The Host Controller Interface (HCI) 145

Table 7.9
The event HCI_PDU.

Field size comments
HCI Event_Header
Event_Code 1 byte identifies the event

« ‘0xFE’ is reserved for Bluetooth logo specific events

« {0xFF is reserved for vendor-specific events used
during module manufacturing, such as module testing
and debugging operations

Payload_Length 1 byte length of the payload of the event HCI_PDU in bytes
HCI_FEvent_Payload
Payload Payload the payload of an event HCI_PDU is structured as a

_Lengthbytes | sequence of variable-size fields for the various parameters
related to this event

A host uses the command HCI_PDUs for things like:

« setting operational parameters of the module, such as providing
a link key for authentication;

« configuring the module’s operational status and related parame-
ters, for instance causing it to activate and set the related param-
eters for a low power mode;

« reading and writing register entries, like the number of broad-
cast packet repetitions, Npc, and so on.

Depending upon the command, module registers will be read or set,
the link manager will execute an LMP transaction, the link controller will
change state and execute, say, a page, and so on. The host controller noti-
fies the host of the outcome of the command with an event HCI_PDU
cither soon after the command is sent from the host or at a later time
when appropriate—for example, following the termination of an LMP
transaction. The reason that host controller HCI_PDU transmissions to
the host are called events and not responses is that the host controller
may initiate its own request (for instance, requesting a missing link key
from the host) or send a transmission to the host without the host’s prior
action (perhaps notifying it of a connection request coming from a remote
device). Actually, some of the command HCI_PDUs sent from the host
are simply responses to event HCI_PDUs that originated from the host

IPR2020-00202
Apple Inc. EX1057 Page 167

“ mw~wer

146

Chapter 7 » THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

controller. For example, the HC]_Accept_Comzectz'on‘Request command is
sent by the host to the host controller instructing the latter to accept an
incoming connection request from a remote device. Before the host trans-
mits the HC[_Accept_Comzection_Request command, the host controller
notifies the host of the incoming connection request with a
Connection_Request event.

Table 7.10 shows the structure of a data HCI PDU.

Table 7.10
The data HCI_PDU.

field size comments

HCI Data_Header

Connection_Handle 12 bits identifies the baseband link over which these data are

transmitted or received:
connection handles in the range ‘OxF00’ to ‘OxFFF’ are
reserved for future use

Flags 4 bits ACL transmissions: composed of two subfields:
* Packet_Boundary Flag. identifies the beginning or
continuation of an upper-layer (L2CAP) PDU
* Broadcast_Flag: identifies the “spread factor” for the
ACL transmission: point-to-point, broadcast to active
slaves, or broadcast to all slaves including any parked
ones
SCO transmissions: reserved field
Payload_Length 2 bytes length of the payload of the data HCI_PDU in bytes

HCI _Data_Payload

Payload

Payload data to be carried over the ACL or SCO baseband link
_Length identified by the contents of the Connection_Handle field
bytes

Transmission of data HCI_PDUs across the physical interface is
regulated by the buffer sizes available on the receiving side of the PDU.
Both the host and the host controller inquire about the buffer size avail-
able for receiving data HCI_PDUs on the opposite side of the interface
and adjust their transmissions accordingly. This implies that a large
L2CAP_PDU may need to be fragmented within the HCI layer prior to

IPR2020-00202
Apple Inc. EX1057 Page 168

The Host Controller Interface (HC) 147

sending it to the host controller. On the receiving side, the HCI layer
could reconstruct L2CAP_PDUs based on the packet boundary flag
information within the received data HCI_PDUs. Transmission of
HCI_PDUs across the physical interface is in first-in-first-out order
without preemption. Commands are processed by the host controller in
their order of arrival, but they may complete out of order since each
might take a different amount of time to execute. Similarly, events are
processed by the host in order of arrival, but their processing may ter-
minate out of order.

Note that none of the fields in any of the HCI_PDUs identifies the
HCI PDU class: command, event or data. Identification of the
HCI_PDU class is left to the HCI transport protocol that actually car-
ries the PDUs between the host and the host controller. Strictly speak-
ing, this is a violation of protocol layering. However, it allows the HCI
to take advantage of the capabilities of the underlying transport proto-
col, which may provide its own means for distinguishing the three
HCI _PDU classes with minimal overhead. Purists may wish to consider
that the HCI layer in the host and its complementary part in the host
controller consist of a transport-independent sublayer, and a transport
dependent convergence sublayer (which executes the HCI transport
protocol) that adapts the HCI_PDUs to the particular transport method
used to carry them across the physical interface.

The HCI_PDUs

There are many command HCI_PDUs organized into several groups
identified by the OGF subfield in the header of the command
HCI_PDU. For many of these command HCI_PDUs there exists a cor-
responding event HCI_PDU that carries the outcome and return
parameters related to the command. For several commands, informa-
tion related to their status and execution results is carried by two special
events: Command_Status_Event and Command._Complete_Event. The
former typically is sent immediately after a command is received by the
host controller to indicate the status of the command, such as command
pending execution, command not understood, and so on. This provides
a sort of acknowledgement of the command along with an indication of
its processing status. The latter is used to indicate the completion of exe-
cution of a command and to return related parameters, including
whether or not the requested command was executed successfully.
Observe that multiple events might be generated in response to a single

command.

IPR2020-00202
Apple Inc. EX1057 Page 169

148

Chapter 7 » THE UPPER PROTOCOLS OF THE TRANSPORT GRoup

There are command HCI_PDUs related to link controller actions,
policy-setting commands, the host controller itself, and many others.
Command and event HCI_PDUs number over 100: some of these are
highlighted in the following sections. These selected HCI PDUs are
illustrative of the type of information and the level of detail that is com-
municated between the host and the host controller. For the full set of
HCI_PDU, refer to the specification.

Link Control HCI PDUs

The commands in this group are identified via the OGF subfield with
the value ‘b000001°. This group contains commands that allow inquiries
to be sent to discover other devices in the vicinity. There are commands
to create and terminate ACL and SCO connections and to accept or
reject incoming connection requests. There are commands for initiating
authentication and encryption procedures as well as for transporting
authentication keys and PINs from the host to the link controller. There
are information commands in this group to request the user-friendly
name of the remote device, the link manager options that it supports
and the clock offset registered in the remote device.

Following are some examples of HCI_PDUs in this group. The
HCI_Inquiry command PDU instructs the module to enter the inquiry
mode, using a given inquiry access code, for a specified amount of time

or until a specified number of responses is collected. This command is
summarized in Table 7.11.

Table 7.11
The HCI_Inquiry command HCI_PDU.

Command_Name HCI _Inquiry
OCF ‘0000000001’
Parameters LAP 3 lower address part used for

bytes generating the inquiry access code

Inquiry_Length I byte | indicates the maximum duration for
this inquiry: 1.28 sec - 61.44 sec

Num_Responses I byte | indicates the maximum number of
responses to be collected

IPR2020-00202
Apple Inc. EX1057 Page 170

The Host Controller Interface (HCl) 149

The inquiry mode originated by this command terminates either
when Inquiry_Length time has elapsed or when the number of respond-
ing devices reaches Num_Responses, whichever occurs first.

The host controller returns information collected from inquiries to
the host with the 1nquz'7y_Result_Even18 summarized in Table 7.12; the
parameters of the event are derived from the FHS BB_PDUs (detailed
in the previous chapter) that are received from the devices responding
to the inquiries. A brief description of the parameters below is given in
Table 7.13, which presents the command that uses these parameters.

Table 7.12
The Inquiry_Result_Event event HCI_PDU; the index i identifies each of the
Num_Responses responding devices.

Event_Name Inquiry_Result_Event

Event_Code ‘0x02’

Parameters Num_Responses 1 byte
BD_ADDR] 6*Num_Responses bytes
Page_Scan_Repetition_Mode[] 1*Num_Responses byte(s)
Page_Sca n_Period_Mode]1]]*Num_Responses byte (s)
Page_Scan_Mode] 1*Num_Responses byte(s)
Class_of Device|1] 3*Num_Responses bytes
Clock_Offset[1) 9*Num_Responses bytes

The HCI Create_Connection command PDU in?“““ the m;)e(iu};}
to create a connection with a specified device, using aoi\s,se?equires
BB_PDU types for the ACL link. Since the comtlectu;lr? pzommand e
that the “local” device page the “remote” device, : ;SC oss. The paging
provides information used to accelerate the paging fir ovice via an ear
information becomes available to the host of a locaTable 712
lier Inquiry_Result_Event PDU, showi' Lln' Table 7.13.

HCI Create_Connection command is summarizé in

; i1 the naming
A take liberty 12
ce agmn we

. ” n
8. This event is actually called “Inquiry Result evenl-g
convention for consistency purposes with other PD Us:

e

IPR2020-00202
Apple Inc. EX1057 Page 171

150 Chapter 7 » THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

Table 7.13
The HCI_Create_Connection command HCI_PDU.

Command_Name

HCI_Create_Connection

OCF ‘b0000000101°
Parameters BD_ADDR 6 bytes identifies the remote device with |
which to establish a connection
Packet_Type 2 bytes indicates which BB_PDU types can
be used by the link manager for the
ACL link
Page_Scan_ 1 byte indicates the page scan repetition
Repetition_Mode mode, that is, how frequently the
remote device enters the page scan
mode, last reported by the remote
device
Page_Scan_Mode 1 byte indicates the page scan mode
supported by the device
Clock_Offset 2 bytes indicates the difference between the
slave and master clocks, as
calculated in the last
communication between them
Allow_Role_Switch 1 byte indicates whether this (the paging)

device will be the master or will

allow the paged device to become

the master if requested’

1. Master-slave role switching is described in the previous chapter.

=il

Upon successful creation of the connection, a Connection_Com-
plete_Event is sent to the hosts on both sides of the connection. The
events contain the Connection_Handles for identifying the connection.
The connection handles are assigned by each host controller indepen-
dently and their scope is limited to the local device only.

Link Policy HCI_PDUs

The commands in this group are identified via the OGF subfield with
the value ‘b000010’. This group contains commands that allow a device
to set a power-management policy through the hold, sniff, and park

IPR2020-00202

Apple Inc. EX1057 Page 172

The Host Controller Interface (HCI) 161

baseband modes and to define the parameters for those modes. Also,
there are commands that pass QoS parameters from the L2CAP layer
to the link manager, learn about the role (master or slave) that the
device” plays for a particular connection and request a role switch if
needed.

Table 7.14 summarizes the HCI_PDU command that requests the
host controller to instruct the link manager and the baseband to enter
hold mode with the parameters provided. Similar commands exist for
sniff and park modes.

Table 7.14
The HCI_Hold_Mode command PDU.

Command_Name HCI Hold Mode
OCF ‘60000000001
Parameters Connection_Handle 2 bytes | identifies the connection
(actually the ACL link) to be
placed in hold mode;
only the 12 LSBs are used
Hold_Mode_Max_Interval 2 bytes | indicates the maximum
negotiable hold interval
(0.625 msec — 40.9 sec)
Hold_Mode_Min_Interval 2 bytes | indicates the minimum
negotiable hold interval
(0.625 msec — 40.9 sec)

The host controller notifies the host when hold mode is entered or
is terminated using the Mode_Change_Event.

