

This Reference Manual belongs to:

Optical Research Associates

550 North Rosemead Boulevard
Pasadena, California 91107
(818) 795-9101

Fax: (818) 795-9102

LGE Exhibit 1015A
LGE v. ImmerVision - IPR2020-00179

Reference Manual

CODE V Version 7.60
February 1994

Optical Research Associates

550 North Rosemead Boulevard
Pasadena, California 91107
Phone: (818) 795-9101
Fax: (818) 795-9102

LGE Exhibit 1015A

The information in this document is subject to change without notice and should not be construed as a commitment by Optical Research Associates (ORA®). ORA assumes no liabilities for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. CODE V output listed and plotted may vary version to version, platform to platform.

Reference Manual			
Editor:			
Richard C. Juergens			
Contributing Authors:		Tom Bruegge	Eric Ford
Barry Broome	David M. Hasenauer	Michael Hayford	Rarryl E. Gustafson
Thomas I. Harris	Robert S. Hilbert		
Bruce R. Iving	John Isenberg	Don Koch	Thomas Kuper
Peter Maccini	Daren V. Reid	Matthew P. Rimmer	Michael Rodgers
Stephen F. Sagan	Kevin Thompson	William B. Wetherell	
Program Development Staff:			
Tom Bruegge	Sanguan Chow	Jimmy Chu	Tri Dang
Darryl E. Gustafson	Thomas I. Harris	Michael Hayford	Thomas Kuper
Peter Maccini	Robert Mortensen	Daren V. Reid	Matthew P. Rimmer
Rhonda L. Shook	Michael D. Strawn	Phillip Suematsu	Samuel Sun
C. Tom Walker	Kenny Yang		
Production Staff:			
Deborah A. Afarian	Kathleen Clark		

Copyright $\odot 1986$ to 1994 by Optical Research Associates. All rights reserved.

Proprietary Software Notification

CODE V^{\circledR} is the proprietary and confidential property of ORA and/or its suppliers. It is licensed for use on the designated equipment on which it was originally installed and cannot be modified, duplicated, or copied in any form without prior written consent of ORA. If supplied under a U.S. Government contract the following also applies:

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FARS 52.227-19.

CODE V, ORA, and Global Synthesis are registered trademarks and Macro-PLUS and Worksheet Buffer are trademarks of Optical Research Associates.
DEC, DECserver, DECwindows, MicroVAX, ReGIS, VAX, VAXstation, and VMS are registered trademarks of Digital Equipment Corporation.
Sun Microsystems, SunOS, Solaris, and Sun Workstation are registered trademarks and Sun, SunView, NFS, and OpenWindows are trademarks of Sun Microsystems, Inc.
SPARC and SPARCstation are registered trademarks of SPARC International, Inc. PostScript is a registered trademark of Adobe Systems, Inc.
UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
X Windows is a product of the Massachusetts Institute of Technology
Macintosh is a registered trademark of Apple Computer, Inc.
TEKTRONIX is a registered trademark of Tektronix, Inc.
HP and HPGL are registered trademarks of Hewlett-Packard Company.
Microsoft and MS-DOS are registered trademarks and Windows is a trademark of Microsoft Corporation.
BRIEF is a registered trademark of SDC Software Partners II, L.P.
The Norton Utilities is a registered trademark of Symantec Corporation.
PC Tools is a registered trademark of Central Point Software, Inc. WATCOM is a trademark of WATCOM Systems, Inc.
PharLap is a registered trademark of PharLap Software, Inc.

READ FIRST

THINGS YOU SHOULD KNOW WHEN FIRST USING CODE V

1. Read:

- CODE V Documentation (page vii) - it describes the role of each document in the set.
- HOW TO USE THIS MANUAL, immediately following this material - it describes the special features of this Reference Manual.

2. How you use this material is up to you, depending on your learning style and how quickly you have to come up to speed. Eventually you will acquire a mental "model" in your mind of CODE V's structure and how things work; once you have this "user model" in mind, everything will seem more natural to you. We have designed the structure with great care to give you all of the power of CODE V and its interface to the computer's operating system, and yet retain simplicity. The first appearance will be one of complexity, but as you use it you will see the simplicity.
3. Some people learn best by plunging in and trying things. If you are one, try the following "quick study" course:

- Browse through Section 1A. Operating CODE V, picking up enough to sign on and know what other material is in there for future reference.
- Get the concept of Immediate Commands p. 1A-10 (and Chapter 10) so that when you want to change your working environment, you will know where to look. You can also put them into a file (DEFAULTS.SEQ) that will set up your own chosen environment each time you sign on to CODE V.
- Get the concept that you feed in lens data and get it into shape for other calculations through the Lens Data Manager (the LDM - see later in this section and, for details, Chapter 2). The lens data is available to you and to the rest of the program at all times, until you start another lens or exit (hopefully having saved your priceless creation in the lens library - Section 2E).
- The "other calculations" are called "options" and comprise Chapters 3 through 9. In between options you are automatically back in the LDM (shown by the CODE V> prompt in command mode), ready to change lens data or run other options.
- When you are in the LDM, it can accept LDM commands and Immediate commands. When you are in an option (shown by $\mathrm{XXX}>$ prompt in command mode where XXX is the option mnemonic), it can accept its own commands and Immediate commands. (Immediate commands are valid anytime).
- A few options can alter the lens (AUTOMATIC DESIGN to optimize, TOR to generate tolerances, etc.), but most analyze different aspects of the lens, or generate information for mechanical design and fabrication.

That's it. You have the structure of CODE V and the skeleton to hang your knowledge on; the rest is detail.

Continued....

Now try CODE V, using the following additional information:

- If you want to use screens for input and control, browse through Section 1D. Using Screens, and then try the Test Drive or Introductory User's Guide (each of which includes a subset of Section 1D material and goes on into sample CODE V operations).
- If you want to use commands for input and control, browse through and even duplicate the operations of Section 1B. A User's Session. (But skip over the illustrative detours you do not want to explore). In the back of the Introductory User's Guide there are command equivalents for all of the screen examples, and the more complex examples are given in commands. To use commands on your own, you need to understand the rules given in Section 1C. Syntax/Entry Rules - how to read the commands as written in the Reference Manual and Prompting Guide, and how to type them in. But don't worry, the syntax checker will let you know what, if anything is wrong.
- BE AWARE THERE IS AN INDEX JUST FOR THE LDM, at the end of Section 2A. It is good because there are over 300 commands to set up all of the kinds of optical systems that CODE V can represent; usually only about 10 of these are enough for an ordinary centered lens system.

4. If you want a more leisurely pace before you try CODE V, there isn't any - except to read a little more in this section and do a quick scan of the other parts of this manual and the other manuals so you will know where to find things.
5. If all else fails, call us - we offer telephone support every working day. Plus seminars several times a year.

Note:

Once you are familiar with commands, look at the Macro Command Language in Chapter 11. You do not have to use the language, but you may find that it offers easier alternatives for control and input, great flexibility for handling special problems, and letting you extend the functionality of CODE V.

HOW TO USE THIS MANUAL

First, get familiar with its content and organization. Look at the main Table of Contents; then flip each tab and look at the table of contents following it; find the LDM index at the end of Section 2A and the indices at the back. Then read sections that interest you or for which you have immediate need; do not try to read and absorb the whole manual - it is a reference manual, not the world's greatest novel.

Second, get familiar with the overall structure of CODE V and its relation to the manual:
The LDM (Lens Data Manager):
Section 2A - Entering and changing lens data items singly or in groups
Section 2B, 2C, 2D, 2E-Operating on, displaying, testing and saving/restoring lens data as a whole

The Options:
Chapter 3 - Automatic Design
Chapter 4 - Diagnostic Analysis/Graphics
Chapter 5 - Image Evaluation
Chapter 6 - Tolerancing
Chapter 7 - Fabrication Support
Chapter 8 - Environmental Analysis
Chapter 9 - Systems Analysis and Multilayer Design
Immediate Commands/Defaults (see Chapter 10)
Utility Functions/Options (see Chapter 10)
Macro-PLUS (see Chapter 11)
Third, get familiar with the reference features and styles that are used in various sections:

Reference features:

- Tabs select major sections
- Table of contents (and for options, an option index) immediately after each tab, and contiguous page numbering within each tabbed section help in quickly finding topics of interest.
- Contents page following each tab gives a description of the purpose of the section and purpose of each option or topic to aid selection.
- Section 2A, for Entering/Changing Data has an extra level of sectioning:

A master Table of Contents listing each section
A local Table of Contents for each section highlighting the detailed contents
Edge bars to act as tabs in finding each section
At the end, the LDM Index, which lists all commands and major topics for the LDM (Sections 2A through 2E).

These separate the more than 300 possible commands defining the lens.

- Indices for the whole Reference Manual; these currently include an option index, a command index covering all commands, and a subject index.

HOW TO USE THIS MANUAL (Continued)

- Commands are in easy-to-select, boxed format. For example, the operation specifying the glass map in the AUTOMATIC DESIGN option within which variable glasses are to be constrained, is given by:

Command Syntax	Explanation	Default
Screen Prompt		
GLA [Sk\| Si..j]	map_corner1 map_corner2 map_corner3....5	
Glass map boundary points... (AUT1-2)	Constrain variable, fictitious glasses on speci- fied surfaces to lie within a convex polygon in the n_{d} vs. $n_{F}-n_{C}$ glass map shown on the next page. This polygon is defined by specifying, in clockwise order, 3 to 5 glasses at the corner	GLA SA 487.704
points, using fictitious glass codes. Multiple GLA commands may be given; the commands and surface ranges are cumulative. If no sur- face range is given map applies to all variable glasses.	620.603	

In general,
Syntax statement -
Follows rules for reading and entry defined in Section 1C. Commands in Section 2A which represent variables and their control codes for AUTOMATIC DESIGN have a reference to their partner added to the syntax box (see, for example, the CUY command).

Screen Prompt -
Enough of the words on the screen to identify the particular entry for the screens user.
Explanation -
In general, a concise but complete description of what the command will do by itself and its limitations; examples of correct syntax are included if needed to clear up ambiguities, but not to illustrate optical points; use of multiple commands to accomplish a particular task are placed in nearby sections on usage or discussion of input and output.
Default -
What happens when the command is omitted; if no Default is given, there is no default action; if the command, when issued, has values which are supplied by default, they are provided in the Explanation.

Continued....

Style features:

The LDM (Lens Data Manager):
Section 2A -
Explanatory notes, when needed, precede the command descriptions to tie them into the overall concept of constructing data for your optical system. (The screen prompt is currently omitted, pending development of an appropriate format.)

Section 2B, 2C, 2D, 2E -
More like the options, these have their explanatory notes in a Usage section following the commands.

The Options (for each):

Purpose -

A quick overview of what the option does, so you can tell whether it is the one you need. Also it is in the chapter Table of Contents, for the same purpose.

Default Operation -

Tells what will happen when the option is run with no additional option commands - the base on which you can build and modify the option's action. This usually is the simplest, most frequently used, and/or most optically logical use of the option.

Screen Flow Diagram -

Shows the relationship between the screens (which comes first, etc.) used just in the option, with a unique screen identifier code (AUT 1, AUT 1-1, etc.) that matches the code found in the upper left hand corner of the screen itself.

Screens -

Shows the way they look. Multiple screens for an option are organized by topics which appear centered just below the option name in the top line; within each screen entries are organized by topic also, with those most frequently needed and/or most important at the top.

Command Mnemonics (Alphabetical) -

Summary list of the command mnemonics so that you can verify by quick scan that the one you are looking for is there.

Commands -

See above for example and content. These are organized in parallel to their order of appearance in the screens and under similar topics.

Discussion of Input and Computations -
Discusses the default computations, nuances of commands (HOW, WHEN and WHY to use), how commands affect the computation and are used to solve particular optical problems, and examples of input.

Description of Output -

Covers interpretation of output, how commands can alter the form of output and examples of commands needed to generate specific listings or plots. Included are examples of runs you can make to duplicate the output shown.

PREFACE

HOW TO USE THIS MANUAL (Continued)

Technical Notes -

If present, provide information and references which may contribute to the understanding of the behavior of the CODE V option.

For each option, the portion of text that is likely to be needed most frequently (default operation, screens, and commands) are first, to aid in quick reference; the remaining sections need to be read once or referenced infrequently and are last. Within each chapter options are arranged in the same order as the screen menu used to select them, which generally places them with the most important, or frequently used, options at the beginning of the chapter.

Immediate Commands/Defaults:
Explanatory notes are in a Usage section following the commands.
Utility Functions/Options:
Like other options, explanatory notes are covered in discussions of input and output.

Fourth, try using CODE V, using this and the other documentation to augment your knowledge.

P.S. A word about version numbers and manual updates

This manual corresponds to program release 7.60; the next major release will be 8.0, for which a new Prompting Guide and update for the Reference Manual will be provided. After each major release, minor releases will be issued periodically to fix critical bugs reported by customers and Optical Research Associates (ORA ${ }^{\oplus}$) staff. These intermediate releases, if needed, will be numbered $7.61,7.62$, etc.

Only by regular insertion of each update as it is received will this manual be up to date and accurate; the version number and date on the cover page (which will be updated, too) will identify the level of your manual. To be sure that you continue to receive updates, please send any change of address to ORA, referring to CODE V documentation.

Pages which have been updated carry identifying marks according to the following plan:

- Identified with the release (i.e., 7.60) at the bottom of each page that was part of the corresponding update; if the update page is not identified with the release, the change must be on the other side. Reasons for the change are indicated by thin change bars on the outer edge or by horizontal change bars at the top, inner edge:
- No change bar - Typo correction, a page supplied as part of re-paging, or a change of style, not content.
- Change bar on outer edge of page - SIGNIFICANT CHANGE - Content of lines it matches have been changed in the documentation and/or represent a program change, or enhancement.
- Horizontal change bar at top of page - ALL NEW PAGE - This usually represents a documentation addition. If a new option or major new section and capability for the LDM is added, it will also carry this top change bar.

CODE V DOCUMENTATION

What is included in the documentation set?

The full CODE V documentation set consists of:

1. Introductory User's Guide
2. Test Drive - An Introduction to the Screens Interface
3. Prompting Guide
4. Reference Manual - This manual, in three volumes

The first three have been given to you previously or with this manual. Other materials available from ORA are:

1. Training Materials

- for attendees of CODE V seminars

2. ORA Network Access Guide

- for users of the ORA VAX Computing Facility, either through TYMNET, direct phone line or at ORA

What is the best way to use these materials?

- Test Drive:

Best for a short (~ 1 hour) self-guided demonstration of simple screen operations in CODE V.

- Introductory User's Guide:

The best place to start for understanding CODE V and its use:

- A comprehensive introduction to CODE V using the screens mode of data entry and sampling most frequently used features
- Examples of how to use CODE V to design and evaluate lenses, with examples using both screens and commands
- Prompting Guide:

Best for the command mode user; familiar commands will have enough material that no further information is needed; unfamiliar commands will trigger use of the Reference Manual for more detail. Contains:

- The complete command syntax definition for every command
- An identifying phrase with critical information
- An abbreviated representation of the default effect of omitting the command (it sometimes serves as an example, also).
- Reference Manual:

The most complete definition of CODE V.

Why is the Reference Manual in multiple volumes?

Our goals are to provide:

- The most comprehensive program:
- Over 1000 commands are available to model almost any conceivable lens system and to apply a broad range of calculations to it. More than 350 commands are available just to describe the attributes of the lens itself (in the LDM).
- A number of planned-for extensions, including:
- User-defined error function
- MTF optimization
- First-order optical system layout aids
- Programs to aid diagnosis of problems in optical system structure
- More examples and operational tips
- The easiest-to-use program:
- EASE (Easy Access Screen Entry) allows the user to run completely without using commands or to intermix the two
- Only about 10 LDM commands are needed to describe centered lens systems
- Useful, optically valid defaults are provided for missing data
- In almost all options, defaults produce standard results that are useful in their entirety or as a building block for further runs
- A full HELP facility of several levels is available at all times on-line
- Comprehensible messages that give information about what is happening, warnings of possible problems, and errors on unallowable inputs
- A designer-oriented tool:
- Planned and developed by active optical engineers, for optical engineers, for efficiency of use

TABLE OF CONTENTS
VOLUME I
Preface iREAD FIRST - Things You Should Know When First Using CODE VHow to Use This ManualCODE V DocumentationTable of Contentsx

1. OVERVIEW / INTRODUCTION 1-1Table of Contents (for this section)Introduction to CODE VThe Architecture and Structure of CODE V
A. Operating CODE V 1A-1
Table of Contents (for this section)
Important CommandsVMS Help on CODE V (VAX only)Choosing a Version of CODE VStarting CODE V on a VAXStarting CODE V on a Sun
Starting CODE V on a PC
Starting CODE V from a CODE V Icon
Starting CODE V from a DOS Window
Control of System Messages - Batch Jobs (VAX/VMS only)
Exit from CODE VImmediate Commands
Prompts
Correcting/Reusing Commands
Option Processing
Files Used by CODE V
File Naming Conventions in CODE V
File Types used in CODE V
Editing FilesFile Input/Output, Printing, and PlottingInput
Text Output
SEQ File Output (for lenses only)
Graphics Output
Graphics Devices
Sending Data to Printers, Plotters, and Raster Graphics Devices
Plotting and Printing after Exit
Recovery
Starting Other Processes from within CODE V
Defaults Setup
User-defined Functions and User Versions of CODE V
User-defined Graphics Drivers
CODE V Accounting (Sun and VAX only)
The Accounting File
Required Monthly Accounting Report (Variable Fee Licenses)
Optional Accounting Reports
Dynamic Memory
Appendix 1A-A - Implementing a User-defined Gradient
Appendix 1A-B - Implementing a User-defined Surface
Appendix 1A-C - Implementing a User-defined Macro-PLUS Subroutine
Appendix 1A-D - Calculating Dynamic Memory Requirements

Appendix 1A-E - Lenses Supplied with CODE V
Sample Lenses
Optical Suppliers' Lens Catalogs
Lens Catalogs
Catalog Lens Data Format
Using the Catalog Lenses
Catalog Lens Design Example
Searching the Catalog Lenses
SEARCH Example
Database Lenses
Appendix 1A-F - CODE V on the VAXstation
Getting Started
CODE V Commands for the VAXstation Environment
General Information and Restrictions
Appendix 1A-G - CODE V on a Sun SPARCstation
Getting Started
CODE V Commands for the SPARCstation Environment
Appendix $1 \mathrm{~A}-\mathrm{H}$ - Running from an X Window Device
Running CODE V from an X Window Device
Controlling Graphics Windows on X Window Devices
Appendix 1A-1 - Printing and Plotting Outside of CODE V
Plotting Outside of CODE V (CVPLOT Command)
Printing Outside of CODE V (CVPRINT Command)
Plotting Raster Files Outside of CODE V (CVRAST Command)
B. A User's Session.
1B-1
Table of Contents (for this section)
The Optical Problem
A Note on Typography
Logging In and Running CODE V
Setting Up Your Session
Defining a New Lens
Getting Help
Entering Surface Data
Saving and Displaying Data
Adding Zoom Data
Running CODE V Options
Changing Your Lens
Using Sequence Files
Accessing the VMS Operating System from CODE V
Wrapping Up
C. Syntax/Entry Rules.. 1C-1

Table of Contents (for this section)
Syntax Description
Command Line Format and Elements
Command
Qualifiers Data Comment Additional Syntax Elements for AUT (Automatic Design)
The Syntax Definition
Command Entry Rules
Rules for Interpreting Command Notation
Additional Rules for the LDM
Rules for Command Entry
CODE V File Usage
CODE V Glass Names

D. Using Screens.
 Table of Contents (for this section)

Purpose of Screens
Screens Requirements
Hardware
Communication Speed
Screens Terminology
Keyboard Terminology
Screen "Command" Keys (GOLD Commands)
"Global" GOLD Commands
Lens Data Manager (LDM) GOLD Commands
Screen "Shortcuts"
GOLD/Q "Quick" Command
GOLD/O
Screen Files
What Are "Screen Files"?
Automatic Saving of Screens
GOLD/F (Files Command)
GOLD/F Menu Items
Relationship between Screen and Command Mode
Screen Errors and Error Recovery
Typical Screen Session
VAX CODE V Keyboard
Sun CODE V Keyboard
Appendix 1D-A - Gold Key Reference Card
2. LENS DATA ..2-1
Table of Contents (for this section)
THE LDM - Introduction
A.) Entering/Changing Data ... 2A-1
Table of Contents (for this section)
THE TASK
Re-starting for New Lens
Title
Specification Data
Wavelength
Pupil
Field
Vignetting
Depth of Focus
Miscellaneous
THE LENS SYSTEM
Materials
Designating Glasses on Surfaces
Using Pre-stored Glass Catalogs
Using Fictitious Glasses
Using Reflecting Surfaces
Using Private Glass Catalog
Other Properties
Surface Shape \& Position
Representing Optical Systems in CODE V/Surface Order
Entering Surface Data
Shorthand Surface Entry
Inserting/Deleting/Copying Surfaces
Thickness/Separation

