. One selection scanning line Xi and one common signal supply line Zi are arranged in each row. Not a signal for scanning but a common signal is simply output from the common signal power supply 6 to the common signal supply line Zi. The only shift register for scanning, which is arranged in the organic EL display 1, is the selection scanning driver 5. A shift register is generally formed from m flip-flop circuits. The common signal power supply 6 only needs to output signals having the same waveform to all the common signal supply lines \mathbf{Z}_1 to $\mathbf{Z}_{\mathbf{m}}$ and therefore can have a simplified circuit structure. For this reason, in the common signal power supply 6, the mounting area is smaller, the structure is simpler, and the number of elements is smaller than a shift register. As compared to a conventional organic EL display having two shift registers serving as drivers, the organic EL display 1 of this embodiment can reduce the manufacturing cost and increase the yield. [Second Embodiment] 15 20 25 An organic EL display according to the second embodiment will be described next. Even in the second embodiment, the organic EL display comprises an organic EL display panel 2, data driver 3, and selection scanning driver 5, like the organic EL display 1 according to the first embodiment shown in FIG. 1. The data driver 3, a display section 4, the selection scanning driver 5, pixel circuits $D_{1,1}$ to $D_{m,n}$, and light-emitting elements $E_{1,1}$ to $E_{m,n}$ have the same structures as those in the organic EL display 1 of the first embodiment, and a detailed description thereof will be omitted in the second embodiment. In the second embodiment, a common signal power supply 6 is arranged in a controller 11 connected to the organic EL display 1, as shown in FIG. 10. For this reason, the ratio of the occupied area of the pixels on the substrate of the organic EL display 1 can be increased. The organic EL display 1 according to the second embodiment can operate in accordance with the waveform chart shown in FIG. 8, as in the first embodiment. [Third Embodiment] The third embodiment will be described next. This embodiment is the same as the first embodiment except that a drain 22d of a second transistor 22 of a pixel circuit $D_{i,j}$ of each pixel $P_{i,j}$ is not connected to a common signal supply line Z_i but to a selection scanning line X_i , as shown in FIG. 11. The same reference numerals as in the first embodiment denote the same parts in the third embodiment, and a detailed description thereof will be omitted. 25 In the transistor 22, the drain electrode 22d and gate electrode 22g are connected to the selection scanning line X_i . A source electrode 22s is connected to a gate electrode 23g of a third transistor 23. The transistor 22 is an N-channel amorphous silicon thin film transistor, like a first transistor 21 and the transistor 23. 5 10 15 20 The transistor 22 operates upon receiving the voltage shown in the waveform chart in FIG. 8. is, as shown in FIG. 12A, during a selection period TSE, the transistor 22 of each of pixels Pi,1 to Pi,n is turned on by a scanning signal of an ON-level (high-level) voltage $V_{\mbox{ON}}$ from the selection scanning line Xi so that the voltage from the selection scanning line X_1 is applied to the gate of the transistor 23. Simultaneously, the transistor 21 of each of the pixels P_{i,1} to P_{i,n} is turned on. In addition, the transistor 23 of each of the pixels Pi,1 to Pi,n is turned on by the gate voltage applied by the transistor 22 during the selection period TSE. Hence, the data driver 3 supplies a gray level designation current IDATA to the paths between the drains 23d and the sources 23s of the transistors 23 of the pixels Pi,1 to Pi,n and signal lines Y_1 to Y_n in the direction indicated by the arrow in FIG. 12A. The current value of the gray level designation current IDATA at this time corresponds to the gray level of a red digital gray level image signal SR, green digital gray level image signal SG, and blue digital gray level image signal SB input to the data driver 3. Charges corresponding to the current value of the gray level designation current IDATA are stored in capacitors 24 connected to the paths between the gates 23g and the sources 23s of the transistors 23 of the pixels Pi,1 to Pi,n during the selection period TSE . During a non-selection period T_{NSE}, the transistor 21 and transistor 22 of each of the pixels Pi,1 to Pi,n 10 are turned off by a scanning signal of an OFF-level voltage VOFF supplied to the selection scanning line Xi. A voltage VHIGH is applied to all common signal supply lines Z₁ to Z_m. For this reason, the voltages between the sources 23s and the drains 23d of all the transistors 23 are saturated. The voltages between the gates 23g and the sources 23s of all the transistors 23 have a voltage value corresponding to the charges stored in the capacitors 24 during the selection period TSE. As shown in FIG. 12B, a driving current having a current value equal to the gray level designation current IDATA flows between the sources 23s and the drains 23d of all the transistors 23. Since the voltage VHIGH is much higher than a reference voltage VSS, the driving current flows in the direction indicated by the arrow in FIG. 12A to cause light-emitting elements $E_{1,1}$
to $E_{m,n}$ to emit light. 15 20 20 The present invention is not limited to the above embodiments. Various changes and modifications of design may be done without departing from the spirit and scope of the invention. For example, in the above embodiments, all the first transistor 21, second transistor 22, and third transistor 23 of the pixel circuit $D_{i,j}$ are N-channel transistors. However, all the transistors may be formed from P-channel transistors, and the anode and cathode of the light-emitting element $E_{i,j}$ may be connected in the reverse direction. At this time, the waveforms shown in FIG. 8 are inverted. In the embodiments, the light-emitting period of the light-emitting elements $E_{1,1}$ to $E_{m,n}$ is the non-selection period $T_{\rm NSE}$ between the selection periods $T_{\rm SE}$. the light-emitting period of the light-emitting element $E_{i,j}$ is the <u>m</u> discontinuous non-selection periods $T_{\rm NSE}$ between the selection period $T_{\rm SE}$ of the ith row and the selection period $T_{\rm SE}$ of the next ith row. As shown in FIG. 13, all the light-emitting elements $E_{1,1}$ to $E_{m,n}$ may be simultaneously caused to emit light during the non-selection period $T_{\rm NSE}$ after charges by the gray level designation current $I_{\rm DATA}$ are written in the capacitors 24 of all the light-emitting elements $E_{1,1}$ to $E_{m,n}$. At this time, when at least one of the selection period $T_{\rm SE}$ during one scanning period $T_{\rm SC}$ and (m-1) reset periods $T_{\rm R}$ when the reset voltage 10 15 20 V_{RST} is applied to the signal lines Y_1 to Y_n is set to be short, the non-selection period T_{NSE} , i.e., the light-emitting period of the light-emitting elements $E_{1,1}$ to $E_{m,n}$ can be made relatively long. Referring to FIG. 13, after the selection scanning line X_m is selected, to return the charges stored in the parasitic capacitances of the signal lines Y_1 to Y_n in the write mode of the pixels $P_{m,1}$ to $P_{m,n}$ of the selection scanning line X_m , the reset voltage V_{RST} may be applied to increase the number of reset periods T_R during one scanning period T_{SC} to \underline{m} . In the above embodiments, an organic EL element is used. However, any other light-emitting element having rectification properties may be used. That is, the light-emitting element may be an element which flows no current when a reverse bias voltage is applied but flows a current when a forward bias voltage is applied, and also emits light at a luminance correspondence with the magnitude of the flowing current. An example of a light-emitting element having rectification properties is an LED (Light Emitting Diode) element. In the above embodiments, the data driver 3 and selection scanning driver 5 operate on the basis of a clock signal input from the controller 11. However, the clock signal CK3 that is output from the common signal power supply 6 and used as a common signal may be input to the selection scanning driver 5 as the 10 15 20 25 clock signal CK2. In the above embodiments, the number of times the common signal output from the common signal power supply 6 changes to low level, i.e., the gray level designation current I_{DATA} is supplied is one per selection period T_{SE} . However, the number of times may be two or more per selection period T_{SE} . According to the present invention, when a driving current flows to the light-emitting element, the light-emitting element emits light. The current value of the driving current corresponds to the voltage held between the gates 23g and the source 23s of the transistor 23 of the pixel circuit. The voltage value is obtained by converting the current value of the designation current. For these reasons, the current value of the driving current coincides with the current value of the designation current. The light-emitting element emits light at a luminance depending on the current value of the designation current. That is, the light-emitting element emits light at a luminance set by the current value of the designation current. Hence, if the current value of the designation current does not change between pixels, the luminance does not vary between the plurality of light-emitting elements, and a high-quality image can be displayed. It is only the scanning driver 5 that supplies a selection signal to each scanning line. No drivers for scanning are arranged at all. In addition, the common signal power supply 6 has a smaller number of elements than that of the scanning driver and therefore has a simple arrangement. Hence, the mounting area of the driver is small. SAMSUNG EX. 1002 - 717/899 ## CLAIMS - 1. A display device comprising: - a plurality of scanning lines; - a plurality of signal lines; 10 15 20 25 a scanning driver which sequentially supplies to the scanning lines selection signals that select the scanning lines; a data driver which supplies a designation current to said plurality of signal lines within a selection period when the scanning lines are being selected; a plurality of pixel circuits which supplies a driving current corresponding to a current value of the designation current that flows to the signal lines; a plurality of optical elements which emit light in accordance with the driving current supplied by said plurality of pixel circuits; and a power supply which outputs to said plurality of pixel circuits a driving current reference voltage to supply the driving current. - 2. A display device according to claim 1, wherein the power supply outputs the driving current reference voltage to said plurality of pixel circuits within a non-selection period. - 3. A display device according to claim 2, wherein the non-selection period is a period when none of said plurality of optical elements are selected. - 4. A display device according to claim 2, wherein 10 15 20 25 a reset voltage is output to said plurality of signal lines within the non-selection period. - 5. A display device according to claim 1, wherein the power supply selectively outputs the driving current reference voltage and a designation current reference voltage to supply the designation current. - 6. A display device according to claim 5, wherein the designation current reference voltage is lower than the driving current reference voltage. - 7. A display device according to claim 5, wherein the power supply outputs the designation current reference voltage within the selection period. - 8. A display device according to claim 1, wherein the power supply alternately outputs a designation current reference voltage to supply the designation current and the driving current reference voltage. - 9. A display device according to claim 1, wherein the data driver supplies the designation current to the signal lines and the pixel circuits on the basis of a designation current reference voltage output from the power supply within the selection period, and each of the pixel circuits stores the current value of the designation current and supplies the driving current that is equal to the current value of the designation current on the basis of the driving current reference voltage output from the power supply. 10. A display device according to claim 1, wherein 15 20 25 each of the pixel circuits comprises a driving transistor and a capacitor which is connected between a gate and a source of the driving transistor, the data driver supplies the designation current to the signal lines and the driving transistors of the pixel circuits on the basis of a designation current reference voltage output from the power supply within the selection period, and the capacitor stores charges corresponding to the designation current between the gate and the source, and when the driving current reference voltage is input from the power supply, the driving transistor supplies the driving current corresponding to the charges stored between the gate and the source. 11. A display device according to claim 1, wherein each of the pixel circuits comprises a first transistor in which a gate is connected to the scanning line and one of a drain and a source is connected to the signal line, a second transistor in which a gate is connected to the scanning line and a designation current reference voltage and the driving current reference voltage are selectively input to one of a drain and a source, and a driving transistor in which a gate is connected to the other of the drain and the source of the second transistor, one of a drain and a source is connected to one of the drain and the source of the second transistor, and the other of the drain and the source is connected to the other of the drain and the source of the first transistor and the optical element. - 5 12. A display device according to claim 11, wherein the scanning driver selects the first transistor and the second transistor, which are connected to a predetermined scanning line, within the selection period. - 13. A display device according to claim 1, wherein each of the pixel circuits comprises - a first transistor in which a gate is connected to the scanning line and one of a drain and a source is connected to the signal line, - a second transistor in which a gate is connected to the scanning line and one of a drain and a source is connected to the scanning line, and - a driving transistor in which a gate is connected to the other of the drain and the source of the second transistor, one of a drain and a source is connected to the power supply, and the other of the drain and the source is connected to the other of the drain and the source of the first transistor and the optical element. - 14. A display device according to claim 13, wherein the scanning driver selects the first transistor and the second transistor, which are connected to a predetermined scanning line, within the 10 15 15 20 25 selection period. - 15. A display device according to claim 1, wherein the power
supply outputs the driving current reference voltage from the end of the selection period of a predetermined scanning line till the beginning of the selection period of a next scanning line. - 16. A display device according to claim 1, wherein the optical element has a first electrode connected to the power supply through the pixel circuit and a second electrode to which a reference voltage is applied. - 17. A display device according to claim 16, wherein the power supply selectively outputs the driving current reference voltage and a designation current reference voltage to supply the designation current, and the driving current reference voltage is not less than the reference voltage, and the designation current reference voltage is not more than the reference voltage. - 18. A display device according to claim 1, wherein the optical element is an organic EL element. - 19. A display device comprising: a scanning line group having a scanning line of a first row and a scanning line of a second row; an optical element group having a first optical element which is connected to the scanning line of the 10 15 20 25 first row and emits light in accordance with a current value of a first driving current supplied, and a second optical element which is connected to the scanning line of the second row and emits light in accordance with a current value of a second driving current supplied; a pixel circuit group having a first pixel circuit which is connected to the first optical element and supplies the first driving current equal to a current value of a first designation current supplied, and a second pixel circuit which is connected to the second optical element and supplies the second driving current equal to a current value of a second designation current supplied; and a power supply which applies a driving current reference voltage to supply the first driving current to the first optical element through the first pixel circuit and applies the driving current reference voltage to supply the second driving current to the second optical element through the second pixel circuit between a selection period of the scanning line of the first row and a selection period of the scanning line of the second row. - 20. A display device according to claim 19, wherein the power supply outputs the driving current reference voltage to the optical element group within a non-selection period. - 21. A display device according to claim 20, wherein the non-selection period is a period when none of the optical elements of the optical element group are selected. - 22. A display device according to claim 20, wherein a reset voltage is output to said plurality of signal lines within the non-selection period. - 23. A display device according to claim 19, wherein the power supply selectively outputs the driving current reference voltage and a designation current reference voltage to supply the first and second designation currents to the first and second pixel circuits. 10 - 24. A display device according to claim 23, wherein the designation current reference voltage is lower than the driving current reference voltage. - 25. A display device according to claim 23, wherein the power supply outputs the designation current reference voltage within the selection period. - 26. A display device according to claim 19, wherein the power supply alternately outputs a designation current reference voltage to supply the first and second designation currents and the driving current reference voltage. - 27. A display device according to claim 19, 25 further comprising a data driver which supplies the first and second designation currents to the first and second pixel circuits on the basis of a designation 10 15 . 20 current reference voltage output from the power supply within the selection period. - 28. A display device according to claim 27, further comprising a signal line which connects the data driver to the pixel circuits. - 29. A display device according to claim 19, wherein each of the pixel circuits stores the current value of the designation current supplied within the selection period and supplies the driving current that is equal to the current value of the designation current on the basis of the driving current reference voltage output from the power supply after the selection period. - 30. A display device according to claim 19, wherein each of the pixel circuits comprises a driving transistor and a capacitor which is connected between a gate and a source of the driving transistor, the data driver supplies the designation current to the driving transistors of the pixel circuits on the basis of a designation current reference voltage output from the power supply within the selection period, and the capacitor stores charges corresponding to the designation current between the gate and the source, and when the driving current reference voltage is input from the power supply, the driving transistor supplies the driving current corresponding to the charges stored 10 15 20 between the gate and the source. 31. A display device according to claim 19, wherein each of the pixel circuits comprises a first transistor in which a gate is connected to one scanning line of the scanning line group and one of a drain and a source is connected to the data driver, a second transistor in which a gate is connected to the scanning line and a designation current reference voltage and the driving current reference voltage are selectively input to one of a drain and a source, and a driving transistor in which a gate is connected to the other of the drain and the source of the second transistor, one of a drain and a source is connected to one of the drain and the source of the second transistor, and the other of the drain and the source is connected to the other of the drain and the source of the first transistor and one optical element of the optical element group. - 32. A display device according to claim 31, further comprising a selection scanning driver which selects the first transistor and the second transistor, which are connected to the predetermined scanning line of the scanning line group within the selection period. - 25 33. A display device according to claim 19, wherein each of the pixel circuits comprises a first transistor in which a gate is connected to one scanning line of the scanning line group and one of a drain and a source is connected to the data driver, a second transistor in which a gate is connected to the scanning line and one of a drain and a source is connected to the scanning line, and a driving transistor in which a gate is connected to the other of the drain and the source of the second transistor, one of a drain and a source is connected to the power supply, and the other of the drain and the source is connected to the other of the drain and the source of the first transistor and one optical element of the optical element group. - 34. A display device according to claim 33, further comprising a selection scanning driver which selects the first transistor and the second transistor, which are connected to the predetermined scanning line of the scanning line group within the selection period. - 35. A display device according to claim 19, wherein the power supply outputs the driving current reference voltage within a non-selection period between the selection period of a predetermined scanning line and the selection period of a next scanning line. - 36. A display device according to claim 19, wherein the optical element has a first electrode connected to the power supply through the pixel circuit and a second electrode to which a reference voltage is applied. 10 15 10 15 20 25 37. A display device according to claim 36, wherein the power supply selectively outputs the driving current reference voltage and the designation current reference voltage to supply the first and second designation currents, and the driving current reference voltage is not less than the reference voltage, and the designation current reference voltage is not more than the reference voltage. - 38. A display device according to claim 19, wherein the optical element is an organic EL element. - 39. A display device comprising: - a plurality of scanning lines; a scanning driver which sequentially supplies to the scanning lines selection signals that select one of said plurality of scanning lines; a plurality of pixel circuits each of which is connected to a corresponding one of said plurality of scanning lines and supplies a driving current corresponding to a current value of the designation current; a plurality of optical elements each of which emits light in accordance with the driving current supplied by a corresponding one of said plurality of pixel circuits; a data driver which supplies the designation currents to the pixel circuits within a selection 10 15 20 period when the scanning lines are selected; and a common voltage output circuit which outputs to the selected pixel circuit a designation current reference voltage to supply the designation currents within the selection period of the scanning lines and outputs to said plurality of pixel circuits a driving current reference voltage to supply the driving currents within a non-selection period. - 40. A display device according to claim 39, wherein the common voltage output circuit outputs the driving current reference voltage to all the pixel circuits within the non-selection period. - 41. A display device according to claim 39, wherein the designation current reference voltage is lower than the driving current reference voltage. - 42. A display device driving method comprising: a first designation current step of supplying a first designation current to a first driving transistor within a first selection period to store charges corresponding to a current value of the first designation current between a gate and a source of the first driving transistor; a second designation current step of supplying a second
designation current to a second driving transistor within a second selection period to store charges corresponding to a current value of the second designation current between a gate and a source of the 15 second driving transistor; and a driving current reference voltage output step of, from the end of the first selection period till the beginning of the second selection period, outputting a driving current reference voltage to the first driving transistor and a first optical element which is connected in series with the first driving transistor and outputting the driving current reference voltage to the second driving transistor and a second optical element which is connected in series with the second driving transistor. - 43. A display device driving method according to claim 42, wherein the driving current reference voltage is a voltage at which a source-drain voltage of the first driving transistor and a source-drain voltage of the second driving transistor are set in a saturated state. - 44. A display device driving method comprising: - a first designation current step of supplying a first designation current to a first driving transistor within a first selection period to store charges corresponding to a current value of the first designation current between a gate and a source of the first driving transistor; - a second designation current step of supplying a second designation current to a second driving transistor within a second selection period after the 10 15 first designation current step to store charges corresponding to a current value of the second designation current between a gate and a source of the second driving transistor; and a driving current reference voltage output step of, after the second designation current step, outputting a driving current reference voltage to the first driving transistor and a first optical element which is connected in series with the first driving transistor and outputting the driving current reference voltage to the second driving transistor and a second optical element which is connected in series with the second driving transistor. 45. A display device driving method according to claim 44, wherein the driving current reference voltage is a voltage at which a source-drain voltage of the first driving transistor and a source-drain voltage of the second driving transistor are set in a saturated state. 1/12 FIG.1 FIG.4 FIG.5 FIG.6 FIG.7 7/12 FIG.8 FIG.9A FIG.9B **FIG.10** 10/12 **FIG.11** ## 11/12 FIG.12A FIG.12B # INTERNATIONAL SEARCH REPORT PCT/JP 03/10644 | IPC 7 | G09G3/32 | 180 | | |--|---|---|--| | According to | International Patent Classification (IPC) or to both national cla | ssification and IPC | | | | SEARCHED | | | | | cumentation searched (classification system followed by class 6096 | ification symbols) | | | Documentat | ion searched other than minimum documentation to the extent | that such documents are included in the | e fields searched | | Instronia d | ala base consulted during the international search (name of da | ata base and, where practical, search ter | rms used) | | | ternal, PAJ | | V | | C. DOCUM | ENTS CONSIDERED TO BE RELEVANT | | | | Category * | Cliation of document, with indication, where appropriate, of t | he relevant passages | Relevant to daim No. | | P,X | WO 03 058328 A (CASIO COMP CO
REIJI (JP); YAMADA HIROYASU (C
17 July 2003 (2003-07-17)
figures 1,7,9 | LTD ;HATTORI JP); SHIRA) -/ | 1,2,
5-20,
23-39,
41-44 | | V Fur | ther documents are listed in the continuation of box C. | X Patent family members | are listed in annex. | | * Special c *A' docum cons *E' earlier filing *L' docum which cliati *O' docum | alegories of cited documents : nent defining the general state of the art which is not idered to be of particular relevance of the international | 'T' later document published after or priority date and not in concided to understand the print invention 'X' document of particular relevations an inventive step with the considered to inventive step with the considered to inventive step with the comment is combined with document is combined with the | onflict with the application but ciple or theory underlying the ance; the claimed invention i or cannot be considered to hen the document is taken alone | | *P* docum | r means ment published prior to the International filling date but than the priority date claimed | In the art. '&' document member of the sa | | | | e actual completion of the international search 2 January 2004 | Date of mailing of the intern | ational search report | | | d malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 | Authorized officer Gundlach, H | | Form PCT/ISA/210 (second sheet) (July 1992) # INTERNATIONAL SEARCH REPORT PCT/JP 03/10644 | .(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | | + | |-----------|---|------|-----------------------| | tegory ° | Citation of document, with indication, where appropriate, of the relevant passages | | Relevant to claim No. | | | WO 99 65011 A (KONINKL PHILIPS ELECTRONICS NV; PHILIPS SVENSKA AB (SE)) 16 December 1999 (1999-12-16) page 8, line 5 - line 6; figure 1 page 8, line 9 - line 10 page 8, line 15 - line 18 page 10, line 5 - line 16 page 11, line 25 -page 12, line 14 page 12, line 3 - line 8 page 12, line 31 -page 13, line 16; figure | | 1-10,
15-45 | | | page 13, line 2 - line 25
page 14, line 26 -page 15, line 7 | | | | | EP 1 170 718 A (SEIKO EPSON CORP) 9 January 2002 (2002-01-09) figure 5 | | 1 | | r. | JP 2002.215095 A (PIONEER ELECTRONIC CORP) 31 July 2002 (2002-07-31) figures 1-8 -& US 2002/135309 A1 (PIONEER ELECTRONIC CORP) 26 September 2002 (2002-09-26) | | 11,13 | | | | 9 44 | ## INTERNATIONAL SEARCH REPORT Information on patent family members PCT/JP 03/10644 | Patent document
cited in search report | | Publication date | | Patent family
member(s) | Publication date | |---|---|------------------|----------------------|--|----------------------------| | WO 03058328 | Α | 17-07-2003 | JP
WO | 2003195810 A
03058328 A | 09-07-2003
1 17-07-2003 | | WO 9965011 | Α | 16-12-1999 | EP
WO
JP
US | 1034530 A2
9965011 A2
2002517806 T
6373454 B3 | 2 16-12-1999
18-06-2002 | | EP 1170718 | Α | 09-01-2002 | CN
EP
WO
US | 1388951 T
1170718 A
0205254 A
2002033718 A | 1 17-01-2002 | | JP 2002215095 | A | 31-07-2002 | us | 2002135309 A | 1 26-09-2002 | 220 FIFTH AVENUE, NEW YORK, N.Y. 10001-7708 THENAKA HOLTZ MARSHALL I. CHICK RICHARD S. BARTH DOUGLAS HOLTZ ROBERT P. MICHAL TELEPHONE: (212) 319-4900 FACSIMILE: (212) 319-5101 Commissioner for Patents P.O. Box 1450, Alexandria, VA 22313-1450 Express Mail Mailing Label No.: EV 720 476 985 US Date of Deposit: September 26, 2005 I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner for Patents, >
'n SIC 7 Box 1450, Alexandria, VA 22313-1450 Bárbara Attorney Docket No. 05644/LH CUSTOMER NO. 01933 Pursuant to 37 CFR 1.53(b), transmitted herewith for filing is the patent application of Tomoyuki SHIRASAKI of Higashiyamato-shi, Japan Tsuyoshi OZAKI of Fuchu-shi, Japan Inventor(s): Jun OGURA of Fussa-shi, Japan Title: "DISPLAY PANEL" Priority Claim (35 U.S.C. 119) is made, based upon: No. 2004-283824 filed September 29, 2004 ASSIGNMENT INFORMATION FOR PUBLICATION: Casio Computer Co., Ltd. Tokyo, Japan Enclosed herewith are: - Specification (Description, Claims, Abstract): Pages 1 75; Number of claims 1 23 - IX I Declaration and Power of Attorney - IX1 13 Sheets of drawings, Figures 1 - 13 | X | Formal | | Informal - Assignment and Recordation Form Cover Sheet (PTO-1595) AND \$40. RECORDATION FEE. IX1 - IXI Certified copy of priority document identified above - IX I Information Disclosure Statement; [X | Form PTO/SB/08A - 11 Preliminary Amendment - Change of Correspondence Address (Form PTO/SB/122) [X] - [X] PTO Form 2038 (Payment by Credit Card) - TO THE EXTENT NOT TENDERED BY CREDIT CARD PAYMENT ATTACHED HERETO, AUTHORIZATION IS GIVEN TO CHARGE ANY FEES UNDER 37 CFR 1.16 AND 1.17 DURING PENDENCY OF THE APPLICATION, OR TO CREDIT ANY OVERPAYMENT, TO DEPOSIT [X] ACCOUNT NO. 06-1378. DUPLICATE COPY OF THIS LETTER IS ENCLOSED. - [X] Receipt Postcard | | Number Filed | | Number Extr | a Rate | Calculations | | |---|------------------------------|---|---------------|---|--|--| | Total Claims
Independent Claims
Application Size Fee
MULTIPLE DEPEND | 30 -20
4 -3
ENT CLAIMS | = | (Incl | x \$ 50.00 =
x \$200.00 =
+ \$360.00 =
IC FEE
uding Filing, Search
Examination Fees) | \$\frac{500.00}{\$200.00}\$\$
\$\frac{200.00}{\$500.00}\$\$
\$\frac{360.00}{\$1000.00}\$\$ | | | | | | Total of abov | e Calculations | \$ 2060.00 | | FRISHAUF, HOLTZ, GOODMAN & CHICK, P.C. Reg. No. 22,974 LEONARD HOLTZ LH:bv SAMSUNG EX. 1002 - 747 05644/LH | citati the repervork neduction Act of 1999, no persons are re | squired to respond to a collection of into | imation unless it displays a valid Olive control number | |---|--|---| | CHANGE OF | Application Number | Not yet assigned | | CORRESPONDENCE ADDRESS Application | Filing Date | Herewith | | | First Named Inventor | SHIRASAKI | | Address to:
Commissioner for Patents | Group Art Unit | | | 2.0. Box 1450
Nexandria, VA. 22313-1450 | Examiner Name | | | Mexandria, VA. 22313-1450 | | | Attorney Docket Number | Please change the Corresp
[X] Custo | oondence Address f
mer Number | | entified applicat | tion to: | | | |--|--|--|---------------------------------------|--------------------|-----------|----------------------| | [] Firm or
Individual Name | | | | | | | | Address | | | | | | | | Address | | | | | | | | City | | | State | NE 1 | ZIP | | | Country | | | | | | | | Telephone | | | | Fax | | | | an existing Customer Number I am the: [] Applicant/Inventor. [] Assignee of record of [X] Attorney or Agent of Registered practition declaration. See 37 | of the entire interes
f record. Registrati
ner named in the ap | t. Statement u
ion No. 22,974
plication transn | nder 37 CFR 3.