Host Controller and Baseband HCI_PDUs

The commands in this group are identified via the OGF subfield with
the value b000011’. This group contains commands that allow the host
to access and configure various hardware registers that maintain opera-
tional parameters. Among the operations that can be performed are
determining the types of events that the host controller can generate;
reading, writing, and deleting stored keys; reading and writing the user-

9. Recall that information regarding the role that a device plays in a particular connection does
not propagate through the stack beyond the link manager layer. A host needs to explicitly
request this information from the host controller.

IPR2020-00202
Apple Inc. EX1057 Page 173

s

152

Chapter 7 » THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

friendly device name; activating and deactivating inquiry and/or page
scans; reading and writing the authentication and/or encryption activity
flag for a link; reading and writing the inquiry access codes used to listen
during inquiry scans; forcing the flushing of ACL packets for a connec-
tion handle; reading and writing the audio codec parameters and so on.
Table 715 summarizes the HCI_PDU command that sets the
inquiry scan parameters; a similar command exists for page scans as
well. Inquiry scans occur only when the host has already sent an
HCI_Write_Scan_Enable command PDU to enable inquiry scans.

Table 7.15
The HCI_Write_Page_Scan_Activity command PDU.

Command_Name | HCI Wrz'te_[nquiq_Scan_Activz’ty

OCF

‘b0000011100°

Parameters

Inquiry_Scan_Interval 2 bytes | determines the interval between
successive starts of inquiry scans
11.25 msec - 2.56 sec (typically,
1.28 sec)

Inquiry_Scan_Window 2 bytes | determines the duration of a
single continuous scan operation
11.25 msec - 2.56 sec (typically,
11.25 msec)

When the host controller finishes updating the related registers it
returns a Command_ Complete_Event to the host.

Informational Parameters HCI_PDUs

The commands in this group are identified via the OGF subfield with
the value ‘b000100’. This group includes commands that request static
information about the hardware and firmware that is electronically
“engraved” on the device at manufacture time. There is a command to
request the version of the various protocols (LMP, HCI, and so on) that
the module supports; a command to request a list of features supported
by the link manager; a command to request the country of operation of
the module; a command to request the BD_ADDR of the module; % and
a command to request the host controller buffer information for ACL

10. Recall that the BD_ADDR is hardwired and cannot be modified.

IPR2020-00202
Apple Inc. EX1057 Page 174

Summary 153

and SCO packets, used to execute effective flow control at the host. The
requested information is returned in a Command_Complete_Event.

Status Parameters HCI PDUs

The commands in this group are identified via the OGF subfield with
the value ‘b000101". This group includes commands that request infor-
mation that is dynamically updated, like the value of the contact
counter that measures the number of successive instants during which
the remote device does not respond to local transmissions, causing the
local link manager to flush any PDUs waiting to be transmitted. There
is also a command HCI_PDU to retrieve information related to the
quality of the link and the RSSI (received signal strength indicator)
value. The requested information is returned in a Command_Com-

plete_Event.

Testing HCI_PDUs

The commands in this group are identified via the OGF subfield with
the value ‘b000110’. These commands, which all result in Command._
Complete_Event events, are used for testing the Bluetooth module and
are not discussed further here.

Summary

In this chapter we have highlighted the upper two Bluetooth transport
protocols: LZCAP and HCI. The latter is a transport protocol internal to
a device, rather than an over-the-air protocol as are L2CAP and the
other protocols discussed in Part 2 of the book. The primary purposes of
these protocols are both to hide, in the case of L2ZCAP, and to expose, in
the case of HCI, the internal operation of the lower transport protocols.
L2CAP is used to multiplex and transport higher protocol layers while
shielding them from the peculiarities of the lower transport protocols,
like the baseband. The HCI provides a standardized interface to the ser-
vices and capabilities provided by the lower transport protocols.

In this and the previous chapters we have presented the protocols
that the SIG has developed for transporting data across Bluetooth
devices. These protocols have been developed entirely by the SIG spe-
cifically for Bluetooth wireless communication. They reflect the SIG’s
objectives to develop simple, cost-effective communication systems that
can operate at low power in noise-susceptible places. In the next chap-
ter we introduce the middleware protocols that are used to take advan-

IPR2020-00202
Apple Inc. EX1057 Page 175

154 Chapter 7 » THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

tage of the data-transport services of the transport protocols to enable a
plethora of applications, including legacy applications, to operate
smoothly over Bluetooth links.

IPR2020-00202
Apple Inc. EX1057 Page 176

O

The RFCOMM and
SDP Middleware
Protocols

/e now move from the transport protocol layers to a detailed discus-
sion of the middleware protocols. In this chapter we discuss
RFCOMM, the Bluetooth serial port emulation protocol, and the Blue-
tooth Service Discovery Protocol, or SDP. Version 1.0 of the core speci-
fication (volume 1) devotes nearly 90 pages to these two protocols. As
with the other detailed discussions of portions of the specification, this
chapter attempts to reveal the motivation and thought process behind
the development of these protocols. While the important elements of
RFCOMM and SDP are examined here, this material focuses on the
design basis for the protocols and thus is not a substitute for the specifi-
cation itself.

Both RFECOMM and SDP reside directly above the L2CAP layer
(discussed in the previous chapter) and use L2CAP connections to
accomplish their respective functions. Both of these protocols provide a
protocol data unit (PDU) structure for use by higher layers (either appli-
cations or other middleware protocols) in the stack. PDUs allow the
higher layers of the stack to work with logical data elements at a higher
level of abstraction than that of the packet format used by the transport
protocols. Both RFCOMM and SDP are protocols developed specifi-
cally for use with Bluetooth wireless communications, although
RFCOMM borrows heavily from an existing standard. Figure 8.1 illus-
trates the position of RFECOMM and SDP in the protocol stack. As
shown in the figure, RFCOMM is used by higher layer middleware
protocols and by applications for networking, IrDA interoperability and
telephony. These same applications may communicate directly with

155

IPR2020-00202
Apple Inc. EX1057 Page 177

156 Chapter 8 » THE RFECOMM AND SDP MIDDLEWARE PROTOCOLS

RFCOMM as well as with their associated middleware protocols that in
turn communicate with RFCOMM. Since service discovery is funda-
mental to all Bluetooth profiles, most applications will also communi-

cate with the SDP layer.
other | networking IrDA elept
applications | applications applications applicat

l

i
LELE T Y ------------‘ ---------- -
" ;8 i

networking
middleware
protocols

Figure 8.1
RFCOMM and SDP in the Bluetooth protocol stack.

The RFCOMM Protocol

Serial interfaces are ubiquitous in computing and telecommunications
devices, particularly those devices with a high affinity for Bluetooth
communications. Notebook computers have serial ports, personal digi-
tal assistants typically have serial ports (often used to synchronize the
PDA with some other device), many mobile telephones have serial
ports (often used for a wired headset), many digital cameras use serial
ports to transfer image data to another device, printers and other com-
puter peripherals often use serial ports for communication, and so on.
Moreover, infrared communication, which as previously established
has some traits in common with Bluetooth wireless communication,
normally uses a serial port to communicate with the IR transceiver.!
Because Bluetooth technology aims to replace cables, it seems
clear that there is a large opportunity to replace serial cables. To do this
effectively, the stack needs to support serial communication in the same

IPR2020-00202
Apple Inc. EX1057 Page 178

The RFCOMM Protocol 157

manner as is done with cables, so that applications are presented with a
familiar serial interface. This permits the cornucopia of legacy applica-
tions that are unaware of the Bluetooth technology to operate seam-
lessly over Bluetooth links. Furthermore, application software
developers skilled in developing serial communication applications
may still continue to do so, assured that their applications will operate
over Bluetooth links. But the transport-layer protocols are not modeled
after a serial port. LZCAP supports packet data structures, and while the
air-interface may transmit bit patterns in a serial fashion, this is not the
same as the common RS-232 types of serial interfaces used today with
serial cables.

Thus the SIG has chosen to define a layer in the protocol stack
that looks very much like a typical serial interface: the RFCOMM
layer. In the world of personal computers, serial interfaces are often
called COM ports. The name RFCOMM connotes a wireless (RF)
instance of a virtual COM port. RFCOMM primarily is intended to
enable cable-replacement scenarios for existing applications.

RFCOMM Protocol Development

The motivation for the RFCOMM protocol layer is rooted in the
requirement to support legacy applications with initial Bluetooth imple-
mentations. The need for this serial communication function in the soft-
ware stack was identified quite early in the SIG’s formation. Just one
month after the SIG was publicly announced, discussions ensued on
developing the specification for the RFCOMM layer. At that time, the
ETSI TS 07.10 standard [ETSI99] had already been identified as a can-
didate for a basis upon which to build Bluetooth serial communications.
Requirements for Bluetooth serial communications include:

Multiplexed serial communications: There may be many
simultaneous clients of the serial interface in the stack, including
IrOBEX, telephony control and networking clients. Thus the serial
port needs to be shareable through multiplexed connections (which

1. In the PC domain, infrared communications are frequently tied to a COM port resource. In
commonly used PC operating environments, these COM ports classically have been difficult to
configure, especially for infrared communications. This drawback has led to a situation where,
while many infrared ports are deployed in products, only a fraction of these ports are actually
used, since many users lack the expertise or motivation to perform the necessary configuration
process. The rise of infrared ports on PDAs and mobile phones, where the configuration pro-
cess is much easier, seems to lead to a higher usage rate of infrared in peer-to-peer communica-

tions.

IPR2020-00202
Apple Inc. EX1057 Page 179

158

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

in turn might be supported by the protocol multiplexing in the
L2CAP layer, over which distinct RFCOMM entities in different
devices communicate).

RS-232 signal compatibility: RS-232 is a widely used serial inter-
face for the cables with which Bluetooth wireless communication
needs to be compatible. Many applications are familiar with RS-232
interfaces, including the various control signals associated with RS-
232; these include common signals such as Request to Send/Clear to
Send (RTS/CTS), Data Terminal Ready/Data Set Ready (DTR/
DSR), the RS-232 break frame and others. Emulating these signals
allows RFCOMM to present to its clients the appearance of a serial
port that is virtually the same as that used with a serial cable.

Remote status and configuration: In a peer-to-peer environ-
ment, the two parties communicating over the serial link often need
to determine the status and configuration of the remote serial inter-
face so that the local serial interface can be configured in a compati-
ble manner. The service discovery protocol, discussed in following
sections, can be used to obtain basic information needed to establish
a serial communications channel; following connection establish-
ment the two ends of the serial interface need to be able to negotiate
compatible serial communication settings for the connection.

Internal and external serial port: To support the various uses
of serial communications in Bluetooth applications, RF COMM
needs to support both an internal emulated serial port, in which the
serial port parameters are used only locally (the parameters do not
apply across the air-interface) as well as an external serial port, where
the serial port parameters and status are transmitted across the RF
link along with the data and may be used by the receiving serial port.