Table of Contents (continued)
Glass ChangeSphere/Cylinder SurfacesSolves
Tilts/Decenters
Introduction to Decentered Systems
Global Reference System
Other Decentered Capabilities
Global References
Surface Tilts/Decenters
BUILDING THE LENS SYSTEM
Element Structure
Apertures/Obscurations/Edges/Holes
First Surface Mirror Substrates
Coating/Cement Data
Tolerances
Usage in CODE V
Interpreting Command Descriptions
Centered Tolerances
Irregularity Tolerances
Single Surface Decenter and Displacement Tolerances
Group Decentering Tolerances
Other Controls
Description of Tolerances
OTHER
Introduction
Zoom/Dezoom Facility
Variable Designation/Control Codes
Delete
A. Entering/Changing Data - SPECIAL TOPICS2A-201
Table of Contents (for this section)
SPECIAL SURFACES
Introduction
CON/ASP - Conic/Asphere
XTO - X-Toroid of Base Asphere
YTO - Y-Toroid of Base Asphere
THG - Thermal Gradient on Base Asphere
SPL - Radial Spline Asphere
AAS - Anamorphic Asphere
GRT - Diffractive Surfaces - Diffraction Grating on Base Asphere
HOE - Diffractive Surfaces - Holographic Surface
MOD - Lens Module ("Black Box" Lens)
UDS - User-defined Surface
ARRAY ELEMENT
Usage
Regular Grid, Parallel Array
Individual General Channels
Polynomial Decenter and Tilt Channels
NON-SEQUENTIAL SURFACES
Introduction - When to Use Non-Sequential Surfaces
Implementation of NS Ray Tracing
Cautions
High Level Modules
Constructing Non-Sequential Surface Ranges - NS Primitives
Getting Started with Non-Sequential Ray Tracing
References

Table of Contents (continued)

GRADIENT INDEX MATERIALS (GRIN)
Definitions \& Examples
General Commands
Forms
PUPIL APODIZATION
General Apodization
Gaussian Apodization
POLARIZATION
Introduction/Polarization Ray Tracing
Defining the Input Polarization
Its Effect on Imagery/Modeling Effects that Alter the Polarization State of a Beam
Use of Polarization Ray Trace Information by CODE V
Activating Polarization Ray Tracing/Geometrical Representation
Jones Vector Representation
Stokes Parameters/Specifying Linear Polarizers and Retarders
Examples of Output
INTERFEROMETRIC DEFORMATIONS AND INTENSITY APODIZATION
Introduction
Interferograms
Intensity Apodization
INT Files
Coordinate Systems and Sign Conventions
Zernike Polynomials
INT File Format
Interface to Commercial Interferometers
Sample Output
Technical Notes
Attaching INT Data to the Surface
Orientation of INT Data
NASTRAN-GENERATED DEFORMATIONS
Introduction/Running MSC/NASTRAN/Running CVNAS
Output/Units/Dynamic Analyses
Examples
Sample Files
LDM INDEX
B. Operations on Lens Data

2B-1
Table of Contents (for this section)
End-for-End Flips
Scale Lens System
Ray-based Setting of Data
Usage
C. Displaying Dat

2C-1
Table of Contents (for this section)
Queries
Listing of Data
Drawing of Lens
Usage
D. Quick Analyses 2D-1Table of Contents (for this section)
Evaluate Optical ValuesFirst-order CalculationsThird-order CalculationsSingle Ray TracesSingle Ray Trace Output FormatUsage
E. Saving/Restoring Data 2E-1
Table of Contents (for this section)
Save and Restore Data
Copying Stored Lens into Current Lens
Converting Lens to Sequence Data
Usage
INDICES Indices-1
Table of Contents (for this section)
Option Index
Command Index
Subject Index
END OF VOLUME I
VOLUME II
Table of Contents ii
3. AUTOMATIC DESIGN 3-1
Table of Contents (for this section)
AUT- Aunic Design
Specific Constraints
Variables
Optical Definitions
Manufacturing and Packaging
Paraxial Ray Trace Data
First- and Third-order Aberrations
Real Ray Trace Data
Holographic Optical Elements
User-defined
General Constraints
Optimization Controls
Global Synthesis
Exit Conditions
Listing/Drawing
Convergence
Error Function Construction
Aberrations
Weights
Through-Focus Optimization
Ray Grid
MTF Optimization
User-defined Error Function
Outputs to Macro-PLUS

Table of Contents (continued)
4. DIAGNOSTIC ANALYSIS/GRAPHICS 4-1
Table of Contents (for this section)
ANA - Analysis
FIE - Field Aberrations - Astigmatism and Distortion Analysis
RIM - Rimray Aberration Plot
PMA - Pupil Map
CAT - Catseye Diagram
FMA - Field Map
FOV - Biocular Field of View Plot
BEA - Beam Propagation
5. IMAGE EVALUATION 5-1
Table of Contents (for this section)
Point and Line Spread Functions
PSF - Point Spread Function*
SPO - Spot Diagram
QUA - Quadrant Detector Analysis
RAD - Encircled Energy
GDE - Detector Energy
LSF - Line Spread Function/Edge Trace, Pixel Analysis*
GLS - LSF/Edge Trace - Geometrical
Other Image Evaluation
WAV - Wavefront Analysis*
MTF - Modulation Transfer Function*
PAR - Partial Coherence*
BIO - Biocular Display Analysis
*Diffraction Based
6. TOLERANCING 6-1
Table of Contents (for this section)
TOR - Ray Based Tolerancing
TOD - Distortion Tolerancing
TOL - Primary Aberration Based Tolerancing
7. FABRICATION SUPPORT 7-1Table of Contents (for this section)
FAB - Fabrication Data
VIE - Lens View and Plot
LAY - Lens Drawing
ELE - Element Drawing
FOO - Footprint Analysis
COS - Cost Analysis
WEI - Weight Calculation
TES - Test Plate Fitting
CAM - Cam Calculations for Zoom Systems
SLD - Solids Modeling
ALI - Alignment Optimization
IGE - IGES Interface
INDICES Indices-1Table of Contents (for this section)
Option Index
Command Index
Subject Index

VOLUME III
Table of Contents.. ii
8. ENVIRONMENTAL ANALYSIS ... 8-1

Table of Contents (for this section)
ENV - Environmental Analysis
9. SYSTEMS ANALYSIS AND MULTILAYER DESIGN.. 9-1

Table of Contents (for this section)
SPE - Spectral Analysis
TRA - Transmission Analysis
GHO - Ghost Image Analysis
NAR - Narcissus Analysis
MUL - Multilayer Coating Design
SSS - Solar Simulator System Option (SSS) |
IMS - 1-D Image Simulation
10. DEFAULTS AND UTILITIES. 10-1Table of Contents (for this section)Command ProcessingOption Processing and EXITImmediate Commands/DefaultsLIB - Library MaintenanceGLD - Glass Catalog DataUGR - User Graphics
11. Macro-PLUS OVERVIEW/INTRODUCTION 11-1
Table of Contents (for this section)
A. Language Reference 11A-1
B. Database Reference 11B-1
C. Examples. 11C-1
D. CODE V Supplied Macros 11D-1
E. Worksheet Buffer 11E-1
APPENDICES
A. Error Messages and HELP A-1
B. Glossary B-1
INDICES Indices-1Table of Contents (for this section)Option Index
Command IndexSubject Index

Chapter 1 C
 Syntax/Entry Rules

TABLE OF CONTENTS

SYNTAX DESCRIPTION 1C-3
COMMAND LINE FORMAT AND ELEMENTS 1C-3
Command 1C-3
Qualifiers 1C-3
Data 1C-4
Comment 1C-4
Additional Syntax Elements for AUT (Automatic Design) 1C-6
THE SYNTAX DEFINITION. 1C-6
COMMAND ENTRY RULES 1C-7
Rules For Interpreting Command Notation 1C-7
Additional Rules for the LDM 1C-9
Rules For Command Entry 1C-10
CODE V File Usage 1C-11
CODE V Glass Names 1C-12

SYNTAX/ENTRY RULES

SYNTAX DESCRIPTION

COMMAND LINE FORMAT AND ELEMENTS ${ }^{1}$

CODE V command lines have the following general form:

> COMMAND QUALIFIERS DATA

This is the principal order dependence: the command must be first and the data (if any) must be last; the qualifiers (if any), except labels, may be in any order; the label qualifier (if any) must be the last of the qualifiers.

Blanks are delimiters; they are not allowed to be embedded in commands, qualifiers, or data. Leading blanks and extra spaces are acceptable.

Command lines are normally ended by a carriage return.
Command lines may be:

- Stacked on one line by putting a semi-colon(;) between command lines
- Continued onto the next line by ending the prior line with an ampersand(\&) just before the carriage return
- Commented by using an exclamation mark(!); all characters following the ! on that line will be ignored by CODE V. Thus the form becomes:

COMMAND QUALIFIERS DATA !COMMENT

Command

- A 1 to 3 character alphanumeric string recognized by CODE V.
- The first character is always a letter.
- Additional characters may be added to 3 character commands as desired for readability (e.g., GLA \rightarrow GLASS); these additional characters are ignored by CODE V.
- 1 or 2 character commands may NOT be extended (e.g., Y, WL, SF, etc.).
- No spaces are permitted within commands.
- Special cases - A few multi-word commands start with a prefix command:

PREFIX COMMAND QUALIFIERS DATA !COMMENT
Examples of prefixes are:
ZOO (zoom), DEZ (dezoom), DEF (default), DEL (delete), CMP (compensator) in the LDM
DSP (display) in AUTO
LIM (limits) in TOR

Qualifiers

Qualifier word:

- 1 to 3 character alphanumeric code that are valid with certain commands to restrict or refine their operation (e.g., OAL or ET in solves).
- Qualifier words may be extended in length under the same restrictions as those applying to commands; they also must not contain spaces.

[^0]
SYNTAX/ENTRY RULES

Index qualifier:

- For specifying a surface number, wavelength number, field number, zoom position number, etc.
- Consists of a letter that identifies the type of index (S for surface, Z for zoom, W for wavelength, etc.), followed by an integer or a valid index expression ($\mathrm{O}, \mathrm{l}-1, \mathrm{~S}+2$, etc.). No spaces are permitted in index qualifiers.
- O, S, and I (for Object, Stop, and Image) are valid surface numbers.
- L can be used for Last surface, wavelength, field or zoom number, or last column or row of a worksheet.
- C can be used to indicate current row or column in the worksheet buffer (IC, JC+3, etc.
- Examples: W3, F2, ZL, S17, SI-1, JL+1.

Index qualifier range:

- When a range of index qualifiers is required or permitted, the range is specified by separating its beginning and ending values by two periods (..) without intervening spaces, such as S67..129, Z1..L, IC-1..C+1.
- "A" can be used to mean All, as in SA instead of SO..I and ZA instead of Z1..L .

Label qualifier:

- Up to 3 characters as a string (enclosed between single or double quotes) to identify a particular aperture.

Data

Numeric data:

- Integers or floating point values, with or without leading signs (+, -) or leading zeros (.5, 0.5), or power of ten exponents (1E10, -2.0E-7, etc.).
- No spaces are permitted within numerics.
- Calculator mode: two numerics can be connected by an arithmetic operator (+,-,*,/) to give a single result. Examples: $34.5 / 2,0.707^{*} 12.5$, etc.

Alphanumeric data:

- Any permitted number of alphanumeric characters, plus underscore.
- For glasses, a catalog name is appended using an underscore, e.g. ADF1_HOYA, KZFS8_OHARA

String data:

- Any number of alphanumeric and/or printing special characters enclosed between single (') or double (") quotes.
- Normally single quotes are used; double quotes should be used if a single quote is a part of the string.
Examples: 'This is a title', 'My BK7', "Joe's Lens; Keep Out"

Comment

- Any string of characters beginning with an exclamation point (!).
- ALL information on the line beyond the! is ignored by CODE V, including semicolons (;).
- Provides a way to annotate CODE V input - easier to read and understand.
- A comment may be an entire line starting with !

SYNTAX/ENTRY RULES

Examples of the Syntax for AUT

$$
E F L=100
$$

CT S12 > 2.5
OAL S4..10 Z4>3.9
DSP DSY F2

$$
@ E X P==(T H I S I-1)-(E X P \text { F1 })
$$

Additional Syntax Elements for AUT (Automatic Design)

Constraint relational operators:

- Used to separate the constraint name (and any necessary index qualifiers) from the target value or bound(s). One or both bounds can be entered at a time.
- Relational operators are =,<,>. Adjoining spaces are required.

User-Defined Constraints:
UDC name:

- Any 1 to 31 character alphanumeric preceded by an @.
- All references to UDC names (both in definitions and constraint entry) must include the @ with the name.
UDC definition:
- Are entered using the assignment operator (==). Adjoining spaces are not required. The form is:

$$
@ x y z==\text { anthmetic expression }
$$

THE SYNTAX DEFINITION

The complete definition of the new syntax, command by command, is contained in both the Prompting Guide and this Reference Manual.

- Each command is represented in a notation that is based on the command syntax itself; read the Rules For Interpreting Command Notation to understand the meaning.
- Read the Rules for Command Entry to understand how to enter commands.

Examples given throughout the documentation set also use the same syntax notation.

SYNTAX/ENTRY RULES

COMMAND ENTRY RULES

To enter commands means that you need to:

- understand how to interpret the commands as written here
- supply user-defined items
- type in the completed command

Rules For Interpreting Command Notation:

CODE V can accept both upper and lower case inputs; however, we use both in the command descriptions to distinguish between what you must type (CAPS) and what you make substitutions for (lowercase).
CAPITAL are to be typed, as in: WFR, S, F, W, Z, R, G, C, L
LETTERS The single letter prefix means the following:

A - user-defined aberration number
B - buffer number
C - HOE, UDS, array polynomial and UDG coefficient number
E - entrance pupil position number
F - field number
G - global reference surface number
H - NSS hit number
I - row number in buffer
J - column number in buffer
Qualifiers using these may be in any order.
lowercase are to have contents supplied by you, as in:

$$
\text { letters } \quad k, i, j, \text { max, min, increment }
$$

THUS: Sk means you should type: S7 or S56 (where 7 or 56 is the desired surface number)
lowercase_ mean a single quantity to be supplied by you, as in:
words_ lines_per_mm, decrease_in_performance
joined_by_ If the first word is num_, then enter it as an integer, as in:
underscore NRD num_rays_across_diameter
UNITS: Usually clear from the context or in lens units; otherwise included in the lowercase words.

Abbreviations used:	degr	$=$ degrees
	nm	$=$ nanometers
	per scale bar	$=$ uses plotted scale bars (on pen

per_scale_bar

L - label (1 to 3 character alphanumeric string)
P - plotting window number
Q - Macro-PLUS format string
R - ray number
S - surface number
T - through-focus position number
U - Macro-PLUS I/O unit number
W - wavelength number
Z - zoom position number Abbreviations used:
plotters, 25 mm long for milliplotters, 25 mm long for milir-
meter or centimeter lens units, inch long for inch lens units)
blanks are used in what you type as delimiters, as shown in each command; you may use
commas are never entered except as you wish to include them in titles.
.. means a range of values; it IS to be typed, as in:
Si..j, Zi..j
THUS: Si..j means you should type: S7.. 12 to indicate that an OAL, for example, extends from surface 7 to 12
'abcdefg' means a string of characters that YOU choose, typed with the quote marks ('); you can also use double quote marks (") as long as they are used at both ends of the string. This is done when you wish to include a quote within the string; choose the opposite one as the string delimiter. Characters can be upper and/or lower case, numbers and any punctuation except the string delimiter (' or ") you have chosen. Each allowable type of character string has a maximum number of characters (between the quotes) denoted as follows:
'system_title'(80) - up to 80 characters are allowed
'temporary_tite' $(20+20)$ - the total of 40 characters are split into two lines of 20 each
THUS: 'temporary_title' $(20+20)$ means you can type 'This is my lens in the 5th zoom position' exactly 40 characters, which splits between t and h of 'the'. The numbers and parentheses $(20+20)$ are NOT typed.

SYNTAX/ENTRY RULES

is NOT typed; it means that up to that number (6 , in this case) of entries may be made. There is no qualifier to alter specific elements or a sub-range.....z is NOT typed;z means that multiple entries may be made up to the total num-
....f ber of zoom positions allowed or active. This also means that a specific zoom
position or range of positions can be used by including the qualifier $\mathbf{Z k} \mid \mathrm{Zi}$..j prior to the value. Similarly for wavelength (....w) and field (....f).
THUS: IFR incr_lines_per_mm....z means you can enter all zoom position values in one record, if they are the same, with:

IFR 10
or IFR 101010101010 (for 6 positions)
If the values are different, use, for example:
IFR 101020202020 (for 6 positions)
But, you also can modify the 3rd zoom position with IFR Z3 30
or the 4th through the 6th can be modified with IFR Z4.. 650
$\ldots . f, z \quad$ is NOT typed; it shows that a 2-dimensional table is enterable. Using WTF
....w, z
(...f,z) as an example, acceptable formats are:

If the system is not zoomed:

WTF Fk field_weight	- fills Fk
WTF field_weight....f	- fills each field

If the system is zoomed:
WTF Fk Zk field-zoom_weight
WTF Fk field-zoom_weight
WTF Fk field-zoom_weight....z

- fills Fk,Zk field

WTF Zk field-zoom_weight....f
sk, all pos the same

- fills Fk in each pos
- fills each field of Zk

WTF Zk field-zoom_weight

- fills all fields the same

Similarly forw,z. Use of ranges (Zi..j,Fi..j, Wi..j) allows the filling of any submatrix of the 2-D table with a single value. Example:

WTF Z3.. 5 F2. 31.0
would fill fields 2 and 3 in zoom positions $3-5$ with 1.0.
is NOT typed; it means 'or' as in: Yes|No, Yes|No|color, degrees|RAD|TAN
can be typed Y or YES; if all entries are YES, they need not be typed. can be typed N or NO
color can be typed BLA, RED, GRE, YEL, BLU, MAG, CYA, WHI, COM
[] are NOT typed; they indicate optional qualifiers that change the action of the command as in:
[SUP] - suppresses the labeling of contours for CON command in PSF
[Sk] - applies the action of the command only to surface k
or optional values
Indented command
indicates that this command is only valid when the preceding non-indented command is used; the indenting does not need to be typed.

Additional rules that only apply locally to one option or small area of the program will be given there.

Additional Rules for the LDM:	
[.... z]	is NOT typed; it is shown in the LDM to mean that the parameter is zoomable; only after it has been zoomed by use of the ZOO command can changes be made in the zoomed formats implied byz
$\begin{aligned} & \ldots . \mathrm{w}[, z] \\ & \ldots . \mathrm{f}[, \mathrm{z}] \end{aligned}$	is NOT typed; it is shown in the LDM to mean that the parameter is zoomable; only after it has been zoomed by use of the ZOO command can changes be made in the zoomed formats implied byw,z orf,z
Selective changes after zooming	After a parameter has been zoomed with, for example, ZOO CUY S3 value1 value2 value3 it may be changed at any time with CUY S3 new_value1 new_value2 new_value3 Using No for any of these values will leave it unchanged: CUY S3 N new_value2 new_value3 would leave the first position value unchanged. NOTE: To avoid undue complexity, the use of No is not shown in the LDM command statements. To dezoom to the first position value, DEZ CUY S3 If you are dealing with parameters that allow an array in zoom and field or wavelength, e.g., YAN, you can also dezoom all of the fields/wavelengths at once. For example: DEZ YAN F1.. 4 dezooms all 4 field angles; DEZ YAN F2.. 3 would dezoom only field angles 2 and 3 .
$\begin{aligned} & \text { Sk or } \\ & \text { Sk\|Si..j } \end{aligned}$	are required; either you provide them or the pointer to the current surface will be used. You can always include the surface designator if you wish; if the command is intended to alter data, it will move the pointer at the same time to the single designated surface Sk or to the first surface Si of the range. If the command is only for display or testing, the pointer will NOT be moved.
Exception:	On INS (insert) and DEL (delete) you must supply the surface number(Sk) or range(Si..j) to prevent accidental loss of data from too simple a command.
$\begin{aligned} & {[\mathrm{Si} . . \mathrm{j}] \text { or }} \\ & {[\mathrm{Sk} \mid \mathrm{Si} . . \mathrm{j}]} \end{aligned}$	are optional; in the LDM, these only occur in Operations on Lens Data, Displaying Data, and in Testing Data. Omission means either SO..I or S1..I-1, as appropriate.

