
CSci 493.65 Parallel Computing

Chapter 2 Parallel Architectures and Interconnection Networks

Prof. Stewart Weiss

Chapter 2 Parallel Architectures and Interconnection

Networks

�The interconnection network is the heart of parallel architecture.� - Chuan-Lin and Tse-Yun
Feng [1]

2.1 Introduction

You cannot really design parallel algorithms or programs without an understanding of some of the key
properties of various types of parallel architectures and the means by which components can be connected
to each other. Parallelism has existed in computers since their inception, at various levels of design. For
example, bit-parallel memory has been around since the early 1970s, and simultaneous I/O processing (using
channels) has been used since the 1960s. Other forms of parallelism include bit-parallel arithmetic in the
arithmetic-logic unit (ALU), instruction look-ahead in the control unit, direct memory access (DMA), data
pipe-lining, and instruction pipe-lining. However, the parallelism that we will discuss is at a higher level;
in particular we will look at processor arrays, multiprocessors, and multicomputers. We begin, however, by
exploring the mathematical concept of a topology

2.2 Network Topologies

We will use the term network topology to refer to the way in which a set of nodes are connected to each
other. In this context, a network topology is essentially a discrete graph � a set of nodes connected by edges.
Distance does not exist and there is no notion of the length of an edge1. You can think of each edge as being
of unit length.

Network topologies arise in the context of parallel architectures as well as in parallel algorithms. In the
domain of parallel architectures, network topologies describe the interconnections among multiple processors
and memory modules. You will see in subsequent chapters that a network topology can also describe the
communication patterns among a set of parallel processes. Because they can be used in these two di�erent
ways, we will �rst examine them purely as mathematical entities, divorced from any particular application.

Formally, a network topology < S,E > is a �nite set S of nodes together with an adjacency relation
E ⊆ S × S on the set. If v and w are nodes such that (v, w) ∈ E, we say that there is a directed edge
from v to w.2 Sometimes all of the edges in a particular topology will be undirected, meaning that both
(v, w) ∈ E and (w, v) ∈ E. Unless we state otherwise, we will treat all edges as undirected. When two nodes
are connected by an edge, we say they are adjacent. An example of a network topology that should be
quite familiar to the reader is the binary tree shown in Figure 2.1. Notice that the nodes in that �gure are
labeled . A label is an arbitrary symbol used to refer to the node, nothing more.

We will examine the following topologies in these notes:

• Binary tree

• Fully-connected (also called completely-connected)

• Mesh and torus

1Network topologies are a kind of mathematical topological space, for those familiar with this concept, but this is of no

importance to us.
2The reader familiar with graphs will notice that a network topology is essentially a discrete graph.

1

Page 1 of 17 IPR2020-00260 VENKAT KONDA EXHIBIT 2006

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CSci 493.65 Parallel Computing

Chapter 2 Parallel Architectures and Interconnection Networks

Prof. Stewart Weiss

42

1

3 5 76

Figure 2.1: Binary tree topology with 7 nodes.

• Hypercube (also called a binary n-cube)

• Butter�y

2.2.1 Network Topology Properties

Network topologies have properties that determine their usefulness for particular applications, which we now
de�ne.

De�nition 1. A path from node n1 to node nk is a sequence of nodes n1, n2, . . . , nk such that, for 1 ≤ i < k,
ni is adjacent to ni+1. The length of a path is the number of edges in the path, not the number of nodes.

De�nition 2. The distance between a pair of nodes is the length of the shortest path between the nodes.

For example, in Figure 2.1, the distance between nodes 3 and 7 is 6, whereas the distance between nodes 3
and 5 is 2.

De�nition 3. The diameter of a network topology is the largest distance between any pair of nodes in the
network.

The diameter of the network in Figure 2.1 is 4, since the distance between nodes 3 and 7 is 4, and there is no
pair of nodes whose distance is greater than 4. Diameter is important because, if nodes represent processors
that must communicate via the edges, which represent communication links, then the diameter determines
a lower bound on the communication time. (Note that it is a lower bound and not an upper bound; if a
particular algorithm requires, for example, that all pairs of nodes send each other data before the next step
of a computation, then the diameter determines how much time will elapse before that step can begin.)

De�nition 4. The bisection width of a network topology is the smallest number of edges that must be
deleted to sever the set of nodes into two sets of equal size, or size di�ering by at most one node.

In Figure 2.1, edge (1,2) can be deleted to split the set of nodes into two sets {2,3,5} and {1,4,6,7}. Therefore,
the bisection width of this network is 1. Bisection width is important because it can determine the total
communication time. Low bisection width is bad, and high is good. Consider the extreme case, in which a
network can be split by removing one edge. This means that all data that �ows from one half to the other
must pass through this edge. This edge is a bottleneck through which all data must pass sequentially, like a
one-lane bridge in the middle of a four-lane highway. In contrast, if the bisection width is high, then many
edges must be removed to split the node set. This means that there are many paths from one side of the set
to the other, and data can �ow in a high degree of parallelism from any one half of the nodes to the other.