These requirements are not unique to Bluetooth environments,
and the SIG realized that the aforementioned ETSI TS 07.10 standard
was a good match for the needs of Bluetooth serial communications, so
the SIG adopted much of that standard. However, TS 07.10 is not a per-
fect match for use in the Bluetooth protocol stack, so the SIG added
some of its own modifications to adapt the ETSI standard for use in
Bluetooth wireless communications. Among these additions and
changes are:

Data frame adaptations: Since Bluetooth communication has an
underlying packet structure by virtue of the use of L2CAP, some of

IPR2020-00202
Apple Inc. EX1057 Page 180

The RFCOMM Protocol 159

the data frame contents specified by TS 07.10 are unnecessary for
RFCOMM. For example, the frame delimiter flags specified in TS
07.10 are discarded for the RFCOMM specification.

Connection establishment and termination: Again, because
Bluetooth communication has its own connection management in
the transport protocol layers that REFCOMM uses, the connection
management functions of TS 0710 are superfluous for RFCOMM.
The specification details how RFCOMM links are managed.

Multiplexing: RFCOMM uses a subset of the multiplex channels
specified for TS 07.10 and specifies the way in which some TS 07.10
multiplexing control commands are used in RFCOMM.

Applicability: The RECOMM specification mandates support of
several features which are optional in the TS 07.10 standard. These
features deal with exchanging information about the configuration
and status of the serial connection and include negotiating the serial
port and individual channel settings and retrieving the serial port sta-
tus. In Bluetooth environments these functions are quite useful and in
fact can be considered necessary for effective use of the air-interface;
thus they are specified as mandatory to support in RFCOMM.

Flow control: Typical serial ports pace the data transfer using
XON/XOFF pacing or DTR signal pacing. For RFCOMM, the
specification describes flow control mechanisms specific to the Blug—
tooth protocol stack, including flow control that applie's to all multi-
plexed RFCOMM channels as well as per-channel pacing.

The remaining RFCOMM sections in this chapter TEIEW k}el)’
points of the RFCOMM specification, in many cases highlighting the
significance of the design choices for this protocol layer.

The RECOMM Protocol Examined

RFCOMM in the specification

! 9
The relatively few pages devoted to SO SREC OMM is the

belie its importance in the version 1.0 protoco: o
basis for most of the version 1.0 profiles and m‘ghtnﬂ;?eb;;;rtl rflm. leg-
future profiles, although its primary purpose 1 toe “ios.3 The main rea-
acy applications in simple cable-replacement Sce“"‘(‘j s of pages of
son that RFCOMM does not require many d0

fication a good candidate for
g this key layer of the stack.

ortion of the spec

9. Only about 25 pages, making the R, fully understandin.

beginning-to-end reading for those interested in

__‘
IPR2020-00202
Apple Inc. EX1057 Page 181

160

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

explanation is the SIG’s decision to adopt much of the ETSI TS 07.10
protocol (which itself is over 50 pages of specification). By specifying TS
07.10 as the basis for RFCOMM, the SIG has adopted a mature stan-
dard protocol and the specification needs to describe only the adapta-
tion of this standard for Bluetooth environments. Much of the
RFCOMM chapter of the specification focuses on describing which
parts of TS 07.10 are relevant for RFCOMM, how those features are
used and the modifications necessary to map TS 0710 into the Blue-
tooth protocol stack.

RFCOMM uses an L2CAP connection to instantiate a logical
serial link between two devices. In particular, an L2CAP connection-
oriented channel is established that connects the two RFECOMM enti-
ties in the two devices. Only a single RFCOMM connection is permit-
ted between two devices at a given time, but that connection may be
multiplexed so that there can be multiple logical serial links between
the devices.* The first RFECOMM client establishes the RFCOMM
connection over L2CAP; additional users of the existing connection can
use the multiplexing capabilities of RECOMM to establish new chan-
nels over the existing link; and the last user to drop the final RFCOMM
serial link should terminate the RFCOMM connection (and hence the
underlying L2CAP connection). Each multiplexed link is identified by a
number called a Data Link Connection [dentifier, or DLCI. Figure 8.2
depicts multiplexed serial communications links using RFCOMM over
L2CAP. In the illustration the various clients of RFCOMM each see
their own emulated serial port, distinguished by a DLCI value (depicted
by the different line types in the figure). These separate channels are
then multiplexed over the RFCOMM link, which in turn is carried
over an L2CAP connection.

3. RFCOMM might become less significant in future usage models as the specification evolves to
support general TCP/IP networking. In the meantime, the SIG specified RFCOMM as a solu-
tion for serial-cable-replacement usage models.

4. Multiple links might be attained either through multiple instances of a single-channel
RFCOMM or through a single instance of a multiple-channel RFCOMM (the latter being
what the Bluetooth specification defines). While these might be logically equivalent, they are
likely to result in real differences in implementations. The RECOMM specification indicates
that a client which requires a serial connection should first check for an already existing
RFCOMM connection to the target device; if an RFCOMM connection to that device already
exists, the client should just establish a new channel on that existing connection.

IPR2020-00202
Apple Inc. EX1057 Page 182

The RFCOMM Protocol 161

Olhe'r networking IrDA telephony other networking IrDA telephony !
applications applications ' applications' applications applications applications: applications applications
' . R
.
. :
: :
IrDA
; = : telephony IrDA i
networking ‘r,Ie“ Catitts] nelworking fiter: leClSE:TI%TY
nyfﬁijf:d" ;7dﬁ7::;{2 middleware i> T middleware
protocols Wiig W protocols protocols middleware protocols |
p protocols |

RFCOMM

L2CAP

Figure 8.2
Multiplexed RFCOMM logical serial links (indicated by different line types) over a single RFCOMM
connection, in turn over an L2CAP connection.

The specification allows for up to 60 multiplexed logical serial
links over a single RFCOMM connection but does not mandate this
level of multiplexing for RFCOMM implementations. In fact for most
portable devices it is uncommon to have cases in which dozens of
simultaneous serial links would be required in Bluetooth environments.
Most devices are expected to support a fixed number of profiles, which
will be a determining factor in how the protocol stack for those devices
is implemented, including design tradeoffs such as the number of
RFCOMM serial links supported. But consider also devices such as net-
work access points that allow portable devices to use Bluetooth wireless
communication to access larger networks (such as the Internet). The
LAN Access profile (discussed in Chapter 15) specifies the use of PPP
over RFCOMM, so a LAN access point device might indeed need
many simultaneous serial connections to multiple devices. The
RFCOMM specification supports this sort of usage by allowing more
than one multiplexer session (that is, more than one instance of
RFCOMM, in which case the multiplexing is achieved by using
L2CAP’s multiplexing capabilities), although such a capability is not
mandated.

IPR2020-00202
Apple Inc. EX1057 Page 183

162

Chapter 8 + THE RFCOMM AND SDP MIDDLEWARE PrOTOCOLS

The RFCOMM chapter of the specification includes a discussion
of two different sorts of devices that RFCOMM supports: communication
endpoint (computer- or peripheral-style devices) and communication mid-
point (modem-style devices). In general serial communications, these
are often referred to as data terminal equipment (DTE) and data com-
munications equipment (DCE), respectively. After making this distinc-
tion, though, the discussion concludes by stating that RFCOMM does
not distinguish between these device types at all. In fact, it is not neces-
sary for RFCOMM to do so; much as a standard serial cable can be
configured for a direct serial connection or for null modem operation,
RFCOMM also can be used in both manners. RFCOMM has included
features to support DCE (modem-style) communications; these features
may not be applicable for DTE communications. RFCOMM supports
both device styles without needing to distinguish between them.

Typical cabled serial connections have a number of signals in the
cable (usually nine for RS-232 communications, although all nine signals
are not necessarily used in all applications). Bluetooth wireless commu-
nication obviously has no such signals because the transmission medium
is the air-interface rather than a cable. In a multiplexed environment
such as is defined by TS 0710, it is desirable that each serial channel be
viewed as an independent entity, with its own set of control and data sig-
nals. So even in a cabled environment some scheme is needed for multi-
plexing the serial signals. TS 0710, and thus RFCOMM, do this by
defining a specified control channel across which information is trans-
mitted as data. That is to say, rather than setting and monitoring signal
levels as is done with a standard RS-232 interface, RFCOMM uses com-
mands and responses to communicate the state of the multiplexed serial
interface (thus virtualizing the RS-232 signals).

RS-232 defines other states that are not directly represented by sig-
nals. Notable among these is the baud rate, or the clock frequency used
to transmit and receive data. In standard cabled serial communications,
a clock governs the time associated with the signal transition to and
from low and high levels, which define the 0/1 bit patterns. Obviously
both sides of the interface must use the same clock frequency, or baud
rate, to correctly interpret the data that is transmitted across the wire.
For wireless environments, however, there is no cable and thus no sig-
nal wire to pulse at a specified frequency. Clearly, though, Bluetooth
wireless communication does employ clock timings to communicate
over the air-interface at the baseband level. Since RECOMM operates
over the transport layers of the protocol stack, it makes use of the packet
structure and transmission medium used by those lower layers. The

IPR2020-00202
Apple Inc. EX1057 Page 184

The RFCOMM Protocol 163

baud rate of Bluetooth wireless communication is determined by the
packet types and structures being sent over the air-interface. The actual
communication will occur at the rate determined by the baseband pro-
tocol, regardless of what baud rate might be specified at the RFCOMM
layer for serial port emulation. So while an application or other client of
RFCOMM can specify a baud rate (this would be a typical action, espe-
cially for legacy applications, and RFCOMM allows it), the specified
baud rate does not determine the actual data rate. In many cases, the
data transmission rate using Bluetooth wireless communication could
be faster than for typical cabled communications.

RFCOMM Protocol Usage

Curiously, the RFCOMM chapter of the core specification (volume 1)
includes a section containing the sort of information (application con-
siderations, interactions with other protocol stack layers and SDP ser-
vice record data) that is usually found in the profile specifications
(volume 2). This is an artifact of the development of the RFCOMM
specification. As previously noted, RFCOMM specification develop-
ment was underway almost from the beginning of the SIG’s formation.
Along with the lower-layer transport protocols, which consumed much
of the SIG’s attention at first, RECOMM was one of the first protocols
to reach a stable specification level (this is due partly to the fact that
RFCOMM leverages the TS 07.10 standard and partly to the hard work
applied to the RFCOMM specification by its owners in the SIG, since
the SIG recognized that RFCOMM was a key element of the version
1.0 protocol stack and a foundation upon which other protocol layers
and profiles were to be built). Most of the profiles were developed after
the core specification was stable. The forward-looking authors of the
RFCOMM portion of the specification had already included some of
the information that subsequently became part of the serial port profile
(covered in Chapter 14).

So the RECOMM chapter of the specification gives some hints on
using this layer of the protocol stack. The specification talks about Port
Emulation and Port Proxy entities, the former mapping platform APIs to
RFCOMM functions and the latter mapping RF COMM to a “real”
RS-232 external interface. The point, though, is that the authors of the
RFCOMM specification not only have specified a protocol that is nec-
essary for many legacy applications to make use of Bluetooth wireless
communications but also have offered a few considerations for the
applications that use that protocol.