nittal letter in ar | 73(b) is enclosed. | (Form PT) | | | Typed or Printed Name | Leonard | Holtz, | Reg. No. | 22,974 | | | | Signature | 2/ | | | () | | | | Date September 2 | 6, 12005 | Telephone: | (212) 319 | -4900 | | | | NOTE: Signatures of all the inv | 1 | V V6 | Total Carrier | Tony arms | Charles. | on talling supply to | This collection of information is required by 37 CFR 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govered by 35 USC 122 and 37 CFR 1.14. This collection is estimated to take 3 minuted to complete, including gathering, preparing and submitting the completed application to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 220 FIFTH AVENUE, NEW YORK, N.Y. 10001-7708 NAME HOLTZ MARSHALL I. CHICK RICHARD S. BARTH DOUGLAS HOLTZ ROBERT P. MICHAL TELEPHONE: (212) 319-4900 FACSIMILE: (212) 319-5101 Commissioner for Patents P.O. Box 1450, Alexandria, VA 22313-1450 Date of Deposit: September 26, 2005 Express Mail Mailing Label No.: EV 720 476 985 US I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner for Patents, > 'n SIC 7 Box 1450, Alexandria, VA 22313-1450 Barbara Attorney Docket No. 05644/LH CUSTOMER NO. 01933 Inventor(s): Tomoyuki SHIRASAKI of Higashiyamato-shi, Japan Tsuyoshi OZAKI of Fuchu-shi, Japan Jun OGURA of Fussa-shi, Japan Pursuant to 37 CFR 1.53(b), transmitted herewith for filing is the patent application of Title: "DISPLAY PANEL" Priority Claim (35 U.S.C. 119) is made, based upon: No. 2004-283824 filed September 29, 2004 ASSIGNMENT INFORMATION FOR PUBLICATION: Casio Computer Co., Ltd. Tokyo, Japan Enclosed herewith are: - Specification (Description, Claims, Abstract): Pages 1 75; Number of claims 1 23 - IX I Declaration and Power of Attorney - IX1 13 Sheets of drawings, Figures 1 - 13 | X | Formal | | Informal - Assignment and Recordation Form Cover Sheet (PTO-1595) AND \$40. RECORDATION FEE. IX1 - IXI Certified copy of priority document identified above - IX I Information Disclosure Statement; [X | Form PTO/SB/08A - 11 Preliminary Amendment - Change of Correspondence Address (Form PTO/SB/122) [X] - PTO Form 2038 (Payment by Credit Card) [X] - TO THE EXTENT NOT TENDERED BY CREDIT CARD PAYMENT ATTACHED HERETO, AUTHORIZATION IS GIVEN TO CHARGE ANY FEES UNDER 37 CFR 1.16 AND 1.17 DURING PENDENCY OF THE APPLICATION, OR TO CREDIT ANY OVERPAYMENT, TO DEPOSIT [X] ACCOUNT NO. 06-1378. DUPLICATE COPY OF THIS LETTER IS ENCLOSED. - [X] Receipt Postcard Number Extra Calculations Number Filed Rate **Total Claims** x \$ 50.00 500.00 Independent Claims x \$200.00 200.00 Application Size Fee MULTIPLE DEPENDENT CLAIMS + \$360.00 = BASIC FEE 1000.00 (Including Filing, Search and Examination Fees) 2060.00 Total of above Calculations FRISHAUF, HOLTZ, GOODMAN & CHICK, P.C. LEONARD HOLTZ, Reg. No. 22,974 LH:bv PTO/SB/122 (10-00) Approved for use through 10/31/2002. OMB 0651-0035 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. | CHANGE OF | Application Number | Not yet assigned | |--|------------------------|------------------| | CORRESPONDENCE ADDRESS | Filing Date | Herewith | | Application | First Named Inventor | SHIRASAKI | | Address to:
Commissioner for Patents
P.O. Box 1450 | Group Art Unit | | | | Examiner Name | | | Alexandria, VA. 22313-1450 | Attorney Docket Number | 05644/LH | | Please change the Corresp [X] Custo | pondence Address
Imer Number | | | ion to: | | | |---|--|--|-----------------|--------------------|--------------|--------------| | [] Firm or
Individual Name | | | | | | | | Address | | | | | | | | Address | | | | | | | | City | | | State | | ZIP | | | Country | | | | | | | | Telephone | | | | Fax | | | | an existing Customer Numb I am the: [] Applicant/Inventor. [] Assignee of record of [X] Attorney or Agent of I] Registered practition declaration. See 37 | of the entire interes
of record. Registrat
ner named in the ap | it. Statement u
ion No. 22,974
pplication transn | nder 37 CFR 3.7 | 73(b) is enclosed. | (Form PTC | | | Typed or Printed
Name | Leonard | Holtz, | Reg. No. | 22,974 | | | | Signature | 71 | | | () | | | | Date September 2 | 6, 12005 | Telephone: | (212) 319- | 4900 | | | | NOTE: Signatures of all the in
Submit multiple forms if more | | | | t or their represe | ntative(s) a | re required. | | Total of forms are s | 7 - 12 - 1 | | | | | | This collection of information is required by 37 CFR 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govered by 35 USC 122 and 37 CFR 1.14. This collection is estimated to take 3 minuted to complete, including gathering, preparing and submitting the completed application to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden,
should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 05\$1052 - 1 - #### TITLE OF THE INVENTION DISPLAY PANEL 5 CROSS-REFERENCE TO RELATED APPLICATIONS This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2004-283824, filed September 29, 2004, the entire contents of which are incorporated herein by reference. ### BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a display panel using a light-emitting element. 2. Description of the Related Art Organic electroluminescent display panels can 15 roughly be classified into passive driving types and active matrix driving types. Organic electroluminescent display panels of active matrix driving type are more excellent than those of passive driving type because of high contrast and high resolution. In a conventional organic 20 electroluminescent display panel of active matrix display type described in, e.g., Jpn. Pat. Appln. KOKAI Publication No. 8-330600, an organic electroluminescent element (to be referred to as an organic EL element 25 hereinafter), a driving transistor which supplies a current to the organic EL element when a voltage signal corresponding to image data is applied to the gate, and a switching transistor which performs switching to supply the voltage signal corresponding to image data to the gate of the driving transistor are arranged for each pixel. In this organic electroluminescent display panel, when a scan line is selected, the switching transistor is turned on. At this time, a voltage of level representing the luminance is applied to the gate of the driving transistor through a signal line. The driving transistor is turned on. A driving current having a magnitude corresponding to the level of the gate voltage is supplied from the power supply to the organic EL element through the drain-to-source path of the driving transistor. The organic EL element emits light at a luminance corresponding to the magnitude of the current. In the period from the end of scan line selection to the next scan line selection, the level of the gate voltage of the driving transistor is continuously held even after the switching transistor is turned off. Hence, the organic EL element emits light at a luminance corresponding to the magnitude of the driving current corresponding to the voltage. 10 15 20 25 To drive the organic electroluminescent display panel, a driving circuit is provided around it to apply a voltage to the scan lines, signal lines, and power supply lines laid on the organic electroluminescent display panel. In the conventional organic electroluminescent display panel of active matrix driving type, interconnections such as a power supply line to supply a current to an organic EL element are patterned simultaneously in the thin-film transistor patterning step by using the material of a thin-film transistor such as a switching transistor or driving transistor. More specifically, in manufacturing the organic electroluminescent display panel, a conductive thin film as a prospective electrode of a thin-film transistor is subjected to photolithography and etching to form the electrode of a thin-film transistor from the conductive thin film. At the same time, an interconnection connected to the electrode is also For this reason, when the interconnection is formed. formed from the conductive thin film, the thickness of the interconnection equals that of the thin-film transistor. 5 10 15 20 25 However, the electrode of the thin-film transistor is designed assuming that it functions as a transistor. In other words, the electrode is not designed assuming that it supplies a current to a light-emitting element. Hence, the thin-film transistor is thin literally. If a current is supplied from the interconnection to a plurality of light-emitting elements, a voltage drop occurs, or the current flow through the interconnection delays due to the electrical resistance of the interconnection. To suppress the voltage drop or interconnection delay, the resistance of the interconnection is preferably low. If the resistance of the interconnection is reduced by making a metal layer serving as the source and drain electrodes of the transistor or a metal layer serving as the gate electrode thick, or patterning the metal layers considerably wide to sufficiently flow the current through the metal layers, the overlap area of the interconnection on another interconnection or conductor when viewed from the upper side increases, and a parasitic capacitance is generated between them. retards the flow of the current. Alternatively, in a so-called bottom emission structure which emits EL light from the transistor array substrate side, light emitted from the EL elements is shielded by the interconnections, resulting in a decrease in opening ratio, i.e., the ratio of the light emission area. If . the gate electrode of the thin-film transistor is made thick to lower the resistance, a planarization film (corresponding to a gate insulating film when the thin-film transistor has, e.g., an inverted stagger structure) to eliminate the step of the gate electrode must also be formed thick. This may lead to a large change in transistor characteristic. When the source and drain electrodes are formed thick, the etching accuracy of the source and drain electrodes degrades. This may also adversely affect the transistor 10 15 20 25 characteristic. 5 10 15 20 25 ### BRIEF SUMMARY OF THE INVENTION It is an object of the present invention to satisfactorily drive a light-emitting element while suppressing any voltage drop and signal delay. A display panel according to a first aspect of the present invention comprises: a transistor array substrate which has a plurality of pixels and is formed by providing a plurality of transistors for each pixel, each of the transistor having a gate, a gate insulating film, a source, and a drain; a plurality of interconnections which are formed to project to a surface of the transistor array substrate and arrayed in parallel to each other; a plurality of pixel electrodes which are provided for each pixel and arrayed between the interconnections on the surface of the transistor array substrate along the interconnections; a plurality of light-emitting layers each of which is formed on each pixel electrode; and a counter electrode which is stacked on the light-emitting layer. A display panel according to a second aspect of the present invention comprises: a plurality of pixel electrodes; a plurality of light-emitting layers which are provided for said plurality of pixel electrodes, respectively; 5 10 15 20 25 a counter electrodes which is provided for said plurality of light-emitting layers respectively; a plurality of driving transistors which are connected to said plurality of pixel electrodes, respectively; a plurality of switch transistors each of which supplies a write current between a source and drain of a corresponding one of said plurality of driving transistors; a plurality of holding transistors each of which holds a voltage between the source and a gate of a corresponding one of said plurality of driving transistors; a plurality of feed interconnections which are formed from a conductive layer different from a layer serving as sources, drains, and gates of said plurality of driving transistors, said plurality of switch transistors, and said plurality of holding transistors and connected to the drains of said plurality of driving transistors; a plurality of select interconnections each of which selects the switch transistor; and a plurality of common interconnections each of which is connected to the counter electrode. A display panel according to a third aspect of the present invention comprises: a plurality of pixel electrodes; 10 15 20 25 a light-emitting layer which is provided for each of said plurality of pixel electrodes; a counter electrode which is provided for the light-emitting layer; a driving transistor which is connected to each of said plurality of pixel electrode; a switch transistor which supplies a write current between a source and drain of the driving transistor; a holding transistor which holds a voltage between the source and gate of the driving transistor; a select interconnection which selects the switch transistor; a common interconnection which is formed from a conductive layer different from a layer serving as sources and drains and a layer serving as gates of the driving transistor, the switch transistor, and the holding transistor and connected to the counter electrode; and a feed interconnection which is formed from a conductive layer different from the layer serving as the sources, drains, and gates of the driving transistor, the switch transistor, and the holding transistor and connected to the drain of the driving transistor and is thicker than the common interconnection. A display panel according to a fourth aspect of the present invention comprises: a transistor array substrate which is formed by providing a plurality of transistors for each pixel, each transistor having a gate, a gate insulating film, and a source/drain; a plurality of pixel electrodes which are provided in a plurality of rows on the transistor array substrate; 5 10 15 20 25 a first light-emitting layer which is provided on each of said plurality of pixel electrodes of a first row to emit light of a first color; a second light-emitting layer which is provided on each of said plurality of pixel electrodes of a second row to emit light of a second color; a third light-emitting layer which is provided on each of said plurality of pixel electrodes of a third row to emit light of a third color; a counter electrode which is provided on the first
light-emitting layer, the second light-emitting layer, and the third light-emitting layer; a select interconnection which has a top higher than first light-emitting layer, the second light-emitting layer, and the third light-emitting layer and selects at least one of said plurality of transistors; a common interconnection which has a top higher than first light-emitting layer, the second light-emitting layer, and the third light-emitting layer and is connected to the counter electrode; and a feed interconnection which has a top higher than first light-emitting layer, the second light-emitting layer, and the third light-emitting layer and is connected to said plurality of pixel electrodes of said plurality of transistors. According to the present invention, since the interconnections can be made thick, the resistance of the interconnections can be reduced. When the resistance of the interconnections decreases, the signal delay and voltage drop can be suppressed. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING FIG. 1 is a plan view showing four pixels of a display panel 1; 10 15 20 25 FIG. 2 is an equivalent circuit diagram of a sub-pixel P of the display panel 1; FIG. 3 is a plan view showing the electrodes of a red sub-pixel Pr; FIG. 4 is a plan view showing the electrodes of a green sub-pixel Pg; FIG. 5 is a plan view showing the electrodes of a blue sub-pixel Pb; FIG. 6 is a sectional view taken along a line VI - VI in FIGS. 3 to 5; FIG. 7 is a timing chart for explaining a driving method of the display panel 1; FIG. 8 is a timing chart for explaining another driving method of the display panel 1; FIG. 9 is a graph showing the current vs. voltage characteristic of a driving transistor 23 and organic EL element 20 of each sub-pixel; FIG. 10 is a graph showing the correlation between the maximum voltage drop and the interconnection resistivity ρ /sectional area S of a feed interconnection 90 and common interconnection 91 of a 32-inch display panel 1; FIG. 11 is a graph showing the correlation between the sectional area and the current density of the feed interconnection 90 and common interconnection 91 of the 32-inch display panel 1; 10 15 20 25 FIG. 12 is a graph showing the correlation between the maximum voltage drop and the interconnection resistivity ρ /sectional area S of the feed interconnection 90 and common interconnection 91 of a 40-inch display panel 1; and FIG. 13 is a graph showing the correlation between the sectional area and the current density of the feed interconnection 90 and common interconnection 91 of the 40-inch display panel 1. DETAILED DESCRIPTION OF THE INVENTION The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. Various kinds of limitations which are technically preferable in carrying out the present invention are added to the embodiments to be described below. However, the spirit and scope of the present invention are not limited to the following embodiments and illustrated examples. In the following description, the term "electroluminescence" will be abbreviated as EL. [Planar Layout of Display Panel] 5 10 15 20 25 FIG. 1 is a schematic plan view showing adjacent four of a plurality of pixels 3 provided on an insulating substrate 2 of a display panel 1 which is operated by the active matrix driving method. In the display panel 1, as for the pixels in the column direction, a plurality of red sub-pixels Pr are arrayed in the horizontal direction (row direction). A plurality of green sub-pixels Pg are arrayed in the horizontal direction. A plurality of blue sub-pixels Pb are arrayed in the horizontal direction. As for the sequence in the vertical direction (column direction), the red sub-pixel Pr, green sub-pixel Pg, and blue sub-pixel Pb are repeatedly arrayed in this order. The 1-dot red sub-pixel Pr, 1-dot green sub-pixel Pg, and 1-dot blue sub-pixel Pb are combined to form one pixel 3. Such pixels 3 are arrayed in a matrix. following description, an arbitrary one of the red sub-pixel Pr, green sub-pixel Pg, and blue sub-pixel Pb is represented by a sub-pixel P. The description of the sub-pixel P applies to all the red sub-pixel Pr, green sub-pixel Pg, and blue sub-pixel Pb. Three signal lines Yr, Yg, and Yb running in the vertical direction form one set. The combination of the three signal lines Yr, Yg, and Yb is called a signal line group 4. In each signal line group 4, the three signal lines Yr, Yg, and Yb are arranged close to each other. The interval between the adjacent signal line groups 4 is wider than that between the adjacent signal lines Yr, Yg, and Yb in each signal line group 4. One signal line group 4 is provided in correspondence with one column of pixels 3 in the vertical direction. That is, the sub-pixels Pr, Pg, and Pb in one column arrayed in the vertical direction are connected to the signal lines Yr, Yg, and Yb of one signal line group 4, respectively. 5 15 20 25 The first signal line Yr supplies a signal to all the red sub-pixels Pr of the column of pixels 3 in the vertical direction. The second signal line Yg supplies a signal to all the green sub-pixels Pg of the column of pixels 3 in the vertical direction. The third signal line Yb supplies a signal to all the blue sub-pixels Pb of the column of pixels 3 in the vertical direction. A plurality of scan lines X run in the horizontal direction. A plurality of supply lines Z, a plurality of select interconnections 89, a plurality of feed interconnections 90, and a plurality of common interconnections 91 are provided in parallel to the scan lines X. One scan line X, one supply line Z, one feed interconnection 90, one select interconnection 89, and one common interconnection 91 are provided in correspondence with one line of pixels 3 in the horizontal direction. More specifically, the common interconnection 91 is arranged between the red sub-pixel Pr and the green sub-pixel Pg which are adjacent in the vertical direction. The scan line X and select interconnection 89 are arranged between the green sub-pixel Pg and the blue sub-pixel Pb which are adjacent in the vertical direction. The supply line Z and feed interconnection 90 are arranged between the blue sub-pixel Pb and the red sub-pixel Pr of the adjacent pixel 3. The select interconnections 89 and feed interconnections 90 have the same thickness. 5 15 20 25 The scan line X supplies a signal to all the sub-pixels Pr, Pg, and Pb of the pixels 3 of one line arrayed in the horizontal direction. The supply line Z also supplies a signal to all the sub-pixels Pr, Pg, and Pb of the pixels 3 of one line arrayed in the horizontal direction. When viewed from the upper side, the select interconnection 89 overlaps the scan line X in the running direction and is thus electrically connected to the scan line X. The feed interconnection 90 overlaps the supply line Z in the running direction and is thus electrically connected to the supply line Z. The color of each the sub-pixels Pr, Pg, and Pb is determined by the color of light emitted from an organic EL element 20 (FIG. 2) (to be described later). The position of each of the sub-pixels Pr, Pg, and Pb, which is represented by a rectangle long in the horizontal direction in FIG. 1, indicates the position of a sub-pixel electrode 20a (in FIG. 2) serving as an anode of the organic EL element 20. More specifically, when the entire display panel 1 is viewed from the upper side, the plurality of sub-pixel electrodes 20a 10 are arrayed in a matrix. The 1-dot sub-pixel P is determined by one sub-pixel electrode 20a. Hence, the plurality of sub-pixel electrodes 20a are arrayed in the horizontal direction between the feed interconnection 90 and the adjacent common 15 interconnection 91. Said plurality of sub-pixel electrodes 20a are arrayed in the horizontal direction between the common interconnection 91 and the adjacent select interconnection 89. Said plurality of sub-pixel electrodes 20a are arrayed in the horizontal direction between the select interconnection 89 and the adjacent feed interconnection 90. When an insulating film which is sufficiently thick so no parasitic capacitance is generated is inserted between the signal line group 4 25 and the electrode or interconnection located above the signal line group 4, the signal line group 4 may overlap the sub-pixel electrode 20a connected to it 20 when viewed from the upper side. In addition, the signal line group 4 may overlap the sub-pixel electrode 20a of one sub-pixel adjacent to the sub-pixel connected to the signal line group 4 when viewed from the upper side. When the display panel 1 has a bottom emission structure, the signal line group 4 preferably does not overlap the sub-pixel electrode 20a when viewed from the upper side. When m and n are integers (m \geq 2, n \geq 2), m pixels 3 are arrayed in the vertical direction, and n 10 pixels 3 are arrayed in the horizontal direction, the sub-pixel electrodes 20a equal in number to the sub-pixels of one column, i.e., (3 × m) sub-pixel electrodes 20a are arrayed in the vertical direction. The sub-pixel electrodes 20a equal in number to the sub-pixels of one row, i.e., n sub-pixel electrodes 20a are arrayed in the horizontal direction. In this case, n signal line groups 4 are arranged, and m scan lines X, m supply lines Z, m select interconnections 89, m 20 feed interconnections 90, and m common interconnections 91 are arranged. The total number of select interconnections 89, feed interconnections 90, and common interconnections 91, which also serve as partition walls to prevent leakage of an organic 25 compound-containing solution as a perspective organic EL layer 20b of the organic EL element 20 (to be described later) from the sub-pixels of one row, is (3 × m). To partition the organic compound-containing solution in all rows for the sub-pixels of each row, the total number of select interconnections 89, feed interconnections 90, and
