
The Host Controller Interface (HCI) 145

Table 7 .9
The event HCI POU.

Field • size comments

f l Cl Eve1it Header - -

Eve·nt_ Code 1 byte identifies the event
• 'OxFE' is reserved for Bluetooth logo specific events
• 'OxFF' is reserv ed for vendor -specific events used

durin g module manufacturing, such as module testing
and debugging oper ation s

Payload_Length l byte length of the payload of the event HCI _PDU in bytes

H CI_Event_Payload

Payload Payload the payload of an event HCI _PDU is structured as a
sequ ence of variable -size fields for the various parameters _Lengtli bytes
related to this event

A host uses the command HCI_PDUs for things like:
• setting operational parameters of the module , such as providing

a link key for authentication ;
• configuring the modul e's operational status and related parame-

ter s, for instanc e causing it to activate and set the related param-
eters for a low power mode;

• reading and writing register entries, like the number of broad -
cast packet repetitions, NBc, and so o.n.

Depending upon the command , module registers will be read or set,
the link manager will execute an LMP n·ansaction, the link controller will
change state and execute, say, a page , and so on. The host controller noti-
fies the host of the outcome of the command with an event H CI PD U -
either soon after the command is sent from the host or at a later time
when appropriate-for example, following the termination of an LMP
transaction. The reason that host controller H CI PD U transmissions to -
the host are called events and not responses is that the host controlle1·
may initiate its own request (for instance, requesting a missing link key
from the host) or send a transmission to the host without ll?-e host's prior
action (perhaps notifying it of a connection request coming from a remote
device). Actually, some of the command HCI_PDUs sent from the host
are simply responses to event H CI_PD Us that originated from the host

IPR2020-00202
Apple Inc. EX1057 Page 167

•

146 Chapter 7 THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

field

controller. For example, tl1e HCI_Accept_ Conriection_Req11est command is
sent by the l1ost to the host cont:i·oJJe1· instructing the latter to accept an
in.coming connection request fi:om a remot e device. Before the host trans -
mits the HC!_Accept_ Conrzection_Request co.mmand , the host controller
notifies the host of the incoming connection requ est with a
Connection_Request event.

Table 7.10 shows the st1ucture of a data H CI PD U.
Table 7 .10
The data HCI_PDU.

• size comments

HCJ Data Header - -

Connection_Handle 12 bits identifies the baseban d link O\rer \vhich the se data are
transmitted or received ;
connection handle s in the rang e 'OxFOO' to 'OxFFF' ar e
reserved .for futur e use

Flags 4 bits AGL transmiss1:ons. compo sed of t\-vo subfi elds:
• Packet_Boundary_Flag. identifi es the beginning or

continuation of an upper-la yer (L2CAP) PD U
• Broadcast_Flag. identifies the "spread factor" for the

ACL transmission: point -to-point , broad cast to active
s]aves, or broadcast to al] slaves including any parked
ones

SCO transmissions. reserved field

Payload_Lengt,h 2 bytes length of the payload of the data H CI_PD U in bytes

HCI_Data_Payload

Payload Payload data to be carried over the ACL or SCO baseba .nd link
_Length identified by the contents of the Connection_Handle field
bytes

Transmission of data HCI_PDUs across the physical interface is
regulated by the buffer sizes available on the receiving side of the PDU.
Both the host and the host controller inquire about the buffer size avail-
able for receiving data HCI_PDUs on the opposite side of the interface
and adjust their transmissions accordingly. This implies that a large
L2CAP _PDU may need to be fragmented within the HCI layer prior to

IPR2020-00202
Apple Inc. EX1057 Page 168

The Host Controller Interface (HCI) 14 7

sendin g it to the ho st controller. On the receiving side, the HCI layer
could recon struct L2CAP _PDU s based on the packet boundary flag
info 1-mation within the received data H CI_PD Us. Transmission of
H CI_PD Us across the physical interface is in first-in--first-out order
without preem ption. Commands are proc essed by the host controller in
their order of arr ival, but they may complete out of order since each
migh t take a different amount of time to execute. Similarly, events are
pr ocess ed by the host in ord er of arrival , but their processing may ter-
min ate out of ord er.

Note that none of the fields in any of the HCI_PDUs identifies the
H CI_PD U class: command , event or data. Identification of the
I-I CI_PD U class is left to the H CI transport protocol that actually car-
1ies the PD Us be tween the host and the host controller. Strictly speak-
ing, thi s is a violation of protocol layering. However , it allows the HCI
to take advantage of the capabili ties of the underlying transport proto -
col, which may provid e its own n1eans for distinguishing the three
HCI _PD U classes with minimal overhead. Purists may wish to consider
tha t the HCI layer in the host and its complementary part in the host
con troller consist of a tran sport -independent sublayer, and a transport
depend ent conv ergence sublayer (which executes the HCI transport
proto col) that adapt s the HCI_PDUs to the particular transport method
used to carry them acros s the physical interface .

The HCI PDUs -
Th ere are man y command HCI_PDUs organized into several groups
identified by the OG F subfield in the header of the command
HCI_PDU. For many of these command HCI_PDUs there exists a cor-
responding event HCI_PDU that carries the outcome and return
parameters related to the command. For several commands, informa-
tion related . to their status and execution results is carried by two special
even ts: Command_Status_Event and Command_ Complete_Event. The
former typically is sent immediately after a command is received by the
host controller to indicate the status of the command, such as command
pending execution, command not understood, and so on. This provides
a sort of acknowledgement of the command along with an indication of
its processing status. The latter is used to indicate the completion of exe-
cution of a command and to return related parameters, including
whether or not the requested command was executed successfully.
Observe that multiple events might be generated in response to a single
command.

•

IPR2020-00202
Apple Inc. EX1057 Page 169

148 Chapter 7 THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

There are command HCI _PDU s relat ed to link contro ller action s,
policy-setting commands , the host controller itself, and many other s.
Command and event HCI _PDU s number ove1· 100; son1e of these are
highlighted in the following sections . The se selected HCI _PD Us are
illustrative of the type of infor1nation and the le,,el of detail that is com-
municated between the host and the host contr oller. For· the full set of
H CI_PD Us, refer to the specification.

Link Control HCI PDUs
The commands in this group are identifi ed via the OG F subfield with
the value 'bOOOOOl '. This group contains command s that allo1vv inquirie s
to be sent to cliscover other devices in the vicinity. The1·e are command s
to create and terminat e ACL and SCO connection s and to acce pt or
reject incoming connection requests. Th ere are command s for initiatin g
authentication and encryption proc edur es as we l] as for transporting
authentication keys and PINs from the host to the link cont1·01Ier. There
are information commands in this gToup to request the user -friendl y
name of the remote device , the link manag er op tions that it supports
and the clock offset registered in the remote device .

Following are some examples of HCI _PDU s in thi s group. The
HC!_lnquiry command PDU instructs the module to ent er the inquiry
mode, using a given inquiry access code , for a specifi ed amount of time
or until a specified number of responses is collected. Thi s command is
summarized in Table 7.11.
Table 7 .11
The HCl_lnquiry command HCI_PDU.

Commarul_Name HCI_lnquiry
OCF 'bOOOOOOOOO I'

Parameters LAP 3 lower address part used for
bytes generating the inquiry access code

Inquiry_Length 1 byte indicates the maximum duration for
trus inquiry: 1.28 sec - 61.44 sec

Num_Responses I byte indicates the maximum number of
responses to be collected

IPR2020-00202
Apple Inc. EX1057 Page 170

Event Na1ne -

Event Code -

Parameters

The Host Controller Interface (HCI) 149

Th e inquiry mode originated by this command terminates either
when Jnqztiry_Length time has elapsed or when the number of respond-
ing device s 1·eac l1es Num_Responses, whichever occurs first.

Tl1e l1ost controller· returns inforn1ation collected from inquiries to
the ho st with the lnquiry_Result_Evenf:> summarized in Table 7.12; the
parameters of the event are derived from the FHS BB_PDUs (detailed
in tl1e previou s chapter) that are received from the devices responding
to th e inquirie s. A brief description of the parameters below is given in
Table 7.13, which presents the command that uses these parameters.

Table 7 .12
The /nquiry_Result_Event event HCI_PDU; the index i identifies each of the
Num_Responses responding devices.

lnqui1y_Result_Event

'Ox02'

Num_Responses 1 byte

BD_ADDR[i] 6*Num_Responses bytes

Page_Scan_Repetition_Mode[i] 1 *Num_Responses byte(s)

Page_Scan Period_Mode[i] 1 *Num_Responses byte(s)

Page_Scan_Mode[z] 1 *Num_Responses byte(s)

Class_ of-Device[i] 3*Num_Responses bytes

Clock_ Offset[i] 2*Num_Responses bytes

d PD U · structs the module
The HCI Create Connection comman · in . et of - - ·fi d d . e using a given s

to create a connection with a spec1 e evic ' . ess i·equires
BB_PDU types for the ACL link. Since the con~ectioh~ proc mand also

,, '' deV1ce t is com
that the '' local '' device page the remote . ' The paQi.ng . h aoing process. b
provides information used to accelerate t e P b- 1 1 d vice via an ear-
. . . bl th h t of a oca e 1nformat1on becomes ava1la e to e os . Table 7.12. The
lier Jnquiry_Result_Event PDU: shown ·zerin Table 7.13.
H Cl Create Connection command 1s sum mart - -

ak l·berty in the nan1ing
· ,ve t e 1

. . R 1·" t Once again 8. This event is actua lly called "l11qu1ry esu t even ·
convenlion for consistency purposes ,vith other polJs.

IPR2020-00202
Apple Inc. EX1057 Page 171

... l •

150 Chapter 7 i THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

Table 7 .13
The HCI_Create_Connection command HCI POU.

Command Name HCJ Create Connection - - -

OCF 'bOOOOOOO 101'

Parameters BD ADDR 6 bytes identifies tl1e remot e devi ce \.vith -
\vhich lo establish a conn ectio n

Packet_Type 2 bytes indicates\ hich BB_PDU types can
be used by the link manager for the
ACL li11k

Page_Scan_ 1 byte indicates the page scan repetition
Repetition_Mode mod e, that is, ho\v frequently the

remote device enters the page scan
mode, last reported by the remote
device

-
Page_Scan_Mode 1 byte indic ates the page scan mode

supported by the device

Clock_ Offset 2 byte s indicat es the difference betwee n the
slave and master clocks, as
calcula ted in the last
communicat ion betwee n them

Allow Role Switch - - 1 byte indicates wheth er this (the paging)
device will be the master or will
allow the paged device to becom e
the master if reque sted 1

J. A1/aster-slave role switching is described in tbe previor,s cl~a/Jler.

Upon successful creation of the connection, a Connection_ Com-
plete_Event is sent to the hosts on both sides of the connection. The
events contain the Connection_Handles for identifying the connection.
The connection handles are assigned by each host controller indepen -
dently and their scope is limited to the local device only.

Link Policy HCI_PDUs
The commands in this group are identified via the OG F subfield with
the value 'bOOOOlO'. This group contains commands that allow a device
to set a power-management policy through the hold, sniff, and park

I
I
I
I
I
I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 172

The Host Controller Interface (HCI) 151

baseband mode s and to define the parameters for those modes. Also,
ther·e are con1mands that pass QoS parameters from the L2CAP layer
to the link n1anager , learn about the role (master or slave) that the
device9 play s for a particular connection and request a role switch if
needed.

Table 7.14 summari zes the HCI _PDU command that requests the
ho st contr·oller to instruct the link manager and the baseband to enter
hold mode with the parameters provided. Similar commands exist for
sniff and park modes.

Table 7 .14
The HCI_Hold_Mode command POU.

Comrriand_Name]{Cl Hold Mode - -

OCF

Parameters

'bOOOOOOOOO l'

Conn.ection Handle 2 bytes identifies the connection - (actually the ACL link) to be
placed in hold mode;
only the 12 LSBs are used

•

Hold Mode Max Interval 2 bytes indicates the maximum
- - - negotiable hold interval

(0.625 msec - 40.9 sec)

Hold Mode Min Interval 2 bytes indicates the minimum
- - - negotiable hold interval

(0.625 msec - 40.9 sec)

The host controller notifies the host when hold mode is entered or
is terminated using the Mode_Change_Event.

Host Controller and Baseband HCI PDUs -
The commands in this group are identified via the OGF subfield with
the value 'bOOOO 11 '. This group contains commands that allow the host
to access and configure various hardware registers that maintain opera-
tional parameters. Among the operations that can be perfo1·med are
deter1nining the types of events that the host controller can generate;
reading, writing, and deleting stored keys; reading and wiiting the user-

9. Recall that information regarding the role that a device plays in a particular connection does
not propagate through the stack beyond the link manager layer. A. host needs to explicitly
reqt1est this inforn1ation from the host controller.