IPR2020-00202
Apple Inc. EX1057 Page 185

Lo S g ab s

164

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

In fact the programming model suggested in RFCOMM is a spe-
cific instance of the generalized model suggested in the section entitled
“The Application Group” in Chapter 5 (refer back to Figure 5.4). In this
case we suggest a thin layer of Bluetooth adaptation software for legacy
applications that maps platform APIs to specific functions of the Blue-
tooth protocol stack. In the case of RFCOMM, which provides an emu-
lated serial port, this adaptation software (which the specification calls a
port emulation entity) needs to map the application’s interactions with a
‘real” RS-232 serial port to the equivalent operations for the
RFCOMM emulated serial port. For the most part these are expected
to be initialization operations such as activating and configuring the
serial port and establishing a serial connection: and finalization opera-
tions such as terminating the serial connection. Once a general serial
port adaptation layer is in place in a system, all those legacy applica-
tions that use serial communication ought to be enabled to use Blue-
tooth transports via the RFCOMM emulated serial port.

As pointed out earlier, the use of serial ports is prevalent in devices
and environments where Bluetooth wireless communication is likely to
be used, and the majority of the version 1.0 profiles depend upon serial
port communications. In the absence of a version 1.0 specification for
general networking, the RFCOMM protocol provides an important
utility for legacy applications. The implementation of this protocol,
along with adaptation software for legacy applications that use serial
communications, permits many simple cable replacement applications
of Bluetooth wireless communication.

The Service Discovery Protocol (SDP)

Service discovery is a process by which devices and services in net-
works can locate, gather information about and ultimately make use of
other services in the network. In traditional networks such as LANS,
these services might be statically configured and managed by a network
administrator. In these environments, the administrator or end user per-
forms the configuration that is necessary for one participant in the net-
work to use the services of some other network member. For example, a
PC user might specify all of the information associated with a network
e-mail service (including the mail server name, user and account names,
e-mail type, capabilities and options, and so on) to the PC’s operating
system and applications; once all this information is entered into the PC

IPR2020-00202
Apple Inc. EX1057 Page 186

The Service Discovery Protocol (SDP) 165

and associated with that e-mail service, then the e-mail service becomes
available to the PC user.

Administered network services of this sort may be fine for many
fixed networks but are really not suitable for temporary mobile net-
works (ad hoc networks) such as those that might be formed using Blue-
tooth wireless communication. In these environments a more dynamic,
flexible and adaptive solution is needed. Graham, Miller and Rusnak
[Graham99] observe the growing incidence of these ad hoc networks
and the resulting demand for self-configuring systems:

The emergence of information appliances and new types of
connectivity is spurring a new form of networking: unmanaged,
dynamic networks of consumer devices that spontaneously and
unpredictably join and leave the network. Consumers will expect
these ad hoc, peer-to-peer networks to automatically form within
the home, in very small businesses and in networked vehicles. ...

To achieve the goals of simplicity, versatility and pleasurabil-
ity, the appliances and the network(s) they join must just work right
out of the box. By just work we mean that the participants on the net-
work must simply self configure. By self configure we mean that these
network devices and services simply discover each other, negotiate
what they need to do and which devices need to collaborate with-
out any manual intervention.’

Protocols for service discovery can help to enable this self-configu-
ration. Since much of the interdevice communication in Bluetooth
usage scenarios is of a peer-to-peer, ad hoc nature, the SIG determined
that a service discovery protocol in the stack could provide significant
value. The resulting protocol, known as SDP, is a central component of
nearly all of the profiles and usage cases, both existing and foreseen.

The service discovery concept is not new or unique to Bluetooth
wireless technology. Numerous service discovery technologies are avail-
able in the industry, some of them well known. As is evident in other
layers of the protocol stack, the SIG is content to adopt existing proto-
cols where it makes sense to do so. In the case of service discovery,
though, the SIG developed its own protocol unique to and optimized
for Bluetooth wireless communication rather than adopting some other
service discovery protocol in the industry. The reasons should become
evident as we review SDP’s development in the next section.

5. Reprinted by permission from Discovering Devices and Services in Home Networking, copyright
(1999) by International Business Machines Corporation.

IPR2020-00202
Apple Inc. EX1057 Page 187

cwerrexs,

166

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

SDP Development

The need for a service discovery component in the protocol stack was
recognized early in the process of developing the specification,
although direct work on SDP did not commence until later. In early
and mid 1998, many of the initial participants in the SIG were focusing
on the transport protocols and key middleware protocols like
RFCOMM. While the need for other protocols had been identified,
task forces of experts to develop these protocols had not been assem-
bled in all cases. In the case of SDP, some preliminary work had been
started at Intel and Ericsson in the summer of 1998.

In early internal versions of the specification, service discovery
was a section within the L2CAP part of the specification. Initially,
L2CAP channels were modeled after a computer bus, and service dis-
covery was concerned exclusively with the transport of Plug and Play
parameters over this virtual bus. In September 1998, at a SIG meeting
in London,6 author Bisdikian suggested that the addition of a transport
protocol for Plug and Play parameters unnecessarily complicated the
L2CAP specification, and that such a protocol merited its own service
discovery portion of the Bluetooth specification.

In October 1998 the SIG held a developers conference in Atlanta
which author Miller attended. Based upon conversations during that
conference, Miller was asked to chair the service discovery task force of
the SIG’s software working group shortly thereafter. The following
month the newly constituted group met for the first time as a formal
SDP task force.

While at this time (late 1998) many of the protocol layers had been
under development for several months, with some of them approaching
levels of stability that would soon near final stages, SDP was still really
in a nascent state of forming the requirements and the beginning of a
proposal to address those requirements.

Among the identified objectives for Bluetooth SDP were:

Simplicity: Because service discovery is a part of nearly every
Bluetooth usage case, it is desirable that the service discovery process
be as simple as possible to execute. For the SDP task force this also
implied the reuse of other Bluetooth protocols to the extent possible.

6. To advance the development of the specification, face-to-face meetings among SIG members
have taken place in many different countries reflective of the multinational constituency of the

SIG membership.

IPR2020-00202
Apple Inc. EX1057 Page 188

The Service Discovery Protocol (SDP) 167

Compactness: As described in previous chapters, the formation of
Bluetooth communication links between two devices can in some
cases be time consuming. Since service discovery is a typical opera-
tion to perform soon after links are established, the SDP air-interface
traffic should be as minimal as feasible so that service discovery does
not unnecessarily prolong the communication initialization process.

Versatility: The version 1.0 specification includes a number of pro-
files, and future revisions will undoubtedly add to the list, which is
expected to continue to grow. Since an exhaustive set of profiles,
usage cases and associated services cannot be foreseen or accurately
predicted, it is important for SDP to be easily extensible and versatile
enough to accommodate the many new services that will be
deployed in Bluetooth environments over time. To support this
objective the SDP task force chose a very broad definition of “ser-
vice,” so that the widest possible spectrum of features (services) could
be supported in the future.

Service location by class and by attribute: In the dynamic ad
hoc networking environment it is important to enable client devices
and users to quickly locate a specific service when they already know
exactly (or at least largely) what they are looking for. It sho‘uld Ee
straightforward to search for a general class of service (say, “pnr:ter)
for specific attributes associated with that service (for example, ° co?or
duplex IBM printer”) and even for a specific instance of a service
(such as a specific physical printer).

Service browsing: In addition to searching for services by c?ass or
attribute, it is often useful simply to browse the available services to
determine if there are any of interest. This is a different usage .scelr;::not
than is searching for specific services, and in some respects 1t(;s 12 ha(:/Se
a contrary objective, but the SIG agreed that both usage rrt]?n:tho i
merit, and they developed a solution that uses & conswtgcne S
support both specific service searching and general servi
: r a sim-

These objectives led to the developmegt of req\;rjileeefét; cf(;very %
ple, flexible protocol and data representation f?rt cfcols erereviewed,
the protocol stack. Popular industry discovery ?10 he SDP objectives=
but none seemed to provide a good match dorcomprehenSiV N ervice
many of these technologies provide robust aISlIG was really looking for
discovery and access methodologies, but the 1 the rather
a fairly low-level, simple, narrow-in-scopé ;czfo
modest objectives noted above in a stralg

IPR2020-00202
Apple Inc. EX1057 Page 189

Y

[t

e

168 Chapter 8 ; THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

point Motorola® approached the SIG with a proposal to contribute
some technology, suitable for use in Bluetooth service discovery, that
Motorola had had under development for several years. Through a con-
tributing adopter agreement Motorola was then able to participate in
the SDP task force of the SIG (and in fact the Motorola representative
served as editor of the SDP specification), with their contributed tech-
nology forming the basis for SDP.

So with the SDP effort underway in November 1998, the SDP
requirements and scope were agreed upon and the specification devel-
opment ensued, incorporating the ideas contributed by Motorola along
with the many contributions by the other SIG member companies.
Even though the real SDP work started later than for many other proto-
cols, through hard work the SDP specification was completed, ratified
and published along with the bulk of the other protocols in the stack in
July 1999 in the version 1.0 specification.

The following sections describe some of the key facets of the SDP
specification, including why these elements are significant and the ratio-
nale for including them in the specification.

SDP Examined

Key to understanding the development of SDP is to understand its
motivation and requirements. In fact, this information is included at the
beginning of the SDP portion of the specification. As noted above, SDP
is intended to allow devices in Bluetooth environments to locate avail-
able services. As the specification states, these environments are qualita-
tively different from traditional networks such as LANs or WANS.
Devices and services are likely to come and go frequently in Bluetooth
piconets. Thus SDP was developed to satisfy the requirements of such
environments.

Some of the notable requirements for SDP are listed in the preced-
ing section. These are also mentioned and expanded upon in the speci-
fication. Also of interest are those items that SDP does not attempt to
address, at least in version 1.0 of the speciﬁcation.8 The “Non-Require-
ments and Deferred Requirements” portion of the SDP specification

7. Subsequent to publication of the version 1.0 specification, efforts were begun to map some of
the leading industry service discovery technologies to the Bluetooth stack. Chapter 16 gives
details of this work.

8. Of these, the Bluetooth SIG might choose to enhance SDP in the future to address some of the
issues. Many, however, are likely to remain outside the scope of Bluetooth SDP, since some of
the issues can be and are addressed by industry discovery protocols, which Bluetooth SDP can
accommodate, as explained in the main body text.

IPR2020-00202
Apple Inc. EX1057 Page 190

The Service Discovery Protocol (SDP) 169

can be summarized largely with the statement that SDP is narrow in
scope, focusing primarily on discovery in Bluetooth environments and
leaving more sophisticated service functions and operations to other
protocols which might be used in conjunction with SDP.

SDP includes the notion of a client (the entity looking for services)
and a server (the entity providing services). Any device might assume
either role at a given time, acting sometimes as a service client and
sometimes as a service provider (server).