De�nition 5. The degree of the network topology is the maximum number of edges that are incident to a
node in the topology.

The maximum number of edges per node can a�ect how well the network scales as the number of processors
increases, because of physical limitations on how the network is constructed. A binary tree, for example,
has the property that the maximum number of edges per node is 3, regardless of how many nodes are in

2

Page 2 of 17 IPR2020-00260 VENKAT KONDA EXHIBIT 2006

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CSci 493.65 Parallel Computing

Chapter 2 Parallel Architectures and Interconnection Networks

Prof. Stewart Weiss

the tree. This is good, because the physical design need not change to accommodate the increase in number
of processors. Not all topologies have a constant degree. If the degree increases with network size, this
generally means that more connections need to be made to each node. Nodes might represent switches, or
processors, and in either case they have a �xed pin-out, implying that the connections between processors
must be implemented by a complex fan-out of the wires, a very expensive and potentially slow mechanism.

Although the edges in a network topology do not have length, we assume that nodes cannot be in�nitely
small. As a consequence, the de�nition of the topology itself can imply that, as the number of nodes
increases, the physical distance between them must increase. Maximum edge length is a measure of this
property. It is important because the communication time is a function of how long the signals must travel.
It is best if the network can be laid out in three-dimensional space so that the maximum edge length is a
constant, independent of network size. If not, and the edge length increases with the number of processors,
then communication time increases as the network grows. This implies that expanding the network to
accommodate more processors can slow down communication time. The binary tree in Figure 2.1 does not
have a constant maximum edge length, because as the size of the tree gets larger, the leaf nodes must be
placed further apart, which in turn implies that eventually the edges that leave the root of the tree must get
longer.

2.2.2 Binary Tree Network Topology

In a binary tree network, the 2k−1 nodes are arranged in a complete binary tree of depth k−1, as in Figure
2.1. The depth of a binary tree is the length of a path from the root to a leaf node. Each interior node is
connected to two children, and each node other than the root is connected to its parent. Thus the degree is
3. The diameter of a binary tree network with 2k − 1 nodes is 2(k− 1), because the longest path in the tree
is any path from a leaf node that must go up to the root of the tree and then down to a di�erent leaf node.
If we let n = 2k − 1 then 2(k − 1) is approximately 2 log2 n; i.e., the diameter of a binary tree network with
n nodes is a logarithmic function of network size, which is very low.

The bisection width is low, which means it is poor. It is possible to split the tree into two sets di�ering by
at most one node in size by deleting either edge incident to the root; the bisection width is 1. As discussed
above, maximum edge length is an increasing function of the number of nodes.

2.2.3 Fully-Connected Network Topology

In a fully-connected network, every node is connected to every other node, as in Figure 2.2. If there are
n nodes, there will be n(n − 1)/2 edges. Suppose n is even. Then there are n/2 even numbered nodes and
n/2 odd numbered nodes. If we remove every edge that connects an even node to an odd node, then the
even nodes will form a fully-connected network and so will the odd nodes, but the two sets will be disjoint.
There are (n/2) edges from each even node to every odd node, so there are (n/2)2 edges that connect these
two sets. Not removing any one of them fails to disconnect the two sets, so this is the minimum number.
Therefore, the bisection width is (n/2)2. The diameter is 1, since there is a direct link from any node to
every other node. The degree is proportional to n, so this network does not scale well. Lastly, the maximum
edge length will increase as the network grows, because nodes are not arbitrarily small. (Think of the nodes
as lying on the surface of a sphere, and the edges as chords connecting them.)

Figure 2.2: Fully-connected network with 6 nodes.

3

Page 3 of 17 IPR2020-00260 VENKAT KONDA EXHIBIT 2006

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CSci 493.65 Parallel Computing

Chapter 2 Parallel Architectures and Interconnection Networks

Prof. Stewart Weiss

2.2.4 Mesh Network Topology

In a mesh network, nodes are arranged in a q-dimensional lattice. A 2-dimensional lattice with 36 nodes
is illustrated in Figure 2.3. The mesh in that �gure is square. Unless stated otherwise, meshes are usually
square. In general, there are k2 nodes in a 2-dimensional mesh. A 3-dimensional mesh is the logical extension
of a 2-dimensional one. It is not hard to imagine a 3-dimensional mesh. It consists of the lattice points
in a 3-dimensional grid, with edges connecting adjacent points. A 3-dimensional mesh, assuming the same
number of nodes in all dimensions, must have k3 nodes. While we cannot visually depict q-dimensional mesh
networks when q > 3, we can describe their properties. A q-dimensional mesh network has kq nodes. k is
the number of nodes in a single dimension of the mesh. Henceforth we let q denote the dimension of the
mesh.

Figure 2.3: A two-dimensional square mesh with 36 nodes.