IPR2020-00202
Apple Inc. EX1057 Page 173

r ·
I.. ' ' . .. y .

I

1 52 Chapter 7 T HE UPPER PROTOCOLS OF THE TRANSPORT GROUP

friendly device name; activating and deactivating inqui ry a11d/ or page
scans; reading and writing the authentication and/ or encryp tion activity
flag for a link ; reading and writing the inquir y access codes used to listen
during inquiry scans ; forcing the flushing of ACL packets for a connec-
tion handle; reading and writing the audio codec para 111eters and so on.

Table 7.15 summarizes the HCI PD U co111mand that sets the -
inquiry scan parameters ; a similar comm and exists for pag e scans as
well. Inquiry scans occur only when the host has already sent an
HCI_ Write_Scan_Enable command PD U to enable inqui ry scans.
Table 7 .15
The HCI_ Write_Page_Scan_Activity command POU.

Command_Name HG!_ Write_lnquiry_Scan_Activity

OCF

Parameters

--

'bOOOOO 11100'

lnquiry_Scan_lnterval 2 bytes determine s the interval bet\vee n
successive starts of inqui ry sca ns
11.25 msec - 2.56 sec (typ ical ly,
1.28 sec)

lnquiry_Scan_ Window 2 bytes de ten11ines the dur atjon of a
single co ntinuou s scan operation
11.25 msec - 2.56 sec (typical ly,
11.25 msec)

When the host controller finishes updating the related register s it
returns a Command_ Complete_Event to the host.

Inf0r1national Pa.rameters HCI PDUs
The commands in this group are identified via the OG F subfield with
the value 'bOOOIOO'. This group includes commands that request static
info11nation about the hardware and firmware that is electronically
''engraved'' on the device at manufacture time. There is a command to
request the version of the various protocols (LMP, HCI, and so on) that
the module supports; a command to request a list of features supported
by the link manager; a command to request the country of operation of
the module; a command to request the BD_ADDR of the module; JO and
a command to request the host controller buffer information for ACL

JO. Recall that the BD_ADDR is hardwired and cannot be modjfied.

IPR2020-00202
Apple Inc. EX1057 Page 174

Summary

Summary 153

and SCO packets, used to execute effective flow control at the host. The
1·equested information is returned in a Command_ Complete_Event.

Status Pa.ra.1neters HCI PDUs -
Th e commands in this group are identified via the OGF subfield with
tl1e value 'b000I01 '. This group include s commands that request infor-
mati on that is dynamically upd ated, like the value of the contact
coun te1· t11at measure s the number of successive instants during which
the remote device does not respond to local transmissions , causing the
local link manag ·er to flush any PDU s waiting to be tran smitted. There
is also a com mand HCI _PDU to retrieve information relat ed to the
qua lity of the link and the RSSI (received signal strength indicator)
value. Th e requested information is retut"Ded in a Command_ Com-
plete_Event.

Testing HCI _PDUs
The com mands in this gToup are identified via the OGF subfield with
the value 'bOOOl 10'. These commands, which all result in Command_
Complete_Event events , are used for testing the Bluetooth module and
are not discussed further here.

In this chapter we have highlighted the upper two Bluetooth transport
protocols: L2CAP and HCI. The latter is a transport protocol internal to
a devic e, rather than an over-the-air protocol as are L2CAP and the
other proto cols discussed in Part 2 of the book. The primary purposes of
these proto cols are both to hide, in the case of L2CAP, and to expose, in
the case of H CI, the internal operation of the lower transport protocols.
L2CAP is used to multiplex and transport higher protocol layers while
shielding them from the peculiarities of the lower transport protocols,
like the baseband. The H CI provides a standardized interface to the ser-
vices and capabilities provided by the lower tr·ansport protocols.

In this and the previous chapters we have presented the protocols
that the SIG has developed for transporting data across Bluetooth
devices. These protocols have been developed entirely by the SIG spe-
cifically for Bluetooth wireless communication. They reflect the SIG,s
objectives to develop simple, cost-effective communication systems that
can operate at low power in noise -susceptible places. In the next chap-
ter we introduce the middleware protocols that are used to take advan-

•

•

IPR2020-00202
Apple Inc. EX1057 Page 175

154 Chapter 7 , THE UPPER PROTOCOLS OF THE TRANSPORT GROUP

tage of the data -transp ort services of the t1~ansport pr otoco ls to enable a
plethora of application s, includin g legacy applications, to ope rate
smoothly over Bluetooth links.

I
I
I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 176

The RFC an~
SDP

I

1, I eware
Protoco s

W e now move from the transport protocol layers to a detailed discus-
sion of the middleware protocols. In this chapter we discuss
RFCOMM, the Bluetooth serial port emulation protocol, and the Blue-
tooth Service Discovery Protocol, or SDP. Version 1.0 of the core speci-
fication (volume 1) devotes nearly 90 pages to these two protocols. As
with the other detailed discussions of portions of the specification, this
chapter attempts to reveal the motivation and thought process behind
the development of these p1·otocols. While the important elements of
RFCOMM and SDP are examined here, this material focuses on the
design basis for the protocols and thus is not a substitute for the specifi-
cation itself.

Both RFCOMM and SDP 1·eside directly above the L2CAP layer
(discussed in the previous chapter) and use L2CAP connections to
accomplish their respective functions. Both of these protocols provide a
protocol data unit (PD U) structure for use by higher layers (either appli-
cations or other middleware protocols) in the stack. PDUs allow the
higher layers of the stack to work with logical data elements at a higher
level of abstraction than that of the packet for 1nat used by the transport
protocols. Both RFCOMM and SDP are protocols developed specifi-
cally for use with Bluetooth wireless communications, although
RFCOMM borrows heavily from an existing standard. Figu.re 8.1 illus-
trates the position of RFCO MM and SD P in the protocol stack. As
shown in the figure, RFCOMM is used by higher layer middleware
protocols and by applications for networking, IrDA interoperability and
telephony. These same applications may communicate directly with

155

IPR2020-00202
Apple Inc. EX1057 Page 177

156 Chapter 8 THE RFCOMM AND SDP M IDDLEWARE PROTOCOLS

RFCOMM as well as with th ei1· assoc iated middl eware p1-otoco ls that in
tum communicate ,,vith RFCOMM . Since se rvice di scovery is funda-
mental to all Bluetooth p1·ofiles, mo st app lication s will a lso communi -
cate with the SD P layer.

other ,
I applications
r

networking
applications

I rDA
applications

telephony
applications

r········t············ r············
I

' . "

Figure 8.1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

net\vorki ng
middlevvare
protocols

L2CAP

RFCOMM and SDP in the Bluetooth protocol stack.

The RFCOMM Protocol

I rDA
inter-

operabi I ity
middleware
protocols

telephony
control

m i d d I e v, a re
protocols

•

Serial interfaces are ubiquitous in computing and telecommunications
devices, particularly those devices with a high affinity for Bluetooth
communications. Notebook computers have serial po .rts, personal digi -
tal assistants typically have serial ports (often used to synchronize the
PDA with some other device), many mobile telephones have serial
ports (often used for a wired headset), many digital cameras use serial
ports to transfer image data to another device, printers and other com -
puter peripherals often use serial ports for communication, and so on.
Moreover, infrared communication, which as previously established
has some traits in common with Bluetooth wireless comm uni cation,
normally uses a serial port to communicate with the IR transceiver. 1

Because Bluetooth technology aims to replace cables, it seems
clear that there is a large opportunity to replace serial cables. To do this
effectively, the stack needs to support serial communication in the same

IPR2020-00202
Apple Inc. EX1057 Page 178

The RFCOMM Protocol 15 7

mann e1· as is done with ca bles, so that application s are pr ese nted with a
famili ar serial interface. This permits the cornucopia of legacy applica -
tion s that are unawa1·e of th e Bluetooth technology to operate seam-
lessly over Blu etoot h link s. Furthermore, application software
deve loper ·s skilled in deve lop ing se1ial communi cation applications
m ay still continue to do so, assu red that their applications will operate
over Bluetooth link s. But the transport-layer protocols are not modeled
aft er a seria l port. L2CAP support s packet data structure s, and while the
air·-in ter face ma y transmit bit patte1ns in a serial fashion, this is not the
sam e as tl1e commo n RS -232 types of serial interfaces used today with
seria l cab les.

Thu s the SIG has cho sen to define a laye1· in the protocol stack
that look s very much like a typic al serial interf ace : the RFCO MM
layer·. In the wor ld of per sona l computers, serial interfaces are often
ca lled COM ports. The name RFCOMM connotes a wireless (RF)
in stance of a virtua l COM port. RFCO MM primarily is intended to
enab le cab le-replacement sce narios for exist ing application s.

RFCOMM Protocol Development
Th e motivation for the RFCOMM protocol layer is rooted in the
requirement to support legacy applications with initial Bluetooth imple -
ment atio ns. The ne ed for· thi s serial communication fun ction in the soft-
ware stac k was identified quite early in th e SIG's fo1·1nation. Just one
month after th e SIG was publi cly announced, discussions ensued on
deve loping the spe cificati on for the RFCO MM laye1·. At that time, the
ETSI TS 07.10 standard [ETSI 99] had already been identified as a can-
did ate for a ba sis upon which to build Bluetooth serial communications.
Requir em ents for Bluetoot h serial communications include:

Multiplexed serial co1n1nunications: There may be many
simultan eo us clients of the serial interface in the stack, including
IrOBEX , telephony control and networking clients. Thus the serial
port needs to be shareable through multiplexed connections (which

1. 1n the PC domain , infrared com mun ications are frequently tied to a COM port resource . In
commonly used PC operati ng environments , these CO M ports classically have been difficult to
configure, especial ly for infrared communica tions . Tl1is drawback has led to a situation ,vhere,
,vhile many infrared ports are deployed in produ cts, only a fraction of these ports are actually
used, since n1any users lack the expe rtise or motivation to perform the necessar) ' configuration
process. The rise of infrared ports on PDA s and mobil e phone s, ,vhere the configuration pro -
cess is much easier, seems to lead to a higher usage rate of infrar ed in peer-to-peer communica -
tions.

••

•

•

•

• ,

IPR2020-00202
Apple Inc. EX1057 Page 179

158

I

Chapter 8 , THE RFCOMM AND SDP MIDDLE\'t./ARE PROTOCOLS

in tum might be supported by the proto col mt1ltiplexing in the
L2CAP lay er, over which distinct RFCOMM en tities in different
de,rices communicate).
RS-232 signal compatibility: RS-232 is a wid ely t1sed serial inter -
face for the cables with which Bluetooth wireles s con1munication
needs to be compatible. Many application s are ·fan1ilia1~ ,vitl1 RS-232
interfaces, including the various control signals associated \Vith RS-
232; these include common signa ls such as Requ est to Send / Clear to
Send (RTS / CTS), Data Terminal Ready / Da ta Set Ready (DTR/
DSR), the RS-232 break frame and others . Emulating these sig11als
allo,.vs RFCOMM to present to its clients the app eara nce of a serial
port that is virtually the same as that used \vith a ser·ial cable .
Remote status and configuration: In a peer -to-pee r environ -
ment, the two parties communicating over the seria l link often need
to determine the status and configuration of the remot e serial inter -
face so that the local serial interface can be configured in a compati-
ble manner. The service discovery protocol , discussed in f ollo,.ving
sections, can be used to obtain basic information needed to estab lish
a serial communications channel; following connection estab lish -
ment the two ends of the serial interface need to be able to negotiate
compatible serial communication settings for the connect ion.
Internal and exter11al serial port: To support the vario us uses
of serial communications in Bluetooth applications, RFCO MM
needs to support both an internal emulated serial port, in which the
serial port parameters are used only locally (the parameter s do not
apply across the air-interface) as well as an external serial port, where
the serial port parameters and status are transmitt ed across the RF
link along with the data and may be used by the receiving serial port.

These requirements are not unique to Bluetooth environments,
and the SIG realized that the aforementioned ETSI TS 07.10 standard
was a good match for the needs of Bluetooth serial communications, so
the SIG adopted much of that standard. However, TS 07.10 is not a per -
fect match for use in the Bluetooth protocol stack, so the SIG added
some of its own modifications to adapt the ETSI standard for use in
Bluetooth wireless communications. Among these additions and
changes are:

Data. fra1ne adaptations: Since Bluetooth communication has an
underlying packet structure by virtue of the use of L2CAP, some of

I
I
I
I
I
I
I
I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 180

The RFCOMM Protocol 159

the data f1·ame conte11ts specified by TS 07.10 are unnecessary for
RFCO M~. For example, the frame delimiter flags specified in TS
07.10 are discar ded for the RFCOMM specification.