The service provider needs to maintain a list of service records that
describe the service(s) it provides; this list is called the service registry. A
service record is simply a description of a given service in a standard
fashion as prescribed by the specification. A service record consists of a
collection of service attributes containing information about the class of
the service (which might be printing, faxing, audio services, information
services, and so on), information about the protocol stack layers that are
needed to interact with the service, and other associated information
such as human-readable descriptive information about the service. Fig-
ure 8.3 illustrates the general structure of a service registry with its con-
stituent service records. Shown is a set of services, each with a service
record handle (depicted by srvRecHnd[0] through srvRecHnd[j]) and a
set of attributes per service (shown as srvAttribute[0:a] through srvAt-
tributelj:c]). Further explanation of the content of these service records
follows.

WVReCHnd[()ui ------- JEwAttributem:L].lﬁ """"""" J =

'Y A mp ke g A A5
rNamezatirvaiue

service
registry

[sReoAndl [PO orvhivuicii o) |

senes®

..... =

searchable attribute (UUID)

[srvRechndlil [oo | [swvattributefjicl |

Figure 8.3
General SDP service registry structure.

IPR2020-00202
Apple Inc. EX1057 Page 191

170

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

Service records consist of both universal service attributes and service-
specific attributes. The universal service attributes are simply those parts
of the service record that apply to all types of services, such as the ser-
vice class and protocol stack information noted above. Service-specific
attributes are those parts of the service record that are relevant only for
a specific class or instance of a service. Examples of service-specific
attributes could include attributes specific to a printing service (such as
color, duplex and finishing capabilities), attributes specific to an audio
service (such as data rate or encoding scheme) or attributes specific to a
dial-up networking service (such as serial port configuration or modem
setup information). Volume 1 of the specification includes definitions
for a set of universal service attributes (those which could apply to all
types of services), but it does not include service-specific attributes,
since it would be impossible to specify and predict all of the attributes
for every imaginable type of service. Service-specific attributes are
defined in profiles (volume 2 of the specification). Since profiles
describe a usage scenario and how the protocol stack is used, they effec-
tively define a service. So, for example, the headset profile defines the
service specific attribute “remote audio volume control” that applies to
the headset service. While the universal service attributes can apply to
all types of services, this does not mean that they are mandatory—it is
not required that every service include every universal service attribute
in its service record. In fact, only two of the universal service attributes
are mandatory: the service class attribute, which defines the class, or
type of the service, and the service record handle, which serves as a
pointer, or reference to the service record and is used by the client to
access the server’s service record.

Each service attribute in a service record consists of an attribute
identifier (attribute ID, a 16-bit unsigned integer) and an attribute value
associated with that attribute ID. Each entry of the service record is one
of these (attribute, value) pairs. Because these attributes describe all sorts
of information, SDP uses the concept of a data element for the attribute
value. A data element is simply a self-describing piece of data. The first
part of a data element consists of a one-byte header that tells the actual
type and size of the data. The remainder of the data element consists of
the data values for the attribute, of the format and size specified by the
data element header. Through the use of data elements, SDP allows
attribute values to be of several types, including strings, Booleans,
signed and unsigned integers of various sizes, and universally unique
identifiers (UUIDs, discussed further below). Moreover, these data
types can be lists of the scalar elements noted above, thus providing a

IPR2020-00202
Apple Inc. EX1057 Page 192

The Service Discovery Protocol (SDP) 171

flexible representation for the many data types of which attribute values
might be composed.

Discovering a service in Bluetooth wireless communication
reduces to a simple operation: the client specifies the service(s) of inter-
est and the server responds, indicating any available services that match
what the client specified. In practice for SDP this consists of the client’s
sending a request in the form of an SDP protocol data unit (SDP_PDU)
that indicates what service(s) it is searching for and the server’s sending
back a response, also in the form of an SDP_PDU, that indicates what
services match the request that the client has made. To accomplish this,
the client needs a standard way to represent the service(s) of interest
and the server needs a standard method to match its available services
against the client’s specification. For this purpose SDP introduces uni-
versally unique identifiers (UUIDs).

A UUID is a concept adopted from the International Organiza-
tion for Standardization (ISO). UUIDs are 128-bit values that can be
created algorithmically and, generally speaking, can be virtually guar-
anteed to be entirely uni?ue—no other UUID ever created anywhere
will have the same value.” One advantage of using UUIDs is that new
identifiers can be created for new services without requiring a central
registry of identifiers maintained by the SIG, although the SIG does
include a list of “well-known” UUIDs in the specification for those ser-
vices related to the published profiles. So a client lookiqg for a service
just specifies the UUID associated with that class of serv1ce_(or wuh' the
specific service) in its service search request, and the service provider
matches that UUID against those of the services it has available to gen-
erate its response. '

The SDP_PDUs exchanged between the client and server a;e stlivn-
ple transactions. The general SDP protocol' flow re;i)ufl)r(zrS I?;Z’tion:
transactions; the specification defines three different S 2 ta o =
but the third is really just a composite of the first two. A typ
transaction consists of:

: interest; server
1. Client sends a request to search for serv1cet(}sl)e Si 1 B
responds with handles to services that match q

: a request to
9. Client uses the handle(s) obtained in steP] to form

: : t.
. ice(s) of interes
retrieve additional service attributes for the serv (s)

identifiers can in fact be cre-
e

: tifi
9. This concept is sometimes hard to grasp, but universa"_y uf‘uguUUIDs as defined by ?SO (lse-e
ated. While there is an extremely small chance of dUPllcanSo P and turn out 0 be quite vaiu
[ISO96)) are quite sufficient for the purposes of Bluetooth

able in this context.

,‘—
IPR2020-00202

Apple Inc. EX1057 Page 193

172

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

Following the above transaction, the client will presumably use the
information obtained in step 2 to open a connection to the service using
some protocol other than SDP to access and utilize the service. Step 1 is
called the ServiceSearch transaction and consists of the ServiceSearchRe-
quest SDP_PDU from the client to the server and the ServiceSearch-
Response SDP_PDU in return (from server to client). As noted above,
the ServiceSearchResponse SDP_PDU contains handles to one or more
services that match the request. In step 2, the client presents one or
more of those handles in a ServiceAttributeRequest SDP_PDU which
causes the server to generate a ServiceAttributeResponse SDP_PDU; this
exchange is the ServiceAttribute transaction. In the ServiceAttributeRe-
sponse SDP_PDU will be the attribute values associated with the ser-
vice that correspond to the attribute IDs that the client specified in the
ServiceAttributeRequest SDP_PDU. These atiributes may be a combi-
nation of universal service attributes and service-specific attributes, and
in most cases should provide the client with enough information to sub-
sequently connect to the service.

The specification defines a third SDP transaction, called the Ser-
viceSearchAttribute transaction. This transaction consists of a ServiceS-
earchAttributeRequest SDP_PDU from the client to the server followed by
a ServiceSearchAttributeResponse SDP_PDU from the server to the client.
It is actually redundant to the first two transactions described above and
is included for efficiency. What the ServiceSearchAttribute transaction
allows is the combination of steps 1 and 2. That is, the client can form a
single request that specifies not only services to search for but also the
attributes to return for matching services in the server’s response. The
server then responds with handles to matching services as well as the
requested attribute values for those matching services. An implementer
thus has a choice between the two alternatives for SDP transactions. '’
More importantly, though, the ServiceSearchAttribute transaction may
in some cases be more efficient in terms of the number of bytes trans-
mitted over the air-interface. The consolidated transaction itself
requires more bytes than the individual transactions but could result in
fewer total transactions. Especially in cases where many service records
are being accessed, such as in a service browsing application, the Ser-
viceSearchAttribute transaction might be more efficient.

10. It should be noted, however, that different profiles mandate the use of different SDP transac-
tions, so if a profile is being implemented, the profile will determine which SDP transaction(s)
need to be used, and the programming effort to support all three transactions should not be
great.

IPR2020-00202
Apple Inc. EX1057 Page 194

The Service Discovery Protocol (SDP) 173

In a nutshell, this is most of what is needed for SDP transactions.
The specification also includes protocol definitions for special cases,
including an error response SDP_PDU and a mechanism, called the con-
tinuation state, for dealing with server responses that cannot fit into a sin-
gle SDP PDU.!! The syntax of these protocol transactions and the data
elements that they carry is detailed in the specification and is not repro-
duced here. A unique feature of the SDP chapter of the specification is
the inclusion of several detailed protocol examples as an appendix to the
SDP specification. The members of the service discovery task force of
the SIG who developed the specification felt that because the actual byte
streams generated for SDP transactions can be complex (even though
the transactions themselves are conceptually simple), it would be useful
to include the examples as a guide for implementers. The complexity is
introduced mostly when complex data elements (such as DataElementSe-
quences, which are lists of data elements and which can be nested) are car-
ried in the SDP_PDUs. When these complex data types are included in
SDP _PDUs, or when SDP_PDUs need to be split using the continuation
state information, the various “count” fields that introduce segments of
the SDP_PDUs need to accurately reflect the number of bytes that fol-
low in that segment. The examples in the specification serve to clarify
the correct construction of SDP_PDUs.'?

Figure 8.4 summarizes the SDP transactions. Shown in the figure
are representations of the relevant arguments and parameters passed in
the SDP_PDUs, although these are not complete lists of all arguments
and parameters; the complete syntax is in the specification. As Figure
8.3 shows, only services and service attributes that are described by
UUID:s are searchable. Attributes of a service which are not described
by UUIDs are not searchable and can be retrieved only after a service
has been located using a UUID attribute.

11. The client can specify the maximum size for the response to its request SDP_PDU. I.t is possil-
ble for the response that is generated by the server to be larger than this maximum size. In this
case, the server includes some continuation state information at the end of its response, which
allows the client to initiate another request to obtain the next portion of the response, if desired.

12. In fact the developers of the specification learned first hand of the need for these examples
when they constructed them, since there were some errors in the first internal versions of the
examples. There were even some €rrors in the examples published in the original version 1.0A
SDP specification, which were subsequently corrected in version 1.0B.

IPR2020-00202
Apple Inc. EX1057 Page 195

e O

o g

ZES IS i

P

R i

s

QT T

174

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PrROTOCOLS

Alternative 1: Individual transactions

%
B
1 |

TA. ServiceSearchRequest (UUID(s] of services to search for)

1B. ServiceSearchResponse (Handle[s] of matching service[s])

SDP & SDP
Client ‘ Server
! 2A. ServiceAttributeRequest (Handle[s] of services to obtain
Altributes for, list of attribute IDs of interest) :
2B. ServiceAttributeResponse (List of attribute values)
Alternative 2: Combined transaction
1A. ServiceSearchAtlributeRequest (UUID(s] of services to
search for, list of attribute IDs of interest)
sop | SDP
Client Server
1B. ServiceSearchAttribuleResponse (Handle[s] of matching
service[s], list of attribute values)
EmreEmew |
Figure 8.4

SDP transaction summary.