The diameter of a q-dimensional mesh network with kq nodes is q(k− 1). To see this, note that the farthest
distance between nodes is from one corner to the diagonally opposite one. An inductive argument is as
follows. In a 2-dimensional lattice with k2 nodes, you have to travel (k − 1) edges horizontally, and (k − 1)
edges vertically to get to the opposite corner, in any order. Thus you must traverse 2(k− 1) edges. Suppose
we have a mesh of dimension q − 1, q > 3. By assumption its diameter is (q − 1)(k − 1). A mesh of one
higher dimension has (k− 1) copies of the (q− 1)-dimensional mesh, side by side. To get from one corner to
the opposite one, you have to travel to the corner of the (q − 1)-dimensional mesh. That requires crossing
(q− 1)(k− 1) edges, by hypothesis. Then we have to get to the kth copy of the mesh in the new dimension.
We have to cross (k− 1) more edges to do this. Thus we travel a total of (q− 1)(k− 1) + (k− 1) = q(k− 1)
edges. This is not rigorous, but this is the idea of the proof.

If k is an even number, the bisection width of a q-dimensional mesh network with kq nodes is kq−1. Consider
the 2D mesh of Figure 2.3. To split it into two halves, you can delete 6 = 61 edges. Imagine the 3D mesh
with 216 nodes. To split it into two halves, you can delete the 36 = 62 vertical edges connecting the 36
nodes in the third and fourth planes. In general, one can delete the edges that connect adjacent copies of
the (q − 1)-dimensional lattices in the middle of the q-dimensional lattice. There are kq−1 such edges. This
is a very high bisection width. One can prove by an induction argument that the bisection width when k is
odd is (kq − 1)/(k− 1). Thus, whether k is even or odd, the bisection width is Θ(kq−1). As there are n = kq

nodes in the mesh, this is roughly q
√

n, which is a very high bisection width. (When q = 2, it is
√

n.)
The degree in a mesh is �xed for each given q: it is always 2q. The maximum edge length is also a constant,
independent of the mesh size, for two- and three-dimensional meshes. For higher dimensional meshes, it is
not constant.

An extension of a mesh is a torus. A torus, the 2-dimensional version of which is illustrated in Figure 2.4,
is an extension of a mesh by the inclusion of edges between the exterior nodes in each row and those in each
column. In higher dimensions, it includes edges between the exterior nodes in each dimension. It is called a
torus because the surface that would be formed if it were wrapped around the nodes and edges with a thin
�lm would be a mathematical torus, i.e., a doughnut. A torus, or toroidal mesh, has lower diameter than a
non-toroidal mesh, by a factor of 2.

4

Page 4 of 17 IPR2020-00260 VENKAT KONDA EXHIBIT 2006

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CSci 493.65 Parallel Computing

Chapter 2 Parallel Architectures and Interconnection Networks

Prof. Stewart Weiss

Figure 2.4: Two-dimensional mesh with toroidal connections.

0 1

10 11

00 01

110 111

100 101

010 011

000 0010

Figure 2.5: Hypercubes of dimensions 0, 1, 2, and 3.

2.2.5 Hypercube (Binary n-Cube)

A binary n-cube or hypercube network is a network with 2n nodes arranged as the vertices of a n-
dimensional cube. A hypercube is simply a generalization of an ordinary cube, the three-dimensional shape
which you know. Although you probably think of a cube as a rectangular prism whose edges are all equal
length, that is not the only way to think about it.

To start, a single point can be thought of as a 0-cube. Suppose its label is 0. Now suppose that we replicate
this 0-cube, putting the copy at a distance of one unit away, and connecting the original and the copy by a
line segment of length 1, as shown in Figure 2.5. We will give the duplicate node the label, 1.

We extend this idea one step further. We will replicate the 1-cube, putting the copy parallel to the original
at a distance of one unit away in an orthogonal direction, and connect corresponding nodes in the copy to
those in the original. We will use binary numbers to label the nodes, instead of decimal. The nodes in the
copy will be labeled with the same labels as those of the original except for one change: the most signi�cant
bit in the original will be changed from 0 to 1 in the copy, as shown in Figure 2.5. Now we repeat this
procedure to create a 3-cube: we replicate the 2-cube, putting the copy parallel to the original at a distance
of 1 unit away in the orthogonal direction, connect nodes in the copy to the corresponding nodes in the
original, and relabel all nodes by adding another signi�cant bit, 0 in the original and 1 in the copy.

It is now not hard to see how we can create hypercubes of arbitrary dimension, though drawing them becomes
a bit cumbersome. A 4-cube is illustrated in Figure 2.6 though.

The node labels will play an important role in our understanding of the hypercube. Observe that

• The labels of two nodes di�er by exactly one bit change if and only if they are connected by an edge.

• In an n-dimensional hypercube, each node label is represented by n bits. Each of these bits can be

5

Page 5 of 17 IPR2020-00260 VENKAT KONDA EXHIBIT 2006

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