Connection establishment and terniination: Again, because
Blu etoot h com ·munication has its own connection management in
tl1e transport protocol laye1·s that RFCOMM uses, the connection
manage 111ent functions of TS 07.10 are superfluous for RFCOMM.
The spec ificatio n detail s how RFCO MM links are managed.

Multiplexing: RFCOMM uses a subset of the multiplex channels
specified for TS 07.10 and specifies the way in which some TS 07.10
multiplexing control commands are used in RFCOMM.

Applicability: The RFCOMM specification mandates support of
severa l features wl1ich are optional in the TS 07.10 standard. These
features de al with exchanging infor111ation about the configuration
and statu s of the seria l connection and include negotiating the serial
port and individual channel settings and retrieving the serial port sta-
tu s. In Bluetooth environments these functions are quite useful and in
fact can be considered necessary for effective use of the air-interface;
thu s the y are specified as mandatory to support in RFCOMM.
Flow control: Typical serial ports pace the data transfer using
XON/XOFF pacing or DTR signal pacing. For RFCOMM, the
specification describes flow control mechanisms specific to the Blu~-
tooth protocol stack, including flow control that applies to all multi-
plexed RFCOMM channels as well as per-channel pacing.

The remaining RFCOMM sections in this chapt~r revi~w. key
points of the RFCOMM specification, in many cases highlighting the
significance of the design choices fo1· this p1·otoc0I layer.

The RFCOMM Protocol Examined
2 R.FCOMM in the specification

The relatively few pages dev~ted to k RFCOMM is the
belie its importance in the version 1.0 protocol stacal. b din some
basis for most of the version 1.0 profiles and ~ight bsol e upseort for leg-

. . se is to ena e sup
future profiles, although its primary purpo . 3 The main rea-

l
. . . . I bl 1 cernent scenanos. acy app 1cations 1n srmp e ca e-rep a . dozens of pages of

son that RFCOMM does not reqUire many
.6 ti·on a good ca11didate for

. n of the spec1 ca k
2. Only about 25 pages, making the RFCOMM porbo d t ding this ke)' layer of the stac ·.

. , h . d . fttlly \ln ers an beginning-to-end reading ,or t .ose 1ntereste 1n

IPR2020-00202
Apple Inc. EX1057 Page 181

• ' ' '

160 Chapter 8 D THE RF(OMM AND SOP M IDDLEWARE PROTOCOLS

explanation is the SIG's decision to adopt much of th e ETSI TS 07.10
protocol (whicl1 itself is over 50 pages of specification). By specifying TS
07.10 as the basis for RFCOMM , the SIG ha s ad opt ed a mature stan-
dard protocol and the specification needs to describ e only the adapta -
tion of this standard for Bluetooth envi1·onn1en ts. Mu ch of the
RFCOMM chapter of the specification focus es 011 desc1ibing which
parts of TS 07.10 are relevant for RFCOMM , hovv th ose features are
used and the modifications necessary to map TS 07.10 in to the Blue-
tooth protocol stack.

RFCO MM uses a.n L2CAP connectio11 to instanti ate a logical
serial link beh,veen two devices. In pa1·ticula1·, an L2CAP connection-
oriented channel is established that connects the tv\ro RFCOMM enti -
ties in the h-vo devices. Only a singl e RFCOMM connec tion is per111it-
ted between h-vo devices at a given time , but tha t connection may be
multiplexed so that there can be multi .pie logical se1ial links between
the devices. 4 The first RFCOMM client establishe s the RFCOMM
connection over L2CAP; additional users of the existing · connection can
use the multiplexing capabilities of RFCOMM to establish new chan-
nels over the existing link; and the last user to drop the final RFCOMM
serial link should te1·rninate the RFCOMM connection (and hence the
underlying L2CAP connection). Each multiplexed link is identified by a
number called a Data Link Connection Identifier, or DLCI. Figure 8.2
depicts multiplexed serial communications links using RFCO MM over
L2CAP. In the illustration the various clients of RFCOMM each see
their own emulated serial port, distinguished by a D LCI value (depicted
by the different line types in the figure). These separate channels are
then multiplexed over the RFCO MM link, which in turn is carried
over an L2CAP connection.

3. RFCOMM might become less significant in future usage models as the specification evolves to
support general TCP/IP net,vorking. In the meantime, the SIG specified RFCOMM as a solu-
tion for serial·cable-replacement usage models.

4. MultipJe links might be attained either through multiple instances of a single-channel
RFCOMM or through a single instance of a multiple-channel RFCOMM (the latter being
what the Bluetooth specification defines). While these might be logically equivalent , they are
Jikely to resuJt in real differences in implementations. The RFCOMM specification ind.icates
that a client which requires a serial connection should first check for an already existing
RFCOMM connection to the target device; if an RFCOMM connection to that device already
exists, the client should just establish a new channel on that existing connection.

IPR2020-00202
Apple Inc. EX1057 Page 182

other
applications

-

Figure 8.2

nel1vork1ng
applical1ons

• • • • • • • • • •

networking
m1ddlev1are
protocols

• • • • •

I rDA
appl1cat1ons

Ir DA
1nter-

operab1l1ly
middle111are
protocols

L2CAP

telephony 1
appl1cat1ons

• • • • • • •

telephony
control

m1ddlev,are
protocols

• • •

)

• •••••
••••

The RFCOMM Protocol 161

other
applications l nel\•,orking 1

applications 1

• • • • • • • • • •

netv,orking
m1ddle\'1are
protocols

- --. ··-·-

lrDA
applications '

•
telephony ·

applications
I - --- --~ . -

I rDA I
inler-

operab,lity r
m1ddle1•,are
protoco Is

• • • • • •
I

telephony
control

middle\'1are r
protocols ·

~~ ~___,::> L2CAP
. ---- -----™----·--~~-------__.I

Mul tiplexed RFCOMM logical serial links (indicated by different line types) over a single RFCOMM
connect ion, in turn over an L2CAP connection.

The spec ification allow s for up to 60 multiplexed logical serial
link s over a singl e RFCO MM connection but doe s not mandate this
leve l of multipl exing for RFCOMM implementations. In fact for most
port able devices it is uncommon to have cases in which dozens of
sim ult aneou s seria l link s would be requir ed in Bluetooth environments.
Mo st devi ces are ex pected to support a fixed number of profiles, which
will be a determining factor in how the protocol stack for those devices
is implement ed , including design tradeoffs such as the number of
RFCOMM serial links suppo1-ted. But consider also devices such as net -
work access point s that allow portable devices to use Bluetooth wireless
communication to access large1· networks (such as the Internet). The
LAN Access profile (discussed in Chapter 15) specifies the use of PPP
over RFCOMM, so a LAN access point device might indeed need
many simultaneous serial connections to multiple devices. The
RFCOMM specification supports this sort of usage by allowing more
than one multiplexer session (that is, more than one instance of
RFCOMM , in which case the multiplexing is achieved by using
L2CAP's multiplexing capabilities), although such a capability is not
mandated.

IPR2020-00202
Apple Inc. EX1057 Page 183

l
•
\ ·,
•

162 Chapter 8 THE RF(OMM AND SOP M IDDLEWARE PROTOCOLS

The RFCOMM chapter of the specification includ es a discussion
of two different sorts of devic es that RFCOMM support s: communicatio1i
endpoi1it (computer- or pe1·iph e1·al-style devices) and co1rzmunication 1nid-
point (modem-s tyle devices). In general seria l communicatio1 1s, these
are often referred to as data terminal equipm ent (DTE) and da ta com-
munications equipment (DCE), 1·espectivel y. After making this distinc-
tion , though, the discussion concludes by stating lhat RFCOl\tfM doe s
not distinguish ben veen these device types at all. In fact, it is 11ot nece s-
sary for RFCOMM to do so ; much as a standard serial cable can be
configured for a direct serial conne ction or for nul l modem ope1·ation,
RFCOMM also can be used in both mann ers. RFCO NIM has included
features to support DCE (modem -style) communic ations; these features
may not be applicable for DTE communic ations. RFCOMTvl supports
both device styles without needing to distingui sh betwee n them.

Typical cabled serial connection s have a number of signals in the
cable (usually nine for RS-232 communication s, altho ugh all nine signals
are not necessarily used in all applications). Bluetooth wire less commu-
nication obviously has no such signal s becau se the trans mission medium
is the air-interface rather than a cable. In a mul tiplexe d environment
such as is defined by TS 07.10, it is desirable tha t each seria l channel be
viewed as an independent entity, with its own set of control and data sig-
nals. So even in a cabled environment some scl1eme is ne eded for multi -
plexing the serial signals. TS 07.10, and thus RFCOMM , do this by
defining a specified control channel across which infor111ation is trans -
mitted as data. That is to say, rather than setting and monitoring signal
levels as is done with a standa.rd RS-232 interface , RFCOMM uses com-
mands and responses to communicate the state of the multiplexed serial
interface (thus virtualizing the RS-232 signals).

RS-232 defines other states that are not directly represented by sig-
nals. Notable among these is the baud rate, or the clock frequency used
to transmit and receive data. In standard cabled serial communications,
a clock governs the time associated with the signal transition to and
from low and high levels, which de-fine the 0/1 bit patterns. Obviously
both sides of the interface must use the same clock frequency, or baud
rate, to correctly interpret the data that is transmitted across the wire.
For wireless environments, however, there is no cable and thus no sig-
nal wire to pulse at a specified frequency. Clearly, though, Bluetooth
wireless communication does employ clock timings to communicate
over the air-interface at the baseband level. Since RFCO MM operates
over the transport layers of the protocol stack, it makes use of the packet
structure and transmission medium used by those lower layers. The

IPR2020-00202
Apple Inc. EX1057 Page 184

The RFCOMM Protocol 163

baud 1·ate of Bluetooth wireless communication is determined by the
packet type s and structu1·es being sent over the air-interface. The actual
con1munication will occur at the rate determined by the baseband pro-
tocol, regardless of wl1at baud rate might be specified at the RFCO MM
layer for se1ial port emulation. So while an application or other client of
RFCO MM can specify a baud rate (this would be a typical action, espe -
cially for legacy applications, and RFCOMM allows it), the specified
baud rate does not dete1·mine the actual data rate. In many cases, the
data transmission rate using Bluetooth wireless communication could
be faster than fo1· typical cabled communications.

RFCOMM Protocol Usage
Curiously, the RFCOMM chapter of the core specification (volume 1)
include s a section containing the sort of information (application con-
sideratio ns, interactions with other protocol stack layers and SDP ser-
vice record data) that is usually found in the profile specifications
(volum e 2). This is an a1·tifact of the development of the RFCOMM
specification. As previously noted, RFCOMM specification develop-
ment was underway almost from the beginning of the SI G's for1nation.
Along with the lower-layer transport protocols, which consumed much
o·f the SI G's attention at first, RFCOMM was one of the first protocols
to reach a stable specification level (this is due partly to the fact that
RFCOMM leverages the TS 07.10 standard and partly to the hard work
applied to the RFCOMM specification by its owners in the SIG, since
the SIG recognized that RFCOMM was a key element of the version
1.0 protocol stack and a foundation upon which other protocol layers
and profiles were to be built). Most of the profiles were developed after
the core specification was stable. The forward -looking authors of the
RFCOMM portion of the specification had already included some of
the information that subsequently became part of the serial port profile
(covered in Chapter 14).

So the RFCO MM chapter of the specification gives some hints on
using this layer of the protocol stack. The specification talks about Port
Emulation and Port Proxy entities, the former mapping platfo1·111 APis to
RFCOMM functions and the latter mapping RFCOMM to a ''real''
RS-232 external interface. The point, though, is that the authors of the
RFCOMM specification not only have specified a protocol that is nec-
essary for many legacy applications to make use of Bluetooth wireless
communications but also l1ave offered a few considerations for the
applications that use that protocol.

IPR2020-00202
Apple Inc. EX1057 Page 185

t ..
•

164 Chapter 8 ;, THE RFCOMM AND SOP MIDD LE\YJARE PROTOCOLS

In fact tl1e progTamming model suggested in RFCOMM is a spe-
cific instance of the gene1·alized mod el suggested in the sec tion entitled
''The Application Group'' in Chapte1· 5 (1·efer back to Figure 5.4). In this
case we suggest a tl1in laye1· of Bluetooth adaptation softvva1·e for legacy
applications that map s platform APis to specific fu11ctions of the Blue-
tooth protocol stack. In tl1e case of RFCOMM , which provides an emu -
lated serial port , this adaptation softwa1·e (which the specification calls a
port emulation entity) need s to map the appli cat ion 's interactio ns with a
''real'' RS-232 serial port to the equivalen t operatio ns for the
RFCOMM emulated serial port . For the mo st part these are ex pe cted
to be initialization operations sucl1 as acti\rating and configuring the
serial port a.nd establishing a serial connectio11; and finalizat ion opera -
tions such as ter111inating the serial conn ection. Onc e a gene ral serial
port adaptation layer is in place in a systen1, all thos e legac y appli ca-
tions that use serial communication oug·ht to be ena bled to use Blue-
tooth transports via the RFCO MM emulated serial port.