SDP Usage

Since SDP was developed primarily for discovering services in Blue-
tooth environments, the applications most likely to make use of SDP
will be those developed specifically to be aware of Bluetooth wireless
communication (as opposed to legacy applications). One exemplary
application for SDP usage is what we will call the Bluetooth Piconet
Minder'® (or BPM application). Such an application is likely to be
included, in one form or another, in many Bluetooth devices. A BPM
application as we envision it would present a view of available devices
and services in proximity (in a piconet) to the user and to other applica-
tions. This could include a user interface; one might imagine icons or
other representations of devices and services. Such an application could

13. This term is used generically here and is not known to, or intended to, conflict with any actual
product names.

IPR2020-00202
Apple Inc. EX1057 Page 196

The Service Discovery Protocol (SDP) 175

give a user a central point to manage the Bluetooth connections to other
devices and to select and make use of the services offered by those
other devices. To support such functions, a BPM application might
make use of service searching and service browsing and thus initiate
SDP transactions to populate the service information that is exposed to
the user and to other applications.

Certainly other applications designed for use in Bluetooth environ-
ments might use SDP. Every profile (or at least every “non-generic”
profile that involves concrete usage scenarios) includes an SDP service
record to be used when implementing that profile. Applications written
specifically to exercise the protocol stack will probably need to execute
SDP transactions to successfully instantiate the profiles. First, such
applications will need to execute SDP transactions with another device
to determine if that device offers the desired service, and if so, those
applications will need to execute additional SDP transactions to obtain
the information from the service record about how to access that service
(this can include such information as the required protocol stack and
associated parameters that the service uses).

In the case where multiple applications use SDP (perhaps one or
more profile applications and a BPM application), it may be advanta-
geous to implement a central SDP client and SDP server that are avail-
able to all the applications that need them. These SDP “helper
applications” could be implemented as part of the common services
layer that was described in Chapter 5. The applications could use the
platform APIs to access the common SDP services which would gener-
ate the SDP transactions and pass the retrieved information back to the
applications.

The Service Discovery Application Profile (SDAP) detailed in
Chapter 12 offers guidance for application interactions with SDP.
While, as previously noted, the specification does not define APIs, the
SDAP does define primitive operations that could be mapped to APIs
and events on many platforms, thus providing a basis for SDP common
services.

There may be legacy applications that make use of service discov-
ery, but such applications probably use some other industry discovery
protocol (perhaps Jini™, Universal Plug and Play™, Salutation™, Service
Location Protocol, the IrDA service discovery protocol, or some other
protocol). Since SDP was developed for Bluetooth applications, l.egacy
applications would not be expected to include this protocol without
modification to the application. Even for these applications, though,
SDP does offer some accommodation. One of the design points for SDP

IPR2020-00202
Apple Inc. EX1057 Page 197

L TenN e

176

Chapter 8 » THE RFCOMM AND SDP MIDDLEWARE PROTOCOLS

was to ensure that other popular industry discovery protocols could be
used in conjunction with it. One of the things that can be discovered
using SDP is that the service supports one or more other discovery pro-
tocols. Thus SDP might be used in the initial service discovery phase to
locate the service; further SDP transactions might be used to discover
that the service supports, say, Salutation; once this has been determined,
the newly discovered protocol (Salutation in the example) can be used
for further interaction with the service. SDP specifically supports this
sort of operation. A SIG white paper [Miller99] describes how Saluta-
tion can be mapped to SDP. Similar mappings to other technologies
should be possible, and the SIG is working toward formalizing some of
these mappings as profiles, as discussed in Chapter 16.

IPR2020-00202
Apple Inc. EX1057 Page 198

Y

IrDA Interoperability
Middleware Protocols

Continuing our examination of the middleware protocols, we now visit
those protocols intended to provide interoperability with IrDA applica-
tions. In this chapter we examine the protocols and conventions that
together in the specification are termed “IrDA Interoperability.” This
term does not mean that devices with Bluetooth wireless communica-
tion can communicate directly with IrDA devices but rather it refers to
protocols that enable common applications to use either form of wire-
less communication. The IrDA interoperability middleware includes
protocols adopted from the Infrared Data Association (IrDA), namely
IrOBEX (or briefly, just OBEX), its associated data object formats z'md
the Infrared Mobile Communications (IrMC) method of. synch?omza-
tion. IrDA interoperability occupies fewer than 20 pages 1n version 1.0
of the core specification (volume 1), although over 100 pages ‘"i‘r_e
devoted to the IrDA-related profiles in volume 2 (this latter mét(%rli/?h/lls
discussed in Chapter 14 of this book). As is the case with RF ; ;
the main reason that the IrDA interoperability protocols ﬁtke ltl}; sirsltiyn
relatively few pages of the specification is that they call ou 8
: i ternal documentation,
standard protocols that are fully described in ext€ ton interoperabil
in this case, specifications of the IrDA. IrDA apphcé - ‘
ity is a fundamental design principle for B
tion, and thus the IrDA interoperability ™
the protocol stack. These protocol layers
files which are likely to become somé ©
mented and widely deployed scenarios o0
Bluetooth technology. This chapter exail

iddleware is @ key element of
are the basis for severz}l pro-
the most commonly imple-

: that em loy the
devices tha P DA

177

‘-—

IPR2020-00202
Apple Inc. EX1057 Page 199

178

Chapter 9 » IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

interoperability information in the specification (as usual, attempting to
reveal the rationale for these protocols) but also the similarities and dif-
ferences between IrDA and Bluetooth wireless communication, since
this latter topic is fundamental to the design basis for the IrDA interop-
erability solution adopted for the specification.

The IrDA interoperability protocols reside above other middle-
ware protocols. In particular OBEX operates over RFCOMM in the
standard case and also could operate over TCP/IP as an optional
implementation.! Like RFECOMM and SDP, the OBEX session proto-
col uses a protocol data unit (PDU) structure, allowing the higher layers
of the stack to work with logical data elements at a higher level of
abstraction than that of the packet formats used by the transport proto-
cols or even by RFCOMM. More importantly, though, OBEX prima-
rily is intended to promote application interoperability with IrDA, so
applications using this protocol with IrDA wireless communication can
adapt easily to the use of Bluetooth links. Figure 9.1 depicts OBEX in
the protocol stack. As shown in the figure, OBEX is used by higher lay-
ers of the stack, typically applications, and OBEX in turn uses other
middleware protocols, namely RFCOMM (and optionally, within the
constraints described above, also may use TCP/IP).

1. While TCP/IP operation for IrOBEX is described in the Bluetooth specification (volume 1) in
the same level of detail as is RFCOMM operation for [FOBEX, there is no SIG-specified end-
to-end TCP/IP solution for version 1.0, since the specification does not address the general use
of TCP/IP over Bluetooth transport protocols. Thus, even though IrOBEX could work over
TCP/IP, and the IrDA Interoperability chapter of the specification describes how to do this,
IrOBEX is assumed to operate over RFCOMM throughout volume 2 of the specification
because TCP/IP is not fully specified in the version 1.0 Bluetooth protocol stack. As noted else-
where, though, TCP/IP can operate over PPP links, and general IP networking solutions are in
progress within the SIG.

IPR2020-00202
Apple Inc. EX1057 Page 200

IrDA and Bluetooth Wireless Communication Compared 179

[ke £
synchronization} file transfer & other IrDA |

applications [applications i applications &
{ [

'

1
3

L2CAP

Figure 9.1
OBEX in the Bluetooth protocol stack.

IrDA and Bluetooth Wireless Communication Compared

Before examining the specification in detail, we first look at the underly-
ing technologies of IrDA and Bluetooth wireless communication. The
objective, after all, for including IrDA protocols in the stack is to pro-
mote interoperability with IrDA applications (hence the “IrDA Interop-
erability” in the title of this chapter and in the specification). Here we
must clearly state that this interoperability is at the application layer,
not at the physical layer. IrDA interoperability does not imply that
Bluetooth devices can communicate directly with IrDA devices. Instead
it is intended to promote development of applications that can use
either transport. Previous chapters have touched on the relationship of
IrDA and Bluetooth wireless communication. Here we compare and
contrast specific features of these technologies. Some excellent back-
ground reading on this topic can be found in [Suvak99], which was writ-
ten by a SIG and IrDA participant.

ItDA is a specific use of infrared light as a communications
medium; Bluetooth technology is a specific use of radio waves as a com-
munications medium. Like the Bluetooth SIG, the Infrared Data Orga-
nization (IrDA) specifies hardware and software protocols for wireless
communication intended to promote interoperable applications.

IPR2020-00202
Apple Inc. EX1057 Page 201

SERTETNS

180

Chapter 9 » IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

While both technologies are wireless, they use different parts of
the electromagnetic spectrum with quite different signal propagation
characteristics. Since infrared uses the nonvisible infrared light spec-
trum, IrDA communication is blocked by obstacles that block light
(such as walls, doors, briefcases and people). The signal wavelength
used with Bluetooth communication, at about 12.5 cm, is three orders of
magnitude greater than that of IrDA. At this wavelength, 2.4 GHz RF
communications can penetrate these sorts of obstacles. Recent advances
in infrared technology have enabled more diffuse transmission patterns,
although much of the IrDA equipment in use today uses a relatively
narrowly focused beam, which usually requires that the two devices
engaged in IrDA communication be aligned with (pointed at) each
other. RF transmission patterns are generally spherical around the radio
antenna, so any two devices within range can communicate with each
other whether or not they are “pointed at” each other (in fact, the sec-
ond device might not be visible at all to the user of the first device, as it
could be in another room behind doors and walls or even on another
floor of a building, for example).

The IrDA specification is more mature than the Bluetooth specifi-
cation, having been available for several more years. IrDA technology
was already widely deployed when the Bluetooth specification was first
released. Thus IrDA has already undergone several phases of enhance-
ment that Bluetooth wireless technology might undergo in the future.
Among these is some improvement in communication speed. The ini-
tial IrDA data rate of 115 Kbps has now been enhanced to 1 Mbps,
which is comparable to that of the first Bluetooth radios. Today IrDA
can achieve data rates of up to 4 Mbps, with even higher rates already
specified. While Bluetooth RF communication has the potential for sim-
ilar increased data rates (and the SIG is investigating these possibilities;
see Chapter 16 for more information), it is likely to lag the IrDA speeds
for at least several years.

The effective range for Bluetooth wireless communication is about
10 meters using the standard 0 dBm radio. With optional power amplifi-
cation of up to 20 dBm, range on the order of 100 meters can be
achieved. IrDA range is about 1 meter and, as noted above, generally
requires a line of sight to establish a connection.

Bluetooth wireless technology is designed for very low power con-
sumption, and as compared to other RF technologies it consumes very
little power. IrDA communication, however, consumes even signifi-
cantly less power than Bluetooth technology, since far less power is
required for infrared transceivers than for RF transceivers.

IPR2020-00202
Apple Inc. EX1057 Page 202

IrDA and Bluetooth Wireless Communication Compared 181

In terms of cost, I'DA hardware was significantly less expensive
than Bluetooth radio modules at the time Bluetooth technology was
introduced. This is partly due to the maturity and wide deployment of
IrDA: the technology has been around long enough that several itera-
tions of cost optimizations have occurred, and installed IrDA units
number in the millions, so economies of scale resulting from high-vol-
ume production have been realized. Bluetooth modules in the year
92000 had not realized either of these forms of cost reduction; even so, it
is expected that Bluetooth hardware is likely to remain more expensive
than IrDA hardware? owing to the complexity of the underlying tech-
nology, although the cost difference probably will narrow over time.