Rules For Command Entry:

1. Always separate parts of a CODE V instruction with orie or more spaces.
2. Never put spaces inside command words, qualifier words, index qualifiers or ranges, or numbers. Leading blanks and extra spaces between items are acceptable.
3. Always precede a surface number, wavelength number, field number, zoom number, etc. with its proper index qualifier prefix (S for surface, W for wavelength, Z for zoom, etc.), without spaces. O , S , and I (for object, stop and image) are valid surface numbers. L can be used for the last surface, wavelength, field or zoom number. Examples: W3, F2, S17, Z4, FL. Addition and subtraction can be used (S1-1, SS+2, FL-1, etc.)
4. Never add additional characters to a one or two character command or qualifier word. You may add additional characters to any three character command or qualifier as desired for readability.
5. When a range of surface numbers or other qualifiers is called for, enter the lower and upper value separated by two periods and no spaces, such as S67.. 129 or F1..L, L can be used for last. A (for all) can be used in place of $1 . . \mathrm{L}$, as in FA.
6. Numeric data, alphanumeric data, strings, or (when permitted) expressions are defined as follows:
a. Numerics: Integers or floating point values, with or without leading signs (+,-) or leading zeros (.5,0.5), or power of ten exponents (1E10, -2.0E-7, etc.). No spaces are permitted within numerics.
b. Alphanumerics: Any permitted number of alphanumeric and/or printing special characters. For glasses, a catalog name is appended using an underscore, e.g. ADF1_HOYA, BPH8_OHARA.
c. Strings: Any permitted number of alphanumeric and/or printing special characters. If spaces or semi-colons(;) are included (e.g., in titles), the entire string must be enclosed in single or double quotes (e.g.,'This is a title',"As is this").
d. Expressions: User data that include mathematical operations and/or references to operands - CODE V data items (THI, CUY, etc.) that appear in the LDM or specific constraints in AUTOMATIC DESIGN. If an expression contains any operands they must be enclosed in parentheses. For example, (CUY S5 Z3), (EFX S2.. 8 Z2), etc. See Chapter 11 - Macro-PLUS for details.
7. Upper and lower case letters can be used as desired; CODE V ignores case (Thls $=$ THIS $=$ this).
8. Continue a command onto the next line by ending the previous line with an ampersand ($\&$). Combine commands onto one line by separating them with a semi-colon (;). Comments are any string of characters beginning with an exclamation point (!), and including semicolons (;). They can be a separate line or at the end of any CODE V instruction.
9. When defining something (user defined constraint in AUTO, etc.), use the ASSIGNMENT OPERATOR ($==$).
10. When entering an AUTO constraint, use the $=$ sign alone or $<$ and $>$ signs to specify the desired relationship between the constraint and its target.

CODE V File Usage

File names - used on VAX, Sun, and PC:
Definitions: filespec
where:
pathname $\quad=$ (optional) corresponds to a VMS logical or a UNIX or DOS environment variable
= (optional) directory specification for filename. Subdirectories are separated by period (rather than slashes as used in UNIX, or back slashes as used in DOS)
filename
$=$ * or name up to 14 characters long (8 on PC), the first of which must be a letter
filetype $\quad=$ * or SEQ, LEN, MUL, LIS, PLT, REC, etc.
version $\quad=^{*}$, -(dash), or number up to 3 digits (1 on PC). Note: the enclosing parentheses () separates it from the filetype or filename
= "wild card" which means "all files", "all types", or "all versions"
$=$ (dash) means "all versions below the highest version"
= filespec defined only in the terminology of the operating system definitions - enclosed in single or double quotes and passed to the operating system without alteration
Examples:

- filename.filetype(version):

OPTSEQNC.SEQ(2)
or rscanner:OPTSEQNC.SEQ(2)
or [rick.scanner]OPTSEQNC.SEQ(2)

- filename(version):

MYLENS(3)
or rscanner:MYLENS(3)
or [rick.scanner]MYLENS(3)
Uses default filetype:
.LEN for SAV, RES, CSA
.SEQ for IN
.LIS for OUT, PRT
.PLT for GRA, PLT
.BUF for BUF SAV, BUF RES

- wild card character:

DIR *.SEQ	list directory of all .SEQ files
DEL OPTSEQNC.SEQ(*)	delete all versions of OPTSEQNC.SEQ

- use of - (dash):

DEL *.LEN(-) delete all but the highest version of all LEN files - equivalent to PURGE

- external filespecs:

IN '[MIKE.CMGOBJ01]DBGAUSS.SEQ;6'	(VAX)
IN '/home/mike/cmgobjo1/dbgauss.seq.6'	(Sun)
IN 'IMIKE\CMGOBJ01\DBGAUSS.SE6'	(PC)

Continued...

SYNTAX/ENTRY RULES

Note: The major differences between the CODE V filespec and VMS are:

- parentheses () are used as a separator for the version, instead of semi-colon (;)
- the wild card, *, applies to the whole name only rather than the whole or partial names of VMS
- the dash (-) is not an element in VMS

CODE V Glass Names

Glass names - see page 2A-23 for details

Definitions: glass_name	= predefined_glass or nnmnnn or xxx.yyy or 'glass_label'
where: predefined_glass	is a 1 to 13 character alphanumeric code from one of the manufacturer's catalogs. If the catalog is to be designated, it is appended using an underscore, e.g. BK7_SCHOTT
	$=$ AIR (or blank) (Index $=1.0$ at all wavelengths)
nnnnnn	$=a \operatorname{six}$ digit glass code (e.g. 517642) corresponding to one of the glass catalog glasses - alternate to designating by the predefined_glass name
xxx.yyy	$=a \text { fictitious code. } \cdot x x x=n_{d}-1, . y y y=V_{d} / 10$
'glass_label'(8)	= a user-defined or gradient index material entered via Private Catalog

Note: For convenience, 'predefined_glass' can also be two of the reflective/refractive modes:
REFL - Reflecting surface - all rays are reflected, like a metallic mirror

TIRO

- Total internal reflection only - rays that meet TIR conditions are reflected (others are ray failures), like a glass prism face

In the lens data, for either of these types of reflecting surfaces, material following the surface is identical to that preceding it. All thicknesses following the REFLTIRO surface must also be reversed to track the direction of light. See RMD command for changing modes.

Chapter 2 Lens Data

Abstract

This chapter describes the Lens Data Manager (The LDM) which provides for entry, display, testing, correction and storing of the lens database, with fast response and immediate checking of entries, in preparing the data for use by the options described in Chapters 3 through 9.

TABLE OF CONTENTS

The LDM - Introduction 2-3Describes the role of the LDM as a database manager and lens editor; definescoordinate systems and sign conventions; discusses the interrelationship in CODE Vof vignetting, reference rays and apertures.
The LDM - Entering/Changing Data
Allows entry or change of any lens data items:$2 A-1$

- Restart for new lens
- Entry of surface data in shorthand form
- Adding/deleting/copying surfaces
- Entering/changing of any individual data item:Title
Lens specifications
Material properties
Surface data, including solves and tilts/decenters
Clear apertures, obscurations, edge shapes and first-surface mirror substrates
Coating/cement
Tolerances- Zooming/dezooming of any individual data items to form multi-configuration systems- Setting up variables for AUTOMATIC DESIGN
The LDM - Entering/Changing Data - SPECIAL TOPICS 2A-201
Allows entry/change for special surfaces, array elements, non-sequential surfaces,GRIN materials, polarization, apodization, interferometric deformations, and NASTRAN-generated deformations
The LDM - Operations on Lens Data 2B-1
Allows direct generation or change of selected parts of the lens data:
- End-for-end flip (about X or Y axis) of all or a part of the system
- Generate circular surface apertures based on current lens aperture specificationand vignetting
- Generate lens aperture specification based on current surface apertures
- Generate vignetting based on current lens aperture specification and surface apertures
- Scale all or part of the lens system according to various criteria
The LDM - Displaying Data 2C-1
Allows text and graphical display of lens data:
- Queries of individual LDM database items
- Listing of all or selected parts of the LDM database
- Quick lens drawing
The LDM - Quick Analyses 2D-1
Allows quick analysis of lens data
- Evaluation of any Macro-PLUS expression
- Listing of first order system parameters
First-order ray tracing
- Third-order surface-by-surface contributions and sums
- Tracing of single rays in designated wavelengths, with user-defined formatting
The LDM - Saving/Restoring Data $2 \mathrm{E}-1$
Allows:
- Saving of current lens
- Restoring of previously saved lens
- Conditional saving of an improved lens
- Conversion of lens data to equivalent LDM commands

LENS DATA

CHAPTER 2 - THE LDM - INTRODUCTION

THE CODE V LENS DATA MANAGER (LDM) 2-3

- The Lens Database
CODE V is Built Around a Primary Lens DatabaseAdditional Databases Are Also Used by CODE V
- The LDM as a "Data Editor"
The LDM Is Used to Create, Modify, and Display Lens Data
Some CODE V Options Also Modify the Lens Database
The LDM Has Two "Edit Modes"
- The LDM as "Home Base"
- Lens Data Post-processing
- Sources of Lens Data
Creating a New Lens Interactively
Restoring a Previously Saved Lens
Reading Lens Data from a Sequence File
Using Standard Library Lenses
Using Standard Library Lens Components
OPTICAL DATA DEFINITIONS 2-6
- What Constitutes "a Lens" in CODE V?
CODE V Minimizes Required DataMinimum Requirements for a Ray Traceable LensAdditional Data that Is Nearly Always SpecifiedAdditional Data that Is Specialized or Optional
CATEGORIES OF DATA DESCRIBING AN OPTICAL SYSTEM 2-7
- The Task
What Do We Mean by "the Task?"
Specifications (What the Lens Is to Do)
Wavelengths (Required)
Aperture (Required)
Field or Format Definition
The Aperture Stop Surface
Depth of Focus for Analysis
Vignetting Factors
Afocal Systems
- The Lens System
Surfaces
Dummy Surfaces
Elements
Operations on Surfaces
Materials
Surface Shape \& Position
Special Surfaces
Non-Sequential Surfaces (NSS)
- Building the Lens System
Apertures and Edges Apertures and EdgesTolerances
- Other Lens Information
COORDINATES. 2-13- Local Coordinate Systems
- Global Coordinates
- CODE V Output Coordinates- Coordinate Systems and Interferometry
SIGN CONVENTIONS 2-15- Thickness Sign Convention
- Curvature Sign Convention (CUY, CUX)
- Signs of First-order Quantities
- Ray Trace Sign Conventions- Other Sign Conventions
REFERENCE RAYS, VIGNETTING, AND APERTURES 2-17
- Basic Definitions for CODE V
Vignetting
Reference Rays
Apertures
Default Apertures
Relationships Between Reference Rays, Vignetting Factors, \& Apertures
2-2

CHAPTER 2 - THE LDM - INTRODUCTION

THE CODE V LENS DATA MANAGER (LDM)

The Lens Database

CODE V is Built Around a Primary Lens Database

The lens database is retained in CODE V's "active memory" and includes all the optically relevant information describing the one optical system you are currently working on. For a large or complex lens, the lens database can contain hundreds of pieces of data to describe features as diverse as surface curvatures, multilayer coatings, field angles, interferogram data, and fabrication tolerances. Note that in general, instructions on how the lens should be analyzed or optimized are not considered to be part of the description of the lens itself and will not be included in the lens database.

Additional Databases Are Also Used by CODE V

In addition to information entered by you to define an optical system, CODE V may need additional data to complete its definition. Glass data is the most common example of this. When you request an optical material by name (BK7, SILICA, etc), CODE V uses its extensive databases of optical materials to get detailed information on index of refraction and other optical properties. See Chapter 2A, "THE LENS SYSTEM - Materials" for details on using optical materials and Chapter 10, "GLD - Glass Catalog Data" for additional information on the glass databases.

The LDM as a "Data Editor"

The LDM Is Used to Create, Modify, and Display Lens Data

If you think of your lens data as a database, you can see the need for a database management program to create, modify, or display this data. This is the function of CODE V's Lens Data Manager (or LDM for short). The LDM is an interactive program that lets you quickly create lens data, modify it, delete it, display it in various ways, and save it in files. As an aid in setting up lens systems, the LDM can also make simple lens drawings and perform basic analysis (single rays, third order aberration, etc.). Another way to think of this is as a specialized lens "data editor," different from a general purpose text editor in that it "understands" the structure of the lens data. This entire chapter is devoted to the LDM and to the details of creating, modifying, and displaying all of the many types of data that CODE V can handle.

Some CODE V Options Also Modify the Lens Database

Although most changes to the lens database are made by the LDM, a few of CODE V's special-purpose options can also make changes. When you optimize a lens with the AUT option (Chapter 3), AUT changes the lens database as it alters variables to improve the image quality of the lens. ENV (environmental analysis, Chapter 8) changes the lens database to simulate the effects of temperature and pressure changes. Tolerancing options (TOR, TOD, TOL - Chapter 6) calculate fabrication tolerances and add these to the lens database (you can also enter or modify tolerances directly in the LDM). The other options of CODE V generally perform calculations based on the lens database but do not modify the lens data.

LENS DATA

The LDM Has Two "Edit Modes"

Like all of CODE V, the LDM can operate in two basic "modes," command mode and screen/menu mode (CODE V with EASE). In command mode, the prompt "CODE V>" indicates that the LDM is ready to accept commands to modify or display parts of the lens database (e.g., the command THI s6 5.3 will change the thickness following surface 6 to 5.3 , while the command SUR s1..5 will display surface related data for surfaces 1 to 5). This chapter has details of all the LDM commands and many examples of their use. For an extended example of using the LDM in this mode, see Chapter 1B, "A USER'S SESSION."

In screen/menu mode, tables showing the various parts of lens data are displayed on screen, and you can modify lens data by simply typing new values in the appropriate tables. This "full screen" mode makes it possible to change data and see the effects of changes without the use of commands. Extensive examples of LDM use in screens mode can be found in the CODE V Test Drive and CODE V Introductory User's Guide manuals.

The LDM as "Home Base"

In addition to its role as a data editor or database manager, the LDM also serves as the top level or "home base" for running CODE V. As shown in the diagram below, CODE V has two basic levels, the LDM and the Options. When you enter CODE V, you start out in the LDM, and from here you can create a lens, restore one from a file, modify it, etc. After a lens is defined, you can run any of the Options, launching the option from the LDM (by typing the name of the option in command mode, or by choosing the option from a menu in screens).

Note: This is just a "typical set" of options selected from the 42 total options.

Each option has its own set of commands and screen operations. Once you have entered an option, only commands or screen operations defined by that option will be valid - LDM operations are not allowed. After entering commands or screen operations for an option, you can either execute the option (i.e., tell it to perform the requested calculations) or cancel it. To execute the option, you type the command GO (or GOLD/G in screens). To cancel the option, type CAN (GOLD/M or GOLD/L in screens). In either case, the option is completed and control is returned to the LDM.

For details on these and other issues for operating CODE V , please see Chapter 1A, "Operating CODE V" and Chapter 1D, "Using Screens."

Lens Data Post-processing

Lens data post-processing refers to additional checks and calculations that are done by the LDM after you enter or change data. Such steps are needed to insure that lens data is complete and valid before extensive calculations are attempted. Some post-processing is done whenever any change is made, while other, more extensive post-processing is done on an as-needed basis. Examples of simple post-processing include calculating first order solves and retrieving index of refraction data from a glass catalog. More extensive post-processing is done before entering an option. This includes tracing reference rays and calculating values for default apertures.

Sources of Lens Data

There are several potential sources of lens data. Although you can have any number of lenses stored in disk files for rapid retrieval by CODE V, the lens database (CODE V's "memory") can hold hold data for only one lens at a time. Creating or restoring a new lens will destroy any data in memory (i.e., a previous lens), so be sure to save this data to a file if it has value. There is a partial exception to this "one lens" rule in the form of the LDM COPY command that allows you to extract part or all of a lens stored in a file and insert that data in the current lens database (see Chapter 2A, "THE LENS SYSTEM - Surface Shape and Position - Inserting/Deleting/Copying Surfaces").

Creating a New Lens Interactively

You can interactively create a new lens at any time in a CODE V session. The LEN command initializes the lens database to prepare for new lens entry, removing any previous lens database from active memory (in screens, choose RESTART from the GOLD/1 menu).

Restoring a Previously Saved Lens

Lenses that have been saved in .LEN files can be restored at any time. This includes lenses in your own local directory, lenses in other directories or subdirectories (provided you have privileges needed to access these directories), and CODE V standard lenses. Restoring a lens immediately updates the CODE V lens database, replacing any lens previously in memory. Lens files (filename.LEN) are binary files that are specific to your operating system (VMS or Sun/Unix). Because they are binary files, .LEN files can be read into CODE V very quickly. They cannot, however, be edited with a text editor, nor can they easily be transferred to other types of computers. For information on saving and restoring lens data, see Chapter 2E, "THE LDM SAVING AND RESTORING LENS DATA."

Reading Lens Data from a Sequence File

You can define a lens by reading LDM commands from a sequence or macro (.SEQ) file. You can create such a file directly by using a text editor, by transferring it from another computer (e.g., with a terminal emulator), or with the CODE V WRL (write lens) command. Because a .SEQ file is a standard text file, it is also very easy to transfer lens data in this form to other computers. Sequence files are read into CODE V with the immediate command IN (this command works only in command mode). See Chapter 10, "Defaults and Utilities," for information on IN and other immediate commands.

Using Standard Library Lenses

ORA supplies a starting library of various lens types to use as examples and starting points. Their use is discussed in Chapter 1, Appendix 1A-E, "Lenses Supplied with CODE V."

Using Standard Library Lens Components

ORA also supplies lens prescriptions for a large number of standard lens components (singlets, doublets, and others) from several suppliers of optical parts. These can be used on a standalone basis, or more often as "building blocks" to construct more complex lens systems. Their use is discussed in Chapter 1, Appendix 1A-E, "Lenses Supplied with CODE V."

LENS DATA

OPTICAL DATA DEFINITIONS

What Constitutes "a Lens" in CODE V?

CODE V Minimizes Required Data
CODE V is designed to minimize the amount of data required to define a lens. CODE V provides default values for most user omitted data items (some specialized data is simply optional and requires no default value). In the early stages of a design, a simple lens model may suffice, for which many CODE V defaults may be quite adequate (e.g., detailed aperture and edge information can always be entered, but default circular apertures are often accurate enough for early design and analysis). Tolerances, coatings, and polarization specifications are other examples of data that can be omitted until needed for detailed analysis or fabrication support.

In later stages of design, CODE V provides great flexibility in defining detailed and specialized features. By providing such additional details, you can refine the lens model into a closer simulation of the behavior and physical properties of the real lens that may be built from the design data. This allows you to make better predictions of diffraction performance, packaging limitations, lens periormance in production, etc.

Minimum Requirements for a Ray Traceable Lens

The following requirements must be met if CODE V is to consider a lens to be complete and ray traceable:

- Minimum of one wavelength defined
- System aperture defined (entrance pupil diameter, $\mathrm{f} /$ number, or numerical aperture)
- Minimum of one surface defined (in addition to the pre-defined object and image surfaces)

Additional Data that Is Nearly Always Specified

Although not required to establish a minimally acceptable lens, practical applications almost always require additional lens data.

- Field or format definition (up to 25 field points)
- Multiple wavelengths and spectral weights (unless system is monochromatic)
- The aperture stop surface (placed at surface 1 by default)
- Vignetting information for each field (user-defined or calculated by SET command)
- Apertures on one or more critical surfaces

Additional Data that is Specialized or Optional

When specialized features of CODE V are used, additional requirements may apply. For example, use of holographic optical elements (HOE surface) requires definition of construction wavelength and geometry information for each HOE surface. Such requirements are defined in detail in this chapter for each special feature.

CATEGORIES OF DATA DESCRIBING AN OPTICAL SYSTEM

The Task

What Do We Mean by "the Task?"
"The task" is that part of the optical system description that specifies how the lens must operate, including its spectral range, aperture size, and field coverage. Such parameters are specified as requirements and are generally not changed by CODE V except by specific user request. Whenever you start to define a new lens, you must specify these task parameters before CODE V can perform any meaningful analysis of the lens.