common interconnections 91 must be $(3 \times m + 1)$. To do this, a $(3 \times m + 1)$ th partition dummy interconnection having the same height and same length as the common interconnection 91 is arranged in the row direction in parallel to the select interconnections 89, feed interconnections 90, and 10 common interconnections 91. The select interconnections 89, feed interconnections 90, and common interconnections 91 are used as partition walls, their top portions are higher than the organic EL layer 20b and the liquid level of the organic compound-containing solution. [Circuit Arrangement of Sub-Pixel] 15 20 The circuit arrangement of the first to third sub-pixels Pr, Pg, and Pb will be described next with reference to the equivalent circuit diagram in FIG. 2. All the sub-pixels Pr, Pg, and Pb have the same arrangement. The organic EL element 20, first to third N-channel amorphous silicon thin-film transistors (to be simply referred to as transistors hereinafter) 21, 22, and 23, and a capacitor 24 are provided for the 1-dot sub-pixel Pi,j. The first transistor 21 will be referred to as the switch transistor 21, the second transistor 22 will be referred to as the holding transistor 22, and the third transistor 23 will be referred to as the driving transistor 23 hereinafter. In FIG. 2 and the following description, the signal line Y for the red sub-pixel Pr represents the signal line Yr in FIG. 1, the signal line Y for the green sub-pixel Pg represents the signal line Yg in FIG. 1, and the signal line Y for the blue sub-pixel Pb represents the signal line Yb in FIG. 1. In the switch transistor 21, a source 21s is electrically connected to the signal line Y_j . A drain 21d is electrically connected to the sub-pixel electrode 20a of the organic EL element 20, a source 23s of the driving transistor 23, and an upper electrode 24B of the capacitor 24. A gate 21g is electrically connected to a gate 22g of the holding transistor 22, the scan line X_i , and the select interconnection 89. 10 15 20 25 In the holding transistor 22, a source 22s is electrically connected to a gate 23g of the driving transistor 23 and a lower electrode 24A of the capacitor 24. A drain 22d is electrically connected to a drain 23d of the driving transistor 23 and the supply line Z_i . The gate 22g is electrically connected to the gate 21g of the switch transistor 21 and the scan line X_i . In the driving transistor 23, the source 23s is electrically connected to the sub-pixel electrode 20a of the organic EL element 20, the drain 21d of the switch transistor 21, and the electrode 24B of the capacitor 24. The drain 23d is electrically connected to the drain 22d of the holding transistor 22 and the supply line $Z_{\dot{1}}$. The gate 23g is electrically connected to the source 22s of the holding transistor 22 and the lower electrode 24A of the capacitor 24. A counter electrode 20c serving as a cathode of the organic EL element 20 is electrically connected to the common interconnection 91. 10 15 20 25 The sources 21s of the switch transistors 21 of all the red sub-pixels Pr arrayed in a line in the vertical direction are electrically connected to the common signal line Yr. The sources 21s of the switch transistors 21 of all the green sub-pixels Pg arrayed in a line in the vertical direction are electrically connected to the common signal line Yg. The sources 21s of the switch transistors 21 of all the blue sub-pixels Pb arrayed in line in the vertical direction are electrically connected to the common signal line Yb. The gates 21g of the switch transistors 21 of all the sub-pixels Pr, Pg, and Pb of the pixels 3 of one row, which are arrayed in the horizontal direction, are electrically connected to the common scan line X. The gates 22g of the holding transistors 22 of all the sub-pixels Pr, Pg, and Pb of the pixels 3 of one row, which are arrayed in the horizontal direction, are electrically connected to the common scan line X. The drains 22d of the holding transistors 22 of all the sub-pixels Pr, Pg, and Pb of the pixels 3 of one row, which are arrayed in the horizontal direction, are electrically connected to the common supply line Z. The drains 23d of the driving transistors 23 of all the sub-pixels Pr, Pg, and Pb of the pixels 3 of one row, which are arrayed in the horizontal direction, are electrically connected to the common supply line Z. [Planar Layout of Pixel] The planar layout of the pixel 3 will be described with reference to FIGS. 3 to 5. FIG. 3 is a plan view mainly showing the electrodes of the red sub-pixel Pr. FIG. 4 is a plan view mainly showing the electrodes of the green sub-pixel Pg. FIG. 5 is a plan view mainly showing the electrodes of the blue sub-pixel Pb. For the illustrative convenience, FIGS. 3 to 5 do not illustrate the sub-pixel electrode 20a and counter electrode 20c of the organic EL element 20. 15 20 25 As shown in FIG. 3, in the red sub-pixel Pr viewed from the upper side, the driving transistor 23 is arranged along the supply line Z and feed interconnection 90. The switch transistor 21 is arranged along the common interconnection 91. The holding transistor 22 is arranged at a corner of the red sub-pixel Pr near the supply line Z. As shown in FIG. 4, in the green sub-pixel Pg viewed from the upper side, the driving transistor 23 is arranged along the common interconnection 91. The switch transistor 21 is arranged along the scan line X and select interconnection 89. The holding transistor 22 is arranged at a corner of the green sub-pixel Pg near the common interconnection 91. 5 10 15 20 25 As shown in FIG. 5, in the blue sub-pixel Pb viewed from the upper side, the driving transistor 23 is arranged along the scan line X. The switch transistor 21 is arranged along the supply line Z and feed interconnection 90 of the next row. The holding transistor 22 is arranged at a corner of the blue sub-pixel Pb near the scan line X. As shown in FIGS. 3 to 5, in all the sub-pixels Pr, Pg, and Pb, the capacitor 24 is arranged along the signal line group 4 of the next column. When a focus is placed on only the switch transistors 21 of all the sub-pixels Pr, Pg, and Pb in the entire display panel 1 viewed from the upper side, the plurality of switch transistors 21 are arrayed in a matrix. When a focus is placed on only the holding transistors 22 of all the sub-pixels Pr, Pg, and Pb, the plurality of holding transistors 22 are arrayed in a matrix. When a focus is placed on only the driving transistors 23 of all the sub-pixels Pr, Pg, and Pb, the plurality of driving transistors 23 are arrayed in a matrix. 5 10 15 20 25 [Layer Structure of Display Panel] The layer structure of the display panel 1 will be described with reference to FIG. 6. FIG. 6 is a sectional view taken along a line VI - VI in FIGS. 3 to 5. The display panel 1 is formed by stacking various kinds of layers on the insulating substrate 2 which is optically transparent. The insulating substrate 2 has a flexible sheet shape or a rigid plate shape. The layer structure of the first to third transistors 21 to 23 will be described first. As shown in FIG. 6, the switch transistor 21 includes the gate 21g, part of a gate insulating film 31, a semiconductor film 21c, a channel protective film 21p, impurity-doped semiconductor films 21a and 21b, the drain 21d, and the source 21s. The gate 21g is formed on the insulating substrate 2. The part of the gate insulating film 31 is formed on the gate 21g. The semiconductor film 21c opposes the gate 21g via the part of the gate insulating film 31. The channel protective film 21p is formed on the central portion of the semiconductor film The impurity-doped semiconductor films 21a and 21b are formed on two end portions of the semiconductor film 21c to be spaced apart from each other and partially overlap the channel protective film 21p. The drain 21d is formed on the impurity-doped semiconductor film 21a. The source 21s is formed on the impuritydoped semiconductor film 21b. The drain 21d and source 21s can have either a single-layer structure or a layered structure including two or more layers. 5 10 15 20 25 The driving transistor 23 includes the gate 23g, part of the gate insulating film 31, a semiconductor film 23c, a channel protective film 23p, impurity-doped semiconductor films 23a and 23b, the drain 23d, and the source 23s. The gate 23g is formed on the insulating substrate 2. The part of the gate insulating film 31 is formed on the gate 23g. The semiconductor film 23c opposes the gate 23g via the part of the gate insulating film 31. The channel protective film 23p is formed on the central portion of the semiconductor film 23c. The impurity-doped semiconductor films 23a and 23b are formed on two end portions of the semiconductor film 23c to be spaced apart from each other and partially overlap the channel protective film 23p. The drain 23d is formed on the impurity-doped semiconductor film 23a. The source 23s is formed on the impuritydoped semiconductor film 23b. When viewed from the upper side as shown in FIGS. 3 to 5, the driving transistor 23 is formed into an interdigital shape so that the channel width is large. The drain 23d and source 23s can have either a single-layer structure or a layered structure including two or more layers. The holding transistor 22 has the same layer structure as the driving transistor 23, and its sectional view is not illustrated. In all the sub-pixels Pr, Pg, and Pb, the switch transistor 21, holding transistor 22, and driving transistor 23 have the same layer structures as described above. 5 10 15 20 25 The layer structure of the capacitor 24 will be described next (FIGS. 3 to 5). The capacitor 24 has the lower electrode 24A, a part of the gate insulating film 31, and the upper electrode 24B. The lower electrode 24A is directly formed on the insulating substrate 2. The gate insulating film 31 is formed on the lower electrode 24A. The upper electrode 24B opposes the lower electrode
24A via a part of the gate insulating film 31. In all the sub-pixels Pr, Pg, and Pb, the capacitors 24 have the same layer structures as described above. The relationship between the layers of the transistors 21 to 23 and capacitor 24, the signal lines Y, the scan lines X, and supply lines Z will be described next with reference to FIGS. 3 to 6. Connection lines 96, the gates 21g of the switch transistors 21, the gates 22g of the holding transistors 22, the gates 23g of the driving transistors 23, the lower electrodes 24A of the capacitors 24 of all the sub-pixels Pr, Pg, and Pb, and all the signal lines Yr, Yg, and Yb are formed, using photolithography and etching, by patterning a conductive film formed on the entire surface of the insulating substrate 2. The conductive film as the base of the connection lines 96, gates 21g of the switch transistors 21, the gates 22g of the holding transistors 22, the gates 23g of the driving transistors 23, the electrodes 24A of the capacitors 24, and the signal lines Yr, Yg, and Yb will be referred to as a gate layer hereinafter. 5 10 15 20 25 The gate insulating film 31 is an insulating film common to the first to third transistors 21, 22, 23, and capacitors 24 of all the sub-pixels Pr, Pg, and Pb and is formed on the entire surface. Hence, the gate insulating film 31 covers the gates 21g, 22g, 23g of the transistors 21, 22, 23, the lower electrodes 24A of the capacitors 24, and the signal lines Yr, Yg, and Yb. The drains 21d, 22d, 23d and sources 21s, 22s, 23s of the transistors 21, 22, 23, the upper electrodes 24B of the capacitors 24 of all the sub-pixels Pr, Pg, and Pb, and all the scan lines X and supply lines Z are formed, using photolithography and etching, by patterning a conductive film formed on the entire surface of the gate insulating film 31. The conductive film as the base of the drains 21d and sources 21s of the switch transistors 21, the drains 22d and sources 22s of the holding transistors 22, the drains 23d and sources 23s of the driving transistors 23, the upper electrodes 24B of the capacitors 24, the scan lines X, and the supply lines Z will be referred to as a drain layer hereinafter. 5 15 20 25 One contact hole 92 is formed for each pixel 3 in the gate insulating film 31 at a portion overlapping the scan line X. The gate 21g of the switch transistor 21 and the gate 22g of the holding transistor 22 of each of the sub-pixels Pr, Pg, and Pb are electrically connected to the scan line X through the contact hole Another contact hole 94 is formed for each 1-dot sub-pixel P in the gate insulating film 31 at a portion overlapping the signal line Y. In all the sub-pixels Pr, Pg, and Pb, the source 21s of the switch transistor 21 is electrically connected to the signal line Y through the contact hole 94 (i.e. conductor baried in the hole). One contact hole 93 is formed for each 1-dot sub-pixel P in the gate insulating film 31 at a portion overlapping the lower electrode 24A. In all the sub-pixels Pr, Pg, and Pb, the source 22s of the holding transistor 22 is electrically connected to the gate 23g of the driving transistor 23 and the lower electrode 24A of the capacitor 24. In the red sub-pixel Pr, the drains 22d, 23d of the second and third transistors 22, 23 are integrated with the supply line Z. In the green sub-pixel Pg and blue sub-pixel Pb, the drains 22d, 23d of the transistors 22, 23 are provided separately from the supply line Z. The drains 22d, 23d of the transistors 22, 23 are electrically connected to the supply line Z in the following way. One connection line 96 is provided for one pixel 3 to run through the pixel 3 in the vertical direction. The connection line 96 is formed by patterning the gate layer and is covered with the gate insulating film 31. A contact hole 97 is formed in the gate insulating film 31 at a portion where the supply line Z overlaps the connection line 96. The connection line 96 is electrically connected to the supply line Z through the 10 contact hole 97. In the green sub-pixel Pg, a contact hole 98 is formed in the gate insulating film 31 at a portion where the connection line 96 overlaps the drain 23d of the driving transistor 23. The connection line 96 is electrically connected to the drain 23d of the driving transistor 23 through the contact hole 98. the blue sub-pixel Pb, a contact hole 99 is formed in the gate insulating film 31 at a portion where the connection line 96 overlaps the drain 23d of the driving transistor 23. The connection line 96 is electrically connected to the drain 23d of the driving transistor 23 through the contact hole 99. In both the green sub-pixel Pg and the blue sub-pixel Pb, the drains 22d, 23d of the transistors 22, 23 are electrically connected to the supply line Z and feed interconnection 90 through the connection line 96. 15 20 25 The switch transistors 21, holding transistors 22, driving transistors 23 of all the sub-pixels Pr, Pg, and Pb, and all the scan lines X and supply lines Z are covered with a protective insulating film 32 formed on the entire surface and made of silicon nitride or silicon oxide. The protective insulating film 32 is divided into rectangles at portions overlapping the scan lines X and supply lines Z. This will be described later in detail. A planarization film 33 is formed on the protective insulating film 32 so that the three-dimensional pattern of the first to third transistors 21, 22, 23, scan lines X, and supply lines Z is eliminated by the planarization film 33. That is, the surface of the planarization film 33 is flat. The planarization film 33 is formed by hardening a photosensitive resin such as polyimide. The planarization film 33 is divided into rectangles at portions overlapping the scan lines X and supply lines Z. This will be described later in detail. 15 20 25 To use the display panel 1 as a bottom emission type, i.e., to use the insulating substrate 2 as the display screen, transparent materials are used for the gate insulating film 31, protective insulating film 32, and planarization film 33. The layered structure from the insulating substrate 2 to the planarization film 33 is called a transistor array substrate 50. An insulating line 61 parallel to the scan line X is formed on the surface of the planarization film 33, i.e., on the surface of the transistor array substrate 50 between the red sub-pixel Pr and the green sub-pixel Pg. The insulating line 61 is formed by hardening a photosensitive resin such as polyimide. The common interconnection 91 narrower than the insulating line 61 is formed on the insulating line 61. The common interconnection 91 is formed by electroplating and is therefore formed to be much thicker than the signal line Y, scan line X, and supply line Z and project upward from the surface of the planarization film 33. The common interconnection 91 preferably contains at least one of copper, aluminum, gold, and nickel. A liquid repellent conductive layer 55 having water repellency/oil repellency is formed on the surface of each common interconnection 91. The liquid repellent conductive layers 55 are formed by reducing and eliminating hydrogen atoms (H) of the thiol group (-SH) of triazyl-trithiol expressed by chemical formula (1), and oxidizing and adsorbing sulfur atoms (S) in the surfaces of the common interconnections 91. 5 10 15 20 The liquid repellent conductive layer 55 is a film made of a layer of triazyl-trithiol molecules which are regularly arranged on the surface of the common interconnection 91. For this reason, the liquid repellent conductive layer 55 has a very low resistance and conductivity. To make the water repellency/oil repellency more effective, a material in which an alkyl fluoride group substitutes for one or two thiol groups of triazyl-trithiol may be used in place of triazyl-trithiol. Trenches 34 open and long in the horizontal direction are formed in the protective insulating film 10 32 and planarization film 33 to penetrate both films at portions overlapping the supply lines Z. Trenches 35 open and long in the horizontal direction are formed in the protective insulating film 32 and planarization film 33 to penetrate both films at portions overlapping 15 the scan lines X. The protective insulating film 32 and planarization film 33 are divided into rectangles by the trenches 34 and 35. The feed interconnections 90 are buried in the trenches 34 so that the feed 20 interconnections 90 are formed on the supply lines Z in the trenches 34 and electrically connected to the supply lines Z. The select interconnections 89 are buried in the trenches 35 so that the select interconnections 89 are formed on the scan lined X in 25 the trenches 35 and electrically connected to the scan lines X. The select interconnections 89 and feed interconnections 90 are formed by electroplating and are therefore much thicker than the signal lines Y, scan lines X, and supply lines Z. The thickness of the select interconnection 89 and feed interconnection 90 is larger than the total thickness of the protective insulating film 32 and planarization film 33 so that the select interconnection 89 and feed interconnection 90 project upward from the upper surface of the planarization film 33. Both the select interconnection 89 and the feed interconnection 90 preferably contain at least one of copper, aluminum, gold, and nickel. A hydrophobic insulating film 53 having water repellency and/or oil repellency is formed on the outer surface of a portion of the select interconnection 89, extending from the film 33. A hydrophobic insulating film 54 having water repellency and/or oil repellency is formed on the outer surface of a portion of the feed interconnection 90, extending from film 33. 10 20 25 The plurality of sub-pixel electrodes 20a are arrayed in a matrix on the upper surface of the planarization film 33, i.e., the upper surface of the transistor array substrate 50. The sub-pixel electrodes 20a are formed, using photolithography and
etching, by patterning a transparent conductive film formed on the entire surface of the planarization film 33. The sub-pixel electrode 20a is an electrode functioning as the anode of the organic EL element 20. More specifically, the sub-pixel electrode 20a preferably has a relatively high work function so that holes can efficiently be injected in the organic EL layer 20b (to be described later). In a bottom emission structure, the sub-pixel electrode 20a is transparent to visible light. The sub-pixel electrode 20a is formed by using, as the major component, e.g., indium tin oxide (ITO), indium zinc oxide, indium oxide (In₂O₃), tin oxide (SnO₃), zinc oxide (ZnO), or cadmium tin oxide (CTO). 5 10 15 20 25 To use the display panel 1 as a top emission type, i.e., to use the opposite side of the insulating substrate 2 as the display screen, a reflecting film having high conductivity and high visible light reflectance is preferably formed between the sub-pixel electrode 20a and the planarization film 33. Alternatively, the sub-pixel electrode 20a itself is preferably formed as a reflecting electrode. One contact hole 88 is formed for each 1-dot sub-pixel P in the planarization film 33 and protective insulating film 32 at a portion overlapped with the sub-pixel electrode 20a. A conductive pad is buried in the contact hole 88. In each of all the sub-pixels Pr, Pg, and Pb, the sub-pixel electrode 20a is electrically connected to the upper electrode 24B of the capacitor 24, the drain 21d of the switch transistor 21, and the source 23s of the driving transistor 23. 5 10 15 20 25 The organic EL layer 20b of the organic EL element 20 is formed on the sub-pixel electrode 20a. The organic EL layer 20b is a light-emitting layer of broad sense. The organic EL layer 20b contains a light-emitting material (phosphor) as an organic compound. The organic EL layer 20b has a two-layer structure in which a hole transport layer and a light-emitting layer of narrow sense are formed sequentially from the sub-pixel electrode 20a. The hole transport layer is made of PEDOT (polythiophene) as a conductive polymer and PSS (polystyrene sulfonate) as a dopant. The light-emitting layer of narrow sense is made of a polyfluorene-based light-emitting material. In the red sub-pixel Pr, the organic EL layer 20b emits red light. In the green sub-pixel Pg, the organic EL layer 20b emits green light. In the blue sub-pixel Pb, the organic EL layer 20b emits blue light. The organic EL layer 20b is independently provided for each sub-pixel electrode 20a. When viewed from the upper side, said plurality of organic EL layers 20b are arrayed in a matrix. All sub-pixels of one row, which are arrayed in the horizontal direction between the feed interconnection 90 and the common interconnection 91, are the red sub-pixels Pr. Hence, said plurality of sub-pixel electrodes 20a arrayed in the horizontal direction between the feed interconnection 90 and the common interconnection 91 may be covered with the common organic EL layer 20b for red light emission, which has a long band shape in the horizontal direction. At this time, the organic EL layer 20b has such an electric resistance that no current flows to the organic EL layer 20b adjacent in the horizontal direction. Similarly, the plurality of sub-pixel electrodes 20a arrayed in the horizontal direction between the common interconnection 91 and the select interconnection 89 may be covered with the common organic EL layer 20b for green light emission, which has a long band shape in the horizontal direction. The plurality of sub-pixel electrodes 20a arrayed in a predetermined row in a line in the horizontal direction between the select interconnection 89 and the feed interconnection 90 of the next row (one row after) may be covered with the common organic EL layer 20b for blue light emission, which has a long band shape in the horizontal direction. 5 10 15 20 25 The organic EL layer 20b is formed by wet coating (e.g., ink-jet method) after coating of the hydrophobic insulating film 54 and liquid repellent conductive layer 55. In this case, an organic compound-containing solution containing an organic compound as the prospective organic EL layer 20b is applied to the 5 10 20 25 sub-pixel electrode 20a. The liquid level of the organic compound-containing solution is higher than the top of the insulating line 61. The thick select interconnection 89, feed interconnection 90, and common interconnection 91 whose tops are much higher than that of the insulating line 61 are formed between the sub-pixel electrodes 20a adjacent in the vertical direction to project respect to the surface of the transistor array substrate 50. Hence, the organic compound-containing solution applied to a sub-pixel electrode 20a is prevented from leaking to the sub-pixel electrodes 20a adjacent in the vertical direction. In addition, the select interconnection 89, feed interconnection 90, and common interconnection 91 are respectively coated with the hydrophobic insulating 'film 53, hydrophobic insulating film 54, and liquid repellent conductive layer 55 having water repellency and/or oil repellency, which repel the organic compound-containing solution applied to the sub-pixel electrode 20a. The organic compound-containing solution applied to the sub-pixel electrode 20a is never deposited excessively thick near the end of the liquid repellent conductive layer 55, the end of the hydrophobic insulating film 53, and the end of the hydrophobic insulating film 54 as compared to the center of the sub-pixel electrode 20a. Hence, the organic EL layer 20b formed by drying the organic compound-containing solution can have a uniform thickness in a plane. 