Table 9.2 summarizes these feature comparisons of IrDA and Blue-
tooth wireless communication. The table reflects the state of these tech-
nologies in the year 2000 and reflects consensus forecasts in the industry.
The table is intended to be illustrative rather than authoritative; certain
parameters will vary from implementation to implementation.

Table 9.1
I[lustrative feature comparison of IrDA and Bluetooth wireless communication.
Estimates as of 2000; some values are implementation dependent.

Feature IrDA technology Bluetooth technology

Connection Line of sight Penetrates obstacles
establishment

Transmission pattern Relatively narrow Relatively spherical
conical

Data rate 4 Mbps 1 Mbps

Range 1 meter 10-100 meters

Power consumption 10 mW (nominal) 100 mW (estimated
nominal; product-
dependent)

Transceiver module < $1.00 $5.00 (estimated,

cost approximately 2003-2005)

As explained in the specification and in the following sections,
IrDA and Bluetooth wireless communication share similar application

9. Bluetooth radio module costs in the 2003-2005 time frame are variously estimated to approach
$5 U.S.; IrDA solutions are already well below this figure.

IPR2020-00202
Apple Inc. EX1057 Page 203

182

Chapter 9 » IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

domains, even though the underlying technology used to achieve sce-
narios such as object exchange and synchronization is inherently differ-
ent. Feature differences may cause one technology to be preferred over
the other in certain environments and applications, although we believe
that both have merit and both are likely to be deployed in pervasive
computing devices in the foreseeable future. Thus the IrDA interopera-
bility provisions of the specification can help to enable the best use of
either or both technologies as the situation warrants.

The IrDA Interoperability Protocols

One of the most common applications for IrDA technology is exchang-
ing files and other objects. This includes exchanging electronic business
cards between two devices as well as transferring files and other data
objects between two devices, all in an ad hoc fashion and without wires.
The devices commonly used in these scenarios—especially mobile
phones, notebook computers and handheld computers, but also oth-
ers’-are the same set of devices where Bluetooth technology is
deployed or is expected to be deployed. Even though direct communi-
cation between an IrDA device and a Bluetooth device is not feasible, it
seems clear that these same sorts of applications are quite relevant and
useful in Bluetooth environments. In fact, profiles exist in the version
1.0 specification for both object push (which could be used for elec-
tronic business card exchange) and file transfer (which can include
transferring several specific object types). An extended application of
this sort of data exchange is synchronization, where the data is not only
exchanged but is also replicated between the two devices. A profile
exists for this usage case also, and it too is based upon the IrDA applica-
tion and protocols. In volume 2 of the specification, all of the file trans-
fer, object push and synchronization profiles are derivatives of the
generic object exchange profile, and all of these are described in further
detail in Chapter 14 of this book.

The rationale for IrDA interoperability in Bluetooth wireless com-
munication is to enable the same applications to operate over both
IrDA and Bluetooth links, and the most straightforward way to do this
is to use the same session protocol in both environments. Since the
IrDA protocols already existed and some were suitable for Bluetooth
applications, the SIG chose to adopt OBEX and IrMC in the Bluetooth

3. Perhaps including digital cameras and computer peripherals such as printers.

IPR2020-00202
Apple Inc. EX1057 Page 204

The IrDA Interoperability Protocols 183

protocol stack in the same relative position as in the IrDA protocol
stack. Unlike RFCOMM, the IrDA interoperability specification does
not include any significant subsets, alterations, adaptations or clarifica-
tions of OBEX, although there are some specific considerations (such as
calling out the specific OBEX version 1.2) noted for its use in the proto-
col stack. Much of the description in the specification echoes important
elements of OBEX and describes precisely how OBEX is used over
other middleware layers of the protocol stack.

IrDA Interoperability Protocol Development

The reuse of IrDA protocols and specifically OBEX was identified as
the design direction of the SIG early in the specification’s development.
As with REFCOMM, work was underway on the use of OBEX and
IrDA protocols and data formats at about the time the SIG was publicly
announced. The synchronization usage case was already identified at
that time, as were file transfer and data exchange applications (the latter
scenarios at that time were part of the conference table usage case). In
early 1999 the business card exchange scenario had led to the begin-
ning of what is now the object push profile; file transfer and synchroni-
zation were well defined, and work on profiles for these usage models
was also underway. It quickly became evident that a generic framework
profile that applied to all IrDA interoperability usage cases (that is, all
those profiles using OBEX) would be valuable, so the generic object
exchange profile also was initiated.

Given the objective of interoperability between IrDA and Blue-
tooth applications, an initial goal of the SIG was to produce a specifica-
tion that would allow a single application to operate seamlessly over
both wireless transports. The SIG was (and is) motivated to reuse exist-
ing protocols where appropriate. These considerations led to the selec-
tion of OBEX as the point in the IrDA protocol stack that could be
inserted into the corresponding point in the Bluetooth protocol stack to
allow applications to deal with the same protocol (OBEX) in both envi-
ronments. With study and discussion in the SIG it was determined that
OBEX could operate both over RFCOMM, which was reasonably well
defined by this time, and over TCP/ IP (although the latter is enabled
only in certain circumstances in version 1.0, as discussed below). Other
transports for OBEX not directly applicable to the Bluetooth protocol
stack include IrSock (infrared sockets), IRCOMM and Tiny TP (or
TTP), some of which are mentioned in passing in the specification.

IPR2020-00202
Apple Inc. EX1057 Page 205

TN

IR P L 2

184

Chapter 9 » IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

The OBEX Protocol Examined

IrDA interoperability in general, and OBEX and IrMC in particular,
are significant elements of the protocol stack, yet relatively few pages’
are devoted to the topic in volume 1 of the version 1.0 specification.
OBEX is the basis for several of the version 1.0 profiles and IrDA
interoperability is an important objective and key value of the Blue-
tooth technology. The IrDA interoperability specification can be so
compact because of the SIG’s decision to adopt existing IrDA protocols
that are fully specified by IrDA (the IrDA OBEX specification
[IrDA99a] is about 85 pages long while the full IrMC specification
[IrDA99b] is nearly 200 pages, although only a portion of this latter
specification deals directly with IrMC synchronization).

While the specification discusses the use of OBEX over TCP/IP, it
does not define how TCP/IP should operate natively over Bluetooth
transports. The fact that OBEX can operate over TCP/IP will become
more important in the future when the SIG defines general TCP/IP
operation over Bluetooth links (as described in Chapter 16). Until such
a definition exists, the fact that OBEX can operate over TCP/IP trans-
ports is not directly relevant for version 1.0 implementations.” Thus
TCP/IP operation for OBEX is specified as optional.

The other Bluetooth protocol over which OBEX is designed to
operate is RFCOMM. RFCOMM (detailed in the previous chapter)
was designed specifically with OBEX in mind as one of the RFCOMM
clients. Since OBEX over TCP/IP is defined only in the context of PPP
for version 1.0, we focus here on its use over RFCOMM. The specifica-
tion describes the requirements for the use of OBEX over RFCOMM.
These are not new or unique requirements specific to Bluetooth envi-
ronments; rather they define the boundaries within which a generic
OBEX application should operate to ensure that it will work over
RFCOMM and thus over Bluetooth transports. Among the consider-
ations for OBEX over RFCOMM are:

4. At fewer than 20 pages, the IrDA Interoperability portion of the specification is easy to read
from beginning to end, yet it is a fairly complete description of how IrDA protocols are used in
the Bluetooth stack.

5. Which is not to say that such a stack could not be implemented; in fact, it could. But like all
other implementations not based upon profiles, the risk of noninteroperability exists. Because
TCP/IP is such an important protocol, it is safe to assume that TCP/IP over Bluetooth links
eventually will be solved (this is being pursued by the SIG), and thus it is good to know that
OBEX over TCP/IP is already enabled.

IPR2020-00202
Apple Inc. EX1057 Page 206

The IrDA Interoperability Protocols 185

Client and server functions: The specification indicates that
both client and server functions must be supported by devices imple-
menting the OBEX IrDA interoperability protocol. When one exam-
ines the IrDA interoperability profiles (see Chapter 14), it becomes
evident that while it is technically possible for a device to support
only a client or only a server role, it is really useful only when a
device can support both roles. Even object push, which is largely a
one-way data transfer, still requires both a client role (in this case the
client needs to push the object) and a server role (in this case the
server needs to pull the object). This apparent dichotomy is
explained in Chapter 14.

RFCOMM multiplexing: All OBEX transactions must use a sepa-
rate RFCOMM server channel (as described in the previous chapter,
only one RFCOMM connection is permitted between two devices);
thus, multiple clients of RFCOMM must use its protocol multiplexing
feature. The OBEX server must open a separate RFCOMM channel
connection with a client. Similarly the RFCOMM connection needs
to be terminated when the OBEX session that uses it is terminated.
The specification also describes how to parse the stream-oriented
communications that occur over RFCOMM to delimit the OBEX
packet structures contained therein.

SDP Support: OBEX applications in Bluetooth environments
need to be able to make use of SDP. OBEX clients need to obtain the
relevant information about the OBEX service from its service record
in the OBEX server. OBEX servers need to populate the service
record with information such as the appropriate RFCOMM server
channel to use. As described in the previous chapter, this SDP appli-
cation enablement might be obtained through the use of common
SDP application services; these need not be unique to OBEX appli-
cations.

OBEX provides a session protocol for transactions between two
devices. The IrDA defines both connection-oriented and connectionless
sessions; the Bluetooth specification calls for use of only the connection-
oriented sessions, since this is what best fits Bluetooth environments.
Like SDP, OBEX transactions consist of a request PDU issued by the
client followed by a response PDU issued by the server. With OBEX,
the client role normally is assumed by the device that initiates the trans-
action, while the responding device becomes the server. Also similar to
SDP, the OBEX PDUs consist of a header, a size indicator and the

IPR2020-00202
Apple Inc. EX1057 Page 207

QNI IO

186

Chapter 9 » IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

arguments and parameters associated with the particular transaction.
Fundamentally, OBEX is a simple protocol, with the main operations
being connect and disconnect to initialize and terminate sessions, along
with get and put operations to exchange data objects within an existing
session. These operations are described in the Bluetooth specification
and detailed in the IrOBEX specification.

In addition to a session protocol, OBEX also serves as an object
transport for the data that can be exchanged in OBEX sessions. To sup-
port the IrDA interoperability profiles, the specification calls out partic-
ular object formats as follows:

vCard: format managed by the Internet Mail Consortium [IMC96a]
for representing electronic business cards.

vCalendar: format managed by the Internet Mail Consortium
[IMC96b] for representing electronic calendar and schedule entries.

vMessage: format defined by IrMC [IrDA99b] that represents elec-
tronic messages and electronic mail.

vNote: format defined by IrMC [[rDA99b] that represents short
electronic notes.