As pointed out earlier, the use of serial ports is prevalent in devices
and environments where Bluetooth wireless commu nicatio n is likely to
be used, and the majority of the version 1.0 profil es depen d upon seria l
port communications. In the absence of a versio n 1.0 speci fication for
genera] networking , the RFCOMM protocol provides an important
utility for legacy applications . The implementation of this protocol ,
along with adaptation software for legacy applications that use serial
communications, pe1 rnits many simple cable replacement applications
of Bluetooth wireless communication.

The Service Discovery Protocol (SDP)
Service discovery is a process by which devices and services in net-
wo.rks can locate, gather inforn1ation about and ultimately make use of
other services in the network. In traditional networks such as LAN s,
these services might be statically configured and managed by a network
administrator. In these environments, the administrator or end user per-
forms the configuration that is necessary for one participant in the net-
work to use the services of some other network member. For example, a
PC user might specify all of the information associated with a network
e-mail service (including the mail server name, user and account names,
e-mail type, capabilities and options, and so on) to the PC's operating
system and applications; once all this information is entered into the PC

IPR2020-00202
Apple Inc. EX1057 Page 186

The Service Discovery Protocol (SOP) 165

and associated with that e-mail service, then the e-mail service becomes
available to the PC user.

Admini stered network se1·vices of this sort may be fine for many
fixe d networks but are really not suitable for temporary mobile net-
works (ad hoc network s) such as those that might be for1ned using Blue-
tooth wir eless communication. In these environments a more dynamic,
flexibl e a11d adaptive solution is needed. Graham, Miller and Rusnak
[Graham 99] observe the gTowing incidence of these ad hoc networks
and the resulting demand fo1· self-configuring systems:

Tl1e emergence of inforrr1ation appliances and new types of
conn ectivity is spurring a new for111 of networking: unmanaged,
dynami c networks of consumer devices that spontaneously and
unpr edictabl y join and leave the network. Consumers will expect
the se ad hoc , peer -to-peer networks to automatically form within
tl1e hom e, in very small businesses and in networked vehicles

To achi eve the goals of simplicity, versatility and pleasurabil-
ity, the appliances and the network (s) they join must just work right
out of tlze box. By just wo1·k we mean that the participants on the net-
work must simply self configure. By self configztre we mean that these
network devices and services simply discover each other, negotiate
what the y need to do and which devices need to collaborate with-,..
out any manual intervention.::>

Protocols for ser·vice discovery can help to enable this self-configu-
1·ation. Since mucl1 of the interdevice communication in Bluetooth
usage scenarios is of a peer-to -peer, ad hoc nature, the SIG determined
that a service discovery protocol in the stack could provide significant
value. The resulting protocol, kno,,vn as SDP, is a central component of
nearly all of the profiles and usage cases, both existing and fo1·eseen.

The service discovery concept is not new 01· unique to Bluetooth
wireless technology. Numerous service discovery technologies are avail-
able in the industry, some of them well known. As is evident in other
layers of the protocol stack, the SIG is content to adopt existing proto-
cols where it makes sense to do so. In the case of service discovery,
though, the SIG developed its own protocol unique to and optimized
for Bluetooth wireless communication 1·ather than adopting some other
service discovery p1·otocol in the industry. The reasons should become
evident as we review SD P's development in the next section.

5. Reprinted by permission from Discovering Devices arid Services irz Horne Networking, copyright
(1999) by International Business Machines Corporation.

IPR2020-00202
Apple Inc. EX1057 Page 187

, .

t · ~·
• I ' .

166 Chapter 8 > THE RFCOMM AND SDP MID DLE\X/ARE PROTOCOLS

SDP Development
The need for a service discovery component in the p1·otoco l stack ,vas
recognized ea1·ly in the proce ss of develop ing the specification ,
although direct work on SDP did not comm ence until late r. In ear ly
and mid 1998, man y of the initial pa1·ticipants in the SIG ,vere focusing
on the u·anspor·t protocols and key middl e" are protoco ls like
RFCOMM. While the need fo1· other pr otoco ls had bee n identified,
task forces of experts to develop these prot ocol s l1ad not been assem -
bled in all cases. In the case of SDP , some prelimina1-y vvork had been
started at Intel and Ericsson in the summ er of 1998.

In early internal versions of the specification, servic e discovery
was a section within the L2CAP par t of the specificat ion. Initiall y,
L2CAP channels ,vere modeled after a comput er bus and ser \1ice dis-
covery was concerned exclusively vvith the t1·ansport of Plug an d Play
parameters over this virtual bu s. In Sept emb er 1998 at a SIG meeting
in London , 6 author Bisdikian suggested that the addition of a trans port
protocol for Plug and Play parameter s unn ecessarily compli cated the
L2CAP specification, and that such a protocol me1ited its own se1vice
discovery portion of the Bluetooth spe cification .

In October 1998 the SIG held a developers conference in Atlanta
which author Miller attended. Based upon conversations during that
conference, Miller was asked to chair the service discovery task force of
the SI G's software working group shortly thereafter. The fallowing
month the newly constituted group met for the first time as a forr11al
SD P task force.

While at this time (late 1998) many of the protocol layers had been
under development for several months, with some of them approaching
levels of stability that would soon near final stages, SDP was still reall y
in a nascent state of forming the requirements and the beginning of a
proposal to address those requirements.

Among the identified objectives for Bluetooth SDP were:

Si111plicity: Because service discovery is a part of nearly every
Bluetooth usage case, it is desirable that the service discovery process
be as simple as possible to execute. For the SD P task force this also
implied the reuse of other Bluetooth protocols to the extent possible.

6. To advance the development of the specification, face-to-face meetings among SIG members
have taken place in many different countries reflective of the multinational constituency of the
SIG membership.

I
I

I
I
I
I
I
I
I
I
I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 188

The Service Discovery Protocol (SDP) 167

Co1npactness: As de scr ibed in pr eviou s chapter s, the formation of
Blt1etoot h co mmuni catio n link s b etwee n two devices can in som e
cases b e tim e co nsumin g. Sin ce service discovery is a typical opera-
tio11 to pe 1·fo1·m so on afte1· link s ar e establi shed , the SDP air-inter ·face
t1·affic sh ou ld be as minimal as feasible so that service discovery does
11ot t1nnecessa1·ily pr olon g the communica tion initialization process .

Versatility: T h e ve 1·sion 1.0 specification includes a number of pro-
files , and future rev isions will und oubtedly add to the list, which is
ex p ecte d to conti nue to gi·ow. Since an exhau stive set of profiles ,
u sage cases an d associ ated servic es cannot be foreseen or accurately
pr edi cted , it is imp o1·tant for SD P to be easily extensible and versatile
en oug h to acco mm odate th e man y new service s that will be
deplo yed in Blu etooth en vironmen ts over time. To support this
obj ec tive th e SDP task force cho se a v ery broad definition of ''ser-
vice," so th at th e wid est poss ible spectrum of features (services) could
b e sup p orte d in th e future .
Service location by class and by attribute: In the dynamic ad
h oc n etwo rkin g en vironmen t it is important to enable client devices
and u sers to qui ckly locate a specific se rvice when they already know
exac tly (or at lea st lar gely) what they are looking for. It should be
str aightf orwai·d to sear ch for a general class of service (say, ''printer''),
for sp ec ific at tribut es associat ed with that service (for example, "co~or
duple x IBM prin te r '') and even for a specific instance of a service
(such as a sp ecific pl1ysical p1·inter).
Service browsing: In addition to searching for services by c!ass or
att ribute , it is often useful simply to browse the available services ~o
determine if the1·e a1·e any of intere st. This is a different usage scenario
than is searching for specific services , and in some respects it is 1~ost
a contrary objective, but the SIG agreed that both usage modes clave

1 . th consistent metho to
merit , and they developed a so ution at uses a . b . . . h· d eral semce rowsmg.
support both specific service searc 1ng an gen ·

t f requii·ements fo1· a sim-
Tl1ese objectives led to the developmen ° . discovery in

I d
t tion for service

ple, flexible p1·otoco an data represen a · 1 were 1·eviewed,
I . cl di ei·y pi·otoco s the p1·otocol stack. Popu ar 1n usti·y scov h SDP obiectives-. d tch for t e J · but none seen1ed to provide a goo ma d prehensive se1-v1ce

many of these technologies provi~e robust :~I ;:s really looking for
discovery and access methodologies, but th 1 . that met the rather . . e so ut1on 7 A th.
a fairly low -level simple, narrow-1n -scop d manner. t is ' . ·ghtforwar
modest objectives noted above 1n a stra 1

IPR2020-00202
Apple Inc. EX1057 Page 189

I

.. .

JI. . t·.
• • ' • • I, ' .. •

168 Chapter 8 THE RFCOMM AND SOP MIDDLEWARE PROTOCOLS

point Moto1·ola® app1·oached the SIG with a propo sal to contrib ute
some technology, suitable for use in Bluetooth ser·vice di scovery , that
Motorola had had under deve lopm ent for several ye a1·s. Throug h a con-
tributing adopte1· agreen1ent Motorola ,vas then ab le to participate in
the SDP task fo1·ce of the SIG (and in fact tl1e Mot orola repr esentative
served as editor of the SD P specification), 1vvith thei1· co11tributed tech -
nology fo1·n1ing the basi s for SD P.

So witl1 the SDP effort und ervvay in Novemb er 199 8, th.e SDP
requirements and scope vvere agreed upon and the specification devel -
opment ensued, incorporating the ideas contribut ed by Motoro la along
with the many contributions by tl1e othe1· SIG m e1nber companie s.
Even thougl1 the real SDP vvork sta1·ted late1· than for man y othe1· prot o-
cols, through hard work the SDP specification was compl eted, ra tified
and published along vvith the bulk of the oth er prot oco ls in the stack in

July 1999 in the version 1.0 spe cification.
The follo, ving sections descri be some of the key facets of the SD P

specification , including why these elements are significant an d the rati o-
nale for including them in the specification.

SDP Examined
Key to understanding the development of SDP is to und erstand its
motivation and requirements. In fact , this information is included at the
beginning of the SDP portion of the specification. As no ted above, SDP
is intended to allow devices in Bluetooth environments to locate avail-
able services. As the specification states, these environments are qualita -
tively different from traditional networks such as LAN s or WAN s.
Devices and services are likely to come and go frequently in Bluetooth
piconets. Thus SDP was developed to satisfy the requirements of such
environments.

Some of the notable requirements for SDP are listed in the preced-
ing section. These are also mentioned and expanded upon in the speci-
fication. Also of interest are those items that SDP does not attempt to
address, at least in version 1.0 of the specification. 8 The ''Non-Require-
ments and Deferred Requirements'' portion of the SDP specification

7. Subsequent to publication of the version 1.0 specification, efforts \-Vere begun to map some of
the Jeading industry service discovery technologie s to the Bluetooth stack. Chapter 16 gives
details of this \Vork .

8. Of these , the BJuetooth SIG might choose to enhance SDP in tl1e future to addre ss some of the
issues. Many , ho,vever, are likely to remain outside the scope of Bluetooth SDP, since some of
the issues can be and are addressed by industry discovery protocols, \vhich Bluetooth SOP can
accommodate, as explained in the main body text.

IPR2020-00202
Apple Inc. EX1057 Page 190

The Service Discovery Protocol (SOP) 169

can be summa1-ized largely with the statement that SDP is narrow in
scope , focu sing p1im arily on discovery in Bluetooth environments and
leaving mor e sophi sticated ser·vice functions and operations to other
p1·otocols wl1ich migl1t be used in conjunction with SDP.

SDP includ es the notion of a client (the entity looking for services)
a11d a ser·ver (th e entity p1-oviding services). Any device might assume
eith e1· 1·ole at a given time , acting sometimes as a service client and
som eti111es as a servi ce provider (se1-ve1·).

Th e service provider needs to maintain a list of service 1·ecords that
de sc1-ibe th e service (s) it provides; this list is cal led the service registry. A
se rvic e record is simply a description of a given service in a standard
fashion as pr escribed by th e specification. A service record consists of a
coll ection of serv ice attributes containing information about the class of
th e serv ice (which might b e p1inting, faxing, audio services, information
servic es, and so on), information about the protocol stack layers that are
ne eded to interact with the service, and other associated information
such as l1uman-readable descriptive inforn1ation about the service. Fig-
ure 8.3 illustrate s the general structure of a service 1-egistry with its con-
stituent service 1-ecords . Shown is a set of services, each with a service
1-ecord handle (depicted by srvRecH11d[OJ th1·ough srvRecHndu}) and a
set of att1-ibutes per service (shown a.s srv Attribute[O:a} through srv At-
tribute[j :c)). Further explanation . of the content of these service records
follows.