Specifications (What the Lens is to Do)

The most fundamental specifications of any lens are its spectral range (wavelengths) and its system aperture (f/number, entrance pupil diameter, or numerical aperture). These must always be provided by the user - there are no defaults provided. Other specifications are optional, though some are virtually always supplied by the user. Specific commands for various specification data items are described in detail in Chapter 2A under "THE TASK - Specification Data." You may find the following background information useful in interpreting several of the more common specification data commands.

Wavelengths (Required)

You may specify up to 7 discrete wavelengths at which the optical system will be analyzed and optimized, although 3 wavelengths will be sufficient for many tasks, and monochromatic systems naturally require only one. Because these discrete wavelengths are used in most options to simulate a continuous polychromatic distribution, spectral weights can be very important. The CODE V SPE option (Spectral Analysis - Chapter 9) is a very useful tool in determining suitable wavelengths and weights when the spectral responses of source, filter, and detector are known (or can be estimated). The following figure is based on data from the SPE option and shows source and detector spectral curves, the combined spectral curve, three discrete wavelengths chosen by the user (WL 640560 480), and the spectral weights calculated by SPE to best fit the combined curve for these wavelengths (WTW 3390 14).

LENS DATA

You must also specify which wavelength the program is to use for such monochromatic calculations as first order ray tracing (including derived quantities such as focal length), Seidel aberrations, and reference ray tracing. This is called the reference wavelength (the reference wavelength of 560 nm is highlighted in the above figure).

Aperture (Required)

"Aperture" in this context refers to the paraxial system aperture, not to apertures on individual surfaces. Whether specified as $\mathrm{f} /$ number (FNO), entrance pupil diameter (EPD), or numerical aperture (NAO on object side, NA on image side), system aperture determines the unvignetted size of the light bundles from each field point. For complete definitions and recommendations, see Chapter 2A, "THE TASK - Specification Data - Aperture Specification." System aperture must be considered along with vignetting factors and surface apertures to understand the nature of light bundles that are used in various parts of CODE V. These relationships are discussed later in this introduction.

Field or Format Definition

Although CODE V works only with individual point objects (not extended objects), you can define multiple field or object points as part of your lens data. Analysis options will provide output for each defined field; optimization is carried out simultaneously over all fields. Fields can be defined in three ways (the figure shows Y components only - X components are similarly defined). For usage recommendations, definitions, and command details, see Chapter 2A, "THE TASK Specification Data - Field Specification."

The Aperture Stop Surface

The aperture stop surface is the surface whose aperture limits the axial bundle of light. By definition, chief rays from all fields go through the center of the aperture stop surface. The aperture stop can be placed on any surface, real or dummy, other than object or image. If you do not specify otherwise, CODE V assumes surface 1 to be the aperture stop. Aperture stop positioning varies depending on your application and can have major effects on aberrations and element sizes. CODE V cannot automatically determine the optimum surface on which to place the stop.

Depth of Focus for Analysis

Some optical systems have performance specifications over a designated range of focus. As shown in the following example figure, CODE V provides commands for defining an initial focus position (FFO), step size (IFO), and up to 18 steps in the desired range (NFO).

When it is defined, through-focus data is used by most image evaluation options (GLS, LSF, MTF, PAR, PMA, PSF, QUA, RAD, SPO, and WAV). Note that the computation time and volume of output from these options can increase substantially when depth of focus is specified. Refer to Chapter 2A, "THE TASK - Specification Data - Depth of Focus" for details on these commands. AUT (automatic design) has separate commands for through focus optimization (see Chapter 3).

Vignetting Factors

Vignetting factors are used when you want to specify a specific degree of vignetting. Vignetting factors must be considered along with system aperture and surface apertures to understand the nature of light bundles that are used in various parts of CODE V. These relationships are discussed later in this introduction.

Afocal Systems

Afocal systems have exiting beams that are nominally collimated (parallel), i.e., they do not form an image at a finite distance. CODE V handles such system through the mechanism of an "afocal perfect lens" that is defined by the user for the purpose of bringing the nominally collimated beams to a focus without introducing additional aberration. See Chapter 2A, "THE TASK - Specification Data - Miscellaneous" for details on the AFI and AFO commands that are used to define the afocal perfect lens.

The Lens System

Surfaces

The surface is the basic organizing unit in a CODE V lens description. A CODE V lens is made up of an object surface (where rays originate), an image surface (where rays terminate), and one or more user defined surfaces, one of which is the aperture stop surface. Each surface represents a location of interest in the optical system, and various optically relevant data can be attached to this location, allowing it to represent (for example) an air/glass interface with a particular shape (curvature) and extent (aperture) in space. When rays are traced, they normally proceed from one surface to the next in sequential fashion, following the order in which the surfaces have been defined (non-sequential surfaces are a useful exception to this norm). CODE V allows you to define a large number of surfaces in a lens model (currently 250).

This chapter contains complete information on surface modeling. See in particular Chapter 2A, "THE LENS SYSTEM - Surface Shape \& Position" for a detailed overview.

LENS DATA

Dummy Surfaces

Dummy surfaces are those with the same material on both sides (air/air or glass/glass). Such a surface has no refractive effect and can thus be placed anywhere in an optical system setup. Dummy surfaces can represent mechanical stops, apertures, obscurations, mounts, baffles, etc.in such cases, user-defined apertures are placed on dummy surfaces to enable them to block rays in image evaluation options. Dummies with default apertures will NOT block rays in image evaluation options.

It is always possible to ray trace to a dummy surface and determine ray coordinates there, regardless of its location - virtual ray tracing (essentially geometric extension of ray segments) is used when necessary to accomplish this (virtual ray tracing is not allowed in non-sequential surface ranges). Note, however, that such virtual ray segments extending to dummy surfaces are not generally shown on lens drawings.

Elements

Although we often talk about optical elements, CODE V does not explicitly define elements or other groups of surfaces in its lens database. Options that make use of elements and groups of surfaces may break surface data down into elements for reporting purposes. Elements and groups are most important in tolerancing, where the mounting structure of the lens must be approximated, and the LDM provides commands to define element and group tolerances in addition to surface tolerances (see "BUILDING THE LENS SYSTEM - Tolerances" in Chapter 2A, and also Chapter 6, "TOLERANCING," for detailed information).

Operations on Surfaces

Surfaces can be inserted, deleted, and copied (both within the current lens and from other lenses stored in files). In all such operations, the affected surfaces are automatically renumbered and all associated data is updated to reflect this. The data associated with a surface (curvature, apertures, aspheric data, solves, etc.) can be queried, modified, or deleted (in most cases). Many operations can be performed on a specified range of surfaces, such as flipping a group of surfaces front to back, displaying the focal length of a specified group, or scaling a group of surfaces in various ways. These operations are discussed in Chapters 2B, 2C, and 2D.

Materials

Glass and air are the two most common optical materials, although other materials are often used as well (water, plastics, crystals, etc). The associated material for each surface is the one following the surface. Although index of refraction is the most important material property for optical systems, some options of CODE V can make use of other data as well (transmission, specific gravity, price, etc). The LDM allows you to define optical materials in several ways, described early in Chapter 2A (see "THE LENS SYSTEM - Materials"). Gradient index (GRIN) materials are described in the second half of Chapter 2A, "ENTERING/CHANGING DATA SPECIAL TOPICS."

Surface Shape \& Position

Surface shape refers to the refracting profile of the surface (flat, spherical, cylinder, aspheric, etc.). There are various ways to specify curvature, including solves. Position refers to the location and orientation of a surface with respect to other surfaces. This includes thickness/separation as well as thickness solves and various forms of tilts and decenters (including both local and global coordinate systems). These issues are all described in Chapter 2A, "THE LENS SYSTEM - Surface Shape \& Position."

Special Surfaces

In addition to the basic parameters of surface shape, CODE V supports a wide range of special surface types. These extend beyond common aspheric surfaces to include holographic elements and even interferometric data. These are described in the second half of Chapter 2A, "ENTERING/CHANGING DATA - SPECIAL TOPICS."

Non-Sequential Surfaces (NSS)

Some optical systems cannot be represented by a set of surfaces that are ray traced in invariant, sequential order. Corner cubes and certain other prisms are one class of such systems, while segmented windows and optical fibers are others. Many such systems can be modeled with CODE V's non-sequential surface (NSS) feature. Some of the rules for setting up and ray tracing must be modified for NSS systems. A complete section on this special subject is included in the second half of Chapter 2A, "ENTERING/CHANGING DATA - SPECIAL TOPICS."

Building the Lens System

Apertures and Edges

Apertures define the used or optically relevant portions of a surface. Although the general term "aperture" can be used to refer to apertures of all types, it usually refers to the outer extent of this portion (the term "clear aperture" is also used). Obscurations (optional) define the inner extent of the used portion. Edges refer to the physical extent of the surface rather than its optical extent. As shown in the figure below, rays are blocked if they fall outside of the aperture or inside the obscuration (shaded areas). Surfaces can have multiple apertures, edges, and obscurations when necessary. Circular, elliptical, and rectangular shapes are supported. Additional comments relating to apertures are included later in this introduction (see "Reference Rays, Vignetting, and Apertures"). For complete details, see Chapter 2A, "BUILDING THE LENS SYSTEM - Element Structural Data Apertures/Obscurations/Edges/Holes."

Non-sequential surfaces (NSS) are used to model optical systems with unusual geometries or other special properties. In NSS systems, edges are much more important than for normal systems, and a special aperture type (hole) is defined which applies only to NSS systems. Please see the second half of Chapter 2A, "ENTERING/CHANGING DATA - SPECIAL TOPICS."

LENS DATA

Mirror Substrates, Cements, Coatings

Some types of information are applicable only in a subset of options. First surface mirror substrate information (backing material and shape) does not affect raytracing but can be important for lens drawing, thermal modeling (ENV option), and for weight and cost calculations. Cements (between cemented components) and coatings (single layer or multilayer) can be important in calculating transmission and whenever polarization is considered in diffraction based options. These specialized lens data items are described in Chapter 2A, "BUILDING THE LENS SYSTEM Element Structural Data."

Tolerances

When optical elements are fabricated, their design parameters must be held within certain limits if the lens system is to perform as intended. These limits are called tolerances, and they are defined for most of the parameters that define a lens in CODE V (thickness, decentration, index of refraction, etc). Although tolerances are calculated and used primarily within the tolerancing options (see Chapter 6), they are considered to be part of the lens database and can be defined, viewed and modified within the LDM. These capabilities are covered in Chapter 2A, "BUILDING THE LENS SYSTEM - Tolerances."

Other Lens Information

Certain special purpose data is considered to be part of lens data by CODE V. Additional information must be added to the lens database to simulate zoom or multiconfiguration lenses (scanners, attachments, etc). Special considerations and commands apply to such systems. Before optimization can be done (AUT option, Chapter 3), free variables and any coupled groups of variables must be defined. This task is done in the LDM and the control codes are stored as part of the lens database. Zoom features and control codes are discussed in Chapter 2A under "ENTERING/CHANGING DATA - Other." This section also contains a combined list of commands to delete various attributes of the lens database (gathered for reference from various sections of Chapter 2).

COORDINATES

Local Coordinate Systems

CODE V uses right-handed coordinates. In a centered optical system, the nominal optical axis is the z-axis. As you look from object space toward image space (+z direction)

- The +y axis is "up"
- The $+x$ axis is toward the left.

Each surface in a CODE V lens has its own local, right-handed coordinate system. In a centered, sequential system, these local coordinate systems are related by a simple translation along the \mathbf{z}-axis (THI, or thickness to next surface - see figure).

In a decentered system, coordinate breaks are used to model tilts and/or decenters. See Chapter 2A, "THE LENS SYSTEM - TILTS/DECENTERS" for a detailed discussion of the many issues involved in describing non-centered systems.

Global Coordinates

When data for one surface is defined or viewed in the coordinate system of another surface (rather than in the surface's own local coordinate system), we refer to these as global coordinates. Global coordinates are particularly useful when setting up, analyzing, and optimizing tilted and decentered systems, and they are discussed in this context in Chapter 2A under "THE LENS SYSTEM - Tilts/Decenters." One of the requirements for setting up non-sequential surfaces is that they be positioned with global coordinates. NSS systems are explained in the second half of Chapter 2A, "SPECIAL TOPICS - Non-Sequential Surfaces."

CODE V Output Coordinates

When you look at output from CODE V, you need to understand the coordinate system in which the data is expressed and how this relates to the lens model you are using. Some output represents data on the image surface (spot diagram, PSF). The FOO (footprint) option displays ray distributions on any specified surface. Other options represent wavefront or other data in the

LENS DATA

exit pupil (PMA). Most of these options display the data as seen from the image surface, looking in the -Z direction. The figure below demonstrates this for a footprint on the image surface (essentially a spot diagram showing both fields that are defined for this lens).

The two exceptions to this interpretation of CODE V output are the CAT (catseye diagram) and FOV (field of view) options. These portray the data from object space, looking in the $+Z$ direction (see Chapter 4).

Coordinate Systems and Interferometry

CODE V can import interferometric data (interferograms) from various sources, attach the data to specified surfaces, and calculate the effect of these perturbations on ray trace and wavefront data. Although the interferogram interface is quite easy to use, coordinate systems are often a problem. This is because the conventions of interferometry differ somewhat from those of lens design. Coordinates and sign conventions are explained completely in the second half of Chapter 2A, "SPECIAL TOPICS - Interferometric Deformations and Intensity Apodization."

SIGN CONVENTIONS

Thickness Sign Convention

Thickness is the distance along the Z-axis from the current surface vertex to the next surface vertex. If the next surface lies to the RIGHT of the current surface ($+Z$), thickness is POSITIVE. If the next surface lies to the LEFT of the current surface (-Z), thickness is NEGATIVE. Note that when modeling reflecting systems, the you must alternate the signs of thicknesses after each reflection:

- Thickness is POSITIVE after an EVEN number of reflections (including none)
- Thickness is NEGATIVE after an ODD number of reflections.

Curvature Sign Convention (CUY, CUX)

Curvature (CUX, CUY) is the reciprocal of radius of curvature (RDX, RDY), and the same sign conventions apply for both (note that curvature is the primary definition of surface shape for CODE V). A curvature of zero indicates a plane surface (for convenience, a zero value entered for radius of curvature is also interpreted as plano). The sign convention for curvature is as follows:

- POSITIVE if $\quad Z$ (Center of Curvature) $>\boldsymbol{Z}$ (Surface Vertex)
- NEGATIVE if $\quad Z$ (Center of Curvature) < Z(Surface Vertex).

This is demonstrated in the following diagram, where c represents the center of curvature and v indicates the surface vertex.

Signs of First Order Quantities

The first order or paraxial ray trace quantities are ray heights (measured on the surface tangent plane), ray slopes (tangent of the ray angle), and paraxial angle of incidence. These quantities are used to calculate effective focal length (EFL) and other paraxial constants. Data is calculated for two paraxial rays, the marginal ray (sometimes called axial ray or a-ray - passes from center of object through edge of paraxial entrance pupil) and the chief ray (sometimes called the principal ray or b-ray - passes from edge of object surface through center of paraxial entrance pupil). In the figure below, y and u^{\prime} are POSITIVE. Commands used to display first order properties are discussed in Chapter 2D, "THE LDM - QUICK ANALYSIS."

LENS DATA

Ray Trace Sign Conventions

Ray trace sign conventions are important in interpreting the output from single ray tracing (RSI, SIN) and in using reference ray data, either in Macro-PLUS expressions or as constraints in optimization. By default, ray information is expressed in the local coordinates of each surface, following the definitions discussed above ("Local Coordinate Systems"). Ray data can also be displayed and used in global coordinates, relative to the coordinate system of any specified surface. The following figure illustrates the sign conventions for ray coordinates, ray angles, and direction cosines.

The sign convention for optical path difference (OPD) is that a leading wavefront produces a positive OPD. The small deviation in the wavefront below illustrates a positive OPD.

Other Sign Conventions

There are a number of other parameters in CODE V for which sign conventions apply. Vignetting is discussed later in this introduction. Signs for tilts and decenters are defined in a special section (Chapter 2A, "THE LENS SYSTEM - Tilts/Decenters"). When dealing with interferometric data, signs are very important and potentially complex. See Chapter 2A, "SPECIAL TOPICS - Interferometric Deformations and Intensity Apodization."

REFERENCE RAYS, VIGNETTING, AND APERTURES

Basic Definitions for CODE V

Vignetting

Vignetting refers to the clipping of portions of a ray bundle by apertures on surfaces other than the aperture stop surface. Vignetting is considered to be positive if the ray bundle is reduced in size, negative if the bundle expands ("pupil expansion"). For a more complete discussion of vignetting, refer to "THE TASK - Specification Data - Vignetting" (Chapter 2A) and "THE LDM - OPERATIONS ON LENS DATA" (Chapter 2B).

Reference Rays

Reference rays are a special set of real rays that CODE V traces and maintains automatically whenever the lens is changed. CODE V maintains a set of reference rays for every user-defined field point and for every zoom position, and for some calculations, these rays are used to represent the entire bundle of rays from a particular field point. CODE V uses the reference ray coordinates at each surface to determine default apertures (i.e., apertures the program assumes to apply at each surface in the absence of user-defined apertures). Reference ray information is also used to calculate edge thicknesses and for ray based constraints in optimization. Note that the tracing of reference rays is NOT affected by apertures. This means that reference rays cannot be blocked (although they can fail in several ways, such as missing a surface or encountering total internal reflection [TIR]).

For a general field point (asymmetric, i.e., containing both X and Y components), five reference rays are defined (see figure). For symmetric field points, CODE V saves time by not tracing equivalent rays from the same field point (it still "knows" the coordinates of these rays, however). The chief ray (R1) is considered to be most representative ray of the ray bundle from a particular field point, while the marginal rays (R2-R5) define the "envelope" of the bundle.

LENS DATA

As shown in the figure below, reference rays are based on pupil definition and vignetting factors. The relationships between reference rays, vignetting factors, and apertures are explained in the following section.

Apertures

Apertures define the optically relevant extent of each optical surface. In image evaluation options (such as MTF), apertures directly limit the bundles of light used in the calculation. Apertures in CODE V can be circular, elliptical, or rectangular. More complex shapes can be constructed with combinations of these basic forms, including decentered or rotated apertures and central obscurations. Apertures and their applications are discussed in detail in Chapter 2A (see "BUILDING THE LENS SYSTEM - Element Structure Apertures/Obscurations/Edges/ Holes").

Default Apertures

Every surface has at least one aperture. For any surface without a user-defined aperture, CODE V defines a default aperture. A default aperture is always a centered, circular aperture whose size is determined from the reference rays. When one or more user-defined apertures are placed on a surface, these are used instead of the default aperture. The CA command allows you to control which apertures are used by CODE V:

- Use user-defined apertures where entered, otherwise Defaults (CA YES)
- Use only default apertures (CA NO)
- Use only user-defined apertures, ignoring defaults (CA APE YES).

See Chapter 2A, "BUILDING THE LENS SYSTEM - Element Structure - Apertures/Obscurations/ Edges/Holes" for more information on the CA command.

Relationships Between Reference Rays, Vignetting Factors, \& Apertures

The relationships between reference rays, vignetting factors, and apertures are very important. Vignetting factors and system aperture (EPD, FNO, NAO, or NA) are used in some diagnostic analysis options and in AUT (optimization) to determine the extents of rays bundles from each defined field point. Surface apertures are ignored by these options. Image evaluation options such as MTF and SPO trace grids of rays to determine the size and shape of each field bundle more precisely. Every such ray is checked against apertures at every surface to determine whether it is passed or not. Vignetting factors are not directly used by these options.

By using these two approaches to ray bundle modeling, CODE V can achieve speed and accuracy while giving the user great flexibility in defining a lens model. There is a risk of inconsistency in this dual approach, however, since the user is free to specify surface apertures and vignetting factors independently. It is possible to specify completely inconsistent ray bundles for the same lens.

To help with this problem, CODE V includes a special command (SET) that can be used in several forms to assure that system aperture, vignetting factors, and surface apertures are all internally consistent. This is very easy to do, but does require your attention - the SET command is not used automatically. You must remember to use it whenever the lens is changed in a way that can affect ray apertures or vignetting. The SET command and its application to apertures and vignetting are discussed in detail in Chapter 2B, "THE LDM - OPERATIONS ON LENS DATA."