5 10 15 20 25 The organic EL layer 20b need not always have the above-described two-layer structure. A three-layer structure including a hole transport layer, a light-emitting layer of narrow sense, and an electron transport layer formed sequentially from the sub-pixel electrode 20a may be employed. Alternately, a single-layer structure including a light-emitting layer of narrow sense may be used. A layered structure having an electron or hole injection layer inserted between appropriate layers in one of the above layer structures may be employed. Any other layered structures can also be used. The counter electrode 20c functioning as the cathode of the organic EL element 20 is formed on the organic EL layers 20b. The counter electrode 20c is a common electrode commonly formed on the entire surface for all the sub-pixels Pr, Pg, and Pb. The counter electrode 20c is formed on the entire surface and covers the common interconnections 91 via the liquid repellent conductive layers 55. For this reason, as shown in the circuit diagram in FIG. 2, the counter electrode 20c is electrically connected to the common interconnections 91. Each select interconnection 89 is coated with the hydrophobic insulating film 53. Each feed interconnection 90 is coated with the hydrophobic insulating film 54. Hence, the counter electrode 20c is insulated from both the select interconnections 89 and the feed interconnection 90. The counter electrode 20c is preferably formed 5 from a material having a work function lower than the sub-pixel electrode 20a, and for example, a single substance or an alloy containing at least one of magnesium, calcium, lithium, barium, indium, and a rare earth metal. The counter electrode 20c may have a layered structure in which the layers of various kinds 10 of materials described above are stacked, or a layered structure in which a metal layer hard to oxidize is deposited in addition to the layers of various kinds of materials described above to lower the sheet resistance. More specifically, a layered structure 15 including a highly pure barium layer having a low work function and provided on the interface side contacting the organic EL layer 20b, and an aluminum layer provided to cover the barium layer, or a layered 20 structure including a lithium layer on the lower side and an aluminum layer on the upper side can be used. In a top emission structure, the counter electrode 20c may be a transparent electrode having the above-described thin film with a low work function and 25 a transparent conductive film made of, e.g., ITO on the thin film. A sealing insulating film 56 is formed on the counter electrode 20c. The sealing insulating film 56 is an inorganic or organic film provided to cover the entire counter electrode 20c and prevent any degradation of the counter electrode 20c. 5 10 Conventionally, in an EL display panel having a top emission structure, at least part of the counter electrode 20c is formed as a transparent electrode of, e.g., a metal oxide having a high resistance value. Such a material can sufficiently reduce the sheet resistance only by increasing the thickness. When the material is thick, the transparency of the organic EL element decreases inevitably. As the screen size becomes large, a uniform potential can hardly be obtained in a plane, and the display characteristic becomes poor. 15 20 25 In this embodiment, however, the plurality of common interconnections 91 with a low resistance are provided to obtain a sufficient thickness in the horizontal direction. Hence, the sheet resistance value of the entire cathode electrodes of the organic EL elements 20 can be decreased together with the counter electrode 20c so that a sufficiently large current can be supplied uniformly in a plane. In this structure, the common interconnection 91 reduce the sheet resistance of the cathode electrode. For this reason, the transmittance can be increased by forming the counter electrode 20c thin. In a top emission structure, the pixel electrode 20a may be made of a reflecting material. The feed interconnections 90 which are formed by using a thick conductive layer except the conductive layer to form the thin-film transistors are electrically connected to the supply lines \mathbf{Z}_1 to
\mathbf{Z}_m . For this reason, the delay until the write current or driving current (to be described later) in the plurality of organic EL elements 20 reaches a predetermined current value, which is caused by the voltage drop in the supply lines \mathbf{Z}_1 to \mathbf{Z}_m formed by only the conductive layer of the thin-film transistors, can be prevented, and the elements can satisfactorily be driven. In addition, the select interconnections 89 which are formed by using a thick conductive layer except the conductive layer to form the thin-film transistors are electrically connected to the scan lines X_1 to X_m . For this reason, the signal delay caused by the voltage drop in the scan lines X_1 to X_m formed by only the conductive layer of the thin-film transistors can be prevented, and the switch transistors 21 and holding transistors 22 can be switched quickly and driven satisfactorily. 25 [Display Panel Driving Method] 10 15 The display panel 1 can be driven by the active matrix method in the following way. As shown in FIG. 7, a select driver connected to the scan lines X_1 to X_m sequentially outputs a shift pulse of high level to the scan lines X1 to Xm in this order (the scan line X_1 next to the scan line X_m), thereby sequentially selecting the scan lines X_1 to X_m . A feed driver is connected to the feed interconnections 90. driver applies a write feed voltage VL to supply a write current to the driving transistors 23 connected to the supply lines \mathbf{Z}_1 to \mathbf{Z}_m through the feed interconnections 90 in a selection period. The feed driver applies a driving feed voltage VH to supply a driving current to the organic EL elements 20 through the driving transistors 23 in a light emission period. The feed driver sequentially outputs the write feed voltage VL of low level (lower than the voltage of the counter electrode of the organic EL elements 20) to the supply lines Z_1 to Z_m in this order (the supply line Z_1 next to the supply line Z_m) in synchronism with the select driver, thereby sequentially selecting the 20 supply lines Z_1 to Z_{m} . While the select driver is selecting the scan lines X_1 to X_m , a data driver supplies a write current (current signal) to all the signal lines Y1 to Yn through the drain-to-source paths of the driving transistors 23 of a predetermined row. At this time, the feed driver outputs the write feed 25 voltage VL of low level from both the interconnection terminals at the two ends of each feed interconnection 90, located on the left and right ends of the insulating substrate 2 to the feed interconnections 90 connected to the supply lines Z_1 to Z_m . The counter electrode 20c and common interconnections 91 are connected to an external device through the interconnection terminals portions and held at a predetermined common potential Vcom (e.g., ground = 0 V). 10 20 The direction in which the signal lines Y_1 to Y_n run is called the vertical direction (column direction). The direction in which the scan lines X_1 to $X_{\mbox{\scriptsize m}}$ run is called the horizontal direction (row direction). In this case, m and n are natural numbers $(m \ge 2, n \ge 2)$. The subscript added to the scan line X represents the sequence from the top in FIG. 1. The subscript added to the supply line Z represents the sequence from the top in FIG. 1. The subscript added to the signal line Y represents the sequence from the left in FIG. 1. The first subscript added to the pixel circuit P represents the sequence from the top, and the second subscript represents the sequence from the left. More specifically, let i be an arbitrary natural number of 1 to m, and j be an arbitrary natural number of 1 to n. A scan line X; is the ith row from the top, a supply line Z_i is the ith row from the top, a signal line Yi is the jth column from the left, and a pixel circuit Pi, is located on the ith row from the top and the jth column from the left. The pixel circuit $P_{i,j}$ is connected to the scan line X_i , supply line Z_i , and signal line Y_j . The pixel circuit $P_{i,j}$ comprises the organic EL element 20 serving as a pixel, the first to third N-channel amorphous silicon thin-film transistors (to be simply referred to as transistors hereinafter) 21, 22, and 23 arranged around the organic EL element 20, and the capacitor 24. 10 15 In each selection period, the potential on the data driver side is equal to or lower than the write feed voltage VL output to the feed interconnections 90 and the supply lines Z_1 to Z_m . The write feed voltage VL is set to be equal to or lower than the common potential Vcom. At this time, no current flows from the organic EL elements 20 to the signal lines Y_1 to Yn. As shown in FIG. 2, a write current (pull-out current) having a current value corresponding to the gray level is supplied from the data driver to the signal lines Y_1 to Y_n , as indicated by an arrow \underline{A} . In the pixel circuit Pi, i, the write current (pull-out current) to the signal line Yi flows from the feed interconnection 90 and supply line Zi through the drain-to-source path of the driving transistor 23 and the drain-to-source path of the switch transistor 21. The current value of the current flowing through the drain-to-source path of the driving transistor 23 is 5 10 20 25 uniquely controlled by the data driver. The data driver sets the current value of the write current (pull-out current) in accordance with an externally input gray level. While the write current (pull-out current) is flowing, the voltage between the gate 23g and source 23s of the driving transistor 23 of each of pixel circuits Pi,1 to Pi,n of the ith row is forcibly set in accordance with the current value of the write current (pull-out current) flowing to the signal lines Y1 to Yn, i.e., the current value of the write current (pull-out current) flowing between the drain 23d and source 23s of the driving transistor 23 independently of the change over time in the Vg-Ids characteristic of the driving transistor 23. Charges with a magnitude corresponding to the level of this voltage are stored in the capacitor 24 so that the current value of the write current (pull-out current) is converted into the voltage level between the gate 23g and source 23s of the driving transistor 23. In the subsequent light emission period, the scan line Xi changes to low level so that the switch transistor 21 and holding transistor 22 are turned off. The charges on the side of the electrode 24A of the capacitor 24 are confined by the holding transistor 22 in the OFF state, and a floating state is set. Hence, even when the voltage of the source 23s of the driving transistor 23 is modulated at the time of transition from the selection period to the light emission period, the potential difference between the gate 23g and source 23s of the driving transistor 23 is maintained. In the light emission period, the potential of the supply line Zi and the feed interconnection 90 connected to it equals the driving feed voltage VH which is higher than the potential Vcom of the counter electrode 20c of the organic EL element 20. Hence, a driving current flows from the supply line Z_i and the feed interconnection 90 connected to it to the organic EL element 20 in the direction of arrow B through the driving transistor 23. Hence, the organic EL element 20 emits light. The current value of the driving current depends on the voltage between the gate 23g and source 23s of the driving transistor 23. For this reason, the current value of the driving current in the light emission period equals the current value of the write current (pull-out current) in the selection period. 5 10 15 25 Another active matrix driving method of the display panel 1 will be described next. As shown in FIG. 8, an oscillation circuit outputs a clock signal to the feed interconnections 90 and thus supply lines Z_1 to Z_m . The select driver sequentially outputs a shift pulse of high level to the scan lines X_1 to X_m in this order (the scan line X_1 next to the scan line X_m), thereby sequentially selecting the scan lines X_1 to X_m . While the select driver is outputting the shift pulse to one of the scan lines X_1 to X_m , the clock signal from the oscillation circuit changes to low level. When the select driver selects the scan lines X_1 to X_m , the data driver supplies a pull-out current (current signal) as the write current to all the signal lines Y_1 to Y_n through the drain-to-source paths of the driving transistors 23. The counter electrode 20c and feed interconnections 90 are held at the predetermined common potential Vcom (e.g., ground = 0 V). 10 20 In the selection period of the scan line X_1 , the shift pulse is output to the scan line X_i of the ith row so that the switch transistor 21 and holding transistor 22 are turned on. In each selection period, the potential on the data driver side is equal to or lower than the clock signal output to the feed interconnections 90 and supply lines Z_1 to Z_m . The low level of the clock signal is set to be equal to or lower than the common potential Vcom. At this time, no current flows from the organic EL elements 20 to the signal lines Y_1 to Y_n . As shown in FIG. 2, a write current (pull-out current) having a current value corresponding to the gray level is supplied from the data driver to the signal lines Y1 to Yn, as indicated by the arrow \underline{A} . In the pixel circuit $P_{i,j}$, the write current (pull-out current) to the signal line Yj flows from the feed interconnection 90 and supply line Z_1 through the drain-to-source path of the driving transistor 23 and the drain-to-source path of the switch transistor 21. The current value of the current flowing through the drain-to-source path of the driving transistor 23 is uniquely controlled by the data
driver. The data driver sets the current value of the write current (pull-out current) in accordance with an externally input gray level. While the write current (pull-out current) is flowing, the voltage between the gate 23g and source 23s of the driving transistor 23 of each of the pixel circuits Pi,1 to Pi,n of the ith row is forcibly set in accordance with the current value of the write current (pull-out current) flowing to the signal lines Y_1 to Y_n , i.e., the current value of the write current (pull-out current) flowing between the drain 23d and source 23s of the driving transistor 23 independently of the change over time in the Vg-Ids characteristic of the transistor 23. Charges with a magnitude corresponding to the level of this voltage are stored in the capacitor 24 so that the current 20 value of the write current (pull-out current) is converted into the voltage level between the gate 23g and source 23s of the driving transistor 23. In the subsequent light emission period, the scan line Xi changes to low level so that the switch transistor 21 and holding transistor 22 are turned off. The charges on the side of the electrode 24A of the capacitor 24 are confined by the holding transistor 22 in the OFF 15 5 15 20 25 state, and a floating state is set. Hence, even when the voltage of the source 23s of the driving transistor 23 is modulated at the time of transition from the selection period to the light emission period, the potential difference between the gate 23g and source 23s of the driving transistor 23 is maintained. Of the selection period, in a period in which no row is selected, i.e., the clock signal is at high level, and the potential of the feed interconnection 90 and supply line Z_i is higher than the potential Vcom of the 10 counter electrode 20c of the organic EL element 20 and the feed interconnection 90, the driving current flows from the feed interconnection 90 and thus supply line Zi with a higher potential to the organic EL element 20 through the drain-to-source path of the driving transistor 23 in the direction of arrow B. Hence, the organic EL element emits light. The current value of the driving current depends on the voltage between the gate 23g and source 23s of the driving transistor 23. For this reason, the current value of the driving current in the light emission period equals the current value of the write current (pull-out current) in the selection period. Of the selection period, in a period in which any row is selected, i.e., the clock signal is at low level, the potential of the feed interconnection 90 and thus supply line Z; is equal to or lower than the potential Vcom of the counter electrode 20c and feed interconnection 90. Hence, no driving current flows to the organic EL element 20, and no light emission occurs. 5 10 15 20 25 In either driving method as described above, the switch transistor 21 functions to turn on (selection period) and off (light emission period) of the current between the signal line Y_j and the source 23s of the driving transistor 23. The holding transistor 22 functions to make it possible to supply the current between the source 23s and drain 23d of the driving transistor 23 in the selection period and hold the voltage between the gate 23g and source 23s of the transistor 23 in the light emission period. The driving transistor 23 functions to drive the organic EL element 20 by supplying a current having a magnitude corresponding to the gray level to the organic EL element 20. As described above, the magnitude of the current flowing to the feed interconnection 90 equals the sum of the magnitudes of driving currents flowing to the \underline{n} organic EL elements 20 connected to the supply line Z_{1} of one column. When a selection period to do moving image driving using pixels for VGA or more is set, the parasitic capacitance of each feed interconnection 90 increases. The resistance of an interconnection formed from a thin film which forms the gate electrode or the source/drain electrode of a thin-film transistor is so high that the write current (driving current) cannot be supplied to the \underline{n} organic EL elements 20. In this embodiment, the feed interconnections 90 are formed from a conductive layer different from the gate electrodes or the source/drain electrodes of thin-film transistors of the pixel circuits $P_{1,1}$ to $P_{m,n}$. For this reason, the voltage drop by the feed interconnections 90 is small. Even in a short selection period, the write current (pull-out current) can sufficiently be supplied without any delay. Since the resistance of the feed interconnection 90 is lowered by thickening it, the feed interconnection 90 can be made narrow. In a bottom emission structure, the decrease in pixel opening ratio can be minimized. Similarly, the magnitude of the driving current flowing to the common interconnection 91 in the light emission period equals that of the write current (pull-out current) flowing to the feed interconnection 90 in the selection period. Since the common interconnections 91 use a conductive layer different from the gate electrodes or the source/drain electrodes of the first to third thin-film transistors of the pixel circuits P_{1,1} to P_{m,n}, the common interconnection 91 can be made sufficiently thick, and its resistance can be lowered. In addition, even when the counter electrode 20c itself becomes thin and increases its resistance, the voltage of the counter electrode 20c can be uniformed in a plane. Hence, even if the same potential is applied to all the pixel electrodes 20a, the light emission intensities of the organic EL layers 20b almost equal, and the light emission intensity in a plane can be uniformed. 5 10 15 20 25 When the EL display panel 1 is used as a top emission type, the counter electrode 20c can be made thinner. Hence, light emitted from the organic EL layer 20b hardly attenuates while passing through the counter electrode 20c. Additionally, since the common interconnections 91 are respectively provided between the pixel electrodes 20a adjacent in the horizontal direction when viewed from the upper side, the decrease in pixel opening ratio can be minimized. [Widths, Sectional Areas, and Resistivities of Feed Interconnection and Common Interconnection] When the display panel is driven by the latter of the above-described two driving methods, the feed interconnections 90 are electrically connected to each other by the first lead interconnection arranged at one edge of the insulating substrate 2 and are therefore set to an equipotential by the external clock signal. The first lead interconnection is connected to the interconnection terminals at the two ends of the insulating substrate 2. Since the voltages applied from external driving circuits to the interconnection terminals are equipotential, the current can quickly be supplied to all the feed interconnections 90. 5 10 15 20 The common interconnections 91 are connected to each other by the second lead interconnection arranged at an edge different from the edge of the insulating substrate 2 where the first lead interconnection is provided. A common voltage Vss is applied to the common interconnections 91. The second lead interconnection is insulated from the first lead interconnection. When the display panel 1 has pixels corresponding to WXGA (768 × 1366), the desired width and sectional area of the feed interconnection 90 and common interconnection 91 are defined. FIG. 9 is a graph showing the current vs. voltage characteristic of the driving transistor 23 and organic EL element 20 of each sub-pixel. Referring to FIG. 9, the ordinate represents the current value of the write current flowing between the source 23s and drain 23d of one driving transistor 23 or the current value of the driving current flowing between the anode and cathode of one organic EL element 20. The abscissa represents the voltage between the drain 23d and source 23s of one driving transistor 23 (also the voltage between the gate 23g and drain 23d of one driving transistor 23). Referring to FIG. 9, a solid line Ids max indicates a write current and driving current for the highest luminance gray level (brightest display). A one-dot dashed line Ids mid indicates a write current and driving current for an intermediate highest luminance gray level between the highest luminance gray level and the lowest luminance gray level. A two-dots dashed line Vpo indicates a threshold value between the unsaturation region (linear region) and the saturation region of the driving transistor 23, i.e., the pinch-off voltage. A three-dots dashed line Vds indicates a write current flowing between the source 23s and drain 23d of the driving transistor 23. A dot line Iel indicates a driving current flowing between the anode and cathode of the organic EL element 20. A voltage VP1 is the pinch-off voltage of the driving transistor 23 for the highest luminance gray level. A voltage VP2 is the drain-to-source voltage of the driving transistor 23 when a write current for the highest luminance gray level flows. A voltage VELmax (voltage VP4 - voltage VP3) is the anode-to-cathode voltage when the organic EL element 20 emits light by a driving current of the highest luminance gray level, which has a current value equal to that of the write current for the highest luminance gray level. A voltage VP2' is the drain-to-source voltage of the driving transistor 23 when a write current for the intermediate luminance gray level flows. A voltage (voltage VP4' - voltage VP3') is the anode-to-cathode voltage when the organic EL element 20 emits light by a driving current of the intermediate luminance gray level, which has a current value equal to that of the write current for the intermediate luminance gray level. 5 10 15 20 25 To drive the driving transistor 23 and organic EL element 20 in the saturation region, a value VX obtained by subtracting (the voltage Vcom of the common