Volume 2 of the specification calls out each specific object format
as it applies to the object push, file transfer and synchronization profiles.
Some of these profiles allow for different versions of the object types
noted above; some also allow for other generic object types to be used

with OBEX.

IrMC Synchronization Examined

In addition to transferring data objects over OBEX, it is also quite use-
ful to synchronize these same objects. Synchronization, generally, is the
process of comparing two sets of data and then updating those data sets
so that they exactly reflect (are synchronized with) each other at the
point in time that the synchronization is performed. There are varia-
tions on the synchronization process, such as one-way synchronization
where a “slave” data set is always updated to match a “master” data set,
or partial synchronization where only a subset of the data is synchro-
nized, but in general the idea is to merge the changes made in two (or
even more) data sets into each other so that the data sets become repli-
cas of each other (until additional changes are made to them). Synchro-
nization allows data (perhaps calendar entries, address books or e-mail)

IPR2020-00202
Apple Inc. EX1057 Page 208

The IrDA Interoperability Protocols 187

to be manipulated at various times and places and then be replicated
against some other related data set so that the updates from the data
manipulation can be applied. Applications for synchronization include
synchronizing address books to incorporate new, changed or deleted
entries; synchronizing calendar entries to incorporate new and changed
schedule items; and replicating e-mail to send and receive new notes
and messages and incorporate saved or deleted messages. Synchroniza-
tion can be especially useful when these types of data are kept on more
than one device. Address books, calendars and e-mail can be replicated
among mobile phones, handheld computers, notebook computers and
network repositories of data so that no matter which device is used, the
data on that device can be current and updates to these data can be
reflected on the other devices through synchronization.

Note that the devices mentioned above are some of the devices
most likely to employ Bluetooth wireless communication. Thus it seems
that synchronization is a natural usage case in Bluetooth environments.
Note further that the types of data mentioned above as being common
candidates for synchronization (calendar, e-mail and contact informa-
tion) are the same data types defined in the profiles for object transfer
over OBEX. Thus it seems evident that it ought to be valuable and feasi-
ble to employ OBEX-based synchronization in the specification, and
indeed this is precisely what the SIG has done. Just as with object trans-
fer, the SIG has chosen to adopt the method defined by the IrDA, called
IrMC synchronization. IrMC synchronization builds upon the OBEX
session protocol and certain object formats (including some object for-
mats defined by IrMC itself) to specify a method of synchronizing these
objects. As with OBEX, the specification incorporates IrMC synchroni-
zation as a way to enable IrDA application interoperability.

The core specification (volume 1) includes very little information
about synchronization per se, focusing instead on the use of OBEX in
Bluetooth wireless communication. It does, however, briefly describe
Bluetooth synchronization when discussing the synchronization profile,
which is where the details can be found. Essentially I'MC provides a
framework for OBEX-based exchange of data; given this capability to
exchange data formats including those noted above, additional logic can
be applied to perform differencing and selective object transfer, thus
accomplishing synchronization using the IrMC framework within OBEX
sessions. Chapter 14 more fully explores Bluetooth synchronization.

IPR2020-00202
Apple Inc. EX1057 Page 209

IOL

canas - %
P L L A LN SV

188

Chapter 9 » IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

IrDA Interoperability Usage

The IrDA interoperability information in the core specification (volume 1)
includes a description of the related profiles found in volume 2 of the spec-
ification. In fact, since IrDA interoperability is really about application
interoperability, there is a larger amount of information (over 100 pages)
on this topic in the profiles than in the core specification. Recall that IrDA
interoperability just makes reference to existing IrDA specifications and
describes how to use these standards in Bluetooth environments.

The reuse of IrDA protocols, along with the fact that these proto-
cols operate over RFCOMM (a serial port abstraction), is intended to
facilitate the use of existing IrDA applications in Bluetooth environ-
ments. [IrDA applications are familiar with the use of serial port commu-
nications and are likely to have support for OBEX protocols. By
accommodating these IrDA interoperability layers in the Bluetooth
stack, the SIG has paved the way for applications that can operate with
both IrDA and Bluetooth wireless communication.

IPR2020-00202
Apple Inc. EX1057 Page 210

10

Audio and Telephony
Control

Support for voice or, more generically, audio is a distinguishing
attribute of Bluetooth wireless communication. With support for both
voice and data, the technology is well positioned to bridge the domains
of computing and communications, as evidenced by the enthusiastic
support for the Bluetooth technology within both industries. Several of
the profiles address scenarios in which both a computing device and a
telephony device are used. This chapter, our final in-depth examination
of the core specification, deals with the components of the protocol
stack that enable telephony and voice (audio) communication. The tele-
phony control protocol is embodied by the TCS-BIN (or just TCS for
short) layer, while audio can be carried natively over the baseband.
TCS is based upon the existing ITU-T Q931 protocol [ITU98], but
even so it occupies over 60 pages in the specification. TCS is a binary
encoding for packet-based telephony control and resides above the
L2CAP layer of the stack. TCS-BIN is sufficient to realize the version
1.0 telephony profiles, although applications using AT commands over
the RECOMM serial port abstraction (including headset, dial-up net-
working and fax) might also accomplish a form of telephony control
(this latter form of telephony control is not included as a separate entity
in the version 1.0 specification; it is discussed further in subsequent sec-
tions here). Audio is not a layer of the protocol stack per se but rather a
specific packet format that can be transmitted directly over the base-
band layer. Since audio is frequently (although not exclusively) associ-
ated with telephony applications, it is discussed together with TCS in
this chapter as a logical convenience. This chapter examines telephony

189

IPR2020-00202
Apple Inc. EX1057 Page 211

1SN R

190

Chapter 10 : AUDIO AND TELEPHONY CONTROL

functions, including audio, in Bluetooth wireless communication. As in
preceding chapters we will not only provide highlights and interpreta-
tions of the specification but also touch upon the background informa-
tion for these elements of the protocol stack, including the evolution of
TCS-BIN.

Figure 10.1 depicts audio and TCS-BIN in the protocol stack; it
also shows the component we call A7 Command Télephony Control. This
latter component is a remnant of what was once called 7CS-AT and is
explored further below. In general, when we refer simply to TCS we
mean the TCS-BIN layer of the stack. TCS-BIN resides above L2CAP;
audio communicates directly through the baseband; and AT command
telephony control operates over RECOMM. Telephony control appli-
cations can communicate directly with TCS-BIN and might also use AT
command telephony control.

: &,
audio |, telephony
applications & applications

e -

AT Command

Telephony Control

RFCOMM

L2CAP |

baseband
e P R T R A B i
Figure 10.1
Audio and TCS-BIN in the Bluetooth protocol stack. Also shown is the AT command
based form of telephony control used by some applications.

Audio and Telephony Control Operation

TCS-BIN is used for the call control aspects of telephony, including
establishing and terminating calls along with many other control func-
tions that apply to telephone calls. TCS can be used to control both

IPR2020-00202
Apple Inc. EX1057 Page 212

Audio and Telephony Control Operation 191

voice and data calls. When a voice call is made the audio element of the
stack is used to carry the its content; in the case of data calls the data
content can be carried over the transport layers of the stack (perhaps
also involving other middleware layers). The call control functions pro-
vided by TCS-BIN can be used no matter what the call content (voice
or data) is; data calls like those used with the dial-up networking profile
are supported and so is voice telephony, like that used for the cordless
telephony and intercom profiles.

TCS-BIN also defines a method for devices to exchange call sig-
naling information without actually having a call connection established
between them; this is called connectionless TCS and is described more
fully below. Another aspect of TCS-BIN is that of group management
functions. When there is a group of devices that all support the TCS-
BIN protocol, the members of the group (called a wireless user group, or
WUG) can make use of some special functions defined by TCS, includ-
ing group membership management, telephony service “sharing”
among devices in the group and a method for a fast direct connection
between two group members. The TCS-BIN call control and other
functions are examined more fully below.

A second form of call control, which we have called AT command
telephony control, was introduced above. While it is not defined as a
named protocol in the specification, it is mentioned here because it is a
well-known method for accomplishing call control, and it is used by
several profiles. In fact, at one time this concept was embodied as a sep-
arate protocol and element of the stack called TCS-AT. While TCS-AT
is no longer defined as a separate entity (and indeed, given the exist-
ence of TCS-BIN, a separate SIG-defined TCS-AT protocol is unneces-
sary, as described more fully below), it is worth acknowledging that this
sort of telephony control does exist in many Bluetooth environments.
AT commands are modem control commands that are likely to be used
especially by legacy applications; these applications typically are con-
figured to communicate with a modem over a serial port. Within the
Bluetooth protocol stack these applications could use RFCOMM to
communicate with a compatible modem service using the same AT
command call control functions as in other environments, with little or
no change to the application (especially through the use of a Bluetooth
adaptation layer as described in Chapter 5). TCS-B.IN is the o.nly t.ele-
phony control protocol defined as a separate entity in the specification,
and it is the protocol upon which several telephony profiles are based.
However, AT command-based telephony control is also used in the

IPR2020-00202
Apple Inc. EX1057 Page 213

TOL

192

Chapter 10 » AuDIO AND TELEPHONY CONTROL

headset, fax and dial-up networking profiles, even though no separate
AT protocol is specified by the SIG.

Audio, as already pointed out, is not really a layer of the protocol
stack. In fact it would not be unreasonable to consider audio as a spe-
cialized sort of transport layer, since it is largely embodied as a particu-
lar packet format that is sent and received directly over the air-interface
using the baseband protocol. Indeed, outside the baseband chapter, the
specification directly addresses audio only in an appendix that is fewer
than ten pages long! Yet we have established that voice support is a key
differentiating value of Bluetooth wireless communications, and clearly
audio directly supports voice (voice and audio are often equated,
although voice is not the only form of audio). So why does the specifica-
tion not contain a chapter on audio with a description and page count
commensurate with the importance of audio for Bluetooth applications?
The answer has already been suggested: because Bluetooth audio is
really just a specification of a packet format and an encoding scheme for
the data in those packets, it does not require a lengthy explanation.
Once the allowances (including time slot reservation and audio packet
definition, described more fully in Chapter 6) have been made at the
baseband layer to support audio traffic, little more specification is
required. In fact the actual bulk of the audio specification can be found
in the baseband chapter of the specification, which even includes a sec-
tion devoted entirely to audio baseband traffic. Thus to fully understand
Bluetooth audio one should understand the baseband protocol stack
layer, described in Chapter 6 of this book. However, because audio so
often is associated closely with voice and thus with telephony, it is logi-

cally consistent to discuss it here along with the other telephony-related
functions.

TCS Protocol Development

Telephony control is intertwined with audio functions, and in fact it was
audio that drove the need for telephony control rather than the other
way around. Before there was a TCS working group, it was agreed that
the protocol stack needed to support audio so that voice as well as data
traffic could be enabled. At first the audio requirement pointed out the
need for some control functions, which initially were presented as
“audio control” functions. These audio control capabilities were needed
to support the ultimate headset, speaking laptop and three-in-one
phone usage models (described in Chapter 3), and initially just a small
set of simple operations (such as make a call, answer a call, terminate a

IPR2020-00202
Apple Inc. EX1057 Page 214