LENS DATA

THE LDM - ENTERING/CHANGING DATA - SPECIAL TOPICS
 TABLE OF CONTENTS

SPECIAL SURFACES 2A-205
Introduction 2A-207
CON/ASP - Conic/Asphere 2A-208
XTO - X-Toroid of Base Asphere 2A-210.2
YTO - Y-Toroid of Base Asphere 2A-211
THG - Thermal Gradient on Base Asphere 2A-212
SPL - Radial Spline Asphere 2A-214
AAS - Anamorphic Asphere 2A-218
GRT - Diffractive Surfaces - Diffraction Grating on Base Asphere 2A-220
HOE - Diffractive Surfaces - Holographic Surface 2A-222
MOD - Lens Module ("Black Box" Lens) 2A-230
UDS - User-defined Surface 2A-238
ARRAY ELEMENT 2A-241
Usage 2A-244
Regular Grid, Parallel Array 2A-248
Individual General Channels 2A-250
Polynomial Decenter and Tilt Channels 2A-251
NON-SEQUENTIAL SURFACES 2A-253
Introduction - When to Use Non-Sequential Surfaces 2A-255
Implementation of NS Ray Tracing 2A-256
Cautions 2A-258
High Level Modules 2A-260
Constructing Non-Sequential Surface Ranges - NS Primitives 2A-262
Getting Started with Non-Sequential Ray Tracing 2A-268
References 2A-281
GRADIENT INDEX MATERIALS (GRIN) 2A-285
Definitions \& Examples 2A-287
General Commands 2A-290
Forms. 2A-292
PUPIL APODIZATION 2A-301
General Apodization 2A-303
Gaussian Apodization 2A-303
POLARIZATION 2A-307
Introduction/Polarization Ray Tracing 2A-309
Defining the Input Polarization 2A-310
Its Effect on Imagery/Modeling Effects that Alter the Polarization State of a Beam 2A-313
Use of Polarization Ray Trace Information by CODE V 2A-315
Activating Polarization Ray Tracing/Geometrical Representation 2A-317
Jones Vector Representation 2A-318
Stokes Parameters/Specifying Linear Polarizers and Retarders 2A-319
Examples of Output 2A-321
INTERFEROMETRIC DEFORMATIONS AND INTENSITY APODIZATION 2A-325
Introduction 2A-327
Interferograms 2A-328
Intensity Apodization 2A-330
INT Files 2A-331
Coordinate Systems and Sign Conventions 2A-332
Zernike Polynomials 2A-334
INT File Format 2A-336
Interface to Commercial Interferometers 2A-339
Sample Output 2A-341
Technical Notes 2A-344
Attaching INT Data to the Surface 2A-346
Orientation of INT Data 2A-348
NASTRAN-GENERATED DEFORMATIONS 2A-351
Introduction/Running MSC/NASTRAN/Running CVNAS 2A-353
Output/Units/Dynamic Analyses 2A-354
Examples. 2A-355
Sample Files 2A-356
LDM INDEX 2A-359

SPECIAL TOPICSEXTENDED TABLE OF CONTENTS
SPECIAL SURFACES 2A-205
Introduction 2A-207
CON/ASP - Conic/Asphere 2A-208
XTO - X-Toroid of Base Asphere 2A-210.2
YTO - Y-Toroid of Base Asphere 2A-211
THG - Thermal Gradient on Base Asphere 2A-212
SPL - Radial Spline Asphere 2A-214
AAS - Anamorphic Asphere 2A-218
GRT - Diffractive Surfaces - Diffraction Grating on Base Asphere 2A-220
HOE - Diffractive Surfaces - Holographic Surface 2A-222
Introduction 2A-222
HOE Commands 2A-223
Cautions 2A-224
References 2A-224
MOD - Lens Module ("Black Box" Lens) 2A-230
Introduction 2A-230
Module Representation in CODE V 2A-230
Cautions 2A-231
Technical Notes 2A-232
Example 2A-233
UDS - User-defined Surface 2A-238
ARRAY ELEMENT 2A-241
Usage 2A-244
Arrays of Lens Elements/Channels 2A-244
Method 2A-244
Array Input 2A-244
Start of Array 2A-244
End of Array 2A-246
Example 2A-246
Restrictions 2A-247
Order of Operation 2A-247
Tips on Usage 2A-248
Regular Grid, Parallel Array 2A-248
Individual General Channels 2A-250
Polynomial Decenter and Tilt Channels 2A-251
NON-SEQUENTIAL SURFACES 2A-253
Introduction - When to Use Non-Sequential Surfaces 2A-255
Implementation of NS Ray Tracing 2A-256
NS Coordinate System 2A-256
Glass Specification for NS Surfaces 2A-256
Edges/Apertures in NS Ray Tracing 2A-256
Refractive/Reflective Mode Specification 2A-257
Transfer Criteria 2A-257
Exit Port Definition 2A-257
Cautions 2A-258
High Level Modules 2A-260
Constructing Non-Sequential Surface Ranges - NS Primitives 2A-262
NSS Command 2A-262
RMC Command 2A-262
NSL Command 2A-262
Getting Started with Non-Sequential Ray Tracing 2A-268
References. 2A-281
GRADIENT INDEX MATERIALS (GRIN) 2A-285
Definitions \& Examples 2A-287
CODE V Facilities for Gradient Index Calculations 2A-287
Definitions 2A-288
Examples 2A-289
General Commands 2A-290
Forms 2A-292
SEL - SELFOC ${ }^{\text {TM }}$ Gradient 2A-292
AXG - Linear Axial Gradient 2A-293
URN. 2A-294
LUN - Luneberg Lens 2A-295
SPG - Spherical Gradient 2A-296
MAX - Maxwell's Fisheye 2A-297
UDG - User-defined Gradient 2A-298
PUPIL APODIZATION 2A-301
General Apodization 2A-303
Gaussian Apodization 2A-303
Usage 2A-304
POLARIZATION 2A-307
Introduction 2A-309
Polarization Ray Tracing 2A-309
Defining the Input Polarization 2A-310
Polarization State 2A-310
Geometrical Representation (Polarization Ellipse) 2A-310
Jones Vector Representation 2A-311
Stokes Parameter Representation 2A-311
Polarization Coordinate System 2A-312
Its Effect on Imagery 2A-313
Modeling Effects that Alter the Polarization State of a Beam 2A-313
Polarization Effects Modeled by CODE V 2A-313
Modeling of Dielectric or Metallic Interfaces 2A-313
Modeling of Linear Polarizers and Retarders 2A-314
Use of Polarization Ray Trace Information by CODE V 2A-315
Activating Polarization Ray Tracing 2A-317
Geometrical Representation 2A-317
Jones Vector Representation 2A-318
Stokes Parameters 2A-319
Specifying Linear Polarizers and Retarders 2A-319
Examples of Output 2A-321
INTERFEROMETRIC DEFORMATIONS AND INTENSITY APODIZATION 2A-325
Introduction 2A-327
interferograms 2A-328
The Use of Interferograms in CODE V 2A-328
Interferograms for Surfaces 2A-328
Interferograms for the Entrance/Pupil and ALIgnment Option 2A-329
Null Test Conversions in the ALIgnment Option 2A-329
Intensity Apodization 2A-330
INT Files 2A-331
Coordinate Systems and Sign Conventions 2A-332
CODE V 2A-332
Interferograms - Axes 2A-332
Wavefront Interferograms - Deformations 2A-333
Surface Interferograms - Deformations 2A-333
Zernike Polynomials 2A-334
NT File Format 2A-336
Interface to Commercial Interferometers 2A-339
Transferring Zygo Interferometric Data to CODE V 2A-339
Kermit Program. 2A-339
Converter Programs/Cabling/VAX Procedure/Mark IV, Model 8100 Procedure 2A-340
Sample Output 2A-341
LDM Output 2A-341
FAB Output 2A-342
PMA Output 2A-342
Technical Notes 2A-344
Ray Tracing 2A-344
Behavior of Rays in Regions of "NO DATA" 2A-344
Preparation For Running The ALIgnment Option 2A-344
Attaching INT Data to the Surface 2A-346
Orientation of INT Data 2A-348
NASTRAN-GENERATED DEFORMATIONS 2A-351
Introduction 2A-353
Running MSC/NASTRAN/Running CVNAS 2A-353
Output 2A-354
Units 2A-354
Dynamic Analyses 2A-354
Examples 2A-355
Sample Files 2A-356
LDM INDEX 2A-359

ENTERING/CHANGING DATA

LGE Exhibit 1015A
LGE v. ImmerVision - IPR2020-00179
Page 57 of 103

SPECIAL TOPICS - Special Surfaces

SPECIAL SURFACES 2A-205
Introduction 2A-207
CON/ASP - Conic/Asphere 2A-208
XTO - X-Toroid of Base Asphere 2A-210.2
YTO - Y-Toroid of Base Asphere 2A-211
THG - Thermal Gradient on Base Asphere 2A-212
SPL - Radial Spline Asphere 2A-214
AAS - Anamorphic Asphere 2A-218
GRT - Diffractive Surfaces - Diffraction Grating on Base Asphere 2A-220
HOE - Diffractive Surfaces - Holographic Surface 2A-222
Introduction 2A-222
HOE Commands. 2A-223
Cautions 2A-224
References 2A-224
MOD - Lens Module ("Black Box" Lens) 2A-230
Introduction 2A-230
Module Representation in CODE V 2A-230
Cautions 2A-231
Technical Notes 2A-232
Example 2A-233
UDS - User-defined Surface 2A-238
ARRAY ELEMENTUsageRegular Grid, Parallel ArrayIndividual General Channels
Polynomial Decenter and Till Channels
NON-SEQUENTIAL SURFACE
Introduction - When to Use Non-Sequential Surfaces
Implementation of NS Ray Tracing
Cautions
High Level Modules
Constructing Non-Sequential Surface Ranges - NReferences
GRADIENT INDEX MATERIALS (GRIN)
Definitions \& Examples
General Commands
Forms
SEL - SELFOC ${ }^{\text {™ }}$ Gradient
AXG - Linear Axial Gradien
URN - University of Rochester Gradient
LUN - Luneberg Lens
SPG - Spherical Gradien
MAX - Maxwell's Fisheye
UDG - User-defined Gradient
PUPIL APODIZATION
General Apodization
Gaussian Apodization
Usage
POLARIZATION
Introduction
Defining the Input Polarization
Its Effect on Imagery
Modeling Effects that Alter the Polarization Slate of a Beam
Use of Polarization Ray Trace Information by CODE V
Specitying the Polarization State and Activating Polarization Ray Tracing
Specilying Linear Polanzers and Retarders
Examples of Outpu
INTERFEROMETRIC DEFORMATIONS AND INTENSITY APODIZATION
Introduction
Interferograms
Intensity Apodization
INT Files
Coordinate Systems and Sign Conventions
Zernike Polynomials
INT File Format
Interface to Commercial Interferometers
Sample Output
Sample Output
Technical Notes
Attaching INT Data to the Surface
Orientation of INT Data
NASTRAN-GENERATED DEFORMATIONS
Introduction
Examples

ENTERING/CHANGING DATA
 Special Surfaces

SPECIAL TOPICS - Special Surfaces

INTRODUCTION TO SPECIAL SURFACES

Besides the default surface type - spherical/plano - a number of special surface types are provided. These are invoked by using a type designator command specifying the surface number; for example, for an aspheric on surface 5:

ASP S5

Usually the surface form is further defined by coefficients of various types, entered with additional commands; default data is supplied for these, usually 0 . Some of these surface types also use CUX/RDX and/or CUY/RDY commands described as part of the Sphere/Cylinder text.

The surface types provided are:

CON	- Conic
ASP	- General (rotationally symmetric) asphere, including Fresnel surface on a base
	sphere
XTO	- X-toroid with aspheric base curve
YTO	- Y-toroid with aspheric base curve
THG	- Thermal gradient surface (rotationally symmetric), with ASP type asphere and
	radial index gradient

In addition, the type designator SPH is provided to switch any of these back to spherical/plano.
In the descriptions that follow, the equation is given with the commands that apply to that type.

COMMAND MNEMONICS (alphabetical)

A	AAS	AP	AR	ASP	B
BP	BR	C	CON	CP	CR
CUF	D	DP	DR	E	F
G	GRO	GRS	GRT	GRX	GRY
GRZ	H	HCO	HDI	HDN	HIN
Hn	HNO	HOE	HOR	HSW	HTH
HTO	HVn	HWL	HXn	HYn	HZn
IC	J	K	KX	KY	MBF
MCO	MED	MEN	MFD	MFF	MFL
MOD	MRD	MWL	SPL	SPn	TAn
TBn	THG	UCO	UDS	XTO	YTO

ENTERING/CHANGING DATA

Special Surfaces

SPECIAL TOPICS - Special Surfaces - Conic/Asphere

```
CON - Conic
ASP - Asphere
```

$$
\begin{aligned}
& \mathrm{Z}=\frac{\mathrm{ch}^{2}}{1+\operatorname{SQRT}\left\{1-(1+\mathrm{k}) \mathrm{c}^{2} \mathrm{~h}^{2}\right\}}+\mathrm{Ah}^{4}+\mathrm{Bh}^{6}+\mathrm{Ch}^{8}+\mathrm{Dh}^{10}+\mathrm{Eh}^{12}+\mathrm{Fh}^{14}+\mathrm{Gh}^{16}+\mathrm{Hh}^{18}+\mathrm{Jh}^{20} \\
& \text { where } \quad \mathbf{Z} \quad \text { is the sag of the surface parallel to the } Z \text { axis } \\
& c \quad \text { is the curvature at the pole of the surface (CUY) } \\
& k \quad \text { is the conic coefficient }(\mathrm{K}) \text { and } \\
& k=0 \quad \text { - sphere } \\
& -1<k<0 \quad \text { - ellipsoid with major axis on the optical } \\
& \text { axis (prolate spheroid) } \\
& \mathrm{k}=-1 \quad \text { - paraboloid } \\
& \mathrm{k}<-1 \quad \text { - hyperboloid } \\
& \text { Also, } \quad \mathrm{k}=-\mathrm{e}^{2} \text {, where } \mathrm{e} \text { is eccentricity. } \\
& \text { For } \mathrm{k}>0 \text {, oblate spheroid (not a conic section) } \\
& \text { the surface is generated by rotating an ellipse about its minor axis and } \\
& k=e^{2} /\left(1-e^{2}\right)
\end{aligned}
$$

where e is the eccentricity of the generating ellipse.
A, B, C, D, E,

$$
\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{~J} \text { are the } 4 \text { th, } 6 \text { th, } 8 \text { th, } 10 \text { th, } 12 \text { th, } 14 \mathrm{th}, 16 \mathrm{th}, 18 \mathrm{th}, 20 \text { th }
$$

order deformation coefficients respectively;
$\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{D}=\mathrm{E}=\mathrm{F}=\mathrm{G}=\mathrm{H}=\mathrm{J}=0$ for a pure conic surface

$$
h^{2}=X^{2}+Y^{2}
$$

Special values of k :
An even ordered polynomial is represented by setting

$$
k=-1
$$

and using $\mathrm{c} / 2, \mathrm{~A}, \mathrm{~B}, \ldots$ as the even order coefficients.
A cone can be approximated by a hyperboloid with large curvature and

$$
k=-\left(1+\tan ^{2} a\right)
$$

where a is the angle between the cone generatrix and the local surface axis (cone half angle). The large curvature (small radius) will generate first-order traces and properties that are probably useless; avoid solves and other operations dependent on them.

A ray at a high angle to the local axis can intersect a surface twice; a means must be provided to choose which intersection is needed. This is determined by selecting the intersection code (IC) as follows:

1. Sketch the surface and incoming ray in the desired configuration. By definition, the surface normal points so that the angle between the incoming ray and surface normal (as vectors) is less than 90°. (Note: Draw the vectors with the tails at the intersection point, with the incoming ray extended to form its vector in the direction of light travel, and the surface normal vector direction chosen so the angle between vectors is less than 90°.)
2. If the surface normal so defined points in the positive \mathbf{Z} direction for a positive index in the space of the incoming ray, the default IC code

IC Sk Yes
is correct. Use the same if both "positives" in the preceding sentence are negative.
Continued....

SPECIAL TOPICS - Special Surfaces - Conic/Asphere (Continued)

3. To select the opposite combination,
IC Sk No

Figure 1. Physical meaning of IC code.
At first it might appear that a shallow angle ray could intersect a sphere or ellipse on its "back" side; this is not allowed since this is the surface which would be represented by having its pole at a different position along the axis. Note also that only the ASP, XTO, YTO, THG, UDS and GRT surfaces have the IC code; this may require conversion of spheres or conics into this form in order to specify the "unusual" intersection point.

Fresnel surfaces ("lighthouse lenses") are surfaces that are finely stepped with small prismatic sections of a lens superimposed on a base shape, usually plano. These are simulated by specifying the base curve (CUF) and using the aspheric terms to define the refracting power as a function of h. It is assumed that the steps are infinitely small; the base curve (CUF) thus defines the physical shape and CUY, K, A,...J represent the added refractive power. Use the FAB option to generate a table of slopes.

Note that in surface listings the ASP surface will only list data for A, B, C, and D, unless one of E, F, G, H, J is nonzero or if one of EC, FC, GC, HC or JC is not 100 .

Continued....

ENTERING/CHANGING DATA

Special Surfaces

SPECIAL TOPICS - Special Surfaces - Conic/Asphere (Continued)

Chapter

 2C Displaying Data
TABLE OF CONTENTS

THE LDM - DISPLAYING DATA 2C-3
SCREEN FLOW DIAGRAM 2C-3
COMMAND MNEMONICS (alphabetical) 2C-4
DATA INPUT DESCRIPTION 2C-4
Queries 2C-4
Listing of Data 2C-5
Drawing of Lens 2C-7
USAGE 2C-8
LIS Command 2C-8
SUR Command 2C-8
SPC Command 2C-9
APE Command 2C-9
NSL Command 2C-10
PVC Command 2C-10
IND Command. 2C-10
SOL Command 2C-10
ZLI Command. 2C-10
TLI Command 2C-11
TTA Command 2C-11
CLI Command 2C-11
GSC Command 2C-12
DRA Command 2C-12

LGE Exhibit 1015A
LGE v. ImmerVision - IPR2020-00179
Page 66 of 103

THE LDM - DISPLAYING DATA
Allows text and graphical display of lens data:

- Queries of individual LDM database items
- Listing of all or selected parts of the LDM database
- Quick lens drawing

Along with the optical operations in "Quick Analyses," these permit verification of lens data and diagnosis of data mistakes before invoking the more comprehensive option calculations. None of these operations move the surface pointer.

SCREEN FLOW DIAGRAM

GOLD/2 Subscreen from LEN1:

COMMAND MNEMONICS (alphabetical)

APE	CLI	DRA	GSC	IND	LIS
NSL	PVC	SOL	SPC	SUR	TLI
TTA	ZLI	$?$			

DATA INPUT DESCRIPTION

Queries

Adding a question mark (?):
Before or after any data entry command descriptor displays the value (first zoom position) currently in memory. Examples:

| ?CUY or CUY? | Displays curvature of pointer surface (assume $=1$):
 CUY S1 $=.0703$ |
| :--- | :---: | :---: |
| ?CUY S3 | Displays curvature of surface 3 (without moving pointer): |
| CUY S3 $=-.0234$ | |

Ranges (Si..j) are allowed on SPC, PRC, CEM, CIN, CTH, and tolerances to display all quantities within the range; apertures are not displayable with queries - use APE (Display).

Before or after Sk|Si..j displays the surface number, CUY or RDY, THI, and GLA for each designated surface. Examples:

? S or S?	-	Displays values for the pointer surface (assume $=1$):	
		1: . 0703 . 1	BK7_SCHOTT
? 33 or S3?	-	Displays values for surface 3:	
		3: -. 0234.05	F2_SCHOTT
?S1.. 5	-	Displays values for surfaces 1 t	gh 5
? SA	-	Displays values for all surfaces	

This query feature applies to the LDM (as shown above), to immediate commands (see Chapter 10), and for any option commands with defined defaults.