interconnection 91 in the light emission period) from (the driving feed voltage VH of the feed interconnection 90 in the light emission period) satisfies VX = Vpo + Vth + Vm + VEL ...(2) where Vth (= VP2 - VP1 for the highest luminance) is the threshold voltage of the driving transistor 23, VEL (= VEmax for the highest luminance) is the anode-to-cathode voltage of the organic EL element 20, and Vm is an allowable voltage which displaces in accordance with the gray level. As is apparent from FIG. 9, of the voltage VX, the higher the luminance gray level is, the higher the voltage (Vpo + Vth) necessary between the source and drain of the transistor 23 is, and also, the higher the voltage VEL necessary between the anode and cathode of the organic EL element 20 is. Hence, the allowable voltage Vm becomes low as the luminance gray level becomes high. A minimum allowable voltage Vmmin is VP3 - VP2. 10 15 20 The organic EL element 20 generally degrades and increases its resistance over time no matter whether a low or high molecular weight EL material. It has been confirmed that the anode-to-cathode voltage after 10,000 hrs is about 1.4 to several times that in the initial state. That is, the voltage VEL rises along with the elapse of time even when the luminance gray level does not change. The operation is stable for a long time when the allowable voltage Vm in the initial driving state is as high as possible. Hence, the voltage VX is set such that the voltage VEL becomes 8 V or more and, more preferably, 13 V or more. The allowable voltage Vm includes not only the increase amount of the resistance of the organic EL element 20 but also the voltage drop by the feed interconnection 90. If the voltage drop is large because of the interconnection resistance of the feed interconnection 90, the power consumption of the EL display panel 1 considerably increases. Hence, the voltage drop of the feed interconnection 90 is especially preferably set to 1 V or less. A pixel width Wp as the row-direction length of one pixel, the number of pixels (1366) in the row direction, the extension portion from the first lead interconnection to one interconnection terminal outside the pixel region, and the extension portion from the first lead interconnection to the other interconnection terminal outside the pixel region are taken into consideration. In this case, the total length of the first lead interconnection is 706.7 mm for the display 5 panel 1 with a panel size of 32 inches and 895.2 mm for 40 inches. If a line width WL of the feed interconnection 90 and common interconnection 91 is large, the area of the organic EL layer 20b decreases structurally. In addition, the overlap parasitic 10 capacitance to other interconnections is also generated, and the voltage drop becomes larger. prevent this, the line width WL of the feed and common interconnections 90, 91 is preferably suppressed to 1/5 or less the pixel width Wp. In consideration of this, the line width WL is 34 μ m or less for the display panel 1 with a panel size of 32 inches and 44 μ m or less for 40 inches. A maximum thickness Hmax of the feed interconnection 90 and common interconnection 91 is 1.5 times the minimum process size (4 μ m) of the 20 first to third transistors 21 to 23, i.e., 6 μ m when the aspect ratio is taken into consideration. A maximum sectional area Smax of the feed interconnection 90 and common interconnection 91 is 204 μ m² for 32 inches and 264 μ m² for 40 inches. 25 To make the maximum voltage drop of the feed interconnection 90 and common interconnection 91 1 V or less when the 32-inch display panel 1 is fully lighted to flow the maximum current, an interconnection resistivity ρ /sectional area S of the feed interconnection 90 and common interconnection 91 must be set to 4.7 Ω/cm or less, as shown in FIG. 10. FIG. 11 shows the correlation between the sectional area and the current density of the feed interconnection and common interconnection of the 32-inch display panel 1. The resistivity allowed when the above-described feed interconnection 90 and common 10 interconnection 91 have the maximum sectional area Smax is 9.6 μ Ω cm for 32 inches and 6.4 μ Ω cm for 40 inches. 5 20 25 To make the maximum voltage drop of the feed interconnection 90 and common interconnection 91 1 V or less when the 40-inch display panel 1 is fully lighted to flow the maximum current, the interconnection resistivity p/sectional area S of the feed interconnection 90 and common interconnection 91 must be set to 2.4 Ω/cm or less, as shown in FIG. 12. FIG. 13 shows the correlation between the sectional area and the current density of the feed interconnection and common interconnection of the 40-inch display panel 1. A median time to failure MTF at which the EL display panel stops operation due to a failure in the feed interconnection 90 and common interconnection 91 satisfies 10 15 20 MTF = $Aexp(Ea/K_bT)/\rho J^2$...(3) where Ea is an activation energy, $K_bT = 8.617 \times 10^{-5}$ eV, ρ is the resistivity of the feed interconnection 90 and common interconnection 91, and J is a current density. The median time to failure MTF of the feed interconnection 90 and common interconnection 91 is determined by an increase in resistivity or electromigration. When the feed and common interconnections 90, 91 are set to an Al-based material (Al single substance or an alloy such as AlTi or AlNd), and calculation is done on trial for MTF of 10,000 hrs and an operation temperature of 85°C, the current density J must be 2.1×10^4 A/cm² or less. When the feed interconnection 90 and common interconnection 91 are set to Cu, the current density J must be 2.8×10^6 A/cm² or less. It is assumed that materials except Al in an Al alloy have a resistivity lower than Al. In consideration of these, in the 32-inch display panel 1, the sectional area S of the Al-based feed interconnection 90 and common interconnection 91 must be 57 μ m² or more to prevent any failure in them in the full lighting state for 10,000 hrs, as shown in FIG. 11. The sectional area S of the feed interconnection 90 and common interconnection 91 made of Cu must be 0.43 μ m² or more, as shown in FIG. 11. In the 40-inch display panel 1, the sectional area S of the Al-based feed interconnection 90 and common interconnection 91 must be 92 μ m² or more to prevent any failure in them in the full lighting state for 10,000 hrs, as shown in FIG. 13. The sectional area S of the feed and common interconnections 90, 91 made of Cu must be 0.69 μ m² or more, as shown in FIG. 13. 5 20 25 In the 32-inch display panel 1, the interconnection resistivity ρ /sectional area S of the Al-based feed interconnection 90 and common interconnection 91 is 4.7 Ω /cm or less, as described above, assuming that the resistivity of the Al-based material is 4.00 μ Ω cm. Hence, a minimum sectional area Smin is 85.1 μ m². Since the line width WL of the feed and common interconnections 90, 91 is 34 μ m or less, as described above, a minimum thickness Hmin of both interconnections 90, 91 is 2.50 μ m. In the 40-inch display panel 1, the interconnection resistivity ρ /sectional area S of the A1-based feed interconnection 90 and common interconnection 91 is 2.4 Ω /cm or less, as described above. Hence, the minimum sectional area Smin is 167 μ m². Since the line width WL of the interconnections 90, 91 is 44 μ m or less, as described above, the minimum thickness Hmin of the interconnections 90, 91 is 3.80 μ m. In the 32-inch display panel 1, the interconnection resistivity ρ /sectional area S of the feed interconnection 90 and common interconnection 91 made of Cu is 4.7 Ω /cm or less, as described above, assuming that the resistivity of Cu is 2.10 μ Ω cm. Hence, the minimum sectional area Smin is 44.7 μ m². Since the line width WL of both interconnections 90, 91 is 34 μ m or less, as described above, the minimum thickness Hmin of the interconnections 90, 91 is 1.31 μ m. 5 20 25 In the 40-inch display panel 1, the interconnection resistivity ρ /sectional area S of the feed interconnection 90 and common interconnection 91 made of Cu is 2.4 Ω /cm or less, as described above. Hence, the minimum sectional area Smin is 87.5 μ m². Since the line width WL of both interconnections 90, 91 is 44 μ m or less, as described above, the minimum thickness Hmin of the interconnections 90, 91 is 1.99 μ m. Hence, to cause the display panel 1 to operate normally at a low power consumption, the voltage drop in the feed interconnection 90 and common interconnection 91 is preferably set to 1 V or less. To set such a condition, in a 32-inch panel in which the feed interconnection 90 and common interconnection 91 are made of an Al-based material, a thickness H is 2.5 to 6.0 μ m, the width WL is 14.1 to 34.0 μ m, and the resistivity is 4.0 to 9.6 μ Ω cm. In a 40-inch panel in which both interconnections 90, 91 are made of an Al-based material, the thickness H is 3.8 to 6.0 μ m, the width WL is 27.8 to 44.0 μ m, and the resistivity is 4.0 to 9.6 μ Ω cm. 5 10 15 20 25 In general, for the Al-based feed interconnection 90 and common interconnection 91, the thickness H is 2.5 to 6.0 μ m, the width WL is 14.1 to 44.0 μ m, and the resistivity is 4.0 to 9.6 μ Ω cm. In a 32-inch panel in which the feed interconnection 90 and common interconnection 91 are made of Cu, the thickness H is 1.31 to 6.00 μ m, the width WL is 7.45 to 34.00 μ m, and the resistivity is 2.1 to 9.6 μ Ω cm. In a 40-inch panel in which both interconnections 90, 91 are made of Cu, the thickness H is 1.99 to 6.00 μ m, the width WL is 14.6 to 44.0 μ m, and the resistivity is 2.1 to 9.6 μ Ω cm. In general, for the feed
interconnection 90 and common interconnection 91 made of Cu, the thickness H is 1.31 to 6.00 $\mu\,\text{m}$, the width WL is 7.45 to 44.00 $\mu\,\text{m}$, and the resistivity is 2.1 to 9.6 $\mu\,\Omega\,\text{cm}$. Hence, when an Al-based material or Cu is used for the feed interconnection 90 and common interconnection 91, interconnections 90, 91 of the EL display panel 1 have the thickness H of 1.31 to 6.00 μ m, the width WL of 7.45 to 44.00 μ m, and the resistivity of 2.1 to 9.6 μ Ω cm. As described above, the common interconnections 91 formed to project between the lines of the red sub-pixels Pr and the lines of the green sub-pixels Pg in the horizontal direction are formed from a layer different from the electrodes of the first to third transistors 21 to 23. Hence, the common interconnections 91 can be made thick and have a low resistance. The common interconnections 91 having a low resistance are electrically connected to the counter electrode 20c. For this reason, even when the counter electrode 20c itself becomes thin and increases its resistance, the voltage of the counter electrode 20c can be uniformed in a plane. Hence, even if the same potential is applied to all the sub-pixel electrodes 20a, the light emission intensities of the organic EL layers 20b almost equal, and the light emission intensity in a plane can be uniformed. 5 10 15 20 25 When the display panel 1 is used as a top emission type, the counter electrode 20c can be made thinner. Hence, light emitted from the organic EL layer 20b hardly attenuates while passing through the counter electrode 20c. Additionally, since the common interconnections 91 are provided between the sub-pixel electrodes 20a adjacent in the vertical direction when viewed from the upper side (FIG. 1), the decrease in pixel opening ratio can be minimized. In addition, the select interconnections 89 formed to project between the lines of the green sub-pixels Pg and the lines of the blue sub-pixels Pb in the horizontal direction are formed from a layer different from the electrodes of the first to third transistors 21 to 23. Hence, the select interconnections 89 can be made thick and have a low resistance. The common interconnections 91 having a low resistance are formed on the thin scan lines X. For this reason, the voltage drop in the scan lines X can be suppressed, and the signal delay in the scan lines X and select interconnections 89 can be suppressed. That is, when a focus is placed on the column of the sub-pixels P in the horizontal direction, the shift pulse changes to high level in all the sub-pixels P without any delay. Since the select interconnections 89 are made thick to decrease the resistance, the select interconnections 89 can be made narrow. For this reason, the decrease in pixel opening ratio can be minimized. 15 20 25 Furthermore, the feed interconnections 90 formed to project between the lines of the blue sub-pixels Pb and the lines of the red sub-pixels Pr in the horizontal direction are formed from a layer different from the electrodes of the transistors 21 to 23. Hence, the feed interconnections 90 can be made thick and have a low resistance. The feed interconnections 90 having a low resistance are formed on the thin supply lines Z. For this reason, the voltage drop in the supply lines Z can be suppressed, and the signal delay in the supply lines Z and feed interconnections 90 can be suppressed. For example, when the size of the display panel 1 is increased without the feed interconnections 90, the light emission intensity in a plane may vary due to the voltage drop in the supply lines Z, or some organic EL elements 20 cannot emit light. In this embodiment, however, since the feed interconnections 90 having a low resistance are electrically connected to the supply lines Z, the light emission intensity in a plane can be prevented from varying, and the organic EL elements 20 which cannot emit light can be eliminated. Since the feed interconnections 90 are made thick to decrease the resistance, the feed interconnections 90 can be made narrow. For this reason, the decrease in pixel opening ratio can be minimized. Since the select interconnections 89, feed interconnections 90, and common interconnections 91 formed to project are provided thick, the organic EL layers 20b can have different colors by wet coating. Hence, no special banks to partition the sub-pixels P need be provided, and the display panel 1 can easily be manufactured. ## 25 [First Modification] 5 10 15 20 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. In the above-described embodiment, the first to third transistors 21 to 23 have been explained as N-channel field effect transistors. The transistors 21 to 23 may be P-channel field effect transistors. In this case, the relationship between the sources 21s, 22s, and 23s of the transistors 21 to 23 and the drains 21d, 22d, and 23d of the transistors 21 to 23 is reversed in the circuit diagram shown in FIG. 2. For example, when the driving transistor 23 is a P-channel field effect transistor, the drain 23d of the driving transistor 23 is electrically connected to the sub-pixel electrode 20a of the organic EL element 20. The source 23s is electrically connected to the supply line Z. ## [Second Modification] 5 10 15 20 25 In the above-described embodiment, the three transistors 21 to 23 are provided per 1-dot pixel. The present invention can be applied to any display panel which has one or more driving transistors per 1-dot sub-pixel P and can be driven by using these transistors by an active driving method independently of the number of transistors and whether the panel is current-driven or voltage-driven. ## [Third Modification] In the above-described embodiment, the select interconnections 89 are formed to project between the rows of the green sub-pixels Pg and the rows of the blue sub-pixels Pb. However, instead of the select interconnections 89, common interconnections like the common interconnections 91 may be formed between the rows of the green sub-pixels Pg and the rows of the blue sub-pixels Pb. Therefore, two common interconnections are formed every pixel 3 In this case, no trench 35 is formed under the common interconnection. The common interconnection is 10 insulated from the scan line X. The surface of the common interconnection is coated with a liquid repellent conductive layer like the liquid repellent conductive layer 55. The common interconnection is 15 electrically connected to the counter electrode 20c. [Fourth Modification] In the above-described embodiment, the signal line Y is patterned from the gate layer. Instead, the signal line Y may be patterned from the drain layer. In this case, the scan line X and supply line Z are patterned from the gate layer, and the signal line Y is arranged above the scan line X and supply line Z. [Fifth Modification] 20 25 In the above-described embodiment, the common interconnection 91 is arranged between the red sub-pixel Pr and green sub-pixel Pg which are adjacent in the vertical direction. The scan line X and select interconnection 89 are arranged between the green sub-pixel Pg and blue sub-pixel Pb which are adjacent in the vertical direction. The supply line Z and feed interconnection 90 are arranged between the blue sub-pixel Pb of one of the pixels 3 and the red 5 sub-pixel Pr of the adjacent pixel 3. Hence, the organic EL layer 20b of the red sub-pixel Pr, the organic EL layer 20b of the green sub-pixel Pg, and the organic EL layer 20b of the blue sub-pixel Pb are repeatedly arrayed in this order. That is, in the 10 above-described embodiment, the supply line Z and feed interconnection 90, the common interconnection 91, and the scan line X and select interconnection 89 are repeatedly arrayed in this order. In other words, the 15 organic EL layer 20b of the red sub-pixel Pr, the organic EL layer 20b of the green sub-pixel Pg, and the organic EL layer 20b of the blue sub-pixel Pb are repeatedly arrayed in this order. However, they need not always be arrayed in this order. Instead, the scan 20 line X and select interconnection 89, or the supply line Z and feed interconnection 90 may be arranged between the red sub-pixel Pr and green sub-pixel Pg. The common interconnection 91, or the supply line Z and feed interconnection 90 may be arranged between the 25 green sub-pixel Pg and blue sub-pixel Pb. The common interconnection 91, or the scan line X and select interconnection 89 may be arranged between the blue sub-pixel Pb of one of the pixels 3 and the red sub-pixel Pr of the adjacent pixel 3. A plurality of modifications described above may be combined. ### WHAT IS CLAIMED IS: A display panel comprising: 10 15 20 25 a transistor array substrate which has a plurality of pixels and is formed by providing a plurality of transistors for each pixel, each of the transistor having a gate, a gate insulating film, a source, and a drain; a plurality of interconnections which are formed to project to a surface of the transistor array substrate and arrayed in parallel to each other; a plurality of pixel electrodes which are provided for each pixel and arrayed between the interconnections on the surface of the transistor array substrate along the interconnections; a plurality of light-emitting layers each of which is formed on each pixel electrode; and a counter electrode which is stacked on the light-emitting layer. - 2. A panel according to claim 1, wherein said plurality of transistors includes a driving transistor having one of the source and drain which is connected to the pixel electrode, a switch transistor which supplies a write current between the drain and source of the driving transistor, and a holding transistor which holds a voltage between the gate and source of the driving transistor in a light emission period. - 3. A
panel according to claim 2, wherein said plurality of interconnections include at least one of a feed interconnection connected to the other of the source and drain of the driving transistor, a select interconnection which selects the switch transistor, and a common interconnection connected to the counter electrode. 5 10 15 20 - 4. A panel according to claim 3, wherein the light-emitting layer is formed between two of the feed interconnection, the select interconnection, and the common interconnection. - 5. A panel according to claim 3, wherein said plurality of interconnections are formed by arraying a plurality of sets each including the feed interconnection, the select interconnection, and the common interconnection arrayed in an arbitrary order. - 6. A panel according to claim 1, wherein said plurality of pixels include a red pixel, a green pixel, and a blue pixel. - 7. A panel according to claim 6, wherein said plurality of pixels are formed by arraying a plurality of sets each including the red pixel, the green pixel, and the blue pixel arrayed in an arbitrary order. - 8. A panel according to claim 1, wherein the interconnection has a thickness of 1.31 to 6.00 $\mu\,\text{m}.$ - 9. A panel according to any one of claims 1 to 8, wherein the interconnection has a width of 7.45 to $44.00~\mu\text{m}.$ - 10. A panel according to claim 1, wherein the interconnection has a resistivity of 2.1 to 9.6 $\mu\,\Omega\,\text{cm}.$ - 11. A panel according to claim 1, wherein said plurality of interconnections are formed from a conductive layer different from a layer serving as the source and drain and a layer serving as the gate of the transistor. - 12. A panel according to claim 1, wherein said plurality of interconnections are formed from a conductive layer different from a layer serving as the pixel electrode. - 13. A panel according to claim 1, wherein said plurality of interconnections are thicker than the layer serving as the source and drain and the layer serving as the gate of the transistor. - 14. A panel according to claim 1, wherein said plurality of interconnections are thicker than the layer serving as the pixel electrode. - 15. A display panel comprising: - 20 a plurality of pixel electrodes; 5 10 15 25 - a plurality of light-emitting layers which are provided for said plurality of pixel electrodes, respectively; - a counter electrode which is provided for said plurality of light-emitting layers; - a plurality of driving transistors which are connected to said plurality of pixel electrodes, respectively; 5 10 15 20 25 a plurality of switch transistors each of which supplies a write current between a drain and source of a corresponding one of said plurality of driving transistors; a plurality of holding transistors each of which holds a voltage between a gate and the source of a corresponding one of said plurality of driving transistors; a plurality of feed interconnections which are formed from a conductive layer different from a layer serving as sources, drains, and gates of said plurality of driving transistors, said plurality of switch transistors, and said plurality of holding transistors and connected to the drains of said plurality of driving transistors; a plurality of select interconnections each of which selects the switch transistor; and a plurality of common interconnections each of which is connected to the counter electrode. 16. A panel according to claim 15, wherein said plurality of select interconnections are formed from a conductive layer different from the layer serving as the sources and drains and the layer serving as the gates of said plurality of driving transistors, said plurality of switch transistors, and said plurality of holding transistors. 17. A panel according to claim 15, wherein said plurality of common interconnections are formed from a conductive layer different from the layer serving as the sources and drains and the layer serving as the gates of said plurality of driving transistors, said plurality of switch transistors, and said plurality of holding transistors. 5 10 15 20 - 18. A panel according to claim 15, wherein at least one of the feed interconnection, the select interconnection, and the common interconnection is thicker than the layer serving as the sources and drains and the layer serving as the gates of said plurality of driving transistors, said plurality of switch transistors, and said plurality of holding transistors. - 19. A panel according to claim 15, wherein at least one of the feed interconnection, the select interconnection, and the common interconnection is formed from a conductive layer different from a layer serving as the pixel electrode. - 20. A panel according to claim 15, wherein at least one of the feed interconnection, the select interconnection, and the common interconnection is thicker than the layer serving as the pixel electrode. - 21. A display panel comprising: a plurality of pixel electrodes; a plurality of light-emitting layers which are provided for each of said plurality of pixel electrodes; a counter electrode which is provided for the light-emitting layer; a plurality of driving transistors each of which is connected to each of said plurality of pixel electrode; 10 15 20 25 a plurality of switch transistors each of which supplies a write current between a source and drain of the driving transistor; a plurality of holding transistors each of which holds a voltage between the source and gate of the driving transistor; a select interconnection which selects the switch transistor; a common interconnection which is formed from a conductive layer different from a layer serving as sources and drains and a layer serving as gates of the driving transistor, the switch transistor, and the holding transistor and connected to the counter electrode; and a feed interconnection which is formed from a conductive layer different from the layer serving as the sources, drains, and gates of the driving transistor, the switch transistor, and the holding transistor and connected to the drain of the driving transistor and is thicker than the common interconnection. 20 25 22. A display panel comprising: a transistor array substrate which is formed by providing a plurality of transistors for each pixel, each transistor having a gate, a gate insulating film, and a source/drain; a plurality of pixel electrodes which are provided in a plurality of rows on the transistor array substrate; a first light-emitting layer which is provided on each of said plurality of pixel electrodes of a first row to emit light of a first color; a second light-emitting layer which is provided on each of said plurality of pixel electrodes of a second row to emit light of a second color; a third light-emitting layer which is provided on each of said plurality of pixel electrodes of a third row to emit light of a third color; a counter electrode which is provided on the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer; a select interconnection which has a top higher than the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer and selects at least one of said plurality of transistors; a common interconnection which has a top higher than the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer and is connected to the counter electrode; and a feed interconnection which has a top higher than the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer and is connected to said plurality of pixel electrodes of said plurality of transistors. 5 10 15 20 23. A panel according to claim 22, wherein the first light-emitting layer is sandwiched between two of the select interconnection, the common interconnection, and the feed interconnection, the second light-emitting layer is sandwiched between two of the select interconnection, the common interconnection, and the feed interconnection, whose combination is different from that sandwiching the first light-emitting layer, and the third light-emitting layer is sandwiched between two of the select interconnection, the common interconnection, and the feed interconnection, whose combination is different from that sandwiching the first light-emitting layer and that sandwiching the second light-emitting layer. #### ABSTRACT OF THE DISCLOSURE A display panel includes a transistor array substrate which has a plurality of pixels and is formed by providing a plurality of transistors for each pixel, each of the transistor having a gate, a gate insulating film, a source, and a drain. A plurality of interconnections are formed to project to a surface of the transistor array substrate and arrayed in parallel to each other. A plurality of pixel electrodes are provided for each pixel and arrayed between the interconnections on the surface of the transistor array substrate along the interconnections. Each of a plurality of light-emitting layers is formed on each pixel electrode. A counter electrode is stacked on the 15 light-emitting layer. 5 10 N . FIG.1 # BEST AVAILABLE COPY FIG.2 × **m** ≥ F 5.6 FIG.9 **FIG.10** **FIG.11** **FIG.12** **FIG.13** # This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record # **BEST AVAILABLE IMAGES** Defective images within this document are accurate representations of the original documents submitted by the applicant. Defects in the images include but are not limited to the items checked: | □ BLACK BORDERS | |---| | ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES | | FADED TEXT OR DRAWING | | ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING | | ☐ SKEWED/SLANTED IMAGES | | ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS | | ☐ GRAY SCALE DOCUMENTS | | ☐ LINES OR MARKS ON ORIGINAL DOCUMENT | | ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY | | D OTHER. | # IMAGES ARE BEST AVAILABLE