• service
registry

0

• • • • •
0 • • •

0
0

•
0 •

0

'----- -• •
0
0

• • • • • • •

Figure 8.3

• •
0 • • •

srvRecHnd[OJ j I j srvAttribute[O:a]. I \ ..
• •
• • • • • • • • • • •

srvAttribute[i:b I srvRecHnd[i] 11 · j ·'· · · · · · · · · · · · · · · - l · ·

I srvRecHnd[j] ! I j srvAttribute[j:c]. I- } . .

searchable attribute (UUID)

General SDP service registry structure.

I

• .
•

IPR2020-00202
Apple Inc. EX1057 Page 191

• ~.
(·

"· ' \.

170 Chapter 8 THE RFCOMM AND SOP MIDDLEWARE PROTOCOLS

Service records consist of both unive1·sal service att1·ibutes and service-
specific attributes. Tl1e w1iversal se1-vice attribute s are simpl y those parts
of the service record that app ly to all types of ser\1ices, such as the ser-
vice class and protocol stack information noted above . Service -specific
attributes are those pa1-ts of tl1e service reco rd thaL ar-e relevant onl)' for
a specific class 01· instance of a service. Exampl es of servi ce-specific
attributes could include attribt1tes specific to a prin Ling serv ice (such as
color, dupl ex and finishing capabi lities), attribuLes spec ific to an audio
service (such as data rate or encoding scheme) or att ribute s specific to a
dial-up networkin g service (such as serial port configu ration or modem
setup information). Volume 1 of tl1e spec ification include s definitions
for a set of univ ersal service attributes (tho se vvhich could appl y to all
types of sen rices), but it does not include service-specific attribute s,
since it would be impo ssible to specify and p1·edicl all of the attribute s
for every imaginabl e type of service . Se1·vice-specific attrib utes are
defined in profil es (volum e 2 of the specification .). Since profil es
describe a usage scenario and how the protocol stack is used, they effec-
tively define a service. So, for examp le, the headset profile define s the
service specific attribute '' rem ote audio vo lum e cono ·ol'' that applies to
the head set service. Whil e the universa l serv ice att1ibutes can ap ply to
all types of services, this does not mean that they are mandatory - it is
not required that every service include every universal serv ice att ribu te
in its service record. In fact, only two of the univer sal service att 1·ibutes
are mandatory: the service class attribute, which defines the class, or
type of the service, a.nd the service record handl e, which se1-ves as a
pointer, or reference to the service reco rd and is used by the client to
access the server's service record.

Each service attribute in a service reco rd consists of an attribute
identifier (attribute ID, a 16-bit unsigned intege r) and an attribut e value
associated with that attribute ID. Each entry of the serv ice recor d is one
of these (attribute, value) pairs. Because the se attributes de scribe all sorts
of info1n1ation, SDP uses the concept of a data element for the attribute
value. A data element is simply a self-describing piece of data. The first
part of a data element consists of a one-byte header that tells the actual
type and size of the data. The remainder of the data element consists of
the data values for the attribute, of the format and size specified by the
data element header. Through the use of data elements, SDP allows
attribute values to be of several types, including strings, Booleans,
signed and unsigned integers of various sizes, and universally unique
identifiers (UUIDs, discussed further below). Moreover, these data
types can be lists of the scalar elements noted above, thus providing a

I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 192

The Service Discovery Protocol (SOP) 171

flexibl e representation for the many data types of which attribute values
111igl1t be composed.

Di scove1·ing a servi ce in Bluetooth wireless communication
1·edu ces to a simple operation: the client specifies the service(s) of inter -
est and the se1·ve r res ponds , indicating any available services that match
wl1at the client specified . In practice for SDP tl1is consists of the client's
sending a request in th e fo1·m o·f an SDP protocol data unit (SDP-"PDU)
th at indicate s wh at service (s) it is searching for and the server's sending
back a 1·esponse, also in the form of an SDP _PDU , that indicates what
se1·vices m atch the request that the client has made . To accomplish this,
th e clie11t ne eds a standard way to represent the service (s) of interest
and the serv er nee ds a standard method to match its available services
against the client's spec ification. For this purpose SDP introduces uni-
versally uniqz1,e identifiers (UUIDs).

A UUID is a concept adopted from the International Organiza-
tion for Standardization (ISO). UUIDs are 128-bit values that can be
cre ate d algorithmically and , generally speaking, can be virtually guar-
ant eed to be entirely uni~ue-no other UUID ever created anywhere
will ha ve the same value. One advantage of using UUIDs is that new
identifiers can be created for new services without requiring a central
registry of identifie1·s maintained by tl1e SIG, although the SIG does
include a list of ''well -known '' UUIDs in the specification for those ser-
vices related to the publisl1ed profiles. So a client looking for a service
just specifies the UUID associated wiili that class of service. (or with. the
specific service) in its service search request, and the ser~1ce provider
matches that UUID arrainst those of the se1·vices it has available to gen-o
erate its response. .

The SDP PD Us excl1anged between tl1e client and server are sim-
ple transactio~s. The general SDP protocol flow requires only. two

. 'fi . d fi h d'fferent SDP transactions, transactions; the speci 1cation e nes t ree i . 1 SDP
but the third is really just a composite of the first two. A typica
transaction consists of:

. (s) of inte1·est; server
1. Client sends a request to search for service t h the request .

responds with handles to services that ma c uest to . 1 to f or·rn a req
2. Client uses the handle(s) obtained 111 step . (s) of interest.

retrieve additional se1·vice attributes fo1· the service
. ·d tifiers can in fact be ere-

. · ally uruque 1 en d b , ISO (see 9. This concept is sometimes hard to grasp, but un1vers . UUIDs as define)
ated. While there is an extremely small chance of duplicatto~P and turn out to be quite valu-
(IS096]) are quite sufficient for the purposes of Bluetooth S
able in this contexL

IPR2020-00202
Apple Inc. EX1057 Page 193

• ...
(· ,,

... ,.:

172 Chapter 8 ·· THE RFCOMM AND SOP M IDDLEWARE PROTOCOLS

Following the above trai1saction, t11e client will pr esumabl y use the
inf or 111ation obtained in step 2 to open a conn ection to the se rvice using
some protocol other than SD P to access and utili ze th e service . Step 1 is
called the ServiceSea1·ch. transaction and consists of the Se1·viceSearchRe-
q1Lest SDP _PDU from the client to the server and the ServiceSearch-
Response SDP _PDU in retu1n (f1·om server to clien t). As not ed above ,
the ServiceSearchResponse SD P _PD U contains 11and les to one or more
services that match the 1·equest. In step 2, the client pre sents one or
more of those I1and1es in a Se1·viceAtt1·ibuteRequest SDP _PDU which
causes the server to generate a ServiceAtt1·ib11teResporzse SDP _PDU ; this
exchange is the ServiceAttrib1Lte transa ction. In the Serv iceAt tributeRe-
sponse SDP _PDU ,,viii be the attribu te values assoc ia ted with the ser-
vice that correspond to the attribute ID s t11at the client sp ecified in the
ServiceAttributeRequest SDP _PDU. Tl1ese attribut es ma y b e a combi -
nation of universal service attributes and service-specific attribute s, and
in most cases should pro vide the client with enoug h information to sub -
sequently connect to the service.

The specification defines a third SD P tran sac tion, called the Ser-
viceSearchAttribute transactio11. This transaction consists of a ServiceS-
earchAttributeRequest SDP _PDU fi·om the client to the server followed by
a ServiceSearchAttributeResponse SD P _PD U from the server to the client .
It is actually redundant to the first two transactions descri bed above and
is included for efficiency. What the ServiceSear chAttribut e transaction
allows is ·the combination of steps 1 and 2. That is, the client can for111 a
single request that specifies not only services to searc h for but also the
attributes to return for matching services in the server's response. The
server then responds with handles to matching services as well as the
requested attribute values for those ·matching services. An implementer
thus has a choice between the two alternatives for SDP transactions. 10

More importantly, though, the ServiceSearchAttribute transaction ma y
in some cases be more efficient in tern1s of the number of bytes trans-
mitted over the air-interface. The consolidated transaction itself
requires more bytes than the individual transactions but could result in
fewer total transactions. Especially in cases where many service records
are being accessed, such as in a service browsing application, the Ser-
viceSearchAttribute transaction might be more efficient.

10. It should be noted, ho\vever , that different profiles mandate the use of different SDP transac-
tions, so if a profile is being implemented, the profile ,-vill determine which SDP transaction(s)
need to be used, and the programming effort to support all three transactions should not be
great.

IPR2020-00202
Apple Inc. EX1057 Page 194

The Service Discovery Protocol (SOP) 17 3

In a nutshell , this is mo st of what is needed for SDP transactions.
The specification also includes protocol definitions for special cases,
including an e1·ror 1·esponse SDP _PDU and a mechanism, called the con-
tinuation state, for dealing with server responses that cannot fit into a sin-
gle SD P _PD U .11 The syntax of these protocol transactions and the data
elem ents that they carry is detailed in the specification and is not repro -
du ced he1·e. A unique feature of the SDP chapter of the specification is
t11e inclusion of seve ral detailed protocol examples as an appendix to the
SDP specificat ion. The members o·f the service discovery task force of
the SIG who developed the specification felt that because the actual byte
str·ean1s generated for SDP transactions can be complex (even though
the tran sactions them selves are conceptually simple), it would be useful
to include the examples as a guide for implementers. The complexity is
introdu ced mo stly when complex data elements (such as DataElementSe-
quences, whicl1 are lists of data elements and which can be nested) are car-
ried in the SD P _PD Us. When these complex data types are included in
SDP _PDUs, or when SDP _PDUs need to be split using the continuation
state information , the various ''count'' fields that introduce segments of
the SDP _PDUs need to accurately reflect the number of bytes that fol-
low in that segment. The examples in the specification serve to clarify
the correct const1uction of SDP _PDUs. 12

Figure 8.4 summarizes the SD P transactions. Shown in the figure
are representations of the relevant arguments and parameters passed in
the SDP _PDUs, although these are not complete lists of all arguments
and paramete1·s; the complete syntax is in the specification. As Figure
8.3 shows, only services and service attributes that are described by
UUIDs are searchable. Attributes of a service which are not described
by UUIDs are not searchable and can be retrieved only after a service
has been located using a UUID attribute.

11. The client can specify the maximum size for the response to its request SDP _PDU. It is possi-
ble for the response that is generated by the server to be larger than this ma.ximum size. In this
case, the server includes some continuation state information at the end of its response, ,vhich
allows the client to i11itiate another request to obtain the next portion of the response, if desired.

12. In fact the developers of the specification learned first hand of the need for these examples
when they constructed them, since there were some errors in the first internal versions of the
examples. There were even some errors in tl1e examples published in the original version l.OA
SDP specification, which were subsequently corrected in version I.OB.

IPR2020-00202
Apple Inc. EX1057 Page 195

•

•

l

•

l

174 Chapter 8 11 THE RFCOMM AND SOP MID DLE\Y/ARE PROTOCOLS

Alternative 1: Individual transactions

1A. ServiceSearchRequest (UUID[sJ of services to search for)

I

18. ServiceSearchResponse (HandlefsJ of matching service[sJ)
SOP ·.

Client
2A. ServiceAttributeRequest (Handle[s] of services to obtain

• 1 ___ A.;,.;.;t t_r i~b u:...;_t e.:....:s __ f-=-o r....!..., _:.I i s:...:..t ...:.o __ f a:...:..t t:.:...:r i:..::..b .::....:u 1-=-e ...:..:I D=-=s...:...::o....:....f __ i n....:..;t e:.:....:r e:...:.s.:...1..t _ _ _ _

""-=----- •

SOP
Client

-.....:.--·· I - · •• =<•.,..,.,I

Figure 8.4

28. ServiceAttributeResponse (List of attribute values)

Alternative 2: Combined transaction

1A. ServiceSearchAttributeRequest (UUlD[s] of services to
search for, I isl of attribute I Os of interest

18. ServiceSearchAttributeResponse (Handle[s] of matching
service[s], list of attribute values

SDP transaction summary.