Command Syntax				
Screen Prompt	Explanation			
LIS				
8. List lens data (GOLD/8 Subscreen)	List all lens data including the lens title and data provided by SUR, SPC, APE, NSL, PVC, IND, SOL, ZLI; FIR from "Quick Analyses" is also included. TLI, TTA, CLI, and GSC are not included.			
SUR Sk\|Si..j [F]				
	List surface data (first zoom position) for designated surface(s); if $\mathrm{Sk} \mid \mathrm{Si} . . \mathrm{j}$ is omitted, surface pointer supplies Sk. Full print flag: omit F - all data types for that surface(s), except GCH, SPC, PRC, CUM, THM and control variable/coupling codes F - include all data types and control codes Headings use the command mnemonics to identify each item. Listing includes the surface number, but replaced with OBJ, STO, IMG to designate object, stop and image, respectively; the pointer surface is denoted by a > preceding the surface number, if it is in the range Si..j.			
SPC [WL\| APE	FLD	VIG	OTH]	
	List all specification data (for first zoom position). Optional qualifiers limit the list: WL - Wavelength: WL, REF, WTW, CWL APE - Aperture: EPD/FNO/NA/NAO, PUI, PUX, PUY FLD - Field: YIM/YAN/YOB, XIM/XAN/XOB VIG - Vignetting: VUY, VLY, VUX, VLX OTH - Other: FFO, IFO, NFO, AFO/AFI, TEL, XFO, IRS, TEM, PRE, DIM, INI, FOC Each item is identified by its command mnemonic.			
APE Sk\|Si..j [EDG	OBS	HOL]		
	List surface aperture data (first zoom position), user-entered or generated by SET APE, for the designated surface(s); if Sk\|Si..j is omitted, surface pointer supplies Sk. Optional qualifiers: EDG - List edges only OBS - List obscurations only HOL - List holes only omitted-List apertures, edges, obscurations, and holes Each aperture type is identified by its command mnemonic.			
NSL				
	List all non-sequential data (for first zoom position): Surfaces - Range, exit port surface and thickness, outside material and Z axis direction Elements - For ROO, CCR, apex length, material, mode and dihedral angle errors			

Continued....

DISPLAYING DATA

Listing of Data (Continued)

Command Syntax		
Screen Prompt	Explanation	
PVC		
	List private catalog data, for all user-defined materials, at entered wavelengths.	
IND		
	List index of refraction table, for all lens system glasses at used wavelengths.	
SOL Sk\|Si..j		
	Lists solve data (first zoom position) for the designated surface(s); if $\mathrm{Sk} \mid \mathrm{Si} . . \mathrm{j}$ is omitted, surface pointer supplies Sk. System solves RED, PIM appear for SO, $\mathrm{SI}-1$, respectively. Each solve type is identified by its command mnemonic.	
ZLI Sk\|Si..j [SPC	zoomed_command]	
	Lists zoomed data for the designated surface(s); if $\mathrm{Sk} \mid \mathrm{Si} . . \mathrm{j}$ is omitted, surface pointer supplies Sk. Optional qualifiers: SPC - Lists zoomed specification data and system solves only zoomed_command - Lists this zoomed data type only; zoomed_command is the mnemonic for the data type, e.g., THI neither - Lists all zoomed data System solves are included when SPC or surfaces they affect are requested. Each zoomed parameter is identified by its command mnemonic.	
TLI Sk\|Si..j [Zk] [CMP] [tol_code	$\mathrm{C}\|\mathrm{V}\| \mathrm{F}$] [L'label'(3)\|ALL]	
	Lists tolerance data for the designated surface(s); if $\mathrm{Sk} \mid \mathrm{Si}_{\mathrm{i} . \mathrm{j}}$ is omitted, surface pointer supplies Sk. Optional qualifiers: Zk \quad - Lists zoom positions only CMP - Lists compensator(s) only tol_code - Lists this tolerance type only; tol_code is the command mnemonic for the tolerance type, e.g., DLT C \quad - Lists coupled group(s) only $V \quad$ - Lists varied tolerance(s) only F \quad - Lists frozen tolerance(s) only L'label'(3) - Lists the specified subset; if omitted, lists a subset having a blank label. ALL - Lists all subsets Each tolerance type is displayed with its command mnemonic.	
TTA		
	Lists table of optical data and tolerances, centered and decentered.	

Continued....

Listing of Data (Continued)

Command Syntax		
Screen Prompt	Explanation	
CLI [Sk\|Si..j]		
	List apertures for each surface: (1) aperture just large enough to pass all zoom positions, (2) LDM surface apertures, (3) for each zoom position, aperture just large enough to pass that position. Apertures that exceed LDM surface apertures and/or do the vignetting are flagged. For rotationally symmetric lenses: - Table based on Y reference rays (R1,R2,R3) For non-rotationally symmetric lenses: - Table based on Y reference rays (R1,R2,R3) - Table based on X reference rays (R1,R4,R5) - Summary table: largest aperture of either X or Y table, for all zoom positions If $\mathrm{Sk} \mid \mathrm{Si}$..j is included, listing only spans those surfaces.	
GSC [Sk\|Si..j] [COS] Yes	No....z	
	List position of each surface relative to the single coordinate system established by GLO command; if GLO command is not active or no GLO command has been given, the coordinate system of surface 1 is used. Listing includes X, Y, Z displacement of each surface's local coordinate system, and: COS - Local Z axis expressed in direction cosines no COS - Local Z axis expressed in rotation angles (α, β, γ) with respect to the global coordinate system. If Sk\|Si...j is included, listing only spans those surfaces.	
Drawing of Lens		
Command Syntax		
Screen Prompt	Explanation	
DRA [XZ] [Si...j]		
Draw Lens System (GOLD/2 Subscreen)	Draw YZ section of entire lens, scaled to fit screen. Optional qualifiers: XZ - Draw XZ section (default: YZ) Si..j - Limit drawing to designated surfaces (default: S1..I) If zoomed, the first active position (POS command) is drawn. This provides a "quick look"; use the VIEW or LAYOUT option (Chapter 7) for more control selection, border and labeling. Destination of drawings (terminal and/or file) is subject to control of the GRA command; if you are using a terminal and GRA directs drawings to it, the normal pause requiring response will occur after each drawing; for a workstation, the drawing will appear in a separate window and a query will only occur if you are also directing plots to a file.	

DISPLAYING DATA

USAGE

During the course of a CODE V session, you will find it useful to review the current lens, or parts of it, to help to decide what to do next or to remind you of what has already been input. For example, you may wish to review the surface-by-surface data, or the specification data, or the user-defined apertures that have been specified, etc.

Several commands in CODE V are available to display specific parts of the total data comprising the optical system under study. The output of each of these commands is a listing, except the DRA command, which draws a layout of the lens. Most of these commands generate output for the first zoom position only; use the ZLI (zoom list) command to get data for zoomed parameters.

LIS Command

The LIS command gives an output which lists all the data necessary to input the lens from scratch, including special surface data, aperture data, all material data, tilt and decenter data, etc. This is the command to use when you wish to make a complete lens description for someone else or for your files. In addition to listing all the necessary data, it also includes a FIR command from the "Quick Analysis" set of commands (see Section 2D) to display the first order properties of the lens.

The only lens data not included with the LIS output are tolerance data, which are not necessary to define the lens optically, and default aperture sizes. There are commands, however, to list each of these.

The data output with the LIS command are formatted to a fixed number of significant digits. If this is insufficient for a given item of data, increased precision can be obtained with the EVA command (see pages 2D-4 and 2D-12).

The LIS command is essentially equivalent to a series of several different data display commands as follows:
TIT?
SUR SA F
SPC
APE SA
NSL
PVC
IND
SOL SA
ZLI SA
FIR

To use the LIS command, just type LIS. There are no qualifiers or data associated with the command. (You may first wish to direct output to a file with the OUT command.)

SUR Command

The SUR (surface) command is used to display surface specific data for a given surface or for a range of surfaces. If no S qualifier is used, only data for the current surface is listed (the one the LDM pointer points to); use SUR SA to see data for all the surfaces. The command displays all the data associated with the requested surfaces except for data listed with other LDM data display commands described in this section (apertures, tolerances, solves, refractive indices, etc.). If the F qualifier (meaning "full") is given, the variable control codes for the surfaces are listed also along with any special glass data (GCH, SPC, PRC, CUM, and THM) and any coating data. If a curvature or thickness is generated by a solve, it cannot be an independent variable in AUT and the type of solve (UMY, PIM, ET, OAL, etc.) is shown where the control code would normally appear. Data are given for the first zoom position only; use ZLI to see values for other zoom positions.

The SUR command with the F qualifier is one of only three ways (outside of AUTO) to see which parameters are variables and which are not for AUTOMATIC DESIGN, and is the only way in command mode (the other two ways are in the screens mode, one by seeing the " v " in the appropriate screen, the other is number 6 under GOLD/8, Other Operations).

The form of the output of the SUR command is slightly different for sequential surfaces and nonsequential surfaces, due to the differences in data associated with each. Non-sequential surfaces are identified in SUR output with a ! NSS.

In SUR output listings, if the surface or surface range includes the current pointer surface, $\mathrm{a}>$ is printed before the surface number. The SUR command (like all the other commands in this section) does not move the surface pointer.

Examples:

SUR SA	! List all surface data for the lens
SUR S3..6	! List surface data for surfaces 3 through 6
SUR	! List surface data for the current (pointer) surface
SUR SAF	List all surface data plus variable control codes and special glass data

Occasionally the user may wish to see just the radius (or curvature), thickness, and glass data per surface, and not see the other data. This would make the listing shorter, especially if there are many special surfaces or many tilted/decentered surfaces. The data query S? can be used for this, instead of using the SUR command. (Note that the ? can come before or after the S.)

S? ! List just the curvature, thickness and glass for the current surface
S3. 5? ! List just the basic data for surfaces 3 through 5
SA? ! List just the basic data for all surfaces
?SA ! List just the basic data for all surfaces

SPC Command

The SPC (specification data) command is used to list the specification data of the lens. The specification data are the data which apply to the lens as a whole, mainly defining the light bundles (wavelengths, fields, vignetting, etc.). Data are listed for the first zoom position only; to see the specification data for other zoom positions, use the ZLI SPC command.

The SPC command by itself lists all the specification data. Qualifiers may be used to limit the list to items of interest. Allowable qualifiers are WL, APE, FLD, VIG, and OTH (for other).

Examples:

SPC ! List all the specification data for the lens
SPC FLD ! List only the field specifications
SPC VIG ! List the vignetting data for the lens

APE Command

The APE (aperture) command lists the user-defined aperture data for a surface or range of surfaces. If no S qualifier is used, only data for the current surface is listed. The command will list all types of userdefined apertures-standard, obscuration, edge, and hole apertures. The APE command does not list default aperture sizes determined automatically by CODE V (use CLI). It will list all aperture data, or can be limited by qualifiers to list only certain types of apertures (EDG, OBS, and HOL qualifiers). Note that there is no qualifier to list only standard apertures when there are also other types of apertures on a surface. (For example, if there is a standard aperture and an obscuration on a surface, you can list just the obscuration or both, but you cannot list just the standard aperture.)

In the output, each user-defined aperture is identified by its shape (CIR, REX, REY, ELX, ELY), by its type (EDG, OBS, HOL, if applicable), by its location and orientation (ADX, ADY, ARO), and by any labels (L'xxx').

Aperture data are only listed for the first zoom position. Use ZLI to see data for other zoom positions.

DISPLAYING DATA

Examples:

APE	! List all aperture data for the current (pointer) surface
APE SA	: List all apertures in the lens
APE S3..6	List all aperture data for surfaces 3 through 6
APE S2 EDG	List the EDG apertures on surface 2

NSL Command

The NSL (non-sequential list) command is used to list the non-sequential surface ranges and exit port data for all non-sequential surface groups in the lens. If either of the special non-sequential surface high level modules (corner cube or roof prism) have been used, they are also listed with the NSL command. There are no qualifiers or data associated with this command.

PVC Command

The PVC (private catalog) command is used to list the Private Catalog data for the lens. This includes all the user-defined materials and all gradient-index materials in the lens. The entire Private Catalog is listed, even though all the materials included may not be used in the lens. There are no qualifiers or data associated with this command.

IND Command

The IND (index) command lists the refractive indices of all materials used in the lens at the wavelengths given with the WL command. Note that these indices are always listed as positive, regardless of the direction of light in the materials as used in the lens. There are no qualifiers or data associated with this command.

SOL Command

The SOL (solve) command lists all the solves for a surface or a range of surfaces. If no S qualifier is used, only data for the current surface is listed. Data are given only for the first zoom position. Use ZLI to see the data for other zoom positions. (Note that only RED and PIM solves can be explicitly zoomed. Some solves, however, such as THI OAL or THI ET, are done for each zoom position and may create an implicitly zoomed parameter which will not show up in the ZLI output.) There are no qualifiers to limit output to only one type of solve.

Examples:

SOL	! List all solves for the current (pointer) surface
SOL SA	! List all solves in the lens
SOL S2	Only list solves on surface 2

ZLI Command

The ZLI (zoom list) command is used to list the zoomed data for a surface or range of surfaces. If no S qualifier is used, only zoomed parameters for the current surface are listed. Qualifiers may limit the listing to only specification data or only to a specific zoomed data type.

Note that the output from ZLI may be wider than 80 columns, depending on the number of zoom positions, and may not fit on a standard screen (it will either truncate or wrap, depending on the terminal settings). Setting the terminal to wide mode (132 column output) will display the output properly.

Examples:
ZLI ! List all zoomed data for the current (pointer) surface
ZLI SA ! List all zoom data in the lens
ZLI SPC
ZLI SA THI
! List only the zoomed specification data
ZLI S3. . 5
List all the zoomed thicknesses in the lens
! List all zoom data for surfaces 3 through 5 and any zoomed specification data

The previous commands were the commands which make up the LIS command. The following commands list additional data of interest.

TLI Command

The TLI (tolerance list) command lists the tolerances in the lens, if any have been defined, for a surface or range of surfaces. It also gives a count of the total number of tolerances listed. If no S qualifier is used, only tolerances applicable to the current surface are listed. Compensators are not listed with the tolerances; use TLI CMP to list the compensators. Qualifiers may be used to limit the output to a specific type of tolerance, to only frozen, variable, or coupled tolerances, or to specific labels only. Data for all zoom positions are included in the same listing.

Examples:

TLI	! List all unlabeled tolerances for the current (pointer) surface	
TLI SA	! List all unlabeled tolerances in the lens	
TLI SA ALL	! List all tolerances in the lens (regardless of label)	
TLI S1..3 DLT	! List the unlabeled thickness tolerances (DLTs) for	
		surfaces 1 through 3

TTA Command

The TTA (tolerance table) command lists the tolerances of the lens, but in a different format than the output of the TLI command. The output is the same as the output at the end of a TOR option run. The tolerances are listed in two tables, one for centered tolerances (DLR, DLF, IRR, DLT, DLN, DLV, and HOM) and one for decentered tolerances (TIR, DEC, BTI, etc.). Tolerances which do not fit in the two tables (such as coupled tolerances) are listed in a third table labeled Additional Tolerances. A separate set of tolerance tables is automatically generated for each zoom position if there are any zoomed tolerances.

Note that the output from TTA requires 110 columns, and thus may not fit on a standard screen (it will either truncate or wrap, depending on the terminal settings). Setting the terminal to wide mode (132 column output) will display the tables properly.

There are no qualifiers or data associated with the TTA command.

CLI Command

The CLI (clipping) command lists both the user-defined apertures and the default circular apertures for a surface or range of surfaces. If no S qualifier is used, only clipping data for the current surface is listed. Data are listed for default apertures (CA OFF) and for user defined apertures (CA ON). If the lens is bilaterally symmetric (no X fields, X tilts or decenters, or non-rotationally symmetric surface types) then the clipping table is based on Y reference rays ($R 1, R 2$, and $R 3$). If the lens is not bilaterally symmetric, then data are output in three tables, one for the Y reference rays, one for the X reference rays (R1, R4, and R5), and one combined table, which lists the larger of X or Y output. If required apertures in X or Y exceed userdefined apertures, those surfaces are indicated, as are the surfaces which limit the vignetting. The tables take into account all zoom positions automatically.

Note that the output of this command may not be sufficient to describe needed apertures if the lens is asymmetric. Refer to SET APE in Section 2B for a discussion of the limitations of this output.

Examples:

```
CLI ! List clipping apertures for the current (pointer) surface
CLI SA ! List all clipping apertures in the lens
CLI S3..5 ! List the clipping apertures for surfaces 3 through 5
```


DISPLAYING DATA

GSC Command

The GSC (global surface coordinates) command is used to locate the vertices of a surface or range of surfaces relative to the absolute coordinates and orientation of a given reference surface. The reference surface used is selected with the GLO command. If no GLO command is given, surface 1 is used. The GLO command cannot specify the object surface as the reference. The default is to list data for all surfaces; a surface (S) qualifier may be used to select a surface or range of surfaces for output.

The output of the command lists the X, Y, and Z locations of the surface vertex relative to the vertex of the reference surface, and the orientation of the surface's local coordinate system with respect to that of the reference surface. The orientation is listed as the X, Y, and Z angles (ASC, BSC, CSC) of the local coordinate system in degrees, or the X, Y, and Z direction cosines (LSC, MSC, NSC) of the local z axis if the COS qualifier is used.

This command is extremely useful in verifying the setup of tilted or decentered systems, especially globally defined systems such as non-sequential surface systems.

Examples:

```
GSC ! List all surface vertex locations and local
    coordinate system orientations relative to the
    GLO surface
GSC COS ! List all surface vertex locations and local
    z axis direction cosines relative to the
    GLO surface z axis
GSC SS ! List the surface location and coordinate system
    orientation of the stop surface
```


DRA Command

The DRA (draw) command provides a quick-look draw of the lens. The default is to draw the lens from surfice 1 to the image; a surface range may be given to change this default. The YZ cross-section is the default; if the $X Z$ qualifier is used then an $X Z$ drawing is made. Drawings are made for the first zoom position only. To obtain drawings for other zoom positions, use the LAY or VIE options.

The DRA command will automatically scale the drawing to fit the screen, and draws only the reference rays. If any of the reference rays other than a chief ray fails to trace, that ray is drawn up to the point of failure. If one of the chief rays fails to trace, none of the reference rays for that field are drawn. The DRA command is equivalent to a VIE; SUR Si..j; LAB NO; GO series of commands (or VIE; SUR Si..j; PLC XZ; LAB NO; GO) with list output suppressed.

Examples:

```
DRA ! Draw the lens from surface 1 to the image
DRA S3..6 XZ ! Draw the lens in the XZ plane from surfaces 3
    through 6
```

Whether the DRA output appears on the screen or a .PLT file, or both, is controlled by the GRA command. Note that the AUT option also has a DRA command of the same form, that will draw the lens at each cycle of optimization.

Chapter 2D Quick Analyses

TABLE OF CONTENTS

THE LDM - QUICK ANALYSES 2D-3
SCREEN FLOW DIAGRAM 2D-3
COMMAND MNEMONICS (alphabetical) 2D-4
DATA INPUT DESCRIPTION 2D-4
Evaluate Optical Values 2D-4
First-order Calculations 2D-5
Third-order Calculations 2D-6
Single Ray Traces 2D-8
Single Ray Trace Output Format 2D-11
USAGE 2D-12
Data Evaluation - The EVA Command 2D-12
First- and Third-order Analyses 2D-13
FIR Command 2D-13
FIO Command 2D-13
THO Command 2D-13
Ray Tracing 2D-13
RSI Command - With Relative Pupil Coordinates 2D-14
RSI Command - Targeted to a Spot on a Surface 2D-15
SIN Command 2D-16
ROF Command 2D-16
Ray Trace Output 2D-17
Examples of Ray Tracing 2D-18

THE LDM - QUICK ANALYSES

Allows quick analysis of lens data:

- Evaluation of single system quantities or any expression, using Macro-PLUS
- Listing of first order system parameters
- First order ray tracing
- Third order surface-by-surface contributions and sums
- Tracing of single rays in designated wavelengths, with user-defined formatting

These simple calculations, along with the text and graphical display operations in the section "Displaying Data," permit verification of lens data and diagnosis of data mistakes before invoking the more comprehensive option calculations. None of these operations move the surface pointer.

SCREEN FLOW DIAGRAM

GOLD/8 Subscreen from LEN1:

FiET - Enter selection B - Bupass entru

Selection 7 from GOLD/8 Subscreen:

Evaluate Sustem Parameters

Enter parameter (macro_expression)

RET - Enter data

GOLD/6 Subscreen from LEN1:

QUICK ANALYSES

COMMAND MNEMONICS (alphabetical)
EVA FIO RIR ROF
THO

DATA INPUT DESCRIPTION

Evaluate Optical Values

Command Syntax	
Screen Prompt	Explanation
EVA macro_expression	
7. Evaluate parameters (GOLD/8 Subscreen)	Evaluate and list the value of the Macro-PLUS expression. See Chapter 11 in the Reference Manual for expression formation. Remember to enclose database items in parentheses. Examples: EVA (EFY S1..5)
- Calculates EFL for part of the system (surfaces 1 thru 5)	

First Order Calculations

Command Syntax	
Screen Prompt	Explanation
FIR	
Bottom half of LEN1 screen, use GOLD/J for other zoom positions	List table of first order system parameters (e.g., EFL, OAL, etc.) for all zoom positions. Listing includes:
FIO [Sk\|Si..j] [Zk]	
1. Paraxial Ray Trace (GOLD/6 Subscreen)	List paraxial data for marginal and chief rays for designated surface(s) and zoom position. If $\mathrm{Sk} \mid \mathrm{Si} . \mathrm{j}$ is omitted, lists all surfaces; if Zk is omitted, lists all zoom positions. For each ray listing includes: HMY, HCY - Height on surface (y) UMY, UCY - Ray angle after surface (u) $\mathrm{N}^{*} I M Y, \mathrm{~N}^{*} I C Y$ - Incidence angle/refraction angle times corresponding index (ni) If XZF flag is set, data are for $X Z$ plane instead of $Y Z$ plane.