COPY. As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox. ### DECLARATION FOR PATENT APPLICATION C2076P0501 (05S1052-1) As a below named inventor, I declare that my residence, mailing address and citizenship are as stated above my name; I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: #### DISPLAY PANEL of the application on which priority is claimed: | the specification of which is attac | thed hereto unless the following box is checked. | |--------------------------------------|--| | [] was filed on | as United States Application No. | | or PCT International Applica | ation No. | | [] and was amended on | | | I hereby state that I have reviewe | ed and understand the contents of the above-identified specification, includin | | the claims, as amended by any ar | mendment referred to above. | | I acknowledge the duty to disclos | e information which is material to patentability as defined in 37 CFR 1.56. | | I hereby claim foreign priority be | nefits under 35 U.S.C. 119(a)-(d) or 365(b) of any foreign application(s) for | | patent or inventor's certificate, or | r 35 U.S.C. 365(a) of any PCT International application which designated at | | least one country other than the | United States, listed below and have also identified below any foreign | | | | | | Priority | | |---------|----------|--------------------|--------------------|----------|--| | Country | Category | Application Number | Filing Date | Claim | | | Japan | Patent | 2004-283824 | September 29, 2004 | Yes | | application for patent or inventor's certificate, or PCT International application having a filing date before that I hereby appoint as my attorneys, with full power of substitution and revocation, to prosecute this application and transact all business in the Patent and Trademark Office connected therewith the practitioners at Customer Number: 01933 of Frishauf, Holtz, Goodman & Chick, P.C.. Please address all correspondence and telephone communications to the address and telephone number for this Customer Number. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. | [1st Inventor] Residence Address: Higashiyamato-shi, Japan Mailing Address: c/o Intellectual Property Departmen 2-1, Sakae-cho 3-chome, Hamura-shi, Tokyo 205-8555 | | |---|----------------| | Tomo yuki Shirasaki | SEP. 1 5. 2005 | | Tomoyuki Shirasaki | Date: | | [2nd Inventor] Residence Address: Fuchu-shi, Japan Mailing Address: c/o Intellectual Property Departmen 2-1, Sakae-cho 3-chome, Hamura-shi, Tokyo 205-8555 Citizenship: Japan | | | I suyoshi Ozaki | SEP. 15. 2005 | | Tsuyoghi Ozaki | Date: | | [3rd Inventor] Residence Address: Fussa-shi, Japan Mailing Address: c/o Intellectual Property Departmen 2-1, Sakae-cho 3-chome, Hamura-shi, Tokyo 205-8555 Citizenship: Japan Jun O Guna | SEP. 15. 2005 | | Jun Ogura | Date: | | [4th Inventor] Residence Address: Mailing Address: Citizenship: | | | | Date: | | [5th Inventor] Residence Address: Mailing Address: Citizenship: | | | | Date: | | PATENT APPLICATION S | SERIA | L. NC | |----------------------|-------|-------| |----------------------|-------|-------| # U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET # 09/29/2005 DTESSEM1 00000063 11235579 | 01 | FC:1011 | | 2-12 | | 300.00 | OP | |----|---------|---|------|----|--------|------| | | FC:1111 | ÷ | | | 500.00 | | | | FC:1311 | | | | 200.00 | OP. | | | FC:1202 | | | | 500.00 | BP | | | FC:1201 | | | +1 | 200.00 | OP. | | | FC:1203 | | | | 360.00 | - OP | PTO-1556 (5/87) U.S. Patent and Tradement Office; U.S. DEPARTMENT OF COMMERCE Under the Peperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless & displays a valid OMB control number PATENT APPLICATION FEE DETERMINATION RECORD Application or Docket Number Substitute for Form PTO-875 Effective December 8, 2004 . APPLICATION AS FILED - PART I OTHER THAN SMALL ENTITY OR (Column 1) SMALL ENTITY (Column 2) FOR NUMBER FILED NUMBER EXTRA RATE (\$) FEE O RATE (\$) FEE (S) BASIC FEE NIA NIA 300.00 150.00 NVA ·NIA (37 CFR 1 16(a), (b), or (c)) SEARCH FEE NVA NIA \$250 AUA NIA \$500 (37 CFR.1 16(14. (1). or (m)) EXAMINATION FEE NA NIA NVA \$100 NIA \$200 (37 CFR 1 16(4). (0). or (a)) TOTAL CLAIMS 30 X\$ 25 X\$50 (37 OFR 1 16(4) minus 20 = OR INDEPENDENT CLAIMS X100 X200 menius 3 = (37 CFR 4 16(N) If the specification and drawings exceed 100 sheets of paper, the application size fee due APPLICATION SIZE Is \$250 (\$125 for small entity) for each (37 CFR 1 16(s)) . additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s). +180= +360= MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR 1.16(i)) "If the difference in column 1 is less than zero, enter "O" in column 2. TOTAL TOTAL APPLICATION AS AMENDED - PART II OTHER THAN . OR · (Column 1) (Column 2) (Column 3) SMALL ENTITY SMALL ENTITY CLAIMS -HIGHEST REMAINING PRESENT NUMBER RATE (5) ADDI-RATE (\$) ADOI-AFTER PREVIOUSLY EXTRA TIONAL TIONAL AMENDMENT FEE (S) PAID FOR FEE (\$) ш Totat Minus X\$ 25. X\$50 OT CFR 1,16(a) = ENDM OR Independent (37 CFR L16n)) X100 X200 OR Application Size Fee (37 CFR 1.16(s)) FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1,16(1)) +180= +360= OR TOTAL TOTAL ADD'L FEE OR ADO'L FEE (Column 1) (Column 2) (Column 3) CLAIMS. HIGHEST REMAINING NUMBER PRESENT RATE (5): ADDI-ADDI-RATE (\$) m PREVIOUSLY EXTRA AFTER TIONAL TIONAL **AMENOMENT** PAID FOR FEE (\$) FEE (\$) Ш Total Minus X\$ 25 FNDM (37 CFR 1.160) X\$50 OR Minus X100 (37 CFR LIGHT X200 OR Application Size Fee (37 CFR 1.16(s)) FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.160) +180= +360= OR TOTAL TOTAL OR ADD'L FEE ADO'L FEE If the entry in column 1 is less than the entry in column 2, write "0" in column 3. "If the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20". "If the Highest Number Previously Paid For IN THIS SPACE is less than 3, enter 3. The, "Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1. This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Petend and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Attorney Docket No. 05644/LH ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE Applicant(s): T. SHIRASAKI et al Serial No. : Not yet assigned Filed : Herewith For : DISPLAY PANEL Art Unit : Examiner : CUSTOMER NO.: 01933 ## INFORMATION DISCLOSURE STATEMENT Commissioner for Patents P.O. Box 1450, Alexandria, VA 22313-1450 SIR: Submitted herewith is a copy of the publication identified on the attached Patent Office form PTO/SB/08A. The publication is identified on page 1 of the specification. It is respectfully requested that the publication submitted herewith be considered and made of record. / Express Mail Mailing Label No.: EV 720 476 985 US Date of Deposit: September 26, 2005 I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner for Patents, P.O. Box 1450 Alexandria, VA 22313-1450 Berbara Villani In the event that this Paper is late filed, and the necessary petition for extension of time is not filed concurrently herewith, please consider this as a Petition for the requisite extension of time, and to the extent not tendered by credit card payment attached hereto, authorization to charge the extension fee, or any other fee required in connection with this Paper, to Account No. 06-1378. Respectfully submitted, Reg. No. 22, Frishauf, Holtz, Goodman & Chick, P.C. 220 Fifth Avenue - 16th Floor New York, New York 10001-7708 Tel. No. (212) 319-4900 Fax No. (212) 319-5101 LH:bv | 13 - 3 | 346 | W | 45.38 | 7 10 10 10 | | .s. Patent and Trader | mark Office: U.S. DEPA | RTMENT OF C | OMMERO | |-------------------------------|-------------------------|-------------------|-----------|------------|---|-----------------------|------------------------|-------------|--------| | Substitute for Form 1449A/PTO | | | | | Filing Da | Street A books . | Herewith | | _ | | INFORMATION DISCLOSURE | | | | | (10000000000000000000000000000000000000 | med Inventor | SHIRASAKI | | - |
| STATE | MENT | BY A | PPLICA | NT | Group Art | A LANGE AN ACTOR | | | | | | | | | | Examiner | | | | = | | Sheet | 1 | | of | 1 | | Docket Number | 05544/77 | | | | onece | 4 | _ | 102 | | | NT DOCUMENTS | 05644/LH | _ | | | Exam. | Cite
No ¹ | Dogume | ent Numbe | | Kind
Code ² | Name of Patentee of | Euplicacion Dace | Releva | | | Initials | NO. | Docume | one wante | | Code | Applicanc | MM-DD-YYYY | FOLUE | OII | | | X | | | q | ORETGN PAT | ENT DOCUMENTS | | | | | Exam | Cite | | | | Kind | Name of Patentee | | Relevant | | | Initials | No, | Offc ³ | | t Number4 | Code ⁵ | Applicant | Date MM-DD-YYYY | Portion | Te | | | | JP | 8-3306 | .00 | A | | 12-13-1996 | | | | Examin | er | | | | | Date | | | | DATE MAILED: September 26, 2005 EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPSP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Unique citation designation number. See kinds of U.S. Patent Documents. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. Place a check here if English translation is attached. (19)日本国特許庁(JP) # (12) 公開特許公報(A) 庁内整理番号 (11)特許出願公開番号 ## 特開平8-330600 (43)公開日 平成8年(1996)12月13日 (51) Int.Cl. 6 識別配号 FI 技術表示箇所 HO1L 29/786 H 0 5 B 33/26 H01L 29/78 H 0 5 B 33/26 616V 審査請求 未請求 請求項の数14 OL (全 11 頁) (21)出願番号 特顏平8-65774 (22) 出願日 平成8年(1996)3月22日 (31) 優先権主張番号 特願平7-65943 (32) 優先日 平7 (1995) 3 月24日 (33)優先権主張国 日本 (JP) (71)出願人 000003067 ティーディーケイ株式会社 東京都中央区日本橋1丁目13番1号 (71)出願人 000153878 株式会社半導体エネルギー研究所 神奈川県厚木市長谷398番地 (72) 発明者 山内 幸夫 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 荒井 三千男 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (74)代理人 弁理士 山谷 唐榮 (外2名) (54)【発明の名称】 薄膜トランジスタ、有機ELディスプレイ装置及び有機ELディスプレイ装置の製造方法 #### (57) 【要約】 【課題】有機ELディスプレイ装置の薄膜トランジスタ において、パリアメタルの溶出にもとづく短絡や断線を 防止すること。 【解決手段】薄膜トランジスタのソース領域105また はドレイン領域107を構成するシリコン活性層102 と、該シリコン活性層 102 に接続されるアルミニウム 配線113、114との間に、チタンまたは窒素含有量 が50atm%以下の窒化チタンよりなるバリアメタル 110、111を設ける。 # 本発明の実施の形態説明図 1 #### 【特許請求の範囲】 【請求項1】ソースまたはドレインを構成するシリコン活性層と、該シリコン活性層に接続されるアルミニウム 配線との間に、チタンよりなるバリアメタルを設けたことを特徴とする薄膜トランジスタ。 【請求項2】ソースまたはドレインを構成するシリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるバリアメタルを設けたことを特徴とする薄膜トランジスタ。 【請求項3】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、 前記電流制御用薄膜トランジスタは、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、チタンよりなるパリアメタルが設けられていることを特徴とする有機ELディスプレイ装置。 【請求項4】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマ 20トリックス駆動型の有機ELディスプレイ装置であって、 前記電流制御用薄膜トランジスタは、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるバリアメタルを設けたことを特徴とする有機ELディスプレイ装置。 【請求項5】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、チタンよりなるパリアメタルを設けたことを特徴とする有機ELディスプレイ装置。 【請求項6】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜ト 40 ランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるバリアメタルを設けたことを特徴とする有機ELディスプレイ装置。 【請求項7】有機EL素子がマトリックス状に設けられた、アクティブマトリックス駆動型の有機ELディスプ 50 レイ装置であって、 前記有機EL素子を構成する透明電極と、前記透明電極 に接続されるアルミニウム配線との間に、チタンよりな るパリアメタルを設けたことを特徴とする有機ELディ スプレイ装置。 2 【請求項8】有機EL素子がマトリックス状に設けられた、アクティブマトリックス駆動型の有機ELディスプレイ装置であって、 前記有機EL素子を構成する透明電極と、前記透明電極 0 に接続されるアルミニウム配線との間に、窒素を50 a t m%以下含有する窒化チタンよりなるパリアメタルを 設けたことを特徴とする有機ELディスプレイ装置。 【請求項9】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、 前記電流制御用薄膜トランジスタは、シリコン活性層 と、該シリコン活性層に接続されるアルミニウム配線と の間に、チタンよりなるパリアメタルが設けられてお り、 前記有機EL素子を構成する透明電極と、前記透明電極 に接続されるアルミニウム配線との間に、チタンよりな る密着用金属が設けられていることを特徴とする有機E Lディスプレイ装置。 【請求項10】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって 前記電流制御用薄膜トランジスタは、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるパリアメタルが設けられており、 前記有機EL素子を構成する透明電極と、前記透明電極 に接続されるアルミニウム配線との間に、窒素を50a tm%以下含有する窒化チタンよりなる密着用金属が設 けられていることを特徴とする有機ELディスプレイ装 置。 【請求項11】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、チタンよりなるバリアメタルが設けられてお n 前記有機EL素子を構成する透明電極と、前記透明電極 に接続されるアルミニウム配線との間に、チタンよりな る密着用金属が設けられていることを特徴とする有機E SAMSUNG EX. 1002 - 847/899 20 Lディスプレイ装置。 【請求項12】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよ 10りなるバリアメタルが設けられており、 前記有機EL素子を構成する透明電極と、前記透明電極 に接続されるアルミニウム配線との間に、窒素を50 a t m%以下含有する窒化チタンよりなる密着用金属が設けられているととを特徴とする有機ELディスプレイ装置。 【請求項13】有機EL素子と、該有機EL素子に接続 された電流制御用薄膜トランジスタを有するアクティブ マトリックス駆動型の有機ELディスプレイ装置を製造 するに際し、 前記電流制御用薄膜トランジスタのシリコン活性層と、 該シリコン活性層に接続されるアルミニウム配線との間 に設けられたバリアメタルと、 前記有機EL素子を構成する透明電極と、前記透明電極 に接続されるアルミニウム配線との間に設けられる密着 用金属とがチタンにより同時に形成されることを特徴と する有機ELディスプレイ装置の製造方法。 【請求項14】有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置を製造 30するに際し、 前記電流制御用薄膜トランジスタのシリコン活性層と、 該シリコン活性層に接続されるアルミニウム配線との間 に設けられたバリアメタルと、 前記有機EL素子を構成する透明電極と、前記透明電極 に接続されるアルミニウム配線との間に設けられる密着 用金属とが窒素を50 a t m%以下含有する窒化チタン により同時に形成されることを特徴とする有機ELディスプレイ装置の製造方法。 ## 【発明の詳細な説明】 [0001] 【発明の属する技術分野】本発明は、有機エレクトロルミネセンス(EL)ディスプレイ装置に使用される薄膜トランジスタ、有機ELディスプレイ装置及びその製造方法に係り、有機ELディスプレイの信頼性を向上するものに関する。 [0002] 【従来の技術】近年において、有機EL素子を用いた、 ディスプレイ装置が開発されている。有機EL素子を多 数使用した有機ELディスプレイをアクティブマトリッ 50 クス回路により駆動する場合、各ELのピクセル(画素)には、このピクセルに対して供給する電流を制御するための薄膜トランジスタが一組ずつ接続される。 【0003】従来のアクティブマトリックス型の有機E Lディスプレイ装置の回路図の一例を図4に示す。この 有機ELディスプレイ装置は、X方向信号線301-1、301-2・・・、Y方向信号線302-1、30 2-2・・・、電源(Vdd)線303-1、303-2・・・、スイッチ用薄膜トランジスタ304-1、3 04-2・・・、電流制御用薄膜トランジスタ305-1、305-2・・・、有機EL素子306-1、30 6-2・・・、コンデンサ307-1、307-2・・ 、X方向周辺駆動回路308、Y方向周辺駆動回路3 09等により構成される。 【0004】X方向信号線301、Y方向信号線302 により画素が特定され、その画素においてスイッチ用薄 膜トランジスタ304がオンにされる。これにより電流 制御用薄膜トランジスタ305がオンにされ、電源線3 03より供給される電流により有機EL素子306に電 流が流れ、これが発光される。 【0005】例えばX方向信号線301-1に画像データに応じた信号が出力され、Y方向信号線302-1にY方向走査信号が出力されると、これにより特定された画素のスイッチ用薄膜トランジスタ304-1がオンになり、画像データに応じた信号により電流制御用薄膜トランジスタ305-1が導通されて有機EL素子306-1にこの画像データに応じた電流が流れ、発光される。 [0006]図3に従来の有機ELディスプレイ装置の画素部の構成の部分的断面図を示す。この図3では、電流制御用薄膜トランジスタと、有機EL素子を示す。図3において、ガラス等の基板201上に、活性シリコン層202、ゲート絶縁膜203、ゲート電極204が形成される。そして活性シリコン層202には、ソース領域205、チャネル形成領域206、ドレイン領域207が設けられ、薄膜トランジスタが構成される。 【0007】さらに層間絶縁膜208に設けられたコンタクトホールに、パリアメタル210、211を介して、ソース領域205、ドレイン領域207にそれぞれ7ルミニウム製のソース電極213-1、ドレイン電極214-1が設けられている。 【0008】またガラス等の基板201に設けられたITO(酸化インジューム・スズ)の透明電極209上に、有機EL層215、上部電極216が設けられてEL素子部を構成している。この1TOの透明電極209には密着用金属212を介して、その一端が前記ドレイン電極214-1となるアルミニウム配線214が接続されている。 【0009】そして有機EL素子の上部電極216の上面以外の部分に、薄膜トランジスタ部分を覆うように、 保護膜217が設けられ、有機EL素子の上部電極21 6の上面には、アルミニウム等により共通電極218が 設けられている。 【0010】図3に示すように、一般に薄膜トランジス タでは、シリコン活性層のソース領域205、ドレイン 領域207と、これらにそれぞれ接続されるアルミニウ ム製のソース電極213-1、ドレイン電極214-1 との間には、バリアメタル210と211が介在されて いる。これらのバリアメタル210、211は、活性シ のソース電極213-1、ドレイン電極214-1側へ の拡散、消失することを防止するために設けられてい る。なおこのバリアメタル210、211は、従来では 主にクロムが使用されていた。 【0011】一方、有機EL素子部において、ITOよ りなる透明電極209とアルミニウム配線214を直接 接触させると、電食や密着性低下等の不良が発生し易 い。このような不良の発生を防ぎ、アルミニウム配線2 14と透明電極209との良好な密着性を保つため、透 明電極209とアルミニウム配線214との間に密着用 金属212を挟むことが必要であった。そして従来では この密着用金属212として、前記薄膜トランジスタの バリアメタル210、211と同じく、主にクロムが使 用されていた。なお図3において213はアルミニウム 配線である。 ## [0012] 【発明が解決しようとする課題】このような有機ELデ ィスプレイ装置において、薄膜トランジスタのパリアメ タル210、211として用いられたクロムが、EL素 子を構成する上部電極216や透明電極209の方に溶 30 出し、即ち電食によりこれらと薄膜トランジスタとの間 に、溶出したクロムによる導線が形成され、短絡状態と なってしまうことがあった。 【0013】さらに動作を続けると、薄膜トランジスタ のバリアメタル210、211を構成していたクロムが 全て溶出してしまい、ソース領域205やドレイン領域 207と、アルミニウム電極213-1、214-1と の間が抜けて空隙が生じ、断線状態に至ることがあっ tc. 【0014】その結果、薄膜トランジスタとしての機能 40 を果たすことができなくなり、有機ELディスプレイ装 置としての信頼性を大幅に低下させることになる。本発 明者等はこの原因を検討した結果、下記の理由に基づく ものと解明するととができた。 【0015】まず有機EL層215を構成する有機EL 材料は、吸湿性が強く、大気中の水分を吸収し易い性質 を有するので、有機EL層215から水分が発生する。 また有機EL層215を発光させて、ピクセルを表示す るために、有機EL層215に接続された電流制御用薄 膜トランジスタ及びそれを動作させるスイッチ用薄膜ト ランジスタには、比較的大きな直流電流(パイアス電 流)が連続的に流れる。 【0016】 このように、有機EL層215中から発生 する水分と、パイアス電流により、薄膜トランジスタの パリアメタル210、211を構成するクロムがイオン 化して有機EL素子側に移動し、短絡や断線の原因とな ることが解明された。 【0017】この現象は、電流制御用薄膜トランジスタ のみではなく、スイッチ用薄膜トランジスタにおいても リコン層202におけるシリコン原子がアルミニウム製 10 みられることがあった。従って、本発明の目的は、有機 ELディスプレイにおいて、このような薄膜トランジス タの動作における短絡や断線という不良の発生を防止 し、有機ELディスプレイの信頼性を高めることであ #### [0018] 【課題を解決するための手段】このような本発明の目的 は、下記(1)~(14)の如く構成あるいは製造方法 により達成することができる。 (1)ソースまたはドレインを構成するシリコン活性層 20 と、該シリコン活性層に接続されるアルミニウム配線と の間に、チタンよりなるバリアメタルを設けたことを特 徴とする薄膜トランジスタ。 【0019】(2)ソースまたはドレインを構成するシ リコン活性層と、該シリコン活性層に接続されるアルミ ニウム配線との間に、窒素を50atm%以下含有する 窒化チタンよりなるバリアメタルを設けたことを特徴と する薄膜トランジスタ。 【0020】(3)有機EL素子と、該有機EL素子に 接続された電流制御用薄膜トランジスタを有するアクテ ィブマトリックス駆動型の有機ELディスプレイ装置で あって、前記電流制御用薄膜トランジスタは、シリコン 活性層と、該シリコン活性層に接続されるアルミニウム 配線との間に、チタンよりなるバリアメタルが設けられ ていることを特徴とする有機ELディスプレイ装置。 【0021】(4)有機EL素子と、該有機EL素子に 接続された電流制御用薄膜トランジスタを有するアクテ ィブマトリックス駆動型の有機ELディスプレイ装置で あって、前記電流制御用薄膜トランジスタは、シリコン 活性層と、該シリコン活性層に接続されるアルミニウム 配線との間に、窒素を50atm%以下含有する窒化チ タンよりなるバリアメタルを設けたことを特徴とする有 機ELディスプレイ装置。 【0022】(5)有機EL素子と、該有機EL素子に 接続された電流制御用薄膜トランジスタと、前記電流制 御用薄膜トランジスタのスイッチングを行うスイッチ用 薄膜トランジスタを有するアクティブマトリックス駆動 型の有機ELディスプレイ装置であって、前記電流制御 用薄膜トランジスタと、前記スイッチ用薄膜トランジス タのそれぞれにおいて、シリコン活性層と、該シリコン 活性層に接続されるアルミニウム配線との間に、チタン 10 8 よりなるパリアメタルを設けたことを特徴とする有機E Lディスプレイ装置。 【0023】(6)有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるパリアメタルを設けたことを特徴とする有機ELディスプレイ装置。 【0024】(7)有機EL素子がマトリックス状に設けられた、アクティブマトリックス駆動型の有機ELディスプレイ装置であって、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、チタンよりなるバリアメタルを設けたことを特徴とする有機ELディスプレイ装置。 【0025】(8) 有機EL素子がマトリックス状に設 20 けられた、アクティブマトリックス駆動型の有機ELディスプレイ装置であって、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるバリアメタルを設けたことを特徴とする有機 ELディスプレイ装置。 【0026】(9)有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、前記電流制御用薄膜トランジスタは、シリコン
30活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、チタンよりなるバリアメタルが設けられており、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、チタンよりなる密着用金属が設けられていることを特徴とする有機ELディスプレイ装置。 【0027】(10)有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、前記電流制御用薄膜トランジスタは、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるパリアメタルが設けられており、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなる密着用金属が設けられていることを特徴とする有機ELディスプレイ装置。 【0028】(11)有機EL素子と、該有機EL素子 に接続された電流制御用薄膜トランジスタと、前記電流 制御用薄膜トランジスタのスイッチングを行うスイッチ 50 用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、チタンよりなるバリアメタルが設けられており、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、チタンよりなる密着用金属が設けられていることを特徴とする有機ELディスプレイ装置。 【0029】(12)有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置であって、前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタと、前記スイッチ用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなるバリアメタルが設けられており、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する窒化チタンよりなる密着用金属が設けられていることを特徴とする有機ELディスプレイ装置。 [0030](13)有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置を製造するに際し、前記電流制御用薄膜トランジスタのシリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に設けられたパリアメタルと、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に設けられる密着用金属とがチタンにより同時に形成されることを特徴とする有機ELディスプレイ装置の製造方法。 【0031】(14)有機EL素子と、該有機EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型の有機ELディスプレイ装置を製造するに際し、前記電流制御用薄膜トランジスタのシリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に設けられたパリアメタルと、前記有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に設けられる密着用金属とが窒素を50atm%以下含有する窒化チタンにより同時に形成されることを特徴とする有機ELディスプレイ装置の製造方法。 【0032】とのように、有機EL素子に接続された薄膜トランジスタにおいて、薄膜トランジスタのソース又はドレインである活性シリコン層と、有機EL素子に接続されたアルミニウム配線との接触部において、バリアメタルとしてチタンまたは窒素の含有量が50atm% 以下含有される窒化チタンを用いることにより、発明者は有機E L素子と共に使用されていても、パリアメタルの流出がないということを発見した。そしてこれによりパリアメタルの溶出による短絡や断線を防ぎ、有機E Lディスプレイ装置の信頼性を向上させることができた。 [0033] また有機E L素子を構成する I T O の透明電極と、この I T O の透明電極に接続されるアルミニウム配線との間に設けられる密着金属として、チタン又は窒素の含有量が50 a t m%以下の窒化チタンの層を設けることにより、I T O の透明電極とアルミニウム配線 10との密着性を向上することができ、この点からも有機E Lディスプレイ装置の信頼性を向上することができた。 【発明の実施の形態】本発明の第1の実施の形態を図1 に基づき説明する。第1の実施の形態ではバリアメタルとして窒化チタンを用いた薄膜トランジスタを有する有機ELディスプレイ装置を構成した例を示し、図3における電流制御用薄膜トランジスタ305と、有機EL素子306に対する部分を示す。 [0034] 【0035】図1(A)に示す如く、先ず基板101上に通常の固相成長法により多結晶シリコン薄膜を形成し、この多結晶シリコン薄膜を島状に加工して、シリコン活性層102を得る。この基板101としては、例えば石英基板を使用することができる。 【0036】次に、このシリコン活性層102の上にSiO,よりなるゲート絶縁膜103、アルミニウムよりなるゲート電極104を形成する。その後シリコン活性層102に不純物をドーブして、ソース領域105、チャネル形成領域106及びドレイン領域107が形成される。そしてこれらの上全面に、SiO,よりなる層間絶縁膜108が形成される。 【0037】次に、図1(B)に示す如く、層間絶縁膜108にエッチング処理を施し、ソース領域105、ドレイン領域107及びEL素子形成領域に開孔を設ける。そして1TO(酸化インジューム・スズ)膜がスパッタ法により形成され、加工されてEL素子形成領域に透明電極109が形成される。この場合、層間絶縁膜1080EL素子形成領域には開孔を設けず、層間絶縁膜108上に透明電極109を設けてもよい。 【0038】次に窒化チタン膜を形成する。この場合、 窒素を10atm%含有する窒化チタン膜を、膜厚10 0Å~1000Å、例えば500Åの厚さで、基板全面 に形成した。 【0039】その後これをエッチング処理して、ソース 領域105とドレイン領域107と、透明電極109の 上部であってアルミニウム配線が接続される部分に、い ずれも窒化チタン膜よりなるパリアメタル110、11 1及び密着用金属112が同時に形成される。 【0040】勿論スイッチ用薄膜トランジスタや、周辺 駆動回路を構成する薄膜トランジスタの窒化チタンより なるバリアメタルを、この工程において同時に形成してもよい。このようにして、窒化チタンよりなるバリアメタル及び密着用金属を同時に形成することができる。 【0041】それから、図1(C)に示す如く、全面にアルミニウム膜が6000人形成され、これがエッチング処理されて、ソース電極113-1が形成されるアルミニウム配線113と、ドレイン電極114-1と密着用金属112とを接続するアルミニウム配線114が設けられる。 【0042】そして、図1(D)に示す如く、有機EL層115とEL素子の上部電極116が有機EL素子形成領域に設けられた。これらは、それぞれメタルマスクが設けられた状態で、真空蒸着法を行うことにより形成された。この上部電極116は、例えば銀を含むマグネシウム膜により構成される。 【0043】次に、有機EL素子の上部電極116上に 開孔が設けられてSiO。膜の保護膜117が形成され、更に共通電極118が、マトリックス部全面にアル ミニウムを設けることで形成され、有機ELディスプレ イ装置が完成された。 【0044】本発明の第2の実施の形態について説明する。本発明の第2の実施の形態ではパリアメタル11 0、111や密着用金属112等にチタンを使用したものである。その製造工程図は図1と全く同じであるので、図1に従って簡単に説明する。 【0045】図1(A)に示す如く、基板101上に多結晶シリコン薄膜を形成し、これを島状に加工して、シリコン活性層102を得る。このシリコン活性層102の上にSiO。よりなるゲート絶縁膜103、アルミニウムよりなるゲート電極104を形成し、不純物をドープしてソース領域105、チャネル形成領域106及びドレイン領域107を形成し、これらにSiO。よりなる層間絶縁膜108を形成する。 【0046】次に、図1(B)に示す如く、層間絶縁膜108をエッチングして、ソース領域105、ドレイン領域107、EL素子形成領域に開孔を設ける。そして1TO膜がスパッタ法により形成され、加工されてEL素子形成領域に透明電極109を形成する。この場合、EL素子形成領域には開孔を設けず、層間絶縁膜108上に透明電極109を設けてもよい。 【0047】それからチタン膜を、100Å~1000 A、例えば500Åの厚さで基板全面に形成し、これをエッチング処理して、ソース領域105と、ドレイン領域107と、透明電極109との上部のアルミニウム配線が接続される部分に、チタン膜よりなるバリアメタル110′、111′及び密着用金属112′を同時に形成する。勿論スイッチ用薄膜トランジスタや周辺駆動回路を構成する薄膜トランジスタのチタンよりなるパリアメタル及び密着用金属を同時に形成できる。 【0048】それから図1(C)に示す如く、全面にア ルミニウム膜が6000A形成され、これがエッチング 処理されて、ソース電極113-1が形成されるアルミ ニウム配線113と、ドレイン電極114-1と密着用 金属112とを接続するアルミニウム配線114が設け られる。 【0049】そして、図1(D)に示す如く、有機EL層115とEL素子の上部電極116が設けられる。これらは、それぞれメタルマスクが設けられた状態で、真空蒸着法で形成された。この上部電極116は、例えば銀を含むマグネシウム膜により構成される。 【0050】次に上部電極116上に開孔が設けられて SiO、膜の保護膜117が形成され、アルミニウムの 共通電極118が形成され、有機ELディスプレイ装置 が完成される。 【0051】本発明の第3の実施の形態について説明する。本発明の第3の実施の形態ではバリアメタル11 0、111や密着用金属112等にチタンを使用したものである。その製造工程図は図1と全く同じであるので、図1に従って簡単に説明する。 【0052】図1(A)に示す如く、基板101上に多結晶シリコン薄膜を形成し、これを島状に加工して、シリコン活性層102を得る。このシリコン活性層102の上にSiO。よりなるゲート絶縁膜103、アルミニウムよりなるゲート電極104を形成し、不純物をドープしてソース領域105、チャネル形成領域106及びドレイン領域107を形成し、これらにSiO。よりなる層間絶縁膜108を形成する。 【0053】次に、図1(B)に示す如く、層間絶縁膜108をエッチングして、ソース領域105、ドレイン領域107、EL素子形成領域に開孔を設ける。そして 30ITO膜がスパッタ法により形成され、加工されてEL素子形成領域に透明電極109を形成する。この場合、EL素子形成領域には開孔を設けず、層間絶縁膜108上に透明電極109を設けてもよい。 【0054】それから窒素を45atm含有する窒化チタン膜を、100A~1000A、例えば500Aの厚さで基板全面に形成し、これをエッチング処理して、ソース領域105と、ドレイン領域107と、透明電極109との上部のアルミニウム配線が接続される部分に、窒素を45atm含有する窒化チタン膜よりなるパリア 40メタル110′、111′及び密着用金属112′を同時に形成する。勿論スイッチ用薄膜トランジスタや周辺駆動回路を構成する薄膜トランジスタのチタンよりなるパリアメタル及び密着用金属を同時に形成できる。 