SDP Usage

SDP
Server

SOP
Server

•

I
I

•

•

. •

Since SDP was developed primarily for discovering services in Blue-
tooth environments, the applications most likely to make use of SDP
will be those developed specifically to be aware of Bluetooth wireless
communication (as opposed to legacy applications). One exemplary
application for SD P usage is what we will call the Blue tooth Piconet
Minder1

3
(or BPM application). Such an application is likely to be

included, in one forn1 or another, in many Bluetooth devices. A BPM
application as we envision it would present a view of available devices
and services in proximity (in a piconet) to the user and to other applica-
tions. This could include a user interface; one might imagine icons or
other representations of devices and services. Such an application could

13. This term is used generically here and is not known to, or intended to, conflict with any actual
product names.

IPR2020-00202
Apple Inc. EX1057 Page 196

The Service Discovery Protocol (SOP) 175

give a user a central point to manage the Bluetooth connections to other
dev ices a11d to select and make use of the services offered by tl1ose
other devices . To suppo1·t sucl1 functions , a BPM application might
m ake use of servi ce searching and service browsing and thus initiate
SDP tran saction s to populate the service infor111ation that is exposed to
the user and to oth er applications.

Ce rtainl y othe1· applications de signed for use i11 Bluetooth environ-
n1ent s migl1t use SDP. Every p1·ofile (or at least every ''non -generic''
p1·ofile that involves concrete usage scenarios) includes an SDP. service
1·ecord lo be used when implementing that profile. Applications vvritten
spec ifically to exe1·cise the protocol stack will probably need to execute
SD P transaction s to succe ssfully instantiate the profiles. Fi1·st, such
appli ca tions will need to execute SDP transactions with another device
to dete1·min e if that device offe1·s the desired service, and if so, those
appli cati ons will need to execute additional SDP transactions to obtain
the inior1nation from the service record about how to access that service
(this can include such info1·mation as the required protocol stack and
associated parameters that the service uses).

In the case whe1·e multiple applications use SDP (perhaps one or
1no1·e profile applications and a BPM application), it may be advanta-
geou s to implement a cent1·al SDP client a.nd SDP server that are avail-
abl e to all the applications that need them. These SDP ''helper
application s'' could be imple1nented as part of the common services
layer that was described in Chapter 5. The applications could use the
platform APis to access the common SD P services which \vould gener-
ate the SDP transactions and pass the retrieved information back to the
applications.

The Service Discove1·y Application Profile (SDAP) detailed in
Chapter· 12 offers guidance fo1· application interactions with SD P.
While, as previously noted, the specification does not define APis, the
SDAP does define primitive operations that could be mapped to APis
and events on many platfor1ns, thus providing a basis fo1· SD P common

• services.
There may be legacy applications that make use of service discov-

ery, but such applications _probably use some other industry discovery
protocol (perhaps JiniT~t, Universal Plug and PlayTt.t, Salutation Tt.t, Service
Location Protocol, the IrDA se1-vice discovery protocol, or some other
protocol). Since SD P was developed for Bluetooth applications, legacy
applications would not be expected to include this protocol without
modification to the application. Even f 01· these applications, though,
SDP does offer some accommodation. One of the design points fo1· SDP

•

• •

...
•

IPR2020-00202
Apple Inc. EX1057 Page 197

• ...
r
). ..
"

•

176 Chapter 8 t THE RFCOMM AND SOP MIDD LE\'i/ARE PROTOCOLS

was to ensure that other popula1· industry discov ery protocols could be
used in conjunction with it. One of tl1e things that can be discovered
using SD P is that the service suppo1·ts one or mor·e othe1· discovery pro-
tocols. Thus SDP might be used in the initial service discovery phase to
locate the service; further SDP transactions might be used to discover
that the service supports, say, Salutation; once this has been deter111ined,
the newly discovered protocol (Salutation in the example) can be used
for further interaction wiili the service. SDP specifica lly supports this
sort of operation. A SIG white paper [Miller99) describe s how Saluta-
tion can be mapped to SD P. Similar mapping s to other technologies
should be possible, and the SIG is working to\i'.1ard for111alizing some of
these mappings as profiles, as discussed in Chap ter 16 .

IPR2020-00202
Apple Inc. EX1057 Page 198

I

•leware Protoco s

C ontinuing our examination of the middleware protocols, we now visit
tho se protocol s intended to provide interoperability with IrDA applica-
tion s. In this chapter we examine the protocols and conventions that
together in the specification are termed ''IrDA Interoperability." This
term does not mean that devices with Bluetooth wireless communica-
tion can communicate directly with Ir DA devices but rather it refers to
protocols that enabl e common applications to use either form of wire-
less communication. The IrDA interoperability middleware includes
protocols adopted from the Infrared Data Association (IrDA), namely
IrOBEX (or briefly, just OBEX), its associated data object formats and
th e Infrared Mobile Communications (IrMC) method of synchroniza-
tion. IrDA interoperability occupies fewer than 20 pages in version LO
of the core specification (volume 1), although over 100 pages_ ai:e
devoted to the IrDA-related profiles in volume 2 (this l~tter matenal is
discussed in Chapter 14 of this book). As is the case with RFCOMM,
the main reason that the Ir DA interoperability protocols take up o_nlf a
relatively few pages of the specification is that they call out eX1s~ng .b d · temal documentation,
standard protocols that are fully descn e in ex . b .1
in this case specifications of the IrDA. IrDA application interopera_ i -, Bl t th wireless commun1ca-
ity is a fundamental design principle for ue 00

. k element of
tion, and thus the IrDA interoperability middlewarbe

1
~ ar reyseveral pro-. e the as1s 10

the protocol stack. These protocol layei s ar t mm only imple-
fil hi l

.k 1 b of the mos co es w ch are 1 e y to ecome som~ devices that employ the
mented and widely deployed scenanos on. ot only the IrDA
Bluetooth technology. This chapter exanunes n

177

IPR2020-00202
Apple Inc. EX1057 Page 199

t.. • ,-·
'-"' ,,.

• >
•
•) ,

' -
•

178 Chapter 9 IRDA INTEROPERABILITY M IDDLE\'(f ARE PROTOCOLS

interope1·ability information in the specification (as usua l, attempting to
reveal the rationale for these prot ocols) bu t also Ll1e sim ilarities and dif-
fe1·ences between I1·DA and Bluetooth wireless con1munica tion, since
this latter topic is fundam ental to the design basis fo1· the IrDA interop -
erability solution adopt ed for the specification .

The IrDA interoperabili ty proto cols reside above other middl e-
ware protocols. In pa1·ticular OB EX operates o er RF CO MM in the
standard case and also could operate ove r TCP / IP as an optional
implementation. 1 Like RFCOMM and SDP , the OB EX session pr oto-
col uses a protocol data unit (PD U) st1·uctur e, allowing the higl1er layers
of the stack to vvork with logical dat a elements at a highe1· level of
abstraction than that of the packet format s used b

I
the transpo1·t proto-

cols or e,,en by RFCOMM. Mor e impor tc1.n tly thoL1gh , OBEX prima -
rily is intended to promot e application interopera.bilily with IrDA so
applications using this protocol with IrDA wireless communi cation can
adapt easily to the use of Bluetooth links. Figure 9.1 de picts OBEX in
the protocol stack. As shown in the figu1·e, OBE X is used by high er lay-
ers of the stack, typicall y applications , and OBEX in tum uses other
middleware protocols, namely RFCOMM (and optionally, within the
constraints described above, also may use TCP / IP).

1. While TCP/IP operation for lrOBEX is described in the Bluetooth specification (volume 1) in
the same level of detail as is RFCOMM operation for IrOBEX , there is no SIG -specified end-
to-end TCP / IP solution for version 1.0, since the specification does not addres s the general use
of TCP /IP over Bluetooth transport protocols. Thus , even though IrO BEX could '"ork over
TCP / IP, and the lrDA Interoperability chapter of the specification describe s ho," to do this,
lrOBEX is assumed to operate over RFCOMM throughout volume 2 of the specification
because TCP/IP is not fully specified in the version 1.0 Bluetooth protocol stack. As noted else-
,vhere, though, TCP/IP can operate over PPP links, and general IP networking solutions are in
progress within the SIG.

I
I
I
I

I

IPR2020-00202
Apple Inc. EX1057 Page 200

lrDA and Bluetooth Wireless Communication Compared 179

...
I

synchronization
applications · applications

C ..

TCP RFCOMM
IP

•

' I other lrDA 1

p I i cations I :
-

}-..
t l
i : -...==-=~-- -=-:-...:_::::_:::-:::_ ;:::::_ -=--::::-_:-:-_=:c::.~.r:I :::=::=::===.=·====· ·:::=:.=.:-:::....::::·_

-~ ·~~---·-- • •

L2CAP 1 ·

Figure 9.1
OBEX in the Bluetooth protocol stack.

lrDA and Bluetooth Wireless Communication Compared
Before examining the specification in detail , we first look at the underly-
ing technologi es of IrDA and Bluetooth wireless communication . The
objective, after all, for including IrDA protocols in the stack is to pro -
mote interoperabili ty with IrDA applications (hence the ''IrDA Interop -
erability '' in the title of this chapter and in the specification). Here we
mu st clearly state that this interoperability is at the application layer ,
not at the physical layer. IrDA interoperability does not imply that
Bluetooth devices can communicate directly with Ir DA devices. Instead
it is intend ed to promote development of applications that can use
either transport . Previous chapters have touched on the relationship of
IrDA and Bluetooth wireless communication. Here we compare and
contrast specific features of these technologies. Some excellent back-
ground reading on this topic can be found in [Suvak99], which was writ-
ten by a SIG and IrDA participant.

IrDA is a specific use of infrared light as a communications
medium; Bluetooth technology is a specific use of radio waves as a com-
munications medium. Like the Bluetooth SIG, the Infrared Data Orga-
nization (IrDA) specifies hardware and software protocols for wireless
communication intended to promote interoperable applications.

IPR2020-00202
Apple Inc. EX1057 Page 201

• ... ' (.. , _
•·' ,. ' ~-1'.
r ...
t

I 'I. ...

180 Chapter 9 11 IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

While both technologie s are wirele ss, they use different parts of
the electromagnetic spectrum with quite diffe1·ent signa l propagation
characteristics. Since infi·ared uses the nonvisible infrared ligh t spec-
trum , I1·DA communication is blocked by obstac les that block light
(such as walls, doors , briefcase s and peopl e). The signal wavelength
used with Bluetooth communication , at about 12.5 cm, is three orders of
magnitude greater than that of IrD A. At this wave length, 2.4 GHz RF
communications can peneti·ate these sorts of obstacle s. Recen t advance s
in infrared technology have enabled more diffuse transmission pat terns,
although much of the IrDA equipment i11 use today uses a relatively
narrowly focused beam , which usually requir es that the two devices
engaged in IrDA communica tion be aligned with (pointed at) each
other. RF transmission pa tterns are genera lly sph erica l aroun d the radio
antenna, so an)' two device s within ran ge can communicate vvith each
other whether or not they are ''pointed at '' each othe r (in fact, the sec-
ond device might not be visible at all to the user of the first device , as it
could be in another room behind door s and walls or even on anoth er
floor of a building, for example).

The IrDA specification is more matu1·e than the Blue toot h specifi -
cation , having been available for several more years. IrDA technology
was already widely deplo yed when the Bluetooth specification was first
released. Thus IrDA has already undergone several pha ses of enhance-
ment that Bluetooth wireless technology might und ergo in the futur e .
Among these is some improvement in communication speed. The ini -
tial IrDA data rate of 115 Kbps has now been enhanced to 1 Mbps ,
which is comparable to that of the first Bluetooth radios . Toda y IrDA
can achieve data rates of up to 4 Mbps , with even higher rates already
specified. While Bluetooth RF communication has the potential for sim-
ilar increased data rates (and the SIG is investigating these possibilities;
see Chapter 16 for more information), it is likely to lag the Ir DA speeds
for at least several years.

The effective range for Bluetooth wireless communication is about
10 meters using the standard O dBm radio. With optional power amplifi -
cation of up to 20 dBm, range on the order of 100 meters can be
achieved. IrDA range is about 1 meter and, as noted above, generally
requires a line of sight to establish a connection.

Bluetooth wireless technology is designed for very low power con-
sumption, and as compared to other RF technologies it consumes very
little power. IrDA communication, however, consumes even signifi -
cantly less power than Bluetooth technology, since far less power is
required for infrared transceivers than for RF transceivers.

IPR2020-00202
Apple Inc. EX1057 Page 202

lrDA and Bluetooth Wireless Communication Compared 181

In terms of cost, IrDA hardware was significantly less expensive
than Bluetooth radio modules at the time Bluetooth technology was
iI1troduced. This is partly due to the maturity and wide deployment of
IrDA: the technology has been around long enough that several itera-
tions o:f cost optimizations have occurred, and installed IrDA units
number in the millions, so economies of scale resulting from high-vol -
um e production have been realized. Bluetooth modules in the year
2000 had not realized either of these forms of cost reduction; even so, it
is exp ected that Bluetooth hardware is likely to remain more expensive
than IrDA hardware 2 owing to the complexity of the underlying tech-
nology , although the cost difference probably will narrow over time.