QUICK ANALYSES

Third Order Calculations

Command Syntax	
Screen Prompt	Explanation
THO [Sk\|Si..j] [Zk]	
2. Third Order Aberration (GOLD/6 Subscreen)	List all third order (Seidel) aberration contributions for designated surface(s) and zoom positions. If $\mathrm{Sk} \mid \mathrm{Si} . . \mathrm{j}$ is omitted, lists all surfaces; if Zk is omitted, lists all zoom positions. Listing includes: SA - Spherical aberration TCO - Tangential coma TAS - Tangential astigmatism SAS - Sagittal astigmatism PTB - Petzval blur DST - Distortion, tangential AX - Axial color LAT - Lateral color All are expressed in lens units of maximum shift/blur on the image surface, for full aperture and last field. See Chapter 4. ANA option for equations and definitions. If the XZF flag is set, the aberrations are for the X-Z plane.

LGE Exhibit 1015A
LGE v. ImmerVision - IPR2020-00179
Page 83 of 103

Command Syntax				
Screen Prompt	Explanation			
```RSI [Sk\|Si..j] [Zk] [Wn] x_fract_pupil y_fract_pupil x_fract_max_x_field y_fract_max_y_field or RSI [Sk	Si..j] [Zk] [Wn] Fm x_fract_pupil y_fract_pupil or RSI [Sk	Si..j] [Zk] [Wn] Fm Rs or RSI [Sk	Si...j]```	
3. Single Ray - Specify field and pupil coordinates (GOLD/6 Subscreen)	Trace a single ray, for the designated zoom position and wavelength. The various forms of the command allow several different methods of specifying field and entrance pupil coordinates. The first form uses fractional field and pupil coordinates defined by:   x_fract_pupil - X pupil coordinate, as a fraction of unvignetted pupil radius   y_fract_pupil $\quad-\mathrm{Y}$ pupil coordinate, as a fraction of unvignetted pupil radius   x_fract_max_x_field - X field coordinate, as a fraction of maximum $\|X\|$ field coordinate, retaining the sign   y_fract_max_y_field - Y field coordinate, as a fraction of maximum \|Y	field coordinate, retaining the sign   Output will be for surface(s) Sk\|Si..j (SA is the default), and for zoom position Zk . If Zk is omitted, the ray is traced for all zoom positions. The second form of the RSI command uses a numbered field designated by Fm to specify the field coordinates while retaining the fractional pupil coordinate method for specifying the entrance pupil coordinates. The third form allows the user to specify one of the five reference rays, designated by Rs, from a particular field. The final form will trace the ray that was traced by the last RSI command. Listing includes up to 10 components as selected by the ROF command. If global coordinates are active, as specified by the GLO command, these components for all surfaces are relative to the single coordinate system of the GLO command; otherwise, components for each surface are relative to each surface's local coordinate system.   Note: RSI also traces a chief ray from the same object point; both rays must be traceable. If chief-ray aim points have been entered (CRA), then they will be used ONLY IF the field is specified by entering a field number (i.e. the second and third forms of the command).		

Continued....

## QUICK ANALYSES

Single Ray Traces (Continued)

Command Syntax	
Screen Prompt	Explanation
or RSI [Sk\|Si..j] [Zk] [Wn] x_ref_surf y_ref_surf_   x_fract_max_x_field y_fract_max_y_field num_of_ref_surf   or RSI [ $\mathrm{Sk} \mid \mathrm{Si} . \mathrm{.j}][\mathrm{Zk}][\mathrm{Wn}] \mathrm{Fm}$ x_ref_surf y_ref_surf num_of_ret_surf or RSI [Sk\|Si..j]	
4. Single Ray - Specify... on user-selected surface   (GOLD/6 Subscreen)	Trace a single ray for the designated zoom position and wavelength.   The field can be specified either as a numbered field (the second form of the command) or as fractional field coordinates given by:   x_fract_max_x_field - X field coordinate, as a fraction of maximum $\|\mathrm{X}\|$ field coordinate, retaining the sign   y_fract_max_y_field - Y field coordinate, as a fraction of maximum $\|\mathrm{Y}\|$   field coordinate, retaining the sign   The final information needed to select a ray are the $X$ and $Y$ coordinates on a user selected reference surface: $\begin{array}{ll} \text { x_ref_surf } & - \text { actual } X \text { coordinate on reference surface } \\ \text { y_ref_surf } & \text { actual } Y \text { coordinate on reference surface } \\ \text { num_of_ref_surf } & \text { - number of the target surface on which the } X \\ \text { and } Y \text { coordinates are designated. } \end{array}$   Output will be for surface(s) Sk\|Si..j (SA is the default), and for zoom position Zk . If Zk is omitted, the ray is traced for all zoom positions. The third form of the RSI command will trace the ray defined by the last RSI command. Listing includes up to 10 components as selected by the ROF command. If global coordinates are active, as specified by the GLO command, these components for all surfaces are relative to the single coordinate system of the GLO command; otherwise, components for each surface are relative to each surface's local coordinate system.   Note: RSI also traces a chief ray from the same object point; both rays must be traceable. If chief-ray aim points have been entered (CRA), then they will be used ONLY IF the field is specified by entering a field number (i.e. the second form of the command).

Continued...

Command Syntax	
Screen Prompt	Explanation
SIN [Sk\|Si..j] [Zk] [Wn] x_1st_surf_tan_planeor $\operatorname{SIN}[\mathrm{Sk} \mid \mathrm{Si} . \mathrm{j}]$	
5. Single Ray - Specify tangent plane of surface 1 (GOLD/6 Subscreen)	Trace single ray, for designated zoom position and wavelength, defined by:   x_1st_surf_tan_plane - X coordinate on tangent plane of first surface   y_1st_surf_tan_plane - Y coordinate on tangent plane of first surface   x_dir_tan - X field coordinate, expressed as a direction tangent in object space (L/N)   y_dir_tan - Y field coordinate, expressed as a direction tangent in object space ( $\mathrm{M} / \mathrm{N}$ )   Output will be for surface(s) $\mathrm{Sk} \mid \mathrm{Si}$..j (SA is the default), and for zoom position Zk . If Zk is omitted, the ray is traced for all zoom positions. Second form of SIN will trace ray defined by last SIN command. Listing includes up to 10 components as selected by ROF command. If global coordinates are active, as specified by the GLO command, these components for all surface are relative to the single coordinate system of the GLO command; otherwise, the components for each surface are relative to each surface's local coordinate system.   Note: Only the one ray is traced; no corresponding chief ray needs to be traceable, as with RSI.


Command Syntax																							
Screen Prompt	Explanation	Default																					
ROF 'Format' $\mathrm{X}\|\mathrm{Y}\| \mathrm{Z\|L\|M\|N\|TNX\|TNY\|AOI\|AOR\|LEN}$   \|SRL	SRM	SRN	POL	PXI	PYI	PFR	PTP	POR	PRO	JR1	JR2	JR3   \|JR4	JI1	JI2	Jl3	JI4	MGS	MGP	PHS	PHP	JNS...10 ]		
6. Select the data to display for Single Ray output (GOLD/6 Subscreen)	Ray output format for RSI and SIN commands; select for listing, up to 10 of the following parameters:	X Y Z TNX TNY LEN																					

## QUICK ANALYSES

## USAGE

These commands provide short, easy to perform, analyses on the lens prior to performing a more involved and comprehensive option analysis. These Quick Analyses can be grouped under three headings: Data Evaluation, First- and Third-order Analyses, and Ray Tracing.

## Data Evaluation - The EVA Command

The EVA (evaluate) command is one of the most useful and versatile commands in CODE V. It is intimately linked with Macro-PLUS, and can be considered as a Macro-PLUS command. Simply, it gives a way to see the result of the specified Macro-PLUS expression.

The EVA command allows display of virtually any part of the lens database, and allows calculations to be made with these database items or with user-defined variables. Refer to the Database Reference section (11B-3) for a description of the database items that can be accessed by EVA. Refer to the Expressions section (11A-16) for syntax rules on expressions that can be evaluated by EVA and for a description of the pre-defined functions that can be used in expressions.

The general form of the EVA command is EVA followed by a Macro-PLUS expression. There are no limits to what can be in a macro expression, as long as it follows the standard rules. If the expression to be evaluated is longer than a single line, an ampersand (\&) can be placed at the end of a line to indicate continuation on the next line (multiple lines are allowed).

The output of an EVA command is a repeat of the requested expression followed by the result. This result may be a number or a text string. If the results are logical values, they are given as 1 for TRUE and 0 for FALSE (for example, EVA (NUM F) $>3$ will result in 1 if there are four or five fields specified, or 0 if there are three fields or less specified).

Note that all CODE V database items must be enclosed in parentheses (even if they are used inside other parentheses, such as a function argument) and note that all trigonometric calculations assume that angles are in radians. As in the rest of CODE V , expressions ignore case (upper or lower), except in text strings.

Examples:

```
EVA (EFL) ! Evaluate the effective focal length of the lens
EVA (EFL Z2) ! Evaluate the focal length for the second zoom
 position
EVA SINF((ADE S2)/57.295) ! Angle must be in radians
EVA (HMY S4)*(CUY S7)/LOGF((FNO)) ! Arbitrary calculation
```

The EVA command can be used as a general purpose calculator (the expression does not have to include database items):

```
EVA SQRTF (28.345)
EVA 10*4/((16*4+3)-SINF (.27)
```

The EVA command can access ray trace data and perform calculations on them. If the R and F qualifiers are used, then the corresponding reference ray datum is used. If the R and F qualifiers are not used, then the datum is for the last ray traced. The reference wavelength is assumed unless specified by the W qualifier, and the first zoom position is assumed unless specified by the $Z$ qualifier.

```
EVA (Y F1 R2 SI) ! Evaluate the Y value at the image surface (SI) of
 the upper marginal ray (R2) for field 1 (F1)
EVA (Y R1 FL SI W3 Z3)-(Y R1 FL SI W2 Z3)
 ! Evaluate real lateral color (Y difference
 for chief ray, R1) between the 2nd and 3rd
 wavelength, at the last field (FL)
 for the third zoom position (Z3)
EVA (M S3)/(N S3) ! Evaluate the ray Y direction tangent (M/N) after
 surface 3 for the last ray traced
```

The output of the EVA command is given to 12 significant digits (if needed). This can provide extra precision for database items which are listed to less precision in standard CODE V output.

```
SUR S2 ! Lists the radius to 5 digits (after the decimal point)
EVA (RDY S2) ! Lists the radius to }12\mathrm{ digits (if needed)
```

If any user-defined variables have been declared by you, they can be used in EVA expressions. Refer to User-defined Variables, page 11A-3, for a description of Macro-PLUS variables and their use.

```
^RAD == 45/ATANF(1) ! Define variable ^rad to be 1 radian (57.295...)
EVA SINF(30/^RAD) ! Converts degrees to radians for trigonometric
! calculation
```


## First- and Third-order Analyses

## FIR Command

The FIR (first-order data) command prints a list of various first-order properties. For finite conjugate lenses (THI SO < 1E10) first-order properties at both infinite conjugates and at the used conjugates are listed. Listings are automatically made for each zoom position. There are no qualifiers or data associated with the FIR command.

## FIO Command

The FIO (first-order ray trace) command performs a paraxial ray trace of the marginal and chief ray. The default is to list output for all surfaces from the object to the image; a surface range qualifier may be used to limit the output to the requested surfaces.

The output of the FIO command is six columns of data. These are the ray height, ray angle (in radians), and refractive index times angle of incidence, all given for both paraxial rays. Separate tables are generated for each zoom position; a zoom qualifier may be used to limit the output to only one zoom position. Refer to Description of Output for the Analysis option, Chapter 4, for a more complete description of the output of the FIO command.

## THO Command

The THO (third-order) command lists the Seidel aberrations for each surface, plus a summary of the totals. The default is to print the listing for all surfaces; a surface range qualifier may be used to limit the output to the requested surfaces. A separate table is generated for each zoom position; a zoom qualifier may be used to limit the output to only one zoom position.

This output is identical to the third-order output from the Analysis option. Refer to the Description of Output section of ANA, Chapter 4, for a complete description of the output of the THO command.

The output from THO requires 110 columns, and may be truncated or wrapped (depending on terminal settings) on the screen. If this is the case, setting the terminal to wide mode ( 132 column mode) will display the output correctly.

## Ray Tracing

CODE V has two forms of a single ray trace. These are SIN (single ray trace), which traces any arbitrary ray, and RSI (relative single ray trace), which first traces a chief ray for the requested relative field and then traces the requested ray.

SIN and RSI are complementary to each other and have different uses. RSI is the more commonly used command; it is easy to use since its arguments are relative entrance pupil coordinates and relative field locations, and, because it is a relative ray, it also outputs the OPD between the ray and its chief ray. However, RSI does require that the chief ray for the requested relalive field traces to the image plane. The SIN command has no such restriction. It will trace any arbitrary ray, although you have to be specific in defining the ray's entrance coordinates to the optical system and its direction tangents. The SIN command is especially useful when the chief ray for a given field angle will not trace.

## QUICK ANALYSES

## RSI Command - With Relative Pupil Coordinates

The arguments for the RSI command are generally the X and Y relative pupil coordinates, and the X and $Y$ relative field angles, but short forms can be used for pupil and field. If the desired field is one of the five fields (F2, F2, F3, F4, F5) in the specification data, the field can be specified by a F qualifier. An R qualifier can be used for the pupil coordinates to select one of the five reference rays (R1, R2, R3, R4, R5) but only if an $F$ qualifier has also been used.

Other qualifiers for the RSI command are W, Z, and S. Rays are traced in the reference wavelength unless specified with the W qualifier. The chief ray in the reference wavelength for that field is traced first; in addition, if the requested wavelength is a wavelength other than the reference wavelength, a chief ray is also traced at the requested wavelength; for RSI, these chief rays must be traceable. The requested ray is traced for all zoom positions; a Z qualifier will limit the output to only one zoom position. The default is to list ray trace output for all surfaces from object to image, unless limited with a S qualifier.

An RSI command with no qualifiers or data will retrace the last ray traced. If only the S qualifier is given, the last ray is traced again, with data output for the new surface range. This is helpful when you are making changes to the lens data and testing with a ray.

If the short forms are not used, pupil and/or field coordinates are given in relative values. The $X$ and $Y$ pupil coordinates are relative to the circular pupil for the requested relative field angle. The pupil used is the paraxial entrance pupil diameter located at the real entrance pupil location for that field. A value of 1 for relative X or relative Y means trace the ray at the edge of the pupil in that direction. Vignetting values are ignored by RSI. Since the vignetting values change for different fields, RSI can not know what the vignetting value would be for an arbitrary field, hence RSI does not use any vignetting values. You must manually take them into account. This is true even when using the F qualifier, even though the specified fields do have defined vignetting values. Note also that RSI ignores any CRA specification unless the field is specified with an F qualifier, in which case the CRA specification is used.

```
YAN O 10
VUY 0 . 3
RSI 0 1 0 1
RSI 0 . 7 0 1
RSI F2 0 1
RSI F2 0 1-(VUY F2)
```

```
Traces the ray at the upper rim of the pupil at
 the maximum field (vignetting value is ignored)
Traces a ray at a relative pupil position
Traces a ray at a relative pupil position
 marginal ray) at the full field
RSI 0 1-(VUY F2) 0 1 ! Traces the upper Y vignetted ray (same as R2)
 for full field
Traces the ray at the upper rim of the pupil
 (vignetting is ignored) for field 2
Traces the upper Y vignetted ray for field 2
 (same as R2)
```

If the $R$ qualifier is used, then the reference rays are traced, and these reference rays do take into account any vignetting.

```
YAN 0 10
VUY 0 . 3
RSI F2 R2 ! Traces the upper vignetted marginal ray for field 2
 ! (reference ray R2)
```

The field angle inputs to the RSI command are relative to the maximum $X$ and $Y$ values for any of the five field angles specified in the LDM (regardless of whether the largest value is the fifth field or not); the X and Y maximums are selected separately and may thus come from different field points. The sign of the maximum value is retained as the definition of the "largest" field. Thus, if the maximum field angle specified in the LDM is negative, then a relative field of +1 in RSI corresponds to the negative angle. If there are both a positive and a negative field angle with the same absolute maximum value, the positive value is retained for the maximum. X and Y relative angles are calculated separately for the X and Y field specifications. If there are no X field specifications, then any relative $X$ field in a RSI command will trace a 0 field, since the maximum value is 0 ; if you want to trace a ray from an $X$ field, you must first have a non-zero $X$ field specification entered in the LDM.

```
YAN 0 10 20
RSI 0 0 0 1 ! Traces a ray at +20 degrees
YAN }0
RSI 0 0 0 -1 ! Traces a ray at +20 degrees
YAN }\begin{array}{lllll}{0}&{-10}&{10}\\{\mathrm{ RSI }}&{0}&{0}&{0}&{1}\end{array}\quad\mathrm{ ! Traces a ray at +10 degrees
YAN 0 10
XAN 0 0
RSI 0 0 1 0 ! Traces an on-axis ray (no X field specified)
YAN 0 10
XAN 0 5
RSI 0 0 1 0 ! Traces a ray at +5 degrees in X
RSI 0 0 1 1 ! Traces a ray at 5 degrees in X and 10 degrees in Y
```

Since object heights are stored in CODE V, relative angles do not multiply the angle value, but multiply the tangent of the maximum angle.

```
YAN 0 10
RSI 0}00011\mathrm{ ! Traces a ray at 10 degrees
RSI 0 0 0 . 5 ! Traces a ray at 5.038369 degrees (the angle
! whose tangent is half the tangent of }10\mathrm{ degrees)
```

What is used by RSI is the maximum value of the field specifications. It does not matter what the other values are or how many there are.

```
YAN }1
RSI 0 0 0.5 ! Trace a ray at 5.038369 degrees
YAN 1 2 10 3 4
RSI 0 0 0.5 ! Trace a ray at 5.038369 degrees
```

If the $F$ qualifier is used, then both the $X$ and $Y$ field specifications are used for that field number. For example, set up three fields on-axis and along the diagonal of a square format:

```
YAN 0 5 10
XAN 0 5 10
```

There is no F qualifier for these fields which will represent a ray at $10^{\circ}$ in Y only. To trace such a ray, relative fields must be used, as in:

```
RSI 0 0 0 1 ! Trace a ray at 10 degrees in Y and 0 degrees in X
```


## RSI Command - Targeted to a Spot on a Surface

The RSI command also allows targeting of a ray to a specific spot on a specific surface. This is accomplished by adding a fifth entry to the RSI data arguments. This fifth entry is the surface number of the targeted surface. If this is used, then the first two entries are not relative pupil coordinates, but are actual X and $Y$ positions on the targeted surface. CODE $V$ will then iterate to find the ray from the specified field which hits the targeted surface at the targeted spot. The field may be specified with a $F$ qualifier. If the $F$ qualifier is used, then the surface number is the third entry.


If the F qualifier is used, then any CRA specifications are used, otherwise they are ignored. The CRA will only affect the chief ray traced, and will have no effect on the targeted ray. Note that since RSI requires

## QUICK ANALYSES

the chief ray to trace, the CRA and F qualifier can be used to trace a ray that would normally not be traced due to chief ray failure.

In a non-sequential system, if a ray is requested to hit a surface at a specific point, and the ray can hit the surface two or more times, the target is applied to the first hit at the surface. (Note that in AUTO, ray data for the last hit on the surface is the data retained and used for any constraints.)

## SIN Command

The SIN command is used to trace an arbitrary ray into the optical system. It does not trace a chief ray, and does not depend on any other ray being able to trace. Because it does not trace a chief ray first, no OPD output is made for SIN. Also, because there is no object point specified (only a ray direction), optical path (OP) is only calculated from the tangent plane of the first surface, rather than from a sphere centered on the object.

The data inputs for the SIN command are actual $X$ and $Y$ coordinates on the tangent plane to the first surface (not on the first surface, unless it is plano), and actual $X$ and $Y$ direction tangents in object space. The SIN command also accepts W; Z, and S qualifiers in the same way as RSI to specify a wavelength, zoom position, or surface output range.