【0055】それから図1(C)に示す如く、全面にアルミニウム膜が6000A形成され、これがエッチング処理されて、ソース電極113-1が形成されるアルミニウム配線113と、ドレイン電極114-1と密着用金属112とを接続するアルミニウム配線114が設けられる。 【0056】そして、図1(D)に示す如く、有機EL層115とEL素子の上部電極116が設けられる。これらは、それぞれメタルマスクが設けられた状態で、真空蒸着法で形成された。この上部電極116は、例えば 12 銀を含むマグネシウム膜により構成される。 【0057】次に上部電極116上に開孔が設けられて SiO、膜の保護膜117が形成され、アルミニウムの 共通電極118が形成され、有機ELディスプレイ装置 が完成される。 10 【0058】 ここで図2により窒化チタンTiNの窒素 含有量とその比抵抗の関係を説明する。図2においてN は窒素含有量(N,量)特性曲線を示し、Rは比抵抗特 性曲線を示し、Tは成膜速度特性曲線を示す。なお横軸 は成膜時N、分圧であり、窒素ガスとArガスの混合比 を示し、0.2はN、ガス20%Arガス80%;また 0.6はN、ガス60%Arガス40%のときを示す。 【0059】 この図2は、成膜時N、分圧が0、1のと き窒化チタンの窒素含有量はN曲線により約37.5 a き窒化チタンの窒素含有量はN曲線により約37.5 a t m%、比抵抗はR曲線により約225マイクロオーム・センチメータ、成膜速度は約92A/分であることを示している。 【0060】本発明者等は、窒素含有量を30atm%より増加したところ、図2に示す如く、約37.5atm%を超えたとき窒化チタンの比抵抗が低下する領域のあることを発見し、これにより窒素含有量が30atm%を超えた領域でもパリアメタルや密着用金属として使用可能であることを見出した。 【0061】当然のことながらバリアメタルや密着用金属としては、比抵抗は低い程よい。またチタンに窒素を含有すればする程化学的に安定するため、逆に加工性(エッチング性)は低下することになる。 【0062】本発明によればチタン又は窒素を50atm%以下含有する窒化チタンを薄膜トランジスタのバリアメタルとして使用することにより、バリアメタルとしての機能、即ちシリコンのアルミニウム配線への拡散を防ぐ機能を有するとともに、有機EL素子が使用されてもバリアメタルの流出を抑制することができる。 【0063】即ち、従来のようにパリアメタルとしてクロムを使用した有機ELディスプレイ装置では、10分~20分位でクロムの流出が生じ、不良となったものが、チタン又は窒素を50atm%以下含有する窒化チタンを使用することにより数日以上の長時間使用しても薄膜トランジスタのパリアメタルや有機EL素子側の密着用金属として安定な状態を保持することができる。 【0064】また有機EL素子を構成する透明電極と、 との透明電極に接続されるアルミニウム配線との間に設 けられる密着用金属として、チタン又は窒素を50at m%以下含有する窒化チタンの層を形成することによ り、透明電極とアルミニウム配線との密着性を向上させ 50 ることができる。 SAMSUNG EX. 1002 - 852/899 [0065]従って、従来バリアメタルとして、また I TO透明電極とアルミニウム配線との密着性向上のため の密着用金属として、いずれもクロムが用いられたが、 本発明ではこれらをともにチタン又は窒化チタンに置き 換えることができるため、製造工程自体は、材料の変更 以外は従来と同様とすることができる。 【0066】また窒化チタンにおける窒素の含有量は、 窒素が多くなると密着性が高くなるものの導電率が低下 し、また加工性も低下するため、30atm%以下の含 有量が好ましい。特に窒素の含有量が5~15atm% 10 程度が導電率と加工性と安定性とがともに良好に得られ るので極めて好ましい。 [0067] なお本発明においては、窒素を30atm %以下含有する窒化チタンをバリアメタルあるいは密着用金属として使用することにより、比抵抗が小さく加工性がよく、しかも耐電食性の安定性の良好なものを提供することができる。また安価なウエットエッチング加工することが可能となるバリアメタルあるいは密着用金属として使用することができる。 【0068】本発明において窒素を30atm%を超え 2050atm%以下含有する窒化チタンをバリアメタルあるいは密着用金属として使用することにより、比抵抗が小さく、耐電食性の安定性の非常に高いものを提供することができる。との場合、ドライエッチングにより加工することができる。安定性が非常に高いので、窒化チタンの成膜後の熱が薬品に対する制約がなくなり、プロセスの汎用性が向上し、成膜にどんな工程がきても問題が発生しにくいものを提供することができる。 [0069]本発明においてチタンをバリアメタルあるいは密着用金属として使用することにより、耐電食性の 30 安定性のある、しかも窒化チタンに比較して比抵抗が小さく加工性の非常にすぐれたものを提供することができる。そしてこれまた安価なウエットエッチング加工することが可能なものを提供することができる。 [0070] 前記各実施の形態では、基板として石英基板を用いた例について説明したが、本発明はこれに限定されるものではなく、ガラス基板、セラミック基板等を使用することができる。 【0071】前記各実施の形態では透明電極として1T 〇を使用した例について説明したが、本発明はこれに限 40 定されるものではなく、ZnO、SnO等を使用するこ とができる。 【0072】前記各実施の形態では窒化チタン又はチタンよりなるパリアメタルは、画素部分の電流制御用薄膜トランジスタに設けられた例について示したが、本発明はこれに限定されることなく、これら窒化チタン又はチタンよりなるパリアメタルを、スイッチング用薄膜トランジスタや、X方向、Y方向の周辺駆動回路を構成する薄膜トランジスタに設けてもよい。 【0073】特に、同一基板上において、画素部分と、 14 周辺駆動回路を同時に形成する場合、画素部分を構成する電流制御用薄膜トランジスタとスイッチ用薄膜トランジスタと、各周辺駆動回路を構成する薄膜トランジスタとにおいて、全てチタン又は窒化チタンよりなるパリアメタルを設けることで、また更には透明電極とアルミニウム配線との間にチタン又は窒化チタンの密着用金属を設けることにより、従来に比較して特に製造工程を増加することなく、信頼性の高い有機ELディスプレイ装置を得ることができる。 [0074] 【発明の効果】請求項1に記載された本発明によれば薄膜トランジスタの活性層と、これと接続するアルミニウム配線との間に、加工し易くかつ水分の存在によるも溶出しないチタンよりなるバリアメタルを設けたので、有機EL素子とともに使用してもバリアメタルの溶出による短絡や断線の発生を防止するとともに、バリアメタルを加工し易く構成することができる。 [0075] 請求項2に記載された本発明によれば、薄膜トランジスタの活性層と、これと接するアルミニウム配線との間に窒素を50atm%以下含有する、密着性が高く水分の存在によるも溶出されない安定な窒化チタンよりなるパリアメタルを設けたので、有機EL素子とともに使用してもパリアメタルの溶出による短絡や断線の発生を防止する薄膜トランジスタを提供することができる。 【0076】請求項3に記載された本発明によれば、有機EL素子に接続された電流制御用薄膜トランジスタのシリコン活性層と、これと接続するアルミニウム配線との間にチタンよりなるバリアメタルを設けたので、もっとも有機EL素子に近い電流制御用の薄膜トランジスタをパリアメタルの溶出による短絡や断線の発生を防止した構成の有機ELディスプレイ装置を提供することができる。 【0077】請求項4に記載された本発明によれば、有機EL素子に接続された電流制御用薄膜トランジスタのシリコン活性層と、これと接続するアルミニウム配線との間に窒素を50atm%以下含有する安定な窒化チタンよりなるバリアメタルを設けたので、もっとも有機EL素子に近い電流制御用の薄膜トランジスタをバリアメタルの溶出による短絡や断線の発生を防止した構成の有機ELディスプレイ装置を提供することができる。 【0078】請求項5に記載された本発明によれば、有機EL素子に接続された電流制御用薄膜トランジスタのみならず、この電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜トランジスタに対してもそれぞれチタンよりなるバリアメタルを設けたので、電流制御用薄膜トランジスタだけではなくスイッチ用薄膜トランジスタにおいてもバリアメタルの溶出による短絡や断線の発生を防止した安定性の一層高い有機ELディスプレイ装置を提供することができる。 【0079】請求項6に記載された本発明によれば、有機EL素子に接続された電流制御用薄膜トランジスタのみならず、この電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜トランジスタに対してもそれぞれ窒素を50atm%以下含有する安定な窒化チタンよりなるパリアメタルを設けたので、電流制御用薄膜トランジスタだけでなくスイッチ用薄膜トランジスタにおいてもパリアメタルの溶出による短絡や断線の発生を防止した、安定性の一層高い有機ELディスプレイ装置を提供することができる。 [0080] 請求項7に記載された本発明によれば、有機E L素子を構成する透明電極と、前記透明電極に接続されたアルミニウム配線との間に、チタンよりなるバリアメタルを設けたので密着性のよい接続を得ることができ、信頼性の高い有機E L ディスプレイ装置を提供することができる。 【0081】請求項8に記載された本発明によれば、有機EL素子を構成する透明電極と、前記透明電極に接続されたアルミニウム配線との間に、窒素を50a1m%以下含有する、密着性のよい安定な窒化チタンを設けたので、密着性のよい安定した接続を得ることができ、信頼性の高い有機ELディスプレイ装置を提供することができる。 [0082]請求項9に記載された本発明によれば、電流制御用薄膜トランジスタは、その活性層とこれに接続されるアルミニウム配線との間にチタンよりなるバリアメタルが設けられ、また、有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間にチタンよりなる密着金属が設けられるので、バリアメタルと密着用金属を同時に形成することができ、製造コストを低下するとともに安定に動作する有機ELディスプレイ装置を提供することができる。 [0083]請求項10に記載された本発明によれば、電流制御用薄膜トランジスタは、その活性層とこれに接続されるアルミニウム配線との間に窒素を50atm%以下含有する窒化チタンよりなるバリアメタルが設けられ、また有機EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に窒素を50atm%以下含有する窒化チタンよりなる密着金属が設けられているので、電流制御用薄膜トランジスタのバリアメタルと密着金属を同時に形成することができ、製造コストを低下するとともに、密着性の良好なバリアメタルや密着用金属を構成することができるので、信頼性の高い安定に動作する有機ELディスプレイ装置を提供することができる。
【0084】請求項11に記載された本発明によれば、電流制御用薄膜トランジスタと、スイッチ用薄膜トランジスタのそれぞれにおいて活性層とこれに接続されるアルミニウム配線との間にぞれぞれチタンよりなるバリアメタルが設けられ、また有機Eし素子を構成する透明電 極と、前記透明電極に接続されるアルミニウム配線との間にチタンよりなる密着用金属が設けられているので、電流制御用薄膜トランジスタのバリアメタルと、宏着用金属を同時に形成することができ、製造コストを更に低下するとともに安定に動作する有機ELディスプレイ装置を提供することができる。 16 【0085】請求項12に記載された本発明によれば、電流制御用薄膜トランジスタと、スイッチ用薄膜トランジスタと、スイッチ用薄膜トラン10 ジスタのそれぞれにおいて活性層とこれに接続されるアルミニウム配線との間にそれぞれ窒素を50atm%以下含有する窒化チタンよりなるが明電極と、前記透明電極に接続されるアルミニウム配線との間に窒素を50atm%以下含有する窒化チタンよりなる密着用金属が設けられているので、電流制御用薄膜トランジスタのバリアメタルと、スイッチ用薄膜トランジスタのバリアメタルと、密着用金属を同時に形成することができ、製造コストを低下するとともに密着性のすぐれたバリアメタルや密着用金属を形成することができ、信頼性の高い安定に動作する有機ELディスプレイ装置を提供することができる。 【0086】請求項13に記載された本発明によれば、電流制御用薄膜トランジスタの活性層と、この活性層に接続されるアルミニウム配線との間に形成されたバリアメタルと、有機EL素子を構成する透明電極と、この透明電極に接続されるアルミニウム配線との間に形成された密着用金属とを、チタンにより同時に形成することができるので、有機ELディスプレイ装置の製造コストを低下するとともに安定に動作するアクティブマトリックス型の有機ELディスプレイ装置の製造方法を提供することができる。 [0087]請求項14に記載された本発明によれば、電流制御用薄膜トランジスタの活性層と、この活性層に接続されるアルミニウム配線との間に形成されたバリアメタルと、有機EL素子を構成する透明電極と、この透明電極に接続されるアルミニウム配線との間に形成された密着用金属とを、窒素を50atm%以下含有する窒化チタンにより同時に形成することができ、有機ELディスプレイ装置の製造コストを低下するとともに、密着性の良好なバリアメタルや密着用金属を有し、信頼性の高い安定に動作するアクティブマトリックス型の有機ELディスプレイ装置の製造方法を提供することができる。 【図面の簡単な説明】 【図1】本発明の実施の形態説明図である。 【図2】本発明で使用される窒化チタン特性説明図であ ス 【図3】従来例説明図である。 【図4】有機ELディスプレイ装置の回路構成図であ 【図1】 【図2】 [図3] 從来例説明図 [図4] # 有機ELディスプレイ装置の回路構成図 [公報種別] 特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第2区分 【発行日】平成15年7月4日(2003.7.4) [公開番号]特開平8-330600 [公開日] 平成8年12月13日(1996.12.13) 【年通号数】公開特許公報8-3306 【出願番号】特願平8-65774 【国際特許分類第7版】 HO1L 29/786 H05B 33/26 [FI] H01L 29/78 616 V H05B 33/26 #### 【手続補正書】 [提出日] 平成15年3月17日(2003, 3, 17) 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】発明の名称 【補正方法】変更 【補正内容】 【発明の名称】薄膜トランジスタ、エレクトロルミネセ ンスディスプレイ装置及びエレクトロルミネセンスディ スプレイ装置の製造方法 【手続補正2】 【補正対象書類名】明細書 【補正対象項目名】特許請求の範囲 [補正方法] 変更 【補正内容】 【特許請求の範囲】 【請求項1】ソースまたはドレインを構成するシリコン 活性層と、該シリコン活性層に接続されるアルミニウム 配線との間に、<u>チタン膜</u>を設けたことを特徴とする薄膜 トランジスタ。 【請求項2】ソースまたはドレインを構成するシリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50 a t m%以下含有する<u>窒化チ</u>タン膜を設けたことを特徴とする薄膜トランジスタ。 【請求項3】<u>有機EL層を有する</u>EL素子と、該EL素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型のエレクトロルミネセンスディスプレイ装置であって、 前記電流制御用薄膜トランジスタは、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、<u>チタン膜</u>が設けられていることを特徴とするエレクトロルミネセンスディスプレイ装置。 【請求項4】<u>有機EL層を有するEL素子と、該EL素</u>子に接続された電流制御用薄膜トランジスタを有するア クティブマトリックス駆動型のエレクトロルミネセンス ディスプレイ装置であって、 前記電流制御用薄膜トランジスタは、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50 a t m%以下含有する<u>窒化チタン膜</u>を設けたことを特徴とするエレクトロルミネセンスディスプレイ装置。 【請求項5】<u>有機Eし層を有する</u>EL素子と、該EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜トランジスタを有するアクティブマトリックス駆動型のエレクトロルミネセンスディスプレイ装置であって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、<u>チタン膜</u>を設けたことを特徴とする<u>エレクトロルミネセンス</u>ディスプレイ装置。 【請求項6】有機EL層を有するEL素子と、該EL素子に接続された電流制御用薄膜トランジスタと、前記電流制御用薄膜トランジスタのスイッチングを行うスイッチ用薄膜トランジスタを有するアクティブマトリックス 駆動型のエレクトロルミネセンスディスプレイ装置であって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する<u>窒化チタン膜</u>を設けたことを特徴とする<u>エレクトロルミネセンス</u>ディスプレイ装置。 【請求項7】<u>有機EL層を有する</u>Eし素子がマトリックス状に設けられた、アクティブマトリックス駆動型の<u>エレクトロルミネセンス</u>ディスプレイ装置であって、 前記EL素子を構成する透明電極と、前記透明電極に接 続されるアルミニウム配線との間に、<u>チタン膜</u>を設けた ことを特徴とする<u>エレクトロルミネセンス</u>ディスプレイ 装置。 【請求項8】<u>有機EL層を有する</u>EL素子がマトリックス状に設けられた、アクティブマトリックス駆動型のエレクトロルミネセンスディスプレイ装置であって、 前記EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する<u>窒化チタン膜</u>を設けたことを特徴とするエレクトロルミネセンスディスプレイ装置。 【請求項9】 有機E L層を有する E L素子と、該 E L素子に接続された電流制御用薄膜トランジスタを有するアクティブマトリックス駆動型のエレクトロルミネセンスディスプレイ装置であって、 前記電流制御用薄膜トランジスタは、シリコン活性層 と、該シリコン活性層に接続されるアルミニウム配線と の間に、チタン膜が設けられており、 前記EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、<u>チタン膜</u>が設けられていることを特徴とするエレクトロルミネセンスディスプレイ装置。 【請求項10】有機EL層を有するEL素子と、該EL 素子に接続された電流制御用薄膜トランジスタを有する アクティブマトリックス駆動型のエレクトロルミネセン スディスプレイ装置であって、 前記電流制御用薄膜トランジスタは、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する<u>窒化チタン膜</u>が設けられており、 前記EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、窒素を50 a t m %以下含有する<u>窒化チタン膜</u>が設けられていることを特徴とするエレクトロルミネセンスディスプレイ装置。 【請求項11】有機EL層を有するEL素子と、該EL 素子に接続された電流制御用薄膜トランジスタと、前記 電流制御用薄膜トランジスタのスイッチングを行うスイ ッチ用薄膜トランジスタを有するアクティブマトリック ス駆動型のエレクトロルミネセンスディスプレイ装置で あって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、チタン膜が設けられており、 前記EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、<u>チタン膜</u>が設けられていることを特徴とするエレクトロルミネセンスディスプレイ装置。 【請求項12】有機EL層を有するEL素子と、該EL 素子に接続された電流制御用薄膜トランジスタと、前記 電流制御用薄膜トランジスタのスイッチングを行うスイ ッチ用薄膜トランジスタを有するアクティブマトリック ス駆動型のエレクトロルミネセンスディスプレイ装置で あって、 前記電流制御用薄膜トランジスタと、前記スイッチ用薄膜トランジスタのそれぞれにおいて、シリコン活性層と、該シリコン活性層に接続されるアルミニウム配線との間に、窒素を50atm%以下含有する<u>窒化チタン膜</u>が設けられており、 前記EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に、窒素を50 a t m %以下含有する<u>窒化チタン膜</u>が設けられていることを特徴とするエレクトロルミネセンスディスプレイ装置。 【請求項13】有機EL層を有するEL素子と、該EL 素子に接続された電流制御用薄膜トランジスタを有する アクティブマトリックス駆動型のエレクトロルミネセン スディスプレイ装置を製造するに際し、 前記電流制御用薄膜トランジスタのシリコン活性層と、 該シリコン活性層に接続されるアルミニウム配線との間 に設けられるチタン膜と、 前記EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に設けられる<u>チタン膜とが</u>同時に形成されることを特徴とする<u>エレクトロルミネセンスディスプレイ装置の製造方法</u>。 【請求項14】有機EL層を有するEL素子と、該EL 素子に接続された電流制御用薄膜トランジスタを有する アクティブマトリックス駆動型のエレクトロルミネセン スディスプレイ装置を製造するに際し、 前記電流制御用薄膜トランジスタのシリコン活性層と、 該シリコン活性層に接続されるアルミニウム配線との間 に設けら<u>る窒素を50atm%以下含有する窒化チタン</u> 膜と、 前記EL素子を構成する透明電極と、前記透明電極に接続されるアルミニウム配線との間に設けられる<u>窒素を50atm%以下含有する窒化チタン膜とが</u>同時に形成されることを特徴とするエレクトロルミネセンスディスプレイ装置の製造方法。 # This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record # **BEST AVAILABLE IMAGES** Defective images within this document are accurate representations of the original documents submitted by the applicant. Defects in the images include but are not limited to the items checked: □ BLACK BORDERS □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES □ FADED TEXT OR DRAWING □ BLURRED OR ILLEGIBLE TEXT OR DRAWING □ SKEWED/SLANTED IMAGES □ COLOR OR BLACK AND WHITE PHOTOGRAPHS □ GRAY SCALE DOCUMENTS □ LINES OR MARKS ON ORIGINAL DOCUMENT # IMAGES ARE BEST AVAILABLE COPY. OTHER: As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox. REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY 別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。 This is to certify that the annexed is a true copy of the following application as filed with this Office. 出願年月日 Date of Application; 2004年 9月29日 Application Number: 特願2004-283824 パリ条約による外国への出願 :用いる優先権の主張の基礎 なる出願の国コードと出願 ie country code and number your priority application. JP2004-283824 to be used for filing abroad ler the Paris Convention, is カシオ計算機株式会社 plicant(s): # CERTIFIED COPY OF PRIORITY DOCUMENT 特許庁長官 Commissioner, Japan Patent Office 2005年 7月26日 BEST AVAILABLE COPY 【書類名】 【整理番号】 【提出日】 特許願 04-1141-00 【あて先】 平成16年 9月29日 特許庁長官 殿 【国際特許分類】 G09F 9/30 338 G09F 9/30 365 G09G 3/30 白嵜 友之 尾崎 剛 【発明者】 【住所又は居所】 カシオ計算機株式会社 東京都八王子市石川町2951番地5 八王子技術センター内 【氏名】 【発明者】 【住所又は居所】 東京都八王子市石川町2951番地5 カシオ計算機株式会社 八王子技術センター内 [氏名] 【発明者】 【住所又は居所】 カシオ計算機株式会社 東京都八王子市石川町2951番地5 八王子技術センター内 【氏名】 【特許出願人】 【識別番号】 000001443 小倉 潤 【氏名又は名称】 カシオ計算機株式会社 【代理人】 【識別番号】 100090033 【弁理士】 【氏名又は名称】 荒船 博司 03-3269-2611 【電話番号】 【連絡先】 担当 【選任した代理人】 【識別番号】 100093045 【弁理士】 【氏名又は名称】 荒船 良男 【手数料の表示】 【予納台帳番号】 027188 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 図面 1 【物件名】 【物件名】 要約書 1 # 【書類名】特許請求の範囲 # 【請求項1】 ゲート、ゲート絶縁膜、ソース・ドレインを備えたトランジスタがサブピクセルごとに 設けられてなるトランジスタアレイ基板と、 前記トランジスタアレイ基板の表面に凸設され、互いに平行となるよう配列された複数 の配線と、 前記各配線の間において前記各配線に沿って前記トランジスタアレイ基板の表面に配列 され、サブピクセルごとに設けられた複数のサブピクセル電極と、 前記各サブピクセル電極上に成膜された発光層と、 前記発光層上に積層された対向電極と、を備えることを特徴とするディスプレイパネル ### 【請求項2】 前記トランジスタは、ソース、ドレインの一方がサブピクセル電極に接続された駆動トランジスタと、前記駆動トランジスタのソースードレイン間に書込電流を流すスイッチトランジスタと、発光期間に前記駆動トランジスタのソースーゲート間の電圧を保持する保持トランジスタとを有することを特徴とする請求項1に記載のディスプレイパネル。 ### 【請求項3】 前記複数の配線は、前記駆動トランジスタのソース、ドレインの他方と接続された給電 配線と、前記スイッチトランジスタを選択する選択配線と、前記対向電極に接続された共 通配線を有することを特徴とする請求項2に記載のディスプレイパネル。 # 【請求項4】 前記発光層は、前記給電配線、前記選択配線及び前記共通配線のうちの任意の2つの間 に成膜されていることを特徴とする請求項3に記載のディスプレイパネル。 # 【請求項5】 前記複数の配線は、任意の順に並列された前記給電配線、前記選択配線及び前記共通配線を一組として、この組を複数配列してなることを特徴とする請求項3または請求項4に記載のディスプレイパネル。 # 【請求項6】 前記サブピクセルは、赤サブピクセル、緑サブピクセル及び青サブピクセルを有することを特徴とする請求項1~請求項5のいずれかに記載のディスプレイパネル。 #### 【請求項7】 前記サブピクセルは、任意の順に並列された前記赤サブピクセル、前記緑サブピクセル 及び前記青サブピクセルを一組として、この組を複数配列してなることを特徴とする請求 項6に記載のディスプレイパネル。 #### 【請求項8】 前記配線の厚さが 1. $31 \sim 6 \mu \text{ m}$ であることを特徴とする請求項 1 から 7 の何れか一項に記載のディスプレイパネル。 ### 【請求項9】 前記配線の幅が 7. $45 \sim 44 \mu$ mであることを特徴とする請求項 1 から 8 の何れか一項に記載のディスプレイパネル。 #### 【請求項10】 前記配線の抵抗率が 2. $1 \sim 9$. $6 \mu \Omega c m$ であることを特徴とする請求項 1 m 6 9 m 何れか一項に記載のディスプレイパネル。 # 【請求項11】 複数のサブピクセル電極と、 前記複数のサブピクセル電極に設けられた複数の発光層と、 前記複数の発光層に設けられた対向電極と、 前記複数のサブピクセル電極にそれぞれ接続された複数の駆動トランジスタと、 前記複数の駆動トランジスタのソースードレイン間にそれぞれ書込電流を流す複数のス イッチトランジスタと、 前記複数の駆動トランジスタ、前記複数のスイッチトランジスタ及び前記複数の保持トランジスタにおけるソース、ドレイン及びゲートとなる層と異なる導電層によって形成され、前記複数の駆動トランジスタのドレインと接続された給電配線と、 前記複数の駆動トランジスタ、前記複数のスイッチトランジスタ及び前記複数の保持トランジスタにおけるソース、ドレイン及びゲートとなる層と異なる導電層によって形成され、前記スイッチトランジスタを選択する選択配線と、 前記対向電極に接続された共通配線と、 を有することを特徴とするディスプレイパネル。 #### 【請求項12】 前記共通配線は、前記複数の駆動トランジスタ、前記複数のスイッチトランジスタ及び 前記複数の保持トランジスタにおけるソース、ドレイン及びゲートとなる層と異なる導電 層によって形成されていることを特徴とする請求項11に記載のディスプレイパネル。 【書類名】明細書 【発明の名称】ディスプレイパネル 【技術分野】 [0001] 本発明は、発光素子を用いたディスプレイパネルに関する。 # 【背景技術】 # [0002] 有機エレクトロルミネッセンスディスプレイパネルは大きく分けてパッシブ駆動方式の ものと、アクティブマトリクス駆動方式のものに分類することができるが、アクティブマ トリクス駆動方式の有機エレクトロルミネッセンスディスプレイパネルが高コントラスト 、高精細といった点でパッシブ駆動方式よりも優れている。例えば特許文献1に記載され た従来のアクティブマトリクス駆動方式の有機エレクトロルミネッセンスディスプレイパ ネルにおいては、有機エレクトロルミネッセンス素子(以下、有機EL素子という。)と 、画像データに応じた電圧信号がゲートに印加されて有機EL素子に電流を流す駆動トラ ンジスタと、この駆動トランジスタのゲートに画像データに応じた電圧信号を供給するた めのスイッチングを行うスイッチ用トランジスタとが、画素ごとに設けられている。この 有機エレクトロルミネッセンスディスプレイパネルでは、走査線が選択されるとスイッチ ング用トランジスタがオンになり、その時に輝度を表すレベルの電圧が信号線を介して駆 動トランジスタのゲートに印加される。これにより、駆動トランジスタがオンになり、ゲ ート電圧のレベルに応じた大きさの駆動電流が電源から駆動トランジスタのソースードレ インを介して有機EL素子に流れ、有機EL素子が電流の大きさに応じた輝度で発光する 。走査線の選択が終了してから次にその走査線が選択されるまでの間では、スイッチ用ト ランジスタがオフになっても駆動トランジスタのゲート電圧のレベルが保持され続け、有 機EL素子が電圧に応じた駆動電流の大きさに従った輝度で発光する。 # [0003] 有機エレクトロルミネッセンスディスプレイパネルを駆動するために、有機エレクトロルミネッセンスディスプレイパネルの周辺に駆動回路を設け、有機エレクトロルミネッセンスディスプレイパネルに敷設された走査線、信号線、電源線等に電圧を印加することが行われている。 ### [0004] また、従来のアクティブマトリクス駆動方式の有機エレクトロルミネッセンスディスプレイパネルでは、電源線のような有機EL素子に電流を流す配線はスイッチ用トランジスタ、駆動トランジスタ等といった薄膜トランジスタの材料を用いて薄膜トランジスタのパターニング工程と同時にパターニングされる。即ち、有機エレクトロルミネッセンスディスプレイパネルを製造するにあたって、薄膜トランジスタの電極のもととなる導電性薄膜に対してフォトリソグラフィー法、エッチング法を行うことによって、その導電性薄膜から薄膜トランジスタの電極を形状加工するとともに、同時に電極に接続される配線も形状加工する。そのため、配線が導電性薄膜から形成されると、配線が薄膜トランジスタの電極の厚さと同じになる。 【特許文献1】特開平8-330600号公報
【発明の開示】 【発明が解決しようとする課題】 [0005] しかしながら、薄膜トランジスタの電極は、トランジスタとして機能することを前提に設計されているため、言い換えれば発光素子に電流を流すことを前提として設計していないため、その名の通り薄膜であり、このため、配線から複数の発光素子に電流を流そうとすると、配線の電気抵抗によって、電圧降下が発生したり、配線を通じた電流の流れの遅延が生じたりする。電圧降下及び電流遅延を抑えるために配線を低抵抗化することが望まれるが、そのためにトランジスタのソース、ドレイン電極となる金属層やゲート電極となる金属層を厚くしたり、これら金属層を電流が十分に流れる程度にかなり幅広にパターニ ングして低抵抗配線としたりすると、配線が他の配線や導電体等と平面視して重なる面積が増えてしまい、それらの間で寄生容量が発生してしまい、電流の流れを遅くする要因を発生してしまい、或いはトランジスタアレイ基板側からEL光を出射するいわゆるボトムエミッション構造の場合、EL素子からの発光を配線が遮光してしまうので、発光面積の割合である開口率の低下を招いてしまっていた。また低抵抗化するために薄膜トランジスタのゲート電極を厚くすると、ゲート電極の段差を平坦化するための平坦化膜(例えば薄膜トランジスタが逆スタが構造の場合、ゲート絶縁膜に相当)まで厚くしなければならず、トランジスタ特性が大きく変化してしまう恐れがあり、またソース、ドレイン電極を厚くすると、ソース、ドレイン電極のエッチング精度が低下してしまうため、やはりトランジスタの特性に悪影響を及ぼす恐れがある。 #### [0006] そこで、本発明は、電圧降下・信号遅延を抑え、良好に発光素子を駆動することを目的 とする。 # 【課題を解決するための手段】 # [0007] 以上の課題を解決するために、本発明のディスプレイパネルは、 ゲート、ゲート絶縁膜、ソース・ドレインを備えたトランジスタがサブピクセルごとに 設けられてなるトランジスタアレイ基板と、 前記トランジスタアレイ基板の表面に凸設され、互いに平行となるよう配列された複数 の配線と、 前記各配線の間において前記各配線に沿って前記トランジスタアレイ基板の表面に配列 され、サブピクセルごとに設けられた複数のサブピクセル電極と、 前記各サブピクセル電極上に成膜された発光層と、 前記発光層上に積層された対向電極と、を備える。 #### [0008] 前記トランジスタは、ソース、ドレインの一方がサブピクセル電極に接続された駆動トランジスタと、前記駆動トランジスタのソースードレイン間に書込電流を流すスイッチトランジスタと、発光期間に前記駆動トランジスタのソースーゲート間の電圧を保持する保持トランジスタとを有してもよい。 前記複数の配線は、前記駆動トランジスタのソース、ドレインの他方と接続された給電 配線と、前記スイッチトランジスタを選択する選択配線と、前記対向電極に接続された共 通配線を有してもよい。 前記発光層は、前記給電配線、前記選択配線及び前記共通配線のうちの任意の2つの間 に成膜されていてもよい。 前記複数の配線は、任意の順に並列された前記給電配線、前記選択配線及び前記共通配線を一組として、この組を複数配列してなってもよい。 前記サブピクセルは、赤サブピクセル、緑サブピクセル及び青サブピクセルを有しても よい。 前記サブピクセルは、任意の順に並列された前記赤サブピクセル、前記緑サブピクセル 及び前記青サブピクセルを一組として、この組を複数配列してなってもよい。 好ましくは、上記ディスプレイパネルが、前記複数の配線それぞれを被覆した撥水性・ 撥油性の疎水膜を更に備える。 # [0009] 好ましくは、前記対向電極が前記疎水膜を介して前記複数の配線を被覆する。 #### [0010] 好ましくは、前記疎水膜が絶縁性を有し、前記配線が前記トランジスタのソース、ドレイン、ゲートの何れかに導通している。 #### [0011] 好ましくは、前記疎水膜が導電性を有する。 また、本発明における他のディスプレイパネルは、 前記複数のサブピクセル電極に設けられた複数の発光層と、 前記複数の発光層に設けられた対向電極と、 前記複数のサブピクセル電極にそれぞれ接続された複数の駆動トランジスタと、 前記複数の駆動トランジスタのソースードレイン間にそれぞれ書込電流を流す複数のス イッチトランジスタと、 前記複数の駆動トランジスタのソースーゲート間の電圧をそれぞれ保持する複数の保持 トランジスタと、 前記複数の駆動トランジスタ、前記複数のスイッチトランジスタ及び前記複数の保持トランジスタにおけるソース、ドレイン及びゲートとなる層と異なる導電層によって形成され、前記複数の駆動トランジスタのドレインと接続された給電配線と、 前記複数の駆動トランジスタ、前記複数のスイッチトランジスタ及び前記複数の保持トランジスタにおけるソース、ドレイン及びゲートとなる層と異なる導電層によって形成され、前記スイッチトランジスタを選択する選択配線と、 前記対向電極に接続された共通配線と、 #### を有する。 # [0012] 本発明によれば、配線がトランジスタアレイ基板の表面に凸設されているから、配線がトランジスタのドレイン・ソース・ゲートとは別に形成される。そのため、配線の幅を広くせずとも配線を厚くすることができ、給電配線を低抵抗化することができる。そのため、配線を通じてトランジスタ・サブピクセル電極に信号を出力した場合でも、電圧降下を抑えることができるとともに信号遅延も抑えることができる。 # [0013] また、トランジスタアレイ基板の表面に配線が凸設されているから、湿式塗布法により 発光層をパターニングする際に、隣り合うサブピクセル同士で発光層用の液が混ざらない ようにすることができる。 #### 【発明の効果】 ### [0014] 本発明によれば、配線を厚くすることができるので、配線を低抵抗化することができる 。配線の低抵抗化によって信号遅延、電圧降下を抑えることができる。 # 【発明を実施するための最良の形態】 ### [0015] 以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。また、以下の説明において、エレクトロルミネッセンス(Electro Luminescence)という用語をELと略称する。 ### [0016] #### [ディスプレイパネルの平面レイアウト] 図1には、アクティブマトリクス駆動方式で動作するディスプレイパネル1の絶縁基板2上に設けられた複数のピクセルの画素3のうち隣接する4つを示した概略平面図が示されている。このディスプレイパネル1においては、複数の赤サブピクセルPrが水平方向(行方向)に沿って配列され、複数の緑サブピクセルPgが水平方向に沿って配列され、複数の青サブピクセルPbが水平方向に沿って配列されている。垂直方向(列方向)の配列順に着目すると、赤サブピクセルPr、緑サブピクセルPg、青サブピクセルPbの順に繰り返し配列されている。そして、1ドットの赤サブピクセルPr、1ドットの緑サブピクセルPg、1ドットの青サブピクセルPbの組み合わせが1つの画素3となり、このような画素3がマトリクス状に配列されている。なお、以下の説明において、サブピクセルPはこれら赤サブピクセルPr、緑サブピクセルPg、青サブピクセルPbの中の任意のサブピクセルを表し、サブピクセルPについての説明は赤サブピクセルPr、緑サブピ # [0017] また、垂直方向に沿って延在した3本の信号線Yr, Yg, Ybが1組となっており、3本の信号線Yr, Yg, Ybの組み合わせを信号線群4という。1群の信号線群4に着目すると3本の信号線Yr, Yg, Ybが互いに近接しているが、隣り合う信号線群4の間隔は同一信号線群4内の隣り合う信号線Yr, Yg, Ybの間隔よりも広い。そして、垂直方向の画素3の列1列につき、1群の信号線群4が設けられている。すなわち、垂直方向に配列された1列のうちのサブピクセルPr, Pg, Pbは、1群の信号線群4の信号線Yr, Yg, Ybにそれぞれ接続されている。 # [0018] ここで、信号線Yrは垂直方向の画素3の列のうち全ての赤サブピクセルPrに対して信号を供給するものであり、信号線Ygは垂直方向の画素3の列のうち全ての緑サブピクセルPgに対して信号を供給するものであり、信号線Ybは垂直方向の画素3の列のうち全ての青サブピクセルPbに対して信号を供給するものである。 # [0019] また、複数本の走査線 X が水平方向に沿って延在し、これら走査線 X に対して複数本の供給線 Z、複数本の選択配線 8 9、複数本の給電配線 9 0 及び複数本の共通配線 9 1 が平行に設けられている。水平方向の画素 3 の列 1 列につき、1 本の走査線 X と、1 本の供給線 Z と、1 本の給電配線 9 0 と、1 本の選択配線 8 9 と、1 本の共通配線 9 1 とが設けられている。具体的には、共通配線 9 1 は垂直方向に隣り合う赤サブピクセル P r と緑サブピクセル P g の間に配置され、走査線 X 及び選択配線 8 9 は垂直方向に隣り合う緑サブピクセル P g と青サブピクセル P b との間に配置され、供給線 Z 及び給電配線 9 0 は青サブピクセル P b と隣の画素 3 の赤サブピクセル P r との間に配置されている。選択配線 8 9 及び給電配線 9 0 は同じ膜厚である。 # [0020] ここで、走査線Xは水平方向に沿って配列された一行分の画素3の全サブピクセルPr, Pg, Pb に信号を供給するものであり、供給線Zも水平方向に沿って配列された一行分の画素3の全サブピクセルPr, Pg, Pb に信号を供給するものである。 #### [0021] また、平面視して、走査線Xには選択配線89が延在方向に重なることによって電気的に導通されており、供給線Zには給電配線90が延在方向に重なることによって電気的に導通されている。 #### [0022] サブピクセルPr、Pg、Pbの色は、後述する有機EL素子20(図2等に図示)の 発光色によって定まる。図1において水平方向に長尺な矩形状で示されたサブピクセルP r, Pg, Pbの位置は、有機EL素子20のアノードであるサブピクセル電極20a(図2等に図示)の位置を表したものである。すなわち、ディスプレイパネル1全体に着目 して平面視した場合、複数のサブピクセル電極20aがマトリクス状に配列されており、 1つのサブピクセル電極20aによって1ドットのサブピクセルPが定まる。従って、給 電配線90と隣の共通配線91との間において複数のサブピクセル電極20aが水平方向 に沿って配列され、共通配線91と隣の選択配線89との間において複数のサブピクセル 電極20aが水平方向に沿って配列され、選択配線89と隣りの給電配線90との間にお いて複数のサブピクセル電極20 aが水平方向に沿って配列されている。また、信号線群 4上には、当該信号線群4上方に位置する電極又は配線との間で寄生容量とならない程度 に十分な厚さの絶縁膜を介在させていれば、信号線群4は、当該信号線群4に接続された サブピクセル電極20aと平面視して重なってもよく、また、当該信号線群4に接続され たサブピクセルに隣接する一方のサブピクセルのサブピクセル電極20aと平面視して重 なってもよい。ディスプレイパネル1がボトムエミッション構造であれば、信号線群4は 、サブピクセル電極20aと平面視して重ならないことが好ましい。 #### [0023] m、nをそれぞれ2以上の整数とし、画素3が垂直方向に沿ってmピクセルだけ、水平 方向に沿ってnピクセルだけ配列されていると、サブピクセル電極20aは垂直方向に沿 ってサブピクセルの一列分の数と同数の(3×m)個だけ、水平方向に沿ってサブピクセ ルの一行分の数と同数のn個だけ配列されている。この場合、信号線群4がn群になり、 走査線X、供給線Z、選択配線89、給電配線90及び共通配線91はそれぞれm本にな る。後述する有機EL素子20の有機EL層20bとなる有機化合物含有液を一行分のサ ブピクセル内に堰き止める隔壁としても機能する選択配線89、給電配線90及び共通配 線91の総和は(3×m)本になるが、全行の有機化合物含有液を各行毎のサブピクセル 内に仕切るためには $(3 \times m + 1)$ 本必要になる。このため、共通配線91と同じ高さ且 つ同じ長さの (3×m+1) 本目の隔壁ダミー配線を、選択配線89、給電配線90及び 共通配線91と行方向に並列させる。 # [0024] # 「サブピクセルの回路構成] 次に、サブピクセルPr, Pg, Pbの回路構成について図2の等価回路図を用いて説 明する。何れのサブピクセルPr,Pg,Pbも同様に構成されており、1ドットのサブ ピクセルPにつき、有機EL素子20、Nチャネル型のアモルファスシリコン薄膜トラン ジスタ (以下単にトランジスタと記述する。) 21, 22, 23及びキャパシタ24が設 けられている。以下では、トランジスタ21をスイッチトランジスタ21と称し、トラン ジスタ22を保持トランジスタ22と称し、トランジスタ23を駆動トランジスタ23と 称する。なお、図2及び以下の説明において、赤サブピクセルPrの場合では信号線Yが 図1の信号線Yrを表し、緑サブピクセルPgの場合では信号線Yが図1の信号線Ygを 表し、青サブピクセルPbの場合では信号線Yが図1の信号線Ybを表す。 # [0025] スイッチトランジスタ21においては、ソース21gが信号線Yに導通し、ドレイン2 1dが有機EL素子20のサブピクセル電極20a、駆動トランジスタ23のソース23 s及びキャパシタ24の上層電極24Bに導通し、ゲート21gが保持トランジスタ22 のゲート22gとともに走査線X及び選択配線89に導通している。 ### [0026] 保持トランジスタ22においては、ソース22gが駆動トランジスタ23のゲート23 g及びキャパシタ24の下層電極24Aに導通し、ドレイン22dが駆動トランジスタ2 3のドレイン23d及び供給線 Zに導通し、ゲート22gがスイッチトランジスタ21の ゲート21g及び走査線Xに導通している。 #### [0027] 駆動トランジスタ23においては、ソース23sが有機EL素子20のサブピクセル電 極20a、スイッチトランジスタ21のドレイン21d及びキャパシタ24の電極24B に導通し、ドレイン23 dが保持トランジスタ22のドレイン22 d及び供給線2に導通 し、ゲート23gが保持トランジスタ22のソース22s及びキャパシタ24の下層電極 24Aに導通している。 #### [0028] 有機 E L 素子 2 0 のカソードとなる対向電極 2 0 c は共通配線 9 1 に導通している。 #### [0029] 垂直方向に沿って一列に配列された何れの赤サブピクセルPrのスイッチトランジスタ 21のソース21 sも共通の信号線Yrに導通し、垂直方向に沿って一列に配列された何 れの緑サブピクセルPgのスイッチトランジスタ21のソース21sも共通の信号線Yg に導通し、垂直方向に沿って一列に配列された何れの青サブピクセルPbのスイッチトラ ンジスタ21のソース21sも共通の信号線Ybに導通している。 # [0030] 一方、水平方向に沿って配列された一行分の画素3の何れのサブピクセルPr, Pg, Pbのスイッチトランジスタ21のゲート21gも共通の走査線Xに導通し、水平方向に 沿って配列された一行分の画素3の何れのサブピクセルPr、Pg、Pbの保持トランジ スタ22のゲート22gも共通の走査線Xに導通し、水平方向に沿って配列された一行分の画素3の何れのサブピクセルPr,Pg,Pbの保持トランジスタ22のドレイン22 dも共通の供給線 Z に導通し、水平方向に沿って配列された一行分の画素3の何れのサブピクセルPr,Pg,Pbの駆動トランジスタ23のドレイン23dも共通の供給線 Z に導通している。 # [0031] ### [画素の平面レイアウト] 画素3の平面レイアウトについて図3~図5を用いて説明する。図3は、赤サブピクセルPrの電極を主に示した平面図であり、図4は、緑サブピクセルPgの電極を主に示した平面図であり、図5は、青サブピクセルPbの電極を主に示した平面図である。なお、図3~図5においては、図面を見やすくするために、有機EL素子20のサブピクセル電極20a及び対向電極20cの図示を省略する。 # [0032] 図3に示すように、赤サブピクセルPrにおいては、平面視して、駆動トランジスタ23が供給線Z及び給電配線90に沿うように配置され、スイッチトランジスタ21が共通配線91に沿うように配置され、保持トランジスタ22が供給線Zの近くの赤サブピクセルPrの角部に配置されている。 # [0033] 図4に示すように、緑サブピクセルPgにおいては、平面視して、駆動トランジスタ23が共通配線91に沿うように配置され、スイッチトランジスタ21が走査線X及び選択配線89に沿うように配置され、保持トランジスタ22が共通配線91の近くの緑サブピクセルPgの角部に配置されている。 #### [0034] 図5に示すように、青サブピクセルPbにおいては、平面視して、駆動トランジスタ23が走査線Xに沿うように配置され、スイッチトランジスタ21が隣の行の供給線2及び給電配線90に沿うように配置され、保持トランジスタ22が走査線Xの近くの青サブピクセルPbの角部に配置されている。 #### [0035] 図3~図5に示すように、何れのサブピクセルPr, Pg, Pbでも、キャパシタ24が隣の列の信号線群4に沿って配置されている。 #### [0036] なお、ディスプレイパネル1全体を平面視して、全てのサブピクセルPr、Pg、Pbのスイッチトランジスタ21だけに着目すると、複数のスイッチトランジスタ21がマトリクス状に配列され、全てのサブピクセルPr、Pg、Pbの保持トランジスタ22だけに着目すると、複数の保持トランジスタ22がマトリクス状に配列され、全てのサブピクセルPr、Pg、Pbの駆動トランジスタ23がマトリクス状に配列されている。 ### [0037] #### [ディスプレイパネルの層構造] ディスプレイパネル1の層構造について図6を用いて説明する。ここで、図6は、図3~図5に示された破断線VI-VIに沿って絶縁基板2の厚さ方向に切断した矢視断面図である。 # [0038] ディスプレイバネル1は、光透過性を有する絶縁基板2に対して種々の層を積層したものである。絶縁基板2は可撓性のシート状に設けられているか、又は剛性の板状に設けられている。 # [0039] まず、トランジスタ21~23の層構造について説明する。図6に示すように、スイッチトランジスタ21は、絶縁基板2上に形成されたゲート21gと、ゲート21g上に形成されたゲート絶縁膜31と、ゲート絶縁膜31を挟んでゲート21gに対向した半導体 膜21cと、半導体膜21cの中央部上に形成されたチャネル保護膜21pと、半導体膜21cの両端部上において互いに離間するよう形成され、チャネル保護膜21pに一部重なった不純物半導体膜21a,21bと、不純物半導体膜21a上に形成されたドレイン21dと、不純物半導体膜21b上に形成されたソース21sと、から構成されている。なお、ドレイン21d及びソース21sは一層構造であっても良いし、二層以上の積層構造であっても良い。 # [0040] 駆動トランジスタ23は、絶縁基板2上に形成されたゲート23gと、ゲート23g上に形成されたゲート絶縁膜31と、ゲート絶縁膜31を挟んでゲート23gに対向した半導体膜23cと、半導体膜23cの中央部上に形成されたチャネル保護膜23pと、半導体膜23cの両端部上において互いに離間するよう形成され、チャネル保護膜23pに一部重なった不純物半導体膜23a,23bと、不純物半導体膜23a上に形成されたドレイン23dと、不純物半導体膜23b上に形成されたソース23sと、から構成されている。図3~図5に示すように平面視した場合、駆動トランジスタ23が櫛歯状に設けられていることで、駆動トランジスタ23のチャネル幅が広くなっている。ドレイン23d及びソース23sは一層構造であっても良いし、二層以上の積層構造であっても良い。 #### [0041] なお、保持トランジスタ22は、駆動トランジスタ23と同様の層構造となっているため、保持トランジスタ22の断面図については省略する。また、何れのサブピクセルPェ, Pg, Pbでも、スイッチトランジスタ21、保持トランジスタ22及び駆動トランジスタ23が同様の層構造になっている。 # [0042] 次に、キャパシタ24の層構造について説明する。キャパシタ24は、絶縁基板2上に 形成された下層電極24Aと、下層電極24A上に形成されたゲート絶縁膜31と、ゲート絶縁膜31を挟んで下層電極24Aに対向した上層電極24Bと、から構成されている。何れのサブピクセルPr, Pg, Pbでもキャパシタ24は同様の層構造になっている #### [0043] 次に、トランジスタ21~23及びキャパシタ24の各層と信号線Y、走査線X及び供 給線Zとの関係について図3~図6を用いて説明する。 #### [0044] 接続線96、全てのサブピクセルPr, Pg, Pbのスイッチトランジスタ21のゲート21g、保持トランジスタ22のゲート22g、駆動トランジスタ23のゲート23g及びキャパシタ24の下層電極24A並びに全ての信号線Yr, Yg, Ybは、絶縁基板2上にべた一面に成膜された導電性膜をフォトリソグラフィー法・エッチング法によってパターニングすることで形成されたものである。以下では、接続線96、スイッチトランジスタ21のゲート21g、保持トランジスタ22のゲート22g、駆動トランジスタ23のゲート23g及びキャパシタ24の電極24A並びに信号線Yr, Yg, Ybの元となる導電性膜をゲートレイヤーという。 # [0045] ゲート絶縁膜31は、全てのサブピクセルPr、Pg、Pbのスイッチトランジスタ21、保持トランジスタ22、駆動トランジスタ23及びキャパシタ24に共通した絶縁膜であり、面内にべた一面に成膜されている。従って、ゲート絶縁膜31は、スイッチトランジスタ21のゲート21g、保持トランジスタ22のゲート22g、駆動トランジスタ23のゲート23g及びキャパシタ24の下層電極24A並びに信号線Yr,Yg,Ybを被覆している。 #### [0046] 全てのサブピクセルPr, Pg, Pbのスイッチトランジスタ21のドレイン21d・ ソース21s、保持トランジスタ22のドレイン22d・ソース22s、駆動トランジス タ23のドレイン23d・ソース23s及びキャパシタ24の上層電極24B並びに全て の走査線 X 及び供給線 Z は、ゲート絶縁膜 3 1 上にべた一面に成膜された導電性膜をフォトリソグラフィー法・エッチング法によってパターニングすることで形成されたものである。以下では、スイッチトランジスタ 2 1 のドレイン 2 1 d・ソース 2 1 s、保持トランジスタ 2 2