Table 9.2 summarizes these feature comparisons of IrDA and Blue-
tooth wireless communication. The table reflects the state of these tech- ·
nologie s in the year 2000 and reflects consensus forecasts in the industry.
Th e table is intended to be illustrative rather than authoritative; certain
parameters will vary from implementation to implementation.

Table 9.1
11 lustrative feature comparison of Ir DA and Bl uetooth wireless communication.
Estimates as of 2000; some values are implementation dependent.

Featu.re

Connection
establishment

Transmission pattern

Data 1·ate

Range

Power consumption

Transceiver module
cost

IrDA technology Bluetooth technology

Line of sight Penetrates obstacles

Relatively narrow Relatively spherical
conical

4 Mbps 1 Mbps

1 meter 10-100 meters

10 mW (nominal) 100 mW (estimated
nominal; product -
dependent)

< $1.00 $5.00 (estimated,
approximately 2003-2005)

As explained in the specification and in the foil owing sections,
IrDA and Bluetooth wireless communication share similar application

2. Bluetooth radio module costs in the 2003-2005 time frame are variously estimated to approach
$5 U.S.; IrDA solutions are already \VelJ belo\v this figure.

IPR2020-00202
Apple Inc. EX1057 Page 203

182 Chapter 9 t IRDA INTEROPERABILITY M IDDLE\YJARE PROTOCOLS

domains, even though the under ·lying tech11ology used to ach ieve sce-
narios such as object exchange and sync hr onizatio n is inh erently differ-
ent. Feature differences may cause one technol ogy to be preferred ove r
the other in certain environ m ents and application s altho ugl1 v\1e believe
that both have merit and both are likely to be deployed in pervas ive
computing devices in th e fore seea ble futu1·e. 1'hu s the IrDA int eropera-
bility p1·ovisions of the specification can help to enable lh e be st use of
either or both technologies as the situation warrant s.

The lrDA Interoperability Protocols
....
l" •

• One of the mo st com mon app lication s for· Ir DA tecl1nology is exc hang-
ing files and other objects. Thi s include s exch angi11g elect ronic bu siness
cards between two devices as we ll as tran sferr ing files and other data
objects betw een two devic es, all in an ad hoc fashion an d vvithout wires.
The devices commonly used in the se sce narios - esp ecially mobi le
phones, notebook comput ers and handh eld comput ers, but also oth -
ers 3- are the same set of devic es where Bluetoot h techn ology is
deployed or is expected to be deplo yed . Even thou gh di rect communi -
cation between an IrDA devic e and a Bluetooth dev ice is not feas ibl e, it
seems clear that these same sort s of app licati on s are quit e re leva nt an d
useful in Bluetooth environments. In fact , profile s e)cist in the version
1.0 specification for both object push (which cou ld be used for elec-
tronic business card exchange) and file trans ·fer (whic h can include
transferring several specific obj ect types). An exten ded appli cation of
this sort of data exchange is synchronization , where th e data is not only
exchanged but is also replicated between the two devic es. A profile
exists for this usage case also, and it too is bas ed upon the IrDA applica -
tion and protocols. In volume 2 of the specificat ion , all of the file trans -
fer, object push and synchronization profile s are derivatives of the
generic object exchange profile, and all of the se are described in further
detail in Chapter 14 of this book.

The rationale for IrDA interoperability in Bluetooth wireless com-
munication is to enable the same applications to operate over both
IrDA and Bluetooth links, and the most straightforward way to do this
is to use the same session protocol in both environments. Since the
lrDA protocols already existed and some were suitable for Bluetooth
applications, the SIG chose to adopt OBEX a.nd IrMC in the Bluetooth

3. Perhaps including digital cameras and computer peripherals such as print ers.

I
I
I
I
I
I
I
'

I
I
I
I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 204

The I rDA I nteroperabi I ity Protocols 18 3

pr otoco l stack in the same 1·elative position as in the IrDA protocol
stack. Un like RFCOMM, the IrDA interoperability specification does
not include any significant subsets , alterations, adaptations or clarifica-
tio11s of O BEX, although there are some specific considerations (such as
calling out the specific OBEX version 1.2) noted for its use in the proto -
col stack. ML1ch of the description in the specification echoes important
elements of OBEX and describe s precisely how OBEX is used over
other mid dleware layers of the proto col stack.

I rDA I nteroperabi I ity Protocol Development
The re t1se of I1·DA p1·otocols and specifically OBEX was identified as
the desigi1 dir ect ion o·f the SIG early in the specification's development.
As with RFCOMM, vvork was underway on the use of OBEX and
Ir DA protocol s and data formats at about the time the SIG was publicly
announced. The synch1·onization usage case was already identified at
that time , as were file tran sfe1· and data exchange applications (the latter
scenarios at that time were part of the conference table usage case). In
early 1999 the bu siness card exchange scenario had led to the begin-
nin g of what is now the object push profile; file transfer and synchroni -
zation were well defined, and work on profiles for these usage models
was also t1nd.erwa y. It quickly became evident that a generic framework
profile that applied to all IrDA interoperability usage cases (that is, all
tho se profil es using OBEX) would be valuable, so the generic object
ex change profil e also was initiated .

Given the objective of interoperability between IrDA and Blue-
tooth applications , an initial goal of the SIG was to produce a specifica-
tion that would allow a single application to operate seamlessly over
both wireless transports. The SIG was (and is) motivated to reuse exist-
ing protocols where appropriate. These considerations led to the selec-
tion of OBEX as the point in the IrDA protocol stack that could be
inserted into the corresponding point in the Bluetooth protocol stack to
allow applications to deal with the same protocol (OBEX) in both envi-
ronments. With study and discussion in the SIG it was determined that
OBEX could operate both over RFCOMM, which was reasonably well
defined by this time, and ove1· TCP /IP (although the latter is enabled
only in certain circumstances in version 1.0, as discussed below). Other
transports for OBEX not directly applicable to the Bluetooth protocol
stack include I1·S0ck (infrared sockets), IRCOMM and Tiny TP (or
TTP), some of which are mentioned in passing in the specification.

IPR2020-00202
Apple Inc. EX1057 Page 205

:.. ' ,·.
'._)

I -. "

184 Chapter 9 > IRDA INTEROPERABILITY M IDDLEWARE PROTOCOLS

The OBEX Protocol Examined
Ir DA interoperability in general, and O BEX and IrM C in particular,
are significant elements of the pr otoco l stack, yet relative ly few pages4

are devoted to the topic in volume 1 of the vers ion 1.0 specification.
OBEX is the basi s for several of the version 1.0 profil es and IrDA
interoperability is an important objective and key valt1e of the Blue-
tooth technology. The IrDA interop erabil ity specification can be so
compact because of the SI G's decision to adopt exist ing Ir DA pr otocols
that are fully specified by IrDA (the IrD A OBEX spe cification
[IrDA99a] is about 85 page s long while the full IrMC spe cification
[IrDA99b] is nearly 200 pages, although only a portion of thi s latter
specification deals directl y with IrMC synchr onizatio n).

While the specification discusses the use of OBEX ove r TCP / IP , it
does not define how TCP / IP should operate native ly ove r Bluet ooth
transports. The fact that OBEX can operate over TCP / IP will become
more important in the futu1~e when the SIG define s general TCP / IP
operation over Bluetooth links (as described in Chapt er 16). U ntil such
a definition exists, the fact that OBEX can operat e over TCP / IP tran s-
ports is not directly relevant for version 1.0 impl ement ation s. 5 Thu s
TCP / IP operation for OBEX is specified as optional .

The other Bluetooth protocol over which OB EX is designed to
operate is RFCOMM. RFCOMM (detailed in the pr evious chapt er)
was designed specifically with OBEX in mind as one of the RFCOMM
clients. Since OBEX over TCP / IP is defined only in the context of PPP
for version 1.0, we focus here on its use over Rf CO MM . Th e specifica-
tion describes the requirements for the use of OBEX over RFCOMM .
These are not new or unique requirements specific to Bluetooth envi -
ronments; rather they define the boundaries within which a generic
OBEX application should operate to ensure that it will work over
RFCOMM and thus over Bluetooth transports . Among the consider -
ations for OBEX over RFCOMM are:

4. At fewer than 20 pages, the Ir DA Interoperability portion of the specification is easy to read
from beginning to end, yet it is a fairly complet e description of how Ir DA proto cols are used in
the Bluetooth stack.

5. Which is not to say that such a stack could not be implemented ; in fact, it could . But like all
other implementations not based upon profiles, the risk of noninteroperabili ty exists. Becau se
TCP / IP is such an important protocol, it is safe to assume that TCP / IP over Bluetooth links
eventually will be solved (this is being pursued by the SIG), and thus it is good to know that
OBEX over TCP / IP is already enabled.

I
I
I
I
I
I
I

I
IPR2020-00202

Apple Inc. EX1057 Page 206

The lrDA Interoperability Protocols 185

Client and server functions: The specification indicates that
both client and server functions must be supported by devices imple-
menting the OBEX IrDA interoperability protocol. When one exam-
ines the IrDA interope1·ability profiles (see Chapter 14), it becomes
evident that while it is technically possible for a device to support
onl y a client or only a server role, it is really useful only when a
device can support both roles. Even object push, which is largely a
one-way data tran sfer, still requires both a client role (in this case the
client needs to pusl1 the object) and a server role (in this case the
serve r need s to pull the object). This apparent dichotomy is
explained in Chapter 14.
RFCOMM multiplexing: All OBEX transactions must use a sepa-
rate RFCOMM server channel (as described in the previous chapter,
only one RFCOMM con.nection is perrnitted between two devices);
thus, multiple clients of RFCOMM must use its protocol multiplexing
featw:e. The OBEX server must open a separate RFCOMM channel
connection with a client. Similarly the RFCOMM connection needs
to be terminated when the OBEX session that uses it is terminated.
The specification also describes how to parse the stream-oriented
communications that occur over RFCOMM to delimit the OBEX
packet structures contained therein.
SDP Support: OBEX applications in Bluetooth environments
need to be able to make use of SDP. OBEX clients need to obtain the
relevant info1·1nation about the OBEX service from its service record
in the OBEX server. OBEX servers need to populate the service
record with info1·111ation such as the appropriate RFCOMM server
channel to use. As described in the previous chapter, this SDP appli-
cation enablement might be obtained through the use of common
SDP application services; tl1ese need not be unique to OBEX appli-
cations.

0 BEX provides a session p1·otocol for transactions behveen two
devices. The IrDA defines both connection-oriented and connectionless
sessions; the Bluetooth specification calls fo1· use of only the connection-
oriented sessions, since this is what best fits Bluetooth environments.
Like SDP, OBEX transactions consist of a request PDU issued by the
client followed by a response PDU issued by the server. With OBEX,
the client role normally is assumed by the device that initiates the trans-
action, while the responding device becomes the server. Also similar to
SDP the OBEX PDUs consist of a header, a size indicator and the

'

•

• •

IPR2020-00202
Apple Inc. EX1057 Page 207

1

. ,
J ,.
I -

186 Chapter 9 .. IRDA INTEROPERABILITY MIDDLEWARE PROTOCOLS

arguments and paramete1·s associated witl1 the particu lar transaction.
Fundan1entally, OBEX is a simpl e protocol , vvith the main operat ions
being connect and disco1znect to i11itialize and te1·minate sessions, along
with get and put operations to exchange dat a objects wit11in an existing
session. These operations are described in the Bluetool h spec ification
and detailed in the IrOBEX specification.

In addition to a session protocol , OBEX also ser,,es as an object
transport for the data that can be exchanged in OB EX sessions. To sup -
port the Ir·DA intero pera bility pr·ofiles, the spe cification calls out partic -
ular object forma ts as follows:

vCard: format n1anaged by the In ternet Mai l Con sortium [IMC96a]
for representing electronic business ca1·ds .
vCalendar: fo11nat manag ed by the Intern et Mail Consorti um
[IMC96b] for representin g electron ic calendar and schedule entries.
vMessage: format defined by IrM C [IrD A99b] that repre sents elec-
tronic messages and electronic mail.
vNote: fo1111at defined by IrMC [Ir·DA99b] that repre sents short
electronic notes .