```
SIN 0 0.3.4 ! Trace a ray with direction tangents of . }3\mathrm{ in X and.4
SIN . 6.70 0 ! Trace an on axis ray which hits the first
! surface at . }6\mathrm{ in X and . }7\mathrm{ in Y
SIN .3 .4 0 .2 ! Trace a ray with a Y direction tangent of . 2 which
 hits the tangent plane of the first surface at . 3
 in X and . }4\mathrm{ in Y
SIN 0 0 0 TANF (20/^RAD ! Trace a ray at 20 degrees in Y which hits the
 vertex of the first surface (assumes variable
 ^rad is defined as the ratio of degrees to
 radians)
```

Note that the $X$ and $Y$ direction tangents are the ratios of the $X$ and $Z$ direction cosines $(L / N)$ and ratios of the $Y$ and $Z$ direction cosines (M/N), respectively.

## ROF Command

The ROF (ray trace output format) command lets you select which ray trace output is displayed and the format of the output. You have a choice of 20 different output data items, although 6 of the data items relate only to polarization properties. Up to ten may be selected for output with a single ROF command. More than 6 may result in output wider than 80 columns, which may truncate or wrap (depending on display settings) on a standard display. By setting the display to display wider output, more output may be viewed on a single line.

The default ROF is the $X, Y$, and $Z$ coordinates at the surface ply the $X$ and $Y$ directions tangents after refractions and the ray length from the previous surface (note that the ray length is geometric only - it is not an optical path length). The default format is 'F11.5'. An ROF command with ray trace outputs listed but no format specified will use the previous format. An ROF command with only a format specification will not change the list of ray trace outputs. An ROF command with no qualifiers (format or ray outputs) will reset both the format and list of ray trace outputs to the defaults.

Format types $F$ (fixed format), $E$ (exponential, form $E \pm x x$ ), $D$ (exponential, form $D \pm x x$ ), and $G$ (general format) may be used. The first number in the format (integer before the decimal) specifies the field width (total characters, including sign, decimal, and any exponent); the field width can range from 7 to 20 (limited to a maximum of 11 in screens). The second number in the format (integer after the decimal) specifies the number of digits after the decimal, and can range from zero to two less than the field width. The specified format is used for all outputs on the line; the total number of characters output is restricted to 120 columns (including the surface numbers and one intervening blank between fields).

Note that if direction cosines are chosen for output (L, M, or N) that they are for the ray after refraction/ reflection/diffraction. Also note that the direction cosines are optical direction cosines, i.e., they are multiplied by the refractive index of the medium.

Polarization data items are only available if polarization ray tracing has been enabled with the POL command. A POL qualifier will select all 6 polarization related outputs for display.

```
ROF X Y Z TNX TNY LEN ! Default
ROF Y Z M N ! Select reduced output for meridional rays
ROF
! Restores default ROF setting
ROF POL
ROF PXI PYI PFR PTP POR PRO
ROF X Y POL
Selects all }6\mathrm{ polarization outputs
Same as ROF POL
Selects X and Y output plus the 6 polarization
 outputs (eight outputs in all)
ROF 'E15.6'
ROF 'F9.3' Y Z
Change format, do not change output list
! Change format and output list
```

Note: The LEN output is simply the geometrical length of the ray from the previous surface intersection to the current surface intersection. It is not an optical path, as index is not included. Optical path from surface-to-surface is not a displayable ray trace item with ROF, but it is available through the Macro-PLUS database item OP. This OP also includes the optical path contribution of diffractive optics (such as HOEs), lens modules, and interferogram effect (.INT files).

## Ray Trace Output

The output of an RSI or SIN command is a line for each requested surface with the surface number followed by the output data selected with the ROF command. If the ray was traced with RSI, the output is followed by the OPD of the ray with respect to its chief ray. If the ray has a HOE with a diffraction efficiency less than $100 \%$, then the RSI output is followed by the ray transmittance. If polarization ray tracing has been enabled, the output is followed by polarization phases and ray intensity. Refer to the Polarization section (2A-307) for a description of these outputs.

The OPD is calculated as the difference of the ray's optical path and its chief ray's optical path. These optical path calculations are made from a reference sphere at the first surface tangent plane centered on the object point to a reference sphere at the exit pupil centered on the image point.

If the requested ray fails to trace, a diagnostic is given. There are three possibilities for ray failure: (1) the ray encountered a total internal reflection (or refracted when TIRO mode was specified), (2) the ray missed a surface, and (3) the iteration to a special surface failed to converge. For non-sequential surfaces there are also other ray failure modes. In any of these cases, the ray is traced up to the failure point. In the case of an RSI, if the chief ray for the requested relative field fails to trace, then a message to that effect is given, and there is no ray trace output. If a ray fails to trace for any reason, a Macro-PLUS database item RER (ray error) is set to the surface number of the ray failure; the sign tells whether it was the requested ( + ) or chief ray ( - ) that failed. If the ray traces correctly, RER is set to zero.

Three other diagnostics are supplied with the ray trace output. The first one relates to negative edge thicknesses. If at any surface in the lens, the ray length from the last surface is negative, indicating virtual ray tracing (tracing backwards along the ray), then an E (for edge error) is listed next to the surface number in the ray trace output. The usual reason for this is negative edge thickness on a lens, but it also can occur in decentered systems, especially on dummy surfaces used to reorient the coordinate system (in which case the E flag can be ignored).

The other two diagnostics relate to the ray encountering an aperture or an obscuration. The output of these diagnostics depends on the status of the CA command (CA NO, CA YES, or CA APE). In CODE V a ray traced with either RSI or SIN is traced to the image plane without regard to apertures or obscurations. In the ray trace output, however, if a ray hits a surface outside the apertures (user-defined or default) and the CA status is YES (the default for CA), an A (for aperture) is listed next to the surface number. If the ray encounters an obscuration, an $O$ (for obscuration) is listed next to the surface number. Note that the $E$ diagnostic will override the A or O diagnostics in the output. If the CA status is APE (for user-defined apertures only), then the check is only made on user-defined apertures, i.e., default apertures are ignored. If the CA status is NO, then no check is made at all.

If the ray encounters an aperture or obscuration and sets the A or O diagnostic, a Macro-PLUS database item called BLS (blocking surface) is set to the surface number. If the ray passes outside the aperture on more than one surface, BLS is set to the number of the first such surface. In the case of the ray hitting a surface inside an obscuration, BLS is set to the negative of the surface number. If the ray encounters neither (i.e., passes inside all apertures and outside all obscurations), BLS is set to zero. Thus, macros can interrogate RER and BLS to determine the slalus of traced rays.

## QUICK ANALYSES

## Examples of Ray Tracing

We will work with the doublet which is supplied with CODE V. This lens is stored in the directory CV7_LENS.

CODE V> RES CV7_LENS: DOUBLET
WARNING - Glass SSK4 is no longer available from SCHOTT
A replacement glass is SSK4A
File CV7 LENS:DOUBLET.LEN(1) has been restored
Lens title: " Doublet"
First we will trace an on-axis upper marginal ray. The relative height is 1 for rays at the edge of the pupil.
CODE V> RSI 0100

Doublet						
	Position 1,	Wavelength $=$	587.6 NM			
	X	Y	Z	TANX	TANY	LENGTH
OBJ	0.00000	0.00000	0.00000	0.00000	0.00000	
STO	0.00000	16.66667	2.31817	0.00000	-0.10730	2.31817
2	0.00000	16.15024	-3.21473	0.00000	-0.07560	4.84036
3	0.00000	15.75919	-0.39303	0.00000	-0.16803	5.18773
IMG	0.00000	0.15898	0.00000	0.00000	-0.16803	94.14463

If we try to trace a ray at twice the pupil height, the ray will strike the first surface outside its default aperture, as indicated by the A in the output. Note that the ray also is beyond where the first and second surfaces cross, and thus there is also an edge thickness error, indicated by the E .

CODE V $>$ RSI 0200

		Doublet					
		X	Y	Z	TANX	TANY	LENGTH
OBJ		0.00000	0.00000	0.00000	0.00000	0.00000	
STO	A	0.00000	33.33333	9.89894	0.00000	-0.23751	9.89894
2	E	0.00000	40.25901	-29.60644	0.00000	0.04655	-29.97092
3	A	0.00000	41.61842	-2.75143	0.00000	-0.01519	29.23792
IMG		0.00000	40.17249	0.00000	0.00000	-0.01519	95.21249
	OPD $=$ ******** Waves						

Now, we will change the Ray Trace Output Format (ROF) to display just Y -oriented data for marginal rays, and then trace the on-axis marginal ray.


## QUICK ANALYSES

Now, reset the ROF to the default, and trace an off axis chief ray for the second field.

```
CODE V> ROF
CODE V> RSI F2 R1
 Doublet
\begin{tabular}{rcccccr}
& Position 1, wavelength \(=\) & 587.6 NM \\
X & Y & Z & TANX & TANY & LENGTH \\
OBJ & 0.00000 & \(-0.33 \mathrm{E}+11\) & 0.00000 & 0.00000 & 0.03492 & \\
STO & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.02158 & 0.00000 \\
2 & 0.00000 & 0.22324 & -0.00059 & 0.00000 & 0.02063 & 10.34745 \\
3 & 0.00000 & 0.27176 & -0.00012 & 0.00000 & 0.03483 & 2.35225 \\
IMG & 0.00000 & 3.49195 & 0.00000 & 0.00000 & 0.03483 & 92.50626
\end{tabular}
```

Next, trace a ray from the second field point which hits surface 3 at an $X$ value of 0 and a $Y$ value of 10 .
CODE V> RSI F2 0103

	Doublet   Position      X							Wavelength $=$	587.6 NM			
OBJ	0.00000	$-0.33 \mathrm{E}+11$	0.00000	0.00000	0.03492	LENGTH						
STO	0.00000	10.46235	0.90283	0.00000	-0.04475	0.90338						
2	0.00000	10.09461	-1.22588	0.00000	-0.02767	8.22515						
3	0.00000	10.00000	-0.15820	0.00000	-0.07044	3.42027						
IMG	0.00000	3.47659	0.00000	0.00000	-0.07044	92.83775						

The previous examples have all been RSI commands. Now we will trace an ray which strikes the first surface tangent plane at an X value of 0 and a Y value of 5 with a Y direction tangent of 0.1 .

CODE V> SIN 050.1

	Doublet   Position      X	Wavelength $=$	587.6 NM			
OBJ	0.00000	$-0.94 \mathrm{E}+11$	0.00000	0.00000	0.10000	TANX
STO	0.00000	5.02067	0.20672	0.00000	0.02981	0.20775
2	0.00000	5.31292	-0.33598	0.00000	0.03544	9.80729
3	0.00000	5.40652	-0.04623	0.00000	0.04861	2.64268
IMG	0.00000	9.90244	0.00000	0.00000	0.04861	92.60552

Note that the $Y$ value at surface 1 is not exactly equal to 5.5 is the value of the ray at the tangent plane to surface 1, and since surface 1 is curved, the $Y$ value will be different. The SIN command does not accept a R or F qualifier, as these are used with relative rays only.

## QUICK ANALYSES

LGE Exhibit 1015A
LGE v. ImmerVision - IPR2020-00179
Page 96 of 103

## Saving/Restoring Data

## TABLE OF CONTENTS

THE LDM - SAVING/RESTORING DATA ..... 2E-3
SCREEN FLOW DIAGRAM ..... 2E-3
COMMAND MNEMONICS (alphabetical) ..... 2E-4
DATA INPUT DESCRIPTION ..... 2E-4
Save and Restore Data ..... 2E-4
Copying Stored Lens into Current Lens ..... 2E-5
Converting Lens to Sequence Data ..... 2E-5
USAGE ..... 2E-6

LGE Exhibit 1015A
LGE v. ImmerVision - IPR2020-00179
Page 98 of 103

## THE LDM - SAVING/RESTORING DATA

Allows saving of the current lens data (in a .LEN file) for later use, or restoring of a previously saved lens; also allows unattended conditional saving of lenses if they are better than the previous version or a pre-defined level of performance. Alternatively, lens data can be converted into a .SEQ file of the equivalent LDM commands, for editing or merging with other such files. None of these operations move the surface pointer.

## SCREEN FLOW DIAGRAM

GOLD/1 Subscreen from LEN1:


SAVING/RESTORING DATA

COMMAND MNEMONICS (alphabetical)
COP
CSA
RES
SAV
WRL

DATA INPUT DESCRIPTION
Save and Restore Data

Command Syntax	
Screen Prompt	Explanation
SAV [filespec]	
3. Save (GOLD/1 Subscreen)	Save lens in new version of filespec (.LEN default filetype). If filename is omitted the last used filename will be used; if there is none, LENS will be used.
RES [filespec]	
1. Restore   2. Restore from...   (GOLD/1 Subscreen)	Restore lens from highest version of filespec (.LEN default filetype). Displays filespec, lens title, and if AUT has been used, the error function value. If filespec is omitted, the last used filespec will be used; if there is none, LENS.LEN will be used. Note: Replaces current lens in memory. A pre-defined set of lenses is provided with CODE V (in both .LEN and .SEQ format) that can be transferred into your directory, using   RES CV7 LENS:CASSRC   RES CV7_LENS:COOKE1   RES CV7_LENS:DBGAUSS   RES CV7_LENS:DOUBLET   RES CV7_LENS:EYEPIECE   RES CV7_LENS:MAKSUTOV   RES CV7_LENS:MOVIE   RES CV7_LENS:PETZVAL   RES CV7_LENS:SCHMIDT   RES CV7_LENS:SINGLET   RES CV7_LENS:TELEPHOT   RES CV7_LENS:TRIPLET   RES CV7_LENS:WIDEANG   - Ritchey-Chretien Cassegrain system   - $\mathrm{f} / 4.5$ Cooke triplet   - Double Gauss type objective   - f/3 Doublet   - Erfle eyepiece   - Catadioptric telephoto   - 9 mm - $36 \mathrm{~mm} \mathrm{f} / 2$ zoom   - Petzval lens with field flattener   - Flat-field Schmidt camera   - f/5 Singlet   - Refracting telephoto   - Another triplet   - Wide angle photo-objective   Follow each with a SAV command. See Chapter 1A, Appendix E for many more lenses.   RES is allowed in the DEFAULTS.SEQ file (see Immediate Commands/ Defaults in Chapter 10).   The PTH LEN command defines a search path for .LEN files.
CSA [ filespec ] [ err_fun]	
4. Save with smaller error function (GOLD/1 Subscreen)	Save lens in new version of filespec (.LEN default filetype) if current err_fun is less than err_fun for previous version of filename.LEN lens; if [err_fun] is included, the test is made against it instead of err_fun for the previous version. If filename is omitted, the last used filename will be used; if there is none, LENS will be used. Ex:   CSA BEST - Save lens in BEST.LEN if it is better than prior version   CSA GOOD 0.0001 - Save lens in GOOD.LEN if its error function is less than 0.0001

Copying Stored Lens into Current Lens (Same command as described in Section 2A)

Command Syntax						
Screen Prompt	Explanation					
COP Sk\|Si..j Sn [*	filespec [FLX	FLY	NEG	FNX	FNY] [final_thickness]]	
	Copy surfaces $\mathrm{Sk} \mid \mathrm{Si} . . \mathrm{j}$ in source lens, inserting ahead of Sn in current lens (Sk\|Si..j, Sn required):					

Converting Lens to Sequence Data

Command Syntax	
Screen Prompt	Explanation
WRL [ filename]	Write lens - Convert lens into LDM command equivalents so it can be   edited, and save command file in filename.SEQ. If filename is omitted,   the last used filename will be used; if there is none, LENS.SEQ will be   used.
5. Write to sequence   (GOLD/1 Subscreen)	

## SAVING/RESTORING DATA

## USAGE

You can change lens data directly at any time and in any way through the LDM; or you can modify the lens indirectly by using such options as AUTomatic design to optimize the lens, TEStplate fitting, or generation of tolerances through TOR. These modified systems can be saved in the lens library for later retrieval, rather than having to enter them all over again. The binary file form for these files is one that can be read in quickly, without testing for syntax or optical completeness, since this has already been done before saving it. It is a good idea:

- to save the lens whenever you think you might want to go back to that version.
- to do the save at the earliest point after the change, in the unlikely event that you inadvertently destroy the system or lose communication with the computer.

Two forms are available: an absolute save (SAV) and a conditional save (CSA). SAV will always execute; CSA will only execute if the error function of the current lens is less than the previously stored version or an input value. You will most often use SAV interactively because you are in control, or in .SEQ files because you want to be sure the lens is saved somewhere; you will most often use CSA in .SEQ files following AUTomatic design, where you don't know whether the end result will be better than prior forms.

Examples:

SAV		- Save lens in last used filename.LEN file with the next higher version number (or LENS.LEN if no prior filename was used in this session)
SAV	PROJECT	- Save lens in PROJECT.LEN file with the next higher version number
SAV	PROJECT(3)	Save lens in PROJECT.LEN file with version number 3; allows over-writing of a prior file
SAV	PROJECT.XYZ(3)	Save lens in PROJECT.XYZ file with version number 3; allows over-writing of a prior file
SAV	'[JOE]PROJECT.LEN'	- Save lens on Joe's directory as the highest version of PROJECT.LEN (VAX only)
CSA		- Save lens in last used filename.LEN file with the next higher version number (or LENS.LEN if no prior filename was used in this session) if it is better than prior version
CSA	BEST	Save lens in BEST.LEN if it is better than prior version
CSA	BEST(1)	- Over-writes BEST.LEN;1 file if it is better; allows a known file to hold the best lens to date
CSA	GOOD 0001	- Save lens in GOOD.LEN if its error function is less than . 0001

Other examples can be derived by using various combinations allowed by the syntax.
Once a lens has been SAVed it, of course, can be retrieved by the restore (RES), using the same format as SAV.

Examples:

RES	- Restore lens in last used filename.LEN file with the   highest version number (or LENS.LEN if no prior   filename was used in this session)
RES PROJECT	- Restore lens in PROJECT.LEN file with the highest   version number
RES PROJECT(3)	- Restore lens in PROJECT.LEN file with version number   3, if it exists   RES PROJECT.XYZ(3)Restore lens in PROJECT.XYZ file with version number   3 , it exists
RES '[JOE]PROJECT.LEN'- Restore lens in highest version of PROJECT.LEN file on   Joe's directory (VAX only)	

A "conditional update" can be achieved by using both CSA and RES in combination to keep working on the best lens to date. An example of the total.SEQ file to do this would be:
! Case 1
RES BEST(1) ! Get best lens so far
Make changes, if needed
AUT
Automatic design inputs
GO
! Optimize to completion
SAV TEMP
Save as next higher version of TEMP.LEN, in case
recovery is needed
CSA BEST(1) ! Save if best to date in known file
Do any required brief analyses or outputs for the record, then repeat the pattern:
! Case 2
RES BEST(1) ! Get best lens so far
Make changes, if needed
AUT
Automatic design inputs
GO
! Optimize to completion
SAV TEMP $\quad \begin{gathered}\text { Save as next higher version of TEMP.LEN, in } \\ \text { case recovery is needed }\end{gathered}$
CSA BEST(1) ! Save if best to date in known file
Continue with as many cases as desired, and then finish with:
! Best case
RES BEST(1)
Do complete analysis on final lens best lens

Do complete analysis on final lens
The binary file form for .LEN files does not allow it to be edited, merged with another file, or displayed as a string of input commands for the equivalent lens. These can all be done with the WRL command which takes the lens in memory and "de-compiles" it into the LDM commands that will generate the same lens in memory and places these in a .SEQ file, ready for editing, merging, display, and/or reading in through the $\mathbb{N}$ command (see Chapter 10 - Immediate Commands/Defaults). Example:

RES BEST(1)	Restore BEST.LEN; 1
WRL BEST	Write BEST.SEQ, the LDM command equivalents
EDI BEST	Enter Editor, operating on BEST.SEQ
Make necessary changes, then exit, writing a new version of BEST.SEQ	
IN $\quad$ BEST	Reads in new BEST.SEQ

In the editor, any changes can be made, including merging of files or bringing in surfaces from another file to merge optical systems into one.

Note that the COP command (Section 2A) does allow the copying of part or all of the surfaces for a .LEN lens into the current active lens, ahead of a designated surface.

The RES command reads in files from the current directory. The path command PTH can be used to define a search path of up to five additional directories to be searched for the requested .LEN file. See Chapter 10, "Immediate Commands/Defaults" for details on PTH. Note that LEN files in the search path but not in the current directory will not be shown in the list in the restore lens screen.


[^0]:    ${ }^{1}$ The Macro-PLUS language is compatible with the standard command language, but has its own extensions and differences. See Chapter 11.