のドレイン 2 2 d・ソース 2 2 s、駆動トランジスタ 2 3 のドレイン 2 3 d・ソース 2 3 s 及びキャパシタ 2 4 の上層電極 2 4 B 並びに走査線 X 及び供給線 Z の元となる導電性膜をドレインレイヤーという。 # [0047] 1つの画素3につき1つのコンタクトホール92がゲート絶縁膜31の走査線Xに重なる箇所に形成され、サブピクセルPr,Pg,Pbのスイッチトランジスタ21のゲート21g及び保持トランジスタ22のゲート22gがコンタクトホール92を介して走査線Xに導通している。1ドットのサブピクセルPにつき1つのコンタクトホール94がゲート絶縁膜31の信号線Yに重なる箇所に形成され、何れのサブピクセルPr,Pg,Pbにおいても、スイッチトランジスタ21のソース21sがコンタクトホール94を介して信号線Yに導通している。1ドットのサブピクセルPにつき1つのコンタクトホール93がゲート絶縁膜31の下層電極24Aに重なる箇所に形成され、何れのサブピクセルPr,Pg,Pbにおいても保持トランジスタ22のソース22sが駆動トランジスタ23のゲート23g及びキャパシタ24の下層電極24Aに導通している。 # [0048] 赤サブピクセルPrにおいては、保持トランジスタ22のドレイン22d及び駆動トランジスタ23のドレイン23dが供給線Zと一体に設けられている。それに対して、緑サブピクセルPg及び青サブピクセルPbにおいては、保持トランジスタ22のドレイン22d及び駆動トランジスタ23のドレイン23dの何れも、供給線Zに対して別体に設けられている。そこで、緑サブピクセルPg及び青サブピクセルPbの保持トランジスタ22のドレイン22d及び駆動トランジスタ23のドレイン23dは、以下のようにして供給線Zに導通している。 # [0049] すなわち、1 ピクセルの画素 3 につき 1 本の接続線 9 6 が画素 3 を垂直方向に縦断するよう設けられている。この接続線 9 6 は、ゲートレイヤーをパターニングすることで形成されたものであり、ゲート絶縁膜 3 1 によって被覆されている。ゲート絶縁膜 3 1 の供給線 2 と接続線 9 6 が重なる箇所には、コンタクトホール 9 7 が形成され、そのコンタクトホール 9 7 を介して接続線 9 6 が供給線 Z に導通している。また、緑サブピクセル P g においては、コンタクトホール 9 8 がゲート絶縁膜 3 1 の接続線 9 6 と駆動トランジスタ 2 3 のドレイン 2 3 d とが重なる箇所に形成され、そのコンタクトホール 9 8 を介して接続線 9 6 と駆動トランジスタ 2 3 のドレイン 2 3 d が導通している。青サブピクセル P b においては、コンタクトホール 9 9 がゲート絶縁膜 3 1 の接続線 9 6 と駆動トランジスタ 2 3 のドレイン 2 3 d が導通している。以上により、緑サブビクセル P g 及び青サブピクセル P b のどちらにおいても、保持トランジスタ 2 2 のドレイン 2 2 d 及び駆動トランジスタ 2 3 のドレイン 2 3 d が接続線 9 6 を介して供給線 Z 及び給電配線 9 0 に導通している。 #### [0050] 全てのサブピクセルPr, Pg, Pbのスイッチトランジスタ21、保持トランジスタ22及び駆動トランジスタ23並びに全ての走査線X及び供給線Zは、べた一面に成膜された窒化シリコン又は酸化シリコン等の保護絶縁膜32によって被覆されている。なお、詳細については後述するが、保護絶縁膜32は、走査線X及び供給線Zに重なる箇所で矩形状に分断されている。 #### [0051] 保護絶縁膜32には平坦化膜33が積層されており、スイッチトランジスタ21、保持トランジスタ22及び駆動トランジスタ23並びに走査線X及び供給線2による凹凸が平坦化膜33によって解消されている。つまり、平坦化膜33の表面が平坦となっている。 平坦化膜33は、ポリイミド等の感光性絶縁樹脂を硬化させたものである。なお、詳細については後述するが、平坦化膜33は、走査線X及び供給線Zに重なる箇所で矩形状に分断されている。 # [0052] このディスプレイパネル1をボトムエミッション型として用いる場合、すなわち、絶縁 基板2を表示面として用いる場合には、ゲート絶縁膜31、保護絶縁膜32及び平坦化膜33には透明な材料を用いる。絶縁基板2から平坦化膜33までの積層構造をトランジスタアレイ基板50という。 # [0053] 平坦化膜33の表面、即ちトランジスタアレイ基板50の表面上であって赤サブピクセルPェと緑サブピクセルPgの間には、走査線Xに平行な絶縁ライン61が形成されている。絶縁ライン61は、ポリイミド等の感光性絶縁樹脂を硬化させてなり、その上部には絶縁ライン61より幅狭の共通配線91が積層されている。共通配線91は、メッキ法により形成されたものであるので、信号線Y、走査線X及び供給線乙よりも十分に厚く、平坦化膜33の表面に対して凸設されている。共通配線91は銅、アルミ、金若しくはニッケルのうちの少なくともいずれかを含むことが好ましい。 # [0054] 共通配線91の表面には、撥水性・撥油性を有した撥液性導電層55が成膜されている。撥液性導電層55は、次の化学式(1)に示されたトリアジルトリチオールのチオール基(-SH)の水素原子(H)が還元離脱し、硫黄原子(S)が共通配線91の表面に酸化吸着したものである。 # [0055] # (化1) # [0056] 撥液性導電層55はトリアジルトリチオール分子が共通配線91の表面に規則正しく並んだ分子一層からなる膜であるから、撥液性導電層55が非常に低抵抗であって導電性を有する。なお、撥水性・撥油性を顕著にするためにトリアジルトリチオールに代えて、トリアジルトリチオールの1又は2のチオール基がフッ化アルキル基に置換されたものでも良い。 ### [0057] 保護絶縁膜32及び平坦化膜33の各供給線Zに重なる箇所には、水平方向に沿って開口された長尺な溝34が凹設され、更に、保護絶縁膜32及び平坦化膜33の各走査線Xに重なる箇所には水平方向に沿って開口された長尺な溝35が凹設されている。これら溝34、35によって保護絶縁膜32及び平坦化膜33が矩形状に分断されている。溝34には給電配線90が埋められており、溝34内において給電配線90が供給線Zにそれぞれ積層されることによって電気的に接続されている。溝35には選択配線89が埋められており、溝35内において選択配線89が走査線Xにそれぞれ積層されることによって電気的に接続されている。 # [0058] 選択配線89及び給電配線90は、メッキ法により形成されたものであるので、信号線Y、走査線X及び供給線Zよりも十分に厚い。更には、選択配線89及び給電配線90の厚さは、保護絶縁膜32と平坦化膜33の厚さの総計よりも厚く、平坦化膜33の表面から凸設されている。選択配線89及び給電配線90のどちらも、銅、アルミ、金若しくはニッケルのうちの少なくともいずれかを含むことが好ましい。選択配線89の表面に、撥水性・撥油性を有した疎水絶縁膜53が成膜され、給電配線90の表面には、撥水性・撥油性を有した疎水絶縁膜54が成膜されている。 # [0059] 平坦化膜33の表面、即ちトランジスタアレイ基板50の表面上には、複数のサブピクセル電極20aがマトリクス状に配列されている。これらサブピクセル電極20aは、平坦化膜33上にベた一面に成膜された透明導電性膜をフォトリングラフィー法・エッチング法によってパターニングしたものである。 # [0060] サブピクセル電極 20aは、有機 EL素子 20のアノードとして機能する電極である。即ち、サブピクセル電極 20aの仕事関数が比較的高く、後述する有機 EL B20bへ正孔を効率よく注入するものが好ましい。また、サブピクセル電極 20aは、ボトムエミッションの場合、可視光に対して透過性を有している。サブピクセル電極 20aとしては、例えば、錫ドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム、酸化インジウム(ITO)、酸化亜鉛(IRO)又はカドミウムー錫酸化物(IRO)を主成分としたものがある。 #### [0061] なお、このディスプレイパネル1をトップエミッション型として用いる場合、すなわち、絶縁基板2の反対側を表示面として用いる場合には、サブピクセル電極20aと平坦化膜33との間に、導電性且つ可視光反射性の高い反射膜を成膜するか、サブピクセル電極20a自体を反射性電極とすれば良い。 #### [0062] 1ドットのサブピクセルPにつき1つのコンタクトホール88が平坦化膜33及び保護絶縁膜32のサブピクセル電極20aに重なる箇所に形成され、そのコンタクトホール88に導電性パッドが埋設されている。何れのサブピクセルPr, Pg, Pbにおいても、サブピクセル電極20aが、キャパシタ24の上層電極24B、スイッチトランジスタ21のドレイン21d及び駆動トランジスタ23のソース23sに導通している。 # [0063] サブピクセル電極20a上には、有機EL素子20の有機EL層20bが成膜されている。有機EL層20bは広義の発光層であり、有機EL層20bには、有機化合物である発光材料(蛍光体)が含有されている。有機EL層20bは、サブピクセル電極20aから順に正孔輸送層、狭義の発光層の順に積層した二層構造である。正孔輸送層は、導電性高分子であるPEDOT(ポリチオフェン)及びドーパントであるPSS(ポリスチレンスルホン酸)からなり、狭義の発光層は、ポリフルオレン系発光材料からなる。 # [0064] 赤サブピクセルPrの場合には、有機EL層20bが赤色に発光し、緑サブピクセルPgの場合には、有機EL層20bが緑色に発光し、青サブピクセルPbの場合には、有機EL層20bが青色に発光する。 ### [0065] 有機EL層20bはサブピクセル電極20aごとに独立して設けられ、平面視した場合、複数の有機EL層20bがマトリクス状に配列されている。但し、給電配線90と共通配線91との間において水平方向に配列された一行分のサブピクセルが全て赤サブピクセルPr赤色なので、給電配線90と共通配線91との間において水平方向に配列された複数のサブピクセル電極20aが、水平方向に沿って帯状に長尺な共通の赤色発光の有機EL層20bによって被覆されていても良い。このとき有機EL層20bは水平方向に隣り 合う有機EL層20bに対して電流を流さない程度の電気抵抗を有している。同様に、共通配線91と選択配線89との間において水平方向に配列された複数のサブピクセル電極20aが、水平方向に沿って帯状に長尺な共通の緑色発光の有機EL層20bによって被覆されていても良いし、所定の行において、選択配線89と隣の行(一行後の行)の給電配線90との間において水平方向に一列に配列された複数のサブピクセル電極20aが、水平方向に沿って帯状に長尺な共通の青色発光の有機EL層20bによって被覆されていても良い。 # [0066] 有機EL層20bは、疎水絶縁膜53、疎水絶縁膜54及び撥液性導電層55のコーティング後に湿式塗布法(例えば、インクジェット法)によって成膜される。この場合、サブピクセル電極20aに有機EL層20bとなる有機化合物を含有する有機化合物含有液を塗布するが、この有機化合物含有液の液面は、絶縁ライン61の頭頂部よりも高い。垂直方向に隣り合うサブピクセル電極20a間において頭頂部が絶縁ライン61の頭頂部よりも十分高い厚膜の選択配線89、給電配線90、共通配線91がトランジスタアレイ基板50の表面に対して凸設されているから、サブピクセル電極20aに塗布された有機化合物含有液が垂直方向に隣り合うサブピクセル電極20aに漏れることがない。また、選択配線89、給電配線90、共通配線91には撥水性・撥油性の疎水絶縁膜53、疎水絶縁膜54、撥液性導電層55がそれぞれコーティングされているから、サブピクセル電極20aに塗布された有機化合物含有液をはじくので、サブピクセル電極20aに塗布された有機化合物含有液をはじくので、サブピクセル電極20aに塗布された有機化合物含有液がサブピクセル電極20aの中央に対して撥液性導電層55の端部付近、疎水絶縁膜53の端部付近や、疎水絶縁膜54の端部付近で極端に厚く堆積されなくなるので、有機化合物含有液が乾燥してなる有機EL層20bを面内均一な膜厚で成膜することができる。 # [0067] なお、有機EL層20bは、二層構造の他に、サブピクセル電極20aから順に正孔輸送層、狭義の発光層、電子輸送層となる三層構造であっても良いし、狭義の発光層からなる一層構造であっても良いし、これらの層構造において適切な層間に電子或いは正孔の注入層が介在した積層構造であっても良いし、その他の積層構造であっても良い。 #### [0068] 有機EL層20b上には、有機EL素子20のカソードとして機能する対向電極20cが成膜されている。対向電極20cは、全てのサブピクセルPr, Pg, Pbに共通して形成された共通電極であり、べた一面に成膜されている。対向電極20cがべた一面に成膜されることで、対向電極20cが撥液性導電層55を挟んで共通配線91を被覆している。そのため、図2の回路図に示すように、対向電極20cは共通配線91に対して導通している。一方、選択配線89には疎水絶縁膜53がコーティングされ、給電配線90には疎水絶縁膜54がコーティングされているので、対向電極20cが選択配線89及び給電配線90の何れに対しても絶縁されている。 ### [0069] 対向電極20cは、サブピクセル電極20aよりも仕事関数の低い材料で形成されており、例えば、マグネシウム、カルシウム、リチウム、バリウム、インジウム、希土類金属の少なくとも一種を含む単体又は合金で形成されていることが好ましい。また、対向電極20cは、上記各種材料の層が積層された積層構造となっていても良いし、以上の各種材料の層に加えてシート抵抗を低くするために酸化されにくい金属層が堆積した積層構造となっていても良く、具体的には、有機EL層20bと接する界面側に設けられた低仕事関数の高純度のバリウム層と、バリウム層を被覆するように設けられたアルミニウム層との積層構造や、下層にリチウム層、上層にアルミニウム層が設けられた積層構造が挙げられる。またトップエミッション構造の場合、対向電極20cを上述のような低仕事関数の薄膜とその上にIT〇等の透明導電膜を積層した透明電極としてもよい。 #### [0070] 対向電極20c上には、封止絶縁膜56が成膜されている。封止絶縁膜56は対向電極 20 c全体を被覆し、対向電極 20 c の劣化を防止するために設けられている無機膜又は 有機膜である。 # [0071] なお、従来、トップエミッション型構造のELディスプレイパネルは、対向電極20cの少なくとも一部を金属酸化物のように抵抗値が高い透明電極を用いることになるが、このような材料は十分に厚くしなければシート抵抗が十分に低くならないので、厚くすることによって必然的に有機EL素子の透過率が下がってしまい、大画面になるほど面内で均一の電位になりにくく表示特性が低くなってしまっていた。 ### [0072] しかしながら、本実施形態では、水平方向に十分な厚さのために低抵抗な複数の共通配線 9 1, 9 1, …、を設けているので、対向電極 2 0 c と合わせて有機 E L 素子 2 0, 2 0, …のカソード電極全体のシート抵抗値を下げ、十分且つ面内で均一に大電流を流すことが可能となる。さらにこのような構造では、共通配線 9 1, 9 1, …がカソード電極としてのシート抵抗を下げているので、対向電極 2 0 c を薄膜にして透過率を向上したりすることが可能である。なおトップエミッション構造では、画素電極 2 0 a を反射性の材料としてもよい。 ### [0073] そして、薄膜トランジスタを形成する際の導電層以外の厚膜の導電層を用いて形成された給電配線90,90,…を、供給線 $Z_1 \sim Z_m$ にそれぞれ電気的に接続するように設けているので、薄膜トランジスタの導電層のみで形成された供給線 $Z_1 \sim Z_m$ での電圧降下による複数の有機EL素子20に後述する書込電流や駆動電流が所定の電流値に達するまでの遅延を防止し、良好に駆動することが可能となる。 #### [0074] さらに、薄膜トランジスタを形成する際の導電層以外の厚膜の導電層を用いて形成された選択配線 89,89,…を、走査線 $X_1 \sim X_m$ にそれぞれ電気的に接続するように設けているので薄膜トランジスタの導電層のみで形成された走査線 $X_1 \sim X_m$ での電圧降下による信号遅延を防止し、迅速にスイッチトランジスタ 21及び保持トランジスタ 22をスイッチして良好に駆動することが可能となる。 #### [0075] ### [ディスプレイパネルの駆動方法] ディスプレイパネル1をアクティブマトリクス方式で駆動するには、次のようになる。 すなわち、図7に示すように、走査線X1~Xmに接続された選択ドライバによって、走査 線 X₁から走査線 X_mへの順 (走査線 X_mの次は走査線 X₁) にハイレベルのシフトパルスを 順次出力することにより走査線X1~Xmを順次選択する。また、選択期間に各給電配線9 ○を介して供給線Z1~Zmにそれぞれ接続された駆動トランジスタ23に書込電流を流す ための書込給電電圧VLを印加し、発光期間に駆動トランジスタ23を介して有機EL素 子20に駆動電流を流すための駆動給電電圧VHを印加する給電ドライバが各給電配線9 0に接続されている。この給電ドライバによって、選択ドライバと同期するよう、供給線 Z₁から供給線Z_nへの順(供給線Z_nの次は供給線Z₁)にローレベル(有機EL素子20 の対向電極の電圧より低レベル)の書込給電電圧VLを順次出力することにより供給線 Z1 ~ Z m を順次選択する。また、選択ドライバが各走査線 X 1 ~ X m を選択している時に、デ ータドライバが書込電流である書込電流(電流信号)を所定の行の駆動トランジスタ23 のソースードレイン間を介して全信号線 $Y_1 \sim Y_n$ に流す。このとき供給線 $Z_1 \sim Z_n$ に接続 された給電配線90には、給電ドライバによって絶縁基板2の左右周縁に位置する給電配 線90の両端部である配線端子の両方からローレベルの書込給電電圧VLが出力される。 なお、対向電極20c及び共通配線91は配線端子によって外部と接続され、一定のコモ ン電位Vcom(例えば、接地=0ボルト)に保たれている。 ### [0076] 信号線 $Y_1 \sim Y_n$ の延在した方向を垂直方向(列方向)といい、走査線 $X_1 \sim X_m$ の延在した方向を水平方向(行方向)という。また、m, nは2以上の自然数であり、走査線Xに 下付けした数字は図1において上からの配列順を表し、供給線Zに下付けした数字は図1において上からの配列順を表し、信号線Yに下付けした数字は図1において左からの配列順を表し、画素回路Pに下付けした数字の前側が上からの配列順を表し、後ろ側が左からの配列順を表す。すなわち、 $1\sim m$ のうちの任意の自然数を i とし、1 から n のうちの任意の自然数を i とし、i から i 行目であり、信号線i は左から i 列目であり、信号線i は左から i 列目であり、画素回路i に接続されている。 # [0077] 画素回路 $P_{i,j}$ は、画素としての有機EL素子20と、有機EL素子20の周囲に配置された三つのN チャネル型のアモルファスシリコン薄膜トランジスタ(以下単にトランジスタと記述する。)21, 22, 23と、キャパシタ24と、を備える。 # [0078] 各選択期間において、データドライバ側の電位は、給電配線90、90、…及び供給線 Z₁~Z_nに出力された書込給電電圧 VL以下で且つこの書込給電電圧 VLはコモン電位 Vco m以下に設定されている。したがってこの時、有機 E L 素子 2 0 から信号線 Yı~Yıに流 れることはないので図2に示すように、データドライバによって階調に応じた電流値の書 込電流(書込電流)が矢印Aの通り、信号線Y1~Ynに流れ、画素回路Pi.jにおいては 給電配線90及び供給線 Ziから駆動トランジスタ23のソースードレイン間、スイッチ トランジスタ21のソースードレイン間を介して信号線 Y;に向かった書込電流(書込電 流)が流れる。このように駆動トランジスタ23のソースードレイン間を流れる電流の電 流値は、データドライバによって一義的に制御され、データドライバは、外部から入力さ れた階調に応じて書込電流(書込電流)の電流値を設定する。書込電流(書込電流)が流 れている間、i行目のPi,1~Pi,nの各駆動トランジスタ23のゲート23g-ソース2 3 s 間の電圧は、それぞれ信号線Y1~Ynに流れる書込電流(書込電流)の電流値、つま り駆動トランジスタ23のVg- I ds特性の経時変化にかかわらず駆動トランジスタ23 のドレイン 2 3 d - ソース 2 3 s 間を流れる書込電流(書込電流)の電流値に見合うよう に強制的に設定され、この電圧のレベルに従った大きさの電荷がキャパシタ24にチャー ジされて、書込電流(書込電流)の電流値が駆動トランジスタ23のゲート23g-ソー ス23 s 間の電圧のレベルに変換される。その後の発光期間では、走査線 X i がローレベ ルになり、スイッチトランジスタ21及び保持トランジスタ22がオフ状態となるが、オ フ状態の保持トランジスタ22によってキャパシタ24の電極24A側の電荷が閉じ込め られてフローティング状態になり、駆動トランジスタ23のソース23sの電圧が選択期 間から発光期間に移行する際に変調しても、駆動トランジスタ23のゲート23g-ソー ス23 s 間の電位差がそのまま維持される。この発光期間では、供給線 Z i 及びそれに接 続された給電配線90の電位が駆動給電電圧VHとなり、有機EL素子20の対向電極2 0 c の電位 V comより高くなることによって、供給線 Z i 及びそれに接続された給電配線 9 ○から駆動トランジスタ23を介して有機EL素子20に駆動電流が矢印Bの方向に流れ 、有機EL素子20が発光する。駆動電流の電流値は駆動トランジスタ23のゲート23 g-ソース23s間の電圧に依存するため、発光期間における駆動電流の電流値は、選択 期間における書込電流(引抜電流)の電流値に等しくなる。 #### [0079] 接地=0ボルト)に保たれている。 # [0080] 走沓線X;の選択期間においては、i行目の走査線X;にシフトパルスが出力されている から、スイッチトランジスタ21及び保持トランジスタ22がオン状態となる。各選択期 間において、データドライバ側の電位は、給電配線90、90、…及び供給線21~20に 出力されたクロック信号のローレベル以下で且つこのクロック信号のローレベルはコモン 電位Vcom以下に設定されている。したがってこの時、有機EL素子20から信号線Y1~ Ynに流れることはないので図2に示すように、データドライバによって階調に応じた電
流値の書込電流(引抜電流)が矢印Aの通り、信号線Υ1~Υ1に流れ、画素回路Ρ:.;に おいては給電配線90及び供給線乙iから駆動トランジスタ23のソースードレイン間、 スイッチトランジスタ21のソースードレイン間を介して信号線Y;に向かった書込電流 (引抜電流) が流れる。このように駆動トランジスタ23のソースードレイン間を流れる 電流の電流値は、データドライバによって一義的に制御され、データドライバは、外部か ら入力された階調に応じて書込電流(引抜電流)の電流値を設定する。書込電流(引抜電 流) が流れている間、i行目のPi,1~Pi,nの各駆動トランジスタ23のゲート23gー ソース23s間の電圧は、それぞれ信号線Y1~Ynに流れる書込電流(引抜電流)の電流 値、つまり駆動トランジスタ23のVg- I ds特性の経時変化にかかわらず駆動トランジ スタ23のドレイン23d-ソース23s間を流れる書込電流(引抜電流)の電流値に見 合うように強制的に設定され、この電圧のレベルに従った大きさの電荷がキャパシタ24 にチャージされて、書込電流(引抜電流)の電流値が駆動トランジスタ23のゲート23 g-ソース23 s 間の電圧のレベルに変換される。その後の発光期間では、走査線Xiが ローレベルになり、スイッチトランジスタ21及び保持トランジスタ22がオフ状態とな るが、オフ状態の保持トランジスタ22によってキャパシタ24の電極24A側の電荷が 閉じ込められてフローティング状態になり、駆動トランジスタ23のソース23sの電圧 が選択期間から発光期間に移行する際に変調しても、駆動トランジスタ23のゲート23 g-ソース23 s 間の電位差がそのまま維持される。この発光期間のうち、いずれの行の 選択期間でもない間、つまり、クロック信号が給電配線90及び供給線乙の電位が有機 E L 素子 2 0 の対向電極 2 0 c 及び給電配線 9 0 の電位 V comより高いハイレベルの間、 より高電位の給電配線90及び供給線乙iから駆動トランジスタ23のソースードレイン 間を介して有機EL素子20に駆動電流が矢印Bの方向に流れ、有機EL素子20が発光 する。駆動電流の電流値は駆動トランジスタ23のゲート23g-ソース23s間の電圧 に依存するため、発光期間における駆動電流の電流値は、選択期間における書込電流(引 抜電流)の電流値に等しくなる。また発光期間において、いずれかの行の選択期間の間、 つまりクロック信号がローレベルである時は、給電配線 9 0 及び供給線 Z i の電位が対向 電極20c及び給電配線90の電位Vcom以下であるので、有機EL素子20に駆動電流 は流れず発光しない。 #### [0081] 何れの駆動方法においても、スイッチトランジスタ21は、駆動トランジスタ23のソース23sと信号線Yとの間の電流のオン(選択期間)・オフ(発光期間)を行うものとして機能する。また、保持トランジスタ22は、選択期間に駆動トランジスタ23のソース23sードレイン23d間に電流が流れることができる状態にし、発光期間に駆動トランジスタ23のゲート23gーソース23s間の電圧を保持するものとして機能する。そして、駆動トランジスタ23は、発光期間中に供給線Z及び給電配線90がハイレベルになった時に、階調に応じた大きさの電流を有機EL素子20に流して有機EL素子20を駆動するものとして機能する。 #### [0082] 以上のように、給電配線90を流れる電流の大きさは一列の供給線Ziに接続されたn個の有機EL素子20に流れる駆動電流の大きさの和になるので、VGA以上の画素数で動画駆動するための選択期間に設定した場合、給電配線90の寄生容量が増大してしまい、薄膜トランジスタのゲート電極又はソース、ドレイン電極のような薄膜からなる配線で はn個の有機EL素子20に書込電流(つまり駆動電流)を流すには抵抗が高すぎるが、本実施形態では、画素回路 $P_{1,1} \sim P_{m,n}$ の薄膜トランジスタのゲート電極やソース、ドレイン電極とは異なる導電層によって給電配線90を構成しているので給電配線90による電圧降下は小さくなり、短い選択期間であっても遅延なく十分に書込電流(引抜電流)を流すことができる。そして、給電配線90を厚くすることで給電配線90を低抵抗化したので、給電配線90の幅を狭くすることができる。そのため、ボトムエミッションの場合、画素開口率の減少を最小限に抑えることができる。 # [0083] ### [0084] また、ELディスプレイパネル1をトップエミッション型として用いた場合、対向電極20cをより薄膜化ことが可能なので、有機EL層20bを発した光が対向電極20cを透過中に減衰し難くなる。更に、平面視して水平方向に隣り合う画素電極20aの間に共通配線91が設けられているため、画素開口率の減少を最小限に抑えることができる。 #### [0085] [給電配線及び共通配線の幅、断面積及び抵抗率] 上述した二通りの駆動方法のうち後者の駆動方法でディスプレイパネルを駆動する場合においては、給電配線90,90,…は、絶縁基板2の一方の周縁に配置された第一の引き回し配線によって互いに導通しているため、外部からのクロック信号により等電位となっている。さらに、第一の引き回し配線は、絶縁基板2の両端部においてそれぞれ配線端子と接続している。外部駆動回路から配線端子に印加される電圧はともに等電位のため、すみやかに給電配線90,90,…全体に電流を供給することができる。 ### [0086] 共通配線 9 1, 9 1, …は、絶縁基板 2 の第一の引き回し配線が設けられている周縁とは別の周縁に配置された第二の引き回し配線によって互いに接続され、共通電圧 V s s が印加されている。第二の引き回し配線と第一の引き回し配線は絶縁されている。 # [0087] ここで、ディスプレイパネル1の画素数をWXGA(768×1366)としたときに、給電配線90及び共通配線91の望ましい幅、断面積を定義する。図9は、各サブピクセルの駆動トランジスタ23及び有機EL素子20の電流-電圧特性を示すグラフである #### [0088] 図9において、縦軸は1つの駆動トランジスタ23のソース23sードレイン23d間を流れる書込電流の電流値又は1つの有機EL素子20のアノードーカソード間を流れる駆動電流の電流値であり、横軸は1つの駆動トランジスタ23のソース23sードレイン23d間の電圧(同時に1つの駆動トランジスタ23のゲート23gードレイン23d間の電圧)である。図中、実線Ids maxは、最高輝度階調(最も明るい表示)のときの書込電流及び駆動電流であり、一点鎖線Ids midは、最高輝度階調と最低輝度階調との間の中間輝度階調のときの書込電流及び駆動電流であり、二点鎖線Vpoは駆動トランジスタ23の不飽和領域(線形領域)と飽和領域との閾値つまりピンチオフ電圧であり、三点鎖線Vdsは駆動トランジスタ23のソース23sードレイン23d間を流れる書込電流であり、破線Ielは有機EL素子20のアノードーカソード間を流れる駆動電流である。 #### [0089] ここで電圧 VP1は、最高輝度階調時の駆動トランジスタ23のピンチオフ電圧であり、電圧 VP2は、駆動トランジスタ23が最高輝度階調の書込電流が流れるときのソースードレイン間電圧であり、電圧 VELmax(電圧 VP4-電圧 VP3)は有機 EL素子20が最高輝度階調の書込電流と電流値が等しい最高輝度階調の駆動電流で発光するときのアノードーカソード間の電圧である。電圧 VP2'は、駆動トランジスタ23が中間輝度階調の書込電流が流れるときのソースードレイン間電圧であり、電圧(電圧 VP4'ー電圧 VP3')は有機 EL素子20が中間輝度階調の書込電流と電流値が等しい中間輝度階調の駆動電流で発光するときのアノードーカソード間電圧である。 # [0090] 駆動トランジスタ23及び有機EL素子20はいずれも飽和領域で駆動させるために、 (給電配線90の発光期間時の電圧VH)から(共通配線91の発光期間時の電圧Vcom) を減じた値VXは下記の式(2)を満たす。 # [0091] $VX = Vpo + Vth + Vm + VEL \cdots (2)$ # [0092] Vth (最高輝度時の場合 VP2-VP1に等しい) は駆動トランジスタ23の閾値電圧であり、VEL (最高輝度時の場合 VELmaxに等しい) は有機EL素子20のアノードーカソード間電圧であり、Vmは、階調に応じて変位する許容電圧である。 ### [0093] # [0094] 有機EL素子20は低分子EL材料及び高分子EL材料にかかわらず一般的に経時劣化し、高抵抗化する。10000時間後のアノードーカソード間電圧は初期時の1.46~数倍程度になることが確認されている。つまり、電圧VELは、同じ輝度階調時でも時間が経つ程高くなる。このため、駆動初期時の許容電圧Vmが高い程長期間にわたって動作が安定するので、電圧VELが8V以上、より望ましくは<math>13V以上となるように電圧VXを設定している。 #### [0095] この許容電圧Vmには、有機EL素子20の高抵抗化ばかりでなく、さらに、給電配線90による電圧降下の分も含まれる。 #### [0096] 給電配線90の配線抵抗のために電圧降下が大きいとディスプレイパネル1の消費電力が著しく増大してしまうため、給電配線90の電圧降下は1V以下に設定することが特に好ましい。 ### [0097] 行方向の一つの画素の長さである画素幅Wpと、行方向の画素数(1366)と、画素領域以外における第一の引き回し配線から一方の配線端子までの延長部分と、画素領域以外における第一の引き回し配線から他方の配線端子までの延長部分と、を考慮した結果、ディスプレイパネル1のパネルサイズが32インチ、40インチの場合、第一の引き回し配線の全長はそれぞれ706. 7mm、895. 2mmとなる。ここで、給電配線90の線幅WL及び共通配線91の線幅WLが広くなると、構造上有機EL層20bの面積が小さくなり、さらに他の配線との重なり寄生容量を発生してさらなる電圧降下をもたらすため、給電配線90の幅WL及び共通配線91の線幅WLはそれぞれ画素幅Wpの5分の1以下に抑えることが望ましい。このようなことを考慮すると、ディスプレイパネル1のパネルサイズが32インチ、40インチの場合、幅WLはそれぞれ34 μ m以内、44 μ m以内となる。また給電配線90及び共通配線91の最大膜厚11 maxは12 mu、12 mu、13 mu、14 15 mu、15 mu 15 たがって給電配線 9 0 及び共通配線 9 1 の最大断面積 S \max は 3 2 インチ、 4 0 インチで、それぞれ 2 0 4 μ m^2 、 2 6 4 μ m^2 となる。 # [0098] ### [0099] そして、40インチのディスプレイパネル1について、最大電流が流れるように全点灯したときの給電配線90及び共通配線91のそれぞれの最大電圧降下を1V以下にするためには図12に示すように、給電配線90及び共通配線91のそれぞれの配線抵抗率 ρ /断面積Sは2.4 Ω /cm以下に設定される必要がある。図13に40インチのディスプレイパネル1の給電配線90及び共通配線91のそれぞれの断面積と電流密度の相関関係を表す。 # [0100] 給電配線90及び共通配線91の故障により動作しなくなる故障寿命MTFは、下記の式(3)を満たす。 # [0101] $MTF = A exp (Ea/K_bT) / \rho J^2 \cdots (3)$ # [0102] E a は活性化エネルギー、K_b T = 8. 6 1 7 × 1 0 - 5 e V、 ρ は給電配線 9 0 及び共通配線 9 1 の抵抗率、 J は電流密度である。 # [0103] 給電配線 9 0 及び共通配線 9 1 の故障寿命MTFは抵抗率の増大やエレクトロマイグレーションに律速する。給電配線 9 0 及び共通配線 9 1 を A 1 系(A 1 単体或いは A 1 T i や A 1 N d 等の合金)に設定し、MTFが 1 0 0 0 0 0 時間、8 5 $\mathbb C$ の動作温度で試算すると、電流密度 J は 2 . 1×10^4 A / c m^2 以下にする必要がある。同様に給電配線 9 0 及び共通配線 9 1 を C u に設定すると、2 . 8×10^6 A / c m^2 以下にする必要がある。なお A 1 合金内の A 1 以外の材料は A 1 よりも低い抵抗率であることを前提としている。 これらのことを考慮して、32 インチのディスプレイパネル1 では、全点灯状態で1000 の時間に給電配線90 及び共通配線91 が故障しないような1 系の給電配線90 及び共通配線10 を のそれぞれの断面積10 という。 10 ### [0104] そして 40 インチのディスプレイパネル 1 では、全点灯状態で 10000 時間に給電配線 90 及び共通配線 91 が故障しないような A1 系の給電配線 90 及び共通配線 91 のそれぞれの断面積 S は、図 13 から、 92 μ m^2 以上必要になり、同様に Cu の給電配線 90 及び共通配線 91 のそれぞれの断面積 S は、図 13 から、0.69 μ m^2 以上必要になる。 ### [0105] A 1 系の給電配線 9 0 及び共通配線 9 1 では、A 1 系の抵抗率が 4 . 0 0 μ Ω c m E すると、3 2 インチのディスプレイパネル 1 では上述のように配線抵抗率 ρ / 断面積 S が 4 . 7 Ω / c m以下なので、最小断面積 S m in は 8 5 . 1 μ m E となる。このとき上述のように給電配線 9 0 及び共通配線 9 1 の配線幅WLは 3 4 μ m 以内なので給電配線 9 0 及び共通配線 9 1 の最小膜厚 H m in は E 2 . 5 0 μ m E となる。 ### [0106] またA 1 系の給電配線 9 0 及び共通配線 9 1 の 4 0 インチのディスプレイパネル 1 では上述のように配線抵抗率 ρ / 断面積 S が 2 . 4 Ω / c m以下なので、最小断面積 S minは 1 6 7 μ m² となる。このとき上述のように給電配線 9 0 及び共通配線 9 1 の配線幅WLは 4 4 μ m以内なので給電配線 9 0 及び共通配線 9 1 の最小膜厚 H minは 3 . 8 0 μ m となる。 # [0107] C u の給電配線 9 0 及び共通配線 9 1 では、C u の抵抗率が 2 . 1 0 μ Ω c m と すると、3 2 インチのディスプレイパネル 1 では上述のように配線抵抗率 ρ / 断面積 S が 4 . 7 Ω / c m 以下なので、最小断面積 S m i n は 4 4 . 7 μ m 2 となる。このとき上述のように給電配線 9 0 及び共通配線 9 1 の配線幅 W L は 3 4 μ m 以内なので給電配線 9 0 及び共通配線 9 1 の最小膜厚 H m i n は 1 . 3 1 μ m となる。 # [0108] またCuの給電配線90及び共通配線91の40インチのディスプレイパネル1では上述のように配線抵抗率 ρ /断面積Sが2. 40 ℓ 0 m以下なので、最小断面積 ℓ 0 minは ℓ 0 ℓ 1 が ℓ 2 をなる。このとき上述のように給電配線 ℓ 2 0及び共通配線 ℓ 3 の配線幅WLは ℓ 4 ℓ 4 m以内なので給電配線 ℓ 9 0及び共通配線 ℓ 9 1の最小膜厚 ℓ 8 minは ℓ 1. ℓ 9 9 ℓ 9 mとなる。 #### [0109] #### [0110] 総じてA 1 系の給電配線 9 0 及び共通配線 9 1 の場合、膜厚 H が 2 . 5 0 μ m \sim 6 μ m 、幅WLが 1 4 . 1 μ m \sim 4 4 μ m 、抵抗率が 4 . 0 μ Ω c m \sim 9 . 6 μ Ω c m ν 2 る。 同様に、給電配線 9 0 及び共通配線 9 1 が C u の 3 2 インチのパネルでは、膜厚 H が 1 . 3 1 μ m \sim 6 μ m 、幅WLが 7 . 4 5 μ m \sim 3 4 μ m 、抵抗率が 2 . 1 μ Ω c m \sim 9 . 6 μ Ω c m ν 2 なり、給電配線 9 0 及び共通配線 9 1 が C u 系の場合、膜厚 H が 1 . 9 9 μ m \sim 6 μ m 、幅WLが 1 4 . 6 μ m \sim 4 4 . 0 μ m 、抵抗率が 2 . 1 μ Ω c m \sim 9 . 6 μ Ω c m ν となる。 #### [0111] したがって、給電配線 9 0 及び共通配線 9 1 として A 1 系材料又は C u を適用した場合、ディスプレイパネル 1 の給電配線 9 0 及び共通配線 9 1 は、膜厚 H が 1. 3 1 μ m \sim 6 μ m、幅WLが 7. 4 5 μ m \sim 4 4 μ m、抵抗率が 2. 1 μ Ω c m \sim 9. 6 μ Ω c m \sim 2 る。 # [0112] 以上のように、水平方向の赤サブピクセルPrの列と緑サブピクセルPgの列との間において凸設された共通配線91がトランジスタ21~23の電極とは別層で形成されているから、共通配線91を厚膜にすることができ、共通配線91を低抵抗化することができる。そして、低抵抗な共通配線91が対向電極20cに導通しているから、対向電極20c自体が薄膜化してより高抵抗になっても対向電極20cの電圧を面内で一様にすることができる。従って、仮に全てのサブピクセル電極20aに同じ電位を印加した場合でも、どの有機EL層20bの発光強度もほぼ等しくなり、面内の発光強度を一様することができる。 # [0113] また、ディスプレイパネル1をトップエミッション型として用いた場合、対向電極20cをより薄膜化することが可能なので、有機EL層20bを発した光が対向電極20cを透過中に減衰し難くなる。更に、平面視して垂直方向に隣り合うサブピクセル電極20aの間に共通配線91が設けられているため、画素開口率の減少を最小限に抑えることができる。 # [0114] また、水平方向の緑サブピクセルPgの列と青サブピクセルPbの列との間において凸設された選択配線89がトランジスタ21~23の電極とは別層で形成されているから、選択配線89を厚膜にすることができ、選択配線89を低抵抗化することができる。低抵抗な選択配線89が薄膜の走査線Xに積層されているから、走査線Xの電圧降下を抑えることができ、更には走査線X及び選択配線89の信号遅延を抑えることができる。即ち、水平方向のサブピクセルPの列に着目した場合、シフトパルスがどのサブピクセルPでも遅延せずに同時にハイレベルになる。 # [0115] 更に、選択配線89を厚くすることで選択配線89を低抵抗化したので、選択配線89 の幅を狭くすることができる。そのため、画素開口率の減少を最小限に抑えることができ る。 # [0116] また、水平方向の青サブピクセルPbの列と赤サブピクセルPrの列との間において凸設された給電配線90がトランジスタ21~23の電極とは別層で形成されているから、給電配線90を厚膜にすることができ、給電配線90を低抵抗化することができる。低抵抗な給電配線90が薄膜の供給線2に積層されているから、供給線2の電圧降下を抑えることができ、更には供給線2及び給電配線90の信号遅延を抑えることができる。例えば、仮に給電配線90がない場合にディスプレイパネル1を大画面化したときには、供給線2の電圧降下によって面内の発光強度のムラが発生したり、発光しない有機EL素子20が存在したりするおそれがある。しかしながら、本実施形態では、低抵抗な給電配線90が供給線2に導通しているから、面内の発光強度のムラを抑えることができ、更に発光しない有機EL素子20をなくすことができる。 # [0117] 更に、給電配線 9 0 を厚くすることで給電配線 9 0 を低抵抗化したので、給電配線 9 0 の幅を狭くすることができる。そのため、画素開口率の減少を最小限に抑えることができる。 #### [0118] また、凸設された選択配線89、給電配線90及び共通配線91が厚く設けられているから、有機EL層20bを湿式塗布法によって色ごとに塗り分けることができる。そのため、サブピクセルPの間を仕切るバンクを別途設ける必要がなくなり、ディスプレイパネル1を簡単に製造することができる。 #### [0119] # 〔変形例1〕 なお、本発明は、上記実施の形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行っても良い。 ### [0120] 上記実施形態では、トランジスタ21~23がNチャネル型の電界効果トランジスタとして説明を行った。トランジスタ21~23がPチャネル型の電界効果トランジスタであっても良い。その場合、図2の回路構成では、トランジスタ21~23のソース21s,22s,23sとトランジスタ21~23のドレイン21d,22d,23dの関係が逆になる。例えば、駆動トランジスタ23がPチャネル型の電界効果トランジスタの場合には、駆動トランジスタ23のドレイン23dが有機EL素子20のサブピクセル電極20aに導通し、ソース23sが供給線Zに導通する。 # [0121] # 〔変形例2〕 また、上記実施形態では、1ドットのサブピクセルPにつき3つのトランジスタ21~23が設けられているが、1ドットのサブピクセルPにつき1又は複数のトランジスタが設けられ、これらトランジスタを用いてアクティブ駆動することができるディスプレイパネルであれば、トランジスタの数や電流駆動、電圧駆動の制限なく本発明を適用することができる。 # [0122] # 「変形例3]
また、上記実施形態では、水平方向の緑サブピクセルPgの行と青サブピクセルPbの行との間において選択配線89が凸設されているが、共通配線91と同様の共通配線が凸設されていても良い。その場合、共通配線の下には溝35が設けられておらず、共通配線が走査線Xに対して絶縁され、撥液性導電層55と同様の撥液性導電層がその共通配線の表面にコーティングされ、その共通配線が対向電極20cに導通している。 #### [0123] #### [変形例4] また、上記実施形態では、信号線Yがゲートレイヤーからパターニングされたものであるが、信号線Yがドレインレイヤーからパターニングされたものでも良い。この場合、走査線X及び供給線Zがゲートレイヤーからパターニングされたものとなり、信号線Yが走査線X及び供給線Zよりも上層になる。 ### [0124] # 〔変形例5〕 また、上記実施形態では、共通配線91は垂直方向に隣り合う赤サブピクセルPェと緑サブピクセルPgの間に配置され、走査線X及び選択配線89は垂直方向に隣り合う緑サブピクセルPgと青サブピクセルPbとの間に配置され、供給線乙及び給電配線90は青サブピクセルPェと縁サブピクセルPェとの間に配置されているが、赤サブピクセルPェと縁サブピクセルPgの間に走査線X及び選択配線89、或いは供給線乙及び給電配線90を配置してもよく、緑サブピクセルPgと青サブピクセルPbとの間に共通配線91、或いは供給線乙及び給電配線90を配置してもよく、青サブピクセルPbと隣の画素3の赤サブピクセルPェとの間に共通配線91、或いは走査線X及び選択配線89を配置してもよい。つまり、、上記実施形態では、供給線乙及び給電配線90、走査線X及び選択配線89、走査線X及び選択配線89の順に配列したが、必ずしもこの順に配列しなくてもよい。 # [0125] #### 「変形例5] また、上記実施形態では、行毎に、赤サブピクセルPrの有機EL層20b、、緑サブピクセルPgの有機EL層20b、青サブピクセルPbの有機EL層20bの順に繰り返し配列したが、必ずしもこの順に配列しなくてもよい。 また上記変形例を複数組み合わせてもよい。 # 【図面の簡単な説明】 #### [0126] - 【図1】ディスプレイパネル1の4ピクセルの画素3を示した平面図である。 - 【図2】ディスプレイパネル1のサブピクセルPの等価回路図である。 - 【図3】赤サブピクセルPrの電極を示した平面図である。 - 【図4】緑サブピクセルPgの電極を示した平面図である。 - 【図5】青サブピクセルPbの電極を示した平面図である。 - 【図6】図3~図5に示された面IV-IVの矢視断面図である。 - 【図7】ディスプレイバネル1の駆動方法を説明するためのタイミングチャートである。 - 【図8】ディスプレイパネル1の別の駆動方法を説明するためのタイミングチャート 出証特2005-3063245 である。 【図9】各サブピクセルの駆動トランジスタ23及び有機EL素子20の電流-電圧 特性を示すグラフである。 【図10】32インチのディスプレイパネル1の給電配線90及び共通配線91のそれぞれの最大電圧降下と配線抵抗率 ρ /断面積Sの相関を示すグラフである。 【図11】32インチのディスプレイパネル1の給電配線90及び共通配線91のそれぞれの断面積と電流密度の相関を示すグラフである。 【図12】40インチのディスプレイパネル1の給電配線90及び共通配線91のそれぞれの最大電圧降下と配線抵抗率ρ/断面積Sの相関を示すグラフである。 【図13】40インチのディスプレイパネル1の給電配線90及び共通配線91のそれぞれの断面積と電流密度の相関を示すグラフである。 # 【符号の説明】 # [0127] - 1 ディスプレイパネル - 20a サブピクセル電極 - 20b 有機EL層 - 20c 対向電極 - 21 スイッチトランジスタ - 22 保持トランジスタ - 23 駆動トランジスタ - 21d, 22d, 23d FV12 - 21s, 22s, 23s ソース - 21g, 22g, 23g ゲート - 31 ゲート絶縁膜 - 50 トランジスタアレイ基板 - 53 疎水絶縁膜 - 5 4 疎水絶縁膜 - 5 5 撥液性導電層 - 89 選択配線 - 90 給電配線 - 91 共通配線 - P サブピクセル 【書類名】図面【図1】 【図2】 【図4】 出証特 2 0 0 5 - 3 0 6 3 2 4 5 SAMSUNG EX. 1002 - 889/899 【図7】 [图8] [図9] 【図10】 【図11】 出証特 2 0 0 5 - 3 0 6 3 2 4 5 SAMSUNG EX. 1002 - 894/899 [図12] 【図13】 出証特 2 0 0 5 - 3 0 6 3 2 4 5 SAMSUNG EX. 1002 - 895/899 【書類名】要約書 【要約】 【課題】電圧降下を抑えること。 【選択図】図1 特願2004-283824 出願人履歴情報 識別番号 [000001443] 1. 変更年月日 1998年 1月 9日 [変更理由] 住 所 住所変更 東京都渋谷区本町1丁目6番2号 氏名 力 ## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record ## **BEST AVAILABLE IMAGES** Defective images within this document are accurate representations of the original documents submitted by the applicant. Defects in the images include but are not limited to the items checked: | □ BLACK BORDERS | |---| | ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES | | A FADED TEXT OR DRAWING | | ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING | | ☐ SKEWED/SLANTED IMAGES | | ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS | | ☐ GRAY SCALE DOCUMENTS | | ☐ LINES OR MARKS ON ORIGINAL DOCUMENT | | ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY | | | ## IMAGES ARE BEST AVAILABLE COPY. OTHER: As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox. | | | MULT | TPLE DEP | ENDENT | | SERVAL | SERIAL NO. APPLICANT(S) | | | | TE | | | |-----|-----------|------------|----------|------------------------|-----|-----------|-------------------------|------|-----|--------|-------|-----|----------| | | 16 | FEE | CALCUL | ATION SI | | APPLICA | | | | | | | | | - | | | | | | | ZAIMS | | | | _ | | _ | | | - | AS FILED * | | ANTEK 18T
AMENDMENT | | DIMENT * | 110 | 1 | 8 | - | | | | | | 90 | DEP | DID. | Der | aro | DEP | | BrD | DEP | BID | DEP | 840 | De | | _1 | | 1 | | | | | 51 | - | | | | | | | 2 | 1 | | - | | | | 52 | - | | | | | | | 3 | - | 11 | | | | - | 53 | - | | - | | | _ | | 5 | | 1.1 | | | | | 54 | + | | | 73 30 | 100 | - | | | | 1 | | 197 | | | 56 | | | | 3 | | - | | 7 | | 1 | (| | | | 57 | - | | | | | - | | | - | 1 | | | | | 50 | | | | | | | | | AF = - | 8 | + | | | | 59 | | | | 11.00 | | 1.04 | | 10 | | | | | | | 60 | | | المشار | | | | | 11 | | 1 1 | | -1.00 | | | 61 | | | | | | | | 12 | - | | , | | | | 62 | 7 | | | | | | | 13 | - | 1 | | | | - | 63 | | _ | 7 | | | | | 14 | 1 | 1 | | | - | - | 64 | | _ | | | | | | 15 | 1 | 1 | | - | - | - | 65 | 1 | - | - | _ | - | | | 17 | 1 | 1 1 | - 3 | - | | | 66 | | - 1 | | | - | _ | | 18 | | 111 | | | | | 68 | | - | - | - | - | | | 19 | | 1 | | | | | 69 | | | - | - | | - | | 20 | | | | | | | 70 | 5 | | - | - | | | | 21 | 1 | 0,000 | | | | | 71 | | | | | | | | 22 | 111 | 1 | | | 11 | 100.17 | 72 | | | | | - | | | 23 | - | 1 | *1 | | | | 73 | | | | | | | | 24 | - | | - 8 | | | | 74 | | | 1 | | = - | | | 25 | | - | | | _ | | 75 | | | | | | | | 26 | | | - | | - | | 76 | | | - | - | | _ | | 28 | 7 | | | _ | _ | | 77 | - | - | - | | | - | | 29 | | | | | | | 79 | | - | | - | - | _ | | 30 | | | | | | | 80 | | | | _ | | - | | 31 | | 100 | | | | | 81 | | - | | | | | | 32 | | 7 | | | | | 82 | 5-01 | 1.0 | | | | | | 33 | Target 10 | | | | | | 83 | | _ | | | 1 | | | 34 | | + | | | | 8 | 84 | | | | | | | | 35 | | | | | | | 85 | | | | | | | | 36 | | | | | | | 86 | | | | | | | | 17 | | - | | - | - | | 87 | | | | | | | | 9 | | - | | _ | _ | | 88 | | _ | | | | _ | | 0 | - | | | - | | | 89 | | _ | | - | - | _ | | 1 | | | - | _ | | | 90 | | _ | - | | - | _ | | 2 | | | | _ | _ | - | 91 | | - | - | - | | | | 3 | | | 7 10 7 | | | | 93 | | | | | _ | | | 4 | | | | | | | 94 | | | | | | | | 5 | | | | | | | 95 | | | | | 7 7 | | | 6 . | | | | 3-11 | | | 96 | | | | | | | | 7 | | | | | | | 97 | | | 2 4 1 | | | | | | | | | | 1/1 | | 98 | | 4: | | | | | | 9 | | | | | | | 99 | | | | | | | | • | | | _ | | | | 100 | | - | | | | | | NO. | 4 | 1 - | | - | | J | TOTAL MD. | | 1 - | | 1 - | | I | | - 1 | 30 | 松海 | | | | 野瀬 | DEP.
TOTAL
CLAMS | | NO. | | 经款 | | % | PTO-1360 (Repacation providence)