Volume 2 of the specification calls out each specific object for111at
as it applies to the object push , file transfer· and synchroni zation profiles.
Some of these profiles allow for different versions of the object types
noted above; some also allow for other generic obje ct types to be used
with OBEX.

lrMC Synchronization Examined
In addition to transferring data objects over OBEX , it is also quite use-
ful to synchronize these same objects. Synchronization, generally, is the
process of comparing two sets of data and then updating those data sets
so that they exactly reflect (are synchronized with) each other at the
point in time that the synchronization is perfo11ned. There are varia -
tions on the synchronization process, such as one-way synchronization
where a ''slave'' data set is always updated to match a ''master'' data set,
or partial synchronization where only a subset of the data is synchro-
nized, but in general the idea is to merge the changes made in two (or
even more) data sets into each other so that the data sets become repli-
cas of each other (until additional changes are made to them). Synchro-
nization allows data (perhaps calendar entries, address books or e-mail)

I
I
I
I
I
I
I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 208

The lrDA Interoperability Protocols 187

to be manipul ated at vario us times and places and then be replicated
against some othe1· related data set so that the updates from the data
manipulation can be applied. Applications for synchronization include
synchro11izing addr ess books to incorporate new, changed or deleted
entri es; syn chronizi11g calendar entries to incorporate new and changed
schedule items; and 1·eplicating e-mail to send and receive new notes
and mes sages and incorporate saved or deleted messages. Synchroniza-
tion can be especiall y useful when these types of data are kept on more
than one device. Address book s, calendars and e-mail can be replicated
among mo bile phones , handheld computers, notebook computers and
network repos ito1·ies of data so tha t no matter which device is used , the
data on tha t device can be current and updates to these data can be
re flected on the other devic es through synchronization.

Note tl1at the devi ces mentioned above are some of the devices
mo st likely to emplo y Bluetooth wireless communication. Thus it seems
that synch1·onization is a natural usage case in Bluetooth environments.
Note ·further tha t the types of data mentioned above as being common
candi da tes for synchronization (calendar , e-mail and contact info1 ma-
tion) are the same data types defined in the profiles for object transfer
over OBEX. Thus it seems evident that it ought to be valuable and feasi-
ble to emplo y OBEX-based synclu:onization in the specification, and
ind eed this is precisely what the SIG has done. Just as with object trans-
fer, the SIG has chosen to adopt the method defined by the IrDA, called
lrMC synchronization. IrMC syncl1ronization builds upon the OBEX
session prot ocol and certain object fo1mats (including some object for-
mat s defin ed by IrM C itself) to specify a method of synchronizing these
objects. As with OBEX , the specification incorporates IrMC synchroni-
zation as a way to enable IrDA application interoperability.

The core specification (volume 1) includes very little information
about synchronization pe1· se, focusing instead on the use of OBEX in
Bluetooth wireless communication. It does, however, briefly describe
Bluetooth synchronization when discussing the synchronization profile,
which is whe1·e the details can be found. Essentially lrMC provides a
framework for OBEX-based exchange of data; given this capability to
exchange data for 1nats including those noted above, additional logic can
be applied to perf or1n differencing and selective object transfer, thus
accomplishing synchronization using the IrMC framework within OBEX
sessions . Chapter 14 more fully explores Bluetooth synchronization.

IPR2020-00202
Apple Inc. EX1057 Page 209

~-·

:.. .
(' .. J ,. ..
1.·
, (.., ,.
I .. "· -. -,.

:'I ,. .,.. \
;: t ••

188 Chapter 9 IRDA INTEROPERABILITY M IDDLEWARE PROTOCOLS

lrDA Interoperability Usage
The IrDA interoperability info1111ation in the core spec ification (volume 1)
includes a description of the related profiles found in volum e 2 of the spec-
ification. In fact, since IrDA interoperabili ty is really about application
interoperability , there is a larger amount of info11nation (over 100 pages)
on this topic in the profiles than in the core specification . Recall that IrDA
interoperability just makes reference to existing IrDA specifications and
describes how to use these standards in Bluetooth environments.

The reuse of IrDA protocol s, along with th e fact that these proto-
cols operate over RFCOMM (a serial por t abstra ction), is int end ed to
facilitate the use of existing IrDA appli cat ion s in Blu etoo th environ-
ments. IrDA applications are familiar with the use of seria l port commu -
nications and are likely to have support for OBEX pro tocol s. By
accommodating these IrDA interop erabili ty layers in the Bluetooth
stack, the SIG has paved the way for applications that can operate with
both lrDA and Bluetooth wireless communication .

I
I
I
I
I
I
I

IPR2020-00202
Apple Inc. EX1057 Page 210

•

Control

5 uppo1·t for voice or, n1ore generically, audio is a distinguishing
attribute of Bluetooth wireless communication. With support for both
voice and data, the technology is well positioned to bridge the domains
of computing and communications, as evidenced by the enthusiastic
support for the Bluetooth technology within both industries. Several of
the profiles address scenarios in which both a computing device and a
telephony device are used. This chapter, our final in-depth examination
of the core specification, deals with the components of the protocol
stack that enable telephony and voice (audio) communication. The tele-
phony control protocol is embodied by the TCS-BIN (or just TCS for
short) layer, while audio can be carried natively over the baseband.
TCS is based upon the existing ITU-T Q931 protocol [ITU98], but
even so it occupies over 60 pages in the specification. TCS is a binary
encoding for packet-based telephony control and resides above the
L2CAP layer of the stack. TCS-BIN is sufficient to realize the version
1.0 telephony profiles, although applications using AT commands over
the RFCO MM serial port abstraction (including headset, dial-up net-
working and fax) might also accomplish a ·for1n of telephony control
(this latter form of telephony c.ontrol is not included as a separate entity
in the version 1.0 specification; it is discussed further in subsequent sec-
tions here). Audio is not a layer of the protocol stack per se but rather a
specific packet format that can be transmitted directly over the base-
band layer. Since audio is frequently (although not exclusively) associ-
ated with telephony applications, it is discussed together with TCS in
this chapter as a logical convenience. This chapter examines telephony

189

IPR2020-00202
Apple Inc. EX1057 Page 211

-· ,.,
... J
··-- ;>
. I ' ·~.

A
I , . -

190 Chapter 10 ;i AUDIO AND TELEPHONY CONTROL

functions, including audio, in Bluetooth wireless communicatio n. As in
preceding chapters we will not only pro vide highlig l1ts and interpreta-
tions of the specification but also touch upon the background infor1r1a-
tion for these elements of the protocol stack, includin g the evo lution of
TCS-BIN.

Figure 10.1 depicts audio and TCS -BIN in the pr·otoco l stack; it
also shows the component we call AT Command Telephony Control. This
latter component is a remnant of what was once called TCS-AT and is
explored further below. In general , 'A'hen we refer simply to TCS we
mean the TCS-BIN layer of the stack. TCS -BIN resides above L2CAP ;
audio communicates directl y through the bas eband ; an d AT comma nd
telephony control operates over RFCOMM. Teleph ony contro l appli-
cations can communicate directly with TCS -BIN and might also use AT
command telephony control .

.

r audio t,
applications 1

I

• I ~ , _-":4_-_.. -----~· 1

telephony
applications ---

RFCOMM
·~~-- -- ~ :--:--:. -: --:·-====::::=:J ---- ,. .

~-

L2CAP

I
--- ·-~·-_··---~-~~.-~~~-~·_-~--~~--~-~~-,--- -~=~--=-~=.~~ -=--=~~=~~~~-~-~-

baseband
I • ' '

' I . f
""': ~:"_._, ••• AJ ;, -•-•owwwo . o ,. -- >- ~ - P• ••-•o o o > Uw .. = .. --~- .-.. ._.,._ . •·~-- •e= o { , _,_. __ _, - o _. _ ~·--~ .. - -·- ... ·- - . - . --· -_.---.~-- . - ~- .. -----

Figure 10.1
Audio and TCS-BIN in the Bluetooth protocol stack. Also shown is the AT command
based form of telephony control used by some applications.

Audio and Telephony Control Operation

•

TCS-BIN is used for the call control aspects of telephony, including
establishing and te1·1ninating calls along with many other control func-
tions that apply to telephone calls. TCS can be used to control both

IPR2020-00202
Apple Inc. EX1057 Page 212

Audio and Telephon y Control Operation 191

voice and data calls. Wh en a voice call is made the audio element of the
stack is used to carry the its content ; in the case of data calls the dat a
cont~ n t ca~ be car ried over· the transport layers of the stack (perhaps
a~so 1nvo lv1ng ot l1er middlewa re laye rs). Tl1e call control functions pro -
vided by TCS- BI N can be used no matter what the call content (voice
0 1· data) is; data calls like those used with the dial-up networking profil e
are support ed and so is voice telephon y, like that used for the cordless
telephon y and inte1·com pr ofiles.

TCS -BI N also defines a method for devi ces to exchange call sig-
nali11g in·formation with out act:11ally having a call conne ction established
b etwe e11 th em; thi s is called connectio1iless TCS and is de scribed more
fully be low. Anot l1er aspect of TCS -BIN is that of group management
funct ions. Whe n tl1er·e is a group of devices that all support the TCS -
BI N protoco l, the membe rs of the group (called a wireless user group, or
WU G) can m ake use of some special function s defined by TCS , includ -
i11g g1:oup m emb ership manag ement, telephon y service ''sharing ''
amo ng dev ices in the group and a method for a fast di1·ect connection
betwee n two gi·oup memb e1·s. The TCS-BIN call control and other
functions are exa min ed more fully below.

A sec ond form of call con trol , which we have called AT command
teleph ony contr·ol, was introdu ced above . While it is not defined as a
nam ed pr otoc ol in the specification , it is mentioned here because it is a
well-kno wn method for accompli shing call cont1·ol, and it is used by
several pr ofiles. In fact , at one time this concept was embodied as a sep -
arate pro tocol and element of the stack called TCS -AT. While TCS -AT
is no longer defined as a separ·ate entit y (and indeed, given the exist -
en ce of TCS-BI N, a separate SIG-defined TCS-AT protocol is unneces-
sar y, as described mo1·e fully below), it is worth acknowledging that this
sort of tel ephon y control does exist in many Bluetooth environments.
AT command s a1·e modem conn ·ol commands that are likely to be used
especiall y b y legac y applica tion s; these applications typically are con-
figured to comn1unicate witl1 a modem ove1· a serial po1·t. Within the
Bluetooth protocol stack these applications could use RFCO MM to
communicate with a compatible modem service using the same AT
command call control functions as in other environments, with little 01·

no change to the application (especially through the use of a Bluetooth
adaptation laye1· as described in Chapter 5). TCS-BIN is the only tele-
phony control protocol de·fined as a separate entity in the specification,
and it is the protocol upon which several telephony profiles are based.
However, AT command-based telephony conb:ol is also used in the

•

•
•
•

IPR2020-00202
Apple Inc. EX1057 Page 213

192 Chapter 10 11 AUDIO AND TELEPHONY CONTROL

headset, fax and dial-up networking p1·ofiles, even though no separate
AT protocol is specified by the SIG.

Audio, as already pointed out , is not really a layer of the protocol
stack. In fact it would 11ot be un1·easonabl e to consider audio as a spe-
cialized sort of transport laye1·, since it is large ly emb odied as a particu -
lar packet forn1at that is sent and received dir ectly over the air -int erface
using the baseband p1·otoc0I. Indeed , outsid e the baseband chapt e1·, the
specification directly addr esses al1dio onl y in an ap pendix that is fewer
than ten page s long! Yet we have establi shed t11at voice support is a key
differentiating value of Bluetooth \virele ss communi cation s, and clear ly
audio directl) ' supports voice (voice and a11dio are often equated ,
although voice is not the only form of audio). So wh y doe s the specifica-
tion not contain a chapter on audio with a de sc1iptio11 and pag e count
commensurate with the importance of audio fo1-Bluetoo th appli cation s?
The answer has already been suggested: beca use Blue too th audi o is
really just a specification of a packet fo1·mat and an encoding scheme for
the data in those packets , it does not requir e a lengih y ex plana tion.
Once the allowances (including time slot reservation and au dio packet
definition, described more fully in Chapte1· 6) ha ve be en made at the
baseband layer to support audio traffic, little more specification is
required. In fact the actual bulk of the audio spe cificat ion can be found
in the baseband chapter of the specification , which even includ es a sec-
tion devoted entirely to audio baseband traffic. Thus to fully under stand
Bluetooth audio one should understand the ba seband p1·otoc0I stack
layer, described in Chapter 6 of this book. However , becau se audio so
often is associated closely with voice and thu s with telephon y, it is logi -
cally consistent to discuss it here along with the other telephon y-re lated
functions.

TCS Protocol Development
Telephony control is intertwined with audio functions, and in fact it was
audio that drove the need for telephony control rather than the other
way around. Before there was a TCS working group , it was agreed that
the protocol stack needed to support audio so that voice as well as data
traffic could be enabled. At first the audio requirement pointed out the
need for some control functions, which initially were presented as
''audio control'' functions. These audio control capabilities were needed
to support the ultimate headset, speaking laptop and three-in -one
phone usage models (described in Chapter 3), and initially just a small
set of simple operations (such as make a call, answer a call, te1·1ninate a

IPR2020-00202
Apple Inc. EX1057 Page 214

